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Abstract—Nowadays, a heat and mass transfer simulation
plays an important role in various engineering and industrial
fields. To analyze physical behaviors of a thermal environment,
we have to simulate heat and mass transfer phenomena.
However to obtain numerical solutions to heat and mass
transfer equations is much time-consuming. In this paper,
therefore, one of acceleration techniques developed in the
graphics community that exploits a graphics processing unit
(GPU) is applied to the numerical solutions of heat and mass
transfer equations. Implementation of the simulation on GPU
makes GPU computing power available for the most time-
consuming part of the simulation and calculation. The nVidia
CUDA programming model provides a straightforward means
of describing inherently parallel computations. This paper
improves the computational performance of solving heat and
mass transfer equations with the third kind boundary and
initial conditions numerically running on GPU. We
implemented simulation of heat transfer using the novel CUDA
platform on nVidia Quadro FX 4800 and compared its
performance with an optimized CPU implementation on a
high-end Intel Xeon CPU. The experimental results of heat
transfer clearly show that GPU can perform heat transfer
simulation accurately and significantly accelerate the
numerical calculation with the maximum observed speedups
20 times. Therefore, the GPU implementation is a promising
approach to acceleration of the heat transfer simulation.

Keywords-Genereal: Numerical Solution; Heat and Mass
Transfer; High Performance Computation; General Purpose
Graphics Processing Unit; CUDA.

I. INTRODUCTION

During the last 4-5 decades, many scientists and
engineers working in Heat and Mass Transfer processes have
focused their attention to finding solutions both
analytically/numerically, and experimentally. To precisely
analyze physical behaviors of thermal environments, we
need to simulate several heat and mass transfer phenomena
such as heat conduction, convection, and radiation. A heat
transfer simulation is accomplished by combining multiple
computer simulations of such heat and mass transfer
phenomena. With the advent of computer, initially the
sequential solutions were found, and later when super-
computers became available, fast solutions were obtained to
above mentioned problems. However, the simulation of heat
and mass transfer requires much longer execution time than
the other simulations. Therefore, acceleration of the heat and

mass transfer simulation is essential to realize a practical
large-scale heat and mass transfer simulation.

This paper exploits the computing power of graphics
processing units (GPUs) to accelerate the heat and mass
transfer simulation. GPUs are cost-effective in terms of
theoretical peak floating-point operation rates [1]. Therefore,
comparing with expensive cluster, GPUs is a powerful co-
processor on a common desktop PC that is ready to achieve a
large-scale heat and mass transfer simulation at a low cost.
The GPU has several key advantages over CPU architectures
for highly parallel, compute intensive workloads, including
higher memory bandwidth, significantly higher floating-
point throughput. The GPU can be an attractive alternative to
CPU clusters in high performance computing environments.

Recent announcement like CUDA [2] by nVidia proved
their effort to extend both programming and memory models.
CUDA (Compute Unified Device Architecture) is a new
data-parallel, C-language programming API that bypasses
the rendering interface and avoids the difficulties of classic
GPGPU. Parallel computations are instead expressed as
general-purpose, C-language kernels operating in parallel
over all the points in a domain.

This paper investigates the numerical solutions to Two-
point Initial-Boundary Value Problems (TIBVP) of Heat
transfer with the third boundary and initial conditions arising
in capillary porous media. These problems find applications
in drying processes, under-ground contaminants transport,
absorption of nutrients in human bodies, transpiration
cooling of space vehicles at re-entry into atmosphere, and
many other science and engineering problems. Although
traditional approaches of parallel-distributed processing have
been applied with advantage to the solutions of some of these
problems, no more seem to have explored the high
performance solutions to these problems with compact multi-
processing capabilities of GPU, which is multi-processors
technology on a chip. With the power of this compact
technology and develop relevant algorithms to find the
solution of TIBVP with the third boundary and initial
conditions and compare with some of the existing solutions
to simple known problems. All of our experimental results
show satisfactory speedups. The maximum observed
speedups are about 10 times.

The rest of the paper is organized as follow: Section II
introduces some previous related work; Section III describes
the background on GPU and CUDA briefly; Section IV
presents the mathematical model of heat and mass transfer
and numerical solutions to heat and mass transfer equations;



Our experimental results of heat transfer are presented in
Section V; Finally Section VI concludes this paper with our
future direction.

II. RELATED WORK

The simulation of heat and mass transfer has received
much attention for years. And there is much work related to
this field, such as modeling and dynamic simulation. Here
we just refer to some recent work closely related.

Soviet Union was in the fore-front for exploring the
coupled Heat and Mass Transfer in Porous media was
researched as a part of chemical engineering discipline, and
major advances were made at Heat and Mss Transfer
Institute at Minsk, BSSR. Later England and India took the
lead and made further advances in terms of analytical and
numerical solutions to certain problems. Later Narang and
Rajiv [4] explored the wavelet solutions and Ambethkar [5]
explored the numerical solutions to some of these problems.

With the programmability of fragments on GPU, Kriiger
et al. [6] computed the basic linear algebra problems, and
further computed the 2D wave equations and NSEs on GPU.
Bolz et al. [7] rearranged the sparse matrix into textures, and
utilized them multigrid method to solve the fluid problem.
Similarly, Goodnight et al. [8] used the multigrid method to
solve the boundary value problems on GPU. Harris [9, 10]
solved the PDEs of fluid motion to get cloud animation.

GPU is also used to solve other kinds of PDEs. For
example, Kim et al. [11] solved the crystal formation
equations on GPU. Lefohn et al. [12] packed the level-set
isosurface data into a dynamic sparse texture format, which
was used to solve the PDEs. Another creative usage was to
pack the information of the next active tiles into a vector
message, which was used to control the vertices and texture
coordinates needed to send from CPU to GPU. To learn
more applications about GPU for general-purpose
computations, readers can refer to [13].

1. AN OVERVIEW OF CUDA ARCHITECTURE

The GPU that we have used in our implementations is
nVidia’s Quadro FX 4800, which is DirectX 10 compliant. It
is one of nVidia’s fastest processors that support the CUDA
API and as such all implementations using this API are
forward compatible with newer CUDA compliant devices.
All CUDA compatible devices support 32-bit integer
processing. An important consideration for GPU
performance is its level of occupancy. Occupancy refers to

the number of threads available for execution at any one time.

It is normally desirable to have a high level of occupancy as
it facilitates the hiding of memory latency.
The GPU memory architecture is shown in figure 1.
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Figure 1: GPU Memory Architecture [2]

IV. MATHEMATICAL MODEL AND NUMERICAL
SOLUTIONS OF HEAT AND MASS TRANSFER

A. Mathematical Model

Consider the Heat and Mass Transfer through a porous
slab with boundary conditions of the third kind. The third
kind of boundary condition which is also referred to as
convective boundary condition, is a more common practical
situation, where a heat transfer occurs at the boundary
surface to or from a fluid flowing on the surface of a slab at a
known temperature and a known heat transfer coefficient, eg.
in heat exchangers, condensers, reboilers etc.

Let the x-axis be directed upward along the slab and the
y-axis normal to the slab. Let u and v be the velocity
components along the x- and y- axes respectively. Let us

assume that the slab is accelerating with a velocity Y = Ut

in its own plane at time 20 Then the heat and mass
transfer equations in the Boussinesq's approximation, are:
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Equating the conduction heat flux to convection heat flux
at the left surface of the slab and taking into consideration

€)




Int'l Conf. Scientific Computing| CSC'12 |

the direction of heat flow (i.e. whether it is in the positive X-
direction or negative X-direction), we can represent the
initial and boundary conditions mathematically as follows,

t, <0,u,(x,,t)=0

(5)
T,(x,t) =T, ’CI(XUtl):Coo
t, > 0,u,(0,t) =V, ©)
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Since the slab is assumed to be porous, Equation (1)

. V, ==V, . . .
integrates to ! 0 is the constant velocity. Here, £ is

the velocity of the fluid, Tp the temperature of the fluid near

the slab, T the temperature of the fluid far away from the
C

C
slab, P the concentration near the slab, »  the

concentration far away from the slab, 9 the acceleration due

to gravity, B the coefficient of volume expansion for heat

transfer, B the coefficient of volume expansion for
concentration, Y the kinematic viscosity, @ the scalar
electrical conductivity, @ the frequency of oscillation, k
the thermal conductivity, h is heat transfer coefficient and
t, is the time.

From Equation (1) we observe that Vigs independent of
space co-ordinates and may be taken as constant. We define
the following non-dimensional variables and parameters.
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Now taking into account Equations (5), (6), (7), and (8),
equations (2), (3) and (4) reduce to the following form:
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B. Numerical Solutions

Here we sought a solution by finite difference technique
of implicit type namely Crank- Nicolson implicit finite
difference method which is always convergent and stable.
This method has been used to solve Equations (9), (10), and
(11) subject to the conditions given by (12), (13) and (14).
To obtain the difference equations, the region of the heat is
divided into a gird or mesh of lines parallel to X and U axes.
Solutions of difference equations are obtained at the
intersection of these mesh lines called nodes. The values of

the dependent variables T , U and C 4t the nodal points
T(0,t) u(0,1)

along the plane X=0 ap given by and

C(0,t) hence are known from the boundary conditions.

In the figure 2, AX , Al are constant mesh sizes along X

and U directions respectively. We need an algorithm to find
single values at next time level in terms of known values at
an earlier time level. A forward difference approximation

for the first order partial derivatives of u, T and C . Anda
central difference approximation for the second order partial

derivative of U | T and C are used. On introducing finite
difference approximations for:



" . L L L J

(-1, 1 I+ 1

L

i L L L L J

1, i) 1.0
at
I3 L] L] L]

(i1, 1) i 1) (i+1, 1)
2 - L L -

2 (5] 1 2
fx

Figure 2: Finite Difference Grid
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The finite difference approximation of Equations (9), (10)

and (11) are obtained with substituting Equation (15) into

Equations (9), (10) and (11) and multiplying both sides by
At

=
Al and after simplifying, we let (AX) (method is
always stable and convergent), under this condition the
above equations can be written as:
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V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Setup and Device Configuration

The experiment was executed using the CUDA Runtime
Library, Quadro FX 4800 graphics card, Intel Core 2 Duo.
The programming interface used was Visual Studio.

The experiments were performed using a 64-bit Lenovo
ThinkStation D20 with an Intel Xeon CPU E5520 with
processor speed of 2.27 GHZ and physical RAM of 4.00GB.
The Graphics Processing Unit (GPU) used was an NVIDIA
Quadro FX 4800 with the following specifications:

CUDA Driver Version: 3.0

Total amount of global memory: 1.59 Gbytes
Number of multiprocessors: 24

Number of cores: 92

Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 16384 bytes
Total number of registers available per block: 16384
Maximum number of threads per block: 512

Banwitdh:

Host to Device Bandwith: 3412.1 (MB/s)
Device to Host Bandwith: 3189.4 (MB/s)

Device to Device Bandwitdh: 57509.6 (MB/s)

In this experiment, we considered a slab of thickness L

and thermal conductivity K. At the left surface (x = 0), a hot

fluid of temperature T, is flowing with a heat transfer

coefficient h, supplying heat into the slab. Assuming the

initial temperature of the slab is also the surrounding
temperature denoted as T,
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In the implementation, we assumed a fixed length of the
slab and the region of the heat was divided into sample nodal
points N. We wrote a C function and a kernel function to be
executed on the CPU and GPU respectively for the purposes
of obtaining the temperature distribution across the length of
the slab at each nodal point using the Forward Euler Method
(FEM). The logic and behavior of the two functions were
similar in calculating the desired results. Furthermore, to
obtain accurate results with minimal error, we performed the
calculation using several iterations.

For the first iteration in each computation, we initialized
the temperature TO at the surface of the slab, where the hot
fluid temperature T1 was set to some value. Then using TO
as the initial surface temperature, the heat transfer
differential equation was used to propagate the heat across
the length of the slab and the temperature at each node was
held in a temporarily array to be overwritten in the next and
subsequent iterations.

In the next and subsequent iterations, TO was updated
each time and then the heat was propagated across the length
of the slab, at the same time the temperature distribution at
each node was determined and temporarily stored. The
computation was performed for several iterations until the
temperature at each node stabilized. The final values of
temperature at each nodal point were then recorded.

Finally, for each value of N, the corresponding GPU and
CPU processing times were determined. To compare the
performance of the GPU and CPU, we varied the number of
sample points N to obtain different processing times for the
GPU and CPU.

B. Experimental Results

In this section, we show our results in solving heat
transfer with the third initial and boundary conditions with
CPU and GPU. For the purpose of implementation, the
following constant values were used:

Thermal conductivity of slab (K): 0.55 W/mk

Heat transfer coefficient (h): 5Wm2K
Specific heat capacity (c): 1300 J/kg K
Density of material (p): 900 kg/m3
Temperature T1: 45K

Temperature Too: 0K

For the first part of our results, we used a slab of length
220 and the number of sample nodes N was set to 64. We
performed the computation for 100 iterations and the results
obtained is shown and discussed below.

The surface temperature at x = 0 plotted against time is
depicted in Figure 3. We can immediately see that the
temperature gradually decreases from a maximum value at
time equal zero and converges to the surrounding
temperature Too (0 K) as the time elapsed.

Surface Temperatutre at x =0

iy

1 B 9 1317 21 25 20 33 37 41 45 49 E3 57 G1 G5 @D 73 77 €1 85 80 01 47
time

Figure 3: Surface temperature at x = 0, Too =0 K.

In addition, to obtain the temperature distribution across
the length of the slab, we plotted the temperature against the
number of nodes N. Figures 4 and 5 below show the
temperature distribution for N = 64 and N = 96 respectively.
From the graphs, we observed that the temperature is
maximum at the surface of the slab (node 0) where the hot
fluid is constantly applied and gradually decreases as we
move away from the surface. The temperature approaches
zero (Too) as we get closer to the far end of the slab. To add
to the above, we also noticed that as we increased the length
of the slab, the temperature distribution got infinitesimally
closer to zero.

Tempearature distribution across slab
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Figure 4: Temperature distribution across slab, length = 220,
N = 64.
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Figure 5: Temperature distribution across slab, length = 220,
N =96.

In our test, we also compared that both the results
obtained from the GPU and CPU were the same. To
minimize the error between the GPU and CPU results, we
implemented similar functions in the GPU and CPU and the
parameters passed to both functions were the same. We also
implemented error checking procedures to keep track of
errors that resulted from the computations. Furthermore, we
observed that, large number of iterations resulted in accurate
results. Hence, after running several tests using different
values of N, we observed that the difference between the



GPU and CPU calculated values was very negligible. Table
1 shows the normalized numerical results obtained from the
GPU and CPU.

TABLE 1. COMPARISON OF GPU AND CPU RESULTS (TEMPRETURE)

GPU Results CPU Results

1.00000 1.00000
0.92960 0.92955
0.86416 0.86345
0.74677 0.74265
0.69419 0.69389
0.51840 0.52876
0.44798 0.4555
0.35987 0.35987
0.26874 0.26889
0.18656 0.18908
0.13931 0.13123
0.10404 0.10409
0.08990 0.08680
0.07769 0.07809
0.06714 0.06435
0.05393 0.05710

For the second part of our results, we benchmarked the
GPU (NVIDIA Quadro FX 4800) against the CPU (Intel
Xeon E5520) in terms of processing or execution time.

For a fixed length of the slab, we varied N between 512
(29) and 65536 (216) and obtained the corresponding GPU
and CPU processing times as follows:

- For values of N between 512 and 2048, the
GPU was slower than the CPU. This is due to
the fact that the GPU executes parallel
instructions more efficiently whereas the CPU
executes  sequential  instructions  more
efficiently. Therefore, for small values of N,
the GPU has fewer blocks to execute and does
not employ concurrent execution hence it is
slow.

- For values of N greater than 2048, the GPU
was considerably faster than the CPU.

The maximum speed up observed in this test was around
20 times. However, the speed up increased for increasing
value of N.

Figure 6 depicts the graph of the GPU speed up.
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Figure 6: Performance of GPU and CPU Implementations

Finally, the accuracy of our numerical solution was
dependent on the number of iterations we performed in
calculating each nodal point, where more iteration mean
more accurate results. In our experiment, we observed that
after 14 or 15 iterations, the solution to the heat and mass
equation at a given point became stable. For optimal
performance, and to keep the number of iterations the same
for both CPU and GPU, we used 15 iterations.

VI. CONCLUSION AND FUTURE WORK

In this research, we found numerical solutions for heat
transfer differential equations with convective boundary
conditions (boundary conditions of the third kind) using the
Finite Difference Method (FDM) on GPGPUs. We also
implemented the Forward Euler Method (FEM) for iterative
computations of the temperature distribution at various
points in a slab. Furthermore, we benchmarked the
performance of the GPGPU against the CPU in terms of
execution or processing time.

In conclusion, our results show that FDM is well
appropriate for parallel computation on GPUs. In addition,
we have demonstrated that GPU- based implementations can
give considerable performance improvement over CPU-
based implementations. This is evident in the test case
presented in the results section, where the maximum speed
up of the GPU recorded was about 20 times over the CPU.

