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Abstract—Nowadays, a heat and mass transfer simulation 
plays an important role in various engineering and industrial 
fields. To analyze physical behaviors of a thermal environment, 
we have to simulate heat and mass transfer phenomena. 
However to obtain numerical solutions to heat and mass 
transfer equations is much time-consuming.  In this paper, 
therefore, one of acceleration techniques developed in the 
graphics community that exploits a graphics processing unit 
(GPU) is applied to the numerical solutions of heat and mass 
transfer equations.  Implementation of the simulation on GPU 
makes GPU computing power available for the most time-
consuming part of the simulation and calculation.  The nVidia 
CUDA programming model provides a straightforward means 
of describing inherently parallel computations.  This paper 
improves the computational performance of solving heat and 
mass transfer equations with the third kind boundary and 
initial conditions numerically running on GPU.  We 
implemented simulation of heat transfer using the novel CUDA 
platform on nVidia Quadro FX 4800 and compared its 
performance with an optimized CPU implementation on a 
high-end Intel Xeon CPU.  The experimental results of heat 
transfer clearly show that GPU can perform heat transfer 
simulation accurately and significantly accelerate the 
numerical calculation with the maximum observed speedups 
20 times. Therefore, the GPU implementation is a promising 
approach to acceleration of the heat transfer simulation. 

Keywords-Genereal: Numerical Solution; Heat and Mass 
Transfer; High Performance Computation; General Purpose 
Graphics Processing Unit; CUDA. 

I. INTRODUCTION 
During the last 4-5 decades, many scientists and 

engineers working in Heat and Mass Transfer processes have 
focused their attention to finding solutions both 
analytically/numerically, and experimentally.  To precisely 
analyze physical behaviors of thermal environments, we 
need to simulate several heat and mass transfer phenomena 
such as heat conduction, convection, and radiation.  A heat 
transfer simulation is accomplished by combining multiple 
computer simulations of such heat and mass transfer 
phenomena. With the advent of computer, initially the 
sequential solutions were found, and later when super-
computers became available, fast solutions were obtained to 
above mentioned problems.  However, the simulation of heat 
and mass transfer requires much longer execution time than 
the other simulations.  Therefore, acceleration of the heat and 

mass transfer simulation is essential to realize a practical 
large-scale heat and mass transfer simulation. 

This paper exploits the computing power of graphics 
processing units (GPUs) to accelerate the heat and mass 
transfer simulation.  GPUs are cost-effective in terms of 
theoretical peak floating-point operation rates [1].  Therefore, 
comparing with expensive cluster, GPUs is a powerful co-
processor on a common desktop PC that is ready to achieve a 
large-scale heat and mass transfer simulation at a low cost. 
The GPU has several key advantages over CPU architectures 
for highly parallel, compute intensive workloads, including 
higher memory bandwidth, significantly higher floating-
point throughput. The GPU can be an attractive alternative to 
CPU clusters in high performance computing environments. 

Recent announcement like CUDA [2] by nVidia proved 
their effort to extend both programming and memory models. 
CUDA (Compute Unified Device Architecture) is a new 
data-parallel, C-language programming API that bypasses 
the rendering interface and avoids the difficulties of classic 
GPGPU. Parallel computations are instead expressed as 
general-purpose, C-language kernels operating in parallel 
over all the points in a domain.  

This paper investigates the numerical solutions to Two-
point Initial-Boundary Value Problems (TIBVP) of Heat 
transfer with the third boundary and initial conditions arising 
in capillary porous media.  These problems find applications 
in drying processes, under-ground contaminants transport, 
absorption of nutrients in human bodies, transpiration 
cooling of space vehicles at re-entry into atmosphere, and 
many other science and engineering problems. Although 
traditional approaches of parallel-distributed processing have 
been applied with advantage to the solutions of some of these 
problems, no more seem to have explored the high 
performance solutions to these problems with compact multi-
processing capabilities of GPU, which is multi-processors 
technology on a chip.  With the power of this compact 
technology and develop relevant algorithms to find the 
solution of TIBVP with the third boundary and initial 
conditions and compare with some of the existing solutions 
to simple known problems. All of our experimental results 
show satisfactory speedups. The maximum observed 
speedups are about 10 times.  

The rest of the paper is organized as follow:  Section II 
introduces some previous related work; Section III describes 
the background on GPU and CUDA briefly; Section IV 
presents the mathematical model of heat and mass transfer 
and numerical solutions to heat and mass transfer equations; 
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Our experimental results of heat transfer are presented in 
Section V; Finally Section VI concludes this paper with our 
future direction. 

II. RELATED WORK 
The simulation of heat and mass transfer has received 

much attention for years.  And there is much work related to 
this field, such as modeling and dynamic simulation.  Here 
we just refer to some recent work closely related. 

Soviet Union was in the fore-front for exploring the 
coupled Heat and Mass Transfer in Porous media was 
researched as a part of chemical engineering discipline, and 
major advances were made at Heat and Mss Transfer 
Institute at Minsk, BSSR.  Later England and India took the 
lead and made further advances in terms of analytical and 
numerical solutions to certain problems. Later Narang and 
Rajiv [4] explored the wavelet solutions and Ambethkar [5] 
explored the numerical solutions to some of these problems. 

 With the programmability of fragments on GPU, Krüger 
et al. [6] computed the basic linear algebra problems, and 
further computed the 2D wave equations and NSEs on GPU. 
Bolz et al. [7] rearranged the sparse matrix into textures, and 
utilized them multigrid method to solve the fluid problem. 
Similarly, Goodnight et al. [8] used the multigrid method to 
solve the boundary value problems on GPU. Harris [9, 10] 
solved the PDEs of fluid motion to get cloud animation.  

GPU is also used to solve other kinds of PDEs. For 
example, Kim et al. [11] solved the crystal formation 
equations on GPU. Lefohn et al. [12] packed the level-set 
isosurface data into a dynamic sparse texture format, which 
was used to solve the PDEs. Another creative usage was to 
pack the information of the next active tiles into a vector 
message, which was used to control the vertices and texture 
coordinates needed to send from CPU to GPU. To learn 
more applications about GPU for general-purpose 
computations, readers can refer to [13]. 

III. AN OVERVIEW OF CUDA ARCHITECTURE 
The GPU that we have used in our implementations is 

nVidia’s Quadro FX 4800, which is DirectX 10 compliant. It 
is one of nVidia’s fastest processors that support the CUDA 
API and as such all implementations using this API are 
forward compatible with newer CUDA compliant devices. 
All CUDA compatible devices support 32-bit integer 
processing. An important consideration for GPU 
performance is its level of occupancy. Occupancy refers to 
the number of threads available for execution at any one time. 
It is normally desirable to have a high level of occupancy as 
it facilitates the hiding of memory latency. 

The GPU memory architecture is shown in figure 1. 

 
Figure 1: GPU Memory Architecture [2] 

IV. MATHEMATICAL MODEL AND NUMERICAL 

SOLUTIONS OF HEAT AND MASS TRANSFER 

A. Mathematical Model  

Consider the Heat and Mass Transfer through a porous 
slab with boundary conditions of the third kind. The third 
kind of boundary condition which is also referred to as 
convective boundary condition, is a more common practical 
situation, where a heat transfer occurs at the boundary 
surface to or from a fluid flowing on the surface of a slab at a 
known temperature and a known heat transfer coefficient, eg. 
in heat exchangers, condensers, reboilers etc. 

Let the x-axis be directed upward along the slab and the 
y-axis normal to the slab. Let u and v be the velocity 
components along the x- and y- axes respectively. Let us 

assume that the slab is accelerating with a velocity Utu   

in its own plane at time 0t . Then the heat and mass 
transfer equations in the Boussinesq's approximation, are: 
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Equating the conduction heat flux to convection heat flux 

at the left surface of the slab and taking into consideration 
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the direction of heat flow (i.e. whether it is in the positive X-
direction or negative X-direction), we can represent the 
initial and boundary conditions mathematically as follows,  
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Since the slab is assumed to be porous, Equation (1) 

integrates to 01 vv 
 is the constant velocity.  Here, 1  is 

the velocity of the fluid, pT  the temperature of the fluid near 

the slab, T  the temperature of the fluid far away from the 

slab, pC
 the concentration near the slab, C  the 

concentration far away from the slab, g  the acceleration due 

to gravity,   the coefficient of volume expansion for heat 

transfer, 
'  the coefficient of volume expansion for 

concentration,  the kinematic viscosity,   the scalar 

electrical conductivity,   the frequency of oscillation, k  
the thermal conductivity, h is heat transfer coefficient and  

1t is the time. 

From Equation (1) we observe that 1v is independent of 
space co-ordinates and may be taken as constant. We define 
the following non-dimensional variables and parameters. 
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Now taking into account Equations (5), (6), (7), and (8), 
equations (2), (3) and (4) reduce to the following form: 
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B. Numerical Solutions 

Here we sought a solution by finite difference technique 
of implicit type namely Crank- Nicolson implicit finite 
difference method which is always convergent and stable. 
This method has been used to solve Equations (9), (10), and 
(11) subject to the conditions given by (12), (13) and (14).  
To obtain the difference equations, the region of the heat is 

divided into a gird or mesh of lines parallel to x  and t  axes. 
Solutions of difference equations are obtained at the 
intersection of these mesh lines called nodes. The values of 

the dependent variables T , u  and C  at the nodal points 

along the plane 0x  are given by ),0( tT , ),0( tu  and 
),0( tC hence are known from the boundary conditions. 

In the figure 2, x , t are constant mesh sizes along x  

and t  directions respectively. We need an algorithm to find 
single values at next time level in terms of known values at 
an earlier time level.  A forward difference approximation 

for the first order partial derivatives of u ,  T and C .  And a 
central difference approximation for the second order partial 

derivative of u  , T and C  are used. On introducing finite 
difference approximations for: 
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Figure 2: Finite Difference Grid 

 

 x

TTTT

x

T jijijiji

ji 










 

4
1,11,1,1,1

,

 

                          (15) 

 x

CCCC

x

C jijijiji

ji 











 

4
1,11,1,1,1

,

                  

                                      

 x

uuuu

x

u jijijiji

ji 










 

4
1,11,1,1,1

,

                       

                                    

t

uu

t

u

t

CC

t

C

t

TT

t

T jiji

ji

jiji

ji

jiji

ji 







































  ,1,

,

,1,

,

,1,

,

,,          

 2
1,1,11,1,,1,1

,

2

2

2

22

x

TTTTTT

x

T jijijijijiji

ji 












 

  

                            

 2
1,1,11,1,,1,1

,

2

2

2

22

x

CCCCCC

x

C jijijijijiji

ji 












 

  

                     

 2
1,1,11,1,,1,1

,
2

2

2

22

x

uuuuuu

x

u jijijijijiji

ji 












 

     

The finite difference approximation of Equations (9), (10) 
and (11) are obtained with substituting Equation (15) into 
Equations (9), (10) and (11) and multiplying both sides by 

t and after simplifying, we let  
1'

2 



r
x

t

 (method is 
always stable and convergent), under this condition the 
above equations can be written as: 

jijimjir

jiji

jijiji

tuMtCGtTG

u
x

t
u

x

t

u
x

t
u

x

t
u

,,,

1,1,1

1,11,11,

444

2

1

2

1

2

1

2

1
2

































 




















        (16) 

 

ji
r

ji
r

ji
r

ji
r

ji
r

ji
r

T
P

T
x

t

P
T

Px

t

T
Px

t
T

Px

t
T

P

,,1,1

1,11,11,

4
1

22

224
1












































































(17) 

 

ji
c

ji
c

ji
c

ji
c

ji
c

ji
c

C
S

C
x

t

S
C

x

t

S

C
Sx

t
C

Sx

t
C

S

,,1,1

1,11,11,

4
1

22

224
1










































































(18) 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Setup and Device Configuration 

The experiment was executed using the CUDA Runtime 
Library, Quadro FX 4800 graphics card, Intel Core 2 Duo. 
The programming interface used was Visual Studio. 

The experiments were performed using a 64-bit Lenovo 
ThinkStation D20 with an Intel Xeon CPU E5520 with 
processor speed of 2.27 GHZ and physical RAM of 4.00GB. 
The Graphics Processing Unit (GPU) used was an NVIDIA 
Quadro FX 4800 with the following specifications: 

CUDA Driver Version:                                      3.0 

Total amount of global memory:                       1.59 Gbytes 

Number of multiprocessors:                               24 

Number of cores:                                                92 

Total amount of constant memory:                    65536 bytes 

Total amount of shared memory per block:       16384 bytes 

Total number of registers available per block:  16384 

Maximum number of threads per block:            512 

Banwitdh: 

Host to Device Bandwith: 3412.1 (MB/s) 

 Device to Host Bandwith: 3189.4 (MB/s) 

         Device to Device Bandwitdh: 57509.6 (MB/s) 
In this experiment, we considered a slab of thickness L 

and thermal conductivity K. At the left surface (x = 0), a hot 
fluid of temperature T1 is flowing with a heat transfer 
coefficient h, supplying heat into the slab. Assuming the 
initial temperature of the slab is also the surrounding 
temperature denoted as T∞. 
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In the implementation, we assumed a fixed length of the 
slab and the region of the heat was divided into sample nodal 
points N. We wrote a C function and a kernel function to be 
executed on the CPU and GPU respectively for the purposes 
of obtaining the temperature distribution across the length of 
the slab at each nodal point using the Forward Euler Method 
(FEM). The logic and behavior of the two functions were 
similar in calculating the desired results. Furthermore, to 
obtain accurate results with minimal error, we performed the 
calculation using several iterations. 

For the first iteration in each computation, we initialized 
the temperature T0 at the surface of the slab, where the hot 
fluid temperature T1 was set to some value. Then using T0 
as the initial surface temperature, the heat transfer 
differential equation was used to propagate the heat across 
the length of the slab and the temperature at each node was 
held in a  temporarily array to be overwritten in the next and 
subsequent iterations.  

In the next and subsequent iterations, T0 was updated 
each time and then the heat was propagated across the length 
of the slab, at the same time the temperature distribution at 
each node was determined and temporarily stored. The 
computation was performed for several iterations until the 
temperature at each node stabilized. The final values of 
temperature at each nodal point were then recorded.  

Finally, for each value of N, the corresponding GPU and 
CPU processing times were determined. To compare the 
performance of the GPU and CPU, we varied the number of 
sample points N to obtain different processing times for the 
GPU and CPU.   

B. Experimental Results  

In this section, we show our results in solving heat 
transfer with the third initial and boundary conditions with 
CPU and GPU. For the purpose of implementation, the 
following constant values were used: 

Thermal conductivity of slab (K): 0.55 W/mk 

Heat transfer coefficient (h):         5 W/m2 K 

Specific heat capacity (c):             1300 J/kg K 

Density of material (ρ):                  900 kg/m3 

Temperature T1:                             45 K 

Temperature T∞:                            0 K 
For the first part of our results, we used a slab of length 

220 and the number of sample nodes N was set to 64. We 
performed the computation for 100 iterations and the results 
obtained is shown and discussed below. 

The surface temperature at x = 0 plotted against time is 
depicted in Figure 3. We can immediately see that the 
temperature gradually decreases from a maximum value at 
time equal zero and converges to the surrounding 
temperature T∞ (0 K) as the time elapsed. 

 
Figure 3: Surface temperature at x = 0, T∞ = 0 K. 

 
In addition, to obtain the temperature distribution across 

the length of the slab, we plotted the temperature against the 
number of nodes N. Figures 4 and 5 below show the  
temperature distribution for N = 64 and N = 96 respectively. 
From the graphs, we observed that the temperature is 
maximum at the surface of the slab (node 0) where the hot 
fluid is constantly applied and gradually decreases as we 
move away from the surface. The temperature approaches 
zero (T∞) as we get closer to the far end of the slab.  To add 
to the above, we also noticed that as we increased the length 
of the slab, the temperature distribution got infinitesimally 
closer to zero. 

 
Figure 4: Temperature distribution across slab, length = 220, 

N = 64. 

 
Figure 5: Temperature distribution across slab, length = 220, 

N = 96. 
In our test, we also compared that both the results 

obtained from the GPU and CPU were the same. To 
minimize the error between the GPU and CPU results, we 
implemented similar functions in the GPU and CPU and the 
parameters passed to both functions were the same. We also 
implemented error checking procedures to keep track of 
errors that resulted from the computations. Furthermore, we 
observed that, large number of iterations resulted in accurate 
results. Hence, after running several tests using different 
values of N, we observed that the difference between the 
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GPU and CPU calculated values was very negligible. Table 
1 shows the normalized numerical results obtained from the 
GPU and CPU. 

TABLE I.  COMPARISON OF GPU AND CPU RESULTS (TEMPRETURE)  

 GPU Results  CPU Results 
1.00000 1.00000 
0.92960 0.92955 
0.86416 0.86345 
0.74677 0.74265 
0.69419 0.69389 
0.51840 0.52876 
0.44798 0.4555 
0.35987 0.35987 
0.26874 0.26889 
0.18656 0.18908 
0.13931 0.13123 
0.10404 0.10409 
0.08990 0.08680 
0.07769 0.07809 
0.06714 0.06435 
0.05393 0.05710 

 
For the second part of our results, we benchmarked the 

GPU (NVIDIA Quadro FX 4800) against the CPU (Intel 
Xeon E5520) in terms of processing or execution time. 

For a fixed length of the slab, we varied N between 512 
(29) and 65536 (216) and obtained the corresponding GPU 
and CPU processing times as follows: 

‐ For values of N between 512 and 2048, the 
GPU was slower than the CPU. This is due to 
the fact that the GPU executes parallel 
instructions more efficiently whereas the CPU 
executes sequential instructions more 
efficiently. Therefore, for small values of N, 
the GPU has fewer blocks to execute and does 
not employ concurrent execution hence it is 
slow. 

‐ For values of N greater than 2048, the GPU 
was considerably faster than the CPU. 

The maximum speed up observed in this test was around 
20 times. However, the speed up increased for increasing 
value of N. 

 Figure 6 depicts the graph of the GPU speed up. 

 
Figure 6: Performance of GPU and CPU Implementations 

 
Finally, the accuracy of our numerical solution was 

dependent on the number of iterations we performed in 
calculating each nodal point, where more iteration mean 
more accurate results. In our experiment, we observed that 
after 14 or 15 iterations, the solution to the heat and mass 
equation at a given point became stable. For optimal 
performance, and to keep the number of iterations the same 
for both CPU and GPU, we used 15 iterations.  

VI. CONCLUSION AND FUTURE WORK 
In this research, we found numerical solutions for heat 

transfer differential equations with convective boundary 
conditions (boundary conditions of the third kind) using the 
Finite Difference Method (FDM) on GPGPUs. We also 
implemented the Forward Euler Method (FEM) for iterative 
computations of the temperature distribution at various 
points in a slab. Furthermore, we benchmarked the 
performance of the GPGPU against the CPU in terms of 
execution or processing time. 

In conclusion, our results show that FDM is well 
appropriate for parallel computation on GPUs. In addition, 
we have demonstrated that GPU- based implementations can 
give considerable performance improvement over CPU- 
based implementations. This is evident in the test case 
presented in the results section, where the maximum speed 
up of the GPU recorded was about 20 times over the CPU.  

There are several avenues for future work.  We would 
like to extend out results to mass transfer with the third kind 
initial and boundary conditions. We also would like to test 
our algorithm on different GPUs and explore the new 
performance opportunities offered by newer generations of 
GPUs. It would also be interesting to explore more tests with 
large scale data set. Finally, further attempts will be made to 
explore more complicated problems both in terms of 
boundary conditions as well as geometry. 
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Abstract - Pad ́ approximants are useful in numerical 

analysis and computational science. In this paper they provide 

the basis for numerical modeling for mesoscopic systems. We 

place this in the context of an application in time series 

analysis. We discuss a novel point of view for the 

approximants that focuses on the boundary conditions for the 

time series. We regard the approximants as supplying a mean-

field theory approach to mesoscopic systems.  Conceptually, 

this centers around using the polynomial parts of the 

approximants as indicators of randomness. An approximant 

with a polynomial part of just low degree is highly influenced 

by the presence of the polynomial.  This means that the 

resulting mean field theory differs significantly from 

approximant to approximant. 

Keywords: Pad ́ approximants, time series, mesoscopic 

systems, mean field theory 

 

1 Introduction 

  Pad ́ approximants have proven themselves to be useful 

in computational science [6].  In this paper, we are concerned 

with the application of Pad ́ approximants to time series 

related to mesoscopic phenomena.  Mesoscopic systems 

include biosystems, fusion reactors, economic systems, and a 

great variety of other systems of current interest.  This is a 

novel application of the approximants. 

 Pad ́ approximants are ideally suited for use in 

modeling of mesoscopic systems.  They provide analytic 

continuation and can supply a model suitable for describing 

changes over many different scales.  This provided the basis 

for their first major application in the theory of critical 

phenomena [6].  In addition, the determination of Pad ́ 

approximants is computationally efficient. 

 Both the theory and applications of Pad ́ approximants 

are discussed in the book by Baker and Graves-Morris [6].  

Our intention is to discuss some of the theory associated with 

the approximants in the context of a mean field theory.  An 

expanded version of this paper is in preparation [11]. 

 It is frequently emphasized that Pad ́ approximants, as 

rational approximations, have a demonstrated usefulness in 

applications such as in statistical mechanics [4] that require 

analytic continuation of functions, a certain number of terms 

of the Maclaurin expansion of which are known.  This focus 

on analyticity is primary in the monograph of Baker and 

Graves-Morris, and they discuss much in detail that relates to 

Pad ́ approximants. 

 On the other hand, the article by Kumar [3] points in a 

direction of broader concerns.  This article is groundbreaking 

in applying Pad ́ approximants to time series.  Kumar utilizes 

random variables. 

 We emphasize the fact that each Pad ́ approximant can 

be regarded as a numerical model of a zero-dimensional field.  

As a rational function, it can be interpreted as a mean-field 

theory.  We suggest that this can be applied to mesoscopic 

systems.  We have previously presented [9] a brief theoretical 

treatment of computation, itself, as a mesoscopic 

phenomenon.  Typical mesoscopic systems are, at their base 

level, quantum-mechanical systems.  However, at other scales 

of space or time than the microscopic, mesoscopic systems 

must be modeled in different ways, and the interfaces 

between models may be difficult to define and address. 

 In our treatment of computation, we used quantum Ising 

games [10].  The motivation for this arose in that, as 

computation evolves, the realm of quantum computing will 

not be the first to be encountered.  Rather, with developments 

such as miniaturization, a mesoscopic regime will first be 

encountered.  Furthermore, one must decide, in far-from-

equilibrium systems, how to approach the dynamics of such 

systems.  Games (and even single-person games) can provide 

a way of modeling in this non-equilibrium context.  The 

question of what it means to “win” can be difficult to define, 

but there is no question that games can succeed in driving 

systems far from equilibrium. 

 The Pad ́ approximants can be regarded as providing 

mean field theories throughout a certain scale addressed by 

the series data.  As one shifts within this scale from the fine-

grained to the coarse-grained, i.e. within the range of 

variation at this scale, one must address boundary concerns 

with adjacent scales.  This is very similar to what is 

considered in the Hilbert-Huang transform and empirical 

mode decomposition [7].  The poles in Pad ́ approximants 

(which represent mean-field approximations) yield 

information about the boundary at the next larger scale, while 

the polynomial part of the rational approximation addresses 

the fine-scale variation at the boundary at the next lower 

scale.  Therefore, Pad ́ approximants represent an 

interpolation throughout a given scale using boundary 

behavior. 

 The paper is arranged as follows.  The next section 

addresses the aspect of analyticity.  In the following section, 
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we discuss time series.  The heart of the theory we discuss 

here is to applications in mesoscopic systems, which is taken 

up in Sec. 4.  The last section is the conclusion where, among 

other things, we discuss possible improvements on the 

approach of Pad ́ approximants for developing models at a 

particular scale of a mesoscopic system using series data. 

2 Analyticity 

     The basic definition and properties of Pad ́ approximants 

can be found in Baker and Graves-Morris [6].  We discuss 

briefly, in this section, some important aspects of Pad ́ 

approximants relating to the approach that is traditional with 

series analysis, i.e. a focus on analyticity. 

      We assume that we are supplied with a data sequence: 

 
                                                                                  (1) 

 

where these quantities are assumed to be certain real numbers, 

and we have exact or extremely accurate estimates of these 

    quantities.  In traditional series analysis, these numbers 

are assumed to give the first     coefficients of a Maclaurin 

series in some variable  .  In general, for example, when 

considering time series, we cannot make any such assumption.  

However, we can always introduce some variable  , called a 

conjugate variable, just as if we were dealing with a 

Maclaurin series.  We also assume that the data, at least in 

principle, can be extended indefinitely, and we wish to 

develop a model to predict additional quantities in the 

sequence.  A Pad ́ approximant is one such model. 

      It is reasonable, based on the assumptions we are 

making, to consider a formal power series, in the conjugate 

variable, 

 

                                          ∑    
  

                              (2) 

 

(whether or not this series converges).  A Pad ́ approximant 

 ̂[  ⁄ ]    for  , is a rational function with numerator 

polynomial       of degree   and a denominator polynomial 

     , of degree  , such that 

 

                          ∑    
  

                           (3) 

 

We allow the usual Pad ́ approximant to be determined by 

this condition and a normalization condition.  Note that (3) 

can determine the approximant only to within an overall 

factor.  We can fix this factor by requiring the leading 

coefficient of       to be equal to one. 

      The Pad ́ approximant is an appealing mathematical 

object for a number of reasons.  First, as a rational 

approximation it can potentially contain more sophisticated 

information than a mere polynomial approximation.  Second, 

because it can have singularities that are just ordinary poles 

(and finite in number) it supplies an analytic approximation 

that in principle could be used to provide an analytic 

continuation of (2) if this series has a nonzero radius of 

convergence.  Third, (3) resolves into just a sequence of 

simple linear equations to determine the polynomial 

coefficients of the rational function.  This makes its 

determination numerically straightforward.  Lastly, this type 

of rational approximation is the “best possible” as it uses all 

available information about the series, and contains no 

extraneous information. 

      On the other hand, Pad ́ approximants can be difficult to 

interpret.  The diagonal approximants, with    , are often 

stressed.  The famous Pad ́ conjecture, which has been shown 

to have counterexamples (see Baker and Graves-Morris [6]), 

states that given diagonal approximants for an analytic 

function, some subsequence of the sequence of such 

approximants will converge to the function.  In this paper, 

diagonal approximants have no special significance (other 

than the fact that they are “maximally complicated” 

approximants). 

 

3 Time series 

 

     Kumar [3], in ground-breaking work, discussed the Pad ́ 

approximant in economics for time series analysis, with 

respect to ARMA models (see Refs. [1], [2] and [5]).  

Analyticity is not a central issue with respect to time series, as 

one expects a certain level of “noisy” data.  Kumar uses, 

instead, random variables and white noise in which to couch 

his theoretical discussion.  Our approach is very different, as it 

follows a viewpoint of zero-dimensional field theory and 

mean field theory [12].  This more physical point of view has 

the advantage that one can develop a mean field theory for 

mesoscopic systems, something that is entirely outside the 

reach of Kumar’s approach. 

      For time series, we do not want to interpret the Pad ́ 

approximants as analytic continuations for Maclaurin series.  

Instead, we identify a polynomial part of the Pad ́ 

approximant as containing information about randomness, and 

we regard the associated rational expression as containing 

information about processes occurring at the scale of the 

mesoscopic system being considered. 

      With respect to time series, we must confront a new 

concept in Pad ́ approximants:  The idea of the boundary 

condition (in time).  We regard the Pad ́ approximant itself as 

a numerical mathematical model, rather than something 

representing possible analytic continuation.  Thus, this 

concept becomes suddenly meaningful, and is actually 

important in considering time series, as opposed to analytic 

continuation. 

      With respect to boundary conditions, we are concerned 

with the overlap between scales of a mesoscopic system.  This 

entails consideration of physical processes:  Specifically, 

energy transfers.  The modes of interactions leading to energy 

transfers are formulated in particular ways at each scale 

considered of relevance to the production of the time series 

data.  Thus, even if we consider mathematical modeling in 

biology, or economics, or (even) history, we must take up 

issues that, at base, involve non-equilibrium thermodynamics. 

      There are six types of boundary conditions we will 

discuss in the next section.  These may be denoted:  analytic, 

periodic, inductive, inter-model, shock and physical (related 
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to a physical theory).  All of these modes of discussing 

boundary conditions demonstrate the complexity of time 

series analysis in the context of mesoscopic systems. 

      The six different types of boundary conditions relate to 

boundary overlaps, and are not meant to be an exhaustive 

enumeration of possibilities.  For example, it is perfectly 

possible to conceive of combinations of types:  Say combining 

the inductive with the shock modes.  From the point of view 

of dimensionality, one must ultimately formulate these 

overlaps geometrically.  For example, a time series consists of 

a field in a zero-dimensional space (as a point embedded in 

three dimensions) that is constantly being updated, through 

instrumentation, in time. 

      We are monitoring the activity at just a single point, with 

respect to a certain measurement system, and the measured 

level of the activity.  This is a field that, in the mathematical 

model of the system, is representative of some manifold, 

which we can think of as akin to a domain in a magnet.  The 

time boundary of the domain is just a point (or a system of 

points), or a time interval (or a system of time intervals) or a 

combination of points and intervals.  If we assume that this 

boundary cannot interact with things in the past (causality), it 

can interact with future domains, and its boundary can be 

shared with the boundary of other domains.  The boundary, if 

it is extended, can even interact with itself. 

      Lastly, we point out that the effects of measurement 

devices in determining the level of activity at each time in a 

time series cannot be neglected.  It is as if an intermediate, 

activation state is formed involving the device prior to a final 

record of the time series data is made.  One should not assume 

that because this activation threshold may not be a quantum 

threshold, that significant uncertainty is not being introduced 

into time series data merely by the act of measurement. 

      We cannot adequately address some of the topics we 

have introduced in this section in our discussion in the next 

section.  In a short paper, one can treat only a few concepts 

adequately.  Here, we need to discuss the physics involved in 

time series analysis using Pad ́ approximants, with respect to 

mesoscopic systems.  It is this we take up in the following 

section. 

 

4 Mesoscopic systems 

     Each Pad ́ approximant supplies us with a numerical 

model.  In general, if we use all available quantities in the 

time series, or at least some fairly large number, there will 

result numerous Pad ́ approximants that yield a diversity of 

models.  As we discussed above, the use of the approximants 

as models for mesoscopic systems comes down to a 

discussion of boundary conditions, of which we mentioned six 

in the preceding section. 

     The principal goal of using Pad ́ approximants on time 

series data is to make predictions.  From the previous section, 

noting that uncertainties can arise merely from measurement 

(and, one must add, from any “games” that the data collection 

and analysis group are “playing”), and that each Pad ́ 

approximant supplies a very distinct and different 

mathematical model (point of view) from others, one must 

always bear in mind that however one proceeds, there simply 

may be no meaningful pattern of prediction to extract from a 

particular approximant, or, indeed, from any of the 

approximants.  Having said this, on the other hand, by 

considering boundary conditions, one can construct 

procedures for making predictions and for assessing 

predictions. 

     We assume the Pad ́ approximant is being used to model 

time series from a mesoscopic system.  The simplest type of 

boundary condition is analytic.  Here, the analytic form of the 

rational function is used to predict future values.  This was the 

original use that Baker put the approximants to in his 

application to critical phenomena (see Ref. 6). 

     The Ising model in one- and two-dimensions admits 

exact solutions in zero external field for thermodynamic 

functions that display analyticity [13].  Using series data, and 

assuming analyticity, Baker was able to estimate critical 

exponents for the three-dimensional Ising model. 

     To show how analyticity can be used to predict series 

data, suppose that      is any rational approximation that has 

a Maclaurin series whose coefficients match the     known 

coefficients listed in (1).  Then, we can write this rational 

function in a partial fraction decomposition with a polynomial 

added to a series of terms of the general form, 

 

                                        
 

       
                                          (4) 

 

Here,   and   are constants, and   is some positive integer.  

(Note that   and   can be complex.)  By expanding all such 

terms in power series and combining the results with the 

background polynomial, we can predict the value of any 

coefficient of the formal series (2). 

     Thus, the analytic boundary condition simply utilizes the 

rational function to make series-coefficient predictions.  As 

we point out with the use Baker put the approximants to, this 

is a reasonable approach in investigating models where we 

suspect analytic behavior. 

     The next type of boundary condition, the periodic 

boundary condition, is also very simple.  Once again, as 

above, we assume that we have a partial fraction 

decomposition, and a background polynomial for the rational 

approximation.  We ignore the coefficients of the background 

polynomial in our predictions.  For the other terms, of the 

form (4), if   is complex, signifying that there is a periodicity 

(whether or not some exponential decay or growth is also 

involved), we simply generate coefficients by way of a power 

series expansion, as in the analytic case, and we combine 

these to yield a prediction, ignoring cases where   is real, i.e. 

no periodicity is involved.  This type of prediction is plausible 

if, on the whole, “noise” is small, and the real   are less than 

one in magnitude (i.e. yield exponential decay). 

     In general, we cannot expect this type of prediction to be 

very useful.  One possible improvement, which we will not 

discuss in this short paper, is to replace the polynomial by 

white noise, as Kumar [3] does and use random variables.  In 

any case, a suitable metric can be based on using this type of 

prediction for the tail of the coefficients in (1), where we take 

the last few coefficients and compare with predictions. 
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     The inductive boundary conditions are similar to the 

periodic boundary conditions, but approach the issue of 

prediction in a slightly more sophisticated way.  This 

approach is similar to the empirical mode decomposition 

associated with the Hilbert-Huang transform [7].  The 

polynomial background is used to define the mean and 

standard deviation of white noise, and white noise of these 

characteristics replaces the polynomial.  The other terms in 

the partial fraction decomposition (4) are studied, considering 

 , the amplitude, and  , for each term, in addition to  .  These 

factors combine in a combinatorial term in prediction of a 

specific exponent, and if   is complex, this entails an 

oscillation.  Thus, these quantities define “empirical” modes.  

We can form groupings of these modes, and extract an 

“empirical mode decomposition”.  Since this requires a 

detailed discussion of the Hilbert-Huang transform, we will 

not pursue this further in this short paper. 

     We will very briefly describe characteristics of other 

boundary conditions.  The reader is referred to the extended 

paper [11], under preparation, for more details.  We are 

thinking of time series as zero-dimensional fields.  The terms 

of the form (4) provide a lowest-order perturbative theory, and 

so we refer to the theory, obtained by this type of modeling, 

using Pad ́ approximants as numerical models, as a mean 

field theory.  This is consistent with the idea implicit in the 

Hilbert-Huang transform, which the inductive boundary 

conditions utilize in developing a decomposition. 

     Inter-model boundary conditions combine several or all 

of the Pad ́ approximants, for a given   in (1), together.  This 

is a pseudo-quantum model.  The amplitude associated with 

each approximant is determined by ignoring the polynomial 

background and using the remainder to predict the last several 

coefficients of the known coefficients in (1).  Just as in 

quantum mechanics, we regard the model as supplying a 

superposition of states, the wavefunction for each state being 

the approximant (minus its polynomial background).  The 

polynomial background is replaced by white noise. 

     In considering quantum mechanics, we can ask ourselves 

if a quantum game [11] can be used for boundary conditions.  

This requires a quantum model for the system, such as the 

quantum Ising model. 

     The shock boundary condition results from combining 

all Pad ́ approximants as a multifunction.  This will merely 

reproduce the original time series up to    .  However, 

beyond this, since each approximant has a different “noise” 

background, as given by the polynomial part of the 

approximant, when we replace the polynomial contribution by 

white noise beyond this point, we are going to obtain a 

multifunction that displays a spread of values. 

     Finally, the physical boundary condition utilizes a 

physical theory to set the boundary conditions.  In such a         

 

 

 

 

 

situation, we would be able to relate the expected behavior of 

the time series to physical processes. 

  

5 Conclusions 

 Pad ́ approximants have proven themselves to be useful 

in computational science [6].  We have discussed the 

application of Pad ̀ approximants to time series related to 

mesoscopic phenomena.  Mesoscopic systems include 

biosystems, fusion reactors, economic systems, and a great 

variety of other systems of current interest. 

 Our approach of mean field analysis of time series from 

mesoscopic systems by Pad ́ approximants is completely 

new.  This approach requires a focus on boundary conditions,, 

and we have discussed, in our paper, six different types of 

boundary conditions.  The analytic structure of Pad ́ 

approximants and their ease of computation make them good 

candidates for numerical modeling of mesoscopic systems. 

 A main point here is that the Pad ́ approximant splits 

into a background polynomial that is used to model noise, and 

a rational expression, characterizing the evolving pattern as a 

mean field approach to modeling mesoscopic systems.  The 

analysis reduces to a consideration of boundary conditions, of 

which there are several of interest.  This requires a much 

fuller treatment than we are able to present in this short paper. 

 Pad ́ approximants have an analytic structure of poles.  

There are more general approaches [8] to approximation of a 

similar nature that allow more complex analytic structures, 

such as branch cuts.  These more general approaches are also 

worth consideration, and will be the subject of future work. 

 Modern theories of mesoscopic systems (see Ref. 9), as 

a topic of non-equilibrium thermodynamics, need adequate 

discussions of both games and quantum mechanics.  In this 

short paper, we have been unable to extend the discussion to 

either of these important topics.  This must await future work. 
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Abstract— In this paper, the numerical solution of nonlinear
Fredholm integral equations of second kind is considered by
Sinc method. This numerical method combines a discrete
Sinc collocation method with the Newton iterative process
that involves solving a nonlinear system of equations. We
provide an error analysis for the method. So far approximate
solutions with polynomial convergence have been reported
for this equation. This method improve conventional results
and achieve exponential convergence. Some numerical ex-
amples are given to confirm the accuracy and the ease of
implementation of the method.

Keywords: Nonlinear Fredholm Integral Equation; Sinc Approx-
imation; Collocation Method.

1. Introduction
In this paper, high order numerical method has been

developed to approximate the solution of the nonlinear
Fredholm integral equations of the form

u(t) = g(t) +

∫ b

a

k(t, s, u(s))ds, a ≤ s ≤ b (1)

where k(t, s, u), g(t) are known functions and u(t) is an
unknown function. Eq.(1) was introduced for the first time by
Pavel Urysohn in [1]. Equations of this type appear in many
applications. For example, they arise as a reformulation of
two-point boundary value problems with a certain nonlinear
boundary condition [5], [4]. Several authors have considered
the numerical solving of this equation with different methods
[4-11].

Atkinson has investigated the use of piecewise polyno-
mials of order n as an approximate subspace and obtained
the convergence of polynomial order [6]. The aim of this
work is to present a numerical scheme by discrete col-
location method based on Sinc functions. The method is
given by extending Stenger’s idea to nonlinear Fredholm
integral equation. It is shown that this method confirms the
convergence rate O(exp(−C

√
N)). For a comprehensive

study of Sinc methods, we refer to [12], [13], and [14],
Eq.(1) can be rewritten in the operator form

u = Ku+ g, (2)

where (Ku)(t) =
∫ b

a
k(t, s, u(s))ds. The operator is de-

fined on the Banach space X = Hol(D)
∩
C(D). In this

notation, D is a simply connected domain which satisfies

(a, b) ⊂ D and Hol(D) denotes the family of all functions
f that are analytic in domain D. Furthermore, Eq.(1) has
at least one solution, if the right hand side of Eq.(1)
be completely continuous operator [16]. So it is assumed
that the kernel k(t, s, u) and the forcing function g(t) are
sufficiently smooth [11] such that the right hand side of
Eq.(2) be completely continuous. Additionally, suppose that
the solution u∗(t) to be determined is geometrically isolated
[3], in the other words, there is some ball

B(u∗, r) = {u ∈ X : ∥u− u∗∥ ⩽ r},

with r > 0, that contains no solution of Eq.(1) other than u∗.
It is assumed that the linear operator K′(u∗) does not have
1 as an eigenvalue, then there is a geometrically isolated
solution for Eq.(1) [4]. Let ∥u∥ = sup{|u(t)| : t ∈ [0, 1]}
and ∥K∥ = sup{∥Ku∥ : u ∈ B} where B = {u ∈ X :
∥u∥ ≤ 1}.
The layout of this paper is as follows. In section 2, the
basic definitions, assumptions and preliminaries of the Sinc
method are stated. The smoothness properties of the solution
are discussed in section 3. The discrete Sinc collocation
scheme is considered in section 4. In section 5, the order
of convergence of the schemes using the new approaches is
described. Finally, section 6 contains two numerical experi-
ments.

2. Basic Definition
The Sinc function is defined on the whole real line by

Sinc(t) =

{
sin(πt)

πt , t ̸= 0,
1, t = 0.

Originally, Sinc approximation for a function f is expressed
as

f(t) ≈
N∑

j=−N

f(jh)Sj(t), t ∈ R, (3)

where the basis function Sj(t) is defined by

Sj(t) = Sinc(
t

h
− j), (4)

and h is a step size appropriately chosen depending on a
given positive integer N , and j is an integer and (4) is
called jth Sinc function. The approximation (3) is valid on
R, whereas the Eq.(1) is defined on finite interval [a, b]. The
Eq.(3) can be adapted to approximate on general intervals
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with the aid of appropriate variable transformations t =
φ(x). This transformation and its inverse can be introduced
respectively as below

φ(x) =
b− a

2
tanh(

x

2
) +

b+ a

2
,

ϕ(t) = log(
t− a

b− t
).

In order to define a convenient function space, the strip
domain Dd = {z ∈ C : |Imz| < d} for some d > 0 is
introduced. When incorporated with the transformation, the
conditions should be considered on the translated domain

φ(Dd) = {z ∈ C : | arg(z − a

b− z
)| < d}.

The following definitions and theorems are considered for
further details of the procedure. Let D be a simply connected
domain which satisfies (a, b) ⊂ D and α and C be positive
constant. Then, Lα(D) denotes the family of all functions
f ∈ Hol(D) which satisfy

|f(z)| ≤ C|Q(z)|α, (5)

for all z in D where Q(z) = (z − a)(b − z). The next
theorem shows the exponential convergence of the Sinc
approximation. ([13]) Let f ∈ Lα(φ(D)) for d with 0 <
d < π. Suppose that N be a positive integer, and h be given
by the formula h =

√
πd
αN . Then there exists a constant C

independent of N , such that

∥f(t)−
N∑

j=−N

f(φ(jh))Sj(ϕ(t))∥ ≤ C
√
N exp(−

√
πdαN).

Sinc approximation can be applied to definite integration
based on the function approximation described above. ([13])
Let (fQ) ∈ Lα(φ(Dd)) for d with 0 < d < π. Suppose that
N be a positive integer and h is selected by the formula

h =

√
πd

αN
.

Then there exists a constant C which is independent of N ,
such that

|
∫ b

a

f(s) ds−h
N∑

j=−N

f(φ(jh))φ′(jh)| ≤ C exp(−
√
πdαN).

(6)

3. Properties of the Solution
In this part, the analytical solution of Eq.(1) is briefly dis-

cussed. In the case of complex Banach spaces, the operator
K is analytic in Ω, if it is Frechét differentiable at each point
of Ω. Having analytic integral operator gives us analytical
solution to Eq.(1) [14]. Reference [16] includes conditions in
which the nonlinear operators are Frechét differentiable. But
in the case of real Banach space, determination of analytical

solution to Eq.(1) is generally difficult. Atkinson [6] has
introduced a special class of nonlinear integral equation. This
class has been denoted by g1(η, µ). In this notation, η and
µ are related to the continuity order of partial derivatives
of the kernel of integral equation with respect to the third
variable.

([6]) Let k the kernel of integral equation be of class
g1(η, µ) and consider the nonlinear integral equation (1). If
u∗(t) is a solution of Eq.(1), then u∗(t) ∈ Cη[a, b].

It is not difficult to see that

u(n)(t) =

∫ b

a

∂nK1(t, s, u(s))

∂tn
ds,

where K1(t, s, u) = g(t)+k(t, s, u). So a sequence of func-
tions {u(n)(t)} is obtained. If the sequence {∂nK1(t,s,u)

∂tn } be
uniformly bounded and η can be taken infinity, then we have
an analytic solution for Eq.(1).

4. Sinc-collocation method
A Sinc approximation uN to the solution u ∈

Mα(φ(Dd)) of Eq.(1) is described in this part. Let us define
the operator PN : Mα → X as follows

PN [u](t) = Lu(t) +
N∑

j=−N

[u(tj)− (Lu)(tj)]Sj(ϕ(t)),

where
L[u](t) =

b− t

b− a
u(a) +

t− a

b− a
u(b),

and the points tj are defined by the formula

tj =

 a, j = −N − 1,
φ(jh), j = −N, . . . , N ,
b, j = N + 1.

It should be noticed that PNu is an interpolation of u by Sinc
functions with the above points and PN is called collocation
operator. The approximate solution uN is considered that has
the form

uN (t) = c−N−1
b− t

b− a
+

N∑
j=−N

cjSj(ϕ(t)) + cN+1
t− a

b− a
.

(7)
Applying the operator PN to both sides of Eq.(1) gives

us the following approximate equation in operator form

zN = PNKzN + PNg, (8)

so collocation method for solving Eq.(1) amounts to solve
(8) for N sufficiently large. We are interested in approxi-
mating the integral operator in (8) by the quadrature formula
presented in (6). So the following discrete operator can be
defined

KN (u)(t) = h

N∑
j=−N

k(t, tj , u(tj))φ
′(jh). (9)
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This numerical procedure leads us to replace (8) with

uN = PNKNuN + PNg. (10)

By substituting uN into Eq.(1) and approximating the in-
tegral by means of Sinc quadrature formula and considering
its collocation on 2N + 3 sampling points at t = ti, for
i = −N − 1,−N, ..., N,N + 1, the following nonlinear
system of equations

uN (ti) = h
N∑

j=−N

k(ti, tj , uN (tj))φ
′(jh) + g(ti), (11)

is obtained. This nonlinear system of equations is equivalent
to (10). By solving this system, the unknown coefficients in
uN are determined.
The nonlinear system of equations in (10) can be rewritten
as

FN (uN ) = 0, (12)

where FN : R2N+3 → R2N+3 with FN (uN ) = uN −
PNKNuN − PNg. All practical approaches to solve such
a nonlinear system are iterative, there are much interests for
finding a more efficient method for solving such nonlinear
systems, e.g. see [17], [18], and references in [23]. In this
paper Newton’s iterative procedure is applied. The Newton’s
method reads as follows: Choose an initial guess uN,(0); for
m = 0, 1, ..., compute

uN,(m+1) = uN,(m) − [(FN )′(uN,(m))]
−1FN (uN,(m)).

(13)

5. Convergence Analysis
Sinc-collocation method is discussed in the present sec-

tion. It is assumed that uN is the exact solution of Eq.(10)
and uN,(m) is an approximation of uN obtained from New-
ton’s iterative process.
Firstly, we state the following lemma which is used subse-
quently. ([13]) Let h > 0. Then it holds that

sup
x∈R

N+1∑
−N−1

|Sj(x)| ≤
2

π
(3 + log(N + 1)). (14)

Based on this lemma, it has been concluded ∥PN∥ ≤
C log(N + 1) where C is constant independent of N .
Assume that there exists a constant d with 0 < d < π such
that k(t, ., .) ∈ Hol(φ(Dd)) for all t in [a, b]. Furthermore,
suppose that there exists a constant C1 for all t in [a, b] such
that ∥k(t, ., .)∥ ≤ C1. Then there exists a constant C which
is independent of a, b and N such that

∥Ku−KNu∥ ≤ C exp(−
√
πdαN).

In the following theorem, we will find an upper bound for
the error.

Suppose that u∗(t) is an exact solution of Eq.(1) and [I−
K′(u∗)] is nonsingular and ∂2k

∂u2 (t, s, u) exists and continuous

on its domain. Furthermore, let the assumptions of Lemma
2 be fulfilled and g ∈ Mα(φ(Dd)) and Ku ∈ Mα(φ(Dd))
for all u ∈ B(u∗, r) with r > 0. Then there exists a constant
C independent of N such that

∥u∗ − uN∥ ≤ CλN

√
N log(N + 1) exp(−

√
πdαN), (15)

where λN = ∥(I − PN (KN )′(u∗))−1∥. Proof: The
estimation (15) is obtained as follows:

u∗ − uN = g − PNg +Ku∗ −PNKNuN .

We call the right side of the above term RS which can be
rewritten as

RS = (g −PNg) + (Ku∗ − PNKu∗)

+PN (Ku∗ −KNu∗) + PN (KNu∗ −KNuN ))

So the following relation is achieved:

u∗ − uN = (I −PN (KN )′(u∗))−1{(g −PNg)

+(Ku∗ − PNKu∗) + PN (Ku∗ −KNu∗)

+PN (KNu∗ −KNuN − (KN )′(u∗)(u∗ − uN ))}.
(16)

By applying ∥.∥ on both side of (22), we obtain the relation

∥u∗ − uN∥ ≤ ∥(I − PN (KN )′(u∗))−1∥{∥g − PNg∥

+∥Ku∗ − PNKu∗∥+ ∥PN∥∥Ku∗ −KNu∗∥}

+∥PN∥O(∥u∗ − uN∥2).
(17)

Because of g,Ku∗ ∈ Mα(φ(Dd)), we can apply Theorem
1 and get

∥g −PNg∥ ≤ C1

√
N exp(−

√
πdαN),

∥Ku∗ −PNKu∗∥ ≤ C2

√
N exp(−

√
πdαN).

By using Lemma 2, the following result is concluded

∥Ku∗ −KNu∗∥ ≤ C3 exp(−
√
πdαN),

and finally ∥PN∥ is estimated by conclusion of Lemma 1.
So

∥u∗ − uN∥ ≤ CλN log(N + 1)
√
N exp(−

√
πdαN).

In the following we are trying to discuss the conditions in
which the Newton’s method is convergence. For this reason
we will state and prove Lemma 3 and Theorem 5 . It is well
known that

F ′(uN )(v)(t) = v(t)− PN (KN )′(uN )v(t),

where

(KN )′(u)(v)(t) = h

N∑
j=−N

∂k

∂u
(t, tj , u(tj))φ

′(jh)v(tj).
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So, [F ′(uN )]−1 exists if and only if

[I −PN (KN )′(uN )],

is invertible where I is the identity operator. In the fol-
lowing lemma, we are trying to find conditions in which
[I −PN (KN )′(uN )] is invertible. Suppose that ku(t, s, u∗)
satisfies

|ku(t, s, u∗)− ku(τ, s, u
∗)| ≤ C4|t− τ |β , (18)

where ku(t, s, u) ≡ ∂k(t,s,u)
∂u and C is a constant. Further-

more, assume that there exists a r > 0 such that

|ku(t, s, u)− ku(t, s, v)| ≤ C5|u− v|, (19)

for all u, v ∈ B(u∗, r) and ku(t, s, u
∗) satisfies the hypothe-

ses of Lemma 2. Then

∥PN (KN )′(uN )−K′(u∗)∥ → 0,

as N → ∞. Proof: By triangular inequality the
following relation is obtained

∥PN (KN )′(uN )−K′(u∗)∥ ≤ ∥PNK′(u∗)−K′(u∗)∥
+ ∥PN (KN )′(uN )− PN (KN )′(u∗)∥
+ ∥PN (KN )′(u∗)− PNK′(u∗)∥.

(20)

According to [19], under the assumption (18), ∥PNK′(u∗) −
K′(u∗)∥ approaches to zero. The second term in right side of (20)
is easily evaluated by condition (19) as follows

∥PN (KN )′(uN )− PN (KN )′(u∗)∥ ≤ ∥PN∥∥uN − u∗∥.

So, for sufficiently large N , it is concluded that

∥PN (KN )′(uN )−PN (KN )′(u∗)∥ → 0.

The third term approaches to zero by applying Lemma 2 to
ku(t, s, u

∗) and Lemma 1.
Now, suppose that 1 is not an eigenvalue of K′(u∗) then
under the assumptions of Lemma 3, we can conclude from
Lemma 2.2 in [20] that for sufficiently large N , [I −
PN (KN )′(uN )] is invertible. Next theorem deals with the
local convergence of Newton’s iterative method applied to
Eq.(12). Assume uN is the exact solution of the Eq.(12) and
[I −K′(u∗)] is invertible. Furthermore, let the assumptions
of Lemma 3 be fulfilled. Then there exists a ε > 0 such that
if ∥uN,(0) − uN∥ ≤ ε, the Newton’s sequence {uN,(m)} is
well-defined and convergence to uN . Furthermore, for some
constant l with lε < 1, we have the error bounds

∥uN,(m) − uN∥ ≤ (lε)2
m

l
= C(m). (21)

Proof: The conclusion is straightforwardly achievable
by applying Theorem 5.4.1 in [22] and above discussion.
In the following final theorem, we summarize the conclu-
sions of theorems and lemmas proved in this section. As-
sume that u∗ is an isolated solution of Eq.(1), Furthermore,
uN and uN,(m) are the solution of Eq.(10) and Eq.(13),

respectively. Suppose that hypotheses of Theorem 4 and
Theorem 5 are satisfied. Then there exists a positive constant
C(m) independent of N and depend on m such that

∥u∗−uN,(m)∥ ≤ C(m)λN

√
N log(N+1) exp(−

√
πdαN).

(22)
Proof: The conclusion is obtained by using triangular

inequality and conclusions of Theorem 4 and Theorem 5.

6. Numerical Experiments

In this section, the theoretical results of the previous
sections are used for some numerical examples. In order
to analyze the error of the method the following notations
are introduced:

emax = max{|u(ti)− uN (ti)| : ti =
i

1000
, i = 1(1)1000},

and

ρN = log2(
eimax

e
(i+1)
max

),

which emax approximate ∥u − uN∥ and ρN estimate the
convergence rate. In second formula eimax denotes the emax

in (i+1)th column of tables. In these examples, the Newton’s
method is iterated until the accuracy 10−6 is obtained. In
tables, m denotes the number of iterations. Initial point for
Newton’s iteration is selected by steepest descend method
[21].

It is assumed that α = 1. The d values is π
2 for the Sinc

method. The absolute value of the errors of the two methods
for N = 5, 10, 15, 20 and 25 is reported. These tables show
that increasing N the error significantly is reduced.

Example 1. we interest in approximating the solution of
the following nonlinear Fredholm integral equation

u(t) =
1

5

∫ 1

0

cos(πt) sin(πs)[u(s)]3 ds+ sin(πt), (23)

with the exact solution

u(t) = sin(πt) +
1

3
(20−

√
391) cos(πt),

where 0 ≤ t ≤ 1. The numerical solution of this equation
is considered in [26] via Newton - Kantorovich - quadrature
method. Table 1 shows the absolute error of SE-Sinc method
for N = 25 and the results of Newton - Kantorovich -
quadrature method. As this table illustrates the Sinc method
is more efficient than their method.

Table 1: Comparison of the results in [26] to Sinc Method.
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t Results in [26] Sinc method
0 4.98E − 2 4.15E − 7
0.1 4.73E − 2 1.33E − 5
0.2 4.03E − 2 6.85E − 6
0.3 2.92E − 2 6.22E − 6
0.4 1.54E − 2 2.19E − 6
0.5 0.00E − 0 2.15E − 7
0.6 1.54E − 2 5.85E − 6
0.7 2.92E − 2 1.02E − 5
0.8 4.03E − 2 8.25E − 6
0.9 4.73E − 2 1.66E − 5
1 4.98E − 2 4.14E − 7

Table 2: Absolute errors of the Sinc method for Example 2.
t N = 5 N = 15 N = 25

0.1 2.92E − 3 2.99E − 6 6.24E − 7
0.3 7.27E − 4 1.43E − 5 1.49E − 7
0.5 1.38E − 3 1.25E − 5 9.58E − 7
0.7 4.55E − 4 1.22E − 5 1.31E − 6
0.9 2.38E − 3 1.17E − 6 1.06E − 6
m 3 3 3

emax 2.94E − 3 2.74E − 5 2.01E − 6
ρN − 2.99 2.15

Results in [24] 3.3E − 3 1.1E − 3 1.1E − 4

Example 2. We consider the nonlinear integral equation (see
[24], Example 3)

u(t) = t

∫ 1

0

s
√
u(s) ds+ 2− 1

3
(2
√
2− 1)t− t2,

with the exact solution u(t) = 2− t2. The Table 2 illustrates
the numerical results obtained here and the numerical results
of [24] for this example.

7. Conclusions
Finding exact solutions for nonlinear Fredholm integral

equations are often not available. So, approximating these
solutions are very important. Many authors have proposed
different methods. In this research, a numerical method
based on Sinc function has been suggested. It has been
shown theoretically and numerically that the scheme is
extremely accurate and achieve exponential convergence
with respect to N .
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Abstract— This paper suggests an enhancement of an ex-
isting method for the multiobjective optimization known as
GAM (goal attainment method). In our proposal, the GAM
algorithm is combined with a mechanism that automatically
provides a set of parameters (weights, coordinates of the
reference point) for which the method generates noninferior
solutions uniformly spread over a suitably selected part
of the Pareto front. The resulting set of solutions is then
presented in a suitable graphic form so that the solution rep-
resenting the most satisfactory tradeoff can be easily chosen.
The whole algorithm was implemented as a program and
tested on various design examples. The most difficult one was
a multiobjective optimization of a C-class power amplifier in
the time domain. Therefore, this task is thoroughly described
in the paper as a demonstration of the program capability.

Keywords: Multiobjective optimization, Pareto front, Pareto op-
timal set, noninferior solutions, goal attainment method, LDMOS.

1. Introduction
The process of electronic circuit design usually strongly

relies on the use of computers. One class of methods for
circuit design not only uses them as a circuit simulation
tool, but also uses numerical optimization algorithms as a
means of determining parameter values in order to bring the
designed circuit as close as possible to some prescribed be-
havior or a set of characteristics. Multiobjective optimization
solves the situations in circuit design where there are two or
more possibly contradictory requirements on a circuit and
thus a suitable tradeoff needs to be found. Such a tradeoff
solution should best belong to a set of noninferior solutions,
also called Pareto optimal set or Pareto front. Noninferior
solutions are characterized by the property that any further
improvement in one objective value can only be achieved at
the expense of disimprovement in at least one other objective
value.

1.1 Multiobjective Optimization Problem
In practical designs, there are often multiple mutually

contradicting requirements on the designed circuit. In such
cases, our aim is to solve the corresponding multiobjective
optimization problem (MOP). This can be formally written
as

minimize
x∈S

{ f1(x), f2(x), . . . , fk(x) } , (1)

where we have k objective functions fi: Rn → R, k >
2. As in the case of SOP, the decision vectors x =
(x1, x2, . . . , xn)T belong to the (nonempty) feasible region
S, S ⊆ Rn, which can also be defined by a number of
equality constraints, inequality constraints, and/or bounds on
the decision variables xi. The vector of objective functions
is denoted by f(x) = [f1(x), f2(x), . . . , fk(x)]T and the
image of the feasible region, also called the feasible objective
region, is denoted by Z = f(S), Z ⊆ Rk. The elements of Z
are called objective vectors and are denoted by f(x) or z =
[z1, z2, . . . , zk]T , where zi = fi(x) for all i = 1, 2, . . . , k
are objective values. The geometrical representation of both
sets S and Z and of the maping f(x) between them can
easily be illustrated on a two-dimensional case, as shown in
Fig. 1 for n = 2 and k = 2.

1.2 Pareto Optimality

The word “minimize” in (1) means that we want to mini-
mize all the objective functions simultaneously. However,
because of the contradiction between the objective functions,
it is not possible to find a single solution that would be
optimal for all the objectives simultaneously. The concept
of noninferiority also called Pareto optimality must be used
to characterize the objective vectors. A noninferior solution
is the one in which an improvement in one objective requires
a deterioration of another. The set of all noninferior solutions
is also called the Pareto front. In Fig. 1 it is marked by the
thick curve segment between points zA and zB.

By solving the problem (1) we understand obtaining a
sufficient number of noninferior solutions covering parts of
the Pareto front that are of interest to the designer. This will
allow him or her to fully understand the available trade-offs
and to take a qualified decision based on this knowledge.

x1

x2

S
f

z1

z2

Z

zA

zB

Fig. 1: Feasible region (S), feasible objective region (Z),
and Pareto front.
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1.3 Ranges of the Pareto Front
For normalizing purposes we may need to know the

minimum and maximum values of the individual objectives
achieved over the Pareto Front. We will assume that indi-
vidual objective functions zi = fi(x) are bounded over the
feasible region S.

Ideal objective vector z∗ = [z∗1 , z∗2 , . . . , z∗k] is the objec-
tive vector independently minimizing each objective func-
tion:

z∗ =
[
min
x∈S

f1(x),min
x∈S

f2(x), . . . ,min
x∈S

fk(x)
]

. (2)

It can easily be seen that if the ideal objective vector
is feasible (z∗ ∈ Z), it is a solution of the multiobjective
optimization problem and the Pareto front is reduced to it.
But even in the usual cases when ideal objective vector in not
feasible, it can still be considered a useful reference point.

Maximum objective function values achieved over the
Pareto front are represented by a nadir objective vector.
Because such maxima are difficult to find, an approximate
nadir vector znad is instead defined as

znad =
[
max

i
(z∗i )1, . . . ,max

i
(z∗i )k

]
, (3)

i.e., as the vector of the largest respective components (z∗i )j

found in all k ideal objective vectors. Nadir vector may and
may not be feasible.

1.4 Goal Attainment Method
Typically used approaches to the multiobjective optimiza-

tion are either a method based on a weighted sum or
optimization of a single objective function while the others
serve as constraints (also known as ε-constraint method) [1],
[2]. The goal attainment method [3] provides a better control
over obtained solutions. It is defined as a scalar constrained
optimization problem of the form

minimize
γ∈R, x∈S

γ

subject to fi(x)− wiγ 6 z̄i,
i = 1, . . . , k,

(4)

where fi are the k objective functions to be minimized (de-
sign goals), S is the set of acceptable solutions (the feasible
region), z̄i are predefined reference goal values associated
with the objective functions fi, wi ∈ R are predefined
weighting coefficients, and γ is an auxiliary variable making
the new single objective function. The method requires 2k
input parameters, but only uses 2k−1 degrees of freedom as
shown in Fig. 2. Any solution of this optimization problem is
noninferior. Its location on the Pareto front can be controlled
by the weighting vector w and/or by the reference vector z.

Note that as all more complicated multiobjective problems
are time consuming, it is suitable to run them in batch mode.

z1

z2

zs1

zs2 zs

w

z1

z2 z

Z

Fig. 2: Geometrical representation of GAM.

2. A Semiautomatic A Posteriori Method
The goal is to arrange a reliable general-purpose multiob-

jective optimization tool that could be used in circuit design.
Requirements on the multiobjective optimization method

will include:
• arbitrary number of objectives
• arbitrary number of inequality constraints (but no need

for equality constraints)
• provisions for maximizing some functions while mini-

mizing others
• possibility of non-differentiable objectives
• automatic generation of Pareto optimal solutions
• automatic determining of what the covered part of the

whole Pareto front will be
• even density of coverage of selected part of the Pareto

front
• little or no a priory knowledge of the DM’s preferences

required
• possibility of monitoring and user interference during

computation run
• support for graphical presentation of the solutions
These requirements clearly suggest the use of an a pos-

teriori method or a method of another class converted into
an a posteriori method to be able to automatically generate
Pareto optimal solutions.

The authors’ choice is the Goal Achievement Method,
which is also one of the Achievement Scalarizing Function
approaches and a variety of Goal Programming [1].

Its advantages as opposed to Weighted Method or Method
of Weighted Metrics [1] are that all Pareto optimal solutions
are accessible even for non-convex problems and that it
works for both feasible as well as infeasible reference points.
As a disadvantage could be seen the need for a subroutine
for constrained optimization, but we want to be able to work
with constraints, anyhow.

There are two possible ways of controlling the location
of the Pareto optimal solutions found by GAM: either (a)
by the choice of the reference point or (b) by the choice
of the weighting vector (or (c) a combination of both). Our
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Fig. 3: Reference set A in the 2D and 3D objective spaces.

approach uses (a) because this seems to have a better chance
of even coverage of the Pareto front.

Here is the implemented equivalent form of the GAM,
also with the used normalization:

minimize
x∈S

max
i=1,...,k

fi(x)− z̄i

znad
i − z∗i

. (5)

Note that this very formula works for both the minimized
as well maximized objective functions: for the maximized
ones we have znad

i − z∗i < 0 and the denominator thus
automatically provides the correct sign. Also, as a result
of the choice (a) mentioned above, there are no explicit
weighting coefficients wi used in (4)1.

Now let us consider the choice of a set A in the k dimen-
sional objective space from which the reference points are
be taken. We will call it the reference set.

It should not be too far away from the Pareto front (in
Euclidian sense) so that it is not too difficult for the user
to predict where the corresponding Pareto optimal solution
will be from the knowledge of the reference point.

If the feasible objective set is bounded, the Pareto front P
will usually be a subset of the k-dimensional interval B =∏k

i=1[z
∗
i , znad

i ], where the product operator represents the
Cartesian product.

We could put A = B and simply randomly generate
the coordinates from the intervals [z∗i , znad

i ]. However, this
approach would lead to many reference points that have no
projection on the Pareto front. Such points could still provide
Pareto optimal solutions but those would be concentrated
along the border of Pareto front and not evenly spread over
the interior. Also many points would be quite far from the
Pareto front.

Therefore, we try to limit the size of the set A and select
it such that it is likely to be not very far from Pareto front.

One such a choice of the reference set A, that has
actually been implemented in the proposed method, is the

1The missing weighting coefficients in (5) that are a result of the choice
(a) above also exclude the possibility to introduce hard constraints simply
by setting the particular weight to zero, but this really poses no practical
limitation in our implementation as any goal can easily be switched to
directly play the role of an objective, a constraint, or even both of them
simultaneously.

k-dimensional convex body with k vertices (segment of
straight line, triangle, tetrahedron, etc.) whose vertices are
composed of one component of the ideal vector z∗i and the
rest are corresponding components of the nadir vector znad:

zvert
l =

[
znad
1 , . . . , znad

l−1 , z∗l , znad
l+1 , . . . , znad

k

]T ∀ l = 1, . . . , k.
(6)

This set A is randomly sampled with the uniform distribution
all over its k−1-dimensional volume. This is done with the
intent to uniformly cover the corresponding part of the Pareto
front. Fig. 3 illustrates the location of this reference set in
the two- and three-dimensional objective space.

The random generation of reference points belonging to A
can be performed in this way: starting with k vertices
z0,1,z0,2, . . . ,z0,k and a (k − 1)-tuple of uniformly dis-
tributed and mutually independent random numbers ri ∈
[ 0, 1) for i = 1, . . . , k − 1, we perform the following
sequence of assignments to calculate a point zk−1,1 ∈ A:

t1 = k−1
√

r1

z1,1 = (1− t1)z0,1 + t1z0,2

z1,2 = (1− t1)z0,1 + t1z0,3
...

z1,k−1 = (1− t1)z0,1 + t1z0,k

t2 = k−2
√

r2

z2,1 = (1− t2)z1,1 + t2z1,2

z2,2 = (1− t2)z1,1 + t2z1,3
...

z2,k−2 = (1− t2)z1,1 + t2z1,k−1

...

tk−1 = 1
√

rk−1

zk−1,1 = (1− tk−1)zk−2,1 + tk−1zk−2,2.

(7)

This procedure therefore calculates a total of N =
∑k−1

i=1 i =
k(k − 1)/2 points zj

i in the k-dimensional objective space
(i.e., N = 1, 3 and 6 points for k = 2, 3 and 4) from k
initially known vertices of the reference set. An example of
generation of a point (z3,1) from a reference set in the shape
of a tetrahedron (i.e., when k = 4) is shown in Fig. 4.
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Fig. 4: Obtaining a point from the reference set for k = 4.
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Fig. 5: RF C-class power amplifier schematic.

3. RF C-Class Power Amplifier Design
As a sophisticated example, let us try to design the last

stage of an RF power amplifier for a narrow-band signal with
an analog modulation at the frequency f1 = 300 MHz. The
source and load impedances should be both 50 Ω and supply
voltage VDD = 12 V. Our goal will be to explore the trade-
offs between achievable output power, power efficiency and
total harmonic distortion.

3.1 Schematic
We use an RF N-channel LDMOS as an active component

and a topology that is typical for C-class mode of operation,
see Fig. 5. The transistor is followed by an LC filter to
suppress harmonic distortion and provide good impedance
matching. (Even though impedance matching at the output is
not directly required, it is enforced indirectly by maximizing
output power.) The combination of elements L1, C1 and C2

can also be seen as a tapped resonant circuit. As for the
transistor, our choice will be LP821 (Polyfet RF Devices),
a silicon LDMOS device for frequencies of up to 500 MHz,
with a maximal total dissipated power of 50 W.

As our goal is exploration of the output trade-offs rather
than obtaining a complete design, no input impedance
matching circuit is considered, and no stability-ensuring
measures are taken (other than rather small reactance of the
capacitance between gate and source of the transistor itself).

Table 1: Design variables for the power amplifier.
Bound Coverage

No. Symbol Lower Upper Unit Type

1 Vgs max 2 20 V lin.
2 VgsACm 0.4 12 V lin.
3 L1 3 n 30 n H log.
4 C1 10 p 300 p F log.
5 C2 3 p 300 p F log.
6 L2 3 n 100 n H log.
7 C3 3 p 100 p F log.

3.2 Design Variables
As design variables we have two kinds of parameters: (A)

parameters of the gate voltage that directly determine the
operating mode of the transistor, and (B) all LC-component
values of the filter.

A simple way to define the design variables of the former
group would be the combination of the input AC voltage Vinp

and its DC offset Vbias. That, however, would not provide
direct control over the voltage between gate and source,
which must not exceed 20 V (as given by maximum ratings
of the device). This requirement would have to be enforced
by means of a special constraint, which would increase
simulation time. In order to avoid this need, an estimated
peak Vgs voltage, denoted by Vgs max, was chosen as one
design variable and the amplitude of its AC component
as another one. The gate voltage estimate is defined using
the equation of the voltage divider formed by the driver
output resistance Rd and input capacitive reactance of the
gate Xi ≈ 10 Ω

VgsACm = VinpACm
Xi√

X2
i + R2

d

, (8)

where VinpACm is the amplitude of the input AC volt-
age component from the preceeding driver stage (open-
circuited). From given values of design variables Vgs max

and VgsACm we then obtain

Vbias = Vgs max−VgsACm, VinpACm = VgsACm

√
X2

i + R2
d

Xi
.

(9)
Table 1 gives a summary of all design variables including

their ranges and types of coverage.

3.3 Design Goals
There is a total of five design goals, three of which are the

three objective functions to be optimized and two constraints
representing maximum ratings of the LDMOS. All goals are
defined in terms of waveforms of voltages and currents in the
periodic steady state, which was obtained by the steady-state
analysis of the simulator CIA [4] (necessary time-domain
sensitivity analysis is also described in [4]). Table 2 gives a
complete summary of all design goals. The individual design
goal definitions are as follows:
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Table 2: Design goals for the power amplifier.
Optimum/

No. Symbol Type Direction Bound Unit

1 Pout1 obj. max. 31.1 W
2 η obj. max. 83.0 %
3 THD obj. min. 0.0783 %
4 Id avg constr. 6 5 A
5 Pdiss constr. 6 50 W

a) Average output power at the first harmonic frequency
Pout1:

Pout1 =
|v̂out1|2

2RL
=

a2
1 + b2

1

2RL
, (10)

where v̂out1 is the phasor of the output voltage vout(t), ak

and bk are generally the coefficients of the k-th cosine and
sine harmonic (Fourier) components of the periodic steady-
state output voltage vout(t) of the period T , respectively:

ak =
2
T

∫
T

vout(t) cos
2πk

T
t dt, bk =

2
T

∫
T

vout(t) sin
2πk

T
t dt.

Here the integrals over period T were computed using the
trapezoidal method of numeric integration.

b) Power efficiency η: it is defined as the ratio of output
power at the first harmonic frequency and the total average
power from power supply and from the input driver. Such
a form of definition encourages not only lower power
dissipation on the transistor, but also lower input power and
thus higher power gain

η =
Pout1

VDD
T

∫
T

iDD dt + 1
T

∫
T

vinp(t)iinp(t) dt
× 100 %. (11)

c) Total harmonic distortion THD:

THD =
√

Pout higher

Pout
× 100 %, (12)

where Pout higher is the output power at higher harmonics
up to nh

Pout higher =
1

2RL

nh∑
k=2

a2
k + b2

k, (13)

with nh = 10, and where Pout is the total output power
computed with the formula

Pout =
1

RL

 1
T

∫
T

v2
out(t) dt−

 1
T

∫
T

vout(t) dt

2
 .

(14)
The second term here cancels the contribution by a possible
false DC component that could emerge as a result of the
failure to fully achieve the periodic steady state within the
chosen maximum number of iterations. (We know that in
reality the DC component of the output voltage must be
zero due to the capacitive coupling by C1 and the load being
linear.)

RGATE

RRC

CG

CISS CRSS

CS CRC

CD

LGATE

LS LDMOS JFET DBODY

G

S D

Fig. 6: Model configuration of LDMOS LP821.

d) The maximum ratings of the transistor are applied as
constraints: maximum average drain current Id avg and the
maximum average dissipated power by the transistor Pdiss

Id avg =
1
T

∫
T

id(t) dt (15)

and

Pdiss =
1
T

∫
T

[vgs(t) ig(t) + vds(t)id(t)] dt, (16)

respectively, where ig(t), id(t) are the instantaneous gate
and drain currents, and vgs(t), vds(t) are the instantaneous
voltages between gate and source and drain and source.

3.4 Transistor Model
The model used for simulations is based on a SPICE-like

one structured as shown in Fig. 6.
The original manufacturer’s model is actually only the

simple Level 1 SPICE MOSFET one (i.e., Shichman and
Hodges). Therefore, its parameters were recalculated for
using the semiempirical Level 3 model. They became VTO =
2.4 V, φS = 0.6 V, φO = 0.8 V, W = 0.04 m, L = 1 µm,
XJ = 1 µm, XJL = 0 µm, tox = 100 nm, NFS = 0 m−2,
NA = 1021 m−3, vmax = 5×104 m/s, µO = 0.06 m2/(Vs),
κ = 0.22, EP = 5 × 105 V/m, KP = 1.8 × 10−5 A/V2,
γ = 0

√
V, δ = η = ι = 0, θ = 0 V−1, rD = 0.16 Ω,

and rS = 0.16 Ω – the manufacturer’s value of W (for the
composed devices like LDMOS, this number represents the
element as a whole) clearly indicates that LP821 is really
a power transistor. The manufacturer’s values of the JFET
and PN diode parameters were λ = 0.8 V−1, β = 6 AV−2,
VTO = −5.25 V, CJOD = CJOS = 0 F, IS = 10−14 A,
n = 1, VB = 45 V, IB = 10−7 A, CJO = 60 pF,
φO = 0.6 V, and m = 0.25.

The RLC component values are the following: LGATE =
0.867 nH, RGATE = 0.01 Ω, CG = 3.5 pF, CRSS = 4.5 pF,
CISS = 22.1 pF, LS = 0.108 nH, CS = 0.43 pF, LD = 0.51 nH,
CD = 0.01 pF, RRC = 1989 Ω, and CRC = 0.381 nF.
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Fig. 7: Obtained Pareto front in the space Pout1, η, THD .

3.5 Models of LC Components
Unlike idealized circuit elements used in network theory,

real-life components have parasitics attached to them that
may (and often do) substantially modify the behavior of
resulting circuits at higher frequencies. Therefore, their
presence should be somehow considered within used design
procedures. One approach would be to first assume ideal
elements and after determining their values (e.g., by using
optimization) to apply a correction to each component value
so that its impedance at a chosen frequency (e.g., in the
middle of the full frequency band) is equal, or at least close,
to that of the ideal element in the design.

A more thorough and correct approach, however, is to
introduce the parasitics already before the optimization by
using parametrized RF models instead of simple ideal ele-
ments. Such a procedure is called parasitic-aware optimiza-
tion [5]. It was chosen to be applied to all LC components
in the present example. Fig. 9 shows used model structures
for inductors and capacitors.

Only rough estimates of parasitics and their dependences
on the main component values have been introduced, as
real parameters and functions strongly depend on types
and spatial configuration of the real components, their lead
lengths, etc. Each inductor Li, i = 1 and 2 has a series
resistance RLi representing all kinds of power losses (due
to skin effect, eddy currents and/or coil core hysteresis, etc.)
and a parallel capacitance CLi modeling the collective stray
capacitance (between the coil’s winding turns, leads, etc.),

Fig. 8: The 3D Pareto front obtained in the form of contours.

RLi

RCi

CLi

Ci Ci

Li Li

LC

Fig. 9: Modeled parasitics of passive components.

whose values are obtained using formulas

RLi =
2πf1Li

QLmax
+ RL0 and CLi = Li pCL + CL0. (17)

Here the frequency f1 = 300 MHz; the maximum quality
factor QLmax = 100, achievable only when the constant term
RL0 = 10mΩ is negligible; the stray capacitance coefficient
pCL = 1pF/µH and the constant term CL0 = 100 fF.

Similarly, each capacitor Ci, i = 1, 2, and 3 has a series
resistance RCi (also known as ESR)

RCi =
1

2πf1CiQCmax
+ RC0, (18)

where QCmax = 1000 and RC0 = 10 mΩ; and a stray series
inductance LC (ESL) estimated by a constant value of 3 nH.

Even though those formulas and parameter values are very
approximate, they still represent a significant improvement
to the whole method, at least, by helping to keep the
component values in the design after optimization in realistic
proportions. For example, inductances will not tend to be too
large, as their own resonant frequencies need to stay above
the basic signal frequency f1 (and probably also above some
higher harmonic frequencies).
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Fig. 10: An alternative way of displaying the 3D Pareto front.

Table 3: Selected solutions from the Pareto front.
Solution Number

No. Symbol 1 2 3 4 5 Unit
1 Vgsmax 9.97 15.9 20.0 19.2 18.9 V
2 VgsACm 4.03 8.05 10.7 9.24 12.0 V
3 L1 7.86 n 11.3 n 4.23 n 3.97 n 5.03 n H
4 C1 294 p 133 p 299 p 51.6 p 166 p H
5 C2 22.6 p 5.09 p 27.0 p 300 p 3.41 p H
6 L2 6.84 n 7.00 n 7.97 n 7.32 n 9.89 n H
7 C3 20.1 p 2.35 p 18.4 p 22.6 p 17.0 p H
1 Pout1 15.3 18.8 22.8 28.4 11.2 W
2 η 49.7 63.7 72.9 58.4 81.7 %
3 THD 0.163 0.239 0.512 0.394 3.03 %
4 Id avg 2.56 2.44 2.59 4.01 1.15 A
5 Pdiss 13.6 8.42 6.65 16.0 1.84 W

3.6 Results

Fig. 7 shows a total of 84 obtained solutions covering the
three-dimensional Pareto front. There is obviously a large
trade-off between harmonic distortion and power efficiency
at the highest output power levels, but it diminishes with
decreasing the output power, and for Pout1 6 14 W the
requirement of low distortion can be met with almost no
penalty on power efficiency.

Instead of by type of points, the different THD bounds
can be distinguished by separating the particular cases into
an array of graphs. Such an alternative format is presented
in Fig. 10.

A selection of five distinctly different solutions is given in
Table 3: number 1 has the lowest distortion THD , 4 has one
of the highest values of Pout1, and 5 the highest efficiency η;
solutions 2 and 3 are located in the middle area at different
levels of THD .

Instead of trying to uniformly cover the three-dimensional
Pareto front, it may be preferable to cover only a set of its
two-dimensional contours. This can be done by having THD
as a constraint (instead of as objective function) and by
repeating the optimizations for different THD bound values.
Alternately, if we already have a set of solutions such as of
Fig. 7, we can obtain the solution covering the contours
by reoptimizing them to the new set of constraints that
includes THD , i.e., by running a new optimization with each

already available solution as a starting point. A result of such
a procedure is shown in Fig. 8.

4. Conclusions
An improved semiautomatic multiobjective method based

on an asymptotically uniform coverage of the reference set in
the combination with goal attainment method was proposed
and implemented. The method was successfully tested on
more examples, and one – a sophisticated optimization of the
highly nonlinear circuit in the time domain – was presented.
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Abstract - In this study, a numerical solution of 

nonhydrostatic atmospheric equations is considered. A 

robust semi-implicit approach with additional time 

splitting is applied in order to construct computationally 

efficient and accurate numerical scheme for modeling of 

large-scale atmospheric dynamics. Description of the 

designed numerical algorithm is provided and its accuracy 

and stability are discussed. The main properties of the 

scheme are compared to the respective properties of more 

traditional algorithms. Performed numerical experiments 

with the actual atmospheric data of pressure, temperature 

and wind show that the developed scheme supplies 

accurate forecast fields for the increased time steps chosen 

in accordance with the physical requirements.  

Keywords: atmospheric modeling, numerical solution, 

semi-implicit scheme, time splitting 

 

1 Introduction 

      The Earth atmosphere is a complex dynamical system 

which supports the processes of different time and space 

scales, including the most important synoptic (weather) 

processes. There are different approximated physical 

models of atmosphere dynamics constructed to filter the 

secondary waves, however all these approximations 

introduce certain distortions to the principal synoptic 

modes. For this reason and also due to considerable 

increasing of computer power and advances in numerical 

methods, in the last years a great attention in atmospheric 

modeling is given to non-filtered models called also 

nonhydrostatic equations. These models include the Euler 

momentum equations, mass conservation equation and 

energy conservation equation for compressible inviscid 

ideal gas considered usually in the rotating frame related to 

the Earth surface. Analysis of the corresponding linearized 

nonhydrostatic equations reveals three kinds of the waves - 

acoustic, gravity and inertial waves - from which only the 

last waves are related to the synoptic processes. These 

waves differ not only in the source of their origin 

(compressibility, gravity force and Coriolis force together 

with advection), but also in such important characteristics 

as propagation velocity and energy contribution. In fact, 

the characteristic propagation speed of the acoustic waves 

in the Earth's atmosphere is about 330-340 m/s, while the 

speed of the gravity waves is always below 330 m/s (with 

majority of the gravity waves propagating at 100 m/s and 

below) and the propagation speed of the inertial processes 

(advection and Rossby waves) is usually about 10 m/s with 

the (very rare) maximum values below 80 m/s [6,9,11]. At 

the same time, it is well-known from evaluations of the 

spectrum of oscillations of the Earth atmosphere that the 

energy of the acoustic waves is negligible, the gravity 

modes contain a small part of the evaluable energy for the 

majority of the large- and meso-scale processes, and the 

inertial modes contain the main part of the atmospheric 

energy [9,11]. In this way, the problem of numerical 

weather forecasting and atmospheric modeling is a stiff 

problem. 

       Since the wave filtration can not be performed in the 

differential form without distortion of the principal inertial 

modes, the problem stiffness should be addressed in the 

design of numerical algorithm in order to achieve 

sufficient efficiency and accuracy of numerical solution. 

Indeed, the time step of a numerical scheme is generally 

determined by the Courant-Friedrichs-Lewy (CFL) 

condition [7]:    

                                        
expc

h

max

≤τ , 

where τ  is the time step, h  is the mesh size of a spatial 

grid and expcmax  is the maximum propagation speed of 

the processes treated explicitly in the chosen form of the 

time differencing. For many totally implicit schemes there 

is no restriction on the size of the time step due to 
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numerical approximation. In such cases the time step can 

be chosen solely on the ground of the physical limitations 

related to the time scale of the considered processes and 

the required accuracy of numerical solution. However, 

implicit schemes require solution of high-order nonlinear 

systems at each time step, that turns these schemes 

excessively computationally demanding and inefficient. 

For this reason, totally implicit time differencing is not 

practically used in atmospheric modeling.  

       On the other pole, fully explicit schemes assure simple 

and fast calculations at each time step of numerical 

integration, but the size of the time step for non-filtered 

atmospheric models is too small. For such schemes it is 

defined by the CFL condition with the maximum speed 

equal to the propagation speed acoustcmax of the acoustic 

waves [7,15]. Therefore, for the typical vertical resolution 

400≈vh m  used in large- and meso-scale models , the 

CFL condition  

                                   
acoust

v

c

h

max

≤τ         

requires the time steps less than 1 sec. Taking in account 

that the characteristic time scale of the synoptic (large- and 

meso-scale) models is about a couple of hours, such severe 

restriction on τ  makes the fully explicit time differencing 

computationally inefficient.       

       A more reasonable approach is a semi-implicit time 

differencing, in which the linear terms of the governing 

equations, which are responsible for the fastest waves, are 

approximated implicitly, while the remaining terms - 

explicitly. For example, applying an implicit 

approximation to the main linear terms in the vertical, it is 

possible to increase the time step almost two orders, 

because the CFL condition will include the horizontal 

propagation speed of the gravity waves gravcmax [13, 15].  

For the typical horizontal resolution 20≈hh km , the time 

restriction 

                                   
grav

h

c

h

max

≤τ    

will allow the time steps up to 1 min.  The price of this 

improvement is a necessity to solve systems of linear 

equations with narrow-band matrices at each time step, 

which can be accomplished efficiently employing the 

Gelfand-Thomas type algorithm [7]. However, the above 

time step is still too small as compared to the accuracy 

requirements.          

       Implicit differencing of all the main linear terms in 

the governing equations allows further increasing of the 

time step up to 5 min (under the same horizontal 

resolution 20≈hh km ) [7,14]: 

                                   
adv

h

c

h

max

≤τ  ,         

because only the maximum advection speed advcmax  

enters in the CFL condition in this case. This is a 

reasonable choice for the time step, comparable with the 

physical requirements of accuracy. However, such time 

approximation leads (at each time step) to solution of high-

order linear systems with wide-band matrices, that pull 

down the efficiency of this approach. 

       It is worth to note that the semi-implicit approach 

assures usually the same level of accuracy of numerical 

solutions as the explicit schemes with the same 

approximation order. This is the reason why the semi-

implicit schemes are so popular in atmospheric modeling. 

Nevertheless, when these schemes arrive to the limit of 

their efficiency, some additional techniques should be 

applied to speed-up computations. One of such techniques 

is a splitting by physical processes. Applied in its extreme 

form, it usually causes substantial additional errors, which 

grows significantly when the time step approaches the 

limit allowable by the CFL condition. In such cases a 

numerical splitting scheme can be stable for rather large 

time steps and keeps formally the required approximation 

order, but the practical accuracy of numerical solutions can 

fall down [7, 13, 15]. Therefore, the splitting techniques 

should be applied cautiously, frequently using a partial 

splitting, and checking the accuracy of the obtained results 

against available atmospheric data and simulation output 

of other verified models.                

       In this study, a partial physical splitting is introduced 

in the semi-implicit scheme in such a way that all the 

vertical modes are separated according their propagation 

velocity. Such vertical splitting corresponds to the 

analytical separation of the spectrum of the atmospheric 

waves supported by the governing equations. The gravity 

waves of the fast vertical modes are approximated 

implicitly, while those of the slow vertical modes are 

treated explicitly. It allows us to substitute the problem of 

solution of three-dimensional elliptic equations by solution 

of a set of the two-dimensional elliptic problems. The 

solution of the last set of problems can be obtained much 

more efficiently than for their three-dimensional 

counterpart. Additionally, a simpler approximation can be 

applied to slower vertical modes, because they contain a 

small part of the total energy [9, 16]. The performed 

numerical experiments show that applied vertical splitting 

maintain the desired level of the accuracy of the 

forecasting fields and speeds-up computations required for 

each forecast. 
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2 Governing nonhydrostatic equations 

       The momentum equations of inviscid atmosphere in 

the coordinate system related to the rotating Earth can be 

written as follows: 

                         uxt NPTRvfu +−=  ,  

                        vyt NPTRufv +−−=  ,                        (1) 

                       wzt NPTRT
T

g
w +−=  .                       (2) 

The continuity equations for compressible ideal gas is 

              ( ) Pzyx
v

p
t Nw

TR

g
wvu

c

c
P ++++−=  .        (3) 

The last equation is the thermodynamic one, including the 

equations of the state for ideal gas,   

                        T
p

t
p

t Nw
c

g
P

c

TR
T +−⋅= .                 (4) 

       The following notations are used above:  

the independent variables: t  - the time coordinate, zyx ,,  

- the spatial Cartesian coordinates;  

the unknown functions: wvu ,,  - the velocity components, 

pP ln=  - the pressure logarithm, T  - the temperature; 

the given parameters: f  - the Coriolis parameter with the 

mean value constf = , g  - the gravitational acceleration, 

constT =  - the mean value of the temperature, R  - the 

gas constant, pc  and vc   - the specific heat at constant 

pressure and volume, respectively; 

       The nonlinear terms uN , vN , wN , TN  represent 

mainly advective terms in each equation, whose specific 

form will not be used in the subsequent formulas. 

       This is the standard form of the governing equations 

of the nonhydrostatic atmosphere, which can be found in 

different sources (e.g. [7,11]). 

 

 

3 Time splitting semi-implicit scheme 

       In this section the time splitting semi-implicit scheme 

is presented and its analytical properties of accuracy and 

stability are discussed and compared to the respective 

properties of the standard semi-implicit scheme. 

   

3.1 Standard semi-implicit scheme 

       The standard three-time-level semi-implicit time 

differencing of the second order of accuracy for equations 

(1)-(4) has the following form [8, 14, 15]: 

                u
xx N

PP
TR

vv
f

uu
+

+
−

+
=

−
−−−

222

ττττττ

τ
,      

                v

yy
N

PP
TR

uu
f

vv
+

+
−

+
−=

−
−−−

222

ττττττ

τ
,             (5) 

           w
zz N

PP
TR

TT

T

gww
+

+
−

+
=

−
−−−

222

ττττττ

τ
,       (6) 

P
zz

v

p
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p
N

ww

TR

gww

c

cDD

c

cPP
+

+
+

+
−

+
−=

− −−−−

2222

ττττττττ

τ
,(7) 

       T

pp

N
ww

c

gPP

c

TRTT
+

+
−

−
=

− −−−

222

ττττττ

ττ
.   (8) 

Here yx vuD +=  - the horizontal divergence, τ  - the 

time step, the superscript  “τ ” denotes the quantities on 

the next time level ( )τ11 +=+ ntn  (so-called the prognostic 

values), the superscript “ τ− ” denotes the values on the 

past time level ( )τ11 −=− ntn , and functions without 

superscripts are considered on the current time level 

τntn = : 

( )zyxtn ,,,1+= ϕϕτ , ( )zyxtn ,,,ϕϕ = , ( )zyxtn ,,,1−
− = ϕϕ τ , 

                                  TPwvu ,,,,=ϕ . 

       It is easy to realize that the scheme (5)-(8) combines 

the implicit Crank-Nicolson approximation with the 

double time step for the linear terms, and the explicit leap-

frog approximation for the nonlinear and variable 

coefficient terms.  

       The analysis of linear stability of the scheme (5)-(8) 

shows that the time step is restricted by the condition 

                                        
adv

h

c

h

max

≤τ  . 

For the horizontal mesh size 20≈hh km and the 

maximum advection velocity 60max ≈advc m/s, the 

maximum allowable time step is about 5 min. 

 

3.2 Splitting scheme: semi-implicit step 

       Although the scheme (5)-(8) is rather efficient as 

compared to more explicit schemes, it has some 

drawbacks, the main of which is a necessity to perform 

inefficient computations at each time step related to 

solution of three-dimensional elliptic problems arising due 

to the implicit approximation of the linear terms. Since a 

part of these terms is responsible for slowly propagating 

internal gravity waves, the amount of computations can be 

decreased by applying vertical splitting. Such splitting 

allows us to separate and, consequently, approximate 

differently the principal (fast) and secondary (slow) 
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vertical modes. A similar approach has been applied 

successfully in the hydrostatic atmospheric models [3, 4, 5, 

10, 12]. To perform the vertical splitting, it is convenient 

to divide each time step in two stages. On the first stage, 

the explicit leap-frog scheme is applied to all the terms, 

except for those responsible for vertical propagation of the 

acoustic waves, which are approximated implicitly by the 

Crank-Nicolson scheme: 

                      ux NPTRvf
uu

+−=
− −

τ

ττ

2

ˆ
,  

                      vy NPTRuf
vv

+−−=
− −

τ

ττ

2

ˆ
 ,                     (9) 

       w
zz N

PP
TR

TT

T

gww
+

+
−

+
=

− −−−

2

ˆ

2

ˆ

2

ˆ ττττττ

τ
 ,  (10) 
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c
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+
−−=

− −−−
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ˆ
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ˆ

2

ˆ ττττττ
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   T
pp

N
ww

c

gPP

c

TRTT
+

+
−

−
=

− −−−

2

ˆ

2

ˆ

2

ˆ ττττττ

ττ
.   (12)  

       The computations on this stage are much faster than 

for the standard semi-implicit scheme (5)-(8). Indeed, the 

last three equations can be decoupled from the system and 

solved separately. Unknown functions in these equations 

are coupled only in the vertical variable, that reduces (10)-

(12) to a set of decoupled one-dimensional boundary value 

problems, each of which can be solved efficiently by the 

Gelfand-Thomas algorithm [7]. After solution of (10)-(12) 

is found, the remaining equations (9) have the explicit 

form with respect two the horizontal velocity components. 

The deficiency of the scheme (9)-(12) is its weak stability 

[8, 13]: 

                                        
grav

h

c

h

max

≤τ , 

that means that for the horizontal mesh size 20≈hh km 

and the maximum propagation speed of the gravity waves 

300max ≈gravc m/s, the maximum allowable time step is 

about 1 min. 

  

3.3 Splitting scheme: correction equations 

       To improve the stability of (9)-(12), a more implicit 

time differencing should be applied, for example, such as 

in (5)-(8). Equations for the differences (corrections) 

between solutions (prognostic quantities) of (5)-(8) and 

(9)-(12), can be written as follows:   

                            ux LPTRvfu =+− *** ττ ,  

                            vy LPTRufv =++ *** ττ ,                    (13)                                                                     

                         wz LPTRT
T

g
w =+− *** ττ ,                 (14) 

                Pz

v

p

v

p
Lw

TR

g
w

c

c
D

c

c
P =−++ **** τττ ,          (15) 

                             T
pp

Lw
c

g
PT

c

R
T =+− *** τ ,                (16) 

where ττ ϕϕϕ ˆ* −= , PTwvu ,,,,=ϕ  are the corrections to 

be found and the linear terms ϕL  do not include the 

prognostic values of the standard semi-implicit scheme:  

                xu PTRvfL
~~ ττ −= ,  yv PTRufL

~~ ττ −−= ,   

                  0=wL ,  D
c

c
L

v

p
P

~
τ−= ,  0=TL ;   

                 ττ ϕϕϕϕ −+−= 2ˆ~ , PTwvu ,,,,=ϕ   .       

       Considering, that the prognostic values of the first 

stage τϕ̂  are already calculated, the equations (13)-(16) 

represent the linear system for corrections *ϕ . Evidently, a 

solution of this system is equivalent to finding the 

prognostic values of the standard semi-implicit scheme (5)-

(8), but, as it was noted above, such procedure requires 

solution of the three-dimensional elliptic problems. 

However, application of the vertical splitting can 

significantly reduce the amount of the computations 

without loss of accuracy and stability of numerical 

solution. 

       The first step to perform the vertical splitting is 

elimination of unknown functions *w  and *
T  from 

equations (14)-(16), that leads to the following equation for 
*

P : 

1
*

2
2*

2

**
1

11
LD

Tc

g

TR
P

TRc

c
P

TR

g
P

pp

v
zzz =














++++− τ

ττ
 .(17)              

Considering the first two terms of the last equation 

together with the kinematic boundary conditions 0=w  on 

the upper ( 0=z ) and lower ( upzz = ) boundaries of the 

atmosphere rewritten for the function *
P , one can arrive to 

the  corresponding Sturm-Liouville problem: 

                 ***
PP

TR

g
P zzz λ=+− ,  ( )upzz ,0∈  ;               (18) 

                  0** =− P
Tc

g
P

p
z  , 0=z , upzz =  .              (19)            

It can be shown that the spectrum of the last problem is 

simple and positive, and the eigenvalues kc  approach fast 

the only limit point 0 of the spectrum set. This property is 

important for a selective correction of the vertical modes. 
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3.4 Splitting scheme: vertical decoupling 

       On the second stage of vertical splitting scheme, the 

eigenfunctions ( )zFk  of the problem (18)-(19) are used to 

expand some unknown and known quantities:  

              ( ) ( )∑ +=

k

kk
zFyx,

* ϕϕ ,  LPvu ,,,=ϕ .  

Applying this expansion, the correction equations (13), 

(17) can be rewritten in the form 

                          ++++ =+− ux LPTRvfu ττ ,  

                          ++++ =++ vy LPTRufv ττ , 

                         ( ) ++++ =++ Pyxk
LvucPTR 2τ   .                (20) 

For a simplicity of notations the subscript "k" is omitted in 

all quantities, except for kc . 

       Each of the systems (20) can be solved separately from 

others and represents the time discretization of the 

linearized shallow water equations with the corresponding 

gravity wave speed kc . Internal vertical modes, with large 

values of  k, correspond to the slow gravity waves and 

contain a small part of the atmospheric energy. Therefore, 

they have no influence on the scheme stability and their 

contribution to the solution accuracy is very small. Hence, 

it is sufficient to solve only a few of the principal vertical 

systems (20) in order to improve considerably the stability 

of the semi-implicit stage (9)-(12). Analysis of the linear 

stability of the vertically splitting scheme shows that the 

restriction on the time step can be expressed as  

                                     
1+

≤
I

h

c

h
τ , 

where 1+Ic  is the maximum propagation velocity of the 

vertical modes that remain uncorrected. For example, 

applying corrections to the first four vertical modes in the 

model with 30 vertical levels, it is possible to increase the 

time step from 1 min to 5 min, because 505 ≈c m/s. The 

achieved time step is practically equivalent to the 

maximum allowable time step of the standard semi-

implicit scheme (5)-(8). In this way, in order to recover the 

scheme stability after the semi-implicit stage (9)-(12), it is 

sufficient to solve only a small fraction of the systems (20). 

After this, the inverse vertical transformation returns the 

physical values of the corrections for the pressure and 

horizontal components of velocity, and, finally, the 

corrections to the temperature and vertical velocity are 

found by explicit formulas  (14) and (16). 

  

4 Numerical experiments 

       The described numerical scheme was applied to 

forecasting of atmospheric fields on the horizontal area of 

3000х3000 km 2 , covering the South part of Brazil and 

adjacent territories (the center point was chosen at 030  

South and 055  West) and within the vertical layer of the 

atmosphere extending from the Earth surface up to 15 km. 

The horizontal grid was chosen to be uniform with the 

mesh size of 20 km and the vertical layer was divided in 30 

sub-layers of different thickness - the finest vertical 

resolution was used in the planetary boundary layer and 

near tropopause, where the vertical variations are the 

highest.  

       The initial conditions were derived from the objective 

analysis fields of the National Centers for Environmental 

Predictions (NCEP), and the boundary conditions were 

defined based on the global forecast fields of the same 

center. The 12, 24 and 36-hour forecasts were calculated 

on the defined above territory, but the evaluation of the 

forecast skills was made on the inner territory of the size 

1000х1000 km 2  in order to minimize the influence of the 

boundary conditions. The forecasts beyond 36 hours were 

not calculated, because it is well-known that they are 

highly dependent on the provided boundary conditions 

[1,2].    

       To evaluate the accuracy and efficiency of the 

constructed scheme, the forecasting results were compared 

to the respective forecasts obtained with the use of the 

standard semi-implicit scheme (5)-(8) and the simpler 

semi-implicit scheme (9)-(12). The standard measures of 

evaluation of the forecast skills used in the short-range 

numerical weather prediction were employed: the root-

mean-square error (the root-mean-square difference 

between forecast and analysis fields for the chosen 

meteorological element and vertical surface) and 

correlation coefficient between the prognostic and actual 

tendencies (again for the chosen meteorological element 

and vertical surface) [1,2].  

       The root-mean-square errors for the geopotential 

height of 500 hPa are shown in Fig.1 for the indicated 

three schemes. This surface is quite characteristic for 

evaluation of the synoptic processes in mid-troposphere. 

The root-mean-square errors for the temperature at the 

pressure surface of 850 hPa are shown in Fig.2. The 

forecasts on this surface are important for evaluation of 

convective activity in lower troposphere, which affects the 

formation of clouds and precipitation in more complete 

non-adiabatic atmospheric models. One can note a 

practical identity of the forecast accuracy of the standard 

and time splitting semi-implicit schemes for the both 

assessed fields. The evaluations of the correlation 

coefficients of the forecasts calculated with the indicated 
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three schemes show similar results (not presented here): 

the coefficients for the vertically splitting and standard 

semi-implicit schemes are practically identical, while the 

coefficient for the scheme (9)-(12) is a bit smaller, showing 

slightly decreasing quality. 

 

 

Fig 1. Root-mean-square errors of the forecasts of the 

geopotential height (in meters) at the pressure surface of 

500 hPa presented as a function of the forecast time. 

Solid line - the semi-implicit scheme (9)-(12), dashed line 

- the standard semi-implicit scheme (5)-(8), dotted line-

the vertical splitting semi-implicit scheme. 

 

 

Fig 2. Root-mean-square errors of the forecasts of the 

temperature (in degrees) at the pressure surface of 850 

hPa  presented as a function of the forecast time. 

Solid line - the semi-implicit scheme (9)-(12), dashed line 

- the standard semi-implicit scheme (5)-(8), dotted line - 

the vertical splitting semi-implicit scheme. 

       As it can be seen from the provided results, the 

vertical splitting does not introduce any visible additional 

errors and provides numerical solutions of the same level 

of accuracy as the standard semi-implicit scheme: the 

differences between evaluations of two forecasts are 

practically negligible for both root-mean-square error and 

correlation coefficient, and for both chosen meteorological 

elements. At the same time, the computational time 

required for the vertical splitting scheme is almost a half 

of the forecast time for the standard semi-implicit scheme. 

It is worth to note that according to the properties of the 

spectrum of the eigenvalue problem (18)-(19), the number 

of the fast vertical modes remains almost the same when 

the number of the vertical levels increases. Therefore, 

under current tendency of enhancing vertical resolution to 

40 or 50 vertical levels, or even higher, the computational 

speed-up obtained in the vertical splitting scheme can be 

even stronger.     

 

5 Conclusions 

 In this report we have presented a finite-difference 

semi-implicit time splitting scheme designed to overcome 

the problems related to numerical solution of the stiff 

atmospheric equations based on the non-filtered Euler 

equations of the ideal compressible gas. Each time step of 

the constructed scheme consists of two stages: a simple 

semi-implicit integration and subsequent solution of the 

corrections equations for the fastest vertical modes. The 

time step of stable integration is defined by the maximum 

velocity of processes treated explicitly that allows the use 

of the time steps comparable with those required by 

physical accuracy. The provided results of numerical 

experiments have shown the accuracy of the obtained 

forecasts and the computational efficiency of the developed 

numerical scheme.  
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Abstract— The isocenter of the magnetic gradient fields in-
side a magnetic resonance imaging scanner is an important
parameter in gradient non-linearity distortion correction
methods for MR images. Currently there is no established
method for estimating the gradient isocenter. All existing
correction methods assume that the gradient isocenter coin-
cides with the DICOM coordinate center, which is close but
not exactly the same as the gradient isocenter. A difference
between gradient isocenter and DICOM coordinate center
could compromise the accuracy of the correction method.
The goal of this research was to develop a reasonably accu-
rate estimation method of the 3D location of the gradient
isocenter that was based on the geometry of a custom-
designed phantom. We present a two-step algorithm for
estimating the gradient isocenter and examine some of the
possible numeric methods to be used on each step.
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1. Introduction
Magnetic resonance imaging (MRI) provides an excellent

modality for distinguishing different tissues in the human
body, which makes this modality essential for medical ap-
plications. MRI can also be used for treatment planning of
medical procedures that require a great degree of geometrical
accuracy such as functional radiosurgery [2]. Unfortunately,
the accuracy of MRI for medical targeting applications
is compromised by the presence of geometric distortions
such as non-linearities of the magnetic gradient fields or
inhomogeneities of the scanner main field [1], [3], [4], [5],
[6], [7], [8], [9]. Gradient nonlinearities can cause over 2mm
of distortion to the location of features in the image [6], [7].

Modern MRI scanners have built-in distortion correction
algorithms, that rely on knowledge of the magnetic field
configuration and its distortion. Built-in algorithms, which
are usually proprietary, are designed based on assumed
knowledge of the geometry and location of the gradient coils.
A more practical approach is to use a phantom of known
geometry and to derive the distortion by analyzing the MRI
images generated with such a phantom [1], [3], [4], [5], [6],

[7], [8], [9]. This method has the advantage that a scanner-
specific correction can be applied, which can also take into
account potential changes in the gradient fields over time.

Accurate knowledge of the gradient isocenter is essen-
tial to very accurate distortion correction methods, To our
knowledge, existing distortion correction algorithms, both
built-in and phantom based, make the assumption that the
gradient isocenter coincides with the origin of the DICOM
coordinates. This assumption may not be accurate and should
not be used if a high degree of accuracy is necessary.

The goal of this work was to develop and implement a
numerical software-based method to estimate the gradient
isocenter of the magnetic field inside an MRI scanner using
the MRI scan of a custom-built phantom. In our previous
work [3], [4], [5], [6], we used an oil filled plexiglas cube
with 159.50mm × 159.70mm × 158.11mm dimension that
was designed to fit MR scanners that were available at
that time. Current MRI scanners have a significantly wider
aperture, which necessitates a larger phantom to characterize
the field distortion. Furthermore, since the lower part of
the scanner aperture is occupied by the scanner table, the
scanning area occupied by the phantom or the patient is
not centered on the gradient isocenter, making correction
methods that assume that the phantom is centered with
respect to the gradient isocenter [3], [4], [5], [6], [7] obsolete
and potentially inaccurate.

2. Distortion Phantom
A new phantom design was developed with the intention

to probe the distortion in the 50 cm field-of-view (FOV)
of a modern 3T MRI scanner (Magnetom Trio, Siemens).
Due to the geometry of the gradient field nonlinearity, the
distortion is largest in the outer fringes of the FOV [3],
[4], [5], [6]. Capturing distortion data in the periphery of
the FOV is important for better accuracy of the distortion
correction. Building a very large cubical oil-filled phantom is
a challenge due to weight limitations and limited capability
to accurately machine a very large flat surface. Thus it
was felt to be impractical to simply scale up the original
phantom. Another limitation is that the phantom needs to
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fit inside the scanner head coil which needs to be used to
achieve a sufficiently high signal-to-noise ratio. To meet all
requirements, we designed a phantom that is comprised of 64
NMR glass tubes of 3 mm inner diameter, filled with copper
sulfate and arranged in 8 surfaces forming an octagon. A
water-filled cylinder in the middle of the octagon ensures a
good signal generated by the tubes. The distance between
tubes on the opposite side of the surface is 205mm, which
is about 28% wider than the original phantom. In addition
we also added four more surfaces to provide data and better
fit the headcoil. There are 8 removable tubes on each surface
with 10 mm gap between adjacent tubes. Each tube is about
207 mm long, which is also an increase of about 28% in
length from the original phantom. Tubes are placed along
the main axis of the magnetic B0 field to reduce the effects
of chemical shift and magnetic susceptibility and resulting
in high-quality axial images.

3. Computational Algorithm
The algorithm we described here is using simulated data

set that is based the geometric property of the phantom
and the properties of the MR images. The MR images we
are using have 1mm per pixel resolution for every image
and 1mm thickness between two adjacent planes. In the
simulation, we will be using millimeters as unit for each
data point. Since the images we are using to collect data
points are all axial scans, we will only add noise to x and
y coordinate of each data point.

3.1 Tube Modeling
The tubes is 203 mm long. So our simulation data is

ranging from -100 to 100 on z axis for each tube. The
arrangement of the tubes could be seen in Figure 1. Our
algorithm is based on two standard assumptions [3], [4], [5],
[6], [7].: (1) the distortion in MR images are only caused by
the magnetic field inside MRI scanner and (2) the magnetic
field can be perfectly described using the sum of spherical
harmonic.

(a) Axial view. (b) Coronal view.

Fig. 1: Phantom modeling without distortion

The spacial coordinate of the phantom must be trans-
formed into a coordinate relative to the gradient isocenter

of the magnetic field, see Equation 1, then using the first
5 terms of the spherical harmonic we can estimate a offset
in x, y, z direction, see Equation 4. Finally this offset is
added the original coordinate to create a distorted model, see
Equation 5. Also a very key requirement for this algorithm
is that the z-axis the phantom which is parallel to the tubes
must be aligned with the z-axis of the magnetic field.
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3.2 ISO-Center Coordinate Estimation
Using a exaggerated distortion parameter we can visualize

the shape of the distortion model. Without distortion, the
phantom appears as in Figure 1. With large distortions,
the phantom appears as in Figure 2, which is useful to
understand the form of the distortions. A more realistic
distortion can be seen in Figure 3, which uses distortion
parameters from [6].

Distortion in the sum of spherical harmonics is coupled
in the x and y directions (orthogonal to axis), making the z
axis independent. Noise and distortion are thus very different
in the z direction as opposed to the x-y plane. We break
down the gradient isocenter coordinate estimation into two
big steps: estimation of z coordinate and estimation of x,y
coordinate.

3.2.1 Z-Coordinate Estimation
Since the distortion model is based on sum of spherical

harmonics, the shape of the distorted data for each tube
is an even polynomial function. Figure 3 shows that the
realistic distortion is quite small, being about a maximum
of 2 pixels, and the smaller the distortion the more sensitive
the problem becomes. With the first four terms of sum of
spherical harmonics, the shape of the each tube can be seen
as part of a polynomial function of 4th degree. Since the
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(a) Axial view. (b) Enlarged axial view.

(c) Coronal view.

Fig. 2: Phantom modeling with large distortions

data points of tubes only represent the middle section of the
4th degree polynomial function, it is also very similar to a
shape of quadratic function. The offset between the largest
distortion and the smallest distortion can be as small as 1mm.
With such a small margin, it is more practical to fit the data
points to simpler model than a 4th degree polynomial. Only
the first spherical harmonic is needed in order to estimate
the point where gradient is zero to measure the isocenter.
Furthermore, the first term of the sum of spherical harmonics
has the largest signal to noise ratio, so we use a quadratic
model to fit the data points.

We can see the distorted tube models’ middle part is
bending toward the center with both end bending outward. If
we were to fit each tubes to a parabola and locate the point
where its gradient is zero, that point’s z-coordinate should
be the same as the z-coordinate of the gradient isocenter of
the magnetic field. The z-coordinate is measured for all 64
tubes and the result averaged. The resulting estimation is
within 0.1 mm of the actual z-coordinate.

3.2.2 X,Y Coordinate Estimation
The estimation of the x and y coordinates of the isocenter

is the more difficult problem. We are assuming that the
difference between the distortion on x and y direction are so
small that we can treat them as if they are the same. When
this is not true, the errors on the isocenter location will be
asymmetric, and it will be even more important to maintain a
good numerical method to estimate the isocenter. With that
in mind, the distorted data of a tube should all stay on a

(a) Axial view. (b) Enlarged axial view.

(c) Coronal view.

Fig. 3: Phantom modeling with small distortions

plane which isocenter is also in. The intersection of such
planes from each tube should be a line that goes through
isocenter. Using the isocenter estimated from previous step
we should obtain an estimation of x and y coordinate.

Since the tubes were aligned to the z-axis to reduce
magnetic field distortion by the tubes, the range of data in the
z-direction is of necessity larger. In the x-y plane the range
of points is controlled by the distortion, and is thus only
a few pixels. The resulting equations are highly sensitive,
requiring careful handling in our numerical algorithm.

The equation of a plane in three dimensions is as follows.

ax+ by + cz + d = 0 (6)

Rewriting eq 6 with the measured data, we can solve for
the plane each tube lies in. This in turn can be used to find
the intersection of the planes, which is the isocenter.

− b

a
y − c

a
z − d

a
= x (7)y0 z0 1

...
...

...
yn zn 1


−b/a
−c/a
−d/a

 =

x0

...
xn


−mx =

b

a

kx = − c

a
ziso −

d

a
x = −mxy + kx[

1 mx

] [x
y

]
= kx (8)

36 Int'l Conf. Scientific Computing |  CSC'12  |



Note that eq 6 can be rewritten so either x or y is inde-
pendent, which affects the error in standard least squares.
This becomes particularly important when the non-linearity
is not the same in the x and y directions, as scaling is also
well known to cause problems for least squares.
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As we can see from figure 4, by using equation 7
and equation 9 to estimate planes in figure 4(b) and 4(d)
respectively we get and quite accurate x and y coordinate
estimate. However, when you swap the choice of equations,
even though they are mathematically identical, they make a
huge numeric difference as shown in 4(a) and 4(b).

(a) LS fit with y orientation. (b) LS fit with x orientation.

(c) LS fit with x orientation. (d) LS fit with y orientation.

Fig. 4: Phantom modeling with distortion, showing differ-
ences in isocenter estimates due to how the LS equation is
oriented.

When estimating the x-y coordinate using least square we
should keep in mind that least square assumes there is no

observation error, it will only try to correct one side of the
equation depending on how it is setup. With this in mind,
we uses equation 8 for x coordinate estimation and 11 for
y estimation. For the tubes on the diagonal planes, as we
can see in fig5, they offers neither a good data for x nor
y coordinate estimation as compared to fig 4 (b) and (d).
So in order to utilize the diagonal tubes we have to rotate
these tubes to either x or y plane, and get an estimation of a
rotated x-y coordinate, then rotate the rotated x-y coordinate
back and average it with original x-y coordinate estimation.

(a) LS using x orientation. (b) LS using y orientation.

Fig. 5: Phantom modeling with distortion, showing how
diagonal tube planes without rotation do not improve the
estimates produced.

In order to obtain a good estimate, we thus must separate
the estimation of x and y, as well as rotate the diagonal
oriented tube planes and then separate the estimation of x
and y and rotate back. We refer to this algorithm as Rotated
Separable Least Squares (RSLS). We now present the RSLS
algorithm to estimate x-y coordinate of gradient isocenter as
follows:

1) Use equation 7 to estimate tube planes for tubes at
upper and lower surfaces.

2) Solve equation 8 for x and y, but only use x for x
coordinate.

3) Use equation 9 to estimate tube planes for tubes at left
and right surfaces.

4) Solve equation 11 for y and x, but only use y for y
coordinate.

5) Rotate diagonal tubes π/4, and repeat steps 1-4.
6) Rotate x-y coordinate obtained from previous step by

−π/4.
7) Average the x-y coordinate from previous step with

x-y coordinate calculated from step 2 and step 4 for
final x-y estimation.

Alternatively, after obtaining the plane equation parame-
ters we can put everything into one matrix and do a one time
estimation using either least square or total least square. In
table 1, we can see the comparison of accuracy of estimating
an isocenter at [4 4 3] using different methods. Least square
tends to lean toward one coordinate more depends on setup,
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x̄ σx err ȳ σy err
RSLS 3.9709 0.1068 0.0291 3.9677 0.1008 0.0323
LS 3.9950 0.1118 0.0050 3.9414 0.1011 0.0586
TLS 4.0800 0.1035 0.0800 4.0800 0.0964 0.0800

Table 1: Average of 200 runs using different methods for
estimating the isocenter at [4 4 3] in the presence of
symmetrical distortion

x̄ σx err ȳ σy err
RSLS 3.8073 0.1117 0.1927 3.9838 0.1059 0.0162
LS 4.2191 0.1117 0.2191 3.8765 0.1003 0.1235
TLS 9.5744 0.2616 5.5744 8.6905 0.2393 4.6905

Table 2: Average of 200 runs using different methods for
estimating the isocenter at [4 4 3] in the presence of non-
symmetrical distortion

while total least square has an accurate and very balanced
result due to the property that it will try to correct errors on
both side of the equation. In the contrast, our method has
best properties of both methods:

• It is accurate. For both x and y coordinate it does a
better job than total least square, much better than least
square’s worst case and very close to least square’s best
case.

• It has very balanced result. Both x and y coordinates
are very close the correct result equally just like total
least square.

• It has very tight error boundaries. After 200 runs, it’s
error is tighter than standard least square.

Therefore, our estimation method is a good alternative
to traditional least square or total least square methods.
Although it might require more computation, it could be
easily dealt by modern GPU computing. And due to the fact
that each least square estimation has relative small matrix,
and each estimation is independent of each other, it is very
close to “embarrassingly parallel” type of problems and
makes it easy to solve.

In table 1, the test is run using a symmetric x-y axis
distortion. We can see that all three methods performed very
well. RSLS method’s result is slightly better than Total Least
Squares (TLS), and one on y axis it is better than standard
Least Squares method.

When the distortion is not symmetrical the issue of proper
estimation becomes crucial. In table 2, we show the result
of using non-symmetrical distortion in which the y direction
was set to be twice the distortion in the x. In this test, TLS
method’s result is the worst, off by a few millimeters. Both
LS and RSLS show comparable degradation of performance
in x. LS shows degradation in the estimation of y as well,
but RSLS, since it is separable, does not experience any
degradation of it. Only the RSLS’s result remains quite
accurate. This shows the advantage of RSLS over the other
two traditional methods.

4. Conclusion
In this work, we developed a new numerical algorithm to

accurately determine the gradient isocenter of MRI scanners
based on a new distortion correction phantom. Knowledge
of the gradient isocenter is an essential part of gradient-
nonlinearity correction methods. We have shown that the
method used in this work to estimate the gradient isocenter
is a good alternative to more traditional estimation methods
such as least squares and total least squares. The new
algorithm is particularly suited when the image data are
extremely sensitive to the presence of noise and asymmetric
distortion. Using simulated (but realistic) distortion data, it
was shown, that the resulting estimated isocenter was within
0.2 mm of the actual gradient isocenter, leading to a better
estimate than the currently used DICOM coordinate center.
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Abstract - The influence of anisotropy of both electron
density and external magnetic field fluctuations on the
spatial power spectrum (SPS) of scattered electromagnetic
waves is considered in this paper. Stochastic differential
equation is obtained for the phase fluctuations using smooth
perturbation method taking into account diffraction effects.
Second order statistical moments are calculated for arbitrary
correlation functions of electron density and external
magnetic field fluctuations. Numerical calculations were
carried out for anisotropic Gaussian correlation function
containing nondimensional anisotropic parameter and the
angle of inclination of prolate irregularities with respect to
the external magnetic field. SPS of scattered radiation has a
pronounced gap caused by electron density fluctuations. The
influence of an external magnetic field on a double-peaked
shape has been analytically and numerically.

Keywords: Ionospheric plasma, Anisotropy, Phase
fluctuations, Angular power spectrum

1 Introduction
Peculiarities of the electromagnetic waves propagation

in randomly inhomogeneous media have been intensively
studied [1,2]. However, the large-scale irregularities were
considered to be statistically isotropic. In many cases
irregularities are anisotropic. Particularly, they are observed
in lyotropic crystals with a hexagonal structure [3], in the
Earth’s ionosphere random plasma inhomogeneities are
aligned with the geomagnetic fields [4]. The evolution of the
angular distribution of the intensity at light propagation in a
randomly unhomogeneous medium with strongly prolated
anisotropic irregularities of dielectric permittivity has been
investigated in [5,6]. Using the smooth perturbation method
it has been shown that the spatial power spectrum (SPS) of
multiply scattered waves at oblique illumination of a
boundary of a randomly inhomogeneous medium with
prolate irregularities by mono-directed incident radiation has
a double-peaked shape. Numerical simulation has been
carried out by Monte-Carlo method. Second order statistical
moments of the SPS in magnetized anisotropic plasma have

been investigated in the complex geometrical optics
approximation and perturbation method [7-10].

The features of the SPS of multiply scattered radiation
in a randomly inhomogeneous anisotropic ionospheric
plasma are investigated analytically and numerically taking
into account diffraction effects caused by both electron
density and external magnetic field fluctuations. The
expressions for phase fluctuations of scattered
electromagnetic waves in the principle   (wave vector of
mono-directed incident radiation and external magnetic field
are located in this plane) and perpendicular planes are
derived using the smooth perturbation method. Correlation
functions of the phase fluctuations are calculated for arbitrary
correlation functions of fluctuating magnetized plasma
parameters. The influence of an external magnetic field on a
gap caused due to electron density fluctuations in the
ionospheric plasma is considered for the first time in this
paper. Numerical calculations are carried out using satellite
and remote sensing data.

2 Formulation of the problem
Let us consider the features of the SPS of scattered

electromagnetic waves in the anisotropic ionospheric
magnetized plasma with both electron density and external
magnetic field fluctuations. Initial is the following wave
equation:

2
2
0 ( ) ( ) 0ij ij

i j
k

x x
d e

æ ö¶
- D - =ç ÷ç ÷¶ ¶è ø

jr E r . (1)

Wave field we introduce as 0 1 2( ) exp(j jE E j j= + +r .

