
SESSION

PERFORMANCE ISSUES AND ENHANCEMENT
METHODS + LOW POWER COMPUTING AND

ANALYSIS

Chair(s)

TBA

Int'l Conf. Computer Design |  CDES'12  | 1



2 Int'l Conf. Computer Design |  CDES'12  |



Reducing Energy Usage of NULL Convention    
Logic Circuits using NULL Cycle Reduction 

Combined with Supply Voltage Scaling 
 

Brett Sparkman and Scott C. Smith 
Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, U.S.A. 

bsparkma@uark.edu and smithsco@uark.edu 
 
 

Abstract - The NULL Cycle Reduction (NCR) technique can be used 
to improve the performance of a NULL Convention Logic (NCL) 
circuit at the expense of power and area. However, by decreasing the 
supply voltage, the power of the NCR circuit can be reduced. Since 
NCR has increased performance, it should be possible to reduce 
supply voltage to decrease overall power while maintaining the 
original performance of the circuit. To verify this, the NCR circuit 
was implemented using a 4-bit by 4-bit dual-rail multiplier as the test 
circuit, which was simulated in ModelSim to ensure functionality, 
synthesized into a Verilog netlist using Leonardo, and imported into 
Cadence to perform transistor-level simulation for power 
calculations. The supply voltage of the duplicate NCR circuits was 
decreased until the performance matched the design of the original 
multiplier, resulting in approximately 25% overall lower energy 
usage. 

Keywords: asynchronous circuits; NULL Convention Logic (NCL); 
NULL Cycle Reduction (NCR); supply voltage scaling 

I. INTRODUCTION 

As circuits are continually produced with increasing 
numbers of transistors and switching frequencies, circuit power 
also increases. Although these improvements drastically raise 
circuit performance, they also have a downside of consuming 
larger amounts of power, which cause circuits to heat up and 
last a shorter amount of time on a single battery charge. 

This paper demonstrates that overall circuit energy can be 
reduced for NULL Convention Logic (NCL) circuits [4], while 
maintaining equivalent performance, by applying the NULL 
Cycle Reduction (NCR) technique [8] and reducing the supply 
voltage of the duplicate circuits.  

II. PREVIOUS WORK 

A. Introduction to NULL Convention Logic 

NCL offers a self-timed logic paradigm where control is 
inherent with each datum. NCL follows the so-called ‘‘weak 
conditions’’ of Seitz’s delay-insensitive signaling scheme [1]. 
As with other self-timed logic methods, the NCL paradigm 
assumes that forks in wires are isochronic [2]. The origins of 
various aspects of the paradigm, including the NULL (or 
spacer) logic state from which NCL derives its name, can be 
traced back to Muller’s work on speed-independent circuits in 
the 1950s and 1960s [3]. 

NCL uses symbolic completeness of expression [4] to 
achieve delay-insensitive behavior. A symbolically complete 
expression is defined as an expression that only depends on 
the relationships of the symbols present in the expression 
without a reference to their time of evaluation. In particular, 
dual-rail signals or other Mutually Exclusive Assertion Groups 
(MEAGs) can be used to incorporate data and control 
information into one mixed signal path to eliminate time 
reference [5]. A dual-rail signal, D, consists of two wires, D0 
and D1, which may assume any value from the set {DATA0, 
DATA1, NULL}. The DATA0 state (D0 = 1, D1 = 0) 
corresponds to a Boolean logic 0, the DATA1 state (D0 = 0,  
D1 = 1) corresponds to a Boolean logic 1, and the NULL state 
(D0 = 0, D1 = 0) corresponds to the empty set meaning that the 
value of D is not yet available. The two rails are mutually 
exclusive so that both rails can never be asserted 
simultaneously; this state is defined as an illegal state. Dual-
rail signals are space optimal 1-out-of-N delay-insensitive 
codes requiring two wires per bit.  

Most multi-rail delay-insensitive systems [1,4,6], including 
NCL, have at least two register stages, one at both the input 
and at the output. Two adjacent register stages interact through 
their request and acknowledge lines, Ki and Ko, respectively, to 
prevent the current DATA wavefront from overwriting the 
previous DATA wavefront, by ensuring that the two DATA 
wavefronts are always separated by a NULL wavefront.  

NCL differs from the other delay-insensitive paradigms 
[1,6] in that these other paradigms only utilize one type of 
state-holding gate, the C-element [3]. A C-element behaves as 
follows: when all inputs assume the same value, then the 
output assumes this value; otherwise the output does not 
change. On the other hand, all NCL gates are state-holding. 
Thus, NCL optimization methods can be considered as a 
subclass of the techniques for developing delay-insensitive 
circuits using a pre-defined set of more complex components, 
with built-in hysteresis behavior. 

NCL uses threshold gates for its basic logic elements [7]. 
The primary type of threshold gate is the THmn gate, where  
1 ≤ m ≤ n, as depicted in Fig. 1. THmn gates have n inputs. At 
least m of the n inputs must be asserted before the output will 
become asserted. Because NCL threshold gates are designed 
with hysteresis, all asserted inputs must be de-asserted before 
the output will be de-asserted. Hysteresis ensures a complete 

Int'l Conf. Computer Design |  CDES'12  | 3



transition of inputs back to NULL before asserting the output 
associated with the next wavefront of input data. Therefore, a 
THnn gate is equivalent to an n-input C-element and a TH1n 
gate is equivalent to an n-input OR gate. In a THmn gate, each 
of the n inputs is connected to the rounded portion of the gate; 
the output emanates from the pointed end of the gate; and the 
gate’s threshold value, m, is written inside of the gate. NCL 
threshold gates may also include a reset input to initialize the 
output. Resettable gates are denoted by either a D or an N 
appearing inside the gate, along with the gate’s threshold, 
referring to the gate being reset to logic 1 or logic 0, 
respectively. 

By employing threshold gates for each logic rail, NCL is 
able to determine the output status without referencing time. 
Inputs are partitioned into two separate wavefronts, the NULL 
wavefront and the DATA wavefront. The NULL wavefront 
consists of all inputs to a circuit being NULL, while the 
DATA wavefront refers to all inputs being DATA, some 
combination of DATA0 and DATA1 for dual-rail inputs. 
Initially, all circuit elements are reset to the NULL state. First, 
a DATA wavefront is presented to the circuit. Once all of the 
outputs of the circuit transition to DATA, the NULL 
wavefront is presented to the circuit. After all of the outputs of 
the circuit transition to NULL, the next DATA wavefront is 
presented to the circuit. This DATA/NULL cycle continues 
repeatedly. As soon as all outputs of the circuit are DATA, the 
circuit’s result is valid. The NULL wavefront then transitions 
all of these DATA outputs back to NULL. When the outputs 
transition back to DATA again, the next output is available. 
This period is referred to as the DATA-to-DATA cycle time, 
denoted as TDD, and has an analogous role to the clock period 
in a synchronous system. 

 
Figure 1. Thmn threshold gate. [8] 

The completeness of input criterion [4], which NCL 
combinational circuits and circuits developed from other 

delay-insensitive paradigms [1,6] must maintain in order to be 
delay-insensitive, requires the following criteria: 1. all the 
outputs of a combinational circuit may not transition from 
NULL to DATA until all inputs have transitioned from NULL 
to DATA, and 2. all the outputs of a combinational circuit may 
not transition from DATA to NULL until all inputs have 
transitioned from DATA to NULL. In circuits with multiple 
outputs, it is acceptable, according to Seitz’s weak conditions 
[1], for some of the outputs to transition without having a 
complete input set present, as long as all outputs cannot 
transition before all inputs arrive.  

Furthermore, circuits must also adhere to the completion-
completeness criterion [9], which requires that completion 
signals only be generated such that no two adjacent DATA 
wavefronts can interact within any combinational component. 
This condition is only necessary when the bit-wise completion 
strategy is used with selective input-incomplete components, 
since it is inherent when using the full-word completion 
strategy and when using the bit-wise completion strategy with 
no input-incomplete components [9]. 

One more condition must be met to ensure delay-
insensitivity for NCL and other delay-insensitive circuits [1,6]. 
No orphans may propagate through a gate [10]. An orphan is 
defined as a wire that transitions during the current DATA 
wavefront, but is not used in the determination of the output. 
Orphans are caused by wire forks and can be neglected 
through the isochronic fork assumption [2] as long as they are 
not allowed to cross a gate boundary. This observability 
condition, also referred to as indicatability or stability, ensures 
that every gate transition is observable at the output, which 
means that every gate that transitions is necessary to transition 
at least one of the outputs. 

B. Introduction to NULL Cycle Reduction 

The NCR technique for reducing the NULL cycle, thus 
increasing throughput for any delay-insensitive circuit 
developed according to the paradigms [1,4,6], is shown in  
Fig. 2. The NCR architecture in Figure 2 is specifically 
designed for dual-rail circuits utilizing full-word completion, 
where all bits at the output of a registration stage are conjoined 
to form one completion signal.  

 

 
Figure 2. NCR architecture.

4 Int'l Conf. Computer Design |  CDES'12  |



Circuit #1 and Circuit #2 are both dual-rail delay-
insensitive combinational circuits utilizing full-word 
completion, developed from one of the following delay-
insensitive paradigms [1,4,6], with at least an input and output 
registration stage. Additional registration stages may be 
present, thus further partitioning the combinational circuitry. 
Both circuits have identical functionality and are both 
initialized to output NULL and request DATA upon reset. In 
the case of the NCL paradigm, the combinational functionality 
can be designed using the Threshold Combinational Reduction 
method described in [11]; and the resulting circuit can also be 
pipelined, as described in [12], to further increase throughput. 
The Demultiplexer partitions the input, D, into two outputs, A 
and B, such that A receives the first DATA/NULL cycle and B 
receives the second DATA/NULL cycle. The input 
continuously alternates between A and B. The Completion 
Detection circuitry detects when either a complete DATA or 
NULL wavefront has propagated through the Demultiplexer 
and requests the next NULL or DATA wavefront, 
respectively. Sequencer #1 is controlled by the output of the 
Completion Detection circuitry and is used to select either 
output A or B of the Demultiplexer. Output A of the 
Demultiplexer is input to Circuit #1, when requested by Ki1; 
and output B of the Demultiplexer is input to Circuit #2, when 
requested by Ki2. The outputs of Circuit #1 and Circuit #2 are 
allowed to pass through their respective output registers, as 
determined by Sequencer #2, which is controlled by the 
external request, Ki. The Multiplexer rejoins the partitioned 
datapath by passing a DATA input on either A or B to the 
output, or asserting NULL on the output when both A and B 
are NULL. Figure 2 shows the state of the system when a 
DATA wavefront is being input before its acknowledge flows 
through the Completion Detection circuitry, and when a 
DATA wavefront is being output before it is acknowledged by 
the receiver. 

III. SIMULATION RESULTS 

In order to determine if reducing the supply voltage of a 
NCR architecture can reduce its power while maintaining 
performance, a series of simulations was performed. First, a 
simulation of the VHDL design was performed in ModelSim 
to ensure that the circuit performed as desired. Next, the files 
were synthesized using Leonardo in order to generate a 

Verilog netlist, which was then imported into Cadence. The 
final steps involved running numerous transistor-level 
simulations in Cadence using the Analog Design Environment 
with UltraSim set as the simulator. The results were used to 
determine the effects of reducing the supply voltage in terms 
of power and performance. 

The parameter names assigned to the multiple supply 
voltages were as follows: Vglobal for the Demultiplexer, 
Sequencer #1, and Completion Detection circuitry; Vlocal for 
Circuit #1 and Circuit #2; Vmux for the Multiplexer; and Vsel 
for Sequencer #2. For each simulation using the NCR design, 
Vlocal, Vmux, and Vsel were reduced in certain sets. The first 
voltage reduced was Vlocal because Circuit #1 and Circuit #2 
were larger than the Multiplexor and Sequencer #2. Reducing 
only Vlocal would reduce overall power most effectively. The 
next voltage reduced was Vmux because the Multiplexer was 
larger than Sequencer #2. The last voltage reduced was Vsel 
because the output select was the smallest out of the three 
components that the reduced voltage could be applied to. 
These were reduced until the period and power of the NCR 
design were lower than that of the single multiplier design, if 
possible, with a smallest resolution of 10mV. 

On the simulation plots, it was noted that the outputs took 
a short amount of time before they began appearing. This 
delay occurred because the pipeline took a small amount of 
time to fill up before the correct output could be observed. In 
order to calculate the period of the circuit, the period of the 
main Ko was averaged between the 10th rising edge and the 
20th rising edge. Taking the average in this manner ensured 
that the circuit had reached a steady state. Similarly, the 
currents of all the voltage supplies were integrated to 
determine the energy used by the circuit. From this data, the 
energy per operation was calculated. 

A. One-Multiplier Design 

Initially, a single 4-bit by 4-bit multiplier, shown in Fig. 3 
was chosen as the main circuit. To implement the NCR 
architecture shown in Figure 2, Circuit #1 and Circuit #2 each 
consisted of this 4-bit by 4-bit multiplier. The original 
multiplier design was simulated, and the results are shown in 
Table I. 

 

TABLE I. ONE-MULTIPLIER DESIGN RESULTS. 

Design Vglobal (V) Iglobal (μA) Vlocal (V) Ilocal (μA) Vmux (V) Imux (μA) Vsel (V) Isel (μA) Period (ns) Energy / Op (µJ) 

One-Multiplier 1.20 121.5 4.18 6.10 

NCR Design 

1.20 52.38 1.20 153.1 1.20 5.14 1.20 7.19 3.33 8.71 

1.20 45.60 1.10 122.4 1.20 4.62 1.20 6.33 3.76 7.61 

1.20 45.39 1.10 121.6 1.10 4.11 1.20 6.21 3.78 7.56 

1.20 45.48 1.10 120.4 1.10 4.08 1.10 5.48 3.80 7.51 

1.20 39.49 1.00 95.0 1.20 4.30 1.20 5.46 4.36 6.72 

1.20 39.52 1.00 94.7 1.00 3.18 1.20 5.39 4.39 6.67 

1.20 39.26 1.00 92.8 1.00 3.13 1.00 4.23 4.46 6.56 

Int'l Conf. Computer Design |  CDES'12  | 5



 
Figure 3. Single 4-bit by 4-bit multiplier. 

Unfortunately, there was no possibility of reducing the 
supply voltages of the NCR design so that the period and 
power would be less than the single multiplier circuit. The 
reduction of power with a comparable delay was closest when 
Vlocal was reduced to 1.00V and everything else remained at 
1.2V. The period and power could not be reduced where both 
would be better than the single multiplier because Circuit #1 
and Circuit #2, the multiplier copies, were fairly small; hence, 
the overhead of the added DEMUX, MUX, and Sequencers 
outweighed the power savings. If the circuit that was 
duplicated was larger, a larger power reduction would be seen 
when compared to the period increase, potentially allowing the 
circuit to be lower-power and faster. 

B. Two-Multiplier Design 

To produce a circuit with a lower power and period would 
require enlarging the duplicated circuit so that reducing the 
supply voltage would lessen power by a larger amount, needed 
to compensate for the overhead of the MUX, DEMUX, and 
Sequencers. Two additional circuits were designed and 
simulated to test this hypothesis. Although these circuits still 
used the same multiplier, there were more copies of the 
multiplier used to generate the larger circuit. 

The first additional circuit designed and simulated was two 
of the multipliers in series, as shown in Fig. 4. The new circuit 
no longer performed the same function as the original circuit, 
but it served as a simple example of a larger circuit. The two-
multiplier circuit would now take the place of Circuit #1 and 
Circuit #2 in the NCR architecture. A similar series of 
simulations was performed. 

 
Figure 4. Two-multiplier design. 

Using the two-multiplier NCR design, it was possible to 
achieve lower power while operating slightly faster. The 
supply voltage parameter settings that accomplished this are 
shown in boldface type in Table II. Using a 1.04V Vlocal and 
Vmux, while maintaining the 1.2V supply on all other circuit 
elements, decreased the period by 0.06ns and the 
energy/operation by 0.57µJ. The decreases correspond to a 
performance increase of approximately 1.4% and an energy / 
operation decrease of approximately 4.7%. Although these 
results were positive, the result was not as beneficial as 
desired, so another even larger circuit was designed. 

C. Four-Multiplier Design 

To further demonstrate the advantages of the NCR power 
reduction technique, an even larger third circuit was designed. 
This circuit strung together four of the multipliers, as shown in 
Fig. 5. 

Simulating the four-multiplier NCR design further showed 
the benefits of reducing supply voltages in terms of power. It 
was possible for the NCR design to consume far less power 
while maintaining performance. The supply voltage parameter 
settings that accomplished this are shown in boldface type in 
Table III. Using a 1.0V Vlocal and Vmux while maintaining the 
1.2V supply on all other circuit elements decreased the period 
by 0.01ns and the energy / operation by 6.02µJ. The decreases 
correspond to a performance increase of approximately 0.2% 
and an energy / operation decrease of approximately 24.8%. 
Savings such as this could greatly benefit situations where 
circuits require lower power to operate. It was observed that 
the lower MUX supply voltage produced the same lower 
voltage at the output compared to the original design. 

 

6 Int'l Conf. Computer Design |  CDES'12  |



TABLE II. TWO-MULTIPLIER DESIGN RESULTS. 

Design Vglobal (V) Iglobal (μA) Vlocal (V) Ilocal (μA) Vmux (V) Imux (μA) Vsel (V) Isel (μA) Period (ns) Energy / Op (µJ) 

Two-Multiplier 1.20 241.0             4.22 12.21 

NCR Design 

1.20 51.20 1.20 303.0 1.20 5.11 1.20 6.69 3.39 14.87 

1.20 45.44 1.10 242.4 1.20 4.58 1.20 6.03 3.83 12.77 

1.20 45.59 1.10 241.7 1.10 4.06 1.20 6.03 3.84 12.75 

1.20 45.38 1.10 238.9 1.10 4.01 1.10 5.23 3.86 12.65 

1.20 41.47 1.05 212.4 1.05 3.50 1.05 4.54 4.16 11.70 

1.20 41.22 1.04 210.0 1.20 4.31 1.20 5.42 4.16 11.64 

1.20 41.20 1.04 208.2 1.04 3.44 1.20 5.44 4.19 11.56 

1.20 41.04 1.04 205.3 1.04 3.43 1.04 4.41 4.23 11.46 

1.20 41.26 1.03 203.1 1.20 4.27 1.20 5.36 4.23 11.43 

1.20 41.03 1.03 202.6 1.03 3.33 1.20 5.29 4.25 11.39 

1.20 39.80 1.03 200.9 1.03 3.33 1.03 4.37 4.30 11.30 

1.20 38.85 1.00 187.1 1.20 4.23 1.20 5.16 4.43 10.86 

1.20 39.10 1.00 185.2 1.00 3.11 1.20 5.15 4.46 10.77 

1.20 38.91 1.00 181.7 1.00 3.07 1.00 3.89 4.52 10.65 

 

 

Figure 5. Four-multiplier design. 

 

TABLE III. FOUR-MULTIPLIER DESIGN RESULTS. 

Design Vglobal (V) Iglobal (μA) Vlocal (V) Ilocal (μA) Vmux (V) Imux (μA) Vsel (V) Isel (μA) Period (ns) Energy / Op (µJ) 

Four-Multiplier 1.20 475.1 4.25 24.25 

NCR Design 

1.20 51.65 1.20 606.4 1.20 5.17 1.20 6.69 3.01 24.23 

1.20 46.12 1.10 485.5 1.20 4.63 1.20 6.04 3.60 21.69 

1.20 45.76 1.10 483.8 1.10 4.12 1.20 6.03 3.61 21.65 

1.20 45.52 1.10 479.8 1.10 4.10 1.10 5.27 3.64 21.60 

1.20 39.80 1.01 378.1 1.01 3.18 1.01 4.10 4.24 18.51 

1.20 40.19 1.00 374.8 1.20 4.26 1.20 5.16 4.21 18.29 

1.20 39.48 1.00 372.8 1.00 3.13 1.20 5.17 4.24 18.23 

1.20 38.94 1.00 366.0 1.00 3.11 1.00 3.93 4.31 18.11 

1.20 39.32 0.99 363.7 1.20 4.32 1.20 5.05 4.29 17.94 

1.20 38.99 0.99 360.9 0.99 3.05 1.20 4.95 4.32 17.85 

 

Int'l Conf. Computer Design |  CDES'12  | 7



IV. CONCLUSIONS 

Although it was impossible to reduce the power and 
maintain the performance of the initial one-multiplier NCR 
design, it was possible to greatly reduce the power while 
maintaining performance of larger circuits by scaling the 
supply voltage. By stringing together two-multiplier and four-
multiplier NCR designs and performing transistor-level 
simulations in Cadence to calculate power, it was clearly seen 
that the power reduction significantly increases as the 
duplicated circuit size increases. The decrease in power 
consumption occurred because the lesser supply voltage was 
distributed over a larger portion of the entire NCR design. The 
preferred design has a reduced supply voltage connected to 
only the duplicated circuit; this connection will ensure that the 
outputs are at the nominal supply voltage level and are 
therefore equivalent to the original design. 

The technique of applying the NCR architecture to a circuit 
and then reducing the supply voltage to the duplicated circuits 
could be extremely useful in reducing the power of large 
circuits. As circuit size increases, the benefits of this technique 
increase rapidly. The supply voltage levels can be fine-tuned 
to produce a circuit with the exact same performance as the 
individual circuit with far less power usage. 

REFERENCES 

[1] C.L. Seitz, "System timing," in Introduction to VLSI Systems, Addison-
Wesley, 1980, pp. 218–262. 

[2] A.J. Martin, "Programming in VLSI," in Development in Concurrency 
and Communication.: Addison-Wesley, 1990, pp. 1–64. 

[3] D.E. Muller, "Asynchronous logics and application to information 
processing," in Switching Theory in Space Technology.: Stanford 
University Press, 1963, pp. 289–297. 

[4] K.M. Fant and S.A. Brandt, "NULL convention logic: a complete and 
consistent logic for asynchronous digital circuit synthesis," in 
International Conference on Application Specific Systems, Architectures, 
and Processors, 1996, pp. 261-273. 

[5] T. Verhoff, "Delay-insensitive codes—an overview," Distributed 
Computing, vol. 3, pp. 1-8, 1988. 

[6] I. David, R. Ginosaur, and M. Yoeli, "An efficient implementation of 
boolean functions as self-timed circuits," IEEE Transactions on 
Computers, vol. 41, no. 1, pp. 2-10, 1996. 

[7] G.E. Sobelman and K.M. Fant, "CMOS circuit design of threshold gates 
with hysteresis," in IEEE International Symposium on Circuits and 
Systems, vol. II, 1998, pp. 61-65. 

[8] S. C. Smith, "Speedup of NULL convention digital circuits using NULL 
cycle reduction," Journal of Systems Architecture, vol. 52, pp. 411-422, 
2006. 

[9] S.C. Smith, "Completion-completeness for NULL convention digital 
circuits utilizing the bit-wise completion strategy," in The 2003 
International Conference on VLSI, 2003, pp. 143-149. 

[10] A. Kondratyev, L. Neukom, O. Roig, A. Taubin, and K. Fant, "Checking 
delay-insensitivity: 10^4 gates and beyond," in Eighth International 
Symposium on Asynchronous Circuits and Systems, 2002, pp. 137-145. 

[11] S.C. Smith, R.F. DeMara, J.S. Yuan, D. Ferguson, and D. Lamb, 
"Optimization of NULL convention self-timed circuits," Integration, The 
VLSI Journal, vol. 37, no. 3, pp. 135-165, 2004. 

[12] S.C. Smith, R.F. DeMara, M. Hagedorn, and D. Ferguson, "Delay-
insensitive gate-level pipelining," Integration, The VLSI Journal, vol. 30, 
no. 2, pp. 103-131, 2001. 

 

8 Int'l Conf. Computer Design |  CDES'12  |



New Single-Phase Adiabatic Logic Family

Mihail Cutitaru, Lee A. Belfore, II
Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, 23529 USA

Abstract— Power dissipation minimization is the core prin-
ciple in making any electronic product portable. Even though
there has been a decrease in circuit operating voltages,
significant power is lost in switching elements (transistors).
This has given rise to a new way of computing – adiabatic
computing, where significant energy savings are achieved by
using time-varying clocks. This paper gives an explanation
of how adiabatic computing works and presents several
adiabatic families and their advantages and disadvantages.
We also propose a new single-phase adiabatic family and
show that the proposed buffer/inverter uses 68% less energy
than its CMOS equivalent.

Keywords: Adiabatic logic, low-power computing

1. Introduction
Minimizing power dissipation has been the focus of circuit

design for many years, but it has become more important
with more new portable devices emerging on the market. As
devices get smaller and circuit densities grow, the problem
of power dissipation minimization becomes a real concern.
Power dissipation is related to the switching activity in
transistors and is a function of the square of of the input
voltage (V2

dd
), so one of the most effective techniques that

has been used to decrease the dissipated power is to scale
the input voltage. This allows for a reduced power loss,
but there will still be a minimum power loss for every
erased bit governed by Landauer’s Principle. It was shown
in [1] that for every erased bit, the lower bound for the
energy loss is given bykT ln2 J, wherek is Boltzmann’s
constant (1.38× 10−38 J/K), andT is the temperature in
degrees Kelvin. Even though this number is not high for a
single transistor, modern microprocessors, including the ones
used in cell phones and tablets, use hundreds of millions
of them. Additionally, current technology consumes almost
three orders of magnitude more energy than this limit, so it
is important for devices to use the available energy wisely.

One of the ways of completely eliminating power loss
is to use reversible logic [2]. Reversible logic is a way
of performing calculations so that information that is no
longer needed is not dissipated as heat, but saved so that
the operations could be undone later. While this is an
excellent alternative to using current Complementary Metal-
Oxide Semiconductor (CMOS) logic, circuits that take full
advantage of reversible logic are still in research stages
and few attempts have been made at making circuits more
complicated than full adders. Reversible logic is also more

difficult to work with since all operations and operands
have to be saved and a different architecture is required to
accommodate all these changes.

An alternative to CMOS logic is a technique called
adiabatic switching, which ideally operates as a reversible
thermodynamic process, without loss or gain of energy.
Adiabatic computation works by making very small changes
in energy levels in circuits sufficiently slow, ideally resulting
in no energy dissipation. There are two types of adiabatic
computation:

• fully adiabatic — circuit operates arbitrarily slow, loses
arbitrarily little energy per operation, and almost all of
the input energy is recovered

• partially (quasi) adiabatic — some energy is recovered
and some is lost to irreversible, non-adiabatic operations

While fully adiabatic circuits are very attractive from a
reversible logic point of view and would be the most suit-
able for reversible circuits implementation, most proposed
adiabatic circuit designs are partially adiabatic because of
simplicity and space constraints.

Power loss in conventional CMOS transistors mainly
occurs because of device switching and can be easiest
understood by studying the CMOS inverter shown in Fig.
1.

Fig. 1: CMOS Inverter.

An inverter consists of pull-up and pull-down transistors
connected to a capacitanceC. The capacitance in this case
models the fan-out of the output signal. The transistors are in
parallel between them and in serial withC. A more compact
way to model this is with an ideal switch and a channel
resistanceR when in saturation mode, as shown in Fig. 2.