There are several avenues for future work. We would
like to extend out results to mass transfer with the third kind
initial and boundary conditions. We also would like to test
our algorithm on different GPUs and explore the new
performance opportunities offered by newer generations of
GPUs. It would also be interesting to explore more tests with
large scale data set. Finally, further attempts will be made to
explore more complicated problems both in terms of
boundary conditions as well as geometry.
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Padé Approximants as Numerical Models for

Mesoscopic Phenomena

M. George
Department of Physics, Southwestern College, Chula Vista, CA, USA

Abstract - Padé approximants are useful in numerical
analysis and computational science. In this paper they provide
the basis for numerical modeling for mesoscopic systems. We
place this in the context of an application in time series
analysis. We discuss a novel point of view for the
approximants that focuses on the boundary conditions for the
time series. We regard the approximants as supplying a mean-
field theory approach to mesoscopic systems. Conceptually,
this centers around using the polynomial parts of the
approximants as indicators of randomness. An approximant
with a polynomial part of just low degree is highly influenced
by the presence of the polynomial. This means that the
resulting mean field theory differs significantly from
approximant to approximant.

Keywords: Padé approximants, time series, mesoscopic
systems, mean field theory

1 Introduction

Padé approximants have proven themselves to be useful
in computational science [6]. In this paper, we are concerned
with the application of Padé approximants to time series
related to mesoscopic phenomena. Mesoscopic systems
include biosystems, fusion reactors, economic systems, and a
great variety of other systems of current interest. This is a
novel application of the approximants.

Padé approximants are ideally suited for use in
modeling of mesoscopic systems. They provide analytic
continuation and can supply a model suitable for describing
changes over many different scales. This provided the basis
for their first major application in the theory of critical
phenomena [6]. In addition, the determination of Padé
approximants is computationally efficient.

Both the theory and applications of Padé approximants
are discussed in the book by Baker and Graves-Morris [6].
Our intention is to discuss some of the theory associated with
the approximants in the context of a mean field theory. An
expanded version of this paper is in preparation [11].

It is frequently emphasized that Padé approximants, as
rational approximations, have a demonstrated usefulness in
applications such as in statistical mechanics [4] that require
analytic continuation of functions, a certain number of terms
of the Maclaurin expansion of which are known. This focus
on analyticity is primary in the monograph of Baker and

Graves-Morris, and they discuss much in detail that relates to
Padé approximants.

On the other hand, the article by Kumar [3] points in a
direction of broader concerns. This article is groundbreaking
in applying Padé approximants to time series. Kumar utilizes
random variables.

We emphasize the fact that each Padé approximant can
be regarded as a numerical model of a zero-dimensional field.
As a rational function, it can be interpreted as a mean-field
theory. We suggest that this can be applied to mesoscopic
systems. We have previously presented [9] a brief theoretical
treatment of computation, itself, as a mesoscopic
phenomenon. Typical mesoscopic systems are, at their base
level, quantum-mechanical systems. However, at other scales
of space or time than the microscopic, mesoscopic systems
must be modeled in different ways, and the interfaces
between models may be difficult to define and address.

In our treatment of computation, we used quantum Ising
games [10]. The motivation for this arose in that, as
computation evolves, the realm of quantum computing will
not be the first to be encountered. Rather, with developments
such as miniaturization, a mesoscopic regime will first be
encountered. Furthermore, one must decide, in far-from-
equilibrium systems, how to approach the dynamics of such
systems. Games (and even single-person games) can provide
a way of modeling in this non-equilibrium context. The
question of what it means to “win” can be difficult to define,
but there is no question that games can succeed in driving
systems far from equilibrium.

The Padé approximants can be regarded as providing
mean field theories throughout a certain scale addressed by
the series data. As one shifts within this scale from the fine-
grained to the coarse-grained, i.e. within the range of
variation at this scale, one must address boundary concerns
with adjacent scales. This is very similar to what is
considered in the Hilbert-Huang transform and empirical
mode decomposition [7]. The poles in Padé approximants
(which  represent mean-field approximations) yield
information about the boundary at the next larger scale, while
the polynomial part of the rational approximation addresses
the fine-scale variation at the boundary at the next lower
scale. Therefore, Padé approximants represent an
interpolation throughout a given scale using boundary
behavior.

The paper is arranged as follows. The next section
addresses the aspect of analyticity. In the following section,
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we discuss time series. The heart of the theory we discuss
here is to applications in mesoscopic systems, which is taken
up in Sec. 4. The last section is the conclusion where, among
other things, we discuss possible improvements on the
approach of Padé approximants for developing models at a
particular scale of a mesoscopic system using series data.

2 Analyticity

The basic definition and properties of Padé approximants
can be found in Baker and Graves-Morris [6]. We discuss
briefly, in this section, some important aspects of Padé
approximants relating to the approach that is traditional with
series analysis, i.e. a focus on analyticity.

We assume that we are supplied with a data sequence:

Ay, Aq, - Ay 1)
where these quantities are assumed to be certain real numbers,
and we have exact or extremely accurate estimates of these
N + 1 quantities. In traditional series analysis, these numbers
are assumed to give the first N + 1 coefficients of a Maclaurin
series in some variable x. In general, for example, when
considering time series, we cannot make any such assumption.
However, we can always introduce some variable x, called a
conjugate variable, just as if we were dealing with a
Maclaurin series. We also assume that the data, at least in
principle, can be extended indefinitely, and we wish to
develop a model to predict additional quantities in the
sequence. A Padé approximant is one such model.

It is reasonable, based on the assumptions we are
making, to consider a formal power series, in the conjugate
variable,

@)

(whether or not this series converges). A Padé approximant
Vik/m(x) for y, is a rational function with numerator
polynomial pg (x) of degree K and a denominator polynomial
qu(x), of degree M, such that

Y = Xn=o nX"

P () = (Eizo anx™qu (x) + 0(x*1) ®)
We allow the usual Padé approximant to be determined by
this condition and a normalization condition. Note that (3)
can determine the approximant only to within an overall
factor. We can fix this factor by requiring the leading
coefficient of g, (x) to be equal to one.

The Padé approximant is an appealing mathematical
object for a number of reasons. First, as a rational
approximation it can potentially contain more sophisticated
information than a mere polynomial approximation. Second,
because it can have singularities that are just ordinary poles
(and finite in number) it supplies an analytic approximation
that in principle could be used to provide an analytic
continuation of (2) if this series has a nonzero radius of
convergence. Third, (3) resolves into just a sequence of
simple linear equations to determine the polynomial

coefficients of the rational function.  This makes its
determination numerically straightforward. Lastly, this type
of rational approximation is the “best possible” as it uses all
available information about the series, and contains no
extraneous information.

On the other hand, Padé approximants can be difficult to
interpret. The diagonal approximants, with K = M, are often
stressed. The famous Padé conjecture, which has been shown
to have counterexamples (see Baker and Graves-Morris [6]),
states that given diagonal approximants for an analytic
function, some subsequence of the sequence of such
approximants will converge to the function. In this paper,
diagonal approximants have no special significance (other
than the fact that they are “maximally complicated”
approximants).

3 Time series

Kumar [3], in ground-breaking work, discussed the Padé
approximant in economics for time series analysis, with
respect to ARMA models (see Refs. [1], [2] and [5]).
Analyticity is not a central issue with respect to time series, as
one expects a certain level of “noisy” data. Kumar uses,
instead, random variables and white noise in which to couch
his theoretical discussion. Our approach is very different, as it
follows a viewpoint of zero-dimensional field theory and
mean field theory [12]. This more physical point of view has
the advantage that one can develop a mean field theory for
mesoscopic systems, something that is entirely outside the
reach of Kumar’s approach.

For time series, we do not want to interpret the Padé
approximants as analytic continuations for Maclaurin series.
Instead, we identify a polynomial part of the Padé
approximant as containing information about randomness, and
we regard the associated rational expression as containing
information about processes occurring at the scale of the
mesoscopic system being considered.

With respect to time series, we must confront a new
concept in Padé approximants: The idea of the boundary
condition (in time). We regard the Padé approximant itself as
a numerical mathematical model, rather than something
representing possible analytic continuation.  Thus, this
concept becomes suddenly meaningful, and is actually
important in considering time series, as opposed to analytic
continuation.

With respect to boundary conditions, we are concerned
with the overlap between scales of a mesoscopic system. This
entails consideration of physical processes: Specifically,
energy transfers. The modes of interactions leading to energy
transfers are formulated in particular ways at each scale
considered of relevance to the production of the time series
data. Thus, even if we consider mathematical modeling in
biology, or economics, or (even) history, we must take up
issues that, at base, involve non-equilibrium thermodynamics.

There are six types of boundary conditions we will
discuss in the next section. These may be denoted: analytic,
periodic, inductive, inter-model, shock and physical (related
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to a physical theory). All of these modes of discussing
boundary conditions demonstrate the complexity of time
series analysis in the context of mesoscopic systems.

The six different types of boundary conditions relate to
boundary overlaps, and are not meant to be an exhaustive
enumeration of possibilities. For example, it is perfectly
possible to conceive of combinations of types: Say combining
the inductive with the shock modes. From the point of view
of dimensionality, one must ultimately formulate these
overlaps geometrically. For example, a time series consists of
a field in a zero-dimensional space (as a point embedded in
three dimensions) that is constantly being updated, through
instrumentation, in time.

We are monitoring the activity at just a single point, with
respect to a certain measurement system, and the measured
level of the activity. This is a field that, in the mathematical
model of the system, is representative of some manifold,
which we can think of as akin to a domain in a magnet. The
time boundary of the domain is just a point (or a system of
points), or a time interval (or a system of time intervals) or a
combination of points and intervals. If we assume that this
boundary cannot interact with things in the past (causality), it
can interact with future domains, and its boundary can be
shared with the boundary of other domains. The boundary, if
it is extended, can even interact with itself.

Lastly, we point out that the effects of measurement
devices in determining the level of activity at each time in a
time series cannot be neglected. It is as if an intermediate,
activation state is formed involving the device prior to a final
record of the time series data is made. One should not assume
that because this activation threshold may not be a quantum
threshold, that significant uncertainty is not being introduced
into time series data merely by the act of measurement.

We cannot adequately address some of the topics we
have introduced in this section in our discussion in the next
section. In a short paper, one can treat only a few concepts
adequately. Here, we need to discuss the physics involved in
time series analysis using Padé approximants, with respect to
mesoscopic systems. It is this we take up in the following
section.

4 Mesoscopic systems

Each Padé approximant supplies us with a numerical
model. In general, if we use all available quantities in the
time series, or at least some fairly large number, there will
result numerous Padé approximants that yield a diversity of
models. As we discussed above, the use of the approximants
as models for mesoscopic systems comes down to a
discussion of boundary conditions, of which we mentioned six
in the preceding section.

The principal goal of using Padé approximants on time
series data is to make predictions. From the previous section,
noting that uncertainties can arise merely from measurement
(and, one must add, from any “games” that the data collection
and analysis group are “playing”), and that each Padé
approximant supplies a very distinct and different
mathematical model (point of view) from others, one must
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always bear in mind that however one proceeds, there simply
may be no meaningful pattern of prediction to extract from a
particular approximant, or, indeed, from any of the
approximants. Having said this, on the other hand, by
considering boundary conditions, one can construct
procedures for making predictions and for assessing
predictions.

We assume the Padé approximant is being used to model
time series from a mesoscopic system. The simplest type of
boundary condition is analytic. Here, the analytic form of the
rational function is used to predict future values. This was the
original use that Baker put the approximants to in his
application to critical phenomena (see Ref. 6).

The Ising model in one- and two-dimensions admits
exact solutions in zero external field for thermodynamic
functions that display analyticity [13]. Using series data, and
assuming analyticity, Baker was able to estimate critical
exponents for the three-dimensional Ising model.

To show how analyticity can be used to predict series
data, suppose that R(x) is any rational approximation that has
a Maclaurin series whose coefficients match the N + 1 known
coefficients listed in (1). Then, we can write this rational
function in a partial fraction decomposition with a polynomial
added to a series of terms of the general form,

a
(1—ax)™ (4)

Here, a and « are constants, and m is some positive integer.
(Note that a and a can be complex.) By expanding all such
terms in power series and combining the results with the
background polynomial, we can predict the value of any
coefficient of the formal series (2).

Thus, the analytic boundary condition simply utilizes the
rational function to make series-coefficient predictions. As
we point out with the use Baker put the approximants to, this
is a reasonable approach in investigating models where we
suspect analytic behavior.

The next type of boundary condition, the periodic
boundary condition, is also very simple. Once again, as
above, we assume that we have a partial fraction
decomposition, and a background polynomial for the rational
approximation. We ignore the coefficients of the background
polynomial in our predictions. For the other terms, of the
form (4), if a is complex, signifying that there is a periodicity
(whether or not some exponential decay or growth is also
involved), we simply generate coefficients by way of a power
series expansion, as in the analytic case, and we combine
these to yield a prediction, ignoring cases where « is real, i.e.
no periodicity is involved. This type of prediction is plausible
if, on the whole, “noise” is small, and the real a are less than
one in magnitude (i.e. yield exponential decay).

In general, we cannot expect this type of prediction to be
very useful. One possible improvement, which we will not
discuss in this short paper, is to replace the polynomial by
white noise, as Kumar [3] does and use random variables. In
any case, a suitable metric can be based on using this type of
prediction for the tail of the coefficients in (1), where we take
the last few coefficients and compare with predictions.
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The inductive boundary conditions are similar to the
periodic boundary conditions, but approach the issue of
prediction in a slightly more sophisticated way. This
approach is similar to the empirical mode decomposition
associated with the Hilbert-Huang transform [7]. The
polynomial background is used to define the mean and
standard deviation of white noise, and white noise of these
characteristics replaces the polynomial. The other terms in
the partial fraction decomposition (4) are studied, considering
a, the amplitude, and n, for each term, in addition to @. These
factors combine in a combinatorial term in prediction of a
specific exponent, and if a is complex, this entails an
oscillation. Thus, these quantities define “empirical” modes.
We can form groupings of these modes, and extract an
“empirical mode decomposition”.  Since this requires a
detailed discussion of the Hilbert-Huang transform, we will
not pursue this further in this short paper.

We will very briefly describe characteristics of other
boundary conditions. The reader is referred to the extended
paper [11], under preparation, for more details. We are
thinking of time series as zero-dimensional fields. The terms
of the form (4) provide a lowest-order perturbative theory, and
so we refer to the theory, obtained by this type of modeling,
using Padé approximants as numerical models, as a mean
field theory. This is consistent with the idea implicit in the
Hilbert-Huang transform, which the inductive boundary
conditions utilize in developing a decomposition.

Inter-model boundary conditions combine several or all
of the Padé approximants, for a given N in (1), together. This
is a pseudo-quantum model. The amplitude associated with
each approximant is determined by ignoring the polynomial
background and using the remainder to predict the last several
coefficients of the known coefficients in (1). Just as in
quantum mechanics, we regard the model as supplying a
superposition of states, the wavefunction for each state being
the approximant (minus its polynomial background). The
polynomial background is replaced by white noise.

In considering quantum mechanics, we can ask ourselves
if a quantum game [11] can be used for boundary conditions.
This requires a quantum model for the system, such as the
quantum Ising model.

The shock boundary condition results from combining
all Padé approximants as a multifunction. This will merely
reproduce the original time series up to t = N. However,
beyond this, since each approximant has a different “noise”
background, as given by the polynomial part of the
approximant, when we replace the polynomial contribution by
white noise beyond this point, we are going to obtain a
multifunction that displays a spread of values.

Finally, the physical boundary condition utilizes a
physical theory to set the boundary conditions. In such a

situation, we would be able to relate the expected behavior of
the time series to physical processes.

5 Conclusions

Padé approximants have proven themselves to be useful
in computational science [6]. We have discussed the
application of Padé approximants to time series related to
mesoscopic  phenomena. Mesoscopic  systems include
biosystems, fusion reactors, economic systems, and a great
variety of other systems of current interest.

Our approach of mean field analysis of time series from
mesoscopic systems by Padé approximants is completely
new. This approach requires a focus on boundary conditions,,
and we have discussed, in our paper, six different types of
boundary conditions.  The analytic structure of Padé
approximants and their ease of computation make them good
candidates for numerical modeling of mesoscopic systems.

A main point here is that the Padé approximant splits
into a background polynomial that is used to model noise, and
a rational expression, characterizing the evolving pattern as a
mean field approach to modeling mesoscopic systems. The
analysis reduces to a consideration of boundary conditions, of
which there are several of interest. This requires a much
fuller treatment than we are able to present in this short paper.

Padé approximants have an analytic structure of poles.
There are more general approaches [8] to approximation of a
similar nature that allow more complex analytic structures,
such as branch cuts. These more general approaches are also
worth consideration, and will be the subject of future work.

Modern theories of mesoscopic systems (see Ref. 9), as
a topic of non-equilibrium thermodynamics, need adequate
discussions of both games and quantum mechanics. In this
short paper, we have been unable to extend the discussion to
either of these important topics. This must await future work.
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A New Discrete Collocation Method For Nonlinear Fredholm
Integral Equations
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Abstract— In this paper, the numerical solution of nonlinear
Fredholm integral equations of second kind is considered by
Sinc method. This numerical method combines a discrete
Sinc collocation method with the Newton iterative process
that involves solving a nonlinear system of equations. We
provide an error analysis for the method. So far approximate
solutions with polynomial convergence have been reported
for this equation. This method improve conventional results
and achieve exponential convergence. Some numerical ex-
amples are given to confirm the accuracy and the ease of
implementation of the method.

Keywords: Nonlinear Fredholm Integral Equation; Sinc Approx-
imation; Collocation Method.

1. Introduction

In this paper, high order numerical method has been
developed to approximate the solution of the nonlinear
Fredholm integral equations of the form

b
u(t) = g(t) —|—/ k(t,s,u(s))ds, a<s<b (1)

where k(t,s,u), g(t) are known functions and u(t) is an
unknown function. Eq.(1) was introduced for the first time by
Pavel Urysohn in [1]. Equations of this type appear in many
applications. For example, they arise as a reformulation of
two-point boundary value problems with a certain nonlinear
boundary condition [5], [4]. Several authors have considered
the numerical solving of this equation with different methods
[4-11].