0 )i k y i k z^+ + ( 0k k^ << ). If electromagnetic wave
propagates along z axis and the vector of an external
magnetic field lies in the coordinate plane ( zk P ,

yz< >Î0H ), components of the second-rank tensor   of
collisionless magnetized plasma have the following form
[11]:
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where a  is the angle between the vectors k  and 0H ;
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are the magneto-ionic parameters, 2 1/2(4 / )p N e mw p= is

the plasma frequency, 0 /H e H mcW =  is the electron
gyrofrequency. Dielectric permittivity of a turbulent
magnetized plasma is a second rank tensor, which is random

function of a spatial coordinates (0) (1)( ) ( )ij ij ije e e= +r r ,
(1)| ( ) | 1ije <<r . First component represents zero-order

approximation, second one containes fluctuations of both
electron density and external magnetic field fluctuations of
the ionospheric plasma which are random functions of the
spatial coordinates: 0 1v( ) v [1 ( )]n= +r r , 0( ) [1u u= +r

12 ( )]h+ r .
In a zero-order approximation we have the following

wave equation
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containing the set of three algebraic equations for the 0 jE
regular field components:
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Solution of determinant imposes the restriction on the
parameter 0/k km ^= :
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Taking into account that fluctuations of the complex phase
are of the order (1)

1 ~ ijj e , (1) 2
2 ~ ijj e and the well known

conditions characterizing the smooth perturbation method:
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in the first approximation we obtain:
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.                       .                 (6)

where 2 2 2 2
1 1( / ) ( / )x yj j^D = ¶ ¶ + ¶ ¶  is the transversal

Laplasian.
     Two-dimensional Fourier transformation for the phase
fluctuations is

1( , , ) ( , , ) exp( )x y x y x yx y z d k d k k k z i k x i k yj y
¥ ¥

-¥ -¥

= +ò ò ,

For i x=  component from equation (6) we obtain
differential equation for two-dimensioanl spectral
component:

0 0
0

0 0 0
0

0

( )
2

y z
x y x

z x x
x

x

E Ei k k k k kEz E Ek k
E

y
^

é¶
+ + + -ê¶ ë-

2
0

0
0

0

( 2 )
2

y y
z

x
x

kk k k i Ek k
E

y^ ù- + = -û
-

 .                       (7)

The relations of the mean electric field components are
determined by the well-known formulae [11]

0 0( / )y x jE E i= R , 0 0( / )z x jE E i= G , minus sign and index

1j = correspond to the extraordinary wave, plus sign and
index 2j =  - to the ordinary wave; the polarization
coefficients are [11]:

2 2 4 2 2

2 (1 v)cos
sin sin 4 (1 v) cos

j
u

u u u
a

a a a

-
R =

± + -

2

v sin vsin cos
1 v vcos

j
j

u u
u u
a a a

a
+ R

G = -
- - +

,            (8)
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In general, ordinary and extraordinary waves in collisionless
magnetized plasma are elliptically polarized.

Transverse correlation function of a scattered field has
the following form [6] ( ) ( ) ( )EEW E E*

*=< + >ρ r r ρ
taking into account that the observation points are spaced
apart at a small distance { , }x yr r=ρ :

(2 2
0 1

1( , ) exp( )exp Re ( )
2yEEW k E i kr j* ^ ^

ì é= - < > +í êëî
ρ r

) }2
1 1 1 2( ) ( ) ( ) 2j j j j* * ù+ < + > + < + > + < >ûr ρ r r ρ ,  (9)

where 2
0E  is the intensity of an incident radiation.

     SPS of a scattered field in case of incident plane wave
( , )W k k^¢  is easily calculated by Fourier transform of the

transversal correlation function [1,2].

( , ) ( , ) exp( )y y yEE
W k k d W k i kr r r*

¥

^ ^
-¥

¢ ¢= ò .    (10)

.
2.1 Second order statistical moments of the

phase fluctuations
In these notations two-dimensional spectral component

of the phase fluctuation of scattered electromagnetic field (7)
in the first approximation satisfies the stochastic differential
equation:

2
01 2

0 0
( , , )

2 2x y
j x j x

ki d d k k z
dz k i k k i k
y y-¶

+ = -
G + G +

{ }(1) (1) (1)( , , ) ( , , ) ( , , )xx x y j xy x y j xz x yk k z k k z k k ze e eé ù- R - Gë û% %

    (11)

where: 1 0( )x y j x jd k k k k k^= + R + G , 2 ( 2 )y yd k k k^= + .
The solution of this equation satisfying the boundary
condition   has the following form

{ (1)0( , , ) ( , , )
2x y xx x y
kk k z i dz k k zy e

¥

-¥

¢ ¢= -ò

}(1) (1)( , , ) ( , , )j xy x y j xz x yk k z k k ze eé ù¢ ¢- R - G ×ë û% %

2 1

0
exp ( )

2j x

d i d L z
k i k

é ù- ¢× - -ê ú
G +ê úë û

 .                                 (12)

Taking into account that: ( , ) ( , )z zab gd¢ ¢ ¢¢< T T > =κ κ

, ( , ) ( )W z zab gd d¢ ¢¢ ¢= - +κ κ κ   and changing the variables:

zz z r¢ ¢¢- = , 2z z h¢ ¢¢+ = , second order statistical
moments of phase fluctuations of scattered electromagnetic
waves for arbitrary correlation function of electron density
fluctuations are finally expressed as:

2
2 0 1 2
1 , ,2 2

1 2
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2 x y xx xx xy xy
k G iGdk dk V V

G G
p

j
¥ ¥
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[ ]{ }, , , , 1 22( ) 1 exp ( )xz xz xx xz xx xy xy xzV V V V G i G Lù+ + - - - -û
(13)
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where: , , 3 4( , , )x yV V k k i G Ga b g d a b g dº - , ,Va b g d¢¢ º

( )2
, 1 2 0 0, , ( 2 ) / 4x y j xV k k d k d k ka b g d¢¢ - G + , ,Va b g d¢ º

, 3 4( , , )x yV k k i G Ga b g d¢ - - , indices denote the product of

fluctuating terms of the second rank tensors;
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2
4 02

0

1 ( 4 )
4 j j x yG P k k k k

k ^= G + .

For i x=  component from equation (1) we obtain stochastic
differential equation in the second approximation

2 2 2
2 2 2 2
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By Fourier transform first term of the right part of equation
(16) can be written as:

2
01 1

,2 2
1 24

x y
x y xx xx

k kk dk dk V
x y G G

pj j ¥ ¥

-¥ -¥

¶ ¶ é< > = +ë¶ ¶ +ò ò

, , , , ,2( )xy xy xz xz xx xz xx xy xy xzV V V V V ù+ + + - - û

[ ]{ }1 21 exp ( )G i G L× - - .                                       (17)

Solution of equation (16) is expressed as:
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where: 2
1 1 2( )j x y yA P G k k G k= - + , 2 1 1 1 2( )A A G B G= - ×

2 1 1 1 2 2cos( ) ( )sin( )G L B G A G G L+ + , 2
1 1 2y j x yB G k P G k k= - ,

2 1 1 1 2 2 1 1 1 2 2( ) cos( ) ( ) sin( )B B G A G G L A G B G G L= + - - .

In the absence of an external magnetic field ( 0 0H = ,

0 0u = ), from equation (8) follows: 0j jP = G = , 1 0d = ,

and (12)-(15) coincide with [6].

2.2 Numerical calculations
In analytical and numerical calculations we will use

anisotropic Gaussian correlation function of electron density
fluctuation [12] for investigation of the influence of electron
density and external magnetic field fluctuations on evolution
of the SPS
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This function is characterized by anisotropy factor of
irregularities /l lc ^=

P
(ratio of longitudinal and transverse

linear scales of plasma irregularities with respect to the
external magnetic field) and the inclination angle of prolate

irregularities with respect to the external magnetic field 0g .
2 2 2 2 2
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( ) 1/22 2 2
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P
.  In  isotropic  case ( 1)c =

we have: 1 2 1p p= = , 3 0p = ; at 0
0 0g = : 2

1 1/p c= ,

2 1p = , 3 0p = .

      We investigate the influence of electron density
fluctuations on the SPS of scattered radiation in turbulent
magnetized plasma 0( 0)H ¹ . At 0 1T k l= >>

P
 using the

saddle point method, we obtain:
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       Numerical calculations were carried out for 0.1 MHz and
40 MHz at 015a = . The solution of the dispersion equation
(5) yields the roots: 0.395m = ,  for  0.1  MHz  and

0.114m = , for 40 MHz.
       The curves in Figure 1 illustrate the dependence of
normalized correlation function of scattered electromagnetic
field versus non-dimensional parameter h  for 200T =  and
are normalized on their maximum value. Second maxima on
the solid and dotted lines correspond 52h =  and 16h = ,
respectively. Next maxima at 0.1 MHz appear at h = 32, 48,
64 (periodical oscillations). Increasing parameter h
normalized correlation functions rapidly attenuates.
        Figure 2 presents the dependence of the SPS of scattered
field versus nondimensional parameter k . Numerical
calculations show that for 0.1 MHz (left figure), at 0 0H = ,
the gap arises due to electron density fluctuations. First and
second maxima correspond 0.355k = and 0.1k = ,
respectively; gap appears at 0.194k = . In magnetized
turbulent plasma ( 0 0H ¹ )  two pronounces maxima arise at

0.38k = and 0.14k = ; and two gaps at 0.37k = and
0.42k = . For 40 MHz (right figure) at 0 0H = first

maximum arise at 0.11k = ,  and  next  two  maxima  at
0.033k =  and 0.189k = . First two gaps appear at
0.072k = and 0.163k = ; next two gaps at 0.007k =

and 0.228k = .

At 0 0H ¹  first and other two maxima arise at 0.06k =
and 0.02k = , 0.08k = ,  respectively.  First  gap  appears  at

0.03k = , second one at 0.795k = .

       It should be emphases that “double-hump” shape of the
SPS caused by electron density fluctuations in turbulent
plasma without external magnetic field are more pronounced
than in magnetized plasma at 0 0H ¹ . Numerical analyses
show that neglecting diffraction effects, i.e. neglecting the
term 2 2

0/ 2yk k  in the arguments of 2D spectrum (13)-(15) or

in set of equations (20), “double-humping” effect in the SPS
disappears.

Figure 1. Dependence of normalized correlation function
of scattered field ( , )EEW h m*  versus distance between

two observation points 0 ykh r=  at different values of

the parameter m . Dotted line corresponds 0.1 MHz, solid
line 40 MHz.

Figure 2. Dependence of SPS (10) versus k . Left figure
corresponds to 0.1 MHz at: 2500T = , 0.395m = ,

130c = , 0
0 15g = , 1x = , 0 2.8k = 1km- , 0 6B = .

Right figure corresponds 40 MHz at: 500T = ,
0.114m = , 150c = , 0

0 5g = , 1x = , 0 840k = 1km- ,

0 4B = . Dotted line denotes 0 0H = , solid line 0 0H ¹ .
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3 Conclusions
       Numerical calculations show that for anisotropic
Gaussian correlation function second-order statistical
moments are nonlinear functions of wave vectors. For
electron density fluctuations spatial power spectrum has a
pronounced gap along a direction of wave propagation and a
double-peaked shape. However, external magnetic field
fluctuations can lead to the generation of different nonlinear
effects. On the basis of the proposed theory some observable
nonlinear effects of the ionospheric plasma can be interpreted
and (or) predicted using different correlation functions of
fluctuating magnetized plasma parameters taking into
account satellite and remote sensing data.
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 The problems of distribution of resources can be 

reduced to problems of conditional or unconditional 

optimization [1-2]. Further, it is possible to apply methods of 

optimization to these problems. The methods of optimization 

are described, in particular, in works [3-11] (see the 

references below).  

Let's consider the following problem: 

( ) minF x 
 

nx E , 

s s sc x d 
,   

1,... ;s n
 

( ) 0;vq x 
      11,... ;v t

 

( ) 0;kr x 
      21,...,k t

 

Where the functions  

( )F x
, 

( )vq x
, 

( )kr x
 

are convex. 

When solving mathematical problems with an unexplored 

criterion function we face a problem of a choice of a concrete 

method of solution.  The method chosen at random can 

converge very slowly to a point of a minimum of criterion 

function or not give a result at all.  It is not always possible to 

receive characteristics of criterion function (convexity, gully, 

etc.).  Therefore, when choosing a method, it is difficult to 

apply the heuristic reasons based on such characteristics. 

Thus, a problem arises when trying to choose an effective 

method of solving a problem.  This process can be automated.  

The considered problem can be solved with a help of a 

computer system, which allows, depending on the information 

received during the search of the solution, to change not only 

methods of optimization, but also to replace values of 

parameters of a method on which the efficiency of methods 

also depends in many respects.  Thus, it is possible to apply 

multiple methods to solve the problem without stopping the 

process of solution.  The most effective algorithm is being 

chosen automatically at each stage of solving the problem. 

The following approach of solving optimizational problems 

lays in the basis of a system.  We shall designate 

1 2, ,..., nP P P
 

- methods of the optimization, included in the system.  

Various methods, based on characteristics, are included in the 

system, because the criterion function can have a complex 

structure.  

 

The problem-oriented list of methods 

1 2
, ,...,

sk k kP P P
 

is formed from a set of methods that are in the system, if any 

information is known about the criterion function (for 

example if it is known, that it is convex, gullied, square-law, 

etc.). The solution of a problem consists of steps.  The most 

effective method from the list is being revealed on each step, 

and then the solution of a problem with the help of this 

method.  The certain time intervals are allocated for revealing 

and solving the problem. The time, which was allocated for 

revealing the effective method, is used for promotion to a 

point of a minimum, because the current point is used during 

solving the problem. It allows to save time for solving the 

problem.  

At a stage of finding of an effective method to all methods 

from the list  
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1 2
, ,...,

sk k kP P P
 

it is enabled to solve a problem during the allocated time 

interval    t .  

After all methods had an opportunity to solve a problem 

during the allocated time, search of an effective method stops, 

gets out the most effective method of the list 

1 2
, ,...,

sk k kP P P
 

The size  t   depends on time, spent by a computer on one 

calculation of criterion function and amount of calculation of 

criterion function on one iteration, and is calculated as 

follows:  

t  
, 

Where 


- time spent for one calculation of criterion 

function,   

max
rk

r
 

, 

Where  rk   - amount of calculations of criterion function on 

one iteration by a method   rkP
 .  

Thus, at this stage comes out the most effective method.  

At the following stage the most effective method is used for 

solving the problem. The time allocated for solving a 

problem, is calculated as follows.  

0 t  
, 1  , 

1 0s s sq   
. 

The size   is taken a priori, and depends on complexity and 

dimension of criterion function.  The size  

1sq 
 

if the same one method appeared as the most effective on two 

consecutive steps.  If not, then we take  

0sq 
 

It means that the solution of a problem proceeds, if any 

method appeared effective on several consecutive steps. 

Efficiency   iE
   of a method   iP

   is calculated based on the 

formula: 

1( ) ( )

( )

k k

i k

F x F x
E

F x 





, 

Where  
1, kk xx
  - is an initial and final points, when using a 

method iP
;  

)( kxF
, 

)( 1kxF
 - values of criterion function in these 

points;  

   - is a small positive number.  Efficiency of a method is 

equal to zero, if the value of a criterion function for allocated 

time has not decreased.  

If for all methods   iP
   from the list of methods  

1 2
, ,...,

sk k kP P P
 

it happens that  
0iE 

, then it means, that the considered 

list of methods cannot effectively solve the given problem.  In 

this case the further search of an effective method by the 

given list of methods stops.  To avoid such situation, it is 

necessary to include various methods into the list, so the list 

could be oriented to solve different types of problems.  

If all the methods that are included in the system have finished 

their search of solution then we finish the work.  The system 

gives out the saved up information about how the search of a 

solution to the problem was happening (carried out methods, 

values of criterion function, time of search, etc.).  

Due to self-training, the system enables an automatic choice 

of an effective method of optimization from the available list  

1 2
, ,...,

sk k kP P P
 

for solving specific problems.  

Now let's consider the approach incorporated in the system to 

solve a problem of finding a global minimum of function 

( )F x
 

Let functions  
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( )F x ( )vq x
, 

( )kr x
 

not necessarily are convex.  

Usually, in practical problems there is no goal to find a global 

minimum with high accuracy.  With methods of global 

optimization it is possible to find a good initial approximate 

solution to problem, and then to use effective local methods. 

Generally it is difficult to find out, whether the last found 

local minimum is the global solution.  Except for some narrow 

classes of problems.  

The search of a global minimum can be stopped, if in the 

current point we got a value of criterion function, which 

satisfies the requirements of a real life practice, or if we have 

used up the time that was dedicated to solve the problem. 

The best received value of a function can be considered as a 

final solution of a problem.  

When solving practical problems of global optimization the 

important value has a choice of good initial solution.  In this 

case it is possible to find the minimum nearest to them.   

In rare cases it is possible to conduct an analytical research of 

a criterion function and to receiving the information about the 

value of a global minimum, or its location. 

But generally the considered problem is complex enough, 

though there is a big number of numerical methods and 

algorithms of global optimization. At the same time, there is 

no established classification, both methods of global 

optimization, and corresponding problems.  We shall note, 

that the majority of authors adhere to classification of 

methods depending on the used information about the 

criterion function.  

The process of search of a global minimum differs from the 

process of local optimization by that, that all methods of 

global optimization are not relaxational. Also, during the 

global optimization, each method should make a certain 

number of steps, only after that it is possible to make a 

decision on transition to another method. Thus the 

information received as a result of previous search, further is 

not always possible to use.  

However, despite of these difficulties, we can control the 

process of finding a global minimum.  

First, it is possible to change some parameters of this method, 

when we are looking for a global minimum.  

Second, it is possible to do a transition to processes of a local 

search, from some current points of the process of a global 

search. 

Third, it is possible to make the values of some variables 

fixed, during the search of a global minimum of the function 

that has the large number of variables, and to carry out global 

minimization on the rest of the variables. 

These moments allow us to control the process of a global 

search.  
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Classification of two-dimensional binary
cellular automata with respect to surjectivity

Henryk Fukś and Andrew Skelton
Department of Mathematics

Brock University
St. Catharines, ON, Canada

Abstract— While the surjectivity of the global map in
two-dimensional cellular automata (2D CA) is undecid-
able in general, in specific cases one can often decide
if the rule is surjective or not. We attempt to classify as
many 2D CA as possible by using a sequence of tests
based on the balance theorem, injectivity of the restric-
tion to finite configurations, as well as permutivity. We
introduce the notion of slice permutivity which is shown
to imply surjectivity in 2D CA. The tests are applied
to 2D binary CA with neighbourhoods consisting of up
to five sites, considering all possible contiguous shapes
of the neighbourhood. We find that if the size of the
neighbourhood is less than five, complete classification
of all rules is possible. Among 5-site rules, those with
von Neuman neighbourhoods as well as neighbourhoods
corresponding to T, V, and Z pentominos can also be
completely classified.

Keywords: cellular automata, surjective, permutive, classifi-
cation, neighbourhood

1. Introduction
In the theory of cellular automata (CA), the surjectiv-

ity of the global map is one of the most extensively
studied properties of CA. It is only natural to ask,
therefore, what are the examples of surjective CA?

In the case of one-dimensional CA, such examples
are easy to construct because there exists the well-
known Amoroso-Patt algorithm for determining if a
given elementary cellular automaton is surjective [1].
Using this algorithm it can be shown that among the 88
minimal elementary CA rules, the only surjective rules
have Wolfram code numbers 15, 30, 45, 51, 60, 90, 105,
106, 150, 154, 170 and 204.

In two dimensions, however, the situation is much dif-
ferent. It has been shown that the question of surjectivity
of two-dimensional cellular automata is undecidable [4],
which means that it is impossible to construct a single
algorithm which would always decide if an arbitrary rule
is surjective or not. This, of course, does not exclude a

possibility that for specific classes of 2D rules surjectiv-
ity can still be decidable – it is known, for example, that
rules which are permutive with respect to the corners of
the Moore neighbourhood are surjective [2].

In this paper, we attempt to classify 2D rules with
respect to surjectivity using two known properties equiv-
alent to surjectivity, namely the balance theorem and the
injectivity of restrictions to finite configurations. More-
over, we introduce the the concept of slice-permutivity
which is then shown to imply surjectivity. We show that
all 2D CA with neighbourhoods of size four (or less),
no matter what shape, can be classified. For five-site
CA, complete classification is still possible for certain
neighbourhood shapes, notably including von Neumann
neighbourhood.

2. Basic Definitions
Let A be a finite set of symbols, to be called a symbol

set. We define a two-dimensional configuration s to be
a function s : Z2 → A, and AZ2

to be the set of all
two-dimensional configurations. For any vector ~x ∈ Z2,
we denote s~x ∈ A to be a symbol located at position
(or site) ~x in configuration s. If V ⊂ Z

2, we define
sV = [s~x]~x∈V .

A neighbourhood N is a finite subset of vectors in
Z

2. A neighbourhood is said to be contiguous if, for
any vector ~x ∈ N , at least one vector in the set {~x ±
(1, 0), ~x ± (0, 1)} is also in N . For any vector ~x, the
neighbourhood of ~x is defined as N (~x) = {~u+ ~x : ~u ∈
N}.

We can now define the local mapping of a two-
dimensional cellular automata (2D CA) to be the func-
tion f : AN → A. The local mapping induces a global
mapping F : AZ2 → AZ2

so that F (s)~x = f(sN (~x)),
for all s ∈ AZ2

and all ~x ∈ Z2.
If Z ⊂ Z2 is a finite set of vectors, then we define a

block to be an element of AZ .
The neighbourhood of Z is defined similarly as be-

fore, so thatN (Z) = {~u+~x : ~u ∈ N , ~x ∈ Z}. The block
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evolution operator f : AN (Z) → AZ is now defined by
f(b)~x = f(bN (~x)) for any ~x ∈ Z and b ∈ AN (Z).

Given a block b ∈ AZ , the set of preimages of b under
f is the set of blocks b′ ∈ AN (Z) such that f(b′) = b.
This preimage set will be denoted f−1(b).

Sometimes, we will need to consider the neighbour-
hood of a neighbourhood. We will then use the notation
N 2(Z) = N (N (Z)), and higher powers will refer to
the appropriate number of neighbourhood compositions.

Let ~v ∈ N , and let us denote M = N \ ~v. Let b ∈
AM and let us denote [x, b] to be an element of AN
such that its entries with indices in M are the same as
corresponding entries in b, while the entry with index
~v is equal to x, x ∈ A. A 2D CA is permutive with
respect to ~v ∈ N if, for any choice of b, the function
x→ f([x, b]) is one-to-one.

2.1 One-dimensional Binary Rules
Before we attempt to classify two-dimensional CA

rules, let us discuss what happens in one dimension, as
this will give us some important insight. As mentioned
in the introduction, surjectivity in 1D is known to be
decidable, and the algorithm for testing for surjectivity
has been developed by Amoroso and Patt in early 70’s
[1]. We used this algorithm to find all surjective binary
rules of a given neighbourhood size, for neighbourhood
sizes ranging from 1 to 5. We also checked which
of these rules are permutive. The results are given in
Table 1. One can make two interesting observations from
this table. First of all, the proportion of rules which are
surjective decreases dramatically as the neighbourhood
size increases. The second observation can be stated as
the following proposition.

Proposition 2.1: Any contiguous one-dimensional bi-
nary cellular automata dependent on three or less sites
is surjective if and only if it is permutive.

This means that for a binary rule to be surjective yet
non-permutive a neighbourhood of at least four sites is
needed. A natural question to ask, therefore, is whether
this is also the case in two dimensions?

3. Permutivity and Surjectivity
As we will shortly see, permutivity alone is not

enough to guarantee surjectivity in two dimensions. In
[2], the authors considered 2D CA with Moore neigh-
bourhood of radius r, where N = {(i, j) : |i|, |j| ≤ r}.
They proved that any such rule is surjective if it is
permutive with respect to sites (±r,±r). We will prove a
similar result using an arbitrary neighbourhood and any

site that can be sliced off from the neighbourhood by a
straight line.

Given m, c ∈ Q, we define a line ` = {(x, y) : y =
mx+ c}, and the following two regions, `+ = {(x, y) :
y > mx + c} and `− = {(x, y) : y < mx + c}. For
vertical lines ` = {(x, y) : x = c} we similarly define
`+ = {(x, y) : x > c} and `− = {(x, y) : x < c}. A
site ~x ∈ N can be sliced if there exists a set ` such
that ~x ∈ ` and N \ ~x ⊂ `+ (or `−). A 2D CA is slice
permutive if it is permutive with respect to a site which
can be sliced.

The main result relating slice-permutivity and surjec-
tivity can be stated as follows.

Theorem 3.1: Any two-dimensional slice permutive
CA is surjective.

Before we start the proof, we will need the following
classical result. Let Zn be a square region in Z2, defined
as Zn = [0, 1, . . . , n−1]×[0, 1, . . . , n−1], where n ∈ N.

Theorem 3.2 (Balance Theorem): A 2D CA is surjec-
tive if and only if for all n ≥ 1 and all b, b′ ∈ AZn , we
have card f−1(b) = card f−1(b′).

A one-dimensional version of this theorem first ap-
peared in [3]. The proof of the two-dimensional version
can be found in [5], where the authors consider a Moore
neighbourhood of any radius. Since any neighbourhood
can be extended to a Moore neighbourhood by adding
extra sites, the Balance Theorem also holds for a CA
rule with any neighbourhood shape.

Proof: [of Theorem 3.1] Consider an arbitrary block
b ∈ AZn . Since our CA is slice permutive, there exists
a line ` which slices the neighbourhood at some site
~u ∈ N , so that all sites in N \ ~u are either in `− or in
`+. Without loss of generality, we assume that all sites
of N \~u are are in `−. The proof of the other case can be
obtained by replacing `± with `∓. Let ~n be the normal
vector to ` oriented so that it points in the direction of
`+. Consider {`1, `2, . . . , `k} to be the family of lines
with the same slope as ` with indices increasing in the
direction of ~n, so that for any ~x ∈ Zn there exists `i
such that ~x ∈ `i. We now construct the set of preimages
of b, each element of which is of the form [a~x]~x∈N (Zn).

In order to illustrate this better, we will conduct the
proof while simultaneously referring to an example of a
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Neighbourhood Size Total Rules Surjective Rules
Permutive Not Permutive Total

1 2 2 0 2
2 16 6 0 6
3 256 28 0 28
4 65536 518 64 582
5 4294967296 131502 11516 143018

Table 1: One-dimensional binary rules

rule defined on the seven-site neighbourhood

N = {(−3, 1), (−3, 0), (−2, 0), (−1, 0),
(0, 0), (0,−1), (1,−1)}.

In this example, we assume that the rule is permutive
with respect to the sliceable site (0, 0), for which the
corresponding line ` has slope −1/2. The neighbourhood
of Z3 is shown in Figure 3(a).

We start the construction from sites of Zn which
belong to the line l1. Due to slice permutivity, all sites of
the preimage which are below this line can take arbitrary
values, and sites which are on the line can be chosen in
such a way that b~x = f(aN (~x)) for all ~x ∈ `1∩Zn. This
means that sites of N (Zn) which belong to `−1 can take
arbitrary values, and sites of Zn which belong to `1 are
uniquely determined by those arbitrary values.

In Figure 3(b) arbitrary sites are denoted by stars, and
the uniquely determined site (only one in this case) is
denoted by D.

We then move to `2, and again, for every possible
configuration of sites from the set N (Zn)∩`−2 , values of
sites which lie in Zn∩`2 will be uniquely determined. It
may happen, as shown in Figure 3(b), that some sites of
N (Zn)∩`−2 have not been labeled before. These sites can
also assume arbitrary values, and thus they are marked
as red stars in Figure 3(c).

We repeat the above procedure until all sites ofN (Zn)
are labeled, as shown in Figures 3(d-h). In the end, as in
Figure 3(i), all sites which belong to Zn will be labeled
by D, while the sites of N (Zn) \ Zn will be labeled
by stars. This means that we have card(N (Zn) \ Zn)
sites in the preimage which can assume any values from
the symbol set A. Thus, for each block b ∈ Br, we
have card f−1(b) = (cardA)card(N (Zn)\Zn). Since this
is independent of b, by Theorem 3.2 we conclude that
the CA is surjective.

4. Classification procedure
The result of the previous section gives us a method

to determine surjectivity of a special class of rules,

namely slice-permutive rules. In classifying rules we will
also need some method for checking if a rule is not
surjective – although of course a general algorithm of
this type cannot exist. One such method involves the
Balance Theorem. One can simply check if all blocks
of a given size have the same number of preimages -
if one finds a single violation of the balance theorem,
the rule is obviously not surjective. Clearly, one can
perform such exhaustive check only for block of small
size, and if no balance violation is found, then the test
remains inconclusive. It turns out, however, that this
simple method is surprisingly effective for 2D rules with
small neighbourhood size.

Another test for non-surjectivity is based on the fol-
lowing classical result [6]. Here by a finite configuration
we mean a configuration where all but a finite number
of sites are in some arbitrary fixed state.

Theorem 4.1: A CA is surjective if and only if it is
injective when restricted to finite configurations.

If one can find two finite configurations which are
different but have the same image, then the rule is not
surjective. One can perform this test exhaustively for
small finite configurations. It turns out to be useful in
cases where the balance theorem test is inconclusive.

We may now present a procedure for classification
of 2D rules with a given neighbourhood shape. This
procedure is illustrated in Figure 2. While it has been
tailored for binary rules (that is, rules where cardA =
2), it can be easily adapted for larger alphabets.

Procedure 4.1: We start with a list of all rules on a
given neighbourhood and apply the following filters to
remove known surjective and non-surjective rules.

1) First we check the simplest balance condition,
that is, card f−1(0) = card f−1(1). Rules which
violate this condition are non-surjective.

2) We check if the rule truly depended on all given
sites. If not, it means it can be treated as if it had
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Fig. 1: Example: Iteration of the procedure in Theorem 3.1

smaller neighbourhood, thus we check how it was
classified before (we were classifying rules with
progressively increasing neighbourhood size).

3) We check if the rule is permutive with respect to
at least one sliceable site. If it is, it is surjective.

4) The following two tests are performed simultane-
ously owing to the fact that they required approx-
imately the same information.
• We check if all blocks from the set AN (Z1)

have the same number of preimages. If not,
the rule is non-surjective.

• We search for violations of injectivity on finite
configurations. Let M be the set of all sites
~x ∈ Z2 for which (0, 0) ∈ N (~x). For each
b ∈ AM we consider a finite configuration s
such that sM = b and the sites which do not
belong to M are in the state 0, as well as
configuration s′ obtained from s by replacing
s(0,0) by 1−s(0,0). If F (s) = F (s′), injectivity
is violated, thus the rule is not surjective.

5) We check if all blocks from the set AN 2(Z1) have
the same number of preimages. If not, the rule is
non-surjective.

5. Classification Results
We applied the aforementioned procedure to two-

dimensional rules with neighbourhoods of size 3, 4, and
5. It is not necessary to consider smaller neighbourhoods,
as those are effectively one-dimensional, thus results of
sec. 2.1 apply. In all cases we considered only truly
two-dimensional contiguous neighbourhoods, meaning
that linear neighbourhoods were excluded – again, these
are included in results of sec. 2.1. Contiguous neigh-
bourhoods have shapes known as polyominoes, that is,
plane geometric figures formed by joining several equal
squares edge to edge. Since rigid transformations of Z2

preserve surjectivity, we considered only shapes which
are representatives of equivalence classes with respect to
the group of isometries of Z2.
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For each rule with
neighbourhood N

Local function balanced? Non-surjective

Truly dependent
on neighbourhood? Check previous results
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AN 2(Z1) → AN (Z1)
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AN3(Z1) → AN2(Z1)

balance violated?
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Non-surjective
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no
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no

no

yes

no
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Fig. 2: Surjectivity test flowchart.

5.1 Three-site neighbourhoods

There is only one contiguous three-site neighbour-
hoods which is truly two-dimensional: the L-shaped
neighbourhood (Figure 3a), with 256 corresponding bi-
nary rules. Applying the procedure of Figure 2, we found
that all these rules can be classified, and that among them
38 rules are surjective, all of which are slice permutive.
The remaining rules are non-surjective.

Proposition 5.1: Any contiguous three-site binary CA
is surjective if and only if it is slice permutive.

5.2 Four-site neighbourhoods
There are four contiguous two-dimensional four-site

neighbourhoods, often referred to as tetrominos and
named after their resemblance to the letters L, O, S and T
(Figure 3b). There are 65536 total binary rules dependent
on each of these neighbourhoods.

In the case of the L and T neighbourhoods, there
are 724 slice permutive (and thus surjective) rules. In
the case of the O and S neighbourhoods, there are
942 slice permutive and surjective rules. This difference
seems to be due to the number of sliceable sites in
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Fig. 3: Contiguous Neighbourhoods

each neighbourhood (3 and 4 respectively). In each case,
following Procedure 4.1 we determined that these are the
only surjective rules, thus we again obtain a complete
classification of all rules truly dependent on all four sites.
This can be summarized as follows.

Proposition 5.2: Any contiguous four-site two-
dimensional binary cellular automaton is surjective if
and only if it is slice permutive.

5.3 Five-site neighbourhoods

There are eleven contiguous two-dimensional five-site
neighbourhoods, often referred to as pentominos and
named after their resemblance to the letters F, L, P, S,
T, U, V, W, Z, Y and Z. There are 4294967296 binary
rules associated with each neighbourhood. The results of
application of Procedure 4.1 are shown in Table 2. We
can observe that the classification is complete in the case
of four neighbourhood shapes, T, V, X, and Z.

Proposition 5.3: Any contiguous five-site two-
dimensional binary cellular automaton with the
neighbourhood shaped as T, V, X, or Z pentomino is
surjective if and only if it is slice permutive.

Note that this includes the traditional von Neumann
neighbourhood (shape X). Also note that for neighbour-
hood shapes for which complete classification was not
possible, the vast majority of rules were nevertheless
classified. In all cases the fraction of rules which were
classified exceeded 99.998%.

6. Conclusions

We were able to obtain complete classification with
respect to surjectivity of all 2D rules with contiguous
neighbourhoods of size up to 4. In these neighbour-
hoods, all surjective rules are slice permutive. Among
5-site rules, those with von Neuman neighbourhoods as
well as neighbourhoods corresponding to T, V, and Z
pentominos can also be completely classified, and again,
surjectivity and slice permutivity are equivalent for them.
For the remaining pentomino shapes, only a very small
fraction of rules defies classification. The worst case
is the S pentomino, for which .0016% rules cannot be
classified with our algorithm.

A number of open questions remain. First of all,
can the remaining 5-site rules be classified? We suspect
that at least some of them could be, if one performed
balance and/or injectivity tests on larger blocks, although
such tests would be computationally very expensive. A
related question is whether there exist any truly two-
dimensional five-site binary rule which is surjective
yet not slice permutive? Since in one dimension such
rules are possible even in four-site neighbourhoods, we
suspect that the answer is affirmative, although currently
we cannot offer any evidence of this claim.
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Table 2: Two-dimensional truly five-site binary rules

Neighbourhood Surjective Unknown Neighbourhood Surjective Unknown
F 257106 16 V 193138 0
L 193138 1472 W 257106 3596
P 257106 3596 X 257106 0
S 192938 67764 Y 193138 1472
T 193138 0 Z 257106 0
U 192938 64264

References
[1] S. Amoroso and Y. N. Patt. Decision procedures for surjectivity

and injectivity of parallel maps for tesselation structures. Journal
of Computer and System Sciences, 6:448–464, 1972.

[2] A. Dennunzio and E. Formenti. Decidable properties of 2d cellular
automata. Lecture Notes in Computer Science, 5257:264–275,
2008.

[3] G. Hedlund. Endomorphisms and automorphisms of shift dynam-
ical systems. Mathematical Systems Theory, 3:320–375, 1969.

[4] J. Kari. Reversibility and surjectivity problems of cellular au-
tomata. Journal of Computer System Science, 48:149–182, 1994.

[5] A. Maruoka and M. Kimura. Condition for injectivity of global
maps for tessellation automata. Information and Control, 32:158–
162, 1976.

[6] D. Richardson. Tessellation with local transformation. Journal of
Computer System Science, 6:373–388, 1972.

Int'l Conf. Scientific Computing |  CSC'12  | 57



1

A cellular automaton model to investigate emergent behavior of
heterogeneous cell populations

Carsten Mente∗,†, Andreas Deutsch ∗,‡

Abstract— Biological cells are never exactly identical, even
cells of the same cell type usually display stochastic differ-
ences in their properties. Understanding the role of stochastic
differences between individual cells in shaping the behavior
of the entire cell population is crucial for understanding
many biological phenomena. We are interested especially in
populations of interacting cells with stochastic differences in
the interaction properties of individual cells.

We introduce a novel extension of classical lattice-gas
automata (LGCA) models called individual-based lattice-gas
cellular automata (IB-LGCA) that enables the modeling of het-
erogeneous cell populations while preserving the advantages
of classical LGCA models.

We show with a specific IB-LGCA model that the introduc-
tion of stochastic differences in the interaction properties of
cells leads to significantly different qualitative behavior: while
simulations with identical cells show behavior reminiscent of
a phase transition, this behavior is lost with the introduction
of stochastic differences in the interaction properties of cells.
Keywords: Lattice-gas cellular automaton, individual-based
model, computational biology

Submitted to: 4th Automata, Theory and Applications Work-
shop (*A-PDPTA’12)

1. Introduction
Populations of biological cells of the same cell type still

display stochastic differences in the properties of individual
cells [1]. Mathematical models aimed at describing the be-
havior of cell populations often disregard these individual
cell differences and assign identical properties to all cells of
one cell type. However, understanding the role of stochastic
differences between individual cells in shaping the behavior
of the entire cell population is crucial for understanding many
biological phenomena [2].

In this manuscript, we are interested especially in popu-
lations of interacting cells with stochastic differences in the
interaction properties of individual cells. Possible interactions
in a population of interacting cells can be divided into two
mutually exclusive categories: internal interactions, i.e. inter-
actions between cells belonging to the cell population, and
external interactions, i.e. interactions between cells of the
population and components of the environment. The interplay
between internal and external interactions gives rise to macro-
scopic, observable behavior of the cell population. Typical
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Dresden, Nöthnitzer Straße 46, 01062 Dresden, Germany
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in many cell populations are cell-cell adhesion, an internal
interaction, and cell migration along an external gradient
(taxis), an external interaction [3].

Lattice-gas cellular automaton (LGCA) models are appro-
priate models to investigate the emergent behavior of popu-
lations of interacting cells [4],[5]. However, classical LGCA
models assume a population of identical cells and model
different types of cells by combining different LGCA models,
one for each cell type. For more than a few different cell
types this approach leads to very cumbersome interaction
probabilities. LGCA models are therefore not well suited to
model populations of interacting cells with individual cell
properties. To address this issue, we introduce individual-
based lattice-gas cellular automata (IB-LGCA) which extend
classical LGCA by incorporating individual cell properties.
IB-LGCA allow to model heterogeneous cell populations but
preserve all the advantages of classical LGCA.

Here, we investigate the behavior of a population of cells
subject to an external gradient and moving in response to it
(taxis). We want to understand which role differences in cell
properties play with regard to the behavior of the entire cell
population. In the next section, we give a definition of IB-
LGCA models and introduce the specific LGCA model we
use here. In the third section of the manuscript, we compare
simulation results for systems with identical cells and systems
with various degrees of individual cell differences.

2. Individual-based lattice-gas cellular au-
tomata
a) General definition: In an individual-based lattice-gas
cellular automaton (IB-LGCA), space, time, and states are
discrete, while the temporal dynamics are formulated as a
local transition rule. In contrast to classical lattice-gas cellular
automata (LGCA) we extend the definition by introducing a set
P which contains additional properties. Before we can give the
definition of an individual-based lattice-gas cellular automaton
we need to define the terms regular lattice, neighborhood,
configurations and transition rule. Here, we define a regular
lattice as a countable subset of Rd constructed as the linear
combination with at most countable many coefficients of
vectors ci ∈ Rd, i = 0, . . . , b− 1 where b ∈ N>0 .

Definition 1: A regular lattice of dimension d ∈ N is a set
L with
• L =

{
r|r =

∑b−1
i=0 aici with ai ∈ X

}
⊂ Rd with X =

Z or X = [0, a] ⊂ Z, and a fixed b ∈ N>0.
The elements r of L are called lattice nodes. The vectors ci ∈
Rd, i = 0, . . . , b− 1 are called channels. More specific, ci ∈
Rd is called a velocity channel if ci 6= 0d and a rest channel
otherwise.
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We also have to define what it means for two lattice nodes to
be neighbors:

Definition 2: A finite neighborhood Nr around r ∈ L is a
set with
• Nr =

{
r + e|e =

∑b−1
i=0 aici with ai∈Yi and∑b−1

i=0 ai ≤ R
}
⊂ L with Yi ⊂ Z, i = 0, . . . , b− 1 and

a fixed value R ∈ Z,
• r′ ∈ L is a neighbor of r ∈ L with regard to the

neighborhood Nr if r′ ∈ Nr.
We specify cells by configurations at every lattice node:

Definition 3: A mapping η : L → Eb with η(r) =
(η0(r), . . . , ηb−1(r)) and E = {0, 1}, is called a configuration.
For a fixed r ∈ L and i = 0, . . . , b − 1 we call a channel ci
occupied at r ∈ L if ηi(r) = 1 and empty if ηi(r) = 0. Cells
are identified with occupied channels.
The crucial difference between classical LGCAs and IB-
LGCAs is the introduction of individual cell properties:

Definition 4: A mapping p : L → Pb with p(r) =
(p0(r), . . . , pb−1(r)) is called a configuration of properties at
r ∈ L. There is no restriction on P , it is sufficient that it is a
set.
The last item we have to define is the transition rule.

Definition 5: A local transition rule R consists of two
parts: an interaction rule I and a migration rule M
• interaction I: stochastically assigns a new configuration
ηI(r) ∈ Eb and a new configuration of properties pI(r) ∈
Pb to node r ∈ L given by the transition probabil-
ities P ((ηNr , pNr )→ ηI(r)) and P ((ηNr , pNr , η

I) →
pI(r)), with ηNr := {η(r′)|r′ ∈ Nr} and pNr =
{p(r′)|r′ ∈ Nr}.

• migration M: redistributes cells and properties in the
neighborhood Nr according to ηM(r) = (ηI0 (r −
c0), . . . , η

I
b−1(r − cb−1)) and pM(r) = (pI0 (r −

c0), . . . , p
I
b−1(r − cb−1)).

While the form of P ((ηNr
, pNr

)→ ηI(r)) is problem spe-
cific, P ((ηNr

, pNr
, ηI)→ pI(r)) is characterized by:

P ((ηNr , pNr , η
I)→ pI(r)) ∼

 1 : if pIi (r) = pπ(i)(r)
∀i ∈ 0, . . . , b− 1

0 : else

where π ∈ {set of all permutations on {0, . . . , b −
1} that leave ηI(r) invariant}. This means we only
consider permutations π that do not switch occupied and
empty channels. So, properties p are redistributed among
cells of the new configuration ηI with equal probability for
any permutation π on the cells. Obviously, ηI(r) has to be
determined from P ((ηNr

, pNr
)→ ηI(r)) before pI(r) can

be determined from P ((ηNr
, pNr

, ηI(r))→ pI(r)). Applica-
tion of interaction and migration specifies new configurations
ηM◦I(r) and properties pM◦I(r) for every r ∈ L.
We can now give the definition of an individual-based lattice-
gas cellular automaton

Definition 6: A individual-based lattice-gas cellular au-
tomaton (IB-LGCA) is a tuple (L,E ,P ,R) with:
• a lattice L of dimension d and channels ci, i = 0, . . . , b−

1 and b ∈ N>0,
• a set of states E ∈ {0, 1} and a set of properties P ,

• a transition rule R.
The transition rule R is applied to every lattice node r
synchronously. The repeated application of the transition rule
R describes the time evolution of the lattice-gas cellular
automaton. Thus, the time evolution of a LGCA consists of a
number of discrete points starting at k = 0 and advancing in
time from k to k + 1, k ∈ N.

b) Specific application: Here, we consider a simple model
system of cells moving on a surface under an external stimulus.
The cells are subject to two competing mechanisms: “adhe-
sion” which keeps cells together and “taxis” which causes the
cells to move along a fixed external gradient. The influence of
these mechanisms depends on the properties of each individual
cell, specified in the model as two parameters: adhesivity and
taxis-sensitivity.

We choose the set of properties P := R×R. For every cell
i, i = 0, . . . , b− 1, i.e. for every occupied channel of η(r) the
adhesivity αi ∈ R and taxis-sensitivity βi ∈ R are given by
p(r)i = (αi, βi). The interaction probability for adhesion is
defined by:

Pad((ηNr
, pNr

)→ ηI(r)) ∼ exp

(
b−1∑
i=0

αiη
I
i 〈ci, gad(r)〉

)
,

where gad(r) =
∑
rj∈Nr

∑b−1
j=0 ηj(r

′
i)(r
′
i − ri) is the local

gradient field, which points in the direction of the highest
number of cells in the neighborhood Nr of r. This interaction
probability specifies that cells are more likely to move in the
direction of higher neighboring cell numbers than in other
directions. For the taxis the interaction probability is:

Pta((ηNr
, pNr

)→ ηI(r)) ∼ exp

(
b−1∑
i=0

βiη
I
i 〈ci, gta〉

)
,

where gta = (1, 0)T is an external gradient. This interaction
probability specifies that cells are more likely to move in the
direction of the gradient. The full interaction probability P is
the combination of Pad and Pta:

P ((ηNr
, pNr

)→ ηI(r)) =
1

Z
exp

(
b−1∑
i=0

ηIi (αi〈ci, gad(r)〉

+βi〈ci, gta〉)

)
δ(ρ(r), ρI(r)),

with the normalization factor:

Z :=
∑
ηI

exp

(
b−1∑
i=0

ηIi (αi〈ci, gad(r)〉+ βi〈ci, gta〉)

)
δ(ρ(r), ρI(r)).

ρ(r) :=
∑b−1
i=0 ηi(r) and ρI(r) :=

∑b−1
i=0 η

I
i (r) are the

number of cells (=occupied channels) at r before and after
interaction, respectively. δ(· , · ) is the Kronecker delta. The
term δ(ρ(r), ρI(r)) prevents the loss or gain of cells during
interaction.

For the actual simulations we utilize an IB-LGCA model
on a two-dimensional square lattice of size 101 × 101 with
4 velocity and 4 rest channels, i.e. b = 8. The velocity
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channels are c0 = (1, 0)T , c1 = (0, 1)T , c2 = (−1, 0)T
and c3 = (0,−1)T . The neighborhoods are chosen as
Nr =

{
r + e : e ∈

{
(1, 0)T , (2, 0)T , (1, 1)T , (0, 1)T , (0, 2)T ,

(−1, 1)T , (−1, 0)T , (−2, 0)T , (−1,−1)T , (0,−1)T , (0,−2)T ,(
1,−1)T

}}
. We start at time k = 0 at the center

r0 = (50, 50)T of the lattice with a circular area of
radius 10 completely filled with cells, i.e. all channels
occupied. The rest of the lattice is empty. We have chosen
periodic boundary conditions. The parameters α, β are chosen
randomly for every cell on the lattice with a Gaussian
distribution with means 〈α〉, 〈β〉 and variances σ2

α, σ2
β .

We compare simulations by measuring the center of mass
rctr = (rctr,x, rctr,y)

T of all cells given by:

rctr =
1

N

∑
r∈L

(r − r0)
b−1∑
i=0

ηi(r),

where N =
∑
r∈L

∑b−1
i=0 ηi(r) is the number of all cells on

the lattice. Since gta = (1, 0)T and therefore rctr,y ≈ 0 only
rctr,x is of interest here. In the following, we focus on the
influence of heterogeneous adhesivities and will therefore fix
the taxis-sensitivities by setting σ2

β = 0.

3. Results & discussion
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Fig. 1
DEVELOPMENT OF rctr,x AFTER 1000 TIME STEPS FOR

〈β〉 ∈ {1.0, 1.25, 1.5, 1.75, 2.0} AND σ2
α = 0.0

Figure 1 illustrates the dependence of rctr,x on the adhesivity
〈α〉 for different taxis-sensitivities 〈β〉 for identical cells
(σ2
α = 0 and σ2

β = 0). It can be observed that increasing
the adhesivity 〈α〉 leads to a decrease in rctr,x. Furthermore,
the value of rctr,x decreases abruptly around a critical value
αcrit (〈β〉) (e.g. αcrit (2.0) ≈ 0.2). This behavior holds for
all 〈β〉 shown in Figure 1, lower values of 〈β〉 only shift
the critical value 〈αcrit〉 to the left. The curves depicted
in Figure 1 allow a clear separation into a fast migration
phase for 〈α〉 < αcrit (〈β〉) and a slow migration phase for
〈α〉 > αcrit (〈β〉). The shift between both phases appears
similar to a phase transition.

Figure 2 illustrates the dependence of rctr,x on the ad-
hesivity α for different σ2

α for a fixed taxis-sensitivity of
〈β〉 = 1.0. It can be seen that with increased σ2

α the abrupt
decrease of rctr,x around αcrit vanishes. Figure 2 shows that
the introduction of individual cell differences can change the
qualitative behavior. The simulations shown in Figure 2 differ
only in the standard deviation σ2

α. Since the quantity rctr,x is
already the average over all cell positions one might expect no
qualitative difference between simulations with the same 〈α〉.
Figure 2, however, demonstrates that this is not the case. The
clear separation between two distinct phases appears to arise
from the presence of identical cells and is lost with increasing
σ2
α.

Biological systems usually show stochastic differences in
cell properties, even for cells of the same cell type. From
Figure 2, it can be concluded that mathematical models which
disregard stochastic differences in cell properties and consider
only average values might not capture the actual behavior of
biological systems.

We have introduced an extended LGCA modeling ap-
proach called individual-based lattice-gas cellular automata
(IB-LGCA) that enables us to consider systems with individual
cells in LGCAs and to study the influence of heterogeneities
in interacting cell populations

In this manuscript, we have investigated a rather simple
combined adhesion/taxis model system of cell migration in
two dimensions and focused on the role of adhesive hetero-
geneities. Our results demonstrate that models of biological
systems that disregard stochastic differences in cell properties
in favor of average values might not capture the actual system
behavior. Investigating of LGCA models in higher dimensions
and with different cell interactions might lead to further insight
into the role of heterogeneity on the behavior on interacting
cells.

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4
<α>

0

5

10

15

20

25

30

35

40

45

50

r ct
r,

x

σα
2
 = 0.0

σα
2
 = 0.05

σα
2
 = 0.10

σα
2
 = 0.15

σα
2
 = 0.20 

Fig. 2
DEVELOPMENT OF rctr,x AFTER 1000 TIME STEPS FOR

σ2
α ∈ {0.0, 0.05, 0.1, 0.15} AND 〈β〉 = 1.0

60 Int'l Conf. Scientific Computing |  CSC'12  |



c) Acknowledgements: We are grateful to Anja Voss-
Boehme for fruitful discussions. We acknowledge support by
the German Ministry for Education and Research (BMBF)
through grant no. 0315734 and by the Human Frontier Science
Program (HFSP) through grant no. RGP0016-2010. Andreas
Deutsch is a member of the DFG Research Center for Regen-
erative Therapies Dresden Cluster of Excellence and gratefully
acknowledges support by the Center.

References
[1] Mads Kaern, Timothy C. Elston, William J. Blake, James J. Collins,

“Stochasticity in gene expression: from theories to phenotypes”, Nature
Review Genetics 6:451-464, 2005,

[2] David G. Spiller, Christopher D. Wood, David A. Rand, Michael R. H.
White, “Measurement of single-cell dynamics”, Nature 465: 736–745,
2010,

[3] Peter Friedl, “Prespecification and plasticity: shifting mechanisms of cell
migration”, Current Opinion in Cell Biology 16:14–23, 2004,

[4] Bastian Chopard, Rafik Ouared, Andreas Deutsch, Haralambos
Hatzikirou, Dieter Wolf-Gladrow, “Lattice-gas cellular automaton models
for biology: from fluids to cells”, Acta Biotheoretica 58(4):329-340, 2010,

[5] Andreas Deutsch, Sabine Dormann, “Cellular automaton modeling of
biological pattern formation”, Birkhauser, Boston, 2005

Int'l Conf. Scientific Computing |  CSC'12  | 61



Elastic Dimer Automata:
Discrete, Tunable Models for Complex Systems
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Abstract— Cellular automata, dimer automata, and other
similar models are useful tools for understanding complex
phenomena using simple rules and discrete states. They have
simple implementations that run efficiently without problems
such as numerical stability and round off errors that are
common with continuous models like PDE’s. However, these
discrete models, in general, lack a mechanism to tune the
desired level of detail or accuracy, an important feature of
PDE’s. We propose elastic dimer automata as a general
way to reconcile the simplicity of discrete models with
the tunable nature of continuous models. Furthermore, we
present a simple method for measuring self-organization in
elastic dimer automata which we use to aid in an exhaustive
search for interesting rules. This search revealed simple
rules for several interesting phenomena including multiple
different types of wave phenomena as well as a mechanism
for labyrinthine patterns and dislocation repairing.

Keywords: self-organization, continuous behavior, dimer au-
tomata, asynchronous cellular automata, graph

1. Introduction
The discrete nature of cellular automata [1], [2], boolean

networks [3], and other models is both a blessing and a
curse. Discreteness allows for a simpler implementation on a
digital computer compared to their continuous counterparts,
such as PDE’s. The rules describing the dynamics of discrete
systems are often easy to understand and implement, and
there is no cause to worry about round off error or numerical
stability. In many cases, the state of the system can be
represented with 8-bit integers, using less memory and CPU
resources compared to the floating point representations
needed by continuous models. Unfortunately, cellular au-
tomata and other models typically lack an important feature
common to numerical solutions to PDE’s: a tunable level
of detail. Adjusting the space and time step in PDE’s allows
one to maximize accuracy within the constraints of available
memory and CPU resources. This is not the case when we
consider classical cellular automata; there is not usually an
obvious way to add states to the rule in a way that “sharpens
the picture.” Normally, we can increase the length or size of
the simulation, but this does not necessarily equate to a more
accurate result.

So, is there a way to reconcile the stable nature of discrete
models with the tunable nature of continuous ones? There

are many ad-hoc examples of this where cellular automata
rules are accompanied by a parameter to determine the
number of states used. This effectively tunes the model to
exhibit smoother, more continuous behavior. For example,
the Greenberg-Hastings [4] and cyclic cellular automata [5],
[6] models for excitable media allow an arbitrary number
of integer states, which affects the size of the spirals
in the simulation. Other approaches have focused directly
on cellular automata as a direct discretization of various
PDE’s. For example, a coarse discretization of the Belousov-
Zhabotinsky reaction was very effective in reproducing the
important qualitative aspects of that phenomena, including
wave curvature and dissipation [7]. Weimar developed a
technique for a quantitatively accurate cellular automaton
discretization of reaction diffusion systems [8]. A similar
technique based on operator splitting is used by Narbel for
cellular automaton discretization of the Fitzhugh-Nagumo
equation [9]. Roughly speaking, these techniques carefully
transform the continuous phase space of various PDEs into
a discrete map to be used as the cellular automaton rule.

These techniques map well known continuous models
into cellular automata, but is it possible to accomplish the
reverse? Can we start with an arbitrary, coarse-grained, dis-
crete rule and develop it into a continuous model? This has
been accomplished for elementary cellular automata using
the “inverse ultradiscretization technique” [10]. However,
this technique essentially maps the cellular automaton rule
into a set of continuous functions that exactly reproduce the
discrete behavior of the rule. A more useful and intuitive
approach would be to increase the automaton’s state space
one state at a time so that in the infinite limit of states the
rule behaves continuously, but is still modeled by discrete
state transitions.

In previous work we used this approach to create rules for
grain growth and spiral waves [11], [12]. We showed that
the original 3-state rules could be grown in a straightforward
manner preserving the topological properties of these rules.
These generalized rules were engineered by studying the
behavior of the original rules; we intuited a way to modify
the rules to produce their appropriate behaviors. However, a
general technique to produce continuous behavior from any
seed rule would be very useful. For example, this would en-
able searching within a finite space of continuous behaviors
with the potential to discover simple new explanations for
complex phenomena, which is one of the main contributions
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of this paper. We propose a generic tunable discrete model
for complex systems called elastic dimer automata that we
use to search for simple rules exhibiting self-organization.

Elastic dimer automata allow stretching (i.e. increasing of
the state space) to produce smooth, continuous behavior in
a generic manner, overcoming the issues discussed above.
We also develop a simple statistical method to measure self-
organization in dimer automaton configurations having many
states. Together, elastic dimer automata and this measure-
ment let us perform an exhaustive search of the resulting
behavior space, yielding several simple interesting rules. The
rules discovered included several variants of excitable media
phenomena with various wave behaviors and labyrinthine
patterns that repair dislocations over time.

1.1 Dimer Automata
For this paper we only consider dimer automata, a fully

discrete, asynchronously updating model for complex sys-
tems [13]. Space is represented as a graph G = (V,E).
Each vertex in the graph has a single state from a discrete
state space Σ. Dimer automata are iterated by choosing a
random edge in the graph and updating both endpoints of
that edge1 according to a simple rule R. Assuming G is
undirected lets us assume the effect of R is symmetric. In
other words, if (a, b) → (c, d) then (b, a) → (d, c), which
gives R a slightly simpler form (i.e. R : Σ2 7→ Σ instead of
R : Σ2 7→ Σ2), thus

(x, y)→ (R(x, y), R(y, x)).

This simplification allows R to be considered a finite state
machine whose input alphabet and state space are both Σ.
In this paper we often refer to the rule’s topology, which
is the directed graph defined by the state transitions of the
finite state machine.

Dimer automata have several nice properties to justify
their use here over traditional models such as cellular
automata. Representing space as a general graph is much
less restrictive than the uniform lattice often assumed (out
convenience) for cellular automata. Since, by definition,
all edges in a graph have exactly two endpoints, and the
rule operates on these endpoints, any rule can be applied
to any spatial structure without modification. This is only
easily accomplished in cellular automata by assuming the
rule is totalistic, or in boolean networks by assuming each
vertex has the same degree. Also, the rule is a function of
two states, the fewest number of states needed to model
interactions, and one less state than elementary cellular
automata [1]. Despite the challenges resulting from operating
asynchronously over general graphs, in previous work we
showed that dimer automata have efficient parallelizations
assuming a low-dimensional graph [14].

1This occurs by replacing the states of the endpoints of an edge with
new states, simultaneously. So, (a, b) → (c, d) is to be read as “states a
and b are replaced with states c and d.”

1.2 Self-Organization
Since the goal is to search for dimer automata exhibiting

self-organization, it is important to have a way to quantify
self-organization for a number of reasons. Presumably, in
the search we will be considering a large number (thousands
or more) of dimer automata. The least sophisticated search
is one in which a human views each output, and manually
classifies them. This was the approach initially taken and
still endorsed by Wolfram in his search of elementary cel-
lular automata [1]. However, this approach quickly becomes
impractical when one must consider many outputs. So, at the
very least, a measurement of self-organization can be used
to organize the output to make this task easier. For example,
outputs can be sorted according to this value so that the best
results are presented first, or a threshold can be set so that
only the images exceeding this value are presented. More
sophisticated techniques can build on this by replacing the
role of the human with a computer algorithm.

Over the years, there have been many approaches towards
understanding and measuring self-organization [15], [16],
[17], [18], [19], [20]. This is partially due to the term “self-
organization” itself being overly ambiguous, and partially
due to the many different disciplines interested in the
phenomena (e.g., physics, mathematics, computer science)
[18]. It is generally accepted that a self-organizing system
transforms an initially unstructured configuration in to one
with more structure over time. There is no clear consensus
on what good definitions of structure are, and how its
increase over time should appear. However, there is general
consensus that the thermodynamic concept of entropy is a
very poor choice for measuring self-organization because
self-organizing systems have elements of both order and
disorder [17]. Neither a purely homogenous configuration
(with zero entropy) nor a purely random configuration (with
maximal entropy) are very interesting. Thus, an appropriate
measurement will have large values for structured configu-
rations and small values for fully ordered as well as fully
disordered configurations.

Our measurement of self-organization makes several as-
sumptions for simplicity and utility. Almost all measure-
ments consider the rate of change of the complexity of the
system over time, however, we only consider the final config-
uration of the dimer automaton. We let the dimer automaton
be initialized with a fully random state (which contains zero
structure), so we can assume any resulting structure is a
sign of self-organization. Measuring the self-organization
of dimer automata should also take into account the local,
spatial distribution of states. The amount of information that
one part of a configuration tell us about another part should
depend on how far away those parts are, motivating our
information theoretical approach.

Let DR and DG be random variables representing the
distance between two vertices’ states and spatial locations
respectively. If i and j are vertices chosen uniformly at
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random from the graph G, then

DR = dR(xt
i, x

t
j),

DG = dG(i, j).
(1)

The functions dR and dG refer to the finite state machine
and graph shortest path distances2, respectively. We propose
measuring local structure by their mutual information,

LI = I(DR; DG). (2)

This measurement of local structure agrees well with our
intuition about structure in the uniform and uniformly ran-
dom cases. In either of these two cases, DR and DG are
statistically independent, so the mutual information is 0.
This measurement is similar to the concept of long range
mutual information [16], and is a simplified and adapted
version of Shalizi’s “light cone” approach [20]. Also, we
note that our measurement is very general, as it applies to
any configuration represented by a graph where vertices take
discrete states. This means it can potentially be used for
other complex systems models as long as dR is appropriately
defined.

A visualization of this distribution is shown in Figure 1
where each pixel (i, j) in the image is proportional to
Pr[DR = i, DG = j]. This compares the joint probability
distributions before and after the creation of spiral waves
from an excitable media model. The first joint probability
distribution shows no overall structure, which is intuitive
since the initial condition is totally random. However, the
second distribution has several interesting features. Most
notably, there is a dark triangle in the upper left corner,
implying that Pr[DR > DG] ≈ 0. Roughly speaking, this
means that in this case the topological distance is an upper
bound on the distance between any pair of states. Finally,
using Equation 2, the mutual information is 0.021 in the
initial configuration and 0.574 in the final configuration.

2. Methods: Elastic Dimer Automata
Our primary goal is to formally define a technique for

creating arbitrary generalizable rules; the technique we de-
velop here we refer to as elastic dimer automata. These are
rules that are created through a two step process where an
initial graph is stretched and its edges are labeled to produce
the finite state machine for a dimer automaton rule. In the
first step, an initial graph, G0 is stretched s times through
an edge rewriting process to produce a sequence of graphs
{G1, G2, ..., Gs−1, Gs}. Edges are rewritten according to

←→
ij → {

←→
ik ,
←→
kj },

−→
ij → {

−→
ik,
−→
kj},

(3)

2Since G is potentially very large, it is not wise to compute
dG(i, j) ∀(i, j) ∈ V 2. Instead, (i, j) pairs can be sampled by repeatedly
picking a random vertex, performing a breadth first search of fixed depth,
and picking a random vertex from each depth.
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Fig. 1: Joint probability distribution (top) before and after
simulation of excitable media (bottom).

and k is added to V . All edges are rewritten in parallel so that
the graphs grow uniformly, and in a manner that preserves
(qualitatively) the original shape. Thus, these operations
result in Gs being, qualitatively speaking, a stretched version
of the initial graph G0, an example of which is shown in
Figure 2.

Fig. 2: One iteration of the stretching operation for an
example graph.

We let Gs define the set of allowable transitions in the
finite state machine for each state. Let N [i] be the inclusive
neighborhood of vertex i defined by Gs. Thus N [i] is the
set of states that i may transition to (including remaining
as i). Deciding what causes this transition allows the edges
of the finite state machine to be labeled, creating the dimer
automaton rule R. Suppose that for each (i, j) ∈ Σ2 there
is a configuration energy defined by J(i, j). The rule R is
defined by picking a pair of states from the set of allowable
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transitions that minimizes the configuration energy, thus

(R(x, y), R(y, x)) = min
(i,j)∈N [x]×N [y]

J(i, j) (4)

However, this equation creates some ambiguity if there
is more than one pair of transitions tied for the minimum.
There are a number of potential ways to handle this tie. One
way is to simply disallow transitions when there is not a
unique minimum. Another option could be to swap i and j
(we will refer to this as zero-swapping). The logic is that
swapping i and j neither increases nor decreases that edge’s
configuration energy. Swapping injects enough energy into
the system to avoid totally frozen configurations, where no
transitions are occurring. Yet another approach is to pick the
(i, j) corresponding to the smallest unique energy state. This
is analogous to a ball placed on the top of a hypothetical
mountain. If both slopes of the mountain are equally steep,
the ball will roll down the ridge between the two slopes, even
though this route is less optimal. We use a combination of
this approach and swapping, where swapping is performed
if there is no better unique energy configuration.

We let J be a function of the distance between i and j
in Gs such that J(i, j) = F (min[dR(i, j), dR(j, i)]). Note
that J is symmetric, which is important since we are still
assuming space is undirected. For simplicity we let F (d) =
d so that the configuration energy of (i, j) increases as i and
j move farther apart in Gs. Under the above assumptions,
the rule R for an elastic dimer automaton is fully defined
by G0 and s.

3. Results: Searching for Self-
Organizing Elastic Dimer Automata

The previous assumptions give us a good starting point
to search for interesting elastic dimer automata, with the
search space being transformed to the set of all directed
graphs. However, this space grows very quickly since there
are 2|V |

2
possible adjacency matrices for a directed graph

with |V | vertices. Fortunately, the search space can be further
reduced by assuming that each graph contains no self loops,
is strongly connected, and is isomorphically unique. It is
not useful to allow graphs with self loops because a self
loop would specify a state could transition to itself, which
is already allowed by Equation 4, since N [x] includes x.
A strongly connected graph is one in which there is a
path of finite length between every pair of vertices. In
other words, every vertex is recurrent, so no vertices are
absorbing/transient (out/in-degree are zero). Because tran-
sient states have no incoming edges, the dimer automaton’s
configuration may eventually contain no such states. On the
other hand, once part of the dimer automaton’s configuration
is absorbing, it can never change to another state. Finally, it
is useful to discard rules that are isomorphically equivalent
to others since they perform identical jobs.

First, we conducted an exhaustive search of the space of
elastic dimer automata where |V0| = 4, which has 89 unique
rules under the above assumptions3. For each of these rules,
we start with random initial conditions run a simulation long
enough for the system to exhibit its long term behavior4. In
each simulation, the spatial topology used was an isotropic
planar graph, roughly equivalent to a 600×600 square lattice.
From this set of 89 rules, we identified four interesting
and unique forms of self-organizing behavior: rules5 13,
18, 55, and 85. Figure 3 shows the information LI and
energy H of these four rules over time (with and without
swapping) and Figure 4 shows the topology of each rule and
its configuration after a long time. The configuration energy
is the average energy of each edge in the graph using the
above definition of J , thus

H =
1
|E|

∑
←→
ij ∈E

J(xi, xj). (5)

Rule 13 produces fast moving spiral waves and swapping
produces slightly larger waves in this case, but there is not
a significant change in the qualitative behavior or in the
information-energy curve. Rule 18 shows a rapid decrease in
energy relative to the more gradual trends seen in the other
rules. Furthermore, in both cases, there is a spontaneous
increase in the configuration energy eventually following the
initial sudden drop. This increase is then followed by yet
another drop, where the system eventually settles down. With
swapping, rule 18 produces a combination of quickly moving
wave fronts that leave a wake of slowly decaying uniform
regions. Without swapping, the behavior is characterized by
rounded homogeneous regions that spontaneously transition
to a different state. Rule 55 appears to be a frustrated version
of rule 13. The length scale of the waves are much larger,
and spirals are less fully developed than those seen in rule
13. Swapping allows the waves to propagate more quickly,
but does not appear to affect the qualitative behavior. Rule
85 is perhaps the most interesting, producing labyrinthine
patterns without zero-swapping (an example of this is shown
in Figure 5). Its configurations are characterized by dis-
locations, which gradually disappear over time, resulting
in a low energy, high information configuration. Swapping
allows the dislocations to be fixed more quickly, but causes
the information to decrease eventually, perhaps because of
the creation of large, nearly uniform regions. Once the
labyrinthine pattern is formed, removing dislocations drives
the system closer to a uniform state, decreasing its informa-
tion content.

3Without these assumptions, we would be considering 216 rules.
4Experimentally, we found that 300 · |V | edge updates were sufficient.
5The rule’s number refers to the order in which the algorithm generates

each graph.

Int'l Conf. Scientific Computing |  CSC'12  | 65



0.0 0.1 0.2 0.3 0.4 0.5
I

0

5

10

15

20

25

30

35

H
Behavior of EDA with swapping

13
18
55
85

0.0 0.1 0.2 0.3 0.4 0.5
I

0

5

10

15

20

25

30

35

H

Behavior of EDA without swapping

13
18
55
85

Fig. 3: Information-Energy time series of rules 13, 18, 55,
and 85 with (top) and without (bottom) swapping.

4. Discussion
Our intention in creating elastic dimer automata is to

couple the tunable level of detail of continuous models such
as PDEs with the simplicity, speed, and stability of discrete
models such as cellular automata. The results thus far are
promising, with elastic dimer automata producing a variety
of interesting phenomena with continuum-like behavior. The
stretching operations have the intended effect of tuning the
level of detail in the automaton. Stretching the initial graph
increases the characteristic length scale of the structures
produced by the elastic dimer automaton. An example of
this is shown in Figure 5 for rule 85 without swapping.
Stretching causes structures take up more space, and require
more time to develop. Finally, we note that random asyn-
chronous updating is a closer approximation of continuous
time than the synchronous method used by cellular automata
since state changes are discrete. Synchronous updating in
cellular automata moves the system forward in one large leap
because state is discrete, as opposed to synchronous updating
in PDE’s where state is continuous, and is updated by very

Fig. 4: Elastic dimer automaton 13, 18, 55, and 85 state
transition topology (left) and resulting configurations (right)
when swapping is allowed.

tiny increments. So we conclude that stretching elastic dimer
automata is analogous to simultaneously tuning their space
and time step, which provides the tunable level of detail we
have sought in their design.
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(a) |Σ| = 24 (b) |Σ| = 48

(c) |Σ| = 96 (d) |Σ| = 192

Fig. 5: Stretching increases the level of detail without
qualitatively affecting its behavior (rule 85 without swapping
is shown).

4.1 Rendering

Although the mutual information is useful in identifying
configurations with structure, it is still important to render
the configurations so they can be interpreted visually. The
naïve approach of using a grayscale value directly propor-
tional to each state will not work. The reason is that there
may be little to no correlation between a state’s value and
its context in the finite state machine. So, it is necessary
to develop an alternative way of rendering configurations.
Recall that elastic dimer automata are constructed from an
initial seed graph G0, and that the indices of this original
graph map directly to their corresponding indices in the
final stretched graph Gs. Therefore, we let the color c(i)
corresponding to a state i in Gs be dependent on that state’s
distance to one of the original vertices such that

c(i) = min
j∈V0

dR(i, j). (6)

In other words, a state’s color will be proportional to that
state’s shortest distance to one of the original vertices from
V0. The effect is to accentuate regions of near-equal state,
and for smooth state transitions in space to appear as gradi-
ents. An example of the usefulness of this transformation is
show in Figure 6 compared to the naïve case where c(i) = i.

(a) naïve rendering (b) rendering with Eqn. 6

Fig. 6: A comparison of two rendering techniques for dimer
automata.

4.2 Distribution of Behaviors
An interesting question to ask for this system is, what is

the distribution of elastic dimer automata behaviors in the
information-energy space? To approach this, we extended the
search from the previous section by one, so that |V0| ≤ 5.
This resulted in a total of 5137 suitable unique rules. The
information and energy of the final configuration of each
rule is plotted in Figure 7. Additionally, we used k-means
clustering to pick 9 characteristic rules; the configurations
of each of these rules are also shown in the plot. The
information-energy distribution has several interesting fea-
tures that become apparent as a result of the larger search
space. First, there appears to be a clear upper bound on the
ratio of information to energy, so we hypothesize that

H = O(L−1
I ), (7)

as evidenced by the emptiness of the upper right portion
of the plot. Furthermore, there appears to be another empty
region where LI ∈ [0, 0.1] andH > 1. This suggests, at least
for this experiment, a correlation between very low informa-
tion and very low energy. In other words, the configurations
in this region are mostly uniform, and not mostly random.
The tail of the distribution where LI ≥ 2.5 corresponds to
low energy and high information configurations that result
from spiral waves (e.g. rule 13). The remaining rules that
generate high information configurations in the distribution
appear to be somewhat similar to rule 18.

5. Conclusion
We have presented a technique, elastic dimer automata,

that when given a small (e.g. granular) state transition graph,
creates a dimer automaton rule in a manner that shows
successively more continuous like behavior. Additionally, we
have developed a measurement of self-organization tailored
towards these rules based on the mutual information between
state and space distance distributions. Using these tools, we
performed an exhaustive search of a simple class of elastic
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Fig. 7: Clustering of behavior resulting from the 5137 elastic
dimer automata with |V0| ≤ 5

dimer automata which revealed several interesting rules, and
a rich behavior space.

Future work can take several directions. One question
we may ask is, can we derive the PDE corresponding to
a given elastic dimer automaton directly by considering
the infinite limit of states? This may be simple for cases
such as rules 13 and 85 where the transition graph is
simply a cycle, allowing a direct mapping between the
discrete state and its continuous phase angle. However, in the
general case, deriving the PDE may be less trivial; perhaps
other variants of elastic dimer automata would facilitate
this better. Furthermore, in this paper we consider only a
very simple energy function to minimize; future work may
consider other classes of energy functions or even domain-
specific functions to model a narrower range of physical
phenomena. Finally it is useful and frequently challenging
to demonstrate the connection between the abstract rules for
complex systems and the corresponding physical phenomena
(if such a connection exists). We encourage readers to do so
for interesting phenomena revealed here or any that may be
found in the future.
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GPU Acceleration of Many Independent
Mid-Sized Simulations on Graphs
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Abstract— Many GPU parallelizations exist to speedup
simulation of complex systems, but these approaches see
less benefit when the simulation is not large. Simulation of
many independent complex systems is useful for Monte Carlo
sampling or for exploring the behavior of many different
models at once. We present and evaluate an algorithm for
simulating many mid-sized dimer automata (e.g., having tens
of thousands of vertices) on the GPU. Our algorithm has,
in the best case, a throughput of over 300 million edge
updates per second, and a speedup of over 37 on modest
GPU hardware. Dimer automata can also be used to design
and implement useful computations on graphs. As a test
case, we implement a solution to the all pairs shortest path
problem using dimer automata and our GPU algorithm, but
find that the structure of the graph has a significant effect
on the efficiency of the algorithm.

Keywords: GPGPU, dimer automata, asynchronous cellular au-
tomata, graph, Monte Carlo methods

1. Introduction
Often it is necessary to perform many independent trials

(e.g., Monte Carlo sampling) to understand systems, espe-
cially stochastic complex systems. These independent trials
can be characterized by the following cases:

1) varying the random seed to observe a distribution of
behaviors;

2) varying the initial condition to observe how it affects
the outcome;

3) varying the model or its parameters to observe a
variety of different behaviors; or

4) some reasonable combination of the above cases.
An example of the first case is in well mixed systems of

reacting chemicals in low concentration, which is modeled
exactly by Gillespie’s algorithm [1]. In these systems some-
times the same initial condition results in two drastically
different outcomes. A famous example of this is the “devel-
opmental bifurcation pathway in phage lambda-infected e.
coli cells” [2]. In this case just a handful of chemical species
with low population randomly determines whether the phage
enters lysis or lysogeny. Lysis and lysogeny are two global
attractors that are both reachable from the same initial
condition. The second case, varying the initial condition,
can provide useful information about a systems dependence
on its initial conditions (i.e., is the system chaotic?).

Wolfram’s classical search of elementary cellular au-
tomata is a famous example of the third case (varying the
model) [3]. He ran a simulation for each of the 256 different
rules starting from simple initial conditions and observed
four classes of behaviors. Automata belonging to two of
these classes exhibited surprisingly complex behaviors de-
spite their simple formulation. Since this original work it has
been popular to perform various similar types of searches for
other complex systems [4], often aided by genetic algorithms
[5], [6], [7], [8], [9]. In all of these cases, the simulation of
many independent complex systems is crucial.

Clearly, any technology that improves the efficiency of
one or more of the above cases is of general interest, and
this is the contribution of this paper. We present an algo-
rithm for the GPU-acceleration of many concurrent dimer
automata simulations that handles any combination of cases
2 and 3 mentioned above. Dimer automata are discrete (in
state, space, and time), stochastic, asynchronous dynamical
systems that can be used to model a number of useful
phenomena [10], [11], [12]. One of the useful properties
of dimer automata is that they operate on arbitrary graphs,
updating both endpoints of a single randomly chosen edge
simultaneously. So, in addition to providing a nice modeling
and simulation framework for complex systems, dimer au-
tomata can be used to design randomized, decentralized, and
robust algorithms for computing on graphs. We benchmark
and discuss the algorithm we present, and we also consider
what circumstances this GPU acceleration of dimer automata
can be effectively used for general graph computations.

1.1 Dimer Automata
Dimer automata assume interactions occur on an arbitrary

graph G = (V,E) where each vertex in that graph has a
single state from the state space Σ. The state of a vertex u
after t edge updates is xt

u. The system is iterated by picking
an edge←→uv ∈ E uniformly at random and updating the states
of both endpoints of that edge simultaneously. The endpoints
are replaced according to the rule R; if G is undirected then
we can make the simplifying assumption that R : Σ2 7→ Σ.
If x and y are the states of the endpoints of an edge to be
updated, x and y are replaced such that

(x, y)→ (R(x, y), R(y, x)). (1)

The rule R may be represented as an algebraic expression
or as a matrix (lookup table). If we consider finite, discrete
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Σ, then R is a finite state machine (FSM), and can be
represented as a |Σ| × |Σ| matrix. An example of this state
transition matrix is,

R(x, y) =
x\y 0 1
0 0 1
1 0 1

, (2)

which defines the output of R for every possible pair of
inputs. This example results in the state of x and y being
swapped, which is an elegant way to implement diffusion
of particles. Many other simple dimer automata rules with
useful applications have been found, and are shown in
Table 1.

One difference in this presentation of dimer automata from
the original (see [10]) is the assumption that G is undi-
rected, allowing R to be simplified based on an argument
for symmetry. However, it is reasonable in some cases to
use a directed graph in combination with rules that break
symmetry. The updating rule use is modified to reflect this,
so if −→uv was the directed edge chosen to be updated, then
(x, y) → R(x, y) but, R : Σ2 7→ Σ2. For consistency,
symmetry breaking rules should always be used with the
convention that the state of the source vertex is the first
argument of R, and the state of the destination vertex is the
second.

1.2 General Purpose GPU Programming
Parallel computing can often be used to improve the

efficiency of simulations, but in the past relatively few
people had access to the hardware necessary to see much
benefit from the use of parallelism. This has changed only
in the last decade for two important reasons: powerful GPU’s
became ubiquitous on personal computers and SDK’s such
as OpenCL and CUDA made general purpose programming
on GPU hardware relatively straightforward. As a result
there has been a rapid increase in the use of the GPU’s
for scientific computing within the past ten years [13]. An
in depth discussion of GPU architecture and topics is readily
found in the literature, so we only give a brief summary here.
When designing a GPGPU algorithm, one must subdivide
the problem into identical tasks in a manner that facilitates
coalesced memory access. Each task uses the same code
(called the kernel), but sees a different part of the data; this
approach is called single instruction multiple data (SIMD).
Coalescing memory access is accomplished (in very general
terms) by ensuring that task i accesses memory location ci
(where c is the “stride”) for each task. This allows the GPU
to amortize memory latency across many threads. Without
designing for coalesced memory access, it is difficult to
achieve significant speedup from the GPU parallelization.

Many examples of GPU accelerated simulations of com-
plex systems can easily be found in the literature [14],
[15], [16], [17]. Many of these models (including our own
recent work [11]) are designed to speed up the execution

of a single large model. However, when the size of the
model decreases, the speedup diminishes. There are only
a few cases where researchers have focused on the GPU
acceleration of a large number of independent simulations.
One approach that deserves mention due to its similarity
to dimer automata is the GPU acceleration of Gillespie’s
algorithm for stochastic chemical kinetics [18]. In this case,
each thread on the GPU performs Gillespie’s algorithm
independently by firing randomly chosen reactions (firing
a reaction is similar to an edge update in dimer automata).
This algorithm is tailored towards very small simulations
(e.g., one case study had just three species and four reaction
channels). It works best assuming the number of chemical
species, channels, etc. is low enough that all information
for all threads in a thread block fits into the limited shared
memory space. This assumption reduces the cost of the
random memory access inherent to simulations of stochastic
chemical kinetics. Instead, our algorithm is designed to
operate on many mid-sized simulations. We define mid-sized
as having too many vertices to fit in shared memory, but few
enough that (at least) several copies fit in global memory.
We discuss the implementation details of our algorithm next.

2. Methods
Our goal is to develop an efficient GPU parallelization

of many independent, mid-sized dimer automata. An em-
barrassingly parallel approach would work by running many
dimer automata across as many processors and collecting the
result. Since GPU’s are adept at such embarrassingly parallel
tasks, we might try to distribute a large number of dimer
automata on the GPU in a similar manner. However, one
would not see much speedup because of the random memory
access patterns resulting from each dimer automaton having
its own unique and random order of updates. To resolve
this, we assume that every dimer automaton undergoes the
same order of edge updates. This allows memory access
to be coalesced, which greatly improves the efficiency of
the GPU parallelization. Of course, this assumption comes
with a cost; our approach cannot be applied to case 1 from
the introduction. Under the same rule, initial condition, and
(from the assumption) the same order of updates, a dimer
automaton will always produce the same outcome. This
would defeat the purpose of repeated trials as any single
trial would be sufficient. Fortunately, the assumption is still
reasonable for the remaining cases, so we develop a simple
yet efficient GPU parallelization building on this idea.

We assume a direct mapping between threads and dimer
automata simulations on the GPU. Since we are also assum-
ing that each dimer automaton will update the same edge
at the same time, we can arrange the memory layout of the
experiments state so that memory access is coalesced. This
is accomplished by arranging each xu for each automaton
contiguously in memory. This is the transpose of the more
common approach, where the states of adjacent vertices are
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Table 1: Several useful dimer automaton rules in algebraic form.

name algebraic dimer automaton rule notes

flocculation R(x, y) =


y if x+ y = 1
2 else if x+ y = 3
x else

Initialize the center seed(s) with 2 and ρ|V | other
random vertices with 1, which are free to move.
Produces a dendritic fractal. See [11]

grain
growth

R(x, y) =


y if x = 0
0 else if x 6= y ∧ x, y 6= 0
x else

Initialize vertices from a set of at least 3 dif-
ferent random integers. Creates competing do-
mains/grains that grow over time. See [11]

Schelling
segregation

R(x, y) =


y if x, y ≤ 0
−x else if (x > 0 ∧ x 6= |y|) ∨ x = −|y|
x else

Similar to grain growth, but with conservation of
mass. Domains are separated by 0, a buffer state.
See [11]

excitable
media

R(x, y) =

{
x+ 1 if 1 ≤ y − x ≤ z
x else

mod n Self-organizing spiral waves. See [11]

infection R(x, y) =


x− 1 if x > 0
n else if y > β

x else
Initialize at least one vertex with n, and the
remaining with 0. On a small world graph and
the appropriate β, smooth oscillation of the pop-
ulation of infected is observed. See [12]

component
labeling

R(x, y) = min(x, y) Initialize the state each vertex with its own index
(i.e., x0

i = i). The system will converge to a state
where each vertex’s state is the smallest vertex
index belonging to that component. See [12]

shortest
path

R(x, y) = min(x, y + 1) Computes path distance for a single source. Ini-
tialize each vertex so x0

i = |V | except the source
vertex j which gets 0. See [12]

vertex
coloring

R(x, y) = (x+ δ(x, y), y) mod k Vertices initialized with a random color from the
set of k colors. Symmetry breaking. May not
converge. See [12]

topological
sorting

R(x, y) =

{
(y, x) if y < x

(x, y) else
Initialize X with a permutation of the vertex
indices. Will not converge if the graph has cycles.
Symmetry breaking. See [12]

arranged contiguously. To make the GPU algorithm as robust
and widely applicable as possible, the entirety of E (the
connectivity information) is not stored the GPU. Instead, a
small number of edges are sampled from E by the CPU
and written to the GPU’s local memory in small chunks.
These edges are then updated sequentially for each exper-
iment during a single kernel invocation. There are several
advantages to this technique. Not storing E on the GPU
frees up memory that can be used for additional experiments,
which increases throughput. Furthermore, if the graph is
very dense, there may not even be memory on the GPU,
since |E| = O(|V |2). This approach is also compatible with
sampling edges from a non-uniform distribution, despite the

fact that this can require complex data structures [19]. The
complex sampling algorithm can be kept on the CPU since
the edges sampled are simply copied to the GPU afterwards.

However, interleaving kernel execution with edge sam-
pling results in the CPU and GPU being idle while the
other works, negatively impacting performance. Fortunately,
a simple solution is found by dividing the computation
into blocks. The GPU portion of a block is dependent on
the edges sampled by the CPU in the previous block. The
CPU portion of the current block computes and writes the
edges needed by the next GPU block. This reduces the
amount of time the CPU and GPU are idle, which improves
performance. An illustration of this host/device scheduling
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interleaved
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Fig. 1: Arranging kernel calls into blocks as shown allows
helps the GPU to avoid becoming idle.

optimization is shown in Figure 1, and its pseudocode and
OpenCL kernel code1 is outlined in Algorithm 1. We note
that, at best, this approach will speed up the GPU paral-
lelization by a factor of 2. This occurs when the execution
times of the GPU and CPU tasks are equal.

Algorithm 1: pseudocode to call the kernel in a blocked
fashion to allow concurrent CPU/GPU execution

Input: n (number of edges to update); N (edges per
block); block_size

steps = dn/block_size/Ne;1

sample edges for block 0;2

copy block 0 to GPU;3

sample edges for block 1;4

for i=0..steps do5

copy block i+ 1 to GPU (asynchronously);6

wait for block i to finish copying;7

for j=0..block_size do8

call DimerAutomatonKernel on block i9

with offset j ·N ;
end10

sample edges for block i+ 2;11

finish command queue;12

end13

3. Results
To evaluate the effectiveness of our GPU parallelization,

we consider two different cases corresponding to two com-
mon dimer automaton rule representations:

1) eqn, an algebraic representation of the rule where each
simulation uses the same equation with a different

1OpenCL and CUDA are the two main GPGPU SDK’s available today.
Both packages offer various advantages and disadvantages, but overall
one would expect roughly equivalent performance on identical hardware
(anecdotally, CUDA seems to run very slightly faster).

Function DimerAutomatonKernel(uint n, uint off-
set, __global uint* Eu, __global uint* Ev, __global T*
R, __global T* X, __local uint* u_cache, __local uint*
v_cache, __global int* counts)

uint gsi = get_global_size(0);1

uint gid = get_global_id(0);2

int count = 0;3

// copy the edges to local memory
event_t events[2];4

events[0] = async_work_group_copy(u_cache,5

&Eu[offset], (size_t)n, 0);
events[1] = async_work_group_copy(v_cache,6

&Ev[offset], (size_t)n, 0);
wait_group_events(2, events);7

// begin updating edges
for uint i = 0; i < n; i++ do8

// read the edge ←→uv
uint u_idx = mad24(gsi, u_cache[i], gid);9

uint v_idx = mad24(gsi, v_cache[i], gid);10

// read the state of ←→uv
T xu = X[u_idx];11

T xv = X[v_idx];12

// compute the next state
T xup = apply_rule(xu,xv,R);13

T xvp = apply_rule(xv,xu,R);14

// write the new state of ←→uv
X[u_idx] = xup;15

X[v_idx] = xvp;16

// count number of changed edges
count += (isnotequal(xu,xup) | isnotequal(xv,xvp));17

end18

counts[gid] += count; // optional19

initial configuration; and
2) mat, a lookup table representation of the rule where

each simulation uses a different rule and, potentially,
a different initial configuration.

The matrix representation results in random memory access
patterns in the kernel. This is not the case with the alge-
braic representation, which is simply requires computing an
expression (whose constants can be accessed in a coalesced
manner). Thus we would expect the algebraic representation
to have better performance.

We carefully compare the performance of the GPU2

algorithm to the CPU3 algorithm in the following manner.
The size of the graph |V | and the number of threads τ
are varied simultaneously so that τ |V | = M , where M
is a constant close to the memory capacity of the GPU.
For simplicity, the graph’s edges are chosen randomly.
The CPU algorithm essentially executes the same loop as

2using a NVIDIA GeForce 9400M with 256MB RAM and 32 cores
3using an Intel 2.8GHz Core 2 Duo with 6MB L2 cache
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Fig. 2: Comparison of throughput for algebraic and finite
state machine representations of dimer automata rules for
GPU and CPU implementations.

Table 2: Effectiveness of matrix/equation GPU acceleration
threads vertices throughput speedup max. throughput

(#) (#) (ups/sec) (ups/sec)
mat 1024 32768 1.45× 108 23.84 1.57× 108

eqn 2048 16384 2.74× 108 37.10 3.13× 108

DimerAutomatonKernel, but simulates each dimer au-
tomaton in its entirety before moving on to the next. Figure 2
shows the comparison of the four cases (GPU/CPU and
eqn/mat). For the algebraic case, the shortest path equation
was used, and for the matrix case, each automaton uses a
different random matrix for its rule. The GPU algorithm is
clearly faster in both cases, and a summary of the results is
shown in Table 2. The algebraic GPU case is the fastest, as
expected, being 37 times faster than the CPU equivalent and
having a maximum throughput of 313 million edge updates
per second.

4. Discussion
Several notable effects are seen in Figure 2 from the orig-

inal experiment. As the number of threads τ increases, the
throughput of the matrix GPU algorithm increases quickly,
but then begins to decrease after 2048 threads. This is most
likely due to the increasing number of un-coalesced memory
accesses. When τ is small, the GPU algorithm is less
efficient because there is not enough inherent concurrency
for the GPU to take advantage of. When τ is large, the
number of random memory accesses is large, resulting in
more latency. This produces the optimal point between these
extremes that we observe. The decrease towards the tail of
the algebraic case is less pronounced, and is likely due to the
slight overhead incurred in scheduling such a large number
of threads.

A final observation worth noting here is that while the
GPU algorithm’s performance tends to decrease after a cer-
tain number of threads, the CPU algorithm has the opposite
behavior. In our experiment, the size of the graph is inversely
proportional to the number of threads so that the memory
footprint remains constant. When a large number of threads
are used, the graph becomes very small. There appears to be
a certain threshold, (around 8192 threads and 4096 vertices–
roughly 16KB) where the CPU algorithm suddenly becomes
more efficient. This is most likely due the working set of the
CPU algorithm becoming small enough for memory caching
and paging to become optimal. For this reason, the biggest
GPU speedup (in both cases) does not occur with the highest
throughput (see Table 2).

4.1 Block and Rule Sizes
Here we examine how other aspects of our GPU algorithm

affect its performance. An important aspect of the GPU
algorithm is the consolidation of a series kernel invoca-
tions into blocks4. This helps prevent the CPU and GPU
from remaining idle while the other is working. Figure 3
shows how the block size affects the throughput of the
algorithm (the number of threads is varied in the same
manner as the previous experiment). The results show that
with enough concurrency, any choice of block size reaches
peak throughput. However, it appears that increasing the
number of kernels called per block causes this threshold to
be reached more quickly.

We also consider the effect of adding additional states to
Σ which increases the rule size. Previously we showed that
increasing the concurrency can decrease throughput after a
certain point by increasing the total number of un-coalesced
memory reads. It is also the case that the total memory
footprint of the rule affects the GPU performance. This
is evidenced by Figure 4 where the original experiment is
repeated for different sized rules. Even while keeping the
number of threads constant, the throughput is negatively
affected as the rule size |Σ| increases from 3 to 8.

4.2 Throughput vs Efficiency
Dimer automata can be used to implement algorithms for

computations on graphs. However, their efficiency may be
dependent on the topology of the graph; in other words,
throughput is not the same as efficiency. Dimer automata
compute on graphs via front propagation, much like a
breadth first search, to compute the result. Ideally the front
will cover a significant portion of the vertices at any given
time and will move across the entire graph quickly, which is
important to avoid unnecessary computation. This is the case
for high dimensional graphs, especially small world graphs.
However, for low dimensional graphs, the diameter can be
large, causing the algorithm to converge more slowly.

4To clarify, the blocks we are referring to are those shown in Figure 1,
and not thread blocks, which are also commonly referred to as work groups.
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Fig. 3: Increasing the number of kernel invocations per block
causes the GPU algorithm to reach maximum throughput
sooner (with fewer threads).
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Fig. 4: Increasing the number of states (the rule size) also
has a detrimental impact on performance.

The dimension of a graph is analogous to the dimension
of euclidean space. A hyper-cube in this space with sides
of length r will have volume of rd. Thus, the volume
follows a power law parameterized by d, which is exactly
the dimension of the space, i.e. V (r) ∼ rd. This concept
can be extended to graphs by defining the volume V (r) as
the average number of vertices reachable in r or fewer steps
[20], [21]. For example, a square lattice with Moore neigh-
borhoods has d = 2 since V (0) = 1, V (1) = 9, V (2) =
25, ..., V (r) = (2r+1)2. Thus a square lattice approximates
2-D space, as both have the same volume scaling exponent
of 2. Random long range connections in graphs (e.g. small
world and scale free properties) cause the diameter of the
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Fig. 5: As the structure of the graph transitions from uniform
to random, efficiency improves.

graph to scale according to O(log |V |) [22], giving the graph
high dimension. So, small world graphs are likely the best
case scenario in terms of the efficiency of the simple dimer
automata rules from Table 1. The Watts-Strogatz small world
model provides a simple way to interpolate between fully
random and uniform graphs based only on the rewiring
probability p [23].

We use this classic approach to quantify how the efficiency
of our shortest path rule depends on the structure of the
graph. We measure efficiency by considering the fraction of
updates that do useful work by changing the system. We
use the shortest path rule R(x, y) = min(x, y + 1) with the
initial configuration setup so that each simulation solves the
shortest path problem for a different source vertex. Edge
updates are broken up into sets where each edge is updated
at least once (any order can be used). If no updates changed
the system after updating a set (i.e. every edge), then the
algorithm has converged. Figure 5 shows how the efficiency
is affected by the structure of the graph.5 As the graph
transitions from ordered to random, the efficiency improves
predictably, with maximum efficiency close to 20%. This is
one reason why the GPU algorithm’s performance was not
better than a more sophisticated serial algorithm6 for the
same problem.

5. Conclusion
Many GPU parallelizations of cellular automata are de-

signed to take advantage of the regular structure of the
underlying lattice, with larger lattices often allowing more
concurrency, resulting in better performance. However, there

5the graph had 16,384 vertices and 2,048 threads because this configu-
ration produced the highest speedup in the original experiment.

6comparison based on the igraph diameter function [24]
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are clear cases where simulating many (not necessarily large)
systems is warranted. Furthermore, there are many cases
where non-uniform topologies and/or asynchronous updating
is also warranted. Each of these issues presents unique chal-
lenges. Therefore, we have designed a GPU parallelization of
the dimer automaton framework tailored towards concurrent
simulation of mid-sized simulations. The parallelization is
made effective by assuming each automaton sees the same
order of updates, but this reduces the applicability of our
approach somewhat.

Fortunately, there are many cases where this assumption is
acceptable, and the GPU parallelization results in significant
performance gains. In the best case, our algorithm has a
throughput of over 313 million edge updates per second and
produces a speedup of 37 over the CPU implementation.
Additionally we note that the hardware used to evaluate our
algorithm was fairly modest by todays standards, having
only 32 cores. High-end models can increase this number
by an order of magnitude, which, ideally, would cause a
proportional improvement in performance.

We also tested our GPU algorithm on a classical graph
computation, the all pairs shortest path problem. However,
we found that the performance was not better than more
sophisticated serial algorithms due to the potential for wasted
computational resources. Additionally, the GPU algorithm’s
performance suffered when each dimer automaton used
a different rule, represented as a matrix. Future work to
convert matrix representations to algebraic ones would have
a significant positive impact on performance. Finally we
note that our approach can be extended to asynchronous
variants of complex systems (e.g., asynchronous cellular
automata, random boolean networks, etc.) with only trivial
modification to the kernel and algorithm.
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Topological Mixing Derived From Glider D1 of Universal ECA Rule
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Abstract— Rule 110 is a complex cellular automaton (CA)
in Wolfram’s system of identification and capable of sup-
porting universal computation. There is no doubt that the
dynamical property of rule 110 is extremely complex and
still not well understood. Gliders in one-dimensional cellular
automata are compact groups of non- quiescent and non-
ether patterns translating along automaton lattice. This
paper reveals a interesting relation between the complexity
and the glider in rule 110, and rigorously proves that rule
110 is topological mixing and is chaotic in the sense of both
Li-Yorke and Devaney on the subsystem derived from the
existing glider D1.

Keywords: cellular automata; glider; topologically mixing; chaos;
directed graph.

1. Introduction
Cellular automata (CA) was introduced by von Neumann

and Ulam in the late 1940s and early 1950s [1]. In late
1960s, Conway proposed his now-famous Game of Life,
which shows the great potential of CA in the simulation
of complex systems [2]. Mathematical theory of CA was
developed by Hedlund about two decades after Neumann’s
work. He studied CA in the context of symbolic dynamics
as homomorphisms of the full shift [3]. In the early 1980s,
Wolfram carried out a lot of research on dynamical and
computational aspects of CA [4-5]. In [6], he classified the
256 elementary cellular automata (ECA) informally into four
classes using dynamical concepts like periodicity, stability
and chaos.

Based on Wolfram’s work, Chua et al. provided a rigorous
nonlinear dynamical approach to his empirical observations
based on mathematical analysis [7-10]. Although there are
256 elementary cellular automata (ECA) rules, only 88 rules
are globally independent from each other [7-8, 15]. These
88 global independent ECA rules are also organized into 4
groups with distinct qualitative dynamics: 40 period-k (k =
1, 2, 3, 6), 30 topologically distinct Bernoulli shift rules, 10
complex Bernoulli shift rules and 8 hyper Bernoulli shift
rules [7-8].

Among infinitely many local CA rules, rule 110 in Wol-
fram’s system of identification has received special attention.
One of the first investigations about rule 110 was described
by Wolfram, discovering that the rule displays complex
behaviors by means of the existence of gliders-a glider is
a periodic structure moving into the evolution space-from
random initial conditions. Rule 110, like the Game of Life, is

named as left life by Cook. He showed new gliders with rare
extensions and a pair of gliders of complicated constructions
[11]. Also, he demonstrated that rule 110 was universal via
simulating a cyclic tag system with well-defined blocks of
gliders by means of collisions [12, 20, 21].

This paper mainly focuses the complexity of rule 110
on a subsystem which is derived from the existing glider
D1. The rest of the paper is organized as follows: Section
2 reviews the basic concepts of one-dimensional CA and
symbolic dynamics. Section 3 identifies a subsystem of rule
110 which is a subshift of finite type, and discusses its
complex dynamics. Section 4 concludes the present work.

2. Preliminaries
A bi-infinite sequence, x = (· · · , x−1,

∗
x0, x1, · · · ), is

called a configuration, where xi ∈ S = {0, 1, · · · , k−1} and
the star “∗” denotes the designated symbol of x. If I = [i, j]
is an interval integers, put x[i,j] = (xi, xi+1, · · · , xj)
(i < j), x[i,j) = (xi, · · · , xj−1). For a finite sequence
a = (a0, a1, · · · , an−1), if there exists an m ∈ Z such that
xm+k = ak (k = 0, 1, · · · , n − 1), then it is said that a
appears in x, denoted as a ≺ x. The set of configurations is
denoted by SZ and a metric “d” on SZ is defined as

d(x, y) = sup

{
ρ(xi, yi)

2|i|
| i ∈ Z

}
, ρ(xi, yi) =

{
0, xi = yi,

1, xi ̸= yi,

where ρ(·, ·) is the metric on S and x, y ∈ SZ . It is known
that (SZ , d) is a compact, perfect, and totally disconnected
metric space [13].

Let f denote a self map on SZ . A subset X ⊆ SZ is f -
invariant if f(X) ⊆ X , and strongly f -invariant if f(X) =
X . If X is closed and f -invariant, then (X, f) or simply X
is called a subsystem of (SZ , f).

The left-shift map σL : SZ → SZ is the homeomorphism
defined by [σL(x)]i = xi+1, ∀x ∈ SZ , i ∈ Z, where
[σL(x)]i stands for the i-th element of σL(x). The restriction
of σL to any closed and strongly σL-invariant subset Λ ⊂
SZ is called a subshift, denoted by (Λ, σL). For instance,
let A denote a set of some finite sequences over S, and
Λ = ΛA is the set of configurations made consisting of
the sequences in A . Then ΛA is a subsystem of (SZ , σL),
where A is said to be the determinative block system of Λ.
Meanwhile, the right-shift map σR : SZ → SZ defined by
[σR(x)]i = xi−1, ∀x ∈ SZ , i ∈ Z, has similar results as σL.

A map f : SZ → SZ is a CA if it is continuous and
commutes with σ, where σ is left-shift or right-shift map.
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For any CA, there exist a radius r > 0 and a local map
f̂ : S2r+1 → S such that [f(x)]i = f̂(x[i−r,i+r]). f is an
ECA when r = 1.

Each ECA can be expressed by a 3-bit Boolean function
and coded by an integer N , which is the decimal notation
of the output binary sequence of the Boolean function [7].
The local expression of rule 110 is

f̂(0, 0, 0) = 0 f̂(1, 0, 0) = 0

f̂(0, 0, 1) = 1 f̂(1, 0, 1) = 1

f̂(0, 1, 0) = 1 f̂(1, 1, 0) = 1

f̂(0, 1, 1) = 1 f̂(1, 1, 1) = 0

i.e., the evolution rule is expressed in binary notation as
01110110 (representing the decimal number N = 110,
where the leftmost one is the low position and the rightmost
one is the high position). The global map of rule 110 is
denoted by f110. The evolution of the automaton is defined
starting from linear array of cells each containing one state
of S = {0, 1}; taking every cell xi as a central one, to
evaluate the value of its corresponding neighborhood so
as to determine the new central element in the following
generation:

f̂(xt
i−1, x

t
i, x

t
i+1) → xt+1

i .

Time t is discrete and there is a simultaneous evaluation of
each xi in the array, i.e., parallel mappings generate the next
array, determining the evolution space SZ .

3. Glider and Subsystem

3.1 Glider D1

A glider is a compact group of non-quiescent states
traveling along CA lattice, and is a periodic structure moving
in time [6, 11-12, 20-21].

It is known that the speed of glider D1 of rule 110 is 2/10,
the lineal volume is 11-25, and the even and odd number of
periodic margin on the left (or right) border in the ether
pattern are 1 and 2 respectively [21]. Under the viewpoint
of symbolic dynamics, the ether pattern and glider can be
defined as the evolutionary orbit starting from a special ini-
tial configuration [22]. The ether factor of the ether patterns
is a = (1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0), and one of glider
factors of D1 is b = (1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0), i.e., an ether
pattern of Rule 110 is the evolutionary orbit Orbf110(a

∗) =
{a∗, f110(a∗), f2

110(a
∗), · · · } and glider D1 is the evolution-

ary orbit Orbf110(x̄) = {x̄, f110(x̄), f2
110(x̄), · · · } in the

CA lattice space, where a∗ = (· · · , a, a, a, · · · ) is a cyclic
configuration and x̄ = (· · · , a, a, a, b, a, a, a, · · · ). That the
speed of D1 is 2/10 implies this glider shifts to right
by 2 bits in every 10 times iteration under rule 110, i.e.,
f10
110(x̄) = σ2

R(x̄). The ether pattern and glider D1 are shown
in Figure 1.

Fig. 1: Ether pattern and glider D1 of rule 110.

3.2 Subsystem
One can obtain a 21-sequence set A1 = {q|q =

x̄[i,i+20], ∀i ∈ Z} from x̄ = (· · · , a, a, a, b, a, a, a, · · · ),
where a = (1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0) is the ether
factor and b = (1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0) is a glider factor
of D1. More specifically A1 =
{000100110111011101101, 000100110111110001001, 001001101110111011011,

001001101111100010011, 001101110111011011111, 001101111100010011011,

010011011101110110111, 010011011111000100110, 011011101110110111110,

011011111000100110111, 011101101111100010011, 011101110110111110001,

011111000100110111011, 011111000100110111110, 100010011011101110110,

100010011011111000100, 100110111011101101111, 100110111110001001101,

101101111100010011011, 101110110111110001001, 101110111011011111000,

101111100010011011101, 101111100010011011111, 110001001101110111011,

110001001101111100010, 110110111110001001101, 110111011011111000100,

110111011101101111100, 110111110001001101110, 110111110001001101111,

111000100110111011101, 111000100110111110001, 111011011111000100110,

111011101101111100010, 111100010011011101110, 111100010011011111000,

111110001001101110111, 111110001001101111100}

For simplicity, A1 is expressed by its decimal code
D(A1) =
{159469, 159625, 318939, 319251, 454367, 456859, 637879,
638502, 908734, 913719, 974611, 978417, 1018299, 1018302,
1128310, 1128388, 1275759, 1277005, 1505435, 1535881,
1537784, 1557725, 1557727, 1612731, 1612770, 1801293,
1816516, 1817468, 1827438, 1827439, 1854941, 1854961,
1949222, 1956834, 1976046, 1976056, 2036599, 2036604}.

Proposition 1:
(1) For rule 110, there exists a subset Λ1 ⊂ SZ , such that
f10
110(x) = σ2

R(x) for x ∈ Λ1, where Λ1 = ΛA1 = {x ∈
SZ | x[i−10,i+10] ∈ A1,∀ i ∈ Z}, and A1 is its determinative
block system.
(2) Let

Λ =
9∪

i=0

f i
110(Λ1),

then, Λ is a f110-invariant subset of SZ , and f10
110(x) =

σ2
R(x) for x ∈ Λ.

(3) σR : Λ → Λ is a subshift of finite type (SFT).
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Let Λ = ΛA , A is the determinative block system of
Λ, then, A is a 21-sequence set consisting of 237 elements.
Due to space limitations and for simplicity, the decimal code
set D(A ) of A is placed in Appendix I .

3.3 Finite directed graph and complexity
Since (ΛA , σR) is a SFT, then ΛA can be described by

a finite directed graph GA ={A ,E }, in which each vertex
is labeled by a sequence in A , and E is the edge set. Two
vertices a = (a0, a1, · · · , an−1) and b = (b0, b1, · · · , bn−1)
are connected by an edge of E if and only if ak =
bk−1, k = 1, 2, · · · , n−1. Every edge (a0, a1, · · · , an−1) →
(b0, b1, · · · , bn−1) of E is labeled by bn−1. One can think
of each element of ΛA as a bi-infinite path on the graph
GA . Whereas a directed graph corresponds to a square
transition matrix A = (Aij)m×m with Aij = 1 if and only
if there is an edge from vertex b(i) to vertex b(j), where
m = |A | is the number of elements in A , and i (or j) is the
code of the vertex in A , i, j = 0, 1 · · · ,m − 1. Thus, ΛA

is precisely defined by the transition matrix A. Transition
matrix A = (Aij)237×237 is shown in Appendix II .

A square matrix A is irreducible if, for any i, j, there
exists an n such that An

ij > 0; aperiodic if there exists an n,
such that An

ij > 0, for all i, j. Where An
ij is the (i, j) entry

of An [13, 14].
Lemma 1:

(1) If ΛA is a SFT, then σ (σR or σL) is topologically
transitive if and only if A is irreducible; topologically mixing
if and only if A is aperiodic [13].
(2) A is irreducible if and only if for every ordered pair
of vertices b(i) and b(j) in A there is a path in the graph
GA starting at b(i) and ending at b(j); A is aperiodic if and
only if it is irreducible and the numbers of the length of two
different closed paths in the graph GA are coprime [13-14,
16].

Proposition 2:
(1) σR is topologically mixing on Λ;
(2) σ2

R = f10
110 is topologically mixing on Λ;

(3) f110 is topologically mixing on Λ;
(4) The topological entropy of f110|Λ is positive.

Proof: (1) By computer-aided methods, it is easily
found that there exist two different closed paths in the graph
GA ={A ,E }, and the numbers of their length are coprime
(one is 14 and another is 25, as shown in Fig. 2), thus, the
transition matrix A corresponding to the graph is aperiodic,
so the shift σR is mixing;
(2) The conclusion is obvious;
(3) One only need to prove that for any nonempty open
subsets U, V ⊂ Λ, ∃ N0 > 0, fn

110(U) ∩ V ̸= ∅ for
any n ≥ N0. In fact, f10

110 = σ2
R is mixing on Λ, it is

easy to know that f i
110 : Λ → Λ are homeomorphism,

Ui = f i
110(U) (i = 0, 1, · · · , 9) are also open sets. Thus,

∃ Mi > 0, such that (f10
110)

m(Ui)∩V ̸= ∅ for any m ≥ Mi.
Let M = max{Mi} and N = 11M , thus, fn

110(U)∩ V ̸= ∅

for any n = 10m+ i ≥ N ;
(4) The topological entropy of f110|Λ satisfies
ent(f110|Λ) = 1

10ent(f
10
110|Λ) = 1

5ent(σR|Λ) =
1
5 log(ρ(A)) ≈ 0.0182312 > 0, where ρ(A) is the spectral
radius of the transition matrix A corresponding to Λ = ΛA .

2 036 604

1 976 056

1 854 961

1 612 770

1 128 388

159 625

319 251

638 502

1 277 005

456 859

913 719

1 827 438

1 557 725

1 018 299

2 036 599

1 976 046

1 854 941

1 612 731

1 128 310

159 469

318 939

637 879

1 275 759 454 367

908 734

1 817 468

1 537 784

978 417

1 956 834

1 816 516

1 535 881

974 611

1 949 222

1 801 293

1 505 435

1 827 439

1 557 727

1 018 302

Fig. 2: Two different closed paths in the GA ={A ,E }

It is well known that positive topological entropy implies
chaos in the sense of Li-Yorke [13-14, 16-19], and topolog-
ically mixing property implies many chaotic properties in
different senses such as Devaney [16, 18]. Thus, one has the
interesting result.

Theorem 1: f110 is chaotic in the sense of both Li-Yorke
and Devaney on Λ.

4. Conclusion

In this paper, some topological dynamics of rule 110 has
been discussed under the framework of symbolic dynamical
systems. It is proved that rule 110 is topological mixing
and possesses positive topological entropy and is chaotic in
the sense of both Li-Yorke and Devaney on a subsystem
derived from a existing glider of rule 110. Nevertheless, the
complete symbolic dynamical properties of rule 110 are still
an open problem, some new methods should be exploited to
investigate its dynamical behaviors in future studies.
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Appendix I

The determinative block system A of Λ is a 21-sequence
set consisting of 237 elements. For a sequence a =
(a0, a1, · · · , a20) ∈ A , its decimal code is defined as

D(a) =

20∑
i=0

ai · 220−i

For simplicity, A is replaced by its decimal code set
D(A ) =
{79812, 97357, 146509, 157261, 159373, 159469, 159621,
159624, 159625, 159630, 159673, 159675, 159693, 194715,
228429, 240717, 243789, 247007, 293019, 314523, 318747,
318939, 319243, 319249, 319251, 319261, 319347, 319351,
319387, 389431, 413169, 419039, 452831, 454367, 456799,
456847, 456857, 456859, 456939, 456942, 457631, 457663,
457951, 481435, 487579, 494014, 509151, 581395, 586039,
629047, 637495, 637879, 638487, 638499, 638502, 638522,
638523, 638695, 638703, 638775, 725884, 778863, 806385,
826338, 838078, 905662, 908734, 913598, 913694, 913715,
913719, 913878, 913884, 915262, 915326, 915902, 922492,
949325, 953841, 962871, 974611, 975159, 978417, 982093,
988028, 1017329, 1018097, 1018265, 1018298, 1018299,
1018302, 1018303, 1019569, 1019617, 1030641, 1031153,
1033439, 1035761, 1088482, 1097254, 1121830, 1127206,
1128262, 1128310, 1128386, 1128388, 1128391, 1128412,
1128413, 1128422, 1162790, 1168934, 1170470, 1172079,
1208201, 1255160, 1258095, 1274991, 1275759, 1276975,
1276999, 1277004, 1277005, 1277045, 1277047, 1277391,
1277407, 1277551, 1303151, 1339273, 1411518, 1451768,
1505435, 1509822, 1523238, 1525496, 1535881, 1537784,
1539622, 1557240, 1557624, 1557708, 1557725, 1557727,
1558360, 1558384, 1563896, 1564152, 1565295, 1566456,
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1592817, 1597203, 1609491, 1612179, 1612707, 1612731,
1612769, 1612770, 1612771, 1612782, 1612787, 1633043,
1633811, 1652676, 1676156, 1687078, 1700151, 1718212,
1754335, 1801293, 1803487, 1810195, 1811324, 1816516,
1817468, 1818387, 1827196, 1827388, 1827430, 1827438,
1827439, 1827756, 1827768, 1830524, 1830652, 1831223,
1831804, 1844984, 1847177, 1853321, 1854665, 1854929,
1854941, 1854960, 1854961, 1854967, 1854969, 1865097,
1865481, 1892115, 1898651, 1907682, 1925743, 1949222,
1950319, 1953673, 1956834, 1957769, 1964187, 1972164,
1975236, 1975908, 1976040, 1976046, 1976056, 1976059,
1976060, 1981124, 1981316, 1994633, 2025412, 2027460,
2034658, 2036194, 2036530, 2036596, 2036599, 2036604,
2036605, 2036606, 2039138, 2039234, 2045892, 2061282,
2062306, 2066878, 2071522}.

Appendix II

The index (i, j) set of the transition matrix A =
(Aij)237×237 with Aij = 1, 1 ≤ i, j ≤ 237 corresponding to
the determinative block system A is as follows.
{(1,8), (1,9), (2,14), (3,19), (4,20), (5,21), (6,22), (7,23), (8,24),
(9,25), (10,26), (11,27), (12,28), (13,29), (14,30), (15,38), (16,44),
(17,45), (18,46), (19,49), (20,50), (21,51), (22,52), (23,53),
(24,54), (25,55), (26,56), (26,57), (27,58), (28,59), (29,60), (30,62),
(31,64), (32,65), (33,66), (34,67), (35,68), (36,69), (37,70), (38,71),
(39,72), (40,73), (41,74), (42,75), (43,76), (44,80), (45,82), (46,85),
(47,91), (47,92), (48,111), (49,114), (50,117), (51,118), (52,119),
(53,120), (54,121), (55,122), (55,123), (56,124), (57,125), (58,126),
(59,127), (60,128), (61,132), (62,144), (63,158), (63,159), (64,164),
(65,165), (66,173), (67,175), (68,177), (69,178), (70,179), (71,180),
(71,181), (72,182), (73,183), (74,184), (75,185), (76,187), (77,188),
(78,201), (79,202), (80,203), (81,204), (82,205), (83,207), (84,209),
(85,215), (86,223), (87,224), (88,225), (89,226), (90,227), (91,228),
(91,229), (92,230), (93,231), (94,232), (95,234), (96,235), (97,236),
(98,237), (99,1), (100,2), (101,3), (102,4), (103,5), (104,6), (105,7),
(106,8), (106,9), (107,10), (108,11), (109,12), (110,13), (111,15),
(112,16), (113,17), (114,18), (115,25), (116,31), (117,32), (118,33),
(119,34), (120,35), (121,36), (122,37), (123,38), (124,39), (125,40),
(126,41), (127,42), (128,43), (129,47), (130,48), (131,61), (132,63),
(133,71), (134,77), (135,78), (136,79), (137,81), (138,83), (139,84),
(140,86), (141,87), (142,88), (143,89), (143,90), (144,91), (144,92),
(145,93), (146,94), (147,95), (148,96), (149,97), (150,98), (151,99),
(152,100), (153,101), (154,102), (155,103), (156,104), (157,105),
(158,106), (159,107), (160,108), (160,109), (161,110), (162,112),
(163,113), (164,115), (165,116), (166,122), (166,123), (167,129),
(168,130), (169,131), (170,133), (171,134), (172,135), (173,136),
(174,137), (175,138), (176,139), (177,140), (178,141), (179,142),
(180,143), (181,144), (182,145), (183,146), (184,147), (185,148),
(186,149), (187,150), (188,151), (189,152), (190,153), (191,154),
(192,155), (193,156), (194,157), (195,158), (195,159), (196,160),

(197,161), (198,162), (199,163), (200,166), (201,167), (202,168),
(203,169), (204,170), (205,171), (206,172), (207,174), (208,176),
(209,186), (210,189), (211,190), (212,191), (213,192), (214,193),
(215,194), (215,195), (216,196), (217,197), (218,198), (219,199),
(220,200), (221,206), (222,208), (223,210), (224,211), (225,212),
(226,213), (227,214), (228,215), (229,216), (230,217), (231,218),
(232,219), (233,220), (234,221), (235,222), (236,228), (236,229),
(237,233)}.
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Chaotic Subsystem Come From Glider E3 of CA Rule 110

Lingxiao Si, Fangyue Chen, Fang Wang, and Pingping Liu
School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, P. R. China

Abstract— The existence of glider in the evolution space
of the one-dimensional cellular automaton rule 110, has
important lines of investigation in cellular automata theory
such as complex dynamical behavior, self-reproduction, uni-
versal computation and so on. This work reveals a subsystem
based on the existing glider E3 under the framework of the
symbolic dynamics, and proves that the global map of the
rule is chaotic in the sense of both Li-Yorke and Devaney
on the subsystem.

Keywords: cellular automata (CA); chaos; de Bruijn diagram;
glider; topologically transitive.

1. Introduction
Cellular automata (CA), introduced by von Neumann in

the late 1940s and early 1950s, are a class of spatially
and temporally discrete mathematical systems characterized
by local interactions and synchronous dynamical evolution
[1]. Among the 88 possible unique elementary cellular
automata (ECA), rule 110 in Stephen Wolfram’s system of
identification [2] has been an object of special attention due
to the structures or gliders which have been observed in
evolution space from random initial conditions.

One of the first investigations about rule 110 was de-
scribed by Wolfram [3], discovering that rule 110 displays
complex behaviors by means of the existence of gliders - a
glider is a periodic structure moving into the evolution space
- from random initial conditions. Thus Wolfram establishes
the conjecture that this rule could perform universal compu-
tation.

Lind presented the first classification of gliders in rule 110
in [3] with 13 gliders. Next the first paper dedicated to the
analysis of rule 110 is made by Lindgren and Nordahl in
[4], where a statistical study and some of the most common
behaviors of rule 110 are considered. Cook presented his
proof of the universality of rule 110 in a conference which
taken place at the Santa Fe Institute in 1998 [5,7,8]. On the
other hand, another perspective is reported by McIntosh in
[6], analyzing rule 110 as a problem of tiles and applying
de Bruijn diagrams for characterizing every glider. In this
way, Wolfram presents his book A New Kind of Science
[2] in 2002. The book explains the features of the gliders
and the functionality of a cyclic tag system (CTS) to
demonstrate that rule 110 is an elemental universal CA [8].
Since 2004, Martinez and his partners further investigated

the types of gliders, their properties and collisions and their
representation by tiles [9-11].

With this background, the aim of this paper is to reveal
a little complex nature contained in rule 110 under the
framework of the symbolic dynamical systems. That is,
based on the existing glider E3, this paper find a subsystem
on which the global map of rule 110 is chaotic in the sense
of both Li-Yorke and Devaney.

2. Symbolic Dynamics and de Bruijn Di-
agram

2.1 Symbolic sequence space

Let a be a finite or infinite sequence over S = {0, 1}
and I = [i, j] be an interval of integers on which a is
defined, then denote a[i,j] = (ai, · · · , aj) and a[i,j) =
(ai, · · · , aj−1). A sequence b is said to appear in a, denoted
by b ≺ a, if b = aI for some interval I ⊆ Z.

A bi-infinite sequence over S is called a configura-
tion, the collection of all configurations is Σ2 = SZ =

{(· · · , x−1,
∗
x0,x1, · · · )| xi ∈ S, i ∈ Z}, and the distance

“d” is defined by

d(x, y) =
∞∑

i=−∞

|xi − yi|
2|i|

for x, y ∈ Σ2. It is well known that Σ2 is a Cantor complete
metric space. The left-shift map σ

L
and right-shift map σ

R

are defined by [σL(x)]i = xi+1 and [σR(x)]i = xi−1 for
any x ∈ Σ2, i ∈ Z, respectively, where [σ(x)]i stands for
the i-th symbol of σ(x), and σ is left-shift or right-shift.

2.2 Truth table of rule 110

By a theorem of Hedlund [12], a map f : Σ2 → Σ2 is a
cellular automaton iff it is continuous and commutes with σ.
Moreover, for any CA f , (Σ2, f) defines a dynamical system
(Σ2, f). A subset X ⊆ Σ2 is f -invariant if f(X) ⊆ X , and
strongly f -invariant if f(X) = X . If X is a closed and f -
invariant, then (X, f) or simply X is called a subsystem of
(Σ2, f) [13].

Each ECA rule can be expressed by a local function [18-
22], the logical truth table of rule 110’s local function f̂110
is shown in Table 1.
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Table 1: Logical truth table of rule 110’s local function

(xi−1, xi, xi+1) f̂110(xi−1, xi, xi+1)
(0, 0, 0) 0
(0, 0, 1) 1
(0, 1, 0) 1
(0, 1, 1) 1
(1, 0, 0) 0
(1, 0, 1) 1
(1, 1, 0) 1
(1, 1, 1) 0

2.3 SFT and de Bruijn diagram
Let A be n-sequence set over S = {0, 1}, and ΛA

be the set of the configurations whose any n-subsequence
is in A. Then, (ΛA, σ) is a subsystem of (Σ2, σ), where
ΛA = {x ∈ Σ2| x[i,i+n−1] ∈ A,∀i ∈ Z}, and A is
said to be the determinative block system of ΛA. (ΛA, σ)
(or simply ΛA) is also called the subshift of finite type
(SFT) of (Σ2, σ). Furthermore, ΛA can be described by
a finite directed graph, GA = {A, E}, where each vertex
is labeled by a sequence in A, and E is the set of edges
connecting the vertices in A. The finite directed graph
GA is called the de Bruijn diagram of A (or ΛA). Two
vertices a = (a0, · · · , an−1) and b = (b0, · · · , bn−1) are
connected by an edge (a0, · · · , an−1) → (b0, · · · , bn−1) if
and only if (a1, · · · , an−1) = (b0, · · · , bn−2). One can think
of each element of ΛA as a bi-infinite path on the diagram
GA. Whereas a de Bruijn Diagram corresponds to a square
transition matrix A = (Aij)m×m with Aij = 1 if and only
if there is an edge from vertex b(i) to vertex b(j), where
m = |A| is the number of elements in A, and i (or j) is the
code of the corresponding vertex in A, i, j = 0, 1, · · · ,m−1.
Thus, ΛA is precisely defined by the transition matrix A.