When the logic level is set to high, there is a sudden flow
of current from the voltage source, through the ideal switch
and lumped resistor to the capacitanceC, as shown in Fig.
3. The sudden change in voltage level acrossR accounts for

Int'l Conf. Computer Design |  CDES'12  | 9



the large amount of energy lost during CMOS charging.

Fig. 2: Equivalent circuit of a CMOS inverter.

Fig. 3: Voltages at the input, capacitor, and resistor equiva-
lent circuit.

The energy dissipated in this circuit can be modeled by

Eapplied= CV 2

dd
(1)

for each clock cycle for a rail-to-rail voltageVdd. When the
voltage switches from zero toVdd, the current flow is given
by

i(t) =
V 2

dd

R
e

−t

RC (2)

and the power used is

P (t) =
V 2

dd

R
e

−2t

RC . (3)

The amount of energy stored inC is found by integrating
the power over time and is given by

Estored=
CV 2

dd

2
(4)

which means that half of all supplied energy is stored in the
capacitor and the other half is dissipated inR during the
charge cycle. In regular CMOS circuits, the energy stored
in C is dissipated during the discharge cycle on the falling
edge of the clock.

Since the energy stored in the capacitor does not need
to be minimized, it is necessary to minimize the energy
wasted in the transistor network in order to achieve any
energy savings. If the circuit is driven with a frequencyf

and periodT , the total power used in the circuit during a
cycle calculated using the above formula yields

Papplied=
Eapplied

T
=

CV 2

dd

T
. (5)

Adiabatic switching tries to minimize the energy wasted
during charging by using a constant current source and
charging at a lower frequencyf . Both of these optimizations
can be calculated by minimizing the function of energy dis-
sipation and current, yielding the dissipated energy formula
given by

Edissipated= P∆T =

(

CVdd

∆T

)2

R∆T. (6)

If charging time∆T is infinitely long, theoretically there
will be no energy dissipated. Infinitely long charging times
are impractical, but by spreading out the charge transfer
evenly during the charging time, the peak current and large
initial power loss are greatly reduced. Adiabatic switching is
achieved by replacing the constant DC voltage supply with a
time-varyingLC driver/oscillator in order to get a constant
charging current.

The rest of the paper is organized as follows: Section
2 presents the most commonly used adiabatic oscillators;
Section 3 discusses a few of the more important adiabatic
logic families and makes a distinction between the ones that
use diodes and those that do not; Section 4 describes the
proposed adiabatic family and compares its energy usage
with CMOS; and Section 5 concludes the paper.

2. Adiabatic Logic Oscillators
A large part of the dissipated energy is lost due to the

sudden flow of charge on the rising edge of the square-
wave clock, as shown above. Adiabatic computing methods
have tried to avoid this loss by making the clock as linear
as possible, depending on the design of the logic family.
Because the oscillator acts both as a clock and a power
supply reference, the convention is to call it a Power Clock
(PC).

One of the first proposed adiabatic oscillators has a trape-
zoidal waveform [7]. This oscillator consists of 4 general
stages (Fig. 4): charge, evaluate, discharge, and idle. The
output capacitor is charged in the Charge stage, evaluated
during the Evaluate stage, and discharged adiabatically back
to the PC during the Discharge stage. The PC is then held at
ground (GND) during the Idle stage. This type of PC allows
the signal to stabilize better during the two plateaus (atVdd

and GND), but uses a 4-, 6- or even 8-phase clock, which
gets very difficult to control in larger circuits. Additionally,
new circuitry is needed in order to generate a linear ramp
voltage for charging/discharging.

Another oscillator has a sawtooth waveform. This oscilla-
tor allows for a more linear charge of the load capacitance

10 Int'l Conf. Computer Design |  CDES'12  |



Fig. 4: A single-phase trapezoidal PC with stages marked.

and could perform better than the trapezoidal oscillator since
it can have a longer time to charge the outputs at the same
frequency. However, it is more difficult to sample the outputs
at the peaks since there is no extra time allowed for them
to stabilize. A sawtooth oscillator also requires additional
circuitry for generation and most logic families using it need
to use two phases.

The last type of oscillator has a sinusoidal waveform
[9]. This oscillator is a compromise between linear voltage
increase and generation circuit complexity. It is easier and
more energy-efficient to generate a sinusoidal waveform than
a linear waveform, however the sinusoidal waveform does
not provide the best approximation for a linear voltage. Most
designs with a sinusoidal waveform use a 2-phase clock,
although there exist a few designs with a single-phase clock.

3. Adiabatic Logic Families
Adiabatic circuits can be further divided into two cat-

egories when it comes to charge-recovery: those that use
diodes and those that do not. Using diodes makes the
circuit structure simpler, however there is an inherent voltage
drop across a diode and the energy dissipated cannot be
recovered. The circuits that do not use diodes have better
charge-recovery statistics, but are usually larger. Some of the
well-known adiabatic families are described below. For the
purpose of comparing different adiabatic techniques, each
one is shown as an inverter, buffer or both, depending on
the logic family.

3.1 Adiabatic families with diodes
1) ADCL

Adiabatic Dynamic CMOS Logic (ADCL) family has
a circuit structure that is very similar to a CMOS
circuit. The big difference is that the power clock is
a single-phase sinusoidal power clock and the GND
connection is connected back to the power clock [4],
as shown in Fig. 5. The diodes are represented using
their pMOS (P1) and nMOS (N2) equivalents. During
the Discharge phase, input switches from low to high,
PC swings from high to low and the output follows
it, thus recovering the charge stored in the capacitor
back into the circuit. During the Charge phase, PC
swings from low to high, and if the input switches
from high to low, the output will follow the PC and
charge until PC hitsVdd. One disadvantage of ADCL
is that the operating speed of the circuit is inversely

proportional on the number of gates, so it is not fea-
sible to implement large circuits with this family. An
improvement over this family is the Two-Phase drive
Adiabatic Dynamic CMOS Logic (2PADCL) family,
which has a very similar setup as ADCL [5]. 2PADCL
uses 2 complementary power clocks connected at each
end of the circuit (instead of 1 clock used in ADCL)
and achieves better speeds since the next stage does
not have to wait for the output from the current stage
to be recovered before computing its output.

Fig. 5: ADCL inverter [4].

3.2 Adiabatic families without diodes
1) 1n1p

One of the simplest diode-free adiabatic circuits pro-
posed is the 1n1p quasi-adiabatic logic family. This
family uses the same setup as a CMOS inverter, but
uses a single-phase sinusoidal driver that oscillates
between GND andVdd [6]. A diagram of the inverter
is given in Fig. 6.

Fig. 6: 1n1p inverter [6].

When the input to the 1n1p inverter is high, the nMOS
will be ON and output will be low. When the input

Int'l Conf. Computer Design |  CDES'12  | 11



is low, the pMOS will be conducting and the output
will charge to high up to the peak of the PC (VPC).
As VPC ramps down, the output will follow and the
charge stored in the output capacitor will be recovered.
This logic family provides good results, however it is
not suitable for pipelining. In a pipelined circuit, the
next stage of the pipeline should not be affected if its
inputs change while it is computing its outputs. In the
case of 1n1p logic family, whenout is connected to to
the next stage and the energy stored inout starts being
recovered, the next stage will not be able to have a
constant/reliable output since the input changes. Thus,
1n1p requires the input to be stable for the entire time
of computing the output in order to have valid data.

2) 2n2p
This logic family uses 2 nMOS and 2 pMOS tran-
sistors to achieve adiabatic operation and compute
a logic function and its complement given an input
and its complement [7]. The family uses a four-phase
trapezoidal clock and the 2n2p buffer/inverter is shown
in Fig. 7.

Fig. 7: 2n2p buffer/inverter [7].

The clock begins in the Reset stage where it ramps
down. At this time the inputs are low and the outputs
are complementary. The output that is high will adia-
batically ramp down to low since it is being controlled
by the output that is low through a pMOS transistor.
During the Wait stage the inputs are evaluated and
the corresponding output is assigned a GND values.
Since both outputs are at GND during this stage and
the upper half of the gate (the 2 pMOS transistors)
is held at GND by the power clock, the values of the
outputs will not change. In the next stage, Evaluate, the
outputs are evaluated based on the resolved inputs. The
two outputs will always have complementary values at
the end of the Evaluate stage as one is held constant at
GND by the nMOS transistor and the other is charged
from the PC via one of the pMOSs. The cross-coupled
pMOSs guarantee that the two outputs will always

be complementary. In the last phase, Hold, the inputs
ramp down with the value of PC and the outputs stay
constant to be sampled by the next gates.

3) 2n-2n2p
This family is a variation of the 2n2p family and
consists of 2 new cross-coupled nMOS transistors
added in parallel to the 2 nMOS transistors [7]. The
timing and operation of this family is identical to the
2n2p family and the buffer/inverter is shown in Fig. 8.
The new nMOS pair make the 2n-2n2p act as a full
inverter and the buffer is similar to a Static Random-
Access Memory (SRAM) cell. The new nMOSs also
have the advantage of eliminating floating nodes in the
system, which prevents charge leakage. However, the
added transistors prevent it from achieving significant
energy savings at speeds above 100 MHz.

Fig. 8: 2n-2n2p buffer/inverter [7].

4) PAL
Pass-Transistor Adiabatic Logic (PAL) [8] is another
variation on the 2n2p logic family described above. In
this family, instead of having the lowest node connect
to GND, it is connected to the PC, as shown in Fig. 9.
This allows for a fully adiabatic operation, but at the
cost of higher speeds. Another difference between the
two families is that PAL uses a two-phase sinusoidal
power clock, which allows for simpler implementation
and potentially higher power savings.

5) TSEL
True Single-Phase Energy-Recovery Logic (TSEL)
[9] is a partially adiabatic logic family similar to
the 2n-2n2p family. This family uses a single-phase
sinusoidal power clock with cascades made up of
alternating pMOS and nMOS gates. The structure of a
buffer/inverter is given in Fig. 10. Each TSEL gate
contains a reference voltage (either VRP or VRN,
depending on the type of transistor) as a bias voltage
that are distinct characteristics of this family. The op-

12 Int'l Conf. Computer Design |  CDES'12  |



Fig. 9: PAL inverter [8].

eration of a pMOS TSEL gate consists of two stages:
discharge and evaluate. During the discharge state the
energy stored in theout or out node is recovered.
At the beginning of this stage VPC is high and as it
starts ramping down, both outputs are pulled towards
the PMOS threshold voltage VTP. This transition is
adiabatic until VRP−VTP is higher than VPC. During
the Evaluation phase, assume thatin is high andin
is low. At the beginning of this phase, VPC is low, but
as it starts to rise, it turns on P3 and P4, turning on the
cross-coupled pMOS transistors P1 and P2. As long as
VPC≤ VRP− VTP, P3 and P4 are conducting. Since
VRP > VPC, out starts rising towards VRP through
P4. The two cross-coupled pMOSs (P1 and P2) help
amplify the voltage difference betweenout andout.
Once the difference between the output nodes is larger
than VTP, P1 turns off andout charges adiabatically.
When VPC≥ VRP-VTP, P3 and P4 stop conducting
and the outputs are disconnected from the lower half
of the gate. This allows this family to be immune to
any changes that occur in the inputs after P3 and P4
have been turned off. Sampling of the outputs occurs
at the end of the Evaluate stage, when the power clock
is at its highest.

Fig. 10: pMOS TSEL inverter [9].

A nMOS TSEL buffer/inverter operates in a similar
way, the only difference being that the stages are
reversed from the pMOS TSEL buffer/inverter. The
nMOS TSEL gate (Fig. 11) goes through a Charge
phase and then an Evaluate phase, and it also uses
a different reference voltage VRN. By using a com-
bination of nMOS and pMOS TSEL gates, this logic
family is able to achieve very good power savings over
other families.

Fig. 11: nMOS TSEL inverter [9].

4. Proposed Design
A new adiabatic logic family is proposed that achieves

very good charge recovery and uses a single-phase sinusoidal
PC. The proposed buffer/inverter is shown in Fig. 12. When
the PC swings from GND toVdd, the value in thein input
gets assigned to theout output andin gets assigned to the
out output, achieving the inverter function. Assuming that
in is at Vdd andin is at GND,in will cause N3 to turn
ON andout to be at GND level. Whenout is at GND,
P2 is enabled, allowingout to ride the PC toVdd level. On
the down-cycle, sinceout is at GND level, P1 is enabled,
allowing for the energy stored inout to be recovered. When
the values of the inputs are swapped, the output values are
swapped as well.

Fig. 12: Proposed Inverter.

Int'l Conf. Computer Design |  CDES'12  | 13



The power consumption of the proposed circuit and that
of a CMOS circuit were calculated with a SPICE simulation.
A 0.25µm process was used with a W/L of 0.36µm/0.24µm
respectively and the PC oscillating between 1.8V and GND.
The results of the simulation for various frequencies are
shown in Fig. 13. As it can be seen from the simulation
results, the proposed adiabatic inverter has an energy dissipa-
tion of around 68% lower than a CMOS inverter at 100MHz.

Fig. 13: Energy dissipation comparison between proposed
buffer/inverter and CMOS inverter at different frequencies.

The proposed design has the advantage of using only a
single-phase PC, which reduces the oscillator complexity,
saves on-chip space, and allows for simpler control of
connected gates for clock synchronization. The proposed
buffer also offers a new way to control the energy flow in
the circuit while producing results similar to the ones found
in literature [7], [9] by using a single-phase PC.

5. Conclusion and Future Work
This paper explained the basics of adiabatic computation

and described the most well-known adiabatic logic families.
It was shown that fully adiabatic computation is theoretically
possible without any energy loss as the computation times
goes to infinity, but for most applications the use of a par-
tially adiabatic logic family is far more suitable. Future work
includes the design of larger adiabatic gates and circuits from
the proposed buffer/inverter and dissipated energy analysis
at higher frequencies and comparison with other adiabatic
families.

References
[1] R. Landauer, "Irreversibility and heat generation in the computing

process," inIBM Journal of Research and Development, Vol. 5, pp.
183-191, July 1961.

[2] C. Bennett, "Logical Reversibility of Computation," inIBM Journal of
Research and Development, Vol. 17, No. 6, pp. 525-532, Nov. 1973.

[3] S. Younis, "Asymptotically Zero Energy Computing Using Split-Level
Charge Recovery Logic," Ph. D. dissertation, EECS, MIT, Cambridge,
MA, 1994.

[4] K. Takahashi, M. Mizunuma, "Adiabatic Dynamic CMOS Logic Cir-
cuit," in Electronics and Communications in Japan Part II, Vol. 83,
Issue 5, pp. 50-58, 2000.

[5] Y. Takahashi, et. al., "2PADCL: Two Phase drive Adiabatic Dynamic
CMOS Logic," inAsia Pacific Conference on Circuits and Systems, pp.
1484-1487, 1996.

[6] V. I. Starosel’skii, "Reversible Logic," inMikroelektronika, Vol. 28,
Issue 3, pp. 213-222, 1999.

[7] A. Kramer, et al., "2nd Order Adiabatic Computation with 2n-2p and
2n-2n2p Logic Circuits," inProceedings of the 1995 International
Symposium on Low Power Design, pp. 191-196, 1995.

[8] V. G. Oklobdzija, D. Maksimovic, "Pass-transistor Adiabatic Logic
using Single Power-clock Supply," inIEEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing, Vol. 44, pp.
842-846, 1997.

[9] S. Kim, M. Papefthymiou, "True Single-Phase Adiabatic Circuitry," in
IEEE Transactions on VLSI Systems, Vol. 9, No. 1, 2001.

14 Int'l Conf. Computer Design |  CDES'12  |



Optimising Energy Management of Mobile Computing Devices

M.J. Johnson and K.A. Hawick
Computer Science, Institute for Information and Mathematical Sciences,

Massey University, North Shore 102-904, Auckland, New Zealand
email: { m.j.johnson, k.a.hawick }@massey.ac.nz

Tel: +64 9 414 0800 Fax: +64 9 441 8181

February 2012

ABSTRACT
Mobile computing devices are becoming ubiquitous and
the applications they run are demanding greater processing
and storage capabilities. Managing the power consumption
and battery life of these devices is increasingly difficult
but some careful choices made in the software architecture
stack can optimise power utilisation while still maintaining
needed services on the architecture. We describe the hard-
ware blocks in a modern mobile device and measure their
power requirements. We discuss some power management
strategies and present results showing how some quite dra-
matic energy savings are possible on a typical modern mo-
bile device running Android and Linux. We discuss the
implications for future mobile computing device architec-
tures.

KEY WORDS
device architecture; power consumption; battery life; mo-
bile devices

1 Introduction
Modern mobile hardware is extremely complex and a mo-
bile device will typically have more peripherals than a stan-
dard desktop PC. The hardware supported by a mobile de-
vice usually includes the following: Applications CPU,
Baseband CPU, LCD Panel and controller, RAM, NAND
flash Memory, MMC flash memory, USB Controller, Au-
dio subsystem, GPS, Video Encoder/Decoder, Serial I/O,
Bluetooth, Multiple DSPs, GPU, 2D Graphics Controller,
Touchscreen, Cameras, Flashlight, LEDs, Battery Monitor,
Wifi. All this hardware is typically powered by a 3.7V bat-
tery with a capacity of around 1500mAH. It is vital that the
power used by the device is managed efficiently to increase
the time that the device is usable [3].

Architects of desktop CPUs have long been aware of power
consumption and efforts to produce more power efficient

Figure 1: QSD8250 CPU

machines have led to the use of metrics such as FLOP-
S/watt and MIPS/watt. However, mobile devices have very
different requirements and these metrics are not as useful.
In 2 we look at the hardware present in a mobile device
and discuss it’s power management.

Currently, mobile devices make up about fifty percent of
all personal computing platforms. This share has increased
from almost zero in the last 5 years and mobile devices
are becoming ever more pervasive. While it is not vital
that a mobile device lasts for weeks on a single battery
charge, it is important that it can last a complete day even
with heavy use because many users charge their phones
overnight every day [1].

Power is measured in Watts, however at a fixed voltage this
is proportional to the current in Amps, mobile device bat-
tery capacity is always specified in mAH (milliamp hours)
so throughout this paper we will us mA as a measure of
power consumption. While it is possible to save power by
careful design of applications and protocols [8], [9] this pa-
per will concentrate on how the Operating System can be
used to manage hardware for best power management.

Int'l Conf. Computer Design |  CDES'12  | 15



Future mobile devices will need to use even more power
than current devices if they are to support higher speed net-
working, advanced graphics and distributed resource shar-
ing [2]. Figure 1 shows layout of the main logic board on
a typical modern mobile device. Most of the hardware dis-
cussed in this paper is integrated into the large ASIC on the
left.

2 Hardware Architecture
The hardware in a mobile device consists of a System on a
Chip (SoC), memory and a number of peripheral devices.
The SoC is an ASIC composed of a number of hardware
blocks. The hardware in a modern mobile device will usu-
ally include the following blocks.

Application processor: This CPU runs all applications
and has access to most hardware, it may be mutli-
core. Currently most application processor CPUs are
ARM Cortex A8 or A9 designs. The ARM CPU was
designed as a low power device and it supports vari-
ous low power modes which will be discussed in Sec-
tion 3.3.

Baseband Processor: This processor runs the radio soft-
ware and controls the radio frequency interface, The
baseband processor is either an ARM CPU and DSP
or a standalone DSP. Some devices have the baseband
integrated in the SoC, others use a separate ASIC. The
baseband processor usually runs a proprietary real-
time operating system and so it’s power management
techniques are not available for analysis, however we
expect them to be very similar to those used by the
application processor.

I2C: A simple 4 wire bus used for controlling slow pe-
ripherals such as the touch screen, battery driver and
camera CCD. The bus itself has no power manage-
ment capabilities, power down or sleep commands
must be sent to the individual peripherals on the bus.

GPIO: General purpose input/output pins, used for con-
trolling hardware. Each GPIO may have up many
functions for controlling internal operation of the SoC
and may be multiplexed to SoC I/O pins. There may
be many hundreds of GPIOs and each must be config-
ured to draw as little power as possible. A common
cause of excess power drain is a misconfigured GPIO.

Display interface: A serial bus used to connect the display
panel, common interfaces are MDDI (Mobile Display
Digital Interface) and DSI (Display Serial Interface).
These buses do include power management capabil-
ities and send messages to the LCD controller about
idle states.

Audio: Control of the speaker, handset audio (earcoupled
speaker and mic) and headset audio. The audio sub-
system can use significant power when playing audio
through an amplified speaker.

GPS: Global positioning system, uses a DSP to decode
GPS satellite signals for location determination. For
fast fix times the mobile network needs to be used to
download almanac data. Although the GPS can use
significant power it is not always enabled and there
are techniques that can be used to minimises it’s use
[7] [12].

USB: A USB controller in device or host/device mode.
The 5V usb power is often used to charge the device
so power use is not a issue when the USB port is con-
nected.

SD: Secure digital controller for memory cards, also used
for the wifi interface on some devices (SDIO). SD de-
vices use minimal power and may be disconnected
and powered down when not is use. Recent Linux
kernels have a SD Abstraction Layer (SDAL) which
can be used to power down the card when it is idle.

NAND: Flash memory used for storage of the Operat-
ing System and data. Recent devices may also have
eMMC flash storage. These devices consume very lit-
tle power.

VFE: Video Front End, used to transfer data from a high
resolution camera.

UART: Serial bus connected to the SIM card and Blue-
tooth controller.

2D graphics engine: Used for block transfers of image
data in various formats. May perform scaling and ro-
tation of bitmaps. The 2D engine will often use much
less power than the GPU and so unless the 3D en-
gine is needed, graphics composition should use the
2D engine.

DMA: Direct Memory Access, most blocks can transfer
data to/from memory without any CPU intervention.
This saves power because it allows the CPU to enter
a low power state more often.

ADSP: Application Digital Signal Processor, used for
processing audio and video data, offload of compute
intensive function to the DSP can save power [4].

GPU: Graphics Processing Unit, a 3D graphics engine
supporting OpenGL-ES 2.0. The GPU can use sig-
nificant power, thus the use of user interface features
such as complex animated wallpapers should be min-
imised for best power savings.

16 Int'l Conf. Computer Design |  CDES'12  |



MDSP: Modem Digital Signal Processor, used for pro-
cessing radio frequency signals, this is controlled by
the baseband processor.

RAM: Memory external to the SoC, usually Low Power
DDR2.

Display: an LCD or LED panel with a resolution of up
to 1080x720 pixels. LCD panels use slightly more
power than LED panels, modern designs are becom-
ing very power efficient. Until recently, the display
was the most power hungry component, this is no
longer the case as we show in Section 3.1.

Light sensor: A sensor capable of detecting the ambient
light level. This sensor is polled once a second when
the display is on and is used to control the backlight
for the LCD panel. It uses minimal power and allows
the LCD panel to use less power when ambient light
is low.

Proximity Sensor: A sensor capable of determinimg if the
device is close to another object, this sensor usually
uses an Infra-Red emitter and light sensor to detect
any reflected light. It uses about 5mA during very
short flashes and is only enabled when necessary. It is
used to turn off the display when it is placed close to
the head during a call. This saves power and avoids
the touchscreen being pressed by mistake.

Cameras: A rear facing camera with up to 8Mpixels and
capable of streaming HD video. The camera is ini-
tialised and focused by sending connads over an I2C
bus. There may also be a lower resolution front-facing
camera for video calls. Camera use significant power
as discussed in Section 3.1.

Accelerometers: Sensors used to detect gravitational or
magnetic fields and torque. These sensors do not need
to be polled frequently and techniques are available to
minimise their effect on power consumption [11].

Real Time Clock: A battery backed clock capable of
maintaining the system data and time, it is capable
of waking up the device at a set time and must run for
long periods of time on minimal power.

Timers: Low and high resolution counters used for sys-
tem timing. The counters themselves do not use much
power but their use should be minimised because
they may prevent the device from entering low power
modes as discussed in Section 3.3.

Encryption processor: Used for efficient processing of
encrypted communication channels. This is con-
trolled by the baseband processor.

Video Processor: Capable of encoding and decoding vari-
ous video formats including H264 and MPEG4. Soft-
ware codecs should be avoided because the hardware
encoders will use much less power and allow the CPU
to idle.

Audio Processor: Capable of encoding and decoding au-
dio formats such as MP3 and AMR. Similarly, these
should be used instead of software.

Battery Controller: A device capable of determining the
charge remaining in the battery and charging the bat-
tery when the device is connected to an external
power source. The battery controller usually uses
coloumb counting to keep a record of how much
power has been used.

Bluetooth: Used for short range RF communications,
Bluetooth is designed for low power devices and con-
sequently does not significantly affect power con-
sumption, although some applications may make
heavy use of it [10].

Mobile Voice Connectivity: A mobile phone must be con-
nected to the voice network when possible, in areas
with good signal strength this can be power efficient,
however where the signal strength is low or inter-
mittent, techniques must be used to avoid significant
power drain [6].

Mobile Data Connectivity: The mobile data network for
a modern device is always connected and so applica-
tion software must be carefully written to avoid fre-
quent use of mobile data. If possible, synchronisation
and other background events should be batched and
performed together.

Wifi: Wifi was not designed for mobile devices and so
it’s power management is more problematic, however
modern Wifi adapters use techniques such as Beacon
and Idle Mode power saving and Traffic Coalescing
[13] to limit the time spent transmitting data. Wifi will
generally use less power than the mobile data network
and so should be used in preference.

3 Software Architecture
We discuss the software architecture with reference to: an
example device; clock control; teh Linux CPU clock con-
trol mechanism; and deep sleep issues.

3.1 Example Device
The device we worked with contained a Qualcomm
QSD8250 SoC running the Android mobile operating sys-
tem. Android is an Open Source OS running on top of a

Int'l Conf. Computer Design |  CDES'12  | 17



Linux Kernel. For this reason it is easy to modify the soft-
ware to measure power consumption and see how changes
to the software stack affect it. We used a device with a
ds2482 battery controller, this is connected via the I2C in-
terface to the SoC and via a proprietary serial interface to
the battery.

In order to determine power usage of the device we could
replace the battery with a power supply and measure the
current drawn but in practice it is easier to use the current
measurements provided by the battery controller. The stan-
dard software only polls the battery controller once every
minute so we had to modify the kernel driver to provide
a new interface to the hardware that allowed us to record
the current draw at any time. We also modified the driver
that controlled charging so that it could be disabled. This
allowed us to connect to the device through the USB inter-
face to measure power consumption.

Linux device drivers typically use read or write operations
on special files in the /dev directory to communicate with
userspace utilities. While we could have used this method,
we decided to use a simpler interface, sysfs. Sysfs is a
virtual filesystem mounted on /sys, it contains properties
of device drivers and can be used to set parameters for a
driver.