Atkinson has investigated the use of piecewise polyno-
mials of order n as an approximate subspace and obtained
the convergence of polynomial order [6]. The aim of this
work is to present a numerical scheme by discrete col-
location method based on Sinc functions. The method is
given by extending Stenger’s idea to nonlinear Fredholm
integral equation. It is shown that this method confirms the
convergence rate O(exp(—C+/N)). For a comprehensive
study of Sinc methods, we refer to [12], [13], and [14],

Eq.(1) can be rewritten in the operator form

u=Ku+g, 2)

where (Ku)(t) = f; k(t,s,u(s))ds. The operator is de-
fined on the Banach space X = Hol(D)(C(D). In this
notation, D is a simply connected domain which satisfies

(a,b) C D and Hol(D) denotes the family of all functions
f that are analytic in domain D. Furthermore, Eq.(1) has
at least one solution, if the right hand side of Eq.(1)
be completely continuous operator [16]. So it is assumed
that the kernel k(t, s,u) and the forcing function g(t) are
sufficiently smooth [11] such that the right hand side of
Eq.(2) be completely continuous. Additionally, suppose that
the solution u*(t) to be determined is geometrically isolated
[3], in the other words, there is some ball

B(u*,r)={ue X :||Ju—u"]| <r},

with r > 0, that contains no solution of Eq.(1) other than u*.
It is assumed that the linear operator K'(u*) does not have
1 as an eigenvalue, then there is a geometrically isolated
solution for Eq.(1) [4]. Let ||u| = sup{|u(t)| : t € [0,1]}
and ||K| = sup{||Ku| : v € B} where B = {u € X :
Jull < 13.

The layout of this paper is as follows. In section 2, the
basic definitions, assumptions and preliminaries of the Sinc
method are stated. The smoothness properties of the solution
are discussed in section 3. The discrete Sinc collocation
scheme is considered in section 4. In section 5, the order
of convergence of the schemes using the new approaches is
described. Finally, section 6 contains two numerical experi-
ments.

2. Basic Definition
The Sinc function is defined on the whole real line by
sin(7t)
) —— t#0
S t) = Tt ’
mett)={ 17 120

Originally, Sinc approximation for a function f is expressed
as

N
f&)y~ Y f(in)S;(t),

j=—N

teR, 3)

where the basis function S;(t) is defined by
ot
S5;(t) = Sznc(ﬁ =7, “)

and h is a step size appropriately chosen depending on a
given positive integer N, and j is an integer and (4) is
called jth Sinc function. The approximation (3) is valid on
R, whereas the Eq.(1) is defined on finite interval [a, b]. The
Eq.(3) can be adapted to approximate on general intervals
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with the aid of appropriate variable transformations ¢ =
©(z). This transformation and its inverse can be introduced
respectively as below

b— b
pla) = = tanh(3) + “,
t—a
o(t) = log(m).

In order to define a convenient function space, the strip
domain Dy = {z€C:|Imz| <d} for some d > 0 is
introduced. When incorporated with the transformation, the
conditions should be considered on the translated domain

p(Da) ={z€C: Iarg(b ) < d}.

The following definitions and theorems are considered for
further details of the procedure. Let D be a simply connected
domain which satisfies (a,b) C D and « and C be positive

constant. Then, £, (D) denotes the family of all functions
f € Hol(D) which satisfy

1f(2)] < ClR(=)I%, )

for all z in D where Q(z) = (2 — a)(b — z). The next
theorem shows the exponential convergence of the Sinc
approximation. ([13]) Let f € L,(¢(D)) for d with 0 <
d < 7. Suppose that N be a positive integer, and h be given
by the formula h = %. Then there exists a constant C'
independent of N, such that

1£(2) Zf

j=—N

(o(1))]] < CVN exp(—VwdaN).

Sinc approximation can be applied to definite integration
based on the function approximation described above. ([13])
Let (fQ) € Lo(p(Dy)) for d with 0 < d < 7. Suppose that
N be a positive integer and h is selected by the formula

wd

aN’
Then there exists a constant C' which is independent of N,
such that

|/ f(s)ds—h Z Fle(Gh)¢ (jh)| < C exp(—VTdaN).
j=—N
6)

h =

3. Properties of the Solution

In this part, the analytical solution of Eq.(1) is briefly dis-
cussed. In the case of complex Banach spaces, the operator
K is analytic in €2, if it is Frechét differentiable at each point
of ). Having analytic integral operator gives us analytical
solution to Eq.(1) [14]. Reference [16] includes conditions in
which the nonlinear operators are Frechét differentiable. But
in the case of real Banach space, determination of analytical
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solution to Eq.(1) is generally difficult. Atkinson [6] has
introduced a special class of nonlinear integral equation. This
class has been denoted by g1 (n, 1) In this notation, 1 and
u are related to the continuity order of partial derivatives
of the kernel of integral equation with respect to the third
variable.

([6]) Let k the kernel of integral equation be of class
g1(n, ) and consider the nonlinear integral equation (1). If
u*(t) is a solution of Eq.(1), then u*(¢) € C"[a, b].

It is not difficult to see that

" B b OnK (t, s, u(s))
ul )(t)_/a —

where K1(t,s,u) = g(t)+k(t, s,u). So a sequence of func-
tions {u(™ ()} is obtained. If the sequence {%W} be
uniformly bounded and n can be taken infinity, then we have

an analytic solution for Eq.(1).

ds,

4. Sinc-collocation method

A Sinc approximation wuy to the solution u €
M (p(Dy)) of Eq.(1) is described in this part. Let us define
the operator Py : M, — X as follows

N
Pulul(t) = Lult) + Y [ulty) — (Lu)(t;)]S;(6(1)),
j=—N
where bt ;
— —a
L)) = (@) + —u(b),
and the points ¢; are defined by the formula
a, j=—-N-—-1,
t; =< ¢(h), j=-N,...,N,
b, j=N+1.

It should be noticed that Py u is an interpolation of u by Sinc
functions with the above points and Py is called collocation
operator. The approximate solution wu is considered that has
the form

t—a

b—
un(t) = c_n— T + Z ¢;S; +cN+1b

j=—N
@)
Applying the operator Py to both sides of Eq.(1) gives
us the following approximate equation in operator form

2N = PnvKzn +Png, ¥

so collocation method for solving Eq.(1) amounts to solve
(8) for N sufficiently large. We are interested in approxi-
mating the integral operator in (8) by the quadrature formula
presented in (6). So the following discrete operator can be
defined
N
Kn()t)=h Y k(t,t;,u(t;)e'(jh).

j=—N

©))
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This numerical procedure leads us to replace (8) with

uny = PnKnyuny + Png. (10)

By substituting u into Eq.(1) and approximating the in-
tegral by means of Sinc quadrature formula and considering
its collocation on 2N + 3 sampling points at ¢ = ¢;, for
i = —-N—1,—-N,..,N,N + 1, the following nonlinear
system of equations

)="h Z F(ti, by, un ()0 (GR) + g(ts), (A1)

j=—N

un (t:)

is obtained. This nonlinear system of equations is equivalent
to (10). By solving this system, the unknown coefficients in
un are determined.
The nonlinear system of equations in (10) can be rewritten
as

Fn(uy) =0, 12)

where Fy : R2VH3 5 R2NVH3 with Fy(uy) = uny —
PnKnun — Png. All practical approaches to solve such
a nonlinear system are iterative, there are much interests for
finding a more efficient method for solving such nonlinear
systems, e.g. see [17], [18], and references in [23]. In this
paper Newton’s iterative procedure is applied. The Newton’s
method reads as follows: Choose an initial guess uy (g); for
m = 0,1, ..., compute
[(Fn)' (u LEN (U (m))-
(13)

N,(m))]7

UN,(m+1) = UN,(m) —

5. Convergence Analysis

Sinc-collocation method is discussed in the present sec-
tion. It is assumed that wyy is the exact solution of Eq.(10)
and up () is an approximation of u obtained from New-
ton’s iterative process.

Firstly, we state the following lemma which is used subse-
quently. ([13]) Let & > 0. Then it holds that

N+1

sup Z |S;(z

r€R

3+1og(N+ 1)). (14

Based on this lemma, it has been concluded ||Py| <
C'log(N + 1) where C' is constant independent of N.
Assume that there exists a constant d with 0 < d < 7 such
that k(¢,.,.) € Hol(¢(Dy)) for all ¢ in [a, b]. Furthermore,
suppose that there exists a constant C; for all ¢ in [a, b] such
that ||k(¢, .,.)|| < Cy. Then there exists a constant C' which
is independent of a,b and N such that

IKu — Knul| < Cexp(—vVrdaN).

In the following theorem, we will find an upper bound for
the error.

Suppose that v*(¢) is an exact solution of Eq.(1) and [I —
K’ (u*)] is nonsingular and 2 au2 k(t,s,u) exists and continuous

on its domain. Furthermore, let the assumptions of Lemma
2 be fulfilled and g € M (¢(Dgq)) and Ku € Mq(p(Da))
for all w € B(u*,r) with r > 0. Then there exists a constant
C independent of N such that

lu” —unl < CAN VN log(N + 1) exp(—VrdaN), (15)

where Ay = [[(I — Py (Kn) (@)~ Proof: The
estimation (15) is obtained as follows:

u* — UN =g — PNg + Ku* — PnKnup.

We call the right side of the above term RS which can be
rewritten as

RS

= (g — PNg) + (ICu* — PN/CU*)

+PN(ICU* — ’CNU*) + PN(’CNU* — K:NUN))
So the following relation is achieved:

u —uy = (I —Pn(Kn) (u*){(g — Png)
+(Ku* = PnKu*) + Py (Ku* — Kyu*)

)(u” —un))}
(16)

By applying ||.|| on both side of (22), we obtain the relation
< (I = Pn(Kn) ()" {llg = Pryll

FlIKw" = Pyu*|| + [[Pw I = Knu[|}

+77N(/CNU* — Knun — (ICN)/(U

[u* = unl

HIPx Ol = un|?).
(17

Because of g, Ku* € M, (p(Dy)), we can apply Theorem

1 and get

lg = Pgll < C1VN exp(—VmdaN),
|Ku* — PyKu*|| < CoV/'N exp(—VrdaN).
By using Lemma 2, the following result is concluded
|Ku* — Knu*|| < Csexp(—VrdaN),

and finally |Py|| is estimated by conclusion of Lemma 1.
So

|u* — un| < CAn log(N 4 1)V'N exp(—VrdaN).

|
In the following we are trying to discuss the conditions in
which the Newton’s method is convergence. For this reason
we will state and prove Lemma 3 and Theorem 5 . It is well
known that

F'(un)(v)(t) = v(t) = Pn(Kn)' (un)o(t),

N
Z ttg’u )@ (Gh)o(t;).

17



18

So, [F'(un)]~! exists if and only if
(I = Pn(Kn) (un)],

is invertible where I is the identity operator. In the fol-
lowing lemma, we are trying to find conditions in which
[I — Pn(Kn) (upn)] is invertible. Suppose that k&, (¢, s, u*)
satisfies

[ku (t, s,u™) — ky (7, s,u™)| < Cylt — T|B,
Ok (t,s,u)
ou

(18)

where ki (t,s,u) = and C is a constant. Further-
more, assume that there exists a » > 0 such that

|ku(t, s,u) — ky(t, s,0)] < Cslu — v, (19)

for all u,v € B(u*,r) and k,, (¢, s, u*) satisfies the hypothe-
ses of Lemma 2. Then

[Pn(Kn) (un) =K' (u*)| — 0,

as N — oo. Proof: By triangular inequality the
following relation is obtained

[P (Kn) (un) = K'(u")|| < |PvK'(u") =K' (u”)]|
+ Py (Kn) (un) = Pr(Kn) (u”)]|
+ [P (Kn) (u") — P (u”)]].
(20

According to [19], under the assumption (18), ||PnK’'(u*) —
K'(u*)]|| approaches to zero. The second term in right side of (20)
is easily evaluated by condition (19) as follows

1Px (Kn) (un) = Pr(Kn) (u”)]| < Pwlllus —w”|l.

So, for sufficiently large IV, it is concluded that

1Pxn (Kn) (un) = P (Kn) (w)]| = 0.
The third term approaches to zero by applying Lemma 2 to
ku(t,s,u”) and Lemma 1. [ |
Now, suppose that 1 is not an eigenvalue of K'(u*) then
under the assumptions of Lemma 3, we can conclude from
Lemma 2.2 in [20] that for sufficiently large N, [I —
Pn(Kn) (un)] is invertible. Next theorem deals with the
local convergence of Newton’s iterative method applied to
Eq.(12). Assume uy is the exact solution of the Eq.(12) and
[I — K'(u*)] is invertible. Furthermore, let the assumptions
of Lemma 3 be fulfilled. Then there exists a € > 0 such that
if |lun,0) —un| < e, the Newton’s sequence {uny ()} is
well-defined and convergence to u . Furthermore, for some
constant [ with [e < 1, we have the error bounds

(le)*”
l

Proof: The conclusion is straightforwardly achievable
by applying Theorem 5.4.1 in [22] and above discussion. H
In the following final theorem, we summarize the conclu-
sions of theorems and lemmas proved in this section. As-
sume that «* is an isolated solution of Eq.(1), Furthermore,
uny and up,(m) are the solution of Eq.(10) and Eq.(13),

[, m) — un| < =C(m). Q1)

Int'l Conf. Scientific Computing| CSC'12 |

respectively. Suppose that hypotheses of Theorem 4 and
Theorem 5 are satisfied. Then there exists a positive constant
C(m) independent of N and depend on m such that

0" = up (|| € C(M)ANVN log(N +1) exp(—VrdaN).
(22)

Proof: The conclusion is obtained by using triangular
inequality and conclusions of Theorem 4 and Theorem 5. ®

6. Numerical Experiments

In this section, the theoretical results of the previous
sections are used for some numerical examples. In order
to analyze the error of the method the following notations
are introduced:

emaz = maz{|u(t;) —wx(t)] : t: = 15551 = 1(1)1000},
and
PN = 10g2( (erf) )v

which e, approximate |[u — uy|| and py estimate the
convergence rate. In second formula e, denotes the €42
in (i41)th column of tables. In these examples, the Newton’s
method is iterated until the accuracy 10~ is obtained. In
tables, m denotes the number of iterations. Initial point for
Newton’s iteration is selected by steepest descend method
[21].

It is assumed that o = 1. The d values is 5 for the Sinc
method. The absolute value of the errors of the two methods
for N = 5,10, 15,20 and 25 is reported. These tables show
that increasing IV the error significantly is reduced.

Example 1. we interest in approximating the solution of
the following nonlinear Fredholm integral equation

1
u(t) = é/ cos(mt) sin(7s)[u(s)]® ds + sin(wt),  (23)
0
with the exact solution
u(t) = sin(mt) + é(QO — V391) cos(mt),

where 0 < ¢ < 1. The numerical solution of this equation
is considered in [26] via Newton - Kantorovich - quadrature
method. Table 1 shows the absolute error of SE-Sinc method
for N = 25 and the results of Newton - Kantorovich -
quadrature method. As this table illustrates the Sinc method
is more efficient than their method.

Table 1: Comparison of the results in [26] to Sinc Method.
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t Results in [26]  Sinc method

0 4.98E — 2 4.15E -7
0.1 4.73E — 2 1.33E—-5
0.2 4.03E — 2 6.85E — 6
0.3 2.92E -2 6.22E - 6
0.4 1.54E — 2 2.19E -6
0.5 0.00E -0 2.15E -7
0.6 1.54E — 2 5.85E — 6
0.7 2.92E -2 1.02E -5
0.8 4.03E — 2 8.25E — 6
0.9 4.73E — 2 1.66E — 5

1 4.98E — 2 4.14E -7

Table 2: Absolute errors of the Sinc method for Example 2.

t N=5 N=15 N=25
0.1 202E—3 209E—6 6.24E—7
0.3 72TE—4 143E—5 149E—7
0.5 138E—3 1.25E—5 9.58E—7
0.7 455E—4 122E—5 131E—6
0.9 2.38E—3 1.1TE—6 1.06E—6
m 3 3 3

emaz 2.04E—3 274E—5 20lE—6

PN - 2.99 2.15
Results in [24] 33E—3 11E—3 11E—4

Example 2. We consider the nonlinear integral equation (see
[24], Example 3)

u(t) = t/ol sy/u(s)ds +2— %(2\/5— 1t — 2,

with the exact solution u(t) = 2 —t2. The Table 2 illustrates
the numerical results obtained here and the numerical results
of [24] for this example.

7. Conclusions

Finding exact solutions for nonlinear Fredholm integral
equations are often not available. So, approximating these
solutions are very important. Many authors have proposed
different methods. In this research, a numerical method
based on Sinc function has been suggested. It has been
shown theoretically and numerically that the scheme is
extremely accurate and achieve exponential convergence
with respect to V.
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Abstract— This paper suggests an enhancement of an ex-
isting method for the multiobjective optimization known as
GAM (goal attainment method). In our proposal, the GAM
algorithm is combined with a mechanism that automatically
provides a set of parameters (weights, coordinates of the
reference point) for which the method generates noninferior
solutions uniformly spread over a suitably selected part
of the Pareto front. The resulting set of solutions is then
presented in a suitable graphic form so that the solution rep-
resenting the most satisfactory tradeoff can be easily chosen.
The whole algorithm was implemented as a program and
tested on various design examples. The most difficult one was
a multiobjective optimization of a C-class power amplifier in
the time domain. Therefore, this task is thoroughly described
in the paper as a demonstration of the program capability.