Remarkably, a {0, 1} square matrix A is irreducible if,
for any i, j, there exists an n such that An

ij > 0; aperiodic
if there exists an n such that An

ij > 0 for all i, j, where
An

ij is the (i, j) entry of the power matrix An. If ΛA is a
SFT of (Σ2, σ), then σ is transitive on ΛA if and only if
A is irreducible; σ is mixing if and only if A is aperiodic.
Equivalently, A is irreducible if and only if for every ordered
pair of vertices b(i) and b(j) there is a path in GA starting
at b(i) and ending at b(j) [13-15].

3. Glider E3 and The Corresponding
Subsystem
3.1 Glider E3 of rule 110

A glider is a compact group of non-quiescent states
traveling along CA lattice, and is a periodic structure moving
in time [9, 10]. From the viewpoint of symbolic dynamics, a
glider can be defined as the evolutionary orbit starting from a

special initial configuration in the bi-infinite sequence space
Σ2 [16].

It is known that the speed of glider E3 of rule 110 is
−4/15, the lineal volume is 19, and the even and odd
number of periodic margin on the left (or right) border in
the ether pattern are 3 and 1 respectively [10]. From the
viewpoint of symbolic dynamics, the ether pattern and glider
can be defined as the evolutionary orbit starting from a
special initial configuration [16]. The ether factor of the ether
patterns er (or el) is a = (1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0),
and one of glider factors of E3 is b =
(1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0), i.e.,
an ether pattern of rule 110 is the evolutionary
orbit Orbf110(a

∗) = {a∗, f110(a∗), f2
110(a

∗), · · · }
and glider E3 is the evolutionary orbit Orbf110(x̄) =
{x̄, f110(x̄), f2

110(x̄), · · · } in the CA lattice space, where
a∗ = (· · · , a, a, a, · · · ) is a cyclic configuration and
x̄ = (· · · , a, a, a, b, a, a, a, · · · ). That the speed of E3 is
−4/15 implies this glider shifts to left by 4 bits in every 15
iterations under rule 110, i.e., f15

110(x̄) = σ4
L(x̄). The ether

pattern and glider E3 are shown in Fig. 1.

Fig. 1: Ether pattern and glider E3 of rule 110.

3.2 Subsystem of rule 110
First, one can obtain a 31-sequence set

B = {q|q = x̄[i,i+30],∀i ∈ Z} from
x̄ = (· · · , a, a, a, b, a, a, a, · · · ), where a =
(1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0) is the ether factor
and b = (1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0)
is a glider factor of E3, as
B =
{1111100010011011111000100110111, 1111000100110111110001001101111,

1110001001101111100010011011111, 1100010011011111000100110111110,

1000100110111110001001101111100, 0001001101111100010011011111000,

0010011011111000100110111110001, 0100110111110001001101111100010,

1001101111100010011011111000100, 0011011111000100110111110001001,

0110111110001001101111100010011, 1101111100010011011111000100110,

1011111000100110111110001001101, 0111110001001101111100010011010,

0111110001001101111100010011010, 1111100010011011111000100110100,

1111000100110111110001001101001, 1110001001101111100010011010011,

1100010011011111000100110100111, 1000100110111110001001101001111,
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0001001101111100010011010011111, 0010011011111000100110100111111,

0100110111110001001101001111111, 1001101111100010011010011111110,

0011011111000100110100111111101, 0110111110001001101001111111010,

1101111100010011010011111110101, 1011111000100110100111111101011,

0111110001001101001111111010111, 1111100010011010011111110101110,

1111000100110100111111101011100, 1110001001101001111111010111001,

1100010011010011111110101110011, 1000100110100111111101011100110,

0001001101001111111010111001101, 0010011010011111110101110011011,

0100110100111111101011100110111, 1001101001111111010111001101111,

0011010011111110101110011011111, 0110100111111101011100110111110,

1101001111111010111001101111100, 1010011111110101110011011111000,

0100111111101011100110111110001, 1001111111010111001101111100010,

0011111110101110011011111000100, 0111111101011100110111110001001,

1111111010111001101111100010011, 1111110101110011011111000100110,

1111101011100110111110001001101, 1111010111001101111100010011011,

1110101110011011111000100110111, 1101011100110111110001001101111,

1010111001101111100010011011111, 0101110011011111000100110111110,

1011100110111110001001101111100, 0111001101111100010011011111000,

1110011011111000100110111110001, 1100110111110001001101111100010}.

Let Λ0 = ΛB = {x ∈ Σ2| x[i,i+30] ∈ B, i ∈ Z}. Since
the 15 times iteration of the local function f̂110 is a map
f̂15
110 : S31 → S, and obviously, f̂15

110(q) = qi+4 for any
q = (qi−15, · · · , qi, · · · , qi+15) ∈ B. Thus, it follows that
f15
110(x) = σ4

L(x) for x ∈ Λ0. Furthermore, let

Λ =
14∪
i=0

f i
110(Λ0).

The following propositions can be easily verified.
Proposition 1: Λ is closed f110-invariant set, and

f15
110(x) = σ4

L(x) for x ∈ Λ.

Proposition 2: Λ is a subshift of finite type (SFT) of σL.
Let A be a determinative block system of Λ, then,

Λ = ΛA, where A is a 31-sequence set consisting of 595
elements. Due to space limitation and simplicity, the decimal
code set D(A) of A is placed in Appendix.

3.3 Chaoticity of rule 110
In the subsection, the chaoticity of rule 110 on ΛA will

be revealed.
Proposition 3:

(1) σL is topologically transitive on Λ;
(2) f110 is topologically transitive on Λ.

Proof: (1) In fact, it can be verified that for every
ordered pair of vertices b(i) and b(j) in A there is a path
in the de Bruijn Diagram GA = {A, E} starting at b(i) and
ending at b(j), thus, the transition matrix A = (Aij)595×595

corresponding to GA is irreducible, so σL is topologically
transitive on Λ [13, 14].
(2) Similar to [17], the topological transitivity of f110 on Λ
can be proved.

Proposition 4: The set of periodic points of f110,
P (f) = {y ∈ Λ| ∃ n > 0, fn(y) = y}, is dense in Λ.

Proof: For any x ∈ Λ and ϵ > 0, there exists
a positive integer M (> 15) such that

∑∞
i=M+1

1
2i <

ϵ/2, and for (a0, · · · , a2M ) = x[−M,M ] ≺ x ∈ Λ,
it follows that (a2M−30, · · · , a2M ), (a0, · · · , a30) ∈ A.
Since σ is transitive on Λ, there exists a path from
(a2M−30, · · · , a2M ) to (a0, · · · , a30) in GA = {A, E}.
Let b̃ = (a2M−30, · · · , a2M , b0, · · · , bk0 , a0, · · · , a30) be
the sequence corresponding to this path. Then, its any 31-
subsequences belong to A.

Now, construct a cyclic configuration y = c∗ =
(· · · , c, c, c, · · · ), where c = (a0, · · · , a2M , b0, · · · , bk0).
Obviously, y ∈ Λ and σm(y) = y, where m = |c| is the
length of c. Thus, f15m(y) = σ4m(y) = y and y[−M,M ] =
x[−M,M ], i.e., y is a periodic point of f110 and d(x, y) < ϵ.
Therefore, the set of periodic points P (f) is dense in Λ.

Proposition 5: The topological entropy of f110 is posi-
tive.

Proof: The topological entropy of f110|Λ satisfies
ent(f110) ≥ ent(f110|Λ) = 4

15ent(σL|Λ) = 4
15 log(ρ(A)) ≈

0.0179 > 0, where ρ(A) is the spectral radius of the
transition matrix A corresponding to A.

It is well known that positive topological entropy implies
chaos in the sense of Li-Yorke [14, 15], and topological
transitivity and density of periodic points imply chaos in the
sense of Devaney [23, 24]. Thus, one has the interesting
result.

Theorem 1: f110 is chaotic in the sense of both Li-Yorke
and Devaney on Λ.

4. Conclusion
In this paper, it is shown that rule 110 defines a chaotic

subsystem on which its global map is topologically tran-
sitive, dense periodic points and has positive topological
entropy. Thus, it is chaotic in the sense of both Li-Yorke and
Devaney. Nevertheless, the complete symbolic dynamical
properties of rule 110 are still an open problem. We need to
find new ways to uncover its rich and complex dynamics.
Conclusively, the result obtained in this paper provides
intriguing and valuable clues for researching CA as rule 110.
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Appendix
The determinative block system A of Λ is a 31-sequence

set consisting of 595 elements. For a sequence a =
(a0, a1, · · · , a30) ∈ A, its decimal code is defined as

D(a) =
30∑
i=0

ai · 230−i

For simplicity, A is replaced by its decimal code set D(A).
D(A) = {5078093, 10156187, 14664927, 20312375, 29329854, 32525809,
40624751, 40864190, 51437331, 58659708, 65051618, 65171337, 65790575,
81249503, 81728380, 102874662, 103217307, 104736504, 116956130, 117319416,
120713527, 130103236, 130342675, 131581151, 135134285, 141527486, 159510605,
160549965, 162002381, 162335821, 162499006, 163066125, 163263949, 163447093,
163455031, 163456519, 163456583, 163456671, 163456692, 163456736, 163456748,
163456760, 163456762, 163456763, 163456767, 163461335, 163461569, 163462193,
163481393, 163496437, 163510261, 163574221, 205749325, 206434615, 209473009,
225645436, 233912260, 234638833, 238406733, 241332105, 241427055, 242190782,
242252877, 252476493, 260206473, 260685350, 263162302, 270268571, 283054972,
298601969, 319021211, 321099931, 324004763, 324671643, 324998012, 326132251,
326527899, 326894187, 326910063, 326913039, 326913166, 326913343, 326913384,
326913473, 326913497, 326913520, 326913521, 326913524, 326913526, 326913527,
326913535, 326922670, 326923139, 326924387, 326962787, 326992875, 327020523,
327148443, 404686047, 411498651, 412869231, 418946018, 421315807, 444554463,
449889503, 451290872, 451344539, 452500450, 461574367, 464739551, 467669855,
467796863, 467820668, 467821683, 467823101, 467823427, 467824140, 467824333,
467824512, 467824520, 467824521, 467824526, 467824527, 467824545, 467824560,
467824573, 467824636, 467897715, 467901471, 467911455, 468218655, 468459359,
468680543, 469277666, 469703903, 471798652, 476813467, 482664211, 482854111,
484381564, 484505755, 504952987, 520412947, 521370701, 526324604, 534198212,
540537143, 562675238, 566109944, 567049293, 597203938, 638042423, 642199863,
648009527, 649343287, 649996024, 652264503, 653055799, 653788375, 653820127,
653826079, 653826332, 653826687, 653826768, 653826947, 653826995, 653827040,
653827042, 653827043, 653827048, 653827052, 653827055, 653827071, 653845340,
653846279, 653848775, 653925575, 653985751, 654041047, 654296887, 670420465,
755781105, 778203017, 779061694, 797556262, 809372094, 813530189, 822997303,
825738463, 837892036, 842631614, 861724435, 875640772, 889108926, 899779006,
902581745, 902689079, 905000900, 923148734, 929479102, 935339710, 935593726,
935641336, 935643366, 935646202, 935646854, 935648280, 935648666, 935649024,
935649040, 935649043, 935649052, 935649054, 935649091, 935649120, 935649147,
935649272, 935795430, 935802942, 935822910, 936437310, 936918718, 937361086,
938555332, 939407806, 942738929, 943597304, 953626935, 965328422, 965708222,
968763128, 969011511, 993381873, 1009905975,1040022605, 1040266737,
1040825894, 1042298865, 1042679745, 1042695985, 1042718679, 1042723889,
1042735300, 1042738391, 1042741252, 1042741376, 1042741400, 1042741401,
1042741402, 1042741403, 1042741475, 1042741479, 1042741488, 1042741788,
1042742023, 1042742239, 1042743239, 1043912497, 1043972593, 1044132337,
1049047537, 1052649208, 1052898801, 1056437745, 1065991718, 1068396425,
1068468670, 1072811505, 1076280870, 1081074287, 1090004728, 1094173919,
1099460489, 1106327492, 1106637111, 1125350477, 1126110076, 1132219889,
1134098587, 1141308966, 1144505567, 1153497126, 1154016806, 1154743014,
1154909734, 1155274886, 1155373798, 1155465370, 1155469339, 1155470083,
1155470115, 1155470159, 1155470170, 1155470192, 1155470198, 1155470204,
1155470205, 1155470207, 1155472491, 1155472608, 1155472920, 1155482520,
1155490042, 1155496954, 1155528934, 1186564542, 1192945190, 1194407876,
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1194837215, 1194868262, 1199980070, 1204084499, 1223042808, 1276084847,
1280176439, 1283214833, 1284399727, 1296019055, 1298686575, 1299414093,
1299992049, 1304529007, 1306111599, 1307576751, 1307640255, 1307652158,
1307652665, 1307653374, 1307653537, 1307653894, 1307653990, 1307654080,
1307654084, 1307654087, 1307654096, 1307654104, 1307654110, 1307654142,
1307690681, 1307692559, 1307697551, 1307851151, 1307971503, 1308082095,
1308593775, 1309641150, 1340840930, 1355079443, 1357266470, 1408952056,
1451632376, 1462843332, 1463272671, 1472519955, 1480506918, 1504604041,
1511562210, 1545111288, 1556406035, 1558123388, 1570432760, 1593753126,
1593875192, 1594891256, 1595081696, 1595089816, 1595101163, 1595103768,
1595109474, 1595111019, 1595112450, 1595112512, 1595112524, 1595112525,
1595112561, 1595112563, 1595112568, 1595112718, 1595112835, 1595112943,
1595113443, 1595698072, 1595728120, 1595807992, 1598265592, 1600191224,
1601960696, 1606737683, 1607976159, 1610147576, 1611882259, 1618744188,
1620828783, 1623472068, 1626905570, 1627060379, 1636796862, 1644396307,
1645994607, 1650490387, 1650750227, 1651113331, 1651196691, 1651379267,
1651428723, 1651474509, 1651476493, 1651476865, 1651476881, 1651476903,
1651476909, 1651476920, 1651476923, 1651476926, 1651476927, 1651478069,
1651478128, 1651478284, 1651483084, 1651486845, 1651490301, 1651506291,
1667024095, 1670214419, 1671160431, 1671175955, 1673731859, 1675784073,
1685263228, 1713830043, 1715349240, 1723448870, 1727568866, 1728562399,
1751281545, 1752375059, 1778217852, 1799558012, 1805163490, 1805378159,
1810001801, 1813995283, 1826043844, 1846297468, 1858958204, 1870618387,
1870679420, 1871187452, 1871282672, 1871286732, 1871292405, 1871293708,
1871296561, 1871297333, 1871298049, 1871298080, 1871298086, 1871298104,
1871298105, 1871298108, 1871298183, 1871298241, 1871298295, 1871298545,
1871590860, 1871605884, 1871645820, 1872874620, 1873837436, 1874722172,
1877110665, 1877729903, 1878815612, 1879682953, 1884156215, 1885477858,
1887194609, 1892140255, 1895939977, 1898987017, 1899116937, 1899298489,
1899340169, 1899431457, 1899456185, 1899479078, 1899480070, 1899480256,
1899480264, 1899480275, 1899480278, 1899480284, 1899480285, 1899480287,
1899480858, 1899480888, 1899480966, 1899483366, 1899485246, 1899486974,
1899494969, 1907253871, 1908849033, 1909322039, 1909329801, 1910607753,
1930656845, 1931416444, 1937526257, 1938023023, 1949929353, 1976430903,
1978742724, 1980739465, 1986763746, 2009051017, 2012606775, 2013583300,
2015819931, 2019811951, 2021711812, 2023235332, 2023300292, 2023391068,
2023411908, 2023457552, 2023469916, 2023481363, 2023481859, 2023481952,
2023481956, 2023481961, 2023481963, 2023481966, 2023481967, 2023482253,
2023482268, 2023482307, 2023483507, 2023484447, 2023485311, 2023489308,
2028166340, 2028402843, 2028406724, 2029045700, 2048706500, 2061957275,
2063113186, 2064111556, 2078267332, 2080045211, 2080533474, 2081651789,
2084597730, 2085359490, 2085391970, 2085437358, 2085447778, 2085470600,
2085476782, 2085482505, 2085482753, 2085482800, 2085482802, 2085482804,
2085482805, 2085482807, 2085482950, 2085482958, 2085482977, 2085483577,
2085484047, 2085484479, 2085486478, 2087824994, 2087943245, 2087945186,
2088264674, 2098095074, 2104720461, 2105298417, 2105797602, 2112875490,
2116483227, 2117713446, 2126102054, 2126391032, 2131983437, 2132598547,
2136792851, 2136937340, 2140041097,2143762372,2145623010}.
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From Glider to Chaos: A Transitive Subsystem Derived From
Glider B̄ of CA Rule 110

Pingping Liu, Fangyue Chen, Lingxiao Si, and Fang Wang
School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, P. R. China

Abstract— Rule 110, a member of Wolfram’s class IV and
Chua’s hyper Bernoulli-shift rules, has been proved to be
capable of supporting varieties of mobile self-localizations
referred as gliders. This paper is devoted to a careful study
for glider B̄ of rule 110 from the viewpoint of symbolic
dynamics. A transitive subsystem is revealed based on ex-
isting glider B̄, and its complex dynamics such as having
positive topological entropy and density of periodic points
are proved. These results therefore suggest that rule 110 is
chaotic in the sense of both Li-Yorke and Devaney.

Keywords: cellular automata; glider; directed graph; symbolic
dynamics; topologically transitive; chaos

1. Introduction
Cellular automata (CA) are a class of spatially and tempo-

rally discrete, deterministic mathematical systems character-
ized by local interactions and an inherently parallel form of
evolution, and able to produce complex dynamical phenom-
ena by means of designing simple local rules [1]. The study
of topological dynamics of CA began with Hedlund in 1969,
who viewed one-dimensional CA (1-D CA) in the context of
symbolic dynamics as endomorphisms of the shift dynamical
system [2], where the main results are the characterizations
of surjective and open CA. In 1970, Conway proposed his
now-famous “Game of Life” [3], which received widespread
interests among researchers in different fields. In the early
1980’s, Wolfram introduced space-time representations of
1-D CA and informally classified them into four classes
by using dynamical concepts like periodicity, stability and
chaos [4, 5]. In 2002, he introduced his monumental work
A New Kind of Science [6]. Based on this work, Chua et
al. provided a nonlinear dynamics perspective to Wolfram’s
empirical observations via the concepts like characteristic
function, forward time-τ map, basin tree diagram and Isle-
of-Eden digraph [7-10].

Rule 110 in Stephen Wolfram’s system of identification
[6] has been an object of special attention due to the
structures or gliders which have been observed in evolution
space from random initial conditions. A list of gliders is
presented in [12]. Wolfram established the conjecture that
rule 110 could perform universal computation [13]. Lindgren
and Nordahl around 1992 studied the transitional role of
rule 110 and its relation with class IV rules sitting between
Wolfram’s classes II and III [14]. In 1999, Cook gave a brief

introduction about the complex activity of gliders [12], and
made a comparison between rule 110 and “Game of Life”,
finding some similarities and suggesting to call it as left
life. Further, he demonstrated that rule 110 is universal via
simulating a novel cyclic tag system (CTS) [12, 15] with
well-defined blocks of gliders by means of collisions.

Gratefully, the research of CA has drawn more and more
scientists’ attention in the last 20 years. Many concepts
of topological dynamics have been used to describe and
classify them [11, 16-19]. The dynamical properties of some
robust Bernoulli-shift rules with distinct parameters have
been studied in the bi-infinite symbolic sequence space [20-
22]. Based on Chua’s classes, Bernoulli-shift pattern for rule
110 changes with length, and Bernoulli-shift dynamics of
some gliders parameters are relatively large, so it’s difficult
to investigate their invariant subsystems according to refer-
ences before. And some gliders with small parameters may
not have chaotic subsystems. Thus, this work extends the
investigation of Bernoulli-shift dynamics of glider B̄ of rule
110, and reveals its complex dynamics under the framework
of bi-infinite symbolic sequence space.

The rest of the paper is organized as follows: Section 2
presents the basic concepts of 1-D CA, symbolic dynamics
and glider. Section 3 identifies the subsystem of glider B̄,
and shows the chaotic dynamics of the subsystem. It is
indeed remarkably that rule 110 is topologically transitive,
possesses positive topological entropy and has a dense
periodic set. Therefore, it is chaotic in the sense of both Li-
Yorke and Devaney. Finally, Section 4 highlights the main
results of this work.

2. Symbolic Dynamics and Glider
2.1 Symbolic sequence space and CA

Let S = {0, 1}, and Σ2 = {x = (· · · , x−1,
∗
x0, x1, · · · )|xi

∈ S, i ∈ Z} with distance “d”: d(x, y) =

sup
{

ρ(xi,yi)
2|i|

| i ∈ Z
}

, where

ρ(xi, yi) =

{
1 if xi ̸= yi

0 xi = yi
(1)

It is known that Σ2 is a compact, perfect, and totally
disconnected metric space.

If x ∈ Σ2 and I = [i, j] is an interval of integers, put
x[i,j] = (xi, xi+1, · · · , xj) (i < j), x[i,j) = (xi, · · · , xj−1).
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Table 1: Truth table of local function of rule 110

(xi−1, xi, xi+1) f̂110(xi−1, xi, xi+1)
(0, 0, 0) 0
(0, 0, 1) 1
(0, 1, 0) 1
(0, 1, 1) 1
(1, 0, 0) 0
(1, 0, 1) 1
(1, 1, 0) 1
(1, 1, 1) 0

Let x(−∞,i] = (· · · , xi−1, xi) and x[j,+∞) = (xj , xj+1, · · · )
denote the left and right half infinite sequence, respectively.
For a finite sequence a = (a0, · · · , an−1), if there exists an
m ∈ Z such that xm+k = ak (k = 0, 1, · · · , n− 1), then a
is said to be a subsequence of x, denoted by a ≺ x. The left-
shift map σL and right-shift map σR are defined by ∀x ∈ Σ2,
[σL(x)]i = xi+1 and [σR(x)]i = xi−1, respectively, where
[σL(x)]i ([σR(x)]i) stands for the i-th element of σL(x)
(σR(x)).

By a theorem of Hedlund [2], a map f : Σ2 → Σ2 is a
CA iff it is continuous and commutes with σ, where σ is
left-shift map σL or right-shift map σR. Furthermore, if f is
a CA, then there exists a radius r ≥ 1 and a local function
f̂ : S2r+1 → S such that [f(x)]i = f̂(x[i−r,i+r]). If r = 1,
then f is an elementary CA (ECA). Any CA f defines a
dynamical system (Σ2, f). A subset X ⊆ Σ2 is f -invariant
if f(X) ⊆ X , and strongly f -invariant if f(X) = X . If
X is a closed and f -invariant, then (X, f) or simply X is
called a subsystem of (Σ2, f).

Each ECA rule can be expressed by a local function, the
logical truth table of rule 110’s local function f̂110 is shown
in Table 1. Obviously, the output binary sequence of the rule
is 01101110, its decimal number is N = 110.

2.2 Glider B̄

A glider is a compact group of non-quiescent states trav-
eling along CA lattice, and is a periodic structure moving in
time [15, 25-27]. From the viewpoint of symbolic dynamics,
a glider can be defined as the evolutionary orbit starting
from a special initial configuration in the bi-infinite sequence
space Σ2 [28].

It was known that the speed of glider B̄ of rule 110 is
−6/12, the lineal volume is 22, and the even number of pe-
riodic margin on the left (or right) border in the ether pattern
are 3 [26]. In symbolic sequence space, the ether pattern and
glider can be defined as the evolutionary orbit starting from a
special initial configuration [28]. The ether factor of the ether
patterns er (or el) is a = (1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0),
and one of glider factors of B̄ is b=(1, 1, 1, 1, 1, 1, 0,
0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0), i.e., an ether
pattern of rule 110 is the evolutionary orbit Orbf110(a

∗) =
{a∗, f110(a∗), f2

110(a
∗), · · · } and glider B̄ is the evolution-

ary orbit Orbf110(x̄) = {x̄, f110(x̄), f2
110(x̄), · · · } in the

CA lattice space, where a∗ = (· · · , a, a, a, · · · ) is a cyclic
configuration and x̄ = (· · · , a, a, a, b, a, a, a, · · · ). That the
speed of B̄ is −6/12 implies this glider shifts to left by 6 bits
in every 12 iterations under rule 110, i.e., f12

110(x̄) = σ6
L(x̄).

The ether pattern and glider B̄ are shown in Figure 1.

Fig. 1: Ether pattern and glider B̄ of rule 110.

3. Subsystem Derived From Glider B̄
3.1 Shift of finite type

Based on glider B̄, one can obtain a 25-
sequence set B = {q|q = x̄[i,i+24], ∀i ∈ Z}
from x̄ = (· · · , a, a, a, b, a, a, a, · · · ), where
a = (1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0) is the ether factor and
b = (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0) is
a glider factor of B̄. More specifically, B =
{0000111100100110111110001, 0001001101111100010011011,
0001001101111110000111100, 0001111001001101111100010,
0010011011111000100110111, 0010011011111100001111001,
0011011111000100110111110, 0011011111000100110111111,
0011011111100001111001001, 0011110010011011111000100,
0100110111110001001101111, 0100110111111000011110010,
0110111110001001101111100, 0110111110001001101111110,
0110111111000011110010011, 0111100100110111110001001,
0111110001001101111100010, 0111110001001101111110000,
0111111000011110010011011, 1000011110010011011111000,
1000100110111110001001101, 1000100110111111000011110,
1001001101111100010011011, 1001101111100010011011111,
1001101111110000111100100, 1011111000100110111110001,
1011111000100110111111000, 1011111100001111001001101,
1100001111001001101111100, 1100010011011111000100110,
1100010011011111100001111, 1100100110111110001001101,
1101111100010011011111000, 1101111100010011011111100,
1101111110000111100100110, 1110000111100100110111110,
1110001001101111100010011, 1110001001101111110000111,
1110010011011111000100110, 1111000011110010011011111,
1111000100110111110001001, 1111000100110111111000011,
1111001001101111100010011, 1111100001111001001101111,
1111100010011011111000100, 1111100010011011111100001,
1111110000111100100110111}.
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The decimal code set D(B) of B is D(B) =
{1986033, 2554011, 2554940, 3972066, 5108023, 5109881,
7309758, 7309759, 7324617, 7944132, 10216047, 10219762,
14619516, 14619518, 14649235, 15888265, 16292834, 16292848,
16530587, 17770232, 18054221, 18054686, 19331227, 20432095,
20439524, 24923633, 24923640, 25042509, 25662332, 25804326,
25804559, 26442829, 29239032, 29239036, 29298470, 29608382,
29679379, 29679495, 29998630, 31581407, 31616905, 31616963,
31776531, 32567919, 32585668, 32585697, 33061175}.

Let Λ0 = ΛB = {x ∈ Σ2| x[i,i+24] ∈ B, i ∈ Z}. Since
the 12 times iteration of the local function f̂110 is a map
f̂12
110 : S25 → S, and obviously, f̂12

110(q) = qi+6 for any
q = (qi−12, · · · , qi, · · · , qi+12) ∈ B. Thus, it follows that
f12
110(x) = σ6

L(x) for x ∈ Λ0. Furthermore, let

Λ =
11∪
i=0

f i
110(Λ0) (2)

The following propositions can be easily verified.
Proposition 1: Λ is closed f110-invariant set, and f12

110(x)
= σ6

L(x) for x ∈ Λ.

Proposition 2: Λ is a subshift of finite type of σL (SFT).
Let A is a determinative block system of Λ, then, Λ = ΛA,

where A is a 25-sequence set consisting of 435 elements.
Due to space limitations and for simplicity, the decimal code
set D(A) of A is placed in Appendix.

3.2 de Bruijn diagram
The invariant set Λ = ΛA in Propositions 1 and 2 can

be described by a finite directed graph, GA = {A, E},
where each vertex is labeled by a sequence in A, and E
is the set of edges connecting the vertices in A. The finite
directed graph GA is called the de Bruijn diagram of A (or
ΛA). Two vertices a = (a0, · · · , a24) and b = (b0, · · · , b24)
are connected by an edge (a0, · · · , a24) → (b0, · · · , b24) if
and only if (a1, · · · , a24) = (b0, · · · , b23). One can think
of each element of ΛA as a bi-infinite path on the diagram
GA. Whereas a de Bruijn diagram corresponds to a square
transition matrix A = (Aij)435×435 with Aij = 1 if and
only if there is an edge from vertex b(i) to vertex b(j), where
|A| = 435 is the number of elements in A, and i (or j) is the
code of the corresponding vertex in A, i, j = 1, 2, · · · , 435.
Thus, ΛA is precisely defined by the transition matrix A.
The de Bruijn diagram GA associated with A is shown in
Fig. 2, where the code of vertex represents the location of
corresponding element in A.

Remarkably, a 0− 1 square matrix A is irreducible if for
any i, j, there exists an positive integer n such that An

ij > 0;
aperiodic if there exists an n > 0, such that An

ij > 0 for all
i, j, where An

ij is the (i, j) entry of the power matrix An. If
ΛA is a SFT of (Σ2, σ), then σ is topologically transitive on
ΛA if and only if A is irreducible; σ is topologically mixing
if and only if A is aperiodic. Equivalently, A is irreducible
if and only if for every ordered pair of vertices b(i) and b(j)
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Fig. 2: The de Bruijn diagram GA associated with glider B̄.

there is a path in GA starting at b(i) and ending at b(j) [23,
24].

3.3 Chaoticity
In the subsection, the chaoticity of rule 110 on ΛA will

be revealed.

Proposition 3:
(1) σL is topologically transitive on Λ;
(2) f110 is topologically transitive on Λ.

Proof: (1) In fact, it can be verified that for every
ordered pair of vertices b(i) and b(j) in A there is a path
in the de Bruijn diagram GA = {A, E} starting at b(i) and
ending at b(j), thus, the transition matrix A = (Aij)435×435

corresponding to GA is irreducible, so σL is topologically
transitive on Λ [23, 24].
(2) Similar to [29], the topologically transitive of f110 on Λ
can be proved.

Proposition 4: The set of periodic points of f110,
P (f) = {y ∈ Λ| ∃ n > 0, fn(y) = y}, is dense in Λ.

Proof: For any x ∈ Λ and ϵ > 0, there exists
an positive integer M (> 12) such that

∑∞
i=M+1

1
2i <

ϵ/2, and for (a0, · · · , a2M ) = x[−M,M ] ≺ x ∈ Λ, it
follows that (a2M−24, · · · , a2M ), (a0, · · · , a24) ∈ A. Since
σ is topologically transitive on Λ, there exists a path from
(a2M−24, · · · , a2M ) to (a0, · · · , a24) in GA = {A, E}.
Let b̃ = (a2M−24, · · · , a2M , b0, · · · , bk0 , a0, · · · , a24) be
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the sequence corresponding to this path. Then, its any 25-
subsequence belongs to A.

Now, construct a cyclic configuration y = c∗ =
(· · · , c, c, c, · · · ), where c = (a0, · · · , a2M , b0, · · · , bk0).
Obviously, y ∈ Λ and σm(y) = y, where m = |c| is the
length of c. Thus, f12m(y) = σ6m(y) = y and y[−M,M ] =
x[−M,M ], i. e., y is a periodic point of f110 and d(x, y) < ϵ.
Therefore, the set of periodic points P (f) is dense in Λ.

Proposition 5: The topological entropy of f110 is posi-
tive.

Proof: The topological entropy of f110|Λ satisfies
ent(f110) ≥ ent(f110|Λ) = 6

12ent(σL|Λ) = 1
2 log((A)) =

1
2 log(1.07466) ≈ 0.0360 > 0, where (A) is the spectral
radius of the transition matrix A corresponding to A.

It is well known that positive topological entropy implies
chaos in the sense of Li-Yorke [24], and topological transi-
tivity and density of periodic points imply chaos in the sense
of Devaney [30, 31]. Thus, one has the interesting result.

Theorem 1: f110 is chaotic in the sense of both Li-Yorke
and Devaney on Λ.

4. Conclusion
In this work, we uncover some dynamic properties of

glider B̄ of rule 110. That is, glider B̄ defines one subsystem,
on which it is topologically transitive and possesses posi-
tive topological entropy and the density of periodic points.
Hence, the rule is chaotic in the sense of both Li-Yorke and
Devaney on the subsystem. One important problem is how to
find the biggest subsystem associating with an existing glider
and how to find the relation between universal computation
and dynamics of CA, which are important topics for further
research in the near future.
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Appendix

The determinative block system A of Λ is a 25-
sequence set consisting of 435 elements. For a sequence
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a = (a0, a1, · · · , a24) ∈ A, its decimal code is defined as

D(a) =
24∑
i=0

ai · 224−i. (3)

For simplicity, A is replaced by its decimal code set D(A).
D(A) =
{638502, 771295, 1152760, 1156646, 1277005, 1542590, 1827439, 1866829,

1986033, 2305521, 2309112, 2313293, 2520800, 2526459, 2539896, 2551290,

2553926, 2553996, 2554009, 2554010, 2554011, 2554015, 2554039, 2554081,

2554328, 2554864, 2554940, 2618104, 3008248, 3085180, 3333907, 3391369,

3403375, 3458271, 3654879, 3688088, 3733659, 3864731, 3972066, 4073208,

4611042, 4618225, 4626587, 5041601, 5052919, 5079793, 5102580, 5107852,

5107993, 5108019, 5108020, 5108022, 5108023, 5108031, 5108079, 5108162,

5108657, 5109729, 5109881, 5236209 6016497, 6021743, 6170360, 6230908,

6451081, 6667814, 6778377, 6782739, 6806751, 6868921, 6916542, 7083913,

7266209, 7308389, 7309518, 7309725, 7309731, 7309744, 7309755, 7309758,

7309759, 7309820, 7310201, 7310865, 7314830, 7323406, 7324617, 7376177,

7467319, 7729463, 7748344, 7790747, 7860535, 7944132, 8146417, 8244721,

8335241, 8845467, 9222084, 9236450, 9239451, 9253175, 10001378, 10083202,

10105838, 10159586, 10205160, 10215705, 10215987, 10216039, 10216040,

10216044, 10216046, 10216047, 10216063, 10216158, 10216324, 10217315,

10219459, 10219762, 10472418, 12032994, 12043487, 12340721, 12461816,

12679323, 12902163, 13066003, 13335629, 13556755, 13565478, 13613502,

13737843, 13833084, 14167827, 14422908, 14532419, 14577545, 14616779,

14619037, 14619451, 14619462, 14619488, 14619510, 14619516, 14619517,

14619518, 14619641, 14620403, 14621731, 14629661, 14646812, 14649235,

14655934, 14719970, 14752354, 14934639, 15136923, 15458927, 15496689,

15581495, 15596059, 15721071, 15808452, 15888265, 15957069, 16270939,

16289007, 16292315, 16292403, 16292613, 16292791, 16292833, 16292834,

16292835, 16292839, 16292847, 16292848, 16293835, 16299931, 16310554,

16373995, 16489442, 16511203, 16529656, 16530587, 16584177, 16656120,

16670483, 17096467, 17162863, 17353596, 17355539, 17690935, 17710630,

17770232, 17931772, 18037616, 18040445, 18047164, 18052861, 18054179,

18054214, 18054220, 18054221, 18054223, 18054235, 18054256, 18054380,

18054648, 18054686, 18086268, 18281340, 18444169, 18472900, 18478903,

18506351, 18621260, 18709581, 18813820, 19331227, 19788087, 19892670,

20002756, 20166404, 20211676, 20319172, 20410320, 20431410, 20431975,

20432078, 20432081, 20432088, 20432093, 20432095, 20432126, 20432316,

20432648, 20434631, 20438919, 20439524, 20651388, 20672589, 20707483,

20899576, 20944836, 21199949, 21396941, 21777905, 23008124, 23116877,

23310217, 23988670, 24065988, 24086974, 24105183, 24137201, 24345677,

24575245, 24681442, 24755750, 24912685, 24921719, 24923373, 24923417,

24923522, 24923611, 24923632, 24923633, 24923635, 24923639, 24923640,

24924133, 24927181, 24932493, 24964213, 25032817, 25042044, 25042509,

25069304, 25105276, 25325449, 25358647, 25454014, 25454985, 25632531,

25662332, 25743102, 25796024, 25797438, 25800798, 25803646, 25804305,

25804323, 25804326, 25804327, 25804333, 25804344, 25804406, 25804540,

25804559, 25820350, 25917886, 26087846, 26132006, 26184126, 26442829,

26671259, 26723551, 26993263, 27102910, 27113510, 27130957, 27227004,

27377190, 27475686, 27666168, 28281278, 28335654, 28432324, 28771551,

28829807, 28845816, 28950054, 29064838, 29155091, 29233558, 29238075,

29238902, 29238924, 29238977, 29239021, 29239032, 29239033, 29239035,

29239036, 29239282, 29240806, 29243462, 29259322, 29293624, 29298238,

29298470, 29311868, 29329854, 29439940, 29504223, 29504708, 29593481,

29608382, 29648767, 29675228, 29675935, 29677615, 29679039, 29679368,

29679377, 29679379, 29679382, 29679388, 29679419, 29679486, 29679495,

29687391, 29736159, 29821139, 29869279, 29998630, 30138991, 30273847,

30328671, 30465811, 30917855, 30993378, 31162991, 31192119, 31252243,

31426335, 31442143, 31529327, 31573956, 31581407, 31601599, 31614830,

31615183, 31616023, 31616735, 31616900, 31616904, 31616905, 31616907,

31616910, 31616925, 31616959, 31616963, 31620911, 31645295, 31687785,

31776531, 31846711, 31914139, 31941551, 32010121, 32403337, 32490383,

32541879, 32564194, 32567919, 32578015, 32584631, 32584807, 32585227,

32585583, 32585666, 32585668, 32585669, 32585671, 32585678, 32585695,

32585697, 32587671, 32599863, 32621108, 32700571, 32747991, 32782276,

32978884, 33022407, 33059313, 33061175, 33070050, 33127501, 33168354,

33312241, 33340966}.
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Abstract - Cellular Automata (CA) models are important for 

many applications in physics, chemistry, biology and 

engineering. Thus, programming such CA models to run as 

parallel applications on modern computer architectures is of 

great interest. The approach advocated and studied in this 

paper is to consider CA models as intermediate formalisms 

that can be mapped into other (better or well-researched) 

computational paradigms, such as BSP, Multi-BSP, 

MapReduce, and Resource-Oblivious algorithms. With this 

approach, the application-to-architecture mapping results that 

have been obtained can be leveraged to ultimately create CA 

frameworks that will lead to improvements in (end-user, non-

professional) programmer productivity in specifying, 

developing, maintaining, migrating and evolving CA 

applications, as the technologies of computer architecture s 

undergo rapid advances in the next decade. 

Keywords: Cellular Automata; BSP, Multi-BSP; 

MapReduce; Parallelization; Multi-Core, Many-core; 

Resource-oblivious, cache-oblivious, network-oblivious. 

 

1 Introduction 

  The Cellular Automata (CA) model is an important 

intermediate computational formalism (ICF) that lies between 

many applications and algorithms from many domains, and 

their implementations on computer architectures and 

platforms. Although CA simulations can exhibit complex 

phenomena such as self-organization, emergent behavior, 

non-linear dynamics, CA models themselves are quite simple 

and easy to describe and explain. Many computational models 

in STEM (science: (biology, physics, chemistry, geology), 

technology, engineering, mathematics) have been studied 

using CA and related models, such as Lattice Gas [17, 20, 31, 

32, 8]. In these models, one uses discrete sets of values for 

space, time and states of entities in collections. Furthermore, 

the entity ensembles are organized according to specific 

(linear or non-linear) rule of interactions and co-

dependencies.  

 It is thus an important issue to determine how CA 

models and applications can be programmed to execute on 

modern multi-core and many-core computer systems. These 

systems include, shared-memory (UMA or NUMA-CCA) 

multi-processors; heterogeneous systems consisting of CPU 

multi-core + GPU / GPGPU / Co-processor / Hardware 

Accelerator multi-cores and many-cores; as well as clusters, 

supercomputers, data centers, distributed and inter-networked 

grid computing, inter-grid computing and cloud computing 

infrastructures and fabrics, built using the chip level multi-

processor (CMP) multi-cores. The mapping of CA 

applications and algorithms into computer architectures is 

subject to the constraints or requirements of (end-user, 

domain expert) programmer productivity, execution 

performance efficiency, scalability, and fault tolerance. For 

owners of computational resources, one may further add the 

requirement of maximizing resource utilization (throughput) 

at all times. The latter requirement constitutes an important 

context for parallelizing single tasks (jobs, applications) like a 

CA model or application. 

 The current paper discusses using a leveraging 

technique to accomplish the application to architecture 

mapping.  The mapping of several computational models, 

paradigms and formalisms onto (homogeneous and 

heterogeneous) computer architectures, has already been 

studied quite extensively. Thus, it is useful to determine how 

the mapping of CA applications and models for execution on 

modern multi-core and many-core computer architectures can 

exploit the pre-existing body of knowledge. Furthermore, 

leveraging such knowledge allows end-users, (non-

professional programmers, albeit domain experts and 

specialists), to concentrate on being productive in devising 

enhanced parallel algorithms, as well as providing hints about 

automatic parallelization to compilers and code generators, 

instead of focusing on creating parallel versions of CA 

applications from scratch, especially as computer platforms 

and configurations undergo rapid evolution. 

 The rest of the paper presents results about (re-) 

formulating CA models to fit several frameworks, including: 

BSP (bulk synchronous parallel) [29]; multi-BSP [30]; 

(Google) MapReduce [11, 22] and variants Hadoop (Apache 

2011) [2], Dryad [21], and Twister [12]. 

2 CA Model / Performance Cost Modeling 

 A CA array consists of N cells. The cells may be 

organized into 1-dimensional, 2-dimensional or multi-

dimensional (spatial) arrays, according to the coordinate-

based naming, addressing, labeling or tagging scheme used to 

refer to the cells in the array, (Fig. 1). Of practical interest is 

Int'l Conf. Scientific Computing |  CSC'12  | 91



to consider the value of N reaching O(10
10

) to O(10
12

), for 

STEM simulations. The value of N is also allowed to vary 

over time. Each cell in a CA array has associated with it a set 

of States (S); a Nearest Neighbor or Neighborhood relation 

(H); and a State Transition Function, Operation or 

Transformation (R). Each cell may also have its own local, 

private input and output (IO) data streams associated with it, 

interfacing with its external, ambient environment. If the <S, 

H, R>-tuples associated with all the cells are the same, the 

CA array is termed homogeneous, which corresponds to 

“SIMD” (single instruction multiple data stream) style, 

(and/or “SPMD” single program multiple data stream style), 

in parallel computing; otherwise, the CA array is 

heterogeneous, with this case corresponding to the “MIMD” 

(multiple instruction multiple data stream) style. In classical 

CA models, the size of H, |H|, is typically O(1), with small 

values, for example, for von Neumann or Moore neighbor 

template specifications. In computational PDE (partial 

differential equations) and numerical analysis, templates of 

neighborhood relations are called stencils. Neighborhood 

templates can also be modeled using polyominoes (as well as 

variants and related poly-forms, such as pseudo-polyominoes, 

polyhexes, poly-cubes, etc.). Visualized as graphs, such CA 

arrays have associated with them sparse adjacency matrices. 

One can also contemplate the other extreme case of |H| = 

O(N), whereby each cell has all other cells as 1-hop nearest 

neighbors, the associated graph being a complete graph. 

 A CA system is an organized collection of CA arrays, [3, 

4], where various combinatorial techniques can be used to 

structure the collection. 

 In the ensuing discussion, one wishes to distinguish 

between synchronous CA array, subject to unison synchrony, 

and multi-synchronous CA, whereby any cell can operate on 

its own schedule, without being synchronized with other 

cells. In the literature, there is also the concept of an 

asynchronous CA [5], whereby, only one randomly chosen 

cell is allowed to operate at any time. 

 The starting point for insights about mapping CA 

applications into architectures is to create a computational 

graph for a CA application (model, computation, simulation). 

A CA computation (simulation run or session) consists of a 

sequence of K, (K can be up to O(10
6
)), CA simulation 

computation supersteps. Each superstep occurs in each cell, is 

multi-phase or multi-stage, and consists of a state transition 

and update phase, followed by a communication-exchange-

coordination phase. Thus, each superstep can be visualized as 

a (multi-stage) interconnection network with three layers of 

nodes, forming an orchestration chart, or message sequence 

chart [UML] or Quipu chart [1]. The first layer corresponds to 

the N cells executing state transition updates, and the next 2 

layers are devoted to the send and receive portions of the 

communication-exchange-coordination signal (data and 

control message) flows with nearest neighbors in H.  Hence, 

the computational graph of a superstep (and thus of a CA 

simulation) is a DAG (directed acyclic graph), whose 

topology is a multi-stage interconnection network or 

switching network, (a composition of bipartite graphs), [18, 

33]. 

 The work that occurs in a superstep consists of 

computation work, (P-work), (of state transition updates), and 

interoperation work, (C-work), (of communication, exchange, 

coordination, and n operations), which results in O(N) of P-

work and O(2N) of C-work. Let Tp be the cost of P-work, 

measured in a computer’s cycle of instruction executions. Let 

Tc be the cost of C-work. Then, the cost of a superstep work 

is O(NTp) + O(2NTc). Thus, the work in a total simulation 

computation is O(NK) of P-work and O(2NK) of C-work, 

with the cost O(NKTp) + O(2NKTc).  

 The span, depth or critical path length of a CA 

simulation application is O(K) of P-span and O(2K) of C-

span, with the cost O(KTp) + O(2KTc). The span is related to 

the influence of Amdahl’s law for sequential limitations or 

constraints on achievable parallelization.  

 Define the new concept of the embrace, grasp or caliber 

of a computational graph to be the amount of parallel 

operations that can be obtained at any time or stage, (imagine 

embracing, encompassing, hugging or grasping a tree or a 

cylindrical object). Then the caliber of a CA superstep (and 

simulation) is O(N) during a P-work phase and O(2N) during 

a C-work phase, (see Fig 2). 

 Let T
s

1 (T
t
1) be the cost (in time) for using a single 

processor in executing a superstep (total simulation). Let T
s
P 

(T
t
P) be the cost (in time) for using a P processors in 

executing a superstep (total simulation).  Similarly, Let T
s
∞ 

(T
t
∞) be the cost (in time) for using an ideal number 

processors, as well as ideal usage of other resources, in 

executing a superstep (total simulation). Then the relativity of 

the cost measures are: T
s
∞ < T

s
P < T

s
1;  T

t
∞ < T

t
P <  T

t
1. The 

speed up (parallel efficiency) measures are: T
s
1 / T

s
P;  T

t
1 / 

T
t
P; T

s
1 / T

s
∞;  T

t
1 / T

t
∞.  From the CA computational graph, 

it is easy to determine that T
s
1 = O(NTp) + O(2NTc), and T

t
1 

= O(NKTp) + O(2NKTc).  

 The parallelization costs are more involved and depend 

on the cost model adopted about targeted computer 

architecture platforms and configurations. In the uniform cost 

model, all P-work unit costs are the same, just as all C-work 

unit costs are the same, irrespective of the (mostly) 

hierarchical organization of the computer architecture target, 

(this view corresponds to the flat PRAM and UMA models in 

parallel computer architecture analysis). In this case, T
s
P = 

O([N/P]Tp) + O(2[N/P]Tc) + O(N T
Q(P)

c), and T
t
P = 

O([N/P]KTp) + O(2[N/P]KTc), with [X] being the appropriate 
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floor or ceiling operator. Here, T
Q(P)

c is a cost adjustment  

factor that is necessary, if it happens to be the case that the 

neighborhood sizes |H| are so large that in some cases, the 

coordination of the information about all the neighbors of a 

cell cannot be accommodated in one assignment to a 

processor. 

 

3 Mapping into BSP/Multi-BSP Models 

 A BSP computation [29] consists of a sequence of 

supersteps, with barrier synchronization steps interposed 

between consecutive supersteps. A superstep consists of a 

computation step, followed by a communication-exchange-

coordination step.  The target architecture is characterized and 

parameterized by a <P, g, L, h>-tuple, (with P: number of 

processors, g: cost for bandwidth, L: periodicity – a latency 

cost for synchronization at regular intervals, and h: h-relation 

– maximum number of data messages a processor can send 

and/or receive during one BSP superstep). In visualizing CA 

computations via computational graphs, as presented above, it 

is clear that a synchronous CA simulation is a BSP 

computation, and thus the results from the latter theory and 

practice can be directly applied to gain insights about CA 

computations running on modern architectures. For example, 

the CA cost unit Tc can be expressed in terms of the g and h 

parameters in the BSP model. Additionally, Tp is the cost 

charge for basic processing of instructions by processes or 

threads. 

 The multi-synchronous CA case can also be 

reformulated in the BSP framework. The neighborhood inter-

relations of the cells of a CA array are such that the cells 

cannot be partitioned into isolated sub-groups. Operationally, 

after each CA simulation superstep each cell has to 

necessarily wait for the eventual superstep work completion 

(and quiescence) of every other cell in the CA array; 

otherwise, the results of the simulation will not be consistent. 

Thus, there is an implicit (virtual) global (barrier) 

synchronization imposed on the whole CA array, even if there 

is no explicit centralized mechanism being used. This 

corresponds exactly to the periodicity parameter (L) in the 

BSP model.  

 The BSP model was generalized to the Multi-BSP 

model [30] to handle the mapping of parallel applications into 

computer architectures targets which are organized as 

hierarchical tree-like structures, with (multi-core and many-

core) processors at the leaves, and memory storage units with 

various performance characteristics co-located at different 

levels of the architectural hierarchy. The new 

parameterizations for each hierarchical level (k) consist of a 

<Pk, gk, Lk, hk, mk>-tuple. The (P, g L, h) parameters have 

the same interpretations as in the classic BSP model. The 

most significant aspect embraced by the multi-BSP model is 

the role of latency costs due to caches, caching and memory 

hierarchies. For this purpose, mk is the amount of memory 

(storage capacity) available at level k, and is accessible to all 

lower level units. 

 A 1-level multi-BSP, (1-BSP), is the same as the classic 

BSP model. Thus, T
s
P = O([N/P] Tp) + O(2[N/P]Tc) + O(N 

T
Q(P)

c), and T
t
P = O([N/P]K Tp) + O(2[N/P]KTc). 

 A 2-level multi-BSP, (2-BSP), model has to consider the 

fact that Tc becomes very significant, and for some 

architecture targets can come to dominate and swamp Tp. It is 

also the case that Tc should be decomposed into contributions 

from intra-grouping (T
ip2

c) and inter-grouping (T
ep2

c) 

communication-exchange-coordination (C-work) efforts and 

costs, (with  T
ip2

c << T
ep2

c). In this case, T
s
P = O([N/P] Tp) + 

O(2[N/P]T
ip2

c) + O(2([N/P] – 1)[N/P]T
ep2

c), and T
t
P = 

O([N/P]K Tp) + O(2[N/P]KT
ip2

c) + O(2([N/P] – 

1)[N/P]T
ep2

c). 

 Each higher level, (k-BSP), k > 2, in the hierarchy, leads 

to a nested bracketing or grouping of the processor (and other 

computational) resources, and thus requires further 

decompositions into contributions from (nested) inter-

grouping communication-exchange-coordination (C-work) 

costs. In each case, the new contributions easily come to 

dominate all cost considerations. 

4 Mapping into MapReduce Models 

 The MapReduce parallel computing paradigm for (very) 

large-scale processing was introduced by Google [11], and 

now has inspired several variations and extensions, such as 

Apache’s Hadoop [2, 10], Micrsoft’s Dryad [21], and Twister 

[12] and Amazon’s Azure Twister [15]. The paradigm has 

been used to explore many applications [22]. MapReduce is 

built on a rich programming tradition, with contributions from 

LISP programming [MacCarthy]; functional programming 

[Backus: FP]; function style programming [Haskell, ML]; 

algorithmic skeletons [Cole]; applicative programming [K. 

Iverson: APL, J], and nested array programming [T. More]. 

Originally, the computer architecture targets of MapReduce 

included clusters; distributed and networked data centers, 

followed by implementations for grid computing and cloud 

computing platforms, fabrics and infrastructures, using MPI. 

Later, there were attempts to implement MapReduce on 

(shared memory) multi-processors and multi-core computers 

(GPUs, GPGPUs and heterogeneous multi-core / many-core 

machines), (UMA and NUMA-CC machines), using OpenMP 

and CUDA, for example, Mars [16], GPMR [27], Phoenix 

[23], and StreamR [13]. 

 In the MapReduce model, the computation progression 

(computational graph) of an application consists of a Map 

computation phase; followed by a data exchange (shuffle)  

Intermediate stage; then followed by a Reduce computation 

phase; (then possibly followed by a single, final result Merge 

stage). In each stage or phase, there are multiple processes 
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(and processors) executing or running in parallel, 

simultaneously or concurrently. This composition structure 

can be regarded as a MapReduce superstep. An Iterative 

MapReduce computation consists of a sequence of 

MapReduce supersteps. Implicit barrier synchronization can 

be assumed to be interposed between the MapReduce 

supersteps. 

 In architectural terms, the Map computation can be 

regarded as a form of data parallelism inherent in SIMD, 

MIMD, SPMD styles of computing. Also, both the Map and 

Reduce phases can be considered, (and in fact, typically 

implemented), as Master-Worker (Leader-Follower) 

architecture organizational patterns. The Master divides and 

allocates the work (broadcast, multicast, scatter), and also 

receives the (final) results (gather, broad-capture, multi-

capture, assembly); while the Workers, (as agents, servants, 

services, bots), perform the actual computation (work). 

 A major practical advantage of the MapReduce 

paradigm concerns programmer productivity. In any of the 

available and operational MapReduce frameworks, the (end-

user, non-professional) programmer provides a) the data set 

or data stream to be processed, as well as its data structure, 

such as (key, value)-pairs, b) the function to be used in 

executing the Map operations, and c) the function to be used 

in executing the Reduce function. The MapReduce 

framework then handles (automates) all aspects of 

parallelization and distribution of both data and computation: 

data and computation partitioning; inter-process, inter-task, 

inter-thread, inter-processor communication; data sharing, 

concurrency management and synchronization; scheduling, 

work or load balancing, code migration and relocation, code 

mobility, data-to-code and code-to-data movements; data 

locality management; IO data access management,  fault 

tolerance, etc.  

 A CA application (simulation computation) can be 

regarded as a MapReduce application in the following 

manner. A CA superstep is identified with a MapReduce 

superstep as follows. The P-work of computing state 

transition updates is to be performed by the Map function(s). 

The C-work of communication-exchange-coordination is 

divided into two sub-phases of a) sending and receiving state 

(transition, change) updates, and b) processing the state 

update information from neighbors (local context, 

environment, ambience), so that it can be used to support the 

next (local, self) state transition update. The first C-work sub-

phase is identified with the Intermediate Processing stage in 

MapReduce; and the second sub-phase is identified with the 

Reduce phase in MapReduce. Thus, a CA simulation is an 

Iterative MapReduce computation. 

 In the ideal case of the availability of unlimited 

computational (processor) resources, (the architecture-ignored 

or architecture-ignorance case), there are at least N processors 

that are successively used in a superstep, first as Map 

workers, then as Intermediate Processing workers, and then as 

Reduce workers; or there could even be 3N workers, with N 

of them devoted to each MapReduce superstep phase. In the 

practical and realistic case of limited resources P << N, one 

can analyze the MapReduce superstep for insights about the 

performance efficiency of (CA / MapReduce) application to 

architecture mapping, using 1- BSP, 2-BSP, k-BSP, as 

discussed above, earlier in the paper. 

5 Related Work & Further Research 

 The implementation of asynchronous CA systems on 

multi-core computers has been studied in [3]. The emphasis is 

on making sure that the decomposition and execution 

ordering for parallel processors does not result in inconsistent 

results. 

 Before the era of modern multi-core based computer 

architectures, CA applications were implemented on the 

massively parallel Connection Machine [6, 7]. In addition, 

there has been research to build dedicated (reprogrammable) 

hardware for CA application execution [28]. Several software 

packages had also been built and targeted to PC, workstation 

and HPC environments, for example, CAMEL [9] and 

CARPET [25]. Most of these earlier works are likely to be 

superseded by CA frameworks built to run on modern 

platforms involving multi-core multi-processors, 

heterogeneous many-core machines, clusters, HPC 

supercomputers, grid computing and cloud computing. See 

for example, libAuToti [26] and CAOS [14]. The latter is a 

CA programming language which supports both MPI and 

OpenMP. There have also been several attempts to implement 

CA applications on GPU multi-cores, using OpenGL and 

DirectX. Due to the march of technology, these approaches 

can now be deprecated. What is needed are techniques that 

migrate easily with the rapid changes in the technologies of 

using multi-cores and many-cores for heterogeneous 

computing, co-processors and hardware accelerators. For 

newer implementations on GPGPUs using CUDA, Direct 

Compute and OpenCL, see for example [24]. 

 The work discussed here is part of the EUPP (End-User 

Parallel Programming) Project. The ultimate goal of the 

EUPP Project, just like similar ones, is to provide many tools 

that allow (end-user) programmers to expose and express as 

much potential parallelism that is possible in an application or 

algorithm, at first, without regard to available machine or 

computer architecture target resources, a kind of architecture 

ignorance, or architecture-ignored programming. Then, there 

are other tools available that the programmers can use to 

provide parallelization hints, recommendations and 

suggestions to compilers, code generators, auto-tuners, 

runtime systems, and OS work-schedulers, which actually do 

the detailed work of automating the parallel mapping of 

applications onto specific target machines and architectures. 

 For example, for CA models and applications, just as 

with MapReduce applications, in order to maximize 

programmer productivity, the (end-user) programmer should 
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be able to indicate in a suitable specification and description 

language that a) CA is an intended application, b) the spatial 

array or dimensional organization, as well as compositional 

and nested organizations into CA systems and complexes, c) 

state alphabet, d) number of CA cells, and indications about 

variation over time, e) cell state transition functions, f) hints 

about target platforms, and g) suggestions or advice about 

parallelization. A provided CA computational framework will 

then take care of, (automate), the details of mapping the 

application into the target (virtual or physical) machine 

environment: data and computation partitioning and sub-

grouping into tasks, processes, threads and thread blocks; 

synchronization; data sharing management; communication; 

scheduling; and use of specific parallelization techniques for 

achieving and maintaining data locality; IO access, data 

access and communication access / exchange latency hiding; 

maximization of throughput and resource utilization; and fault 

tolerance. There is ongoing work that is attempting to 

implement EUPP frameworks, such as the CA Framework 

discussed here. Other related existing implementations 

making transitions into the parallel computing era include 

both Mathematica and MatLab. 

 It is also of some interest to revisit the CA application to 

architecture mapping problem using other bridging models 

such as LogP, as well as other memory organization models, 

such as Hierarchical Memory Model, Memory Hierarchy 

Model and Block Transfer Model. Actual implementations of 

MapReduce frameworks using OpenCL and DirectCompute, 

Cilk++, and TBB are also currently missing in the published 

literature. 

 An important direction for future research is the 

mapping of CA models and applications into frameworks and 

paradigms based on resource-oblivious, (cache-oblivious, 

processor-oblivious, IO-oblivious, network-oblivious, etc.), 

algorithms and techniques. These approaches rely on tools 

such as resource container fit, divide-and-conquer, and work 

stealing scheduling, in order to support scalability in the face 

of resource environment changes, dynamics, evolution, fault 

tolerance and autonomic systems. To these techniques one 

may add data locality management via (predictive) 

anticipatory presentation and availability of data in lower 

level caches, using the knowledge of application 

computational graphs and their runtime execution, scan, 

sweep and traversal. 

 

6 Summary and Conclusions 

 Cellular Automata (CA) models are significant 

paradigms for modeling (the kinetics and dynamics of) 

several phenomena in STEM research. Therefore, it is 

worthwhile to find semi-automatic, systematic ways of 

mapping CA models and applications into modern computer 

architectures, machines, platforms and fabrics built from both 

CPU and hardware accelerators, co-processors (GPU, 

GPGPU, DSP, FPGA) multi-core and many-core 

multiprocessors. 

 It has been shown that CA models can be first mapped 

into well-studied computational paradigms such as BSP, 

Multi-BSP, MapReduce, and Resource-oblivious techniques. 

In this way, extant research results on parallelization mapping 

of applications to architectures can be leveraged for relatively 

narrow and specialized domains such as CA.  
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Abstract - Cellular Automata (CA) are discrete and parallel 
computational models useful for simulating dynamic 
systems that evolve on the basis on local interactions. Some 
natural events, such as some types of landslides, fall into 
this type of phenomena and lend themselves well to be 
simulated with this approach. This paper describes the 
latest version of the SCIDDICA CA family models, 
specifically developed to simulate debris-flows type 
landslides. The latest model of the family, named 
SCIDDICA-SS3, inherits all the features of its predecessor, 
SCIDDICA-SS2, with the addition of a particular strategy to 
manage momentum. The introduction of the latter permits a 
better approximation of inertial effects that characterize 
some rapid debris flows. First simulations attempts of real 
landslides with SCIDDICA-SS3 have produced quite 
satisfactory results, comparable with the previous model. 

 

Keywords: Cellular Automata, Modelling, Debris Flows, 
SCIDDICA. 

 
1 Introduction 
 Many natural phenomena, like some complex fluid-
dynamical phenomena, are difficult to be modelled through 
standard approaches, such as differential equations [1]. As a 
consequence, innovative numerical methods emerged from 
alternative computational paradigms such as Cellular 
Automata (CA), Neuronal Nets, Genetic Algorithms, etc. 
(cf. [2], [3], [4]). 
 It is worth to note that some natural events are difficult 
to be simulated by valid existing models at a “microscopic” 
or “mesoscopic” level since they generally evolve on very 
large areas, thus needing a “macroscopic” level of 
description. In this case, Macroscopic Cellular Automata 
(MCA) [5] can represent a valid choice for modelling and 
simulating these complex dynamical systems like fluid-
dynamical natural phenomena. MCA are an extension of 
classical CA, and were developed in order to model many 
natural macroscopic events that seem difficult to be 
modelled in other CA frames, e.g. the Lattice Boltzmann 
method ([6],[7]), just because they take place on a large 
space scale. Debris flows, for example, fall in the category 
of surface flows that evolve on large-scales, and are natural 
candidates to be modelled through two-dimensional MCA. 

 In the last years, CA proved to be a valid alternative to 
differential equations in simulating some complex natural 
phenomena [8], [5]. In particular, attempts of simulating 
flow-type landslides have recently been carried out by 
several authors, also through CA models, with satisfactory 
results (e.g. [9], [10], [11], [12], [13]). Among these efforts, 
the SCIDDICA MCA model family was developed for 
simulating landslides of debris-flows type and were first 
applied for simulating the Tessina slow-moving earth flow 
[14]. MCA are also adopted for simulating other 
phenomena, such as different types of lava flows [15], 
pyroclastic flows [16], avalanches [17] and, in their latest 
application, to combined subaerial-subaqueous landslides 
[18].  
 SCIDDICA is a family of deterministic MCA models 
[19] for simulating the behaviour of landslides that can be 
typologically defined as “flows” [20]. This assertion allows 
us to exploit on one hand the fact that MCA of the 
SCIDDICA family are based on the equivalent fluid 
principle, formalized by Hungr [21], and on the other 
permits to consider an intrinsic property of MCA, that is that 
they are considered in terms of a-centric system, i.e. systems 
whose evolution can be described by considering mainly 
local interactions among their constituent “elementary” parts 
[22], a typical characteristic of flows. 
 In the present paper, the latest SCIDDICA-SS3 
hexagonal release of the model is described. This latest 
version derives from the need to improve the previous 
model, SCIDDICA-SS2 [18], in order to better manage 
inertial effects. In SCIDDICA-SS3, by adopting an empirical 
strategy, the inertial character of the flowing mass is 
translated into MCA terms by means of local rules. In 
general, all SSx releases of the SCIDDICA family are an 
extension to combined subaerial-subaqueous flow-type 
landslides, with a new flows characterization by their mass 
centre position and velocity [18]. These characteristics have 
allowed for a more appropriate characterization of 
momentum, allowing even for the description of its 
components along the direction of motion. 
 While still undergoing a preliminary calibration phase, 
first simulation attempts by SCIDDICA-SS3 were performed 
by taking into account a real case of debris flows, namely 
the subaerial-subaqueous event which took place near the 
lake of Albano (Central Italy) in 1997. In the following 
sections, the model description and produced results will be 
presented. 
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2 MCA for Surface Flows 
 For MCA modelling purposes [5], landslides can be 
viewed as a dynamical system that evolves within a limited 
portion of the space, tessellated into regular cells (e.g. 
square, hexagonal). A state is defined for each cell that 
describes the physical characteristics of the corresponding 
portion of space; in particular, in the MCA framework the 
states of the cell are decomposed in substates, or rather the 
state of each cell can be expressed by the Cartesian product 
of all the considered substates, where each substate 
represents a particular feature of the phenomenon to be 
modelled (e.g., the altitude, depth of soil cover, thickness of 
landslide debris, landslide energy). Elementary processes 
constitute the transition function (τ) of the model: this is 
composed of a set of rules which describe local processes 
constituting the overall phenomenon. In addition, some 
parameters (e.g. the temporal MCA clock, cell dimension, 
etc) are generally considered, which allow to “tune” the 
model for reproducing different dynamical behaviours of the 
phenomenon of interest, by taking into consideration their 
physical/empirical meaning. At the beginning of the 
simulation, cell states are initialized by means of input 
values (e.g., through matrixes). Model parameters have also 
to be assigned in this phase. By simultaneously applying the 
transition function, τ, to all cells and at discrete steps, states 
are changed and the evolution of the phenomenon can be 
simulated. 
 Natural macroscopic phenomena, which evolve by 
generating flows of material and involving surface-flows 
can be modelled through two-dimensional MCA, because 
the third dimension (i.e., the height) can be managed as a 
property of the cell (i.e. a substate). Thus, it is possible to 
consider characteristics of the cell (i.e. substates), typically 
expressed in terms of volumes (e.g. debris volume), here in 
terms of thickness. This simple assumption permits to adopt 
an efficacious strategy, by means of the Minimization 
Algorithm of the Differences [5] (Minimization Algorithm in 
the rest of the text), based on the hydrostatic equilibrium 
principle, in order to compute outflows of material (e.g. 
debris in the case of landslides) from a central cell to the 
neighbouring ones. 
 
3 The SCIDDICA-SS3 MCA Model 

As already mentioned, SCIDDICA is a family of 
deterministic MCA models, with hexagonal cells, 
specifically developed for simulating flow-type landslides. 
The SCIDDICA family includes many versions developed  
in previous years, from the first release [14], named T, to the 
latest SCIDDICA-SS2 [18]. This development is also due to 
a continuous refinement of the adopted approach, which has 
furthermore given rise to a more physical modelling 
framework with the development of the SCIDDICA-SS3 
model. The model’s transition function latest improvements 
include a better management procedure for inertial effects 
which characterise rapid debris flows. In fact, a first attempt 
of the introduction of momentum was made in an earlier 

version, named SCIDDICA-S4 [23], but the lack of 
explication of the mass centre did not allow to exploit the 
full potentiality of the model and was soon abandoned. As a 
matter of fact, the introduction of the mass centre (or 
barycentre) in the SSx models has allowed a better 
approximation of the phenomenon from the physical point of 
view, so to allow to compare the SCIDDICA-SSx model 
with other well-known debris flows models [24]. For 
instance, a test has regarded the comparison of simulation 
results of the 1997 Lake Albano (Lazio Region, Italy) debris 
flow carried out by SCIDDICA-SS2 and the well-known 
DAN3D [25] software. Results achieved by DAN3D and 
SCIDDICA-SS2 were surprisingly similar in terms of areal 
debris distribution, velocity and propagation time [24]. 
 The SSx releases have been implemented both for the 
need to simulate combined subareal-subaqueous landslides 
and to make velocity explicit, a methodological approach 
firstly applied to lava flows [26], [27]. The precedent release 
of the SSx SCIDDICA family overcomes a typical restriction 
of many CA models, including Lattice Boltzmann [6] ones: 
a fluid amount moves from a cell to another one in a CA 
step, which corresponds usually to a constant time. This 
implies a constant local “velocity” in the CA context of 
discrete space/time. Nevertheless, velocities can be deduced 
by analyzing the global behaviour of the system in time and 
space. In such models, the flow velocity emerges by 
averaging on the cell space (i.e. considering clusters of 
cells) or by averaging on time (e.g. considering the average 
velocity of the advancing flow front in a sequence of CA 
steps). Therefore, in SCIDDICA-SSx models, with the 
introduction of the coordinates of mass center of flows and 
the calculation of their movement, the velocity has been 
made explicit.  
 Moreover, in the SS3 version, a new empirical strategy 
has been introduced for the determination of outflows from 
a cell towards its adjacent cells (the other cells of the 
neighbouring); such a strategy, intuitively discussed later on 
before its formalisation in section 3.1, has permitted to 
improve significantly the precision in the complicated 
computation of momentum for the flowing masses in the 
MCA context, where a macroscopic view was adopted. 
 The starting point is the Minimization Algorithm, 
where outflows from a cell are computed in order to obtain 
hydrostatic equilibrium in the neighbouring. In a cell, 
inflows and mass inside are composed as quantity, mass 
centre, kinetic energy and momentum. Momentum 
introduces an alteration of hydrostatic equilibrium, which is 
translated in terms of the Minimization Algorithm by 
modifying fictitiously altitudes of adjacent cells: altitude is 
opportunely lowered/raised according to the module and 
direction of momentum.  
 Then, the computation proceeds by two stages:  
a) outflows toward the neighbouring cells are computed in 
the condition of different altitude alterations: this represents 
the situation of flows that just can overcome obstacles, 
neglecting other interactions; 
b) the part of mass that cannot overcome obstacles is 
considered to interact strongly with such obstacles, in a 
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complicated play of hitting and bouncing, where momentum 
disappears and part of kinetic energy is lost. Because of lack 
of directionality and by considering the remaining kinetic 
energy, the Minimization Algorithm is again applied with 
identical altitude variation (proportional to residual kinetic 
energy) in the adjacent cells. This permits to compute 
outflows toward cells penalized by the direction of 
momentum in the previous stage.  
 

Table 1. SCIDDICA-SS3: list of considered substates. 

3.1 Formal definition of SCIDDICA-SS3 

The release SS3 of SCIDDICA is formally defined by 
the quintuple: 

SCIDDICA-SS3=<R; X; Q; P; τ> 
where: 

• R = {(x, y) ∈ Z2| -lx ≤ x ≤ lx ,−ly ≤  y ≤ ly } identifies the 
hexagonal cellular space where the phenomenon evolves; 
Z is the set of the integer numbers; 

• X= {0, 0), (1, 0), (0, 1), (0,−1), (−1, 0), (−1, 1), (1,−1)} is 
the geometrical pattern of the neighbourhood of the cell, 
Fig.1, given by the “central” cell and its six adjacent 
cells; 

Fig. 1: The neighbourhood adopted in SCIDDICA-SS3. Key: the central 
cell is individuated by the index “0”; indexes 1–6 identify the cells of the 
neighbourhood. 

• Q = QX1 × QX2 × … × QXn is the finite set of states given by 
the Cartesian product of the sets of the considered 

substates (Table 1). The value of the substate x in the cell 
is expressed by qx ∈ Qx. In the following, qx indicates the 
values of a substate Qx. When substates need the 
specification of the neighbourhood cell, the neighbour 
index is indicated between square brackets; 

• P is the set of the global parameters [18] (e.g., the side of 
the cell, the temporal correspondence of a step of 
SCIDDICA-SS3, etc) which account for the general 
frame of the model and the physical characteristics of the 
phenomenon (e.g., activation threshold of the 
mobilization, energy dissipation parameter); 

• τ : Q7 → Q is the deterministic transition function for the 
cells in R. 

At the beginning of the simulation (for t=0), the states of the 
cells in R must be specified, defining the initial 
configuration of the MCA. Initial values of the substates 
(Table 1) are initialized as follows:  
− Qa is set to the cell altitude a.s.l. (bedrock elevation plus 
depth of soil cover); in the landslide source, the thickness of 
the landslide debris is subtracted from the morphology; 
− Qth is zero everywhere – except for the source area, 
where the landslide debris thickness is specified; 
− QE is zero everywhere – except for the source area, 
where it is equal to the potential energy of the landslide 
(with reference to the cell altitude); 
− Qd is the depth of the soil cover, which can be eroded by 
the landslide along the path; 
− All remaining substates are set to 0 everywhere. 
 The transition function τ is applied, step by step, to all 
the cells in R, and the MCA configuration changes obtaining 
the evolution of the simulation. 

3.2 Main characteristic of transition function τ of 
SCIDDICA-SS3 

Since SCIDDICA-SS3 inherits all the features of the 
transition function of the previous model, this paper briefly 
describes the elementary processes of SS3, τSS3, that are 
unchanged compared to SS2, τSS2. For more details on SS2, 
see [18], while new features are better herein described. In 
the following, (τSS2, τSS3) indicates the SS3 elementary 
processes that have undergone slight changes (or none) with 
respect to SS2, whereas (τSS3) indicates the new SS3 
elementary processes. 

Mobilisation effects (τSS2, τSS3): An empirical strategy has 
been developed to better simulate the partial erosion of the 
regolith along the path of the landslide. In practice, when the 
kinetic energy overcomes an opportune threshold, then a 
mobilisation of the detrital cover occurs proportionally to the 
quantity overcoming the threshold. All heights qa, qr, and qth 
and relative energies qkh and qE are updated as soil is eroded. 

Computation of debris outflows (τSS3): Outflows from the 
central cell towards the neighbouring ones are computed by 
applying the Minimization Algorithm of the Differences ([5], 
[26]). The algorithm is based on the following assumptions:

Substate Meaning 

Qa Altitude (in meters) 

Qth Thickness of landslide debris (in meters) 

Qd Maximum depth of detrital cover that can be transformed by 
erosion in landslide debris, it depends on the type of detrital 

cover (in meters) 

Qo (Qi) Debris outflow (inflow) (in meters) 

QE Total Energy of landslide debris (in joule) 

Qpx, Qpy Represent indicators of the momentum of the landslide 
debris, along the outflow velocity directions (in kg m/s) 

Qx, Qy Coordinates of the debris barycentre with reference to the 
cell centre (in meters) 

Qkh Debris kinetic head (in meters) 

Qoe (Qoi) Part of debris flow, the so called “external flow” (“internal 
flow”), normalised to a thickness, that penetrates the adjacent 
cell from central cell (that remains inside the central cell) (in 

meters) 

QXE, QYE 
(QXI, QYI) 

Coordinates of the external flow barycentre (internal flow 
barycentre) with reference to the adjacent cell centre (in 

meters) 

0 
1 

2 
3 

4 6 
5 
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Fig. 2: An example of cell elevation alteration for emphasizing inertial effects. Shaded coloring indicate cells (numbered 1 through 6) affected by the 

procedure. (a) B is the barycenter of the mass inside a generic central cell with momentum module p. Segments |Pi(n)Pi(n+1)| are determined by |P11P12| and 
|P61P62| for cells 1 and 6, respectively; (b) In the first phase of distribution step, the elevation of cells 1 and 6 are decreased of a quantity w[1] and w[2] 
respectively, while elevations of cells 3 and 4 are increased by the same quantities. 
 
− In the central cell, an unmovable amount, u(0), and 
another one which can be distributed to the neighbours, m, 
are in general considered, which is computed as: 

 
where qo(i) is the flow towards the cell i and qo(0) is the part 
of m which remains in the central cell 
− The content of the adjacent cells, )(iu  (i = 1,2, ... ,6), is 
considered unmovable.  

Aiming at emphasising inertial effects of rapid debris 
flows, in the release SS3, some directions are privileged 
according to the momentum of the debris inside the cell. In 
this regard we consider (dx,dy) the directional components of 
the velocity of outgoing flows from one cell and applied at 
the corresponding center of mass (Fig. 2a). Along the 
directions (dx, dy) it is possible to compute the two indicators 
(qpx, qpy) of the momentum given in module as: 

hkth gqAqp 2ρ=  

where ρ is the density of the material of the landslide, A is 
the area of the cell, qth the thickness of debris in a cell, g the 
gravity acceleration and qkh the kinetic head of the landslide. 
By means of simple conventional geometric processes (cf. 

Fig. 2a), the segments 
___________

)1()( +nini PP  are identified, where i 
refers to the neighboring cell i and proportionally to these 
segments, the amount of motion is “distributed”, in module, 
to the neighboring cells according to the formula : 

where pi indicates the part of the momentum which is 

“transferred” in the cell i, 
_________

)1()( +nini PP  the length of the 

segment corresponding to the cell i and, at last, 
___

kj PP  is the 

total length of the segment that goes from Pj to Pk (Fig. 2a). 
The cells towards which pi ≠ 0 are considered as privileged 
ones, as mentioned previously. Within the context of the 
hexagonal cellular space, along these latter the effect of 
momentum has to be stronger in order to account for the 
inertial properties of the debris flow. By definition, if for 
instance pi > pj, the direction towards cell i is the most 
privileged. 

With the aim of privileging the directions defined by 
the various pi, in SCIDDICA-SS3 the heights (i.e., cell 
altitude plus landslide thickness) of the neighbouring cells 
are increased by an amount w[i], (i=1, 2, ... , 6), computed as 
follows: 

• w[i]= −αpi, for neighbour cells i which have pi ≠0, 
where α is a proportionality coefficient of kinetic 
energy (Fig 2b); 

• w[i]= αpi, for cells opposite to cells with pi ≠0; 
• w[i]= 0 for cells not involved in the motion (Fig. 2b). 
In such a way, the Minimization Algorithm will 

privilege, in the distribution of the landslide debris, those 
cells whose heights are most decremented. 

According to the previous considerations, an empirical 
double-phase strategy was developed in SS3 to account for 
the inertial effects of rapid debris flows. In the first phase, 
inertial outflows (q0

’[i]) are first computed, introducing a 
sort of “weakening” of privileged senses. The Minimization 
Algorithm is applied in the following form: 

m = qth [0] − padh 
u[0] = qa [0] + padh + qkh 

u [i] = qa [i] + qth [i] + w [i] 

y 

x 

B ▪ 
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where padh represents the water/air parameter of the 
adherence value (i.e. unmovable amount of debris in a cell). 

The debris thickness remaining into the central cell is 
accordingly reduced to the value:  

][]0[]0[_
6

1

'
0 iqqqnew

i
thth ∑

=

−=  

while for the receiving cell i: 

][][][_ '
0 iqiqiqnew thth +=  

This phase obviously involves also the update of the 
energy new_qE and new_qkh, for both the central and 
neighbor cells i receiving a flow. 

In the second phase, by considering the eventual 
residual debris, new_qth, (i.e. the debris not distributed 
during the first phase) and kinetc energy, new_q’kh, (i.e. the 
kinetic energy decreased by the only outflows contribution), 
not-inertial outflows (q0

’’[i]) in the cell are computed, 
assuming the inertial effect to be negligible. The 
Minimization Algorithm is now applied in the following 
form: 
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At the end of the two phases, the total outflows q0[i] for each 
cell i of the neighbourhood can be determined as follows: 

]["]['][ 000 iqiqiq +=  
while the final debris in the cell 0 is:  

∑ ∑
= =

−−=
6

1

6

1

''
0

'
0 ][][_

i i

iqiqqthqthnew  

increased by the sum of the incoming flows, in the central 
cell 0, of the two kinds of flows determined in the previous 
two phases. 

Shift of the Outflows (τSS2, τSS3): The shift of the outflows is 
computed for both loops of the same computational step, 
according to a simple kinetic formula which depends 
whether the flow is subaerial or subaqueous (as for SS2) 
[18], [26], [27]. In particular, the shift formula for 
subaqueous debris considers also the water resistance, using 
modified Stokes equations with a form factor that is 
proportional to mass.  

The substantial difference with SCIDDICA-SS2 is the 
calculation of the displacement in the first loop; in fact, at 
this stage the shift is calculated considering a variation of the 
height given by the values of w[i], previously described. 

The movement of flows affect the determination of the 
computation of the new co-ordinates of the barycentre, that 
is calculated as the weighted average of qx and qy, 
considering the remaining debris in the central cell, the 
internal flows and the inflows, at the end of the two loop 
phases. 

Turbulence Effect (τSS2, τSS3): A total energy reduction, 
besides the computation of the new total energy amount 
(new_qE) in a cell, is considered by loss of flows, while an 
increase is given by inflows; moreover, the new value of the 
kinetic head (new_qkh) is deduced from the computed kinetic 
energy and energy dissipation computed over the kinetic 
head, was considered as a turbulence effect  

Obviously, updates of the total and kinetic energy are 
carried out at the end of the two phases of a step, that is, 
after the double distribution of the debris. 

Air-Water Interface (τSS2, τSS3): Air-water interface is 
managed only for external flows from air to water and not 
vice versa. An external flow from an air cell (altitude higher 
than water level) to water cell (altitude lower than water 
level) implies always a loss of matter (water inside debris 
and components are lighter than water) proportional to 
debris mass, specified by an opportune parameter, implying 
a correspondent loss of kinetic energy, determined by kinetic 
head decrease. 

4 SCIDDICA-SS3 Applications 
 SCIDDICA-SS3 was calibrated against the 1997 
Albano lake (near Rome, Italy) event (Fig. 3a), which is a 
case of combined subaerial-subaqueous debris-flow [28]. 
This landslide occurred in the eastern slope of the Albano 
lake on the 7th of November 1997 after an intense rainfall 
event (128 mm in 24 hours), and began as a soil slide, 
mobilizing about 300 m3 of fluvial material. The mobilized 
mass was channeled within a steeply dipping impluvium 
(about 40°) and thus evolved as a debris flow which 
entrained a large amount of debris material along the bottom 
of the channel and reached an estimated volume of some 
thousands of cubic meters at the coastline. A few amount of 
material was deposited at the coastline, while a greater 
quantity entered in water generating a little tsunami wave. 
Simulations permitted to verify the general model and to 
calibrate adequately its parameters.  
 In order quantitatively evaluate the simulation 
outcomes, experiments are compared with real cases by 
considering the following indicator e1: 

SR
SRe

∪
∩

=1
 

where R is the set of cells affected by the landslide in the 
real event and S the set of cells affected by the landslide in 
the simulation. The fitness function, e1, considers a 
normalised value between 0 (complete failure) and 1 (perfect 
simulation). Simulations are judged “acceptable” only when 
the indicators show values not exceeding pre-fixed 
thresholds of acceptability, fixed on the base of empirical 
considerations (as commonly performed in statistical 
analysis). In the case of the Albano landslide, such value is 
considered as 0.7. The simulation carried out with the SS3 
model, and here presented (Fig. 3a, 3b, 3c) has a value of e1 
equal to 0.82, which represents a very good, though 
preliminary, result. 
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Fig. 3: The 1997 Albano lake subaerial-subaqueous debris flow. (a) Intersection between real and simulated event; (b) Deposit thickness; (c) Erosion 

depth; (d) Maximum instantaneous velocity. Results refer to the best performed simulation. The thick contour line represents the water level. 

The simulation made with SCIDDICA-SS3 is quite 
similar to that made with the previous model [18], both with 
regard to the areal extent (Fig. 3a) and concerning the mass 
of mobilized material, which has decreasing thickness values 
from the release area until the beginning of accumulation 
zone (Fig. 3b) and, finally, even as regards the thickness of 
eroded soil during the passage of the landslide (Fig. 3c). 

The substantial difference that emerges comparing the 
simulation carried out with SS3 with the one made with the 
SS2 model is the management of the landslide detachment 
area. In fact, in the SS3 model the emptying effect of the 
detachment area is rather quick, contrarily to what occurred 
in the SS2 model, where this area was unable to completely 
empty until the end of the simulation, showing as a result  
less compact landslide front. Another difference, emerged 
from the comparison, is the speed of the landslide which 
decreases in SS3. In fact, the velocity values that emerge 
from the simulation made with SS3 (Fig. 3d), though slightly 
different from those obtained with the model SS2 [18], can 
be considered quite consistent with the real case. 

Further refinements of the parameters could lead, 
therefore, for a better fitness as well as to speed up the 
propagation times. 

5 Conclusions and future outlooks 
SCIDDICA-SS3 seems to capture fundamental 

instances of modeling surface flow with regards to 
conservation laws of physics according to a less empirical 
approach. Results of first simulations are satisfying, even if 
more controls and applications to different cases need and 
parameters must be better tuned.  

Future research work is planned: coupling of different 
elementary processes must be improved, parameters have to 
be introduced independently from CA time step and cell 
dimension by an opportune formulation of the transition 
function.  

Such future research will permit to extend such a 
methodology to other phenomena involving surface flows as 
snow avalanche, pyroclastic flows, soil erosion and coastal 
erosion. 
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Cellular automata model for a specific traffic problem
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We examine the possibility of using alternative roads when confronted with traffic congestion.One
is the main road, the second alternative is through a secondary road into which additional cars are
coming. To keep the total number of vehicles constant, we subtract on the main road the same
number of cars as where added to the bypass. We check the Fourier transform of the average on
each traffic light cycles of the velocity on the main road and bypass.In the jammed region we obtained
different results for the main road and for the bypass. Whereas for the main road we obtained 1/f ,
for the bypass we obtained ”red noise”, i.e. 1/f2.

1. INTRODUCTION

We wish to examine a specific traffic problem.
Entering a city we have two possible routes to take
and we wish to examine which one will be faster.
Our decision will depend on the specific traffic sit-
uation. We will use elementary cellular automata
for our purpose.

Cellular automata were first studied by Ulam
and von Neumann ([2]). An important contribu-
tion to the field was in the work of S. Wolfram [1]
who introduced classifications, used in the present
study. The elementary cellular automaton is a col-
lection of cells arranged on a one dimensional ar-
ray. Each cell can obtain just two possible num-
bers: one and zero. The ”time” is discreet and at
each time step all the cell values are updated syn-
chronously. The value of each cell depends just on
the values in the previous step of that cell and it’s
two neighbours. Wolfram names each elementary
cellular automaton with a binary numeral, which
he calls: ”rule”.This value results from reading the
output when the inputs are lexicongraphically or-
dered. This will become clearer when we will ex-
plain the rules which we use. The rules we used
are taken from the cellular automata model as pro-
posed by Gershenson and Rosenblueth[3] .

An interesting aspect of our results is the 1/fα

noise, called sometimes pink noise, where the exact
”colour” depends on the value of α. To understand
better this term see Procaccia and Schuster[4]. We
checked the 1/f noise of the changes in average

velocity for the two regions, using the ideas of
Takayasu and Takayasu[5].

2. THE MODEL

Empirical observations of traffic show that at
high enough densities the behaviour of traffic be-
comes quite complex. Therefore many traffic mod-
els appear in the literature. We will deal here only
with the ”microscopic ” models were we consider
each individual vehicle. Our highways are repre-
sented by an array of cells, each cell has the values
zero or one. one represents a vehicle and zero an
empty portion of the highway. We assume that
the magnitude of a cell corresponds to the average
length of a vehicle. In figure 1, we show the layout
of our model. At a certain point we have a bi-
furcation: there are two different ways to proceed
and at a later point they merge again. This model
represents in a simplistic way the posibility of us-
ing two alternative routes (the main route and the
”bypass”) when approaching a city from a certain
direction of suburbs. We add the possibility that
additional cars are coming from the ”bypass” and
are removed when approaching the city. So that
overall the number of vehicles is preserved. The
rules, which are the same as used by Gershenson
and Rosenblueth [3] , are given in Table 1. In fig-
ure 2 we give the rules at different locations along
our array.

In our analysis we distinguish between three re-
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TABLE I: Wolfram rules used in this model

t − 1 t184 t252 t136

000 0 0 0

001 0 0 0

010 0 1 0

011 1 1 1

100 1 1 0

101 1 1 0

110 0 1 0

111 1 1 1

gions:
i. The ”bypass region”(denoted by iq).
ii. The region on the main road between the

entrance and exit of the ”bypass”(denoted by ipe).
iii. The whole of the main road(denoted by ip).

2.1. Measures.

The density, ρ, is given by the number of ’ones’
(i.e. vehicles) devided by the general number of
cells. Initially we take this value to be the same
for the three sections. We check how this value
changes in the different regions. Here we are in-
terested only in the equilibrium values. The ve-
locities,v, denoted by vp, vq, vpe are given by the
number of cells which change in one step from 0 to
1. The flux of the system, denoted by J, is given
by the product of the density and the velocity.

Another measure which interests us in this study
is the ratio beween the average time it takes to
traverse the ”bypass” to the average time it takes
on the main road between the two merging points.
We will denote this value by ’tq’.

Another value which interests us in this study
is the Fourier tranform of the velocities vp and
vq. To perform our Fourier analysis we take the
averages over each light change cycle and study
the frequencies of these averages over all the cycles
taken in our calculation. We compare the results
to the 1/fα by least square test.

In our calculation space and time are just ab-

FIG. 1: The grid

stract quantities. Still if somebody of our readers
wishes concrete numbers, one can quote[3] were
one cell represents five meters, and a time step rep-
resents a third of a second, which gives us about 50
km/second, roughly the speed limit within a city.

2.2. The grid

A general view of the grid is given in fig 1.

The schematic car movement is given in fig 2.
As we see, we denoted the cells on the main

route by ip and the cells on the bypass by iq. The
cells between ip = istop and ip = istop1 we de-
note by ipe. At ip = istop the vehicles move on
the main road or on the bypass according to the
’lights’. Actually when a car arrives at the ’light’
he has the option of going by the bypass or to wait
for the change of lights and continue on the main
road. Our calculation was partly to check if it is
always worth waiting or if one should take the by-
pass. In reality many drivers when they see the
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FIG. 2: The movement of vehicles

congestion on the main road decide to take the
bypass.

In fig2 we show schematically the movements of
the vehicles.We have two stop lights (denoted by
’1’ and ’2’ on the diagram). When the movement is
in the ”main road” diagram ’a’ gives us the move-
ment. When we enter or exit the ”by pass” then
’b’ gives us the rules.

We have a parameter telling us the amount of
”cars” added to the ”by pass”: this same amount
is deducted from the ”main road” to preserve the
total number of vehicles.

3. RESULTS AND DISCUSSION

For the most part of our calculations we used a
fixed grid: The main road was comprised of 1200
cells, the ”by pass” 300 cells and the distance be-
tween the two lights was 120 cells. We used the
”green wave” regime. As we have just two lights
it was shown by Gershenson and Rosenblueth [3]
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FIG. 3: The case cr=0.4

,that in this case one does not get different results
using the ”self-organizing” regime.

We checked a number of cases of additions and
subtraction of ’vehicles’ as described in the last
section. We denote by cr the part of cases in which
we introduce a vehicle on the ”by pass” per unit
time. We eliminate the same number of vehicles
on the last point of our main route, again per unit
time. The cases we checked are: cr = 0.1, 0.4.

In Fig 3 the case were in 40% of the cycles a
vehicle is added to the ’bypass’ is shown. The
transition to the traffic jam appears is much sooner
in the bypass than on the main road. The situation
is just a little better when only in 10% of cases (see
Fig 4) the jam happens.

In the next figure, Figure 5, we show the relation
between the flux, J, and the density for two cases
of cr. when no vehicles start out from the bypass
i.e. cr=0, and when 40 % per cycle are introduced.
We see a dip in J around ρ = 0.4 for the cr=0.4
case. It is the same effect as in vq versus ρ, where
there is a change in slope.

We wanted also to examine the relation between
the time going via the bypass compared to the time
it took on the main road as a function of cr. We
took a density corresponding to the beginning of
the jammed traffic, ρ = 0.7. The results are shown
in Figure 6.
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Obviously in the case that additional vehicles
enter in the bypass the time it takes to go by the
bypass is lengthened. But it seems to us interest-
ing that the difference is so great. We can therefore
conclude that even if the main road is jammed, it
is still better policy to stop and wait for the next
green light, and go by the main road. We everaged
the velocities over a traffic lights cycle and studied
the power spectrum. In fig7 we show the results
for vp, the same situation we obtained also for vg.
We see that the noise is white, i.e.α = 0. In that
figure we drew also the 1/f line just to make the
result clearer. It was explained by Takayasu and
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FIG. 6: The relation between the time needed to go
by the two routes.
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Takayasu[5], that when the flow is free we obtain
a white noise, just as we saw here.

In the jammed region we obtained different re-
sults for the main road and for the bypass. whereas
for the main road we obtained 1/f just as in[5], For
the bypass we obtained ”red noise”, i.e. α = 2.

On the bypass the results are different. For the
free flow region we also obtain random beheviour
(i.e. 1/fα where α = 0. ) but for the jammed
region we obtain a Brownian movement (i.e. α =
2).
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Abstract - Ever since the lymphoid tissue is known as HIV’s 
major reservoirs, cellular automaton (CA) models have been 
introduced, as alternative computational tools, to understand 
those infections within the infected host. Many years past, 
several CA models have been introduced which, together, 
could represent the entire dynamics of HIV infection. 
However, none of them has taken into account the effects of 
other immune cells except the changing states of CD4+ T 
cells. Therefore, in order to develop a more realistic model, 
we present a CA model for HIV infection by incorporating the 
effects of other types of immune cells, in addition to the CD4+  

T cells, such as the CD8+ T cells and the dendritic cells, called 
cell-mediated immunity, into the model. Our preliminary 
results show that the CA model could reproduce the acute 
phase of HIV infection and could present the rebounding of 
healthy CD4+ T cells level by the effect of cell-mediated 
immunity parameters. 

Keywords: AIDS; stochastic process; cellular automata; 
spatial structured model; spatiotemporal pattern formation 

 

1 Introduction 
 Ever since it was reported that lymphoid tissue is the 
major source of HIV infection [1], cellular automaton (CA) 
models [2], taking into account the local interactions, have 
been introduced to understand those infections and discover 
more in-depth knowledge of the disease within the infected 
host.  

 Many years ago, to explain the dynamics of HIV 
infection within the host’s lymphoid tissue, several CA models 
[3-5] have been adopted. However, those models described 
the dynamics by focusing on the changing states of only one 
kind of immune cell, i.e., CD4+ T cells. Therefore, when 
closely look into the computational spatiotemporal pattern 
formation, it was observed that the results of those simulations 
are artifacts of the spatial properties inherent in CA models [6] 
and do not realistically reflect the immune system’s response 
to viral attack, and their counter-response.    

 

 Therefore, it becomes our primary objective in this paper 
to construct a CA model for the investigation of HIV infection 
spreading over the lymphoid tissue, i.e., the lymph node with 
parameter values appropriate to the case in which the virus 
spreads among several kinds of immune cells. Our model is 
different from those in earlier works in that, in addition to the 
role of CD4+ T cells, the role of cell-mediated immunity, 
namely the dendritic cells and the CD8+ T cells, among the 
basic immune cell types associated with HIV infection and 
generally present in the lymphoid organ, are also incorporated 
into the system. 

 Our results demonstrate that our CA model can 
reproduce the dynamics of immune cells during the acute 
phase of HIV infection, and in particular the rebounding of 
CD4+ T cells which reflects the initiation of HIV-specific 
immune response to the antigen.   

2 CA model for HIV infection 

2.1 Cell states 

 Using MATLAB, we utilize a 2D cellular automaton 
(CA) model with a square-shaped grid of size LL×  to 
represent a patch of lymphoid tissue within a lymph node.  
Each grid in the lattice is either an empty site (E ) or a site 
randomly occupied by a single state of an immune cell. The 
kind and state of those immune cells could be: naïve CD4+ T 
cell, effector CD4+ T cell, infected CD4+ T cell, naïve CD8+ T 
cell, effector CD8+ T cell, mature dendritic cell, and dead. The 
symbols and meanings of the immune cells used in the model 
are (see Table 1): 
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Table 1  State of immune cells and its meaning in our model.  

Name (Symbol) Meaning 
Naïve CD4+ T cell ( 4TN ) a mature CD4+ T cell that has never been in contact with an DCM  cell or an 4TI  cell.   

Effector CD4+ T cell ( 4TE ) a CD4+ T cell which stays in an activated state after it had contacted an DCM  cell. 

Infected CD4+ T cell ( 4TI ) a CD4+ T cell which has been infected after it had contacted with an DCM  cell or an 4TI  

cell.  
Naïve CD8+ T cell ( 8TN ) a mature CD8+ T cell that has never been in contact with an DCM  cell or an 4TE  cell.   

Effector CD8+ T cell ( 8TE ) a CD8+ T cell which stays in an activated state after it had contacted with an DCM  cell or an 

4TE  cell. A cell in this state can kill an DCM  and an 4TI  cell. Such a cell is referred to as a 

cytotoxic T lymphocyte; CTL in real life. 
Mature dendritic cell ( DCM ) a dendritic cell that arrests HIV at the area of infection and then brings the HIV to the lymph 

node to present HIV to the other immune cells locating in the lymphoid organ. 
Dead cell (D ) a state of immune cell that dies because it is out of date or faces with HIV-specific immune 

response.   
 

2.2 Initial condition and data collection 

 The initial configuration is depicted as a lymph node 
randomly consists of the three fundamental states of immune 
cells, i.e., the 4TN  cells, the 8TN  cells, and the DCM  cells 

with the probability 
4TNP , 

8TNP , and 
DCMP , respectively. To 

process each configuration, all states of immune cells, except 
the dead state, are randomly moved. This means that our 
model represents a part of the lymph node as an empty site 
( E ) that any immune cell could randomly move to and 
temporary occupy, or a site occupied by a specific state of an 
immune cell. Then, the state of each cell is updated according 
to the CA rules listed below. The number of each cell type is 
counted and noted. Following, the configuration is announced 
as one time step, being taken in the unit of four hours in real 
life (see also Figure 1). Table 2 contains the values of all 
parameters used in our model. 

CA Rules 

(1) Update rule for 4TN  cell 

If an 4TN  cell comes into contact with k  4TI  cell, it 

becomes an 4TI  cell with the probability k
IT

P )1(1
4

−− . 

Otherwise, it stays unchanged. If the 4TN  cell comes into 

contact with k  DCM  cell, it becomes an 4TI  cell with the 

probability k
IT

P )1(1
4

−−  or an 4TE  cell with the 

probability
4

1 (1 (1 ) )
T

k
IP− − − . Moreover, the 4TN  cell 

becomes a D cell after 
4TNτ  time steps.  

 
 
 
 

 
 
(2) Update rule for 4TE  cell 

If an 4TE  cell comes into contact with k  4TI  or 

DCM  cells, it becomes an 4TI  cell with the probability 
k

IT
P )1(1

4
−− . Otherwise, it stays unchanged. Moreover, the 

4TE  cell becomes a D  cell after 
4TEτ  time steps. 

(3) Update rule for 4TI  cell 

An 4TI  cell becomes a D cell after 
4TI

τ  time steps, 

or if it comes into contact with at least one 8TE  cell.  

 (4)  Update rule for 8TN  cell 

An 8TN  cell becomes an 8TE  cell if it comes into 

contact with at least one DCM  cell or one 4TE  cell, or 

becomes a D cell after 
8TNτ  time steps. 

(5) Update rule for 8TE  cell 

An 8TE  cell becomes a D cell after 
8TEτ time steps. 

Otherwise, it stays unchanged. 

 (6) Update rule for DCM  cell 

An DCM cell becomes a D cell after 
DCMτ  time 

steps, or if it comes into contact with at least one 8TE  cell. 

(7) Update rule for D  cell 
 A D cell is replenished by either an DCM cell with 

the probability
DCMreplP _ , an 4TN  cell with the probability 

4_ TNreplP ,or an 8TN  cell with the probability 
8_ TNreplP  in the 

next time step. 
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Figure 1   Flowchart of our CA algorithm. 

 
 
 
 
 
Table 2   Used simulation parameters. 

Parameters Describes 
L  = 300 Lattice side. Therefore 

2L means lattice area. 
N  = 8 Neighboring cells. Moore’s 

Neighborhood condition. 

4TNP  = 0.5 Probability of initial 4TN  cells. 

8TNP  = 0.25 Probability of initial 8TN cells. 

DCMP  = 0.005 Probability of initial DCM cells 

that carry HIV to the system. It 
mimics the amount of initial 
virus entering into human body. 

4TI
P  = 0.1 The severity of infected cells. It 

mimics the severity of HIV to 
the host cells. Therefore, 

k
IT

P )1(1
4

−−  [7] is the 

infectivity of an 4TI  cell and 

an DCM cell to the healthy 

( 4TN , 4TE ) neighbors. k  is a 

number of 4TI  cell or 

DCM cell among the healthy. 

DCMreplP _  = 







− EL

I T
2

4  
Probability that a D cell is 
replenished by an DCM  cell. 

4_ TNreplP  = 

( )( )
DCMreplP _1

3

2
−×  

Probability that a D cell is 
replenished by an 4TN  cell. 

8_ TNreplP  = 

( )( )
DCMreplP _1

3

1
−×  

Probability that aD cell is 
replenished by an 8TN  cell. 

 

DCMτ  = 180 Time delay for an DCM cell. 

4T
Nτ  = 540 Time delay for an 4TN  cell. 

8TNτ  = 540 Time delay for an 8TN  cell. 

4TEτ  = 18 Time delay for an 4TE  cell. 

8TEτ  = 6 Time delay for an 8TE  cell. 

4TI
τ  = 90 Time delay for an 4TI  cell. 
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3 Computational results 

 

 

Figure 2 (a) and (b) are the plot of healthy CD4+ T cell 
densities and infected CD4+ T cell densities during an acute 
phase of HIV infection, respectively. The cell density is 
derived from the ratio of the number of each cell type to the 
total number of cells in the system. 

 Our simulation results of healthy CD4+ T cell 

( 4TN + 4TE ) densities and infected CD4+ T cell ( 4TI ) 

densities, averaged over 20 runs, are shown in Figure 2 along 
with the simulation time. The results represent an acute phase 
of HIV infection (corresponding to 90 days in real life). From 
the simulation results, it is found that after the introduction of 

DCM  cells to the system, the level of infected cells rapidly 

increases and reaches the peak at day 21 (week 3), (see Figure 
2b). In contrast, the level of healthy cells slightly increases, 
and then rapidly drops due to the infection (see Figure 2a). 
After that, the level of infected cells drops from the peak 
which reflects the initiation of HIV-specific immune response. 
Consequently, the level of healthy cells rebounds.  

 Then, the level of healthy cells and the level of infected 
cells gradually approach the steady state, which marks the end 
of the acute phase of HIV infection at approximately day 40 
(~week 6). 

 

 

Figure 3 (a) and (b) are the plot of healthy CD4+ T cell 
densities and infected CD4+ T cell densities during an acute 
phase of HIV infection when 

8TNP  = 0 and 
8_ TNreplP  = 0. 

 Figure 3 shows our simulation results when the 
probability of initial 8TN  cells and the probability that 

aD cell is replenished by an 8TN  cell equal to zeros, which 

reflects the phenomena when there is no HIV-specific immune 
response in the system. It is found that the level of healthy 
cells rapidly drops to nearly zero without any sign of 
rebounding. In contrast, the features of infected cell dynamics 
are similar to those of the original condition. Note that 
although there is no effect of HIV-specific immune response 
in this condition, the decline features of infected cell level still 
occur. This might be because there is a scanty level of healthy 
cells, the host cells to be infected, in the system. 
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4 Conclusions 
 We present a stochastic model for the dynamics of HIV 
infection based on cellular automaton method. It was found 
that our model could present the acute phase of immune cell 
dynamics after the infection. Moreover, it shows the effects of 
cell-mediated immunity, in particular the cells referred to as 
DC cells, CD8+ T cells, and CTL cells which cause the 
rebounding of the healthy CD4+ T cells in real life. 
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ABSTRACT
Understanding complex fluid flow patterns is still a com-
putationally challenging problem and visualising com-
puter simulations in this area is an important tool in in-
vestigating emergent complexity in fluid systems. Mix-
ing and unmixing of complex multi-species fluid systems
is particularly difficult to tackle using conventional field
equational methods. We describe our multi-species lattice
gas software for simulating and visualising multi-species
fluid systems. We describe how a coloured lattice gas
model was developed and run on a graphical processing
unit using NVIDIA’s compute unified device architecture
(CUDA) to yield a speed up over a typical CPU perfor-
mance of one hundred fold. This then supports simu-
lation of system sizes large enough to reveal interesting
emergent complexity, and we present some initial scien-
tific observations.

KEY WORDS
lattice gas; coloured; FHP-3; CFHP; OpenGL; cellular
automata; simulation;

1 Introduction
Simulating the dynamics of fluid flow can often be a

very complicated task. Lattice gas cellular automatons
(LGCA’s) [1–3] can be used to approximate the behav-
ior of fluid flows with a certain degree of accuracy - they
may fail to model all physical dynamics of fluids at a mi-
croscopic level, however they can produce satisfactory re-
sults on a macroscopic level. Many variations of LGCA
approaches, including using a lattice Boltzmann approach
[4–6], have already been developed and improved upon to
produce faster, more complex and more accurate results.
More complex geometric arrangements such as reflecting
boundaries, barriers, monolayer deposition [7] and the im-
position of gravitational bias [8] are also possible.

Simulation work with large scale lattice gas models

Figure 1: A coloured lattice gas visualization

[9, 10] has important impications for studies of complex-
ity and emergence on logarithmic length scales. Work is
reported in the literature on the stability limits of lattice
gas models [11] and lattice gas models are also of use
in modeleing crowd dynamics [12]. Our particular inter-
est is in modelling multi-species systems lattice gas sys-
tems [13–15] where a fluid or some other modelled mi-
croscopic constituents either separate out from a random
initial state or mix and co-dissolve under the right param-
eteric circumstances.

In a previous study [16], a LGCA was used to sim-
ulate a lattice gas on a graphics processing unit (GPU),
as LGCA models are highly parallelisable [17–21]. This
allowed for better levels of optimization and execution
speed of the LGCA, as well enabling the model to be sim-
ulated at a larger scale. A method of visualizing the lattice
gas behavior on the fly, however, was not developed, and

Int'l Conf. Scientific Computing |  CSC'12  | 115



thus has become one of the goals of this paper.
Most standard LGCA models apply to a lattice con-

taining only one type of gas (commonly referred to as a
’species’). There do exist, however, some models which
take into account the option of having multiple species
present in the same lattice. Such models are good for sim-
ulating diffusion effects between multiple gases, and can
produce some interesting results depending on the proper-
ties of each species of gas. Models which deal with mul-
tiple species of gases are often called ”coloured” models,
as different particles can be represented visually using dif-
ferent colours. While accounting for a second species of
particle will affect the overall performance of the model,
there are ways to reduce this impact.

In tis article we present a coloured LGCA based on the
code from [16], which may be visually monitored on-the-
fly while also being able to be parallelized easily for per-
formance investigation. Firstly, a more in-depth explana-
tion of the LGCA models used will be given in Section 2
as well as a description of the OpenGL [22] and Compute
Unified Device Architecture (CUDA) [23] technologies
used in Section 3. In Section 4 some screenshots of the
resulting lattice gases will be shown, along with descrip-
tions and additional information. In Section 5 some the
performance results are put forth, and some coding issues
and difficulties will also be discussed. Finally, conclu-
sions and future work will be offered in Section 6.

2 The LGCA Models
While many models exist for using LGCAs to simu-

late fluid flow, the FHP-3 model [1] (named after Frisch,
Hasslacher and Poumeau, who first introduced the model)
allows for superior efficiency in simulation. The model’s
defining characteristics are the triangular lattice structure,
allowing for 6 channel directions (right, right-up, right-
down, left, left-up and left-down), as well as a stationary
particle channel, for each site in the lattice. The state of
each site in the lattice at any given time will be determined
by the state of the site particle itself, as well as the veloc-
ity vectors propagating from each of the site’s 6 surround-
ing neighbours, based on a certain set of defined collision
rules (see Figure 2 for an example). A single site parti-
cle may have up to eight inputs - six neighbor velocity
channels, one stationary channel, and one barrier channel.
Therefore, each site can be neatly stored as one byte - one
bit representing each channel. To further aid in compu-
tational efficiency, four 8-bit sites can be bit-packed into
one 32-bit integer, rather than using one integer for each
site.

The CFHP model [1], or known simply as a ”coloured”
lattice gas, is a variation of the regular FHP-3 LGCA,
in which particles may belong to two different species

Figure 2: An example of some FHP-3 model collision
rules

(colours). In a standard LGCA, every particle is de-
signed to be mechanically identical. This remains true
in a coloured LGCA - all particles remain identical in
all ways except colour. This means the CFHP model
need not create a larger, more complex set of collision
rules to compensate for two different particles in the lat-
tice. Indeed, the CFHP model uses exactly the same set
of rules as the FHP-3 model. How, then, does one keep
track of the colour of each particle in the lattice? The
number of coloured particles need only be conserved in
each collision. Before any collision rules are applied to
each site, the number N of each coloured particle can be
counted. Once the collision rules have been applied using
the standard FHP-3 collision ruleset, the colour attribute
can be randomly assigned to N number of channels using
a lookup table. This need only be done with one of the
two colours, as the second colour will automatically be
assigned to those channels not randomly assigned the first
colour attribute. Put simply, if the particle is not red, it is
blue.

In working with the code for the coloured lattice gas,
it was decided that we would develop an OpenGL ren-
dering system that would allow us to visualize the lattice
gas in real time, with the ability to monitor the different
colours separate from each other. The resulting program
allowed for visualization of the lattice in five different ren-
dering methods - original single-colour lattice, red lattice
only, blue lattice only, combined red and blue lattice, and
a combined red and blue lattice using arrows to visualize
the velocity vectors. The program was intended to investi-
gate how a particles of two different species might behave,
given they follow the same rules. Additionally, it was de-
cided that an interesting add-on to the project would be to
introduce some directional bias into the species (for ex-
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Figure 3: An CFHP model lattice setup - notice each di-
rection has two channels, one for red particles and one for
blue particles

ample, one species might be inclined to move downward
as it could be heavier). Without changing any of the rule-
sets, the bias could simply be applied during the lookup
table generation for the randomization of the colour as-
signment.

3 OpenGL Lattice Rendering and
CUDA

The code to simulate the coloured lattice gas was writ-
ten both as a sequential OpenGL program for visualiza-
tion purposes, and in CUDA for performance monitor-
ing. The coloured lattice would be expected to run slower
than the single-species lattice, as there is extra work in
counting coloured channels and assigning random chan-
nels coloured attributes.

As opposed to the single-species lattice, the coloured
lattice used three different arrays to store the lattice data
- a ”master” array on which the collision rule set was ap-
plied, and two arrays containing the information needed
for the red and the blue lattices. This allowed for easy ac-
cess by OpenGL when rendering only the red or only the
blue lattice, while additionally removing the need to add
extra rules to the rule set to be applied to the master lattice
in order to account for the different coloured particles.

The lattice itself was displayed in a 256x256 OpenGL
window, primarily using OpenGL points to represent the
particles in the lattice. To visualize the movement of the
particles, each OpenGL point was coloured according to

Figure 4: Sample screen dump of the lattice rendered us-
ing arrows

the represented point’s velocity vector. This velocity vec-
tor was computed as an average vector over a block of
4x4 neighbouring lattice points. These coloured points
were not always easy to interpret, so it was decided to al-
low the lattice to be rendered using arrows as well. The
arrows would point in the direction of the velocity vector,
while the magnitude of the vector determined the length
of the arrow. To avoid clutter in the OpenGL window,
the amount of arrows in the display was reduced from
256x256 to 16x16 with the vectors averaged over a larger
area, while keeping the original lattice precision the same.
Rather than colour the arrows the same as their OpenGL
point counterparts, they were coloured a flat red or blue,
depending on which species the particle belonged to at
that particular point on the lattice. Figure 4 shows an ex-
ample of what the lattice would look like rendered as ar-
rows.

The bulk of the code for the lattice gas was contained in
the Kernel function, which was used to perform both the
collision and propagation phases of the lattice gas. It was
used in OpenGL as the update function after every display
call. This function was converted nicely into CUDA code,
as each cell in the lattice operated independently for each
time step. Cells in the lattice were also bit-packed to im-
prove performance. The CUDA version of the code was
used solely for performance checking, as any rendering
would have slowed it down. The kernel itself followed
an algorithm roughly resembling the following algorithm
(Algorithm 1).

The coloured lattice was simulated twice, once using
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Algorithm 1 a typical coloured lattice gas kernel
for all cells in lattice do

count red particles
determine input channels
perform bit-packing (unpack)
apply collision rule
randomize colour channels
conserve red particles
apply colour channels
perform bit-packing (pack)

end for
update main lat, red lat, blue lat

the standard rule set, and once using a biased rule set.
Similar to [16], a barrier was added to allow for observa-
tion of the behavior around impassible cells. The barrier
was set up as a vertical line of cells centered horizontally
in the lattice, roughly one fifth of the width from the left
hand side. To allow for the most efficient demonstration
of the gas interaction with the barrier, initial particle ve-
locities were set to be perpendicular to the barrier, towards
the right. Additionally, the lattice particles would wrap
around right-to-left.

4 Visualisation Results
The particles in each screenshot are coloured in rela-

tion to their velocity. Darker areas of the lattice indicate
an absence or lower concentration of particles in that par-
ticular area - this usually occurs around barriers. For each
of the red and blue lattices a separate colour spectrum was
used to represent the velocities of the particles. While vi-
sualisation of each coloured lattice on its own presented
no problems, rendering both red and blue lattices together
presented some visualisation problems as it is difficult in
some places to distinguish the red lattice’s green particles
from the blue lattice’s teal particles (and several other sim-
ilar colour match ups as well). For reference and compar-
ison, a visualization of the single-species lattice gas was
also shown.

Each lattice configuration was simulated for 4096 time
steps, while being observed and captured at the start, mid-
dle and end points of the simulation. The resulting screen-
shots were produced.

Both the standard and biased versions of the lattice
were initialized exactly the same. Figure 5 shows this
initial configuration. All particles above half the height
of the lattice were initialized red, and all below were ini-
tialized as blue. In the early stages of the project, the red
and blue particles were assigned random initial positions
in the lattice - this configuration, however, produced no
meaningful results, as interactions between red and blue
particles were almost imperceptible, and diffusion behav-

Figure 5: Initial configuration of the lattice. From top-left
to bottom-right: the standard single colour lattice, both
coloured lattices, red only and blue only

ior could not be observed (as both species were already
fully diffused). The barrier cannot be seen yet in this ex-
ample, as initial particle velocities have yet to take effect.

Figure 6 shows the state of the lattice at the half-way
point of the simulation. This version uses the standard
rule set. In these figures the barrier to the left has be-
come clearly visible and the particles have begun to move
around it. It is interesting to watch the behavior of the red
and the blue lattices on their own. Although the majority
of each species’ fellow particles remain concentrated at
their respective sides, some particles are still forced in the
opposite direction by the barrier and other incoming par-
ticles from the left. This can be shown by a ”hook” like
shape created as the particles are pushed down and around
the edge of the barrier (this is more clear in the red lattice
as the colour is lighter). This type of behavior occurs be-
cause the particles have no cohesion between others of the
same species, and instead operate independently of each
other. Both lattices display some slight diffusion as some
blue particles begin to slowly move upward, and in turn
some red particles slowly move downward.

Figure 7 shows the final product of the lattice gas sim-
ulation after 4096 steps. The flow of the gas has now be-
come much more apparent due to the colour change of the
particles and the shape of the gas flow behind (to the right)
of the barrier. The behavior of the red and blue lattices is
also more apparent, as they form stronger curves around
the barrier and the diffusion between the two species has
increased.

The biased rule set was set up to increase the chance
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Figure 6: State of the lattice at time step 2048 (half -
way point of the simulation) using standard rules. From
top-left to bottom-right: the standard single colour lattice,
both coloured lattices, red only and blue only

Figure 7: Final state of the lattice (after 4096 time steps)
using standard rules. From top-left to bottom-right: the
standard single colour lattice, both coloured lattices, red
only and blue only

Figure 8: Half-way state (time step 2048) of the lattice
using a biased rule set. From top-left to bottom-right: the
standard single colour lattice, both coloured lattices, red
only and blue only

that a red particle would move in a downward direction
rather than any other. In the lattice configuration, this
meant that both the left-down and right-down channels
would have an increased chance to be assigned the colour
red, although the chances of assigning either left-down
or right-down still remained equal. This bias was cho-
sen over the other directional channels because it would
give more obvious results - a bias towards the right or left
might simply appear to increase or decrease particle ve-
locity in that direction. The downward bias was applied
only to the red particle species.

Figure 8 shows the half-way state of the biased lattice.
Notice how the shape of the single-species lattice is iden-
tical to that in Figure 6, however the shapes of the red and
blue lattices are radically different. Red particles, while
initially starting at the top (see Figure 5) have moved to-
wards the bottom of the lattice, being completely replaced
by blue particles at the extreme top of the lattice. Conse-
quently, blue particles appear to have been ”pushed” up-
wards by the red - a large area at the bottom of the lattice
now contains solely red particles. This area has a curious
”hump” shape, as while the red particles are biased down-
wards, they are still effected by the right-ward velocity
and barrier and are thus collecting mostly at the bottom
just to the right of the barrier. Both these behaviors form
what seems to look like ”layers” when both lattices are
rendered together.

Finally, Figure 9 shows the final result of the biased
coloured lattice gas simulation. The red particles have
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Figure 9: Final state of the lattice (after 4096 time steps)
using a biased rule set. From top-left to bottom-right: the
standard sin¡gle colour lattice, both coloured lattices, red
only and blue only

almost completely migrated to the bottom of the lattice,
while the blue have almost completely moved to the top
- essentially the positions of the two species have been
inverted. The effect of the velocity and barrier is still ap-
parent, however the particles seem to be less inclined to
separate - for example, the curve of the red particles mov-
ing up over the barrier is much sharper than the lattice
using non-biased rules (Figure 7) and once the particles
move over the edge of the barrier, they curve sharply back
down towards the bottom.

5 Discussion
The program running the coloured lattice when notice-

ably slower than the single-species lattice when they were
both run sequentially using OpenGL to display the lattice
after every time step. Due to the fact that the OpenGL ren-
dering only used simple GL points with no 3d graphics or
costly effects, the slowdown was probably due to the ex-
tra work being performed by the kernel during the update
phase (as opposed to the display phase). To mitigate the
overhead of copying to, and displaying the lattice on the
CPU we could implement the OpenGL rendering directly
on the GPU.

Any attempt to increase the lattice size would make the
simulation run too slow to be viewed in real-time speed
- while running nicely at a lattice size of 256x256, an in-
crease in lattice size to 512x512 would display at around
two frames (time steps) per second which is watchable but

slow, while increasing the size to 1024x1024 would dis-
play one frame every five seconds. It is clear that increas-
ing the size of the lattice needs parallelization to make the
simulation run smoothly in real time.

The following table shows the results of the perfor-
mance testing using the CUDA version of the coloured
lattice gas. The graphics card used for the performance
test was the NVidia Quadro 4000. It was tested using
different sizes of the lattice (256x256 up to 4096x4096),
recording the average time taken in seconds to execute
each kernel once. As expected, the coloured lattice took
longer than the standard lattice in all lattice sizes, al-
though it is almost unnoticeable in the smaller sizes (256
and 512). As the lattice gets larger, the time gap be-
tween the two lattices becomes exponentially larger until
the coloured lattice is almost half a second slower than the
single species lattice for each kernel execution.

Lattice size Standard Model Coloured Model
seconds seconds

per frame per frame
256 0.0084 0.0101
512 0.0131 0.0189

1024 0.0315 0.0537
2048 0.1044 0.1963
3072 0.2181 0.4290
4096 0.3996 0.7895

Table 1: Performance results of standard lattice gas vs.
coloured lattice gas models, parallelized using CUDA
with global memory. Times accurate to approximately
±0.00005.

From these results we can also see the power and speed-
up gained by using CUDA and the graphics card - as men-
tioned earlier, if we assume negligible time cost from ren-
dering, a single kernel execution on a 1024x1024 lattice
run sequentially would take approximately five seconds.
Compared to the 0.0537 seconds for a 1024x1024 lattice
on the GPU, the parallelized lattice is almost 100 times
faster. The coloured model adds only a manageable over-
head cost.

6 Conclusions
We have developed a two-dimensional coloured lattice

gas model, using OpenGL to render the model and ob-
serve it’s behaviour in real-time. The model is able to
easily be parallelized in CUDA for improved performance
and scaling. For additional performance improvement,
four cells in the lattice have been bit-packed into one 32-
bit integer. The program allows up to two species of par-
ticle to exist in the lattice and each species may be viewed
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separately as needed. The behaviours of different species
can be biased as required by generating a separate colour
randomization lookup table with an increased chance to
assign the colour to the desired direction channel or chan-
nels.

This encoding approach to the multi specied lattice
gas makes good use of memory and hence aids cache-
locality. Preliminary observations suggest the model is
large enough to support measurements of thermodynamic
mixing properties and experimental comparisons with re-
alistic complex fluis.

We plan on extending this work into creating a three-
dimensional lattice gas model and visualizing it in the
same way, as well as models with varied densities. This
would be expected to work well on a GPU architecture
as well, although it is unsure whether the memory con-
straints which may arise in a three dimensional model will
be manageable.
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Abstract 
 

WindowsTM Dam Analysis Modules (WinDAM) is a set of 
modular software components that can be used to analyze 
overtopped earthen embankments and internal erosion of 
dams. WinDAM is being developed in stages. The initial 
computational modules address routing of floods through 
the reservoir with dam overtopping and evaluation of the 
potential for vegetation or riprap to delay or prevent 
failure of the embankment. The next module, WinDAM B, 
incorporates dam breach analysis; i.e., analysis of the 
breach failure of a homogeneous embankment through 
overtopping and drainage of stored water. Current work 
is underway to include analysis of internal erosion, non-
homogeneous, zoned embankments, and analysis of 
various other forms of embankment protection. The focus 
of this paper is on the overall software architecture, 
interfaces between legacy software and the existing 
modules, and the integration with Sandia National 
Laboratories’ DAKOTA software suite to conduct 
parameter studies and uncertainty analysis on a range of 
input parameters. 
 