In Linux, device driver parameters were originally used to
allow the kernel boot command line to set up a driver, for
example to pass the IRQ number that it should use. Recent
Linux kernels allow access to the driver parameters though
a set of sysfs files:

/ s y s / module /{ d r i v e r } / p a r a m e t e r s /{ param}

This interface is very easy to implement and can be also
used to perform operations. A macro is used to add param-
eters to a driver:

s t a t i c i n t e n a b l e c h a r g e =1;
module param ( e n a b l e c h a r g e , i n t , 0 6 4 4 ) ;

This creates a parameter called enable charge initialised to
1.

m o d u l e p a r a m c a l l ( b a t t e r y , s e t c h ,
g e t b a t t , NULL, 0 6 4 4 ) ;

This creates a parameter called battery, writing to it calls
set ch, reading calls the get batt function. Modifications to
the ds2784 battery driver are shown in Figure 3.1. Example
usage of the modified battery driver is:

# cd / s y s / module / d s 2 7 8 4 b a t t e r y / p a r a m e t e r s
# l s
b a t t e r y e n a b l e c h a r g e
# echo 0 > e n a b l e c h a r g e
# c a t b a t t e r y

Hardware Power Usage
Display 50-80mA
Camera 250mA

GPS 80mA
GPU 90mA
CPU 70-210mA

Bluetooth 15mA*
Wifi 90mA*

3G Data 160mA*
Speaker 80mA

Voice Call 150mA
* only while transferring data

Table 1: Current used by various hardware blocks

V=4084696 I =−123950 I a v =−131253 C=1262400

Using the modified driver we obtained the power usage
values shown in Table 3.1. Note that the camera uses the
most power, however this is most likely because it is also
heavily using the CPU, GPU and DSP. The average power
drawn depends on how the device is being used. When
reading text, the CPU will be idle and the device will prob-
ably use about 100mA, this gives 15 hours of use with a
1500mAH battery.

The CPU is a significant contribution to the power usage,
especially when running at full speed.

Note that when the device is suspended only a very mini-
mal set of systems are left powered on (the always-on sub-
system) and we measured a power usage of 2-10mA de-
pending on signal strength and mobile network type.

3.2 Clock Control
The device has a single clock derived from a tempera-
ture compensated crystal oscillator (TCXO). This runs at
19.2 MHz or 32KHz when the device is suspended. Other
clocks are made using Phase Locked Loop based multi-
pliers (PLLs) and fractional dividers (M/N:D counters) for
example on our test device a CPU clock of 998MHz is gen-
erated by multiplying TCXO by 52. Four PLLS are avail-
able and dividers are used to generate all the other clocks
in the system forming a clock tree. There are roughly 150
clocks. Each hardware block uses at least one clock and to
save power these clocks must be disabled when not in use.
The CPU clock can be modified to slow it down or speed
it up, this gives 20 available frequencies between 245MHz
and 1.1GHz.

Fiqure 3.2 shows how clock speed affects CPU power us-
age, as expected this is linear. CMOS transistors use power
to switch on and off and so the faster the clock the more
power is used. By extrapolating from the data points we
can see that even if the clock is switched off, the CPU still

18 Int'l Conf. Computer Design |  CDES'12  |



s t a t i c i n t e n a b l e c h a r g e =1;
module param ( e n a b l e c h a r g e , i n t , 0 6 4 4 ) ;

s t a t i c i n t b a t t e r y a d j u s t c h a r g e s t a t e ( s t r u c t d s 2 7 8 4 d e v i c e i n f o ∗ d i ) {
. . . .
i f ( ! e n a b l e c h a r g e ) charge mode = CHARGE OFF ;
. . . .
}

s t a t i c i n t s e t c h a r g i n g ( c o n s t char ∗ va l , s t r u c t k e r n e l p a r a m ∗kp ) {
b a t t e r y a d j u s t c h a r g e s t a t e ( t h e d i ) ;
re turn 0 ;

}

i n t g e t b a t t e r y ( char ∗ b u f f e r , s t r u c t k e r n e l p a r a m ∗kp ) {
s t r u c t b a t t e r y s t a t u s ∗ s =&( t h e d i−>s t a t u s ) ;
d s 2 7 8 4 b a t t e r y r e a d s t a t u s ( t h e d i ) ;
re turn s p r i n t f ( b u f f e r , ”V=%d I=%d I a v=%d C=%d ” , s−>vo l t age uV ,

s−>c u r r e n t u A , s−>c u r r e n t a v g u A , s−>charge uAh ) ;
}

m o d u l e p a r a m c a l l ( b a t t e r y , s e t c h a r g i n g , g e t b a t t e r y , NULL, 0 6 4 4 ) ;

Figure 2: Modifications to the ds82482 Battery Driver

Figure 3: CPU Power usage

draws about 50mA.

3.3 Linux CPU Clock Control
The Linux mechanism for performing CPU clock control is
called Cpufreq. This changes the CPU frequency based on
load. The CPU clock driver tells the kernel which frequen-
cies are available and provides functions to change fre-
quency. A Cpufreq governor algorithm changes frequency
by using various OS load metrics and heuristics. A number
of governors are available, the most widely used being the
’ondemand’ governor. Cpufreq uses a sysfs interface via
file is /sys/devices/system/cpu/cpu0/cpufreq/

Although the CPU clock can not be set to 0 by manip-
ulating the clock hardware, the ARM CPU has a special

instruction that can be used for this purpose. The SWFI
instruction (Suspend and Wait For Interrupt) disables the
CPU clock and enables it again when an interrupt occurs.
The Linux idle loop, which runs when no process needs the
CPU, executes this instruction. Thus, when the CPU is idle
it draws the minimum power in Figure 3.2 (about 50mA).
Recent Linux kernels can be ’tickless’ this means the ker-
nel doesn’t have a periodic timer interrupt so can sleep
for long periods of time. Timers can also be ’deferrable’
so a non urgent timer interrupt will wait until CPU is not
idle. This means that in practice Cpufreq has little effect
on power consumption, in fact it can hurt power consump-
tion by preventing it from spending much time idle. The
strategy of running as fast as possible and then idling for
as long as possible is called ’race to idle’. Whether clock
scaling or race to idle is more power efficient depends on
a number of factors such as how long it takes to put CPU
into an idle state and how memory bound a task is (mem-
ory bound tasks are not affected by CPU frequency).

3.4 Deep Sleep
When SWFI is executed, all clocks e.g. timers and bus
clocks are still running, it is possible to stop these clocks
and save even more power. If this happens then an interrupt
can no longer wake the CPU, the only way the CPU can be
woken is if the Baseband processor is used to wake it up.
This mechanism requires careful cooperation between the
application CPU and the baseband CPU.

When we enabled this idle sleep mode the power consump-

Int'l Conf. Computer Design |  CDES'12  | 19



tion dropped from 50mA to 30mA.

Even with all the clocks disabled there is still some CPU
power usage caused by leakage current. CMOS transistors
use power even if they are not clocked and this leakage
becomes much worse as the FET channel length is reduced
so it is increasingly affecting modern devices.

The solution to minimising this leakage current is to use
a global distributed footswitch (or headswitch). This tech-
nique involves adding FETs to the power rails of the device
(on the Vdd rail it is a headswitch, on Vss it is a footswitch)
so power can be removed completely. This idle mode is
called Deep Sleep or Power Collapse. Once again the base-
band processor must wake the application processor but
now the application processor must be completely reini-
tialised.

When we enabled this deep sleep mode the power con-
sumption dropped to 14mA.

The disadvantage of the deeper sleep modes is that they
can take a significant time to go to sleep and wake up.
Thus, they should only be used when an interrupt is not ex-
pected shortly. For asynchronous interrupts, it is not possi-
ble to know if one about to happen, however the most com-
mon interrupt is a timer interrupt and the OS can determine
when this will next happen. Thus, the idle code can look at
when the next timer interrupt is due and choose an appro-
priate sleep mechanism. There are also other constraints
on sleep modes, for example on the device we were using,
GPU interrupts could not be used to wake from either of
the deep sleep modes, this may explain why the measured
power consumption of the GPU is relatively high.

4 Voltage Control
The power used by a CMOS device is proportional to the
clock frequency, but it is also proportional to the square
of the voltage. This means that lowering the CPU voltage
should save more power than lowering the frequency. For a
given frequency there is a minimum Vdd at which the CPU
will function, this voltage also depends on temperature be-
cause the gate delay of a CMOS transistor increases with
temperature.

4.1 Static Voltage Scaling
Static Voltage Scaling (SVS) is the technique of using a set
CPU voltage for each possible CPU frequency. This volt-
age must be chosen such that the CPU will still function at
all temperatures.

In order to implement SVS, an extra field is added to
the CPU frequency table to specify a voltage for that fre-
quency. It is important that the voltage is changed at the

correct time, the voltage must be increased before increas-
ing the frequency but decreased after decreasing the fre-
quency. This ensures that the voltage is always at or above
the required value.

4.2 Dynamic Voltage Scaling
The voltage used for SVS must be chosen so that it is safe
for all devices and thus it has to be chosen very conser-
vatively. It would be better if the device could provide
feedback about the voltage. This is possible if some ex-
tra hardware is included, this is called Dynamic Voltage
Scaling (DVS) [5].

The SoC we were using has hardware to support DVS,
it uses ring oscillators and a number of delay circuits to
model the longest possible delay through three different
parts of the CPU, the Datapath, the Floating Point Unit and
the Level 2 Cache. We can use these delay circuits to tell if
Vdd is too high or too low. If any oscillator thinks Vdd is too
low, it must be increased, if all think it is too high, it can be
decreased. Since the delay depends on temperature, the die
temperature must also be measured and taken into account.
Although the device we were using supported DVS it was
not implemented in the Linux kernel, we implemented a
device driver for DVS.

Our driver uses a 2D table of voltages for frequencies and
temperatures, it polls the hardware every 200ms until the
voltage for the current temperature has stabilised. When
the voltage for a particular temperature has stabilised, the
table value is fixed so no more polling is necessary. Mod-
ule parameters are used for status and to enable/disable
DVS. When a voltage is set, the table is updated to clamp
to this voltage for all lower frequencies and temperatures.

Output from the status of the driver is shown below.

# c a t s t a t u s
C u r r e n t TEMPR=9
C u r r e n t Index =1
C u r r e n t Vdd=925
Vdd Tab le :

0 : 19200 925 0
1 : 245760 925 0
2 : 384000 925 0
3 : 576000 975 0
4 : 768000 1150 1
5 : 998400 1225 1
6:1113600 1300 0

This shows that frequencies of 768MHz have stabilised
with voltages of 1.15V and 1.225V respectively.

Figure 4 shows the affect of SVS and DVS on power con-
sumption. With a fixed Vdd, this voltage must be chosen for
the highest possible frequency, thus the device uses signif-
icantly more power at lower frequencies. The values for
the SVS driver are provided by the Google kernel for this

20 Int'l Conf. Computer Design |  CDES'12  |



Figure 4: Voltage Scaling Results
device, it looks like the values have been determined by
finding the best voltages for the highest and lowest fre-
quencies and drawing a straight line between them. This
means that DVS only provides significant power savings
for frequencies in the middle of the table.

5 Conclusions
We have investigated various mechanisms for saving
power on a mobile device including clock control, deep
sleep and voltage control. In summary, we found that deep
sleep (power collapse) provides the greatest power savings
but it is not always available because there is significant
overhead involved in putting the device into this mode.
Changing clock frequencies can achieve significant power
savings but only for tasks that are not CPU intensive.

Voltage scaling helps save power and has the potential to
save more power than frequency scaling because of the
quadratic relationship between voltage and power. Dy-
namic voltage scaling is a useful technique but if the volt-
ages for static voltage scaling are chosen correctly is does
not provide significant power savings.

In the future we would like to extend this work by inves-
tigating other devices and mechanisms for reducing power
usage. Thes e ideas are likely to be of importance for tablet
computers as well as for mobile phones.

References
[1] Ferreira, D., Day, A.K., Kostakos, V.: Understanding

human-smartphone concerns: a study of battery life. In:
Proc. 9th Int. Conf. on Pervasive Computing (Pervasive’11).
pp. 19–33. No. 6696 in LNCS (2011)

[2] Furthmuller, J., Waldhorst, O.P.: Energy-aware sharing
with mobile devices. In: Proc. Eighth Int. Conf. on Wire-
less On-Demand Network Systems and Services. pp. 52–59
(2011)

[3] Gordon, D., Sigg, S., Ding, Y., Beigl, M.: Using prediction
to conserve energy in recognition on mobile devices. In:
Proc. IEEE Int. Conf. on Pervasive Computing and Com-
munications Workshops (PERCOM Workshops). pp. 364–
367. Seattle, WA, USA. (21-25 March 2011)

[4] Hameed, R., Qader, W., Wachs, M., Azizi, O., Solo-
matnikov, A., Lee, B.C., Richardson, S., Kozyrakis, C.,
Horowitz, M.: Understanding sources of inefficiency in
general-purpose chips. In: Proc. 37th Int. Symp. on Com-
puter Architecture (2010)

[5] Hormann, L.B., Glatz, P.M., Steger, C., Weiss, R.: Evalua-
tion of component-aware dynamic voltage scaling for mo-
bile devices and wireless sensor networks. In: Proc. IEEE
Int. Symp on World of Wireless, Mobile and Multimedia
Networks (WoWMoM). pp. 1–9. Lucca, Italy (20-24 June
2011)

[6] IEEE: IEEE Draft Standard Methods for Measuring Trans-
mission Performance of Analog and Digital Telephone Sets,
Handsets, and Headsets - Amendment 1. IEEE P269a/D5.2,
January 2012 pp. 1 –33 (19 2012), 6135531

[7] Kjaergaard, M.B., Bhattacharya, S., Blunck, H., Nurmi, P.:
Energy-efficient trajectory tracking for mobile devices. In:
Proc. 9th Int. Conf. on Mobile Systems, Applications and
Services (MobiSys’11). Bethesda, MD, USA (28 June - 1
July 2011)

[8] Liu, Y., Guo, L., Li, F., Chen, S.: An empirical evaluation of
battery power consumption for streaming data transmission
to mobile devices. In: Proc. ACM Multimedia Conference
(MM’11). Scottsdale, AZ, USA (28 November - 1 Decem-
ber 2011)

[9] Meng, L., Shiu, D., Yeh, P., Chen, K., Lo, H.: Low power
consumption solutions for mobile instant messaging. IEEE
Trans. Mobile Computing PP99, Online, 1–18 (June 2011)

[10] Park, U., Heidemann, J.: Data muling with mobile phones
for sensornets. In: Proc. 9th ACM Conf. on Embedded Net-
worked Sensor Systems (2011)

[11] Priyantha, B., Lymberopoulos, D., Liu, J.: Littlerock:
Enabling energy-efficient continuous sensing on mobile
phones. Pervasive Computing April-June, 12–15 (2011)

[12] Thiagarajan, A., Ravinranath, L., Balakrishnan, H., Mad-
den, S., Girod, L.: Accurate, low-energy trajectory map-
ping for mobile devices. In: Proc. 8th USENIX confer-
ence on Networked systems design and implementation
(NSDI’11). Usenix Association, Berkeley, Boston, MA,
USA (30 March - 1 April 2011)

[13] Wang, R., Tsai, J., Maciocco, C., Tai, T.Y.C., Wu, J.: Re-
ducing power consumption for mobile platforms via adap-
tive traffic coalescing. IEEE Journal on Selected Areas in
Communications 29(8), 1618–1629 (September 2011)

Int'l Conf. Computer Design |  CDES'12  | 21



Design and Low Power  
Implementation of a Reorder Buffer 

 
J.D. Fisher, C. Romo, E. John, W. Lin 

Department of Electrical and Computer Engineering, 
University of Texas at San Antonio 

One UTSA Circle, San Antonio, Texas, U. S. A. 
 
 

Abstract - Superscalar microprocessor designs demand 
high performance with limited increased power overhead.  
To obtain high throughput rates out-of-order execution is 
implemented, along with the use of dispatch buffers and 
reorder buffers (ROBs).  ROBs can become high power 
consuming components that require power aware designs.  
This research investigates different design techniques of 
the ROB with emphasis on power efficiency. Mainly, the 
centralized and distributed ROB designs were 
implemented and power analysis was completed. The 
distributed ROB was determined to be more power 
efficient by 12.84%.  This distributed system truly 
embraces the concept that efficiencies can be gained just 
by taking a process and optimizing it for parallelism and 
resource sharing that will ultimately lead to an overall 
optimization such as power consumption.    

 
Keywords:  Reorder Buffer, Microarchitecture, Power Efficient 
 

1. Introduction 
 

A standard in the development of today’s technology is 
to achieve the execution of multiple instructions through 
instruction level parallelism (ILP).  ILP is most efficiently 
exploited through the use of superscalar processors.  Out-
of-order execution achieves an increased performance in 
superscalar microprocessors through the utilization of a 
reorder buffer (ROB) to complete instructions in program 
order to the architected register file.  Although highly 
ambitious, the overall objective of the ROB is to obtain a 
performance increase equal to that of the paralleled 
instructions.    

The implementation of an ROB can result in a fairly 
high increase in power consumption. This performance 
increasing component should therefore be designed to 
minimize all design tradeoffs including power overhead.  
As microprocessors migrate to smaller technologies, power 
becomes more and more of an issue that needs to be 
addressed.  Such is the purpose of analyzing components 
in the overall design such as the ROB.  It is important that 
no component be a power consumer unless it is doing so 
efficiently. Ultimately, high performance processors need 

to be power aware in their design in order to provide 
reliable long lasting products. 

This research focuses on the following theories as a 
foundation for designing a power efficient ROB: 
• the centralized ROB architecture [1] and [2],  
• the distributed ROB architecture [3],  
• the ability to utilize the concept of dynamic voltage 

scaling in order to break the ROB into pieces and 
provide power only to sections of the ROB that need 
the power [4], 

• utilizing fast comparators that would focus the power 
mainly when a match is found [5], 

• dynamic ROB resizing [6].   
 
Mainly, the centralized and the distributed ROB are 
investigated and implemented in this research to 
demonstrate the ability to minimize power in a 
microprocessor. The rest of this paper is organized as 
follows: Section 2 provides an overview on power 
consumption, superscalar pipelining and the ROB, Section 
3 describes related work, Section 4 provides the details of 
our design and implementation, Section 5describes the 
methodology used for accomplishing the research, Section 
6 presents the results and analysis, and Section 7 
summarizes our research in a conclusion. 
 

2. Background 
 
2.1 CMOS Power Dissipation 

Power dissipation analysis is a key component in the 
progression of new technology.  Evaluation of power 
involves two power dissipations, static and dynamic [7].  
The most significant sources of dynamic power dissipation 
are the charging and discharging of capacitance 
(switching) and short circuit power dissipation.  The 
techniques to reduce dynamic power include reducing the 
switching voltage.  But since voltage thresholds do not 
scale equal to the supply voltage, performance loss is 
experienced [7].  Parasitic capacitance and switching 
frequency can also be reduced; however application of 
these requires detailed understanding of the design as to 

22 Int'l Conf. Computer Design |  CDES'12  |



 

minimize the tradeoffs involved.  In this research, 
reduction of the switching frequency is focused on circuit 
optimization, through alternate logic implementation.  Its 
emphasis is on reducing power dissipation by reducing the 
switching frequency, all the while maintaining 
functionality and performance.   

Static power is related to the logical states of a circuit 
that equate to leakage current.  There are two dominate 
types of leakage current addressed in this research, reverse 
PN-junction and subthreshold channel current [7].  There 
are several techniques available for reducing leakage 
power which can include, transistor stacking, power gating, 
multi-threshold voltage, etc.  

           
2.2 Superscalar Pipelining  

The basis of pipelining requires an instruction to follow 
a hardware flow that starts with the fetching of the 
instruction and finishes with the results written to the 
architected register file.  By dividing the flow into smaller 
stages throughput can be increased [8].  Jouppi’s 
classification of the pipelined process is understood 
through four stages:  instruction fetch (IF), instruction 
decode (ID), execution (EX), and write back (WB) [8].  
From a resource perspective each stage independently 
performs its function allowing it to run operate in parallel 
with the other stages.   

Superscalar pipelined microprocessors are designed to 
fetch and issue multiple instructions every machine cycle, 
meaning the stages as well as the instructions can be 
executed in parallel [8].  The major hindrance is 
encountered through stalls in the execution stage of the 
pipeline.  To address this draw back the execution stage is 
divided into parallel execution units, known as a 
diversified pipeline.  In this setting the instructions are 
dispatched through a buffer to the appropriate execution 
unit and executed out-of-order.  This requires a 
mechanism, such as the ROB, to write back instructions in 
program order to avoid validity issues.   This is also known 
as a dynamic superscalar pipelining [8].  With each 
additional level of parallelism the complexity of the design 
also increases.  

 
2.3 Reorder Buffer 

A ROB is a vital component in microprocessors that 
allows for program order instructions to be issued in 
parallel, based on the instruction-level parallelism, execute 
them out-of-order, and completed them in-order.  ROB 
designs are most often implemented as a circular buffer 
utilizing the FIFO queue data structure.  The general 
concepts of operation of the ROB are given in Figure 1.   

The critical aspect of the ROB is maintaining 
knowledge of the program order.  The first step is to 
allocate entries in the ROB according the program order 
during the initial dispatch of the instruction.  The tail of the 

buffer is then incremented accordingly.  In addition, 
corresponding data is also allocated in the ROB such as the 
destination registers, a destination register tag created for 
the matching of completed instructions to its corresponding 
ROB entry, and a result field entry is created.  The ROB 
then waits for the instructions to execute and assigns the 
resulting data to the appropriate program instruction result 
field.  Once this is accomplished a ready flag indicates that 
the instruction is ready for completion.  The final step 
completes the instructions and increments the head of the 
ROB.  The head instruction must be completed in order to 
maintain the program order.  The general operations of the 
ROB are the foundation to performing out-of-order 
operations in a superscalar design, but implementation can 
be completed through various approaches. 

 

 
Figure 1.  Generalized ROB  

 

3. Related Work 
 

There are many ROB designs, each with specific 
emphasis that are integral to the foundation of the trends to 
theory, design, and implementation of the ROB. This 
chapter takes into account the designs that were 
investigated and describes the work which was revealed.   

The design of the centralized ROB is the culmination of 
research done by Lennel et. al. [1] and Wallace et. al. [2].  
The research provides a detailed analysis of the 
functionality, theoretical implementation, and interaction 
of the ROB with its neighboring components.  The 
investigation by Kocuk et. al. [3] provides the distributed 
ROB layout in theory without emphasis on how that 
implementation strategy can be realized. The strategy was 
heavily motivated to optimize power.  The centralized and 
distributed ROB designs independently provide the details 
in which this research was founded because the designs are 
different enough in architecture, but similar enough in 

Int'l Conf. Computer Design |  CDES'12  | 23



 

functionality that the designs could be easily compared to 
provide a power enhancement case. 

Wann-Yun et. al. investigated the low power techniques 
through dynamic voltage scaling (DVS) [4].  Applying 
such techniques to a FIFO queue with only a subset of 
entries in use could significantly relieve the unnecessary 
consumption of power.  Overhead must be considered in 
the design to avoid performance degradation [4].  
Implementation strategy would be based on the 
partitioning of the ROB into to subsets regulated by a DVS 
controller.  An algorithm is created to determine the timing 
that can be placed on the entries to make them idle for the 
wait state of the stages flow [4]. The key aspect of 
dynamic voltage scaling is to ensure that the overall design 
will not be impacted negatively by the hardware intensive 
strategy that makes up dynamic voltage scaling and its 
controllers. 

Kucuk et. al. addressed several issues in the design of 
the ROB including the investigation of a power efficient 
design of comparator [5].  A large ROB is a highly 
intensive read and write component that can have a slow 
and inefficient comparator scheme when attempting to 
match destination tags.  This research also investigates the 
approach of dissecting the current ROB design and 
applying zero byte encoding to the design to alleviate 
power usage in the ROB. 

The investigation completed by Ghose et. al. attempted 
to segment a large ROB and dynamically resize it 
depending on trends as instructions are flowing [6].   This 
is the basis for dynamic ROB resizing and if implemented 
correctly can work much like DVS without significant 
overhead [6].  The crucial element is the algorithm to 
determine when to power down a partition and when to 
power up the partitions in order to have them available 
when needed without interrupting throughput [6].  

    

4. Design and Implementation 
 

Two ROB designs were implemented to investigate 
approaches in providing a power efficient ROB 
component.  The two designs, the centralized and 
distributed ROB models, are compared based on power 
consumption, disregarding external forces.  The designs 
were implemented using Verilog to the specification of a 
Spartan 3E FPGA.  By utilizing the FPGA it is possible to 
compare the two designs without attention to technology or 
other varying constraints. The Spartan 3E FPGA is a 90nm 
technology chip that utilizes a 50 MHz clock and each 
design utilized Xilinx ISE® in order to map the design to 
the pins on the FPGA.   

Implementation on an FPGA required that the clock be 
sliced into four phases. The first phase (0) of the clock sets 
the internal registers that will be able to assist with further 
processing, such as the tail + 4 register that will assist in 

allocating the four entries in the ROB. The second phase 
(1) of the clock performs all output signals. The 
reservation station output for the tag to go with the 
instructions and the register file output that provides the 
destination register and the results. If results are truly 
completed then this stage will also increment the head to 
the appropriate instruction in program order. The third 
phase (2) of the clock is the point at which entries are 
allocated from dispatch and elements are populated to 
accommodate the new instructions. The fourth phase (3) 
implements the final stage in which the ROB is written to 
by the execution units with their results based on the tag 
that was sent previously in second phase.  

Design assumptions include an instruction-level 
parallelism of four, 32 entries in the ROB, 16 usable 
registers, and each register has a value up to 16 bits. These 
assumptions allow for the designs to build on the same 
foundation to allow for a one-to-one comparison.   
 
4.1 Centralized ROB 

 The centralized ROB design is based on a circular 
buffer that is represented by a first-in-first-out queue with a 
head and tail pointer to showcase the entries being worked 
on. The entries outside the range of the head and tail are 
stale data that will be overwritten as the instructions flow 
through the design as new instructions are added to the 
queue.  The ROB is broken into 32 entries with various 
data elements for processing. Figure 2 provides a graphical 
explanation to the elements described and the bit locations 
for each element in the ROB entries.  The specific data 
elements that of the 32 entries are described in Table 1.   

 

 
Figure 2. Centralized ROB elements 

 
Table 1. Centralized ROB Elements 

Element 
Name 

#Bits Description 

Destination 
Register 

4 The final destination register the results 
will be written to. The 4 bits allow for 16 
possible registers. 

Destination 
Register Tag 

5 Tag generated for register renaming. The 5 
bits allow for the 32 ROB entries. 

Data 16 The actual results that will be written to 
the appropriate destination register. 

Current 1 Flag to indicate the most current 
destination register entry in the ROB 

Ready 1 Flag used to indicate when an entry is 
ready to be completed. 

Valid 1 Flag used to indicate if the value is valid. 
 