Keywords: Multiobjective optimization, Pareto front, Pareto op-
timal set, noninferior solutions, goal attainment method, LDMOS.

1. Introduction

The process of electronic circuit design usually strongly
relies on the use of computers. One class of methods for
circuit design not only uses them as a circuit simulation
tool, but also uses numerical optimization algorithms as a
means of determining parameter values in order to bring the
designed circuit as close as possible to some prescribed be-
havior or a set of characteristics. Multiobjective optimization
solves the situations in circuit design where there are two or
more possibly contradictory requirements on a circuit and
thus a suitable tradeoff needs to be found. Such a tradeoff
solution should best belong to a set of noninferior solutions,
also called Pareto optimal set or Pareto front. Noninferior
solutions are characterized by the property that any further
improvement in one objective value can only be achieved at
the expense of disimprovement in at least one other objective
value.

1.1 Multiobjective Optimization Problem

In practical designs, there are often multiple mutually
contradicting requirements on the designed circuit. In such
cases, our aim is to solve the corresponding multiobjective
optimization problem (MOP). This can be formally written
as
{fl(w)7f2(w)7"'>fk(w)}a (D

minimize
xzeS

where we have £ objective functions f;: R* — R, k& >
2. As in the case of SOP, the decision vectors x =
(x1,29,... ,xn)T belong to the (nonempty) feasible region
S, S C R™, which can also be defined by a number of
equality constraints, inequality constraints, and/or bounds on
the decision variables z;. The vector of objective functions
is denoted by f(z) = [fi(x), f2(),..., fr(x)]" and the
image of the feasible region, also called the feasible objective
region, is denoted by Z = f(S), Z C R¥. The elements of Z
are called objective vectors and are denoted by f(x) or z =
[21,22,...,Zk]T, where z; = fi(x) for all i = 1,2,...,k
are objective values. The geometrical representation of both
sets S and Z and of the maping f(x) between them can
easily be illustrated on a two-dimensional case, as shown in
Fig. 1 forn =2 and k = 2.

1.2 Pareto Optimality

The word “minimize” in (1) means that we want to mini-
mize all the objective functions simultaneously. However,
because of the contradiction between the objective functions,
it is not possible to find a single solution that would be
optimal for all the objectives simultaneously. The concept
of noninferiority also called Pareto optimality must be used
to characterize the objective vectors. A noninferior solution
is the one in which an improvement in one objective requires
a deterioration of another. The set of all noninferior solutions
is also called the Pareto front. In Fig. 1 it is marked by the
thick curve segment between points z5 and zp.

By solving the problem (1) we understand obtaining a
sufficient number of noninferior solutions covering parts of
the Pareto front that are of interest to the designer. This will
allow him or her to fully understand the available trade-offs
and to take a qualified decision based on this knowledge.

ZB%

ZA

x2 22
—

CEDR

x1 21

Fig. 1: Feasible region (5), feasible objective region (Z),
and Pareto front.
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1.3 Ranges of the Pareto Front

For normalizing purposes we may need to know the
minimum and maximum values of the individual objectives
achieved over the Pareto Front. We will assume that indi-
vidual objective functions z; = f;(x) are bounded over the
feasible region S.

Ideal objective vector z* = [z],73,...,z;] is the objec-
tive vector independently minimizing each objective func-
tion:

2" = |min fi(z), min f>(z),..., min fy(x)| . @)

It can easily be seen that if the ideal objective vector
is feasible (z* € Z), it is a solution of the multiobjective
optimization problem and the Pareto front is reduced to it.
But even in the usual cases when ideal objective vector in not
feasible, it can still be considered a useful reference point.

Maximum objective function values achieved over the
Pareto front are represented by a nadir objective vector.
Because such maxima are difficult to find, an approximate
nadir vector z"* is instead defined as

znad —

[max(z)1, . omax(z0i] . @)
i.e., as the vector of the largest respective components (z;);
found in all k ideal objective vectors. Nadir vector may and
may not be feasible.

1.4 Goal Attainment Method

Typically used approaches to the multiobjective optimiza-
tion are either a method based on a weighted sum or
optimization of a single objective function while the others
serve as constraints (also known as e-constraint method) [1],
[2]. The goal attainment method [3] provides a better control
over obtained solutions. It is defined as a scalar constrained
optimization problem of the form

minimize 7y

YER, xES

subject to  fi(x) — w;y < zi,
i=1,...,k,

“

where f; are the k objective functions to be minimized (de-
sign goals), S is the set of acceptable solutions (the feasible
region), z; are predefined reference goal values associated
with the objective functions f;, w; € R are predefined
weighting coefficients, and + is an auxiliary variable making
the new single objective function. The method requires 2k
input parameters, but only uses 2k —1 degrees of freedom as
shown in Fig. 2. Any solution of this optimization problem is
noninferior. Its location on the Pareto front can be controlled
by the weighting vector w and/or by the reference vector z.

Note that as all more complicated multiobjective problems
are time consuming, it is suitable to run them in batch mode.

22 1 w
A
Z2 z
l
Zs2 Zs
-«—
Zs1 Z1 1

Fig. 2: Geometrical representation of GAM.

2. A Semiautomatic A Posteriori Method

The goal is to arrange a reliable general-purpose multiob-
jective optimization tool that could be used in circuit design.

Requirements on the multiobjective optimization method
will include:

« arbitrary number of objectives

« arbitrary number of inequality constraints (but no need
for equality constraints)

o provisions for maximizing some functions while mini-
mizing others

« possibility of non-differentiable objectives

« automatic generation of Pareto optimal solutions

« automatic determining of what the covered part of the
whole Pareto front will be

« even density of coverage of selected part of the Pareto
front

« little or no a priory knowledge of the DM’s preferences
required

o possibility of monitoring and user interference during
computation run

« support for graphical presentation of the solutions

These requirements clearly suggest the use of an a pos-
teriori method or a method of another class converted into
an a posteriori method to be able to automatically generate
Pareto optimal solutions.

The authors’ choice is the Goal Achievement Method,
which is also one of the Achievement Scalarizing Function
approaches and a variety of Goal Programming [1].

Its advantages as opposed to Weighted Method or Method
of Weighted Metrics [1] are that all Pareto optimal solutions
are accessible even for non-convex problems and that it
works for both feasible as well as infeasible reference points.
As a disadvantage could be seen the need for a subroutine
for constrained optimization, but we want to be able to work
with constraints, anyhow.

There are two possible ways of controlling the location
of the Pareto optimal solutions found by GAM: either (a)
by the choice of the reference point or (b) by the choice
of the weighting vector (or (¢) a combination of both). Our

21
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Z2

Fig. 3: Reference set A in the 2D and 3D objective spaces.

approach uses (a) because this seems to have a better chance
of even coverage of the Pareto front.

Here is the implemented equivalent form of the GAM,
also with the used normalization:

L. () — 25
minimize max % . (®)]
xS i=1,...,k 2P — ¥

Note that this very formula works for both the minimized
as well maximized objective functions: for the maximized
ones we have z!*d — z* < 0 and the denominator thus
automatically provides the correct sign. Also, as a result
of the choice (a) mentioned above, there are no explicit
weighting coefficients w; used in (4)'.

Now let us consider the choice of a set A in the k£ dimen-
sional objective space from which the reference points are
be taken. We will call it the reference set.

It should not be too far away from the Pareto front (in
Euclidian sense) so that it is not too difficult for the user
to predict where the corresponding Pareto optimal solution
will be from the knowledge of the reference point.

If the feasible objective set is bounded, the Pareto front P
will usually be a subset of the k-dimensional interval B =
Hle[z;‘,z?ad}, where the product operator represents the
Cartesian product.

We could put A = B and simply randomly generate
the coordinates from the intervals [z}, 2724]. However, this
approach would lead to many reference points that have no
projection on the Pareto front. Such points could still provide
Pareto optimal solutions but those would be concentrated
along the border of Pareto front and not evenly spread over
the interior. Also many points would be quite far from the
Pareto front.

Therefore, we try to limit the size of the set A and select
it such that it is likely to be not very far from Pareto front.

One such a choice of the reference set A, that has

actually been implemented in the proposed method, is the

The missing weighting coefficients in (5) that are a result of the choice
(a) above also exclude the possibility to introduce hard constraints simply
by setting the particular weight to zero, but this really poses no practical
limitation in our implementation as any goal can easily be switched to
directly play the role of an objective, a constraint, or even both of them
simultaneously.

k-dimensional convex body with k vertices (segment of
straight line, triangle, tetrahedron, etc.) whose vertices are
composed of one component of the ideal vector z; and the
rest are corresponding components of the nadir vector z"2:

LTy =1,k

(6)
This set A is randomly sampled with the uniform distribution
all over its k — 1-dimensional volume. This is done with the
intent to uniformly cover the corresponding part of the Pareto
front. Fig. 3 illustrates the location of this reference set in
the two- and three-dimensional objective space.

The random generation of reference points belonging to A
can be performed in this way: starting with k vertices
Z01,%02,---,204 and a (k — 1)-tuple of uniformly dis-
tributed and mutually independent random numbers r; €
[0,1) for ¢ = 1,...,k — 1, we perform the following
sequence of assignments to calculate a point z,_1,1 € A:

t1 =
z11=(1—1t1)zo1 +ti1202

z12 = (1 —1t1)z01 + t120,3

nad nad

vert __ [ nad *
[ ..,Zl717zl7zl+17..

2] =217,

zih—1=(1—t1)zo1 +t120k
ty = 3/
zo1 = (1 —t2)z11 +t2z12 (7)
zo2 = (1—1t2)z11 +t2z13

zoj—2=(1—t2)z11 +t221 k-1

tk—1 = /Tk—1
zZp—11 =1 —tp—1)zp—2,1 + tho12K—2,2.

This procedure therefore calculates a total of N = Zf’:—f 1=

k(k —1)/2 points z in the k-dimensional objective space
(i.e., N =1, 3 and 6 points for £ = 2,3 and 4) from k
initially known vertices of the reference set. An example of
generation of a point (23 1) from a reference set in the shape
of a tetrahedron (i.e., when k = 4) is shown in Fig. 4.
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20,4

20,3

20,2

Fig. 4: Obtaining a point from the reference set for k& = 4.
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Fig. 5: RF C-class power amplifier schematic.

3. RF C-Class Power Amplifier Design

As a sophisticated example, let us try to design the last
stage of an RF power amplifier for a narrow-band signal with
an analog modulation at the frequency f; = 300 MHz. The
source and load impedances should be both 50 €2 and supply
voltage Vpp = 12'V. Our goal will be to explore the trade-
offs between achievable output power, power efficiency and
total harmonic distortion.

3.1 Schematic

We use an RF N-channel LDMOS as an active component
and a topology that is typical for C-class mode of operation,
see Fig. 5. The transistor is followed by an LC filter to
suppress harmonic distortion and provide good impedance
matching. (Even though impedance matching at the output is
not directly required, it is enforced indirectly by maximizing
output power.) The combination of elements L, C; and Cs
can also be seen as a tapped resonant circuit. As for the
transistor, our choice will be LP821 (Polyfet RF Devices),
a silicon LDMOS device for frequencies of up to 500 MHz,
with a maximal total dissipated power of 50 W.

As our goal is exploration of the output trade-offs rather
than obtaining a complete design, no input impedance
matching circuit is considered, and no stability-ensuring
measures are taken (other than rather small reactance of the
capacitance between gate and source of the transistor itself).

Table 1: Design variables for the power amplifier.

Bound Coverage

No. Symbol Lower Upper Unit Type

1 Vigs max 2 20 v lin.

2 VesACm 0.4 12 Y lin.

3 L1 3n 30n H log.

4 C1 10p 300p F log.

5 Ca 3p 300p F log.

6 Lo 3n 100n H log.

7 C3 3p 100p F log.

3.2 Design Variables

As design variables we have two kinds of parameters: (A)
parameters of the gate voltage that directly determine the
operating mode of the transistor, and (B) all LC-component
values of the filter.

A simple way to define the design variables of the former
group would be the combination of the input AC voltage Vi,
and its DC offset V4,,5. That, however, would not provide
direct control over the voltage between gate and source,
which must not exceed 20V (as given by maximum ratings
of the device). This requirement would have to be enforced
by means of a special constraint, which would increase
simulation time. In order to avoid this need, an estimated
peak Vg, voltage, denoted by Vi max, Was chosen as one
design variable and the amplitude of its AC component
as another one. The gate voltage estimate is defined using
the equation of the voltage divider formed by the driver
output resistance Rq and input capacitive reactance of the
gate X; =~ 10Q)

Xi
VgsACm = anACmﬁv
where Vippacm is the amplitude of the input AC volt-
age component from the preceeding driver stage (open-

circuited). From given values of design variables Vs max
and Vgsacm We then obtain

®)

VX2 + R

Xi
©))
Table 1 gives a summary of all design variables including
their ranges and types of coverage.

Vbias = Vgs max_VgsACm; VvinpACm = VgsACm

3.3 Design Goals

There is a total of five design goals, three of which are the
three objective functions to be optimized and two constraints
representing maximum ratings of the LDMOS. All goals are
defined in terms of waveforms of voltages and currents in the
periodic steady state, which was obtained by the steady-state
analysis of the simulator CIA [4] (necessary time-domain
sensitivity analysis is also described in [4]). Table 2 gives a
complete summary of all design goals. The individual design
goal definitions are as follows:
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Table 2: Design goals for the power amplifier.

Optimum/

No. Symbol Type Direction Bound Unit
1 Pout1 obj. max. 31.1 W
2 n obj. max. 83.0 %
3 THD obj. min. 0.0783 %
4 14 avg constr. < 5 A
5 Pyiss constr. < 50 w

a) Average output power at the first harmonic frequency
Pout1:
out1 o |Bout1|? B a2 +b?
outl — 2 RL - 9 RL ’
where ¥Uout1 is the phasor of the output voltage vout(t), ax
and by, are generally the coefficients of the k-th cosine and
sine harmonic (Fourier) components of the periodic steady-

state output voltage v, (t) of the period T', respectively:

2 2rk 2 . 27k
= /vout (t) cos Tt dt, by = T /vout(t) sin Tt dt.
T T
Here the integrals over period T' were computed using the

trapezoidal method of numeric integration.

(10)

b) Power efficiency 7: it is defined as the ratio of output
power at the first harmonic frequency and the total average
power from power supply and from the input driver. Such
a form of definition encourages not only lower power
dissipation on the transistor, but also lower input power and
thus higher power gain

Poutl

= x 100%. (11)
T 0 [ipp dt + L [ vinp () imp(£) dt ’
T T
¢) Total harmonic distortion THD:
Pou igher
THD = | =outhigher 4000, (12)
out

where Poythigher 18 the output power at higher harmonics

up to ny
MNh

1 2 2
Pout higher = E};ak + b3, (13)
with ny, = 10, and where P, is the total output power
computed with the formula

1 1 1
Pour = R7L T /’Ugut(t) dt — T /Uout(t) dt
T T

(14
The second term here cancels the contribution by a possible
false DC component that could emerge as a result of the
failure to fully achieve the periodic steady state within the
chosen maximum number of iterations. (We know that in
reality the DC component of the output voltage must be
zero due to the capacitive coupling by C; and the load being
linear.)
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Fig. 6: Model configuration of LDMOS LP821.

d) The maximum ratings of the transistor are applied as
constraints: maximum average drain current Iq,,s and the
maximum average dissipated power by the transistor Pgjsg

1
Igavg = T/’Ld(t) dt (15)
T
and
1
Pass = 7 / [ge() i (8) + vas (Dia (D] dE, (16)

T

respectively, where ig4(t), iq(t) are the instantaneous gate
and drain currents, and ve(t), vgs(t) are the instantaneous
voltages between gate and source and drain and source.

3.4 Transistor Model

The model used for simulations is based on a SPICE-like
one structured as shown in Fig. 6.

The original manufacturer’s model is actually only the
simple Level 1 SPICE MOSFET one (i.e., Shichman and
Hodges). Therefore, its parameters were recalculated for
using the semiempirical Level 3 model. They became Vo =
24V, ¢s=06V, p0o=08V, W=0.04m, L=1 um,
X;=1pum, Xy =0 um, tox = 100 nm, Npg = 0 m—2,
Nao =102 m™3, vpax = 5x10* m/s, o = 0.06 m?/(Vs),
% =022 Ep =5x10° V/m, Kp = 1.8 x 107> A/V?,
Y=0VV,5=n=1=0,0=0V"! rp =0.16 Q,
and rg = 0.16 Q - the manufacturer’s value of W (for the
composed devices like LDMOS, this number represents the
element as a whole) clearly indicates that LP821 is really
a power transistor. The manufacturer’s values of the JFET
and PN diode parameters were A = 0.8 V™!, 3 =6 AV~ 2,
Vo = =525V, Cjop = Cjos = 0F, Ig = 10~14 A,
n=1"Vg =45V, Ig = 1007 A, Cjo = 60 pF,
o = 0.6 V, and m = 0.25.

The RLC component values are the following: LgaTg =
0.867 IlH, RGATE = 0.01 Q, CG =35 pF, CRSS =45 pF,
Ciss =22.1 pF, Lg =0.108 nH, C's = 0.43 pF, Lp =0.51 nH,
Cp = 0.01 pF, Rrc = 1989 2, and Crc = 0.381 nF.
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Fig. 7: Obtained Pareto front in the space Pout1, 1, THD.

3.5 Models of LC Components

Unlike idealized circuit elements used in network theory,
real-life components have parasitics attached to them that
may (and often do) substantially modify the behavior of
resulting circuits at higher frequencies. Therefore, their
presence should be somehow considered within used design
procedures. One approach would be to first assume ideal
elements and after determining their values (e.g., by using
optimization) to apply a correction to each component value
so that its impedance at a chosen frequency (e.g., in the
middle of the full frequency band) is equal, or at least close,
to that of the ideal element in the design.