Keywords: Erosion, hydraulic modeling, sensitivity 
analysis, simulation, uncertainty quantification. 
 

 
 

1.  Introduction 
 

WindowsTM Dam Analysis Modules (WinDAM) is a set 
of modular software components that can be used to 
analyze overtopped earthen embankments and internal 
dam erosion. The development of WinDAM is staged. 
The initial computational model addresses routing of the 
flood through the reservoir with dam overtopping and 
evaluation of the potential for vegetation or riprap to 
delay or prevent failure of the embankment. The first 
model to be widely deployed, WinDAM A+, also 
incorporates the auxiliary spillway erosion technology 
used in SITES. However, unlike SITES, it allows a user 
to analyze up to three auxiliary spillways and 
embankment erosion on the dam. The next computational 
model, WinDAM B, incorporates dam breach analysis; 
i.e., the breach failure of a homogeneous embankment 
through overtopping and drainage of stored water in the 
reservoir. In addition, work is currently underway to 
include analysis of internal erosion, analysis of non-
homogeneous embankments, and analysis of other forms 
of embankment protection.  

WinDAM is designed to address the dam safety concerns 
facing the national legacy infrastructure of over 11,000 
small watershed dams constructed with US Federal 
involvement over a seventy-year period. The US 
Department of Agriculture -Agricultural Research Service 
(USDA-ARS), US Department of Agriculture-Natural 
Resources Conservation Service (USDA-NRCS), and 
Kansas State University (KSU) are working jointly to 
develop and refine this software. 
     Public Law 78-534 – Flood Control Act of 1944 
started the small watershed program, and it was followed 
by Public Law 83-566 – Watershed Protection and Flood 
Prevention Act of 1954. The map of watersheds (Fig. 1) 
illustrates the impact of Public Laws 566 and 534.  
 

 
 

Figure 1.  Map of small watershed projects. 
 
Starting in 1958, an average of one dam per day was 
constructed over a period of twenty years. The number of 
dams constructed per year is shown below in Fig. 2 [15].  
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Figure 2.  Number of dams constructed per year. 
 

Most flood routing of dams before the middle 1960’s was 
computed manually. Then, routing software on mainframe 
computers began to replace manual methods. Design 
procedure from 1973 to the mid 1990’s utilized the bulk 
length concept to determine the auxiliary spillway crest 
length and geometry. In 1983, the USDA-SCS-ARS 
Emergency Spillway Flow Study Task Group (ESFSTG) 
was formed to develop better technology for earth 
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spillway analysis.  The ESFSTG collected data on dams 
that experienced either emergency spillway flow at least 
three feet deep or significant damage during a storm 
event. Approximately one hundred sites were selected for 
more in-depth evaluation and data collection, and data 
analysis began in 1990 from the field spillway data 
initially collected. Tests were conducted in the USDA-
ARS outdoor Hydraulic Engineering Research Unit 
(HERU) Laboratory near Stillwater, Oklahoma, during 
this time to further understand spillway performance 
processes such as flow concentration, vegetal cover 
failure, surface detachment, and headcut migration. These 
findings were incorporated into the DAMS2 software, and 
then into Stability and Integrity Technology for Earth 
Spillways (SITES) software in 1994. The bulk length 
concept was replaced by SITES spillway erosion 
modeling technology in other USDA-NRCS references 
[15]. Although SITES may be used for analyses of 
existing dams and spillways, it was developed primarily 
for design and was developed over a period in which 
computational capability was much more limited than 
today. The legacy infrastructure of aging structures means 
a transition from design of new structures to analysis of 
existing structures.  For example, existing structures may 
overtop as a result of watershed changes or sediment 
deposition within the flood pool leading to inadequate 
spillway capacity. WinDAM builds on and extends the 
existing technology in SITES to provide the needed 
capability for these types of analyses. 
     WindowsTM Dam Analysis Modules (WinDAM) is a 
collection of modular software components that can be 
used to design and analyze the performance of earthen 
dams. The focus of the initial collection of computational 
modules is to evaluate earth dams subjected to flooding 
that may result in overtopping of the dam embankment 
and auxiliary spillway(s) [1]. The reservoir routing model 
incorporated into the software includes outflow from a 
principal spillway, up to three auxiliary spillways, and 
over the top of the dam embankment. For conditions 
where overtopping of the embankment is predicted, the 
hydraulic attack on the downstream face can also be 
evaluated using the initial software modules in WinDAM 
A+. The downstream face of a dam is typically protected 
using vegetation or riprap. WinDAM A+ has been 
extended to include erosion and breach computations for 
conditions where the hydraulic attack exceeds that which 
can be withstood by the vegetal or riprap lining, the 
resulting modules are in WinDAM B. The next version, 
WinDAM C, will incorporate analysis of failures caused 
by internal erosion or piping failures. To evaluate erosion 
in each auxiliary spillway, the SITES Spillway Erosion 
Analysis module with Latin Hypercube Sampling 
(SSEA+LHS) is integrated with WinDAM B. The 
Embankment Erosion Module is extended to include a 
Breach Analysis Module. The current model assumes the 
dam has a homogeneous embankment. It is most 
applicable to analyze or design embankments constructed 
from cohesive soil materials. It is anticipated that the 
model will be expanded to handle zoned embankments in 

WinDAM D. The breach technology enabling this 
expansion is currently under development. Inputs to 
WinDAM include a description of the reservoir inflow 
hydrograph, reservoir storage capacity, all spillway 
properties, the dam cross section and profile, properties of 
the embankment, and input parameters for the breach 
analysis module. Inflow hydrographs can also be obtained 
automatically from other reach routing software, such as 
SITES 2005.1.4 [2,3], SSEA+LHS [4], HEC-HMS [5], 
HEC-RAS, or WinTR-20 [6] as shown below in Figure 3. 
 

 

Figure 3.  WinDAM software architecture 
 

Outputs include a description of the reservoir water 
surface variation with time, the hydrographs associated 
with outflow through each of the spillways and over the 
top of the embankment, and a description of the attack on 
the dam embankment and downstream embankment face. 
Output hydrographs can be directed to external reach 
routing software. Output information is generated in both 
text and graphical format. The software generates ASCII 
text and/or XML control files for the model simulator 
which performs the model calculations. Output from the 
simulator is written to intermediate XML and/or fixed-
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format ASCII text files that can be read by a Graphical 
User Interface (GUI) to display results in both text and 
graphical format. Due to the well-defined interfaces that 
automatically convert data to and from different forms, it 
is easy for software developers to interface the system 
with existing analysis software and with software under 
development. 

In the DAKOTA system, the strategy creates and 
manages iterators and models. A model contains a set of 
variables, an interface, and a set of responses, and an 
iterator operates on the model to map the variables into 
responses using the interface [17]. The WinDAM system 
is used to automatically create a DAKOTA input file in 
which the user indirectly specifies these components 
through strategy, method, model, variables, interface, and 
responses keywords. Then, DAKOTA is invoked to 
iterate on the WinDAM simulation models as needed to 
generate outputs. Finally, the user returns to WinDAM.  

In what follows, Section 2 covers the interfaces 
between existing reach routing software and WinDAM. 
Section 3 briefly covers the integration of WinDAM with 
SSEA+LHS and the Dam Breach Module to analyze 
auxiliary spillway erosion and dam breach, respectively. 
The resulting WinDAM model is called WinDAM B – 
WinDAM with breach analysis. Finally, Section 4 covers 
integration of WinDAM with DAKOTA/UQ to perform a 
simple parameter study. 
 
 

2.  Interfacing with Existing Reach Routing Software 
 

Flow is routed through the reservoir by balancing inflow, 
outflow, and storage under the assumptions of a level 
reservoir surface with all outflow being a function of 
reservoir water surface elevation. Stage-storage properties 
of the reservoir are entered in tabular format with 
elevation in feet and the corresponding surface area in 
acres or storage volume in acre-feet. Reservoir inflow 
hydrographs are entered into WinDAM as series of time-
discharge pairs with time in hours and flow in cubic feet 
per second (cfs). 

 

 
 

Figure 4.  Hydrograph data import 
 

Inflow hydrographs are normally computed using other 
software that is capable of generating a rainfall-runoff 
hydrograph [2-6]. The time increment used for entry of 
the hydrograph is normally used in performing the routing 
and erosive attack computations. As shown in Figure 4, 
an option is provided to import hydrographs from other 
sources and an option is provided to automatically adjust 

the time increment until the change in computed 
maximum gross stress is less than one percent, or when 
the maximum effective stress is less than one percent, or 
when the reservoir water surface elevation changes by 
less than one percent, evaluated in that order when the 
time interval is halved (effectively doubling the number 
of hydrograph data points used on each run). For this 
example, the data is imported from a HEC-RAS public 
sample dataset for Beaver Creek as shown below in 
Figure 5, and after import as shown in Figure 4. 
 
 

  
 

Figure 5.  HEC-RAS dataset to import 
 
Note that the date/time format is automatically converted 
to hours with a default start time of 0.0 hours. The user 
can specify a different start time as shown if Figure 4.  

Since the simulator currently evaluates simulator runs 
in sequential order, several opportunities exist to enhance 
overall performance by parallelizing the application or by 
running the application on a cluster or grid.  If no breach 
analysis is to be performed, then the user can also input 
10-day drawdown parameters as shown in Figure 4. 

The computational model incorporated into the 
WinDAM software assumes stepwise steady-state flow 
and a level water surface in the reservoir. The mass 
balance equation governing flow through the reservoir for 
any given time step may be obtained by averaging 
conditions over the time step. The inflow to the reservoir 
is a known function of time only, and is obtained through 
application of appropriate hydrologic models such as 
SITES 2005.1.5 [2], HEC-HMS [5], or WinTR-20 [6]. 
The outflow from the reservoir is the sum of the outflow 
from all spillways and the outflow over the top of the 
dam. Using the assumptions of a level water surface in the 
reservoir and stepwise steady flow, each of the individual 
outflows may be treated as a unique function of the 
reservoir water surface elevation. Likewise, the storage 
volume in the reservoir becomes a unique function of the 
reservoir water surface elevation.  
 
3.   Spillway Erosion and Breach Analysis 
 

The primary purpose of WinDAM B is threefold: 
 

 Hydraulically route one input hydrograph through, 
around, and over a single earthen dam. 

 Estimate auxiliary spillway erosion in up to three 
earthen or vegetated auxiliary spillways. 

 Estimate erosion of the earthen embankment caused 
by overtopping of the dam embankment. 

Int'l Conf. Scientific Computing |  CSC'12  | 127



Since WinDAM B does not include any specific 
hydrology component, the user must create the input 
hydrograph using other software. This allows the user the 
flexibility to choose the hydrologic software most suitable 
for analysis of site conditions; e.g., HEC-HMS, etc. 

WinDAM B assumes the embankment of the dam is a 
homogenous earthen material.  Many USDA-NRCS dams 
are homogenous earthen fill, so the WinDAM B model 
applies. Future versions of WinDAM will address zoned 
embankments where each zone exhibits different erosion 
resistance from other zones. 

Most existing USDA-NRCS dams are built with a 
single earthen auxiliary spillway. In rehabilitation of old 
USDA-NRCS-designed dams, it is more common to also 
utilize additional auxiliary spillways. As a result, 
WinDAM B allows the user to input up to three auxiliary 
spillways, each spillway with a zoned embankment and 
different physical characteristics.  
 

Breach Erosion 
 

Computation of the discharge through the area of the 
breach, if any, is unit discharge based on the effective 
width. If breach is to be evaluated, the associated erosion 
is assumed to be initiated in an area corresponding to 
maximum unit discharge over the top of the dam. 
Therefore, for any time step, the breach area unit 
discharge must be greater than or equal to the maximum 
overtopping unit discharge. During the breach initiation 
phase of erosion prior to the headcut entering the 
reservoir, the location of the headcut is tracked and used 
in determination of the breach area unit discharge. 

Following breach initiation, the unit discharge is 
computed assuming negligible energy loss from the 
reservoir to the hydraulic control and critical flow 
conditions with hydrostatic pressure at the hydraulic 
control. The processes that determine the erosion during 
embankment breach are dependent on the breach 
geometry and the breach area discharge. 

When the surface protection on the slope is failed, the 
underlying material is exposed to erosive attack. The 
location of the surface failure is taken to be the upstream 
point on the slope evaluated. For a simple dam 
embankment cross section, this also represents the 
downstream edge of the dam crest. The location of the 
surface failure along the length of the dam is taken to be 
the point of minimum crest elevation which is the 
maximum distance from either end of the embankment. 
This location represents the point where the resulting 
headcut must move a minimum distance to result in 
breach of the embankment and the breach area may 
experience a maximum amount of widening before 
encountering an abutment. Erosive attack on the exposed 
embankment material following failure of any surface 
slope protection will result in the eroded area (referred to 
herein as the breach area) deepening, widening, and 
advancing upstream through the embankment. The way in 
which the erosion will progress depends on the local 
geometry and discharge. Initially, the headcut (local 
vertical) may not be sufficiently high to generate the 

plunging action that is associated with typical headcut 
advance. Likewise, during latter stages of the process, the 
headcut may become submerged. 
 

Submerged Headcut Erosion 
 

The headcut is considered to be submerged for purposes 
of computing erosion whenever the downstream tailwater 
elevation is greater than or the elevation of the crest of the 
headcut, or the height of the headcut is less than the 
critical depth of the flow in the breach area. The latter 
implies that the minimum depth of water at the base of the 
headcut is the critical flow depth based on the breach area 
unit discharge. When the headcut is submerged, the 
headcut is considered not to advance or deepen from 
plunging action of the flow over the crest of the headcut. 
If elevation of the downstream tailwater computed from 
total flow through the reservoir is below the elevation of 
the base of the headcut and the base of the headcut is 
within the embankment, the headcut may continue to 
deepen as a result of flow on the face of the dam 
downstream of the headcut. The rate of deepening that is  
associated with this flow is approximated using a normal 
flow depth model consistent with that used in evaluating 
surface protection. The erosion rate resulting in deepening 
of the headcut is computed by: 

)( cedr k      (1) 

where 
r = the soil detachment rate in volume per unit area per 

unit time,  
kd = a detachment rate coefficient that is a property of 

the embankment material,  
τe = the erosionally effective stress (in 1b/ft2), and 
τc = the critical soil stress (in 1b/ft2). 
 

As applied in WinDAM, kd is expressed in (ft/h)/(lb/ft2) 
and is provided as input to the model (see Figure 6). 

The appropriate value for input may be obtained from 
soil tests as described by Hanson and Cook [14].  
 

 
 

Figure 6.  Breach model input 
 
Unsubmerged Headcut Erosion 
 

When the tailwater is below the crest of the headcut and 
the height of the headcut is greater than the critical depth 
of flow, the flow will tend to plunge over the crest of the 
headcut. Stresses associated with this plunging flow may 
govern the rate of downward erosion at the base of the 
headcut, the rate of headcut advance, or both. In 
WinDAM, users may select an energy-based or a stress-
based advance rate model. The energy-based model, 
designated the Temple/Hanson model, is described by 
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Temple et al. [8]. The model is a variation on the semi-
empirical model used in the SITES spillway erosion 
computations [2]. The stress-based model, designated the 
Hanson/Robinson model, is an adaptation of the model 
described by Hanson, et al. [13], These advance rate 
models reflect different degrees of simplification of the 
complex process and have different input requirements.  
 

Temple/Hanson Energy-driven Model 
 

The energy-driven headcut advance rate model computes 
headcut advance rate using the relation: 

3/1)( hu HqC
dt
dX


      (2) 

where 
dX/dt = the rate of headcut advance , 
C = an advance rate coefficient,  
qu = unit discharge, and Hh = headcut height. 

 
Hanson/Robinson Stress-driven Model 
 

The stress-driven headcut advance rate model has the 
advantage of being a more detailed representation of the 
physical processes governing headcut advance through a 
homogeneous soil material. However, the increased 
complexity makes it more difficult to utilize experience 
with similar conditions to calibrate the model for 
application to a specific site. The model is fundamentally 
that presented by Hanson et al. [13]. The headcut is 
assumed to advance through a series of mass failures 
driven by erosion at the base as indicated by the sketch 
shown below in Figure 7. Hydraulic shear stresses are 
assumed to erode the base increasing the distance Ev and 
shortening distance L until gravitational forces exceed the 
soil strength resulting in failure. Soil tensile strength is 
assumed to be negligible. The hydraulic shear stress 
driving the erosion on the headcut to increase Ev is 
computed by the relations developed by Robinson (1992).  

 
Figure 7. Sketch of headcut failure form 

 
When headcut advance is governed by the plunging action 
of unsubmerged flow, the widening of the breach 
(headcut) area is assumed to be governed by the same 
action and the widening rate is taken to be equal to the 
headcut advance rate computed by the selected model.  
 
4.  Uncertainty Analysis in WinDAM/UQ 
 

The goal of uncertainty analysis is to obtain a better 
understanding of the probable range of outputs given that 
there is a certain amount of uncertainty in the input. In 
particular, based on uncertain inputs (UQ), determine the 
distribution function (uncertainty) of the outputs and 
probabilities of failure (reliability metrics); identify the 

statistical measures (mean, variance, etc.) of the outputs; 
and identify the inputs whose variance contribute most to 
variance in the outputs (global sensitivity analysis) [17].  

Spillway designs are compared by determining both 
the stability and integrity of the spillway when it is 
subjected to a given design storm. In a typical design, 
three types of hydrographs are used: principal spillway 
hydrographs, stability design hydrographs, and freeboard 
hydrographs. A principal spillway hydrograph is used to 
size the principal spillway and set the elevation of the 
crest of the emergency or auxiliary spillway. The 
principal spillway is typically a conduit through the dam 
used to pass low flows, whereas the auxiliary spillway is 
often an open channel capable of passing infrequent large 
flows. Earth auxiliary spillways are typically wide 
trapezoidal channels vegetated as appropriate for the local 
area. A stability design hydrograph, when routed through 
a reservoir, generates the maximum auxiliary spillway 
outflow that the reservoir will be expected to pass without 
erosion damage. For the design to be stable, erosion 
thresholds must bound hydraulic stresses that lead to the 
initiation of erosion. For flows larger than the stability 
design hydrograph, spillway erosion may occur, and the 
spillway may require maintenance (see Fig. 8). A 
freeboard hydrograph represents the maximum flow for 
which the structure is designed. The integrity of the 
auxiliary spillway, as represented by its resistance to 
breach, is evaluated for the spillway outflow associated 
with this hydrograph. Naturally, this is the most important 
consideration in designing an earth (soil, rock, or both) 
spillway. Even though extremely large discharges may 
cause significant erosion, the spillway must not breach 
during passage of the freeboard hydrograph. A spillway 
is considered breached if the spillway crest is degraded by 
erosion and floodwater is released through the spillway a 
fixed depth below the crest elevation. 
 

 
 

Figure 8.  Eroded auxiliary spillway. 
 

Breach potential is a function of the spillway system, the 
characteristics of the spillway outflow hydrograph, the 
erodibility of the earth materials, the spillway layout, 
bottom width, and maintenance. Integrity analysis is 
based on the idea that some erosion is allowable if its 
occurrence is infrequent, maintenance is provided, and the 
spillway will not breach during passage of the freeboard 
hydrograph [10]. 

The integrated development system for water resource 
site analysis WinDAM/UQ – WinDAM with Uncertainty 
Quantification – is designed to fully integrate the 
simulation models in WinDAM with the uncertainty 
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quantification, sensitivity analysis, and parameter studies 
capabilities in DAKOTA. This novel, new development 
environment interactively guides user input, invokes the 
sampling and simulation models in the background, and 
parses the results to automatically generate output 
hydrographs, summary tables, and graphs.  

This version of the software also allows a user to 
conduct parameter studies and specify the inputs to be 
analyzed based on a list of probability distribution 
functions. Twenty-five different types of distributions can 
be specified [7]. For example, a user could specify a 
Normal Distribution for hydrograph peak discharge with a 
mean of 50,000 cfs and a standard deviation of 10,000 
cfs, or a user could specify a Uniform Distribution for a 
material property such as headcut index, Kh, for multiple 
materials or a single material as shown in Figure 9. 

 

 
 

Figure 9.  Uniform distribution input. 
 
Random samples are generated using the Latin Hypercube 
Sampling (LHS) library routines found in Dakota 5.2. In 
addition to specifying the types of distributions to be used 
to generate samples, the user can also specify the number 
of instances to be generated and the algorithm to be used 
to generate those samples. In particular, the user can 
select between Monte Carlo and Latin Hypercube 
Sampling. With Monte Carlo Sampling, the samples are 
generated at random. The user can specify a random 
number seed to generate the same sequence of random 
samples. With Latin Hypercube Sampling, the samples 
are more evenly distributed across the search space, 
resulting in better coverage and fewer samples required 
[16]. As shown in Figure 9, a user could request 10 
instances (samples) to be generated for a given material's 
headcut index using a Uniform Distribution from 0.001 to 
0.201. Then, one sample would be randomly generated 
for each interval of length 0.02 from 0.001 to 0.201. For 
this input, the generated samples are shown in Figure 10. 
 

@UNCERTAINTY 
  @OBSERVATIONS     10 
  @VARIABLES      1 
    KH(1):              
@SAMPLEDATA 
 1 1  0.178143860112386      
 2 1  0.114162037013804        
 3 1  0.153554977141378      
 4 1  0.184678807170631      <- min erosion 
 5 1  0.140484162236030      
 6 1  7.696084019646307E-003 <- max erosion 
 7 1  6.790786373412117E-002 <- mean erosion 
 8 1  2.112528697716014E-002 
 9 1  5.711419140612775E-002 
10 1  9.154328306156087E-002 

 

Figure 10.  Random samples generated. 

The Build Interface is used to generate instances for a 
given run based on the random variables generated, and 
then to invoke the simulator for each instance. The Build 
Interface also parses output to extract summary data for 
each run including instances that generate the maximum, 
mean, and minimum erosion. 

 

 
 

Figure 11.  Aux. spillway summary table. 
 

The summary data is presented in a two-level table. 
The top-level table, shown in Figure 11, only displays 
instances resulting in maximum, mean (actually the run 
closest to the mean), and minimum erosion, whereas the 
second-level table, see Figure 12, displays all instances. 
 

 
 

Figure 12.  View All runs. 
 
After one or more related runs have been processed, 

they can be analyzed by using the Output Interface. The 
user can quickly compare differences between runs and 
instances by viewing the Summary Tables and Summary 
Graphs. By varying these input parameters, a user can 
quickly determine how changes in each will potentially 
impact erosion. The output graph for Spillway Erosion 
includes the option to display the currently selected run 
with the maximum erosion (shown in orange), the mean 
erosion (shown in red), and the minimum erosion (shown 
in green). The erosion for the current run is shown in 
blue, below in Figure 13. 

 

 
 

Figure 13.  Spillway erosion graph. 
 

Finally, the output can be used for a parameter study to 
determine how changing the value of an input parameter, 
in our example the headcut index, Kh, will impact the 
amount of erosion that results. A scatter plot of the results 
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is shown in Figure 14. As expected, the stronger materials 
result in less erosion. Note that one sample is selected 
from each interval  due to Latin Hypercube Sampling. 
 

Eroded Area
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Figure 14.  Scatter plot for all runs. 

 
5.   Conclusions 
 

WinDAM is being developed in stages to evaluate the 
performance of earth dams. Existing modules with well-
defined interfaces enable efficient integration of existing 
legacy software and future enhancements. The system 
provides tools that can be used to better understand the 
structure, function, and dynamics of such structures. 
Uncertainty quantification and sensitivity analysis can be 
incorporated by linking the development environment 
with DAKOTA/UQ. The paper also provides an example 
of how the system can be used to conduct a simple 
parameter study.  
 

Acknowledgements 
 

The authors gratefully acknowledge the US Department 
of Agriculture and the US Army Corps of Engineers for 
providing the data and the images used in this paper. 

 
References 
 

[1]  D.M. Temple, G.J. Hanson, and M.L. Neilsen, 
"WinDAM -- Analysis of overtopped earth 
embankment dams", In Proc. of the ASABE Annual 
Conference, Paper Number 062105, 2006. 

 [2] D.M. Temple, G. Hanson, M. Neilsen, et al., 
"SITES 2005 Water Resource Site Analysis 
Computer Program - User Guide", T.R. No. 210-
728.5, USDA, 2007. 

[3]  D.M. Temple and M.L. Neilsen, "SITES integrated 
development environment for watersheds with 
multiple reservoirs", Watershed Management 2000, 
ASCE, June 2000. 

[4]   M.L. Neilsen, D.M. Temple, and J.L. Wibowo, "A 
distributed hydrologic simulation environment with 
latin hypercube sampling", In Proc. of the IASTED 
Intl. Conf. on Env. Modelling and Simulation, No. 
432-032, St. Thomas, USVI, Nov. 22-24, 2004. 

[5]  United States Army Corps of Engineers, 
"Hydrologic modeling system HEC-HMS User’s 
Manual", CPD-74A, Ver. 3.5, USACE, HEC, 2010. 

[6]  USDA, Natural Resources Conservation Service, 
"WinTR-20 User Guide", draft, July 23, 2004. 

[7]  M.L. Neilsen, D.M. Temple, and J.L. Wibowo, "A 
distributed hydrologic simulation environment with 
latin hypercube sampling", In Proc. of the Intl. 

Conference on Environmental Modelling and 
Simulation (EMS 2004), No. 432-032, 2004. 

[8] D.M. Temple and G. J. Hanson, "Earth dam 
overtopping and breach outflow", In Proc. of the 
World Water and Environmental Resources 
Congress, Anchorage, Alaska, ASCE, 8 pp., 2005. 

[9] V.T. Chow, "Open-channel hydraulics", McGraw 
Hill Book Company, New York, 680 pgs., 1959. 

[10]  United States Department of Agriculture, Natural 
Resources Conservation Service, "Earth spillway 
erosion model", Ch. 51, Part 628, Dams, National 
Engineering Handbook, 210-VI-NEH, 1997. 

[11]  D.M. Temple, J. Wibowo, M.L. Neilsen, "Erosion 
of earth spillways", In Proc. of 23rd United States 
Society on Dams (USSD) Annual Meeting and 
Conference, pp. 331-339, 2003. 

[12] M.L. Neilsen and D.M. Temple, "A concurrent 
simulation model for analysis of water control 
structures at the watershed scale", In Proc. of the 
Intl. Conf. on Par. and Dist. Proc. Tech. and Apps., 
(PDPTA 2010), pp. 1565-1570, June 26-29, 2000. 

[13] G.J. Hanson, K.M. Robinson, and K.R. Cook, 
“Prediction of headcut migration using a 
deterministic approach. Trans. ASAE, 44(3): pp. 
525-531, 2001. 

[14]  G.J. Hanson and K.R. Cook, “Apparatus, test 
procedures, and analytical methods to measure soil 
erodibility in-situ”, in Applied Engineering in 
Agriculture, ASABE, 20(4):455-462, 2004. 

[15] K. Visser, G. Hanson, D. Temple, M. Lobrecht, M. 
Neilsen, T. Funderburk, and H. Moody, "WinDAM 
B earthen embankment erosion overtopping analysis 
software", in JFIC conference, 2010.  

[16] M. D. McKay, W. J. Conover, and R. J. Beckman, 
"A comparison of three methods for selecting values 
in the analysis of output from a computer code", 
Technometrics, 21(2):239-245, 1979. 

[17] M.S. Eldred, A.A. Giunta, L.P. Swiler, S.F. 
Wojtkiewicz, Jr., W.E. Hart, J.P. Watson,  D.M. 
Gay, and S. L. Brown, "DAKOTA: A multilevel 
parallel object-oriented framework for design 
optimization, parameter estimation, uncertainty 
quantification, and sensitivity analysis, Version 3.2 
Users Manual", Sandia Tech. Report SAND2001-
3796, updated July 2004.  

[18] D.M. Temple and J.S. Moore, "Headcut advance 
prediction for earth spillways", Transactions of the 
American Society of Agricultural Engineers (ASAE), 
40: 557-562, 1997. 

[19] M.L. Neilsen and D.M. Temple, "A concurrent 
simulation model for analysis of water control 
structures at the watershed scale", In Proc. of the 
Intl. Conf. on Parallel and Dist. Proc. Techniques 
and Applications, pp. 1565-1570, June 26-29, 2000. 

[20] United States Army Corps of Engineers, "Tuttle 
Creek Lake, Big Blue River, Kansas", Design 
Memorandum No. 5, Spillway Erosion Assessment, 
USACE, Kansas City, MO, 1995. 

Int'l Conf. Scientific Computing |  CSC'12  | 131



Application of SoildWorks® and LabVIEW®

 

-based 
Simulation Technique to Gain Tuning of a 6-axis 

Articulated Robot 

Chang Doo Jung1, Won Jee Chung1 and Dong Sun Lee1 
1

 
School of Mechatronics, Chansgwon National University, Changwon-si, Gyeongsangnam-do, South Korea 

 
Abstract - Nowadays the applications of industrial robots are 
spreading to a great extent so that various demands for 
industrial manipulators are increasing. While industrial 
robots are coming into wide use, the control techniques of the 
robots are being developed as their performance is being 
enhanced. In this paper, for accurate gain tuning of the lab-
manufactured 6-axis articulated robot (called as “RS2”) with 
less noise, a program routine of DSA (Dynamic Signal 
Analyzer) for frequency response method will be programmed 
using LabVIEW®. Then robot transfer functions can be 
obtained experimentally using frequency response method 
with DSA program. Data resulted from the robot transfer 
functions are transformed into Bode plots, based on which an 
optimal gain tuning will be executed.  Also another 
contribution of this paper is the proposal of SoildWorks® and 
LabVIEW®-based simulation technique for the gain tuning of 
a 6-axis articulated robot. To realize the simulation, the 
LabVIEW® program used in the experimental gain tuning is 
incorporated with SolidWorks®. The 3-D modeling of RS2 in 
SolidWorks® is loaded into LabVIEW®, instead of the physical 
robot of RS2.  Moreover virtual 6 drivers are generated on the 
LabVIEW®, making the joint axes of 3-D model coincident 
with the ones of actual RS2. Then the LabVIEW® program 
used in the experimental gain tuning is loaded and connected 
to the virtual drivers.  Finally SoildWorks® and LabVIEW®-
based simulation is performed from axis 6 through 1 in the 
same manner as in the experimental gain tuning.  The 
comparison of the simulation-based gain tuning with the 
experimental gain tuning can be shown to be almost the same 
as those of experimental gain tuning within 5% error bound. 
Based on the comparison, it can be suggested that the 
simulation-based technique of gain tuning can be applied to a 
6-axis articulated robot through interlocking SolidWorks® and 
LabVIEW®

 

, instead of the experimental gain tuning. 

Keywords: 6-axis Articulated Robot, SolidWorks®, 
LabVIEW®

 

, Simulation-based Gain Tuning, Experimental 
Gain Tuning  

 

1 Introduction 
Nowadays the applications of industrial robots are 

spreading to a great extent so that various demands for 
industrial manipulators are increasing. While industrial robots 
are coming into wide use, the control techniques of the robots 
are being developed as their performance is being enhanced.  
For example, in order to reduce both manufacturing process 
and factory area, the transfer of car bodies are investigated by 
using 6-axis articulated robots with 6 Degrees of Freedom 
(DOF), instead of conveyor lines. This leads to small-scale 
assembly stations using 6-axis articulated robots with which 
can replace mass production using conveyors to meet the need 
of manufacturing various kinds of car in small lot.  Usually 6-
axis robots which are widely used for welding, spray painting 
and so on, have payloads from 10 kg to 300kg.  In order to 
enhance both the control accuracy and the reliability of 6-axis 
articulated robot with payload of 500 kg over, the synthetic 
technology including design, prototyping and gain tuning 
should be accompanied. 

As one of previous studies, Kim et al. [1] has presented 
“Prototyping and Visualization Techniques of 3-axis SCARA 
Robot Using DOE (Design Of Experiment) and LabVIEW®.”  
In this paper, gain tuning using LabVIEW® has been 
performed for a 3-axis SCARA robot.  Ahn et al. [2] has 
investigated “On Design, Prototype and Gain Optimization for 
Heavy Duty Handling Articulated Manipulator (HDHAM) 
with 6 DOF.”   This paper has dealt with the design of a 6-axis 
articulated (1/4-size lab-manufactured model for an original 
heavy duty handling robot [2]) robot (hereinafter called as 
“RS2” as shown in Fig. 1) as well as its gain tuning.  But an 
older version of LabVIEW®

In this paper, for accurate gain tuning of RS2 with less 
noise, a program routine of DSA (Dynamic Signal Analyzer) 
for frequency response method will be programmed using 
LabVIEW

 programming has been used so 
that graphical data has been shown to be with much noise. 

®.  Then robot transfer functions can be obtained 
experimentally using frequency response method with DSA 
program.  Data resulted from the robot transfer functions are 
transformed into Bode plots, based on which an optimal gain 
tuning will be executed. Also another contribution of this 
paper is that simulation will be conducted by interlocking 
SolidWorks® (6-axis robot modeling) with LabVIEW®, in 
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order to 

 

verify the experimental results of gain tuning by being 
compared with the simulation results of gain tuning.  

 
Fig.1  Configuration of RS2(6-axis articulated robot) 

 
2 LabVIEW®

For the higher control system of RS2, the Motion 
Controller of NI PXI-7350 equipment (see Fig. 1) has been 
used with the universal control and measurement software of 
LabVIEW

-based Experimental 
Gain Tuning 

®. Figure 2 represents a program controlling the axis 
of a robot.  Here a value of motor encoder is received as an 
output robot signal for the applied voltage of an input value so 
that the robot signal is plotted by LabVIEW®

 

. Upon the 
execution of DSA program, a robot transfer function can be 
obtained as a plot as shown in Fig. 3. 

 
Fig. 2 LabVIEW®  programing 

 
Fig. 3 Robot signal response 

 
The faster joint velocity in robot control, the more 

deviation from the designated path of end-effector. In turn, 
this results in the vibration of robot mechanism, depending on 
changes in joint speed.  To cope with this problem, the robot’s 
response can be greatly improved by setting PID gain values 
so as to be suited to robot characteristics. 

For tuning of a proportional gain (Kv), the LabVIEWⓇ 
DAQ (Data AcQuisition) equipment is connected with the 6-th 
(i.e., the last) axis motor driver nearby the end-effector of 
robot.  First, an arbitrary value of proportional gain has been 
set for the motor driver.  Then an appropriate value of the sine 
wave amplitude X is selected according to ref. [3]. At this time, 
an integration effect has been eliminated by setting the 
integration time constant at 1000 [4].  Finally frequency 
response test is conducted as follows: A sine wave of 0.5 V rms 
(root mean square of voltage) from 2Hz through 500Hz is 
applied to the speed command pin of a servo driver as a 
source wave form from PXI-6733 of LabVIEWⓇ DAQ; a 
Bode plot (Gc(s) ) of a closed loop can be extracted using the 
programmed DSA; the closed loop transfer function G0(s) can 
be obtained by using the open loop transfer function Gc

 

(s) in 
Eq. (1). 

)(1
)()(
sG

sGsG
C

c
o −

=                                  (1) 

 
Then the open loop transfer function, G0(s), can be 

converted to the Bode plot by using LabVIEWⓇ

 
 DAQ.   

 
Fig. 4 Bode plot of open loop transfer function 
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In Fig. 4, the extracted Bode plot of open loop transfer 
function leads to the gain margin of -15dB and the phase 
margin of -91.3 degree.  In general, according to Nyquist 
stability[5], gain margin should be -6dB ~ -20dB, while phase 
margin should be larger than 45 degree.  In this case, if we put 
the gain margin to be -6dB, we can obtain the new 
proportional gain of velocity control loop Ḱv

 
 as follows 

                     (2) 

 
Figure 5 shows a newly extracted Bode plot of open loop 

transfer function, G0(s), when the new proportional gain of 
velocity control loop, Ḱv

 

 = 141 has been applied to the motor 
driver. 

 
Fig. 5 Bode plot of open loop transfer function 

 
The integral gain of velocity control loop, Ki

 

, can be 
obtained from an integration time constant.  When the 
integration time constant is applied to an integrator, it can be 
determined as the reciprocal of frequency whose is 10 times of 
gain crossover frequency.  As shown in Fig. 6, the gain 
crossover frequency is 71.315Hz. 

 

Fig. 6 New Bode plot of open loop ( Ḱv

 
 =141) 

 Thus the integration time constant can be obtained as 
14ms, i.e., the reciprocal of 10 times of gain crossover 
frequency.  Now the integral gain Ki

 

 can be resulted from Eq. 
(3) as follows: 

ivi TKK /=                                   (3) 

which leads to Ki
 

= 1014. 

The proportional gain of position control loop, Kp

 

, can be 
obtained by  

22ς
π c

p
fK =

                                 
(4) 

 
where ζ is the damping ratio; fc is cut-off frequency.  The 

value of ζ is given experimentally by 0.707 in this paper. It 
can be noticed that the transfer function of velocity control 
loop has been used for figuring out the closed loop bandwidth 
(i.e., cut-off frequency) at the frequency whose magnitude in 
dB amounts to -3dB as shown in the Bode plot of Fig. 7. In 
this figure, fc can be figured out as 220Hz. Therefore Eq. (4) 
gives Kp
 

 = 700 for the 6th joint servo. 

 

 
Fig. 7 Bode plot of close loop apply Ḱ

 
v 

 
Through the process mentioned above, we have performed 

the gain optimization for the remained 5 axes joint servo 
controllers of 6-axis articulated robot.   Consequently, Fig. 8 
and Table 1 show the experimental results of the optimized 
gains for all 6 joint servo controllers. 
 
 

Axis Bode plot of close loop apply Ḱ

1 

v 

 

2 
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3 

 

4 

 

5 

 

6 

 

Fig. 8 Gain optimize results 

Table. 1 Optimized Gains 

 1Axis 2Axis 3Axis 4Axis 5Axis 6Axis 
K 212 v 144 182 377 225 141 
K 315 i 884 683 605 315 1014 
K 465 p 562 561 53 47 700 

 
3 Application of SoildWorks® and 

LabVIEW®

To prove the test results of experimental gain tuning, a 
simulation technique using Solidworks

-based Simulation 
Technique to Gain Tuning 

® interlocked with 
LabVIEW® is proposed. For the simulation, 3 dimensional (or 
3-D) modeling was first conducted by using the dimensions, 
material kinds and servo motor specifications of RS2 with 
SolidWorks®.  Figure 9 represents the 3-D modeling of 
SolidWorks® for RS2. In the SolidWorks®

 

 3-D modeling, 
each joint axis moved by RS2 was set from axis 1 through 6 as 
shown in Fig. 10. 

 
Fig. 9 SolidWorks® 3-D modeling of RS2 Using SolidWorks

 

® 

Axis Set axis 

1 

 

2 

 

3 

 

4 
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5 

 

6 

 

Fig. 10 Set axes of 6-axis articulated robot 

 
To realize the simulation, the LabVIEW® program used in 

the previous section of experimental gain tuning was 
incorporated with SolidWorks®. The 3-D modeling of RS2 in 
SolidWorks® was loaded into LabVIEW®, instead of the 
physical robot of RS2.  Moreover virtual 6 drivers were 
generated on the LabVIEW®, making the joint axes of 3-D 
model coincident with the ones of actual RS2. Then the 
LabVIEW® program used in the experimental gain tuning was 
loaded and connected to the virtual drivers.  Finally 
SoildWorks® and LabVIEW®-based simulation is performed 
as shown in the interlocking program configuration of Fig. 11. 
More specific, the simulation has been executed from axis 6 
through 1 in the same manner as in the experimental gain 
tuning.  Figure 12 gives the simulation result of proportional 
gain of velocity control loop, Ḱv

 
. 

 

 
Fig. 11 Interlocking program configuration 

 

Axis Bode plot of close loop apply Ḱ
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Fig. 12 Gain tuning results of simulation 

 
Based on the above data, the optimal gain values of Kv, Ki 

and Kp

 

 are calculated for each axis, using Eqs. (1) to (4) in the 
same way as in the experimental gain test. Table 2 below 
shows the simulation results of optimal gains for each axis. 

Table. 2  Optimized Gains of Simulation 

 1Axis 2Axis 3Axis 4Axis 5Axis 6Axis 
K 210 v 151 180 364 239 139 
K 309 i 879 679 615 327 1007 
K 471 p 580 568 57 49 700 
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Table 3 illustrates the comparison of these simulation-
based gain tuning with the previous experimental gain tuning.  
It can be noticed from Table 3 that the values of experimental 
gain tuning are almost the same as those of experimental gain 
tuning within 5% error bound.   This verifies the effectiveness 
of SoildWorks® and LabVIEW®-based simulation technique 
for the gain tuning of a 6-axis articulated Robot.  Moreover 
this simulation-based gain tuning is also compared with the 
experimental gain tuning in terms of velocity response at an 
applied velocity of 0.5Vrms

 

.  Figure 13 shows both response 
levels for each axis.  In Fig. 13, the experimental gain tuning 
is a little slower than the simulation-based gain tuning.  Here 
the red line corresponds to a response velocity of the 
experimental gain tuning while the blue line corresponds to 
the simulation-based gain tuning. 

Table. 3  Comparison of Experimental and Simulation-based 
Gain Tuning 

Axis 
Experimental Simulation 

K Kv Ki Kp Kv Ki 
1 

p 
212 315 465 210 309 471 

2 144 884 562 151 879 580 
3 182 683 561 180 679 568 
4 377 605 53 364 615 57 
5 225 315 47 239 327 49 
6 141 1014 700 139 1007 700 

 
Axis Response test 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

Fig. 13 Response test of experimental and simulation 

 
4 Conclusion 

In this paper, for accurate gain tuning of the lab-
manufactured 6-axis articulated robot (called as “RS2”) with 
less noise, an experimental gain tuning technique has been 
presented based on ref. [2].  The major contribution of this 
paper is the proposal of SoildWorks® and LabVIEW®-based 
simulation technique for the gain tuning of a 6-axis articulated 
robot. To realize the simulation, the LabVIEW® program used 
in the experimental gain tuning has been incorporated with 
SolidWorks®. The 3-D modeling of RS2 in SolidWorks® is 
loaded into LabVIEW®, instead of the physical robot of RS2.  
Moreover virtual 6 drivers are generated on the LabVIEW®, 
making the joint axes of 3-D model coincident with the ones 
of actual RS2. Then the LabVIEW® program used in the 
experimental gain tuning is loaded and connected to the virtual 
drivers. Finally SoildWorks® and LabVIEW®-based 
simulation was performed from axis 6 through 1 in the same 
manner as in the experimental gain tuning.  The comparison of 
the simulation-based gain tuning with the experimental gain 
tuning was shown to be almost the same as those of 
experimental gain tuning within 5% error bound.  Based on 
this comparisons, it can be concluded that the simulation-
based technique of gain tuning can be applied to a 6-axis 
articulated robot through interlocking SolidWorks® and 
LabVIEW®

 
, in lieu of the experimental gain tuning. 
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Abstract - The paper presents the results of research on the 

effectiveness of the PIES method developed by the authors, 

applied to modeling and solving complex 3D problems of 

elasticity. The results were compared with those obtained 

using classical element methods FEM and BEM. For the 

calculation in mentioned methods we have used professional 

programs ANSYS (FEM), BEASY (BEM) and our own software 

in the case of PIES. Several examples were solved, but we have 

included only three of them, which seemed to be enough 

complex. The effectiveness of methods was compared taking 

into account: the number of input data required to define the 

geometry, the way of modeling and imposing the boundary 

conditions, the number of solved algebraic equations and the 

accuracy and reliability of the results. 

Keywords - computer modeling and simulation, boundary 

problems, numerical methods, PIES, FEM, BEM    

 

1 Introduction 

 Computer simulations in engineering problems are 

widespread, and even necessary.  For modeling and solving 

boundary problems are used so-called computer methods, 

among which the most popular are the finite element method 

(FEM) [1,2,3] and the boundary element method (BEM) 

[2,4,5]. Both methods are used for many years, thus is 

available a commercial software implementing them. The main 

idea of these methods is modeling of any areas by the 

discretization of the boundary (BEM) or the boundary and 

domain (FEM). This causes great possibilities taking into 

account the complexity of considered geometries, because any 

shape can be modeled by dividing it into smaller elements. 

However, on the other hand, the number of input data, the 

number of algebraic equations in the system, which is solved 

to obtain final solutions, the time and  effort we have to 

invested increase. In addition, we receive a number of 

redundant solutions at initially defined boundary nodes (and 

area nodes), and in the case of insufficient accuracy of the 

results  we have to repeat the process of discretization. 

 These reasons were encouraged to searching and 

eventually developing a method, which would at least partially 

eliminated mentioned drawbacks. Our previous research 

resulted in the creation of the parametric integral equation 

system (PIES) [6], in which the boundary geometry is 

analytically included and can be defined using curves (2D) or 

surfaces (3D) known from computer graphics [7]. The 

effectiveness of this approach lies in the separation of the 

simultaneous approximation of the boundary geometry from 

the function which is the solution of the equation on the 

boundary. It gives a possibility for modeling areas without 

interfering in the approximation of the solution and vice versa. 

 Till now, the proposed approach was tested taking into 

account 2D [8,9] and 3D [10,11] problems modeled by 

Laplace’s, Poisson, Helmholtz and Navier-Lame equations. In 

3D problems modeled by the last mentioned equation, 

however, verification was referred only to the comparison of 

obtained results with analytical solutions for fairly elementary 

examples [12]. However, the main aim of the authors was to 

create an alternative to FEM and BEM, hence the necessity of 

the comparison of results obtained using PIES with these 

methods. The first studies on the comparison with BEM on the 

very elementary shape (the cube) was carried out in [13]. 

 The main aim of this paper is to examine the 

effectiveness of the numerical implementation of PIES for 

solving complex 3D problems of elasticity in comparison with 

classical methods. To implement FEM software ANSYS was 

used, in the case of BEM - BEASY, whilst in PIES authors 

own software. Following subjects were compared: the number 

and type of input data required to define the boundary 

geometry, the number of solved algebraic equations and the 

accuracy of calculations. 

2 Comparative analysis of FEM, BEM 

and PIES 

 In order to demonstrate the reliability and effectiveness 

of the proposed and tested in the paper PIES method, it is 

necessary to compare it with known numerical methods, 

especially with FEM and BEM. History and the mathematical 

basis of these methods are widely described in the literature. In 

the case of FEM all about its formulation and its computer 

aspects can be found among others in [1,2,3]. Also BEM, 

despite the fact that it is a new computer method has a number 

of papers on it. Thus, information about the following stages of 

solving boundary problems by BEM and its applications are 

available for example in [2,4,5]. The PIES approach has been 

developed as an alternative to mentioned methods, and the first 

results of research were published in 2001 [6]. In a series of 

subsequent papers we have included and described: the new 

technique of global modeling of the boundary in a parametric 

way (without the discretization), the obtained PIES for various 

differential equations and the way of its numerical solving 
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[10,8,9,11,12,13]. 

 Due to the fact that each of mentioned methods has been 

already  repeatedly characterized, the paper is limited only to a 

brief summary of their advantages and drawbacks, and also 

potential possibilities. This summary is given in Table 1. 

Table 1 

The comparison of considered methods 

Feature FEM BEM PIES 

generality high 

possibility of 

application only if a 

fundamental solution 
exists 

as in BEM 

discretization 

boundary and 

domain by 
finite elements 

only boundary by 

boundary elements, 
domain is discretized 

only in some cases (e.g. 

material nonlinearity, 
Poisson equation, etc.) 

none, modeling 

as in computer 

graphics (by 
curves or 

surfaces) 

workload / 
computing 

resources / 

time 
 

high, tedious 

thickening of a 

mesh, 
especially in 

multiple 

discretization 

smaller, reduces the 

dimensionality of the 

problem by one 

least, the 

minimum 

number of data 
for modeling 

and numerical 

solving 

accuracy 

high at a high 
level of 

discretization, 

the accuracy 
of solutions 

and their 

derivatives is 
different 

high, higher than in 

FEM at the same level 

of discretization, the 
same accuracy of 

solutions and their 

derivatives, less 

accurate solutions in 

the vicinity of the 

boundary 

high, without 

discretization,  
the rest as in 

BEM 

solutions 

discrete, at 

boundary and 

area nodes, a 
lot of 

unnecessary 

information 

discrete on the 
boundary, continuous 

in the area, redundant 

information at 
boundary nodes  

continuous, 

obtained at any 

points 

mathematical 

aspects 

matrix is 

sparse, 
symmetrical 

and well-

conditioned 

difficult to calculate 
singular integrals, full, 

asymmetrical, not 

positive definite and 
worse than in FEM 

conditioned matrix 

as in BEM 

effectiveness 

of 
applications 

high, 

difficulties 

with infinite 

areas 

infinite areas are 

considered in natural 

way, not very effective 

for thin areas 

as in BEM 

modification 

of the 

boundary 
geometry 

requires re-
discretization 

of the 

modified area 
and its 

boundary 

requires re-
discretization of the 

modified boundary and 

dividing of the area into 
cells in the case of 

integration over area 

automatically 
adapts to the 

modified 
shape, 

modification by 

small number 
of points 

software 
widely 

available 

less available than in 

FEM 

only authors 

software 

 

 As shown in Table I, the main differences between 

methods lies in the way of modeling the area and the resultant 

benefits or disadvantages. Therefore, later in the paper this 

aspect is characterized more precisely, and modeling 

approaches used in different methods are presented on the 

example of the ball (Fig. 1). 

a. b.   

c.  
Fig. 1. Modeling of the ball by: a) FEM, b) BEM and c) PIES 

 

 In the case of FEM modeling of the area is done using so-

called finite elements and is reduced to divide the area and the 

boundary into smaller 3D sub-areas. Finite elements in this 

method serves two functions. They are used to model the 

considered area and to facilitate the approximation of problem 

solutions on individual elements. Thus, is realized the 

simultaneous approximation of both the area (through its 

division into finite elements) and the solutions on each of finite 

elements by local shape functions. Existing in FEM 

opportunity for using different shape functions makes it 

possible to improve the accuracy and convergence of the 

method. The most frequently used elements in 3D problems of 

elasticity are tetrahedral and hexahedral elements of various 

degrees, which involves posing of a different number of nodes 

to define them. Combining finite element leads to rising an 

element mesh representing the 3D area. Generation of the 

finite element mesh can be performed using various automated 

techniques (e.g. technology of primitives, superelements or 

triangulation)  and many other programs that use these 

techniques [1,14]. It should be noted that in case of too low 

accuracy of obtained by FEM solutions it is necessary to make 

a re-discretization: into a greater number of elements, another 

kind or degree or just a different arrangement. This is a tedious 

process and often totally unnecessary in terms of the accuracy 

of the area definition. As mentioned earlier example of such 

modeling in FEM using tetrahedral finite elements is shown in 

Fig.1a, where discretized was the whole area of the ball. 

 Another method BEM is also based on the simultaneous 

approximation of the boundary geometry and boundary 

functions. From a practical point of view, the considered 

boundary should be divided (discretized) into  small segments 

called boundary elements and on each of them one should 

assume the type of boundary function, in the form of known in 

advance shape function. Boundary elements usually take the 

form of triangles or quadrangles declared by the different 

number of nodes (e.g. triangles by 3, 6 or 9 nodes). 
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 Used strategy of the simultaneous approximation of the 

boundary shape and boundary functions is one of the key 

disadvantages of BEM. In order to improve the accuracy of 

boundary solutions it is necessary to concentrate the number of 

nodes. There are two ways (which result in increased cost of 

calculations): by introducing elements of the higher degree 

(declared by the higher number of nodes) or the division of the 

boundary into the large number of boundary elements. In both 

cases, however, we still have to deal with the discrete form of 

the boundary function. The advantage in comparison to FEM 

is reduction the dimensionality of the problem by one, due to 

only boundary discretization, not the boundary and the area. 

An example of modeling the ball by triangular boundary 

elements is presented in Fig.1b, where only the sphere is 

discretized. 

 The method proposed by the authors is characterized by 

the elimination of the discretization of both the area and the 

boundary. The way of modeling the boundary for 3D issues is 

taken directly from computer graphics and is integrated in 

PIES. We are talking about the use of the various types of 

parametric surfaces, extremely popular in computer 

visualization of three-dimensional geometric objects, and also 

widely used in the design of mechanical structures in CAD 

systems. 

 The simplest surfaces are rectangular Coons surfaces of 

the first degree [15]. These patches are characterized by the 

fact that to their practical definition is required, as shown in 

Fig.2a, imposing only four corner points. Equally simple in the 

declaration are triangular surfaces [15], where it is necessary to 

define three vertices of this triangle (Fig.2b). However, these 

surfaces are flat, so they allow the modeling of only polyhedral 

areas. To model areas with curved boundary we should take 

into account surfaces of higher degrees, the most versatile and 

popular are Bézier rectangular and triangular patches of the 

third degree [16] (Fig.2c,d). 

a.  b.  

c.           d.   

Fig. 2. Flat surfaces: a) rectangular, b) triangular and curvilinear: c) Bézier 
rectangular of the 3 degree, d) Bézier triangular of the 3 degree.  

 

 In the case of the surfaces of higher degrees (than first) to 

define their shape it is necessary to pose so-called control 

points. Considering a rectangular surface of the third degree 

we should define coordinates of 16 control points, and 10  for 

triangular one. In the case of increasing the degree of the 

surface increases also the number of control points. An 

example of modeling in PIES using triangular Bézier surfaces 

of the fourth degree is presented in Fig. 1c, where a ball, or 

rather as in BEM its sphere, is defined by only 8 such surfaces 

(for each of the surfaces we have to define 15 control points). 

 Mentioned patches can imitate any large and complex 

surfaces, so long as we are able to obtain the shape of 

considered part using one surface. Complex geometries can be 

modeled in a similar manner using the combination of multiple 

surfaces. A very important advantage of this technique is that 

the number of surfaces is associated only with the possibility 

of modeling the chosen physical geometry. The accuracy of 

solutions depends on the completely other elements, what 

comes from the main idea of the PIES method - the separation 

of the approximation of the boundary shape from boundary 

functions. Therefore, the shape of the boundary in PIES is 

defined using the minimum number of surfaces needed for the 

accurate modeling, which eliminates the necessity for tedious 

mesh generation, and thus the process of discretization. In 

addition, modeling using surfaces is more effective, because it 

helps ensure the class of continuity at borders between 

surfaces. 

 Equally simple in PIES is the modification of the 

declared geometry. It requires changing single corner or 

control points. It is worth to emphasized, that after 

modification PIES automatically adjusts to the new shape, 

because such are the mathematical basis of the method. 

Changing the location of even a single point results in a 

substantial change in the shape, which can be seen in Fig. 3. 

     
Fig. 3. Modification of the 3D area by moving one control point 

 

 It should be noted that in FEM or BEM making a 

modification of the shape we are always dealing with the re-

discretisation and generating a new mesh of elements. This is 

particularly disadvantageous and inefficient in the problems of 

optimization or identification of the boundary geometry, where 

revised geometry modeling is done many times in subsequent 

steps of an iterative process. 

3 Analysis of results 

 In order to show the effectiveness and confirm the 

reliability of PIES paper presents three examples. To solve 

problems using all considered methods we have used a 

software mentioned in the introduction of the paper. Compared 

were: the number of input data needed to define the boundary 

and boundary conditions, the number of solved algebraic 
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equations and the accuracy and convergence of the results. 

3.1 Example 1 

 The first example concerns a polyhedron presented in 

Fig. 4a. The considered rectangular cuboid, which is a bracket, 

is firmly fixed at the left end and subjected to a uniform 

normal load MPap 5  acting along the upper side. Selected 

for the calculation values of material constants are Young's 

modulus MPaE 1  and Poisson's ratio 3.0v . The same 

constants were adopted in all the examples presented in the 

paper. 

a.    

 b.       

c.   

Fig. 4. A bracket with boundary conditions modeled in PIES (a) and meshes 

from: BEASY (b) and ANSYS (c) 
 

 Taking into account tested in the paper method PIES the 

considered shape is very simple to model, because its faces are 

rectangles. For this reason, defining the geometry is limited to 

the use of the simplest flat surfaces – rectangular Coons 

surfaces of the first degree. For each of them we have to define 

only corner points, resulting in a six surfaces and 8 corner 

points. Thus, the considered shape was modeled using the 

minimum amount of data that allows its accurate projection. 

For the numerical solution of the problem we have assumed a 

uniform distribution of 25 collocation points on each surface. 

As a result, the system of 450 algebraic equations was solved. 

 The aim of this study is to examine the effectiveness of 

PIES compared to classical element methods, such as FEM 

and BEM. Particular emphasis is placed on the comparison of 

the way of modeling the shape and the accuracy of obtained 

results. For this reason, the same problem was solved using the 

ANSYS software and BEASY. In both cases, we have 

searched for the mesh for which the minimum number of 

elements gives stable solutions. Finally, in ANSYS we have 

used 135626 8-node hexahedral finite elements type SOLID45 

(defined using 24784 nodes) and the system of 74352 algebraic 

equations was solved. In the case of BEASY 600 quadrilateral 

quadratic elements were used, whilst in order to define them 

2046 boundary nodes were imposed. Finally, in order to obtain 

the final results the system of 6138 algebraic equations was 

solved. A detailed analysis of the effectiveness of modeling the 

considered polyhedron for each of the three considered above 

methods is shown in the table below. 

Table 2 

The comparison of considered methods in terms of the number of data 

 PIES BEM FEM 

boundary 

modeling 

6 rectangular 

Coons surfaces 

600 quadratic 

quadrilateral 

boundary 
elements 

135626 
8-node hexahedral 

finite elements 

number and type 
of data 

8 corner points 
2046 boundary 

nodes 

24784 nodes in 

the boundary and 

area 

number of 

algebraic 

equations 

450 6138 74352 

imposing the 

boundary 

conditions  

continuous on each 
surface 

discrete discrete 

obtaining of 

solutions 

at any point of the 

boundary and area 

at 2046 boundary 
nodes and any 

point of the area 

at 24784 nodes in 
the area and 

boundary 

 

 The first comparison of methods in terms of the number 

of data for modeling, the number of solved algebraic 

equations, and the way of obtaining the results came out 

favorably for PIES. Next, we should check whether this 

reduction in the number of data will not reduce the accuracy of 

solutions. Therefore, the values of displacements in all 

directions at 13 points of the horizontal cross-section passing 

through the center of the area were examined. The results 

obtained by PIES, BEM and FEM are presented in Table 3. 

Table 3 

The comparison of displacements obtained by considered methods  

point x
u  

y
u  

z
u  

FEM BEM PIES FEM BEM PIES FEM BEM PIES 

1 -0.108 -0.118 -0.126 0.036 0.036 0.048 10.084 10.268 10.479 

2 0.046 0.042 0.044 0.127 0.130 0.148 15.923 16.188 16.478 

3 0.034 0.030 0.030 0.399 0.402 0.426 37.774 38.242 38.712 

4 0.032 0.029 0.029 0.342 0.348 0.370 47.478 48.026 48.561 

5 0.008 -0.001 -0.001 0.539 0.541 0.567 54.143 54.743 55.314 

6 0.000 -0.004 -0.004 0.516 0.527 0.548 58.124 58.755 59.351 

7 0.009 0.002 0.002 0.499 0.508 0.531 67.524 68.235 68.879 

8 0.009 0.003 0.003 0.681 0.689 0.715 76.707 77.496 78.185 

9 -0.059 -0.063 -0.064 0.859 0.871 0.897 106.250 107.280 108.099 

10 0.241 0.235 0.239 0.941 0.948 0.986 121.500 122.654 123.553 

11 0.181 0.174 0.177 1.004 1.011 1.048 122.510 123.665 124.555 

12 0.119 0.115 0.116 1.070 1.080 1.111 128.540 129.753 130.655 

13 -0.134 -0.140 -0.144 1.185 1.195 1.367 143.860 145.201 146.379 

 

 As shown in Table 3 obtained by each method solutions 

are characterized by a similar level of accuracy. This allows to 

confirm the reliability of proposed and tested by the authors 
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method, but also to emphasize the fact that these results were 

obtained in a much more efficient way than in classical 

methods FEM and BEM. In their case, the mesh was generated 

consisting of a large number of finite or boundary elements, 

much more numerous system of algebraic equations was 

solved and was obtained a number of redundant information at 

the nodes of the boundary or area. 

3.2 Example 2 

 In Example 2, we have considered a polyhedron of more 

complex shape shown in Fig. 5a, firmly fixed and subjected to 

a uniform normal load MPap 10 . 

a. b.  

c.  
Fig.5. Considered geometry and boundary conditions a) PIES, b) BEASY and 

c) ANSYS 

 

 In the PIES software the analyzed polyhedral shape was 

modeled only by rectangular Coons surfaces (Fig.5a). Should 

be emphasized flexibility in the shape of  surfaces (rectangular 

and trapezoidal) and their size. Generated in such way 

boundary was modeled by the minimum number of input data 

– after posing 16 corner points and defining 14 rectangular 

Coons surfaces. For calculations we have consider 25 

collocation points on each surface arranged uniformly. Finally, 

this involves the solution of 1050 equations required to obtain 

the final results. 

 The same shape was modeled in BEM (with the help of 

BEASY) using 205 quadratic quadrilateral elements, for which 

definition 903 nodes were used (Fig. 5b), and thus the system 

of 2709 algebraic equations was solved. 

 The last stage concerned the modeling of the problem 

using the FEM method (ANSYS). Fig. 5c presents the area 

defined by 71467 8-node hexahedral finite elements, for which 

definition we require 13536 nodes. Finally the system 

consisting of 40608 algebraic equations was solved. 

 It should be noted that the number of nodes in FEM and 

BEM is several times higher compared with 16 corner points 

in PIES. The advantage of PIES is also the number of solved 

algebraic equations, very important for the accuracy of the 

final solutions. Numerical error in fact may increase with the 

increase in the number of equations in the solved system. The 

summary of the type and number of data used for modeling is  

presented in Table 4. 

Table 4 

The comparison of considered methods in terms of the number of data 

 PIES BEM FEM 

boundary 

modeling 

14 rectangular 

Coons surfaces  

205 quadratic 

quadrilateral 
elements  

71467 
8-node 

hexahedral finite 

elements 

number and 
type of data 

16 corner points 
903 boundary 

nodes 
13536 boundary 
and area nodes 

number of 

algebraic 
equations 

1050 2709 40608 

 

 The effectiveness of the proposed method was shown 

taking into account the way of the shape modeling, the number 

of necessary input data and the number of equations solved. 

But equally important question to be answered is the level of 

the accuracy of obtained by PIES solutions compared to the 

results obtained using ANSYS and BEASY. Displacement 

values 
zyx

uuu ,,  were examined at 16 selected points of the 

domain, and the results of the comparison are given in Fig. 6. 

 As can be seen in Fig.6 results obtained by BEASY, 

ANSYS and PIES are similar taking into account the values of 

displacements, as well as their distribution. In order to 

accurately analyze the results, Table 5 contains the exact 

solutions at few selected points. As seen, at most points the 

solutions are very similar, and occurred differences will be 

explained in the further stages of the development of the 

method. It should be stressed again that solutions through 

PIES were obtained at 2.5 times less numerous system of 

equations than in BEM. Much, much more data and 

unknowns are in the FEM method. Thus, with much less 

effort on modeling and much smaller number of input data  we 

have obtained reliable solutions by PIES. 

 
a. 
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b. 

 
c. 

Fig. 6. Displacements a) 
x

u , b) 
y

u , c) 
z

u  at considered points obtained by 

PIES, BEASY and ANSYS 

 
Table 5 

The comparison of displacements obtained by FEM, BEM and PIES  

x y z ANSYS BEASY PIES 

-5.759 4.281 3.749 
x

u  -4.5242 -4.56024 -4.58501 

 
y

u  -5.8975 -5.95087 -6.02625 

z
u  0.50818 0.500922 0.472321 

-4.284 4.281 3.570 
x

u  -3.8865 -3.91187 -3.94027 

 
y

u  -8.1940 -8.27438 -8.36344 

z
u  0.71588 0.713073 0.718234 

-0.985 4.283 4.542 
x

u  -1.0648 -1.06938 -1.04913 

 
y

u  -11.324 -11.4028 -11.4352 

z
u  1.8480 1.849352 1.79832 

1.157 4.285 2.234 
x

u  1.1902 1.200081 1.20594 

 
y

u  -11.112 -11.1938 -11.2561 

z
u  -0.24293 -0.24408 -0.2438 

5.001 4.290 2.397 
x

u  4.2094 4.244336 4.26464 

 
y

u  -7.0602 -7.14224 -7.21802 

z
u  -0.05546 -0.05693 -0.05714 

 

3.3 Example 3 

 In practical applications, except boundary problems 

defined in polyhedral areas, very important are also issues 

defined in areas with curvilinear boundaries. These boundaries 

in PIES can be described using Bézier surface patches. An 

example of the geometry modeled by 7 rectangular Bézier 

surfaces of the third degree (curved boundary fragments) and 5 

flat rectangular Coons surfaces with boundary conditions 

(uniform normal load MPap 1 ) is shown in Fig. 7a. 

a.           b.  

Fig. 7. Considered geometry modeled in a) PIES, b) BEM (BEASY) 

 

 A complete declaration of the boundary defined in PIES 

by 14 surfaces requires 112 points (control points of Bézier 

and corner points of Coons surfaces). In Fig. 7a, for clarity, 

only four main points of each surface are marked. On each 

surface we have defined 25 uniformly spaced collocation 

points and eventually have solved the system of 1050 algebraic 

equations. 

 In connection with some regularity of results observed in 

two previous examples, this time the effectiveness and 

accuracy of the proposed method were compared only with 

BEM. For this reason, the considered geometry was modeled 

in BEASY (Fig.7b), where as in the previous example, for the 

comparative analysis we have chosen such mesh for which the 

minimum number of elements gives stable numerical 

solutions. Finally, 104 quadrilateral and triangular quadratic 

elements defined by 475 nodes were used. The number of 

algebraic equations that had to be solved is 1425. 

 Solutions from various cross-sections were analyzed, but 

we have decided to include only one of them 

1,15.4,5.1 zyx . Values of displacements obtained 

by PIES and classical BEM implemented by BEASY are 

presented in Fig.8. In order to detailed analysis of the 

reliability of obtained by PIES solutions we have also 

examined stress values, which selected components are 

presented in Fig. 9. 

 
Fig. 8. Displacements in the considered cross-section 
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Fig. 9. Stresses in the analyzed cross-section 

 

 As can be seen from above figures, both displacements 

and stresses obtained using the proposed and developed by the 

authors method are characterized by high accuracy in 

comparison to BEM. Lines representing the various functions 

of solutions have the same shape, which shows a similar 

accuracy of considered techniques. It should be noted that in 

BEM the way of modeling of the boundary geometry is much 

less efficient (the discretization), which eventually leads to the 

solution of the equation system containing approximately 1.5-

times more of algebraic equations. The use of PIES limits time 

to data preparation, their analysis, and finally minimize the set 

of solutions to those that are necessary for analysis. 

4 Conclusions 

 The paper presents the effectiveness of solving 3D 

boundary value problems of elasticity using the proposed PIES 

method. A number of examples were solved, for which we 

have compared with classical element methods (FEM, BEM): 

the data necessary to model the geometry (the type and 

number), the way of the modeling and posing of boundary 

conditions, as well as the reliability of results (displacements 

and stresses). It can be stated that obtained using PIES 

solutions are comparable to those obtained with other 

numerical methods, however, they are obtained with a much 

smaller number of input data. Moreover, the system of 

equations solved in PIES is much less numerous, and solutions 

can be obtained at any points of the boundary and area, not 

previously selected nodes. 
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Abstract— Microscale models that simulate discrete indi-
viduals commonly organize those individuals into groups of
similar characteristics. During the simulation, individuals
are frequently added to groups, removed from groups, and
moved among groups. Moreover, individuals must be se-
lected randomly based on probabilities that vary among the
groups, and even that may vary within a group. Space and
time limit the number of individuals, as the number desired
can be large—up to the population of entire nations or more.
Therefore algorithms for processing them should be efficient.
Here we explain a set of Order-1 algorithms for managing
groups. These algorithms run at a constant speed regardless
of whether 100 individuals are included or 100 million. They
use space–time tradeoffs recently made possible by large
computer memories to bring the number of iterations per
operation close to one. This increases the scale of problems
that can be addressed by individual-based, agent-based,
discrete-event, and other microscale simulations.

Keywords: individual-based simulation, discrete event simulation,
equation-free models, order-1 algorithms, memory–speed tradeoff

1. Introduction
One goal of the algorithms described here is to select individ-
uals at random, from given groups, in the least possible time.
Such operations can be needed billions of times during large-
scale individual-based and other microscale simulations in
science and industry [1] [2] [3]. For example, epidemiolog-
ical models may need to select simulated individuals from
given age groups, birthplaces, and susceptibility categories
as targets of infection transmitted during the simulation.

Selection is easiest and fastest if the data structures for
all members of a group occupy a contiguous block of
memory, with no intervening gaps. Then selecting a random
member is merely generating a random number between 1
and the number of members in the group, then indexing
the corresponding member. If all individuals in the group
have the same probability of being selected, that operation
is clearly independent of the number of individuals in the
group. In other words, it is of “Order-1,” running at the same
speed regardless of how many individuals are in a group. If

the probabilities of being selected vary within the group,
the algorithm remains Order-1, but with slightly more time
required per selection.

During the course of the simulation, individuals will be
added to groups, deleted from them, and moved between
them. When an individual is deleted, for example, the gap
in the group formed by that individual must be closed up.
These addition–deletion operations occur frequently during
the simulation, so ideally they should also be Order-1, as are
the algorithms explained in this paper.

With high-speed algorithms for adding and deleting, indi-
viduals can be organized into groups even if random selec-
tion is not needed. For example, such organization can help
tallying—keeping counts of those in different groups through
time without scanning the array of individuals. Under the
right circumstances, the algorithms can also be used within
in many applications that require efficient priority queues [4].

Order-1 algorithms are rare, but they have been known
since the early days of computer science [5]. They often
rely on an abundance of computer memory to keep data
structures sparse, and therefore were costly to apply in earlier
days. Now, because allocating a gigabyte array is readily
within the reach even of portable computers, new rules for
memory use apply. Algorithms that trade additional memory
for additional speed are possible and desirable.

Some groups may have myriad individuals and others only
a few. The size of the groups may not be known in advance
and may vary widely during the simulation. Therefore, it is
not practical to allocate separate arrays large enough for each
group, and dynamically allocating and reallocating memory
would be unnecessarily inefficient. The algorithms described
here eliminate the need for such reallocations, using space
not needed by smaller groups to accommodate the needs of
larger groups. The algorithms use buffer areas of allocated
but unused memory to speed operations. Their running times
become independent of the number of individuals and nearly
independent of the number of groups.

2. Sample application
For an example of use of these algorithms, consider an
epidemiological model having what is called “age dependent
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mixing.” Transmission of influenza, for example, is more
likely between those in similar age groups, since individuals
of similar ages spend much of their time in similar locales—
such as day-cares, schools, business places, or assisted
living facilities. These may have approximately uniform
mixing within age groups, but reduced mixing between age
groups [6]. An age-dependent mixing strategy can substitute
for a more accurate but unknown contact network.

In an individual-based, discrete-event simulation of this
type, when an infectious individual is about to infect another,
the new individual must be selected efficiently from a list
of perhaps tens of millions of individuals. Which group will
receive the infection is determined in the program at large,
outside the algorithms described here, via empirical or hypo-
thetical probability distributions. Figure 1 is a hypothetical
example of such a distribution. It represents the probability
of transmission by age class from an infected four-year-old.
The horizontal axis is the age of a susceptible individual,
the vertical axis represents relative probability of receiving
an infection from an infected four-year-old.
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Figure 1. Sample probability function for selecting groups, illus-
trated as the probability of transmission of infection from an infected
four-year-old to each of 100 groups, here representing one-year
human age classes. The probability of being selected depends on the
group, according to an empirical probability distribution, determined
or surmised. Left axis, probability density function, dashed curve.
Right axis, corresponding cumulative probability distribution, solid
curve.

In this illustration, four-year olds can transmit infections
to anyone but have the highest probability of transmitting to
other four-year olds and to nearby ages, an increased proba-
bility of transmitting to those the age of their parents, peak-
ing around 24 years old, and their grandparents, around 44
years old, and great-grandparents around 64 years old. Such
distributions would be empirically estimated and groups to
receive an infection would be selected many times during
the simulation. This would be accomplished, for example,
with a non-uniform random number generator that selects
from arbitrary probability distributions [7] [8] [9], like the
distribution in Figure 1. That is accomplished through the cu-
mulative probability distribution by representing its inverse
in an efficient way, as with piecewise-polynomial curves,

then sampling from that inverse distribution with uniform
random numbers (e.g., [10]). That process, accomplished
outside these algorithms, determines which group of indi-
viduals will receive the infection. The algorithms described
here are then applied to select an individual from the group.
They are also applied to add individuals to groups, delete
them, or move them between groups.

3. Algorithms and data structures
One array exists for individuals and two for groups (see
appendix). A[n] is a one-dimensional array of structures
representing individuals, in order by group and contiguous
within each group, but in no particular order within groups,
and with possible gaps between groups. The relevant simu-
lation data for each individual is carried in this array, which
varies by application, but in our example would include
such items as sex, birth date, birthplace, and geographic
coordinates. Each individual may also carry information on
its own probability of being selected within a group, in
data element A[n].v. By convention, A[1] is the first entry
used, so that index 0 may be used as a null list index. This
is the largest data structure, potentially containing tens or
hundreds of millions of individuals and occupying gigabytes
of memory.

C[i] is a one-dimensional array of groups, identifying
the lowest-numbered individual in A[n] for each group,
structured so that C[0] is the index of the lowest numbered
individual in the first group and that C[j+1]−C[j]−E[j]
is the number of individuals in group j. E[i] is simply
a one-dimensional array identifying the number of empty
cells at the end of each group. Deletions increase the
number of empty cells and additions draw from those empty
cells. These are relatively small arrays, typically occupying
only kilobytes each. They can be initialized by GroupInit
(appendix), or by a custom routine. Global scalar variables
are ma, the maximum number of individuals in A, and nc,
the number of groups.

3.1 Selecting from a group
Because all individuals in a group occupy contiguous el-
ements of array A[n], selecting one at random simply
involves generating a uniformly distributed random number
between one and the number of individuals in the group, then
selecting that individual after biasing the number to align
with index numbers in A[n] for the group. If all members
of the group are equally likely, the process is complete. If
probabilities of selection vary among members of the group,
then the “sieve method” [11] applies within the group. That
is implemented in Algorithm 1 (appendix). In effect, the
sieve method tentatively selects a random member of the
group and examines its probability of being selected, relative
to others in the group. One additional uniform random
number determines if the tentatively selected individual
should remain unselected, based on the probability recorded
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A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] C[0] C[1] C[2] E[0] E[1] E[2]

0 0 0 1 1 1 2 2 2 2
Initial
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↓
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↓
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U
0 0 0 1 1 1 2 2 2 2

Add U 1 4 7 3 3 3

O U
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Add O 1 4 7 3 2 3

O P U
0 0 0 1 1 1 2 2 2 2

Add P 1 4 7 3 1 3

O P U Z
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Add Z 1 4 7 3 1 2

O P M U Z
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Add M 1 4 7 3 0 2

B O P M U Z
0 0 0 1 1 1 2 2 2 2

Add B 1 4 7 2 0 2

B O P M U Z W
0 0 0 1 1 1 2 2 2 2

Add W 1 4 7 2 0 1

B M O P S U Z W
0 0 1 1 1 1 2 2 2 2

Add S 1 3 7 1 0 1

B M O P S U Z W X
0 0 1 1 1 1 2 2 2 2

Add X 1 3 7 1 0 0

B S M O P X U Z W Y
0 1 1 1 1 2 2 2 2 2

Add Y 1 2 6 0 0 0

B S M O P X Y Z W
0 1 1 1 1 2 2 2 2 2

Drop U

↑
C[0]

↑
C[1]

↑
C[2]

1 2 6 1 0 1

Figure 2. Illustration of addition and deletion. Each row shows the array of individuals A[n], 1 ≤ n ≤ 10, of
groups C[i], 0 ≤ i ≤ 2, and of empty cells E[i], same range on i. The top row is the initial empty state. The
next 10 rows are individuals being added in random order by Algorithm 2. The bottom row is an individual
being deleted by Algorithm 3. Numbers in the upper left of each cell of A[n] indicate the group to which that
cell is presently allocated, as defined by array C[i]. The letters in the centers of the cells of A[n] represent
distinct individuals assigned to the cells.

for it in A[n]. If so, the individual is ignored and the selection
process is repeated. The entire process is still Order-1 on the
number of individuals, though with a higher coefficient.

3.2 Adding to a group
Adding a member to a group is a relatively simple but
exacting process. If space is available at the end of the group,
the new individual is simply placed there and the number of
unused entries in the group, E[i], is reduced by 1. If, on the
other hand, the area allocated to the group is full, then one
member from each of one or more neighboring groups must
be shifted to make room. The external function Transfer is
called to actually move the entries, since the larger program
may have other lists that must be updated when an individual
is moved.

This process is defined precisely in Algorithm 2 (ap-
pendix) and illustrated in Figure 2. The latter is a step-by-
step example starting with an empty list of 10 individuals
and filling it in random order. In the example there are 26
possible individuals, each with a fixed “name”, ‘A’ through
‘Z’. Each is assigned an initial group, which organizes the
list, such that ‘A’ through ‘J’ initially belong to group 0, ‘K’
through ‘T’ initially belong to group 1, and ‘U’ through ‘Z’

initially belong to group 2. Individuals can be moved from
group to group as the simulation proceeds. In practice, large
numbers of individuals would be processed, not just ten.

Array A[n] starts with 10 empty slots. The three groups,
0, 1, and 2, have an initial allocation of 3, 3, and 4 slots,
respectively. Entries are added at the first available slot for
their group, until that group is filled. Then entries cascade
to the right or left, resting in the first available slot.

Individual ‘U’ is added first. It is initially in group 2,
which begins at position A[7]. That is followed by ‘O’, ‘P’,
‘Z’, ‘M’, ‘B’, and ‘W’, all of which fall into empty slots
pre-allocated in their initial groups. That situation is typical
when the array is sparse, and in part leads to the algorithm’s
speed. However, when ‘S’ is to be added, the space allocated
to its group (cells A[4], A[5], and A[6]) is full. To make
room, group 2 could move down or group 1 could move
up. This example shows the latter, and accomplishes that
by shifting ‘M’ into the open cell at A[3], changing C[1]
accordingly, and placing ‘S’ at the newly opened cell at A[6].
Note that ‘S’ could simply have been placed in position A[3],
rather than moving ‘M’ there. Various optimizations could
be applied at the cost of a little additional complexity in the
code, though the effects on overall timing would be minor.
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Individual ‘X’, initially designated for group 2, falls
immediately in the open cell at A[10]. Individual ‘Y’ is
also of group 2, and the cells for that group are full. The
algorithm moves ‘S’ to empty cell A[2], then moves ‘X’ to
A[6], just vacated by ‘S’, and finally stores ‘Y’ in the vacated
cell A[10]. Arrays C and E are updated in the process.

With this method, the maximum number of array elements
moved is bounded by the number of groups, independent
of the number of individuals. When sufficient memory is
allocated to leave a fraction of the space free in A[n], then
typically no array elements must be moved. That makes the
Order-1 coefficient as small as possible. It also makes it, for
practical purposes, independent of the number of groups.

3.3 Deleting from a group
Deleting is simpler. The individual is removed and the
member from the end of that group is moved into its place,
which keeps the individuals in the group contiguous. For
example, when individual ‘U’ is removed, that would leave
a gap in the middle of group 2. Individual ‘Y’ at the end
of the group is moved into its place, increasing by one the
number E[2] of empty slots at the end of the group. Deleting
is always independent of the number of individuals and the
number of groups.

Moving an individual from one group to another is merely
deleting from one group and subsequently adding to another.
As before, the external function Transfer is called to actually
move the entries.

4. Timing
Timing tests of the above algorithms, starting with an empty
array and building to one-hundred million individuals (108),
averaged 1.04 seconds total on a 2.8 GHz processor, or 10.4
nanoseconds per addition. Individuals were added in random
order, with all groups equally likely, into an array that had
15% more room than required. Selecting from 100 groups
averaged 2.1 nanoseconds per selection. Deleting them all
at the end averaged 6.8 nanoseconds each.

With sufficient space in array A[n], as provided above,
the algorithms become independent not only of the number
of individuals but also of the number of groups. Keeping
all else equal while increasing groups a thousand-fold, to
100,000 distinct groups, required no additional running time
in the algorithm itself.

Nonetheless, large multi-gigabyte arrays such as these
may exercise a processor’s internal memory caches in vari-
ous ways, and that can affect finer details of timing. In any
case, the algorithms remain efficient for a very large number
of groups.

5. Conclusions
The algorithms presented here can be incorporated into any
individual-based or other microscale model, where they can
speed simulations many orders of magnitude over alternative

methods that are not Order-1. The methods applied in
these algorithms are part of a large-scale simulation model
developed by one of us (A.K.) for tuberculosis in the UK.
Compilable copies of the code described here and related
simulation algorithms are available free from the authors
upon request.
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8. Appendix: Grouping Algorithms
To use the algorithms described in this paper, it is only
necessary to understand the entry and exit conditions that
appear at the beginning of each, not the code itself. Nonethe-
less, to allow complete evaluation of the algorithms, and to
encourage further development of them, we present them as
pseudo-code inspired by and simplified from the program-
ming languages C, R, and Python. The algorithms are defined

with sufficient precision that they can be tested, timed, or
translated to other languages. Familiarity with a relatively
few operators∗ and with the syntax of flow control (if,
for, while, etc.), is sufficient to follow the algorithms. Text
copies of this pseudo-code translated into operational C
are available from the authors upon request, or from the
associated website, ‘www.cbs.umn.edu/modeling’.

DATA STRUCTURES

ma ≡ 100000000 Sample, maximum number of individuals in A.
nc ≡ 10000 Sample, maximum number of groups in C.

structure Individual Sample, data structure for individuals
integer g; (Optional, group for this individual)
real v; (Optional, relative probability of remaining unselected)
real tbirth; (Sample, time of birth)
integer rob; (Sample, region of birth).

structure Individual A[ma + 1]; Array of individuals.
integer C[nc + 2]; Array of beginning index for each group in A.
integer E[nc + 2]; Number of empty cells trailing each group.

Algorithm 1. SELECT RANDOM ELEMENT FROM GROUP

Upon entry to the algorithm, (1) k defines the group to be sampled. (2) nc specifies the number of groups. (3) C
indexes the first individual in each group. (4) E[k] contains the number of empty cells at the end of the group.
(5) A[i].v contains the probability of each individual in the group remaining unselected, relative to the individual
least likely to remain unselected. All A[i].v are zero if all individuals are equally likely. (6) Rand returns a
uniformly distributed random number between 0 and 1, including 0 but not including 1. At exit, GroupSelect
indexes the individual selected. If zero, the group is empty.

integer GroupSelect(k) integer k; integer h, n;

if C[0] = 0 or k ≥ nc : return 0; 1. Guard against null cases.

C[k + 1]− C[k]− E[k] → h; 2. Determine how many occupy the
if h ≤ 0 : return 0; group.

loop until return : 3. Select an individual randomly and
C[k] + h∗Rand() → n; use it unless it has a probability of
if A[n].v = 0 : return n; remaining unselected.

if Rand() ≥ A[n].v : 4. Otherwise use it only in proportion
return n; to its relative probability.

* The pseudo-code given here is two-dimensional, as in the language
Python, so that indentation completely defines the nested structure,
with no need for bracketing characters such as ‘{’ and ‘}’. Variables
and function names are italicized and flow control and reserved
words are bolded.

The assignment operator is represented either as ‘←’ or ‘→’,
similar to assigments in R. The compound assignments ‘a + 1 →
a→ b→W [i][j]’ and ‘W [i][j]← b← a← a+1’ are equivalent,
first incrementing a and placing the results back in a, then in b, and
then in the i, jth element of the array W .

Using up-tick and down-tick operators to write ‘ ↑a’, ‘ ↓a’, ‘a ↑ ’,
and ‘a ↓ ’ form pre- and post-increments by one, as in ‘++a’, ‘--a’,
‘a++’, and ‘a--’ of C.

Arrays are indexed as in the language C, starting with 0. Data
types are ‘integer’ and ‘real’, with the latter specifying floating
point. Operator precedence is that of C, with assignments having
lowest precedence. Logical operators such as ‘and’ and ‘or’ are
preemptive, terminating a chain of logical operations as soon as
the result is known. Permanent global assignments, as would be
represented ‘#define α β’ in C, are rendered as ‘α ≡ β’.
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Algorithm 2. ADD ELEMENT TO GROUP

Upon entry to the algorithm, (1) A contains the list of individuals, ordered by group, with sufficient room
for at least one more individual. (2) C indexes the first individual in each group. (3) E contains the number
of empty cells in each group. (4) k is the group for the individual to be added. (5) ma contains the maximum
number of individuals that may reside in A. (6) nc contains the number of groups. (7) Transfer(m,n) is an
external function to move individuals from entry m to entry n, including updating of any external information.
At exit, (1) GroupAdd returns the index of an available entry in A where the individual is to be added. If zero,
none can be added. (2) A, C, and E are updated to include space for the new individual.

integer GroupAdd(k) integer k; integer i, m, n, d;

if C[0] = 0 : return 0; 1. Guard against null cases.

0 → d; 2. Search forward and backward
while k − d ≥ 0 or k + d + 1 ≤ nc : simultaneously for the nearest

k − d → i; if i ≥ 0 and E[i] > 0 : exit loop; group with an empty slot,
k + d + 1 → i; if i ≤ nc and E[i] > 0 : exit loop; returning with failure if the
− 1 → i; ↑d; array is full.

if i < 0 : return 0;

while i ≥ k : 3. If there is a slot at the present
↓E[i]; C[i + 1]− E[i]− 1 → m; location, use it, or if forward,
if i = k : return m; cascade it back to the current
C[i] → n; if m 6= n : Transfer(n, m); location.
↑E[i− 1]; ↑C[i]; ↓ i;

while i ≤ k : 4. Otherwise, if there is a slot
↓E[i]; C[i + 1]− 1 → m; earlier in the list of groups,
if i = k : return m; cascade it forward to the current
C[i + 2]− 1 → n; if m 6= n : Transfer(n, m); location.
↑E[i + 1]; ↓C[i + 1]; ↑ i;

Algorithm 3. DELETE ELEMENT FROM GROUP

Upon entry to the algorithm, (1) k is the group for the individual to be deleted. (2) n indexes the individual
being deleted, whose entry is ready for reuse. (3) A contains the list of individuals, ordered by group. (4) C
indexes the first individual in each group. (5) E contains the number of empty cells in each group. (6) nc contains
the number of classes. (7) Transfer(m,n) is an external function to move individuals from entry m to entry
n, including updating of any external information. At exit, (1) GroupDelete returns zero if the operation failed.
(2) A, C, and E are updated to exclude the deleted individual.

integer GroupDelete(k, n) integer k, n; integer m;

if C[0] = 0 or k > nc or C[k + 1]− C[k] ≤ 0 : return 0; 1. Guard against null cases.

↑E[k]; C[k + 1]− E[k] → m; 2. Transfer the last occupied entry
if n 6= m : Transfer(m, n); to the deleted slot.

return 1; 3. Return with success.

Algorithm 4. INITIALIZE ALL GROUPS

Upon entry to the algorithm, (1) nc is the number of groups. (2) ma is the maximum number of individuals.
At exit, (1) C[i] indexes the location for the first individual of group i. (2) E[i] contains the number of entries
initially in group i. Groups are of equal size to within the limits of integer arithmetic.

GroupInit() integer i, k, n, r;
ma/nc → n; ma− nc∗n → r; 1. Compute the group size and remainder.

1 → k; 2. Initialize the location and size of
for i from 0 to nc : each group, distributing the remainder

n → E[i]; if i ≥ nc− r : ↑E[i]; across higher-numbered groups.
k → C[i]; k + E[i] → k;

0 → E[nc]; 3. Close the list of groups.
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Abstract - The purpose of this paper is to generalize the 

parametric integral equation system (PIES) to three-

dimensional piecewise homogeneous regions. Generalization 

is at the level of numerical solving of PIES as a results of 

combining properly modeled subregions with different 

parameters. The effectiveness of solving problems with 

homogeneous areas modeled using various differential 

equations was studied in previous works. To model the 

geometry of subregions we have used flat and curved 

surfaces. In order to check the reliability and effectiveness of 

the proposed method several examples were solved. These 

examples refer to 3D boundary problems modeled by 

Laplace’s and Navier-Lame differential equations. 
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1 Introduction 

 Computer analysis of a wide range of technical problems 

often reduces to application of the popular finite element 

method (FEM) [1] and boundary element method (BEM) [2]. 

The finite element method based on discretization of the 

whole area is naturally suited to direct analysis of problems 

defined over regions which are piecewise homogeneous, 

where each subregion has different properties. On the other 

hand, the use of FEM generates a very large number of 

algebraic equations, and the obtained solutions are closely 

related to nodes which define finite elements. 

 Because of these disadvantages occurring in FEM, it is 

reasonable to apply to mentioned problems alternative BEM, 

which reduces the need for the discretization only to the 

boundary. This limits the number of declared nodes, which 

eventually leads to obtain a smaller system of algebraic 

equations to solve. In contrast to FEM, the practical 

application of BEM to problems with subregions, however, is 

more complex. The complexity lies in the fact that different 

subregions should be treated as separate areas and the 

boundary of all of them should be discretized, and then they 

have to be connected at interfaces between them into one 

global region. 

 Our previous research resulted in the creation and 

development of the alternative method compared to the 

classical BEM. The aim was to eliminate the discretization of 

both the area and the boundary. It was possible by analytical 

modifying the conventional boundary integral equations (BIE) 

and obtaining the parametric integral equation systems 

(PIES). The modification consisted of the direct definition of 

the geometry in BIE by proper functions defined in a 

parametric way. Therefore, the resulting PIES has eliminated 

the  discretization of the boundary during its numerical 

solution. This became possible through including the 

geometry at the level of the mathematical formalism of the 

proposed PIES, and not at the level of the calculation of 

boundary integrals, as is in the traditional BEM. 

 Parametric integral equation systems (called the PIES 

method) have been obtained and tested for the entire spectrum 

of two-dimensional boundary problems modeled by 

differential equations: the Laplace [3], Helmholtz [4] and 

Navier-Lame [5]. Obtained results were much more accurate 

in relation to BEM. Therefore, it was encouraging to 

generalize PIES to three-dimensional problems modeled by 

these equations [6,7]. 

 The purpose of this paper is to generalize PIES to three-

dimensional problems modeled by the Laplace and Navier-

Lame equations defined over regions which are piecewise 

homogeneous. To model the boundary geometry of 

subregions parametric surfaces were used [10,11]. Practically, 

they are declared in PIES using a small set of points, which in 

no way be equated to nodes of boundary element (as in 

BEM). In order to check the reliability and effectiveness of 

the proposed way of modeling subregions in PIES we have 

solved several examples. Verification was carried out in 

several stages. At the beginning, the Navier-Lame equation 

defined over elementary homogenous region was solved by 

PIES and the results were compared with known analytical 

solutions. Then the area was divided into subregions with the 

same properties. The reliability of the proposed way of 

modeling was verified by numerical tests. Obtained results 

(for subregions) were compared with exact solutions and 

obtained by means of PIES for the homogeneous region. We 
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also solved a problem for which there is no analytical solution 

and we compared the results with these obtained by known 

numerical method BEM realized by the commercial software 

BEASY. 

2 A strategy for application of PIES to 

piecewise homogeneous regions 

 PIES are obtained by analytical modifying the classical 

boundary integral equations (BIE). This modification 

consisted of the inclusion of homogeneous areas defined by 

surface patches in the mathematical formalism of BIE. PIES 

for Laplace’s equation is presented in [6], whilst for the 

Navier-Lame equations in [7] and [8] and takes the following 

form: 

 

  ,,)},(),,,(

),(),,,({),(5.0

11

11

1

11

11

dvdwwvJwvwvwv

wvwvwvwv

j

w

w

v

v

n

j

j

j

j

j

jlj

jljl

uP

pUu









 


 (1) 

where ,11 ll    ,11 ll www   jj  1 ,  

jj www 1  are the parameters of surfaces ....,3,2,1 nj   

Integrands 
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ljP  for (1) in an explicit form are 

presented in [7] and [8]. 

 In a very similar form as equation (1) is presented PIES 

for Laplace’s equation. The detailed form of the function for 

this equation is presented in [6]. Integrands for this equation 

are presented in the following way: 
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 Kernels (1a) include in its mathematical formalism the 

shape of a closed boundary, created by means of functions 

),()( wvP i
, 3,2,1i  that in the paper are represented by 

triangular or rectangular patches. 

 A characteristic feature of PIES, regardless of the 

differential equation, is that the corresponding integrands 


ljU  and 


ljP  allow to analytical include in their 

mathematical formalism the geometry modeled using 

parametric surface patches. The theoretical considerations 

assumed, that created by surfaces area is homogeneous and is 

characterized by constant parameters throughout the whole 

considered area. This gives possibility for solving boundary 

value problems only for unchanging properties (material 

constants) throughout the area. In many practical problems, it 

appears that areas can be characterized by different 

parameters (properties). Resolving such problems by direct 

application of PIES is impossible. It would be possible only 

if, for such areas (piecewise homogeneous) we were able to 

analytically obtain solutions, which are integrands in PIES. 

Receipt of such functions in explicit form is very difficult and 

even impossible. 

 Therefore it became necessary to use a different strategy 

for solving problems defined over regions which are 

piecewise homogenous. This strategy bases on the preliminary 

treatment of the area as the global area, composed of 

subregions with different properties. Then PIES is defined for 

each subregion separately, but with compatibility and 

equilibrium conditions between their interfaces. As a results, 

PIES for the whole region is obtained. Imposing the different 

characteristics for each subregion is reduced to consider 

relevant parameters in mentioned above integrands 


ljU  and 


ljP , which correspond to individual subregions. Till now, 

three-dimensional analysis using PIES was restricted to 

homogenous areas. 

3 Modeling piecewise homogenous 

regions in PIES 

 Modeling piecewise homogeneous regions by surfaces is 

analogous to the modeling of homogeneous areas [6,7]. The 

only problem is that in order to take into account the 

heterogeneity we have to define more patches. Properly 

modeled subregions  are characterized by the fact that for 

each of them can be easily given different material properties. 

Figure 1 shows an elementary global area   which is the sum 

of homogeneous subregions 
321

,,  . Interfaces marked in 

gray are common for neighboring subregions. For each of 

these subregions in PIES can be easily prescribed different 

material constants. Defining the same material constants for 

all subregions reduces the problem to model the homogeneous 

area. 

 
Fig. 1. The region composed of homogeneous subregions 

321
,,  . 

 PIES represented by (1) can be applied separately for 

each subregion. In order to generalize PIES into the area 

which is piecewise homogeneous we have to add separately 

obtained PIESes for each subregion, together with 

compatibility conditions (3). Numerical solution of PIES for 

each subregion reduceses to solving the system of algebraic 
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equations. Therefore, the inclusion of compatibility conditions 

is most convenient at the level of systems of equations, which 

approximate PIES for individual subregions. 

4 Numerical implementation of PIES 

for homogeneous subregions 

 Based on PIES represented by formula (1), the following 

systems of algebraic equations for each of the three 

subregions shown in Fig.1 can be written: 
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 In order to combine subregions into one region the 

compatibility conditions should be applied at interfaces 

(shown in Fig.1) I  and II : 
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 Equations (2) with compatibility conditions (3) can be 

combined to form of the global system for three subregions: 
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 By imposing the boundary conditions of the problem, 

the system (4) can be reordered as: 

 BAX  , (5) 

where X  is a vector of unknown coefficients of series 

approximating boundary functions [7]. Then, having the 

solution at the boundary we can obtain a solution at any point 

of subregions 
321

,,   using the integral identity [7]. 

5 Verification of the reliability of 

modeling piecewise homogenous 

regions 

 The reliability of presented modeling concept was 

verified and tested on examples with exact solutions. For this 

purpose, a linear elastic problem in the area shown in Fig. 2a 

and in the area modeled as the sum of three subregions 

321
,,  , as shown in Fig. 2b, was considered. In order to 

verify the algorithm it was assumed that all three subregions 

have the same properties ,E  and proposed in the paper 

technique for piecewise homogeneous regions was applied to 

solve the problem. The results can be compared with the 

results obtained using widely tested PIES for homogeneous 

areas (Fig. 2a). 

a)  

b)  

Fig. 2. Modeling in PIES by rectangular Coons surfaces: a) 

homogeneous area  , b) piecewise homogeneous area 
321

,,   

 Modeling areas in PIES is limited to corner points 

considering the area shown in Fig.2a and additionally corner 

points of interfaces between subregions (Fig.2b). The 

practical definition of these surfaces is reduced to posing 8 

and 16 corner points. As a result, the geometry presented in 

Fig. 2a is created by 6, while the geometry from Fig. 2b, 18 

connected Coons patches. 

 In order to numerical verification, for presented in Fig.2 

area the Navier-Lame equations with displacements boundary 

conditions were solved. These conditions were determined 

based on the known analytical solutions: 
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 The values of relative error for displacements at selected 

points of the area for two variants of modeling are 

summarized in Table 1. 

Table. 1. Values of relative errors at selected area points 

(
1

x ,
2

x ,
3

x ) 
Relative error [%] 

  321
,,   

(1.0, 1.0, 0.5) 

0.0014456 

0.0014456 

0.0089845 

0.00251776 

0.00251776 

0.01575 

(1.0, 1.0, 1.5) 

0.000546507 

0.000546507 

0.00100551 

0.000735146 

0.000735146 

0.00398909 

(1.0, 1.0, 2.5) 

0.00027155 

0.00027155 

0.00042753 

0.00312324 

0.00312324 

0.011762 

(1.0, 1.0, 3.5) 

5.7268e-005 

5.7268e-005 

0.00016390 

0.000740912 

0.000740912 

0.00842831 

(1.0, 1.5, 4.5) 

9.9359e-005 

9.9359e-005 

0.00011531 

0.00238683 

0.00238683 

0.00797907 

(1.0, 1.0, 5.5) 

0.0010604 

0.0010604 

0.0028109 

0.000366541 

0.000366541 

0.00418387 

 It is worth to emphasizing large similarity of the results 

for both variant of area modeling. Small relative errors for  

subregions confirm the reliability of PIES and the proposed 

way of modeling. These solutions have been obtained by 

solving respectively 24 and 72 algebraic equations. 

 In order to more accurately verify the modeling concept 

we considered more complex area than shown in Fig. 2. The 

hollow ball shown in Fig. 3a was modeled by Bezier patches, 

and the results were compared with analytical solution and 

these obtained by FEM known from the literature [9]. 

Therefore, the problem under consideration was modeled by 

Laplace's equation. Figures 3b,c show the cross section 

0.20.1  r  of the hollow ball. 

 In order to test the software which realize PIES for 

piecewise homogeneous regions, the area from Fig. 3a,b as 

previously was divided into two closed subregions 
21

,  

with the common interface at 5.1r  (Fig. 3c). After 

imposing the potential boundary conditions ( CT 0

1
100  and 

CT 0

2
200 ), assuming the same parameters and geometric 

dimensions the analytical solution for two variants of the 

geometry depends on the radius r  and is presented by [9]: 

  
r

rT
200

300 . (7) 

a) 

 

b) c) 

 
Fig. 3. The hollow ball: one region (a,b), two subregions (c) 

 In order to compare the effectiveness of modeling, Fig. 4 

shows the modeling used in FEM and PIES. In the case of the 

classical FEM (Fig. 4b) a traditional element mesh for 1/8 

part of the whole area was used. The mesh was made up of 64 

finite elements. If we want to model the whole area number of 

elements would increase to 512 elements, declared using 800 

nodes [9]. 

a) b)    

Fig. 4. Modeling of 3D area by Bezier triangular patches (a), 

FEM mesh for 1/8 part of the hollow ball (b). 

 To model the boundary in PIES in place of the finite 

elements are used shown in Fig. 4a triangular Bezier surface 

patches of the fourth degree, declared by 15 control points. 

The sphere of the ball is created in this case by combination 

of 8 mentioned patches. As a result, to declare the final 

geometry entering 16 surfaces declared by 112 control points 

is required. After the division of the input area into two 

subareas (Fig. 3c) the number of surfaces is doubled. The way 

of geometry modeling, in comparison with FEM, is simplified 

and is done by smaller set of points. Created in such way 

geometry is also directly used by the mathematical formalism 
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of PIES during the boundary problem solving, without any 

further division into finite or boundary elements. 

 Obtained by PIES numerical solutions for two variants 

of geometry show good agreement with analytical and FEM 

values, as shown in Table 2. 

Table. 2. Values of relative errors at selected area points for FEM 

and PIES 

r 
Relative error [%] 

FEM [9] PIES   PIES
21 ,  

1.25 0.18 0.01 0.21 

1.75 0.06 0.11 0.10 

 Based on the geometry shown in Fig. 5a was considered 

the problem of the region piecewise homogeneous, where 

subregions have different parameters. These parameters are as 

follows: 1332211  kkk  for the internal region and 

2332211  kkk  for the external region. 

a) b)  

Fig. 5. The cross-section of the considered in PIES geometry (a), 

discretization of two subregions in FEM (b) 

 The exact solution in both subregions, with the 

prescribed as shown in Fig. 5a boundary conditions and 

geometrical dimensions is presented by the following function 

[9]: 

   B
r

A
rT  . (8) 

 The coefficients A  and B  are respectively 4.8 and 0.2 

for the first and 2.4 and 1.8 for the second subregion. 

 The boundary geometry in PIES was modeled using 32 

triangular Bezier patches, after defining 224 control points. 

This number of data is comparable with the number available 

in the literature for FEM [8], but only for 1/8 of the area. In 

this case 128 finite elements were used, and they were 

declared by 225 nodes. Thus the modeling of the entire area in 

case of PIES requires almost as much input as for FEM, but 

only to model 1/8 of the area. Table 3 summarizes the values 

obtained at certain points of the area modeled in PIES and 

FEM as mentioned above. 

 The advantage of the proposed PIES algorithm in 

comparison to the classical analysis using element methods is 

particularly the way of the modeling of the boundary 

geometry. 

Table. 3. Values of relative errors at selected area points for FEM 

and PIES 

r 
Relative error [%] 

FEM PIES 

1.125 0.040 0.113 

1.375 0.054 0.106 

1.75 0.025 0.103 

1.875 0.013 0.113 

 

6 Numerical tests on examples 

 To verify the reliability of the presented way of 

subregions modeling by parametric patches two extreme 

examples are considered. The first example demonstrates the 

modeling of an elementary polyhedral domain described by 

only bilinear Coons surfaces, whereas the second shows the 

cylindrical domain generated by Bezier surfaces of the fourth 

degree. In the following part of the paper we considered more 

complex polyhedral shape without analytical solution and also 

the problem in which we should combine flat (first degree) 

and curved (higher degree) patches. 

6.1 Example 1  

 Figure 6a shows a part of cylindrical domain containing 

a hole, which can be modeled by 2 bilinear Coons surfaces 

and 4 Bezier rectangular  surfaces of the third degree. The 

domain is described unequivocally and accurately only by 48 

control and corner points. 

a)      b)  

Fig. 6. The cylindrical domain: one region (a), two subregions (b) 

 The validation of the accuracy of solutions in PIES for 

generated by surface patches domain has been carried out for 

the classical Lame problem of a hollow tube 0.60.3  r  

subjected to an internal pressure Pap 1 . Considering 

geometrical symmetry, for analysis is taken only 1/4 of the 

initial domain, as shown in Fig. 6a. 

 Simultaneously, in order to test the proposed concept, 

we also split the domain from Fig. 6a into two closed 

subregions 
21

,  with the common interface for 5.4r  

(Fig. 6b). After imposing the boundary conditions, identical 

material properties ( ,E ) and geometrical dimensions, the 

exact solution for both regions depends on the radius r  and is 

given by the following formula [9]: 
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r

C
rCur

2
1  , (9) 

where 1733.0
1
C , 6.152 C . 

Table. 4. Values of relative errors at selected area points 

r 
Relative error [%] 

PIES   PIES 21,  

3.3234 0.90118 0.962047 

3.46482 0.822381 0.873247 

3.9598 0.594504 0.621568 

4.24264 0.695472 1.54433 

4.87904 0.853623 0.800289 

5.16188 0.792898 0.788377 

5.58614 0.863936 0.872808 

 The results summarized in Table 4 are in good 

agreement with the analytical values for both domains from 

Fig. 6. 

6.2 Example 2 

 In the previous examples, the results obtained by PIES 

were compared with exact or numerical solutions taken from 

the literature. In this example, we solved problem using 

professional software BEASY and using authors software 

implementing PIES. A polyhedral region (shown in Fig. 7), 

composed of two symmetric subregions 
21

,  and subjected 

to a uniform normal load Pap 1 , is considered. Subregions 

are practically defined in PIES by 24 corner points, which 

model 20 rectangular  Coons surface patches. Figure 6b 

illustrates the representation of the same geometry in BEM. 

The mesh has been generated using BEASY preprocessor and 

contains 784 quadrilateral boundary elements with 7929 

nodes. As can be seen the number of input data to model the 

geometry in PIES (control points) is much less than the total 

number of nodes in presented BEM mesh. 

 We have considered subregions with different material 

properties, respectively 11 E , 3.01   and 22 E , 

3.02  . Table 5 contains displacement values at selected 

area points obtained using PIES and BEM implemented by 

BEASY. 

 Comparing the results (presented in Table 5) it is 

possible to notice that we have obtained a comparative values 

of displacements for both methods with smaller input data 

needed to model the computational geometry in PIES. 

a)   

b)   

Fig. 7. The considered piecewise homogeneous region: a) modeled 

by Coons surfaces with posed boundary conditions, b) its 

discretization in BEM 

7 Conclusions 

 The paper proposes modeling 3D piecewise 

homogeneous regions in boundary value problems solved by 

PIES. Modeling is characterized by defining boundaries of 

each subregion using the appropriate surface patches. Then, 

subregions were combined into one so-called global region 

with piecewise constant parameters. Such defined global 

region, after imposing the boundary conditions was used for 

solving boundary value problems by PIES. 

 The reliability of such modeling has been verified at 

several stages. At the beginning, the results obtained by PIES 

were compared with known analytical solutions for the same 

parameters in the whole area (without subregions). Then these 

results were obtained for the region which is piecewise 

homogeneous, but for all subregions were given the same 

material constants. The results were also compared with those 

known from the literature obtained by other numerical 

methods. The results confirmed the reliability of the applied 

modeling of such areas. This reliability was also confirmed by 

example where we considered the region with subregions 

characterized by different material constants . The results 

were compared with results obtained on the basis of 

professional software BEASY. 
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Table. 5. Solutions at selected area points 

1x , 2x , 3x  BEASY 21,  PIES 21,  

5,1,6 

-0.1596461E-07 

-3.095816 

-7.473452 

0.00676691 

-3.08303 

-7.48228 

5,2,6 

-0.1628971E-07 

-2.748688 

-7.186318 

0.00681254 

-2.73575 

-7.19854 

5,3,6 

-0.1660411E-07 

-2.428255 

-6.978831E 

0.00898227 

-2.41299 

-6.99799 

5,4,6 

-0.1702067E-07 

-2.174384 

-6.799047 

0.0132696 

-2.15681 

-6.82872 

5,5,6 

-0.1760653E-07 

-2.020893 

-6.556963 

0.0173771 

-2.00378 

-6.59746 

5,7,6 

-0.1935037E-07 

-1.882589 

-5.633672 

0.0121885 

-1.86956 

-5.67795 

5,8,6 

-0.2018353 

-1.780836 

-4.997009 

0.00436346 

-1.76742 

-5.0351 

5,9,6 

-0.2106911E-07 

-1.637185 

-4.352804 

-0.00282042 

-1.62172 

-4.38513 

5,10,6 

-0.2208607E-07 

-1.468327 

-3.755862 

-0.00807627 

-1.45112 

-3.78555 

5,11,6 

-0.2319604E-07 

-1.299597 

-3.208792 

-0.0121223 

-1.28249 

-3.23929 
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Abstract 

 
Purine metabolism is a fundamental component of the production of nucleotides, the building blocks of DNA and 

RNA.   In this pathway, hypoxanthine-guanine phosphoribosyltransferase (HGPRT) catalyzes the conversion of 

phosphoribosylpyrophosphate  to inosine monophosphate  and to phosphorylated guanosine. Mild HGPRT 

deficiency can result in gout and mild hyperuricemia.  More severe HGPRT deficiency can result in  Lesch-Nyhan 

syndrome, characterized by spasticity, choreoathetosis, mental retardation, self-mutilation, renal failure, and in the 

most severe cases, death.  Here I present an S-system analysis of the( logarithmic gain) sensitivity of  uric acid 

concentration in HGPRT deficiency to the parameters of the S-system model. The results suggests that there are no 

well leveraged targets  for moderating uric acid concentration in the purine metabolism pathway that do not  at the 

same time perturb primary DNA/RNA metabolism. 
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1.0  Introduction  
 

 Purine metabolism (see Figure 1) is a 

fundamental component of the production of 

nucleotides, the building blocks of DNA and 

RNA.   In this pathway, hypoxanthine-guanine 

phosphoribosyltransferase (HGPRT) catalyzes 

the conversion of phosphoribosylpyrophosphate 

(PRPP) to inosine monophosphate (IMP) and to 

phosphorylated guanosine. Mild HGPRT 

deficiency can result in gout and mild 

hyperuricemia.  More severe HGPRT deficiency 

can result in  Lesch-Nyhan syndrome (LNS), 

characterized by spasticity, choreoathetosis, 

mental retardation, renal failure, self-mutilation, 

and in the most severe cases, death  ([11]).  

 

Can we systematically search for well leveraged 

targets for moderating uric acid concentrations 

in the purine metabolism pathway?
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Figure 1.  Biochemical map of purine metabolism (adapted from [1]).  Rectangles represent 

metabolites (some boxes abstract a collection of closely related metabolites (e.g.,  dGMP, dGDP, 

dGTP) whose differences are not essential to the model).  Light solid arrows represent activation.  

Light dashed arrows represent inhibition.  Curved heavy arrows entering or leaving the pathway 

indicate purine ring and ribose moieties that balance the stoichiometry of the system.  Arrow labels 

represent flux in the direction of the arrow.   The nomenclature in this diagram is defined in Tables 

1 and 2. 

 

_____________________________________________________________________________________ 

 

 Curto et al. ([1], [2]) have extensively 

modeled purine metabolism and HGPRT 

deficiency using systems of ordinary differential 

equations (SODEs).  For all but the simplest 

SODEs, empirical surveys of system behavior 

are intractable due to the large size of the state 

space, and simulation is the only general system-

characterization method available.   
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Table 1.  Purine  metabolites and associated simulator variable names for Figure 1 (adapted from 

[1]).   
 
Simulator 

variable 

name 

Biochemical name Abbreviated name (in Figure 1) Nominal initial 

concentration, 

microMolar 
X1 Phosphoribosylpyrophosphate PRPP 5 

X2 Inosine_monophosphate IMP 100 

X3 Adenylosuccinate S-AMP 0.2 

X4 Adenosine Ado 2500 

X4 Adenosine_monophosphate AMP 2500 

X4 Adenosine_diphosphate ADP 2500 

X4 Adenosine_triphosphate ATP 2500 

X5 S-adenosyl-L-methionine SAM 4 

X6 Adenine Ade 1 

X7 Xanthosine_monophosphate XMP 25 

X8 Guanosine_monophosphate GMP 400 

X8 Guanosine_diphosphate GDP 400 

X8 Guanosine_triphosphate GTP 400 

X9 Deoxyadenosine dAdo 6 

X9 Deoxyadenosine_monophosphate dAMP 6 

X9 Deoxyadenosine_diphosphate dADP 6 

X9 Deoxyadenosine_triphosphate dATP 6 

X10 Deoxyguanosine_monophosphate dGMP 3 

X10 Deoxyguanosine_diphosphate dGDP 3 

X10 Deoxyguanosine_triphosphate dGTP 3 

X11 Ribonucleic_acid RNA 28600 

X12 Deoxyribonucleic_acid DNA 5160 

X13 Hypoxanthine HX 10 

X13 Inosine Ino 10 

X13 Deoxyinosine dIno 10 

X14 Xanthine Xa 5 

X15 Guanine Gua 5 

X15 Guanosine Guo 5 

X15 Deoxyguanosine dGuo 5 

X16 Uric_acid UA 100 

X17 Ribose-5-phosphate R5P 18 

X18 Phosphate P_i 1400 

 

 
 
 
Table 2.  Fluxes and enzymes for Figure 1 (adapted from [1]). 

 
Abbreviated flux name Abbreviated  enzyme 

name 

Full name of enzyme that catalyzes reaction E.C. enzyme 

identifier 

vprpps PRPPS Phosphoribosylpyrophosphate synthetase 2.7.6.1. 

vgprt HGPRT Hypoxanthine-guanine phosphoribosyltransferase 2.4.2.8. 

vhprt HGPRT Hypoxanthine-guanine phosphoribosyltransferase 2.4.2.8. 

vaprt APRT Adenine  phosphoribosyltransferase 2.4.2.7. 

vden ATASE `De novo synthesis' (Amidophosphoribosyltransferase) 2.4.2.14. 

vpyr  `pyrimidine synthesis' several  enzymes 

vasuc ASUC Adenylosuccinate synthetase 6.3.4.4. 

vasli ASLI Adenylosuccinate lyase 4.3.2.2. 

vimpd IMPD IMP dehydrogenase 1.1.1.205. 

vgmps GMPS GMP synthetase 6.3.4.1. 

vampd AMPD AMP deaminase 3.5.4.6. 

vgmpr GMPR GMP  reductase 1.6.6.8. 

vtrans MT `transmethylation pathway' (Protein  O-methyltransferase) 2.1.1.24. 

vmat MAT Methionine adenosyltransferase 2.5.1.6. 

vpolyam SAMD `Polyamine pathway' (S-adenosylmethionine 

decarboxylase) 

4.1.1.50. 

vade  `Adenine oxidation (xanthine  oxidase) 1.2.1.37. 
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Abbreviated flux name Abbreviated  enzyme 

name 

Full name of enzyme that catalyzes reaction E.C. enzyme 

identifier 

vinuc 5NUC 50-Nucleotidase 3.1.3.5. 

vgnuc 5NUC 50-Nucleotidase 3.1.3.5. 

varna RNAP RNA polymerase (from ATP) 2.7.7.6. 

vgrna RNAP RNA polymerase (from  GTP) 2.7.7.6. 

vrnaa RNAN RNases (to AMP) several enzymes 

vrnag RNAN RNases (to GMP) several enzymes 

vdgnuc 3NUC 50(30) Nucleotidase 3.1.3.31. 

vada ADA Adenosine deaminase 3.5.4.4. 

vdada ADA Adenosine deaminase 3.5.4.4. 

vadrnr DRNR Diribonucleotide reductase 1.17.4.1. 

vgdrnr DRNR Diribonucleotide reductase 1.17.4.1. 

vgua GUA Guanine hydrolase 3.5.4.3. 

vadna DNAP DNA polymerase (from dATP) 2.7.7.7. 

vgdna DNAP DNA polymerase (from dGTP) 2.7.7.7. 

vdnaa DNAN DNases (to dAMP) several enzymes 

vdnag DNAN DNases (to dGMP) several enzymes 

vhx  `Hypoxanthine  excretion' Non-enzymatic step 

vhxd XD Xanthine oxidase or xanthine dehydrogenase 1.2.1.37. 

vxd XD Xanthine oxidase or xanthine dehydrogenase 1.2.1.37. 

vx  `Xanthine excretion' Non-enzymatic step 

vua  `Uric acid excretion' Non-enzymatic  step 

 

 

 

2.0  Method 
 

 

 The HGPRT deficiency model in [4] is 

an S-system  ([3]).  An S-system is a power-law-

oriented, differential difference-equation SODE 

each of whose dependent variables Xi is 

described by a kinetic equation of the form    

______________________________________________________________________________ 

 

                                               Eq. 2.1 

 
where  

 

 the left-hand side of Eq. 2.1 is the first derivative with respect to time of Xi 

 

 i , j = 1, 2, 3, ..., N 

 

 {Xi}  is the set of real-valued dependent variables of the system   

     

 for any given Xi, only those independent and dependent variables Xj that have an action 

on Xi are included as factors in the products on the right-hand-side (RHS) of Eq. 2.1.  The factors 

in the first term on the RHS  of Eq. 2.1 correspond to just those entities that increase or inhibit the 

production of Xi; the factors in the second term of the RHS of Eq. 2.1 correspond to just those 

entities that contribute to the consumption of Xi. 

 

 i , i > 0 

 

 gi_j, hi_j are real-valued  
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 There is a natural mapping from a 

biochemical map,  K, to equations that have the  

form of Eq 2.1.   In particular, let K = <{Xk}, 

E>, E  {Xk}   {Xk},  k = 1, 2, …, N, be a 

directed graph in which each distinct Xi   {Xk} 

corresponds to a distinct dependent variable 

(e.g., the concentration of  a distinct chemical 

species in the map), and w  E if and only if w = 

(Xm, Xn) is a directed edge in K , m  n = 1, 2, 

..., N.    

 i  and i are called  generalized rate 

constants (or just rate constants) for Xi, and gi_j 

and hi_j are called the generalized kinetic orders 

(or just kinetic orders) for Xi, on analogy with 

standard chemical kinetic theory.   The 

subexpression i_j indicates the action of Xj on Xi. 

 An S-system has several desirable 

features, including the fact that it is fully 

characterized by its rate constants and kinetic 

orders, allowing us to comprehensively survey 

the system's (logarithmic gain) sensitivity to 

those parameters.  Any SODE can be recast 

([9],[10]) as an S-system without loss of 

accuracy or precision; the recasting, however, is 

not in general unique.  In addition to 

biochemical systems, S-systems have been 

successfully used to model epidemics ([16]), 

forest diversification, and world dynamics 

([15]). 

 The metabolic map shown in Figure 1 

was  translated to an S-system in Mathematica 

([6]), then translated to the  Power Law Analysis 

and Simulation (PLAS, [5] ) language.  The 

resulting model contains 16 dependent variables, 

two independent variables, and ~145 parameters 

(see Figure 2).     In the model, HGPRT 

deficiency is represented as a factor, d,  whose 

values lie in the interval [0.01, 0.99], that 

modulates the kinetic orders of several terms in 

the system.  The larger the value of d, the more 

severe the deficiency. 

 

_____________________________________________________________________________________ 

 

 
// Phosphoribosylpyrophosphate 

X1'  = a1 X1^g1b1 X4^g1b4 X8^g1b8 X17^g1b17 X18^g1b18 >> 

       - b1 X1^h1b1 X2^h1b2 X4^h1b4  X6^h1b6 X8^h1b8 X13^h1b13 X15^h1b15 X18^h1b18 

 

// Inosine monophosphate 

X2'  = a2 X1^g2b1 X2^g2b2 X4^g2b4 X7^g2b7 X8^g2b8 X13^g2b13 X18^g2b18 >> 

       - b2  X2^h2b2  X4^h2b4  X7^h2b7 X8^h2b8  X18^h2b18 

 

// Adenylsuccinate 

X3'  = a3 X2^g3b2  X4^g3b4  X8^g3b8  X18^g3b18-b3  X3^h3b3  X4^h3b4 

 

// Adenosine mono/di/tri phosphate 

X4'  = a4  X1^g4b1  X3^g4b3   X4^g4b4  X5^g4b5  X6^g4b6  X11^g4b11  >> 

       - b4  X4^h4b4  X5^h4b5  X8^h4b8  X9^h4b9  X10^h4b10  X18^h4b18 

 

// S-adenosyl-L-methionine 

X5'  = a5  X4^g5b4  X5^g5b5  -  b5  X5^h5b5 

 

// Adenine 

X6'  = a6  X5^g6b5  - b6  X1^h6b1 X4^h6b4  X6^h6b6 

 

// Xanthine monophosphate 

X7'  = a7  X2^g7b2  X7^g7b7  X8^g7b8 - b7  X4^h7b4  X7^h7b7 

 

// Guanosine mono/di/tri phosphate 

X8'  = a8 X1^g8b1 X4^g8b4  X7^g8b7  X8^g8b8 X11^g8b11 X15^g8b15 >> 

       - b8  X2^h8b2  X4^h8b4 X7^h8b7 X8^0.133 X9^h8b9  X10^h8b10  X18^h8b18 

 

// Deoxyadenosine mono/di/tri phosphate 

X9'  = a9  X4^g9b4  X9^g9b9  X10^g9b10  X12^g9b12  >> 

       - b9  X9^h9b9  X10^h9b10 

 

// Deoxyguanosine mono/di/tri phosphate 
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X10'  = a10  X8^g10b8  X9^g10b9  X10^g10b10  X12^g10b12 >> 

         - b10  X9^h10b9  X10^h10b10 

 

//  RNA 

X11'  = a11  X4^g11b4  X8^g11b8 -  b11  X11  

 

// Deoxyribonucleic acid 

X12'  = a12  X9^g12b9  X10^g12b10 >> 

          - b12  X12  

 

// Hypoxanthine/Inosine/Deoxyinosine 

X13'  = a13  X2^g13b2  X4^g13b4  X9^g13b9  X18^g13b18 >> 

        - b13 X1^h13b1 X2^h13b2 X13^h13b13 

 

// Xanthine 

X14'  = a14 X13^g14b13   X15^g14b15 - b14  X14^h14b14 

 

// Guanine/Guanosine/Deoxygaunosine 

X15'  = a15  X8^g15b8  X10^g15b10  X18^g15b18 >> 

         - b15 X1^h15b1 X8^h15b8 X15^h15b15 

 

// Uric acid 

X16'  = a16  X14^g16b14 - b16  X16^h16b16 

 

// INITIAL VALUES OF INDEPENDENT VARIABLES, microMolar 

 

// Ribose-5-phosphate 

X17 = 18.0 

 

// Phosphate 

X18 = 1400.0 

 

 

Figure 2.  Parameterized equations of the HGPRT deficiency model.  (Parameter values are not 

shown, but are available as noted in [17].)  "'" means first time derivative.  "^" means 

exponentiation. 