24 Int'l Conf. Computer Design |  CDES'12  |



 

The data path of the centralized ROB is illustrated in 
Figure 3.  The flow follows the previously described 3 step 
strategy.  Specifically the first step is to allocate the entries 
in the ROB for the four new instructions being dispatched 
in parallel. At dispatch the ROB creates four entries, adds 
four to the tail pointer, adds a destination register for each 
entry, generates the destination register tag for each entry, 
updates the current bits to one for this destination register 
entry and updates all other entries for the same destination 
register to zero, sets the ready bit to zero, and sets the valid 
indicator at one. The ROB then sends the tags associated 
to each entry to the appropriate reservations station to join 
up with the entry that holds the source registers sent from 
the dispatch. This function is vital because it allows the tag 
to flow with the instruction through execution and will act 
as the key to get the results in the correct ROB entry.  

Once the instructions are executed and results are 
available the execution units will use the generated tag as 
to write the results to the ROB and update the ready bit to 
one. The ROB can complete an instruction only if the head 
instruction is ready, indicated by a ready bit of one.  The 
entry is then completed as a write to the register file for 
that particular destination register. The head is then 
incremented for each completed instruction in order to 
keep the queue referencing the appropriate entries. 

 It is important to note that this centralized ROB design 
is one large I/O buffer.  Large amounts of data are held in 
this one large buffer and therefore there is a heavy burden 
when data is written to or read from this buffer. The 
searching can become tedious for the execution units as 
they try to write their results to the buffer, but need to 
ensure they are on the right entry.  These are some of the 
concerns that lead this design to showcase a non-power 
efficient design, and the implementation will showcase that 
as such. 

 

 
Figure 3.  Centralized ROB 

 
 
 

4.2 Distributed ROB 
The design of the distributed ROB has one centralized 

ROB component that holds pointers to several distributed 
ROB components, 8 components, specifically for this 
design.  The distributed ROB is broken into 32 entries with 
various data elements for processing. Figure 4 provides a 
graphical explanation to the elements described in the 
centralized ROB component and the bit locations for each 
element in the ROB entries.  The specific data elements 
that of the 32 entries are described in Table 2.   

 

 
Figure 4. Centralized ROB elements of Distributed ROB 

 
Table 2. Centralized ROB elements for Distributed ROB 
Element 
Name 

#Bits Description 

ROB 
Component 
ID 

3 The pointer indicating in which distributed 
ROB component the entry lives, 3 bits 
allow for 8 different distributed ROB 
components. 

ROB 
Component 
Offset 

2 The pointer indicating in which of the 4 
entries within the distributed ROB 
components the entry lives, 2 bits allow for 
4 entries to exist in each ROB component. 

 
The 8 distributed components of the distributed ROB 
contain 4 entries each with various data elements for 
processing.  Figure 5 provides a graphical explanation of 
the elements described in the distributed ROB components 
and the bit locations for each element.  The specific 
elements of the 4 entries are described in Table 3.  
   

 
Figure 5. Distributed ROB Component Elements 

 
Table 3. Distributed ROB Component Elements  

Element 
Name 

#Bits Description 

Destinatio
n Register 

4 final destination register the results will be 
written to, 4 bits allow for 16 registers 

Data 16 The actual results that will be written to the 
appropriate destination register. 

Current 1 Flag to indicate the most current destination 
register entry in the ROB. 

Ready 1 Flag used to indicate when an entry is ready 
to be completed. 

Valid 1 Flag used to indicate if the value is valid. 

Int'l Conf. Computer Design |  CDES'12  | 25



 

The datapath of the distributed ROB is depicted in 
Figure 6.  Much like the centralized ROB, the flow follows 
the 3 step strategy previously described. The difference is 
that the tag now points to a specific ROB component and 
the offset to determine which of the four entries in the 
ROB component the tag is associated with. The allocation 
scheme is that it is done in a round robin format. 
Therefore, the first instruction would allocate to the first 
ROB component and its first offset and then the next 
would go to the second ROB component and its first 
offset. This round robin format is important to the possible 
utilization enhancements from a read/write port 
perspective.  

Once the instructions are executed and results are 
available the execution units will use the generated tag as 
the key and write the results to the ROB components and 
update the ready bit to one. It is at this point the ROB 
components are ready to complete an instruction if the 
instruction that is now readied is the head. 

The ROB components checks if their entries are the 
head to see if that entry has a ready bit of one and if it is, 
the entry is then completed as a write to the register file for 
that particular destination register. Once that is complete, 
the head is incremented for each completed instruction that 
has been completed in order to keep the queue referencing 
the appropriate entries. 
 

 
Figure 6. Distributed ROB 

 

5. Methodology 
 

The Verilog designs were imported and compiled using 
Xilinx ISE®.  To validate the semantics of the Verilog 
code, a test bench was created which provides a program 
snippet to showcase the behavior of the circuit as a whole. 
The snippet showcased six clock cycles and utilized all 
four stages of the clock in each clock cycle.  The design 
functioned properly in behavioral simulation, as well as the 
Post Place & Route simulation for the building, mapping, 

and timing of the design, and determining the pins 
associated to on the Spartan 3E FPGA.  The last function 
of the Post Place & Route simulation was the creation of 
the XPower Analyzer netlist used for the dynamic power 
analysis.  Loading the netlist into the XPower Analyzer 
determined the overall power consumption and provided 
the data for the power analysis.  
 

6. Results 
 
6.1 Behavioral and Post Place & Route 
Simulation 
The simulations of the validity of the design provided one 
set of results for evaluation. To verify the functionality of 
the each design, the Verilog HDL code was placed through 
simulations which ultimately determine the validity at 
various checkpoints.  The signals used in the validation 
simulations are described in Table 4. 
 

Table 4.  Simulation Elements 
Element Name #Bits Description 
oPhase 2 clock phase that will cycle from 0-3 & 

continue to represent all phases in the 
simulation. 

iDestReg 16 destination register value that is sent 
from the instruction dispatch, used to 
allocate the ROB entry 

iDestRegTag 20 destination register tag which is 
generated and used for register renaming 
purposes within the ROB entries,  value 
is passed with the data from the 
execution unit to be able to update the 
correct ROB entry  

iData 64 value from the execution units that is to 
be written back to the correct ROB entry. 

oDestReg_rf 16 Output of the ROB that tells the register 
file which registers to update 

oData_rf 64 data that is being sent to the register file 
to be updated for the specific registers. 

 
Although the designs were different, the output signals 

which send completed data to the register file remained the 
same based on the similar clock cycle phases. This was the 
emphasis of the simulation results which proves the 
validity of the data.  The behavioral and Post Place & 
Route simulations yielded the same results concluding that 
each design was functionally implemented on the FPGA 
according the design strategy described previously in 
Section 4.  

 
6.2 Power Analysis 

Power analysis provided the second set of results for 
evaluation.  Each design and its corresponding netlist were 
loaded into the XPower Analyzer application. For the 
purpose of the designs mentioned in this research the input 
data is received from the instruction decode stage as well 
as the execution units. The output is the register results that 

26 Int'l Conf. Computer Design |  CDES'12  |



 

are written back to the register file at the end of a program 
instruction’s cycle.   

The Vcc power of the Spartan is divided into three 
different components:  the Vcc(int), Vcc(aux), and 
Vcc(out).  The first investigated was on the dynamic power 
consumption. Figure 7 specifies the two designs by 
dynamic power consumption. The Vcc(int) shows a 
difference of 23.64% on power consumption due to 
dynamic power based on the design being distributed. 
Each design has the same amount of Vcc(out) dynamic 
power consumption. Lastly, the Vcc(aux) is not impacted 
by dynamic power.   

 

 
Figure 7.  Dynamic Power Distribution  

 
In order to understand the 23.64% difference in 

dynamic power for Vcc(int),  the various components and 
how they were impacted by the different designs were 
examined. In Figure 8 the specific components to the 
FPGA and their impacts on power consumption are shown.  
Note that the signals component on the FPGA has a 
difference of 66.67% from the centralized to the 
distributed design. The signals component on the FPGA 
indicates the power consumed by data signals and control 
signals throughout the design based on the testbench’s 
netlist.  It can be seen that each design remains the same in 
clock power and logic power; therefore it is the signal 
power driving the efficiencies in the design.   

With dynamic power as such a focus on the design and 
implementation of the ROBs it is reasonable that the 
designs showcase a 23.64% increase in power efficiency 
from the centralized ROB design to the distributed ROB 
design. To take it more granular that 23.64% is possible 
because of the 66.67% increase in efficiency for power 
consumption of the signals, data and control, that make up 
the power consumption of the Vcc(int).  

 
 

 
Figure 8. Power Consumption of Specific Components 
 
Next, static power was investigated.  Static power 

consumption is indicated the Vcc (int, aux, and out). 
Figure 9 indicates that there is not much of a change for 
the centralized and distributed designs. The Vcc(int) shows 
a difference of .064% while the Vcc(aux) and Vcc(out) 
remain constant across the two designs. The focus of 
Figure 8 is to showcase all the static power of the Spartan 
3E FPGA due to the implementation on the chip. 

 

 
Figure 9.Static Power Distribution 

 
The static power results for these designs were 

expected.  The static power of the design indicates the 
leakage power of the Spartan 3E FPGA. Since both the 
centralized and distributed ROBs were not designed to be 
more efficient from a sizing scale, each design holds the 
same number of elements. Also to mention that since the 
design utilizes similar components on the Spartan 3E 
FPGA it would mean that the leakage to have each of those 
components would remain the same.  

The final results examine the total power consumption 
of the designs. Figure 10 provides the static, dynamic, and 
overall power consumption. The total static power of the 
designs have a difference of .024% based on the Vcc(int) 
being the only static component that had a change from 
centralized to distributed. The total dynamic power of the 

Int'l Conf. Computer Design |  CDES'12  | 27



 

designs have a difference of 19.26% based on the Vcc(int) 
being the only dynamic power consumer that changed from 
centralized to distributed. Lastly the overall power 
consumption of the designs have a difference of 12.84%. 

Ultimately the results conclude that the distributed 
ROB is a more efficient design from a power consumption 
perspective. These results are based on both designs being 
implemented on the same Spartan 3E FPGA device with 
the same testbench to benchmark the designs.  
 

 
Figure 10. Total Power Consumption  

 
The design aspects of the distributed ROB that make it 

more power efficient are the smaller and less logic 
intensive centralized ROB component and the distributed 
ROB components. The centralized ROB component acts as 
merely a lookup table that points the instruction dispatch 
and the execution units to the correct ROB component 
where the actual entry exists.  Without the need to 
constantly read and write large bits of data to this 
centralized buffer the logic decreases significantly and 
power efficiency is gained.  

Since this centralized buffer in the design is made of a 
smaller number of elements comprising each entry, this 
buffer is much smaller in scale to the normal centralized 
ROB design. The smaller buffers allow for significantly 
less intensive logic to perform reads, writes, and eliminate 
searches. With the logic focusing on smaller partitions of 
the overall ROB it allows for a stronger degree of 
parallelism within the ROB logic. The distributed ROB 
design focus on resource sharing, allows for the logic to 
provide more power efficiently. The second key to the 
efficiencies of the ROB components is in the manner of 
instruction decode. When the first instruction makes an 
entry in the ROB component the next instruction will jump 
to the next ROB component to load to. In doing so there is 
only need for one port to send data to the register file since 
there are eight ROB components and the instruction 
parallelism is four. Port eliminations is an important 
concept that can drive power consumption to be more 
efficient. 

7. Conclusion 
 

The ROB is a vital component of dynamic superscalar 
microprocessors to allow for out-of-order processing of 
instructions to increase throughput. Although the ROB is 
vital to the superscalar microprocessor it can be a large 
hindrance due to overall power consumption and 
efficiencies due to different architectural styles. Based on 
the power consumption issues, the technique of designing 
the ROB in a more dynamic power efficient manner was in 
focus. 

In order to understand the ROB and possible power 
efficiency strategies the two main designs, centralized and 
distributed, were analyzed in detail and designed into 
strategies that could be realized. The realization of the two 
designs was with Verilog and implemented according to 
the Spartan 3E FPGA, which allows for an in depth picture 
of power consumption from both a static and dynamic 
perspective.  

The final results showcase that the overall distributed 
ROB is more power efficient than the centralized ROB by 
a power reduction of 12.84%.  Overall, this research 
provided a deeper look into the ROB, provided insights on 
how to design the ROB more power efficient in an effort to 
make the overall microprocessor more power efficient, and 
provided an implementation strategy that was able to be 
validated against.  
 

8. References 
 
[1]  J. Lenell, S. Wallace, N. Bagherzadeh, “A 20MHz CMOS 
ROB for a Superscalar Microprocessor,” 4th Annual NASA VLSI 
Symposium, November 1992. 
[2] S. Wallace, N. Dagli, N. Bagherzadeh, “Design and 
Implementation of a 100 MHz ROB”, 37th Midwest Symposium 
on Circuits and Systems, August 1994. 
[3] G. Kucuk, O. Ergin, D. Ponomarev, K. Ghose, “Distributed 
ROB schemes for low power,” 21st International Conference on 
Computer Design, October 2003. 
[4] S. Wann-Yun, C. Hsin-Dar, “Saving register-file static power 
by monitoring short-lived temporary-values in ROB,” 13th Asia-
Pacific Computer Systems Architecture Conference, August 
2008. 
[5] G. Kucuk, K. Ghose, D. Ponomarev, P. Kogge, “Energy-
Efficient Instruction Dispatch Buffer Design for Superscalar 
Processors”, International Symposium on Low Power Electronics 
and Design, August 2001. 
[6] K. Ghose, D. Ponomarev, G. Kanad, “Energy-Efficient 
Design of the ROB”, International Workshop on Power and 
Timing, Modeling, Optimization and Simulation, Sept 2002. 
[7] Gary K. Yeap, “Practical Low Power VLSI Design,” Kluwer 
Academic Publishers, 1998. 
[8] John Paul Shen and Mikko H. Lipasti, “Modern Processor 
Design: Fundamentals of Superscalar Processors”, McGraw Hill, 
2005. 

28 Int'l Conf. Computer Design |  CDES'12  |



SESSION

ALGORITHMS, LOGIC, CIRCUIT/HARDWARE
DESIGN, AND TOOLS

Chair(s)

TBA

Int'l Conf. Computer Design |  CDES'12  | 29



30 Int'l Conf. Computer Design |  CDES'12  |



 

Abstract - Multiplication is an important primitive operation 
used in many applications. Although parallel multipliers 
produce results fast, they occupy considerable chip area. For 
applications with lengthy operands such as cryptography, the 
required area grows further. A Digit-Serial-Serial multiplier 
receives both inputs serially one digit per cycle. This reduces 
area at the expense of the number of cycles required to 
complete the multiplication. Digit multiplier designs are 
flexible with respect to the digit width offering designers the 
opportunity to select the most suitable compromise between 
area and cycle count for the application in concern. 

In this paper, a new Digit-Serial-Serial multiplier is proposed 
that is efficient in terms of area and area-time product. The 
proposed multiplier supports one operand to be of dynamic-
width while the other operand is fixed-width. In contrast, other 
multipliers support only fixed, equal-width operands. With a 
small modification, the multiplier is shown to be able to 
operate on 2’s complement operands. The proposed multiplier 
also supports bit-level pipelining. That is,   independent of the 
operand width and the digit width, the critical path of the 
multiplier pipeline stage can be reduced down to the delay of a 
D-FF, an AND gate and two full adders (FAs) independent of 
the digit width. 

Simulation results show that the proposed multiplier reduces 
the required area over similar multipliers  [1] by up to 20% 
and reduces the area-time product by up to 32%.  

Keywords: Multiplier, Digit-Serial-Serial, Area, Time, 2’s 
complement, dynamic operand 

 

1 Introduction 
 

Multiplication is a core operation in hardware designs. 
Although many multiplier designs have been proposed in 
literature, these designs still have a room for improvement  [7].   

To speed up the multiplication operation, completely 
parallel implementations have been proposed  [3] [9]. Since these 
designs process the two operands in parallel they possess a short 
processing time. In this case, parallel systems require a 
considerably large silicon area and area reduction becomes 
essential. 

Reduction of multiplier area has been the field of study of 
many papers  [1]. Many approaches were followed to reduce the 

area.  One of the common approaches used to reduce area is to 
split multiplication over multiple cycles and re-use a smaller 
circuit that exploits the similarities in the multiplication 
operation. This requires splitting one or the two operands into a 
number of digits each of width d bits and processing one digit at 
a time. Basically, multiplication can be carried out one digit at a 
time producing one digit of the result per cycle. This approach 
has many variations.  

One variation is Digit-Serial-Parallel multiplication  [7] 
where one operand is input in parallel while the other operand is 
input one digit per cycle. This has the advantage of reducing the 
multiplier area but suffers from the fact that one of the operands 
is still handled in parallel keeping the area-required high. 

Another variation is the Bit-Serial-Serial multiplication 
where both operands are input one bit per cycle  [8]. This has the 
advantage of minimal area but suffers from high cycle count. 

 The third is Digit-Serial-Serial where both operands are 
input one digit at a time filling the gap between the two former 
approaches. In this paper, we follow this approach and propose 
an area and area-time product efficient multiplier.   

Many design approaches are used to achieve Digit 
multipliers. Two systematic approaches are folding  [10] and 
unfolding  [7]. Folding starts with a full parallel multiplier and 
truncates the basic execution unit (in the multiplier case, the 
adder) to the digit width rather than the operand width. On the 
other hand, unfolding starts with a Bit-Serial-Serial multiplier 
and replicates it a number of times equal to the digit width. 
Other systematic approaches are based on radix 2n arithmetic 
 [1]. An ad-hoc approach also can be found in  [7] producing a 
Digit-Serial-Parallel multiplier. Our design adopted the folding 
approach starting from a fully parallel multiplier and truncating 
it down to a Digit-Serial-Serial multiplier. 

 Compared to the large volume of research on Digit-Serial-
Parallel multipliers, a much smaller volume is present for Digit-
Serial-Serial multipliers. Perhaps one of the first trials to 
achieve Digit-Serial-Serial multipliers is the work proposed by 
Aggoun et al.  [1]. They proposed a design that is based on 
radix-2n arithmetic and supports bit-level-pipelining. This is 
achieved by using 4-to-2 compressors [1] instead of adders. 
Their proposed multiplier is considered the first Digit-Serial-
Serial multiplier in literature and accordingly is compared to 
Digit-Serial-Parallel multipliers. Though their multiplier was 
shown to outperform the compared-to multipliers in area and 
area-time product measures, however they impose some 
constraints like no 2’s complement support, no odd digit count 
support and no dynamic-width operand support. 

Area-Time Efficient Digit-Serial-Serial Two’s 
Complement Multiplier 

 

Essam Elsayed and Hatem M. El-Boghdadi  

Computer Engineering Department, Cairo University, Egypt 

 
 

Int'l Conf. Computer Design |  CDES'12  | 31



 

  Almiladi  [2] made an extension to the work of Aggoun  [1] 
where he used another design methodology (Table 
Methodology) that is more systematic to achieve the same 
results and accordingly their multiplier inherits the same 
constraints. Also their multiplier does not support bit-level-
pipelining and introduces extra startup cycles. That is, the result 
digits are not produced immediately starting from the first cycle 
as in Aggoun  [1] or the multiplier proposed in this paper.  

Up to our knowledge, this paper is the third trial to address 
Digit-Serial-Serial multipliers. In this paper, a new Digit-Serial-
Serial multiplier is proposed that is efficient in terms of area and 
area-time product. The area-time product is a balanced measure 
that considers both the speed and the area factors of a design 
rather than considering each alone. We call the proposed 
multiplier the Folded Digit-Serial-Serial Multiplier (FDSSM).  

Let the two operands to be multiplied be A and B of width 
m bits and n bits respectively. In the FDSSM operation, A and B 
are divided into digits of width d and fed serially; one digit of 
each of the operands per cycle. The FDSSM is shown to require 
(n + m)/d cycles to complete the multiplication operation.   

 The FDSSM supports one operand of dynamic-width 
while the other operand (the smaller of the two operands) is of a 
fixed-width. In contrast, other functionally-similar multipliers 
support only fixed, equal-width operands. With a simple 
modification, the FDSSM can also perform 2’s complement 
operands multiplication that is not supported by the other 
functionally-similar multipliers.   

The FDSSM also supports bit-level pipelining. That is,   
when the multiplier is pipelined; the pipeline stage delay is 
independent of the operand width and the digit width. In the 
FDSSM case; it can be pipelined with a pipeline stage delay 
down to the delay of one D-FF, one AND gate and two FAs.  

The main reason the FDSSM improves the area is the 
elimination of the input buffers and the last-digits’ buffers; 
simulation results show that the FDSSM reduces the required 
area over other functionally-similar multipliers by up to 20%. It 
also reduces the area-time product by up to 32%. 

The next section describes the mathematical background of 
the Digit-Serial-Serial multiplier. In section  3, we describe the 
FDSSM circuit and its operation. In section  4, we present the 
simulation results and a comparison to other multiplier designs. 
Section  5 covers the FDSSM’s properties such as dynamic 
operand support and how the FDSSM can be modified to 
support 2’s complement and applying bit-level-pipelining. 
Finally, Section  6 presents the concluding remarks. 

 

2 Mathematical Background 
 

In this section, we present the mathematical background 
that is used as the base of the FDSSM. In the following we 
consider the two multiplied operands to be of the same width. 
Later in section  5 we show how one of the operands can be of 
dynamic width.   

Consider the multiplication of two numbers A and B each 
of width n bits where A=an-1an-2….a0 and B=bn-1bn-2….b0. The 
paper and pencil technique to calculate A ×  B has two main 

stages; the partial product bits generation where each bit of A is 
multiplied by each other bit of B. The second stage is to 
accumulate the partial product bits of the same significance to 
form the final result. The partial product bits’ matrix (PPBM) to 
be accumulated can be given as follows:  

 

101111

101211

000101

01122

−−−−

−−

−

−−

nnnn

nn

n

bababa

bababa

bababa

colcolncolncolncol

L

M

L

L

L

(1) 

 

Column i of the matrix is of significance 2i where 
220 −≤≤ ni . Accumulating the partial product bits of each 

column gives the multiplication result bit of the current 
column’s significance and multiple carry bits for the next 
significant column. 

The operand A can be appended with zero-bits at both the 
least and most significant ends to make the PPBM a rectangular 
matrix. This extension can be done as follows: 

   

     0121:0 <−≤<−∀= iorniniai            (2) 

 

The resulting PPBM with effective partial product bits 
underlined (non-underlined terms are equal to 0) is: 

 

11121011111

11101211132122

0001010022012

−+−−+−−−−−−

−−−−−

−−−

nnnnnnnnnn

nnnn

nnnn

babababababa

babababababa

babababababa

LL

M

LL

LL

(3) 

 

After generating the PPBM, the second stage is to 
accumulate these partial products. This can be formulated as:  

i
j

n

i

n

j
ji baBA 2

12

0

1

0
∑∑

−

=

−

=
−=×              (4) 

 

The outer summation represents the columns of PPBM and 
the inner one represents the rows.  

Each cycle, the FDSSM accepts one digit of A and one 
digit of B. Grouping each d consecutive bits of A into a digit, 
equation (4) can be written as: 

 

∑ ∑∑
−

=

−

=

−

=

+
−+=×

1)/2(

0

1

0

1

0

2
dn

i

n

j

d

l

lid
jjlid baBA             (5) 

 

32 Int'l Conf. Computer Design |  CDES'12  |



 

Grouping each d consecutive bits of B into a digit the 
equation becomes: 

 

∑ ∑ ∑∑
−

=

−

=

−

=

−

=

+
+−+−=×

1)/2(

0

1)/(

0

1

0

1

0
)()( 2

dn

i

dn

j

d

l

d

k

lid
kjdkljid baBA      (6) 

 

Each of the outer summation iterations represents d 
consecutive columns (column set) of the PPBM of equation (3). 
Within the FDSSM; each of these iterations is processed in one 
cycle starting by the least significant column set requiring a 
total of 2n/d cycles to complete the multiplication. 

The number of partial product bits generated per cycle is 
calculated as the product of the number of iterations of the three 
remaining inner summations of equation 6, 

nddddn =××)/( bits. Also the partial product digits 
count per cycle is calculated as the partial product bits count per 
cycle nd divided by digit width d to be n digits. The partial 
product digits are then accumulated in the same cycle using a 
tree of 4-to-2 compressors of depth (log n) -1 levels and one 
normal adder. 

 

3 The Proposed Multiplier 
 

As mentioned in the previous section; the FDSSM runs 
over two stages per cycle: partial product digits generation and 
partial product digits accumulation. In this section, we propose 
an implementation for the FDSSM. 

 

3.1 Partial Product Digits Generation 
Generally speaking, the main idea is to divide 

multiplication into identical sets of operations that can be 
processed by a smaller processing unit over multiple cycles. 
This is in contrast to the multiplication as a single set of 
operations processed by a full-length processing unit in one 
cycle. This is shown in Figure 1 where the PPBM is divided 
into column-sets each is of width d. The processing unit in this 
case (the FDSSM) is responsible for generating and 
accumulating the partial product digits of one column-set per 
cycle (starting by the least-significant column-set up to the most 
significant one.) 

The partial product digits generation per cycle is further 
divided within the FDSSM over n/d identical basic blocks (BB0, 
BB1 … BB (n/d)-1) where each basic block is responsible for 
generating d digits. This is shown in Figure 2 where each basic 
block is responsible for a row-set of width d of the PPBM. The 
intersection of the column-set and the row-set defines the partial 
product digits generated at the relevant cycle by the relevant 
basic block respectively. 

The basic blocks are shown in the upper part of Figure 2 
and the lower part shows the detailed design of one basic block. 
Each basic block has three inputs and two outputs.  

 

Figure 1: Partial Product Bits per Cycle per Basic Block 

 

The first input of each block is current cycle’s digit of the 
multiplier operand B (indicated by 1 on Figure 2). The control 
signal of the basic block enables latching this digit within the 
block such that each block latches only the digit of B respective 
to the row-set it is responsible for.  

The second input is one digit of the multiplicand operand A 
received from previous block (indicated by 2 on Figure 2), we 
call it the current digit of A (with respect to the basic block.)  

The third input is the previous digit of A (with respect to 
the basic block) received from next block (indicated by 3 on 
Figure 2) In summary, digits of A are shifted along the basic 
blocks such that the current digit of A of a basic block becomes 
the current digit of A of the next basic block and the previous 
digit of A of the former basic block at the next cycle. 

The need for the previous digit of A can be seen in equation 
(3) where there is a one bit shift-left per row. This makes each 
column-set spanning two digits of A: current digit of A and 
previous digit of A. The feedback of the previous digit of A is 
needed to complement the shifted versions of the current digit 
of A. A register of width (d – 1) is used to latch and provide the 
previous digit of A for the last basic block. 

The outputs of the block are the generated partial product 
digits (indicated by 4 on Figure 2) fed to the accumulation stage 
and the current digit of A (indicated by 5 on Figure 2) fed to 
both the next and the previous blocks. This way the unit 
generates d partial product digits per cycle.  

 

3.2 Partial Product Digits Accumulation 
In this section we show how the generated partial product 

digits are accumulated. As mentioned in section  3.1, the output 
of each basic block is d partial product digits. Here we use a 
tree of 4-to-2 compressors to accumulate the generated partial 
product digits as shown in Figure 3. 