A more thorough and correct approach, however, is to
introduce the parasitics already before the optimization by
using parametrized RF models instead of simple ideal ele-
ments. Such a procedure is called parasitic-aware optimiza-
tion [5]. It was chosen to be applied to all LC components
in the present example. Fig. 9 shows used model structures
for inductors and capacitors.

Only rough estimates of parasitics and their dependences
on the main component values have been introduced, as
real parameters and functions strongly depend on types
and spatial configuration of the real components, their lead
lengths, etc. Each inductor L;, ¢ = 1 and 2 has a series
resistance Ry,; representing all kinds of power losses (due
to skin effect, eddy currents and/or coil core hysteresis, etc.)
and a parallel capacitance C1,; modeling the collective stray
capacitance (between the coil’s winding turns, leads, etc.),

90.0

40.0

10.0 30.0

Foun

THD: e <0.25 < = <0.35 < » <0.50 < » <1.00

Fig. 8: The 3D Pareto front obtained in the form of contours.

Chi
o— Y Y\ _o —» o—d o
L; L; Ry
e A
Ci G Le Re;

Fig. 9: Modeled parasitics of passive components.

whose values are obtained using formulas
_2nfily
QLmax

Here the frequency f; = 300 MHz; the maximum quality
factor Qpmax = 100, achievable only when the constant term
Rro = 10mS2 is negligible; the stray capacitance coefficient
pcr, = 1 pF/pH and the constant term Cro = 100 fF.

Similarly, each capacitor C;, i = 1,2, and 3 has a series
resistance Rc; (also known as ESR)

1

- 27Tf1 CiQCmax

where Qcmax = 1000 and Rgp = 10 mf); and a stray series
inductance L¢ (ESL) estimated by a constant value of 3 nH.

Even though those formulas and parameter values are very
approximate, they still represent a significant improvement
to the whole method, at least, by helping to keep the
component values in the design after optimization in realistic
proportions. For example, inductances will not tend to be too
large, as their own resonant frequencies need to stay above
the basic signal frequency f; (and probably also above some
higher harmonic frequencies).

Ry

+Rip and Cr; = Lipcr + Cro. (17)

R + Rco, (18)
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Fig. 10: An alternative way of displaying the 3D Pareto front.
Table 3: Selected solutions from the Pareto front.
Solution Number
No. Symbol 1 2 3 4 5 Unit

1 Vesmax 9.97 15.9 20.0 19.2 18.9 \"
2 VesACm 4.03 8.05 10.7 9.24 12.0 \"
3 Ly 7.86n 11.3n 423n 3.97n 5.03n H
4 4 294 p 133p 299p 51.6p 166 p H
5 Cy 22.6p 5.09p 27.0p 300p 341p H
6 Lo 6.84n 7.00n 7.97n 7.32n 9.89n H
7 Cs 20.1p 2.35p 18.4p 22.6p 17.0p H
1 Pt 15.3 18.8 22.8 28.4 11.2 W
2 n 49.7 63.7 72.9 58.4 81.7 %
3 THD 0.163 0.239 0.512 0.394 3.03 %
4 Igave 2.56 2.44 2.59 4.01 1.15 A
5 Plyiss 13.6 8.42 6.65 16.0 1.84 W

3.6 Results

Fig. 7 shows a total of 84 obtained solutions covering the
three-dimensional Pareto front. There is obviously a large
trade-off between harmonic distortion and power efficiency
at the highest output power levels, but it diminishes with
decreasing the output power, and for P,,;1 < 14 W the
requirement of low distortion can be met with almost no
penalty on power efficiency.

Instead of by type of points, the different THD bounds
can be distinguished by separating the particular cases into
an array of graphs. Such an alternative format is presented
in Fig. 10.

A selection of five distinctly different solutions is given in
Table 3: number 1 has the lowest distortion T'HD, 4 has one
of the highest values of P, 1, and 5 the highest efficiency 7;
solutions 2 and 3 are located in the middle area at different
levels of THD.

Instead of trying to uniformly cover the three-dimensional
Pareto front, it may be preferable to cover only a set of its
two-dimensional contours. This can be done by having THD
as a constraint (instead of as objective function) and by
repeating the optimizations for different T"HD bound values.
Alternately, if we already have a set of solutions such as of
Fig. 7, we can obtain the solution covering the contours
by reoptimizing them to the new set of constraints that
includes T'HD, i.e., by running a new optimization with each

already available solution as a starting point. A result of such
a procedure is shown in Fig. 8.

4. Conclusions

An improved semiautomatic multiobjective method based
on an asymptotically uniform coverage of the reference set in
the combination with goal attainment method was proposed
and implemented. The method was successfully tested on
more examples, and one — a sophisticated optimization of the
highly nonlinear circuit in the time domain — was presented.
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A Vertical Splitting Scheme for Nonhydrostatic
Atmospheric Model
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Abstract - In this study, a numerical solution of
nonhydrostatic atmospheric equations is considered. A
robust semi-implicit approach with additional time
splitting is applied in order to construct computationally
efficient and accurate numerical scheme for modeling of
large-scale atmospheric dynamics. Description of the
designed numerical algorithm is provided and its accuracy
and stability are discussed. The main properties of the
scheme are compared to the respective properties of more
traditional algorithms. Performed numerical experiments
with the actual atmospheric data of pressure, temperature
and wind show that the developed scheme supplies
accurate forecast fields for the increased time steps chosen
in accordance with the physical requirements.

Keywords: atmospheric modeling, numerical solution,
semi-implicit scheme, time splitting

1 Introduction

The Earth atmosphere is a complex dynamical system
which supports the processes of different time and space
scales, including the most important synoptic (weather)
processes. There are different approximated physical
models of atmosphere dynamics constructed to filter the
secondary waves, however all these approximations
introduce certain distortions to the principal synoptic
modes. For this reason and also due to considerable
increasing of computer power and advances in numerical
methods, in the last years a great attention in atmospheric
modeling is given to non-filtered models called also
nonhydrostatic equations. These models include the Euler
momentum equations, mass conservation equation and
energy conservation equation for compressible inviscid
ideal gas considered usually in the rotating frame related to
the Earth surface. Analysis of the corresponding linearized
nonhydrostatic equations reveals three kinds of the waves -
acoustic, gravity and inertial waves - from which only the

last waves are related to the synoptic processes. These
waves differ not only in the source of their origin
(compressibility, gravity force and Coriolis force together
with advection), but also in such important characteristics
as propagation velocity and energy contribution. In fact,
the characteristic propagation speed of the acoustic waves
in the Earth's atmosphere is about 330-340 m/s, while the
speed of the gravity waves is always below 330 m/s (with
majority of the gravity waves propagating at 100 m/s and
below) and the propagation speed of the inertial processes
(advection and Rossby waves) is usually about 10 m/s with
the (very rare) maximum values below 80 m/s [6,9,11]. At
the same time, it is well-known from evaluations of the
spectrum of oscillations of the Earth atmosphere that the
energy of the acoustic waves is negligible, the gravity
modes contain a small part of the evaluable energy for the
majority of the large- and meso-scale processes, and the
inertial modes contain the main part of the atmospheric
energy [9,11]. In this way, the problem of numerical
weather forecasting and atmospheric modeling is a stiff
problem.

Since the wave filtration can not be performed in the
differential form without distortion of the principal inertial
modes, the problem stiffness should be addressed in the
design of numerical algorithm in order to achieve
sufficient efficiency and accuracy of numerical solution.
Indeed, the time step of a numerical scheme is generally
determined by the Courant-Friedrichs-Lewy (CFL)
condition [7]:

h
T<

= E}

€ max exp

where 7 is the time step, & is the mesh size of a spatial

grid and ¢y, 1s the maximum propagation speed of

the processes treated explicitly in the chosen form of the
time differencing. For many totally implicit schemes there
is no restriction on the size of the time step due to
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numerical approximation. In such cases the time step can
be chosen solely on the ground of the physical limitations
related to the time scale of the considered processes and
the required accuracy of numerical solution. However,
implicit schemes require solution of high-order nonlinear
systems at each time step, that turns these schemes
excessively computationally demanding and inefficient.
For this reason, totally implicit time differencing is not
practically used in atmospheric modeling.

On the other pole, fully explicit schemes assure simple
and fast calculations at each time step of numerical
integration, but the size of the time step for non-filtered
atmospheric models is too small. For such schemes it is
defined by the CFL condition with the maximum speed
equal to the propagation speed ¢ .« acoust Of the acoustic

waves [7,15]. Therefore, for the typical vertical resolution
h, =400m used in large- and meso-scale models , the

CFL condition
h

7< t

c max acoust

requires the time steps less than 1 sec. Taking in account
that the characteristic time scale of the synoptic (large- and
meso-scale) models is about a couple of hours, such severe
restriction on 7 makes the fully explicit time differencing
computationally inefficient.

A more reasonable approach is a semi-implicit time
differencing, in which the linear terms of the governing
equations, which are responsible for the fastest waves, are
approximated implicitly, while the remaining terms -
explicitly. For example, applying an implicit
approximation to the main linear terms in the vertical, it is
possible to increase the time step almost two orders,
because the CFL condition will include the horizontal

propagation speed of the gravity waves ¢ [13, 15].

max grav
For the typical horizontal resolution £, =20 km , the time

restriction

h
r<—n

€ max grav

will allow the time steps up to 1 min. The price of this
improvement is a necessity to solve systems of linear
equations with narrow-band matrices at each time step,
which can be accomplished efficiently employing the
Gelfand-Thomas type algorithm [7]. However, the above
time step is still too small as compared to the accuracy
requirements.

Implicit differencing of all the main linear terms in
the governing equations allows further increasing of the
time step up to 5 min (under the same horizontal
resolution h;, =20km ) [7,14]:
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hy,

€ max adv

because only the maximum advection speed ¢ ax av

enters in the CFL condition in this case. This is a
reasonable choice for the time step, comparable with the
physical requirements of accuracy. However, such time
approximation leads (at each time step) to solution of high-
order linear systems with wide-band matrices, that pull
down the efficiency of this approach.

It is worth to note that the semi-implicit approach
assures usually the same level of accuracy of numerical
solutions as the explicit schemes with the same
approximation order. This is the reason why the semi-
implicit schemes are so popular in atmospheric modeling.
Nevertheless, when these schemes arrive to the limit of
their efficiency, some additional techniques should be
applied to speed-up computations. One of such techniques
is a splitting by physical processes. Applied in its extreme
form, it usually causes substantial additional errors, which
grows significantly when the time step approaches the
limit allowable by the CFL condition. In such cases a
numerical splitting scheme can be stable for rather large
time steps and keeps formally the required approximation
order, but the practical accuracy of numerical solutions can
fall down [7, 13, 15]. Therefore, the splitting techniques
should be applied cautiously, frequently using a partial
splitting, and checking the accuracy of the obtained results
against available atmospheric data and simulation output
of other verified models.

In this study, a partial physical splitting is introduced
in the semi-implicit scheme in such a way that all the
vertical modes are separated according their propagation
velocity. Such vertical splitting corresponds to the
analytical separation of the spectrum of the atmospheric
waves supported by the governing equations. The gravity
waves of the fast vertical modes are approximated
implicitly, while those of the slow vertical modes are
treated explicitly. It allows us to substitute the problem of
solution of three-dimensional elliptic equations by solution
of a set of the two-dimensional elliptic problems. The
solution of the last set of problems can be obtained much
more efficiently than for their three-dimensional
counterpart. Additionally, a simpler approximation can be
applied to slower vertical modes, because they contain a
small part of the total energy [9, 16]. The performed
numerical experiments show that applied vertical splitting
maintain the desired level of the accuracy of the
forecasting fields and speeds-up computations required for
each forecast.
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2 Governing nonhydrostatic equations

The momentum equations of inviscid atmosphere in
the coordinate system related to the rotating Earth can be
written as follows:

u, = fv—RTP, +N, ,
v, =—fu—RTP,+N, (1)

W, =%T—R7_"PZ +N, . @)

The continuity equations for compressible ideal gas is
P=—C—”(u +v, 4w )+i_w+N (3)
t c X y z RT P

v

The last equation is the thermodynamic one, including the
equations of the state for ideal gas,
RT g
I,=— P ———w+Nyp. 4
Cp Cp
The following notations are used above:
the independent variables: ¢ - the time coordinate, x,y,z
- the spatial Cartesian coordinates;
the unknown functions: u,v,w - the velocity components,
P =In p - the pressure logarithm, T - the temperature;

the given parameters: f - the Coriolis parameter with the
mean value ]_‘ =const, g - the gravitational acceleration,

T =const - the mean value of the temperature, R - the

gas constant, ¢, and ¢, - the specific heat at constant

pressure and volume, respectively;
The nonlinear terms N,,N,,N

mainly advective terms in each equation, whose specific
form will not be used in the subsequent formulas.

This is the standard form of the governing equations
of the nonhydrostatic atmosphere, which can be found in
different sources (e.g. [7,11]).

N, represent

w

3 Time splitting semi-implicit scheme

In this section the time splitting semi-implicit scheme
is presented and its analytical properties of accuracy and
stability are discussed and compared to the respective
properties of the standard semi-implicit scheme.

3.1 Standard semi-implicit scheme

The standard three-time-level semi-implicit time
differencing of the second order of accuracy for equations
(1)-(4) has the following form [8, 14, 15]:

T_ T _ .7 —T _PT+P—T
u —u :fv +v _RT +N,,
2r 2 2
T T cuF _P'+pP°t
L A Y -/ R o )
2r 2 2
T _ . T T - _pi4p—T
wow 8T gLt N, )
2r T 2 2
T T T T, T T,
P -P =_C717D7+D _Spwitw, L8 W +w +Np(T)
2% ¢ 2 ¢ 2 R 2
T°-T° RT P"-P° Trw "
SELE _EW W AN, @8
2T c, 2T c, 2

Here D=u, +v, - the horizontal divergence, 7 - the

time step, the superscript “7” denotes the quantities on
the next time level 7,,, = (n+1)r (so-called the prognostic

values), the superscript “—z” denotes the values on the
past time level 7, , =(n—1)r, and functions without

superscripts are considered on the current time level
t,=nt:

0" =lt, . x.2) . 0=0lt,.x.0.2). 07 =0lt,.x, y.2),
o=u,v,w,P,T.

It is easy to realize that the scheme (5)-(8) combines
the implicit Crank-Nicolson approximation with the
double time step for the linear terms, and the explicit leap-
frog approximation for the nonlinear and variable
coefficient terms.

The analysis of linear stability of the scheme (5)-(8)
shows that the time step is restricted by the condition

r< M
€ max adv
For the horizontal mesh size £, =20km and the

maximum advection velocity ¢ =60m/s, the

maximum allowable time step is about 5 min.

max adv

3.2 Splitting scheme: semi-implicit step

Although the scheme (5)-(8) is rather efficient as
compared to more explicit schemes, it has some
drawbacks, the main of which is a necessity to perform
inefficient computations at each time step related to
solution of three-dimensional elliptic problems arising due
to the implicit approximation of the linear terms. Since a
part of these terms is responsible for slowly propagating
internal gravity waves, the amount of computations can be
decreased by applying vertical splitting. Such splitting
allows us to separate and, consequently, approximate
differently the principal (fast) and secondary (slow)
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vertical modes. A similar approach has been applied
successfully in the hydrostatic atmospheric models [3, 4, 5,
10, 12]. To perform the vertical splitting, it is convenient
to divide each time step in two stages. On the first stage,
the explicit leap-frog scheme is applied to all the terms,
except for those responsible for vertical propagation of the
acoustic waves, which are approximated implicitly by the
Crank-Nicolson scheme:

AT -7

4" _f—RTP.+N,,
27
Py T _ _
S, = Ju=RIP+N, . )
T_ T AT T _ﬁr L p T
i ZTW _%T +2T ~RT =254 N, (10)
ﬁ)T_P—’Z' c c +w T A T
- pD__pu_Fi_u_,_NP’(ll)
27 c, ¢ 2 RT 2
TF 7% RT PP _p~* T 4w T
== _EWTW LNy (12)
2t Cp 2T Cp 2

The computations on this stage are much faster than
for the standard semi-implicit scheme (5)-(8). Indeed, the
last three equations can be decoupled from the system and
solved separately. Unknown functions in these equations
are coupled only in the vertical variable, that reduces (10)-
(12) to a set of decoupled one-dimensional boundary value
problems, each of which can be solved efficiently by the
Gelfand-Thomas algorithm [7]. After solution of (10)-(12)
is found, the remaining equations (9) have the explicit
form with respect two the horizontal velocity components.
The deficiency of the scheme (9)-(12) is its weak stability
[8, 13]:

h
T < —h s
Cmaxgrav

that means that for the horizontal mesh size #;, =20km

and the maximum propagation speed of the gravity waves

Cmax grav = 300m/s, the maximum allowable time step is

about 1 min.

3.3 Splitting scheme: correction equations

To improve the stability of (9)-(12), a more implicit
time differencing should be applied, for example, such as
in (5)-(8). Equations for the differences (corrections)
between solutions (prognostic quantities) of (5)-(8) and
(9)-(12), can be written as follows:

u - +RTP =L,

u

Vv +gfu +RTP = L,, (13)
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w*—T?T*+zR]_"P*z =L,, (14)
o« C * C * *
P+7-LD +1—pwz—1i_w =L, (15)
Cv Cv RT
* R ok *
T -2TP 48w =1, (16)
¢y Cp

where @ =@ —@°, @=u,v,w,T, P are the corrections to
be found and the linear terms L([J do not include the

prognostic values of the standard semi-implicit scheme:

L, =% -®TP,, L, =i —w®RTP,,
C[) ~
L,=0, Lp=—-£D, L;=0;

Gy

P=0"20+¢ ", p=u,v,w,T,P .