 

_____________________________________________________________________________________ 

 

  

 The model sketched in Figure 2 was 

executed to determine nominal system behavior.  

PLAS sensitivity analysis functions of that 

execution were used to determine the sensitivity 

of uric acid concentration to model parameters 

(gains less than 2 were excluded).  All software 

was executed on a  Dell Inspiron 545 with an  

Intel Core2 Quad CPU Q8200 (clocked @ 2.33 

GHz) and 8.00 GB RAM, running under the 

Windows Vista Home Premium operating 

environment. 
 

 

3.0 Results and discussion 

 Figure 3 shows the logarithmic gain 

(sensitivity) of uric acid to the model's 

parameters.  Rate constants the absolute value of 

whose logarithmic  gain is  > ~10 are potential 

targets for modulation of metabolic pathways 

([18]).  Taken together, Figure 1 and Figure 3  

suggest that there are no well leveraged targets 

in the purine metabolism pathway for 

moderating uric acid concentration that do not 

at the same time perturb primary DNA/RNA 

metabolism.   

 These results illustrate the power of S-

system modeling to help identify therapeutic 

targets. 

 The time-to-solution for all results on 

the platform described in Section 2.0 was less 

than 1 second. 
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Figure 3.  Logarithmic gain (sensitivity) of uric acid by S-system parameter  in severe HGPRT 

deficiency (d = 0.99).  Gains with an absolute value less than 2 were excluded from the analysis. 

 
_____________________________________________________________________________________________ 
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Abstract - The paper presents a strategy for using different 

parametric surface patches for the modeling (approximation) 

of complex 3D boundary geometries in boundary value 

problems. Created by mentioned technique boundary is 

directly included in developed by the authors parametric 

integral equation systems (PIES) to solve boundary problems 

of linear elasticity. Included examples confirm the reliability of 

the approach and high accuracy of numerical solutions for 

boundary problems governed by the Navier-Lame equations. 

Keywords - computer modeling and simulation, parametric 

integral equation systems (PIES), Bézier surfaces, linear 

elasticity, boundary problems  

 

1 Introduction 

 Modeling areas for boundary problems in element 

methods reduces to dividing the area into finite elements in the 

finite element method FEM [1,2] and into boundary elements 

in the boundary element method BEM [3,4]. These elements 

are used for the simultaneous modeling of areas and 

approximate solutions. To improve the accuracy of solutions 

we have to increase the number of elements. It makes sense 

from the standpoint of improving the accuracy of the solution, 

but it is pointless taking into account the accuracy of modeling 

the considered area. It comes from the fact that even a small 

number of these elements can be sufficient for very accurate 

modeling (approximating) the area. 

 For many years, we have used the parametric integral 

equation systems (PIES) for solving boundary value problems. 

In PIES, the approximation of the boundary is independent of 

the approximation of boundary functions, hence there is the 

possibility of effective modeling the boundary shape by 

selecting appropriate surface patches. Till now, PIES was 

mainly used to solve two-dimensional potential boundary 

problems modeled by a variety of differential equations such as 

Laplace, Helmholtz, Poisson and Navier-Lame. 

 To define the boundary in 2D problems we have used 

linear segments [5], Bézier [6], B-spline [7] and Hermite [8] 

curves of the first and third degree. Using curves of the third 

degree we can very easily model the geometry in a continuous 

way, and to its practical definition a small number of control 

points is posed. By means of curves of the first degree we can 

model any polygonal area using only corner points. Finally, the 

number of input data in PIES is significantly lower than in 

FEM and BEM and the boundary is defined in a continuous 

way. 

 The resulting efficiency of PIES in the case of solving 

two-dimensional potential boundary problems was encouraging 

to generalize the method to 3D problems defined by various 

differential equations. Till now, we have considered only 3D 

problems modeled by the Laplace [9] and Helmholtz [10] 

equations. Current research focuses on the use of PIES for 3D 

linear elastic areas modeled by the Navier-Lame equations. We 

have done preliminary tests concerned with verification of 

PIES for very elementary shapes. 

 The aim of this paper is to analyze the reliability and 

effectiveness of modeling complex 3D geometries by surface 

patches in PIES for boundary value problems of linear 

elasticity. For this purpose, triangular and rectangular 

parametric surfaces were tested in terms of their direct 

application to the representation of the boundary in PIES. Both 

flat surfaces of the first degree, as well as curved patches of 

higher degrees were examined. 

2 Bézier surface patches for boundary 

representation 

 Used in the paper parametric Bézier surface patches are 

an extension of well-known from computer graphics parametric 

Bézier curves. A common feature of both curves and surfaces 

is declaration of their shape using a small set of control points. 

Considering the Bézier surface the shape is defined by an array 

of control points. Presented and applied in the paper modeling 

uses triangular and rectangular Bézier patches. 

 Triangular Bézier surfaces of the n  degree are declared 

by a set of )2)(1(5.0  nn  control points ijkP  and 

mathematically described by the following formula [11]: 
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 Figure 1a shows triangular patch of the third degree 

defined by 10 control points. By moving these points, we can 

effectively modify the shape of the surface. 

 A rectangular Bézier surface is described by an array of 

mn control points 
ij

P  and is written mathematically by [11]: 
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with basis functions represented by Bernstein polynomials as 

follows: 
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 In this paper, we deal with Bézier rectangular patches 

with 1 mn  and 3mn , called the first and third degree. 

A rectangular patch of the first degree takes the form of a flat 

surface defined by four corner points. A bicubic Bézier patch 

of the third degree is defined using 16 control points and is 

shown in Fig. 1b. 

 Defining the proper geometry in PIES reduces to 

connecting independent surface patches, so as to finally they 

model whole boundary of the problem under consideration. 

Examples of such created areas are shown in the next section 

of this paper. Declared in this way geometries are directly 

included into the mathematical formalism of PIES. 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) 

 
b) 

 

Fig. 1. Visualization of a) triangular and b) rectangular Bézier patches 

of the third degree with their control points 

3 Modeling curvilinear geometries by 

control points 

 To model curvilinear geometries in 3D boundary value 

problems we have used triangular and rectangular Bézier 

patches discussed in the previous section. Practical modeling 

mentioned areas is reduced to its creation by a combination of 

surfaces of the lower degree. Such strategy was used in 

presented in the paper researches. 

 Figure 2 shows an axially symmetric torus generated in 

PIES by 16 rectangular Bézier patches of the third degree and 

a total number of 174 control points. The closed surface of a 

torus was formed after connecting the outer edges of surfaces. 

Such modeled torus directly represents the boundary geometry 

in PIES. 
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Fig. 2. The torus with marked the one of 16 rectangular patches used 

for its modeling 

 We can generalize the strategy used in the above example 

to modeling more complex shapes, for example the multi-

connected area shown in Fig. 3h. In such cases it is necessary 

to connect flat (first degree) and curved (higher degree) 

surfaces to model the considered area. The use of different 

surfaces is presented in Figures 3a-g. 

 a) b) 

 
 c) d) 

 
 e) f) 

 
 

 

 

 

 

 

 

 g) h) 

 

Fig.3. Further stages of defining the multi-connected domain: a) the 

base declared by rectangular and triangular surfaces, b-d) side faces 

modeled by rectangular surfaces of the third degree, e-g) defining 

next segments of the boundary, h) the complete geometry 

 Finally, the boundary is modeled by the following Bézier 

patches: 6 rectangular of the first degree, 24 rectangular and 6 

triangular of the third degree. These patches are defined by 236 

control points and they create the boundary geometry presented 

in Fig.3h. 

 Figures 4a,b,c show the following stages of modeling 

even more complex area shown in Fig. 4d. This area has been 

generated for the numerical analysis of PIES and verification 

of the reliability of proposed in the paper modeling concept. Its 

creation requires introduction of respectively: 26 rectangular 

patches of the first and third degree and 4 triangular of the 

third degree. 

a) 

 
b) 
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c) 

 
d) 

 

Fig. 4. The stages of defining sample automobile domain by Bézier 

patches 

 The created by patches area has been directly integrated 

with the mathematical formalism of PIES, which is used for 

numerical solution of boundary problems. As can be seen in 

Fig.4, this is the smallest number of patches (of the considered 

type) required to model the area under consideration. Taking 

into account the number of surfaces we can state that modeling 

is effective. It is also implemented without any further division 

of the area or boundary into elements as in FEM and BEM. 

4 PIES for the Navier-Lame equations 

in domains by Bézier surface patches 

 The presented way of modeling is directly used in 

parametric integral equation systems (PIES). PIES for the 

three-dimensional Navier-Lame equations were obtained as a 

result of analytical modification of the classical boundary 

integral equation (BIE). An applied modification strategy is the 

generalization of modification presented in [5], used for 2D 

problems. General form of PIES (for any shape of the 

boundary) is presented by the following formula [12]: 
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create 3D boundary geometry. 
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 Kernels (6,7) include in its mathematical formalism the 

shape of the closed boundary, created by means of functions 

),()( wvP i , 3,2,1i  that in this paper are represented by 

triangular (1) or rectangular (3) patches through the following 

relations: 

),(),(
11
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 These relations give possibility for creation any boundary 

geometry by joining parametric patches directly in PIES. Three 

sample geometries are shown in Fig. 2-4. 

 Formula (5) requires the Jacobian  wvJ
j

,  and surface 

normal vectors      wvnwvnwvn ,,,,, 321 , which are derived 

analytically from equations (1,3) in the following way: 
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5 Numerical solution of PIES 

 Application of PIES for solving 2D and 3D boundary 

problems, taking into account presented modeling technique, 

allows eliminating the need for a discretization at the level of 

both the boundary modeling and the boundary function 

approximation. Boundary functions, which are vectors of 

displacements ),( wvju  and stresses ),( wvjp  on each j  

surface can be approximated by the following series: 
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where 
)( pr

ju ,
)( pr

jp  are unknown coefficients, while 

)(),(
)()(

wTvT
r

j
p

j  are Chebyshev polynomials. After 

substituting (11,12) to (5) and writing down at proper 

collocation points [13] we obtain a system of linear algebraic 

equations with respect to unknown coefficients. Coefficients 
)( pr

ju or 
)( pr

jp can be obtained by solving mentioned system. 

6 Solutions in the domain 

 After solving PIES only the solution on the boundary is 

obtained, and it is represented by approximation series (11) or 

(12). The integral identity is used to obtain solutions in the area 

on the basis of solutions from the boundary and is formulated 

in the same way as for 2D problems [5]. In order to do it 

solutions obtained on the boundary are used. This identity is 

presented in the following form [12]: 
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while integrands can be expressed by: 
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 Above formulas are analogous to those previously 

described in (6,7). The difference lies in the following 

expressions: 
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where beyond surface patches that define the geometry are the 

coordinates of points in the domain  
321

x ,x,xx , at which 

we are interested in the solution. 

7 Numerical examples 

 In order to practical verification of the presented way of 

modeling numerical tests were carried out. We considered 

boundary problems defined over linear elastic bodies. 

Verification concerned the examination of the similarity of the 

numerical results with available in the literature analytical 

solutions. Imposed displacement boundary conditions for 

different areas were obtained by the following known 

analytical solutions [14,15]: 

 2/)2( 3211 xxxu  , 

 2/)2( 3212 xxxu  , (17) 

 2/)2( 3213 xxxu  , 

 

 

and 
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32

3
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 2
13

3
32 3 xxxu  , (18) 

 2
21

3
13 3 xxxu  .  

 On the basis of solutions (17,18) we can easily calculate 

derivatives with respect to relevant variables. Then, having 

derivatives and proper expressions of elasticity we can 

calculate loads on the boundary corresponding to the given 

displacements. The resulting boundary conditions give the 

possibility to compare them with the result obtained by 

numerical solution of PIES. Numerical tests were performed 

for three areas shown in Figures 2-4. Obtained on the boundary 

solutions in comparison with the exact results with 2L  error 

norms are shown in Table I. 

Table. 1. 2L  error norms for three geometries and functions 

(17,18) 

Geometry 
Error norm 

2
L  

p
e | || | (17) 

p
e | || | (18) 

 

 
 

1
| || | pe =0.1715% 

2
| || | pe =0.1727%  

3
| || | pe =0.2336% 

1
| || | pe =0.1525% 

2
| || | pe =0.1594% 

3
| || | pe =0.3235% 

 

1
| || | pe =0.5553% 

2
| || | pe =0.5531% 

3
| || | pe =0.3318% 

1
| || | pe =0.2649% 

2
| || | pe =0.2883% 

3
| || | pe =0.5358% 

 

 
 

1
| || | pe =1.0487% 

2
| || | pe =0.8459% 

3
| || | pe =0.7775% 

1
| || | pe =0.1799% 

2
| || | pe =0.4189% 

3
| || | pe =0.5097% 

 

 An analysis of the results summarized in the table 

confirms the high accuracy of the solutions for all geometry 

variants modeled by surface patches. 

Int'l Conf. Scientific Computing |  CSC'12  | 171



8 Conclusions 

 In the paper triangular and rectangular surface patches for 

modeling various complex 3D regions are used. The proposed 

representation of the boundary seems to be a promising 

alternative to conventional mesh generation procedures known 

from FEM and BEM. These procedures, as we know, are based 

on dividing the physical domain into large number of finite or 

boundary elements. 

 Three different geometries modeled by various surfaces 

whose number is significantly less than the number of elements 

in FEM and BEM, have been considered. The reliability of the 

modeling technique in connection with PIES has been verified 

by analyzing boundary value problems defined over regions 

with different shapes. Obtained numerical results confirm its 

reliability. According to the authors, performed analysis shows 

advantages of PIES also in relation to linear elasticity 

problems. These advantages are related to the simplicity of 

modeling also complex shapes of linear elastic bodies. 

 Having validated the method on the basis of analytical 

solutions it is interesting to examine the effectiveness of PIES 

compared to classical FEM and BEM. This is the topic of 

another paper. 
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Abstract - Flow rate control is the uppermost concern for 

trochoid hydraulic pump.  Cavitation within the flow field of 

pump has the most influence on flow rate control reason at 

approximately 3500 ~ 4000 RPM high speed rotation of pump.   

In this paper, based on AMESim
®

 and SolidWorks
®

, we will 

present how to simulate cavitation by analyzing the control 

factors of trochoid pump; hydraulic pressure change of outlet, 

flow rate according to rotation speed of inner rotor, leakage 

through gap between outer rotor and inner rotor, and 

discharging angle of outlet.  The proposed methodology of 

cavitation simulation will enables field engineers to have 

access to the design of trochoid pump more easily and thereby 

to have more concrete control over the flow rate of pump by 

realizing its analysis model similar to its actual product model. 

Keywords: Trochoid Hydraulic Pump, Modeling, Cavitation, 

Back-flow, AMESim
®
, SolidWorks

®
. 

 

1 Introduction 

  Recently the role of transmission has been focused on 

according to the emphasis of driving performance, and the 

competitiveness of the transmission takes the largest part in 

the competition of automobiles together with engine.  It is 

essential to improve the lubrication system and its 

performance due to the increase in the role and performance 

level of transmission, and the interests on these issues have 

also been increased. A trochoid (hydraulic) pump has been 

largely used in the lubrication system. Because the trochoid 

pump shows a simple structure, easy control in the flow rate 

per one rotation and the flow rate, and an advantage in its 

miniaturizing, it is very adaptable for the engine and 

transmission of automobiles due to the low variance in its 

efficiency because of the relatively small movement between 

outer and inner rotors. 

 It is essential to improve the lubrication system and its 

performance due to the increase in the role and performance 

level of transmission, and the interests on these issues have 

also been increased. A trochoid hydraulic pump has been 

largely used in the lubrication system. Because the trochoid  

pump shows a simple structure, easy controls in the flow rate 

per one rotation and the flow rate, and an advantage in its 

miniaturizing, it is very adaptable for the engine and 

transmission of automobiles due to the low variance in its 

efficiency because of the relatively small movement between 

outer and inner rotors.  

 As shown in Fig. 1, the trochoid pump investigated in 

this paper represents an eccentricity in its rotation axis due to 

the structure of outer and inner rotors and that shows sliding 

contact (see Fig. 2 in detail). Also, it shows a difference in 

rotation speed as much as the difference in the number of 

teeth. While the rotors are rotated, the space generated by the 

contact between rotors is also rotated and generates an 

increase in volume. Then, it discharges a fluid to the outlet by 

absorbing a fluid from the inlet according to the increase or 

decrease in the volume. In addition, it prevents reverse flow 

(or back-flow) because the chamber between the inlet and the 

outlet is not connected. 

 
Fig. 1 Trochoid Hydraulic Pump 

 Machining error and operating condition can be 

enumerated as the reason which can degrade the efficiency of 

trochoid pump.  But cavitation within the flow field of pump 

can be placed as the most dominant reason during high speed 

rotation.   Such cavitation can cause noise and vibration by 

increasing pulsation as well as the falloff of flow rate 

efficiency.  Thus it is important to design the trochoid pump 

which can avoid the occurrence of cavitation in terms of the 

performance, endurance, noise and vibration of the pump.  

However it is well known that cavitation can inevitably occur 

at approximately 3500 ~ 4000 RPM (Revolution Per Minute) 

high-speed rotation speed of pump [1].  Therefore it is 

required to examine the phenomena of the cavitation factors 

Int'l Conf. Scientific Computing |  CSC'12  | 173



which have influence on the degradation of flow rate 

efficiency through cavitation simulation.  

 In previous papers including Yang et al.[1] and Nam et 

al. [2],  the simulation of trochoid pump has utilized a 

professional analysis program  or language such as CFD
®

 

(specifically CFX 
®
) or C-code (e.g. C++)  which is not an  

easy tool for a field engineer.    This software tool can realize 

mesh and then make a cavitaion model.  But the field 

engineer based on his experience has a hurdle in modifying 

the cavitation model according to the need of a customer.  In 

this paper, we will present how to simulate cavitation by 

using the most popular 3-dimensional (or 3D) modeling tool 

SolidWorks
®
 and a hydraulic analysis program AMESim

®
.  

This proposed methodology of cavitation simulation will be 

useful for fast modification of trochiod pump design. 

2 Trochoid Modeling using 

SolidWorks
®
 

 Figure 2 shows the rotor shape of pump based on 

trochoid profile.  The trochoid pump is a type of gear pump, 

which is considered as a positive displacement pump in the 

upper level. The positive displacement pump has constant 

dispensing flow rate according to the single rotation of shaft 

regardless of loading pressure. 

 

 
Fig. 2 Rotor shape of trochoid pump 

 

 Drawing of trochoid curve was suggested as various 

methods in many theses.  The mathematical model composed 

of Eqs. (1) and (2), which has been  mentioned  

representatively in  previous papers including Jang et al.[3], 

forms  basically-known trochoid curve condition: 

                        (1) 

  

  

  

                                (2) 

 

where Rr is the radius of rolling circle, N is the number of 

teeth of outer rotor,  and Rc is the radius of circle of trace of 

wheel, θ is rotation angle of basic circle, e is  eccentricity as 

shown in Fig. 3 (the drawing of trochoid curve SolidWorks
®
). 

 
Fig. 3 Trochoid Curve Profile 

 

   Figure 3 means that filed engineers who are familiar 

with SolidWorks
®  

can draw easily the trochoid model by 

using SolidWorks
®  

based on Eqs. (1) and (2) not by virtue of 

C-code which is difficult for the engineers. Specifically, using 

the motion analysis module of SolidWorks
®
, the rolling circle 

can be rotated based on the basic circle in order to generate 

trochoid curve as shown in Fig. 3. Only the basic condition, 

Rr > e, should be satisfied.  Next, when the circle of trace of 

wheel is made to be rotated according to the trochoid curve 

through the motion analysis module of SolidWorks
®
, the 

shape of inner rotor can be designed as shown in Fig. 4. 

 

 
Fig. 4 Generation of Inner Rotor Shape 
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3 Flow Field Area Modeling Using 

SolidWorks®  

  As shown in Eq. (3), the dispensing flow rate Qpump of 

the positive displacement pump can be obtained by using the 

change of flow volume displ per one rotation and the 

rotational angular speed pump
. Especially displ can be 

expressed by Eq. (4) because the thickness H of trochoid 

pump is constant.  In Eq. (4), Area denotes the crossectional 

area of flow rate while   indicates rotation angle. Now we 

need the data of area change according to rotation angle, i.e. 

d

dArea

 by using SolidWorks
®  

as a CAD (Computer Aided 

Design) tool. 

 

pumppump displQ                          (3) 











rad

m

d

dArea
H

d

dV
displ

3

   


            (4) 

 

  The data of area change ( dArea ) can be obtained by 

using angular velocity ratio of trochoid pump.  It can be 

performed by changing the area through the rotation of each 

rotor according to the rotation ratio of inner and outer rotors.  

The speed ratio can be determined by Eq. 5) according to the 

number of outer rotor teeth  (N): 

 

  
N

N

in

out 1





                               (5) 

 

where 
out  (

in )  denotes the angular velocity of outer 

(inner)  rotor. 

When the drawings of the inner and outer rotors are 

completed, flow field area modeling can be done through the 

element conversion technique of SolidWorks
®
 as shown in 

Fig. 5 where inlet and outlet are simplified.     In specific, the 

sketch of 3 parts, i.e., inner rotor, outer rotor and inlet/outlet, 

are first designated as ‘BLOCKs’ by using BLOCK technique 

of SolidWorks
®
.  Then the flow field area (to be explained 

later) can be modeled by performing the PROTRUSION 

BASE (similar to PAD technique of Solidworks
®
) technique 

of SolidWorks
®
.  Consequently 7 models of flow field area 

are designated as shown in Fig. 5. 

  Now, the area change of one flow field should be 

investigated according to Eq. (5) (in other words, according to 

the rotation of inner rotor BLOCK).   Specifically, while 

making inlet and outlet BLOCK fixed, the outer rotor BLOCK 

is rotated based on Eq. (5) as the inner rotor BLOCK is 

rotated, by using FORMULA EDIT technique of 

SolidWorks
®
. In every rotation, the area of one flow field can 

be changed in shape according to rotation angle of inner rotor 

as shown in Fig. 6.   Thus the area change of one flow field 

can be depicted as a graph of Fig. 7 which will be used later 

for the simulation of trochoid pump using AMESim
®
. 

 

 
Fig. 5 Flow field modeling using SolidWorks

®  
 

 

  
 

0 ° 30° 60° 

Fig. 6 Area change of one flow field according to rotation 

angle of inner rotor (shape) 

 

 
Fig. 7 Area change of one flow field according to rotation 

angle of inner rotor (graph) 

 

   In a similar manner to the method mentioned above, the 

area change of one flow field in inlet and outlet of trochoid 

pump (see Fig. 8) can be easily obtained in the graph of Fig. 9, 

which will be also used for cavitation simulation in AMESim
®
. 

 

 
Fig. 8 Inlet and outlet flow field modeling using SolidWorks

®
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Fig. 9 Area change for inlet and outlet flow fields 

 

 

4 Hydraulic Circuit For Trochoid 

Pump And Cavitation Simulation 

Using AMESim
®  

  The objective of hydraulic circuit modeling for trochoid 

pump using AMESim
®  

is to realize flow and simulate 

cavitation so as to control the flow rate control of trochoid 

pump.  In case of hydraulic circuit modeling of only one flow 

field for trochoid pump, the area change data of Fig. 7 and the 

thickness of rotor can be made equivalent with the piston 

model as shown in Fig. 10. 

 
Fig. 10 Hydraulic circuit modeling of only one flow field 

using AMESim
®  

   

   Hydraulic circuit modeling of trochoid pump is 

required to show the volume generated at the location of each 

particular angle when the inner rotor comes in contact with 

the outer rotor. This can be carried out at the location of each 

phase change, i.e., 360°/N.  Finally N models are generated 

similarly as Fig.10 and connected each other as shown in Fig. 

11.  

   The factors that can be simply controlled in real time 

through the formation of the AMESim
®  

hydraulic circuit of a 

trochoid pump include: the rotation speed of pump, the shape 

angle of inlet and outlet, gap between outer rotor and pump 

casing, and gap between inner rotor and outer rotor.  In 

cavitation simulation, these control factors are important for 

the flow rate control of trochoid pump.  Especially, from the 

viewpoint of a field engineer, AMESim
®
 is more uselful for 

this cavitation simulation, compared with a traditional 

analysis software of fluid mechanics, i.e., CFD
®
, because 

CFD
®  

needs the renewal of mesh modeling every time each 

control factor has a different value   while AMESim
®
 needs 

only the input values of control factors without any change of 

hydraulic circuit modeling. 

 
Fig.11   Connected N hydraulic circuit modeling of trochoid 

pump using AMESim
®

 

 

 As mentioned before, cavitation can inevitably occur at 

approximately 3500 ~ 4000 RPM high-speed rotation speed of 

pump. The cavitation usually results in increasing pulsation 

and thereby degrades flow rate efficiency.  This is why 

cavitation simulation is required for the control of flow rate.   

In this paper, the control factors of trochoid pump including 

the rotation speed of pump, the pressure difference at inlet and 

outlet, the shape angle of outlet, gap between outer rotor and 

pump casing, and gap between inner rotor and outer rotor are 

analyzed in the cavitation simulation through the connected N 

hydraulic circuit modeling of trochoid pump using AMESim
®
 

(see Fig. 11). 
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4.1 Hydraulic Pressure Change of Outlet 

  As the first result of cavitation simulation, Fig. 12 

shows the hydraulic pressure change of outlet at the 3000RPM 

rotation speed of inner rotor in a stabilized zone except a 

transient status of outlet pressure. The pressure change shows 

a cyclic (or periodic) characteristic at every 360°/N depending 

on the number of teeth for the outer rotor.  Since N is 7 in this 

paper, in a stabilized zone, the pressure change cycle is 

repeated seven times for one rotation of inner rotor as shown 

in Fig. 12.  This confirms the periodicity shown in the 

analyses using CFD
®
 (Won et al. [3] and Yang et al.[1].) 

 

 
Fig. 12 Hydraulic pressure change of outlet 

 

4.2 Flow rate according to Rotation Speed of Inner 

Rotor 

  Figure.13 shows the result of flow rate according to the 

rotation speed of inner rotor.   As shown in this figure, a 

theoretical flow rate ([2]) delineates linear profile according to 

the rotation speed of the rotor.   This means that the fluid of 

pump is filled 100% in the flow field without cavitation 

because the gap between the inner rotor and the outer rotor is 

not taken into consideration for theoretical study.  However, 

since cavitation has been considered in the simulation, it can 

be noticed that the flow rate decreases at more than 4000RPM. 

As stated in refs. [1] and [2], it is confirmed that as the 

rotation speed of pump increases, cavitation is generated in 

the flow field, which makes the flow rate decreased due to the 

leakage of fluid into the outlet. 

 

 
Fig. 13 Flow rate according to rotation speed of inner rotor 

 

4.3 Discharging Angle of Outlet 

  In cavitation, rise of pulsation is inevitable.  Moreover, 

in the high speed operation of trochoid pump, inlet flow 

resistance is enlarged so that cavitation phenomena itself can 

be increased.  This means that the quantity of fluid to be 

transported in an isolated flow field can be decreased due to 

the increase of cavitation which has been induced by the 

decrease of the hydraulic pressure for the flow field.  Thus 

back-flow into the isolated flow field can be resulted in at the 

position shown in Fig. 14. When back-flow to the isolated 

flow field is discharged to the outlet again by the rotation of 

rotor, it can result in higher pulsation by increasing the 

discharge pressure of outlet.    

 

 
Fig. 14 Back-flow due to cavitation 

 

  The flow rate of back-flow is observed through Fig. 15 

(a). In one flow field, the out-flow shows under 0 due to 

momentarily deterioration of pressure when the isolated flow 

field (see Fig. 14) meet the outlet position.  Thus this showed 

the back-flow phenomenon. As shown in Fig.15 (b), when it 

is applied to all flow fields (i.e., chambers), it can be seen that 

this back-flow has occurred so as to have a significant effects 

on flow rate. 

  To cope with this back-flow problem, the method to 

delay the discharging instant of outlet (in other words, the 

method to decrease the discharging angle of outlet) has been 

utilized in ref.  [6,7].   In this paper, this method  has been also 

adopted in order to prevent the back-flow phenomenon 

induced by the isolated flow field.   

 

 
(a) Back-flow of one flow field 
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(b) Back of all flow fields  

 

Fig. 15 Flow rate of back-flow 

 

   As shown in Fig. 16, the discharge instant of the outlet 

position has been delayed so that the compression time of 

isolated flow field has been increased.  As a result, the 

pressure difference between the isolated flow field and the 

outlet position has been decreased so that the back-flow 

problem has been suppressed.   This can be verified in Fig. 17 

as the discharging angle of outlet is delayed at intervals of 0°, 

1°, 2°, 3°, 4°, and 5°.  As shown in this figure, the effect of 

back-flow has not occurred for 4° above even though it has 

occurred foe 4° below.  Moreover the flow rate has been 

increased to small extent for 4° above.  Unfortunately, Fig. 18 

shows that the pressure peak at the discharging instant has 

been observed so that the leakage through gap between outer 

rotor and inner rotor should be inevitable. 

 
Fig. 16 Outlet configuration when discharging angle is 

decreased by 5° 

 

 
Fig. 17 Flow rate according to discharging angle of outlet 

 

  As mentioned in Nam et al. [2], it can be stated that the 

reduction of back-flow can decrease the loss of flow rate more 

effectively than the leakage between the gap. Consequently to 

decrease the discharging angle to some extent is to prevent the 

degradation of flow rate.   Further study on the decreasing 

extent of discharging angle will be left for the flow rate 

control in detail. 

 

 
Fig. 18 Pressure distribution of outlet when the discharging 

time is delayed 

 

 

5 Conclusions 

  The purpose of this paper aims at enabling field 

engineers to have access to the design of trochoid pump more 

easily and thereby to have more concrete control over the flow 

rate of pump by realizing its analysis model similar to its 

actual product model.  For this purpose, first, we have used 

AMESim
®
 which gives field engineers easy tool for analyzing 

the cavitation factors of trochoid pump including hydraulic 

pressure change of outlet, flow rate according to rotation 

speed of inner rotor, leakage through gap between outer rotor 

and inner rotor, and discharging angle of outlet, rather than a 

professional hydraulic analysis program or language such as 

CFD 
®
.  

 In this paper, based on AMESim
®  

with
 
SolidWorks

®
, we 

have presented how to simulate cavitation by analyzing the 

control factors of trochoid pump which have influence on the 

degradation of flow rate efficiency.  This proposed 

methodology of cavitation simulation will be useful for flow 

rate control through the fast modification of trochiod pump 

design.  In further research, we expect that the flow rate over 

which a designer wants to have control would be optimized 

rapidly according to the change of environmental condition 

(e.g. the kind of hydraulic fluid, the application area of 

trochiod pump such as transmission or engine, etc.) by 

applying the proposed cavitation simulation methodology to 

the flow rate control using with MATLAB
®
 or LabVIEW

®
 at 

real time. 
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Abstract 

 
Producing biohydrogen on a commercial scale will likely require the genetic re-engineering of natural 

hydrogen-producing organisms.  Kinetic modeling of hydrogen-producing metabolic pathways can cost-

effectively help to characterize systemic (e.g., mass/energy/charge conservation) constraints in these 

organisms. In vitro kinetic studies suggest that the activity of the hydrogenases in several photolytic 

biohydrogen producers (PBPs) could be increased to as much as four times their nominal in vivo rate. It is 

much less clear, however, whether the in vitro activity maximum could be realized in vivo.  Here I use an S-

system photosynthesis-based PBP (PS-PBP) simulator  to survey the sensitivity of  C. reinhardtii to 

variation in system parameters.  The analysis strongly suggests that the H2 production efficiency of the alga 

cannot be increased by more than a factor of two through single-enzyme genetic modifications. 

 

Keywords:   biohydrogen, S-system, metabolic modeling 

 

 

1.0  Introduction 
 

Kinetic modeling of hydrogen-producing 

metabolic pathways can cost-effectively 

help to characterize systemic (e.g., 

mass/energy conservation) sensitivities in 

photolytic biohydrogen producers, even if 

all the details of hydrogen-gas producing 

metabolic pathways are not known. Among 

the more promising candidates for 

hydrogen-production optimization are 

photolytic biohydrogen producers (PBPs) 

such as the microalga Chlamydomonas 

reinhardtii ([7], [8]). It is generally held that 

the hydrogen-producing pathways in many 

PBPs incorporate segments of the PS-I and 

PS-II photosynthetic pathways ([6],[13]), 

and electrons from the anaerobic 

degradation of starch, to help accumulate the 

electron free energy required to allow a 

hydrogenase to convert protons to H2 ([14]). 

In vitro kinetic studies suggest that the 

activity of hydrogenases  isolated from 

several PBPs could be increased to as much 

as four times their nominal in vivo rate ([1]). 

Here I use bioh2gen ([15]), an S-system 

([2], [11]) PS-PBP kinetics simulator, to 

argue that within the context of the model, 

the H2 production efficiency of C. 

reinhardtii cannot be increased by more than 

a factor of two through single-enzyme 

genetic modifications

. 
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2.0   S-systems 

 
An S-system ([11],[12]) is a power-law-

oriented, finite-difference system of 

ordinary differential equations (SODE) each 

of whose dependent variables Xi is 

described by a kinetic equation of the form    

________________________________________________________________________ 

 

                                   
                                                                                          Eq. 2.1 
 

 

where  

 

 the left-hand side of Eq. 2.1 is the first derivative of Xi with respect to time 

 

 i , j = 1, 2, 3, ..., N 

 

 {Xi}  is the set of real-valued dependent variables of the system   

     

 for any given Xi, only those independent and dependent variables Xj that have an action 

on Xi are included as factors in the products on the right-hand-side (RHS) of Eq. 2.1.  

The factors in the first term on the RHS  of Eq. 2.1 correspond to just those entities that 

increase or inhibit the production of Xi; the factors in the second term of the RHS of Eq. 

2.1 correspond to just those entities that contribute to, or inhibit, the consumption of Xi. 

 

 i , i > 0 

 

 gi_j, hi_j are real-valued  

 

______________________________________________________________________________ 

 

There is a natural mapping from a 

biochemical map,  K, to equations that have 

the  form of Eq. 2.1.   In particular, let K = 

<{Xk}, E>, E  {Xk}   {Xk},  k = 1, 2, …, 

N, be a directed graph in which each distinct 

Xi   {Xk} corresponds to a distinct variable 

(e.g., the concentration of  a distinct 

chemical species in the map), and w  E if  

and only if w = (Xm, Xn) is a directed edge 

in K , m  n = 1, 2, ..., N.    

 

i  and i are called  generalized rate 

constants (or just rate constants) for Xi, and 

gi_j and hi_j are called the generalized  

kinetic orders (or just kinetic orders) for Xi, 

on analogy with standard chemical kinetic  

 

 

 

theory.   The subexpression i_j indicates the 

action of Xj on Xi. 

 

An S-system has several desirable features, 

including the fact that it is fully 

characterized by its rate constants and 

kinetic orders, allowing us to 

comprehensively survey the system's 

(logarithmic gain) sensitivity to its 

parameters.  Any SODE can be recast 

([10],[11]) as an S-system without loss of 

accuracy or precision; the recasting, 

however, is not in general unique.  In 

addition to biochemical systems, S-systems 

have been successfully used to model 
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epidemics, forest diversification, and world 

dynamics. 

 

Performing (rate-constant, and kinetic-order)  

parameter logarithmic gain (sensitivity) 

surveys on S-systems is straightforward 

([11], Chapter 7); performing parameter gain 

surveys on a SODE which is not an S-

system, in general, is ill-defined. 

 

3.0 A network model of 

hydrogen production in PS-PBPs 

 

I will call bioH2 producers that exploit 

portions of the PSII or PSI pathways 

“photosynthetic” PBPs (PS-PBPs).  The 

schematized PS-PBP model used in the 

present study is shown in Figure 1 and is 

similar to [3], [4], [5], [9] and [14].  It 

represents a consensus working hypothesis 

held by the biohydrogen research 

community about the high-level metabolics 

of hydrogen production in PS-PBPs ([7]).   

 

________________________________________________________________________ 

 

 
 

Figure 1.  Schematized hydrogen producing metabolic network for PS-PBPs. Rectangles 

represent sources or sinks of physical quantities of interest (such as mass,  concentration, or 

photon count) named in those rectangles, ellipses represent transforms (which may be 

complexes of reactions not individually modeled here), and an arrow from an ellipse to a 

rectangle  means that the transform named in the ellipse affects the quantity/concentration 

of the chemical species named in the rectangle.  Legend:  PSI = photosynthesis stage I; PSII 

= photosynthesis stage II;  SO4 = sulfate; hv-I = photons incident to PSI; hv-II = photons 

incident to photosynthesis PSII; ADP = adenosine diphosphate; ATP = adenosine 

triphosphate; PO4 = inorganic phosphate; O2 = oxygen gas; ATPase = adenosine 
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triphosphatase; e from starch = electrons from anaerobic starch degradation; H2ase = 

hydrogenase; ETC = electron transport chain; e from PSII = electrons from PSII; e from 

PSI = electrons from PSI; Fdred = ferredoxin, reduced; Fdox = ferredoxin, oxidized; H2 = 

hydrogen gas; H+ from PSII = protons from PSII;  H+ from ATP = protons from ATPase.  

Not all interactions exist in all PS-PBP species. 

 

_____________________________________________________________ 
 

In sulfur-deprived C. reinhardtii, oxygen 

gas production under the experimental 

conditions of [7] (1-L, 6 x 10
6
 cell/mL 

preparation) is about 1 mmol/h  after 

beginning of sulfur deprivation, and 

spontaneously ceases ~10 h thereafter.  30 - 

50 h after beginning of sulfur deprivation, 

the algae begins releasing hydrogen at a rate 

of ~0.17 millimole H2/h (1-L, 6 x 10
6
 

cell/mL preparation) after beginning of 

sulfur deprivation.  ~100 h after beginning 

of sulfur deprivation,  hydrogen production 

ceases.   These trajectories  provide strong 

constraints on any model of bioH2 

production by C. reinhardtii. 

 

 

The S-system equations used in this study 

are shown in Figure 2. 

 

______________________________________________________________________________ 

 
// protons from PSII 

X2' = a2 X1^g2_1 X3^g2_3 X5^g2_5  -  b2 X10^h2_8 X2^h2_2 X5^h2_5 

 

// e from PSII 

X4' = a4 X1^g4_1 X3^g4_3 X5^g4_5 -  b4 X16^h4_16  X4^h4_4 

 

//  protons from ATPase 

X8' = a8 X6^g8_6 X7^g8_7 X2^g8_2 -  b8 X8^h8_8 X24^h8_24   

 

// other ATP consumers 

X9' = a9 X10^g9_10 -  b9 X9^h9_9 

 

// ATP 

X10' = a10 X2^g10_2 X7^g10_7 X6^g10_6 -  b10 X13^h10_13 X9^h10_9 X10^h10_10 

 

// starch 

X13' = a13 X12^g13_12 X11^g13_11 X10^g13_10  -  b13 X14^h13_14 X15^h13_15 X13^h13_13 

 

// e from starch 

X14' = a14 X13^g14_13 -  b14  X16^h14_16 X14^h14_14 

 

// pyruvate 

X15' = a15 X13^g15_13 -  b15 X25^h15_25 X18^h15_18 X17^h15_17 X15^h15_15 

 

// e from ETC 

X16' = a16 X14^g16_14 X4^g16_4 -  b16 X20^h16_20 X16^h16_16 

 

// formate 

X17' = a17 X15^g17_15  -  b17 X17^h17_17 

 

// acetate 

X18'  =  a18 X15^g18_15 -  b18 X15^h18_25 X18^h18_18 

 

// e from PSI 

X20' = a20 X16^g20_16  -  b20 X22^h20_22 X20^h20_20 

 

// Fdox 

X21' = a21 X22^g21_22 -  b21 X21^h21_21 

 

// Fdred 

// X22' = a22 X20^g22_20 -  b22 X21^g22_21 X23^g22_23 X22^h22_22 
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// e from Fdred 

X23' =  a23 X22^g23_22 -  b23 X24^h23_24 X23^h23_23 

 

// H2 gas 

X24'  =  a24 X23^g24_23 X8^g24_8 -  b24 X24^h24_24 

 

// Intracellular CO2 

X25' = a25 X15^g25_15 X18^g25_18 X26^g25_26 -  b25 X25^h25_25 

 

// oxygen 

X26' =  a26 X1^g26_1 X3^g26_3 X5^g26_5 -  b26 X26^h26_26 X25^h26_25 X5^h26_5 

 

 

 

Figure 2.  S-system equations for the dependent variables used in this study.  “^” is 

exponentiation.  “>>” means “expression continuation”.  “’” means “first derivative with 

respect to time”.  Note that the equation for X2' has light as a consumption factor because 

activity decreases as light intensity increases above an optimal value. 

______________________________________________________________________________ 

 
 

Table 1 shows the values of the independent variables of the system. 

 

______________________________________________________________________________ 

 

Table 1.  Values of the independent variables of the system. 
 

Independent variable Value (relative units) 

X1 (water) 1 

X3 (SO4) 0.3 

X5 (hv-II) 2.363 

X6 (ADP) 100 

X7 (PO4) 100 

X11 (Extracellular CO2) 3e-3 

X12 (NADPH) 1e-6 

X19 (hv-I) 2.363 

 

______________________________________________________________________________ 

 

Much of the system in Figure 1 is based on PSII and PSI kinetics.  Based on PSII/PSI kinetic data 

in [16], all generalized rate constants were set to 0.1, except a2 (= 3e-4), b2 (= 1e-4), a4 (=0.01), 

a24 (=1e-4), b24 (= 0.001), a26 (=10), and b26 (=1000); these exceptions were based on  in vitro 

experimental values obtained in [7].  All generalized kinetic orders were set to 1. 

 

bioh2gen and  the model used in [14] differ in a few ways.  First, following the conventions in 

[11] for modeling metabolic systems in the absence of gene-circuit dynamics, no enzyme is an 

explicit variable of bioh2gen ;  several enzymes are variables in [14].  Second, bioh2gen employs  

more rate constants derived from experiment than does the model used in [14].  Third, all the 

kinetic orders in bioh2gen were set to 1; two kinetic orders were set to 2 in [14].  Fourth, 

bioh2gen study models the photon inputs to each of PSII and PSI individually; the model in [14] 

represents only the photon inputs to PSII. 

 

The H2 and O2 production rates of bioh2gen were compared to [7], and the logarithmic gains 

([11], Chapter 7) of the H2 production rates were computed as a function of the generalized rate 

constants and kinetic orders in the model.  Gains whose absolute values were less than 1 were 

excluded from consideration. 

184 Int'l Conf. Scientific Computing |  CSC'12  |



 

   

4.0 Results and discussion 

 
The generalized rate constants in the model 

described in Section 3.0 exhibited no 

logarithmic gain  ≥  1.  Figure 4 shows the 

logarithmic gain of H2 gas production in the 

model to kinetic orders, if the sensitivity is  

≥  1.  Changing generalized  kinetic orders 

typically requires changing the genetics of 

enzymes associated with those kinetic 

orders.  Logarithmic gains > ~10 can be 

opportunities for single-enzyme genetic 

modification; gains less than  ~10 typically 

are not ([17]). 

 

______________________________________________________________________________ 

 

 

 
 

 
Figure 4.  Logarithmic gain of H2 production as a function of kinetic order.  (The kinetic 

orders are  shown with PLAS internal names.  In each of the following, the PLAS internal 

name appears on the left-hand side of the equality; the name shown in Figure 1, on the 

right-hand-side:  h(1,5) = h2_10;  h(3,3) = h8_8;  g(15,3) = g24_8.  The gains suggest that 

([11], p. 226) H2 production efficiency cannot be increased by more than a factor of two 

through single-enzyme genetic modification. 

 

______________________________________________________________________________ 

 

 

Figure 4 strongly suggests that, within the 

model described in Section 3.0, the H2 

production efficiency of C. reinhardtii 

cannot be increased by more than a factor of 

two  ([11], p. 226) through single-enzyme 

genetic modification.  This is consistent with  

Figure 1:  restrictions on the photolytically 

generated protons from  PSII, and the proton 

turnover rate of ATPase, constrain the 

throughput of protons available to produce 

H2.    These results are consistent with the  

implications of [14]. 
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Abstract - This study deals with the stochastic dynamic 

behaviors of nonlinear vibration of the fluid-conveying 
double-walled carbon nanotubes (DWCNTs) by considering 
the effects of the geometric nonlinearity and the nonlinearity 
of van der Waals (vdW) force. Besides, the small scale effects 
of the nonlinear vibration of the DWCNTs are investigated by 
using the theory of nonlocal elasticity. Some statistical 
dynamic response of the DWCNTs such as the mean values 
and standard deviations of the amplitude of the displacement 
are computed, meanwhile the effects of the flow velocity and 
small scale coefficients on the statistical dynamic response of 
the DWCNTs are investigated. It is concluded that the mean 
value and standard deviation of the amplitude of the 
displacement increase nonlinearly with the increase of the 
frequencies and change slightly as the flow velocity increases. 
Furthermore, small scale coefficients have significant 
influence on the mean value and standard deviation of the 
amplitude of the DWCNTs. 

Keywords: Nonlinear vibration; Double-walled carbon 
nanotubes; Stochastic dynamic response; Galerkin’s method; 
Small scale effect; Nonlocal elasticity theory.  

1 Introduction 

  Since the landmark paper published by Iijima [1], 
carbon nanotubes (CNTs) have attracted worldwide attention 
due to their potential use in the fields of chemistry, physics, 
nano-engineering, electrical engineering, materials science, 
reinforced composite structures and construction engineering. 
Carbon nanotubes (CNTs) are used for a variety of 
technological and biomedical applications including 
nanocontainers for gas storage and nanopipes conveying 
fluids [2-8]. Some important applications of carbon nanotubes 
(CNTs) are such as nanotubes conveying fluids [3,7-8], 
different types of fluid flows like water [9], dynamic flow of 
methane, ethane and ethylene molecules [10] and the diffusive 
transport of light gases [11] had been reported, and the effects 
of these fluids on the mechanical properties of CNTs had been 
investigated. Generally there are two methods widely adopted 
to study the CNTs conveying fluids. One is the molecular 
dynamics simulations (MDS) [10-11], however, MDS needs a 
tremendous amount of computational time and effort so that 
only a very small system can be tackled. The other is the 
continuum mechanics model. Natsuki et al. [12] adopted a 
simplified Flügge shell model to investigate the wave 

propagation of single- and double-walled CNTs conveying 
fluid. The single-elastic beam model [13-14] and the multiple-
elastic beam model [15-19] were also broadly adopted to 
study the dynamic behaviors of fluid-conveying single-walled 
carbon nanotubes (SWCNTs) and multi-walled carbon 
nanotubes (MWCNTs). The vibration frequencies of the 
linear system and the system’s stability related to the internal 
moving fluid were investigated. Moreover, the nonlocal 
elasticity theory was incorporated into the elastic beam model 
to study the small scale effect on the dynamics of SWCNT 
conveying fluid [20]. Chang and Liu [21-22] studied small 
scale effects on the flow-induced instability of double-walled 
carbon nanotubes (DWCNTs) by using the nonlocal elasticity 
theory. More recently, Chang [23-24] investigated the 
thermal-mechanical vibration and instability of fluid-
conveying single-walled carbon nanotubes (SWCNTs) based 
on nonlocal elasticity theory. Generally speaking, the beam 
models mentioned above are linear; however, the vdW forces 
in the interlay space of MWCNTs are essentially nonlinear. 
Furthermore, the slender ratios are normally large if the beam 
models are adopted, that is, the large deformation will occur. 
Therefore, it is quite essential to consider two types of 
nonlinear factors, namely, the geometric nonlinearity and the 
nonlinearity of vdW force in investigating the dynamic 
behaviors of fluid-conveying MWCNTs. Kuang et al. [25] 
investigated the dynamic behaviors of double-walled carbon 
nanotubes (DWCNTs) conveying fluid by considering two 
types of nonlinearities mentioned above. Salvetat et al. [26] 
measured the flexural Young’s modulus and shear modulus 
using AFM test on clamped–clamped nanoropes, getting 
values with 50% of error. Information related to statistical 
distributions of experimental data is also rare, and the 
important study from Krishnan et al. [27] provides one of the 
few examples available of histogram distribution of the 
flexural Young’s modulus derived from 27 CNTs. The 
Young’s modulus was estimated observing free-standing 
vibrations at room temperature using transmission electro-
microscope (TEM), with a mean value of 1.3 TPa -
0.4 TPa/+0.6 TPa. Pronouncedly, in [28], stochastically 
averaged probability amplitude for the vibration modes is 
computed to obtain the rms vibration profile along the length 
of the tubes. Uncertainty is also associated to the equivalent 
atomistic-continuum models adopted extensively in particular 
by the engineering and materials science communities. Hence, 
to be realistic, the Young’s modulus of elasticity of carbon 
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nanotube (CNTs) should be considered as stochastic with 
respect to the position to actually describe the random 
property of the CNTs under certain conditions. In the present 
study, we investigate the stochastic dynamic behaviors of 
nonlinear vibration of the double-walled carbon nanotubes 
(DWCNTs) conveying fluid by considering the effects of the 
geometric nonlinearity and the nonlinearity of van der Waals 
(vdW) force. In addition, the small scale effects on the 
nonlinear vibration of the DWCNTs are studied by using the 
theory of nonlocal elasticity. Based on the Hamilton’s 
principle, the nonlinear governing equations of the fluid-
conveying double-walled carbon nanotubes are formulated. 
The Young’s modulus of elasticity of the DWCNTs is 
considered as stochastic with respect to the position to 
actually characterize the random material properties of the 
DWCNTs. The effects of the flow velocity and small scale 
coefficients on the statistical dynamic response of the 
DWCNTs are investigated. 

2 Nonlinear beam model for  

fluid-conveying DWCNTs  
 

 
  

Fig. 1.  Double-walled carbon nanotubes conveying fluid. 

 

 In Fig. 1, the double-walled carbon nanotubes 
(DWCNTs) is modeled as a double-tube pipe which is 
composed of the inner tube of radius 1R  and the outer tube of 

radius 2R . The thickness of each tube is h , the length is L , 

and Young’s modulus of elasticity is E . It is noted that the 
Young’s modulus of elasticity E  is assumed as stochastic 
with respect to the position to actually describe the random 
material property of the DWCNTs.  The internal fluid is 
assumed to flow steadily through the inner tube with a 
constant velocity U . Besides, the boundary conditions of the 
DWCNTs are assumed as simply-supported at both ends. 
Based on the theory of Euler–Bernoulli beam and a nonlinear 
strain–displacement relationship of Von Karman type, the 
displacement field and strain–displacement relation can be 
written as follows: 
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where x is the axial coordinate, t is time, iu  and iw  denote 
the total displacements of the ith tube along the x coordinate 
directions, ui and wi define the axial and transverse 
displacements of the ith tube on the neutral axis, i the 
corresponding total strain, and the subscript i = 1 and i = 2. 
Notice that tube 1 is the inner tube while tube 2 is the outer 
tube. 
Based on Eq. (1), the potential energy V stored in a 
DWCNTs and the virtual kinetic energy T in the DWCNTs as 
well as the fluid inside the DWCNTs can be individually 
determined. 
Based on Hamilton’s principle, the variational form of the 
equations of motion for the DWCNTs can be given by 
 

 1

0

0
t

t
V T dt                                                      (2) 

 
where   is the virtual work due to the vdW interaction and 
the interaction between tube 1 and the flowing fluid. 

Based on Eq. (2) and the formulations derived by Chang [22, 
24], the coupled nonlinear governing equations for the free 
vibration of DWCNTs conveying fluid based on nonlocal 
elasticity theory are given as follows: 
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It is noted that the scale 0e a  in the Eq. (3-4) will lead to 
small scale effect on the response of structures in nano-size. 
In Eqs. (3-4), it is assumed that the small scale effects on the 
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nonlinear terms due to geometrical nonlinearity are neglected 
since they are normally small compared with those on the 
linear terms. 
 

3 Stochastic dynamic analysis of  

nonlinear vibration of DWCNTs   
In the present study, the Young’s modulus of elasticity 

E(x) is considered as stochastic with respect to the position to 
actually characterize the random properties of the DWCNTs 
and it is assumed as Gaussian distributed. Applying the 
perturbation technique on the Young’s modulus of elasticity 
E(x), the following equations can be written: 

 
0( ) ( ) ( )IE x E x E x                                             (5) 

 
where )(0 xE  is the mean value of the Young’s modulus of 
elasticity E(x),   is a zero-mean small parameter, and 

( )IE x is the first variation of the Young’s modulus of 

elasticity E(x). Similarly, the displacement )(),( 21 xwxw of 
the DWCNTs can be written as follows: 
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where 0 0

1 2( ), ( )w x w x  are the mean values of displacement of 
the inner and outer tubes separately. 
Substituting Eqs. (5-7) into Eqs. (3-4), we can obtain the 
following coupled equations based on the zero order of  : 
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First of all, we have to solve 0 0

1 2,w w  in Eqs. (8-9). By 
applying the harmonic balance method and Galerkin’s method 
and substituting 0

1( )sin( )  ( 1, 2)i iw A x t i     into Eqs. 
(8-9), after some tedious derivations the relationship between 

the amplitude iA  and the resonant frequency ω of the lowest-

order mode 1( )x  can be achieved as follows 
 

3 3
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3 3
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where iG are constants which can be determined by 
performing the integration. 
After solving coupled Eqs. (8-9) for the amplitudes 1 2,A A , 

we can obtain 0 0
1 2,w w  readily. Substituting 0 0

1 2,w w  into 
nonlinear coupled differential equations based on the first 
order of  , and adopting the same technique for solving 

0 0
1 2,w w , finally we can obtain 1 2,I Iw w  without any 

difficulties except the derivations are somewhat lengthy. 
 
4 Numerical examples and discussion  
 

In the numerical computations, the simply supported 
boundary condition is considered for the DWCNTs conveying 
fluid. The inner and the outer tubes are assumed to have the 
same Young’s modulus, the same thickness and the same 
mass density. The numerical values of the parameters are 
adopted as follows: 
Mean value of Young’s modulus E=1 Tpa, tube thickness 
h=0.34 nm, mass density 3/2300 mKg , the mass 

density of water flow is 3/1000 mKgf  , the inner 

radius nmR 7.01   and the outer radius nmR 04.12   and 

mean square values of   is assumed as .01.02 



E  The 

velocity of the fluid is assumed as U=400 m/sec unless it is 
specified otherwise. First of all, we examine the effect of the 
nonlinearity on the amplitude-frequency properties of the 
nonlinear vibration. The relations of the mean value of 
amplitude versus frequency are depicted in Fig. 2. It can be 
seen that the mean value of the amplitude increases with the 
increase of the frequencies. It is completely reasonable that 
the relation between the mean value of the amplitude and the 
frequency is nonlinear; in addition, the mean value of the 
amplitude of the outer tube is larger than that of the inner tube. 
Furthermore, it is noted that the mean value of the amplitude 
gets smaller as the small scale coefficient 0e a increases for 
the fixed frequency. In Fig. 3, the standard deviation of the 
amplitude is plotted with respect to the frequency. As it can 
be found from the figure that the standard deviation of the 
amplitude increases nonlinearly with the increase of the 
frequencies, and it is noted that the standard deviation of the 
amplitude of the outer tube is larger than that of the inner tube. 
In Fig. 4, the coefficient of variation (COV) of the amplitude 
is depicted with respect to the frequency. It is noticed that the 
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coefficient of variation of the amplitude of the inner tube is 
around 0.10, however, the coefficient of variation of the 
amplitude of the outer tube is around 0.12. Finally, Fig. 5 
presents the coefficient of variation of amplitude versus 
frequency with 0 / 0.1e a L   for different values of flow 
velocity. It is found that the coefficient of variation of 
amplitude fluctuates between 0.10 and 0.12 and no specific 
relation between COV and flow velocity can be established 
despite they are correlated. Therefore, based on the results 
from Figs. 2-5, it can be concluded that the small scale 
coefficient has significant influence on the mean value, 
standard deviation and coefficient of variation of the 
amplitude of the DWCNTs, however, the flow velocity has 
only a little effect on the stastical dynamic response of the 
DWCNTs. 
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Fig. 2.  Mean value of amplitude versus frequency for  

different values of 0 /e a L . 

3.55 3.56 3.57 3.58 3.59 3.6 3.61 3.62 3.63 3.64 3.65

x 10
10

0

0.1

0.2

0.3

0.4

0.5

0.6

Frequency (Hz)

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 a

m
pl

itu
de

 (
nm

)

 

 

SD of A
1
, e

0
a/L=0.0

SD of A
2
, e

0
a/L=0.0

SD of A
1
, e

0
a/L=0.1

SD of A
2
, e

0
a/L=0.1

SD of A
1
, e

0
a/L=0.2

SD of A
2
, e

0
a/L=0.2

 
Fig. 3.  Standard deviation of amplitude versus frequency  

for different values of 0 /e a L . 
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Fig. 4. Coefficient of variation of amplitude versus 

frequency for different values of 0 /e a L . 
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Fig. 5. Coefficient of variation of amplitude versus 

frequency with 0 / 0.1e a L   for different 

values of flow velocity. 
 

5 Conclusions 

     In the present study, we investigate the stochastic 
dynamic behaviors of nonlinear vibration of the double-
walled carbon nanotubes (DWCNTs) conveying fluid by 
considering the effects of the geometric nonlinearity and the 
nonlinearity of van der Waals (vdW) force. In addition, the 
small scale effects of the nonlinear vibration of the DWCNTs 
are studied by using the theory of nonlocal elasticity. Based 
on the Hamilton’s principle, the nonlinear governing 
equations of the fluid-conveying double-walled carbon 
nanotubes are formulated. The Young’s modulus of elasticity 
of the DWCNTs is considered as stochastic with respect to the 
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position to actually characterize the random material 
properties of the DWCNTs. By using the perturbation 
technique, the nonlinear governing equations of the fluid-
conveying double-walled carbon nanotubes can be 
decomposed into two sets of nonlinear differential equations 
involving the mean value of the displacement and the first 
variation of the displacement separately. Then the harmonic 
balance method and Galerkin’s method are adopted to solve 
the nonlinear differential equations successively. Some 
statistical dynamic response of the DWCNTs such as the 
mean values and standard deviations of the amplitude of the 
displacement are calculated, meanwhile the effects of the flow 
velocity and nonlocal scale coefficients on the statistical 
dynamic response of the DWCNTs are investigated. It can be 
concluded that the mean value and standard deviation of the 
amplitude of the displacement increase nonlinearly with the 
increase of the frequencies. Besides, these stochastic dynamic 
responses change slightly as the flow velocity increases, 
furthermore, they are smaller as the small scale coefficients 
get larger. However, as the values of flow velocity or small 
scale coefficients increase, the coefficients of variation (COV) 
of the amplitude of the displacement remain almost constant 
and stay within certain range with respect to the frequency. It 
is noted that the computed stochastic dynamic response plays 
an important role in estimating the structural reliability of the 
DWCNTs. 
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Abstract - Using an eddy viscosity turbulence model, fully-

developed turbulent MHD pipe flow was simulated. 

Uncertainty was approximated through grid-independence 

and model validation. Effect of Reynolds and Hartmann 

numbers on flow characteristics was investigated. Typical 

characteristics of flow structure in MHD flow were observed, 

including evolution of the velocity profiles with the magnetic 

field strength and formation of the M-shaped velocity 

distribution. The core region was shown to be increasingly 

retarded with increasing Lorentz force leading to the 

formation of side layers. Wall friction was shown to increase 

with increasing Hartmann number. The effect of Hartmann 

number was found to diminish with increasing Reynolds 

number. 

Keywords: Turbulence, Magneto-Hydrodynamics, Hartmann 

number, Lorentz force 

Nomenclature 

B


   magnetic field, T 

Bo   magnetic field magnitude, T 

DNS  direct numerical simulation 

E    electric field, N/C 

J    electric current density, A/m
2
 

MHD  magnetohydrodynamic 

u    average velocity, m/s 

p    pressure, Pa 

ro    pipe radius, m 

r    radial distance, m 

RANS  Reynolds averaged Navier Stokes 

x, y   coordinates, m                                                                                                                                                                               

Non-dimensional Parameters 

Re   Reynolds number        /uD  

R    Modified Reynolds number   HaRe/  

Ha   Hartmann Number       //BD  

N    Stuart number           Re/2Ha  

Greek Symbols 

ρ   fluid density, Kg/m
3
 

μ   fluid dynamic viscosity Kg /(m s) 

ϕ   electric potential, volt 

  fluid electric conductivity  (ohm
-1

/m) 

τ   shear stress (N/m
2
) 

1 Introduction 

  One of the techniques for controlling turbulent boundary 

layers consists of acting on the flow by means of 

electromagnetic force (Lorentz force). The technique is 

relatively old and traces its origin at least in the sixties, Gold 

[1], Shercliff [2], and Moffat [3]. Applications of MHD flow 

include heat transfer enhancement, drag reduction, power 

generation, and fusion reactors. A different class of 

applications is found in blood flow, micro pumps, porous 

media, chemical reactions, and material production. A 

relatively recent review on fusion reactors and MHD flow is 

found in Moreley [4]. 

Due to fundamental and practical importance, effect of MHD 

on turbulence has drawn special attention. Moffatt [3] was the 

first to show analytically that turbulent velocity fluctuations 

can be suppressed by application of a uniform magnetic field. 

Fraim and Heiser [5] investigated the effect of a strong 

longitudinal magnetic field on the turbulent flow of mercury 

in a circular tube. Depending on the intensity of the applied 

field, it was reported that the magnetic field had an important 

effect on the generation of turbulence, as well as damping of 

already existing turbulence. Early experiments include the 

work of Henoch and Stace [6] where it was shown that an 

MHD force, when applied to an electroconducting fluid and 

acting in a streamwise direction, can generate a near-wall jet, 

decreasing the boundary layer thickness and suppressing the 

intensity of the turbulent fluctuations across the boundary 

layer. At very high interactions, the force causes an increase 

in mean wall shear and turbulence. 

Berger et al. [7] investigated the effect of MHD on turbulent 

saltwater channel flow. It was shown that skin-friction drag 

can be reduced by approximately 40% if a temporally 

oscillating spanwise Lorentz force is applied. However, the 

power to generate the required Lorentz force is an order of 
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magnitude larger than the power saved due to the reduced 

drag.  

More recently, A DNS and k-ε model simulation of MHD 

flow was carried out by Yamamoto et al [8]. In this study, 

flow and heat transfer characteristics of low-magnetic 

Reynolds number and Prandtl number fluids were 

investigated. It was found that the similarity-law between the 

velocity and the temperature profiles was not satisfied with 

increasing of Hartman number, noticeably near the critical 

Hartmann condition to maintain turbulent flow. At higher 

Reynolds number conditions, MHD models coupled with k–ε 

model was able to reproduce the MHD pressure loss trend 

with increasing Hartmann number. 

DNS and LE are relatively accurate for modeling turbulent 

MHD flow; but due to limited computational resources, both 

remain limited to low-range Reynolds numbers. And because 

the turbulent boundary layer is not resolved all the way to the 

wall, the k- and similar turbulence models lack the means by 

which they can accurately predict MHD effect on turbulence. 

While the universal law of the wall is applicable in absence of 

MHD effects, such effects modify the turbulent boundary 

layer so that the universal law of the wall would no longer be 

applicable. In this study, a zero-equation model which 

resolves the entire boundary layer is used to model the 

average turbulent MHD flow. Main objective of the study, 

therefore, is to validate the turbulence model, and to 

characterize average turbulent MHD pipe flow in the presence 

of a transversal magnetic field B


, Fig. 1. Several Reynolds 

and Hartmann numbers are tested.  

2 Theory 

 The mathematical model consisted of the following 

Reynolds-averaged Navier–Stokes (RANS) and electric 

potential equations. 
  

2.1 Continuity equation 
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With the eddy viscosity, Alammar [9], given by  

         udb=
t

         (3) 

Where b = 0.016 and d is the distance from the wall. 

2.3 Electric potential 
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2.4 Assumptions and boundary conditions 

 The flow is assumed steady, fully developed, and two-

dimensional. The effect of magnetic field on turbulence is 

negligible (small Stuart number). Properties are assumed 

constant. The boundary conditions include the no-slip 

condition, given velocity inlet, and electrically insulated wall. 

3 Numerical Procedure 

 Fluent 6.1 was used as the solver. The structured grid 

was built using Gambit 2.0. The mesh consisted of 

approximately 40,000 hybrid cells. The simulation was 

carried out using SIMPLE, Patankar and Spalding [10], and 

second-order schemes. The linearized equations were solved 

using Gauss-Seidel method, in conjunction with an algebraic 

Multigrid scheme, Sharov and Nakahashi [11]. 

 

Fig. 1 Cross section of the pipe (first quadrant) with the 

constant-field vector 

4 Uncertainty analysis 

 There are mainly two sources of uncertainty in CFD, 

namely modeling and numerical, Stern et al. [12]. Modeling 

uncertainty can be approximated through theoretical or 

experimental validation while numerical uncertainty can be 

approximated through grid independence. Numerical 

uncertainty has two main sources, namely truncation and 

round-off errors. Higher order schemes have less truncation 

x 

r 

 

y 

 

Pipe wall 
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error, and as was outlined earlier, the discretization schemes 

invoked were second-order. In explicit schemes, round-off 

error increases with increasing iterations, and is reduced by 

increasing significant digits (machine precision). However, 

having used Gauss-Seidel iterative procedure in a steady-state 

simulation renders the calculation insensitive to round-off 

error. 
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Fig. 2 Mean velocity distribution; Ha = 10 
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Fig. 3 Mean velocity distribution; Ha = 100 

A comparison between the current simulation and DNS of 

Satake et al.[13] is depicted in Fig. 2. The numerical 

prediction with 40,000 cells is within %5 . Therefore, we 

assume the modeling uncertainty to be %5 . The small 

discrepancy is likely due to transitional effects which have not 

been incorporated into the current turbulence model. A grid-

independence test is shown in Fig. 3 where the mean velocity 

distribution is depicted for Hartmann number of 100. The 

numerical error is shown to be negligible. Hence, we conclude 

that the overall uncertainty is %5 .  

5 Results and Discussion 

     The mean velocity distribution is depicted in Fig. 4 for 

Reynolds number of 10
5
 for different Hartmann numbers and 

orientations. Typical characteristics of flow structure in MHD 

flow are observed, including evolution of the velocity profiles 

with the magnetic field strength and formation of the M-

shaped and flat velocity distributions. The core region is 

observed to be increasingly retarded with increasing Lorentz 

force (Hartmann number) leading to the formation of different 

side layers.  
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Fig. 4a Mean velocity distribution; 0, Re = 10
5
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Fig. 4b Mean velocity distribution; Re = 10
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Fig. 5a Mean velocity distribution; , Re = 10
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Fig. 5b Mean velocity distribution; Re = 10
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The mean velocity distribution is shown in Fig. 5 for 

Reynolds number of 10
6
 for different Hartmann numbers and 

azimuth. The effect of Hartmann number is shown to diminish 

with increasing Reynolds number. This is due to increasing 

dominance of the inertial forces relative to the Lorentz force 

at higher Reynolds numbers. 
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Fig. 6b Friction factor distribution; Re = 10
5
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Fig. 6a Friction factor distribution; Re = 10
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The friction factor distribution is depicted in Fig. 6 for 

different Reynolds and Hartmann numbers. The profiles are 

normalized by the baseline case (Ha = 0). The wall friction is 

shown to increase with increasing field strength. Due to 

decreasing boundary layer thickness, the friction factor is 

shown to increase towards the side layer. Again, the effect of 

increasing Reynolds number is to diminish the role of Lorentz 

force. 

6 Conclusions 

 Using a zero-equation turbulence model, a fully-

developed turbulent MHD pipe flow was simulated. Effect of 

Reynolds and Hartmann numbers on flow characteristics was 

investigated. Typical characteristics of flow structure in MHD 

flow were observed, including evolution of the velocity 

profiles with the magnetic field strength and formation of the 

Hartmann and side layers. The core region was observed to be 

increasingly retarded with increasing Lorentz force leading to 

the formation of different layers. The wall friction was shown 

to increase with increasing field strength. The effect of 

Hartmann number was shown to diminish with increasing 

Reynolds number. 
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An interface reconstruction method to deal with filaments in
multi-material simulations
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Abstract— In this work, we propose a method for a two
fluids interface reconstruction which is able to detect and
deal with filaments and small fluid structures in 2D multi-
material simulations. It is an extension of the usual VoF
method, which remains the chosen method for most of the
mixed cells of the mesh. Only for detected cells, the new
algorithm is applied in order to improve the representation
and advection of small filament structures.

Keywords: interface reconstruction, multi-material simulations,
filaments, VoF method, Youngs’ method.

1. Introduction
Actually, most of interface reconstruction techniques as-

sume that a mixed cell can be split into pure regions
separated by a straight line. The straight line is usually com-
puted as the perpendicular to a direction being the gradient
of the volume fraction function. However, if the fluid is
elongated enough, its characteristics size may drop below
the characteristics size of the cell. The fluid element then
becomes a filament with respect to cell size. Consequently,
an accurate representation of fluid interface cannot be made
with only one straight line per mixed cell. Typically, a
classical Youngs’ method [3] is known to have a behaviour
similar to a surface tension effect but at mesh scale. We
can say that the method has a too large numerical surface
tension.

2. Subgradients Method
The idea is to compute subgradients in a cell from a local

stencil associated with each corner (2x2 cells for instance) in
order to reconstruct up to 4 interfaces, one per subzone, with
normals given by these subgradients, and then to reconstruct
a straight line by subzone (Figure 1). The method does not
contain more physics. It is only another geometrical choice
that reduces the numerical surface tension, so that small fil-
aments are maintained longer through the mesh. A previous
method, using such a subdivision strategy for improving
accuracy of reconstruction results, has been described by
B. Rebourcet [1]. A similar idea is followed here for the
subdivision and then used to deal with filaments by analyzing
the volume fractions field and constructing subcell gradients.

Figure 1: Subdivision of a cell containing a filament.

A summary of the algorithm is as follows:
• analyzing volume fraction gradients to detect such

possible pathological situations,
• evaluating and selecting pertinent subcell gradients,
• defining 1, 2, 3, or 4 reconstruction subzones within the

mixed cell,
• scattering the fluids onto the reconstruction subzones,
• constructing one straight line interface per subzones.

Such a technique is to be coupled with a classical interface
reconstruction technique such as Youngs [3] as nonpatho-
logical mixed cells must be treated as usual.

Figure 2: Illustration of a thin circle reconstructed. Left: with
the usual VoF method. Right: with the proposed algorithm.

3. Numerical results
First numerical results on a quadrangular mesh have

shown that the technique is able to deal with complex inter-
faces in some static scenarios (Figures 2 and 3). However, it
appears that for dynamic cases, it is necessary to use more
information in order to deal with the advection of a piece
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Figure 3: Illustration of a filament reconstructed. Left: with
the usual VoF method. Right: with the proposed algorithm.

of fluid whose width is smaller than the cell: the volume
fractions field does not allow to specify the relative location
of the filament in the cell, and consequently to move it
through the cell during a time step.

4. Conclusions

A Subgradients method to compute interfaces in subzones
has been proposed. At given mesh, it allows better represen-
tation of thin structures of fluids.

The proposed improvements from the algorithm described
above are:

• define the center of the subdivision in relation with the
center of mass of the piece of fluid (Figure 4),

• store the volume fractions field and centroids of the
previous time step, and use the velociy field, not only
for the global advection of the mesh, but also in order
to specify the relative motion of a filament versus the
cell.

Figure 4: Subdivision of a cell containing a filament. Dis-
placed center of subdivision.

This interface reconstruction method will be compared
with a classical Youngs’method to show the improvement.
Quantitative results will be measured on usual test cases for
interface reconstruction methods such as the stretching of a
circle in a vortex velocity field [2].
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Combining Automated Multilevel Sub-structuring and Subspace
Iteration for Huge Gyroscopic Eigenproblems
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Abstract— The Automated Multilevel Sub-structuring
(AMLS) method is a powerful technique for computing a
large number of eigenpairs with moderate accuracy for
huge definite eigenproblems in structural analysis. It also
turned out to be a useful tool to construct a suitable ansatz
space for projection methods for gyroscopic problems. This
paper improves the eigenpairs obtained with AMLS via a
small number of subspace iteration steps. It takes advantage
of a transformation of the stiffness matrix to block diagonal
form from AMLS while using the original mass and
gyroscopic matrices. A numerical example demonstrates the
efficiency of this approach and its pronounced superiority
upon the the subspace iteration for the original gyroscopic
eigenproblem.

Keywords: Eigenvalue, eigenvector, AMLS, subspace iteration,
gyroscopic eigenproblem

1. Introduction
Simulation of acoustic properties has gained increasing

importance in the engineering design process, in particular in
automobile industries. Sound radiation from the rolling tires
has been identified as a major source of noise generated by
vehicles moving at speeds above 50 km/h [1], [2]. Therefore,
much effort has been directed into development of methods
allowing for a simulation of the effect of tire-road surface
interaction.

According to Nackenhorst [1] the simulation of the tire
noise is performed in three steps. First, the nonlinear tire
deflections under steady state conditions are computed using
an Arbitrary Lagrangian Eulerian (ALE) approach. Next,
the transient vibrations governed by the eigenpairs of a
gyroscopic eigenvalue problem

Q(ω)x := Kx+ ωiGx− ω2Mx = 0. (1)

are assumed to be superimposed onto the nonlinear deflec-
tions. Finally, the acoustic analysis is carried out solving
Helmholtz’s equation on the exterior of the domain occupied
by the tire where the normal velocities at the wheel surface,
extracted from the vibration analysis, are taken as boundary
conditions.

In this paper we consider only the second step, i.e. the
numerical solution of the eigenproblem (1) where K is
the stiffness matrix modified by the inertia forces due to

the stationary rolling, M is the mass matrix, and G is the
gyroscopic matrix stemming from the Coriolis force. Clearly,
K and M are symmetric and positive definite, and G is
skew–symmetric. The eigenvalues ω (which are influenced
by the rotational speed of the tire) are real, whereas the
eigenvectors are complex, and have to be interpreted as
traveling waves on the surface of the tire rather than standing
vibrations.

Due to the complicated interior structure of a belted tire
the matrices K, M and G of a sufficiently accurate FE
model are very large and sparse. Moreover, for the acoustic
analysis many eigenpairs (up to 2000 Hz) are needed, when
determining the initial conditions for the Helmholtz equation
for the third step, which are computed in a Fourier analysis
of the tire excitations by the roughness of the road surface.

A common approach for solving the quadratic eigenvalue
problem is linearization, i.e. to transform (1) into an equiv-
alent linear eigenvalue problem

Aq :=

[
iG K
K O

] [
ωx
x

]
= ω

[
M O
O K

] [
ωx
x

]
=: ωBq (2)

and to apply the shift-and-invert Lanczos method as im-
plemented in the software package ARPACK [3]. Then
in every iteration step ARPACK interrupts and in reverse
communication the user has to supply the solutions of a
linear complex valued system (A − σB)z = Bc for some
shift σ and right hand side c. Although the special structure
of the matrices in (2) allows for an efficient solution of
these systems this approach requires an excessive amount
of storage and computing time (cf. [2]). More efficient
for solving the gyroscopic eigenvalue problem (1) than the
implicitly restarted Lanczos method is the Automated Multi-
Level Sub-structuring (AMLS) method [4].

The (AMLS) method, proposed by Bennighof an co-
authors [5], [6], is an efficient condensation method for com-
puting hundreds and thousands of eigenmodes and frequency
responses for large and complex structures. The standard
AMLS has been designed for linear symmetric eigenvalues
problems and has been successfully applied to many engi-
neering problems in recent years including vibro-acoustic
analysis in automotive industry [7], ship vibrations [8],
electromagnetic problems [9], [10], and has been generalized
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to gyroscopic problems [4], and vibrations of fluid–solid
structures [11]. Details of implementations are contained in
[12], [13], [14], [15].

Compared to Krylov type approaches AMLS reduces
computational resources in terms of computing time and
hardware requirements to determine a large number of
eigenpairs at the lower end of the spectrum. An evaluation
and the comparison to the block Lanczos method for a
broadband vibro-acoustic analysis of a passenger car body
is contained in [7], demonstrating that AMLS enabled a
reduction in runtime from several days on a supercomputer
to a few hours using an off-the-shelf workstation.

It is important to note that AMLS usually provides ap-
proximate solutions which are less accurate than the ones
obtained with Krylov type methods. However, in many
applications, the underlying algebraic eigenvalue problem is
a finite element model of the original continuous problem,
and so the level of accuracy required for its numerical
solution is no more than what is furnished by the FE model.
Numerical examples demonstrate that the approximations
to eigenvalues computed with AMLS are often of this
limited but sufficient accuracy, whereas the modal errors of
eigenvectors are usually still quite large.

A common way to enhance the approximation quality of
a group of eigenpairs is subspace iteration [16], [17] which
generalizes inverse iteration. However, applying subspace
iteration to the linearization (2) of problem (1) directly is
very expensive. AMLS offers a permutation of the unknowns
such that the stiffness matrix becomes block diagonal with
not too large block sizes. But transforming the mass and
gyroscopic matrices correspondingly yields very crowded
matrices with lots of dense blocks which require a huge
amount of storage.

For the generalized eigenvalue problem we proposed in
[15] a combination of AMLS with subspace iteration which
takes advantage of the block structure of the transformed
stiffness matrix, but performs multiplications with the mass
matrix in the original ordering of variables. In this paper
we transfer this approach to the gyroscopic eigenvalue
problem taking advantage of knowledge from the variational
characterizations of its spectrum to improve the interesting
eigenpairs corresponding to the smallest positive eigenvalues
although these are in the interior of the spectrum.

The paper is organized as follows. In Chapter 2 we briefly
summarize the AMLS method for linear positive definite
eigenvalue problems. Chapter 3 considers AMLS for gyro-
scopic problems, and Chapter 4 improves the eigenvalue and
eigenvector approximations via subspace iteration. Chapter
5 demonstrates the efficiency of this approach for a finite
element model of a rotating tire.

2. AMLS for linear eigenvalue problems
In this subsection we summarize the AMLS method for

computing eigenvalues and corresponding eigenvectors of a

linear eigenvalue problem

Kx = λMx (3)

in a frequency range of interest. Usually (3) is a finite
element model of some problem, where the stiffness matrix
K ∈ Rn×n and the mass matrix M ∈ Rn×n are symmetric
and M is positive definite.

Similarly as in the component mode synthesis (CMS) [18]
the structure is partitioned into a small number of substruc-
tures based on the sparsity pattern of the system matrices, but
more generally than in CMS these substructures in turn are
sub-structured on a number of levels yielding a tree topology
for the substructures.

AMLS consists of two ingredients. First, the stiffness
matrix K is transformed to block diagonal form, and sec-
ondly, the dimension is reduced substantially by modal
condensation of the substructures. If Kss is a sub-matrix
of K corresponding to a particular substructure, then after
reordering rows and columns in (3) the pencil obtains the
form ([

Kss Ksr

Krs Krr

]
,

[
Mss Msr

Mrs Mrr

])
,

and with block Gaussian elimination, i.e. post- and premul-
tiplying this pencil with

Us =

[
I −K−1

ss Ksr

0 I

]
and UT

s , respectively, Kss is decoupled, and the pencil
obtains the following form(
UT
s KUs, U

T
s MUs

)
=

([
Kss 0

0 K̃rr

]
,

[
Mss M̃sr

M̃T
sr M̃rr

])
.

Repeating the block elimination for all substructures
1, . . . ,m we get

K̃ = UTKU, M̃ = UTMU with U = U1U2 . . . Um

where the transformed stiffness matrix K̃ has block diag-
onal form. Notice that in an implementation of AMLS the
reordering of the matrices is incorporated implicitly.

To reduce the dimension of the eigenproblem we deter-
mine for every substructure (after decoupling it from the
remaining DoFs as above) all eigenvalues λsj not exceeding
a cut off frequency λcutoff and corresponding eigenvectors
zsj , j = 1, . . . ,ms. Then with Zs = [zs1, . . . , zsms

] and the
global projection matrix Z = diag{Z1, . . . , Zm} we finally
get the reduced eigenvalue problem

Kcxc = λMcxc (4)

where Kc = ZT K̃Z = ZTUTKUZ is a diagonal matrix
and Mc = ZT M̃Z = ZTUTMUZ has generalized block
arrowhead form.

It is important to note that in an implementation the block
Gaussian eliminations and the condensations are performed
in an interleaving way to avoid the storage of large dense
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sub-matrices of the transformed mass matrix which would
occur in the course of the block elimination: as soon as a sub-
matrix pencil (K̃ss, M̃ss) has been formed the eigenproblem
K̃ssZs = M̃ssZsΛs is solved and the corresponding projec-
tion is executed. Details of an implementation of AMLS are
contained in [12], [15].

3. AMLS for gyroscopic eigenvalue
problems

The gyroscopic eigenvalue problem (1) is equivalent to its
Hermitian linearization[

iG K
K O

] [
y
x

]
= ω

[
M O
O K

] [
y
x

]
(5)

to which AMLS does not apply directly since the matrix
on the left hand side is not positive definite, and for
the transformed problem with µ := ω−1 AMLS yields
approximations to eigenpairs corresponding to the smallest
eigenvalues µj , i.e. to the largest eigenvalues of (1) in
modulus.

Since the influence of the gyroscopic matrix G on the
eigenvectors of (1) is usually not very high compared to
the mass and stiffness matrices, it is reasonable to neglect
the linear term in (1) when defining the substructuring, the
transformations of K to block diagonal form. and the modal
reductions corresponding to the substructures. Hence the
AMLS reduction is applied to the pencil (K,M), and the
same congruence transformations and modal reductions are
employed for the skew-symmetric matrix G.

Thus, one obtains a reduced model

Kcy + iωGcy − ω2Mcy = 0, (6)

where the reduced stiffness matrix Kc = ZTUTKUZ
and mass matrix Mc are the ones from Section 2, and
Gc = ZTUTGUZ is the projected gyroscopic matrix which
can be evaluated along with Kc and Mc within the AMLS
process for (K,M). Hence, the reduced problem (6) has the
same structure as (1), but it is of much smaller dimension
and can therefore be solved by the Lanczos method using a
linearization like (5) or by the nonlinear Arnoldi method.
Notice, that all transformations in AMLS are real, and
therefore the reduction can be performed in real arithmetic.

The paper [4] contains an example demonstrating the effi-
ciency of the approach. A FE model of a deformable wheel
rolling on a rigid plane surface of dimension approximately
125000 was reduced by AMLS to a gyroscopic problem of
dimension 2635 an a personal computer (namely a Pentium
4 processor with 3.0 GHz and 1 GB storage) requiring a
CPU time of 976 seconds. Solving its linerization (5) with
the matlab function eigs (i.e. by ARPACK) needed another
124 seconds. Thus approximate eigenvalues for the smallest
180 eigenvalues (up to 2000 Hz) were obtained the relative
errors of which were all less than 0.65%. We will come back
to this example in Section 5.

4. AMLS with subspace iteration
AMLS is a one shot projection method, i.e. after having

chosen a cut-off frequency the method produces a fixed
subspace V := span{UZ}and the corresponding projected
eigenproblem. Differently from Krylov subspace methods
there is no way to expand the subspace V further reusing the
projected problem if the computed approximate eigenpairs
turn out to be not accurate enough. One has to repeat
the reduction with a higher cut-off frequency, or one can
improve the subspace V using subspace iteration.

In [15] we discussed a method how to employ the
transformed block diagonal stiffness matrix K̃ in subspace
iteration for (3) efficiently. It is important to note that we do
not use the transformed mass matrix M̃ = UTMU which
usually contains many dense sub-matrices requiring a huge
amount of storage. In the following we modify this approach
for improving the AMLS approximation of a gyroscopic
problem (1).

The gyroscopic eigenvalue problem (1) where K ∈ Cn×n

and M ∈ Cn×n are Hermitian and positive definite and
G ∈ Cn×n is skew–Hermitian has 2n real eigenvalues, n
of which are negative and n are positive. For real matrices
we even have that −ωj are the negative eigenvalues of (1)
if ωj , j = 1, . . . , n denote its positive eigenvalues. For the
general complex case positive and negative eigenvalues are
of the same magnitude in modulus if G is small compared
to K and M . The eigenvectors corresponding to the positive
eigenvalues form a basis of Cn, and the same holds true for
the eigenvectors corresponding to the negative eigenvalues
(cf. [19]).

If the subspace iteration is applied to the linearized
eigenvalue problem (5) with shift θ = 0 (this is the only
way to take advantage of the transformed block diagonal
matrix K̃) with an initial basis X ∈ Rn×m, then one obtains
convergence to eigenvalues, m/2 of which are negative
and m/2 are positive. This suggests to apply the subspace
iteration in the following way:

Let V ∈ Rn×m be the matrix of eigenvector approxima-
tions obtained from AMLS and Λ ∈ Rm×m be the diagonal
matrix containing the approximations of the m smallest
positive eigenvalues then we apply the subspace iteration
to (5) with the initial basis[

V Λ1/2 −V Λ1/2

V V

]
.

To take advantage of the particular form of (5) we set[
P
Q

]
=

[
V Λ1/2 −V Λ1/2

V V

]
.

Then one step of subspace iteration[
iG K
K O

] [
P (k)

Q(k)

]
=

[
M O
O K

] [
P (k−1)

Q(k−1)

]
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reads as follows:

P (k) = Q(k−1), KQ(k) = MP (k−1) − iGQ((k−1)). (7)

After nk steps of subspace iteration one gets P̂ := P (nk)

and Q̂ := Q(nk) and the projected eigenvalue problem has
the form [

P̂H Q̂H
] [iG K
K O

] [
P̂

Q̂

]
z

= ω
[
P̂H Q̂H

] [M O
O K

] [
P̂

Q̂

]
z

which is equivalent to

K̂z := (iP̂HGP̂ + P̂HKQ̂+ Q̂HKP̂ )z

= ω(P̂HMP̂ + Q̂HKQ̂)z =: M̂z.

To avoid the use of the transformed matrix M̃ = UTMU
which is not computed in the AMLS method and which
is much too memory–consuming we determine the right
hand side of the linear system in (7) in original variables as
R = MP (k−1)−iGP (k). But to take advantage of the block
structure of the transformed stiffness matrix K̃ = UTKU
we solve the transformed system K̃Q̃(k) = R̃. Hence, in
every iteration step two forward transformations Q̃(k) :=
UTQ(k) and R̃ = UTR and one backward transformation
Q(k) = UQ̃(k) are required. Details on the implementation
of the forward and backward transformations are contained
in [15].

Algorithm 1 contains a pseudocode of the resulting
method. It is interesting to note that usually a small number
of subspace iteration steps improves the approximations
sufficiently, which also guarantees the stability of iterations
(i.e. no orthogonalization between the individual iterations
is necessary) with only one Rayleigh-Ritz analysis of K̂z =
ωM̂z.

5. Numerical results
We consider a FE model of a deformable wheel rolling

on a rigid plane surface which is obtained by an Arbitrary
Lagrangian Eulerian (ALE) formulation according to the
derivation and presentation in [1]. Our model of a rotating
tire consists of 39204 brick elements with 124992 degrees
of freedom and accounts for 20 different material groups.
The speed is assumed to be 60 km/h . Our aim is to
determine approximations to the smallest 200 eigenvalues
and corresponding eigenvectors.

The numerical tests were performed on a 64-bit HP
workstation with an Intel Xeon CPU (3.20 GHz, 2 cores)
and 24GB memory. AMLS and the two subspace iteration
algorithms (AMLS-SIM which combines the transformation
of K to block diagonal form in AMLS with the subspace
iteration, and NormalSIM which applies subspace iteration
directly to problem (5)) were implemented with Matlab
R2009a.

Algorithm 1 Subspace iteration cooperating with AMLS.

Require: Diagonal matrix Λ̃ containing eigenvalue approx-
imations from AMLS, transformed eigenvectors Ṽ , the
transformed stiffness matrix K̃ and the transformation
matrix U from AMLS, and the maximum iteration
number nk

1: initialize the iteration matrices Q̃(0) = [Ṽ , Ṽ ] and P̃ =
[Ṽ Λ̃1/2,−Ṽ Λ̃1/2]

2: transform backward P (0) = UP̃ (0)

3: for k = 1, 2, . . . , nk do
4: transform backward Q(k−1) = UQ̃(k−1)

5: compute R = MP (k−1) − iGQ(k−1)

6: transform forward R̃ = UTR
7: P (k) = Q(k−1)

8: solve for Q̃(k): K̃Q̃(k) = R̃
9: end for

10: T = R̃HQ̃(nk)

11: projected mass matrix M̂ = (P (nk))HMP (nk)+T
12: reload R
13: S = RHP (nk)

14: projected stiffness matrix K̂ = i(P (nk))HGP (nk)+S+
SH .

15: solve projected problem K̂Z = M̂ZΛ̂
16: sort out positive eigenvalue Λ̂+ and corresponding

eigenvectors Z+

17: compute improved eigenvectors V (nk) = Q̂Z+.

Table 1: Computation time of NormalSIM and AMLS-SIM
with 208 iteration vectors

Computational Steps NormalSIM(s) AMLS-SIM(s)
Compute initial eigenvectors from AMLS 9.2 2.4
1 Iteration 2401.0 148.9
2 Iterations Not computed 304.9
3 Iterations Not computed 462.1
4 Iterations Not computed 621.8
Compute K̂ and M̂ if nk = 1 10.0 9.7
Compute K̂ and M̂ if nk > 1 Not computed 19.6
Solve K̂Z = M̂V Λ̂ by eig 2.6 2.6
Compute final eigenvectors 0.9 25.6

The AMLS method addressing the linear eigenvalue prob-
lem Kx = λMx costs 881.2 seconds for the AMLS
projection and 270.4 seconds for solving the projected linear
eigenvalue problem of dimension 2263 by eig. Following
Bathe’s recommendation to use min{2p, p+8} initial vectors
in subspace iteration if p eigenpairs are wanted we initial-
ized the subspace iteration methods with the lowest 208
positive eigenvalues and corresponding eigenvectors. The
computation times are listed in Table 1. We can see that
NormalSIM needs 2401.0 seconds to finish the first iteration
step excluding computation of K̂ and M̂ . But AMLS-SIM
only costs 148.9 seconds, much less than NormalSIM.

The relative errors of eigenvalues computed by AMLS-
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Fig. 1: Relative errors of eigenvalues computed with sub-
space iteration with AMLS utilizing 208 iteration vectors

SIM with four iteration steps are given in Fig.1. To evaluate
the accuracy of eigenpairs we use modal errors

εg =
‖Kx+ iωGx− ω2Mx‖

‖ω2Mx‖
. (8)

Fig.2 shows the reduction of modal errors for four iterations
with AMLS-SIM. It is interesting to note that essential
improvements are obtained only every other iteration step.
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Fig. 2: Modal errors computed with subspace iteration with
AMLS utilizing 208 iteration vectors

6. Conclusions
AMLS is an efficient condensation method for computing

a huge number of eigenmodes and frequency responses for
large complex structures. It usually provides approximate
solutions which are less accurate than the ones obtained
with standard Krylov type methods. However, in many
applications the underlying algebraic eigenproblem is a
FE model of a continuous structure, and so the required
level of accuracy is no more than what is furnished by
the FE model. Numerical examples demonstrate that the
approximations to eigenvalues computed with AMLS are
often of this limited but sufficient accuracy, whereas the
modal errors of eigenvectors are usually still quite large. In
a recent paper we proposed a combination of AMLS with
subspace iteration taking advantage of the block structure
of the transformed stiffness matrix, but avoiding the use
of the highly populated transformed mass matrix. In this
paper we generalized this approach to gyroscopic eigenvalue
problems taking advantage of knowledge from variational
characterizations of the spectrum to improve the interesting
eigenpairs corresponding to the smallest positive eigenvalues
although these are in the interior of the spectrum.
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Incomplete LU Preconditioning and Error Compensation Strategies
for Sparse Matrices
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Abstract— Several preconditioning enhancement strategies
for improving inaccurate preconditioners produced by the
incomplete LU factorizations of sparse matrices are pre-
sented. The strategies employ the elements that are dropped
during the incomplete LU factorization and utilize them
in different ways by separate algorithms. The first strategy
(error compensation) applies the dropped elements to the
lower and upper parts of the LU factorization to compute a
new error compensated LU factorization. Another strategy
(inner-outer iteration), which is a variant of the incom-
plete LU factorization, embeds the dropped elements in its
iteration process. Experimental results show that the pre-
sented enhancement strategies improve the accuracy of the
incomplete LU factorization when the initial factorizations
found to be inaccurate. Furthermore, the convergence cost
of the preconditioned Krylov subspace methods is reduced
on solving the original sparse matrices with the proposed
strategies.

Keywords: ILU factorization, preconditioning, error compensa-
tion, inner-outer iteration, sparse matrices

1. Introduction
Preconditioned Krylov subspace methods are generally

considered as a class of the most promising techniques [1],
[2], [3], [8] for solving very large sparse linear systems of
the form

Ax = b, (1)

whereA is a sparse matrix of ordern. Although the most
popular preconditioners nowadays are constructed from the
incomplete lower-upper (ILU) factorizations of the coeffi-
cient matrix,A, in one way or another, a common problem
with such ILU preconditioners still exists in that their
accuracy may be insufficient to yield an adequate rate of
convergence. This problem is usually caused by the difficulty
in determining even a small number of parameters or thresh-
old values for the ILU factorizations for some particular
matrices. This still remains as a tradeoff problem between
the factorization accuracy and the costs of the computation
and memory associated with the factorization.

In order to clarify the low accuracy problem, we first
account for the aspects of advantages and disadvantages of
ILU(0) and ILUT. ILU(0) (incomplete LU factorization with

zero fill-in) preconditioning is rather easy to implement and
computationally inexpensive than other ILU preconditioners,
but may require many iterations to converge due to its coarse
approximation to the original matrixA [7], [8]. ILUT in-
complete factorization is considered as one of the alternative
ways of ILU(0). ILUT approach relies on numerical values
for dropping elements, and it has a limit on the number of
allowed fill-in elements. It develops incomplete factorization
preconditioners with improved accuracy if the dropping
tolerance and the fill-in parameters are chosen properly. On
the other hand, ILUT with large dropping tolerance and
small fill-in does not constitute a reliable approach, and
generally gives low accuracy ILU factorizations [7], [8].

In response to these problems associated with the ILU
factorizations, we consider the fact that the size of the
error matrix E directly affects the convergence rate of
the preconditioned iterative methods [5]. Furthermore, the
quality of a preconditioning step is directly related to the size
of both(LU)−1 andE, that is, a high quality preconditioner
must have an error matrix that is small in size [9]. In the
form of an incomplete LU factorization by incorporating the
error or residual matrix,E, we have

A = LU + E, (2)

where theL and U are the lower and upper parts ofA,
respectively. In accordance with Saad [8], the elements of
the error matrixE are exactly those that are dropped during
the ILU factorization, whereas in the standard ILU factor-
izations, such elements are just discarded. The new precon-
ditioning accuracy enhancement strategies that we propose
in this paper are inspired by understanding these facts and
exploiting the error values dropped in the factorization to
improve the accuracy of the incomplete LU factorizations.
This then leads us to the idea of the error compensation
strategy that utilizes the error matrix before the start of the
preconditioned iteration process. After acquiring the ILU
factorization with a preconditioner, we add the error matrix
E to L andU to obtain an error compensated factorization
L̃Ũ . The accuracy of using̃LŨ is increased significantly in
some cases, compared with that of usingLU directly, in the
sense that||Ẽ(= A− L̃Ũ)|| < ||E(= A− LU)||.

Another preconditioning accuracy enhancement strategy
uses the error matrix during the preconditioned iteration pro-
cess. It can be considered as a variant of the LU solver with
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an error embedded LU approach. This results in an inner-
outer iteration process. Numerical results of the inner-outer
iteration strategies are provided to show that this algorithm
requires only fewer iterations to converge. Note that in order
to collect the elements during the ILU factorization process,
additional computation cost and some memory spaces are
required to keep these elements. This, however, can be
negligible as low cost storages become available.

This paper is organized as follows: In Section 2, we
present preconditioning enhancement strategies arising from
ILU preconditioning, and their analysis. The experimental
results are in Section 3, and the conclusion and future work
are discussed in Section 4.

2. Preconditioning Accuracy Enhance-
ment Strategies

ILU factorizations are made incomplete by dropping care-
fully chosen nonzero elements to make the factorizations
more economical to store, compute, and solve with it. Each
nonzero element that is dropped contributes to the “error” in
the factorization [3]. In this section, we assume that the ILU
factorizations in question are stable, and propose an error
compensation algorithm and an inner-outer iteration algo-
rithm to improve the accuracy of the (inaccurate) incomplete
LU factorizations. ILU factorizations with stability problems
can be better handled by using reordering strategies [6].

2.1 Matrix Error Compensation Strategies
Let L andU be the triangular factors of the input matrix

A from an ILU factorization. ThenA can be written as in
Equation (2), in whichE is the error matrix that represents
the dropped elements during the incomplete LU factorization
process [8]. Since the size of theE matrix directly affects
the convergence rate of the preconditioned iterative methods,
and the quality of a preconditioning step is directly related
to the size of both(LU)−1 and E [5], [9], we propose
an algorithm to improve the preconditioning accuracy by
reducing the size of the error matrixE and (LU)−1E. By
switching the matrixA andLU , Equation (2) can be written
as:

E = A− LU. (3)

Then the error matrixE can be separated into two parts,
corresponding to nonzero structures ofL and U , in the
following way:

E = El + Eu,

whereEl andEu are the lower and upper triangular parts
of E. In order to acquire error compensatedL̃ and Ũ , the
separated error matrices,El and Eu, are now combined
with the original lower part (L) and upper part (U ) of the
preconditioned matrix:

L̃ = L+ El, Ũ = U + Eu.

These new lower part̃L and upper part̃U are then used
as the preconditioner instead of the originalL and U .
In other words,L̃ and Ũ are used in the preconditioning
steps, i.e., we solve(L̃Ũ)e = r instead of(LU)e = r at
each preconditioning step. Heree and r are the error and
residual vectors of the current approximate solution. In the
experimental results presented in Section 3, we will see that
replacing LU solver with the new̃LŨ results in a more
accurate preconditioner. In many cases, the size of the error
matrix with the new̃LŨ is smaller than that with the original
LU .

In order to provide a better picture of the algorithm, an
ILU factorization in which the error compensatedL andU
improves the accuracy of the original factorization is given
in the following: The ILU(0) factorsL and U of a given
matrix

A =




2 1 1
1 2 0
1 0 2




are

L =




1 0 0
0.5 1 0
0.5 0 1


 , U =




2 1 1
0 1.5 0
0 0 1.5


 ,

from which we can compute the error matrixE = A− LU

as

E = A− LU =




0 0 0
0 0 −0.5
0 −0.5 0


 .

The error matrixE is then split into two parts,El andEu.
We addEl and Eu to the original incomplete lower and
upper parts of theA. This results in a new incomplete LU
factors

L̃ =




1 0 0
0.5 1 0
0.5 −0.5 1



 , Ũ =




2 1 1
0 1.5 −0.5
0 0 1.5



 .

From the aboveA, L̃, and Ũ , we can obtain an new error
matrix Ẽ as:

Ẽ = A− L̃Ũ =




0 0 0
0 0 0
0 0.25 −0.25


 .

Table 1 presents the comparisons of the sizes of the er-
ror matrices in the example given above. The sizes of
the preconditioned error matrix for the error compensated
preconditioner and the original preconditioned matrix are
measured in the 2-norm and the Frobenius norm. The case
using error compensated preconditioned matrix reduces the
error norm by 36% on average. The error compensation
algorithm can have four different implementations. The
above description assumes that both theL andU factors are
compensated. If none of them is compensated, we have the
standard ILU preconditioner. If either one of them, but not
both factors, is compensated, we have two forms of partial
error compensations.
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Table 1: Comparison of the size of preconditioned error matricesE and Ẽ.
Norm E Ẽ (LU)−1

E (L̃Ũ)−1
Ẽ

2-norm 0.5 0.3536 0.4082 0.2940
Frobenius norm 0.7071 0.3536 0.5270 0.2940

2.2 An Inner-Outer Iteration Process
In this subsection, we describe an error embedded variant

of ILU preconditioning process to compensate dropped ele-
ments during the ILU factorization. In solving Equation (1)
with a standard preconditioned iterative solver, with an ILU
factorization type preconditioner, the preconditioning step is
an LU solution process, i.e., to solve(LU)e = r for the
residual vectorr of the current approximate solution and
to get an approximate correction vectore. For notational
convenience, we denote the current approximate solution
as x̃. The current residual vector is̃r = b − Ax̃. The
ideal preconditioning step is to solveAẽ = r̃ and to
correct the approximate solutioñx to get the exact solution
as (x̃ + ẽ). Since solvingAẽ = r̃ is as expensive as
solving the original systemAx = b and is thus impractical
in a preconditioning step, we can again use an iteration
procedure to approximately solveAẽ = r̃ to achieve a good
preconditioning effect. If the error matrix is available, we can
split the matrixA as in Equation (2), so, for an idealized
preconditioning step, we have

(LU + E)e = r, (4)

or
LUe+ Ee = r. (5)

As a stationary iteration process, Equations (4) and (5) can
be rewritten by:

LUe(k+1) = r − Ee(k),

and
e(k+1) = (LU)−1(r − Ee(k)) (6)

respectively. This iteration process starts withe(0) = 0, and
LUe(1) = r is just the standard one step ILU preconditioning
procedure. Better preconditioning effect can be achieved by
performing a few iterations at each preconditioning step.
This will constitute an inner-outer iteration scheme and is
well-known for the preconditioned Krylov method, as each
outer Krylov iteration step is preconditioned by a series of
inner stationary iteration steps.

The necessary and sufficient condition to converge for the
inner iteration process, given by Equation (6), is that the
spectral radius of the iteration matrix(LU)−1E is smaller
than 1. This is, of course, not automatically guaranteed.
However, we found that the inner iteration process usually
converges, when the ILU factorization of the original matrix
A is stable and the LU factor is not an extremely poor
approximation to the original matrixA. We point out that

the inner-outer iteration strategy is not a new one, but here
we study it in a systematic way.

2.3 Analysis

A five-point matrix (of a finite difference discretization of
a Poisson equation),A, of sizen = 400 corresponding to an
nx×ny = 20× 20 mesh is used for analysis to validate the
presented algorithms. The sizes of the error matrix,E, from
the original preconditioner and the new error matrix,Ẽ, from
the error compensated preconditioner are measured in the 2-
norm and the Frobenius norm. For the case using the error
compensated algorithm, the norms (2-norm and Frobenius
norm) in columns 2 and 3 in Table 2 show the fact that the
norms of the new error matrix are smaller than the norms
of the original error matrix, and also the norms (2-norm and
Frobenius) in columns from 4 to 7 show that all the norms
(2-norm and Frobenius) of the corresponding matrices in
columns from 5 to 7 are smaller than the norms in column 4.
In addition to that, from the values in the last row of Table 2,
we can see that the inner iteration process converges, since
the spectral radii of the(LU)−1E and(L̃Ũ)−1Ẽ satisfy the
necessary and sufficient condition for convergence.

3. Experimental Results

We present numerical results from the experiments by
solving sparse matrices with our algorithms and some pre-
conditioners. The preconditioned iterative solver we em-
ployed was GMRES(20), with ILU type preconditioners,
ILU(0) and ILUT [7]. For all linear systems, the right-
hand side was generated by assuming that the solution is
a vector of all ones. The initial guess was a zero vector.
We set the iteration to be terminated when thel2-norm
of the initial residual is reduced by at least seven orders
of magnitude, or when the number of iterations reaches
200. The computations were carried out in double precision
arithmetics on a 64-bit Sun-Blade-100 workstation with a
500 MHz UltraSPARC III CPU and 1 GB of RAM. The set
of sparse matrices that we used for our experiments are from
the Harwell-Boeing Sparse Matrix Test Collection [4]. A
brief description of each matrix of the experiment set is given
in Table 3. In the table, the order, the number of nonzero
entries, and the condition number of the matrix are denoted
by n, nnz, andcond respectively. All tested matrices do not
have zero diagonals and the ILU factorizations are stable.
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Table 2: Comparison of the size of preconditioned error matricesE and Ẽ.
Norm E Ẽ (LU)−1

E (L̃Ũ)−1
Ẽ (L̃U)−1

Ẽ (LŨ)−1
Ẽ

2-norm 0.5788 0.3582 0.9276 0.8889 0.9109 0.9106
Frobenius norm 7.7958 3.2058 3.6129 2.4812 3.1488 3.1447
Spectral radius 0.9276 0.8885 0.9098 0.9098

Table 3: Description of the test matrices.
Matrix Description n nnz cond

add32 Computer component design 32-bit adder 4960 23884 2.1E+02
bfw398a Bounded Finline Dielectric Waveguide 398 3678 7.6E+03
cdde1 Model 2-D Convection Diffusion Operator p1=1, p2=2, p3=30 961 4681 4.1E+03
cdde3 Model 2-D Convection Diffusion Operator p1=1, p2=2, p3=80 961 4681 1.0E+04
hor131 Flow network problem 434 4710 1.3E+05
jpwh991 Circuit physics modeling 991 6027 7.3E+02
lop163 LOPSI Stochastic Test Matrix 163 935 3.4E+07
mhd3200b Alfven Spectra in Magneto hydrodynamics 3200 18316 2.0E+13
mhd416b Alfven Spectra in Magneto hydrodynamics 416 2312 5.1E+09
mhd4800b Alfven Spectra in Magneto hydrodynamics 4800 27520 1.0E+14
orsirr1 Oil reservoir simulation - generated problems 1030 6858 1.0E+02
orsirr2 Oil reservoir simulation - generated problems 886 5970 1.7E+05
orsreg1 Oil reservoir simulation - generated problems 2205 14133 1.0E+02
pde225 Partial Differential Equation 225 1065 1.0E+02
pde2961 Partial Differential Equation 2961 14585 9.5E+02
pde900 Partial Differential Equation 900 4380 2.9E+02
pores2 Reservoir modeling Reservoir simulation 1224 9613 3.3E+08
pores3 Reservoir modeling Reservoir simulation 532 3474 6.6E+05
saylr1 Saylor’s petroleum engineering/reservoir simulation matrices 238 1128 1.6E+09
saylr4 Saylor’s petroleum engineering/reservoir simulation matrices 3564 22316 1.0E+02
sherman1 Oil reservoir simulation challenge matrices 1000 3750 2.3E+04
sherman4 Oil reservoir simulation challenge matrices 1104 3786 7.2E+03
sherman5 Oil reservoir simulation challenge matrices 3312 20793 3.9E+05
watt1 Petroleum engineering 1856 11360 5.4E+09

3.1 Preconditioning with Error Compensation
Strategies

Numerical experiments of testing the error compensa-
tion algorithm with different implementations are presented.
ILU(0) and ILUT preconditioners are used. In ILUT, we
chose the dropping tolerance to be 0.1 and the fill-in param-
eter to be 5 for all test problems.

Table 4 reports the number of preconditioned GMRES
(PGMRES) iterations with and without different error com-
pensation strategies. The data in the columns marked “No”
are those of the standard preconditioning strategy, i.e., no
error compensation strategy was used. The columns marked
“Full” indicate that both the L and the U parts were com-
pensated. Similarly, the columns marked “Upart” means that
only the U part was compensated, and the columns marked
“Lpart” means that only the L part was compensated. The
value “-1” in the table indicates the failure of convergence
within the maximum number (200) of allowed iterations.

Each column of Table 4 shows the number of PGMRES
iterations. The number of (preconditioned) iterations, es-
pecially for solving the matrices add32, bfw398a, hor131,
lop163, pde2961, sherman1, sherman5, and watt1, are
greatly reduced with the error compensation strategies in

the ILU(0) preconditioner, compared with the standard pre-
conditioner ILU(0). In addition, the number of iterations for
solving the matrices mhd and sherman5 are reduced with
the error compensation strategies in ILUT, compared with
the standard preconditioner ILUT. We can see that for most
of the test matrices, the use of error compensation strategies
reduces the number of PGMRES iterations. Furthermore, the
full error compensation strategy is shown to be more robust
than both the L part and the U part partial error compensation
strategies. For the two partial error compensation strategies,
their performance seems to be comparable.

Table 5 presents the total CPU processing time which
includes the preconditioner construction time with different
error compensation strategies. The listed results in Table 5
are concerned with the results listed in Table 4. “N/A” indi-
cates the failure of computation since the GMRES iteration
number is reached the maximum number(200). The total
CPU time for solving the matrices (add32, bfw398a, hor131,
lop163, mhd3200b, pde2961, sherman1, and watt1) is re-
duced by applying using the error compensation strategies
with ILU(0)/ILUT. This implies that as the number of overall
iterations are greatly decreased, the CPU time is also reduced
even though we need extra processing time for implementing
the error compensation strategies.
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Table 4: Comparison of the number of PGMRES iterations with and without different error compensation strategies.
ILU(0) ILUT

Matrix No Full Upart Lpart No Full Upart Lpart
add32 81 39 40 40 16 15 -1 15
bfw398a -1 150 -1 196 -1 -1 -1 -1
hor131 -1 183 -1 -1 -1 -1 -1 -1
jpwh991 29 20 24 24 32 21 25 24
lop163 -1 88 98 176 18 19 18 19
mhd3200b 5 4 4 4 164 33 76 101
mhd416b 4 4 4 4 137 32 63 77
mhd4800b 4 3 4 3 148 33 76 107
pde225 30 16 21 22 16 11 15 13
pde2961 -1 91 103 126 85 66 74 77
pde900 61 46 53 55 33 22 30 27
sherman1 116 62 76 75 107 87 -1 94
sherman4 143 107 124 128 136 101 117 116
sherman5 101 73 77 98 -1 145 -1 169
watt1 178 114 115 95 108 85 94 121

Table 5: Comparison of CPU time in seconds with the full error compensation strategies.
ILU(0) ILUT

Matrix No Full Upart Lpart No Full Upart Lpart
add32 1.1E+00 1.0E+00 9.9E-01 9.8E-01 1.2E+00 1.2E+00 N/A 1.1E+00
bfw398a N/A 1.9E-01 N/A 1.9E-01 N/A N/A N/A N/A
hor131 N/A 2.1E-01 N/A N/A N/A N/A N/A N/A
jpwh991 7.0E-02 8.9E-02 7.9E-02 7.9E-02 1.1E-01 1.5E-01 1.3E-01 1.3E-01
lop163 N/A 2.9E-02 3.9E-02 5.0E-02 6.0E-02 2.9E-02 4.9E-02 5.0E-02
mhd3200b 1.8E-01 2.0E-01 2.2E-01 2.1E-01 8.8E-01 4.0E-01 5.9E-01 6.9E-01
pde225 1.9E-02 2.9E-02 1.9E-02 3.9E-02 1.9E-02 2.9E-02 1.9E-02 4.9E-02
pde2961 N/A 5.6E-01 5.8E-01 7.1E-01 1.2E+00 1.4E+00 1.3E+00 1.4E+00
sherman1 1.5E-01 1.1E-01 1.1E-01 1.2E-01 2.4E-01 1.9E-01 N/A 2.1E-01
watt1 5.1E-01 4.9E-01 4.3E-01 3.9E-01 7.7E-01 7.7E-01 6.9E-01 7.4E-01

3.2 Preconditioning with Inner-Outer Iteration
Strategies

In this subsection, we present numerical experiments of
the inner-outer iteration strategy with the different settings
of the number of inner iterations. Table 6 reports the num-
ber of preconditioned GMRES (PGMRES) iterations with
respect to each setting. The data in the columns marked “1-
Its” are those of the standard preconditioning strategy, i.e.,
no additional iteration beyond the standard preconditioning
procedure was used, whereas each column marked with
from “2-Its” to “4-Its” indicates inner iteration steps of 2
to 4, respectively that are performed at each preconditioning
step. Also, the value “-1” in the table denotes the failure of
convergence within the maximum number (200) of allowed
iterations.

Table 6 shows that the inner-outer iteration strategies
reduce the number of PGMRES iterations for most of
the tested matrices. Especially, ILU(0) with the inner-outer
iteration strategies is shown to be effective for solving add32,
bfw398a, lop163, pde225, pde900, sherman, and watt1 ma-
trices. ILUT with different number of inner-outer iteration
strategies works well on the pde and sherman matrices. In
general, larger number of inner iterations reduces the number
of outer iterations needed for convergence. However, the

reduction of the number of outer iterations does not always
lead to the reduction of the total CPU time, as shown in
Table 7. This is because that the cost of employing more
inner iterations sometimes outweighs the savings obtained
in the reduction of the number of outer iterations, as each
outer iteration becomes more expensive to conduct. For the
purpose of maintaining robustness, however, two or three
inner iterations may be used in each outer iteration.

3.3 Comprehensive Results: Comparisons be-
tween Error Compensation and Inner-Outer
Iteration Strategies

Table 8 shows the comparison of the number of PGMRES
iterations with different enhanced preconditioning strategies.
The data in the columns marked “Both” and “BothL”mean
that applying “Full” and “Lpart” followed by “2-Its”.

The data in the Table 8 indicate that most of the proposed
strategies are of benefit to reduce the number of PGMRES
iterations, and show that "Both" (the error compensation
strategy with the L and U part followed by the inner-
outer iteration strategy) has best results for almost all tested
matrices; 12 (8) matrices have best results with the “Both,”
and 3 (2) matrices with the “2-Its” (inner-outer iteration
strategy), in the context of ILU(0) (ILUT). Also, “BothL”
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Table 6: Comparison of the number of PGMRES iterations with different number of inner iterations.
ILU(0) ILUT

Matrix 1-Its 2-Its 3-Its 4-Its 1-Its 2-Its 3-Its 4-Its
add32 81 38 43 27 16 9 7 6
bfw398a -1 117 116 50 -1 -1 -1 -1
jpwh991 29 15 13 10 32 18 13 11
lop163 -1 110 98 66 18 8 7 5
orsirr1 41 22 20 16 50 25 30 17
pde225 30 16 10 8 16 8 7 5
pde900 61 31 18 15 33 16 11 9
sherman1 116 52 57 32 107 50 47 30
sherman4 143 65 46 33 136 60 36 26
sherman5 101 54 39 29 -1 87 72 57
watt1 178 66 53 36 108 49 39 31

Table 7: Comparison of CPU time in seconds of ILU(0) and ILUT with different number of inner iterations.
ILU(0) ILUT

Matrix 1-Its 2-Its 3-Its 4-Its 1-Its 2-Its 3-Its 4-Its
add32 1.1E+00 1.1E+00 1.4E+00 1.2E+00 1.2E+00 1.2E+00 1.5E+00 1.3E+00
bfw398a N/A 1.7E-01 2.4E-01 1.6E-01 N/A N/A N/A N/A
jpwh991 7.0E-02 7.0E-02 8.9E-02 7.0E-02 1.1E-01 1.1E-01 1.3E-01 1.2E-01
lop163 N/A 4.9E-02 5.9E-02 3.9E-02 6.0E-02 4.9E-02 7.0E-02 3.9E-02
orsirr1 9.0E-02 1.3E-01 1.1E-01 1.2E-01 1.4E-01 1.7E-01 1.7E-01 1.7E-01
pde225 1.9E-02 1.9E-02 1.9E-02 1.9E-02 1.9E-02 2.9E-02 2.9E-02 2.9E-02
sherman1 1.5E-01 1.0E-01 1.3E-01 1.2E-01 2.4E-01 1.7E-01 2.1E-01 1.8E-01
watt1 5.1E-01 3.9E-01 3.7E-01 3.6E-01 7.7E-01 5.9E-01 5.9E-01 5.8E-01

Table 8: Comparison of the number of PGMRES iterations with and without different error compensation strategies.
ILU(0) ILUT

Matrix No Full 2-Its Both BothL No Full 2-Its Both BothL
bfw398a -1 150 117 81 88 -1 -1 -1 -1 -1
cdde1 -1 102 94 55 77 164 102 66 44 54
cdde3 -1 -1 -1 185 -1 -1 -1 196 198 175
orsirr1 41 40 22 22 22 50 41 25 22 25
orsirr2 40 41 22 22 22 51 43 25 24 25
orsreg1 51 50 22 24 25 52 52 26 22 25
pde2961 -1 -1 -1 -1 -1 85 66 51 31 47
pde900 61 46 31 22 27 33 22 16 16 15
pores2 117 148 -1 -1 82 -1 -1 -1 -1 -1
pores3 108 64 52 44 54 121 127 88 53 82
saylr1 33 33 16 16 15 75 -1 24 31 24
saylr4 -1 -1 185 163 -1 -1 -1 -1 187 -1
sherman1 116 62 52 43 52 107 87 50 51 50
sherman4 143 107 65 43 55 136 101 60 43 37
sherman5 101 73 54 44 50 -1 145 87 76 79
watt1 178 114 66 40 69 108 85 49 37 49

(the error compensation strategy with the L part only fol-
lowed by the inner-outer iteration strategy) is best to 4 (5)
matrices with ILU(0) (ILUT), respectively. As a result, the
error compensation strategy followed by the two inner-outer
iteration strategy outperformed the other error compensation
strategies based on this experiment.

Table 9 and Table 10 present the total CPU processing
time which includes the preconditioner construction time
with different error compensation strategies. The listed re-
sults in Table 9 and Table 10 are concerned with the results
listed in Table 8. “N/A” indicates the failure of computation
since the GMRES iteration number is reached the maximum

number(200). This implies that as the number of overall
iterations are greatly decreased, and the CPU time is also
reduced even though we need extra processing time for
implementing the error compensation strategies.

4. Conclusion and Future Work
We proposed preconditioning accuracy enhancement

strategies to augment the ILU factorizations in case that the
initial factorizations are found to be inaccurate. The strate-
gies recompense the dropped elements during the incomplete
factorization before/during the preconditioned iteration pro-
cesses. Results of extensive experiments demonstrated that
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Table 9: Comparison of CPU time in seconds with the full error compensation strategies.
ILU(0)

Matrix No Full 2-Its Both BothL
bfw398a N/A 1.9E-01 1.7E-01 1.9E-01 1.6E-01
cdde1 N/A 1.6E-01 2.1E-01 1.5E-01 1.8E-01
cdde3 N/A N/A N/A 3.4E-01 N/A
orsirr1 9.0E-02 1.3E-01 1.3E-01 1.4E-01 1.5E-01
orsirr2 8.9E-02 1.1E-01 9.9E-02 1.2E-01 1.1E-01
orsreg1 2.6E-01 3.9E-01 2.7E-01 3.3E-01 3.1E-01
pde2961 N/A N/A N/A N/A N/A
pde900 9.0E-02 1.0E-01 8.9E-02 9.0E-02 8.9E-02
pores2 2.7E-01 4.5E-01 N/A N/A 3.9E-01
pores3 7.9E-02 7.9E-02 9.0E-02 1.0E-01 1.0E-01
saylr1 2.9E-02 1.9E-02 1.9E-02 2.9E-02 1.9E-02
saylr4 N/A N/A 2.1E+00 2.4E+00 N/A
sherman1 1.5E-01 1.1E-01 1.0E-01 1.1E-01 1.2E-01
sherman4 1.6E-01 1.6E-01 1.3E-01 1.2E-01 1.4E-01
sherman5 6.9E-01 7.4E-01 7.3E-01 7.7E-01 7.6E-01
watt1 5.1E-01 4.9E-01 3.9E-01 3.4E-01 4.5E-01

Table 10: Comparison of CPU time in seconds with the full errorcompensation strategies.
ILUT

Matrix No Full 2-Its Both BothL
bfw398a N/A N/A N/A N/A N/A
cdde1 3.6E-01 2.7E-01 3.2E-02 2.4E-01 2.8E-01
cdde3 N/A N/A 5.9E-01 6.8E-01 6.4E-01
orsirr1 1.4E-01 1.9E-01 1.7E-01 2.0E-01 2.0E-01
orsirr2 1.3E-01 1.7E-01 1.4E-01 1.7E-01 1.6E-01
orsreg1 3.9E-01 5.8E-01 3.9E-01 4.7E-01 4.4E-01
pde2961 1.2E+00 1.3E+00 1.4E+00 1.6E+00 1.6E+00
pde900 1.2E-01 1.4E-01 1.3E-01 1.4E-01 1.4E-01
pores2 N/A N/A N/A N/A N/A
pores3 1.4E-01 1.6E-01 1.6E-01 1.6E-01 1.8E-01
saylr1 3.9E-02 N/A 2.9E-02 3.9E-02 2.9E-02
saylr4 N/A N/A N/A 4.2E+00 N/A
sherman1 2.4E-01 1.9E-01 1.7E-01 1.9E-01 1.2E-01
sherman4 2.9E-01 2.8E-01 2.2E-01 2.0E-01 2.0E-01
sherman5 N/A 1.6E+00 1.3E+00 1.5E+00 1.4E+00
watt1 7.7E-01 7.7E-01 5.9E-01 5.6E-01 6.9E-01

the strategies are quite promising and effective in helping
reduce the number of PGMRES iterations, and a noticeable
improvement in enhancing the accuracy of the incomplete
LU factorizations. Furthermore, the total computation time
for solving sparse linear system was reduced even though
extra processing time was used for the proposed strategies.