 

Int'l Conf. Computer Design |  CDES'12  | 33



 

 

Figure 2: Partial Product Digits Generation Unit 

 

 

Figure 3: Partial Product Digits Accumulation 

 
Each of the 4-to-2 compressors takes 4 partial product 

digits and 2 carry-in bits as input and compresses them into 2 
partial product digits and 2 carry-out bits. A 4-to2 compressor 
possesses a delay of 2DFA, where DFA is one full adder delay. 
The 2 carry-out bits are latched and routed back as carry-in for 
the same compressors next cycle. The tree root is a normal  

 

 

Figure 4: Area Comparison between FDSSM and Agg.  [1] 

 

adder that sums two partial product digits into one digit. The 
tree consists of (n/2)-1 compressors and 1 normal adder. Each 
compressor consists of 2d full adders and the normal adder 
consists of d full adders giving a total of 2d ([n/2]-1) +d = d (n-
1) full adders. The tree latency can be given by: 2DFA ([log n] - 
1) +DADD where DFA is the full adder delay and DADD is the 
normal adder latency. 

 

4 Experimental Results 
 

In this section we compare the FDSSM with the multiplier 
proposed by Aggoun  [1]. As mentioned before, their work is the 
only in literature that proposed a Digit-Serial-Serial multiplier. 
The work of Almiladi  [2] is a slightly modified version for the 
work of Aggoun  [1] that uses a different design methodology. 
Aggoun  [1] proposed two implementations: the first with a 
basic-block per digit of the operand and the second uses only 
half the count of basic-blocks and buffers the most significant 
operands’ halves and reroutes them for processing after the least 
significant halves are processed. The second implementation is 
the one we compare to since it occupies less chip area and 
possesses less area-time product.  

We implemented the FDSSM and the compared-to Aggoun 
 [1] in VHDL. The implementation was done using Cadence 
Encounter Digital Implementation RTL Compiler 
(EDI9.1_ISR4_s273) on CentOS 6 - x368 using NCSU-
FreePDK45-1.4 cell library and targeting a clock period of 
100ps. The comparison was done with respect to area, time, and 
area-time product measures. All multiplier instances used equal-
width operands (a constraint of Aggoun  [1]) Simulation results 
are shown in Figures 4, 5, 6, 7, 8, and 9. In the experiments, we 
change operands’ width n from 8 to 64 bits while changing the 
digit width d from 4 to 32 bits. In the figures, 8/4 means that the 
operand width n = 8 bits while the digit width is d = 4. 

34 Int'l Conf. Computer Design |  CDES'12  |



 

 

Figure 5: Area Improvement of FDSSM Over Aggoun  [1] 

 

 

Figure 6: Time Comparison between FDSSM and Agg.  [1] 

 

Figure 4 shows how the area changes with different 
operand width and digit width. The area is measured in 
nanometer.  

Figure 5 shows the area improvement percent for the 
FDSSM over Aggoun  [1]). For example, for 32/8, the area is 
reduced in FDSSM by about 16%. The excess area in Aggoun 
 [1]  results from operand buffering done where n buffers are 
used to buffer the most-significant halves of the operands 
together with an input MUX of width d. Also the design of 
Aggoun  [1] buffers the previous digit of both operands per unit 
to complement the shifted partial product digits generated. Both 
elements are not present in the FDSSM causing the area 
reduction.  

 

 

 

Figure 7: Time Improvement of FDSSM Over Aggoun  [1] 

 

 

Figure 8: Achievable Running Frequency 
 

Figure 6 and Figure 7 show the clock cycle time 
comparison between FDSSM and Aggoun  [1]. Theoretically 
FDSSM outperforms the work in Aggoun  [1] in time for n/d 
ratios less than or equal to 4; that is, operands are split into 4 
digits or less. The time required for FDSSM is given by TFDSSM 

= ((2log n)-2+d) TFA where TFA is the full adder time whereas 
the time for the design Aggoun  [1] is given by TAggoun  [1] = 
((2log d)+2+d)TFA. Thus, n/d must be ≤ 4 for TFDSSM to be less 
than or equal to TAggoun  [1]. 

This reflects on the time improvement as seen for cases like 
32/4, 64/4, and 64/8 in Figure 7. The figure shows that FDSSM 
possess time improvement up to 14% for n/d ratios less than or 
equal to 4. In other cases where this ratio is more than 4, the 
work of Aggoun  [1] outperforms the FDSSM.  

  

 

Int'l Conf. Computer Design |  CDES'12  | 35



 

 

Figure 9: Area-Time Product Improvement 

 

Figure 8 shows the circuit achievable frequency. The 
FDDSM frequency ranges from about 550 MHz to 960 MHz 
whereas Aggoun  [1] frequency ranges from about 480 MHz to 
820 MHz . The frequency graph is the reciprocal of time graph; 
Aggoun  [1] outperforms at 32/4, 64/4, 64/8 whereas FDSSM 
outperforms at the rest of values.  

Figure 9 shows the area-time product comparison between 
FDSSM and Aggoun  [1]. The area improvement compensates 
for the time lag in the 32/4 and 64/8 cases, and diminishes the 
time lag in the 64/4 case.   

It should be noted that Aggoun  [1] imposes a constraint 
that the digit count must be even (due to using half the digit-
count of basic blocks) however FDSSM does not impose this 
constraint; that is it supports even and odd digit count giving 
designers more flexibility in area-speed compromises. 

 

5 Properties of the FDSSM 
 

In this section we introduce two properties that the FDSSM 
possesses. First we introduce the property of dynamic width 
operand then we show how the FDSSM can be modified to 
support the two’s complement multiplication.  

 

5.1 Dynamic Width Operand 
The proposed multiplier latches one operand’s digit per 

cycle and shifts the other operand’s digits along the basic 
blocks. This allows the second operand to be of any digit count 
(i.e., dynamic.) This enables long operand multiplication by 
fixed-width operand which is common in cryptography 
applications. The number of cycles required to complete the 
multiplication is given by (n + m) / d where n and m are the 
operand sizes, m > n. The number of basic blocks required in 
this case is equal to the digit count of n. That is the area and 
time specification of an FDSSM with one dynamic operand  

 

Figure 10: Modifying the Multiplier to Support 2’s 
Complement 

 

matches those of an FDSSM with equal size operands with the 
operand size equal to the smaller operand. 

On the other hand in Aggoun  [1], both operands are latched 
one digit per cycle which constraints the multiplier for fixed, 
equal-width operands. Accordingly the number of basic blocks 
required is equal to half the digit count of m; and n is extended 
to match m. 

To support dynamic width operand, another input signal is 
added to the FDSSM flagging the arrival of the last digit of m. 
This signal tells the FDSSM that starting next cycle, zeros digits 
must be injected instead of m digits (no more m digits). The last 
result digit is produced after n/d cycles of receiving the last digit 
of m 

.  

5.2 Two’s Complement Support 
In this section we show how the FDSSM can be modified 

to support 2’s complement operands. The 2’s complement 
support applies the methodology proposed by Ienne and 
Viredaz  [5]. As mentioned before, one of the operands, the 
latched operand is considered the multiplier and the second 
operand, the shifted operand is considered the multiplicand.  

To support 2’s complement operands, we deal with the 
multiplicand and the multiplier as follows. For the shifted 
multiplicand operand, a sign extension is performed. In case of 
the dynamic-width multiplicand, an extra input is required to 
indicate the last digit so that sign extension starts next cycle. As 
for the latched multiplier operand, the basic block of most 
significant digit is modified replacing the AND gates connected 
to the most significant bit of the latched digit to XOR gates 
(highlighted in Figure 10). This has the effect of inverting the 
bits of multiplicand digits if that bit (i.e., the sign bit) is 1. The 
first effective carry-in of the adder corresponding to the  

36 Int'l Conf. Computer Design |  CDES'12  |



 

 

 

 

Figure 11: Bit-Level Pipelining Support 

 

modified partial product digit is also reset to 1 rather than 0 if 
that bit is 1, such that the multiplicand negation is complete 
(i.e., if the sign bit of the multiplier operand is 1; the 
multiplicand operand is subtracted rather than added.) Figure 10 
shows the modification. This not applicable to Aggoun  [1] since 
the multiplier sign bit is processed at each of the basic blocks 
compared to FDSSM where it is processed only at the most 
significant digit’s basic block. 

 

5.3 Bit-Level Pipelining Support 
A bit-level pipelined multiplier is a multiplier with a 

pipelined circuit such that the pipeline stage delay is 
independent of the digit width and the operands width(s). 
Multipliers with feed-backward lines cannot be bit-level 
pipelined since the feedback will be out of sync due to 
pipelining. Also multipliers that use normal digit adders cannot 
be bit-level pipelined since the pipeline stage delay will be 
dependent on the adder/digit width. 

In the FDSSM, bit-level pipelining can be achieved by 
latching the compressors’ outputs from one level to the next.  

Figure 11 shows the modifications required and Figure 12 
shows the 4-to-2 compressor circuit  [1]. The final adder is 
replaced by a bit-level pipelined adder as the one described in 
 [7] and shown in Figure 13. This modification makes the 
pipeline stage delay equal to a D-FF, an AND gate and two 
FA(s) independent of the digit width. 

 

Figure 12: Structure of a 4-To-2 Compressor  [1] 

 

Figure 13: 4 Bit- Bit-Level-Pipelined Adder 

 

6 Concluding Remarks 
 

In this paper a new Digit-Serial-Serial multiplier is 
proposed that is efficient in both area and area-time product 
measures. The presented multiplier supports dynamic-width 
operand while the other-shorter operand is fixed-width. The 
multiplier was shown to be able to perform 2’s complement 
multiplication and supports bit-level pipelining. Simulation 
results showed that the proposed multiplier reduces the required 
area and area-time product significantly.  

An extension of this work can be in the design of a Digit-
Serial-Serial divider of a similar organization or based on the 
proposed multiplier. Other direction includes having a full 
Digit-Serial-Serial ALU as a building block in processors. 

Int'l Conf. Computer Design |  CDES'12  | 37



 

 

References 
 

[1] Aggoun, A.; Farwan, A.F.; Ibrahim, M.K.; Ashur, A., 
"Radix-2n serial-serial multipliers," IEE Proceedings - 
Circuits, Devices and Systems, vol.151, no.6, pp. 503- 
509, 15 Dec. 2004. 

[2] Almiladi, A.; "A Novel Methodology for Designing 
Radix-2n Serial-Serial Multipliers," Journal of Computer 
Science 6 (4): 461-469, 2010. 

[3] Dimitrov, V.S.; Jarvinen, K.U.; Adikari, J.; "Area-
Efficient Multipliers Based on Multiple-Radix 
Representations," IEEE Transactions on Computers, 
vol.60, no.2, pp.189-201, Feb. 2011. 

[4] Gnanasekaran, R.; "On a Bit-Serial Input and Bit-Serial 
Output Multiplier," IEEE Transactions on Computers, 
vol.C-32, no.9, pp.878-880, Sept. 1983. 

[5] Ienne, P.; Viredaz, M.A.; "Bit-serial multipliers and 
squarers," IEEE Transactions on Computers, vol.43, 
no.12, pp.1445-1450, Dec 1994. 

[6] Lamberti, F.; Andrikos, N.; Antelo, E.; Montuschi, P.; 
"Reducing the Computation Time in (Short Bit-Width) 
Two's Complement Multipliers," IEEE Transactions on 
Computers, vol.60, no.2, pp.148-156, Feb. 2011. 

[7] Nibouche, C.; Nibouche, M., "On designing digit 
multipliers," 9th International Conference on Electronics, 
Circuits and Systems 2002, vol.3, no., pp. 951- 954 vol.3, 
2002. 

[8] Nibouche, O.; Bouridane, A.; Nibouche, M.; "New 
architectures for serial-serial multiplication," The 2001 
IEEE International Symposium on Circuits and Systems 
2001, ISCAS 2001, vol.2, no., pp.705-708 vol. 2, 6-9 
May 2001. 

[9] Stelling, P.F.; Martel, C.U.; Oklobdzija, V.G.; Ravi, R.; 
"Optimal circuits for parallel multipliers," IEEE 
Transactions on Computers, vol.47, no.3, pp.273-285, 
Mar 1998. 

[10] Wu, C.W. and P.R. Cappello, 1989. "Block multipliers 
unify bit-level cellular multiplications," Int. J. Comp. 
Aid. VLSI Des., 1: 113-125.  

 

38 Int'l Conf. Computer Design |  CDES'12  |



RB_DSOP: A Rule Based Disjoint Sum of Products 

Synthesis Method  
 

P. Balasubramanian* 
Department of Electronics and 

Communication Engineering, 

S.A. Engg College (aff to Anna Univ),       

Chennai 600 077, TN, India 

spbalan04@gmail.com 

R. Arisaka 
School of Computing, 

Teesside University, 

Middlesbrough TS1 3BA, 

United Kingdom 

a_ryuta@yahoo.co.uk 

H. R. Arabnia                                  

Department of Computer Science, 

University of Georgia,                      

415 Boyd Building,                    

Athens, Georgia 30602-7404, USA 

hra@cs.uga.edu 

  
Abstract—A novel disjoint sum of products (DSOP) synthesis 

method is presented in this paper. It has been found out from 

analysis that a pair of logical product terms can subscribe to just 

four possible logic relationships. This important observation 

underlies the development of the proposed Rule Based DSOP 

(RB_DSOP) synthesis scheme that applies specific Boolean rules 

to transform the overlapping products into non-overlapping 

ones, in order to deduce the minimum DSOP expression from a 

reduced sum of products (SOP) form. The RB_DSOP method is 

implemented using Java, incorporating parallel problem solving 

capability, and is available as a stand-alone tool for teaching 

and/or research purposes – free access can be provided upon 

request. The major highlight of this research being that the cost 

(number of essential products) of the DSOP solution generated 

for a number of combinational benchmarks using the proposed 

RB_DSOP method is found to be significantly lower (77%) in 

comparison with the cost of the DSOP solution derived using a 

well-known open-access DSOP routine in the existing literature.     

I. INTRODUCTION 

A Boolean product represents a conjunction of distinct 
literals, where a literal specifies a Boolean variable (x) or its 
complement (x’). A Boolean function, f, is a mapping of type 
f: {0,1}

n
 → {0,1,d}, where 'd' denotes a don't care condition. If 

d does not exist, then the function f is said to be completely 
specified or two-valued, otherwise it is incompletely specified. 
Each of the 2

n
 nodes in the Boolean space corresponds to a 

canonical product term (minterm). The ON-set, OFF-set and 
DC-sets of f correspond to those minterms that are mapped to 
1, 0 and d respectively. A Boolean equation can be expressed 
in the sum-of-products (SOP) or disjunctive normal form, 
where the products are all irredundant. In general, a SOP is 
said to contain minimum number of essential products by 
definition and hence it is also referred to as minimum SOP. A 
Boolean specification is said to be expressed in the disjoint 
sum of products (DSOP) form, if it is described by a logical 
sum of product terms that are all disjoint [2], i.e. no two 
product terms cover a common minterm in their expanded 
form – in other words, the products are non-overlapping and 
their logical conjunction results in a null. A DSOP form with 
the least number of irredundant product terms is known as 
minimum DSOP.   

While SOP minimization can be likened to a set covering 
problem, DSOP minimization can be likened to the problem of 
finding a minimum exact disjoint cover which is NP-hard [2]. 
For example, the number of essential products comprising the 
SOP expression of an Achilles’ heel function [2] is given by 

( )
2

nO , while the number of essential products constituting its 

DSOP expression is specified by 




 −12 2

n

O , where ‘n’ 

represents the number of distinct primary inputs. DSOPs have 
been traditionally used in several applications in CAD areas, 
for example, to calculate the spectra of Boolean functions [3 - 
5], or as a starting point for the minimization of Exclusive-OR 
SOP logic [6] [7], which forms the backbone of synthesis 
schemes for reversible logic circuits [8] [9] that assumes 
significance in the realm of quantum computing. A number of 
DSOP methods have been proposed by researchers over the 
past few decades [10] – [14] by relying on heuristics, 
considering utilization of reduced ordered binary decision 
diagrams (ROBDDs) or adopting evolutionary programming 
techniques. Nevertheless, ROBDDs being inherently mutually 
exclusive may suffer from huge memory space requirements 
for higher order functionality and therefore heuristics might be 
preferable. Of these, the Espresso_DSOP routine [1] is widely 
referred and it is primarily an open-access tool. In general, 
DSOP solutions generated by Espresso are far from optimum; 
this is more so the case for functions with several concurrent 
outputs as the synthesis scheme resorts to group minimization 
of all the function outputs. An alternative approach would be 
to consider deriving DSOP solutions for the function outputs 
individually on the basis of their SOP forms, which is the 
strategy adopted in case of our RB_DSOP method.   

The remaining part of this paper is organized as follows. 
Section 2 highlights the various pair-wise logical product 
scenarios and discusses how select Boolean axioms are 
applied to transform the non-disjoint products into disjoint 
ones. Section 3 describes the RB_DSOP synthesis scheme 
from a high-level perspective, and Section 4 tabulates the SOP 
and DSOP costs pertaining to a large set of combinational 
logic benchmarks based on Espresso_DSOP and RB_DSOP 
methods. Lastly, the conclusions are arrived at in Section 5.   

* This research work was performed when the author was affiliated 

with the Department of Electronics and Communication Engineering, 

Vel Tech Technical University, Avadi, Chennai 600 062, TN, India.   

Int'l Conf. Computer Design |  CDES'12  | 39



II. PAIR-WISE LOGICAL PRODUCTS – CLASSIFICATION 

In this section, we classify logical product pairs into four 
categories and describe ways of converting non-disjoint 
products into disjoint ones – disjoint products are non-
overlapping while non-disjoint product terms tend to overlap. 
It should be noted that the examples used for describing the 
subsequent logic transformations are mainly representative of 
general function scenarios. A pair of products are said to be 
overlapping if they cover a common canonical product (cube) 
when expanded. A canonical product term is also called as 
minterm, which is a unique conjunction of all input variables.    

A. Pair-Wise Product Scenario 1: F(a,b,c) = ab + c 

A Boolean function F(a,b,c), dependent on three binary 
variables, is composed of two product terms, say P1 = ab and 
P2 = c. The support (set) of a product term enumerates the 
variables constituting it. Here the support set of product terms 
P1 and P2 contain distinct variables, i.e. s(P1) = {a,b} and 
s(P2) = {c}, implying s(P1) ∩ s(P2) = ϕ. Products P1 and P2 are 
said to be overlapping as they cover the common minterm abc 
in their expanded form, and hence they are non-disjoint.  

Citing this scenario, we describe how to convert two 
overlapping product terms into non-overlapping (disjoint) 
ones, where the products consist of unique variable 
conjunctions with one of the product terms being a singleton. 
Product term P2 is said to be singleton as |s(P2)| = 1. In this 
case, the converse of the absorption axiom (x + x’y = x + y) is 
used to transform the product term P1 as thus: P1 = abc’. Now 
the two product terms become disjoint and they would not 
overlap since they no more cover a similar minterm in their 
canonical forms. Therefore the transformed Boolean function 
F*, which is logically equivalent to the original function F is 
expressed as, F*(a,b,c) = abc’ + c. Here, F and F* exhibit 
combinational equivalence and they represent the respective 
SOP and DSOP function formats.         

B. Pair-Wise Product Scenario 2: F(a,b,c) = ab + ac 

A Boolean function F(a,b,c), dependent on three binary 
variables, is composed of two product terms, say P1 = ab and 
P2 = ac. Here the support of product terms P1 and P2 contain 
the common variable a. In terms of set notations, s(P1) = {a,b} 
and s(P2) = {a,c} and s(P1) ∩ s(P2) ≠ ϕ. Again, product terms 
P1 and P2 are found overlapping as they cover the common 
minterm abc when expanded, and so they are not disjoint.  

In cognizance of this scenario, we describe how to convert 
two non-disjoint product terms into a disjoint product pair, 
where the products share one or more common variables, with 
neither of the product terms being a singleton. Use the 
distributive axiom of Boolean algebra viz. ab + ac = a(b + c) 
to extract the kernel (b + c). The converse of the absorption 
axiom of Boolean algebra is applied to transform the kernel 
comprising overlapping product terms (bc is shared within the 
kernel) into non-overlapping products as mentioned above. 
Thus the kernel (b + c) is transformed into (b + b’c). Using the 
distributive property of Boolean algebra, x(y + z) = xy + xz, re-
enumerate the product terms in the disjunctive normal form. 
The transformed logic function is, F*(a,b,c) = ab + ab’c. Here 
again, F and F* feature combinational equivalence, and they 
signify the respective SOP and DSOP function formats.     

C. Pair-Wise Product Scenario 3: F(a,b,c,d) = ab + cd 

A Boolean function F(a,b,c,d), dependent on four binary 
variables consists of two product terms, given by P1 = ab and 
P2 = cd. The support set of products P1 and P2 do not contain 
any common variable. As per set notations, s(P1) = {a,b} and 
s(P2) = {c,d} and s(P1) ∩ s(P2) = ϕ. Product terms P1 and P2 
are overlapping since they cover the common minterm abcd in 
their expanded form, and hence they are non-disjoint.  

This illustration depicts another different scenario where 
the product terms consist of unique variable conjunctions with 
neither of the products being a singleton, i.e. |s(P1)| ≠ 1 and 
|s(P2)| ≠ 1. In this case, the identity axiom (x + x’ = 1) of 
Boolean algebra is applied to any of the pair of products 
considered; let us say to product term P2 as (a + a’)cd. 
Following this, the product terms are expanded by applying 
the distributive axiom as (acd + a’cd). Now the transformed 
logic function is given by the logical sum of three product 
terms P1, P2 and P3 respectively as: F*(a,b,c,d) = ab + acd + 
a’cd. It can be seen that P1 and P2 are mutually disjoint with 
P3, and P2 and P3 are also disjoint. With P1 and P2 being non-
disjoint, using the distributive axiom the kernel (b + cd) is 
extracted as described in sub-section 2(B), which is then 
transformed into (b + b’cd) as discussed in sub-section 2(A). 
Distributive law is again applied to enumerate the product 
terms comprising the transformed function, which is given by 
F*(a,b,c,d) = ab + ab’cd + a’cd. Again, we find that F(a,b,c,d) 
and F*(a,b,c,d) are combinatorially (logically) equivalent, 
although being algebraically different.               

D. Pair-Wise Product Scenario 4: Covering Term and 

Covered Term, Redundant Products 

On account of the logic optimizations detailed above to 
translate a function expressed in SOP form into a DSOP form, 
where all the product terms are mutually exclusive, the 
possibility of covering term and covered terms might result. 
Also, redundant products may crop up. In case of the former, 
absorption law of Boolean algebra is used to eliminate the 
covered products, i.e. x + xy = x. In case of the latter, logic 
duplication is avoided through the idempotency law: x + x = x.      

III. RB_DSOP SYNTHESIS METHOD 

The proposed RB_DSOP synthesis heuristic is explained 
through the following steps. A simple lexicographical variable 
ordering is followed for transformations or optimizations 
involving the product terms of a Boolean function.    

• Step 1: Obtain the SOP form of a logic function  

• Step 2: Compare each product term with every 
other product term in the SOP expression to 
check whether they are mutually disjoint. If so, 
go to Step 8, else proceed with Step 3 

• Step 3: Enumerate all the overlapping pairs of 
products which do not feature any common 
variables but with one of the product terms being 
a singleton (as highlighted in Scenario 1). 
Transform such product term pairs into mutually 
exclusive ones as discussed in Section 2(A). If 
Scenario 1 does not arise, proceed with Step 4 

40 Int'l Conf. Computer Design |  CDES'12  |



• Step 4: Enumerate all the overlapping pairs of 
product terms, where the product terms feature 
variable sharing but with neither of the products 
being a singleton (as outlined by Scenario 2). 
Transform such logical products into mutually 
exclusive pairs as discussed in Section 2(B). If 
Scenario 2 does not arise, proceed with Step 5 

• Step 5: Enumerate all the overlapping product 
pairs, which comprise distinct variable supports 
with neither of the product terms being a 
singleton (as portrayed by Scenario 3). Convert 
such product pairs into disjoint ones based on the 
procedure described in Section 2(C) 

• Step 6: If any logical product is found to cover 
any other product term in the transformed 
function expression and/or if logic duplication 
occurs (as depicted by Scenario 4), eliminate the 
covered term and discard logic repetitions as 
mentioned in Section 2(D)  

• Step 7: Return back to Step 2 to ensure the SOP 
expression is transformed into a DSOP format  

• Step 8: Terminate the synthesis routine as the 
DSOP form of the requisite logic specification 
has been obtained   

In general, a logic function would have several concurrent 
inputs and outputs. The RB_DSOP synthesis procedure is 
applied simultaneously to all the SOP expression(s) of the 
output(s) of a logic function – independently and in parallel. 
The reduced SOP form of a Boolean function is obtained by 
means of a standard open-access logic minimizer, Espresso 
[1]. The logical correctness of the DSOP solution derived is 
guaranteed by the Boolean rules applied, which are indeed 
well-established and proven properties, while the functional 
correctness of the DSOP solution is ensured by comparing 
each product with every other product term forming the cover 
of a function’s primary output. However, such a comparison is 
performed as part of data processing. The combinational 
equivalence of a SOP form and its DSOP form is confirmed 
through the Dverify option of Espresso.  

The cost of the DSOP solution derived for a logic function, 
starting from its SOP specification, is specified by the count of 
unique product terms, some/all of which may eventually be 
shared between the various function outputs. Depending upon 
the initial logic description, several iterations of some/all of 
the synthesis steps may be required to deduce the minimum 
DSOP form. The RB_DSOP synthesis package basically reads 
an input file described in the conventional programmable logic 
array (.pla) format and produces an output file in a custom-
defined format which provides the following information: 
DSOP equations obtained corresponding to the individual 
primary outputs, cost factor of the respective primary outputs, 
cost of the entire function taking into account logic sharing if 
any, and description of the outputs in .pla style.                  