Considering, that the prognostic values of the first

stage @° are already calculated, the equations (13)-(16)

represent the linear system for corrections (0*. Evidently, a

solution of this system is equivalent to finding the
prognostic values of the standard semi-implicit scheme (5)-
(8), but, as it was noted above, such procedure requires
solution of the three-dimensional elliptic problems.
However, application of the vertical splitting can
significantly reduce the amount of the computations
without loss of accuracy and stability of numerical
solution.

The first step to perform the vertical splitting is
elimination of unknown functions w* and T from
equations (14)-(16), that leads to the following equation for

P :

% I4 =  Cy 1 £ 1 2 g2 *
P, +—=P, +— —P +—=|1+7"==|D =L; .(17)
R c,T

Cp TZH p

Considering the first two terms of the last equation
together with the kinematic boundary conditions w=0 on
the upper (z=0) and lower (Z = Zup) boundaries of the

atmosphere rewritten for the function P", one can arrive to
the corresponding Sturm-Liouville problem:

Prtprh = 2elig,): a8
PZ*—L_P*ZO , 2=0, =Ly - (19)
cpT

It can be shown that the spectrum of the last problem is
simple and positive, and the eigenvalues c; approach fast

the only limit point O of the spectrum set. This property is
important for a selective correction of the vertical modes.
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3.4 Splitting scheme: vertical decoupling

On the second stage of vertical splitting scheme, the
eigenfunctions F (z) of the problem (18)-(19) are used to

expand some unknown and known quantities:

(0* =Z¢Z(x,y)Fk(z), o=u,v,P, L.
k

Applying this expansion, the correction equations (13),
(17) can be rewritten in the form

ut =g+ RTP =L

9
v+t + TPy = L,

RTPY —H’cz(u;r +v;)= LJ;) .

2 20)

For a simplicity of notations the subscript "k" is omitted in
all quantities, except for ¢ .

Each of the systems (20) can be solved separately from
others and represents the time discretization of the
linearized shallow water equations with the corresponding
gravity wave speed ¢, . Internal vertical modes, with large

values of k, correspond to the slow gravity waves and
contain a small part of the atmospheric energy. Therefore,
they have no influence on the scheme stability and their
contribution to the solution accuracy is very small. Hence,
it is sufficient to solve only a few of the principal vertical
systems (20) in order to improve considerably the stability
of the semi-implicit stage (9)-(12). Analysis of the linear
stability of the vertically splitting scheme shows that the
restriction on the time step can be expressed as

r<tn

Cr

where c¢;,; is the maximum propagation velocity of the

vertical modes that remain uncorrected. For example,
applying corrections to the first four vertical modes in the
model with 30 vertical levels, it is possible to increase the
time step from 1 min to 5 min, because c5 =50m/s. The

achieved time step is practically equivalent to the
maximum allowable time step of the standard semi-
implicit scheme (5)-(8). In this way, in order to recover the
scheme stability after the semi-implicit stage (9)-(12), it is
sufficient to solve only a small fraction of the systems (20).
After this, the inverse vertical transformation returns the
physical values of the corrections for the pressure and
horizontal components of velocity, and, finally, the
corrections to the temperature and vertical velocity are
found by explicit formulas (14) and (16).

4 Numerical experiments

The described numerical scheme was applied to
forecasting of atmospheric fields on the horizontal area of

3000x3000 km2, covering the South part of Brazil and
adjacent territories (the center point was chosen at 30°

South and 55° West) and within the vertical layer of the
atmosphere extending from the Earth surface up to 15 km.
The horizontal grid was chosen to be uniform with the
mesh size of 20 km and the vertical layer was divided in 30
sub-layers of different thickness - the finest vertical
resolution was used in the planetary boundary layer and
near tropopause, where the vertical variations are the
highest.

The initial conditions were derived from the objective
analysis fields of the National Centers for Environmental
Predictions (NCEP), and the boundary conditions were
defined based on the global forecast fields of the same
center. The 12, 24 and 36-hour forecasts were calculated
on the defined above territory, but the evaluation of the
forecast skills was made on the inner territory of the size

1000x1000 km 2 in order to minimize the influence of the
boundary conditions. The forecasts beyond 36 hours were
not calculated, because it is well-known that they are
highly dependent on the provided boundary conditions
[1,2].

To evaluate the accuracy and efficiency of the
constructed scheme, the forecasting results were compared
to the respective forecasts obtained with the use of the
standard semi-implicit scheme (5)-(8) and the simpler
semi-implicit scheme (9)-(12). The standard measures of
evaluation of the forecast skills used in the short-range
numerical weather prediction were employed: the root-
mean-square error (the root-mean-square difference
between forecast and analysis fields for the chosen
meteorological element and vertical surface) and
correlation coefficient between the prognostic and actual
tendencies (again for the chosen meteorological element
and vertical surface) [1,2].

The root-mean-square errors for the geopotential
height of 500 hPa are shown in Fig.1 for the indicated
three schemes. This surface is quite characteristic for
evaluation of the synoptic processes in mid-troposphere.
The root-mean-square errors for the temperature at the
pressure surface of 850 hPa are shown in Fig.2. The
forecasts on this surface are important for evaluation of
convective activity in lower troposphere, which affects the
formation of clouds and precipitation in more complete
non-adiabatic atmospheric models. One can note a
practical identity of the forecast accuracy of the standard
and time splitting semi-implicit schemes for the both
assessed fields. The evaluations of the correlation
coefficients of the forecasts calculated with the indicated
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three schemes show similar results (not presented here):
the coefficients for the vertically splitting and standard
semi-implicit schemes are practically identical, while the
coefficient for the scheme (9)-(12) is a bit smaller, showing
slightly decreasing quality.

30

12 24 36

Fig 1. Root-mean-square errors of the forecasts of the
geopotential height (in meters) at the pressure surface of
500 hPa presented as a function of the forecast time.
Solid line - the semi-implicit scheme (9)-(12), dashed line
- the standard semi-implicit scheme (5)-(8), dotted line-
the vertical splitting semi-implicit scheme.

12 24 36

Fig 2. Root-mean-square errors of the forecasts of the
temperature (in degrees) at the pressure surface of 850
hPa presented as a function of the forecast time.
Solid line - the semi-implicit scheme (9)-(12), dashed line
- the standard semi-implicit scheme (5)-(8), dotted line -
the vertical splitting semi-implicit scheme.
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As it can be seen from the provided results, the
vertical splitting does not introduce any visible additional
errors and provides numerical solutions of the same level
of accuracy as the standard semi-implicit scheme: the
differences between evaluations of two forecasts are
practically negligible for both root-mean-square error and
correlation coefficient, and for both chosen meteorological
elements. At the same time, the computational time
required for the vertical splitting scheme is almost a half
of the forecast time for the standard semi-implicit scheme.
It is worth to note that according to the properties of the
spectrum of the eigenvalue problem (18)-(19), the number
of the fast vertical modes remains almost the same when
the number of the vertical levels increases. Therefore,
under current tendency of enhancing vertical resolution to
40 or 50 vertical levels, or even higher, the computational
speed-up obtained in the vertical splitting scheme can be
even stronger.

5 Conclusions

In this report we have presented a finite-difference
semi-implicit time splitting scheme designed to overcome
the problems related to numerical solution of the stiff
atmospheric equations based on the non-filtered Euler
equations of the ideal compressible gas. Each time step of
the constructed scheme consists of two stages: a simple
semi-implicit integration and subsequent solution of the
corrections equations for the fastest vertical modes. The
time step of stable integration is defined by the maximum
velocity of processes treated explicitly that allows the use
of the time steps comparable with those required by
physical accuracy. The provided results of numerical
experiments have shown the accuracy of the obtained
forecasts and the computational efficiency of the developed
numerical scheme.
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Abstract— The isocenter of the magnetic gradient fields in-
side a magnetic resonance imaging scanner is an important
parameter in gradient non-linearity distortion correction
methods for MR images. Currently there is no established
method for estimating the gradient isocenter. All existing
correction methods assume that the gradient isocenter coin-
cides with the DICOM coordinate center, which is close but
not exactly the same as the gradient isocenter. A difference
between gradient isocenter and DICOM coordinate center
could compromise the accuracy of the correction method.
The goal of this research was to develop a reasonably accu-
rate estimation method of the 3D location of the gradient
isocenter that was based on the geometry of a custom-
designed phantom. We present a two-step algorithm for
estimating the gradient isocenter and examine some of the
possible numeric methods to be used on each step.

Keywords: Isocenter, MR Imaging, least squares, total least
squares

1. Introduction

Magnetic resonance imaging (MRI) provides an excellent
modality for distinguishing different tissues in the human
body, which makes this modality essential for medical ap-
plications. MRI can also be used for treatment planning of
medical procedures that require a great degree of geometrical
accuracy such as functional radiosurgery [2]. Unfortunately,
the accuracy of MRI for medical targeting applications
is compromised by the presence of geometric distortions
such as non-linearities of the magnetic gradient fields or
inhomogeneities of the scanner main field [1], [3], [4], [5],
[6], [7], [8], [9]. Gradient nonlinearities can cause over 2mm
of distortion to the location of features in the image [6], [7].

Modern MRI scanners have built-in distortion correction
algorithms, that rely on knowledge of the magnetic field
configuration and its distortion. Built-in algorithms, which
are usually proprietary, are designed based on assumed
knowledge of the geometry and location of the gradient coils.
A more practical approach is to use a phantom of known
geometry and to derive the distortion by analyzing the MRI
images generated with such a phantom [1], [3], [4], [5], [6],

[71, [8], [9]. This method has the advantage that a scanner-
specific correction can be applied, which can also take into
account potential changes in the gradient fields over time.

Accurate knowledge of the gradient isocenter is essen-
tial to very accurate distortion correction methods, To our
knowledge, existing distortion correction algorithms, both
built-in and phantom based, make the assumption that the
gradient isocenter coincides with the origin of the DICOM
coordinates. This assumption may not be accurate and should
not be used if a high degree of accuracy is necessary.

The goal of this work was to develop and implement a
numerical software-based method to estimate the gradient
isocenter of the magnetic field inside an MRI scanner using
the MRI scan of a custom-built phantom. In our previous
work [3], [4], [5], [6], we used an oil filled plexiglas cube
with 159.50mm x 159.70mm x 158.11mm dimension that
was designed to fit MR scanners that were available at
that time. Current MRI scanners have a significantly wider
aperture, which necessitates a larger phantom to characterize
the field distortion. Furthermore, since the lower part of
the scanner aperture is occupied by the scanner table, the
scanning area occupied by the phantom or the patient is
not centered on the gradient isocenter, making correction
methods that assume that the phantom is centered with
respect to the gradient isocenter [3], [4], [5], [6], [7] obsolete
and potentially inaccurate.

2. Distortion Phantom

A new phantom design was developed with the intention
to probe the distortion in the 50 cm field-of-view (FOV)
of a modern 3T MRI scanner (Magnetom Trio, Siemens).
Due to the geometry of the gradient field nonlinearity, the
distortion is largest in the outer fringes of the FOV [3],
[4], [5], [6]. Capturing distortion data in the periphery of
the FOV is important for better accuracy of the distortion
correction. Building a very large cubical oil-filled phantom is
a challenge due to weight limitations and limited capability
to accurately machine a very large flat surface. Thus it
was felt to be impractical to simply scale up the original
phantom. Another limitation is that the phantom needs to
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fit inside the scanner head coil which needs to be used to
achieve a sufficiently high signal-to-noise ratio. To meet all
requirements, we designed a phantom that is comprised of 64
NMR glass tubes of 3 mm inner diameter, filled with copper
sulfate and arranged in 8 surfaces forming an octagon. A
water-filled cylinder in the middle of the octagon ensures a
good signal generated by the tubes. The distance between
tubes on the opposite side of the surface is 205mm, which
is about 28% wider than the original phantom. In addition
we also added four more surfaces to provide data and better
fit the headcoil. There are 8 removable tubes on each surface
with 10 mm gap between adjacent tubes. Each tube is about
207 mm long, which is also an increase of about 28% in
length from the original phantom. Tubes are placed along
the main axis of the magnetic By field to reduce the effects
of chemical shift and magnetic susceptibility and resulting
in high-quality axial images.

3. Computational Algorithm

The algorithm we described here is using simulated data
set that is based the geometric property of the phantom
and the properties of the MR images. The MR images we
are using have 1mm per pixel resolution for every image
and Imm thickness between two adjacent planes. In the
simulation, we will be using millimeters as unit for each
data point. Since the images we are using to collect data
points are all axial scans, we will only add noise to x and
y coordinate of each data point.

3.1 Tube Modeling

The tubes is 203 mm long. So our simulation data is
ranging from -100 to 100 on z axis for each tube. The
arrangement of the tubes could be seen in Figure 1. Our
algorithm is based on two standard assumptions [3], [4], [5],
[6], [7].: (1) the distortion in MR images are only caused by
the magnetic field inside MRI scanner and (2) the magnetic
field can be perfectly described using the sum of spherical
harmonic.

(b) Coronal view.

(a) Axial view.

Fig. 1: Phantom modeling without distortion

The spacial coordinate of the phantom must be trans-
formed into a coordinate relative to the gradient isocenter

of the magnetic field, see Equation 1, then using the first
5 terms of the spherical harmonic we can estimate a offset
in z, y, z direction, see Equation 4. Finally this offset is
added the original coordinate to create a distorted model, see
Equation 5. Also a very key requirement for this algorithm
is that the z-axis the phantom which is parallel to the tubes
must be aligned with the z-axis of the magnetic field.
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3.2 ISO-Center Coordinate Estimation

Using a exaggerated distortion parameter we can visualize
the shape of the distortion model. Without distortion, the
phantom appears as in Figure 1. With large distortions,
the phantom appears as in Figure 2, which is useful to
understand the form of the distortions. A more realistic
distortion can be seen in Figure 3, which uses distortion
parameters from [6].

Distortion in the sum of spherical harmonics is coupled
in the x and y directions (orthogonal to axis), making the z
axis independent. Noise and distortion are thus very different
in the z direction as opposed to the x-y plane. We break
down the gradient isocenter coordinate estimation into two
big steps: estimation of z coordinate and estimation of x,y
coordinate.

3.2.1 Z-Coordinate Estimation

Since the distortion model is based on sum of spherical
harmonics, the shape of the distorted data for each tube
is an even polynomial function. Figure 3 shows that the
realistic distortion is quite small, being about a maximum
of 2 pixels, and the smaller the distortion the more sensitive
the problem becomes. With the first four terms of sum of
spherical harmonics, the shape of the each tube can be seen
as part of a polynomial function of 4th degree. Since the
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(b) Enlarged axial view.

(c) Coronal view.

Fig. 2: Phantom modeling with large distortions

data points of tubes only represent the middle section of the
4th degree polynomial function, it is also very similar to a
shape of quadratic function. The offset between the largest
distortion and the smallest distortion can be as small as I mm.
With such a small margin, it is more practical to fit the data
points to simpler model than a 4th degree polynomial. Only
the first spherical harmonic is needed in order to estimate
the point where gradient is zero to measure the isocenter.
Furthermore, the first term of the sum of spherical harmonics
has the largest signal to noise ratio, so we use a quadratic
model to fit the data points.

We can see the distorted tube models’ middle part is
bending toward the center with both end bending outward. If
we were to fit each tubes to a parabola and locate the point
where its gradient is zero, that point’s z-coordinate should
be the same as the z-coordinate of the gradient isocenter of
the magnetic field. The z-coordinate is measured for all 64
tubes and the result averaged. The resulting estimation is
within 0.1 mm of the actual z-coordinate.

3.2.2 X,Y Coordinate Estimation

The estimation of the x and y coordinates of the isocenter
is the more difficult problem. We are assuming that the
difference between the distortion on x and y direction are so
small that we can treat them as if they are the same. When
this is not true, the errors on the isocenter location will be
asymmetric, and it will be even more important to maintain a
good numerical method to estimate the isocenter. With that
in mind, the distorted data of a tube should all stay on a
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(b) Enlarged axial view.

(a) Axial view.

(c) Coronal view.

Fig. 3: Phantom modeling with small distortions

plane which isocenter is also in. The intersection of such
planes from each tube should be a line that goes through
isocenter. Using the isocenter estimated from previous step
we should obtain an estimation of x and y coordinate.

Since the tubes were aligned to the z-axis to reduce
magnetic field distortion by the tubes, the range of data in the
z-direction is of necessity larger. In the x-y plane the range
of points is controlled by the distortion, and is thus only
a few pixels. The resulting equations are highly sensitive,
requiring careful handling in our numerical algorithm.

The equation of a plane in three dimensions is as follows.

ax+by+cz+d = 0 (6)

Rewriting eq 6 with the measured data, we can solve for
the plane each tube lies in. This in turn can be used to find
the intersection of the planes, which is the isocenter.
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Note that eq 6 can be rewritten so either x or y is inde-
pendent, which affects the error in standard least squares.
This becomes particularly important when the non-linearity
is not the same in the x and y directions, as scaling is also
well known to cause problems for least squares.
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As we can see from figure 4, by using equation 7
and equation 9 to estimate planes in figure 4(b) and 4(d)
respectively we get and quite accurate x and y coordinate
estimate. However, when you swap the choice of equations,
even though they are mathematically identical, they make a
huge numeric difference as shown in 4(a) and 4(b).
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(a) LS fit with y orientation. (b) LS fit with x orientation.