Our subsequent work will be to extend the strategies to
solving other classes of general sparse matrices and sparse
matrices from particular application areas.
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Abstract— The numerical computation of derivatives of
eigenvalues and eigenvectors has been an active research
topic due to its wide applications in engineering and the
physical sciences. There are many numerical methods avail-
able in the literatures for computing derivatives of eigenval-
ues and eigenvectors for standard eigenvalue problems and
quadratic eigenvalue problems. However, almost all existing
methods for quadratic eigenvalue problems have a common
limitation, that is, they are based on the assumption that
repeated eigenvalues have distinct first order derivatives.
In this paper, we lift this assumption and develop general
algorithms for computing derivatives, of any arbitrary order,
of repeated eigenvalues and corresponding eigenvectors of
quadratic eigenvalue problems, under much more general
conditions than existing methods. The effectiveness of our
algorithms are illustrated by some numerical examples.

Keywords: derivatives of eigenvalues and eigenvectors, repeated
eigenvalues, quadratic eigenvalue problems

1. Introduction
Sensitivity analysis of eigenvalues problems is essential

in many practical applications, such as dynamical response
analysis, structural analysis and design, model updating,
damage detection, and diffraction grating theory. For exam-
ple, in the analysis, design and reconstruction of diffractive
grating structures, the sensitivity of the physical quanti-
ties including the reflected and transmitted amplitudes of
the electric field or the diffracted field and the shape of
the diffraction grating with respect to different physical
parameters play critical roles for measuring how these
quantities behavior for small changes in the parameters. To
find sensitivity of these physical quantities, derivatives of
resulting eigenvalues and eigenvectors with respect to these
parameters must be computed, see [6], [11] for more details.
Sensitivity analysis consists of two aspects: theoretical anal-
ysis and numerical computation. Theoretical analysis focuses
on existence of derivatives of eigenvalues and eigenvectors
with respect to parameters, and numerical computation is on
numerical methods for computing these derivatives.

In this paper we consider the following symmetric
quadratic eigenvalue problem depending on a parameter

ρ ∈ R:

(λ2(ρ)M(ρ) + λ(ρ)C(ρ) +K(ρ))x(ρ) = 0, (1)

where M(ρ) = M(ρ)⊤, C(ρ) = C(ρ)⊤,K(ρ) = K(ρ)⊤ ∈
Rn×n are analytic functions of ρ throughout some open
interval D0 ⊂ R containing ρ0, and λ(ρ) ∈ C and
x(ρ) ∈ Cn are called eigenvalues and eigenvectors of the
symmetric quadratic eigenvalue problem (1), respectively.
Quadratic eigenvalue problems arise frequently in areas such
as applied mechanics, electrical oscillation, vibro-acoustics,
fluid dynamics, signal processing, and finite element model
of some critical partial differential equations [10]. We con-
sider the case when the symmetric quadratic eigenvalue
problem (1) has a semi-simple eigenvalue λ1 of multiplicity
r at ρ = ρ0. Assume that there exist r analytic functions
λ1(ρ), . . . , λr(ρ) that are eigenvalues of (1) throughout some
open interval D ⊂ D0 such that ρ0 ∈ D, and λ1(ρ0) =
· · · = λr(ρ0) = λ1, and we also assume that the eigenvector
functions xi(ρ) of (1) corresponding to λi(ρ) are analytic at
ρ = ρ0. We are interested in computing derivatives of these
analytic functions λ1(ρ), . . . , λr(ρ), x1(ρ), . . . , xr(ρ).

Repeated eigenvalues arise in many applications, for ex-
ample, model updating problems and optimization problems.
Since the eigenvalues λ1(ρ), . . . , λr(ρ) are analytic in D,
it follows that for every pair of eigenvalues λi(ρ), λj(ρ),
either λi(ρ) = λj(ρ) for all values of ρ in D (often in
model updating problems), or there is no open neighborhood
of ρ0 throughout which λi(ρ) = λj(ρ). In the first case,
the eigenvector derivatives are not uniquely defined, which
will not be considered in our paper. This paper concerns
only with the more common second case, which often arises
in optimization problems, where repeated eigenvalues often
occur at the optimum point but not at any neighboring point.
Another important reason for proposing methods for the case
when derivatives are repeated is that, while derivatives of
repeated eigenvalues are not themselves likely to be equal,
they could well be very close, and in the presence of round-
off, there is no clear distinction between quantities which
are exactly equal and those which are merely very nearly
equal. Methods designed for problems where the derivatives
are distinct will normally break down when the derivatives
are sufficiently close.
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Many efforts have been devoted to numerical computation
of derivatives eigenpairs of various eigenvalue problems.
The existing approaches can be classified into the modal
methods, the direct methods and the iterative methods. The
modal method [12] is based on expanding the derivatives of
eigenvectors as linear combinations of modes (eigenvectors).
But this approach requires knowledge of all eigenvectors,
which is, however, often difficult in engineering applications.
Generally, only the low-frequency modes can be obtained
and are used as the basis vectors of eigenvector derivatives.
The direct method tends to find derivatives of eigenvalues
and eigenvectors by solving some linear systems or eigen-
value problems using only the knowledge of eigenvalues
and eigenvectors being considered. Friswell and Adhikari
[4], Guedria et al. [5] generalized Nelson’s method [7] to
compute the first and second order derivatives of eigen-
vectors corresponding to distinct eigenvalues. Tang et al.
[9] investigated methods for computing derivatives with
repeated eigenvalues for general asymmetric systems. But
they only consider the case when the repeated eigenvalues
have distinct first order derivatives. The iterative methods
[1], [3] can be used to find derivatives of several eigenpairs
of a matrix simultaneously, and they can be accelerated by
using the techniques described in [8]. However, we are not
aware of any iterative methods for computing derivatives of
eigenpairs of quadratic eigenvalue problems.

To the best of our knowledge, all these existing direct
methods for compute derivatives of repeated eigenvalues and
corresponding eigenvectors of quadratic eigenvalue problems
are based on the assumption that these repeated eigenvalues
have distinct first order derivatives. In this paper, we shall
extend the ideas in [2] to symmetric second order systems,
which is to compute derivatives, of arbitrary order, of
repeated eigenvalues and corresponding eigenvectors, under
the more general cases when repeated eigenvalues may have
repeated derivatives. Specifically, we consider the case when
for all j ̸= k, with 1 ≤ j, k ≤ r,

λ
(i)
j (ρ0) = λ

(i)
k (ρ0), i = 0, 1, . . . ,m− 1

λ
(m)
j (ρ0) ̸= λ

(m)
k (ρ0),

}
(2)

hold for some integer m. Based on these assumptions, Algo-
rithm 1 in Section 2 can be applied to compute derivatives
of eigenvalues of order 1 to m and the first order derivative
of eigenvectors. Algorithm 2 in Section 2 then enables us
to successively compute derivatives, of any arbitrary higher
order, of eigenvalues and eigenvectors. The more general
nonsymmetric cases with proofs will be considered in a
subsequent paper elsewhere. Numerical examples show that
the algorithms developed here are robust and reliable even
for close derivatives of eigenvalues.

2. Algorithms
Let Λ(ρ) = diag(λ1(ρ), · · · , λr(ρ)), X(ρ) =[

x1(ρ) · · · xr(ρ)
]
. Then from (1) we have

M(ρ)X(ρ)Λ(ρ)2 + C(ρ)X(ρ)Λ(ρ) +K(ρ)X(ρ) = 0. (3)

To ensure the uniqueness of eigenvectors, we take the
following normalization condition for i = 1, 2, . . . , r,

x⊤
i (ρ0)(2λ1(ρ0)M(ρ0) + C(ρ0))xi(ρ) = 1. (4)

At ρ = ρ0, we further take the normalization condition

X⊤(ρ0)(2λ1(ρ0)M(ρ0) + C(ρ0))X(ρ0) = I. (5)

The computed eigenvalues of the quadratic eigenvalue prob-
lem (1) at ρ = ρ0 are Λ(ρ0) = λ1(ρ0)I , while the
corresponding eigenvectors may not be X(ρ0) described as
above. Let the computed linearly independent eigenvectors
corresponding to λ1(ρ0) be the columns of the n× r matrix
X0. Then there exists a nonsingular r × r matrix C0 such
that

X(ρ0) = X0C0. (6)

Without loss of generality, we assume that the computed X0

satisfies

X⊤
0 (2λ1(ρ0)M(ρ0) + C(ρ0))X0 = I. (7)

Then combining (5), (6) and (7) shows that C⊤
0 C0 = I .

A main task for computing derivatives of eigenvectors is to
find C0.

Throughout the rest of the paper, all functions are assumed
to be evaluated at ρ = ρ0 unless stated otherwise. For
simplicity, we will take the following notation:

λ = λ1, Q(λ) = λ2M + λC +K, Q′(λ) = 2λM + C,

Wp =

p∑
q=0

(
p
q

) q∑
s=0

(
q
s

)
λ(q−s)λ(s)M (p−q)

+

p∑
q=0

(
p
q

)
λ(q)C(p−q) +K(p), p = 0, . . . ,m− 1, (8)

Zi =
i−1∑
q=0

(
i
q

) q∑
s=0

(
q
s

)
λ(q−s)λ(s)M (i−q)

+
i−1∑
s=1

(
i
s

)
λ(i−s)λ(s)M +

i−1∑
q=0

(
i
q

)
λ(q)C(i−q) +K(i),

i = 1, . . . ,m. (9)

The following Algorithm 1 can be applied to find Λ(i)(i =
1, . . . ,m+1) and X ′, where Λ(i) denotes the i-th derivative
of Λ.
Algorithm 1:
1. Set i = 1, V0 = X0, compute Z1 = λ2M ′ + λC ′ + K ′

and M1 = −X⊤
0 Z1X0.

2. Compute the average of the diagonal elements of Mi as
λ(i). If ∥Mi − λ(i)∥ ≥ ϵ, set m = i and go to 5.
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3. Compute Wi = Zi + λ(i)Q′(λ), find a solution Vi to the
equation

Q(λ)Vi = −
i∑

p=1

(
i
p

)
WpVi−p,

compute Zi+1 by (9) and compute

Mi+1 = −X⊤
0

(
i∑

p=1

(
i+ 1
p

)
WpVi+1−p + Zi+1X0

)
.

4. Set i = i+ 1 and go to 2.
5. Find eigenvalues and eigenvectors of the matrix Mm.
Let Λ(m) = diag(l1, . . . , lr) be the diagonal matrix with
li being eigenvalues of Mm, and form C0 whose columns
are corresponding eigenvectors of Mm and are normalized
such that C⊤

0 C0 = I . Compute X = X0C0.
6. Find a solution Vm to the equation

Q(λ)Vm = −
m−1∑
p=1

(
m
p

)
WpVm−p

− ZmX0 −Q′(λ)XΛ(m)C⊤
0 ,

and compute

Mm+1 = −X⊤
(m−1∑

p=1

(
m+ 1

p

)
WpVm+1−pC0

+ (m+ 1)ZmV1C0 + (m+ 1)Q′(λ)V1C0Λ
(m)

+
(m−1∑

p=0

(
m+ 1

p

) p∑
q=0

(
p
q

)
λ(p−q)λ(q)M (m+1−p)

+ (m+ 1)
m−1∑
p=1

(
m
p

)
λ(m−p)λ(p)M ′

+
m−1∑
p=2

(
m+ 1

p

)
λ(m+1−p)λ(p)M

+
m−1∑
p=0

(
m+ 1

p

)
λ(p)C(m+1−p) +K(m+1)

)
X

+ (m+ 1)(2λM ′ + C ′ + 2λ′M)XΛ(m)

+ 2(m+ 1)MXΛ′Λ(m)
)
.

7. Set Λ(m+1) = diag(Mm+1), that is, Λ(m+1) is a diagonal
matrix whose diagonal elements are corresponding diagonal
elements of Mm+1.
8. Compute the matrix C1, whose off-diagonal elements cij
are given by

cij =
mij

(m+ 1)(lj − li)
, i ̸= j,

where mij is the (i, j) element of the matrix Mm+1,
and li is the i-th diagonal element of the diagonal matrix
Λ(m) computed from Step 5, and whose diagonal elements

are the corresponding diagonal elements of the matrix
−X⊤Q′(λ)V1C0.
9. Compute X ′ = V1C0 +XC1.
Remark 1. The tolerance ϵ in Step 2 is to determine m,
since it is not known a priori.
Remark 2. Although we can prove that Mi = Λ(i) = λ(i)I
for i < m in exact arithmetic, the diagonal elements of
computed Mi may not be equal. So we compute the average
of the diagonal elements of Mi as λ(i) to minimize the effect
of roundoff.
Remark 3. There are several methods for solving the
equations in Step 3 and Step 4 for Vi. For example, we can
use the QR decomposition or SVD of the singular coefficient
matrix.

Algorithm 1 enables us to compute Λ,Λ′, . . . ,Λ(m+1) and
X,X ′. The following Algorithm 2 then enables us to suc-
cessively compute derivatives of arbitrary order. Precisely,
for arbitrary positive integer k, we can compute Λ(m+k)

and X(k) by using the values of Λ,Λ′, . . . ,Λ(m+k−1) and
X,X ′, . . . , X(k−1), where X(i) denotes the i-th derivative
of X .
Algorithm 2:
1. For i = k, . . . ,m+ k − 1, compute a solution Vik to the
equation

Q(λ)Vik = −
k−1∑
p=0

(
i
p

) i−p∑
q=0

(
i− p
q

)
C(i−p−q)X(p)Λ(q)

−
k−1∑
p=0

(
i
p

)
K(i−p)X(p) −

i−1∑
p=k

(
i
p

)
Wi−pVpk

−
k−1∑
p=0

(
i
p

) i−p∑
q=0

(
i− p
q

)
M (i−p−q)X(p)

q∑
s=0

(
q
s

)
Λ(q−s)Λ(s).

2. Compute

Mm+k = −X⊤

(
MX

m+k−1∑
s=1

(
m+ k

s

)
Λ(m+k−s)Λ(s)

+

m+k−1∑
q=0

(
m+ k

q

)
M (m+k−q)X

q∑
s=0

(
q
s

)
Λ(q−s)Λ(s)

+
m+k−1∑
q=0

(
m+ k

q

)
C(m+k−q)XΛ(q) +K(m+k)X

+
k−1∑
p=1

(
m+ k

p

)m+k−p∑
q=0

(
m+ k − p

q

)

M (m+k−p−q)X(p)

q∑
s=0

(
q
s

)
Λ(q−s)Λ(s)
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+
k−1∑
p=1

(
m+ k

p

)m+k−p∑
q=0

(
m+ k − p

q

)
C(m+k−p−q)X(p)Λ(q)

+
k−1∑
p=1

(
m+ k

p

)
K(m+k−p)X(p)

+

(
m+ k

k

)(
ZmVkk +Q′(λ)VkkΛ

(m)
)

+
m+k−1∑
p=k+1

(
m+ k

p

)
Wm+k−pVpk

 .

3. Set Λ(m+k) = diag(Mm+k), that is, Λm+k is a diagonal
matrix whose diagonal elements are corresponding diagonal
elements of Mm+k.
4. Compute the matrix Ckk, whose off-diagonal elements cij
are given by

cij =
mij(

m+ k
k

)
(lj − li)

, i ̸= j,

where mij is the (i, j) element of Mm+k and li is the
i-th diagonal element of Λ(m), and whose diagonal ele-
ments are the corresponding diagonal elements of the matrix
−X⊤Q′(λ)Vkk.
5. Compute X(k) = Vkk +XCkk.

By Algorithm 1 and Algorithm 2 we can successively
compute derivatives, of any arbitrary order, of the repeated
eigenvalues and corresponding eigenvectors.

3. Numerical examples
In this section, we will give some examples to illustrate

the performance of the proposed algorithms. All examples
were carried out using MATLAB 7.5.0, with machine epsilon
ε ≈ 2.2× 10−16.

Example 1. Consider the following second order system
depending on the real parameter ρ, where

M = Sdiag(ρ+ 1, ρ− 1, 2ρ2 − 3ρ− 2, ρ2 + 4)S⊤,

C = Sdiag(−ρ3 − 2ρ2 − 3ρ− 3− δρ(ρ+ 1), 2ρ2 + ρ− 1,

− 5ρ2 − ρ− 3,−5ρ3 − 1

2
ρ2 − 20ρ− 3)S⊤,

K = Sdiag(ρ2 + ρ+ 2 + δρ, ρ3 + 2ρ2 − ρ+ 6,

2ρ2 − ρ− 1, 5ρ+
1

2
)S⊤. (10)

Here

S =
1√
3


cos ρ 1 sin ρ −1
− sin ρ −1 cos ρ −1

1 − sin ρ 1 cos ρ
−1 cos ρ 1 sin ρ


is an orthogonal matrix.

When δ = 0, the eigenvalues λ1(ρ) = ρ2 + ρ + 2 and
λ2(ρ) = −ρ − 2

ρ−1 become a pair of repeated eigenvalues
with multiplicity 2 at ρ = 0. Specifically,

λ1(0) = λ2(0) = 2, λ′
1(0) = λ′

2(0) = 1,

λ′′
1(0) = 2 ̸= λ′′

2(0) = 4, (m = 2)

λ′′′
1 (0) = 0, λ′′′

2 (0) = 12, λ
(4)
1 = 0, λ

(4)
2 = 48.

Denote the exact derivatives of eigenvalues and eigenvec-
tors by Λ′,Λ′′,Λ′′′,Λ(4) and X ′, X ′′. Then Algorithm 1 with
ϵ = 10−10 gives the correct m = 2, and the computed
Λ̃′, Λ̃′′, Λ̃′′′, X̃ ′ satisfy

∥Λ̃′ − Λ′∥F
∥Λ′∥F

= 4.44E-16,
∥Λ̃′′ − Λ′′∥F

∥Λ′′∥F
= 1.26E-15,

∥Λ̃′′′ − Λ′′′∥F
∥Λ′′′∥F

= 2.87E-15,
∥X̃ ′ −X ′∥F

∥X ′∥F
= 1.15E-14.

We can then apply Algorithm 2 (m = 2, k = 2) to find
Λ(4) and X ′′. The computed Λ̃(4) and X̃ ′′ satisfy

∥Λ̃(4) − Λ(4)∥F
∥Λ(4)∥F

= 6.82E-15,
∥X̃ ′′ −X ′′∥F

∥X ′′∥F
= 2.89E-14.

These show that Algorithm 1 and Algorithm 2 are feasible
for computing derivatives of repeated eigenvalues and corre-
sponding eigenvectors of symmetric second order systems.

Example 2. Next, consider the system as in (10), while
now δ is small but nonzero. The eigenvalues λ1 and λ2 are
still a pair of repeated eigenvalues with multiplicity 2 at
ρ = 0, while their derivatives are λ′

1(0) = 1+ δ, λ′
2(0) = 1,

which are close rather than identical. We apply Algorithm 1
with different tolerance ϵ, which enables us treat the close
derivatives as repeated ones (m = 2) or distinct ones (m =
1). The following Table 1 shows the relative errors of the
computed derivatives of eigenvectors ∥X ′ − X̃ ′∥F /∥X ′∥F
for different δ, where X ′ and X̃ ′ are exact and computed
derivatives of eigenvectors, respectively.

Table 1: Relative errors of derivatives of eigenvectors
δ m = 1 m = 2

E-14 5.38E+14 1.15E-14
E-12 6.64E+9 5.38E-12
E-10 8.57E+5 5.40E-10
E-8 8.00E+1 5.40E-8
E-6 6.11E-3 5.40E-6
E-4 6.34E-7 5.40E-4

Table 1 shows that for small δ, if we regard the close
derivatives of eigenvalues as distinct ones, the computed
derivatives of eigenvectors will be very ill-conditioned. Note
that the error by Algorithm 1 with m = 2 is approximately δ,
whereas by Algorithm 1 with m = 1, it is close to 10−15/δ2.
That is, when δ < 10−5, it is much better to treat the close
derivatives as repeated ones, rather than distinct ones.
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Hybrid parallelization of a pure Eulerian finite volume solver for
multi-material fluid flows
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Abstract— The FVCF-NIP method has been developed
since the work of Braeunig et al. [1] for compressible
multi-material fluid flows simulation. The main property of
this pure Eulerian method is the sliding condition at the
interface between materials, which is an improvement in the
consistency of the discretization with respect to the Euler
equations model. In this paper, we propose a parallelization
of this method using a domain decomposition in slices
associated with a transposition using the MPI library, and
not in blocks as in usual domain decomposition techniques.
This is a convenient and efficient choice for this totally di-
rectionally splitted method. Then a hybrid parallel algorithm
is introduced using multithreading (with OpenMP) and GPU
migration (with HMPP) into each slice.

Keywords: Finite volume; Multi-material; parallel computing;
MPI; OpenMP

1. Introduction: the FVCF-NIP method
This method is termed as pure Eulerian Finite Volumes

in the sense it does not use an operator splitting as in
the Lagrange-Remap scheme for instance. This method is
built for compressible multi-material fluid flows simulation.
The underlying single-phase scheme is FVCF [2]. The
interface between materials is sharp and is approximated by
a piecewise linear curve. In a mixed cell, i.e. a cell containing
more than one material, the interface is then a straight line
in 2D, which separates partial volumes containing each a
pure material, with no mixing at all. The method is totally
cell centred, so each partial volume, as a pure cell, has
its own volume centred pressure, velocity vector, density,
energy and corresponding EOS. This method conserves
locally the mass, the momentum and the total energy, since
we write conservation laws on pure cells and even on
each partial volume. This is made possible by introducing
a 1D data structure called condensate, in the context of
a directional splitting, which is a merge of neighboring
mixed cells in one direction of the mesh, see Figure 1.
The evolution of this set of cells is computed no more
considering cell faces but considering interfaces between
materials as Lagrangian interfaces. A conservation law is
written on partial volumes in the condensate by computing
fluxes through these Lagrangian interfaces. It should be
noticed that these fluxes are computed in such a way a

sliding condition is imposed between materials, by writing
a Riemann problem in the interface normal vector direction.
The new state of the condensate is then remapped on the
mesh. This technique is restricted to rectangular mesh since
the directional splitting is necessary to compute the interface
motion using condensates.
One interesting feature of this method for parallel computing
is that each phase of the directional splitting in a generic
direction x does not need informations from other directions
(however, the 2D interfaces normal vectors are used to
compute the fluxes and to impose the sliding condition at
interfaces). That makes the computation of each cell line
of the mesh independent from the others during one step
of the directional splitting, so an interesting property for
parallel computing. Indeed the parallel algorithm presented
here takes advantage of these 1D features using a domain
decomposition in slices.

On the other hand, to take full advantage of the largest
and fastest computers employing both shared and distributed
memory architectures, we propose a hybrid model which
combines message passing and shared memory program-
ming.

The remainder of this article is organized as follows. In
section 2, we present the MPI parallel algorithm with the
associated transposition, and the hybrid parallel algorithm.
Then we propose a significative multi-material test in section
3 to evaluate the efficiency of the parallel code.

2. MPI + (OpenMP or GPU) paralleliza-
tion
2.1 MPI Decompostion in slices

With classical rectangular subdomain decomposition par-
allelization, a condensate (defined in section 1) can cross
several subdomains and then it has to be computed by several
processors. Therefore, this method FVCF-NIP using conden-
sates is not well adapted to this kind of parallelization.

The parallel algorithm presented here allows to compute
each condensate by a single processor and to take advantage
of the 1D directional splitting used in the FVCF-NIP method.
During the computation of the x step of the directional
splitting, the 2D domain is decomposed in horizontal slices
(Figure 2). Each slice is computed by a processor Pi on a
distributed memory system. In the same way, we use vertical
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Fig. 1: Extraction of neighboring mixed cells from the grid
to become a condensate during x direction step.

slices to decompose the domain during the y step. Thus,
each slice contains the same number of cells equal to the
total number of cells (NbCells) divided by the number of
processors (n), what allows a good load balancing between
processors.

However, with this kind of parallel algorithm, a processor
(attached to a MPI processus) has to compute a different
subset of cells (vertical or horizontal slice) at each step (x
or y) of the directional splitting. Thus, to allow a given pro-
cessor to compute the appropriate subset of cells following
the direction change, we propose a “transposition algorithm”
(see section 2.2). This transposition allows to transfer the
necessary data using the Message Passing Interface (MPI).

2.2 Transposition

Between two steps of the directional splitting, the transpo-
sition allows to move from a horizontal slice decomposition
to a vertical slice decomposition and reciprocally. The data
transfer is performed using MPI communications. During
transposition x → y (Figure 4), each slice is splitted in n
blocks. Then each processor communicates each block j,
j 6= i, to processor i. MPI nonblocking messages are used
to obtain an overlap of communications and computations.

To limit the communication cost of the transposition, we
communicate the smallest amount of data needed by the al-
gorithm: for each cell, the number of materials, the material
volumes, and the conservative quantities per material Vm :=
(ρ, ρux, ρuy, ρE).

Other necessary quantities to the algorithm are deduced
from the restricted set of communicated ones thanks to equa-
tions of state. Fortunately, this supplementary computations
are scalable since they are proportional to the number of
cells in a slice (NbCells/n).

2.3 Hybrid parallel algorithm: multithreading
or manythreading into a slice

Modern multicore HPC clusters have hierarchical levels of
parallelism. They contain multicore processors (for instance,
processor intel Xeon 7500 Nehalem in the TERA1001 cluster
is a eight-cores) with shared memory and graphics proces-
sors (GPU’s).

Then, to improve performance of our full MPI version
of VFFC-NIP code on these clusters, we have introduced
a shared memory threading into each slice using OpenMP.
Thus each slice is attached to a processor though a MPI
processus and each sub-slice is computed by a core though
a thread.

On the other hand, to take advantage of GPU’s and
following the previous OpenMP algorithm using directives,
we use HMPP directives to allow the migration of a slice
computation to a GPU. HMPP is a Heterogeneous Multicore
Parallel Programming workbench with compilers, developed
by CAPS entreprise, that allows the integration of heteroge-
neous hardware accelerators in a non-intrusive manner while
preserving legacy codes.

Fig. 2: Decomposition in n horizontal slices for the x-step,
for n processors on a distributed memory system

This hybrid parallel algorithm is efficient since MPI com-
munications are all localized in the transposition, between
the two steps of the directional splitting (Figure 5). Actually,
each cell line can be computed independently from the
others, as it has been said in section 1. So during each
directional step, a processor makes all the computations for
the slice needed by this finite volume method (flux com-
putation, interfaces motion computation...) independently
from the others, so without any communication. Then, the
“OpenMP region” and “HMPP region” do not contain any
MPI communication as we can see in figure 5. Moreover,

1The TERA100 cluster is located at Bruyeres-le-Chatel, CEA/DAM-Ile
de France center. Built by Groupe Bull, it has a peak processing speed of
1050 teraflops, making it the fastest supercomputer in Europe as of 2011.
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Fig. 3: Decomposition in n vertical slices for the y-step, for
n processors on a distributed memory system

Fig. 4: Transposition x→ y : blocks communications

in opposition to classical subdomain parallelization, this
method does not need ghost cells. This memory saving is
particularly appreciable for supercomputers that tend to have
less memory per core.

3. Numerical results and performance
analysis

The numerical simuations presented in this paper have
been performed on the Titane cluster (CCRT: Centre de
Calcul Recherche et Technologie, located at Bruyeres-le-
Chatel, CEA/DAM-Ile de France center). This massively
hybrid parallel computer is composed of a fast network
(Infiniband) connecting classical nodes with multicore
processors Intel Xeon 5570 (quadri-cores) and accelerators
(GPUs Tesla from NVIDIA).
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Fig. 5: Parallel algorithm using transpostion (MPI).

The test we have chosen to evaluate the efficiency of
the parallelization algorithm is a two material “SOD like”
shock tube with an initial geometry containing a triple
point and three different states. A vortex will be created by
the difference of shock waves velocity between horizontal
layers in such a way materials will roll up. Equations
of state are of type perfect gas with different gamma
coefficients between layers. This test is convenient for
parallel performance analysis since it creates enough mixed
cells to be demonstrative for the interface capturing cost.

In tables 1 and 2, one can see that the efficiency is good
(> 0.6) up to 64 cores for a 1 million cells test. The data size
of blocks communicated during transpositions is decreasing
fast by a n2 factor. Of course, the number of communications
follows a n2 factor as well, so a good balance should be
found function of the number of cores. When the data size
of blocks decreases, the use of OpenMP allows to keep a
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good efficiency up to 256 cores, compared to the full MPI
algorithm which has a bad efficiency under 16 000 cells per
block. This improvement with MPI+OpenMP is illustrated
in Table 3 too, for 4.2 million cells and 512 cores.

Nb cores 1 2 16 32
1MPI 2MPI 16MPI 32MPI

Elapsed time 1800 910 150 80
Efficiency 0.98 0.75 0.70
Cells/core 1048K 524K 65K 32K

Table 1: Efficiency with 1 million cells

Nb cores 64 256 256
64MPI 256MPI 64MPI

+4Th.
Elapsed time 47 54 17

Efficiency 0.60 0.13 0.41
Cells/core 16K 4K 4K

Table 2: Efficiency with 1 million cells

Nb Cores 512 512 512
512MPI 256MPI 128MPI

+2Th. +4Th.
Elapsed time 650 440 320

Cells/core 8K 8K 8K

Table 3: Efficiency with 4.2 million cells

Fig. 6: Pressure (up) and volume fraction (down) at initial
time, triple point shock tube.

Fig. 7: Density at time 3.3 (up) and at final time 5 (down),
triple point shock tube with 19 000 cells.

4. Conclusion
We have described a MPI parallelization of the FVCF-

NIP method based on a domain decomposition in slices as-
sociated with a transposition. It is well adapted for methods
using a directional splitting. The independence (without any
communications) of each MPI process during a directional
step allows to easily add in it multi-threaded shared memory
parallelism. The resulting hybrid code (MPI+OpenMP and
MPI+GPUwith HMPP) allows to take full advantage of these
method features and of heterogeneous architectures of our
current and future HPC clusters (massively hybrid parallel
clusters).
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Fig. 8: Density full geometry (up) and zoom on small
structures (down) with 12 Million cells, triple point shock
tube.
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Abstract— Local and cluster Monte Carlo update
algorithms offer a complex tradeoff space for opti-
mising the performance of simulations of the Ising
model. We systematically explore tradeoffs between
hybrid Metropolis and Wolff cluster updates for the
3D Ising model using data-parallelism and graph-
ical processing units. We investigate performance
for both regular lattices as well as for small-world
perturbations when the lattice becomes a genera-
tised graph and locality can no longer be assumed.
In spite of our use of customised Compute Unified
Device Architecture (CUDA) code optimisations to
implement it, we find the Wolff cluster update loses
out in computational performance efficiency over
the localised Metropolis algorithm systemically as
the small-world rewiring parameter is increased.
This manifests itself as a phase transition in the
computational performance.

Keywords: GPU; CUDA; Ising model; Wolff; Metropolis

1. Introduction
The Ising model [1] is a thoroughly studied

model of a computational ferromagnet. Its popu-
larity over the last decades comes from the fact
that it is one of the simplest models of a system of
interacting particles with some physically realistic
features [2]. Like metal alloys that are magnetic
only below a certain critical temperature Tc, also
known as the Curie temperature, the Ising model
undergoes a phase transition when the system tem-
perature transitions from ”hot” to ”cold”.

When the system is in a ”hot” state, then there
is no order in the spin values of its cells. But as the
system approaches the critical temperature, clumps
of like-like spins begin to form, creating order in
the formerly unordered system. However, it has
been shown that the phase transition only occurs
in dimensions greater than one [1]. The cells in the
Ising model know the two states ”up” and ”down”,

but extensions to more states can be analysed using
the Q-state Potts model [3]. While analytical meth-
ods to determine the critical temperature are known
for the two-dimensional case [4], no such methods
are known for the three or more dimensional cases.
Instead, Monte Carlo simulations are often used to
approximate the solution using random sampling.

The interactions between neighbouring cells in
the ferromagnetic Ising model are defined by a
Hamiltonian of the form [5]:

H = −
∑
〈i,j〉

Jijσiσj, (1)

where σi = ±1, i = 1, 2, ...N sites. Jij is
|J | = 1/kBT is the ferromagnetic coupling over
neighbouring sites i and j on the network, T is
the temperature and kB is the Boltzmann constant.
The total energy E of a single configuration is
obtained from the Hamiltonian. The magnetisation
M is measured from a single configuration as [5]:

M =
1

N

∣∣∣∣∣∑
i

σi

∣∣∣∣∣ (2)

The Ising model can also be used to study
various other kinds of systems with pairwise cor-
relations between neighbouring nodes, like the
propagation of opinions in a social community [6].
However, these models are often more accurately
described using irregular graphs instead of the tra-
ditionally regular lattices used for the Ising model.
Of particular interest are complex structures ob-
served in many natural and social networks. Such
networks often exhibit properties that classify them
as small-world [7], [8], [9] or scale-free [5] graphs.
We are particularly interested in small-world graph
structures, and even though Ising model simula-
tions on these networks have been performed in
the past [10], [11], [6], the system sizes were
rather limited due to the computational complexity
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involved. But to determine the scaling of various
system properties as the rewiring probability p –
which is used to rewire a fraction of the edges of
the originally regular lattice to obtain a network
structure similar to that generated by the Watts-
Strogatz small-world model [8] – approaches zero,
very large systems need to be analysed. Of special
interest is the change in the critical temperature
with respect to the rewiring probability, Tc(p), over
several length scales of p.

To tackle this problem, we have parallelised two
commonly used Markov chain Monte Carlo algo-
rithms to run on the highly data-parallel architec-
ture of modern graphics processing units (GPUs),
specifically those based on the Compute Unified
Device Architecture (CUDA) [12]. The first one
is the Metropolis-Hastings algorithm [13], [14],
which selects a random cell at every time step and
proposes to flip its spin. The new configuration is
always accepted if it has a lower energy than the
current configuration, ∆E ≤ 0. Otherwise, it is
accepted with probability exp(−∆E/kbT ), which
depends on the change in energy and the system
temperature T . The parallel implementation of this
algorithm is described in [15], where all N cells
of the system are updated during each simulation
step.

The Metropolis algorithm is shown to perform
very well on the parallel architecture of the GPU
and significant speed-ups compared to a sequential
CPU implementation are achieved. However, this
does not improve upon an issue known as the
critical slow down, which is inherent to the local
update dynamics of this algorithm. The localised
nature of the interactions between individual cells
and the size of correlated regions near the critical
temperature make it necessary to perform many
system updates to obtain two system configurations
that are sufficiently decorrelated to be considered
as independent.

Cluster updates like those performed by the
Wolff algorithm [16] do not suffer from the critical
slow down, as they update entire clusters of cells
with like spins during every simulation step. The
algorithm works by picking a random cell i and
marking it as the first site of a cluster. It then
visits all neighbouring cells j and adds them to
the cluster if their spins σi and σj are equal and if
the bond is activated, which happens with random
probability p(〈i, j〉) = 1 − e−2β , where β is the
reciprocal temperature. The algorithm continues
iteratively until no new cells are added to the

Fig. 1: A 64× 64× 64 Ising model near criticality.

cluster. Then the spin values of the entire cluster
are flipped and the simulation step is completed.

While [17] describes how the Wolff algorithm
for both regular lattice and small-world Ising mod-
els can be parallelised on the GPU, the per-
formance is significantly lower than that of the
Metropolis algorithm on the GPU. It is therefore
interesting to investigate whether the higher perfor-
mance of the Metropolis updates or the avoidance
of the critical slow down with the Wolff algorithm
can produce decorrelated system configurations
more quickly and what effect the different graph
structures have on the results. Going one step fur-
ther, we also investigate whether interleaving both
algorithms at various ratios offers a performance
advantage.

The Ising model simulation has two distinct
phases. The system is initialised randomly and
must be allowed to settle around its equilibrium
energy before its properties are representative for
the the given parameters. This first phase is dis-
cussed in section 2. Once equilibrated, the ac-
tual simulation begins, where decorrelated system
configurations are generated and various system
properties can be obtained from these independent
configurations. This is discussed in section 3. Fi-
nally, section 4 offers a discussion and conclusions.
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2. System Equilibration
Starting from a random configuration, the system

is quenched until it reaches its equilibrium state.
We look at the performance of the Metropolis
algorithm on its own, but do not consider the
Wolff algorithm on its own in this phase, as it
performs very poorly with the initially random
system. The reason for this is that the clusters are
very small as a result of the randomness, which is
not a good situation for the parallel implementa-
tions of the Wolff algorithm. However, two hybrid
combinations M:W 1:1 and 4:1, are tested. The
latter test case is used to investigate whether a
relatively small number of the slower Wolff updates
is enough to counter the effects of the critical
slow down that reduces the efficiency of the fast
Metropolis updates. These algorithmic combina-
tions are tested on regular lattice and small-world
rewired lattice structures in three-dimensions. Only
the results for rewiring probability p = 10−4 are
shown for the small-world structures, as they are
representative for all other tested rewiring proba-
bilities in the range p = 10−2 to p = 10−7 in this
phase.

The system temperature T is set to the best
approximation of the critical temperature Tc(p)
for the given configuration. From previous studies
[18], [19], [20], this is known to be Tc(p =
0) ≈ 4.5115 for the regular lattice Ising model.
But there are no good estimates for the small-
world lattice with rewiring probabilities as small
as those considered here available at this time. It
is the eventual aim of this study to determine these
critical temperatures to a high precision. Therefore,
we obtain initial rough estimates by computing
Binder’s fourth-order magnetisation cumulant [21]
over a relatively large temperature range with a
large step size. The result from this is Tc(p =
10−4) ≈ 4.514, which is then used to calibrate the
equilibration phase for more thorough simulation
runs.

Essentially, the aim is to ensure that the system
is equilibrated but to avoid an unnecessarily large
number of system updates. Figure 2 illustrates the
change in the system energy over a number of
simulation steps and with respect to time for the
different algorithmic combinations. The generally
more important result is the time to equilibrate the
system, as it directly affects the wall clock time
required to execute the simulation.

The results for the regular lattice Ising simula-
tion show that all tested algorithmic ratios equili-

brate the system in approximately the same number
of steps. It is important to note that only the bottom
end of the energy range, where the system settles
into its equilibrium state, is shown in the graph.
The results of the change in energy with respect
to time, on the other hand, show the measurements
over the entire energy spectrum. The step functions
visible for ratios 4:1 and 1:1 on this plot also
reinforce the before mentioned issues of the Wolff
cluster updates with the initially random system
configuration. During the first few update steps,
the Wolff algorithm has almost no effect on the
system energy and all the work is performed by
the Metropolis updates. The Metropolis algorithm
on its own thus equilibrates the system in less time
than the hybrid ratios.

The results for the small-world rewired lattice
also show that all tested combinations of Metropo-
lis and Wolff updates equilibrate the system in
nearly the same number of simulation steps. Al-
though the mean energy measured for the 1:0 ratio
is slightly higher than that for the hybrid ratios,
the difference is within the region of uncertainty
illustrated by the inset to the plot. The plot of the
energy with respect to time clearly emphasises the
performance difference between the Metropolis and
Wolff algorithms. Once again, the step functions
visible in the hybrid update measurements illustrate
that the Wolff algorithm is not a good choice for
this phase.

To verify that the system is indeed equilibrated,
the histogram of the energy distribution over a
number of simulation steps is plotted as shown in
Figure 3. The approximately normal distribution of
the values is characteristic for random fluctuations
around a mean, in this case the equilibrium energy
of the system. From these results, we can be confi-
dent that the system with p = 10−4 is equilibrated
after 3000 simulation steps of either the 1:0, 1:1 or
4:1 ratios.

3. Decorrelated Measurements
Only when the system has reached its equilib-

rium state for a given temperature can meaningful
measurements of its characteristics be taken. But
another factor needs to be considered to obtain
statistically relevant results too, namely the correla-
tion between successive system states. As demon-
strated in Figure 4, every Metropolis or Wolff step
only truly updates a fraction of the cells. This is due
to the correlated regions of like-like bonds caused
by the local update mechanics of the Metropolis
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rewired lattice - p=0.0001 rewired lattice - p=0.0001

Fig. 2: The plots illustrate the equilibration phase of the Ising model on a regular lattice (top) and rewired
lattice with p = 10−4 (bottom). The system size is N = 1283 for the regular lattice and N = 3843 for the
small-world graph. The change in energy is shown with respect to the number of simulation steps (left)
and with respect to time (right). Each data point is averaged over 30 simulation runs. The inset to the
plots on the left illustrate the standard deviations for ratios 1:0 and 1:1 to give an idea of the extent of
the uncertainty at this level of magnification. The uncertainty in the energy measurements of the timing
results is negligible relative to the given energy range, but therefore the actual time measurements show
a significant error for some of the data points as illustrated by the horizontal error bars.

algorithm and the fact that only a limited number
of cells are part of any one Wolff cluster, especially
in the region around the critical temperature. It is
therefore necessary to perform enough update steps
between measurements to sufficiently decorrelate
the system. We use the Pearson product-moment
correlation coefficient ρ [22] to quantify the corre-
lation between two populations. It is defined as:

ρX,Y =
E[(X − µX)(Y − µY )]

σXσY
, (3)

where E is the expected value operator, µX
and µY are the expected values and σX and σY
are the standard deviations of populations X and
Y respectively. The coefficient ρ is +1 in the
case of perfect correlation and −1 in the case of
perfect anticorrelation. Here, either case is equally
undesirable and, thus, the results presented in this
paper use the absolute value of the correlation
coefficient |ρ|. While a coefficient of zero indicates
that the metric does not detect any correlation
between the two system states, trying to obtain
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Fig. 3: The histogram shows the energy distribution
for simulation steps 3000 to 10000 of the 1:1
hybrid Metropolis-Wolff update ratio and rewiring
probability p = 10−4. The approximately normal
distribution of the values indicates that the system
is equilibrated.

this level of decorrelation would be inefficient.
Therefore, two system states are deemed to be
sufficiently decorrelated to be used for independent
measurements of system properties when |ρ| ≤
10−2.

Figure 4 shows how the correlation decreases
with the number of system updates and, once
again more relevant to the actual execution of the
simulation, how it changes with respect to time.
The same hybrid algorithmic ratios used during the
equilibration phase are tested again. Like before,
no results for the Wolff algorithm on its own are
shown. The reason to omit them in the already
equilibrated system is that the difference in per-
formance compared to the Metropolis algorithm is
too great to even consider using only Wolff updates
when running the simulations on the GPU. In-
stead, additional results for the small-world rewired
lattice with p = 10−2, Tc ≈ 4.592 and system
size N = 3523 are given. As demonstrated in the
results of the equilibration phase, the Metropolis
algorithm parallelises significantly better than the
Wolff cluster updates. It is therefore interesting
to observe if any of the hybrid algorithmic ratios
performs better than the Metropolis algorithm on
its own and whether the results are the same for
all tested graph structures.

The plots for the results of the regular lattice
Ising simulation illustrate that the hybrid updates
with both Metropolis and Wolff steps interleaved
at different ratios indeed require fewer simulation
steps to decorrelate the system configuration to a
given degree than the Metropolis algorithm on its
own. This is the expected result as – due to the
critical slow down effect – the local Metropolis
updates are less efficient near the phase transition.
However, as the measurements with respect to the
wall clock time show, the sheer speed advantage
of the data-parallel CUDA implementation of the
Metropolis algorithm over the respective imple-
mentation of the Wolff algorithm more than makes
up for the reduced efficiency.

The results for the small-world Ising simulation
give an interesting insight into the effects of the
rewired lattice structure on the dynamics of the
system. With the small rewiring probability p =
10−4, the Wolff algorithm still reduces the number
of simulation steps required to sufficiently decorre-
late the system. However, the results are reversed
for p = 10−2, where the Metropolis algorithm
on its own decorrelates the system in fewer steps
than the Wolff algorithm. All of the tested ratios
produce independent measurements in significantly
fewer steps when compared to p = 10−4 and even
reach an apparently minimum correlation value of
approximately 10−3.6, after which additional simu-
lation steps no longer produce a noticeable change.
The explanation for this is that the perturbations to
the lattice created during the rewiring procedure
help reduce the effects of the critical slow down,
as they facilitate long distance interactions that are
otherwise not possible. While this benefits both
algorithms, the Metropolis updates clearly profit
more. The results for the execution time once again
show that the much higher performance of the
Metropolis updates offsets any advantage offered
by the Wolff algorithm for the small-world simu-
lations.

4. Discussion & Conclusions
To determine the scaling of the critical tem-

perature with respect to the rewiring probability,
tens of millions of system updates have to be
performed for every combination of system size,
rewiring probability and temperature. And many
such combinations are necessary to compute a good
approximation of the critical temperature from the
cross over of several Binder cumulant curves. To
get a single data point on a Binder cumulant curve,
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rewired lattice

Fig. 4: The graphs show how the correlation between system configurations of the Ising model changes
with respect to the number of system updates (left) and with respect to time (right). Different ratios of
the Metropolis and Wolff (M:W) update algorithms are compared. The results for simulations on regular
lattices (top) and small-world rewired lattices with p = 10−4 and p = 10−2 (bottom) are given. The
system size is N = 1283 for the regular lattice, and N = 3843 and N = 3523 for the small-world
systems with p = 10−4 and p = 10−2 respectively. Each data point is averaged over 3000 measurements
from 30 independent simulation runs. Measurements are taken at intervals of 200 simulation steps (the
reference configuration), to which the subsequent 200 system configurations are compared. The insets
illustrate the standard deviations from the correlation measurements as error bars. In addition, the second
inset to the plot on the lower right shows the error in the time measurements.

a large number of magnetisation values need to be
computed from independent system configurations.
To make matters even more difficult, the system
size required to reliably support a given rewiring
probability and remain in the small-world regime
must be much larger than the reciprocal of p [23].

Highly parallel architectures are needed to com-
plete the enormous amount of computation de-
manded by these simulations in a realistic amount

of time. The GPU has proven to be an excellent
choice for affordable, high performance simula-
tions of a large number of complex models. The
Metropolis algorithm discussed here can utilise the
data-parallel architecture of the GPU particularly
well, making it a good choice for the Ising model
system updates. Although the Wolff cluster update
algorithm can decorrelate system configurations in
fewer steps when the rewiring probability is very
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small, it can not keep up with the Metropolis
updates in terms of raw performance. We also
show that for larger values of p, the avoidance of
the critical slow down – usually one of the big
advantages of the Wolff cluster algorithm over the
localised nature of the Metropolis updates – loses
significantly in relevance. The random shortcuts
introduced to the lattice structure essentially have
the same effect, as they enable long distance inter-
actions between different parts of the system.

We have demonstrated that the interleaving of
different update algorithms can offer improvements
to the number of simulation updates needed to
decorrelate the system configuration. But which
algorithm or combination thereof gives the best
performance is highly dependent on the specifics
of the hardware architecture and system parameters
used for the simulation. For the Fermi-architecture
based GPUs used during our tests, the Metropolis
algorithm always offers a better performance –
in terms of the wall clock time to complete the
simulation – over any hybrid combination with the
Wolff algorithm.

Independent of the algorithmic decisions, it is
worthwhile to invest some time into the optimi-
sation of the different phases of the simulation.
Any savings in the time required to generate inde-
pendent system configurations add up particularly
quickly with the large number of measurements
typically needed for statistically reliable results.

With the parallel CUDA implementations of the
small-world rewired lattice Metropolis and Wolff
algorithms [15], [17] and based on the optimisa-
tions of the execution configurations for the dif-
ferent phases of the simulation described in this
paper, it was possible to improve the estimate of
the critical temperature for rewiring probabilities
as small as p = 10−7 and system sizes of up to
N = 5123 cells [24].
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Abstract— First principles electronic structure calculations
based on a plane wave expansion of the wavefunctions are
the most commonly used approach for electronic structure
calculations in materials and nanoscience. In this approach
the electronic wavefunctions are expanded in Fourier compo-
nents and 3D FFTs are used to construct the charge density
in real space. Efficient parallel 3D FFTs are required for
many other application codes such as in fluid mechanics,
climate research accelerator design, etc. Due to the large
amount of communications required in 3D parallel FFTs the
scaling of these application codes on large parallel machines
depends critically on having a 3D FFT that scales efficiently
to large processor counts. With the recent increase in the
number of cores per chip/node the simple model of running
one MPI process per core on large node counts results in a
large number of small messages causing contention in the
network and latency issues. In this paper we show that a
hybrid MPI/OpenMP implementation of our 3D FFT on the
Cray XT5 can significantly outperform the pure MPI version,
particularly on large processor counts, by sending fewer
larger messages. Our Hybrid 3D FFT has been implemented
in the electronic structure code PEtot and allowed us to
perform simulations of 4000 atom PbSe quantum rods on
up to 21,600 cores on the Cray XT5.

Keywords: materials science, parallel computing, 3D FFTs, MPI,
OpenMP

1. Introduction
In electronic structure calculations in materials science

first-principles methods based on Density Functional Theory
(DFT) in the Kohn-Sham (KS) formalism [1] are the most
widely used approach. In this approach the wave functions
are usually expanded in plane waves (Fourier components)
and pseudopotentials replace the nucleus and core electrons.
This implementation requires parallel 3D FFTs to trans-
form the electronic wavefunctions from Fourier space to
real space to construct the charge density. This gives a
computationally very efficient approach with a full quantum
mechanical treatment for the valence electrons, allowing the
study of systems containing hundreds of atoms on modest-
sized parallel computers. Taken as a method DFT-based
codes are one of the largest consumers of scientific computer

cycles around the world with theoretical chemists, biologists,
experimentalists etc. now becoming users of this approach.

Parallel 3D FFTs are very demanding on the communi-
cation network of parallel computers as they require global
transpositions of the FFT grid across the machine. The ratio
of calculations to communications for 3D FFTs is of order
logN whereN is the grid dimension (compared to a ratio of
N for a distributed matrix multiply of matrix sizeN ) which
makes it one of the most demanding algorithms to scale on a
parallel machine. A scalable parallel 3D FFT is critical to the
overall scaling of plane wave DFT codes. Efficient parallel
3D FFTs are also required for many other application codes
such as in fluid mechanics, climate research accelerator
design, etc.

In plane wave codes we have many electronic wavefunc-
tions where each one is represented in Fourier space so
unlike spectral type codes we are typically performing many
moderate sized 3D FFTs rather than one large 3D FFT. This
has the disadvantage from the scaling point of view that it
is difficult to efficiently scale up a moderate sized 3D FFT
on a large number of processors but it has the advantage
that for all-band codes we can perform many 3D FFTs at
the same time to aggregate the message sizes and reduce
latency issues. The wavefunctions are also represented by
a sphere of points in Fourier space and a standard grid in
real space where the sphere typically has a diameter about
half the size of the grid. This means we can also reduce
the amount of message passing and calculations required
compared to using a standard 3D FFT where the number of
grid points is the same in Fourier and real space. We have
therefore written our own specialized 3D FFTs for plane
wave codes that can run faster than using public domain
3D FFT libraries such as FFTW or P3DFFT and have no
restrictions on what grid sizes can be run. Our specialized
3D FFTs are used in many widely used materials science
codes such as PARATEC, PEtot, ESCAN [3].

Present supercomputers such as the Cray XT/XE range
have increasingly more cores per chip and node so to scale
to large node counts efficiently it is increasingly important
to have efficient parallelism at the node as well as internode
level. Each node on the Cray XT5 is constructed from two
AMD Istanbul 6 core chips while the Cray XE6 has two
AMD Magny-Cours 12 core chips per node. Future AMD
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chips are projected to have more cores per chip and recent
chips from IBM such as those used in the Blue Gene (BG)
supercomputers have a similar number of cores. The present
model for running many large first principles scale materials
science codes on these machines has often been to just run
an MPI process on each core. An alternative approach is to
use OpenMP for the parallelism at the node/chip level and
MPI between the nodes. This hybrid OpenMP/MPI approach
has the advantage of using less memory per core and can
result in fewer and larger messages compared to a pure
MPI implementation. This is particularly important for 3D
FFTs where the transpose of the grid results in all-to-all
type communications between the MPI processes. This can
result in limited scaling due to the large number of small
messages in the network resulting in contention as well as
latency issues. A pure MPI version also results in many
wasteful memory copies on the node corresponding to the
MPI communications between MPI processes mapped to the
cores on a given node. A hybrid OpenMP/MPI code has
the disadvantages of making the code more complex and
introducing overheads due to creation and destruction of
threads as well as possible load imbalance between threads.

Previous studies of hybrid OpenMP/MPI 3D FFTs have
focused on small core counts where there was little or no
improvement over a pure MPI version [4], [5]. In this work
we show how a hybrid OpenMP/MPI can have improved
performance over a pure MPI code for large core counts on
moderate sized FFT grids.

2. Theoretical Background: Plane Wave
First-principles Materials Science Codes

DFT using the Local Density Approximation (LDA) for
the exchange-correlation potential requires that the wave-
functions of the electrons{ψi} satisfy the Kohn-Sham
equations

[−
1

2
∇2+

∑

R

vion(r−R)+

∫
ρ(r′)

|r − r′|
d3r′+µxc(ρ(r))]ψi = εiψi

(1)
wherevion(r) is the ionic pseudopotential,ρ(r) is the charge
density andµxc(ρ(r)) is the LDA exchange-correlation
potential. We use periodic boundary conditions, expanding
the wavefunctions in plane waves (Fourier components),

ψj,k(r) =
∑

g

aj,k(g)e
i(g+k).r . (2)

The selection of the number of plane waves is determined
by a cutoffEcut in the plane-wave kinetic energy12 |g+ k|2

where {g} are reciprocal lattice vectors. This means that
the representation of the wavefunctions in Fourier space is
a sphere or ellipsoid with eachg vector corresponding to
a Fourier component (see Figure 1). Thek’s are vectors
sampling the first Brillouin Zone (BZ) of the chosen unit cell
(or supercell). The Kohn-Sham equations are usually solved

by minimizing the total energy with an iterative scheme,
such as conjugate gradient (CG), for a fixed charge density
and then updating the charge density until self-consistency
is achieved (for a review of this approach see reference [2]).
Some parts of the calculation are done in Fourier space
and some in real space transforming between the two using
3D FFTs. In particular the charge density is constructed in
real space by transforming each of the wavefunctions from
Fourier space to real space then squaring and summing them.

3. Communication Structure and Paral-
lel Data Decomposition for 3D FFTs

A 3D FFT consists of three sets of 1D FFTs in the x,y and
z directions with transpositions of the data between each set
of 1D FFTs. Only two transposes are needed if the final data
layout is not required to have the same x,y,z order in both
spaces as is the case for our application. Since theg vectors
(Fourier coefficients) are distributed across the nodes these
two transposes can require global communications across the
parallel computer.

As mentioned in the previous section the data for a given
wavefunction forms a sphere of points in Fourier space
and a standard grid in real space (see Figure 1). The data
distribution for the sphere is driven by 1) the need to have
complete columns of data on a given processor to perform
the first set of 1D FFTs 2) other parts of the full materials
science code require intensive calculations related to the
number of Fourier components each processor holds so to
load balance this part of the calculation we require a similar
number of Fourier components on each processor. The data
layout we use in Fourier space is to order the columns of
the sphere in descending order and then to give out the
individual columns to the processors such that each new
column is given to the processor with the fewest number of
Fourier components. In this way each processor holds sets
of complete columns and approximately the same number
of Fourier components (see Figure 1 for an example of
the layout on three processors). In real space we consider
the grid as a one dimensional set of columns with (x,y,z)
ordering and then give out contiguous sets of columns to
each processor giving as closely as possible the same number
of columns to each processor. In this way each processor
will hold complete planes or sections of planes of the three
dimensional grid (see Figure 1). With this data layout we
have no restrictions on the number of processors required
for a given sphere or grid size. Also this data layout means
that the first transpose in the 3D FFT typically requires all
processors communicating with every other processor while
the second transpose may require no communications (if
the each processor has complete planes) or limited local
communications if each processor has a section of a plane.
In the case of SMP nodes complete planes can still reside
on a node even if each processor is performing calculations
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on sections of a plane. A more detailed description of each
step in our specialized 3D FFT can be found in reference
[7].

In order to have a scalable parallel 3D FFT we therefore
need to have as efficient as possible an implementation of
the communications in the two parallel transposes. As men-
tioned above it is the first transpose that typically involves
all the processors communicating with each other while the
second transpose will typically involve limited local commu-
nications. In our original pure MPI implementation we found
that using MPI_ALLTOALLV gave the best performance and
scaling on Cray XT and IBM BG platforms (see reference
[8] for details of the performance of the pure MPI 3D FFT
code). In the pure MPI version we also have implemented
what we will refer to as blocked versions of the 3D FFTs
where we perform a number of 3D FFTs at the same time
(typically 40) and so can aggregate the message sizes to
reduce latency problems. In our particular application we
are performing a large number of moderate sized 3D FFTs
(our tests will be for1443 grids) so it is important to take
advantage of this blocking to reduce latency issues on large
processor counts.

Fig. 1: A three processor example of the parallel data layout
for the wavefunctions of each electron in Fourier space (left)
and real space (right). The different colors correspond to the
data held by processors P0, P1 and P2.

4. Hybrid OpenMP/MPI Implementa-
tion

In the pure MPI parallel 3D FFT there are basically three
types of code section. The first is the three sets of one
dimensional FFTs for the x,y and z direction FFTs. The
second is the local gather and scatter type operations before
and after the communications. Each MPI process gathers
the data together into an array for sending to each of the
other MPI processes. The scatter type operation then unpacks
the received data to form contiguous columns before the
next set of one dimensional FFTs are performed. The third
type of code section is the actual communications which
are performed using an MPI_ALLTOALLV. The gather and
scatter operations combined with the communications are
performing the parallel transposes. In the pure MPI code
the parallelism over the the one dimensional FFTs is very
efficient as these are completely independent and there is
a large number of one dimensional FFTs to load balance
over the MPI processes. In a standardN3 grid there areN2

one dimensional FFTs to be performed in each dimension
although for our specialized FFTs there are fewer than this
for the first two dimensions. In the pure MPI code the gather
and scatter operations are local to the MPI process and
load balance well since each MPI process is doing similar
operations. It is the all-to-all communication step in the
first transpose that greatly limits the scaling of 3D FFTs
on parallel computers. In this step each MPI process will
send a message of approximately the same size to all the
other MPI processes. If we havenproc MPI processes then
we will have a total ofn2

proc messages of sizeN3/n2
proc.

Therefore if we scale to large values ofnproc we will have a
very large number of small messages being sent through the
network. By using our blocked 3D FFTs we can increase the
size of the messages to reduce latency issues. It should also
be noted that since we are going from a sphere in Fourier
space to a cube in real space the forward and reverse FFTs
are different so we have different routines for the forward
and reverse 3D FFTs.

In the OpenMP version of the code we basically need to
introduce another level of parallelism in the code below the
MPI parallelism to divide the work for each MPI process
among the OpenMP threads. In the case of the three sets of
one dimensional FFTs this is straightforward as for each
MPI process we still have a fairly large number of one
dimensional FFTs to divide among the OpenMP threads.
In the case of the gather/scatter routines it was necessary
to restructure the loops associated with each MPI process
to exploit the parallelism. The gather/scatter operations to
pack and unpack the arrays used for the communications
are always operating on independent elements so this work
can be divided among the different OpenMP threads and
load balanced reasonably well by allowing each thread to
deal with roughly the same number of elements. In the MPI
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communication steps we only perform the communications
using one of the OpenMP threads. The basic structure of
the hybrid version of the 3D FFT code is that we createn
threads (which we will denote asnthr ) at the start of the
routine which are then used for the parallelization of the one
dimensional FFTs and gather/scatter operations and the MPI
communications are then done in a master region. In this way
we avoid the cost of creation and destruction of threads in
the subroutine. The threads are only destroyed at the end of
the subroutine. If we now consider the difference between
running the pure MPI and the hybrid MPI/OpenMP code on
the same number of cores and nodes then the hybrid code
will aggregate the messages associated with all the threads
per MPI process. So the hybrid code running on the same
number of cores will send a factor ofn2

thr fewer messages
that aren2

thr larger in size. This can greatly reduce latency
issues as well as contention in the communication network.

5. Results on the Cray XT5
Our simulations were performed on the Cray XT5 ma-

chine Jaguar at the Oak Ridge Leadership Computing Facil-
ity (OLCF). Each node of this machine consists of two AMD
Istanbul 2.6 GHz six core chips connected by a Seastar2
interconnect. The latency of the network is 7µs with an
internode bandwidth of 1.6 GBytes/s. There are 1.3 Gbytes
of memory per core and the complete machine has 224,256
cores (18,688 nodes) with a peak speed of 2.33 Petaflops.

The size of grid for our tests was1443 which is the size
required for the simulation of about 500 silicon atoms in
the crystal structure and is typical of the grid size required
for a moderate sized simulation for these types of first
principles electronic structure codes. A larger grid would
give better scaling to larger core counts but the purpose of
our simulations is to show that for a typical sized simulation
the hybrid code can give significant improvements over the
pure MPI code.

The data in Table 1 and Figure 2 are for runs on 288
cores (24 nodes) with 1 to 12 OpenMP threads per node. The
nodes are always run fully packed, using all the cores per
node. The results are for four hundred 3D FFTs to average
over fluctuations and the blocking factor used for the 3D
FFTs is 40. Table 2 and Figure 3 are the same runs but for
576 cores (48 nodes). We can see from Tables 1 and 2 that
as we increase the number of threads the code runs faster
with the fastest speed being for 6 threads for the runs on
576 cores. The speed drops slightly for 12 threads which
we believe is due to NUMA effects on the node as each
chip has six cores and we cannot pin the local memory to
the thread when we have more than 6 threads per node.
Looking at Figure 3 we can see that all the gain in speed of
the hybrid code over the pure MPI code (that corresponds to
running with one thread) is in the all-to-all communication
steps (t1comm and t5comm). The timings for 1 to 6 threads
for the other parts of the code are similar. As previously

mentioned this is a result of the reduction in the number
of messages by a factor ofn2

thr that are nown2
thr larger.

The results on 288 cores for Figure 2 are similar although
the gain in performance is not as large as on the larger core
counts and the fastest run is with 3 threads although the time
for 6 threads is similar. It should also be noted that running
with 6 threads the speedup in going from 288 to 576 cores
is almost a factor of two with the hybrid code but running
on 576 core the pure MPI version was actually slower than
on 288 cores.

Fig. 2: Timings for 400 3D FFTs (grid size1443) on 288
cores and different OpenMP thread counts for the different
sections of the code. The nodes are always run fully packed
ie. using all the cores. These results are for both the forward
and reverse 3D FFTs. Thet is for the 1D FFTs,tg and ts
are for the gather scatter operations andtcomm is for the
communication steps.t1 to t3 are the steps for the forward
3D FFT andt3 to t6 are for the reverse 3D FFT. There are
only two communication steps for each of the forward and
reverse 3D FFTs

mpi procs. Threads Time 3D FFTs
288 1 0.253
144 2 0.169
96 3 0.160
48 6 0.165
24 12 0.199

Table 1: Timings for 400 3D FFTs (grid size1443) on 288
cores and different OpenMP thread counts. Mpi procs is
the number of mpi processes and Threads is the number of
OpenMP threads. This data corresponds to the same run as
Figure 2.
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Fig. 3: Timings for 400 3D FFTs (grid size1443) on 576
cores and different OpenMP thread counts for the different
sections of the code. The nodes are always run fully packed
ie. using all the cores. These results are for both the forward
and reverse 3D FFTs. Thet is for the 1D FFTs,tg and ts
are for the gather scatter operations andtcomm is for the
communication steps.t1 to t3 are the steps for the forward
3D FFT andt3 to t6 are for the reverse 3D FFT. There are
only two communication steps for each of the forward and
reverse 3D FFTs

mpi procs. Threads Time 3D FFTs
576 1 0.271
288 2 0.134
192 3 0.104
96 6 0.087
48 12 0.106

Table 2: Timings for 400 3D FFTs (grid size1443) on 576
cores and different OpenMP thread counts. Mpi procs is
the number of mpi processes and Threads is the number of
OpenMP threads. This data corresponds to the same run as
Figure 3.

6. Conclusion and Future Work
The basic conclusion of our studies is that by introducing

another level of parallelism in the code at the node level
with OpenMP our hybrid MPI/OpenMP 3D FFTs can scale
efficiently to larger core counts than the pure MPI version.
This gain comes from the large reduction in the number of
messages as well as their increase in size, reducing latency
effects. For the final version of the paper we plan to have data
on more grid sizes as well as on other multicore platforms.

We implemented our hybrid 3D FFT in the electronic
structure code PEtot which allowed us to perform simula-
tions of 4000 atom PbSe quantum rods on up to 21,600
cores on the Cray XT5. The full code has other higher

levels of parallelism such as over states and k-points which
allows us to scale to much larger numbers of cores than the
scaling of the 3D FFTs. The new hybrid 3D FFTs allow us
to have another level of on-node parallelism at the lowest
level. Threading at the node level also allows us to reduce
the memory footprint of the full code. The performance of
the full code will be the subject of a future publication.
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Abstract— Cloud is a virtual image about some amount of 

undefined powers, that is widespread and had unknown power 

and inexact amount of hardware and software configurations, 

and because of we haven’t any information about clouds location 

and time dimensions and also the amounts of its sources we tell 

that Cloud Computing [1]. This technology presents lots of 

abilities and opportunities such as processing power, storage and 

accessing it from everywhere, supporting, working – team group - 

with the latest versions of software and etc., by the means of 

internet. Cloud computing is reliable services that presenting by 

next generation data centers and from internet, they based on 

virtual technologies and computing methods [4]. In recent 

decades the internet has very deep influences in human lives and 

also in offer and demand markets; lots of people for trading, 

reading the news, seeing the movies or to play online games go 

through the internet. As our daily needs from the internet became 

more, so that the processing power and amount of storage data 

and files should increase significantly [8]. With remarkable 

developments of communication and information technology in 

recent days, we consider processing and processing power as the 

fifth vital component in human lives (after water, electricity, gas 

and telephone) [9]. These days’ lots of technologies migrate from 

traditional systems into cloud and similar technologies; also we 

should note that cloud can be used for military and civilian 

purposes [3]. On the other hand, in such a large scale networks 

we should consider the reliability and powerfulness of such 

networks in facing with events such as high amount of users that 

may login to their profiles simultaneously, or for example if we 

have the ability to predict about what times that we would have 

the most crowd in network, or even users prefer to use which part 

of the Cloud Computing more than other parts – which software 

or hardware configuration. With knowing such information, we 

can avoid accidental crashing or hanging of the network that 

may be cause by logging of too much users. In this paper we 

propose Kalman Filter that can be used for estimating the 

amounts of users and software’s that run on cloud computing or 

other similar platforms at a certain time. After introducing this 

filter, at the end of paper, we talk about some potentials of this 

filter in cloud computing platform. In this paper we demonstrate 

about how we can use Kalman filter in estimating and predicting 

of our target, by the means of several examples on Kalman filter. 

Keywords- Cloud computing and its influences, Security, 

Kalman Filter, Estimation and prediction.  
 

I.  INTRODUCTION  

History of computer science has had fundamental changes. 

For example in first generation of computers (from 1945 

until 1956), vacumm tube was used in computers. In 2nd 

generation (from 1956 until 1963) by the invention of 
transistors, these tiny devices were used in computers. After 

that, integrated circuits were used in 3rd generation of 

computers (1963 to 1971). Finally in 4th generation (since 

1971 up to now), along with technology advancement, Large 

Scale Integration (LSI) circuits, Very Large Scale 

Integration (VLSI) and Ultra Large Scale Integration 

(ULSI) were used in computers. Nowadays new technology 

that is named as Cloud Computing is creating a new era in 
computer industry and processing power. By reviewing the 

historical points, we can understand that the idea of Cloud 

Computing taken from this fact: When the current user or 

users don’t require the processing resources, these 

resources can be assigned to other users. Most simple 

definition of Cloud Computing is: Access to enormous 

resources and processing powers even, through cheap 

computers. 

One of the major benefits of this technology is sharing 

resources – software and hardware resources - and the 

ability to simultaneously working on specific projects or 

files. For example you want to do some processing on DNA 
of person(s). If you are user of cloud computing, at first you 

can use processing power of cloud computing that is more 

reliable and efficient, because your system may not have 

enough processing power. Secondly, you can do the above 

operations with many experts – sharing your task -

simultaneously and find instant results of each other. Also, 

before this technology revealed, you were restricted to use 

only processing power of your own system. Also, regularly 

you must update the hardware and software of your system, 

in order to be able to access the latest software version and 

also have required hardware to support this software, that’s 
very costly. Also if you want to install this software on more 

computers; you need to purchase more licenses of that 

software. 

We don’t have such problems in Cloud Computing, because 

every time you log out from your account and logging to it 

next time, you'll see the latest update of the software, 

without need to developing the hardware of your system, 

because the required hardware is provided by cloud 

resources. Also you don’t pay additional costs for this 

software developing – buying licenses or pay for updating 

the software.  
In ordinary systems, if you have high sensitive and 

important information on your computers, you must always 

update antivirus and firewall of your own system, to avoid 

from data loss or manipulation. If you forget doing this 

action (updating), it is possible to accidentally your system 

be attacked and your information became destroyed or 

manipulated. But in Cloud Computing, when you login to 

your account, you will see security system is up-to-date with 

the latest version.  

Another benefit of cloud computing is, supporting 

(recognizing) all different formats of the files. For example, 

in ordinary systems, you may download a file – from your e-
mail or from a website - that has unknown format for your 

machine and you don't know which software can open it; but 

in Cloud Computing this file will be open with associated 

and applicant software –automatic recognition of that file 

type and devoting it the exact software for running is 

occurred in cloud computing. 
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Moreover, for instance if you have a company, you can 

transfer internal network of your company –your server 

database - on Cloud Computing to enjoy more speed and 

processing power, and also if you use server, you will 

economize in budget and only pay power consumption and 

maintenance costs.  
These are just part of the great performance of new 

technology, known as Cloud computing that is named also as 
"the next big thing" [1-9]. 

 

II. CONSIDERING HIGH IMPACTS OF CLOUD COMPUTING 

ON DIFFERENT INDUSTRIES  

In two past sections of the paper, we define some of the 

basic and fundamental principles of cloud and also we tell 

about some of its advantageous. Now we want imply into, 

the major applications of this technology. After that when 

we understand the importance of this technology, we 

introduce Kalman Filter; which can be used for prediction 

and estimation of different parameters in cloud platform.   

The main reason for using cloud computing is, humans in 

the current era wants to use wireless and high speed 

communications [6]. The first commercially provider of 
cloud computing was Amazon. Another reason for this 

amount of usage is that, we prefer not to know about the 

volume of processors, hardware and servers and only wants 

to face with very gigantic ability in storage and processing 

capability [9]. The third reason for using of cloud 

computing instead of traditional systems is that, these days 

people want to use social sites, and these sites should have 

enough capability to support the users; we shouldn’t have 

any crash or low speed when we use them. For example 

Facebook has more than 850 million members these days 

and the Facebook Team decides recently that it’s better to 

migrate to Cloud Computing platform, because it had more 
storage and processing power [14]. Another reason is that 

user(s) can decide with whom and with which places in all 

over the world, they wants to share his/her information and 

files; we don’t have such abilities in traditional systems, 

also in traditional systems we have the restriction on the 

volume of data that’s stored [11]. Another reason is that, a 

programmer doesn’t need to program the servers and 

computers for particular users or organizations, but every 

people can use cloud computing with his/her special uses 

that wants. Furthermore, it doesn’t need any specialty in 

using, it doesn’t have any software and hardware 
requirement, and in cloud computing all kind of files were 

recognizable – automatic format recognition [9].  

Google Company wants to publish Chrome operating 

system, and with that it wants to visit their users in cloud. 

They believe that by employing that technology they can 

better satisfy their users. Furthermore, Google recently has 

published the new version of Google Docs, which is very 

powerful software package for cloud users. Also Microsoft 

Company decides to introduce Microsoft Azure – that’s an 

OS which is based on cloud computing, because they fear 

about losing their users. Also General Service 

Administration (GSA); because of having so many visitors 
that visit their sites every day, they fearing about crashing 

or hanging of it, as a result they decide to migrate to cloud 

computing. National Aeronautics and Space Administration 

(NASA) builds NEBULA, which is cloud computing platform 

and with using of that platform, people can participate in 

NASA missions and tell their ideas and even their 

suggestions; moreover NASA search for better storage and 

processing ability from this technology. The NASA 

Headquarter has publishes on their recent report, that they 
decide to implement International Space Station platform on 

Cloud Computing. Also Department of Interior, which is 

provider of lots of services for organizations decide to 

present some services by cloud computing, because they 

think it’s more convenient. Department of Health and 

Human Services wants to employ new platform which is 

based on cloud computing to be able to give better, faster 

and more efficient services. Census Bur, which is the 

provider and supporter of SaaS services in Salesforce site - 

that is giving services to millions of people every day - 

decide to present new products based on Cloud platform. 

Also The White House decide to migrate to cloud computing 
technology because they think in that way they can do their 

tasks such as e-voting, having conversation with their 

citizens, and their internal networks; more easily and faster 

[1, 5,15].  

Also United Kingdom Governments run G-Cloud networks 

for themselves, in order to have more precise in their works. 

Europeans use cloud computing in public and private 

sections such as: Management of public sector housing, 

transportation service networks, Census, Economic 

development, Health services, and Contracting and 

education services [1].  
Also in Denmark with two pilot projects, Digitalise’r.dk and 

NemHandel, they evaluate cloud computing for their users 

and after that when they became satisfy about this 

technology they decide to establish new platform for their 

governments based on cloud computing. One of the pioneers 

in this technology are Japanese with their cloud, that known 

as Kasumigaseki Cloud and built in government-industry 

area of Tokyo, they wants to improve cloud for their public 

uses, also they named this technology and area that 

implement it as a pilot project as “green environment”. In 

China, especially in north of this country the government 

with the project that named as: “The Yellow River Delta 
Cloud Computing Center”, wants to establish governmental 

based services on this technology. Even in Wuxi city, the 

government established a company for manufacturing 

resources based on cloud computing technology. In 

Thailand, The Government Information Technology Services 

(GITS), design and construct private cloud for public 

sectors; and they wants to, as soon as possible present so 

many services for civilians and private organizations by the 

means of cloud computing. In Vietnam, IBM Company with 

their government and universities wants to develop the new 

laws, for presenting cloud for public and private sections. In 
New Zealand, they search for the better and more efficient 

uses and potentials of cloud computing [1, 7]. 

Now we want to consider the impact of this technology on 

minor companies and organizations. YouTube Company, 

which is in 2006, has a daily increasing about 30 million in 

their web-pages, nowadays decide to use cloud computing 

technology for better and faster searching and hosting, 

because as they told in their report we have more intelligent 

algorithms in cloud platform. Although if such company 

doesn’t used cloud computing, they should pay lots of money 
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for maintaining and operating of their servers, also lots of 

money for upgrading their software and hardware 

configurations [13].  

 

 
 
Fig. 1: Every People Can Share Their Tasks and Projects with Others, 

They Can Get Helps and New Ideas. 

 

SmugMug Company which is a site for sharing images; for 

better and faster services and also because of they doesn’t 
have enough storage space decide to migrate to cloud 

computing. Or as an example Google Company prepares 

services such as Google App Engine which promise you to 

run your applications on Google cloud resources. As such, 

you can share your files and processes with anyone you 

want or even you can share your files with all the peoples 

around the world. Also Google and IBM decide to construct 

and run new networks for universities based on cloud 

computing; so that universities can do their researches with 

help of each other simultaneously, even faster and with 

more precise; because the students and professors from 
other universities can take part in other research topics and 

tell their ideas. The universities which are used this 

technology are: University of Washington, Carnegie-Mellon 

University, MIT, Stanford University, The University of 

California at Berkeley, Maryland University [7].  

Nasdaq Company, which is had lots of data about stock and 

funds, wants to share and sell their information; but they 

are anxious about using of servers and their storage 

capacity; thus they decide to use Amazon S3 service, which 

is cloud based platform. Recently, minor companies such as 

Nimbus and Eucalyptus present storage and processing 

powers by getting fees [1, 13].  
Sun Micro Systems Company now involved in constructing 

new data centers for hosting applications and users of cloud 

computing. This company wants to establish many sites all 

over the world to hosting user’s application and avoiding 

from failure. Also these days science networks such as My 

experiment and nanoHub migrates to cloud computing, 

because they wants to had better and more efficient and 

convenient communications with their fans. Also cloud 

computing can present banking services, it means you take 

some services by paying their fees and after that you 

improve that service or add some features to that service 
and sell it to other users. Also, iPhone company build their 

new Mobile Phone based on Cloud computing platform, the 

providers of this product think that with using this 

technology they can implement chipper Microcontrollers on 

the board of this device, but instead they can gain more 

processing power, only because they use cloud computing 

technology. Finally, writers of this paper predict in near 

future lots of people involved in this technology. Engineers 

and designers must play their role more accurately to get 
the interest of more users and provide them their needs [1 to 

5]. 
In the next section we discuss about basic concepts of 
Kalman Filter and introduce it briefly. We can use this 
algorithm for estimation and prediction the amount of users 
that logging into their profiles at certain time; furthermore 
we can use it for security purposes.  

III.  AN INTRODUCTION INTO KALMAN FILTER 

In 1960, R.E. Kalman published his famous paper 

describing a recursive solution to the discrete-data linear 

filtering problem. Since that time, due in large part to ad-

vances in digital computing; the Kalman filter has been the 
subject of extensive research and application, particularly 

in the area of autonomous or assisted navigation. The 

Kalman filter is a set of mathematical equations that 
provides an efficient computational (recursive) means to 

estimate the state of a process, in a way that minimizes the 

mean of the squared error. The filter is very powerful in 

several aspects: it supports estimations of past, present, and 

even future states, and it can do so even when the precise 

nature of the modeled system is unknown. The Kalman filter 

has numerous applications in technology.  

 
Fig. 2: The Kalman filter keeps track of the estimated state 

of the system and the variance or uncertainty of the estimate. 

The estimate is updated using a state transition model and 

measurements.  Denotes the estimate of the system's 
state at time step k before the k-th measurement yk has been 

taken into account; is the corresponding 

uncertainty. 
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A simple and ubiquitous example is the phase-locked loop, 

used in FM radios and most electronic communications 

equipment. Another common application is for guidance, 

navigation and control of vehicles, particularly aircraft and 

spacecraft. 
The Kalman filter uses a system's dynamics model (i.e., 

physical laws of motion), known control inputs to that 

system, and measurements (such as from sensors) to form an 

estimate of the system's varying quantities (its state) that is 

better than the estimate obtained by using any one 

measurement alone. As such, it is a common sensor fusion 

algorithm. 

All measurements and calculations based on models are 

estimates to some degree. Noisy sensor data, 

approximations in the equations that describe how a system 

changes, and external factors that are not accounted for 

introduce some uncertainty about the inferred values for a 
system's state. The Kalman filter averages a prediction of a 

system's state with a new measurement using a weighted 

average. The purpose of the weights is that values with 

better (i.e., smaller) estimated uncertainty is "trusted" more. 

The weights are calculated from the covariance, a measure 

of the estimated uncertainty of the prediction of the system's 

state. The result of the weighted average is a new state 

estimate that lies in between the predicted and measured 

state, and has a better estimated uncertainty than either 

alone. This process is repeated every time step, with the new 

estimate and its covariance informing the prediction used in 
the following iteration. This means that the Kalman filter 

works recursively and requires only the last "best guess" - 

not the entire history - of a system's state to calculate a new 

state. 

 

When performing the actual calculations for the filter (as 

discussed below), the state estimate and covariance’s are 

coded into matrices to handle the multiple dimensions 

involved in a single set of calculations. This allows for 

representation of linear relationships between different state 

variables (such as position, velocity, and acceleration) in 

any of the transition models or covariances. 
The Kalman filter is used in sensor fusion and data fusion. 

Typically, real-time systems produce multiple sequential 

measurements rather than making a single measurement to 

obtain the state of the system. These multiple measurements 

are then combined mathematically to generate the system's 

state at that time instant. 

As an example application, consider the problem of 

determining the precise location of a truck. The truck can be 

equipped with a GPS unit that provides an estimate of the 

position within a few meters. The GPS estimate is likely to 

be noisy; readings 'jump around' rapidly, though always 
remaining within a few meters of the real position. The 

truck's position can also be estimated by integrating its 

speed and direction over time, determined by keeping track 

of wheel revolutions and the angle of the steering wheel. 

This is a technique known as dead reckoning. Typically, 

dead reckoning will provide a very smooth estimate of the 

truck's position, but it will drift over time as small errors 

accumulate. Additionally, the truck is expected to follow the 

laws of physics, so its position should be expected to change 

proportionally to its velocity. 

In this example, the Kalman filter can be thought of as 
operating in two distinct phases: predict and update. In the 
prediction phase, the truck's old position will be modified 
according to the physical laws of motion (the dynamic or 

"state transition" model) plus any changes produced by the 
accelerator pedal and steering wheel. Not only will a new 
position estimate be calculated, but a new covariance will be 
calculated as well. Perhaps the covariance is proportional to 
the speed of the truck because we are more uncertain about 
the accuracy of the dead reckoning estimate at high speeds 
but very certain about the position when moving slowly. 
Next, in the update phase, a measurement of the truck's 
position is taken from the GPS unit. Along with this 
measurement come some amount of uncertainty, and its 
covariance relative to that of the prediction from the 
previous phase determines how much the new measurement 
will affect the updated prediction. Ideally, if the dead 
reckoning estimates tend to drift away from the real position, 
the GPS measurement should pull the position estimate back 
towards the real position but not disturb it to the point of 
becoming rapidly changing and noisy. As another example 
application consider the use of Kalman filter in computer 
vision, Data fusion using a Kalman filter can assist 
computers to track objects in videos with low latency (not to 
be confused with a low number of latent variables). The 
tracking of objects is a dynamic problem, using data from 
sensor and camera images that always suffer from noise. 
This can sometimes be reduced by using higher quality 
cameras and sensors but can never be eliminated, so it is 
often desirable to use a noise reduction method. The iterative 
predictor-corrector nature of the Kalman filter can be 
helpful, because at each time instance only one constraint on 
the state variable need be considered. This process is 
repeated, considering a different constraint at every time 
instance. All the measured data are accumulated over time 

 
Fig. 3: Model underlying the Kalman filter. Squares 

represent matrices. Ellipses represent multivariate 
normal distributions (with the mean and covariance 

matrix enclosed). Unenclosed values are vectors. In the 

simple case, the various matrices are constant with time, 

and thus the subscripts are dropped, but the Kalman 

filter allows any of them to change each time step. 
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and help in predicting the state. Video can also be pre-
processed, perhaps using a segmentation technique, to 
reduce the computation and hence latency. 

 

IV. CONCLUSION  

In this article, we tell about basic definitions and concepts 

of cloud computing. Also we tell about uses of this 

technology in different societies and industries and also 

about how they use it and about their future plans. An 

important factor in using cloud computing and migrating 

into this network is its security and durability. In this paper 

the authors propose Kalman filtering for increasing security 

and durability of such networks for the first time. If we 

implement this algorithm on such networks – for example on 

the edge of such networks, we can estimate and predict the 

amount of users that use the resources – software and 
hardware resources – at anytime. Also we can estimate and 

predict the amount of users that logging onto a certain 

account, and by the means of that we can avoid surveillance 

entering of bad users – we estimate the location of user by 

the previous location and its background data. Also we can 

use it for estimating the amount of user that use a certain 

application on such networks, and by knowing that amount 

we can improve power of our network to be able to support 

our users. Furthermore by using this algorithm we can 

increase the security of this technology, by estimating and 

predicting the point of presence of bad users. In this paper 
we demonstrate about how can we use Kalman filter in 

estimating and predicting of our target, by the means of 

several examples on Kalman filter.  
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Abstract-The gravity driven film flow down a heated 

inclined ramp and how it is affected by temperature 

dependent fluid properties is examined. The five 

temperature dependent fluid properties examined were: 

surface tension, mass density, dynamic viscosity, thermal 

conductivity and specific heat capacity. The investigation 

utilized a theoretical model based on the conservation of 

mass, momentum and energy, including the physically 

appropriate Newton’s Law of Cooling to incorporate 

temperature changes on the surface of the film. A depth-

integrated model was considered and modified Integral 

Boundary Layer equations were generated. A linear 

stability analysis was carried out. Nonlinear numerical 

simulations were also performed in order to verify the 

predictions of the linear theory and determine the evolution 

of the unstable flow. 

 

Keywords: inclined flow, thermocapillary effects, 

temperature dependent fluid properties, weighted residual 

method 

 

1. Introduction 
 

The flows of thin fluid films exist in various aspects of daily 

life. In engineering applications we see their usage in 

distillation units, condensers and heat exchangers. In 

biological systems we find thin fluid films lining the 

airways in the lungs and thin tear films covering the eye. 

These are just a few of the many examples of daily 

occurrences of thin fluid films. In geophysical events we see 

the flow of shallow layers on a larger scale in the forms of 

gravity currents, mud, granular and debris flow, snow 

avalanches and lava flows. Although these occurrences 

seem very different with little in common with each other, 

they can all be modeled using the same mathematical 

principles. Important simplifications in the mathematical 

formulation can be made on the assumption of small aspect 

ratios of vertical to lateral length scales. 

 Shkadov [1] exploited the assumed shallowness of the flow 

and filtered out the explicit dependence on the depth 

coordinate by depth integrating the general flow equations. 

The Integrated Boundary Layer (IBL) equations obtained by 

Shkadov are however inaccurate for determining the 

instability threshold. Ruyer-Quil and Manneville [2] used a 

modified IBL approach, where they combined a gradient 

expansion with a weighted residual technique using 

polynomial test functions. The modified IBL equations are 

similar to Shkadov’s, but correctly predict the instability 

threshold. 

 There has been some research done in recent years on the 

problem of a thin fluid flow down a heated inclined plane 

[3-6]. This research considered the Marangoni effect 

associated with the variation in surface tension with 

temperature, however other fluid properties were assumed 

to be temperature independent. Goussis and Kelly [7] 

examined the role of temperature variation in the viscosity 

only. They performed a linear stability analysis on the 

Navier-Stokes equations and found that heating a film 

whose viscosity decreases with temperature has the effect of 

destabilizing the flow. Hwang and Weng [8] set up a 

Benney equation and performed a linear and weakly 

nonlinear stability analysis on it. The limitation of these 

investigations [7,8] is that a prescribed constant temperature 

at the surface of the fluid is assumed. As a result, the 

Marangoni effect does not play a role. In order to capture 

the Marangoni effect, the model must apply the physically 

appropriate Newton’s Law of Cooling at the liquid-air 

interface.  

 The purpose of the present paper will be to examine how 

the flow of a thin fluid film down a heated inclined plane is 

affected by temperature dependent fluid properties. As was 

determined in [3-6], when a gravity-driven fluid film is 

heated, the variation in its surface tension with temperature 

can combine with the inertial effects of the flow to generate 

interfacial instability. We will extend the basic non-

isothermal problem with temperature dependent surface 

tension, to also include temperature variation in mass 

density, dynamic viscosity, thermal conductivity and 

specific heat. In obtaining our model, we will use a 

modified IBL approach, like that used by Ruyer-Quil and 

Manneville [2] for the isothermal problem and later 

extended by Trevelyan et al. [6] for the basic non-isothermal 

problem. This model will be used to perform linear and 

nonlinear stability analyses on the flow.  

 

2. Governing Equations 
 

We model our fluid flow down a heated inclined plane 

based on the conservation of mass, momentum and energy.  
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Figure 1: The Flow Configuration 

 

As is illustrated in Figure 1, we assume that the inclined 

surface along which the fluid is flowing is even and 

impermeable and that the flow is two-dimensional. Ta refers 

to the temperature of the ambient medium and Tb (>Ta) 

refers to the temperature of the ramp. The velocity 

components in the x and z directions are denoted by u and w 

respectively. 

 The general equations for the conservation of momentum, 

mass and energy then are  

[ ] [ ] xwzµxuxµzzµuxxµuβρgxp
Dt

uD
+++++−= sin

)(ρ
 

[ ] [ ] zwzµzuxµzzµwxxµwβρgzp
Dt

wD
++++−−= cos

)(ρ

0=++ )wρ(u
Dt

Dρ
zx  

zzxxp ][KT][KTρT)(c
Dt

D
+=  

 

where
D

Dt
= ∂t + u∂x + w∂z

, p is the pressure, ρ mass density, 

µ dynamic viscosity, g acceleration due to gravity, cp 

specific heat, T temperature and Κ thermal conductivity. 

These equations are general in the sense that they apply to 

fluid flows with variable fluid properties. 

 Since we are testing the effects of temperature dependent 

fluid properties, we allow the properties of the fluid to vary 

with temperature as follows: 

)]aT(Tα[ρρ −−= ˆ10 , )Tγ(Tσσ a−−= 0 , )T(TΛKK a−+= ˆ
0 , 

)T(Tλµµ a−−= ˆ
0 , )T(TScc app −+= ˆ

0
 

where σ  is the surface tension, and α
^

,γ, Λ
^

, λ
^

 and S
^

 are 

positive parameters measuring the rate of change with 

respect to the temperature. Note that the expression for µ is 

a simplification of the commonly assumed Arrhenius-type 

exponential relation 
)T(T

µ

λ
a

eµµ
−−

= 0

ˆ

0 , used, for example, to 

describe the viscosity of lava flows and ice sheets [9]. The 

linear formulation was initially employed and justified by 

Reisfeld and Bankoff [10]. 

 The governing equations are simplified by applying the 

Boussinesq approximation which assumes the mass density 

to be constant (ρ=ρ0) except where it appears in a 

gravitational term. We will then make the resulting 

equations non-dimensional by scaling with the uniform and 

steady flow. To do this we make the  following 

transformation (where the *s denote the non-dimensional 

quantities): 

x=(H/δ)x*, z=Hz*, h=Hh*, u=Uu*, w=δUw*, t=(L/U)t*, 

p=ρ0U
2
p*, T-Ta=∆TT*, where ∆T=Tb-Ta , 

U = Q / H , H =
3µ0Q

ρ0gsin β











1/3

, Q is the volume flux, and 

δ the aspect ratio. The non-dimensional governing equations 

can be expressed as (dropping the *s for notational 

convenience and discarding the O(δ
2
) terms): 

0=+ zx wu  (1) 

zzxzxt uTTpwuuuu ])1[()1(3Re)(Re λαδδ −+−+−=++
 

(2) 

0 = −Re pz − 3cot β(1−αT )+δ[(1− λT )wz ]z +

δ(1− λT )x uz +δ(1− λT )z wz

 
(3) 

zz
r

TTSTT
T

S
Dt

D
])1[(])1[(RePr 2 Λ+=+∆+⋅δ  

(4) 

where 
0

0Re
µ

UHρ
=   is the Reynolds number,

0

0 0Pr
K

cµ p=
 

 

is the Prandtl number, ∆T
r

= ∆T / T
a

 

is the relative 

temperature difference of the ramp and ambient medium, 

and α, λ, Λ, and S are the scaled rates of change with 

temperature of the density, viscosity, thermal conductivity 

and specific heat respectively. 

 At the bottom (z=0) we have the conditions u=w=0, T=1, 

while at the surface (z=h(x,t)) the normal and tangential 

stress conditions, respectively are 

0)1(
Re

2 2 =+−+ xxx WehuTp δλ
δ

 
(5) 

0)(Re)1( =++− zxxz ThTMauT δλ  (6) 

where 
HUρ

σ
We

2
0

0=   is the Weber number (surface tension 

parameter) and 
HUρ

γ∆T
Ma

2
0

=  is the Marangoni number 

(scaled surface tension gradient). The Weber number is 

large for most fluids and we thus assume that δ2
We is not 

negligible.  

 The energy condition at the surface is assumed to be given 

by Newton’s Law of Cooling, which in scaled form is 

BiTTT z −=Λ+ )1(  (7) 

where 
0K

Hα
Bi

g= is the Biot number, with αg being the heat 

transfer coefficient.  

 Finally, the kinematic condition at the surface is 

xt uhhw +=  (8) 
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3. Depth integrated model 
 

Our aim now is to reduce the space dimensionality of the 

governing equations by eliminating the explicit variation 

with the depth coordinate z. We begin by depth integrating 

the conservation of mass equation (1) to obtain: 

ht + qx = 0 (9) 

where ∫=
h

udzq

0

is defined as the flow rate. Integrating the 

the z-momentum equation (3) we obtain the expression for 

the pressure, which is then substituted into the x-momentum 

equation (2). This gives us: 

∫−

−++

−+−=++

z

h

x

xxxxx

zzzxt

dzT

hWehh

uTTwuuuu

βαδ

βδδβαθδ

λαδ

cot3

cot3cot3

])1[()1(3)(Re

3
 

 

 

(10) 

where θ denotes the surface temperature, i.e. θ(x,t) = 

T(x,h(x,t),t).  

 We recognize that our new x-momentum equation (10) and 

our temperature equation (4) cannot be converted to our new 

variables h, q and θ via direct integration. We will thus 

proceed by employing a weighted residual method. The 

general approach is to expand u and T in linear 

combinations of z dependent test functions. The coefficients 

are then determined by equating the weighted residuals to 

zero. 

 For the basic non-isothermal problem, Trevelyan et al. [6] 

extended the method proposed by Ruyer-Quil and 

Manneville [2] for the isothermal flow and assumed the 

following profiles for u and T: 

),,(
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03
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txMa
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txh
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xθδ
+
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(11) 

z
txh

tx
tzxT

),(
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1),,(

−
+=

θ
 

 

(12) 

where b0(x,z,t) = 2hz-z
2 
, and b1(x,z,t) = 2hz-3z

2
. 

 It should be pointed out that the velocity profile (11) 

satisfies the condition ∫=
h

udzq
0

, the bottom conditions  

(u=w=0) as well as the surface tangential stress condition 

(6) which for the basic non-isothermal problem is given by 

uz=-MaReδθx at z=h(x,t). The temperature profile (12) 

satisfies the bottom condition (T=1) but not the surface 

condition (7) Tz=-Biθ at z=h(x,t). However this condition 

can be incorporated into the residual by implementing 

integration by parts in the integration process. 

 For the isothermal problem Ruyer-Quil and Manneville 

[11] formally analyzed the accuracy of employing the 

velocity profile (11) (with Ma=0). They show that 

employing more elaborate expansions leads to formulations 

which ultimately converge to the modified IBL equations. 

For the basic non-isothermal problem, Trevelyan et al. [6] 

demonstrate the efficacy of the temperature profile (12). 

Indeed, the linear stability analysis of the modified IBL 

equations predicts the correct critical Reynolds number for 

the onset of instability as obtained from the full equations 

for the isothermal problem and the basic non-isothermal 

problem. 

 For the current problem with variation in all fluid properties 

we again resort to the profiles (11) and (12). No adjustment 

is made to the profiles to account for the extra temperature 

variations. Various options were considered but none 

improved the agreement with the full equations, they only 

complicated the governing equations. It turns out that for the 

current problem the profile for u in (11) does not satisfy the 

surface tangential force condition which can be stated as 

uz=(-MaReδθx)/(1-λθ) at z=h(x,t). However, like with the 

temperature profile, we can include the correct condition 

into the integrated momentum equation.  

 In accordance with the Galerkin method, test functions are 

used to weight the residuals. The temperature equation (4) is 

weighted with z and then depth integrated. Since we would 

like to satisfy the boundary condition (7), we apply 

integration by parts to the term arising from [(1+ΛT)Tz]z 

and replace the boundary term. We thus obtain the 

following equation in h, q and θ: 

h  Pr Re
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(13) 

The x-momentum equation (10) is weighted with b0 and 

then depth integrated. Since the profile for u in (11) does not 

satisfy the surface tangential force condition we apply 

integration by parts twice to the term arising from [(1-

λT)uz]z and include the boundary conditions to obtain: 
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(14) 

These three equations (9), (13) and (14) govern the 

unknowns h, q and θ and constitute “modified” IBL 

equations. If we allow α=Λ=λ=S=0, these equations reduce 
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to those used by Trevelyan et al. [6] for the basic non-

isothermal problem. 

 For the first step of our stability analysis, we compute the 

steady state, by setting all time derivatives to zero. From the 

continuity equation (9) we realize that q is a constant. Thus, 

our steady state solution is h=1, q=qs=constant and 

θ=θs=constant, where qs and θs are obtained from: 

08qq6q2358 sss =−++−− λλθααθ ss _
and 

02Bi22 2
ss =Λ−Λ+++− sθθθ . 

We then introduce a perturbed steady flow into the modified 

IBL equations by letting hh
~

1+= , qqq s
~+=  and 

θθθ
~

+= s , and then linearize with respect to the 

perturbations. Into these linearized equations, we introduce 

the normal modes: ( ) ( ) ikxcteqhqh += θθ ˆ,ˆ,ˆ
~

,~,
~

. This results in a 

3x3 system of linear (homogeneous) equations for ĥ , q̂  

and θ̂ . Solving the characteristic equation we get a 

dispersion relation, which we solve for c.  For neutral 

stability, the growth rate is zero. Setting 0)( =ℜ c  gives us 

our neutral stability curve in the Re-k plane. The critical 

Reynolds number for the onset of interfacial instability, 

ReCRIT, is the intercept of this curve with the Re axis. So, we 

set k=0 and solve for Re. This relation reveals the 

conditions under which the steady flow is unstable. All 

calculations were done analytically using Maple. However, 

the expressions for the neutral stability curve and the critical 

Reynolds number are too long to give. It is however 

apparent from this formula that ReCRIT reduces (if we let 

α=λ=Λ=S=0) to the familiar 
2

2

)1(125

cot)1(10

BiMaBi

Bi

++

+ β
, which 

is the ReCRIT for the basic non-isothermal problem obtained 

by D’Alessio et al. [12] and coincides with that obtained by 

Trevelyan et al. [6] if the difference in scaling is taken into 

account. Furthermore, if we set all the temperature 

variations to zero, including Ma and Bi, the result for ReCRIT 

reduces to (5/6)cotβ, which is the well known result for 

isothermal flow [13,14]. This is exactly what should 

happen, and helps to validate our result.  

 It turns out that the general expression for the critical 

Reynolds number is independent of the Weber number, as is 

the case for the isothermal and basic nonisothermal 

problems. We point out that the Weber number is the scaled 

surface tension at the reference temperature Tb (the 

prescribed temperature of the bottom surface). The 

Marangoni number, on the other hand, is the scaled gradient 

of the surface tension with temperature, and measures the 

effect of thermocapillary forces, which do affect the onset of  

instability. 

 In order to determine how the onset of instability is affected 

by the variation in fluid properties we examine plots of 

ReCRIT as a function of various parameters. In Figures 2 and 

3 we display the effect of the density variation parameter, α, 

on the stability of the flow. The considered values of α are 

less than 1 in order to obtain positive values for the density. 

It is evident from the results that, depending on the value of 

other parameters, increasing α can result in an increase or 

decrease in ReCRIT. In general, a decrease in mass density 

reduces inertia and stabilizes the flow. However, for our 

problem the vertical temperature gradient in the fluid results 

in a top-heavy density stratification. The density differences 

associated with depth fluctuations resulting from surface 

waves can combine with thermocapillary forces and 

destabilize the flow. In Figure 2 we see that if the specific 

heat variation parameter S is sufficiently large, then the 

density variation acts to destabilize the flow. This is 

explained by the fact that an increase in the specific heat of 

the fluid decreases thermal diffusivity and thus steepens 

temperature gradients and consequently accentuates the 

density stratification. The results in Figure 3 reveal that the 

same effect occurs if Ma is sufficiently large. In other 

words, with substantial thermocapillary action, increasing 

the density variation destabilizes the flow.  
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In Figure 4 we present the variation of ReCRIT with Ma for 

different values of λ. It should be pointed out that since we 

assume the viscosity to decrease with temperature we must 

restrict the range of λ to nonnegative values less than 1 in 

order to maintain a positive value for the viscosity.  In all 

cases ReCRIT decreases with Ma in accordance with the 

expectation that strengthening the thermocapillary effects 

acts to destabilize the flow. Another interesting observation 

however, is that as λ increases there is less variation in 

ReCRIT with Ma. Indeed, in the case with λ = 0.75, ReCRIT is 

essentially independent of Ma. We can then conclude that if 

the viscosity is sufficiently reduced the resulting increase to 

flow inertia is the dominant instability mechanism and the 

contribution from the Marangoni effect is negligible. 
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4 . Nonlinear simulations 
 

In order to solve the system (9), (13) and (14) numerically, 

we express these equations in a form suitable for applying 

numerical methods. Instead of working with θ, we introduce 

Φ, related to θ by the equation Φ=(θ-1)h. From the relation 

(T-1)h=(θ-1)z, it follows that the variable Φ is related to T 

through: ∫ =−
h Φ

)dz(T
0 2

1 and thus, Φ is proportional to the 

lineal heat content stored in the fluid layer. In terms of Φ the 

x-momentum equation (14) is expressed as: 
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(16) 

while introducing Φ into the temperature equation (13) and 

discarding O(δS
2
) terms we obtain: 
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where 
h
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21  

 We will use the Fractional-Step Method [15] in obtaining a 

numerical method for solving (9), (16) and (17). The idea is 

to split the equations into two systems that can be solved in 

an alternating manner.  

 For the first step we discard the derivative terms that can 

not be expressed in conservation form and solve: 
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over a time step ∆t. In the second step we focus on the terms 

not included in the previous step and solve 
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using the solution obtained from the first step as the initial 

condition. The second step then returns the solution for q 

and Φ at the new time t + ∆t, with the solution for h being 

that obtained in the first step. 

 The system considered in the first step consists of nonlinear 

hyperbolic conservation equations with source terms. While 

there are several methods available to solve this system, its 

complicated eigenstructure makes the use of eigen-based 

methods impractical. We resort to MacCormack’s method 

since it can be applied component-wise and does not require 

the eigenstructure of the system. MacCormack’s method is a 

conservative second-order accurate finite difference scheme, 

which correctly captures discontinuities and converges to 

the physical weak solution of the problem. LeVeque & Yee 

[16] extended MacCormack’s method to include source 

terms via an explicit predictor–corrector scheme. 

 In the second step we discretize the equations  by means of 

the Crank-Nicolson scheme and using the output from the 
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first step as an initial condition, leads to a nonlinear system 

of algebraic equations, which was solved iteratively. A 

robust algorithm, taking advantage of the structure and 

sparseness of the resulting linearized systems, was used to 

speed up the iterative process. It was found that 

convergence was reached quickly, typically in less than five 

iterations.  

 To perform a stability analysis of the flow we begin by 

solving our equations on a periodic spatial domain, from 0 

to L. As the initial condition, we use the base flow, with a 

small amplitude sinusoidal perturbation of length L added to 

h: 








+= x
L

h
π2

sin0001.01 , sqq = , sθθ =  

With this small perturbation now in our system, we 

calculate the evolution and determine if it is amplified or 

dampened. If the evolution of the wave is amplified, then 

the system is unstable. By iterating over Re we can 

determine the value for which a perturbation with 

wavenumber k=2π/L is neutrally stable and thus by 

considering different L values we obtain points on the 

neutral stability curve. For longer L values (L>3) we use a 

mesh width of ∆x=0.02 which required, for numerical 

stability, a time step of ∆t=10
-4

. For the shorter L values we 

used ∆x=0.005 and ∆t=7 x 10
-6

. We found the results to be 

in excellent agreement with those from the linear analysis.  

 For supercritical conditions the nonlinear simulations on a 

sufficiently long domain can be used to determine the 

evolution of the unstable flow. The advantage of the 

nonlinear simulations is that they include the nonlinear 

interactions of the perturbations and thus capture the entire 

instability mechanism of the flow. Furthermore, for unstable 

flows, the temporal evolution can be continued until the 

growth of the disturbances reaches saturation. An 

illustration of the evolution of an unstable film flow is given 

in Figure 5. Notice that at time t=40 our small amplitude 

sinusoidal perturbation makes very small waves in our 

system. As time goes on that small perturbation becomes 

larger and larger, until finally we have a permanent wave 

structure at time t=140. In other words these solitary waves 

will not subside or grow in time and will propagate with a 

constant speed. 
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Figure 5: Evolution of the surface profile of an unstable  

flow 

 

In Figure 6 we compare the permanent surface profiles for 

unstable flows with different Reynolds numbers. Notice that 

for the larger Re values the instability leads to large solitary-

wave structures with the height increasing with Re. 

However, for smaller Re values the flow is “less unstable” 

with the interfacial deflection being almost sinusoidal with 

small amplitude. 

In Figure 7 we consider another plot showing the relation 

between surface temperature and wave height for a 

permanent solution. We notice that at the crest of the waves 

the surface is cooler; and at the troughs the surface is 

warmer. This makes sense as increasing the distance from 

the surface of the fluid to the heated ramp will cool the 

fluid’s surface and vice versa.  
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Figure 6: Permanent surface profile for an unstable flow 
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Figure 7: Relation between the permanent surface profile 

and surface temperature. 

 

5. Concluding remarks 
 

The purpose of this paper was to examine how the flow of a 

fluid film down a heated inclined plane is affected by 

temperature dependent fluid properties. The effects of five 

different temperature dependent fluid properties were 

examined: surface tension, mass density, dynamic viscosity, 

thermal conductivity and specific heat capacity. Each of 

these can be significantly affected by changes in 

temperature and can have either stabilizing or destabilizing 

effects on the fluid flow.  A depth-integrated model was 

obtained by implementing a weighted residual method. We 

performed a linear stability analysis and obtained an 

expression for the critical Reynolds number for the onset of 

instability, which was analyzed to determine the effect of 

the variations in fluid properties with respect to temperature. 

Numerical simulations of the nonlinear equations were 

employed to calculate the evolutions of unstable flows and 

examine the effect of the degree of instability on the 

structure of the permanent interfacial waves.  
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Abstract - The established authority regulating the time 
domain boundary element method (BEM) suggests that 
numerical response has been disturbed either due to the 
presence of noise or a consequence of unstable behavior. 
Subsequently, there are techniques which can lead to stable 
time-domain BEM algorithms. But these techniques introduce 
another time consuming formulation for BEM to overcome 
instabilities. This paper proposes a new stabilizing approach 
to resolve the inconsistent results prevalent when applying the 
standard time domain BEM to 3D problems. The proposed 
time–weighted time domain BEM could be employed 
subsequent to the standard BEM process in order to stabilize 
the unstable computed results of the standard time domain 
BEM. The proposed approach is tested on three dimensional 
problems. The results show that the proposed procedure can 
effectively be used as a stabilizing approach to resolve the 
inconsistent results prevalent when applying the standard 
time domain BEM to 3D.  
 
Keywords: BEM, stability, three dimensional problems, time 
weighted  
 
1. Introduction 
 

Time domain BEM is one of the methods applied for 
dynamic problems in engineering. Despite the extensive 
studies on time-domain elastodynamic BE formulations [1-2] 
there are still many unsolved problems. Some studies such as 
Dominguez’s study [2] or Peirce and Siebrits’[3] showed the 
evidence of instabilities in boundary  integral elastodynamic 
models. The instabilities become particularly evident when 
finite domains involving reflection of elastic waves are 
analyzed. A series of numerical simulations concerning a 
doubly infinite strip in plane strain conditions exploiting 
symmetries as a finite body is developed by Dominguez [2]. 
He employs the standard collocation direct BE method and 
evident instabilities are encountered even for very small values 
of the time parameter. Choosing a suitable time step t∆  for 
the evaluative analysis is problematic: the range of values 
yielding stable results is generally narrow and sometimes 
vanishes, depending on the mesh adopted. 
 
Other evidences of unstable results are provided by Peirce and 
Siebrits [3]. They define these phenomena as 'intermittent'. 

Performing a series of analyses by monotonically 
incrementing t∆ , one may obtain stable and unstable results 
often in an unpredictable way. 
There are techniques which can lead to stable time-domain 
BEM algorithms. The ε  scheme and the half-step approach 
introduced by Siebrits and Peirce [4], the θ -scheme presented 
by Yu et al. [5-7], the time-convolution modification proposed 
by Soares and Mansur [8-10] are some of the related works. 
Employing time and space weighting functions is another 
approach to improve stability [11, 12]. But these techniques 
introduce another time consuming formulation for BEM to 
overcome instabilities. They were not introduced in a 
procedure that could be used subsequent to the standard BEM 
for stabilizing the unstable computed results with little effort. 
In other words, if the problem is studied by standard BEM and 
in the case that the results have instabilities the problem 
should be studied again with another formulation. It is true to 
say there is not a BEM formulation which is stable for all time 
steps. Thus, proposing methodologies which could be 
examined subsequent to another formulation (without 
computing new matrix terms) would be extremely desirable. 
This would lead to the reduction of the computing time cost. 
This study proposes an approach based on time weighting 
method which could be used subsequent to the standard BEM 
to resolve the inconsistent results prevalent when applying the 
standard time domain BEM to 3D problems. 
The integral equations for a time-weighted time domain BEM 
were presented by Maier et al. [13]. Guoyou yu et al. [11] 
applied time weighting method for BEM in 2D scalar wave 
problems. Kamali yazdi et al. [14] utilized time weighting for 
dual boundary element method (DBEM) in 3D fracture 
problems.  
In this paper the authors applied a weighted formulation of 
displacement boundary integral equation as a stabilizing 
approach subsequent to the standard time domain BEM. A 
weighted BEM formulation is applied which employs only the 
computed terms of standard BEM and can be utilized 
subsequent to the conventional method for stabilizing the 
results. Simplicity and stability can be mentioned as two 
appropriate characteristics of the proposed formulation when 
applied to the solution of the three dimensional problems by 
the BEM. 
The proposed approach has a significant advantage over the 
existing approaches. If the problem is studied by standard 
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BEM and in the case that the results have instabilities, the 
proposed approach could be applied subsequent to the 
conventional method. Indeed it is not required to solve the 
problem with another time consuming formulation. In other 
words, the proposed approach could be considered as a 
stabilizing method for unstable computed results obtained by 
standard BEM. 
The study of 3D transient elastodynamic problems with actual 
non-zero values of the Poisson's ratio is considered as one of 
the most challenging situations from the stability point of view 
of time domain BE approaches. In those cases, the existence 
of two kinds of waves in the fundamental solution and the 
reflection of different kinds of waves on the boundaries may 
cause causality errors and instability problems. Most 
published works in the field of stability improvement deal with 
two dimensional models and they rarely address the cases 
involving three-dimensional models with non-zero Poisson's 
ratio. The proposed procedure is tested for finite 3D problems 
with zero and nonzero Poisson's ratio. The results show that 
the procedure is capable of solving the problems.  
 
2. Basic equations  
 

The integral representation for the displacement u at point 
x′  on the boundary  of an elastic body, at time t with 
zero body forces and zero initial conditions can be written as 
[15] 
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Where ju and jt are the displacements and tractions on the 
boundary respectively; ( )τ−′ txxUij ,, and ( )τ−′ txxTij ,,  are 
the displacement and traction fundamental solutions of 
elastodynamic, respectively [15]. The coefficient ijc  depends 
on the geometry at x′ and     stands for a Cauchy principal-
value integral 
In order to implement a numerical scheme to solve Eq. (1), the 
boundary Γ  is divided into a set of discrete points mx , 

Mm ,...,2,1= , and the observation time t is divided into N 
time steps( tN∆ ). So displacements and tractions over the 
boundary are approximated using interpolation functions, 
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Where n and m refer to time and space respectively, mφ and 
mϕ  are space interpolation functions whereas nη  and nµ  are 

time interpolation functions. The use of these approximations 
enables the displacement integral equation to be discretized 
as: 
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Where mΓ  are the elements to which node m belongs. Eq. (3) 
can be written in more compact form as,         
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Once the boundary conditions are considered, Eq. (4) yields a 
system of equations which can be solved to obtain the time 
variation of boundary unknowns. Piecewise constant time 
interpolation function ( )τµ n  and piecewise linear function 

( )τη n  are used for tractions and displacements respectively. 
This type of interpolation has been tested by different authors 
in other time domain BE approaches [2]. So, according to Eq. 
(2), one obtains: 

( ) ( )ττµ n
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Where ( )τH  stands for the Heaviside step function. 
The time integrals given by Eqs. (5) can be evaluated 
analytically without much difficulty regarding the above 
approximation. For explicit expression see Aliabadi [15]. In 
this paper quadratic discontinuous elements with eight nodes 
are used (Fig. 1).  
The parameter λ  in the shape functions of discontinuous 
elements was chosen arbitrarily as 2/3. Cauchy finite part 
integrals are applied for evaluating spatial singular integrals 
[15]. 
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Fig. 1 Eight node discontinuous element 
 
 
3. Weighted integral equations and 
stabilizing approach 
 

In time-weighted integral equations the average of whole 
time history of the solution is considered in a weighted 
residual sense. As a result, although this has no significant 
effect on early stages, it may have a significant effect on the 
late time response, especially in problems with unstable 
behavior.  In this section a time-weighted boundary integral 
equation and the corresponding numerical implementation that 
leads to a stabilizing approach to resolve the inconsistent 
results prevalent when applying the standard time domain 
BEM are presented.  
The time-weighted formulation of general displacement 
boundary integral equation corresponding to Eq. (4), can be 
written as: 
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Where  ( )tWn  is a time weighting function, T denotes the total 
time of analysis ( NtT = ). 
It should be noted that in the case of  ( ) ( ) ( )tttW nn

n µη ==  
Eq. (7) becomes general time-weighted discrete Galerkin type 
integral equation for three dimensional problems. In this 
research the time weighting function is chosen as 

( ) ( ) ( )11 +− −−−= nnn ttHttHtW . So, Eq. (7) can be written as, 
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In this case, 1+nu and 1+nt , are required for computing nu  and 

nt . So, a prediction of the boundary variables at 1+= ntt  is 
required. This prediction is done by assuming that the velocity 
change in any boundary variables between 1−nt  and  1+nt  is 
constant. So 11 2 −+ −= nnn uuu  and  11 2 −+ −= nnn ttt  are 
assumed for computing unknowns at time 1+nt . 
For numerical evaluation of time integrals in Eq. (8), only two 
weighting points are used in each time step ( 
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obtained formulation could be utilized as stabilizing approach 

susequent to the conventional method.  By this assumption the 
formulation becomes: 
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Since it was assumed that 11 2 −+ −= nnn uuu and  
11 2 −+ −= nnn ttt  , Eq(9) can be written as:  
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Eq. (10) can be used instead of Eq. (4) to obtain the system of 
equations for nu  and nt  which yields the boundary values at 
that time. The capability of this formulation for stabilizing 
unstable computed solutions is shown in the next section by 
numerical examples. It should be noted that only the 
combination of the terms computed in the conventional 
method is applied in the weighted algorithm. Therefore if the 
results have instabilities in conventional method, the weighted 
formulation could be applied. The evaluating time of terms 
which expends considerable time in the proposed approach is 
the same as conventional method and if the integrations are 
done in the conventional method the results could be directly 
used in the proposed method to improve the stability. Extra 
time processing is limited to the combination of terms which 
had already been computed in the conventional method, 
producing and solving the system of 

equations. In other words, the traditional method could be 
used and only in the cases that the results have instabilities, the 
weighted formulation could be applied at that time step with 
an increase of analysis time which is considerably less than the 
time of the traditional formulation process. The proposed 
approach could be considered as a stabilizing method for 
BEM . 

It is enough to utilize the stored data of the Nnm
ij

Nnm
ij UT ,  terms 

during the conventional process for producing Eq. (10). This 
procedure could simply be added to existing BEM codes and 
only in the case that the results have instabilities could be 
utilized. The proposed approach in contrary to existing 
method utilizes only the combination of computed terms of the 
standard BEM. There is no new term in Eq. (10) that needed 
to be evaluated after applying standard BEM. It is clear that 
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the Eq. (10) could be applied for studying problems 
independently.  It was regularized in the form that could also 
be applied subsequent to the standard form. 
 
4. Numerical examples 
 

To assess the efficacy of the proposed approach, two 
elastodynamic problems have been studied using both the 
time- weighted formulation and the conventional form. At 
first, the traditional BEM is applied then the weighted 
formulation is utilized by using computed terms in 
conventional method (it is noted that the Eq. (10) could be 
applied independently). The first problem corresponds to a 
square bar under impact load. The second problem refers to a 
short beam under a shear load with a triangular time variation. 
The Poisson's ratio is different from zero in the second 
problem which are more susceptible for causality errors and 
instability problems.  
 
4.1. Square bar subjected to dynamic tension 
loads 
 

A square bar ( aah 222 ×× ) is subjected to a dynamic load 

( )tH  at top of the bar (Fig. 2a). The ratio 5.0=
h
a  is 

considered. There are 40 discontinuous elements on the 
boundary (Fig. 2b). In order to examine the capability of the 
proposed method, three normalized dimensionless parameters 

β  are chosen (
l

tc ∆
= 1β ). Here, l Is the smallest length of 

elements, therefore according to Fig. 2b al = . To study the 
problems both standard and time weighted approach are used. 
The dynamic traction at the end of bar for Poisson’s ratio 
equal to zero is shown in Fig.3. The results are acceptable for 
both traditional and time weighted method when 3.0=β . 
Using the traditional method noise in results is observed for 

6.0,2.0=β  which is in contrast with the stable results of the 
proposed method as shown in Fig. 3. It can be seen that the 
proposed approach has a clear advantage for stabilizing the 
results and preventing scatter and instability of the computed 
results. 
Applying the standard method, in the early steps the results are 
in agreement with exact solution; but as the time stepping 
progresses the cumulative errors of previous steps cause an 
instability in the results. The proposed approach leads to better 
and more stable results.  

 
 
 

 
Fig. 2 A bar under uniform load 
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Fig. 3 Dynamic traction for 0=ν  
 

4.2. A Short beam under dynamic shear load 
 

A square bar ( aah 222 ×× ) is subjected to a dynamic shear 
load ( )tτ  with triangular time variation at free end (Fig. 4a 

and 4c). The bar geometry is defined by the ratio 5.0=
h
a , 

and the value of Poisson's ratio is equal to 0.2 . The 
considered number of elements on the outer boundary is equal 
to 18 (Fig. 4b). Different normalized dimensionless 

parameters β  are chosen in order to examine the stability and 
efficacy of the proposed method. The problem is studied by 
both standard and time weighted formulation. The horizontal 
dynamic displacements at point A (Fig.4b) are shown in Fig. 
5. For comparison, the result obtained for 6.0=β  under the 
traditional method is plotted in Fig. 5. In this example similar 
to the previous example using time weighted formulation leads 
to better results when standard formulation is unstable. 

 

 
Fig. 4 A short beam under uniform shear load 
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Fig. 5 Horizontal dynamic displacement 

 
 

Conclusion 
 

In this paper the time domain BEM formulation for three 
dimensional problems are revisited. This study proposes a 
technique to resolve the inconsistent results prevalent when 
applying the standard time domain BEM to 3D problems. A 
time weighted formulation of BEM was described and used to 
improve the stability of the standard time domain BEM. The 
proposed approach has a significant advantage over the 
existing approaches. The approach discussed could be used as 
a tool for stabilizing unstable results subsequent to the 
standard BEM. Indeed it is not required to solve the problem 
with another time consuming formulation. The proposed 
approach has been tested for 3D transient elastodynamic 
problems. Two examples are investigated for several time 
steps with both proposed approach and standard form.  
The following conclusions could be inferred from the 
numerical analyses presented here: 
1. The results show that the proposed procedure can improve 
stability. Moreover the time weighted method could be 
preferred to standard method where the time marching process 
is likely to present instabilities in applications  

2. The proposed approach could be used as a stabilizing 
method subsequent to the conventional BEM. 
3. The proposed approach can easily be implemented into the 
existing computer codes. 
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Abstract 

 
Purine metabolism is a fundamental component of the production of nucleotides, the building blocks of DNA and 

RNA.   In this pathway, hypoxanthine-guanine phosphoribosyltransferase (HGPRT) catalyzes the conversion of 

phosphoribosylpyrophosphate  to inosine monophosphate  and to phosphorylated guanosine. Mild HGPRT 

deficiency can result in gout and mild hyperuricemia.  More severe HGPRT deficiency can result in  Lesch-Nyhan 

syndrome, characterized by spasticity, choreoathetosis, mental retardation, self-mutilation, renal failure, and in the 

most severe cases, death. For all but the simplest biochemical networks, empirical surveys of system behavior are 

intractable due to the large size of the state space, and simulation is the only general system-characterization 

method available.  Here I present a simulator-oriented analysis of the sensitivity of blood serum uric acid 

concentration in HGPRT deficiency to initial conditions of the purine metabolism pathway. The results are 

consistent with clinical observations. 

 
Keywords:  purine metabolism, Lesch-Nyhan syndrome, HGPRT deficiency, S-system 

 

 

 

1.0  Introduction  
 

 Purine metabolism (see Figure 1) is a 

fundamental component of the production of 

nucleotides, the building blocks of DNA and 

RNA.   In this pathway, hypoxanthine-guanine 

phosphoribosyltransferase (HGPRT) catalyzes 

the conversion of phosphoribosylpyrophosphate 

(PRPP) to inosine monophosphate (IMP) and to 

phosphorylated guanosine. Mild HGPRT 

deficiency can result in gout and mild 

hyperuricemia.  More severe HGPRT deficiency 

can result in  Lesch-Nyhan syndrome (LNS), 

characterized by spasticity, choreoathetosis, 

mental retardation, renal failure, self-mutilation, 

and in the most severe cases, death  ([11]).  

 

 

 

 Can we systematically survey the 

sensitivity of serum uric acid concentration in 

HGPRT deficiency to initial conditions in the 

purine metabolism pathway?  One can perform 

sensitivity studies that vary one quantity at a 

time, observing the effect of that variation on the 

system trajectory.  This method, however, 

cannot systematically survey the effects of 

general variation in system state space of interest 

unless the trajectories are linear in each of the 

variables; in highly nonlinear systems, couplings 

among system variables can prohibit obtaining 

usable information from the variable-at-a-time 

variation method. 
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Figure 1.  Biochemical map of purine metabolism (adapted from [1]).  Rectangles represent 

metabolites (some boxes abstract a collection of closely related metabolites (e.g.,  dGMP, dGDP, 

dGTP) whose differences are not essential to the model).  Light solid arrows represent activation.  

Light dashed arrows represent inhibition.  Curved heavy arrows entering or leaving the pathway 

indicate purine ring and ribose moieties that balance the stoichiometry of the system.  Arrow labels 

represent flux in the direction of the arrow.   The nomenclature in this diagram is defined in Tables 

1 and 2. 