IV. EXPERIMENTAL RESULTS 

The synthesis procedure of the proposed RB_DSOP 
heuristic, elucidated in Section 3, has been automated using 

Java and is configured to be a stand-alone executable (tool). 
Parallelism is made implicit in the RB_DSOP software 
package in that the tool can simultaneously solve multiple 
problems with ease – this attribute of parallel problem solving 
by use of multiple threads does not appear to be present in any 
DSOP package known to the authors. To highlight the efficacy 
of the RB_DSOP method over the well-known and widely 
referred Espresso_DSOP routine, we will first look at two 
function examples. Firstly, we consider a small combinational 
benchmark specification, newill, which comprises 8 primary 
inputs and a single primary output. The SOP and DSOP 
expressions corresponding to this benchmark function are 
specified by equations (1) – (3).  

 
newillSOP = bc’e’f’gh + bdef’gh + bcd’f’gh + bd’efg’h  
                   + bcefg’h + bce’f’g’h + d’e’f’g’h + a                (1) 
 
newillEspresso_DSOP = bc’e’f’gh + bdef’gh + bcd’f’gh + bd’efg’h  
                                + bcdefg’h + bce’f’g’h + b’d’e’f’g’h  
                                + bc’d’e’f’g’h + ab’d + ab’d’e + abc’def  
                                + abc’e’f + abcde’f + ab’d’e’f + abcd’e’f  
                                + abc’d’ef’ + abcdefg + abcd’efg  
                                + abc’d’efg + abcde’f’g + ab’d’e’f’g  
                                + abcdef’g’ + abc’def’g’ + abcd’ef’g’  
                                + abc’de’f’g’ + abcd’f’gh’ + abcdef’gh’  
                                + abc’def’gh’ + abc’e’f’gh’ + abcdefg’h’   
                                + abcd’efg’h’ + abc’d’efg’h’  
                                + abcde’f’g’h’ + ab’d’e’f’g’h’  
                                + abcd’e’f’g’h’ + abc’d’e’f’g’h’            (2)  
 
newillRB_DSOP = a’bc’e’f’gh + a’bdef’gh + a’bcd’f’gh  
                          + a’bc’d’efg’h + a’bcefg’h + a’bcde’f’g’h  
                          + a’d’e’f’g’h + a                                          (3)   

  
The minimized SOP form consists of 8 products, while the 

RB_DSOP and Espresso_DSOP methods yield 8 and 36 
disjoint product terms respectively. The cost (quantified as 
number of irredundant products) of a DSOP expression may 
be equal to (best case solution) or greater than (typical case 
solution) the cost of a corresponding SOP form. From (1) – 
(3), it is clear that the RB_DSOP method has enabled the best 
possible (exact minimum) solution for the combinational 
benchmark, newill. In comparison with the Espresso_DSOP 
scheme, the proposed method has effected an excellent cost 
reduction of 77.8% for this case study.  

Let us now consider a multiple input, multiple output 
combinational benchmark functionality, clpl, which consists 
of 11 primary inputs (a,b,c,d,e,f,g,h,i,j,k) and 5 primary 
outputs (Y1,Y2,Y3,Y4,Y5). Its minimized SOP expressions are,  

   
Y1SOP = aefg + cfg + dg + b                                                  (4) 
 
Y2SOP = aef + cf + d                                                               (5) 
 
Y3SOP = ae + c                                                                        (6) 
 
Y4SOP = aefgij + cfgij + dgij + bij + hj + k                           (7) 
 
Y5SOP = aefgi + cfgi + dgi + bi + h                                       (8) 

Int'l Conf. Computer Design |  CDES'12  | 41



The corresponding DSOP forms deduced on the basis of 
the proposed RB_DSOP method are given as,    

 
Y1RB_DSOP = ab’c’d’efg + b’cd’fg + b’dg + b                        (9) 
 
Y2RB_DSOP = ac’d’ef + cd’f + d                                             (10) 
 
Y3RB_DSOP = ac’e + c                                                            (11) 
 
Y4RB_DSOP = ab’c’d’efgh’ijk’ + b’cd’fgh’ijk’ + b’dgh’ijk’  
                    + bh’ijk’ + hjk’ + k                                          (12) 
 
Y5RB_DSOP = ab’c’d’efgh’i + b’cd’fgh’i + b’dgh’i + bh’i + h      
                                                                                              (13) 
 
      From equations (4) – (13), it is evident that the cost of 
SOP and DSOP forms (derived using the RB_DSOP method) 
for the benchmark function, clpl are similar – 20 products. 
Thus the proposed method has once again facilitated the best 
solution for a logic function. The cost of the DSOP format 
obtained using the Espresso_DSOP routine is found to be 231 
(product terms), and they are too many to detail here. Hence 
the interested reader is encouraged to check out the list of 
products by running the Espresso_DSOP routine on the 
benchmark, clpl. By comparing the cost metrics of DSOP 
expressions resulting from Espresso_DSOP and RB_DSOP 
synthesis methods, it can be observed that the latter achieves 
massive cost reduction to the tune of 91.3% over the former.   

      The preceding examples drive home the point that the 
proposed RB_DSOP synthesis scheme has the potential to 
yield exact DSOP solutions for single/multi-output functions. 
Experimentation was carried out involving a large number of 
combinational benchmarks from the MCNC benchmark suite 
and the results obtained, which are shown in Table 1, duly 
demonstrate the efficiency of our tool. The cost of respective 
SOP and DSOP forms of various combinational benchmarks 
based on Espresso_DSOP and RB_DSOP synthesis heuristics 
are given in Table 1. Here the cost metric purely represents the 
number of unique product terms, which implies that some/all 
of the products might be found, shared between the various 
primary outputs of a multi-output logic function. For example, 
in case of benchmarks mainpla and xparc, the number of 
product terms constituting the DSOP equation derived on the 
basis of the RB_DSOP synthesis method is found to be 6853 
and 2757 respectively, with no consideration of logic sharing 
between their individual primary outputs. However, taking 
cognizance of common logic that is shared between the 
various primary outputs, the above costs sharply decrease to 
283 and 287 product terms respectively.                    

V. CONCLUSIONS 

DSOPs have been traditionally used in several applications 
in CAD areas, for example to calculate the spectra of Boolean 
functions [3 – 5], or as a starting point for the minimization of 
Exclusive-OR SOP logic [6] [7], which forms the backbone of 
synthesis schemes for reversible logic circuits [8] [9] and 
assumes significance in the field of quantum computing. 
While many DSOP synthesis strategies exist in the literature 
[10 – 14] they are hardly open-access; but the DSOP routine 
of Espresso [1] is an exception in this regard. This in fact has 

motivated the authors to collaborate and develop an efficient 
open-access DSOP synthesis tool, incorporating parallel 
problem solving capability for easy use/replication by the 
scientific community. In this context, a novel DSOP synthesis 
heuristic (RB_DSOP) based on well-founded Boolean rules 
was propounded in this work. The RB_DSOP synthesis 
scheme has been implemented using Java on a Windows 
platform and is available for use as a stand-alone executable 
(software package) for teaching and/or research purposes –
unrestricted access can be provided upon request.   

To demonstrate the qualitative efficiency of our package 
vis-à-vis the open-access Espresso_DSOP synthesis routine, 
experimentation was carried out on numerous combinational 
benchmarks. From the results shown in Table 1, it can be 
inferred that Espresso_DSOP solutions are 9.5× bigger than 
the reduced SOP solutions, while RB_DSOP solutions are just 
2.2× bigger than their SOP counterparts. Hence the latter 
facilitates a whopping cost reduction of the order of 77% in 
comparison with the former. However it is worth noting here 
that heuristics, in general, do not always guarantee exact 
minima and devising methods to obtain the same is construed 
to be practically infeasible.         

REFERENCES 

[1] R.K. Brayton, G.D. Hachtel, C.T. McMullen, A.L. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis, Kluwer 
Academic Publishers, MA, 1984.  

[2] T. Sasao (Ed.), Switching Theory for Logic Synthesis, Kluwer 
Academic Publishers, Dordrect, The Netherlands, 1999.  

[3] B.J. Falkowski, “Calculation of Rademacher-Walsh spectral 
coefficients for systems of completely and incompletely specified 
Boolean functions,” Proc. IEEE ISCAS, vol. 3, pp. 1698-1701, 1993.  

[4] B.J. Falkowski, C.-H. Chang, “Paired Haar spectra computation 
through operations on disjoint cubes,” IEE Proc. Circuits, Devices and 
Systems, vol. 146, no. 3, pp. 117-123, August 1999.  

[5] M.A. Thornton, R. Drechsler, D.M. Miller, Spectral Techniques in 
VLSI CAD, Kluwer Academic Publishers, Boston, MA, 2001.  

[6] T. Sasao, “EXMIN2: a simplification algorithm for exclusive-OR-sum-
of-products expressions for multiple-valued-input two-valued-output 
functions,” IEEE Trans. on CAD, vol. 12, no. 5, pp. 621-632, 1993.  

[7] A. Mishchenko, M. Perkowski, “Fast heuristic minimization of 
exclusive-sums-of-products,” Proc. Intl. Workshop on Applications of 
Reed-Muller Expansion in Circuit Design, pp. 242-250, 2001.  

[8] D. Maslov, “Efficient reversible and quantum implementations of 
symmetric Boolean functions,” IEE Proc. Circuits, Devices and 
Systems, vol. 153, no. 5, pp. 467-472, October 2006.  

[9] P. Gupta, A. Agrawal, N.K. Jha, “An algorithm for synthesis of 
reversible logic circuits,” IEEE Trans. on CAD of Integrated Circuits 
and Systems, vol. 25, no. 11, pp. 2317-2330, November 2006.  

[10] B.J. Falkowski, I. Schafer, C.-H. Chang, “An effective computer 
algorithm for the calculation of disjoint cube representation of Boolean 
functions,” Proc. 36th IEEE MWSCAS, pp. 1308-1311, 1993.  

[11] L. Shivakumaraiah, M.A. Thornton, “Computation of disjoint cube 
representations using a maximal binate variable heuristic,” Proc. 34th 
IEEE Southeastern Symposium on System Theory, pp. 417-421, 2002.  

[12] G. Fey, R. Drechsler, “Utilizing BDDs for disjoint SOP minimization,” 
Proc. 45th IEEE MWSCAS, vol. 2, pp. II-306- II-309, 2002.  

[13] N. Drechsler, M. Hilgemeier, G. Fey, R. Drechsler, “Disjoint sum of 
product minimization by evolutionary algorithms,” in EvoWorkshops 
2004, G.R. Raidl et al. (Eds.), LNCS, vol. 3005, pp. 198-207, 2004.  

[14] A. Bernasconi, V. Ciriani, F. Luccio, L. Pagli, “A new heuristic for 
DSOP minimization,” Proc. 8th Intl. Workshop on Boolean Problems, 
pp. 169-174, 2008.  

42 Int'l Conf. Computer Design |  CDES'12  |



 

TABLE I.  ENUMERATING THE COST OF SOP AND DSOP FORMS OF VARIOUS COMBINATIONAL BENCHMARKS 

Combinational  

benchmark 

# Primary  

inputs 

# Primary  

outputs 

SOP cost 

(# products) 

Espresso_DSOP cost  

(# products) 

RB_DSOP cost  

(# products) 

9sym 9 1 86 209 179 

alu4 14 8 575 3549 1206 

amd 14 24 66 93 73 

apex1 45 45 206 12667 352 

apex3 54 50 280 3418 402 

apex4 9 19 435 536 507 

b2 16 17 106 331 123 

b3 32 20 211 8832 330 

b10 15 11 100 983 115 

b12 15 9 42 654 62 

bc0 26 11 178 1894 222 

bcd 26 38 117 134 126 

chkn 29 7 140 2601 202 

clip 9 5 120 359 167 

cordic 23 2 914 22228 6687 

cps 24 109 163 895 227 

dist 8 5 123 236 135 

duke2 22 29 86 181 122 

ex4 128 28 279 2090 594 

ex5 8 63 72 184 142 

ex1010 10 10 284 1331 976 

exep 30 63 110 294 128 

gary 15 11 107 810 120 

ibm 48 17 173 2259 353 

in3 35 29 74 864 107 

in4 32 20 212 8207 326 

intb 15 7 631 3533 1055 

jbp 36 57 122 862 132 

mainpla 27 54 171 1941 283 

max512 9 6 145 386 192 

max1024 10 6 272 776 362 

misex3 14 14 677 3789 1557 

misg 56 23 69 7842 106 

mish 94 43 82 147 90 

mlp4 8 8 127 206 155 

mp2d 14 14 31 625 59 

newapla 12 10 17 86 27 

newcond 11 2 31 60 37 

newcpla1 9 16 38 145 52 

opa 17 69 79 141 106 

pdc 16 40 135 994 485 

root 8 5 57 154 60 

ryy6 16 1 112 272 112 

sao2 10 4 58 199 120 

seq 41 35 336 1040 378 

soar 83 94 353 1859 478 

spla 16 46 253 1119 360 

sym10 10 1 210 367 348 

t1 21 23 102 662 154 

t481 16 1 481 2139 1302 

table3 14 14 175 249 175 

table5 17 15 158 336 162 

test3 10 35 541 1778 1637 

ti 47 72 213 2067 351 

vg2 25 8 110 863 164 

x1dn 27 6 110 706 160 

x6dn 39 5 82 1144 126 

x7dn 66 15 538 1697 1228 

xparc 41 73 254 942 287 

z9sym 9 1 85 190 171 

Average cost (# products) 201.9 1919.3 440.9 

Int'l Conf. Computer Design |  CDES'12  | 43



 

Analysis	of	Notebook	Computer	Chassis	Design	

for	Hard	Disk	Drive	and	Speaker	Mounting	

J . Q. Mou, Fukun Lai, I. B. L. See, and W. Z. Lin 

Data Storage Institute, 5 Engineering Drive 1, Singapore 117608 

 

Abstract - Chassis design is a critical issue for the 

reliability and robustness of a notebook personal computer 

(PC) and its key components, especially hard disk drive 

(HDD). In particular, oscillating force induced by the build- 

in speakers in the notebook PC, could be transmitted to the 

HDD via chassis causing position error signal (PES) of 

HDD. In this paper, the chassis design, including mounting 

of the speaker and HDD, is studied. Firstly, a finite-

element-method (FEM) model of a commercial notebook PC 

is developed, consisting of the chassis, HDD, build-in 

speakers and other key components. Characteristics of 

HDD vibration induced by the speaker in the notebook PC 

are examined with the FEM model. Then a simplified 

theoretical model consisting of lumped mass, spring, and 

damping elements is developed. This model is implemented 

to analyze the vibration transmissions in the notebook PC.  

The effects of the chassis design, speaker and HDD 

mounting on the vibration transmission from speaker to 

HDD via chassis in the notebook PC are investigated. 

Finally, a guideline for appropriate notebook PC chassis 

design and mounting of speaker and HDD is proposed. 

Keywords: Notebook computer, Chassis design, Hard disk 

drives (HDDs), Speaker, Vibration, FEM. 

1. Introduction	

As one type of the most popular personal computers 

(PC), notebook PC gives the flexibility to work and play 

anywhere. Therefore, the chassis and components of the 

notebook PCs should be designed to be robust enough to 

ensure the diversification of the operating environment. The 

hard disk drives (HDDs), as the large capacity storage 

devices, play an important role in the notebook computers. 

However, HDDs are sensitive to external vibration, which 

may introduce the position error signal (PES) of magnetic 

head in data reading and writing. The vibration sources of a 

notebook PC, as shown in Figure 1, include build-in 

speakers, cooling fans, CD-ROM drive, touching force at 

keypad etc. Therefore appropriate chassis design is critical 

for reducing the vibration transmission from the vibration 

sources to HDD in notebook PC. 

 

Figure 1. Interior view of a notebook PC 

A number of papers have been published on vibrations 

of HDDs and PCs. For example, G. Ferretti et al. analyzed 

the vibration of HDDs with a dynamic model and 

experimental measurements [1].  S. Lim et al. analyzed 

dynamic characteristics and shock response of the HDDs 

and optimized the design of rubber mounts in notebook [2]. 

Y. Matsuda et al. designed, fabricated and evaluated a 

flexible support mechanism for HDDs to intercept external 

vibration [3]. T. Semba et al. studied an adaptive 

cancellation method for vibrations of soft mounting HDDs 

in notebook PC [4]. However, there is very limited 

published research work on the vibration transmission 

induced by the build-in speakers, which is one of the major 

vibration sources in notebook PC. Among them, Y. Y. Hu et 

al. systematically investigated the built-in speakers induced 

structural-acoustic vibration of HDD in notebook PC by the 

FEM analysis and experimental studies, and concluded that 

the acoustically transmitted vibration of speaker can be 

ignored compared to the structurally transmitted vibration, 

and softer supporters for HDD mounting is a better choice 

for reduction of HDD vibration [5].  

44 Int'l Conf. Computer Design |  CDES'12  |



 

In this paper, the structural vibration transmission from 

the build-in speaker to HDD in notebook PC is studied. 

Firstly, a FEM model of a commercial notebook PC 

including the chassis mounted with HDD, build-in speakers 

and other key components is built up with ANSYS software. 

The characteristics of HDD vibrations induced by the 

speakers in the notebook PC are examined with the FEM 

model.  Based on the characteristics of HDD vibrations, a 

simplified theoretical vibration model of the notebook is 

developed, which is described by a set of ordinary 

differential equations (ODEs) governing the motion of the 

speaker, chassis and HDD. The ODEs are solved for 

analysis of the vibration transmission from speaker to HDD 

by varying the stiffness and damping of the components.  

The effects of the chassis design, speaker and HDD 

mounting on the vibration transmission from speaker to 

HDD via chassis in the notebook PC are investigated. 

Finally, a guideline for appropriate notebook PC chassis 

design and mounting of speaker and HDD is proposed. 

2. HDD	 vibrations	 induced	 by	

speakers	in	Notebook	PC	

A FEM model of a commercial notebook PC is 

developed with ANSYS to examine the characteristics of 

HDD vibration induced by build-in speakers. The notebook 

PC is mounted with one HDD and two speakers denoted as 

speaker A and B, as shown in Figure 1. The FEM model of 

the notebook, as displayed in Figure 2, consists of a chassis 

mounted with one HDD, two speakers, and other key 

components including the LCD monitor, keypad, battery 

and battery fixture, PCBs, radiator block, CD/DVD, two 

fans, HDD supporters with damper and bracket connectors 

etc. There are totally 200,391 nodes and 531,811 elements 

used in the FEM model. The FEM model has been validated 

in [5] by comparing simulation results with experimental 

results.  

 

Figure 2. FE model of internal components of the PC  

The mode superposition method is used for analysis of 

the vibrations induced by the speaker. The experimental out 

of plane velocity frequency response at the speaker rim [5], 

subject to a sweep sinusoidal current i=i0sin(2πft), is used as 

the excitation input in the FEM vibration analysis. 

Figure 3 shows the out of plane vibration response of the 

speaker A, chassis, and HDD from the FEM analysis with 

300 modes subject to the oscillating excitation exerted on 

the speaker A. 

 

Figure 3. Displacement responses of speaker, chassis 

and HDD excited by speaker A 

The responses of the chassis are represented by two 

points, one denoted as P1 from the node under speaker A, 

and the other denoted as P2 from the node under the HDD. 

As observed in Figure 3, the first dominant response is at 

the frequency of speaker excitation, and the amplitude of the 

responses of chassis_P1, chassis_P2 and HDD are decreased 

gradually due to the vibration energy dissipation along the 

transmission routes.  

 

Figure 4. HDD vibration excited by speaker A and B 

respectively 

Int'l Conf. Computer Design |  CDES'12  | 45



 

Figure 4 shows the HDD vibration induced by speaker A 

and B respectively. The speaker B is positioned far away 

from HDD and its mounting stiffness is calculated 21.8% 

smaller than that of speaker A.  As shown in Figure 4, the 

vibration displacement response of HDD induced by 

speaker A is larger than that by speaker B, especially at 

frequencies higher than 1000 Hz. 

3. Analysis	of	vibration	transmission	

in	Notebook	PC	

Apart from the numerical FEM model, the theoretical 

model is intended to give a fundamental understanding of 

the vibration transmission in notebook PC. In this section, 

the simplified theoretical vibration model for fundamental 

analysis of the vibration transmission route from speaker to 

HDD via chassis in the notebook PC is developed. 

3.1 Analytical model development 

According to the characteristics of HDD vibration as 

discussed in FEM analysis, a simplified schematic of 

vibration transmitted from the build-in speaker to the HDD 

via chassis in the notebook PC can be extracted, as shown in 

Figure 5. 

 

Figure 5. Notebook schematics with speaker and HDD 

From Figure 5, it is shown that the vibration is 

transmitted from speaker to chassis (route AB), and then 

from one side of the chassis to the other side (route BC), 

finally from chassis to HDD (route CD). The analytical 

model is therefore developed on the basis of the three 

transmission routes, which consists of four degree of 

freedoms, including speaker, HDD, and chassis, with 

different mounting methods between them. As shown in 

Figure 6, the HDD and speaker are modeled as two masses 

mounted on the chassis through spring and damping 

elements. The chassis is separated into two parts, i.e., 

chassis_p1 and chassis_p2 which support the speaker and 

HDD respectively. Both parts of the chassis are supported 

by the ground. It is noted that only one direction vibration is 

considered in the present model. In addition, it is assumed 

that an external force is exerted on the speaker, when it is 

playing music or other sounds. 

 

Figure 6. Vibration model of notebook PC 

Based on the mass-spring-damper model shown in 

Figure 6, the ODEs for the vibration motion of speaker, 

chassis and HDD are developed. 

 ����� � ������ 	 ��
�� � ���� 	 �
�� � ��  (1) 

 

�
���
� � �
���
� 	 ��
�� � �����
� 	 ���� � �����
� 	 ���� �

���
� 	 ��� � ���
� 	 ��� � 
��
� 	 �
�� � 0 (2) 

 

�
���
� � �
���
� 	 ��
�� � �����
� 	 ���� � �����
� 	 ���� �

���
� 	 ��� � ���
� 	 ��� � 
��
� 	 �
�� � 0 (3) 

 

����� � ������ 	 ��
�� � ���� 	 �
�� � 0 (4) 

where ��,  �� ,  �
� ,  �
� are the mass of the speaker, 

HDD, chassis_p1, and chassis_p2 respectively. 

�,  �, 
 , � represent the stiffness of the speaker mounting, 

HDD mounting, chassis, and notebook base 

respectively.  ��,  �� , �
 , �� are the damping coefficient of the 

speaker mounting, HDD mounting, chassis, and notebook 

base respectively, �� is the excitation force of the speaker. 

In the analytical model, the transmission route AB is 

modeled by the speaker mounting with � and ��,  the route 

BC is modeled by the two parts of the chassis with � , 

��,  � , and ��,  and route CD the HDD mounting with � 

and ��. Furthermore, the whole notebook supported by the 

ground is also modeled with � and ��. 

46 Int'l Conf. Computer Design |  CDES'12  |



 

3.2 Transfer functions 

When playing music or other sounds, the oscillating 

force acted on the diaphragm of the speaker induces the 

vibration of the speaker body, which subsequently causes 

the vibration of the chassis and HDD. Transfer function 

characterizes the vibration transmission route in a simple 

and clear way. Through Laplace transformation, the above 

equation (1)-(4) can be solved in frequency domain, which 

gives the transfer function from speaker to HDD via chassis. 

Let  ( ) ( ( ))i is zZ t=℘  be the Laplace transfer of ( )iz t , 

the transfer function from excitation force to speaker 

vibration displacement is 

 
2 2

1 2 1s c c h h c c h

AA

s f

a a bZ a a a
H

F D

b− −
= =  (5) 

and the transfer function of the transmission route AB is  

 
2

2( )
c h h s

AB

f

a b
H

D

a b−
=  (6) 

and route BC is 

2

2

h c

BC

c h h

a
H

a

b

a b−
=  (7) 

and route CD is 

 h

CD

h

b
H

a
=  (8) 

where 

2

2

1 1

2

2 2

2

2 2 2 2 2

1 2 1 2

( )

( )

s s s s

s s s

c c n s c n c s

c c c

c c n c n s

h h h h

h h h

f c c h h s c c s h c h s h s

h h

s m sc k

sc k

s m s c c c k k k

sc k

s m s

a

b

a

b

a

a k

b

D a

c c c k k k

s m sc

sc k

a a a a a b a bb a a b b

= + +

= +

= + + + + + +

= +

= + + +

+

= − − − +

+ + +

= +

= +

 

Transfer functions (5)-(8) can be combined to represent 

the transfer function of vibration transmission for all the 

routes in the notebook PC. For example,  

 
AC AB BCH H H=  (9) 

 
AD AB BC CDH HH H=  (10) 

 

The above functions (9)-(10) describe the vibration 

transferred from speaker to chassis and HDD. 

3.3 Analysis of the vibration transmission in 

notebook     

The analysis of the vibration transmission from speakers 

to HDD via chassis in the notebook PC is then conducted 

with the transfer functions. The lumped parameters used in 

the theoretical model are determined from four dominant 

modes of HDD vibrations induced by speaker A in the FEM 

analysis, as shown in Figure 3.    

Figure 7 illustrates the analytical results of the vibration 

frequency response of the speaker, two parts of the chassis 

and HDD, induced by a unit force acted on the speaker. As 

shown in Figure 7, there are four peaks corresponding to the 

four dominant modes at resonant frequencies 281Hz, 492Hz, 

712Hz and 1252Hz respectively of the whole system. The 

frequencies of the four peaks agree well with the FEM 

results as shown in Figure 3. The vibration energy is firstly 

transmitted to the speaker, and its vibration spectrum thus 

has the highest amplitude. The energy is then transmitted to 

the chassis and finally via the chassis to the HDD. During 

the transmission, the energy is dissipated by the mounting 

and chassis structures. Therefore, the amplitude of the 

vibration is gradually decreased.  

 

Figure 7. Vibration displacement response of speaker, 

chassis and HDD 

Int'l Conf. Computer Design |  CDES'12  | 47



 

4. Analysis	 of	 chassis	 design	 and	

mounting	of	speaker	and	HDD	

The effects of the chassis design, speaker and HDD 

mounting on the vibration transmission from speaker to 

HDD via chassis in the notebook PC are studied, by varying 

the stiffness and damping of the components in the 

analytical model.    

4.1 Analysis of chassis design 

With the transfer functions, the chassis design and 

components mounting can be analyzed for reducing the 

vibration transmission energy from speaker to HDD or 

shifting the resonant mode from a specific frequency range. 

First of all, chassis can be designed to be less sensitive to 

the vibration source, and more effective to dissipate 

vibration energy on the transmission route BC. In the 

present model, the chassis related stiffness and damping k�, 

c�,  k , and c  , can be optimized to reduce the vibration 

transmission from speaker to HDD, as shown in Figure 8. It 

is noted that normalized parameters of the stiffness and 

damping are displayed in this and the subsequent Figures in 

the parametric studies. 

 

Figure 8. Effect of chassis stiffness and damping on HDD 

vibration by route BC 

It is observed in Figure 8 that by using the chassis 

designed with smaller stiffness and larger damping, the 

vibration of transmission at high frequencies above 1000 Hz 

can be reduced, but the vibration transmission at frequencies 

below 500 Hz is significantly increased. This phenomenon 

is characterized in Figure 8 from the solid line I to the 

dashed line III. It is also seen from the Figure 8 that harder 

chassis is not good for the vibration transmission at high 

frequencies above 1000 Hz as observed from the solid line I 

to the dash-dot line II. As the vibration at low frequency 

may be compensated by the servo controller [6,7], to reduce 

the vibration transmission at high frequency, a softer chassis 

may be helpful. However, if the chassis stiffness is too small, 

the HDD vibration at low frequency will be increased 

substantially and out of range of the servo controller. 

The relative location between the speaker and HDD in 

chassis design is one of the key factors relevant to vibration 

transmission from speaker to HDD by route BC. In the 

present model, the stiffness and damping change due to the 

relative locations between speaker and HDD is incorporated 

into the parameters ck  and cc
 
of the route BC. In general, 

if the relative distance between the speaker and HDD is 

larger, the stiffness between them may be smaller and more 

vibration energy is dissipated, in case all the other 

conditions are the same. It is observed from Figure 8 that, 

with lower ck   and larger  cc  , the vibration transmission 

can be reduced at high frequencies. Therefore, it is 

recommended to arrange the speakers mounted far away 

from the HDD in chassis design, such as position #4 and #5 

as illustrated in Figure 9. 