(c) LS fit with x orientation. (d) LS fit with y orientation.
Fig. 4: Phantom modeling with distortion, showing differ-
ences in isocenter estimates due to how the LS equation is
oriented.

When estimating the x-y coordinate using least square we
should keep in mind that least square assumes there is no

observation error, it will only try to correct one side of the
equation depending on how it is setup. With this in mind,
we uses equation 8 for x coordinate estimation and 11 for
y estimation. For the tubes on the diagonal planes, as we
can see in fig5, they offers neither a good data for x nor
y coordinate estimation as compared to fig 4 (b) and (d).
So in order to utilize the diagonal tubes we have to rotate
these tubes to either x or y plane, and get an estimation of a
rotated x-y coordinate, then rotate the rotated x-y coordinate
back and average it with original x-y coordinate estimation.

= | ) A\

(a) LS using x orientation. (b) LS using y orientation.

Fig. 5: Phantom modeling with distortion, showing how
diagonal tube planes without rotation do not improve the
estimates produced.

In order to obtain a good estimate, we thus must separate
the estimation of x and y, as well as rotate the diagonal
oriented tube planes and then separate the estimation of x
and y and rotate back. We refer to this algorithm as Rotated
Separable Least Squares (RSLS). We now present the RSLS
algorithm to estimate x-y coordinate of gradient isocenter as
follows:

1) Use equation 7 to estimate tube planes for tubes at
upper and lower surfaces.

2) Solve equation 8 for x and y, but only use x for x
coordinate.

3) Use equation 9 to estimate tube planes for tubes at left
and right surfaces.

4) Solve equation 11 for y and x, but only use y for y
coordinate.

5) Rotate diagonal tubes 7 /4, and repeat steps 1-4.

6) Rotate x-y coordinate obtained from previous step by
—m /4.

7) Average the x-y coordinate from previous step with
x-y coordinate calculated from step 2 and step 4 for
final x-y estimation.

Alternatively, after obtaining the plane equation parame-
ters we can put everything into one matrix and do a one time
estimation using either least square or total least square. In
table 1, we can see the comparison of accuracy of estimating
an isocenter at [4 4 3] using different methods. Least square
tends to lean toward one coordinate more depends on setup,
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T Oz err Yy oy err
RSLS | 3.9709 | 0.1068 | 0.0291 | 3.9677 | 0.1008 | 0.0323
LS 39950 | 0.1118 | 0.0050 | 3.9414 | 0.1011 | 0.0586
TLS 4.0800 | 0.1035 | 0.0800 | 4.0800 | 0.0964 | 0.0800

Table 1: Average of 200 runs using different methods for
estimating the isocenter at [4 4 3| in the presence of
symmetrical distortion

T Oz err Yy gy err
RSLS | 3.8073 | 0.1117 | 0.1927 | 3.9838 | 0.1059 | 0.0162
LS 4.2191 0.1117 | 0.2191 3.8765 | 0.1003 | 0.1235
TLS 9.5744 | 0.2616 | 5.5744 | 8.6905 | 0.2393 | 4.6905

Table 2: Average of 200 runs using different methods for
estimating the isocenter at [4 4 3] in the presence of non-
symmetrical distortion

while total least square has an accurate and very balanced
result due to the property that it will try to correct errors on
both side of the equation. In the contrast, our method has
best properties of both methods:

o It is accurate. For both x and y coordinate it does a
better job than total least square, much better than least
square’s worst case and very close to least square’s best
case.

« It has very balanced result. Both x and y coordinates
are very close the correct result equally just like total
least square.

« It has very tight error boundaries. After 200 runs, it’s
error is tighter than standard least square.

Therefore, our estimation method is a good alternative
to traditional least square or total least square methods.
Although it might require more computation, it could be
easily dealt by modern GPU computing. And due to the fact
that each least square estimation has relative small matrix,
and each estimation is independent of each other, it is very
close to “embarrassingly parallel” type of problems and
makes it easy to solve.

In table 1, the test is run using a symmetric X-y axis
distortion. We can see that all three methods performed very
well. RSLS method’s result is slightly better than Total Least
Squares (TLS), and one on y axis it is better than standard
Least Squares method.

When the distortion is not symmetrical the issue of proper
estimation becomes crucial. In table 2, we show the result
of using non-symmetrical distortion in which the y direction
was set to be twice the distortion in the x. In this test, TLS
method’s result is the worst, off by a few millimeters. Both
LS and RSLS show comparable degradation of performance
in x. LS shows degradation in the estimation of y as well,
but RSLS, since it is separable, does not experience any
degradation of it. Only the RSLS’s result remains quite
accurate. This shows the advantage of RSLS over the other
two traditional methods.
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4. Conclusion

In this work, we developed a new numerical algorithm to
accurately determine the gradient isocenter of MRI scanners
based on a new distortion correction phantom. Knowledge
of the gradient isocenter is an essential part of gradient-
nonlinearity correction methods. We have shown that the
method used in this work to estimate the gradient isocenter
is a good alternative to more traditional estimation methods
such as least squares and total least squares. The new
algorithm is particularly suited when the image data are
extremely sensitive to the presence of noise and asymmetric
distortion. Using simulated (but realistic) distortion data, it
was shown, that the resulting estimated isocenter was within
0.2 mm of the actual gradient isocenter, leading to a better
estimate than the currently used DICOM coordinate center.
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Angular power spectrum of scattered radiation
in ionospheric plasma with both electron density
and magnetic field fluctuations
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Abstract - The influence of anisotropy of both electron
density and external magnetic field fluctuations on the
spatial power spectrum (SPS) of scattered electromagnetic
waves is considered in this paper. Stochastic differential
equation is obtained for the phase fluctuations using smooth
perturbation method taking into account diffraction effects.
Second order statistical moments are calculated for arbitrary
correlation functions of electron density and external
magnetic field fluctuations. Numerical calculations were
carried out for anisotropic Gaussian correlation function
containing nondimensional anisotropic parameter and the
angle of inclination of prolate irregularities with respect to
the external magnetic field. SPS of scattered radiation has a
pronounced gap caused by electron density fluctuations. The
influence of an external magnetic field on a double-peaked
shape has been analytically and numerically.

Keywords: Ionospheric plasma, Anisotropy, Phase

fluctuations, Angular power spectrum

1 Introduction

Peculiarities of the electromagnetic waves propagation
in randomly inhomogeneous media have been intensively
studied [1,2]. However, the large-scale irregularities were
considered to be statistically isotropic. In many cases
irregularities are anisotropic. Particularly, they are observed
in lyotropic crystals with a hexagonal structure [3], in the
Earth’s ionosphere random plasma inhomogeneities are
aligned with the geomagnetic fields [4]. The evolution of the
angular distribution of the intensity at light propagation in a
randomly unhomogeneous medium with strongly prolated
anisotropic irregularities of dielectric permittivity has been
investigated in [5,6]. Using the smooth perturbation method
it has been shown that the spatial power spectrum (SPS) of
multiply scattered waves at oblique illumination of a
boundary of a randomly inhomogeneous medium with
prolate irregularities by mono-directed incident radiation has
a double-peaked shape. Numerical simulation has been
carried out by Monte-Carlo method. Second order statistical
moments of the SPS in magnetized anisotropic plasma have

been investigated in the complex geometrical
approximation and perturbation method [7-10].

The features of the SPS of multiply scattered radiation
in a randomly inhomogeneous anisotropic ionospheric
plasma are investigated analytically and numerically taking
into account diffraction effects caused by both electron
density and external magnetic field fluctuations. The
expressions  for  phase fluctuations of  scattered
electromagnetic waves in the principle  (wave vector of
mono-directed incident radiation and external magnetic field
are located in this plane) and perpendicular planes are
derived using the smooth perturbation method. Correlation
functions of the phase fluctuations are calculated for arbitrary
correlation functions of fluctuating magnetized plasma
parameters. The influence of an external magnetic field on a
gap caused due to electron density fluctuations in the
ionospheric plasma is considered for the first time in this
paper. Numerical calculations are carried out using satellite
and remote sensing data.

optics

2  Formulation of the problem

Let us consider the features of the SPS of scattered
electromagnetic waves in the anisotropic ionospheric
magnetized plasma with both electron density and external
magnetic field fluctuations. Initial is the following wave
equation:

o ,
{axi axj _Aé‘lj _kO 811(1')} EJ(I’) =0. (1)

Wave field we introduce as E(r)=E;; exp(p, + ¢, +.
+ik, y+ikyz)(k, <<ky). If

propagates along z axis and the vector of an external
magnetic field lies in the coordinate plane (K]||z,

electromagnetic ~ wave

<H, > e yz), components of the second-rank tensor of
collisionless magnetized plasma have the following form

[11]:
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v v(l-usin’ )
8xx=1_ b 8)9721_—’
1-u 1-u
£ =1 v(l-ucos’ a) v ucosa
=l-—— e, =&, =,
zz l—u Xy rx l—u
__uvsinacosa  VyJusina

2
where « is the angle between the vectors k and H,;

&, =i&., .=

2 2 2
Xy xy> ©xz u=(eH0/mca)) ,V:wp/a)

w,=@4rNe’ /m)"? is

the plasma frequency, Q,  =eH,/mc is the electron

—1&,,,

are the magneto-ionic parameters,

gyrofrequency. Dielectric permittivity of a turbulent
magnetized plasma is a second rank tensor, which is random
function of a spatial coordinates &;(r)= 8(0) (1) (r),

e ()] <<1.

approximation, second one containes fluctuations of both
electron density and external magnetic field fluctuations of
the ionospheric plasma which are random functions of the

v(r)=vo[l+m)], u(r)=u,[1+

First component represents zero-order

spatial coordinates:

+2 4y (r)] .
In a zero-order approximation we have the following
wave equation
0
(t )} 0, =0,

62(/’0
0x; 0x;
€)

containing the set of three algebraic equations for the £, i

1 990 09, +(k2+k2)5 —ke
ox; 6

regular field components:

[((» 1— K
XX ko

k
zg(O)E (1= gw))EO [kL+s$)JEOZ=O,
0

JEOX +i &VE,, —i EQE,. =0,

: k !
i £DE, +| el +-+ |Ey, - "—;—g;zm E),=0. (4)
ko ko

Solution of determinant imposes the restriction on the
parameter y =k, /ky:

(2-¢, ),u +2e,u ‘r(2-2e, T En TELE, T

2 ~2 2
+8yy & _‘c"yz _gxy) H +2|:gxy &y + 8yz(1 8xx)] H +

+e. (e, —lte,)+28 e, +E(s, —1)+

—E,E,,
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SZZ:|=0.

Taking into account that fluctuations of the complex phase
( (12
1] > §02 ~ 8

conditions characterizing the smooth perturbation method:

)

2 <2
+e,. (6 —D+E,

are of the order ¢, ~ and the well known

%<<k0|(/)1|, I |<<k0|aa(pl
%<<k o, | |az(p2| <k |6(p2|
Oz AR | oz | 0| Oz

in the first approximation we obtain:
o2
P
0x; 0x;

+2lkoaa j kg “”}EO_,:o.

990 091
ox; Ox;

L op 09y

. Op
-0 | A +2ik —
ox; 0x; ”( e

(6)

&
where A, =(0%p, /0x*)+ (0%, / 0y*) is the transversal
Laplasian.

Two-dimensional Fourier transformation for the phase
fluctuations is

0,(x, ,2) = .[dkx.[dky Wk, k,.2) explikx+ik,y),
For i=x component from equation (6) we obtain
differential  equation for  two-dimensioanl  spectral
component:
0
a—"’+ E’ {k(k+k) 0
A k, =0 —2k, E, on
EOX
kZ
~ky(k, +2k) [y = =i —= (7)
k, %= -2k,
EOX

The relations of the mean electric field components are

determined by the  well-known  formulae [11]
(E,, ! Ey)=iP,, (E,./ E,,)=il";, minus sign and index
j =1 correspond to the extraordinary wave, plus sign and
the polarization

index j=2 - to the ordinary wave;

coefficients are [11]:

2\/E(l—v)cosa

P =
u sinzai\/uzsin4a+4u(l—v)zcosza

J

r v usina+Pjuvsinacosa
. = > 5
l-u—-v+uvcos o

()
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In general, ordinary and extraordinary waves in collisionless
magnetized plasma are elliptically polarized.
Transverse correlation function of a scattered field has

W (p)=<E()E (r+p)>
taking into account that the observation points are spaced
apart at a small distance p={p,, p,}:

the following form [6]

. 1
W (p.k )= E} exp(—ip, k,)exp { R{E (< o (r) >+

+<pl (r+p)> )+ <@ (r) ¢ (r+p)>+2<0, >]} ©)

where Eg is the intensity of an incident radiation.
SPS of a scattered field in case of incident plane wave
W (k' k) is easily calculated by Fourier transform of the

transversal correlation function [1,2].

wk' k)= [dp, W (p,.k )exp(ik'p,). (10)

2.1 Second order statistical moments of the
phase fluctuations

In these notations two-dimensional spectral component
of the phase fluctuation of scattered electromagnetic field (7)
in the first approximation satisfies the stochastic differential
equation:

v _ihody g e B
dz Tk +2iky Tk +2ik
{0 kykys2) =[P} 80 (ko) =T 80 (ko 2) ]|

(11)
ky(ky +k )P+ ko ko Ty, dy =k, (k, +2Kk,) .

The solution of this equation satisfying the boundary
condition has the following form

wik, .k z)—z—jdz{ Ok

~[P, &0k b, 2) T £ (K, ky,z')]}~

where: d| =

kyok,,z") -

d,—id
cexp| -—2—1 : L_(-z2)]. (12)
rj kx + 2lk0
Taking into account that: <T,,;(k,z") T s(x',z")>=

oo (K2’ =2")6(k +K) and changing the variables:
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z'=z"=p , Z'+z"=2n, second order statistical

moments of phase fluctuations of scattered electromagnetic
waves for arbitrary correlation function of electron density
fluctuations are finally expressed as:

<pir)>="20 jdk jdk GIJ”Gz[ N

+ V.

XZ,XZ

+2(7, Vxx,xy_ny,xz)J{l_eXp[(Gl_i GZ)L]}

(13)

—1 G2 ,
—2 |:Vxx,xx +
G2+ G2

XX, XZ

(r+p)>—— jdk jdk

! ’
+ ny,xy + sz xzt 2( XX,XZ Vxx,xy -

Vxly,xz) :| ’

{1-exp[ (G, +i G))L]} , (14)

XX, XX Xy, xy

2 © 0
<e(r) <Pf“(r+p)>=m;°L .[dkx J'dky (Vi +Ve

+ sz Xz +2( XX,XZ Vx”x,xy _Vx’;/,xz) :|6Xp(—ikx Px _iky py)
(15)
where: Vaﬂ,yé EVaﬁ,yé (kx ky, iG3_G4), Vl;ﬂ,}/5 =
" 2 '
w o ek =Tk +2dy ko) 403 ), Vi, 5=
Vap.ys (kek,, —i Gy —Gy), indices denote the product of

fluctuating terms of the second rank tensors;

1
Gy == (k= Pk K,
0

1
G250 [ TPk, +T k) Kl + 2k K} ],

1

0

G4=L2(P].F/.kf+4k0kL)ky.
4k; :

For i =x component from equation (1) we obtain stochastic
differential equation in the second approximation
o o’p, dp, 0
o vir, 22 ~ (kP 4k )= P _T% _
6x6 oy

2
l a(pl a(pl aq)l , (16)
 ox 6y Oy

iP
! ox oy

ik, 90 g, 00
oy Oz
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By Fourier transform first term of the right part of equation
(16) can be written as:

”ko jdk jdk i[V

99 09 _ o
Gl+Gi- ™

ox Oy

+ ny,xy + sz,xz + 2( xx,xz Vx.x,xy - ny,xz )]

{1-exp[(G,-i G,)L]}. (17)
Solution of equation (16) is expressed as:
1

Re<@,(r)>= Re ZX0 dk, | dky, ———-

? j j G2 +G}

1
S L(A4+iB)+——— (4G, —-B,G,) +
{ (4 +iBy) G12+G22[(1 1=B1Gy)
. 1 :
1 +G;

V)] (18)

|:Vxx,xx + ny,xy + sz,xz + 2( xXx,xz Vxx,xy

where: 4 =— (P, G,k k, +G, k}), 4,=(4G,-BG,)-

cos(G,L)+(B,G, + 4G,)sin(G,L) , B, =Gk, —P; Gy k k

xyo»
B, =(B,G, + 4G,) cos(G,L) - (4G, — B,G,) sin(G,L).
In the absence of an external magnetic field (H, =0,

uy =0), from equation (8) follows: P, =T";=0, d, =0,
and (12)-(15) coincide with [6].

2.2 Numerical calculations

In analytical and numerical calculations we will use
anisotropic Gaussian correlation function of electron density
fluctuation [12] for investigation of the influence of electron
density and external magnetic field fluctuations on evolution

of the SPS
L Ki ke
0 P\ s ATy

27, P3K, K 4 |-

W, (k,.k,.k)=c,

(19)

This function is characterized by anisotropy factor of
irregularities y =/ /1, (ratio of longitudinal and transverse

linear scales of plasma irregularities with respect to the
external magnetic field) and the inclination angle of prolate
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irregularities with respect to the external magnetic field ¥, .

by =1+(1_Zz)2 sin’ 700052 Yo /ZZ: y 2 = (sin’ Yot

+x7cos’y,)/ 1%, py=(=x*)siny,cosy, /227,

-1/2

[ = J, (sin2 Yo+ ;52 cos’ ;/0) . In isotropic case (y =1)

we have: p,=p, =1, p,=0;at y,=0": p, =1/ x>,
p,=1, p,=0.