 

_____________________________________________________________________________________ 

 

 

 Curto et al. ([1], [2]) have extensively 

modeled purine metabolism and HGPRT 

deficiency using systems of ordinary differential 

equations (SODEs).  For all but the simplest 

SODEs, empirical surveys of system behavior 

are intractable due to the large size of the state 

space, and simulation is the only general system-

characterization method available.   
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Table 1.  Purine  metabolites and associated simulator variable names for Figure 1 (adapted from 

[1]).   
 
Simulator 

variable 

name 

Biochemical name Abbreviated name (in Figure 1) Nominal initial 

concentration, 

microMolar 
X1 Phosphoribosylpyrophosphate PRPP 5 

X2 Inosine_monophosphate IMP 100 

X3 Adenylosuccinate S-AMP 0.2 

X4 Adenosine Ado 2500 

X4 Adenosine_monophosphate AMP 2500 

X4 Adenosine_diphosphate ADP 2500 

X4 Adenosine_triphosphate ATP 2500 

X5 S-adenosyl-L-methionine SAM 4 

X6 Adenine Ade 1 

X7 Xanthosine_monophosphate XMP 25 

X8 Guanosine_monophosphate GMP 400 

X8 Guanosine_diphosphate GDP 400 

X8 Guanosine_triphosphate GTP 400 

X9 Deoxyadenosine dAdo 6 

X9 Deoxyadenosine_monophosphate dAMP 6 

X9 Deoxyadenosine_diphosphate dADP 6 

X9 Deoxyadenosine_triphosphate dATP 6 

X10 Deoxyguanosine_monophosphate dGMP 3 

X10 Deoxyguanosine_diphosphate dGDP 3 

X10 Deoxyguanosine_triphosphate dGTP 3 

X11 Ribonucleic_acid RNA 28600 

X12 Deoxyribonucleic_acid DNA 5160 

X13 Hypoxanthine HX 10 

X13 Inosine Ino 10 

X13 Deoxyinosine dIno 10 

X14 Xanthine Xa 5 

X15 Guanine Gua 5 

X15 Guanosine Guo 5 

X15 Deoxyguanosine dGuo 5 

X16 Uric_acid UA 100 

X17 Ribose-5-phosphate R5P 18 

X18 Phosphate P_i 1400 

 

 
 
Table 2.  Fluxes and enzymes for Figure 1 (adapted from [1]). 

 
Abbreviated flux name Abbreviated  enzyme 

name 

Full name of enzyme that catalyzes reaction E.C. enzyme 

identifier 

vprpps PRPPS Phosphoribosylpyrophosphate synthetase 2.7.6.1. 

vgprt HGPRT Hypoxanthine-guanine phosphoribosyltransferase 2.4.2.8. 

vhprt HGPRT Hypoxanthine-guanine phosphoribosyltransferase 2.4.2.8. 

vaprt APRT Adenine  phosphoribosyltransferase 2.4.2.7. 

vden ATASE `De novo synthesis' (Amidophosphoribosyltransferase) 2.4.2.14. 

vpyr  `pyrimidine synthesis' several  enzymes 

vasuc ASUC Adenylosuccinate synthetase 6.3.4.4. 

vasli ASLI Adenylosuccinate lyase 4.3.2.2. 

vimpd IMPD IMP dehydrogenase 1.1.1.205. 

vgmps GMPS GMP synthetase 6.3.4.1. 

vampd AMPD AMP deaminase 3.5.4.6. 

vgmpr GMPR GMP  reductase 1.6.6.8. 

vtrans MT `transmethylation pathway' (Protein  O-methyltransferase) 2.1.1.24. 

vmat MAT Methionine adenosyltransferase 2.5.1.6. 

vpolyam SAMD `Polyamine pathway' (S-adenosylmethionine 

decarboxylase) 

4.1.1.50. 

vade  `Adenine oxidation (xanthine  oxidase) 1.2.1.37. 

Abbreviated flux name Abbreviated  enzyme 

name 

Full name of enzyme that catalyzes reaction E.C. enzyme 

identifier 
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vinuc 5NUC 50-Nucleotidase 3.1.3.5. 

vgnuc 5NUC 50-Nucleotidase 3.1.3.5. 

varna RNAP RNA polymerase (from ATP) 2.7.7.6. 

vgrna RNAP RNA polymerase (from  GTP) 2.7.7.6. 

vrnaa RNAN RNases (to AMP) several enzymes 

vrnag RNAN RNases (to GMP) several enzymes 

vdgnuc 3NUC 50(30) Nucleotidase 3.1.3.31. 

vada ADA Adenosine deaminase 3.5.4.4. 

vdada ADA Adenosine deaminase 3.5.4.4. 

vadrnr DRNR Diribonucleotide reductase 1.17.4.1. 

vgdrnr DRNR Diribonucleotide reductase 1.17.4.1. 

vgua GUA Guanine hydrolase 3.5.4.3. 

vadna DNAP DNA polymerase (from dATP) 2.7.7.7. 

vgdna DNAP DNA polymerase (from dGTP) 2.7.7.7. 

vdnaa DNAN DNases (to dAMP) several enzymes 

vdnag DNAN DNases (to dGMP) several enzymes 

vhx  `Hypoxanthine  excretion' Non-enzymatic step 

vhxd XD Xanthine oxidase or xanthine dehydrogenase 1.2.1.37. 

vxd XD Xanthine oxidase or xanthine dehydrogenase 1.2.1.37. 

vx  `Xanthine excretion' Non-enzymatic step 

vua  `Uric acid excretion' Non-enzymatic  step 

 

 

 

2.0  Method 
 

 

 The HGPRT deficiency model in [4] is an S-system  ([3]).  An S-system is a power-law-oriented, 

finite-difference SODE each of whose dependent variables Xi is described by an equation of the form    

______________________________________________________________________________ 

 

                                               Eq. 2.1 

 
where  

 

 the left-hand side of Eq. 2.1 is the first derivative of Xi with respect to time 

 

 i , j = 1, 2, 3, ..., N 

 

 {Xi}  is the set of real-valued dependent variables of the system   

     

 for any given Xi, only those independent and dependent variables Xj that have an action 

on Xi are included as factors in the products on the right-hand-side (RHS) of Eq. 2.1.  The factors 

in the first term on the RHS  of Eq. 2.1 correspond to just those entities that increase or inhibit the 

production of Xi; the factors in the second term of the RHS of Eq. 2.1 correspond to just those 

entities that contribute to the consumption of Xi. 

 

 i , i > 0 

 

 gi_j, hi_j are real-valued  

_____________________________________________________________________________________ 
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 There is a natural mapping from a 

biochemical map,  K, to equations that have the  

form of Eq 2.1.   In particular, let K = <{Xk}, 

E>, E  {Xk}   {Xk},  k = 1, 2, …, N, be a 

directed graph in which each distinct Xi   {Xk} 

corresponds to a distinct dependent variable 

(e.g., the concentration of  a distinct chemical 

species in the map), and w  E if and only if w = 

(Xm, Xn) is a directed edge in K , m  n = 1, 2, 

..., N.    

 i  and i are called  generalized rate 

constants (or just rate constants) for Xi, and gi_j 

and hi_j are called the generalized kinetic orders 

(or just kinetic orders) for Xi, on analogy with 

standard chemical kinetic theory.   (Strictly 

speaking, the S-system appropriation of these 

terms does not presume anything about the way 

those terms are used in standard chemical kinetic 

theory.)  The subexpression i_j indicates the 

action of Xj on Xi. 

 An S-system has several desirable 

features, including the fact that it is fully 

characterized by its rate constants and kinetic 

orders.  Any SODE can be recast ([9],[10]) as an 

S-system without loss of accuracy or precision; 

the recasting, however, is not in general unique.  

In addition to biochemical systems, S-systems 

have been successfully used to model epidemics 

([16]), forest diversification, and world 

dynamics ([15]). 

 Multi-variate techniques 

([7],[12],[13],[14]) can be applied to the HGPRT 

deficiency model in [1] to help overcome the 

limitations of single-variable sensitivity 

analyses.  Toward this end,  [4] (the PLAS-

language ([5]) S-system implementation in [3] 

of the model  in [1]) was parameterized and 

translated to the Mathematica ([6], [17]) 

language.  The resulting implementation ([17]) 

is an S-system containing 16 state variables and 

~145 parameters.  In the model, HGPRT 

deficiency is represented as a factor, d,  whose 

values lie in the interval [0.01, 0.99], that 

modulates the kinetic orders of several terms in 

the system.  The larger the value of d, the more 

severe the deficiency. 

 Initial values of the system variables in 

[4] were randomly drawn from  uniform 

distributions of values of each of the system 

variables, Xi.  The  midpoint, ,  of the 

distribution of  Xi was set to the nominal initial 

value in Table 1 and the range for each Xi was 

defined as   0.1. (Larger ranges are formally 

possible but tend to lie outside the calibration 

range of available data.) The resulting random 

sampling from the initial-condition space of the 

model form a set of random vectors of the initial 

conditions of the system variables.  The 

resulting S-systems were solved using 

(Mathematica's NDSolve function) for 1000 of 

these random vectors.  All software was 

executed on a  Dell Inspiron 545 with an  Intel 

Core2 Quad CPU Q8200 (clocked @ 2.33 GHz) 

and 8.00 GB RAM, running under the Windows 

Vista Home Premium operating environment. 
 

 

3.0 Results  
 
 Figure 2 (severe HGPRT deficiency, d = 

0.99) and 4 ("no" HGPRT deficiency; d= 0.01) 

show nominal hypoxanthine, guanine, and uric 

acid blood serum concentrations as a function of 

time.  Figure 3 is a box-and-whiskers plot of uric 

acid concentration under severe HGPRT 

deficiency, across all randomly drawn initial 

conditions in the simulation; Figure 5, a 

corresponding box-and-whiskers plot of uric 

acid concentration under "no" HGPRT 

deficiency.   

 Figures 3 and 5 show that under the 

conditions described in Section 2.0, the blood 

serum concentration of uric acid stabilizes at 

about 1500 minutes after t0 at ~155 microMolar 

in severe HGPRT deficiency; at about ~100 

microMolar, with "no" HGPRT deficiency.  

These simulation results are consistent with 

clinical observations and with the results 

reported in [3].  

 In addition, the figures demonstrate that 

the initial response (i.e., in the first ~500 

minutes) of the purine metabolism network to 

initial conditions that are not those of the steady 

state is much less stable in the case of severe 

HGPRT than in the case of "no" HGPRT.  

Remarkably, even in the case of severe HGPRT, 

the network achieves a steady-state (that 

unfortunately has disastrous physiological 

consequences). 
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Figure 2.  Nominal hypoxanthine (intermediate grey),  guanine (lightest grey), and uric acid (darkest grey) 

blood serum concentrations as a function of time in severe HGPRT deficiency (d = 0.99). 

_____________________________________________________________________________________________ 

 

Uric acid microMolar

 
 
Figure 3.  Box-and-whiskers plot of  blood serum uric acid concentrations (microMolar) as a function of time 

(0-2500 minutes) in severe HGPRT deficiency (d = 0.99).  The ends of the blue lines ("whiskers") delimit the 

range of values across all initial conditions in the study.  The solid vertical bars ("boxes") show the mean  

one standard deviation of that data.  The white horizontal bars in the boxes are the medians of that data. 

__________________________________________________________________ 
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Figure 4.  Nominal hypoxanthine (intermediate grey), guanine (lightest grey), and uric acid (darkest grey) 

blood serum concentrations as a function of time with "no" HGPRT deficiency (d = 0.01). 

266 Int'l Conf. Scientific Computing |  CSC'12  |



Uric acid microMolar

 
 
Figure 5.  Box-and-whiskers plot of blood serum uric acid concentration (microMolar), as a function of time 

(0-2500 minutes),  with "no" HGPRT deficiency (d = 0.01).   The ends of the blue lines ("whiskers") delimit 

the range of uric acid concentrations generated by all initial conditions in the study.  The solid vertical bars 

("boxes") show the mean  one standard deviation of that data.  The white horizontal bars in the boxes are 

the respective medians of that data. 

__________________________________________________________________ 

 

 
 The time-to-solution on the platform 

described in Section 2.0 was ~10 minutes. 

 In general, there is no guarantee that a 

random sample of a given size of initial 

conditions would converge.  Figures 3 and 5 

strongly suggest, however, that as the system 

approaches steady state, the convergence is 

adequate. 
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Abstract— This paper aims to obtain approximate solutions
of the one-dimensional nonlinear Klein-Gordon equation
by employing Cubic B-spline wavelets. Our scheme uses
the Galerkin method and approximates the solution in the
terms of cubic B-spline scaling and wavelet functions. These
wavelets are applied as testing and weighting functions.
Because of some properties of these wavelets such as having
compact support, vanishing moments and semiorthogonality,
operational matrices of these wavelets are very sparse, so
implementation of the method is simple and the computa-
tional time is low. The results of numerical experiments are
presented for showing the accuracy of the method.

Keywords: Klein-Gordon equation, cubic B-spline wavelets,
Galerkin method, operational matrices

1. Introduction
In the present paper, wavelet Galerkin approach based

on cubic B-spline wavelets is utilized for the numerical
solution of a generalized form of the nonlinear Klein-Gordon
equation. For the past years, the Klein-Gordon equation has
been the focus of numerous papers that dealt with either
proving the existence of solutions or seeking analytical
and numerical solutions. Though the equation has been
extensively studied, nonetheless it is still a problem of
continuing interest because certain physical phenomena are
still formulated in terms of the extended form of the Klein-
Gordon equation.
The quasilinear Klein-Gordon equation

∂2u(x, t)
∂t2

− α
∂2u(x, t)

∂x2
+ βu(x, t)− γu(x, t)3 = 0,

and the nonlinear Klein-Gordon equation

∂2u(x, t)
∂t2

− α
∂2u(x, t)

∂x2
+ f(u(x, t)) = 0,

are used to model many nonlinear phenomena [1], including
the propagation of dislocations in crystals and the behavior
of elementary particles and the propagation of fluxons in
Josephson junctions. The function f(u(x, t)) takes many
forms such as:
sin(u): Sine-Gordon equation,
sinh(u): Sinh-Gordon equation,
eu: Liouville equation,

eu + e−2u: Dodd-Bullough-Mikhailov equation,
e−u + e−2u: Tzitzeica-Dodd-Bullough equation.
Also f(u(x, t)) appears as a polynomial such as f(u) =
bu− kun.
In this work we consider the nonlinear one-dimensional
Klein-Gordon equation

∂2u(x, t)
∂t2

+ α
∂2u(x, t)

∂x2
+ βu(x, t) + g(u(x, t)) = F (x, t),

(x, t) ∈ [a, b]× [0, T ] (1)

with specified initial and boundary conditions given by

u(x, 0) = f0(x), ut(x, 0) = f1(x), (2)

u(a, t) = φ0(t), u(b, t) = φ1(t). (3)

The function g(u(x, t)) is a nonlinear function in u, a and
b are real constants, and F (x, t) is a known function.
Equation (1) is one of the important mathematical models
in quantum mechanics, it occurs in relativistic physics
as a model of dispersive phenomena. Information about
the literature of such applications is given in [2]- [3] and
the other references therein. There are numerous papers
dealing with the existence, uniqueness of the smooth and
weak solutions of equation (1)- (3), and with the numerical
solutions using radial basis functions, finite difference,
finite element or collocation methods such as in [3]- [6].
Wazwaz [7] uses the tanh and sine-cosine methods for
compact and noncompact solutions of the nonlinear Klein-
Gordon equation. Chowdhury and Hashim [8] employed
the homotopy perturbation method to obtain approximate
solutions of the Klein-Gordon and Sine-Gordon equations.
Deeba and Khuri [2] presented a decomposition scheme
for obtaining approximate solutions to the Klein-Gordon
equation. Wong et al. [3] presented a fully implicit and
discrete energy conserving finite difference scheme for
the solution of an initial-boundary value problem of
the nonlinear Klein-Gordon equation and a theoretical
analysis was performed. In [6], Yücel obtained approximate
analytical solution for the Sine-Gordon equation using the
homotopy analysis method. Ming and Guo [5] utilized a
Fourier collocation method for solving the nonlinear Klein-
Gordon equation. Most recently, Dehghan and Shokri [4]
proposed a numerical scheme to solve the one-dimensional
nonlinear Klein-Gordon equation with quadratic and cubic
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nonlinearity using the collocation points and approximating
the solution by Thin Plate Splines radial basis functions.
Rashidinia and Mohammadi [9] derived a three-level
spline-difference scheme to solve the one dimensional
Klein-Gordon equation which is based on using the finite
difference approximation for the time derivative and the
spline approximation for the second-order spatial derivative.
Several second order finite difference schemes have been
presented (see [10] and references therein). We note that
alternative approaches using spectral and pseudo-spectral
methods have recently been presented [11]. Four finite
difference schemes for approximating the nonlinear Klein-
Gordon equation were discussed in [12].
In this work we reduce the problem to a set of algebraic
equations by expanding the unknown function as cubic
B-spline scaling and wavelet functions specially constructed
on bounded interval, with unknown coefficients. The
operational matrix of derivative is given. This matrix
together with the cubic B-spline scaling and wavelet
functions are then utilized to evaluate the unknown
coefficients.

2. B-spline Scaling and Wavelet Func-
tions

The general theory and basic concepts of the wavelet
theory and MRA is given in [13]-[18]. B-spline wavelets can
be used to expand any function in L2(R). These functions
are defined on the entire real lines, so that they could
be outside of the domain of the problem. This behavior
may be require an explicit enforcement of the boundary
conditions. In order to avid this occurrence, semiorthogonal
compactly supported spline wavelets, constructed for the
bounded interval [0, 1], have been taken into account in this
paper. These wavelets satisfy all the properties verified by
the usual wavelets on the real line.
Let Bm(x) be the mth-order cardinal B-spline function [19]:

Bm(x) =
∫ 1

0

Bm−1(x− t)dt, m ≥ 2,

where B1(x) = χ[0,1](x), the characteristic function of [0, 1]
and Supp[Bm(x)] = [0,m].
It is well known that these compactly supported functions
generate an MRA [17] with two scale relations

Bm(x) =
m∑

k=0

2−m+1

(
m
k

)
Bm(2x− k).

Then the corresponding mth-order cardinal semiorthogonal
compactly supported B-wavelet function ψm(x) is given by

ψm(x) =
3m−2∑

k=0

qkBm(2x− k),

with

qk =
(−1)k

2m−1

m∑

l=0

(
m
l

)
B2m(k − l + 1).

Some of the important properties relevant to the present
work are given below:
1)Vanishing moments: A wavelet ψ(x) is said to have a
vanishing moments of order m if

∫ ∞

−∞
xpψ(x)dx = 0; p = 0, 1, ..., m− 1.

All wavelets must satisfy the above condition for p = 0.
Cubic B-spline wavelet has 4 vanishing moments. That is

∫ ∞

−∞
xpψ4(x)dx = 0; p = 0, 1, 2, 3.

2) Semiorthogonality: The wavelets ψj,k form an
semiorthogonal basis if

〈ψj,k, ψs,i〉 = 0 ; j 6= s; ∀j, k, s, i ∈ Z.

Cubic B-spline wavelet are semiorthogonal.

2.1 Cubic B-spline Scaling and Wavelet Func-
tions

When semiorthogonal wavelets are constructed from B-
splines of order m, the lowest octave level j = j0 is
determined in [20] by

2j ≥ 2m− 1,

so as to give a minimum of one complete wavelet on the
interval [0, 1]. Cubic B-spline scaling function B4(x) is
given by:

ϕ4(x) =





1
6x3 x ∈ [0, 1)
1
6 (−3x3 + 12x2 − 12x + 4) x ∈ [1, 2)
1
6 (3x3 − 24x2 + 60x− 44) x ∈ [2, 3)
1
6 (4− x)3 x ∈ [3, 4)
0 otherwise,

(4)
and its two-scale dilation equation defined as follows:

ϕ4(x) =
4∑

k=0

1
8

(
4
k

)
ϕ4(2x− k).

Fig. 1 is helpful to get a geometric understanding of
two-scale relation of cubic B-spline scaling function.
In this section, the scaling functions used in this work, for
j0 = j = 3 and m = 4 , are reported :

Boundary scalings
Three left boundary cubic B-spline scaling functions are
constructed by the following formula:

ϕ
(3)
4,k(x) = ϕ

(3)
4 (8x− k).χ[0,1](x),
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Fig. 1: Two scale relation of Cubic B-spline scaling function

k = −3,−2,−1, (5)

and for other levels of j, we have:

ϕ
(j)
4,k(x) = ϕ

(3)
4,k(2j−3x),

k = −3,−2,−1, j = 4, 5, . . . · (6)

left and right boundary scaling functions are symmetric with
respect to 0, so we have:

ϕ
(3)
4,5(x) = ϕ

(3)
4,−1(1− x), (7)

ϕ
(3)
4,6(x) = ϕ

(3)
4,−2(1− x), (8)

ϕ
(3)
4,7 = ϕ

(3)
4,−3(1− x), (9)

and for other levels of j, we have:

ϕ
(j)
4,2j−k−3(x) = ϕ

(3)
4,k(2j−3x),

k = −3,−2,−1 , j = 4, 5, . . . · (10)

Inner scalings
Five inner cubic B-spline scaling functions are constructed
by the following formula:

ϕ
(3)
4,k(x) = ϕ

(3)
4 (8x− k).χ[0,1](x),

k = 0, 1, 2, 3, 4, 5, (11)

and for other levels of j, we get:

ϕ
(j)
4,k(x) = ϕ

(3)
4,k(2j−3x− k),

k = 0, 1, ..., 2j − 4, j = 4, 5, . . . · (12)

Two scale delation equation for cubic B-spline wavelet is
given by:

ψ4(x) =
10∑

k=0

(−1)k

8

4∑

l=0

(
4
l

)
ϕ8(k − l + 1)ϕ4(2x− k).

(13)
Other inner and boundary wavelets are made similarly [20].
Fig. 3 is helpful to get a geometric understanding of inner
and boundary cubic B-spline wavelets.

0.0 0.2 0.4 0.6 0.8 1.0
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0.7

Fig. 2: Inner and boundary cubic B-spline scaling functions
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Fig. 3: Cubic B-spline inner and boundary wavelet

3. Function approximation
A function f(x) ∈ L2(R) defined over [0, 1] may be

approximated by cubic B-spline wavelets as:

f(x) =
2j0−1∑

i=−3

cj0,iϕ
(3)
j0,i(x) +

∞∑

j=j0

2j−4∑

k=−3

dj,kψ
(j)
4,k, (14)

where ϕj0,i and ψ
(j)
4,k are scaling and wavelets functions,

respectively. If the infinite series in (14) is truncated, then it
can be written as:

f(x) '
i=2j0−1∑

i=−3

cj0,iϕ
(3)
j0,i(x) +

ju∑

j=j0

2j−4∑

k=−3

dj,kψ
(j)
4,k(x)

= CT Υ(x) = ΥT (x)C, (15)

where C and Υ are 2(ju+1) + 3 column vectors given by

C =
(
cj0,−3, ..., cj0,2j0−1, dj0,−3, ..., dju,2ju−4

)T
, (16)

Υ =
(
ϕ

(3)
4,−3, ..., ϕ

(3)
4,7, ψ

(3)
4,−3, ..., ψ

(3)
ju,2ju−4

)T

, (17)

with

cj0,i =
∫ 1

0

f(x)ϕ̃(3)
j0,i(x)dx, i = −3, ..., 2j0 − 1,

dj,k =
∫ 1

0

f(x)ψ̃(j)
4,k(x)dx,

j = j0, ..., ju, k = −3, ..., 2ju − 4,
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and ϕ̃
(3)
j0,i and ψ̃

(j)
4,k are dual functions of ϕ

(3)
j0,i, i =

−3, ..., 2j0 − 1 and ψ
(j)
4,k, j = j0, ..., ju, k = −3, ..., 2j − 4,

respectively. These can be obtained by linear combinations
of ϕ

(3)
j0,i and ψ

(j)
4,k. Let

ϕ(x) =
(
ϕ

(3)
4,−3(x), ϕ(3)

4,−2(x), ..., ϕ(3)
4,7(x)

)T

, (18)

ψ(x) =
(
ψ

(3)
4,−3(x), ..., ψ(3)

4,4(x), ..., ψ(ju)
4,2ju−4(x)

)T

. (19)

Using (5)-(10) and (18) we get
∫ 1

0

ϕ(x)ϕT (x)dx = P1, (20)

similarly for cubic B-spline wavelets, product matrix is:
∫ 1

0

ψ(x)ψT (x)dx = P2, (21)

where P1 and P2 are 11×11 and (2ju+1−8)× (2ju+1−8)
matrices, respectively. Suppose ϕ̃(x) and ψ̃(x) are the dual
functions of ϕ(x) and ψ(x), respectively, given by

ϕ̃(x) =
(
ϕ̃

(3)
4,−3(x), ϕ̃(3)

4,−2(x), ..., ϕ̃(3)
4,7(x)

)T

, (22)

ψ̃(x) =
(
ψ̃

(3)
4,−3(x), ..., ψ̃(3)

4,4(x), ..., ψ̃(ju)
4,2ju−4(x)

)T

. (23)

Using (18)-(19), (22) and (23) we have
∫ 1

0

ϕ̃(x)ϕT (x)dx = I11,

∫ 1

0

ψ̃(x)ψT (x)dx = I2ju+1−8.

where I11 and I2ju+1−8 are 11 × 11 and (2ju+1 − 8) ×
(2ju+1 − 8) identity matrices, respectively.
Thus we get

ϕ̃ = P−1
1 ϕ, ψ̃ = P−1

2 ψ.

Thus, the dual function of Υ, that is:

Υ̃ =
(
ϕ̃

(3)
j0,−3, ..., ϕ̃

(3)

j0,2j0−1
, ψ̃j0,−3, ..., ψ̃ju,2ju−4

)T

, (24)

can be constructed as:

Υ̃(x) = P−1Υ(x), (25)

where

P =
(

P1

P2

)
.

Theorem 1 ([20]) : We assume that f ∈ C4[0, 1] is
represented by cubic B-spline wavelets as equation (15),
where ψ has 4 vanishing moments, then

|dj,k| ≤ αβ
2−5j

4!
, (26)

where
α = max |f (4)(t)|t∈[0,1]

and

β =
∫ 1

0

|x4ψ̃4(x)|dx ¤

Theorem 2 ([20]): Consider the previous theorem assume
that ej(x) be error of approximation in Vj , then

|ej(x)| = O(2−4j). ¤

Thus, order of error depend on the level j. Obviously, for
larger level of j, the error of approximation will be smaller.

3.1 Operational Matrix of Derivative
The differentiation of vectors Υ in equation (17) can be

expressed as:

Υ′(x) = DΥ(x), (27)

where D is (2ju+1 +3)× (2ju+1 +3) operational matrix of
derivative for cubic B-spline scaling and wavelet functions
on [0, 1]. The matrix D can be obtained by considering:

D =
∫ 1

0

Υ′(x)Υ̃T (x)dx =
(∫ 1

0

Υ′(x)ΥT (x)dx

)
(P−1)T

= E(P−1)T , (28)

where E is (2ju+1 + 3)-dimensional square matrix defined
as follows:

E =
∫ 1

0

Υ′(x)ΥT (x)dx =
(

E1 E2

E3 E4

)
,

with

E1 =
〈
ϕ

(3)
j0,i, ϕ

(3)
j0,r

〉
=

(∫ 1

0

ϕ
(3)
j0,i.ϕ

(3)
j0,rdx

)

i,r

,

E2 =
〈
ψ

(3)
j,k , ϕ

(3)
j0,r

〉
=

(∫ 1

0

ψ
(3)
j,k .ϕ

(3)
j0,rdx

)

j,k,r

,

E3 =
〈
ϕ

(3)
j0,i, ψ

(3)
l,s

〉
=

(∫ 1

0

ϕ
(3)
j0,i.ψ

(3)
l,s dx

)

i,l,s

,

E4 =
〈
ψ

(3)
j,k , ψ

(3)
l,s

〉
=

(∫ 1

0

ψ
(3)
j,k .ψ

(3)
l,s .dx

)

j,k,l,s

,

and the subscripts i, r, k, j, l and s assume values as given
below:

i, r = −3,−2, ..., 2j0−1,

k, s = −3, ..., 2j − 2,

j, l = j0, ..., ju.
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4. Numerical Method for the Klein-
Gordon Equation

In this section, we present new efficient and accurate
numerical methods for the Klein-Gordon equation. Consider
the one-dimensional nonlinear Klein-Gordon equation:

∂2u(x, t)
∂t2

+ α
∂2u(x, t)

∂x2
+ βu(x, t) + g(u(x, t)) = F (x, t),

(x, t) ∈ [a, b]× [0, T ] (29)

with specified initial and boundary conditions given by

u(x, 0) = f0(x), ut(x, 0) = f1(x), (30)

u(a, t) = φ0(t), u(b, t) = φ1(t). (31)

By expanding the unknown functions u(x, t) and g(u(x, t))
in terms of cubic B-spline scaling and wavelet functions, we
get:

u(x, t) = ΥT (t)CΥ(x), (32)

g(u(x, t)) = Z(x, t)) = ΥT (t)AΥ(x), (33)

where C and A are (2ju+1 + 3)-dimensional square coeffi-
cient matrices defined as follows:

C =
(∫ 1

0

∫ 1

0

u(x, t)Υi(t)Υj(x)dtdx

)

i,j

,

A =
(∫ 1

0

∫ 1

0

Z(x, t)Υi(t)Υj(x)dtdx

)

i,j

,

i, j = 1, 2, ..., 2ju+1 + 3.

By applying equations (27) and (32), we get:

∂2u(x, t)
∂x2

= ΥT (t)CD2Υ(x), (34)

and

∂2u(x, t)
∂t2

= ΥT (t)(D2)T CΥ(x). (35)

Substituting equations (32)-(35) in equation (29), we have
the following system of equations:

ΥT (t)(D2)T CΥ(x) + αΥT (t)CD2Υ(x)

+ βΥT (t)CΥ(x) + ΥT (t)AΥ(x) = F (x, t), (36)

for solving the current system, Galerkin method is used,
cubic B-spline scaling and wavelet functions are used as
weighting functions.
Multiplying equations (36) in Υ̃T (x) and integrating 0 to 1,

ΥT (t)(D2)T C + αΥT (t)CD2

+ βΥT (t)C + ΥT (t)A =
∫ 1

0

F (x, t)Υ̃T (x)dx, (37)

now, multiplying equations (37) in Υ̃(t) and integrating 0 to
1, we get:

(D2)T C + αCD2 + βC + A

=
∫ 1

0

(∫ 1

0

F (x, t)Υ̃T (x)dx

)
Υ̃(t)dt, (38)

Using the initial conditions (30) we obtain:

u(x, 0) = ΥT (0)CΥ(x) = f0(x),

ut(x, 0) = ΥT (0)DT CΥ(x) = f1(x), (39)

Also the Dirichlet boundary condition (31) gives:

u(a, t) = ΥT (t)CΥ(a) = φ0(t),

u(b, t) = ΥT (t)CΥ(b) = φ1(t), (40)

Multiplying equations (39) in Υ̃T (x) and integrating from 0
to 1;
∫ 1

0

u(x, 0)Υ̃T (x)dx = ΥT (0)C =
∫ 1

0

f0(x)Υ̃T (x)dx,

∫ 1

0

ut(x, 0)Υ̃T (x)dx = ΥT (0)DT C =
∫ 1

0

f1(x)Υ̃T (x)dx,

(41)

and multiplying equations (40) in Υ̃(t) and integrating from
0 to 1;

∫ 1

0

u(a, t)Υ̃(t)dt = CΥ(a) =
∫ 1

0

φ0(t)Υ̃(t)dt,

∫ 1

0

u(b, t)Υ̃(t)dt = CΥ(b) =
∫ 1

0

φ1(t)Υ̃(t)dt, (42)

Equations (38), together with equations (41) and (42) give a
system of nonlinear equations with 3×(2ju+1+3)×(2ju+1+
3) equations and unknowns, which can be solved to find the
unknown coefficient Ci,j and Ai,j .

5. Numerical Examples
In this section, we will apply cubic B-spline wavelets via

Galerkin method to obtain numerical solutions for certain
cases of the generalized form of the Klein-Gordon equation.
Some examples are analyzed to illustrate the viability and
efficiency of the proposed method.
Example 1: [21] Consider the following special case of
equation (1):

∂2u(x, t)
∂t2

+
∂2u(x, t)

∂x2
+ 2u(x, t) = 2 sin(x) sin(t),

subject to the following initial and boundary conditions

u(x, 0) = 0, ut(x, 0) = sin(x),

u(0, t) = 0, u(
π

2
, t) = sin(t),

where the exact solution is u(x, t) = sin(x) sin(t). The
solution for u(x, t) is obtained by the method in Section
4 at the octave level j0 = 3 and at the levels ju = 4 and 5.
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In Table 1, we present L2, L∞ and RMS errors of numerical
solutions of Example 1 in some arbitrary points.
Example 2: [22] Consider the following special case of

Table 1: Errors of numerical solution of example 1 for 0 ≤
x ≤ π

2

t ‖e‖L∞ ‖e‖L2 RMS

ju = 4

1 4.71× 10−8 5.72× 10−7 7.36× 10−8

2 3.89× 10−8 6.63× 10−7 7.08× 10−8

3 7.24× 10−8 5.96× 10−7 7.74× 10−8

4 6.31× 10−8 6.26× 10−7 5.97× 10−8

5 4.55× 10−8 5.06× 10−7 6.02× 10−8

ju = 5

1 5.92× 10−14 3.14× 10−12 2.39× 10−14

2 7.19× 10−14 5.38× 10−12 6.01× 10−14

3 4.79× 10−14 5.72× 10−12 2.12× 10−14

4 4.07× 10−14 3.66× 10−12 3.30× 10−14

5 6.55× 10−14 7.27× 10−12 4.52× 10−14

0.0

0.5

1.0

1.5 0

5

10

-1.0

-0.5

0.0

0.5

1.0

Fig. 4: The space-time graph of estimated solution of exam-
ple 1

equation (1):

∂2u(x, t)
∂t2

− ∂2u(x, t)
∂x2

+ u2(x, t) = −x cos(t) + x2 cos2(t),

subject to the following initial conditions

u(x, 0) = x, ut(x, 0) = 0,

u(0, t) = 0, u(1, t) = cos(t),

where 0 ≤ x ≤ 1, and the exact solution is u(x, t) =
x cos(t). The solution for u(x, t) is obtained by the method
in Section 4 at the octave level j0 = 3 and at the levels
ju = 4 and 5. Results are shown in Tables 3 and 4. In
Tables 3and 4, we present L2 and L∞ errors of numerical
solutions of Example 2 in some arbitrary points.
Example 3: Consider the following nonlinear Klein-Gordon

Table 2: Errors of numerical solution of example 2 for 0 ≤
x ≤ 1

t ‖e‖L∞ ‖e‖L2 RMS

ju = 4

1 3.92× 10−8 2.57× 10−7 3.77× 10−8

2 4.37× 10−8 6.49× 10−7 4.51× 10−8

3 8.04× 10−8 5.83× 10−7 3.44× 10−8

4 7.60× 10−8 1.55× 10−7 7.72× 10−8

5 6.32× 10−8 7.62× 10−7 8.26× 10−8

ju = 5

1 2.25× 10−14 3.58× 10−12 4.67× 10−14

2 8.91× 10−14 3.37× 10−12 6.29× 10−14

3 4.09× 10−14 7.28× 10−12 2.64× 10−14

4 3.27× 10−14 8.04× 10−12 5.72× 10−14

5 4.71× 10−14 5.73× 10−12 3.65× 10−14
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0.0
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Fig. 5: The space-time graph of estimated solution of exam-
ple 2

equation:

∂2u(x, t)
∂t2

+
∂2u(x, t)

∂x2
− 4u(x, t) + ln(u(x, t))

= 6xe2t + 3 ln(x) + 2t, (43)

subject to the following initial conditions

u(x, 0) = x3, ut(x, 0) = 2x3,

u(0, t) = 0, u(1, t) = e2t,

where −1 ≤ x ≤ 1, and the exact solution is u(x, t) =
x3 exp(2t). The solution for u(x, t) is obtained by the
method in Section 4 at the octave level j0 = 3 and at the
levels ju = 4 and 5. Results are shown in Tables 3 and 4. In
Tables 3and 4, we present L2 and L∞ errors of numerical
solutions of Example 2 in some arbitrary points. Symbols
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Table 3: Errors of numerical solution of example 3 for −1 ≤
x ≤ 1

t ‖e‖L∞ ‖e‖L2 RMS

ju = 4

1 6.71× 10−8 8.22× 10−7 5.49× 10−8

2 3.64× 10−8 5.18× 10−7 7.43× 10−8

3 5.11× 10−8 3.46× 10−7 2.89× 10−8

4 2.97× 10−8 5.14× 10−7 3.46× 10−8

5 4.52× 10−8 4.81× 10−7 6.55× 10−8

ju = 5

1 1.47× 10−14 2.77× 10−12 2.09× 10−14

2 3.27× 10−14 4.41× 10−12 4.32× 10−14

3 2.84× 10−14 3.15× 10−12 2.86× 10−14

4 3.49× 10−14 4.30× 10−12 3.93× 10−14

5 1.84× 10−14 1.57× 10−12 3.49× 10−14

-1.0

-0.5

0.0

0.5

1.0
0

5

10

-50 000

0

50 000

Fig. 6: The space-time graph of estimated solution of exam-
ple 2

used in Tables defined as follow:

ej = (uexact)j − (uapprox)j , e = uexact − uapprox,

‖e‖L∞ = maxj |ej |,

‖e‖L2 =

√√√√
N∑

j=1

|(ej)2|,

RMS =
‖ej‖√

N
.

6. Conclusions
In this paper we presented a numerical scheme for solving

the nonlinear Klein-Gordon equation. The cubic B-spline
scaling functions and wavelets were employed as testing
and weighting functions. This method can be employed for
solving other kinds as differential equations. Because of
some properties of these wavelets, the operational matrices
are very sparse. Test problems show that the method has
high accuracy.
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 Abstract- Control of power transmission and loss 
causes complications in the large power systems. Phase 
Shifter Transformers (PST) according to their 
capabilities can be appropriate devices for power 
controlling in the large power transmission systems. 
Various criteria such as decreasing of loss, saving of 
generator annual economic cost, improving system 
static and dynamic behaviors and reducing of 
congestion have been individually studied in the 
literature to placement problem of phase shifter 
transformers (PST). In this paper, loss reduction, 
voltage profile and congestion improvement indices are 
assessed and the optimal locations of PST devices 
evaluated by using Sample Ant Colony Optimization 
(SamACO) algorithm. The effectiveness of the proposed 
ABC based method is demonstrated on IEEE 30-Bus 
network through some performance indices in 
comparison with the genetic algorithm and particle 
swarm optimization. Results evaluation show that the 
SamACO algorithm has a good capability in loss 
reduction, voltage profile and congestion enhancement 
than the GA and PSO methods. 
 
Keywords: PST, Allocation, SamACO; Power Loss 
Reduction. 
 
1. Introduction 

Nowadays, increment of generation quantity becomes a 
necessity relating to the ongoing industrials, electrical 
consumptions growing and consequently the 
consecutive load increasing. On the other hand, 
operating of power system must be closed to its nominal 
capacity considering high development costs of 

                                                           
*Corresponding Author (hshayeghi@gmail.com) 

networks and their related devices and environmental 
concerns. Liberalization of the electricity market and 
utilities tendency in getting more profits also compel 
power systems to operate close to theirs rate capacities 
and sometimes in over load conditions. Moreover, 
variable distribution of load and generation resources 
based on their conditions make network operate in 
heavy congested load conditions in some parts and in 
light load conditions in others. Accurate evaluating of 
power transmission and determining its level is 
investigated in congestion indices concepts. Many 
various indices already have been represented to 
quantifying congestion values of transmission lines [1]. 
Network operation close to its nominal capacity may 
appear as over load state in some sections and can lead 
to partial outages. Continuation of this state results in 
blackout condition possibly. Thus, proper management 
of network power flow is a main necessity along with 
holding the operation constraints. Controlling and 
managing the power flow in network lines can be done 
by using the various methods and some controlling 
actions and devices such as Generation Rescheduling 
(GR), series capacitors, FACTS controlling device and 
suede-FACTS devices [2-4]. Phase Shifter Transformer 
(PST) is one of the suede-FACTS devices which can 
replace the power in related and next lines by changing 
the transmitting power value that may cause to relieve 
congestion [5-7]. Phase shifter transformer installation 
considering its advantages can control the value of line 
power flows obviously. However, because of 
investment limitations, the installation and usage of 
phase shifter transformers only based on their 
advantages will not be economic. 

Proper location and sizing of PST should be noticed 
and studied because its installation at wrong places and 
capacities can cause various problems in the operation 
conditions. In this paper, a Sample Ant Colony 
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Optimization (SamACO) algorithm is proposed for 
finding optimal location of PST aimed at reducing the 
power loss and improving voltage profile and power 
congestion. The SamACO algorithm is a typical swarm-
based approach to optimization, in which the search 
algorithm is inspired by the intelligent foraging 
behavior of a ant colony process [8]. It is based on the 
idea of sampling candidate values for each variable and 
selecting the values to form solutions. In SamACO 
technique, the sampling method possesses the feature of 
balancing memory, exploration and exploitation. By 
preserving variable values from the best solutions 
constructed by the previous ants, promising variable 
values are inherited from the last iteration. Thus, high 
solution accuracy is achieved by exploiting new 
variable values surrounding the best-so-far solution by a 
dynamic exploitation process.  

IEEE 30 Bus network has been used as a test system 
to demonstrate the effectiveness and robustness of the 
proposed SamACO algorithm and their ability to 
provide efficient loss reduction and voltage profile 
improvement. To show the superiority of the proposed 
approach, the simulations results are compared with the 
particle swarm optimization and genetic algorithm 
through some performance indices. The results 
evaluation shows that the proposed method achieves 
good robust performance and is superior to the other 
methods. 
 
2. PST Model [9] 
An ideal voltage source with voltage Vs and reactance Xs 
that is connected in series between nodes i and j is 
shown in Fig. 1.   
Vi is an imaginary voltage source which can be defined 
as:  

)1(      +  

)2(      =     and    0 ≤ ≤ 1 
Figure 2 shows a phasor diagram that is used to 

represent the voltage of Fig. 1 with regulating 
magnitude and angle. 
 

 
Fig. 1. Series voltage source between buses i and j 

 
Fig. 2. Voltages phasor diagram of Fig. 1 

Figure 3 shows the current source model of PST (the 
Norton model of voltage source) where  and 

. 

 
 

Fig. 3. Norton model of series voltage source 
 

Current source is dependent on the usage of nodes i and 
j for transmitting power, then  and are expressed 
as follows:  

)3(  
  

)4(    
 
After replacing relations (1) and (2) to (3) and (4) 

and simplifying, the injected active and reactive powers 
are calculated using the following equations [10].   

)5( 
 

)6(    
)7(  

 
)8(  

 
The powers injection model of PST has been shown 

in Fig. 4 as a series voltage resource. 
 

 
 

Fig. 4. Injection model of series voltage source 
 
By using Eqs. (5) through (8) and applying a phase 

shifter transformer, angle γ can be changed and then the 
value of line power flow will be vary. If a PST is 
installed between buses i and j, the new admittance 
matrix formed considering the impedance Xs in the 
network admittance matrix. The Jacobean matrix is 
given in Table 1 [9]. Powers injection in PST model can 
be added to Jacobean matrix elements by a particular 
sign.  
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Table 1. Modified Jacobian matrix 

  
  
  
  

  

  
  
  
  

 

  
  
  
  

 
  
  
  

 
3. SamACO Algorithm 
The SamACO algorithm describes the foraging behavior 
of ant colony for numerical optimization problems. It is 
a very simple, robust and population based stochastic 
optimization algorithm [10]. Unique characteristics of 
SamACO are the cooperation of a new sampling method 
for discretizing the continuous search space and an 
efficient method for incremental solution construction 
based on the sampled variable values. In SamACO, the 
sampling method possesses the feature of balancing 
memory, exploration, and exploitation. By preserving 
variable values from the best solutions constructed by 
the previous ants, promising variable values are 
inherited from the last iteration. Diversity of the 
variable values is maintained by exploring a small 
number of random variable values. Thus, high solution 
accuracy is achieved by exploiting new variable values 
surrounding the best-so-far solution by a dynamic 
exploitation process. [11]. 

The success of SamACO in solving continuous 
optimization problems depends on an effective variable 
sampling method and an efficient solution construction 
process. The variable sampling method in SamACO 
maintains promising variable values for the ants to 
select, including variable values selected by the 
previous ants, diverse variable values for avoiding 
trapping, and variable values with high accuracy. The 
ants’ construction process selects promising variable 
values to form high-quality solutions by taking 
advantage of the traditional ACO method in selecting 
discrete components [1]. Each decision variable Xi has ki 

sampled values (1) (2) ( ), ,..., k
i i ix x x  from the contin-

uous domain [li, ui], i = 1, 2,..., n. The sampled discrete 
variable values are then used for optimization by a 
traditional ACO process (see Ref. [12] for more details 
about [12] traditional ACO) as in solving DOPs 
(discrete optimization problems). The flowchart of the 
SamACO algorithm is depicted. 

 
A. Generation of the Candidate Variable Values 
The generation processes of the candidate variable 
values in the initialization step and in the optimization 

iterations are different. Initially, the candidate variable 
values are randomly sampled in the feasible domain as: 

( ) ( )( 1 )j ji i
i i i

u l
x l j rand

m ϑ
−

= + − +
+

                              (9) 

 

 
Fig. 5. Flowchart of the SamACO algorithm for continuous 

optimization 
 

Where, (m+ϑ ) is the  initial number of candidate 
values for each variable  i , and randi

(j) is a uniform 
random number in [0,1], i=1, 2, … , n, j = 1, 2, …, 
m+ ϑ .  

During the optimization iterations, candidate 
variable values have four sources, i.e., the variable 
values selected by ants in the previous iteration, a 
dynamic exploitation, a random exploration, and a best-
so-far solution. In each iteration, m ants construct m 
solutions, resulting in m candidate values for each 
variable for the next iteration. The best-so-far solution is 
then updated, representing the best solution that has 
ever been found. The dynamic exploitation is applied to 
the best-so-far solution, resulting in gi new candidate 
variable values near the corresponding variable values 
of the best-so-far solution for each variable Xi. 
Furthermore, a random exploration process generates Θ 
new values for each variable by discarding the worst Θ 
solutions that are constructed by the ants in the previous 
iterations. Suppose that the worst Θ solutions are 
denoted by x(m−Θ+1), x(m−Θ+2) ,…,x(m). The new variable 
values for the solution x(j) are randomly generated as:  

yes 

no

Start 

Initialize parameters 

Finished? 

Initially generate m+ϑ  
values for each variable 

Ant's solution construction 

Pheromone Update 

Perform dynamic exploitation 
to the best-so-far solution 

Perform random exploitation 
to replace the worst solution 

Ant's solution construction 

Pheromone update 

start 
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( ) ( )( )j j
i i i i ix l u l rand= + − ×                              (10) 

Where, i = 1, 2, …, n and j= m−Θ+1, …, m. New 
values, thus, can be imported in the value group. There 
are a total of (m+gi+1) candidate values for each 
variable Xi  [11]. 

For the improvement of SamACO, an efficient 
dynamic exploitation, ants solution construction and 
pheromone update is used . 

 
B. Dynamic Exploitation Process 
The dynamic exploitation proposed in this study is 
effective for introducing fine-tuned variable values into 
the variable value group. We use a radius ri to confine 
the neighborhood exploitation of the variable value xi,  
i = 1, 2, …, n. The dynamic exploitation is applied to the 
best-so-far solution x(0) = (x1

(0) , x2
(0), …, xn

(0)), aiming at 
searching the vicinity of the variable value xi

(0) in the 
interval [xi

(0)- ri , xi
(0) +ri ], i = 1, 2…, n. The values of 

the variables in the best-so-far solution are randomly 
chosen to be increased, unchanged, or reduced as: 

(0)

(0)

(0)

min( , ), 0 1/ 3
ˆ 1/ 3 2 / 3

max( , ), 2 / 3 1

i i i i

i i

i i i i

x r u q

x x q

x r l q

σ

σ

⎧ + ⋅ ≤ <
⎪= ≤ <⎨
⎪ − ⋅ ≤ <⎩

               (11) 

Where, (0,1]
i

σ ∈  and (0,1]q ∈   are uniform random 
values, i = 1, 2…, n. Then, the resulting solution 

1 2ˆ ˆ ˆ ˆ( , ,..., )nx x x x=  is evaluated. If the new solution is 
no worse than the recorded best-so-far solution, we 
replace the best-so-far solution with the new solution. 
The above exploitation repeats for ϑ times. The new 
variable values that are generated by increasing or 
reducing a random step length are recorded as 

( ) , 1, 2, ..., , 1, 2, ..., ,j

i i
x j m m m g i n= + + + =         (12) 

Where, gi counts the number of new variable values 
in the dynamic exploitation process. In each iteration, 
the radiuses adaptively change based on the exploitation 
result. If the best exploitation solution is no worse than 
the original best-so-far solution (case 1), the radiuses 
will be extended. Otherwise (case 2), the radiuses will 
be reduced, i.e.: 

, 1
, 2

i e
i

i r

r case
r

r case

υ
υ
⋅⎧

← ⎨ ⋅⎩
                                            (13) 

Where, ve (ve ≥ 1) is the radius extension rate, and  
vr(0 <vr ≤ 1) is the radius reduction rate. The initial 
radius value is set as ri = (ui−li)/(2m), i = 1, 2, …, n. The 
extension of the radiuses can import values in a distance 
further away from the original value, whereas the 
reduction of the radiuses can generate values with high 
accuracy near to the original value. The extension and 
the reduction of radiuses aim at introducing values with 
different accuracy levels according to the optimization 
situation. 
 

C. Ants’ Solution Construction 
After the candidate variable values are found out, m ants 
are dispatched to construct solutions. Each candidate 
variable value is associated with pheromones, which 
bias the ants’ selection for solution construction. The 
index li

(k) of the variable value selected by ant k for the 
ith variable is given by: 

(1) (2) ( )
( ) 0

( )

arg max{ , ,..., },
,

m
k i i i

i k
i

if q q
l

L otherwise

τ τ τ⎧ <
= ⎨

⎩
          (14) 

Where, q is a uniform random value in [0, 1),   i = 1, 

2, …, n, k = 1, 2, …,m.  The parameter 0q ∈  [0, 1) 
controls whether an ant will  choose the variable value 
with the highest pheromone from the m  solutions 
generated in the  previous iteration, or randomly choose 
an index Li

(k)∈  {0, 1, …, m + gi} according to the 
probability distribution given by 

( )
( )

( )
0

, 0,1,...,
i

j
j i

i im g u
iu

p j m g
τ

τ+

=

= = +
∑

                  (15) 

The constructed solution of ant k is denoted 
( ) ( ) ( )
1 2( ) ( ) ( )( )

1 2( , , ... )
k k k

nl l lk

nx x x x= .    
 
D. Pheromone Update 
Initially, each candidate variable value is assigned an 
initial pheromone value T0. After evaluating the m 
solutions constructed by ants, the solutions are sorted by 
their objective function values in an order from the best 
to the worst. Suppose that the sorted solutions are 
arranged as   x(1), x(2), …,x(m). The pheromones on the 
selected variable values are evaporated as: 

( ) ( )
min(1 )j j

i i Tτ τρ ρ← − ⋅ + ⋅                                       (16) 
Where, 0 <ρ< 1 is  the pheromone evaporation rate, 

and Tmin is the predefined minimum pheromone value, i 
= 1, 2, …, n, j = 1, 2, …,m. The variable values in the 
best Ψ solutions have their pheromones reinforced as: 

( ) ( )
max(1 )j j

i i Tτ τα α← − ⋅ + ⋅                                       (17) 
Where, 0 <α< 1 is the pheromone reinforcement rate, 

and Tmax is the predefined maximum pheromone value, i 
= 1, 2, …, n,  j = 1, 2, …,Ψ, with Ψ being the number of 
the high-quality solutions that receive additional 
pheromones on the variable values. The pheromones on 
the variable values that are generated by the exploration 
process and the dynamic exploitation process are 
assigned as T0. In each iteration, pheromone values on 
the variable values of the best-so-far solution are 
assigned equal to the pheromone values on the iteration 
best solution. 
 
4. Problem Formulation 
The main goal of this paper is loss reduction, voltage 
profile and congestion improvements via optimal 
allocation of PST. Decreasing the amount of loss and 
boosting the voltage profile are serious issues in new 
and modern power networks, but the necessity of having 
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an acceptable security margin in network operation is 
also very important. For obtaining these purposes, 
utilizing of phase shifter transformers is essentially 
required. Thus, for balancing lines power flow, it is 
necessary to assess congestion problem in relevant 
indices firstly. To investigating the congestion 
parameter of test system, the PIl index proposed in 
reference [13] has been used which is expressed as 
follows:  

)18(  

 

Where, 
σ: Lines power standard deviation from nominal values  

: Equals 70 percent of line nominal power (P.U)  

: Weight factor of line i  
N: Number of lines N 
Pi: Power of each line (p.u.)  

For calculating PIl: ωi and σ is considered 1 and        
0.3, respectively. 

If all lines are loaded at their nominal value, PIl 
index has a low value and if overload condition occurs 
in networks, PIl will be have a large value. Thus, 
optimal location of PST will be evaluated to reduce 
lines loss and improve congestion and voltage profile 
indices by ABC algorithm. The objective function used 
for phase shifter transformers placement is given by: 

) 19(            
Where,  
m: Total number of buses 
Vi: ith bus voltage in p.u. 
PIl: Congestion indices in p.u.  
Ploss: Total value of system losses in p.u 
w1, w2, w3:  Weight coefficients related to congestion, 
loss and bus voltage indices, respectively 

Minimizing the objective function that is composed 
of loss, congestion and voltage profile indices will leads 
to finding PST optimal location. Thus, the allocation 
problem can be formulated as the following 
optimization problem, where the constraints are the 
buses voltage magnitude limits, lines active power 
transmitting capabilities and generated active and 
reactive power of generators limitations [9]: 
Minimize PI                                                                             (20) 

The proposed approach employs SamACO 
algorithm to solve this optimization problem and search 
for optimal placement of PST by evaluating the 
objective cost function as given in Eq. (20) using load 
flow of power system. The goal is determining the 
installation place and angle setting of phase shifter 
transformers. The weight factors w1, w2 and w3 are 
included in objective function according the importance 
and effects of Ploss, congestion index PIl and buses 
voltage magnitudes. It is necessary to mention that in 
this paper they have set to 20, 1 and 1, respectively. 

5. Simulation Results 
The proposed method is applied to the electrical 
network on IEEE 30 bus including six thermal 
generating units as shown in Fig. 6 to assess the 
suitability of the algorithm. The system data extracted 
from [13]. The MARTPOWER-4 toolbox of MATLAB 
software is used for load flow running.  

 

Fig. 6. IEEE 30 bus power system 
 

The goal is determining the installation place and 
angle setting of phase shifter transformers. The obtained 
results using SamACO is compared with PSO and GA 
methods in order to illustrate its robust performance and 
effectiveness for the solution of optimal allocation of 
PST problem.  

Results of the PST placement based on the objective 
function PI, by applying AC power flow using the 
proposed SamACO, PSO and GA algorithms are given 
in Table 2. Figure 7 shows the minimum fitness 
functions evaluating process. 

 
Table 2. Optimal PST parameters 

The best cost 
Function Angle of PST Optimized Place 

of PST Algorithm 

0.9166 -9.8787 11 GA 
0.9153 -8.7775 14 PSO 
0.9153 -8.7775 14 SamACO 

  
It can be seen that from Table 1 installing a phase 

shifter transformer in line 14 between buses 9 and 10 
can be reduced loss and improved voltage profile and 
congestion indices of network clearly than the GA 
method. Table 3 presents the lines and network loss, PIl 
index values before and after installing of PST using 
three methods. It is evident that the SamACO and PSO 
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based solution is identical. Using the GA the reduction 
at total loss of network is 7.5%, whereas it is 8.5 % 
using the proposed SamACO algorithm. 

Figures 7 and 8 show the power loss of network 
lines and PIl index. It can be seen that the proposed 
SamACO method has good performance and power loss 

reduction and PIl index improvement is significantly 
occurred after PST placement using SamACO and PSO 
techniques. Voltage profile of network before and after 
PST installation is shown in Fig. 9. Using the proposed 
SamACO algorithm voltage profile is considerably 
improved.  Moreover, it is superior to the GA method. 

 
Table 3. The lines and network loss, PIl index values before and after installing of PST 

        GA PSO & SamACO  

NO 
# 

From 
Bus 

To 
Bus 

Ploss(MW) 
Without PST 

PIl(p.u) 
Without PST

Ploss(MW) 
With PST 

PIl(p.u) 
With PST 

Ploss(MW) 
With PST 

PIl(p.u) 
With PST 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

1 
1 
2 
3 
2 
2 
4 
5 
6 
6 
6 
6 
9 
9 
4 

12 
12 
12 
12 
14 
16 
15 
18 
19 
10 
10 
10 
10 
21 
15 
22 
23 
24 
25 
25 
28 
27 
27 
29 
8 
6 

2 
3 
4 
4 
5 
6 
6 
7 
7 
8 
9 

10 
11 
10 
12 
13 
14 
15 
16 
15 
17 
18 
19 
20 
20 
17 
21 
22 
22 
22 
23 
24 
25 
26 
27 
27 
29 
30 
30 
28 
28 

0.026 
0.128 
0.178 
0.018 
0.110 
0.286 
0.066 
0.120 
0.031 
0.128 

0 
0 
0 
0 
0 
0 

0.037 
0.065 
0.008 
0.003 
0.031 
0.097 
0.022 
0.090 
0.052 
0.023 
0.044 
0.062 
0.093 
0.109 
0.078 
0.066 
0.035 
0.046 
0.063 

0 
0.108 
0.127 
0.013 
0.036 
0.001 

0.9995 
0.9998 
0.9878 
0.9872 
0.9866 
0.9741 
0.9670 
0.9682 
0.9677 
0.9400 
0.9327 
0.9180 
0.9124 
0.9050 
0.8988 
0.8817 
0.8668 
0.8604 
0.8342 
0.8175 
0.8000 
0.7823 
0.7650 
0.7503 
0.7350 
0.7200 
0.7062 
0.6915 
0.6717 
0.6540 
0.6373 
0.6200 
0.6025 
0.5855 
0.5879 
0.5626 
0.5350 
0.5176 
0.5030 
0.4882 
0.4667 

0.29 
0.118 
0.163 
0.017 
0.120 
0.326 
0.127 
0.130 
0.028 
0.124 

0 
0 
0 
0 
0 
0 

0.025 
0.018 
0.009 
0.009 
0.001 
0.037 
0.003 
0.020 
0.099 
0.042 
0.045 
0.056 
0.081 
0.142 
0.039 
0.042 
0.003 
0.046 
0.022 

0 
0.108 
0.127 
0.013 
0.043 
0.005 

0.9994 
0.9998 
0.9882 
0.9877 
0.9870 
0.9694 
0.9587 
0.9496 
0.9492 
0.9314 
0.9147 
0.8985 
0.8929 
0.8760 
0.8654 
0.8487 
0.8340 
0.8190 
0.8045 
0.7876 
0.7710 
0.7536 
0.7368 
0.7153 
0.6990 
0.6826 
0.6687 
0.6547 
0.6373 
0.6200 
0.6023 
0.5850 
0.5684 
0.5514 
0.5344 
0.5253 
0.5077 
0.4902 
0.4754 
0.4600 
0.4450 

0.029 
0.118 
0.163 
0.017 
0.118 
0.321 
0.119 
0.129 
0.028 
0.124 

0 
0 
0 
0 
0 
0 

0.026 
0.021 
0.012 
0.008 

0 
0.041 
0.04 
0.018 
0.092 
0.039 
0.044 
0.056 
0.081 
0.138 
0.037 
0.044 
0.001 
0.046 
0.023 

0 
0.108 
0.127 
0.013 
0.042 
0.005 

0.9786 
0.9754 
0.8391 
0.8337 
0.8935 
0.8239 
0.7887 
0.7689 
0.7927 
0.7604 
0.7045 
0.6751 
0.6823 
0.6581 
0.6542 
0.6321 
0.6180 
0.6047 
0.5942 
0.5798 
0.5674 
0.5545 
0.5435 
0.5359 
0.5280 
0.5207 
0.5157 
0.5142 
0.5063 
0.4985 
0.4920 
0.4855 
0.4804 
0.4750 
0.4699 
0.4745 
0.4692 
0.4642 
0.4624 
0.4601 
0.4585 

  TOTAL       2.395                                  2.215                                   2.193 
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Fig. 7: Fitness convergence, Dashed (GA), Dotted (PSO) and 

Solid (SamACO). 
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Fig. 7. Ploss index before and after PST installation, Dashed (before 
PST installation), Solid (after PST installation and using SamACO) 
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Fig. 8. PIl congestion index, Dashed (without PST), Dotted (with PST 

using GA), Solid (with PST using SamACO) 
 

6. Conclusions  
This paper presents an appropriate method based on 
SamACO algorithm to improve line loss, voltage profile 
and congestion indices through optimal sitting of a 
phase shifter transformers. Due to consideration to some 
practical issues and by defining a new performance 
index, the optimum allocation of a single PST and its 
controlling phase angles can be determined. In the 
SamACO algorithm, the sampling method possesses the 
feature of balancing memory, exploration and 
exploitation. By preserving variable values from the 
best solutions constructed by the previous ants, 
promising variable values are inherited from the last 
iteration. Thus, high solution accuracy is achieved by 
exploiting new variable values surrounding the best-so-
far solution by a dynamic exploitation process. The 
performance of the proposed SamACO based method is 
tested on IEEE 30-Bus network and the proper location 
for installing phase shifter transformers is obtained by 
minimizing the objective function in short evaluating 
time. Results evaluation show significant reduction in 
power loss in addition to voltage profile and congestion 
improvement than the GA method one. 
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Abstract - Accurately forecasting the foreign exchange rate is 

critical to enterprises like the semiconductor industry in 

Taiwan. For this purpose, a fuzzy-neural approach is 

proposed. In the proposed methodology, a committee of 

virtual experts is organized instead, and then they are asked to 

give opinions about the fuzzy forecasts. A corresponding FLR 

equation is constructed to forecast the foreign exchange rate 

for each virtual expert. To aggregate these fuzzy foreign 

exchange rate forecasts, a two-step aggregation mechanism is 

applied. First, partial-consensus fuzzy intersection is applied 

to aggregate the fuzzy forecasts into a polygon-shaped fuzzy 

number, in order to improve the precision. Then a radial basis 

function network (RBF) is constructed to defuzzify the 

polygon-shaped fuzzy number and to generate a 

representative/crisp value, so as to enhance the accuracy. To 

evaluate the effectiveness of the proposed methodology, the 

practical case of forecasting the foreign exchange rate of NTD 

for USD is used. According to the experimental results, the 

proposed methodology improved. 

Keywords: Exchange Rate, Fuzzy-neural 

 

1 Introduction 

 The foreign-exchange rate between 2 currencies 

specifies how much one currency is worth in terms of the 

other. Accurately forecasting the foreign exchange rate is very 

important for export-oriented enterprises. To the 

semiconductor industry in Taiwan, the depreciation of 

Taiwan’s currency, NTD, leads to the increase in the costs of 

raw material imported from overseas, and the decrease in 

gross margin that is usually measured in terms of NTD. 

Besides, semiconductor component distributors in Taiwan sell 

products for world-renowned manufacturers. When there is 

excessive volatility in the foreign exchange rate of NTD, it 

becomes very difficult for these distributors to control product 

costs. Therefore, the manufacturers need to adopt some 

hedging actions which are usually based on a precise forecast 

of the foreign exchange rate. Some of the DRAM makers in 

Taiwan their gross margin might be reduced by half with just 

a 3% increase in the foreign exchange rate of NTD. 

The fluctuation in the foreign exchange rate can be treated as a 

type of time series [5]. A sequential learning neural network is 

used in Hu et al. [3] to forecast the exchange rate between 

USD and Mark. However, most crisp approaches suffer from 

serious drawback due to inherent uncertainty and data 

acquisition problems. For this reason, fuzzy or probabilistic 

approaches have been in the literature. Tseng et al. [7] 

proposed the fuzzy ARIMA (FARIMA) approach to predict 

the foreign exchange rate of NTD for USD by determining the 

upper and lower bounds for the forecasts generated by 

ARIMA. 

In this study, a virtual-expert partial-consensus fuzzy-neural 

approach is proposed for the foreign exchange rate forecasting 

problem. The FLR-BPN approach is a general approach like 

Mamdani’s or Takagi-Sugeno’s fuzzy inference systems, and 

potentially can be applied to forecast any phenomena in 

various fields of research or applications, e.g. semiconductor 

yield forecasting [1], etc. 

Compared with the original FLR-BPN approach, the proposed 

methodology has the following innovative treatments: 

(1) In case that the number of domain experts is not sufficient, 

opinions about the fuzzy foreign exchange rate forecasts will 

be solicited from a committee of virtual experts instead in the 

proposed methodology. 

(2) A radial basis function network (RBF) is constructed to 

defuzzify the polygon-shaped fuzzy number and to generate a 

representative/crisp value instead of the original BPN 

defuzzifier.  

2 Methodology 

2.1 Data preprocessing  

 Before applying the proposed methodology, the 

collected data are scaled into smaller values through the 

partial normalization approach [2]: 
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where x indicates the original data; N(x) is the normalized 

value of x; NL and NU indicate the lower and upper bounds of 

the range of the normalized value. xmin and xmax are the 

minimum and maximum of x, respectively. Forecasts 

generated by the proposed methodology, f(x), will be 

converted back to the un-normalized values as follows: 
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2.2 Step 1: Generating the opinions of virtual experts  

 Domain expert are asked to give their opinions about the 

following terms, so that the fuzzy forecasts can satisfy the 

requirements of these experts: 

1) The sensitivity to the uncertainty (ol): A large value of ol 

means that the expert is very sensitive to the uncertainty of the 

fuzzy forecasts which is usually represented in terms of the 

average range of the fuzzy forecasts. 

2) The desired range of every fuzzy foreign exchange rate 

forecast (dl): It usually depends on their purposes of 

application and might not be equal. 

3) The required satisfaction level (sl): A large value of sl 

implies that the core (i.e. values with membership equal to 1) 

of the fuzzy forecast is very representative. 

4) The relative unimportance of the outliers of the sample data 

(ml): A large value of ml means that the outliers are not 

important in fitting the FLR equation. 

A real-valued set containing these 4 terms OSl = {ol, dl , sl , ml} 

is therefore called an opinion set; l = 1 ~ L (the number of 

experts). A committee of virtual experts provides opinion sets 

for implementing the fuzzy and neural approach. However, an 

opinion set has to satisfy the following constraints. First, an 

opinion set (e.g. with very small dl or very large sl) might lead 

to no feasible solutions of the nonlinear programming 

problems or increase the difficulties in solving them. Second, 

opinions that are close to each other might result in the same 

or similar fuzzy forecasts. Third, increasing the difference 

between 2 opinion sets does not guarantee that the fuzzy 

forecasts generated by these 2 opinion sets will be less similar. 

Fourth, an opinion set is favored if it generates a fuzzy 

forecast that is distinct from those of the other opinion sets. 

Finally, an opinion set is favored if it generates a fuzzy 

forecast that has more intersection points with those of the 

other opinion sets. 

2.3 Step 2: Constructing multiple FLR equations  

 In the proposed methodology multiple experts construct 

their own FLR equations to forecast the foreign exchange rate 

of a future day. 
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where 
ny~  is the fuzzy foreign exchange rate forecast of day n; 

 are constants or coefficients, k = 0 ~ K; (+) denotes fuzzy 

addition; D( )is the defuzzification function. Assuming all 

variables are given in triangular fuzzy numbers (TFNs). 

Some virtual experts are asked to submit their opinions about 

the fuzzy forecasts. Afterwards, equation (3) can be fitted by 

solving the following NP models: 
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 n = 1 ~ N, 
321 kkk www ≤≤ , k = 0 ~ K (9) 

NP model I is based on Tanaka and Watada’s philosophy [6]. 

The objective function is to minimize the high-order sum of 

the ranges of fuzzy foreign exchange rate forecasts. On the 

other hand, NP model II is based on Peters’s philosophy [4]. 

Theoretically, these nonlinear objective functions and 

constraints can be easily converted into quadratic ones that are 

more tractable. In either model, every fuzzy foreign exchange 

rate forecast contains the actual value. As a result, the 

intersection of the 2 fuzzy foreign exchange rates forecasts 

generated by the model also contains the actual value. Besides, 

the intersection has a range narrower than those of the 2 

regions. Therefore, the forecasting precision measured in 

terms of the average range is improved after intersection. 

Eventually, there will be at most 2L FLR equations. 

2.4 Step 3: Applying partial-consensus FI to aggregate 
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the foreign exchange rate forecasts into a polygon-

shaped fuzzy number 

 Partial-consensus FI is applied to aggregate the fuzzy 

foreign exchange rates into a polygon-shaped fuzzy number, 

in order to improve the precision of foreign exchange rate 

forecasting. The intersection of the opinions by several 

experts embodies the consensus of all these experts. 

Definition  

The h/L among fuzzy foreign exchange rate forecasts 

)1(~
iy , …, and )(~ Lyi

is indicated with 

))(~...,),2(~),1(~(/
LyyyI iii

Lh  such that: 

)))(...,),((min(max)( ))((~))1((~
 all))(~...,),1(~(/ xxx hgygy
gLyyI iiii
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  (10) 

 where g() ∈ Z
+
; 1 ≤ g() ≤ L; g(i) ∩ g(j) = ∅; h ≥ 2. 

The result of partial-consensus FI is a polygon-shaped fuzzy 

number (see Fig. 1). Compared with the original TFNs, the 

partial-consensus FI result has a narrower range while still 

containing the actual value. Therefore, the precision of 

foreign exchange rate forecasting will be improved after 

applying partial-consensus FI. 

yi

)(~ iy y
i
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Fig. 1.  The polygon-shaped fuzzy foreign exchange rate 

The output of this step is a polygon-shaped fuzzy number that 

specifies the narrowest range of the foreign exchange rate 

forecast. A crisp foreign exchange rate forecast has to be 

generated from the polygon-shaped fuzzy number based on 

the requirement of practical applications. After obtaining the 

defuzzified value, it is compared with the actual foreign 

exchange rate to evaluate the accuracy. However, among the 

existing defuzzification methods, no one can surpass all the 

others in every case. These phenomena provide a motive to 

propose a tailored defuzzification method. In this study, a 

RBF is applied for this purpose. 

2.5 Step 4: Constructing a RBF to defuzzify the 

polygon-shaped fuzzy number 

 The RBF network consists of 3 layers; the input, hidden 

and output layers. The input variables include 2v parameters 

corresponding to the v corners of the polygon-shaped fuzzy 

number and the membership function values of these corners. 

All input parameters have to be normalized before they are 

fed into the network. The input variables are each assigned to 

a node in the input layer and pass directly to the hidden layer 

without weights. The hidden-layer nodes contain RBFs, also 

called transfer functions, and are analogous to the sigmoid 

function commonly used in a BPN. In the proposed 

methodology, the Gaussian transfer function is used: 

 

2

1

2 /)ˆ(

)(
i

r

j

tjtj xx

ti eXh

σ∑
= =

−−

 (11) 

where hi(Xt) is the output from the i-th hidden-layer node; Xt  

is the incoming vectors with components xt1, …, xtr. tjx̂  is the 

centre of the i-th RBF unit for input variable j; σi is the width 

of the i-th RBF unit. The processing at the hidden layer is to 

compute the distance from the input vector to the 

corresponding center, then apply the transfer function to 

generate the output. The output layer is linear in that we just 

take the linear combination of the values of the hidden layer: 
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The parameters of the RBF units are determined in some way. 

For example, the unit centres can be determined by some 

clustering algorithm. Then, the widths are determined by the 

nearest-neighbour method. Finally, weights connecting the 

RBF units and the output units are calculated using multiple 

linear regression techniques. After training and testing, the 

RBF can be applied to defuzzify a polygon-shaped fuzzy 

number. 

3 An experiment  

 To demonstrate the application of the fuzzy and neural 

approach, the problem of foreign exchange rate forecasting in 

Tseng et al. [7] is used (see Fig. 2). After applying moving 

average (MA) to the collected data, the number of moving 

period was determined to be 8 days. The original values were 

normalized into [0.1, 0.9] before applying the proposed 

methodology. 
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Fig. 2.  The exchange rate forecasting problem 

The number of virtual experts was determined to be 3, so 

there were 6 NP problems. From the optimization result of 

each NP problem, 6 corresponding FLR equations were 

constructed and applied to forecast the foreign exchange rate. 

Subsequently, the partial-consensus FI of the forecasting 

results was obtained, which was a polygon-shaped fuzzy 

number for each period. The data of the corners of all 

polygon-shaped fuzzy numbers were used to train and/or test 

the RBF defuzzifier. Finally, the RBF was applied to 

defuzzify a polygon-shaped fuzzy number input to the 

network to generate the crisp foreign exchange rate forecast. 

According to experimental results, the following points can be 

made: 

1) The accuracy of foreign exchange rate forecasting, 

measured in terms of MAPE, of the proposed methodology, 

was significantly better than those of the other approaches by 

achieving an 83% reduction in MAPE over the comparison 

basis – MA. The advantage over ARIMA was 64%. The 

performance of the proposed methodology with respect to 

MAE or RMSE was also significantly better than those of the 

other approaches. 

2) The precision of the proposed methodology was 

significantly better than those of the other approaches. The 

advantage over the comparison basis was up to 81%. 

3) The advantage of the proposed methodology came from 

some sources. First, it was shown to be a successful way of 

hybridizing linear and nonlinear approaches (FLR and BPN). 

4) For testing data, the probability that all actual values were 

contained in the fuzzy forecasts was 93% with the overall 

consensus (I
3/3

). With little expansion in the spreads (only 

0.005 on average) of the fuzzy forecasts, all actual values 

could be contained in the fuzzy forecasts with the partial-

consensus (I
2/3

). 

4 Conclusions 

It is important for the semiconductor industry in Taiwan to 

forecast the foreign exchange rate accurately and precisely. 

For this purpose, a virtual-expert partial-consensus fuzzy-

neural approach is applied in this study. In the proposed 

methodology, multiple virtual experts construct their own 

FLR equations from various viewpoints to forecast the foreign 

exchange rate. A two-step aggregation mechanism is applied 

to aggregate the fuzzy foreign exchange rate forecasts. Partial-

consensus FI is applied to aggregate the fuzzy foreign 

exchange rate forecasts into a polygon-shaped fuzzy number. 

The polygon-shaped fuzzy number contains the actual value. 

After that, considering the special shape of the polygon-

shaped fuzzy number, a RBF is constructed to defuzzify the 

polygon-shaped fuzzy number and to generate a 

representative/crisp value to enhance the accuracy. 

A practical case containing the historical data of the foreign 

exchange rate from NTD to USD was used to demonstrate the 

application of the methodology. According to experimental 

results, we found that the forecasting accuracy of the proposed 

methodology was significantly better than those of some 

existing crisp approaches. 

More sophisticated fuzzy and neural approaches can be 

proposed for the foreign exchange rate forecasting in future 

studies. To facilitate the applications of the fuzzy and neural 

approach, a new MATLAB toolbox can also be developed in 

the next work. 
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On Godunov Schemes for Combined Longitudinal and Torsional
Elastic-Plastic Waves in Thin-Walled Tubes

William W. Dai
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Abstract— A high-order Godunov scheme is developed and
the Riemann problem is discussed for combined longitudinal
and torsional elastic-plastic waves in thin-walled tubes. The
scheme is based on characteristic theory of the system, uses
uniform formulation for all kinds of loading paths, and
thus is easy to be implemented in an actual simulation.
The scheme is tested through numerical examples including
steepening of waves and step loading. It is shown that the
scheme keeps the principle advantages of Godunov schemes,
i.e., the robust operation in the presence of strong waves, thin
fronts of discontinuities with little attendant noise generated.
It is turned out that the solution of a Riemann problem in
the model depends on the internal structure of the initial
discontinuity.

Keywords: elastic-plastic waves, finite difference, Riemann prob-
lem

1. Introduction
Elastic-plastic waves under combined stresses have been

studied since the 50’s. A test involving combined dynamic
stress states beyond the elastic limit of the material is ex-
pected to provide useful information regarding the dynamic
plastic property of solids under combined stress states. The
analysis for the combined longitudinal and torsional impact
of thin-walled cylindrical tubes is of fundamental importance
in the development of multidimensional theory of plastic
wave propagation. A theory was presenyed for combined
longitudinal and torsional elastic-plastic wave propagation
in thin-walled tubes.Ting1 have investigated the wave struc-
tures of boundary-value problems with combined stresses.

One feature of elastic-plastic waves is the discontinuity
surface generated when solids are subjected impulsive loads.
The dynamical structures of discontinuity surfaces are fun-
damentally important for the yield patterns and fractures of
the solid. Analytically, as most nonlinear systems, elastic-
plastic waves may not be expected to solve for most practical
problems. A practical problem may involve a complicated
geometry, sophisticated material properties, and different
loading functions, each of which makes a quantitatively
analytical analysis very difficult.

Numerically, one of main difficulties is to dynamically
treat the discontinuity surfaces. As we know, a numerical

scheme with a first-order accuracy will give numerical
results that are very smeared in regions near discontinuities.
The reason for the smearing is the large amount of the
numerical viscosity that intrinsically exists in a numerical
scheme for discontinuities. If we attempt to use a standard
scheme with a second-order accuracy, the numerical viscos-
ity will be reduced, but large noise will be introduced in
numerical solutions near discontinuities. The amplitudes of
the noise increase with mesh refinements. Direct derivatives
used in the standard scheme are responsible for the behavior.

A discontinuity is the feature of hyperbolic systems.
During last twenty years, quite a few numerical schemes
have been developed for hyperbolic systems of conservation
laws, especially for gas dynamics. Among them Godunov
schemes are believed to most appropriate for discontinuities.
The examples of Godunov schemes are Godunov’s scheme2,
MUSCL scheme3, Roe’s method4, PPM method5, TVD
method6, etc. The principle advantages of these schemes are
the robust operation in the presence of strong discontinuities,
thin discontinuity surfaces with little attendant noise gener-
ation.

Several investigators have performed numerical study for
elastic-plastic waves through hyperbolic systems (for exam-
ple, see references7−13). Specifically, Nagayama7 studied
the behavior of one-dimensional solid under a high pressure;
Trangenstein and Colella8 considered finite deformation in
rate-form for isotropic materials through conservation forms
in Lagrangian and Eulerian frames;Lin and Ballmann12

proposed a second-order Godunov method for elastic-plastic
waves in thin-walled tubes through introducing three elemen-
tary loading paths on the base of characteristic formulations.

In this paper, A high-order Godunov scheme for combined
longitudinal and torsional stress waves in thin-walled tubes
is proposed based on characteristic formulations, and the
Riemann problem in the model is discussed. The idea in the
numerical scheme is borrowed from the piecewise parabolic
method5 except the Riemann solver. We do not use ele-
mentary loading paths, since the exact loading paths remain
unknown before solutions are obtained and since differently
treating different loading paths seems not favorable to the
parallel architecture of computers. The idea involved in
the scheme is simple and straightforward, and formulations
involved in the scheme are uniform for all situations under
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the model for thin-walled tubes, which make it very easy
to actually implement the scheme. Our investigation shows
that the solution of a Riemann problem in the model may
depend on the internal structure of the initial discontinuity.

The plan of this paper is as follows. Basic equations are
introduced in the second section. The numerical scheme is
in Section 3. The results for a few test problems are shown
in Section 4, and the conclusion and a brief discussion of
the paper may be found in the last section.

2. Basic Equations

Fig. 1: A thin-walled tube.

Consider a thin-walled cylindrical tube as shown in Fig.1.
The tube material is assumed to be isotropic work-hardening.
The rate independent theory results in the following set of
equations for combined longitudinal and torsional elastic-
plastic waves in the tube4:

∂σ

∂x
=

∂

∂t
(ρu), (1)

∂τ

∂x
=

∂

∂t
(ρv), (2)

∂u

∂x
=

1

E

∂σ

∂t
+ H(k)[(σ/θ)2

∂σ

∂t
+ στ

∂τ

∂t
], (3)

∂v

∂x
=

1

G

∂τ

∂t
+ H(k)[στ

∂σ

∂t
+ (θτ)2

∂τ

∂t
]. (4)

Here ρ is the mass density of the tube,σ and τ are the
longitudinal and torsional stresses, andu and v are the
longitudinal and circumferential particle velocities.E (or G)
is the Young’s (or shear) modulus.H(k) is a function of the
yield stressk,

H(k) ≡ 1

k2
[

1

g(θk)
− 1

E
], (5)

where the yield condition is given by

k2 = (σ/θ)2 + τ2, (6)

θ =
√

3 for the von Mises yield condition andθ = 2 for the
Tresca yield condition, andg(θk) is the slope of the uniaxial
stress-strain curve atσ = θk, i.e.,

g(σ) =
dσ

dε
(7)

with ε the longitudinal stress. In general,H(k) is a function
of k.

Eqs.(3,4) may be write in the conservation form if the
longitudinal and shear strains,ε andγ, are introduced:

∂u

∂x
=

∂ε

∂t
, (8)

∂v

∂x
=

∂γ

∂t
. (9)

Here

dε = [
1

E
− H(k)(σ/θ)2]dσ + H(k)στdτ, (10)

dγ = [
1

G
− H(k)(θτ)2]dτ + H(k)στdσ. (11)

Let us first look at the basic equations at three special
cases. If a specific problem involves only the elastic region,
g(θk) = E andH = 0. Then the basic equations are linear
that represent the propagation of linear longitudinal and
torsional waves. In the second special case for the linearly
isotropic work-hardening material,g(θk) have only two
values,g(θk) = E in the elastic region, andg(θk) = Ep

(constant) in the plastic region. A problem involving only
longitudinal waves,τ = 0 andγ = 0, is the third special
case, in which the set of basic equations is reduced to a sys-
tem representing the propagation of nonlinear longitudinal
waves.

We would like to point out that the system is not, strictly
speaking, a system of conservation laws since the equation
of state, Eqs.(10,11), are in inexact differential forms. The
dynamics of a problem, in principle, is dependent on the
internal structure of the discontinuity. We will discuss this
point in numerical examples.

Our numerical scheme is based on the characteristic for-
mulations of Eqs.(1-4). The characteristic formulations for
Eqs.(1-4) was first discussed byClifton4, and also discussed
by several previous investigators5−8,22. The set of Eqs.(1-4)
allows two kinds of waves, fast and slow waves, with their
wave speedsCf andCs respectively:

C2
f,s

=
1

ρQ
[A + B ±

√

(A − B)2 + 4Hστ ]. (12)

HereA, B andQ are defined as

A ≡ 1

G
+ H(θτ)2,

B ≡ 1

E
+ H(σ/θ)2,

Q ≡ AB − (Hστ)2,

and the plus (or minus) sign is for fast (or slow) waves. The
wave speedsCf andCs satisfy the relation

Cs ≤ C2 ≤ Cf ≤ C0.

HereC0 (or C2) is the elastic longitudinal (or shear) velocity,
C0 ≡

√

E/ρ and C2 ≡
√

G/ρ.
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Each wave speedC(x, t), which may be either−Cf , or
−Cs, or Cs, or Cf , defines a characteristic curve in(x, t)-
space,

dx

dt
= C(x, t).

Following the general outline in the book byCourant and
Friedrichs20, for all the characteristic curves, we may find
their associated Riemann invariants, which may be expressed
only as inexact differentials:

dRf± = − 1

θσ
{ (±ρCfdu − dσ) − α(±ρCfdv) − dτ) },

(13)

dRs± = −1

τ
{ (±ρCsdv− dτ)−β(±ρCsdu− dσ) }. (14)

Here the plus (or minus) sign is for the wave propagating
toward the positive (or negative)x-direction, andα and β
are defined as

α ≡ θ2τ

σ

(Cf/C0)
2 − 1

(Cf/C2)2 − 1
, (15)

β ≡ σ

θ2τ

(Cs/C0)
2 − 1

(Cs/C2)2 − 1
. (16)

3. Numerical Scheme
For the conciseness in formulations, we first write

Eqs.(1,2,8,9) in the form

∂U

∂t
− ∂F

∂x
= 0, (17)

where

U ≡









ρu
ρv
ε
γ









, F ≡ −









σ
τ
u
v









.

Consider a numerical zonexi < x < xi+1, we write Eq.(17)
in a difference form:

Ui(δt) = Ui(0) +
δt

δxi

(Fi − Fi+1). (18)

Hereδt is the time step,δxi is the width of the zone,Ui(t)
is the average ofU over the zone at time t, andFi is the
time-averaged flux at the interfacexi during the time step,
i.e.,

Ui(δt) ≡ 1

δxi

∫

xi+1

xi

U(x, t)dx, (19)

Fi ≡
1

δt

∫

δt

F(xi, t)dt.

The difference scheme, Eq.(18), is called a Godunov scheme
for Eq.(17), which may be obtained by integrating Eq.(17)
over the rectangularxi < x < xi+1 and 0 < t < δt in the
(x − t)-space. The discretized form Eq.(18) is exact if the
time-averaged fluxFi may be exactly found. Thus one of
the key issues for this type of schemes is to obtain the flux
at the interfaces of numerical zones.

Before introducing the numerical scheme further, we
would like to mention the Riemann problem. A Riemann
problem is an initial value problem, Eq.(17), subject to a
specific initial condition:

U0(x) =

{

U
(l) if x < 0

U
(r) if x > 0.

HereU
(l) andU

(r) are any two constant states.
We consider a variable continuous inside each numerical

zone, but may have a jump across an interface of numerical
zones. We would like to first calculate the time-averaged
flux at an interface for the constant left and right states. For
given left state (σl, τ l, ul, vl, εl, γl) and right state (σr, τr,
ur, vr, εr, γr), the time-averaged valuesσ, τ , u and v are
found through the following set of linear algebra equations:

[σ−σl]−ρCf0[u−ul]+αl[τ−τ l]−ραlCf0[v−vl] = 0, (20)

[σ−σl]−ρCs0[u−ul]+βl[τ−τ l]−ρβlCs0[v−vl] = 0, (21)

[σ−σr]+ρCf0[u−ur]+αr[τ − τr]+ραrCs0[v− vr] = 0,
(22)

[σ−σr]+ ρCs0[u−ur]+βr [τ − τr]+ ρβrCs0[v− vr] = 0.
(23)

Here the coefficients are defined as

Cf0 ≡ 1

2
[Cl

f
+ Cr

f
], Cs0 ≡ 1

2
[Cl

s
+ Cr

s
], (24)

αl ≡
1

2
sign[αl][|αl| + |αr|], (25)

αr ≡ 1

2
sign[αr][|αl| + |αr|],

βl ≡
1

2
sign[βl][|βl| + |βr|],

βr ≡ 1

2
sign[βr][|βl| + |βr|].

The superscriptl or (r) stands for the evaluation of at
the left (or right) state. We would like to mention two
points here. First, Eqs.(20-23) come from the invariance of
Riemann invariants along characteristic curves. Second, we
always introduce very small valuesσ∗, τ∗ and H∗ for σ,
τ and H when they are vanishing in order to avoid the
mathematical singularity in Eqs.(20-23).σ∗, τ∗ andH∗ are
so small that their influence on the system is negligible and
are sufficient large compared to the accuracy of digits for an
actual computer. In actual simulations in this paper, we use
σ∗ = σy × 10−8, τ∗ = 0.4 σ∗, andH∗ = (1/E × 10−8)3.

From the consideration of a higher order of accuracy,
there is an internal structure inside each numerical zone.
Our numerical scheme starts from zone-averagesai (i =
1, 2, ..., n) of each of the variables (σ, τ , u, v, ε, γ), which
are defined by Eq.(19). For each of these variables,a, cubic
polynomials are used to interpolatea to find the values at
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interfaces. For a uniform grid, the value at the left interface
of the ith zone,ai,l, is found to be

ai,l = ai−1 +
1

2
(ai − ai−1) −

1

6
(δai − δai−1). (26)

Here δai is defined asδai ≡ (ai+1 − ai−1)/2. For a
nonuniform grid, the value at the interface is

ai,l = ai−1 + fa(ai − ai−1) + fdaδai + fdalδai−1. (27)

Hereδai is defines as

δai ≡ gdal(ai − ai−1) + gdar(ai+1 − ai),

andfa, fda, fdal, gdal andgdar are geometry factors related
to the nonuniform grid:

gdal =
δxi(2δxi+1 + δxi)

(δxi−1 + δxi)(δxi+1 + δxi + δxi−1)
,

gdar =
δxi(2δxi−1 + δxi)

(δxi + δxi+1)(δxi+1 + δxi + δxi−1)
,

fda =
−δxi−1(δxi−2 + δxi−1)

(2δxi−1 + δxi)(δxi−2 + δxi−1 + δxi + δxi+1)
,

fdal =
δxi(δxi + δxi+1)

(2δxi + δxi−1)(δxi−2 + δxi−1 + δxi + δxi+1)
,

fa =
δxi−1 − 2(δxifda + δxi−1fdal)

δxi−1 + δxi

.

After we obtain the values at interfaces, a monotonicity
constraint originally suggested byVan Leer10 is applied
to these values at interfaces. As we know, interpolated
structures are not always monotone increasing (decreasing)
even though they have been constructed from monotone data.
The over- and under-shoots in the interpolated internal zone
structures would eventually result in to over- and under-
shoots in the zone-averaged data.Van Leerrealized that a
scheme could be made to preserve the monotonicity of its
initial data if any non-monotone interpolated zone structures
are flattened so that they become monotone. This leads the
Van Leer’s monotonicity constraint: no values interpolated
within a zone shall lie outside the range defined by the zone
averages for this zone and its two neighbors.

Fig. 2: An illustration for domains of dependence for fast
and slow waves.(xi −xf+) and(xi −xs+) are the domains
of dependence for the fast and slow waves propagating
rightward, and(xf− − xi) and (xs− − xi) are the domains
for the fast and slow waves propagating leftward.

Because of the different wave speeds, different waves have
different domains of dependence, as shown in Fig.2. For the
interface between(i−1)st andith zones, the domain-average
of a over the domain|C|dt for a wave with the speedC is
found to be following. ForC > 0,

ad = ai−1,r −
σ

2

[

ai−1,r − ai−1,l − ai−1,6(1 − 2σi−1

3
)

]

.

(28)
For C < 0,

ad = ai,l +
σ

2

[

ai,r − ai,l + ai,6(1 − 2σi

3
)

]

. (29)

Here σi is the Courant number|C| δt/δxi evaluated at the
ith zone.

After obtaining the domain-averages, we may increase the
order of accuracy in the calculation of the time-averaged
flux, Eqs.(20-23), through the replacement of the left state
in Eqs.(20) [or Eq.(21)] by the domain-averages for fast
(or slow) waves obtained from Eq.(29), and through the
replacement of the right state in Eqs.(22) [or Eq.(23)] by the
domain-averages for fast (or slow) waves calculated from
Eq.(30). After the calculation of time-averaged flux,σ, τ ,
ε and γ are updated through Eq.(18) during a time step.
The stressesσ and τ may be updated through solving the
ordinary differential equations which are obtained through
dividing Eqs.(10,11) by the time step.

4. Numerical Examples
In this section, we will provide a few numerical exam-

ples to demonstrate the correctness and robustness of the
scheme. The spatial length is normalized by the length of
the tubeL, the time is normalized byL/u0, whereu0 ≡
√

1(kg/m3)/1Gpa. A grid with 200 uniform numerical
zones is used in all the examples except the last one. The
Courant safety number,δtCf/δx, is set to 0.8. Hereδx is
the width of the numerical zone,δt is the time step. The
time step is automatically adjusted to satisfy the Courant
safety condition. We use commercially pure aluminum in
the simulations, for whichρ = 0.0975 lb/in3, E = 107 psi,
G = 3.7594×106 psi, the yield stress in the simple tension
σy = 1750 psi. The uniaxial stress-strain curve in the simple
tension is assumed to be

ε =

{

σ

E
if σ < σy

σ

E
+ 4.03 × 10−9(σ − σy)1.732 if σ ≥ σy .

(30)

Here the stress is in the unit ofpsi.
One of important tests for a numerical scheme is for

the propagation of a simple wave that is smooth initially.
Because of the nonlinearity of Eqs.(1-4), a simple wave
with a sufficiently large amplitude will become steepening.
During the steepening process, all other Riemann invariants
should remain constants in each smooth region. The nonzero
of other Riemann invariants in a smooth region is the
symptom of numerical errors.
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Fig. 3: The propagation of a longitudinal wave. The initial
condition are shown by the dashed lines. The solid lines
show the profiles at t = 0.15, 0.3, 0.45, 0.6. During the
interval δt = 0.15, the wave traveled a little more than a
half wavelength.

The first example is for the propagation of a longitudinal
wave without torsion. The initial condition is set through
solving the ordinary differential equations:

dRf±,s±

dx
= 2πAf±,s± cos(2πx), (31)

with Af+ = 0.02,Af−,s± = 0, andσ = σy , τ = u = v = 0 at
x = 0. The initial profiles are shown through the dashed lines
in Fig.3, which is partially in the elastic region (σ < σy)
and partially in the plastic region (σ > σy). Since initial
profiles for Rf±,s± shown in the figure are obtained from
the approximate calculation fromσ(x) andτ(x), they are not
exactly constants. The solid lines in Fig.3 show the profiles
at t = 0.15, 0.3, 0.45, 0.6. During the intervalδt = 0.15, the
wave traveled a little more than a half wavelength. The wave
becomes fairly steep after it traveled one wavelength. The
Riemann invariantsRf− andRs± should be constant in each
smooth region, but they actually not because of numerical
errors.

The second example is the propagation of a fast wave
in combined compression and torsion. Again, the initial
conditions are obtained from Eq.(32) with withAf+ = 0.8,
Af−,s± = 0, andσ = σy, τ = σy/θ, u = v = 0 at x = 0.
Dashed lines in Fig.4 are the initial conditions. The solid
lines in the Fig.4 show the profiles att = 0.125, 0.25, 0.375,
0.5. During the intervalδt = 0.125, the wave traveled about
a half wavelength. The Riemann invariantsRf− and Rs±

Fig. 4: The propagation of a fast wave. The initial condition
are shown by the dashed lines. The solid lines show the
profiles att = 0.125, 0.25, 0.375, 0.5. During an intervalδt
= 0.125, the wave traveled about a half wavelength.

remain within the interval 0.001 in each smooth region in
this example.

Fig. 5: The propagation of a slow wave. The initial condition
are shown by the dashed lines. The solid lines show the
profiles att = 0.125, 0.3, 0.375, 0.5.

The third example is the propagation of a slow wave in
combined compression and torsion. The initial conditions
are determined by Eq.(32) withAs+ = 0.4, Af± = As− =
0, andσ = σy , τ = σy/θ, u = v = 0 at x = 0, which are
shown by the dashed lines in Fig.5. The solid lines in Fig.5
show the simulation results att = 0.125, 0.3, 0.375, 0.5. The
Riemann invariantsRf− andRs± remain within the interval
0.0005 in each smooth region in this example.

Normally, a step loading is considered as the only situation
where discontinuous waves will be developed because of the
impulsive acceleration at one end of the tube, and because
of the factd2σ/dε2 ≤ 0 for solid materials. But, the three
examples above show that a smooth elastic-plastic wave may
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become discontinuous without any external force. The reason
for the steepening of a smooth wave is the relative large wave
speed in the valley, and relative small wave speed in the peak
of the stress profile. A single simple wave is not frequently
the situation in real problems, but real problems frequently
contain simple waves.

Fig. 6: A problem with a step loading. The fixed stresses at
the endx = 0 are σ0 = 7σy/θ and τ0 = 4σy/θ. The solid
lines are the profiles att = 0.16.

Now we turn to simulations for the step loading. Without
the complete set of initial and boundary conditions used
in numerical simulations, it is difficult to compare results
from two numerical schemes. Two examples given here are
stimulated by the paper4. We consider a tube initially at rest
and unstressed which, at the endx = 0, is simultaneous
subjected a constant normal stressσ0 and a constant shear
stressτ0. Thus the initial and boundary conditions are

σ(x, 0) = τ(x, 0) = 0, (32)

u(x, 0) = v(x, 0) = 0.

σ(0, t) = σ0 for 0 < t < ∞, (33)

τ(0, t) = τ0 for 0 < t < ∞. (34)

In our simulations, the continuation boundary condition are
used at the endx = 1, and the continuation boundary
condition foru andv and the fixed boundary condition for
σ andτ are used at the endx = 0.

In the first step loading problem,σ0 = 7σy/θ and τ0

= 4σy/θ. The solution att = 0.16 is shown in Fig.6. As
described byClifton4, σ jumps toσy across the wave front
propagating with the speedC0; σ increases across the fast
wave region tôσ, while τ remains zero. Herêσ is the stress
for which the slope of the uniaxial stress-strain curve is equal
to the shear modulusG, andσ̂ = 1.82588× 103 psi for the
material;σ andτ increase across the slow wave region until
the stressesσ0 andτ0 are reached;σ andτ are constant in
the constant state region.

Finally, we would like to discuss Riemann problems in
the model. As we said before, since equations of state,
Eqs.(10,11), are in inexact differential forms, the solution
of a Riemann problem may depend on the internal structure
of the initial discontinuity unless the initial stresses are in
the elastic region. To show the point, we give two numerical
examples here, in which the initial condition for a variable
a(x) is in the form:

a(x) =
1

2
{[1 + tanh

x − 0.5

w
]ar + [1 − tanh

x − 0.5

w
]al}.

(35)
Hereal andar are two constant values for the left and right
states, andw is the width of the internal structure.

Fig. 7: A Riemann problem. Initially, (σ, τ , u, v) in the left
and right states are respectively (0,τl, 0, 0) and (σr, 0, 0, 0).
Here τl = 103 psi, andσr = 1700 psi. The initial stresses
are in the elastic region. The solid (or dotted) lines show the
simulation results att = 0.08 for the initial widthw = 0 (or
w = 0.01). Two sets of profiles are fundamentally the same.

In the first Riemann problem, the initial condition for (σ,
τ , u, v) is (0, τl, 0, 0) for the left state, and is (σr, 0,
0, 0) for the right state. Hereτl = 103 psi < σy/θ, σr =
1700 psi < σy . The initial stresses are shown by the dashed
lines in Fig.7, which are in the elastic region [H(t = 0) =
0]. The solid lines in the figure show the simulation results
when the widthw is set to zero, and the dotted lines are
the results for a finite widthw = 0.01. Two sets of profile
in the figure do not show significant differences since the
initial stresses are in the elastic region. Even if we increase
the width tow = 0.05, there is no fundamental difference
in the result except the widths of resulting discontinuities.
Note that the stresses may be in the plastic region during
the evolution as shown by the constant state nearx = 0.2
even the initial stresses are in the elastic region.

The second Riemann problem is for the initial condition
in which the stresses are in the plastic region. The initial
condition for (σ, τ , u, v) is (5σy, σy/θ, 0, 0) for the left
state, and is (σy, 5σy/θ, 0, 0) for the right state. We use
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Fig. 8: A Riemann problem. 1000 zones. Initially, (σ, τ , u,
v) in the left and right states are (σy, σy/2θ, 0, 0) and (σy/2,
σy/θ, 0, 0) respectively, as shown by the dashed lines. The
solid lines show the simulation results att = 0.08 for the
vanishing widthw (actually,w = 10−10)

1000 numerical zones for a better illustration on the Riemann
problem. The initial profiles with the vanishing widthw
(actually,w = 10−10) and the simulation results att = 0.08
are shown by the dashed and solid lines in Fig.8. The solid
(or dotted) lines in Fig.10 show the simulation results at
t = 0.08 with the widthw = 0.002 (or w = 0.005) for the
same Riemann problem. Three sets of of profiles in Figs. 9
and 10 with different widths are clearly different.

Fig. 9: A Riemann problem described for Fig.8, but with
small internal structures of the initial discontinuity. 1000
zones. The solid (or dashed) lines are the results for the
initial width w = 0.002 (or w = 0.005) at t = 0.08. The
solutions with different internal structures are different.

5. Summary
In this paper we have developed a high-order Godunov

scheme for combined longitudinal and torsional elastic-

plastic waves in thin-walled tubes. The scheme is based on
the characteristic theory of the system. The scheme uses
uniform formulations for all loading paths, which make it
easy to actually implement the scheme. The scheme has been
tested through the steepening of nonlinear waves, the prob-
lems for the step loading. The correctness and robustness of
the scheme have been demonstrated through these problems.
It is shown that the scheme keeps the principle advantages of
Godunov schemes, i.e., the robust operation in the presence
of strong waves, thin fronts of discontinuous waves with
little attendant noise generated. The scheme may be used
to investigate one-dimensional combined longitudinal and
torsional elastic-plastic waves in thin-walled tubes.

The Riemann problem in the model has been discussed
in this paper. It is turned out that the solution of a Riemann
problem may depend on the internal structure of the initial
discontinuity.

Unlike most numerical schemes for hyperbolic systems,
we have not added any additional numerical viscosity in
this paper, since we intend to present only the essential part
of the scheme. An artificial viscosity may be necessary to
reduce the attendant noise generated in post-wave states of
discontinuities. It should be pointed out that a Godunov
scheme, without any numerical viscosity added, already
contains error terms that produce numerical diffusion of this
type of schemes.
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Abstract— Voice recognition has become one of the leading
forms of biometric identification, and it is important to
ensure that this technique is as accurate as possible. The
main algorithm for single word voice recognition is Dynamic
Time Warping (DTW). In this study, we have approached
the idea of DTW from a multiple input structure. By per-
forming an analysis on n − 1 control samples and 1 test
sample, we propose to take into account subtle variations in
speech pattern to increase accuracy of testing. Through the
application of the Tsunami Algorithm to an n-dimensional
structure, we compute the shortest weighted path that will
identify the relation between the samples. Our results show
that comparison of paths with an n-dimensional diagonal
give a more accurate method of single word verification than
that of DTW.

Keywords: DTW, nDTW, Tsunami, voice, recognition

1. Introduction
In voice recognition, there are several methods requiring

a voice recording. A few key approaches are MFCC [1]
and HMM [2], which include creating or training a matrix
and testing for correctness. The other primary technique
is Dynamic Time Warping (DTW), and this is where we
will focus. The last approach is using clustering techniques,
Vector Quantization [3] can be implemented for speaker
identification.

DTW is used to compare a voice test sample and control
sample to determine if the samples were recorded by the
same person. This analysis is usually conducted by finding
a minimal weighted path through two dimensional matrix;
however, it has not been analyzed in higher dimensions [4].
This is why we chose to research multidimensional analysis
of speech recognition using DTW.

High error rate is a major hurdle in voice recognition.
There are several challenges that affect the accuracy of
testing, including poor sample quality, background noise,
and mood of the speaker [5], speed of the algorithm [6],
and other factors. Eliminating false rejections, as well as in-
creasing the accuracy of recognition amongst similar voices
or words spoken, would greatly increase the potential for
security as well as making speech-to-text programs more
viable. To come up with a more accurate interpretation of
data involved in voice recognition, we propose a combination
of already successful algorithms will improve the accuracy
of voice recognition and other applications of DTW, such as

signature-recognition [7]. Through multidimensional extrap-
olation of DTW, which we call nDTW, this can be achieved.
As we will demonstrate, this study provides greater accuracy
than classic DTW and, hopefully, brings the field one step
closer to finding a unique voice signature for a person.

The paper is organized in the following structure:
• Section 2 provides an survey of our developed program.
• Section 3 presents basic information related to DTW.
• Section 4 lays out our approach using nDTW.
• Section 5 details the results of our approach.
• Section 6 addresses the conclusions of our results.
• Section 7 offers thoughts on how to extend our ideas.

2. Architecture of the Program
From Figure 1, the architecture of this project is similar

to that of DTW [8], [9]. This should hardly be surprising,
since we are just expanding DTW to take into account
multiple control samples. The input files are a sequence
{V1, V2, . . . , Vn−1} of voice recordings from the same per-
son saying the same word and a single test T . For notation
purposes throughout the paper, we will use Vi(j) to indicate
the jth sampling on the ith input recording.

After loading these samples, we recursively generate an
n-dimensional matrix M , the process of which will be
explained in detail in Section 4.1. The element with indexes
all one will be called M0 and the element with each index
being a maximum in that dimension will be Mα. We then use
the Tsunami Algorithm to compute weight and distance from
M0 for each element of M , which conducts computation in
an order that allows for threading. The algorithm is outlined
in Section 4.2. A minimal weighted path Pw is then found
from M0 to Mα by backtracking from Mα. This path is
compared to a minimal unweighted path Pu from M0 to
Mα, or rather the n-dimensional diagonal between these
elements.

By adding up the minimal Euclidean distance from each
point of Pw to a point of Pu, we create a numerical value
D for testing similarity of voice recordings. If D is greater
than some predetermined cutoff value, the program rejects
the test sample.

3. Background and Related Work
Before learning about the necessary mathematical and

computational structures, we need an understanding of DTW
and how it works. This section presents information from
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Fig. 1: Refined Structure of nDTW

works related to DTW, as well as some basic information
on sound and Euclidean distances.

3.1 Aspects of Voice Recognition with DTW
DTW is an algorithm that calculates an optimal warping

path between two time series and is used for measuring
similarities between sequences which may vary in time or
speed. DTW can be applied to more fields than just voice
recognition. For example, a race car going around a road
course changes speed many times and timing equipment
is generally not evenly spaced. Both of these would cause
problems if looking for patterns in how consistent a driver is.
However, by making use of DTW, these issues are irrelevant
and you can quickly see a difference in consistency between
an F1 driver and your neighbor, Steve. Any sort of data
that can be interpreted or represented in a linear graphical
form can have DTW applied to it. For this reason, it makes
DTW ideal for the field of voice recognition, where we are
concerned with what you say and not how quickly you say
it.

Summarizing from Senin [8], the algorithm begins
with two time series X = (x1, x2, . . . , xN ) and Y =
(y1, y2, . . . , yM ) with N,M ∈ N. For a particular appli-
cation, a distance function d : X × Y → R ≥ 0 is chosen.
A local cost matrix C, which is a N ×M matrix with real
entries, is calculated with Ci,j = d(xi, yj).

A warping path P = (p1, p2, . . . , pL) is a sequence of
index pairs which meets the following conditions:

• Boundary: p1 = (1, 1) and pL = (N,M).
• Monotonicity: If pi = (a, b) and pi+1 = (c, d), then
a ≤ c and b ≤ d.

• Step-Size: There is a predefined set of steps S such that
for each i, pi+1 = pi + β for some β ∈ S.

The minimal weight warping path through C will be denoted
Pw and is often called the Optimal Warping Path. The
conditions on warping paths allow us to create a weighted
digraph with no loops, one source and one sink and we are
tasked with finding the shortest path from source to sink.

Searching through all possible P for the optimal path
would be a daunting task, so DTW employs Dynamic
Programming to perform the search in O(NM) time. Since
the elements of C are nonnegative, Dijkstra’s algorithm will
allow us to quickly find the optimal path. However, due to
the predictable nature of our digraph, modifications can be
made to speed this process further.

3.2 Properties of Sound
As stated by Rabiner, sound travels through the environ-

ment as a longitudinal wave, having a speed that is dependent
on the density of the environment. A sinusoidal (defined
as having a succession of waves or curves) graphic is the
easiest way to represent sounds in this way. The graphic
will present a variation of air pressure depending on the
time series. Rabiner goes on to explain that the shape of the
sound wave depends on these three factors [10]:
• Amplitude: The amplitude is the displacement of the

sinusoidal graph above and below the temporal axis
(y = 0) and it corresponds to the energy the sound
wave contains.

• Frequency: The frequency is the number of cycles the
sinusoid makes every second.

• Phase: The phase measures the position from the be-
ginning of the sinusoidal curve.

A point of frequency or phase, together with the ampli-
tudes, is called a spectrum. Spectrogram is the way to show
it with time, which determines the amplitude intensity. With
the feature of the ’naive’ DTW algorithm, this can use input
source properly, which has a major role in voice recognition.
[8]

Myers, along with Rabiner and Rosenberg explain that
the majority of modern technologies of recognition for
the human voice are to analyze the spoken word. Word
identification can be done by doing applying a straight
comparison of the numeric representation of the signals
spectrogram comparison or with just the signals themselves.
In each of these cases the process of comparison needs
to compensate for the different length of the sequences
and non-linear nature of the sound. The DTW Algorithm
succeeds in sorting out these problems by finding the warp-
path corresponding to the optimal distances between two
series of different lengths [11].

3.3 Euclidean Distance
In analyzing optimal warping path, Euclidean distance to

the diagonal is the most common comparison. Euclidean
distance is the geometric distance in a multidimensional
space. For x, y ∈ Rn, the Euclidean distance is defined as:

D2(x, y) =
n∑
i=1

(xi − yi)2,

and has been used in data mining, especially in speech
recognition process. Even though some have shown this is
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Fig. 2: Results Comparison

not as efficient as the weighted cepstral distance, it is still
the standard.

4. nDTW
As mentioned Sections 1 and 2, nDTW requires the

generation of an n-dimensional array of sample data, costs
and distances. Once generated, the optimal warping path is
determined and analyzed.

4.1 Generating an n-Dimensional Array
To perform our n-dimensional DTW, we must first cre-

ate an n-dimensional array. To generalize, the number
of samples n to be studied and length of each sample
{L1, L2, . . . , Ln} are determined at runtime. So, a method
of generating a matrix of unknown dimensions is needed.
Algorithm 1 accomplishes this through simple recursion

Algorithm 1 Generates an n-dimensional array.
Require: A sequence L ⊂ N of length n

1: function MATRIXGEN(L)
2: if n = 1 then
3: v ← 0
4: else
5: v ← MATRIXGEN(L2, . . . , Ln)

6: return An array of L1 copies of v

and we denote this n-dimensional matrix C. When writing
M(X), we will mean X is a list of indexes, so M(X) is a
particular element of M .

4.2 Tsunami Algorithm
The Tsunami Algorithm is a modification to Dijkstra’s

algorithm that exploits the predictability of our digraph
which, along with threading, allows for speedier computa-
tion. Three types of threads are used in this algorithm; a
controller thread, an edge thread and a sheet thread. Since
each type behaves differently, we must address them as
separate algorithms.

Before beginning the algorithm, we should address some
notation. Assume we are performing an analysis on samples
{Vk}nk=1 with lengths {Lk}nk=1. Let {ei}nk=1 be the standard
ordered basis of Rn. That is, for each i, ei is an n-tuple with
a 1 in the ith position and 0 elsewhere. Let S be the set of
possible steps for warping paths, which will be the set of all
binary n-tuples except the zero tuple.

Similar to DTW, we require a distance function

d : V1 × V2 × · · · × Vn → R ≥ 0.

For this particular implementation, it will be defined by

d0(X) =
∑
|Vi(xi)− Vj(xj)|,

d1(X) = d0(X) + min
s∈S
{d0(X − s)},

d(X) = d1(X) + min
s∈S
{d1(X − s)}.

Now, with this notation in hand, we are ready to lay out
each algorithm.

The simplest method of evaluation relies on incrementing
only one dimension.

Algorithm 2 Evaluates from v along line parallel to ej
Require: A vector v and integer j

1: function EDGET(v, j)
2: for i← 1, (Lj − vj) do
3: M(v + iej)← d(v + iej)

Instead of incrementing one index, then reseting it to zero
and incrementing another by 1 and repeating the process,
we can make use of threading technologies to perform
computation on independent nodes simultaneously. For a 2D
array, we proceed down the main diagonal and spawn edge
threads to evaluate in each direction away from the diagonal.
This is generalized to a 2D sheet of M in Algorithm 3.

Algorithm 3 Controller for two dimensional evaluation
Require: A vector v and integers j, k

1: function SHEETT(v, j, k)
2: u← min{Lj , Lk}
3: l← max{vj , vk}
4: for i← 1, (u− l) do
5: M(v + i(ej + ek))← d(v + i(ej + ek))
6: Thread: EDGET(v + i(ej + ek), j)
7: Thread: EDGET(v + i(ej + ek), k)

With simple evaluation methods defined, we can gener-
alize to the n-dimensional structure. Proceeding down the
n-dimensional diagonal, we spawn an edge thread parallel
to each ei. Once we have begun processing the edges of a
2D sheet, spawn a sheet thread to evaluate within that sheet.
This step is given explicitly in Algorithm 4.
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Fig. 3: Visual DTW/3DTW Minimum Path Comparison

Algorithm 4 Controller for Tsunami algorithm
1: function MAINT
2: v ←

∑
ei

3: for m← 1,min{ni} do
4: v′ ← m · v
5: M(v′)← d(v′)
6: for j ← 1, n do
7: Thread: EDGET(v′, j)
8: for k ← 1, (j − 1) do
9: Thread: SHEETT(v′, j, k)

Computing distances in this fashion, when reaching X we
have already found d(X − s) for each s ∈ S, so d(X) can
be determined while minimizing excess work. The standard
method of evaluation has a single process calls d

∏
Lk

times, which can be time consuming. In systems that support
threading, these processes are divided among threads which
perform at most max{Lk} evaluations.

Caution should be taken when implementing this algo-
rithm due to the sheer number of threads which can be cre-
ated. Although we begin with a single thread, a system can
quickly be overwhelmed when n or some Lk is sufficiently
large.

4.3 Finding the Minimal Cost Path
After completing the algorithm above, M contains the

minimal distance from the source to each point. By back-
tracking from the sink to the source and greedily finding
the minimal distance of a previous node as in [13], we find
Pw, the optimal warping path. With this path in hand, we
can determine if the test sample matches the set of control
samples.

4.4 Comparison
The purpose of voice recognition is to compare who is

speaking a set of control samples to who is speaking a test
sample. So, we need to determine if we reject an inaccurate
test sample. To do this, we compare Pw = (p1, p2, . . . , pL)

to the n-dimensional diagonal of M using a Euclidean
distance as detailed in Section 3.3, similar to DTW.

Let Γ be the line through M with all indexes being the
same for each point. Given pi = (t1, t2, . . . , tn), we seek the
minimum distance between pi and a point on Γ. For each
p ∈ Γ, all the indexes are some t, so

D2(pi, p) =
n∑
j=1

(tj − t)2.

Differentiating with respect to t gives

2D(pi, p) =
n∑
j=1

(t− tj) = nt−
n∑
j=1

tj .

Setting to zero and solving for t gives

t =
1

n

n∑
j=1

tj .

In other words, the point on Γ which is closest to pi has
indexes equal to the average of the indexes of pi.

This gives us a comparison equivalent to standard statis-
tical methods, the mean square error. In fact, we are trying
to determine how well Γ (predicted path) models Pw (actual
path).

5. Results and Analysis of the Study
Several voice samples from two subjects, A and B, were

recorded. Each word was recorded 3 times from each subject
and many words were tested.

Several trials are shown in Figure 2, which shows greater
accuracy for matches and greater discrepancy for non-
matches. Although tabular evidence is nice, 3 sample testing
finds a path in 3D space, which lends itself well to plotting.

One trial is shown in Figure 3, which should be a perfect
match. The left plot is the path generated by DTW and shows
a problematic region around the 20th sampling. Adding
a second control sample smooths out the rough edges on
positive matches and gives the straight path in 3D space on
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Fig. 4: Visual DTW/3DTW Error Comparison

the right. So, given a small cut off value, we may reject in
the case of DTW, but fail to reject when adding additional
samples.

In Figure 4, DTW generates the very rough path on the
left, which is expected since the test should yield a rejection.
However, introducing a second control produces the rougher
(and harder to see) plot on the right. So, there are cut off
values for which we would fail to reject using DTW, but
reject with additional samples. This is the type of error most
harmful to security.

6. Conclusion
A method to study and evaluate a dimensional expansion

of DTW has been introduced. Once an n-dimensional matrix
has been created and the Tsunami Algorithm has been
applied to find an optimal warping path, we see how well
the diagonal fits this path. The mean square error provides
a numerical value for how well the test sample matches the
control group. It has been shown that adding more control
samples gives an improvement in accuracy.

7. Further Study
Additional study and testing is required to determine opti-

mal sample sizes and count. Such knowledge would greatly
improve efficiency of voice identification using nDTW.

Also, a relation may be found that relates a test sample
to the optimal warping path through a matrix of control
samples. This would allow the majority of processing to
occur before testing takes place. Current testing of three
control samples and one test sample is on the order of
minutes, which is hardly reasonable for accessing a secure
system.
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Abstract— Problems when dealing with imprecise or un-
certain features, e.g., decision-making problems, can be
designed as fuzzy systems, since these systems allow the
processing of subjective and qualitative argument, usu-
ally intrinsic to such problems. This text presents the
fuzzyMorphic.pl – a tool for developing of fuzzy inference
systems which enable the specification of the modeling
and the implementation of these systems – and its use for
fuzzy inference decision models applied to decision support
assistance.
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Several times, the decision support problems cannot be
handled by mathematics or logics classical approaches be-
cause these traditional methods do not have the necessary
techniques or tools for that.

Generally, decision support problems have imprecise or
uncertain features - which are sometimes intrinsic - so it
becomes necessary to use different approaches with more
appropriate tools, like fuzzy inference or fuzzy inference
systems.

This text is organized into two parts. Initially, it explains
why the fuzzy inference approach rather classical approaches
should be used. Therefore, it shows the doubt which can
happen in a classification problem and how the fuzzy ap-
proach can be more appropriate to deal this kind of problem,
when the membership degree concept is used to assign
“intensities” to the possible results as a decision support
attribute. Next, it presents the use of fuzzy inference from
computational modeling for decision support, by means of
a set of inference rules.

The second part of this text presents the fuzzyMorphic.pl,
a software for developing fuzzy inference systems which
enables the specification of modeling of several kinds of
fuzzy problems through its own statements and syntax, as
briefly described in the fourth section.

The contents of this paper are completed by this intro-
duction, which presents some observations on the problem
at hand, and by the conclusion, which summarizes the most
important points from text.

1. Fuzzy Inference Approach
Classical approaches are insufficient to resolve problems

with imprecise or uncertain features, such as problems
with results which have values very close to some limit.

Therefore, in circumstances like these, mathematical and
logically accurate results, but questionable, can be found.

1.1 Classical Approach Fuzzyness Features
A hypothetical classification problem could be to admit

as a person of “medium height”, the individual with height
between 1.65m and 1.75m. Additionally, individuals which
height less than 1.65 m will be considered as “short height”
and individuals greater than 1.75 m will be considered
as “higher height”. And, assuming two individuals with
heights between 1.66 m and 1.74 m as classified within
the “medium height” range.

This decision, logically and mathematically precise, can
be questioned, because of the subjectivity involved. Both
values, 1.66 m and 1.74 m, are much closer to the limits
of their class than between them. Furthermore, they are so
close to the limits of the class which they belong to those
different interpretations can be taken when classifying these
values.

However, traditional approaches of logics and mathemat-
ics do not have the necessary tools to handle threshold
values, or even imprecision or uncertainty. Specifically,
threshold values result in doubt in the “decision” to classify
the individual with respect to their heights, which suggests
a fuzzy inference system for handling this uncertainty.

Usually, the threshold values problem is not as simple as
it may seem, was it simple, the classical approaches could
easily solve it, but, the closer to the subjective reasoning
for the interpretation and the extraction of an answer or a
decision, the more complex it becomes and the apparent
simplicity is given by fuzzy logic modeling and by its basis
in the theory of fuzzy sets.

1.2 Fuzzy Approach
The subjectivity inherent to reasoning makes it possible to

deal with complex situations, which are based on inaccurate,
uncertain or approximate information and, therefore, the
strategy is to use human operators of an also imprecise
nature, which are expressed in linguistic terms or variables.

For instance, common adjectives representing imprecision
or uncertainty, such as high, low, more, less, or even cluster
relation, as the tall people set, cannot be expressed using
traditional approaches, unless the concept or value deter-
mining, in this case, the threshold for a person’s height has
been exactly defined, the persons can be considered “tall”.
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However, there is no difficulty in understanding what “being
tall” entails if analyzer only two people’s conversation.

Such proposal, essentially human, in order to describe or
handle problems, generally, does not enable a solution in
terms or exact numbers, but, for instance, leads the solution
to a qualitative classification, clustering or aggregating into
categories or possible solutions set [1]. These solutions can
be seen as a result of the “principle of incompatibility” [2].

Fuzzy approach proposes that “intensities” to the data are
determined, when comparing them to the thresholds set out,
which is equivalent to establishing a membership degree to
the information, ranging between 0 and 1 with respect to the
sets which the information may belong to.

2. Decision Making with Fuzzy Inference
The subjectivity inherent to reasoning is capable of deal-

ing with complex situations, based on inaccurate, uncertain
or approximate information and, therefore, the strategy is to
use human operators of an also imprecise nature, which are
expressed in linguistic terms or variables.

Such proposal, essentially human, in order to describe or
handle problems, generally, does not enable a solution in
terms or exact numbers, but, for instance, leads the solution
to a qualitative classification, clustering or aggregating into
categories or possible solutions sets [1]. These solutions can
be seen as a result of the “principle of incompatibility” [2].

The linguistic terms or variables increase the complexity
of traditional models and computational systems concerning
the ability to handle are numbers, exact and discrete values
which sometimes mutually exclusive, suggesting the idea of
working with uncertain values, enabling the modeling of
complex systems, even if they reduce the accuracy of the
result, but not losing credibility.

If uncertainties, when viewed in isolation, are undesirable,
when they are associated with other characteristics, they
generally allow the reduction of system complexity and
increase the credibility of the results [3].