 

Figure 9. HDD and speaker mounting locations in 

notebook chassis design 

4.2 Analysis of speaker mounting 

The influence of the speaker mounting on the vibration 

of the whole system and respective components is 

investigated. As stated in the analytical model, the speaker 

mounting is modeled by the spring and damping elements 

with stiffness � and damping coefficient �� . Varying these 

two parameters directly affects the local vibration 

transmission route AB, as shown in Figure 10, where the 

stiffness and damping coefficient are normalized to better 

48 Int'l Conf. Computer Design |  CDES'12  |



 

understand the effects of these two parameters. The decrease 

of the stiffness and increase of the damping, make the 

vibration peak shifting from high frequency to low 

frequency, and therefore reduces the amplitude at high 

frequency and amplifies the magnitude at low frequency. 

The mode shifting characteristics can be used to move the 

speaker mounting mode away from the frequency of 

excitation source. The soft speaker mounting with speaker 

mounting stiffness 1.35×10
5 

N/m and damping ratio 5.5%, 

as illustrated with the dashed line III in Figure 10, it 

effective to reduce vibrations transmitted to HDD at 

frequencies above 500 Hz. 

 

Figure 10. Effect of the different speaker mounting on 

HDD vibration by route AB 

 

Figure 11. Speaker mounting by foam & rubber 

grommet 

Most of the HDDs are actuated at high frequencies, and 

the vibration at low frequencies can be compensated by the 

servo controller optimization [6,7]. Hence it is critical to 

reduce the amplitude of the vibration transmission from 

speaker in high frequencies through proper chassis and 

mounting design. To achieve this, the speaker mounting can 

be softer, for example, the speaker can be screwed to chassis 

by using foams and/or rubber grommet, as illustrated in 

Figure 11. The foams and rubber grommet could help to 

reduce the stiffness of speaker mounting and increase 

damping for dissipation of vibration energy.  

4.3 Analysis of HDD mounting 

HDD mounting has a direct influence on the 

transmission of vibration to HDD by route CD. A good 

HDD mounting could isolate the vibration from the build-in 

speakers. In the present model, hk  and hc  represent the 

HDD mounting in the notebook PC. The influences of hk  

and hc  on the vibration transmitted to HDD induced by 

speaker are analyzed with the analytical model. The 

isolation effect of the HDD mounting can be achieved at 

high frequency by the soft mounting with lower stiffness 

and higher damping, as demonstrated in Figure 12. By using 

the soft HDD mounting with the HDD mounting stiffness 

2×10
5 

N/m and damping ratio 13%, as illustrated with the 

dashed line III in Figure 12, the HDD vibration at 

frequencies above 500 Hz is significantly reduced. However, 

it is also noticed that the first mode is shifted to lower 

frequency and the transmission amplitude at the frequencies 

around 200 Hz is increased due to the softer mounting.  

 

Figure 12. Effect of different HDD mounting on HDD 

vibration by route CD 

 

Int'l Conf. Computer Design |  CDES'12  | 49



 

 

(a) HDD mounting with soft supporter 

 

(b) HDD mounting with damper  

Figure 13. HDD mounting with soft supporter & damper 

From the analysis above, a softer mounting with lower 

stiffness and higher damping can be used to reduce the 

vibrations transmission at high frequencies. As shown in 

Figure 13, HDD mounting to notebook chassis with soft 

supporters and dampers are effective measures for HDD to 

intercept vibrations from build-in speakers at high 

frequencies. 

5. Conclusion	

The characteristics of HDD vibrations induced by the 

speakers and the vibration transmission in notebook PC 

have been studied with FEM and theoretical model. The 

reduction of vibration transmitted to HDD from build-in 

speakers via chassis is investigated in three ways including 

chassis design, speaker mounting and HDD mounting. It is 

concluded that the illustrated soft speaker mounting 

(mounting stiffness 1.35×10
5 

N/m and damping ratio 5.5%) 

and soft HDD mounting (mounting stiffness 2×10
5 
N/m and 

damping ratio 13%) are effective for reduction of HDD 

vibration at frequencies above 500 Hz. Furthermore, a softer 

chassis with high damping ratio and placing the speaker far 

away from the HDD is useful for reducing the HDD 

vibration at high frequencies above 1000 Hz. However, the 

trade-off of the softer mounting and chassis design is that 

the vibration of transmission may be increased significantly 

at frequencies below 500 Hz. Hence optimal design of 

chassis and components mounting with appropriate stiffness 

and high damping ratio is essential for reducing the 

vibration at high frequency and avoiding large vibration at 

low frequency uncontrollably. 

 

References	

[1] G. Ferretti, G. Magnani, and P. Rocco, “Modeling and 

experimental analysis of the vibrations in hard disk 

drives,” IEEE/ASME Trans. Mechatronics, 7(2), pp.152-

160, 2002.  

[2] S. Lim, Y. B. Chang, N. C. Park, and Y. P. Park, 

“Optimal design of rubber mounts supporting notebook 

HDD for shock and vibration isolation,” in Proc. 

APMRC2006, Singapore, 2006 

[3] Y. Matsuda, S. Nakamura, M. Sega, and Y. Katou, 

“Flexible support mechanism for hard disk drives to 

decrease vibration disturbance,” IEEE Trans. Magn., 

45(11), pp.5108-511, 2009.  

[4] T. Semba, M. T. White, and F.Y. Huang, “Adaptive 

Cancellation of Self-Induced Vibration,” IEEE Trans. 

Magn.,   47(7), pp.1958-1963, 2009. 

[5] Y. Y. Hu, S. Yoshida_ S. Nakamura,  K. Watanabe, W. 

Z. Lin, E. T. Ong, and J. Q. Mou, “Analysis of built-in 

speaker-induced structural-acoustic vibration of hard 

disk drives in Notebook PCs,” IEEE Trans. Magn., 

45(11), pp.4950-4955, 2009. 

[6] T. Semba, M.T. White, and F.Y. Huang, “Adaptive 

Cancellation of Self-Induced Vibration”.  IEEE Trans. 

Magn., 47(7): pp. 1958-1963, 2011. 

[7] W. J. Cao, J. Y. Wang, M, Z. Ding, Q. Bi, and K. K. Ooi, 

“Low Frequency Vibration Detection and Compensation 

in Hard Disk Drive”, IEEE Trans. Magn., 47(7): pp 

1964-1969,   2011. 

 

 

 

 

 

50 Int'l Conf. Computer Design |  CDES'12  |



Accurate Throughput Derivation of Pipelined NULL 
Convention Logic Asynchronous Circuits 

Liang Zhou and Scott C. Smith 
Department of Electrical Engineering 

University of Arkansas 
Fayetteville, Arkansas, USA 

kingdom701@gmail.com and smithsco@uark.edu 
 

Abstract - A throughput estimation formula for optimally 
pipelining NULL Convention Logic (NCL) asynchronous 
circuits was presented in the literature. However, it ignores 
register delays. This paper presents a precise throughput 
derivation formula for pipelined NCL circuits. The formula 
was verified by Spice simulation and can be used for static 
timing analysis. 

Keywords: asynchronous circuits; pipelining; throughput 
derivation; NULL Convention Logic (NCL) 

I.  INTRODUCTION  

The development of synchronous circuits currently 
dominates the semiconductor design industry. However, there 
are major limiting factors to the synchronous, clocked 
approach, including the increasing difficulty of clock 
distribution, increasing clock rates, decreasing feature size, 
increasing power consumption, timing closure effort, and 
difficulty with design reuse. Asynchronous (clockless) circuits 
require less power, generate less noise, produce less electro-
magnetic interference (EMI), and allow for easier reuse of 
components, compared to their synchronous counterparts. 

Quasi-delay-insensitive (QDI) NULL Convention Logic 
(NCL) [1] is one of the primary delay-insensitive asynchronous 
paradigms; a number of circuits have been successfully 
designed using NCL [2]. NCL systems can be optimized for 
speed by partitioning the combinational circuitry and inserting 
delay-insensitive (DI) registers and corresponding completion 
components, utilizing either the full-word or bit-wise 
completion strategy [3]. 

A throughput estimation formula for pipelined NCL 
systems was proposed in the literature [3]. However, it ignores 
register delays and is therefore not precise, especially when 
applied to finely pipelined NCL systems. As a result, it cannot 
be used for static timing analysis. In this paper, we propose an 
accurate throughput derivation formula including register 
delays for pipelined NCL systems. The formula was verified by 
Spice simulation and can be used for static timing analysis. 

Section II presents an overview of NCL. Section III derives 
the throughput of non-pipelined NCL systems; Section IV 
derives the throughput of pipelined NCL systems. Section V 
verifies the formulas utilizing Spice simulation; and Section VI 
provides conclusions and future work. 

II. INTRODUCTION TO NCL 

NCL circuits utilize multi-rail logic, such as dual-rail, to 
achieve delay-insensitivity. A dual-rail signal, D, consists of 
two wires, D0 and D1, which may assume any value from the 
set {DATA0, DATA1, NULL}. The DATA0 state (D0 = 1,  
D1 = 0) corresponds to a Boolean logic 0, the DATA1 state  
(D0 = 0, D1 = 1) corresponds to a Boolean logic 1, and the 
NULL state (D0 = 0, D1 = 0) corresponds to the empty set 
meaning that the value of D is not yet available. The two rails 
are mutually exclusive, such that both rails can never be 
asserted simultaneously; this state is defined as an illegal state.  

NCL circuits are comprised of 27 fundamental gates [4]. 
These 27 gates constitute the set of all functions consisting of 
four or fewer variables. The primary type of threshold gate, 
shown in Fig. 1, is the THmn gate, where 1 ≤ m ≤ n. THmn 
gates have n inputs. At least m of the n inputs must be asserted 
before the output will become asserted. NCL threshold gates 
are designed with hysteresis state-holding capability such that 
all asserted inputs must be de-asserted before the output will be 
de-asserted. Therefore, a THnn gate is equivalent to an n-input 
C-element [5] and a TH1n gate is equivalent to an n-input OR 
gate. NCL threshold gates may also include a reset input to 
initialize the output. Circuit diagrams designate resettable gates 
by either a d or an n appearing inside the gate, along with the 
gate’s threshold. d denotes the gate as being reset to logic 1; n, 
to logic 0. The static NCL threshold gate is shown in Fig. 2, 
where hold0 = set’ and hold1 = reset’. 

NCL circuits communicate using request and acknowledge 
signals, Ki and Ko, respectively, to prevent the current DATA 
wavefront from overwriting the previous DATA wavefront, by 
ensuring that the two DATA wavefronts are always separated 
by a NULL wavefront. The acknowledge signal from the 
receiving circuit is the request signal to the sending circuit. 
When the receiver circuit latches the input DATA, the 
corresponding Ko signal will become logic 0, indicating a 
Request-For-NULL (RFN); and when it latches the input 
NULL, the corresponding Ko signal will become logic 1, 
indicating a Request-For-DATA (RFD). When the sending 
circuit receives a RFD/RFN on its Ki input, it will allow a 
DATA/NULL wavefront to be output, respectively. 
Request/acknowledge signals are usually generated using  
C-elements. 

Int'l Conf. Computer Design |  CDES'12  | 51



outputm

input 1
input 2

input n

 
Figure 1.   THmn threshold gate. 

 
Figure 2.   Static NCL threshold gate design. 

III. THROUGHPUT DERIVATION OF NON-PIPELINED NCL 

SYSTEMS 

Non-pipelined NCL systems contain two DI registers, one 
at both the input and at the output. In NCL systems, the 
DATA-to-DATA cycle time (TDD) [3] has an analogous role 
to the clock period in a synchronous system and is the 
reciprocal of throughput. To derive the throughput of NCL 
systems, the external interface is assumed to respond to Ko 
signals and circuit outputs immediately. Four system 
parameters are defined in the handshaking sequence, as shown 
in Figs. 3-6:  

TD: DATA propagation time (from when all input register 
inputs become DATA and Ki signals become RFD, to when all 
inputs of the output register become DATA). 

TRFN: NULL request time (from when all output register 
inputs become DATA and Ki signals become RFD, to when all 
Ki inputs of the input register become RFN). 

TN: NULL propagation time (from when all input register 
inputs become NULL and Ki signals become RFN, to when all 
inputs of the output register become NULL). 

TRFD: DATA request time (from when all output register 
inputs become NULL and Ki signals become RFN, to when all 
Ki inputs of the input register become RFD). 

In non-pipelined NCL systems, the end of the DATA 
request time of the current cycle is the beginning of the DATA 
propagation time of next cycle. Therefore, TDD = TD + TRFN 
+ TN + TRFD and throughput = 1 / TDD.  The estimation in 
[3] is inaccurate as it ignores register delays in the definition of 
the four system parameters, since it was used to determine 
where to add pipeline stages, not to precisely calculate timing.  

If a gate delay is used as the minimal delay unit, then  
TD = TN, TRFN = TRFD, and the formula can be simplified. 
The schematic of a 1-bit DI register is shown in Fig. 7. The 
gate delay from its input to output is 1. The gate delay from its 
input to Ko is 1.5, because the inverted TH12 gate is equivalent 
to a NOR gate, which doesn’t have an output inverter, so has 
0.5 gate delay compared to other types of threshold gates. As 
shown in Fig. 8, if the Combinational Logic has TCOMB gate 
delays and the Completion Logic has TCOMP gate delays, then 
TD = TN = 1 + TCOMB, TRFN = TRFD = 1.5 + TCOMP, and 
TDD = 2 * (2.5 + TCOMB + TCOMP). The formula in [3] 
estimates TDD as 2 * (TCOMB + TCOMP), which is 
imprecise. 

 
Figure 3.  DATA propagation time. 

 
Figure 4.  NULL request time. 

 
Figure 5.  NULL propagation time. 

 
Figure 6.  DATA request time. 

 
Figure 7.  1-bit DI register 

52 Int'l Conf. Computer Design |  CDES'12  |



 
Figure 8.  System parameters of non-pipelined NCL systems using gate 

delays. 

IV. THROUGHPUT DERIVATION OF PIPELINED NCL SYSTEMS 

The throughput of pipelined NCL systems is determined by 
the stage with the largest TDD. In this paper, we define a stage 
as shown in Fig. 9, where registers are shared by adjacent 
stages. TDDi of stagei has 3 possibilities [3]. As shown in  
Fig. 10, if TNi + TRFDi < TRFDi-1 + TDi-1, then when all of the 
Ki signals of the input register of stagei become RFD, it has to 
wait for  (TRFDi-1 + TDi-1 - TNi - TRFDi) before all of the 
inputs of the  input register of stagei become DATA. Therefore, 
TDDi = TDi + TNi + TRFDi + TRFNi + (TRFDi-1 + TDi-1 - TNi 
- TRFDi) = TRFDi-1 + TDi-1 + TDi + TRFNi. Similarly, as 

shown in Fig. 11, if TDi + TRFNi < TRFNi-1 + TNi-1, then when 
all of the Ki signals of the input register of stagei become RFN, 
it has to wait for  (TRFNi-1 + TNi-1 - TDi - TRFNi) before all of 
the inputs of the  input register of stagei become NULL. 
Therefore, TDDi = TDi + TNi + TRFDi + TRFNi + (TRFNi-1 + 
TNi-1 - TDi - TRFNi) = TRFNi-1 + TNi-1 + TNi + TRFDi. If none 
of the above two conditions are true, TDDi = TDi + TNi + 
TRFDi + TRFNi. 

In summary, TDD = max (TRFDi-1 + TDi-1 + TDi + TRFNi, 
TRFNi-1 + TNi-1 + TNi + TRFDi, TDi + TNi + TRFDi + TRFNi) 
for i in all of the stages. If gate delay is used as the minimal 
delay unit, then TD = TN, TRFN = TRFD, and the formula can 
be simplified as TDD = max (2 * (2.5 + TCOMBi + TCOMPi)) 
for i in all of the stages. The formula in [3] estimates TDD as  
2 * (TCOMBi + TCOMPi), which is imprecise, especially 
when applied to finely pipelined NCL systems. 

 

 
Figure 9.  System parameters of pipelined NCL systems with gate delay. 

 
Figure 10.  TDDi derivation when TNi + TRFDi < TRFDi-1 + TDi-1. 

 
Figure 11.  TDDi derivation when TDi + TRFNi < TRFNi-1 + TNi-1. 

Int'l Conf. Computer Design |  CDES'12  | 53



V. SPICE VERIFICATION OF THE FORMULAS 

To verify the formula proposed in Section IV, a 3-stage 
full-word pipelined 44 NCL multiplier [3] was implemented 
with IBM cmos10lpe 65nm process at the transistor level and 
simulated with Cadence Spectre simulator. A VerilogA 
controller was designed to characterize the four system 
parameters of each stage and to measure TDD with different 
input patterns. As shown in Table I, the measured TDD was 
compared with predicted TDD calculated from the formula and 
they matched.  

VI. CONCLUSION 

In this paper, we propose an accurate throughput derivation 
formula for pipelined NCL systems. The formula was verified 
by Spice simulation and can be used for static timing analysis. 
Future work consists of NCL threshold gate library 
characterization with Synopsys NCX and static timing analysis 
with Synopsys PrimeTime. 

REFERENCES 
[1] K. M. Fant and S. A. Brandt, “NULL Convention Logic: A Complete 

and Consistent Logic for Asynchronous Digital Circuit Synthesis,” 
International Conference on Application Specific Systems, 
Architectures, and Processors, pp. 261-273, 1996.  

[2] R. Jorgenson, L. Sorensen, D. Leet, M. Hagedorn, D. Lamb, T. Friddell, 
and W. Snapp,, “Ultralow-power operation in subthreshold regimes 
applying clockless logic,” Proceedings of the IEEE, vol. 98, Feb. 2010, 
pp. 299–314. 

[3] S. C. Smith, R. F. DeMara, J. S. Yuan, M. Hagedorn, and D. Ferguson, 
“Delay-Insensitive Gate-Level Pipelining,” Elsevier's Integration, the 
VLSI Journal, Vol. 30/2, pp. 103-131, October 2001. 

[4]  Gerald E. Sobelman and Karl M. Fant, “CMOS Circuit Design of 
Threshold Gates with Hysteresis,” IEEE International Symposium on 
Circuits and Systems, pp. 61-65, 1998. 

[5] D. E. Muller, “Asynchronous Logics and Application to Information 
Processing,” in Switching Theory in Space Technology, Stanford 
University Press, pp. 289- 297, 1963. 

TABLE I.  SPICE VERIFICATION RESULTS 

System Parameters and Derivations (ps) 
Input Patterns 

X  = 15, Y = 15 X  = 0, Y = 0 X  = 7, Y = 8 

TD1  267 279 349 

TN1 393 500 658 

TRFD1 346 358 357 

TRFN1 413 412 413 

TD2 261 249 320 

TN2 404 420 424 

TRFD2 336 336 345 

TRFN2 392 391 363 

TD3 251 249 226 

TN3 370 530 246 

TRFD3 316 310 309 

TRFN3 303 303 301 

TD1 + TN1 + TRFD1 + TRFN1 1420 1551 1778 

TRFD1 + TD1 + TD2 + TRFN2 1267 1279 1390 

TRFN1 + TN1 + TN2 + TRFD2 1548 1669 1842 

TD2 + TN2 + TRFD2 + TRFN2 1395 1397 1454 

TRFD2 + TD2 + TD3 + TRFN3 1153 1138 1193 

TRFN2 + TN2 + TN3 + TRFD3 1484 1652 1344 

TD3 + TN3 + TRFD3 + TRFN3 1242 1393 1083 

Predicted TDD 1548 1669 1842 

Measured TDD 1548 1669 1842 

 
 
 

54 Int'l Conf. Computer Design |  CDES'12  |



Effect of Channel Lengthening and Threshold Voltage 
Variation on a Nanometric Gate’s Delay and Power 

 

Azam Beg1, Amr Elchouemi2, and Raahim Beg3 
1United Arab Emirates University, Faculty of Information Technology, Al-Ain, United Arab Emirates 

2Hewlett Packard, Austin, TX, USA 
3Liwa School, Al-Ain, United Arab Emirates 

 
 

 
 

Abstract - Rapid scaling of CMOS devices in the recent 
years has not only increased the leakage power consumption 
but also increased the susceptibility of the circuits to device 
parameter variations. As a method for mitigating these 
effects, we have investigated the use of MOS transistors with 
longer-than-minimum channels. We performed Monte Carlo 
simulations to quantify the effects of threshold voltage 
variation and channel lengthening. With increased channel 
lengths, we were able to attain reduced susceptibility to the 
variations. Power reduction was also achieved but at the 
cost of performance. The longer-than-minimum channels 
technique could be useful for low power and mobile 
applications.  

Keywords: Low power circuits, parameter variation, 
threshold voltage, channel length, performance 

1 Introduction 
In the last few decades, continual reduction of transistor 
dimensions has resulted in a substantial increase in the 
leakage power’s share in the total power dissipated by the 
CMOS circuits. So controlling the leakage current is an 
obvious approach for reducing the power consumption. Yet 
another adverse result of transistor scaling is an increase of 
parameter fluctuations, which causes a loss of both the 
performance and the reliability. The variations occur during 
the fabrication process or appear later due to aging. With 
feature scaling, it is getting harder to retain a consistent 
value of threshold voltage (VTH) for a large number of 
transistors on an IC. Deviations in VTH occur mainly due to 
randomness of location of and the number of dopant atoms. 
The results in [1] show that VTH is approximately normally 
distributed with a standard deviation of: 

effeff

Aox
V WL

Nt
TH ×

×
⋅×≈ −

4.0
81019.3σ

 
(1)

where tox is the oxide thickness, NA is the channel doping, 
Weff is the channel width, and Leff is the channel length.  

As we can see in equation (1), the variation in VTH can be 
reduced by increasing L and/or W. Normally, the VLSI 
designers start with minimum LnMOS and LpMOS, and WnMOS = 
2×LnMOS. Then they adjust WpMOS to balance the high-to-low 
and low-to-high propagation delays. Doing so increases the 
area of pMOS transistor and makes it even more reliable 
than nMOS which is less reliable than the pMOS to begin 
with. This means that despite increased area, there in no 
improvement in overall gate’s reliability [2]. In this paper, 
we present a transistor sizing scheme in which we retain the 
traditional WpMOS and WnMOS ratios but lengthen LpMOS and 
LnMOS dimensions (while keeping W’s constant) for a CMOS 
inverter. With simulations, we have measured the sensitivity 
of delay and power to the channel length. We also performed 
Monte Carlo (MC) simulations with randomly distributed 
VTH, and analyzed its effect on normalized values of delay 
and power. 

2 Related Work 

2.1 Leakage Power Reduction 
The topic of leakage power estimation and reduction has 
been extensively researched in the past 10-15 years. A brief 
review of the work is given below.  

Halter and Najm [3] proposed a method for placing circuits 
into low leakage standby state and reported power reduction of 
7%–54% for several ISCAS-89 benchmark circuits. Yasuda 
and Hosokwa [4] reduced standby leakage current by using 
low VTH devices for high performance and low power 
dissipation in active and standby modes. Ishibashi et al. [5] 
presented a self-adjusting forward body bias technique for 
maximizing forward body bias voltage without increasing 
the forward current. Bol et al. [6] introduced an ultra-low 
power logic which exhibited low leakage currents but 
operated at very low frequency. The logic uses extra 
transistors to create a feedback mechanism to cut-off current 
in the pMOS-nMOS stack. Calhoun [7] introduced the idea 
of ultradynamic voltage scaling (UDVS) wherein the supply 
voltage swung between above-threshold and sub-threshold 
levels as needed by the operation being performed. For the 

Int'l Conf. Computer Design |  CDES'12  | 55



purpose of increasing reliability and for reducing power, 
reversing of transistor dimensions in CMOS gates was 
proposed in [8]; this way, the device area remains the same 
but there is an appreciable increase in the delay time [9].  

2.2 Parameter Variation 
The effects of parameter variations have been a subject of 
many research works some of which are mentioned here.  

Mukhopadhyay and Roy [10] presented analytical models 
for estimating variation effects in 50 nm CMOS devices. 
Taylor and Fortes [11] showed how changes in VTH affected 
the output voltage levels of an inverter and a NAND-2 gate. 
Agarwal and Nassif [12] presented a detailed study of 
techniques for parameter measurement on actual Silicon (65 
nm SOI), in order to correlate analytical models with the 
actual hardware. Asenov [13] studied the impact of statistical 
variation in MOS transistors due to random dopants 
(location and count), line edge roughness, polysilicon 
granularity and oxide thickness changeability. They 
concluded that random dopants were the most dominant 

parameter affecting the device scaling. Ibrahim [14] studied 
the effect of VTH variation on a NAND2-CMOS gates using 
Bayesian networks. However, no actual simulations were 
used to measure power or delay. Remarsu and Kundu [15] 
characterized the process variation in thermal sensors 
operating at different temperatures. Tang et al. [16] 
incorporated a simplistic transistor model in a statistical 
simulation engine for the purpose of estimating the delay, 
power, and noise effects.  

3 Experiments and Results 
In this paper, we have analyzed a CMOS inverter using NG-
Spice ver. 22 and a chain circuit (see Figure 1). We used 
16 nm high performance (HP) v2.1, metal gate, high-k, and 
strained-Si predictive technology model (PTM) [17]. A 
square-wave (50% duty-cycle) of 10 MHz was used as the 
stimuli. The same frequency was used for both above- and 
below-threshold voltage experiments. 
Using simulations, we studied the effect of increased 
channel length L on delay and power under different 
conditions, i.e., a range of VDD with constant VTH, and above 
and sub-threshold VDD while VTH changes randomly. The 
channel lengths used are: 

{L | Lmin, 1.2×Lmin, 1.4×Lmin, 1.6×Lmin}an. 
In Figure 2, we show the sensitivity of inverter delay to VDD. 
We notice that at sub-threshold VDD of 200 mV, the delay 
penalty is the highest among all lengths. The penalty drops 
as VDD increases to 1 V. Increase in delays ranges between 1. 
7× and 17.5×. 
Figure 3 shows the relationship of VDD and power. 
Expectedly, low VDD results in low power consumption and 

 
 

Figure 1. Test circuit of an inverter with fan-out of 4. 
 
 

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-12

10
-11

10
-10

10
-9

10
-8

10
-7

VDD  [V]

D
el

ay
 [

se
c]

1.6xL
1.4xL
1.2xL
L

 

Figure 2. Relationship of an inverter’s delay to supply voltage 
with different channel lengths 

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-10

10
-9

10
-8

10
-7

10
-6

VDD  [V]

P
ow

er
 [

W
]

1.6xL
1.4xL
1.2xL
L

 

Figure 3. Relationship of an inverter’s power to supply voltage 
with different channel lengths 

 

56 Int'l Conf. Computer Design |  CDES'12  |



vice versa. At nominal voltage of 700 mV, increase in L has 
the lowest benefit, while at highest supply voltage of 1 V, 
going to 1.2×Lmin provides 3× savings in power. Overall, the 
savings in power range between just 1.05× and 3.1×. 
Besides, supply voltage, the drop in power consumption can 
be attributed to decrease in leakage current due to increased 
L. 
We looked into changes in delay and power for an inverter 
(unit-under-test in Figure 1) when it was subject to VTH 
variations using 1000 Monte Carlo simulations. Mean values 
of VTH for nMOS and pMOS transistors were taken from 16 
nm PTM models [17], and the standard deviation for VTH 

was based on equation (1). 