We investigate the influence of electron density
fluctuations on the SPS of scattered radiation in turbulent

magnetized plasma (H, #0). At T =k,/ >>1 using the
saddle point method, we obtain:
o*,f O T 2

82 42

sin(s*koL) exp(~T7b,)

<@i(r)>+<p *(r+p)>=—
t 1

ds ———
e

<o) g (r+p)>=

a,%QszkOLTdS 1
16 Zz i \/176

Vi 1
exp{—T {pl s +sz(s2 +2s5u) +2p3(s3 +2$2,u)}

—ins |,
2 2 0
T ky L 1
Re<(p2(r)>=—6” &, kzo .[ds
A AN
1 . 2 2
1= sin(ky Ls*) |exp(—T"b,) , (20)
{ kOLSZ (ko )} p( )
1 1 k
where: b, =—2——p2(m32 —2myus)+pymys, x=—-,
4 k,
= (1 ) [1+u0 2\/u_0(s1na cosa +\/_s1nacosa]
Uy

1
s=—2, bfZ (?+2p2m5m6+4p3m55} n=kpy

1
=m oy vy ThyL/4, my=— (2T +2P, =T ;5%),

1 1
my= BT, m =Z[(s+u)P +r, 1,

=% (s*+2s ).
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It should be emphases that “double-hump” shape of the

SPS caused by electron density fluctuations in turbulent

Numerical calculations were carried out for 0.1 MHz and
plasma without external magnetic field are more pronounced

40 MHz at ¢ =15°. The solution of the dispersion equation
1=0395, for 0.1 MHz and
than in magnetized plasma at /4, # 0. Numerical analyses

show that neglecting diffraction effects, i.e. neglecting the

(5) yields the roots:
term k; /2k§ in the arguments of 2D spectrum (13)-(15) or

1 =0.114, for 40 MHz.
The curves in Figure 1 illustrate the dependence of
normalized correlation function of scattered electromagnetic
field versus non-dimensional parameter 77 for 7 =200 and  in set of equations (20), “double-humping” effect in the SPS
are normalized on their maximum value. Second maxima on
the solid and dotted lines correspond 77 =52 and 1 =16,
1 ~

disappears.

respectively. Next maxima at 0.1 MHz appear at 1 = 32, 48,
64 (periodical oscillations). Increasing parameter 71 0.8 -
normalized correlation functions rapidly attenuates. 06 -

Figure 2 presents the dependence of the SPS of scattered ~
k . Numerical

04 -

field versus nondimensional parameter
02 -

T |
calculations show that for 0.1 MHz (left figure), at /{, =0, g ,"'
the gap arises due to electron density fluctuations. First and :5: 9 ,:"
second maxima correspond k=0.355 and £=0.1, = i
respectively; gap appears at k=0.194. In magnetized a /
turbulent plasma (/{, #0) two pronounces maxima arise at
k=038 and k=0.14; and two gaps at k=0.37 and

k=0.42. For 40 MHz (right figure) at H;=0 (first
maximum arise at k=0.11, and next two maxima at
k=0.033 and k=0.189. First two gaps appear at
k=0.072 and k=0.163; next two gaps at k=0.007

and £ =0.228.

0.6

¥ <
08 o
06 m:
- 0.4 ",5
i -l
é 0.2 f
) = 02 w
B 0.4
06
-0.8
-1 05
-150 -100 -50 0 50 100 150
N
Figure 2. Dependence of SPS (10) versus k . Left figure
T=2500, n=0.395,

corresponds to 0.1 MHz at:
2 =130, y,=15°, &=1, k,=28km™', B,=6.
Right figure corresponds 40 MHz at: T =500,
u=0.114, y=150, y,=5", &=1, k, =840 km™",
B, =4.Dotted line denotes H, =0, solid line /, #0.

Figure 1. Dependence of normalized correlation function

of scattered field W__.(n,u) versus distance between

two observation points 17 =k, p, at different values of
the parameter £ . Dotted line corresponds 0.1 MHz, solid

line 40 MHz.

At H, #0 first and other two maxima arise at k¥ =0.06
and k=0.02, £=0.08, respectively. First gap appears at

k =0.03, second one at £ =0.795.



44

3 Conclusions

Numerical calculations show that for
Gaussian  correlation function second-order statistical
moments are nonlinear functions of wave vectors. For
electron density fluctuations spatial power spectrum has a
pronounced gap along a direction of wave propagation and a
double-peaked shape. However, external magnetic field
fluctuations can lead to the generation of different nonlinear
effects. On the basis of the proposed theory some observable
nonlinear effects of the ionospheric plasma can be interpreted
and (or) predicted using different correlation functions of
fluctuating magnetized plasma parameters taking into
account satellite and remote sensing data.

anisotropic
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Abstract - This article describes the method of mathematical
and program solution of optimization problems. An approach
of choosing an effective method of solution is shown.
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problem  solving,

The problems of distribution of resources can be
reduced to problems of conditional or unconditional
optimization [1-2]. Further, it is possible to apply methods of
optimization to these problems. The methods of optimization
are described, in particular, in works [3-11] (see the
references below).

Let's consider the following problem:

F(X)—>min
xeE"
CSSXSSdS’ s=1..n;
q,(x)=>0; v=1..t;
r(x)=0; k=1..,t,

Where the functions
FO) 6,00 K(x)

are convex.

When solving mathematical problems with an unexplored
criterion function we face a problem of a choice of a concrete
method of solution. The method chosen at random can
converge very slowly to a point of a minimum of criterion
function or not give a result at all. It is not always possible to
receive characteristics of criterion function (convexity, gully,
etc.). Therefore, when choosing a method, it is difficult to
apply the heuristic reasons based on such characteristics.

Thus, a problem arises when trying to choose an effective
method of solving a problem. This process can be automated.

The considered problem can be solved with a help of a
computer system, which allows, depending on the information
received during the search of the solution, to change not only
methods of optimization, but also to replace values of
parameters of a method on which the efficiency of methods
also depends in many respects. Thus, it is possible to apply
multiple methods to solve the problem without stopping the
process of solution. The most effective algorithm is being
chosen automatically at each stage of solving the problem.

The following approach of solving optimizational problems
lays in the basis of a system. We shall designate

BP.R,....P,

- methods of the optimization, included in the system.
Various methods, based on characteristics, are included in the
system, because the criterion function can have a complex
structure.

The problem-oriented list of methods
Pkl' sz,---, Pks

is formed from a set of methods that are in the system, if any
information is known about the criterion function (for
example if it is known, that it is convex, gullied, square-law,
etc.). The solution of a problem consists of steps. The most
effective method from the list is being revealed on each step,
and then the solution of a problem with the help of this
method. The certain time intervals are allocated for revealing
and solving the problem. The time, which was allocated for
revealing the effective method, is used for promotion to a
point of a minimum, because the current point is used during
solving the problem. It allows to save time for solving the
problem.

At a stage of finding of an effective method to all methods
from the list

45
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R P P

1 S

it is enabled to solve a problem during the allocated time

interval At .

After all methods had an opportunity to solve a problem
during the allocated time, search of an effective method stops,
gets out the most effective method of the list

R P P

The size At depends on time, spent by a computer on one
calculation of criterion function and amount of calculation of
criterion function on one iteration, and is calculated as
follows:

At =au

Where M. time spent for one calculation of criterion
function,

a=maxa,
r r

a . o .
Where X - amount of calculations of criterion function on

I P

one iteration by a method r.

Thus, at this stage comes out the most effective method.

At the following stage the most effective method is used for

solving the problem. The time allocated for solving a
problem, is calculated as follows.

7o =VAL 51
s = qus—l + 2-O.

The size V' is taken a priori, and depends on complexity and
dimension of criterion function. The size

g, =1

if the same one method appeared as the most effective on two
consecutive steps. If not, then we take

q,=0

It means that the solution of a problem proceeds, if any
method appeared effective on several consecutive steps.
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Efficiency Ei of a method P' is calculated based on the
formula:
E ‘F(Xk) _ F(Xk+1)‘
R+
Xk Xk+1
Where ' - is an initial and final points, when using a
method P'

F(Xk) F (Xk+l)
points;

- values of criterion function in these

o . is a small positive number. Efficiency of a method is
equal to zero, if the value of a criterion function for allocated
time has not decreased.

If for all methods P' from the list of methods

Pkl’ sz""’ Pks

E =0

it happens that I , then it means, that the considered
list of methods cannot effectively solve the given problem. In
this case the further search of an effective method by the
given list of methods stops. To avoid such situation, it is
necessary to include various methods into the list, so the list
could be oriented to solve different types of problems.

If all the methods that are included in the system have finished
their search of solution then we finish the work. The system
gives out the saved up information about how the search of a
solution to the problem was happening (carried out methods,
values of criterion function, time of search, etc.).

Due to self-training, the system enables an automatic choice
of an effective method of optimization from the available list

R P P

for solving specific problems.

Now let's consider the approach incorporated in the system to
solve a problem of finding a global minimum of function

F(x)

Let functions
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F(9) (¢ 59
not necessarily are convex.

Usually, in practical problems there is no goal to find a global
minimum with high accuracy. With methods of global
optimization it is possible to find a good initial approximate
solution to problem, and then to use effective local methods.
Generally it is difficult to find out, whether the last found
local minimum is the global solution. Except for some narrow
classes of problems.

The search of a global minimum can be stopped, if in the
current point we got a value of criterion function, which
satisfies the requirements of a real life practice, or if we have
used up the time that was dedicated to solve the problem.

The best received value of a function can be considered as a
final solution of a problem.

When solving practical problems of global optimization the
important value has a choice of good initial solution. In this
case it is possible to find the minimum nearest to them.

In rare cases it is possible to conduct an analytical research of
a criterion function and to receiving the information about the
value of a global minimum, or its location.

But generally the considered problem is complex enough,
though there is a big number of numerical methods and
algorithms of global optimization. At the same time, there is
no established classification, both methods of global
optimization, and corresponding problems. We shall note,
that the majority of authors adhere to classification of
methods depending on the used information about the
criterion function.

The process of search of a global minimum differs from the
process of local optimization by that, that all methods of
global optimization are not relaxational. Also, during the
global optimization, each method should make a certain
number of steps, only after that it is possible to make a
decision on transition to another method. Thus the
information received as a result of previous search, further is
not always possible to use.

However, despite of these difficulties, we can control the
process of finding a global minimum.

First, it is possible to change some parameters of this method,
when we are looking for a global minimum.

Second, it is possible to do a transition to processes of a local
search, from some current points of the process of a global
search.

Third, it is possible to make the values of some variables
fixed, during the search of a global minimum of the function
that has the large number of variables, and to carry out global
minimization on the rest of the variables.

These moments allow us to control the process of a global
search.
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Abstract— While the surjectivity of the global map in
two-dimensional cellular automata (2D CA) is undecid-
able in general, in specific cases one can often decide
if the rule is surjective or not. We attempt to classify as
many 2D CA as possible by using a sequence of tests
based on the balance theorem, injectivity of the restric-
tion to finite configurations, as well as permutivity. We
introduce the notion of slice permutivity which is shown
to imply surjectivity in 2D CA. The tests are applied
to 2D binary CA with neighbourhoods consisting of up
to five sites, considering all possible contiguous shapes
of the neighbourhood. We find that if the size of the
neighbourhood is less than five, complete classification
of all rules is possible. Among 5-site rules, those with
von Neuman neighbourhoods as well as neighbourhoods
corresponding to T, V, and Z pentominos can also be
completely classified.

Keywords: cellular automata, surjective, permutive, classifi-
cation, neighbourhood

1. Introduction

In the theory of cellular automata (CA), the surjectiv-
ity of the global map is one of the most extensively
studied properties of CA. It is only natural to ask,
therefore, what are the examples of surjective CA?

In the case of one-dimensional CA, such examples
are easy to construct because there exists the well-
known Amoroso-Patt algorithm for determining if a
given elementary cellular automaton is surjective [1].
Using this algorithm it can be shown that among the 88
minimal elementary CA rules, the only surjective rules
have Wolfram code numbers 15, 30, 45, 51, 60, 90, 105,
106, 150, 154, 170 and 204.

In two dimensions, however, the situation is much dif-
ferent. It has been shown that the question of surjectivity
of two-dimensional cellular automata is undecidable [4],
which means that it is impossible to construct a single
algorithm which would always decide if an arbitrary rule
is surjective or not. This, of course, does not exclude a

possibility that for specific classes of 2D rules surjectiv-
ity can still be decidable — it is known, for example, that
rules which are permutive with respect to the corners of
the Moore neighbourhood are surjective [2].

In this paper, we attempt to classify 2D rules with
respect to surjectivity using two known properties equiv-
alent to surjectivity, namely the balance theorem and the
injectivity of restrictions to finite configurations. More-
over, we introduce the the concept of slice-permutivity
which is then shown to imply surjectivity. We show that
all 2D CA with neighbourhoods of size four (or less),
no matter what shape, can be classified. For five-site
CA, complete classification is still possible for certain
neighbourhood shapes, notably including von Neumann
neighbourhood.

2. Basic Definitions

Let A be a finite set of symbols, to be called a symbol
set. We define a two-dimensional configuration s to be
a function s : Z? — A, and A% to be the set of all
two-dimensional configurations. For any vector Z € Z2,
we denote sz € A to be a symbol located at position
(or site) & in configuration s. If V C 72, we define
sy = [sz]zev-

A neighbourhood N is a finite subset of vectors in
72. A neighbourhood is said to be contiguous if, for
any vector ¥ € N, at least one vector in the set {F =+
(1,0),Z £ (0,1)} is also in N. For any vector &, the
neighbourhood of T is defined as N'(¥) = {u+ 7 : 4 €
N

We can now define the local mapping of a two-
dimensional cellular automata (2D CA) to be the func-
tion f : AN — A. The local mapping induces a global
mapping F AL — A% 5o that F(s)z = f(sny@))s
for all s € A% and all ¥ € 72.

If Z C Z? is a finite set of vectors, then we define a
block to be an element of AZ.

The neighbourhood of Z is defined similarly as be-
fore, so that N'(Z) = {u+Z : 4 € N, & € Z}. The block
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evolution operator f : AN(Z) — AZ is now defined by
f(b)z = f(bpz) for any 7 € Z and b € AN(Z).

Given a block b € AZ, the set of preimages of b under
f is the set of blocks &' € AN(®) such that £(b') = b.
This preimage set will be denoted £~1(b).

Sometimes, we will need to consider the neighbour-
hood of a neighbourhood. We will then use the notation
N%(Z) = N(N(Z)), and higher powers will refer to
the appropriate number of neighbourhood compositions.

Let 7 € N, and let us denote M = N '\ 7. Let b €
AM and let us denote [z,b] to be an element of AN
such that its entries with indices in M are the same as
corresponding entries in b, while the entry with index
¥ is equal to x, x € A. A 2D CA is permutive with
respect to v € N if, for any choice of b, the function
x — f([z,b]) is one-to-one.

2.1 One-dimensional Binary Rules

Before we attempt to classify two-dimensional CA
rules, let us discuss what happens in one dimension, as
this will give us some important insight. As mentioned
in the introduction, surjectivity in 1D is known to be
decidable, and the algorithm for testing for surjectivity
has been developed by Amoroso and Patt in early 70’s
[1]. We used this algorithm to find all surjective binary
rules of a given neighbourhood size, for neighbourhood
sizes ranging from 1 to 5. We also checked which
of these rules are permutive. The results are given in
Table 1. One can make two interesting observations from
this table. First of all, the proportion of rules which are
surjective decreases dramatically as the neighbourhood
size increases. The second observation can be stated as
the following proposition.

Proposition 2.1: Any contiguous one-dimensional bi-
nary cellular automata dependent on three or less sites
is surjective if and only if it is permutive.

This means that for a binary rule to be surjective yet
non-permutive a neighbourhood of at least four sites is
needed. A natural question to ask, therefore, is whether
this is also the case in two dimensions?

3. Permutivity and Surjectivity

As we will shortly see, permutivity alone is not
enough to guarantee surjectivity in two dimensions. In
[2], the authors considered 2D CA with Moore neigh-
bourhood of radius 7, where N" = {(i,7) : |i], [j]| < r}.
They proved that any such rule is surjective if it is
permutive with respect to sites (+r, +r). We will prove a
similar result using an arbitrary neighbourhood and any
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site that can be sliced off from the neighbourhood by a
straight line.

Given m,c € Q, we define a line £ = {(z,y) : y =
mz + c}, and the following two regions, T = {(z,y) :
y > mx +c¢} and - = {(z,y) : y < mx + c}. For
vertical lines ¢ = {(z,y) : * = ¢} we similarly define
0" ={(z,y) : & > c} and - = {(z,y) : z < c}. A
site £ € N can be sliced if there exists a set £ such
that ¥ € £ and N\ Z C T (or £7). A 2D CA is slice
permutive if it is permutive with respect to a site which
can be sliced.

The main result relating slice-permutivity and surjec-
tivity can be stated as follows.

Theorem 3.1: Any two-dimensional slice permutive
CA is surjective.

Before we start the proof, we will need the following
classical result. Let Z,, be a square region in Z?2, defined
as Z, =10,1,...,n—1]x[0,1,...,n—1], where n € IN.

Theorem 3.2 (Balance Theorem): A 2D CA is surjec-
tive if and only if for all n > 1 and all b,b" € A% we
have card f~1(b) = card f~1(¥').

A one-dimensional version of this theorem first ap-
peared in [3]. The proof of the two-dimensional vers