Fuzzy sets theory and fuzzy logics are appropriate to
represent, in mathematical terms, the inaccurate information
which can be expressed by a set of linguistic rules. And if
there is the possibility that human operators are organized
as a set of conditional statements of the

if ANTECEDENT then CONSEQUENT

form; therefore, subjective reasoning can be expressed in
the form of computationally executable algorithms [4] [2]
with the ability to imprecisely classify the variables of
the antecedents and consequents conditional statements, as
qualitative concepts, instead of quantitative, which represents
the idea of linguistic variable [1].

Thus, as systems capable of efficiently processing inaccu-
rate and qualitative information, fuzzy inference models are
suitable in situations which require decision making [1].

3. The fuzzyMorphic.pl
Fuzzy inference systems are implementations of able

models to efficiently compute inaccurate and qualitative
information, thus, for instance, they are appropriate for
problems which require decision making [1].

3.1 Introducing the fuzzyMorphic.pl
The fuzzyMorphic.pl is a software tool for modeling and

implementation of fuzzy inference systems – developed on
Perl language – for which it is possible:

1) for fuzzyfication, to represent the membership func-
tions on standard format sets – like trapezoidal or
triangular shapes;

2) for implementation of inference machine, to use Mam-
dani’s or Larsen’s models;

3) for defuzzyfication, to represent output function on
standard format sets; and

4) to use Center of Maxima as defuzzyfication method.
Two information sets are needed for fuzzyMorphic.pl to

work, which could be in a single flat file or in different
files. The first set refers to the description directives of the
inference model, as a whole, and the second one is the input
data itself.

The fuzzyMorphic.pl has the advantage of not having
been developed for any specific problem, so, it is possible
to utilize it to develop fuzzy inference systems for several
inference problems and models.

Furthermore, its description inference systems way allow
an easy the investigation of a problem under several and
different respects and it is very important and intended in
research procedures.

In the other hand, a constraint of the fuzzyMorphic.pl is
to enable deffuzyfication by a single method, the Center of
Maxima method.

Originally, the fuzzyMorphic.pl was developed as a part
of a research project called “Computational models for
the identification of genomic information associated to the
resistance to cattle tick” [5] and was used to implement a
fuzzy inference system for decision support assistance, from
verification and analysis of two previous results.

The fuzzyMorphic.pl is in 1.0 version, release 20090111,
and it needs the fuzzyInference.pm module, currently in 1.1
version, and in the same release.

3.2 The fuzzyMorphic.pl Structure
Generally, the structure of fuzzy inference systems has

three large sections:
1) fuzzyfication, to converter of crisps values to fuzzy

values;
2) inference, to run the machine inference with the infer-

ence rules; and
3) deffuzyfication, to convert outcome, from fuzzy values

to crisps values;
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and these structure can be implemented with the
fuzzyMorphic.pl through of its descriptions directives, as
explain them below.

The description directives are organized in six groups and
if they are in the same input data flat file, then they have to
occupy the first lines of such file. These directives describe
the input data file, define the membership functions, set
up relations among crisp values and membership functions,
define the inference rules, set up the inference model, and
define the output file.

As a result, under these conditions, from flat file with
description directives of input data and system model el-
ements, fuzzyMorphic.pl can easily do data mining and
discover knowledge. Actually, it can infer knowledge from
the inference rules described in the directives.

The six directives groups are explained below:

1) the first group has the _ID identifier, is composed of
just one directive and must be the first row of the direc-
tive file, but it can be preceded by blank or comment
lines. This directive shows format file, including field
separator, fields themselves, fields which participate of
the fuzzy inference model as crisp variables and the
result field;

2) the second group defines the membership functions.
Each row represents one membership function and it
must begin with _Fi (i = 1, 2, . . . ) for each function;

3) the third group assigns crisp variables – reported in the
first directive group – with their membership function.
As is known, the same membership function can be
associated with more a one crisp variable. Each row
determines one relationship between a crisp variable
and a membership function;

4) the fourth group lists the inference rules set. Each row
brings one rule and must begin with _Ri (i = 1, 2, . . . )
for each rule;

5) the fifth group is composed of just one directive
and it defines the inference model. This directive
must informs _IM : Mamdani or _IM : Larsen,
depending on the choice of inference machine for the
model;

6) the sixth group is composed of just one directive too
and it defines the output function. This row must begin
with _O and should be followed by output function
description.

The observations below should also be considered when
using the fuzzyMorphic.pl:

• if a row has with a “#”, then all text wrote below it will
be considered comments and this text will be ignored;

• all blank lines or lines with only space characters, such
as tab characters, will be ignored;

• the input file fields must be separated with a field
separator, as described in the _ID directive;

• the _ID directive must be the first directive, but the
other directives can listed in any order or be mixed and
matched;

• if the directives and data are in the same file, then all
of the set of description directives – such as the six
groups of directives – must be before the first input
data record.

4. Conclusions
Generally, fixed and precise classification criteria are not

suitable when studies show results which are very close to a
certain limit, for instance, a division into classes. But, these
cases can be approached by fuzzy inference systems, which
are also convenient, as well as able, to handle problems
characterized by uncertainty and imprecision for decision
making actions.

Furthermore, problems featuring imprecision or uncer-
tainty can be designed as fuzzy systems, since these systems
allow the processing of subjective and qualitative arguments,
usually intrinsic to such problems.

The fuzzyMorphic.pl is a tool for developing fuzzy infer-
ence which enables model description and implementation
of fuzzy inference systems for solving different problems.
Although, originally, the fuzzyMorphic.pl was developed to
implement a fuzzy inference model decision support applied
to bioinformatics, specifically for the identification of single
nucleotide polymorphisms, based on results from two other
single nucleotide polymorphisms discovery tools.

More information about this software or the inference
model proposed can be seen in the quoted research project
“Computational models for the identification of genomic
information associated to the resistance to cattle tick” [5].
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“It is a mistake to try to look too far ahead. The chain of destiny can only be grasped one link at a time.”
—Winston Churchill

Abstract— Given vast increases in computing capacity, ap-
plications in science and engineering that were formerly
interpreted with ordinary or partial differential equations, or
by integro-partial differential equations, can now be under-
stood through microscale modeling. Interactions among in-
dividual particles—be they molecules, viruses, or individual
humans—are modeled directly, rather than first abstracting
the interactions into mathematical equations and then simu-
lating the equations. One approach to microscale modeling
involves scheduling all events into the future, wherever that
is possible. With sufficient space-for-time tradeoffs, this con-
siderably improves the speed of the simulation, but requires
scheduling algorithms of high efficiency. In this paper we
describe our variation on calendar queues and their usage,
presenting detailed algorithms, intuitive explanations of the
methods, and notes from our experiences applying them in
large-scale simulations. Results can be useful to scientists
in ecology, epidemiology, economics, and other disciplines
that employ microscale modeling.

Keywords: microscale modeling, discrete event simulation, cal-
endar queues, pending events set, space-time tradeoff

1. Introduction
The obvious approach to model a large number of discrete
interacting entities, hereinafter called “individuals,” is to
emulate what is done to model continuous systems with
differential equations. That is, select a small time step ∆t,
compute how the system will change during the interval ∆t,
update the system with those changes, then advance to the
next time step. In ordinary differential equations, as the time
step shrinks, the dynamics of the simulated system converge
to the correct behavior. This is “macroscale modeling,”
following Euler’s method or its many variations [1]. With a
model of 100 compartments, representing, for example, 100
age classes in a human population, relatively few dynamical
variables must be examined and updated in each time step.

The same approach works with microscale modeling,
though with difficulties. At each time step, each individual
is examined to determine what interactions will occur during

that time step. The difficulty with this approach is twofold.
First, each individual acts as a dynamical variable, so there
can be many millions or hundreds of millions of variables
to be examined and updated in each time step. Moreover,
as the time step shrinks to assure convergence, it becomes
exceedingly unlikely that anything will happen to a given
individual during the time step. Therefore, in contrast with
its macroscale counterpart, that approach to microscale mod-
eling spends most of its time checking and finding nothing
to do.

Inspiration for a faster approach comes from an alternative
method of solving differential equations. Instead of deter-
mining what will happen during the present small time step,
an algorithm can determine at what time in the future the
next event will occur. This can be determined reliably for
the very next event, and the precise process for doing so is
called Gillespie’s method [2]. It is the complement of the
standard method.1

Despite certain epistemological difficulties about project-
ing the future that are beyond the scope of the present paper,
hinted at in Churchill’s statement above, Gillespie’s method
can be extended to determine possible times for all future
events in many dynamical systems of scientific interest—or
at least all events that control the fate of the system. But the
number of future events can be large, with many events per
individual, and the number of individuals in the simulation
may be tens or hundreds of millions or more.

Fortunately, algorithms are known that are extremely
efficient at handling schedules of future events. Discovered
by Randy Brown in 1988 [3], these are called “calendar
queues” or “pending event sets,” and have been undergoing
successive refinements ever since (e.g. [4] [5] [6] [7]). They
have the desirable—and remarkable—property that their
speed is independent of the number of events scheduled.

1In simulating f(x) = dx/dt ≈ ∆x/∆t, a small time step ∆t can be
established, such as 0.01 seconds, and the change in population (or other
simulated quantity) can be estimated as ∆x ≈ f(x)∆t. That is Euler’s
method. Alternatively, a change in quantity ∆x can be specified (such as
a population growth of one individual) and the time for that to occur can
be estimated as ∆t ≈ ∆x/f(x). That is Gillespie’s method. Thus the
mathematics for the two are complementary.
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Adding an event, canceling one, or finding the next event
about to occur is the same whether the schedule contains 100
events or 100 million. That is, they are “Order 1” algorithms.

In this paper we present our adaptation of calendar queues
to large-scale individual-based modeling in epidemiology.
Lessons should be applicable to areas including ecology,
economics, and other physical and natural sciences. We
attempt to make our presentation intuitive for access by
scientists and other readers outside computer science. The
goals of this paper are to (1) review the idea of space-
for-time trade-offs that have become widely useable and
applicable to other algorithms (e.g. [8]), (2) explain our
variation on calendar queues and their incorporation in
microscale simulations, and (3) present our algorithms in
full detail for use and adaptation by others.

2. Space for time
The persistent increase in random access computer memories
has carried algorithms through a “phase change,” wherein
a slow continuous advance in memory sizes has resulted
in a rapid, almost abrupt, change in some of the rules for
constructing algorithms for scientific programs. If it will
speed processing, computer algorithms can now afford to
allocate hundreds of millions of bytes of empty space—
even if that space will never be used. This is a “space-
for-time tradeoff.” With large memories now available, such
allocation is no longer wasting memory. On the contrary,
leaving memory unused, or leaving it applied to insignificant
purposes, is wasting it.

A basic space–time tradeoff arises with numerical keys.
Suppose we have 10,000 items, each identified by a distinct
six-digit “key,” and with keys randomly distributed among
values from ‘000000’ to ‘999999’. Suppose each of the
10,000 items occupies 100 memory cells (e.g. 100 bytes).
Stored contiguously, this will require 104 × 102 = 106

memory cells. In such a compact arrangement, searching can
be relatively fast if the entries are kept in numeric order2.
However, in this case adding and deleting will be slow,
averaging N or more accesses to keep the list contiguous and
in order. On the other hand, if the entries are left in random
order, adding and deleting will be fast, 1 to 3 accesses only,3

but searching will be slow, sequentially checking each entry
until the right one is encountered. The point is, this minimal-
space approach inevitably results in algorithms that are slow
in one respect or another.

An alternative is to “waste” memory by allocating one slot
in memory for each of the million entries possible. Now to
search for a specific six-digit key, say key ‘314159’, the
algorithm merely goes directly to the 314,159th entry of the
table. Only one access to the memory array is thus needed

2For instance, by using a binary search algorithm, which is of Order log2 N
accesses, where N is the number of items in the list

3New entries can be added at the end in 1 access; deleted entries can be
swapped with the entry at the end in 3 accesses.

to retrieve, and the same is needed to add or delete. With
10,000 active entries, this space–time tradeoff speeds the
algorithm 5,000 fold. However, it comes at the expense of
100-million memory cells, about one-tenth of a gigabyte.
Such cavalier abandon in the use of memory would have
been unthinkable until recently, but if speed is the utmost
criterion, then allocating an extra 1/10 GB to accomplish a
multi-thousand-fold increase in speed is the clear and proper
choice.

This approach extends to larger keys through the method
of “hash coding,” which is directly related to calendar
queues. Hash coding is an Order-1 algorithm known at
least since Arnold Dumey in 1956 [9]. The key may be
an individual’s first, last, and middle name, for which the
space required for direct access would be astronomical,
beyond the power of any computer presently foreseeable.
Even if the key was only a nine-digit social security number,
such as 123-45-6789, providing one direct-access entry for
all possible social security numbers would be prohibitively
large.

The simplest solution merely extracts the rightmost six
digits of the social security number and indexes an array of
a million entries with those six digits. Of course, as many
as 1,000 individuals may share the same last six digits of
their social security numbers, so “collisions” can occur. But
with only 10,000 entries of a million active, and assuming
all possible social security numbers are equally likely, each
entry in the array has only a 0.01 chance of being occupied,
so the chance that two or more individuals will occupy
the same cell is very small. Nonetheless, the possibility of
collisions must be provided for, and a variety of practical
methods have been devised [10]. Once that is done, locating
an individual by social security number, or indeed by first,
last, and middle name, can be accomplished in one access,
or arbitrarily close to one access, with a sufficiently large
space-for-time tradeoff.

Dumey’s scheme [9] was to use a modulus operation by
considering the key to be a large number, dividing it by the
size of the memory array (number of entries in the array),
then discarding the quotient and using the remainder to index
the array—as in the social security example. In that case, the
rightmost six digits were equivalent to the remainder after
division by one million. Essentially the same underlying
scheme is applied in calendar queues, dividing the scheduled
time by the size of the memory array (one year’s worth of
minutes in the intuitive example to follow), and using the
remainder to index the array. Therefore, the same space-
for-time tradeoffs that make hash-coded accesses maximally
fast also can make calendar queues, properly programmed,
maximally fast for managing large numbers of future events.

3. Future events
Having emphasized the value of spending memory to buy
time, we must also say that it is pointless to spend memory
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when it does not buy time. The more events that are
scheduled at once, the greater the amount of memory that is
needed to handle them efficiently, in direct proportion to the
number scheduled. Also, the more that the number of events
scheduled vary during the simulation, the more frequently
the data structures should be optimized by “resizing” [3].

Therefore, to help keep the scheduling algorithms ef-
ficient, our microscale simulation programs withhold all
but one event per individual from them. Characteristics of
individuals are maintained in a large array of data structures,
A[n], indexed by individual number n, which ranges from
one to some maximum value. This array includes data of
two types: (1) information about the individual, such as, in
a model of human events, date of birth, sex, geographic
location, and so forth, and (2) a list of all future events
relevant to that individual. This large array is not processed
nor examined by the scheduling routines described in this
paper.

Only the earliest among the events pending for each
individual is entered into the global schedule, with the
data structure A[n] holding the rest. Such withholding of
information has several benefits: (1) the number of events
managed by these algorithms is considerably reduced, (2) the
number of events that must be canceled and rescheduled is
reduced, and (3) the size of the scheduling data structures
are predictable, with precisely one event per individual.
This partly obviates the need for the scheduling algorithms
to maintain separate lists for near, intermediate, and far
future events, as in some variations of calendar queues [11],
and also eliminates the need for time-consuming “resizing”
operations [3].

4. Intuitive view
We want to (1) schedule new events, (2) cancel existing
events, and (3) notify a dispatcher as the time for each
event arrives—all three with maximal efficiency. The coding
details can be subtle, but the overall operation is not. It can
be understood intuitively through a physical analogy.

Assume, for a specific illustration, that half a million
events are to be scheduled over the next five years, and that
they appear more-or-less randomly throughout that period.
Suppose that each event has a ticket with (1) a unique event
number and (2) a scheduled time, represented at least to the
nearest second, but possibly much finer.

Now consider a series of pigeon-hole bins to contain
the tickets, one bin representing each minute of an entire
year. The first bin represents the first minute after midnight
on New Year’s Day, the second bin represents the second
minute, and so forth to the last bin, which represents the last
minute on December 31st. That is 366 days × 24 hours/day
× 60 minutes/hour = 527,040 bins total, each labeled with
the month, day, hour, and minute that it represents. Each
bin also has a flag that can be lowered or raised according
to whether the tickets in the bin are known to be in

chronological order. We assumed half a million events to
be scheduled, less than one event per bin on average.

4.1 Creating a new event

Events are created as the simulation proceeds, each asso-
ciated with a particular individual and with a precisely as-
signed time, usually stochastically assigned. In an ecological
model these may represent a time of birth or death, in
an epidemiological model they may represent the time of
onset of a disease, or the time for transmission to another
individual. In any case, new events arise frequently during
the simulation. The procedure for scheduling a new event is
quite easy:
1. Go to the bin representing the month, day, hour, and minute

for the event. Although the year, second, and any fraction of a
second are not used to select a bin, they are later used to place
events in precise chronological order.

2. Drop the event’s ticket on top of the others in the bin.
3. Raise the flag on the bin to indicate that its tickets may no

longer be in chronological order.

That required only a single operation, regardless of how
many events were in the bin. We take it to be important
merely to drop the ticket atop others in the bin, as above,
rather than trying to sort it into place among other tickets in
the bin. Earlier implementations of calendar queues [3] keep
all bins always sorted, but that can be disabling if a large
number of events accumulate in any bin. Such accumulation
can occur during testing or simulation.

4.2 Canceling an existing event

Once scheduled, events may occasionally have to be can-
celed. For example, in an epidemiological model, a healthy
individual may become the target of an infection. Whatever
the next event in their life was, it may have to be rescheduled
as the simulated individual progresses toward disease and
infectiousness. Therefore, the existing event will be canceled
and the earliest of other future events for the individual will
be scheduled instead. In the physical analogy, that requires
three steps:
1. Go to the bin representing the month, day, hour, and minute for

the event. As before, ignore the year, second and any fraction
of a second.

2. Flip through them to find the ticket for the event in question.
3. Destroy that ticket.

That required one operation for every ticket in the bin,
but on average there is only one ticket in the bin. Canceling
an event can be slow if the events cluster badly, because of
the need to flip through the tickets in the bin. But cancel-
ing is not a usual operation. The two common operations
are adding events (described above) and dispatching them
(described next).
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4.3 Dispatching the next event
The simulation proceeds stepwise by locating the earliest
among all events in the schedule, removing it, then process-
ing it. This is efficient, but it involves several steps:
1. Go to the bin representing the current day, hour, and minute.
2. If the flag on the bin is raised, arrange the tickets in chrono-

logical order and lower the flag.
3. Leave any tickets for future years in the bin.
4. Process any tickets from this year, day, hour, and minute, each

to be handled precisely in sequence as the scheduled second
and fraction of a second arrives.

5. If any tickets for the current bin arrive while the bin is being
handled, put them in their proper position among the other
tickets.

This required only one operation for each ticket, plus one
or two more per ticket to order them chronologically before
dispatching the contents of the bin. Again, on average there
is only one ticket in the bin.

This method intentionally does not keep tickets in the bins
ordered, using instead “just-in-time sorting.” Usually this
will make little difference, since the bins are intentionally
designed to be nearly empty. However, as described earlier,
if unexpected clustering occurs, this just-in-time sorting will
be much faster than keeping the contents of all bins in order
each time an event is added.

Within a simulation program using these scheduling al-
gorithms, the individual associated with the ticket being
handled will have other pending events in its entry of data
structure A[n]. The simulation program will then pass the
earliest of these to the scheduling algorithms, through a call
to EventSchedule.

The discussion above shows how the algorithms achieve
their speed—by maintaining at least as many bins as there
are tickets. If there were sixty times as many tickets—thirty
million—the same speed of operation could be maintained
simply by increasing the number of bins by sixty, to one bin
for each second.

5. Applications
The algorithms described here have been applied and tested
in a large-scale multi-compartmental epidemiological model
of tuberculosis transmission developed by one of us (A.K.).
That model runs with upwards of 6 × 107 individuals (60
million), representing the entire population of the UK, on
multiple parallel processors for parameter fitting by simu-
lated annealing. Each individual has many events pending,
including, for example, scheduled times of death, emigra-
tion, onset of disease for recently infected individuals, next
transmission for infectious individuals, potential vaccination
for juveniles, and so forth.

In this epidemiological model, typical runs spanned 30
simulated years and used 75 million bins occupied by 60
million individuals. Each run consumed about 80 seconds
on a 2.8 GHz processor, using a little over 6 GB of memory

on each of 30 to 50 parallel processors. The average time
increment between scheduled events was 14 simulated sec-
onds, with a standard deviation of 12 seconds. The minimum
was less than a simulated microsecond, whenever stochastic
events appeared by chance close together in time. The
maximum time increment was 53 simulated seconds. Thus
the time steps are very small compared with a corresponding
macroscale model.

In simplified timing tests on the same processor, outside
of the operation of the epidemiological model, a list with
6 × 107 individuals needed 30 nanoseconds on average to
schedule each new event, 18 nanoseconds to cancel an event,
and 12 nanoseconds to dispatch each event when its time
arrived. This was near-ideal conditions, with new events
arising in sequence in a way that minimized clustering in
the schedule. Expanding the number of individuals by a
factor of more than 16, to 109 individuals (one billion)
required exactly the same amount of time per operation—
within small bounds of statistical error—demonstrating the
Order-1 behavior of the algorithms.

On the other hand, events arising in random order needed
90 nanoseconds to schedule each new event into a list of 60
million and 180 nanoseconds into a list of one billion. The
three to six-fold increase can be attributed to interactions
with internal memory caches. Such caches grow less useful
as memory accesses become less localized.

6. Algorithmic details
The intuitive picture sketched above converts directly into
the algorithms displayed in the appendix. As implemented
in the algorithms, the bins need not correspond to standard
time units such as minutes, but can be any values.

A simulation begins by adding one or more events,
typically one event per individual, and ends either at a pre-
determined time or when the last event has been dispatched.
Array A[n] would be established earlier with a collection of
pending events for each individual n. The main simulation
program would be structured as follows:

[1] ProgramInit();
[2] loop for all n in A[n] :

EventSchedule
(
n, earliest(n)

)
;

[3] loop for t from 0 to tmax:
Process

(
EventNext()

)
;

[4] exit;

In step 1 above, ProgramInit sets the initial conditions for
the program, including allocating all individuals that will
start the simulation and all future events that are known
for each. Step 2 moves through all individuals, selects the
earliest event for each (earliest(n)), and schedules each
event by calling EventSchedule. With all events to start the
simulation scheduled, step 3 repeatedly asks for the next
chronological event by calling EventNext and passing the
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number of that event to Process. In turn, Process will call
upon EventSchedule and possibly EventCancel and Event-
Renumber while carrying out the simulation. ProgramInit,
Process, and earliest, as well as array A[n], are written
as part of the simulation program. The rest are scheduler
algorithms detailed in the appendix.

The two main data structures organizing the earliest event
for each individual are (1) a circular array of integers Q[h],
each heading a linked list in P [n] of events scheduled for
time bin h, and (2) an array of integers P [n], each continuing
the linked list from Q[n]. The number of entries in P [n]
must equal the number in external array A[n], and like A[n],
P [n] is indexed by individual number. But the number of
time bins Q[h] may be smaller or larger than the number of
individuals. The size of Q[n] is a matter of optimization. It
is typical to have one time bin for each event that could be
scheduled, meaning each bin will represent a single event
on average. A space–time tradeoff occurs because optimal
allocation leaves about one-third of the bins empty.4

Each bin Q[h] represents many related times, all equal
modulo the width of the series of time bins, Qw. The width
Qw of all bins combined is also a matter of optimization.
If it is much too large, events will tend to cluster near the
bin being dispatched. If it is much too small, events will
tend to spread out, with most bins containing events that are
for the more distant future. A suitable value for Qw can be
found by knowledge of the system being analysed, or by
experimental trials to find a good speed of operation.

For speed of addition, the lists of events in P [i] are
not maintained in any particular order, but each bin is
sorted chronologically before it is dispatched. Any sorting
algorithm used should have (1) best performance when the
list is already partially sorted, e.g. Order N , important
because lists will remain partially sorted from earlier passes,
(2) high-speed when sorting only 1 and 2 entries, which are
the most common, and (3) good worst-case performance,
e.g. Order N log2 N . The sorting routine presented as Algo-
rithm 5 in the appendix has these properties.

7. Conclusions
The algorithms presented here can be incorporated into any
individual-based or other microscale model, where they can
speed simulations many orders of magnitude over alternative
methods that are not Order-1.

They are part of a large-scale simulation model developed
by one of us (A.K.) for tuberculosis in the UK. Sixty million
individuals thus can be handled by allocating less than a
gigabyte of random access memory—within the reach even
of portable computers. In practice, these algorithms should
be able to schedule, cancel, and dispatch up to 107 or more
events per second with 60 million or more pending events

4Under random distribution, 1/e = 37% will be empty. That can be shown
to be optimal for overall speed if all bin operations are equally fast.

maintained in the queue. Therefore, they should not become
a bottleneck in the simulation as a whole.

Compilable copies of the code described here and related
simulation algorithms are available free from the authors
upon request.
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10. Appendix
To use the algorithms described in this paper, it is only
necessary to understand the entry and exit conditions that
appear at the beginning of each, not the code itself. Nonethe-
less, to allow complete evaluation of the algorithms, and to
encourage further development of them, we present them as
pseudo-code inspired by and simplified from the program-
ming languages C, Python, and R. The algorithms are defined
with sufficient precision that they can be run, tested, timed,

modified, or translated to other languages. Familiarity with a
relatively few operators∗ and with the syntax of flow control
(if, for, while, etc.), is sufficient to follow the algorithms.
WarnMsg and ExitMsg display error messages and the latter
terminates the program. Not all functions return values. Text
copies of this pseudo-code translated into operational C
are available from the authors upon request, or from the
associated website www.cbs.umn.edu/modeling.

PROGRAM PARAMETERS

TN ≡ (100000000) Example, maximum number of time bins.
PN ≡ (100000003) Example, maximum number of forward indexes to time bins.
TW ≡ 20 Example, time width of all bins combined (for optimization).

INTERNAL DATA STRUCTURES

PZ ≡ −1 Marker for empty bins.

real T [PN ] ← 0; Time for each scheduled event.
integer P [PN ] ← PZ; Forward indexes within bins, ending with zero.
integer Q[TN ] ← 0; First index for the bin, with zero for empty bins,

negative for unsorted bins.
real Qw ← TW; Interval of time represented for each cycle in Q.
integer Qn ← TN; Number of elements in Q.
integer Qi ← 0; Index of the immediate time bin.
integer Qe ← 0; Number of events in all bins.

real Qt0 ← 0; Earliest time representable this cycle in Q.
real Qt1 ← TW; Earliest time beyond this cycle in Q.
real t ← 0; Current time, last dispatched event.

Algorithm 1. SCHEDULE A NEW EVENT

Upon entry to the algorithm, (1) n contains the number (starting with 1) of a new event. (2) te contains the
time at which the new event will occur. (3) P [n] indicates that the event is unscheduled (equal to PZ). (4) The
scheduling data structures are prepared as described above. At exit, (1) the event has been scheduled, to occur
when the proper time arrives. (2) T [n] records the time te of the event. (3) P [n] links the event with others in
its time bin.

EventSchedule(n, te) integer n, real te; integer i; real tr;
if n < 1 or n ≥ PN: ExitMsg(3); 1. Check the index and make sure an
if P[n] 6= PZ: ExitMsg(4); event is not already scheduled
if te < t: ExitMsg(5); and is not in the past.

te → T[n]; 2. Record the time of the new event.

(te− Qt0)/Qw → tr; tr − (int)tr → tr; 3. Convert the time to a bin number.
tr∗Qn → i;

abs(Q[i]) → P[n], −n → Q[i], ↑Qe; 4. Add the event to the list for that bin
and increment the number of events.

* The pseudo-code given here is two-dimensional, as in the language
Python, so that indentation completely defines the nested structure,
with no need for bracketing characters such as ‘{’ and ‘}’. Variables
and function names are italicized and flow control and reserved
words are bolded.

The assignment operator is represented either as ‘←’ or ‘→’,
similar to assignments in R. The compound assignments ‘a + 1 →
a→ b→W [i][j]’ and ‘W [i][j]← b← a← a+1’ are equivalent,
first incrementing a and placing the results back in a, then in b, and
then in the i, jth element of the array W .

The expression structure ‘c ?u : v’, where c is a condition, u is

an if-expression, and v is an else-expression, follows that of C. Using
up-tick and down-tick operators to write ‘ ↑a’, ‘ ↓a’, ‘a ↑ ’, and ‘a ↓ ’
form pre- and post-increments by one, as in ‘++a’, ‘--a’, ‘a++’,
and ‘a--’ of C.

Arrays are indexed as in the language C, starting with 0. Data
types are ‘integer’ and ‘real’, with the latter specifying floating
point. Operator precedence is that of C, with assignments having
lowest precedence. Logical operators such as ‘and’ and ‘or’ are
preemptive, terminating a chain of logical operations as soon as
the result is known. Permanent global assignments, as would be
represented ‘#define α β’ in C, are rendered as ‘α ≡ β’.
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Algorithm 2. CANCEL AN EXISTING EVENT

Upon entry to the algorithm, (1) n contains the number (starting with 1) of the event to be cancelled. (2) T [n]
contains the scheduled time of the event. (3) the scheduling data structures are prepared as described above.
At exit, the event has been removed from the list.

EventCancel(n) integer n; integer i, j, jp; real tr;
if n < 1 or n ≥ PN: ExitMsg(6); 1. Check the index and make sure an
if P[n] = PZ: ExitMsg(7); event is scheduled.

(T[n]− Qt0)/Qw → tr; tr − (int)tr → tr; 2. Convert the time to a bin number,
tr∗Qn → i; modulo the duration of the cycle.

if subcancel(n, i): return; 3. Remove it from its normal bin
(i− 1 + Qn) mod Qn → i; if subcancel(n, i): return; or from an adjacent bin above or
(i + 2 + Qn) mod Qn → i; if subcancel(n, i): return; below (due to rounding error).

ExitMsg(8); 4. If the specified event was not in
the list, signal an error.

integer subcancel(n, i) integer n, i; integer j, jp;
0 → jp, abs(Q[i]) → j;
loop while j > 0: 1. Scan the list of pending events in

if j = n: this bin and remove the specified
if jp > 0: P[j] → P[jp]; event. (The average number of events
else Q[i] > 0?P[j]: − P[j] → Q[i]; in non-empty bins is about 1.5)
PZ → P[j]; if ↓Qe < 0: ExitMsg(9);
return 1;

j → jp, P[j] → j;

return 0;

Algorithm 3. DISPATCH THE NEXT EVENT

Upon entry to the algorithm, (1) T contains the time for each scheduled event. (2) The scheduling data structures
are prepared as described above. At exit, (1) EventNext contains the number of the next event. If zero, no
events are scheduled. (2) t contains the time of the next event, if NextEvent is not zero.

integer EventNext() integer j, n;
loop while Qe > 0:

loop while Qi < Qn: 1. Advance to the next non-empty
Q[Qi] → j; if j = 0: ↑Qi; repeat loop; bin.

if j < 0: 2. Sort the bin if it may be necessary
sort(P, − j, 0, order) → Q[Qi] → j; (usually sorts 1 or 2).

if T[j] < Qt1: 3. If the event belongs to this pass,
if P[j] = PZ: ExitMsg(2); remove it, decrement the number of
P[j] → Q[Qi], PZ → P[j], ↓Qe; events, advance the time, and return
T[j] → t; return j; its index.

↑Qi; 4. Advance to the next bin and repeat.

0 → Qi, Qt0 + Qw → Qt0, Qt0 + Qw → Qt1; 5. Circle back to the first bin.

return 0; 6. Signal completion of all events.

Algorithm 4. RENUMBER AN EVENT

Upon entry to the algorithm, (1) n contains the new index number, which has no event scheduled. (2) m
contains the current index number of the event. At exit, (1) n is the new index number. (2) The event originally
scheduled as m is re-scheduled as n. Event m no longer has an event scheduled and the index is free to be
reused.

EventRenumber(n, m) integer n, m;
if n < 1 or n ≥ PN: ExitMsg(10); 1. Check the indexes and make sure
if m < 1 or m ≥ PN: ExitMsg(11); they are in range.

if n 6= m:
T[m] → T[n]; 2. Transfer the time.
EventCancel(m); 3. Cancel the old number.
EventSchedule(n, T[n]); 4. Reschedule as the new number.
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Algorithm 5. SORTING

Upon entry to the algorithm, (1) list points to an array of forward indexes. list[0] is unused. (2) p indexes the
first element of the list, which ends with a zero. (3) n contains the number of items in the list, if known. If zero,
the number of items is not known and sort should count. (4) c compares two list elements u and v. It returns
negative, zero, or positive when u < v, u = v, and u > v, respectively. At exit, sort indexes the first element
in the sorted list, which ends with a zero. The original ordering is preserved for entries that are equal.

integer ∗P, pc, pr, m, (∗order)(int, int);

integer sort(list, p, n, c) integer list[ ], p, n, (∗c)(int, int); integer i;

c → order, list → P; 1. Record calling parameters.

if n = 0: p → i; loop while i > 0: P[i] → i, n ↑; 2. Count the number of elements and
if n = 0 or p = 0: return 0; return empty and single-element
if n = 1: return p; lists immediately.

if n = 2: 3. If the list contains only two
if order(p, P[p]) ≤ 0: return p; elements, sort it by inspection.

P[p] → i, p → P[i], 0 → P[p];
return i;

p → pc; return isort(n); 4. Otherwise sort the full list.

Partition into sorted sublists. Upon entry, (1) n defines the minimum number of elements to be sorted. (2) P
is the list of forward indexes. (3) pc indexes the first element of the list. (4) order compares two list elements.
At exit, (1) isort indexes the first element in the sorted list, which ends with a zero index. (2) m defines the
number of elements which were actually sorted, greater than or equal to its value on entry. (3) pc indexes the
element following the last element sorted. If the entire list has been sorted, pc is null.

integer isort(n) integer n; integer wp1, wp2, m1;
if n ≤ 1: 1. If a single element is requested,

if pc = 0: return 0; initialize variables and check for
pc → wp1, 0 → m; error in count.

loop : pc → pr, P[pc] → pc, m + 1 → m; 2. Then scan forward in the list to find
if pc = 0: return wp1; the longest list that is already in
if order(pr, pc) > 0: exit loop; order and return that list.

0 → P[pr]; return wp1;
3. If multiple elements are requested,

isort(n/2) → wp1; sort the first part of the list
if n ≤ m: return wp1; and return if enough was sorted.

m → m1, isort(n− m) → wp2, m + m1 → m; 4. If it was not, then sort what remains
return imerge(wp1, wp2); and merge the two sublists.

Merge sublists. Upon entry, (1) P is the list of forward indexes. (2) p and q index the first element of a sorted
primary and secondary list, respectively. (3) order compares two list elements. At exit, imerge indexes the first
element of the list merged in order. In case of equal entries, those from the primary list appear first.

integer imerge(p, q) integer p, q; integer pb, v;
if p = 0: return q; if q = 0: return p; 1. Handle empty lists.

if order(p, q) > 0: q → pb, 1 → v; 2. Save the beginning of the list
else p → pb, 3 → v; and select the proper routine.
loop while v > 0:

loop while v = 1: q → pr, P[q] → q; 3. Scan for a secondary element
if q = 0: − 2 → v; greater than or equal to the
else if order(p, q) ≤ 0: 2 → v; current primary element and mend

if v = 2: p → P[pr]; the secondary list.

loop while v ≥ 2: p → pr, P[p] → p; 4. Scan for a primary element
if p = 0: − 1 → v; greater than the current
else if order(p, q) > 0: 1 → v; secondary element, mend the

if v = 1: q → P[pr]; primary list, and repeat.

if v < −1: p → P[pr]; else q → P[pr]; 5. Attach any remaining elements and
return pb; return the merged list.
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Abstract - The need for approximation of derivatives of 
explicit functions arises in a wide range of geosciences 
applications. In this paper I describe a technique for 
derivative approximation based on complex variable theory 
which was shown to be superior to ordinary finite difference 
(FD) schemes in accuracy, robustness and ease of 
implementation. The method is in fact a close relative of true 
automatic differentiation (AD), hence, the name: 
semiautomatic differentiation (SD). The method was 
generalized to multi-parameters functions and extended to 
second order derivatives so that it is capable of approximating 
first and second order derivatives and derivative structures 
such as directional derivatives, gradients, Jacobians and 
hessians. Because of its AD-like features, it has a high 
potential as an effective teaching and research tool in the 
geosciences. The goals of this paper, in addition to bringing 
the technique to the attention of the wider geoscience 
community, are to provide a guide for computation with SD 
and illustrate its potential through application to common 
geoscience problems. 

Keywords: Differentiation, Modeling,  Inversion, Imaging 

 

1 Introduction 
Numerical differentiation plays a key role in modern 

computational geoscience. Advances in computational 
resources, geoscience instrumentation and numerical 
algorithms have completely altered the approaches to data 
analysis and interpretation. Today, any geoscientific data 
interpretation approach entails solution of complex 
optimization problems such as data inversion, parameters 
estimation, sensitivity analysis, design optimization, optimal 
control, system modeling and process simulation. State-of-
the-art numerical algorithms developed to solve these types 
of optimization problems are derivative-based, requiring 
users to supply derivatives of model functions and associated 
constraint equations in the form of gradients, Jacobians and 
Hessians. The accuracy with which these derivative structures 
are computed is pivotal to the successful performance of 
these algorithms. Therefore, a need exists for development of 
efficient and accurate methods to approximate derivatives. 
Key issues in assessing a differentiation technique are 
accuracy, robustness, computational cost and ease of 
implementation. 

The classic finite difference (FD) is the most widely use 
method for derivative approximation. The method, however, 
is neither efficient nor accurate; it owes its universal 

popularity primarily to its ease of implementation. On one 
hand, the accuracy of the method depends critically on the 
size of the differencing interval (step size). For maximum 
accuracy, an optimum step size must be sought often by trial 
and error, a process that significantly impedes the efficiency 
of the method (Mark and Workman Jr., 2003; Burge and 
Newman, 2003). On the other hand, from filtering point of 
view, generic FD differentiation filters have the undesirable 
property of noise amplification by factors exceeding 10.0 
(Orfanidis, 1996; Abokhodair, Submitted to GEM); noise 
amplification factor is proportional to the ratio of the noise 
variances on output and input into the filter. 

An alternative to FD with superior qualities exists in a 
method, little known in the geoscience literature, based on the 
theory of complex variable and called the complex-step 
derivative (CSD). The CSD method for first-derivative 
approximation of analytic scalar functions was first reported 
by Squire and Trapp (1998) who showed it to be highly 
accurate, extremely robust and very easy to implement. It has 
since been gaining recognition and successfully applied in 
several large scale studies including global and local 
sensitivity analyses, aerodynamic design optimization and 
pseudospectral algorithms (e.g. Cerviño and Bewley, 2003; 
Martin et al., 2001; Burge and Newman, 2003; Vatsa, 2000; 
Wang, 2004; De Pauw and Vanrolleghem, 2006).  

As shown by Martins et al. (2001) and demonstrated in 
the next section, CSD is a close relative of automatic 
differentiation (AD) when the latter is implemented via object 
oriented programming; the complex arithmetic provides the 
necessary data typing and operator overloading.  Hence, in 
terms of accuracy, CSD is comparable to AD and is as simple 
to implement as FD but without the inherent step-size 
limitation of FD. Moreover, it is easily accessible, without 
any prior programming, in any computational environment 
that supports complex arithmetic. Details of the method, its 
generalization to multi-parameter functions, and its extension 
to second derivatives were reported by the present author 
(Abokhodair, 2007). The method has also been automated 
into a Matlab-based toolkit referred to "Semiautomatic 
Differentiation Tool (SD)" that allows computation of 
derivative structures including gradients, Jacobians and 
Hessians (Abokhodair, 2009), hence the title of this paper. 

Because of its accuracy, simplicity and general 
accessibility, the CSD method (hereafter will be referred to as 
SD) has a high potential as an effective teaching and research 
tool in the geosciences. The goals of this paper, in addition to 
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bringing the technique to the attention of the wider 
geoscience community, are to provide a guide for 
computation with SD and illustrate its potential through 
application to common geoscience problems. The intention is 
not to document the SD toolkit, but rather to show by 
example that the technique is simple, powerful, and widely 
applicable; hence, it easily challenges FD in performance 
qualities. The aim is to make prospective users, students and 
researchers, feel comfortable using the method and confident 
in its results as they discover its key advantages over FD 
schemes. 

2 A heuristic example 
To understand why the SD method works, we examine 

a simple function, say, sin( ) xf x e= . The objective is to 
estimate its derivative '( )f x ; of course, the exact derivative 

is '( ) cosxf x e x= . The key idea of SD is to perturb the 
target variable x with a pure imaginary step h << 1 and 
construct the complex argument: z x ih= + where 1i = − . 
Thus, the ‘complexified’ version of our original real-valued 
function becomes: 

sin( ) xf x e= . 

Expanding ( ) ( )f z f x ih= + in Taylor series and neglecting 
terms in h2

sin sin( ) cos
( ) '( )

x xf z e ih e x
f x ihf x

≈ +
+

 and higher yields: 

 

This is the original formula reported by Squire and 
Trapp (1998). It provides ( )O h  approximations of ( )f x   
and its first derivative '( )f x  in the real and the imaginary 
parts of ( )f z  respectively. Unlike FD, the SD approximation 
formula for '( )f x involves no differencing operation; hence 
no subtractive cancellation errors or step-size adverse effects 
are to be expected. This is the essence of the SD method. The 
accuracy of the derivative approximation of the example 
above is assessed by examining the absolute relative error 
defined as: 

( ) ( )( )
( )

k k
ED MD

r k
MD

f x f xE x
f x

−
=

, 

where ( )k
EDf x  and ( )k

MDf x  are respectively the estimated 
and exact (manual) derivatives. Figure 1 compares the 
absolute relative errors ( )rE x  of the SD (a) and centered 
finite difference (CFD) approximations (b) of '( )f x for 

respective step sizes of 2510h −= and 810−  . Whereas the 

SD relative error fluctuates randomly about a mean value of 
1610−  , the CFD error is several orders of magnitude larger 

with a mean value of about 910− . 
 

 
Figure 1: The absolute relative errors ( )rE x   of SD (a) and 
CFD (b) approximations of the derivative in the heuristic 
example using step sizes h = 10-25 and 10-8

The SD derivative of this example is computed by the Matlab 
script in the box below. 

 respectively. 

x=pi*(-1:.02:1)'; 
h=1.0e-25;               % Step 
f=@(x) exp(sin(x)); 
z=complex(x,h);          % Complex 
argument z = x + ih 
fc=f(z);                 % Complexified 
function f(z) 
sdfp=imag(fc)/h;         % Sd derivative 
Approximation 

3 First Order Derivatives 

The generalized Squire-Trapp formula for vector-
valued functions of several variables is: 

( ) ( ) ( ) ( ) ( )2  Tih ih O h= + = + +F z F x e F x e J x ,    (1) 

where the column vectors [ ] 1
(( ) ) N

k kf
=

= xF x ,  [ ] 1

M
k kx

=
=x  

and the N M× matrix ( )J x  is the Jacobian with respect to 
x, i.e  ( ) ( )= ∇xJ x F x  .  (Abokhodair, 2007).  

The imaginary part of equation (1) provides a first derivative 
approximation formula as: 

( ) ( ) ( )21T Im O h
h

= +  e J x F z .             (2) 

This formula can be used to compute high-accuracy 
numerical approximations of partial derivatives, gradients, 
directional derivatives and Jacobians. 
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1.1. 

Table 1 summarizes the SD differentiation rules for first 
partial derivatives. The pair of variables 

Gradients and directional derivatives 

( , )k lx x  are 
perturbed singly or in combination by a pure imaginary step 
ih to form the corresponding complex variable ( , )k lz z . The 
imaginary part of the complexified function ( , )k lf z z  scaled 
by h yields the derivative estimate listed in column 6 of the 
table. To illustrate these rules, we use the Rosenbrock 
function of two variables defined as: 

2 2 2
2 1 1( ) 100( ) (1 )f x x x= − + +x  .            (3)                                     

This is a scalar-valued function for which the 
Jacobian matrix (J) in equation (2) reduces to a 
gradient vector g given by: 

1

2

( ) ( )
f x

f
f x

∂ ∂ 
= ∇ =  ∂ ∂ 

xg x x ,               (4) 

and the directional derivative in the direction of the unit 
vector 

1 2
( ) ( )( )

T

x xe eθ θ θ =  e  , by definition, is: 

[ ]
1 2

1

2

( ) x x

f x
f e e

f x
∂ ∂  =    ∂ ∂ 

eD x .                   (5) 

 
Table 1: SD differentiation rules for first order partial 
derivatives. ∆ in columns 5 and 7 is a scaling factor. 

The Matlab function cFPD.m of the Appendix returns 
[ ]( )feD x   given the direction 𝜃. It should be noted that the 

partial derivatives [ ]1 2,f x f x∂ ∂ ∂ ∂ , are obtained by setting 

[ ]0,90θ =   respectively. Figure 2 shows the output of the 
function for different values of θ. 

 
Figure 2: Output of function fpd(θ) showing (a) contours of 
f(x), (b) the directional derivative De 1f x∂ ∂(x) (θ =45), (c)  
(θ = 0), and (d) 2f x∂ ∂  (θ =90) 

1.2. 

 The Jacobian, we recall, is a matrix of first-order 
partial derivative defined for vector-valued functions as: 

The Jacobian 

 

[ ]

1

2
1 2

1 1 1 2 1

2 1 2 2 2

1 2

( ) ( ) ( ) ( ) ( ) ,

( )

T T
N

M

M

M

N N N M

x
x

f f f

x

f x f x f x
f x f x f x

f x f x f x

∂ ∂ 
 ∂ ∂ = ∇ =
 
 ∂ ∂ 

∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂ =
 
 ∂ ∂ ∂ ∂ ∂ ∂ 

xJ x F x x x x

J x









   



 (6) 

Note that, by convention, the rows of ( )J x  are the 

transposed gradients of the component functions [ ] 1
( ) N

k kf
=

x . 
Since the Jacobian is a first-order derivative structure, its 
computation follows the same rules of Table 1. Consider, 
with some change in notation, the function: 

2

1

2 ( / )

tan ( / )( , )
x

xf x
e β

α β

α

−

−
=

+
p                              (7) 

where [ ]α β=p  is the vector of parameters and x is a 
spatial variable. The gradient ( , )f x∇p p over a range of x, 

say, a x b≤ ≤  is the Jacobian ( )J p  of ( , )f xp  with respect 
to its parameters. The Jacobian of equation 7 shown in Figure 
3 is computed by the Matlab code  cJacob.m in the Appendix. 
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Figure 3: The Jacobian of the 2-parameters function in 
equation 7 computed by function sdJacob.m of the Appendix. 

Note that here we use the column vectors of an identity 
matrix instead of ( )θe  to impulse individual components of 
J since these column vectors form the bases of the parameter 
space. 

4. 

The approximation formula for first order derivative 
(equation 1) is the only subtraction-free formula that can be 
obtained from complex variable theory. However, at the 
expense of a small lose in accuracy this formula can be 
extended to second-order derivatives by any ordinary finite 
difference scheme. This may be accomplished by perturbing 
the target function twice, once along the imaginary axis by a 
step 𝑖ℎ and a second along the real axis by a step of size 𝛿𝑥, 
expanding each time in a Taylor series. The approximation 
formula so obtained using a centered difference (CFD) 
scheme is (Abokhodair, 2007): 

Second Order Derivatives 

[ ] 21 Im ( ) ( )
2

T f O h
h xδ

= ∆ +e H e z  ,           (8) 

where H is the hessian matrix. The differentiation rules for 
computing second-order partial derivatives from this formula 
are given in Table 2. As shown in the table, equation 2 
provides approximations for both first and second order 
derivatives in its real and imaginary parts respectively. 
Because of the differencing operation involved in the 
derivation of the formula, however, the approximation of 
first-order derivatives is less accurate than that of equation 1. 

 

Table 2: SD differentiation rules for second order partial 
derivatives. ∆ in columns 5 and 7 is a scaling factor. 

1.1. 
To demonstrate application of the rules in Table 2, we 

use the following test function: 

Second partial and cross partial derivatives 

2 2

2 2 3/2

( )( , )
( . . 1)

x y x yF x y
x y

− −
=

+ +
.                        (9) 

The code fragment below implements the third rule for the 
following two partial derivatives [ ],F x F x y∂ ∂ ∂ ∂ ∂  at any 

point ( ),o ox y  
with output [ ]-0.0163, -0.0526  at 

( )3.5,  1.76− . 

F=@(x,y) (x.^2-y.^2-
x.*y)./(x.^2+y.^2+1).^(3/2); 
dx=0.05e-5;         % Real step 
h=1.0e-25;          % Imaginary step 
s=2*dx*h; 
xo=3.5; yo=-1.76; 
z2=complex(yo,h);   % Imaginary step 
% Forward 
z1= xo+dx;          % Real perturbation 
Fp=F(z1,z2);        % F(xo+dx,yo+ih) 
% Backward 
z1= xo-dx; 
Fn=F(z1,z2);        % F(xo-dx,yo+ih) 
DF=Fp-Fn;           % Centered 
Difference 
Fx=real(DF)/(2*dx); % FPD in real part 
Fxy=imag(DF)/s;   % XPD in imaginary 
part 
out=[Fx Fxy]; 

1.1. 
The hessian matrix is a second-order derivative 

structure defined for scalar-valued functions as: 

The hessian matrix 

2 2 2

2
1 1 2 1

2 2 2

2
2 1 2 2

2 2 2

2
1 2
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M M M
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 ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂
 = ∂ ∂ ∂ ∂ ∂ 
 
 

∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ 

H x





   



 .       (10) 

Since it contains second partial and cross partial 
derivatives, its computation requires double loops over the 
parameters of the target function using the first and third 
rules of Table 2. The accuracy of the scheme in equation 8 
for the hessian may be evaluated from the relative error with 
respect to the exact (manual) derivatives. Using the Matlab 
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code cHess.m of the Appendix, we compute the full hessian 
and its relative errors for the test function (equation 9). The 
results (Table 3) indicate that the relative error in H 
computed at a step size h = 10-25, is of the order of 10-11

SD 

, 
much smaller than any FD scheme can deliver. 

 1.5172e-14 1.2545e-14 
1.1911e-14 4.7402e-13 

CFD 
7.1972e-06 4.1858e-06 
4.1858e-06  1.6096e-05 

Table 3: Absolute relative errors in hessian approximation 
by SD and CFD. 

Examination of Table 3 reveals a difference in accuracy of 
about 8 orders of magnitude between SD and CFD results. 

The size of δ H , in fact, provides a meaningful 
measure of the quality of an approximation of H .  To 
explain, suppose that H   is entered into a computation of the 
type:  =y Hx , so that 1−=x H y  . Suppose further that H is in 
error by an amount δ H . Then, as shown by Forsythe and 
Moler (1967), the relative errors introduced in x due to errors 
δ H  are bounded by q  such that for any norm ⋅ : 

q κ= ≥
δH δx
H x

,                              (11) 

where κ , is the condition number of H . For the test case 
considered here, q was computed for all four commonly 
used norms: one, Euclidian, infinity and Frobenius (L1, L2, 
Linf , and Lfro). The upper bound for the CSD and CFD 
approximations was found to be 121.1416 x 10q −≤ and   

61.540 x 10q −≤ respectively; and is largest for the L1 
norm, and smallest for the Lfro norm (1.0146 x 10-10, 
1.2546 x 10-6). These results clearly indicate that, in addition 
to its stability, the SD approximation of second order 
derivatives in equations 8 is decisively of higher accuracy 
than ordinary FD approximation by several orders of 
magnitude. 

5. 

Utility of the SD method in optimization is 
demonstrated here by the classic problem of minimizing the 
Rosenbroke function (equation 3) which is a popular test 
function of optimization algorithms. The algorithm used in 
this example is a variant of Newton method with a 
Levenberg–Marquardt-type damping. The iteration step 

Application in inversion 

∆x
is determined by solution of the damped linear system:
( )( ) ( )λ+ ∆ = −H x I x g x , where λ is the d amp in g  factor; 
hence, the algorithm requires both the Hessian (H), and the 
gradient (g) of the objective function. The optimization 
results are shown in Fig. 6. It is worth noting that the routine 

used internally checks the accuracy of the user’s 
implementation of g and H and terminates with error flags if 
either derivative object fails to pass the preset accuracy level 
or if H exhibits any asymmetry.  

 
 

Figure 4: Reults of optimization of the Rosenbroke test 
function using a variant of Newton's method with Levenberg–
Marquardt-type damping requiring the gradient and hessian 
of the objective. 

6. 
In this paper, the semiautomatic differentiation system 

was presented as alternative to FD schemes. The accuracy 
and simplicity of the method was illustrated by computation 
examples of important derivative structures including 
gradients, directional derivatives, Jacobians and hessians. The 
SD technique, generalized to multi-parameter functions and 
extended to second-order derivatives, provides a complete 
system for the differentiation of real-valued functions. 
Compared to FD, the method is superior in performance with 
the added advantage of being step-size insensitive. It is also 
competitive with AD in performance, with the added 
advantage of being more easily accessible to students and 
researchers. With these features, the SD has a high potential 
as a pedagogical and research tool in the geosciences. 

Summary 
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Abstract - This paper presents the derivative of the stress 
distribution in the condition that a point (or concentrated) 
force acts on the surface of a viscoelastic half-space. This 
solution is obtained through the combination of the solution 
to the stress distribution from the forces in both normal and 
tangential directions. The tangential-force viscoelastic 
problem is defined as the application of a tangential point 
force acting on the surface of a viscoelastic half-space and 
the normal-force viscoelastic problem is related to a normal 
force in the same situation. The elastic-viscoelastic 
correspondence principle is used in the derivation of the 
stress distribution. Two time-dependent functions, also 
called determining functions, are utilized to express the 
multiplication of the external force and the time-dependent 
viscoelastic material properties, i.e. the volumetric and 
deviatoric relaxation functions and Poisson’s ratio. Using the 
boundary conditions and the equilibrium conditions of a 
half-space, the mathematical expressions of the determining 
functions can be explicitly obtained. The stress distribution 
in a viscoelastic material under general point force (with 
both normal and tangential components) is then obtained. 
These solutions can be used to formulate the stress 
distribution in the crushing or cutting of linear viscoelastic 
materials. 
Key words: Stress distribution; linear viscoelastic; tangential 
point force; half-space. 

 INTRODUCTION I
Cutting operations are involved in the process of 

many viscoelastic materials. Modeling the relationship 
between the cutting force and stress distribution can help 
predict the fracture due to cutting and identify different 
materials along the cutting path. Cutting problem can be 
modeled as a belt-shaped area force acting on the surface 
of a half-space. The study of the stress distribution due to 
a point force will be the first step in modeling the cutting 
stress distribution. A cutting force can be considered as 
the resultant of a normal and a tangential component 
acting on the contact surface between the tool and the 
material. The stress distribution in an elastic half-space 
due to a normal point force and that due to a tangential 
point force has been modeled by Boussinesq and Cerruti, 
respectively. Correspondingly, they are called 
Boussinesq’s problem and Cerruti’s problem. For 
viscoelastic materials, Talybly (2010) raised the method 
by substituting the multiplication of external force and 
viscoelastic material functions with time-dependent 
functions. This paper will concentrate on the formulation 

of stress distribution in a viscoelastic under a tangential 
point force. The simplified model is shown in Fig. 1. Due 
to the asymmetry resulting from the tangential force, only 
Cartesian coordinates could be used. This makes our 
formulation much more complicated.  

 

Fig. 1: A tangential force (Px) acts on the surface of a 
half-space 

Furthermore, using the solution formulated in this 
paper, a solution to the problem in viscoelastic materials 
under both normal and tangential point forces can be 
obtained. This generalized solution can be used in many 
further problems, for example, the food slicing cut 
problems formulated by Zhou and McMurray (2011). The 
remainder of this paper is as follows: tangential-force 
viscoelastic problem is explained in Section II and the 
solution to this problem is derived in Section III. The 
general solution is shown in Section IV. The conclusions 
are drawn in Section V. 

  STATEMENT OF A VISCOELASTIC HALF-SPACE II
UNDER TANGENTIAL-FORCE 

 Tangential Point Force A.
 In this problem, a reference frame O-xyz is defined 

on the half-space as shown in Fig. 1, where the boundary 
of the half-space is at z = 0, and a tangential point force 
Px, which could  be a function of time, is applied at the 
origin along the x-axis, and the positive z-axis points 
towards the interior of the half-space. The stress solution 
to this problem for elastic materials was given by Cerruti 
in 1882 through the use of singularities from potential 
theory. The results were also presented by Love (1927). 
The displacement distributions at point (x, y, z) inside the 
half-space body are: 
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where ue, ve and we denote the displacement in the 
positive x-, y- and z-axis directions in elastic case,

 

2 2 2 2
R x y z   , Px is the external tangential force, G 
is the elastic shear modulus and   is the Poisson’s ratio. 
The stress distributions can then be obtained using the 
kinematic equations and constitutive equations for elastic 
materials. 

The stresses at point (x, y, z) satisfy the following 
boundary conditions for this problem: 

0;     ( ) 0;

0;           ( ) 0;

0;           ( ) 0,

zx x z zy

zy z zx
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dxdy P y z dxdy

dxdy x z dxdy

dxdy y x dxdy

  

  

  

   

   

   

   

   

   


   


   


   


   

   

   

 

where the three equations in left column represent the 
force balance, and the three equations in right column 
represent the torque balance.  

 Viscoelastic Half-Space under Tangential Point Force B.
In our derivation, the viscoelastic effect is taken into 

consideration based on the original tangential-force elastic 
problem. The difference between elastic and viscoelastic 
problems lies in the constitutive equations.  In an elastic 
material, the relationship between stress and strain can be 
described by Hooke’s Law. However, in a viscoelastic 
problem, the material will show elastic behaviors like 
solids and also show viscous behaviors like fluids. This 
changes the relationship between stress and strain. During 
the calculation of the stress, instead of multiplying strain 
with material properties, such as Young’s Modulus and 
Poisson’s ratio, the convolutions of strain with relaxation 
functions are used. These relationships are shown as: 
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 where G1 and G2 are the deviatoric and volumetric 
relaxation functions, and   / 3x y z      is the 
mean strain.  

Therefore, we state the tangential-force viscoelastic 
problem as follows: finding out the solutions to the stress 
distribution of a half-space body under a point tangential 
force applied to the surface, with boundary conditions and 
stress-strain relationships satisfied. 

 SOLUTIONS TO TANGENTIAL-FORCE VISCOELASTIC III
PROBLEM 

 Displacements A.
For the linear viscoelastic case, by applying the 

elastic-viscoelastic correspondence principle and 

replacing x
P

G
 and x

P

G


 with  t  and  t , The 

following expressions can be obtained: 
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where u, v and w denote the displacements in the positive 
directions of the x-, y- and z-axis with: 
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In following sections, all derivations will be 
conducted with the terms of    and   carried out 
individually.

 

 Normal Strains B.
The normal strains are obtained via the derivative of 

displacements with coordinates. The obtained normal 
strains are:
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Thus the mean strain is: 
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x x
t t

R R
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and the mean stress is 
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320 Int'l Conf. Scientific Computing |  CSC'12  |



 

 

 Shear Strains C.
The shear strains yz , xz and xy  can be obtained as: 
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Noted is that the coefficients of  t  in 
yz

  and
xz

  
are zero, then the strains can be written as 
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 Stresses D.
With strains known, the stresses can be obtained from 

viscoelastic constitutive equations (Zhang 1994, p. 63) as: 
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 Boundary Conditions E.
Now consider the boundary conditions. Integrating 

the stress component and noticing that convolution will 
not take part in spatial integrals, the first boundary 
condition becomes: 
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The above equation means that the resultant force in 
x direction on the O-x-y plane cancels the external force. 
It is worthy to mention that the integrals of the other 
stress components are all zeros because all of them are 
odd functions of x with the integrations over  ,x   .  

The value of the above integral should be zero as 
required by the balance of force. Then the following 
expression can be obtained: 
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 Equilibrium Equation F.
Bringing all the stresses into

 
the first equilibrium 

equation 0xyx xzE
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Thus there is: 
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By eliminating the same coefficients containing the 
coordinates, there is: 

         2 12 0G d t t G d t t          

The second equilibrium equation will yield the same 
equation relationship as given in (1). The third 

equilibrium equation 0yzxz z

x y z

  
  

  
 has been 

satisfied automatically. 

 Solution to Tangential-Force Viscoelastic Problem G.
 t and  t  are linearly independent in Equations 

(1) and (2). Thus,  t  and  t  can be uniquely solved 
by solving the Volterra integral equations of the second 
kind (Zhang 1994, p.150-161).  

Given the initial condition Px(0) = 0, all stress and 
strain components are zero at t = 0 and  0 0  , 

 0 0  , the solution to  t  can be obtained. Noted is 
that the detailed derivations are not included in this part 
for the purpose of concision since the detailed derivations 
and the proof of the uniqueness can be found in the paper 
by Talybly (2010). Manipulating equations (1) and (2), 
there is: 

        1 22 2 6 xG G d t t P t      

Viewing    2t t  in whole and solving this 

Volterra integral equation,  t can be obtained with 

 t  previously solved. 
Taking advantage of (1) and (2), the term of G2 can 

be eliminated and the stress distributions can be written as 
follows: 
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Comparing with classic Cerruti’s solutions (Johnson, 
1985 p.69-70), we found that the term Px(t)-G1*dψ in 
viscoelastic solutions plays the same role as the term  
(1-2μ)P in elastic solutions. 

 STRESS DISTRIBUTION IN A VISCOELASTIC HALF-IV
SPACE UNDER GENERAL POINT FORCES 

We now consider a general force with both normal 
and tangential components, in which two tangential forces 
P1(t) and P2(t), along x- and y- axis respectively and one 
normal force P3(t) along z-axis are applied at the origin. 
The displacement and stress distributions are obtained 
using the superposition of the displacement and stress 
distribution by P1(t), P2(t) and P3(t). The stress and 
displacement distributions for the problem when only one 
tangential force P1(t)=Px(t) along x-axis has been 
discussed in previous discussions. For disambiguation, we 
rewrite the solution with proper superscript (i) (i = 1, 2 or 
3) to denote the applied forces. Therefore we have: 

     

     

1 1 1

1 1 1

,  ,  ,

,  ,  .
x x y y z z

yz yz xz xz xy xy

     

     

  

  
 

where the expressions of the right hand side are the same 
as in (3) only with Px(t) replaced by P1(t). 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 2: Model for coordinate’s transformation 

When there is a single tangential force P2(t) applied 
on the O-x-y plane at point O along y-axis, the stress 
distribution is obtained through the calculation of the 
frame rotation. In this method, as shown in Fig. 2, we first 
rotate the frames around z-axis by 90 and denote the new 
coordinate system as O-x’y’z’.  

The corresponding Jacob matrix is: 
cos(90 ) sin(90 ) 0 0 1 0
sin(90 ) cos(90 ) 0 1 0 0  

0 0 1 0 0 1
R
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The corresponding stress tensor is transformed as 
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Correspondingly, the determining functions can be 
rewritten as (Talybly, 2010): 

(2) 

(3) 
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In coordinates O-x’y’z’, P2(t) is applied at the origin 
along x’-axis. Based on the solution we obtained in (3), 
the stress in O-x’y’z’ system can be obtained as: 
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where 2 2 2 2' ' ' 'R x y z    
        After transformation to O-xyz coordinates, stresses in 
(4) can be written as: 
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        When a single normal force P3(t) is applied at point 
O and along the positive z-axis, the stress distribution is 
shown in (6). Noted is that this expression has been given 
by Talybly (2010). 
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Based on (4), (5) and (6), we provide the solution of 
stress distributions to the general problem as follows: 
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Similarly, the displacement distributions to 
viscoelastic problem  ,    wu v and  as follows: 
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where the components are:  
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The results will be used in our future research about 
the formulation of the cuttings for linear viscoelastic 
materials, in which a distributive force is used instead of a 
point force. We could obtain the stress response  ,

ij
r t


 
to a certain distributive force by considering the point 
force P


as a function of   and , replacing x by x  ,

y by y  and R by    2 22 2
R x y z      , and 

then integrating the corresponding stress or displacement 
components for  and  in x-y plane. 

 CONCLUSION V
The solutions to the stress and displacement 

distributions in a viscoelastic half-space under a point 
force are presented in this paper. The method is based on 
the elastic-viscoelastic corresponding principle. The 
solution to the displacement of an elastic half-space under 
a tangential point force was used as the displacement 
solution to the viscoelastic problem. Based on the 
equilibrium equations and boundary conditions of a 
viscoelastic half-space, we obtained the solution to the 
two time-dependent determining functions via the 
Volterra integral equations of the second kind. Then, the 
stress distribution due to a tangential force in y-axis 
direction is solved based on a frame rotation method. 

(4) 

(5) 

(6) 

Int'l Conf. Scientific Computing |  CSC'12  | 323



 

 

Finally, by combining the solutions when there is only a 
normal force component, we get the results for the 
generalized case, where an arbitrary force with three non-
zero components in x, y and z directions, is applied. These 
results could be further used to solve the stress 
distribution in a viscoelastic half-space under a 
distributive force, by taking the integral over the area 
where the distributive force is applied.  

 REFERENCES VI
Boussinesq, J., Application des Potentiels a I’Etude de l’Euqilibre et du 
Mouvement des Solides Elastiques, Gauthier-Villars, Paris, (1885). 

Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, 4th 
Edition. Cambridge University Press (1927). 

Talybly, L. K., ‘Boussinesq's viscoelastic problem on normal 
concentrated force on a half-space surface’, Mechanics of Time-
Dependent Materials. 3:253-259, (2010). 

Xu, Z., Elasticity Mechanics (Tan Xing Li Xue) 5th Edition, Higher-level 
Education Publication, in Chinese, (1996). 

Zhang, C. Y., Viscoelastic Fracture Mechanics (Nian Tan Xing Duan 
Lie Li Xue), Huazhong University of Science and Technology Press, in 
Chinese, (1994). 

Zhou, D. and McMurray, G., “Slicing Cuts on Food Materials Using 
Robotic Controlled Razor Blade”, Modelling and Simulation in 
Engineering, Accepted and to be published in Nov 2011, Hindawi 
Publishing Corporation, (2011). 

Johnson, K. L., Contact Mechanics, Cambridge University Press, 
(1985). 

 

 

 

 

 

 

 

 

 

 

 

 

324 Int'l Conf. Scientific Computing |  CSC'12  |



Conference on Scientific Computing 2012, Las Vegas manuscript No.
ID #: CSC7869

Conjugate Gradient Type Algorithms for Indefinite Linear
Systems

Marek Szularz

30 July 2012

Abstract This paper presents the new versions of the well established iterative Krylov-

subspace solvers for large, sparse and symmetric linear systems. Notably, the classical

Hestenes’s and Stiefel’s Conjugate Gradient (CG) algorithm is generalized into indefi-

nite case, resulting in a breakdown-free method.

Also, the indefinite variant of the well established Conjugate Residual (CR) algo-

rithm, is derived here, merely as a simple correction to the solution of the generalized

CG method. Such a new CR algorithm has the second advantage over the classical CR

algorithm because of an ‘easy’ computation of the residual norms.
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1 Introduction

The Krylov subspace projection methods for solving the linear systems Ax = b, where

A ∈ Rn×n is an arbitrary, nonsingular matrix, are the methods in which the approxi-

mate solution is obtained as

xm = x0 + Vmym, ym ∈ Rm, (1)

where Vm = [v1, . . . , vm] (with vi ∈ Rn) is the orthonormal basis for the m-dimensional

Krylov subspace

Km (A, r0 ) = span{r0 ,Ar0 ,A2 r0 , . . . ,A
m−1 r0 }, (2)
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and x0 and r0 are the initial guess and the corresponding residual b−Ax0 respectively.

Thus the m-th step residual will take the form:

rm = b−Axm

The ’optimal mix’ of Krylov vectors in (1) depends on the choice of the inner product

norm in which the error is minimized at each step. The optimization procedure applied

here may result in a solution of a problem involving matrix Hm ∈ Rm×m, the or-

thogonal projection of A onto the Krylov subspace. When A is unsymmetric, Arnoldi’s

algorithm can be used to generate Vm and Hm = V TmAVm, that is upper Hessenberg.

In particular, with some inner product norms, this approach may lead to the solution

of the linear system

Hmym = um, (3)

where the right-hand side um depends precisely on the choice of such a norm.

A Krylov subspace method for symmetric linear systems that applies the Lanczos al-

gorithm (that can be viewed as a symmetric variant of Arnoldi method) to generate

Vm (Hm) and explicitly uses system (3) to compute ym at each step is known (see [5])

as a Direct-Lanczos method for linear systems. In such a case Hm = Tm is symmetric

tridiagonal. Because of this simplification the approximate solution xm does not have

to be computed as explicitly as (1) and (2) suggest; instead xm can be computed as a

simple update of xm−1 in the form of some linear combination of xm−1 and pm, where

pm is usually known as the m-th step search direction. In turn, pm can be computed as

some linear combination of the previous search direction pm−1 and the current Lanczos

vector vm. Consequently Vm need not to be stored entirely, which is by far the most

important issue with such methods. Thus any Direct-Lanczos (D-Lanczos) method will

take advantage of this i.e. will compute ym (xm) in a progressive manner. In particu-

lar, in a class of Direct-Lanczos methods for linear systems that minimize ‖ rTmArm ‖2
at each step, um in equation (3) turns out to be βe1, where β =‖ r0 ‖2 (see [5] pp.

152-158). D-Lanczos method may be breakdown prone if A is not positive definite, and

this depends on the factorization applied to Tm.

A Direct-Lanczos method defined above may have its mathematical equivalent 1 in

Conjugate Gradient (CG) method. CG method can be derived from any equivalent

D-Lanczos method by observing, and imposing the A−conjugacy condition of the two

subsequent search directions. Quoting Ashby et al. [1], a Conjugate Gradient (CG)

method is defined as ‘a gradient method in which the iterates are chosen from a nested

sequence of translated Krylov subspaces in such a way that the error is minimal in

the given inner product norm at each step’. When A is not positive definite then CG

algorithm is not guaranteed to be breakdown-free.

A D-Lanczos method that minimizes ‖ rm ‖2 at each step (Minimum Residual or MR

method) is a symmetric equivalent of the GMRES (Generalized Minimum Residual)

algorithm for nonsymmetric linear systems. In particular, one may derive the well-

known Conjugate Residual method from MR algorithm by observing and imposing

the A−conjugacy condition of the two subsequent residuals. Again, as with CG, the

algorithm may suffer from a breakdown when A is indefinite.

Somewhat ironically, in the CG and the CR algorithms the minimized inner product

norms come naturally as the byproducts of the algorithms, but unfortunately the other

1 Any two algorithms will be called mathematically equivalent, or simply equivalent, if both
provide an identical solution xm for 1 ≤ m ≤ n (in exact arithmetic)
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way round. Particularly in the case of the CR algorithm this can be a nuisance since

‖ rm ‖2 has to be computed directly in order to monitor the convergence.

This paper deals with a case when A is a symmetric and indefinite (ideally sparse)

matrix, hence in the algorithms considered here Hm = Tm in (2) will be symmetric,

tridiagonal and in general indefinite matrix (Tm) as a result of the Lanczos algorithm.

The problem of deriving the breakdown-free D-Lanczos algorithms (or simply D-algorithms)

is the case a stable factorization of Tm; this rules out, for example, the LU decomposi-

tion without pivoting (see [5] p.177), but leaves, for example, the LQ factorization as

an option. Indeed, the latter approach gives rise to the Paige and Saunders algorithm

known as SYMMLQ [4] in the case when um = βe1 in (3). The D-algorithms (not

presented here due to space limits) are derived from the rank-one and rank-two tearing

of Tm, yielding a recursive formula(e) for its inverse T−1m . The two resulting CG-type

algorithms for indefinite case called here Indefinite Conjugate Gradient (ICG) and MR

respectively, are in turn derived from these D-algorithms by observing and imposing

the new A-conjugacy conditions applicable to the cases when Tm is singular. The two

algorithms may be implemented as a single method where the MR solution comes as an

option, in addition to the CG ‘equivalent’ solution. In the latter case, unlike in the CR

algorithm, the residual norms that give an indication of the convergence are computed

effortlessly.

2 The Inverses of Tridiagonal Matrices

2.1 The Sherman-Morrison-Woodbury Approach

The results in this section can be derived using the Sherman-Morrison-Woodbury for-

mula for the inverse of the rank-one and rank-two update of a tridiagonal matrix, see

for example [2] p.51. These results, presented here in the form of two technical lemmas,

combined with the results recalled from [6] should hopefully allow the decomposition

of ym into ym−1 and some easily available m-th step update. This in turn would allow

to express the current solution xm as an update of the previous solution xm−1.

First, assume here that matrix Tm takes the form

Tm =


α1 β1 . . .

β1 α2 β2
...

...

βm−2 αm−1 βm−1
βm−1 αm

 (4)

Also, let

θi = αi − β2i−1e
T
i−1T

−1
i−1ei−1 (5)

Assume throughout that βm 6= 0 (unless stated otherwise), so that no ‘lucky’ break-

down takes place.
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Lemma 1 Assume that Tm−1 is nonsingular and that θm 6= 0. Then, the inverse of

Tm takes the following form:

T−1m =

[
T−1m−1 , 0

0T , θ−1m

]
− βm−1

θm
em

[
T−1m−1em−1

0

]T
+

+
β2
m−1

θm

[
T−1m−1em−1

0

] [
T−1m−1em−1

0

]T
− (6)

− βm−1

θm

[
T−1m−1em−1

0

]
eTm

Moreover,

θm =
1

eTmT
−1
m em

=
| Tm |
| Tm−1 |

,

and consequently θm = 0 implies the singularity of Tm (so when Tm is nonsingular

θm = 1
eTmT

−1
m em

.

The second lemma deals with a slightly more general case, that will be necessary when

matrix Tm−1 is singular.

Lemma 2 Assume that Tm−2 is nonsingular and that

ψm = αmθm−1 − β2m−1 6= 0.

Then, the inverse of Tm takes the following form:

T−1m =

T−1m−2 , 0

0 , 1
ψm

(
αm −βm−1
−βm−1 θm−1

) −

− βm−2

ψm

 0

αm
−βm−1

T−1m−2em−2
0

0

T + (7)

+
αmβ

2
m−2

ψm

T−1m−2em−2
0

0

T−1m−2em−2
0

0

T −
− βm−2

ψm

T−1m−2em−2
0

0

 0

αm
−βm−1

T

Moreover,

ψm =
| Tm |
| Tm−2 |

,

(and ψm = θmθm−1 when Tm−1 is nonsingular), implying that Tm is singular when

ψm = 0.
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2.2 The Last Column of the Inverse of the Hessenberg Matrix

In theory, T−1m given by equations (7) or (10) can be now substituted in equation (3)

in hope of obtaining ym as a simple update of ym−1. However, in such a case one has

to form T−1m explicitly in order to extract its last column. Fortunately, this will not

be necessary since, as shown in [6], one may use a simple recursive formula for T−1m em
alone. One difficulty arising here is a possibility of an intermediate matrix, say Tm−1,

being singular. It turns out that this problem can be resolved in a robust, yet simple

way. Introducing the vector sm = [σ1, . . . , σm]T ∈ Rm with σ1 = 1 such that:

Tmsm = ξmem (8)

where, if Tm is nonsingular,

1

ξm
= eT1 T

−1
m em, (9)

and ξm = 0 otherwise. Thus the vector sm always exists while the ‘corresponding’

T−1m em may not. Consequently, if Tm is nonsigular then

T−1m em =
1

ξm
sm (10)

The quantities introduced above can be now generated by the following algorithm:

Algorithm 1. Set σ1 = 1 and s1 = [σ1].

Then, in the m-th step of the Lanczos factorization compute:

ξm = sTm(Tmem) (11)

followed by

σm+1 = − ξm
βm

, (12)

and then update sm as

sm+1 = [sTm, σm+1]T

. Since Tm is symmetric tridiagonal, the computation in (14) reduces to

ξm = σm−1βm−1 + σmαm (13)

Observe that ξm = σm+1 = 0 implies the singularity of Tm.

2.3 The Inverses of Tridiagonal Matrices

Ultimately, it is now necessary to ’translate’ equations (7) and (10) into the ‘language’

of §2.2, under the assumptions of Lemma 1 and Lemma 2 respectively, or namely, to

substitute T−1i ei in those equations by the easily available quantities si and ξi intro-

duced in §2.1.
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Thus, it follows from equations (13) and (14) that equation (7) will now take the

form

T−1m =

[
T−1m−1 , 0

0T , θ−1m

]
+

+
1

ξm
em

[
sm−1

0

]T
+ ωm

[
sm−1

0

] [
sm−1

0

]T
+

1

ξm

[
sm−1

0

]
eTm (14)

where

ωm =
1

ξmσm
(15)

Ultimately, using equations (13), (14) again, equation (10) now takes the form

T−1m =

T−1m−2 , 0

0 , 1
ψm

(
αm −βm−1
−βm−1 θm−1

)−

− 1

βm−1ξm

 0

αm
−βm−1

 sm−20

0

T − ωm

 sm−20

0

 sm−20

0

T (16)

− 1

βm−1ξm

 sm−20

0

 0

αm
−βm−1

T

where

ωm =
αm

βm−1σm−1ξm
(17)

Observe that no assumption of the singularity of Tm−1 (θm−1 = 0) was used here,

despite the fact that equation (21) has been derived specifically for such an occasion.

It is shown in [6] that the singularity of Tm−2 and Tm−1 implies the singularity of A,

so consequently (under the sweeping assumption of βm 6= 0) at least one of the two

matrices considered here must be invertible.

3 The Combined Indefinite Conjugate Gradient and Minimum Residual

Algorithm

Relations (17) and (20) will allow the formulation of the D-Lanczos methods for indef-

inite linear systems. From here, using the appropriate conjugacy conditions, it is now

possible to derive the equivalent Generalized Conjugate Gradient (ICG) and Minimum

Residual algorithms embodied in a single routine shown below.

All operations marked with ’(◦)’ in the algorithm above are only executed if the Mini-

mum Residual solution
◦
xm is required (lines 1, 2, 7, 11 and 18). Lines 5,..,9 constitute

the body of the CG algorithm, whereas the remaining lines deal with its breakdown

case. Also again, the stopping criterion for both algorithms (line 2) is based on their

residual norms ‖ rm ‖2, ‖
◦
rm‖2 respectively.

Observe that the ’breakdown’ step in Algorithm 5 requires two matrix-vector prod-

ucts (Apj in line 5 and Arj+1 in line 12), but in compensation no such product is

needed in the follow-up step. Also, notice that like in the case of the CR algorithm the
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MR solution in Algorithm 5 requires one more vector update per step then the GCG

solution.

Algorithm 2. GCG/MR

1. compute r0 = b−Ax0,p0 = r0 (◦) (set
◦
x0= 0)

2. do j = 0, 1, 2, . . . until ‖ rj ‖2 (◦) (‖◦rj‖2=
(∑j

i=0 ‖ ri ‖
−2
2

)− 1
2
) is small

enough

3. if (j > 0 and pTj−1Apj−1 6= 0) then

4. if pTj Apj 6= 0 then

5. compute λj =
‖rj‖22
pT

j Apj

6. compute xj+1 = xj + λjpj

7. compute rj+1 = rj − λjApj (◦) (
◦
xj+1=

∑j
i=0‖ri‖

−2
2∑j+1

i=0‖ri‖
−2
2

(
◦
xj −λjpj))

8. compute µj =
‖rj+1‖22
‖rj‖22

9. compute pj+1 = rj+1 + µjpj
10. else

11. set rj+1 = Apj (◦) (‖ rj+1 ‖−22 = 0)

12. compute µj = − r
T
j+1Arj+1

‖rj+1‖22
13. compute pj+1 = rj+1 + µjpj
14. end if

15. else

16. compute λj =
‖rj−1‖22
‖rj‖22

17. compute xj+1 = xj−1 + λjpj
18. compute rj+1 = rj−1 − λj(Arj + µj−1rj)

(◦) (
◦
xj+1=

∑j−1
i=0 ‖ri‖

−2
2∑j+1

i=0‖ri‖
−2
2

(
◦
xj−1 − λjpj))

19. compute µj =
‖rj+1‖22
‖rj−1‖22

20. compute pj+1 = rj+1 + µjpj−1
21. end if

22. end do

23. (◦) (compute xm = xm+
◦
xm)
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Abstract— A new field of application by a prominent time-
parallel technique, the ‘parareal-in-time’ algorithm, is ex-
plored with the perturbative description. The parareal algo-
rithm introduced by Lions, et al. [J. Lions, Y. Maday, and
G. Turinici, C. R. Acad. Sci., Ser. I 332, 661–668 (2001)]
has been applied to parallelization of time evolutions and
is usually implemented by coarsening the width of time-
steps. In this contribution, another description based on the
concept of perturbation is introduced for this algorithm. It
turns out that the new description is more general and suit-
able for scientific applications, where all kinds of dependent
iterations are within the range of applicable calculations.
Several examples of the parallel implementations are shown
to be feasible for the forthcoming post-peta era.

Keywords: parareal-in-time algorithm, perturbative description,
post-peta computing, speed-up ratio, parallel efficiency

1. Introduction
As it is clearly shown in the Top500 list [1], massively par-

allel computers have been constantly developed for decades,
and the top performance of supercomputers is expected to
grow further toward post-peta or exa scales. The significant
problem for scientists who write parallel applications on
those computers is that an infinitely large number of parallel
nodes and cores are available, and that strict requirements
for an effective use of those resources may narrow down
applicable areas in computational sciences.

High performance computing techniques to configure
efficient parallel applications have been widely developed
and applied to scientific simulations. However, the parallel
speed-up is limited by the number of independent calcula-
tions that can be executed concurrently. For the moderate
sizes of applications, efficient parallel executions are not
expected on massively parallel computers. Thus, a new
strategy is desired to parallelize even dependent calculations.

When the number of independent components is limited
in spatial dimensions, the time axis usually remains not
parallelized because of the causal dependency. One of the
strategies for time-domain decomposition is the ’parareal-
in-time’ algorithm introduced by Lions, et al. [2], which

is considered as space-time multigrid or multiple shooting
methods [3], and it is also known that higher efficiency is
guaranteed when it is used with a coarser discretization in
space. Many works have been published on convergence
properties and applicability of this algorithm for time inte-
grations in various scientific fields [4], [5], [6], [7], [8], [9],
[10]. The most important step is to configure a coarse solver
that approximates the exact time evolution. While the solver
is easily defined by coarsening the width of a time-step,
other definitions have also been studied in several literature.

It is already known that the parareal algorithm is not lim-
ited to time-evolving simulations, and simple matrix-vector
multiplications have been parallelized [11] by introducing
approximated operators. The main purpose of this contribu-
tion is to extend applicable ranges of the algorithm, and to
investigate new possibility to avoid limitations by spatial par-
allelization. In order to achieve the purpose, the perturbative
description of the problem is introduced, by which we can
naturally apply the algorithm to all kinds of iterative methods
with dependency. In addition to the theoretical formulation
in scientific computing, actual implementation of programs
is also a matter of concern. In this paper, we present a
template class and interface classes to describe dependent
sequences to assist the parallel programming of the parareal
acceleration.

This contribution is organized as follows. Section 2
describes the usual introduction of the ‘parareal-in-time’
algorithm and the speed-up properties. In Section 3, the
perturbative description of the algorithm is introduced.
Several applicable problems for dependent sequences are
implemented in Section 4. The actual implementation of
the parareal accelerated codes is shown in Section 5, and
summary and discussions are given in Section 6.

2. Parareal Algorithm and Efficiency
After a certain discretization process, we obtain time

evolutions of scientific problems defined by

x(t + δt) = fδt(x(t)), (1)

where x(t) represents a state vector at a time t, and fδt(·)
is a time integrator with an interval δt. Because of the
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Figure 1: Speed-up ratio by the parareal algorithm.

strict dependency to the previous state x(t), usual domain-
decomposition techniques cannot be applied to the time
direction.

The ‘parareal-in-time’ algorithm, however, is introduced
when a coarse solver G(·) and the fine solver F (·) are
defined as approximations of the original operator f(·). If we
write x(n∆t) = xn and introduce x

(r)
n as r-th approximation

of the time evolution, the parareal iteration is defined by the
formula

x
(r+1)
n+1 = G(x(r+1)

n ) + F (x(r)
n ) − G(x(r)

n ), (2)

which will be converged to the exact evolution xn after the
sufficient number of iterations in r.

For example, the coarse solver G and the fine solver F
are often defined by the same operator f(·) with a coarse
and fine time-steps ∆t = Tδt,

G(x(t)) = f∆t(x(t)), F (x(t)) = [fδt]T (x(t)). (3)

These definitions of G and F can be applied generally
to time-evolutions in every scientific simulation, and it is
also useful in determining computational costs or analyzing
convergence property of G and F .

For simplicity, suppose that the computational time of the
evolving function f(·) is independent from the state of the
system and represented by tf . If we introduce Tf and Tg to
represent computational times for F and G, respectively, Tf

is T times larger than Tg , i.e., T = Tf/Tg . If we define Tc as
a communication time to send a vector to the next resource
and τ as a rate of Tc compared to Tf , i.e., τ = Tc/Tf , the
optimal speed-up ratio S by this scheme is represented by

S =
P

R + TP +
P (P − 1)

K
τ

, (4)

where P is available parallel resources and K is the number
of time-steps [11]. The schematic properties of this speed-up
ratio is shown in Fig. 1.

3. Parareal as Perturbation
In physics, we often describe complex interactions as

perturbation to simple unperturbed representations. In the
usual situation, the perturbation is introduced to correct
simple analytic results by the unperturbed description. For
numerical analysis, we can introduce simple and easily
calculated representations as the unperturbed description,
and the perturbation will be considered as complex and
computationally expensive interactions.

Perturbative description can be introduced to all kinds of
iterative calculations to obtain sequence of vectors {xn},
where each state xn+1 is dependent on the previous state
xn through a relation

xn+1 = f(xn). (5)

An unperturbed evolution operator f (0) defines the unper-
turbed sequence {x(0)

n } (x(0)
0 = x0) by,

x
(0)
n+1 = f (0)(x(0)

n ). (6)

If we introduce the first order perturbation εf̃ , the perturbed
sequence {x̃n} (x̃0 = x0) is given by

x̃n+1 =
[
f (0) + εf̃

]
(x̃n), (7)

where ε is assumed small.
In the usual perturbative representations, the magnitude of

correction by the perturbation εf̃ is small, but the computa-
tional cost is relatively higher than that for the unperturbed
part. If we assign a coarse and fine operators by

G(xn) = f (0)(xn), F (xn) = f (0)(xn) + εf̃(xn), (8)

the r-th approximation {x(r)
n } of the accurate sequence {x̃n}

is calculated by the parareal iteration,

x
(r+1)
n+1 = f (0)(x(r+1)

n ) + εf̃(x(r)
n ). (9)

This is the parareal procedure to obtain r-th approximation
of the perturbed sequence (7). If we have sufficiently large
parallel resources, those terms with different n and the same
r, εf̃(x(r)

n ), are calculated in parallel.
The perturbation representation (9) is introduced indepen-

dently from coarsening the width of time-steps. In other
words, the applicable area of the parareal algorithm (2) is
not limited to time evolutions, but can be extended to all
kinds of iterative calculations. In the next section, we give
several examples from scientific calculations.

4. Design of Dependent Calculations
In scientific applications, we often encounter iterative

calculations, in which a set of calculations are repeated to
obtain a sequence of vectors with a certain length or until
convergence. The problem is that such calculations should
be executed sequentially since each calculation is closely
dependent on the previous result. The time evolution is an
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example of such dependent calculations, but there are various
types of iterative calculations and the applicable area is not
limited to the time evolution.

There are various dependent iterations in physics and
chemistry, i.e., self-consistent field calculations in quantum
chemistry [12], Poisson solvers used in fluid mechanics
calculations[13], various iterative methods implemented in
libraries for linear systems [14]. In usual implementations,
these calculations have not been parallelized in the direction
of iterations because of the dependency. In this section,
we show that some of those sequential calculations can be
parallelized by the parareal-in-time algorithm even if each
calculation depends on the previous result.

4.1 Molecular Dynamics
Baffico, et al. [4], applied the parareal algorithm to

ab initio molecular dynamics calculations, where quantum
propagators are parallelized. Their approach can be extended
to every types of molecular dynamics simulations. We can
naturally introduce an unperturbed trajectory defined by
cheap and less accurate integrators as well as a perturbed
trajectory defined by expensive and accurate integrators.

Among many combinations of approximated and accurate
descriptions, two examples are shown here. In the first one,
integrators are defined by changing an accuracy parameter. If
we assign an unperturbed integrator configured by a smaller
cut-off length for short-range interactions, a perturbation is
defined as corrections by an accurate integrator configured
by a longer cut-off length. When we do not adopt description
from first principles, it is easy to introduce various accuracy
parameters in molecular dynamics calculations.

In the next example, we assign integrators with respect
to the long and short range interactions. The unperturbed
integrator is configured by the short-range interactions only,
while the perturbation is introduced as corrections by the
long-range interactions. Since long-range parts of Coulomb
potentials still contain complex and expensive calculations
even in the approximation of Particle Mesh Ewald, Fast
Multipole Method, etc., this implementation is naturally
introduced in package software of the molecular dynamics
calculations.

4.2 Symplectic Integrator
In order to discretize the time integration of Hamiltonian

systems including molecular dynamics, celestial mechanics,
quantum mechanics, etc., symplectic integrators [15] are
widely used in energy-conserved systems. In many appli-
cations, the second order symplectic integrator,

Ŝ2(δt) ≡ exp

(
D̂Uδt

2

)
exp

(
D̂T δt

)
exp

(
D̂Uδt

2

)
, (10)

is sufficient stability and performance. D̂T and D̂U represent
evolving operators with respect to momentum and coordi-
nates, respectively, and the Hamiltonian H is assumed to

have a separated form H({qj}, {pj}) = T ({pj})+U({qj}).
On the other hand, applications that require higher accuracy
for energy preservation are often implemented by the 8-th
symplectic integrator. By the use of Yoshida’s coefficient
{cj} [15], we can construct 8-th integrator by 15 iterations
of the second order integrator (10),

Ŝ8(δt) ≡
15∏

j=1

Ŝ2(cjδt). (11)

Thus, we can assign the unperturbed iterations as the second
order integrator, and the perturbation as the correction by the
8-th integrator,

G = Ŝ2(δt), F = Ŝ8(δt). (12)

The computational cost for G is 15 times smaller than that
for F , i.e., T ≈ 15 in eq. (4). In the actual computations,
convergent property may be improved by Interpolated Pre-
dictor Corrector scheme introduced by Bal, et al. [16].

4.3 Quantum Mechanics
For the optimal control problem in quantum mechanics,

the parareal algorithm was already applied and analyzed [5],
[7]. Since the optimally controlled dynamics by weak exter-
nal fields can be studied by almost analytic approach [17],
we can define unperturbed evolutions by isolated dynamics
without external fields, and transitions by the external filed
are considered as perturbation.

Here, we present more general expressions for quantum
mechanics, i.e., parareal accelerated infinitesimal unitary
transformations based on the approximation of the unitary
operator. A unitary transformation is written by

ψε = exp
(
iεĤ

)
ψ. (13)

with the Hermite operator Ĥ . When the parameter ε is
small enough, we can assign an identity operator Î for an
unperturbed system since we can write

exp
(
iεĤ

)
= Î +

[
exp

(
iεĤ

)
− Î
]
, (14)

and the second term in the right-hand-side is assumed as a
perturbation.

When we calculate a sequence of wavefunctions defined
by repeated operations of eq. (13), the parareal acceleration
is applied with the coarse and fine solvers by

G = Î , F = exp
(
iεĤ

)
− Î . (15)

Note that computational costs of G is negligible compared
to that of F , and that the spectral radius of F is linear to
ε. When Ĥ is a Hamiltonian and ε is a step size for time
evolutions, the transformation (13) is nothing but a time-
evolution by Schrödinger’s equation. Actual calculations for
F is implemented by a symplectic integrator.
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The convergence and speed-up by this representation have
already been analyzed as matrix multiplications [11], and it
is realized that the series of unitary operations are efficiently
parallelized by the parareal algorithm even when the spatial
parallelism does not work effectively.

4.4 Iterative Linear Methods
Iterative linear calculations are generally used in scientific

applications. In the usual implementation of those iterative
methods, only spatial parallelism is adopted, i.e., calculations
for independent elements in a matrix or a vector are exe-
cuted in parallel. In massively parallel machines, however,
the number of independent elements can be smaller than
the number of parallel resources. Then, another axis for
parallelism is required if we achieve effective parallelization
in those machines.

The parareal implementation for an iterative linear se-
quence is quite simple. If we introduce an approximate linear
operator G to the accurate transformation F which defines
the exact sequence of vectors {xn} by

xn+1 = Fxn, (16)

the parareal iteration for r-th approximated sequence {x(r)
n }

is represented by

x
(r)
n+1 = Gx(r+1)

n + (F − G)x(r)
n . (17)

Since the approximate and accurate transformations G and
F are linear by definition, convergence properties of the
sequence are analyzed by spectral radii of G and F [11].

As an example, we present parallel implementation of
iterative solvers for a linear equation Ax = b. If the
symmetric matrix A is diagonally dominant or positive
definite, iterative procedure by the successive over-relaxation
(SOR),

xn+1 = (1 − w)xn + w(D + U)−1[b − Lxn], (18)

converges to the exact solution x, where w is a constant
chosen as 0 < w < 2, and D, U , and L are diagonal, upper-
triangle, and lower-triangle parts of A, respectively.

In order to parallelize the iteration in n, we analyze the
following definitions of the approximate transformation G,
Model 1: Gx ≡ x (G is an identity operation.)

x
(r+1)
k+1 = x

(r+1)
k

+w
[
(D + εU)−1(b − εLx

(r)
k ) − x

(r)
k

]
(19)

Model 2: Gx ≡ (1 − w)x + wD−1b (G as a diagonal
approximation, A ≈ D.)

x
(r+1)
k+1 = (1 − w)x(r+1)

k + wD−1b

+w
[
(D + εU)−1(b − εLx

(r)
k ) − D−1b

]
(20)

In both cases, F is defined as the original SOR iteration
(18), and F − G is considered as a perturbation to the
unperturbed transformation by G.
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Figure 2: The solid curve represents residue |xk − xk−1| of the
original SOR method, and dashed curves show the remaining errors
of r-th parareal sequences: (a) Model 1 and (b) Model 2.

Figure 3: Related classes of Parareal<T>.
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Figure 4: RealVectorSequence is a derived class to imple-
ment the abstract class PararealSequence<T>.

In Figure 2, convergence properties of the parareal acceler-
ated SOR are shown, where the matrix A and the right-hand-
side vector b are defined by random elements. While the
result by the model 1 in Fig. 2(a) shows slow convergence,
the model 2 in Fig. 2(b) is feasible. Further works should
be done to clarify convergence properties of the parareal
accelerated SOR method.

5. Parallel Implementation
Unlike the usual parallel programming in scientific com-

puting, the parallel implementation of the parareal-in-time
algorithm cannot be complete within the level of numer-
ical libraries. Instead, we must configure a new layer for
the sequence calculation, which requires a certain skill of
programming. In this section, we present a set of template
classes to assist implementation of the parareal algorithm.

Our template classes for implementaton of the parareal
algorithm consist of the main class, Parareal<T>, and
two interface classes, PararealSequence<T> for the
sequence {x(r)

k } and PararealElement<T> for the state
x

(r)
k , where T is a user-provided class to represent x

(r)
k . The

interface PararealSequence<T> requires implemen-
tation of two methods coarseEvolution(const T&
x0, T& x1) and fineEvolution(const T& x0,
T& x1) in user-defined derived classes. These methods
describe the approximate iteration,

xk+1 = G(xk), (21)

and the exact iteration,

xk+1 = F(xk). (22)

Another inteface class PararealElement<T> requires
implementation of basic operations, i.e., substitution ’=’,
add-and-store ’+=’, and subtract-and-store ’-=’, to the state
vector xk.

In Fig. 3, we show class relations when we imple-
ment these interface classes to calculate a vector se-
quence. A sample implementation of the abstract class

Figure 5: RealVector is a derived class of the abstract class
PararealElement<T>.

Figure 6: The main program to calculate a vector sequence.

PararealSequence is shown in Fig. 4. In this sample, T
is a class for a real vector, RealVector, which is also an
implementation of the abstract class PararealElement.
By the use of these classes, the main program to calculate
a vector sequence becomes very simple shown in Fig. 6.

The main loop for the parareal calculation is shown
in Fig. 7, where the non-parallel version of the method
T* pararealSequence() is shown here for simplic-
ity. By the use of MPI_Send and MPI_Recv or collective
communications with partial communicators, these loops
are parallelized. The final communication pattern of this
calculation becomes ‘Pipeline-type’ configuration.

In the parallel implementation, communication time in the
dependent loop dominates the parallel efficiency. The use of
non-blocking collective communications or pipeline commu-
nication libraries may give efficient parallel implementations
of the Parareal-in-Time calculations. Further investigation
will be done in this direction.

6. Summary and Discussions
In this contribution, we presented a new description of

the parareal-in-time algorithm based on the perturbation of
the sequence. Since the perturbation is one of the common
concept in scientific description, most problems in science
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Figure 7: The main loop of the parareal calculation is given in the
method pararealSequence() in the class Parareal<T>.

will be parallelized by this approach. Indeed, we showed
several implementations of parallel calculations for depen-
dent sequences taken from scientific applications.

Researchers in the field of high performance computing
have tried to parallelize various problems with a large
number of independent components, so far. Since most inde-
pendent components have already been parallelized, we must
try to analyze heavily dependent parts in scientific problems.
As it was shown in this contribution, one of the strategies
to parallelize such dependent calculations is the parareal-in-
time algorithm. Further investigations of applicable areas are
required if scientists will use the next-generation massively
parallel resources in the post-peta era.

Recently, many related works on the Parareal-in-Time
method have been published [18], [19]. This shows that the
time-parallel method has already been one of the standard
strategies to accelerate scientific calculations. Hereafter, we
expect that this algorithm will be implemented in various
package programs for scientific computing.

Finally, we emphasize the necessity for collaborations
between computer scientists and computational scientists.
Analyticity of scientific representation is one of the key
properties assumed in large-scale numerical simulations.
Because of this property, we can introduce approximate
representations. The parareal-in-time algorithm also utilizes
this property to configure convergent iterations. However,
the definitions of the accurate and approximate solvers are
not given only from computer algorithm since the approxi-
mation must be done based on a scientific insight for each
problem. In a sense, collaborations between computer and
computational scientists will be more and more important to
configure large-scale scientific simulations. We expect such
collaborations over different fields of sciences.
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Abstract- In the game of cricket an edge is 
defined as an inadvertent connection 
between ball and bat. Edges, which result in 
the ball carrying directly to a fielder and 
being caught, warrant the batsman being 
adjudged out. Unfortunately there are 
various sounds that on-field umpires may 
confuse with genuine edges thereby causing 
the batsman to be erroneously adjudged as 
being out. In this paper the edge detection 
system proposed by Rock et al [1] is 
modified and extended to handle scenarios 
where there are edges and both the bat and 
pad are involved. Live audio samples of 
ball-on-bat, ball-on-pad and cases where 
both events occur within a narrow time 
window (<1 sec) will be recorded. Wavelet 
analysis, feature extraction and neural 
network classification will then be employed 
on these samples. Results will show the 
ability to differentiate amongst the three 
types of events, which is crucial to the 
development of a fully automated edge 
detection system. 
 

 
 

Keywords: Cricket, Wavelets, Neural 
Networks, Edge-detection, feature 
classification  

 

I. Introduction 
 
The limited overs version of the game of 
cricket is played between two teams with 11 
players on each side. On winning the coin 
toss, the captain decides whether his team 
bats or fields first. The conclusion of the 
allotted number of overs, or when all the 
batsmen are given out, marks the close of an 
innings. Each team is allowed one (1) 
innings.   The aim of the team batting first is 
to score as many runs as possible during 
their innings. In order to win, they must 
limit the other team to fewer runs [2].  The 
test match version of the game is played 
over multiple (≤ 5) days and is more 
complex as each team may accumulate runs 
over multiple (≤ 2) innings. Cricket is the 
second most popular sport, and the Indian 
Premiere League’s (IPL) 20/20 format 
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boasts of being the second highest paid sport 
ahead of the football’s English Premiere 
League (EPL) [3].  In 2009, the Indian 
Premier League (IPL) offered paychecks as 
high as US$1.55 million to top class 
cricketers for a five-week contract [4]. This 
figure was eclipsed in 2011 when Gautam 
Gambhir of the Kolkata Knight Riders was 
awarded a contract for US$2.4 million [5].  

On the field of play, there are two umpires 
officiating a match.  One umpire stands 
behind the stumps at the bowler's end of the 
pitch, while the other umpire stands at 
square leg.  At international level there is 
also a third umpire on the sidelines and a 
match referee. The umpire at the bowler's 
end makes decisions on lbw and bat-pad 
appeals, no balls, wides and leg byes [6].  
The square leg umpire will judge stumpings 
and run outs [6].  At the end of each over, 
the umpires change position [2]. The third 
umpire uses TV replays to rule on run outs, 
stumpings, boundary infringements and 
close catches.  However, the third umpire 
can only make a decision if requested by the 
on field umpires. Their involvement in the 
game has become increasingly influential, 
with fans and commentators alike calling for 
technology to be used for every contentious 
appeal [2].  In the last few years, the ICC 
has trialed a review system which allowed 
players to challenge the on-field umpires 
and have their decisions referred to the third 
umpire - in Test cricket.  The dismissed 
batsman or the fielding captain could appeal 
by making a "T" sign with both forearms at 
shoulder height, each team having a 
maximum of two unsuccessful challenges 
per innings [2]. 
 

The use of technology serves to protect both 
players’ careers by avoiding incorrect 
decisions and the reputation of the game. 
The snickometer and hotspot are two 
devices which have been used and to some 

extent are still being used in cricket mainly 
for bat pad decisions.  These two devices 
have come under some criticism for their 
accuracy and the use of them in cricket has 
not been fully embraced by cricketing 
administrators [1]. 

The aim of this paper is to employ wavelet 
analysis, unique feature extraction methods 
and artificial neural networks to implement a 
fully automated decision making system for 
bat on pad edge and bat/pad decisions, 
thereby extending and improving the work 
done by Rock et al in [1]. This will greatly 
minimize the number of errors currently 
seen in the game.  

 

II. Background 

The use of wavelets to analyze real-world 
signals (i.e. the constituent frequencies 
change over time, or have pulses, anomalies 
or other transient events) is well 
documented. Although these non-stationary 
signals may be intermittent and noisy, 
wavelet analysis can be employed to 
simultaneously monitor events in both time 
and frequency [7]. This special attribute 
makes the use of wavelet analysis more 
convenient than that of Fourier analysis as 
tradeoffs between knowing the time 
occurrence of an event and the constituent 
frequencies are avoided. The analysis of 
sound signals using the continuous wavelet 
transform (CWT) is well documented in the 
literature [8-10].  In the CWT approach the 
target signal to be analyzed is correlated 
with an analysis wavelet thereby producing 
a set correlation values along a time axis. 
The analysis wavelet is repeatedly stretched 
and used in other correlations with the target 
signal. Each stretching instance results in 
what is referred to as a scale value (y-axis). 
Thus this method provides another view of 
temporal signals as it transforms the regular 

Int'l Conf. Scientific Computing |  CSC'12  | 339



time vs. amplitude signal to time vs. scale, 
where scale can be converted to a pseudo-
frequency. Therefore one can examine the 
temporal nature of audio events and the 
corresponding frequencies involved 
simultaneously. The correlation values 
produced during the transformation process 
provide critical information on the 
characteristics of the signal. Therefore by 
extracting and analyzing these correlation 
values a distinction can be made between 
different audio events.  In this work, four 
main features were extracted across time 
from the CWT.  These included the average 
pseudo-frequency for the CWT time range, 
along with the standard deviation, kurtosis 
and skewness of the said frequencies. These 
features were fed into an Artificial Neural 
Network (ANN) to produce the final result. 
ANNs are information processing systems 
that have performance characteristics 
common to biological neural networks. They 
consist of a number of interconnected 
neurons, each with an associated weight. 
These neurons work together to help solve 
various problems [11]. One of the main 
features of the ANN is its ability to take a 
set of features it has not encountered before 
and accurately output the desired 
classification result.  

There are many instances where the CWT 
and neural network classification has been 
used.  Kaewkongka [12] obtained a 
recognition rate of 90% success of 
rotodynamic machine conditions for four 
machine operating conditions using features 
extracted from the continuous wavelet 
transform and fed into a neural network. 
Kilby used the wavelet transform to enhance 
features extracted from the surface 
electromyography (SEMG) [13].  These 
features were taken from the time-based 
information as well the scale (i.e. pseudo 
frequency) axes.  Using the extracted 
features of the dominant (pseudo) 
frequencies from the wavelet transform and 

the related scales, they were able to train and 
validate an artificial neural network for 
SEMG classification.  Kotani [14] used the 
wavelet transform and neural network 
classification to perfectly detect the surging 
sound (non-stationary signal) which leads to 
the destruction of a dryer machine.  

Other than the work by Rock et. al in [1] 
there are no known instances where CWT 
and Neural Network classification has been 
applied in the area of cricket were 
uncovered in the literature. The Neural 
Networks are utilized to classify the features 
that are extracted from the sound files using 
the CWT. This classification can then be 
used to accurately determine both the order 
and the source of the events in a cricket 
match. The automated sound detection 
technique can greatly decrease the number 
of incorrect decisions being made in the 
game, which may ultimately protect a 
player’s career.  

 

III. Methodology 

The equipment setup, shown in Figure 1, is 
identical to that used for international 
matches and was configured at various 
hardball cricket grounds throughout 
Barbados. The microphone transmitter is 
covered in a small hole directly behind the 
stumps. The receiver and the laptop are 
assembled inside the players’ pavilion. The 
recordings, made using the laptop’s sound 
recorder program, are stored as a 16- bit 
pulse coded modulation (PCM) .WAV file, 
sampled at 44,100 kHz (stereo) for later 
processing. 
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 Figure 1: Schematic of experimental setup. 

The key specifications for equipment used in 
recording the audio data are listed in Table 
1. 

 

MATLAB programs were written to 
perform the CWT analysis and extract the 
following features: the average pseudo-
frequency (Pfreq) from the selected CWT 
time range along with the standard deviation 
(σ), kurtosis (k) and skewness (skn) of the 
said frequencies. The average pseudo-
frequency was obtained from using the 
frequencies corresponding to the highest 
correlation values of the wavelet transform 
in each time interval. These features were 
used as input to the fully connected 4-input 
Multi-Layer Perceptron neural network 
depicted in Fig. 2. The network consists of a 
single hidden layer with three neurons each 
of which employed the tanh transfer 
function. 

The network was trained with 232 data 
samples using a backpropagation algorithm. 
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The data set was divided into 116 incidences 
of bat-on-ball signals and 116 of ball-on-
pad.   Testing was done on 44 previously 
unknown signals. The output from the 
network was a decision on whether the ball 
hit the bat or the pad. Note that some of the 
audio samples included both bat-on-ball and 
ball-on-pad noises occurring in quick 
succession (<1 sec). These were analyzed as 
two separate events. The chronological 
nature of the decisions output from the ANN 
could then be used to determine the outcome 
of an appeal for LBW or bat/pad. 

 

 

Figure 2: 4-Input Multi-Layered Perceptron 

 

IV. Results 

Three types of recordings were successfully 
complied and analyzed.  These included the 
impact of ball hitting bat, ball hitting pad 
and cases where both events occur within a 
narrow time window (<1 sec).  Figure 3 
shows the plot of desired output and actual 
output versus number of samples used for 
testing. In this work, the average pseudo-
frequency along with the standard deviation, 
kurtosis and skewness were extracted across 
time instead of scale as was done in [REF]. 
There are two rationales for this 
modification. Firstly, in the case where both 
events occur within a narrow time window, 
there has to be a clear differentiation as to 
when in time these two events occurred.  
Secondly the observation was made that as 
the ball passes the bat or pad, the signal 
properties change.  The extracted features 
from across the time domain best 
represented these changes and provided the 
better results.  The Neural Network then 
successfully classified these features with a 
one (1) and zero (0) representing ball-on-bat 
and ball-on-pad, respectively. A threshold 
value of 0.5 was used in separating data, as 
anything above 0.5 was considered 1 and 
anything below 0.5 was considered 0.  The 
line with the diamond markers represents the 
expected results whereas the line with x’s is 
the actual results output from the neural 
network.  The neural network performed 
exceptionally well.  Observe that in Figure 3 
the neural network output for some of the 
ball-on-bat cases deviate from the expected 
results. However, the threshold value 
ensures that all the deviations were still 
correctly classified.  This resulted in a 100% 
correct classification for data not previously 
encountered. 
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V. Conclusion 

Results show the neural network performed 
exceptionally well rendering a correct 
classification of 100% for data not 
previously encountered. It is believed that 
better results may be obtained from training 
the neural network with more sound files. 

The methods used in this paper to 
completely remove the human factor from 
the data gathering and information-
processing portion of the adjudication 
process will provide an edge detection 
system, which is a lot more accurate than the 
ones currently being used in the game of 
cricket.  

 

 

Figure 3: Graph and results of actual and desired results for the forty test data samples 
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Abstract - Generating polygons from random input data is 

one of  the attractive  problems in Computational Geometry . 

In this paper, we address generating optional number of 

simple  convex or non-convex polygons over a finite points 

set of  plane that generated randomly. composition of this 

optional number of polygons is possible by using random 

lines and plane zoning .the algorithm is usable in problems 

like generating random barriers and simulation robots motion 

between them. This problem is new problem and there is no 

report on it until now. 

Keywords: robots motion planning, simple polygons, 

partitioning lines 

1 Introduction 

       Computational Geometry is one of the most important 

research fields in computer science in which calculations are 

done on geometric objects like polygons. Polygons are plain 

and suitable present for  real world objects[1]. In 

computational geometry, There are different methods for 

generating random convex and non-convex plain polygons in 

plane. Almost all of these methods have time complexity of 

O( ) order. 

       There are variety of methods to generate optional number 

of polygons having a point set. Our method is drawing random 

lines ,creating areas in plane and then generating points with 

random coordinates in them. To  

       generate polygons, we can use each of the known methods 

in computational geometry and separating lines can be assume 

as paths between barriers. 

The rest of the paper is organized as follows: some primary 

concepts are explaining in next section. In the section 3, some 

of the different methods to draw polygons are explained. 

Section 4 defines the problem formally and present the 

suggested method. Finally in the paper is concluded in section 

5. 

 

2 Primary Concepts 

 In geometry a polygon is a flat shape that is surrounded 

by finite trail of straight edges. This finite trail of edges are 

called polygon and the cross points of each two edge are 

polygon ‘s vertex. If  S is the set of random vertex, there can 

be T plain polygons on S ,each polygon can be generated with 

the probability of . polygon with edges crossing point only 

on S vertex is called plain polygon. 

        A convex polygon is a plain polygon that for each two 

vertices  x and y of polygon vertices, the  line is in polygon 

or on it’s edges, it means that  .in other words the 

polygon is convex if all it‘s vertices be less than 180 degree 

and the plain polygon having a vertex more than 180 degree is 

called non-convex. 

 

3 Polygon Generation 

        Random generation of geometric objects always has been 

mentioned. An algorithm with worst case of O( ) order was 

presented to composite x-monotone polygons[4] and different 

innovated methods was described by Held and Auer to 

generate a polygon with having a point set on a flat plane: 

 

 Steady Growth : An incremental algorithm that adds 

eachpoints and it’s corresponding edge to polygon 

in each stage. It’s time complexity is O( )[5]. 

 

 Space Partitioning : It is working according to 

divide and conquer method and generate subsets of 

primarily set. It’s time complexity is O( )[5]. 

 

 2-opt Moves : This algorithm starts with a random 

polygon and achieved a simple polygon by changing 

edges. It’s time complexity is O( ) [5]. 

 

There are other methods like two-peasants and so on. Each of 

explained methods above can be used in this paper for the 

mean of generating polygons. We use the method with the 

best order. 

4 Proposed Algorithm 

      In this section suggested algorithm for generating 

optional number of plain polygon with creating n random 

number as polygons vertex will be described. The goal is 

creating k polygons on plane, in the way that polygon 's vertex 

cover n random points. polygon 's edges should not be crossed 

and polygons should not be inner each other. Algorithm that is 
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suggested in this paper, supply the goal of problem in 5 phases 

: 

A. region creation ,B. calculating the area of each one, C. 

calculating number of points in each area, D. finding point's 

coordination in each region, E. drawing polygons. 

 

4.1 Region Creation 

       To find polygons with features said in previous section, 

first we should divide plane in to separated regions. For 

generating regions, we use the method of drawing lines with 

random slop and intercept  and  using them create regions in 

plane in the  number of polygons. number of polygons that can 

be created is at most n/3 and at least number of lines needed is 

calculating using formula in which d is number of 

lines should be drawn[6]. This number will be achieve when 

all the lines have cross points in the plane. So in drawing lines 

problem of parallel lines will always check. If is number 

of areas generating by drawing  Lines , then after drawing a 

new line, number of areas will increase to . We 

assume that cross point of each two lines is located in our 

plane. If the number of required areas is between and 

,the number of required lines will be . We 

should select kregions of generated regions to locate polygons 

in them. We use two random number m and a as line ‘s slop 

and intercept To draw them. 

       If d is number of lines, the time complexity order of this 

phase is O  

 

4.2 Calculating The Area of Each Region 

       There are different ways to calculate area of each region. 

All of regions are convex because of they are built by crossing 

lines. To find areas we can do like bellow: 

       Suppose that the tail    be the vertex of 

one region. The area of a polygon that non ofit's edges cross 

each other can be calculated by formula (1): 

 

                   (1) 

 

       If points are in counter clockwise order, calculated area is 

positive otherwise absolute of calculated number is area[2]. 

The need to these calculations will be clear in the next part of 

algorithm. 

Having k regions, the time complexity of this phase will be 

O . 

4.3   Calculating Number of Points in Each Area 
 

      Points should be scattered in regions in a way that their 

density in all places be balanced. To solve this part of 

problem, we use ratio of areas mean numbers that have been 

calculated in previous part of algorithm. Number of points in 

each region can be found using formula (2): 

=                           (2) 

In which, n is total number of points,  is the area of jth region 

and  is number of points in jth region. 

It is clear that the time complexity of this phase will be O . 

 

4.4   Finding Point 'sCoordinates in Each Region 
 

     After finding number of points in each region, we should 

specify their coordinates. There are different methods like 

points on longest diagonal or triangulation the regions and 

finding points in them and so on . 

In implementation of this paper’s algorithm, we use the 

method of triangulation and finding points in triangles. 

Triangulation of these areas is plain because of they are 

convex regions[6]. 

 

fig.1. convex polygon triangulation  

 

       According to figure 1, select one of vertices as main, with 

drawing those diagonals of polygon that one of their vertices 

is the main vertices, the region will be triangulated. 

Having three vertex of each triangle, finding points in it is so 

easy. To catch this goal, we use formula 3: 

(3) 

In which,  and  are monotonous identifier in [0,1].  

For finding n points, the time complexity of this phase will be 

O . 

 

4.5    Drawing Polygons 

 
     After finding points  in each region, for drawing convex or 

non-convex polygons in each region we can use any of 

existence methods in computational geometry. In 

implementation of this paper ‘s algorithm, we used Two 

Peasants method. 

     The total time complexity of algorithm will be 

O  . 

       Figure 2, shows a sample of suggested algorithm output. 

Total number of random points is 72 points that are scattered 

in total parts proportional to each part’s area. Random number 

of polygons , selected byuser is 12. So we use 5 lines to 

partition plane and select 12 regions out of 16 generated 

regions to show polygons in them. 
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fig. 2. algorithm output 

 
Algorithm1 :Generating k Random Polygons 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 Conclusions 

          In this paper a new method to Generate Optional 

Number of Random Polygons Using a Point Set in a 2d plane 

was presented. In order to composition of regions in the plane 

random lines have been used.to find Random points, we 

triangulated each region and used a simple formula and to 

determine number of points in each region, areas ratio was 

useful. for composition polygons any of methods in 

computational geometry is usable.  Random Lines drawn 

between polygons can be used as paths for robots motion 

between barriers. 
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Inputs : 
n: total number of point, 
k: number of polygons. 
Outputs : 
k random polygons, 
 
Calculate required  number of  lines as 
line_no with having  k 
 
For i to line_no do 
  Select m and a as random numbers 
  Draw the line L:y=mx+a 
EndFor 

 
Select  k  areas of   areas 

 
For j to k do 
  Calculate area of jth region as  

  Generate  

random points in the region 
EndFor 
 
For f  to k do 
  Two Peasants(points in f th region  ) 
End For 
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Abstract - It is of importance for the development of a 
numerical method for the supersonic combustion simulation 
and modeling, since they are characterized by the high-
temperature and high-speed combustion which is very hard to 
measure. In the present study, a computational model, 
employing the software Fluent adopting the SST-k-ω 
turbulent model and the flamelet turbulent-combustion model, 
is developed for the supersonic turbulent combustion flow. 
The results obtained from the present study show that 
although the predicted pressure distributions for the non-
reactive flow are in agreement with the experimental data 
and the published numerical results, those for the reaction 
flow are only qualitatively in agreement with the 
experimental data. The pressure is under-estimated in the 
downstream expansion region. This is due to the 
oversimplification of the flamelet model for the complex 
detailed chemistry. An improvement on the turbulent 
combustion model for supersonic combustion is addressed.  

Keywords: Supersonic Combustion, Numerical Simulation 

 

1 Introduction 
Supersonic combustion is extremely complex, since the 

fuel has to be injected, mixed, ignited, and burned with the 
air in a supersonic stream within a millisecond. The 
numerical simulation is thus a vital approach for the 
understanding of supersonic combustion which is 
characterized by the high-temperature and high-speed 
combustion and very hard to measure. The use of the 
numerical simulation for the study of supersonic combustion 
is able to reduce the cost and risk of the experimental work. 
Nevertheless, the numerical simulation has to be validated by 
the experimental data before it can be applied to the detailed 
analysis of supersonic combustion. 

In the present study, the software Fluent [1] adopting 
the SST-k-ω turbulent model and the flamelet turbulent-
combustion model is employed for the simulation of the 
supersonic combustion flow of the LAERTE scramjet engine 
combustor, developed by the French Aerospace Lab 
(ONERA) [2], as shown in Fig. 1. The length of the 
combustion chamber is 870mm. It consists of two segments. 
One is the constant cross-section area duct of 370 mm long, 
and the other is a divergent duct of 500 mm long with 1.15 

degree expansion along the top and bottom walls. A fuel 
injector is installed in the center of the combustion chamber 
with the outer diameter being 10mm, and the inner one 6mm. 
The inlet flow conditions are shown in Table 1. 

 Fig. 1 The LAERTE Scramjet engine combustor [2] 

Table 1 The Inlet Conditions. 
 Fuel Air 

Inlet pressure(Pa) 80000 80000 
Inlet Mach number 2 2 

Total temperature(Ｋ) 300 1840 
The composition  H2：0.51 

CH4：0.49 
N2：0.627 
O2：0.252 

H2O：0.121 

 
2 Results and Discussion  

The predicted wall-pressure distributions of the non-
reactive flow, where the fuel is replaced by nitrogen, are 
shown in Fig. 2, in comparison with the experimental data of 
Quintilla et al. [2] and the simulation results of Davidenko et 
al. [3]. The present predictions are in good agreement with 
the experimental data and the published numerical results. 
 

 
Fig. 2 Comparison of the predicted wall pressure of the non-
reactive flow with the experimental data [2] and published 
numerical results [3] 
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The predicted pressure distributions of the non-reactive 
flow are shown in Fig. 3. When the supersonic free-stream 
flows into the combustion chamber, it expands due to the 
contraction of the side wall of the injector, resulting in a 
slight drop in pressure. However, as the fuel is injected at the 
chamber length of 33mm, the flow is compressed by the 
injected flow, resulting in an oblique shock and an increase 
in pressure. At the divergent section, the supersonic flow 
expands, and the pressure drops. 

 

 

 
Fig. 3 Pressure distributions of the non-reactive flow (Unit: 
Pa) 
 

The predicted wall-pressure distributions for the 
combustion flow are shown in Fig. 4, in comparison with the 
experimental data of Quintilla et al. [2] and the simulation 
results of Davidenko et al. [4]. The predicted results are only 
qualitatively in agreement with the experimental data. The 
pressure is under-estimated in the downstream expansion 
region. This is because the flamelet model does not take into 
account the effect of the detailed finite-rate chemistry on the 
flow field. This results in a narrow diffusion-flame zone, as 
shown in Fig. 5, where the temperature distribution of the 
combustion flow is depicted. As the reaction zone is limited, 
the average flow temperature will be lower than it should be, 
leading to a lower pressure in the downstream expansion 
region. Therefore, the detailed finite-rate chemistry should be 
accounted for in the turbulent combustion model for 
supersonic combustion.  
 
3 Conclusions 

In the present study, a computational model, employing 
the software Fluent adopting the SST-k-ω turbulent model 
and the flamelet turbulent-combustion model, has been 
successfully developed for the supersonic combustion flow. 
The predictions for the non-reactive flow are in agreement 
with the experimental data and the published numerical 
results. However, due to the oversimplification of the 
flamelet model for the complex detailed chemistry, the 
predicted pressure is lower in the downstream expansion 
region. The detailed finite-rate chemistry is suggested to be 
accounted for in the turbulent combustion model for 
supersonic combustion. 

 

 
Fig. 4 Comparison of the predicted wall pressure of the 
combustion flow with the experimental data [2] and 
published numerical results [4] 
 

 
Fig. 5 Temperature distribution of the combustion flow (Unit: 
K) 
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