The histograms for delay and power for VDD = 300 mV are 
shown in Figures 4 and 5, respectively; and for VDD = 700 
mV, in Figures 6 and 7, respectively. As expected, the delays 
get longer as L increases.  

Table 1 lists the normalized delay values (calculated by 
µ[delayi]/σ[delayi]). The smallest delay is seen with L = 
1.2×Lmin when VDD = 300 mV, and for L = Lmin when VDD = 
700 mV. In Table 2, we notice that the lowest power 
consumption (calculated by µ[poweri]/σ[poweri]) happens at 
VDD = 300 mV when L = 1.2×Lmin, while VDD = 700 mV 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-8

0

100

200

300

400

500

600

Delay  [sec]

O
cc

ur
en

ce
s

Vdd = 300 mV

1.6xL
1.4xL
1.2xL
L

 

Figure 4. Delay histogram for different channel lengths while 
operating with sub-threshold supply voltage 

 

1 1.5 2 2.5 3 3.5 4

x 10
-9

0

20

40

60

80

100

120

Power  [W]

O
cc

ur
en

ce
s

Vdd = 300 mV

1.6xL
1.4xL
1.2xL
L

 

Figure 5. Power histogram for different channel lengths while 
operating with sub-threshold supply voltage  

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-11

0

10

20

30

40

50

60

70

80

90

Delay  [sec]

O
cc

ur
en

ce
s

Vdd = 700 mV

1.6xL
1.4xL
1.2xL
L

 

Figure 6. Delay histogram for different channel lengths while 
operating with nominal supply voltage 

0.5 1 1.5 2 2.5 3

x 10
-7

0

20

40

60

80

100

120

140

Power  [W]

O
cc

ur
en

ce
s

Vdd = 700 mV

1.6xL
1.4xL
1.2xL
L

 

Figure 7. Power histogram for different channel lengths while 
operating with nominal supply voltage  

 

Int'l Conf. Computer Design |  CDES'12  | 57



gives the lowest power with L = Lmin. These results 
confirmed our expectation that the longer channels decrease 
both power consumption and the performance. 

Lastly, we investigated how larger deviations in VTH reduce 
the noise margin. In Figure 8, we can see that the output 
levels drop when VTH is lower than its nominal value. Vout for 
a normally-sized transistor (with length L= Lmin) has the 
worst decline. But with just 20% increase in L (i.e., 1.2×Lmin) 
the output voltage level improves significantly. However, 
Vout in all cases shown in the figure stays above 0.9×VDD = 
630 mV. In comparison, when the input is a logic ‘1’, Vout is 
the worst when L = Lmin and when VTH is 20% of the normal 
value; in this case the drop in Vout exceeds the 10% noise 
margin (see Figure 9). Nevertheless, lengthening the channel 
by 20% makes appreciable improvement in the noise margin 
even with the lowest VTH (20% of normal). 

4 Conclusions and Ongoing Work 
In this paper, we have shown increased-channel-lengths (L > 

Lmin) as a technique for reducing the adverse effect of VTH 
variation on a CMOS inverter’s behavior. With longer 
channels, reduction in power is also achieved albeit at the 
cost of performance and area. 

Our continued work involves using L > Lmin for other 
primitive gates and simple circuits (for example, a 28-
transistor one-bit full adder). We are also studying the 
variation of other parameters, such as line edge roughness, 
temperature, etc.  

5 Acknowledgments 
We are thankful to Dr Borivoje Nikolic, University of 
Berkeley, CA, USA for his valuable inputs on the research 
topic and the subsequent feedback on the initial version of 
this paper. 

6 References 
[1] Li, Y., Hwang, C.-H., Yeh, T.-C. and T.-Y. Li. 2008. 
Large-scale atomistic approach to random-dopant-induced 

 

Table 1. Normalized delay with random VTH variations 

Channel length 
L 

Normalized delay 
with 

VDD = 300 mV 

Normalized delay 
with 

VDD = 700 mV 

Lmin 0.99 4.74 

1.2 × Lmin 0.64 7.69 

1.4 × Lmin 0.97 8.89 

1.6 × Lmin 1.02 8.06 
 

Table 2. Normalized power with random VTH variations  

Channel length 
L 

Normalized 
power with 

VDD = 300 mV 

Normalized 
power with 

VDD = 700 mV 

Lmin 3.83 5.14 

1.2 × Lmin 3.34 42.42 

1.4 × Lmin 3.81 18.34 

1.6 × Lmin 4.72 14.42 
 

 

20 40 60 80 100 120 140
0.65

0.655

0.66

0.665

0.67

0.675

0.68

0.685

0.69

0.695

0.7

% nominal VTH

V
ou

t  
[V

]

Vin = 0

1.6xL
1.4xL
1.2xL
L

 

Figure 8. Output voltage level’s (Vout) sensitivity to VTH  
when Vin = logic ‘0’ 

 

20 40 60 80 100 120 140
0

0.02

0.04

0.06

0.08

0.1

0.12

% nominal VTH

V
ou

t  
[V

]

Vin = 700 mV

1.6xL
1.4xL
1.2xL
L

 

Figure 9. Output voltage level’s (Vout) sensitivity to VTH  
when Vin = logic ‘1’ 

 

58 Int'l Conf. Computer Design |  CDES'12  |



characteristic variability in nanoscale CMOS digital and 
high-frequency integrated circuits. In Proceedings of the Int. 
Conf. CAD (ICCAD) (San Jose, CA, USA, Nov. 2008), 278–
285. 

[2] Ibrahim, W. and Beiu, V. 2011. Devices and input 
vectors are shaping von Neumann multiplexing. IEEE Trans. 
Nanotech., 10 (May 2011), 606–616. 

[3] Halter, J. P. and Najm, F. N. 1997. A gate-level leakage 
power reduction method for ultra-low-power CMOS circuits. 
In Proceedings of the IEEE 1997 Custom Integrated Circ. 
Conf. (Santa Clara, CA, USA, May 1997), 475–478. 

[4] Yasuda, T. and Hosokawa, K. 2003. A low power 
CMOS circuit with variable source scheme (VSCMOS). In 
Proceedings of the Asia & South Pacific Des. Automation 
Conf. (ASP-DAC 2003) (Kitakyushu, Japan, Jan. 2003), 
404–407. 

[5] Ishibashi, K., Fujimoto, T., Yamashita, T., Okada, H., 
Arima, Y., Hashimoto, Y., Sakata, K., Minematsu, I., Itoh, 
Y., Toda, H., Ichihashi, M., Komatsu, Y., Hagiwara, M. and 
Tsukada, T. 2006. Low-voltage and low-power logic, 
memory, and analog circuit techniques for SoCs using 90 nm 
technology and beyond. IEICE Trans. Electron., E89–C, 3 
(Mar. 2006), 250–262. 

[6] Bol, D., Vos, J. D., Flandre, D. and Legat, J.-D. 2009. 
Ultra-low-power high-noise-margin logic with undoped FD 
SOI devices. In Proceedings of the IEEE Int. SOI Conf. 
(Foster City, CA, USA, Oct. 2009), 97–98. 

[7] Calhoun, B. H., Ryan, J. F., Khanna, S., Putic, M. and 
Lach, J. 2010. Flexible circuits and architectures for ultralow 
power. Proc. IEEE, 98 (Feb. 2010), 253–266. 

[8] Sulieman, M. H., Beiu, V. and Ibrahim, W. 2010. Low-
power and highly reliable logic gates: Transistor-level 
optimizations. In Proceedings of the Int. Conf. IEEE-NANO 
(Seoul, Korea, Aug. 2010), 254–257. 

[9] Beg, A., Beiu, V. and Ibrahim, W. 2011. Atto Joule 
CMOS gates using reversed sizing and W/L swapping. In 
Proceedings of the IEEE 9th Int. New Circ. & Syst. Conf. 
(NEWCAS 2011) (Bordeaux, France, Jun. 2011), 498–501. 

[10] Mukhopadhyay, S. and Roy, K. 2003. Modeling and 
estimation of total leakage current in nano-scaled CMOS 
devices considering the effect of parameter variation. In 
Proceedings of the 2003 Int. Symp. Low Power Electronics 

& Des. (ISLPED'03) (Seoul, Korea, Aug. 2003). ACM, 172–
175. 

[11] Taylor, E. and Fortes, J. 2005. Device variability impact 
on logic gate failure rates. In Proceedings of the 16th IEEE 
Int. Conf. Application-Specific Syst., Archit. & Processors 
(ASAP 2005)Jul. 2005), 247–253. 

[12] Agarwal, K. and Nassif, S. 2007. Characterizing 
process variation in nanometer CMOS. In Proceedings of the 
44th Annual Des. Automation Conf. (San Diego, CA, USA, 
2007). ACM, 396–399. 

[13] Asenov, A. 2007. Simulation of statistical variability in 
nano MOSFETs. In Proceedings of the 2007 IEEE Symp. 
VLSI Tech.Jun. 2007), 86–87. 

[14] Ibrahim, W. and Beiu, V. 2009. Reliability of NAND-2 
CMOS gates from threshold voltage variations. In 
Proceedings of the 6th Int. Conf. Innovations in Information 
Tech. (IIT’09) (Al-Ain, United Arab Emirates, Mar. 2009), 
310–314. 

[15] Remarsu, S. and Kundu, S. 2009. On process variation 
tolerant low cost thermal sensor design in 32nm CMOS 
technology. In Proceedings of the 19th ACM Great Lakes 
Symp. VLSI (Boston Area, MA, USA, May 2009). ACM, 
487–492. 

[16] Tang, Q., Zjajo, A., Berkelaar, M. and Meijs, N. v. d. 
2010. Transistor-level gate modeling for nano CMOS circuit 
verification considering statistical process variations. In 
Proceedings of the 20th Int. Conf. Integr. Circ. & Syst. 
Design: Power and Timing Modeling, Optimization and 
Simulation (PATMOS'10) (Grenoble, France, 2010). 
Springer-Verlag, 190–199. 

[17] Zhao, W. and Cao, Y. 2006. New generation of 
predictive technology modeling for sub-45nm early design 
exploration. IEEE Trans. Electr. Dev., 53 (Nov. 2006), 
2816–2823. 

 

 

 

 

 

Int'l Conf. Computer Design |  CDES'12  | 59



60 Int'l Conf. Computer Design |  CDES'12  |



SESSION

OPERATING SYSTEMS TOOLS AND DESIGN +
COMMUNICATION SYSTEMS AND DESIGN

Chair(s)

TBA

Int'l Conf. Computer Design |  CDES'12  | 61



62 Int'l Conf. Computer Design |  CDES'12  |



A Survey on Computer System Memory Management 
 

Qi Zhu 
Department of Computer Science, University of Houston - Victoria, Victoria, Texas, USA 

 

Abstract - Computer memory is central to the operation of a 
modern computer system; it stores data or program 
instructions on a temporary or permanent basis for use in a 
computer.  In this paper,  various memory management and 
optimization techniques to improve computer performance  
are reviewed, such as the hardware  design of the memory  
organization,  the  memory  management  algorithms and 
optimization techniques, and some hardware  and software 
memory optimization techniques. 

Keywords: Memory Organization, Management, Optimization 

1 Introduction 
Computer memory system, including ROM, RAM, Cache, 

virtual memory, is a necessity for any modern computer 
system.  The notation on computer memory usually refers to 
main memory or primary memory, which temporarily holds 
the data and instructions needed in process execution by the 
Central Processing Unit (CPU). A perfect memory 
organization is one that has unlimited space and is infinitely 
fast so that it does not limit the processor, which is not 
practically implementable such as Universal Turing Machine 
[56]. In reality, there is an increasing gap between the speed 
of memory and the speed of Microprocessors [24].  In the 
early 1980s, the average access time of memory was about 
200 ns, which was nearly the same as the clock cycle of the 
commonly used 4.77 MHz (210 ns) microprocessors  of the 
same period.  Three decades later, the typical speed of a home 
microprocessor is 4 GHz (0.25 ns), however, memory access 
time is staying around 10 nanoseconds.  Thus, the growing 
processor - memory performance gap becomes the primary 
obstacle to improve computer system performance [32]. 

This  paper  surveys  computer  memory  management  
strategies  and  various  memory optimization techniques in 
order to improve computer system performance. 

2   Memory Architecture Designs 
 In this section, we start by looking at the design of the 
memory organization in modern computer systems to 
facilitate the performance optimization. 

2.1 Memory hierarchical structure 

Memory was just a single-level scheme for early 
computers.   However, while computers became faster and 
computer programs were getting bigger, especially 
multiple processes that were concurrently executed under 
the same computer system, a single main memory that was 
both fast enough and large enough had not really been 
available.  As a result, memory hierarchical structure was 

designed to provide with rather fast speed at low cost 
considering of economic and physical constraints [6]. 
Because of the cost-performance trade-offs, the memory 
hierarchy of modern computers usually contains registers, 
cache, main memory, and virtual memory.  The concept of 
memory hierarchy  takes advantage of the principle of 
locality [14], which states that accessed memory words 
will be referenced again quickly (temporal  locality)  and 
that memory words adjacent  to an accessed word will be 
accessed  soon after  the access in question  (spatial  
locality).   Loops, functions, procedures and variables used 
for counting and totaling all involve temporal locality, 
where recently referenced memory locations are likely to 
be referenced again in the near future. Array  traversal,  
sequential  code execution,  modules,  and the tendency  of 
programmers (or  compilers)  to place related  variable  
definitions  near  one another  all involve spatial locality - 
they all tend to generate clustered memory references.  

 

2.2 Cache  

 In modern computer  systems,  caches are small, 
high-speed,  temporary  storage  areas to hold data 
duplicating original values stored in main memory which 
are currently  in use [24], where the original  data is 
expensive  to access compared  to the cost  of accessing 
from the cache. When a CPU needs a particular piece of 
information, it first checks whether it is in the cache. If it is, 
the CPU uses the information directly from the cache; if it is 
not, the CPU  uses the  information  from the memory, 
putting a copy in the cache under  the assumption that it will 
be needed again soon. Information located in cache memory 
is accessed in much less time compared to that located in 
memory.  Thus, a CPU spends far less time waiting for 
instructions and data to be fetched and/or stored. 

In this section, some cache optimization techniques are 
discussed to escalate the cache performance through 
improving hit time, increasing bandwidth, dropping miss 
penalty, and reducing miss rate. Compiler optimization and 
prefetching techniques for main memory management 
techniques will be discussed in next section. 

 
2.2.1 Small and  Multi-level  Cache 

Cache is extremely expensive, and small cache 
decreases hit time but increases the miss rate [23].  Thus, 
many computers use multiple levels of caches to address the 
trade-off between cache latency and hit rate [47]. Small fast 
caches on chip are backed up by larger slower caches of 
separate memory chips.  The multiple levels of caches to 

Int'l Conf. Computer Design |  CDES'12  | 63



use could yield an overall improvement in performance 
[38].  Some modern computers have begun to have three 
levels on chip cache, such as the AMD Phenom II has 6MB 
on chip L3 cache and Intel i7 has an 8MB on chip L3 cache 
[54]. 

 
2.2.2 Pipelined Cache 

 
Cache could be pipelined for more stages to improve 

the clock frequency access, which gives fast clock cycle 
time and high bandwidth [24]. For example, MIPS R4000 
divided the cache access into three independent stages [27]. 
Two pipeline stages are needed to access the on-chip cache 
and  the third one is needed to perform the tag check; the 
instruction tag is checked simultaneously  to decode. As a 
result, the latency of the cache lookup and tags comparison  
can be dramatically  decreased  by pipelined cache.  [37] 
showed that a significant performance advantage is gained 
by using two or three pipeline stages to fetch data from the 
cache for high clock rate processors. 
 

2.2.3 Trace Cache 

A trace cache, proposed by [45], is a mechanism for 
increasing the instruction fetch bandwidth by storing of 
instructions in their dynamic order of execution rather than 
the static, sequential program order.  Trace Cache is no 
longer having the problem of latency caused by generation  
of pointers  to all of noncontiguous  instruction  blocks.  In 
addition, trace cache is inherently a structure that uses 
repeating  branch  behavior  and  works well for programs  
with  repetition  structures. Trace cache  has  the benefits  to 
deliver  multiple blocks of instructions in the same cycle 
without support from a compiler and modifying instruction 
set, also there is no need to rotate, shift basic blocks to 
create dynamic instruction sequence.  However, the 
disadvantage is that a trace cache stores a lot of redundant 
information [5]. Pentium 4 includes trace cache to store 
maximally 12K decoded micro-operations, and it uses 
virtual addresses so no need for address translation [55]. In 
[43], a software trace cache is used to improve in the 
instruction cache hit rate and instruction fetch bandwidth, 
the results showed it was effectively useful for not-taken 
branches and long chains of sequential instructions. 

 
2.2.4 Nonblocking cache 

A cache miss occurs when a memory  request  cannot  
find the address  in cache,  which results  the  process  stalls  
to degrade  the system  performance. A non-blocking cache 
is employed to exploit post-miss operations by continuing to 
fetch during cache misses as long as dependency constraint 
are observed [3, 10]. [15] reported non-blocking cache 
provided a significant performance improvement, they 
simulated  on the SPEC92  benchmarks,  and  the results 
reduced  21% of run-time with a 64-byte, 2-way set 
associative  cache with  32 cycle fetch latency.  The Intel 
Pentium Pro use this technology for their L2 cache, the 
processor could issue up to 4 cache requests at a time [4]. 

2.2.5 Multibanked caches 
 

Caches are often partitioned into independent banks to 
run in parallel so as to increase cache bandwidth and to 
keep up with the speed of the CPU [44].  Memory usually is 
split by address into the cache banks.  For example, AMD 
Athlon 64 has 8 banks, and each cycle it can fetch two 8-
byte data from different banks.  However, at the same time 
only one access is allowed to the same bank that is single-
ported, such as MIPS R10000 Superscalar Microprocessor 
[60]. 

Since the mapping of addresses to banks affects the 
performance, the simplest mapping is called sequential 
interleaving to spread the block addresses sequentially 
across the banks. [12] also proposed vertical interleaving to 
divide memory banks in a cache into vertically arranged  
sub-banks.  The result showed up to 48% reduction in 
maximum power density with two banks and up to 67% 
reduction with four banks on running Alpha binaries. 
 

3 Memory Replacement Strategies  
 In a paged virtual memory system, when all of the page 

frames are occupied and a process references a nonresident 
page, the system should not only bring in a new memory 
page from auxiliary storage, but select first a victim page to 
be replaced by the incoming page. Pages  swapped  out of 
the main  memory  must  be chosen carefully,  otherwise  it  
causes redundant memory  reads  and  writes  if a page is  
immediately  requested  again  after  it has been removed 
from memory,  and  system  performance  will  degrade  for 
a lot  of the references of the secondary  storage device. 

The replacement algorithms can be divided into static 
page replacement algorithms, dynamic page replacement 
algorithms, and working set algorithms. 

3.1 Static page replacement  algorithms 

Static  page  replacement  algorithms  all assume  that 
each  program  is allocated  a fixed amount  of  memory  
when  it  begins  to execute,  and  does not request  further  
memory during its lifetime. 

3.1.1 Optimal algorithm (also called OPT  or MIN)  

It replaces the page that will not be referenced again until 
furthest in the future or has the longest number of page 
requests before it is referenced [42]. Use of this replacement 
algorithm  guarantees the lowest possible page-fault rate for a 
fixed number of frames. However, the OPT  algorithm is 
impractical unless you have full prior knowledge of the 
reference stream or a record of past behavior that is incredibly 
consistent.  As a result, the OPT algorithm  is used mainly as 
a benchmark  to which other algorithms  can be compared. 

3.1.2 First-In-First-Out algorithm (FIFO) 

FIFO selects the page that has been in the system the 
longest (or first-in) to be removed.  Conceptually, it works as 

64 Int'l Conf. Computer Design |  CDES'12  |



a limited size queue, with items being added at the tail. When 
the queue is full, the first page to enter is moved out of the 
head of the queue.  Similar to RAND, FIFO blatantly ignores 
trends and might choose to remove a heavily referenced page. 
Although FIFO can be implemented with relatively low 
overhead using a queue, it is rarely used because it does not 
take advantage of locality trends. 

A modification to FIFO that makes its operation much 
more useful is the second-chance and clock page replacement 
algorithms.  The only modification here is that a single bit is 
used to identify whether or not a page has been referenced 
during its time in the FIFO queue.  The second-chance 
algorithm examines the referenced bit of the oldest page; if 
this bit is off, it immediately selects that page for replacement.   
Otherwise, it turns off the bit and moves the page to the tail of 
the FIFO queue.  Active pages will be kept at the tail of the 
list and thus remain in main memory.  The clock page 
replacement works essentially the same as the second-chance 
algorithm, except arranging the pages in a circular list rather 
than a linear list [2]. Each time a page fault occurs, a list 
pointer moves around the circular list like the hand of a clock.  
When a page’s reference bit is turned on, the pointer will turn 
the reference bit off and move to the next element of the list.  
The clock algorithm places the new arrival page in the first 
page it encounters with the referenced bit turned off. 
 
3.1.3 Least-Recently-Used algorithm (LRU)  

   LRU relies on a process’s recent past behavior as an 
indication of the near future behavior (temporal locality).  It 
selects the page that has been the longest time in memory 
without being referenced when picking a victim.  Although 
LRU can provide better performance than FIFO, the benefit 
comes at the cost of system overhead [57]. For example, one 
implementation of LRU algorithm - a stack algorithm - 
contains one entry for each occupied page frame. Whenever a 
page is referenced, it is removed from the stack and put on the 
top. In this way, the most recently used page is always at the 
top of the stack and the least recently used page is always at 
the bottom.  When an existing page must be replaced to make 
room for an incoming one, the system replaces the entry at the 
bottom of the stack. The substantial overhead happens 
because the system must update the stack every time a page is 
referenced.  
 
3.1.4  Least-Frequently-Used algorithm (LFU)   

Often confused with LRU, least-frequently-used (LFU)  
algorithm  selects  a page for replacement  if it has not been 
used often in the past. This strategy is based on the intuitively 
appealing heuristic that a page that is not being  intensively  
referenced  is not as likely to be referenced  in the future.   
LFU can be implemented  using a  counter  associated  with  
each page,  and  the counter  is updated  each  time  its  
corresponding  page  is  referenced;  however,  this  can incur  
substantial overhead.   The LFU algorithm could easily select 
incorrect pages for replacement. For instance, the least-
frequently used page could be the page brought into main 
memory most recently.  Furthermore, it tends to respond 

slowly to locality changes [22]. When a program either 
changes its set of active pages or terminates and is replaced 
by a different  program,  the frequency count  will cause 
pages in  the new locality to be immediately replaced since 
their frequency is at a much lower than the pages associated 
with the previous program.  Because the context has changed 
and the pages swapped out will most likely be happening 
again soon (the principle of locality), a period of thrashing 
will likely occur. 

3.2 Dynamic page replacement  algorithms 

When page allocation can change, static algorithms cannot 
adjust to keep the performance optimized.  For example, a 
program rapidly switches between needing relatively large 
and relatively small page sets or localities [4]. Furthermore, it 
is incredibly difficult to find the optimal page allocation since 
a full analysis is rarely available to a virtual memory 
controller. 

However, dynamic paging replacement algorithms could 
adjust and optimize available pages based on reoccurring 
trends. This controlling policy  is also known  as  prefetch 
paging. 

3.2.1 SEQ algorithm  

Glass and Cao [21] proposes a new virtual memory page 
replacement algorithm,  SEQ. Usually SEQ works like LRU 
replacement,  however,  it monitors  page faults  when they  
occur,  and  finds long sequences  of page faults  to 
contiguous  virtual addresses.   When such sequences are 
detected, SEQ performs a most-recently-used replacement 
that mimics OPT  algorithm. For applications that have 
sequential behavior, SEQ has better performance when 
compared to LRU; for other types of applications, it performs 
the same as LRU. Their simulation results on Solaris 2.4 
showed that for a large class of applications with clear access 
patterns, SEQ performs close to the optimal replacement 
algorithm, and it is significantly better than LRU. For other 
applications, SEQ algorithm performance is similar to LRU 
algorithm. 

3.2.2 Adaptive prefetching algorithm  

[19, 62] present a disk prefetching algorithm based on on-
line measurements of disk transfer times and of inter-page 
fault rates to adjust the level of prefetching dynamically  to 
optimize the system performance. In [19], the prefetching 
algorithm is proposed using life-time function for a single 
process execution model. Theoretical model is given and an 
analytical approach is extended to a multiprogramming 
environment using a queuing network model.  Simulation 
experiments are provided to show the effective performance 
of the prefetching algorithm for some synthetic traces.   [62] 
further studies this prefetching adaptive algorithm for the 
multiprocess execution models and uses trace-driven 
simulations to evaluate the effectiveness on real workloads.  
The adaptive prefetching algorithm could always keep the 
system efficiency and the system performance optimal. 

3.2.3 Early eviction  LRU (EELRU)  

[52] introduces early eviction LRU (EELRU),  which 
adjusts its speed of adaption on aggregating recent 

Int'l Conf. Computer Design |  CDES'12  | 65



information to recognize the reference behavior of a 
workload.  The authors prove that EELRU offers strong 
theoretical guarantees of performance relative to the LRU 
algorithm:  While it can be better than LRU by a large factor, 
on the other side, it can never be more than a factor of 3 
worse than LRU. 

Another adaptive dynamic cache replacement algorithm 
extended on EELRU is proposed based on prefix caching for 
a multimedia servers cache system [25].  Two LRU page lists 
for the prefix are stored in the cache; one maintains the prefix 
that has been requested only once recently, while the other 
maintains that has been requested at least twice recently.  The 
simulation results show that the algorithm works better than 
LRU by maintaining the list of recently evicted videos. 

3.2.4 ARC and  CAR algorithms  

ARC (Adaptive Replacement Cache) algorithm is 
developed by IBM Almaden Research Center in IBM 
DS6000/DS8000 storage controllers and works better than 
LRU [34]. It divides the cache directory into two lists, for 
storing recently and frequently referenced entries.  In 
addition, a ghost list is used for each list to keep of the history 
of recently evicted cache entries.   ARC’s dynamic adaption 
exploits both the recency and the frequency features of the 
workload in a self-tuning way, and it provides a low-overhead 
alternative but outperforms LRU across a wide range of 
workloads and cache sizes. 

CAR (Clock with Adaptive Replacement) algorithm 
inherits virtually all advantages of ARC [2], it uses two clocks 
with recency and frequency referenced entries.  The sizes of 
the recently evicted pages are adaptively determined by using 
a precise history mechanism. Simulations demonstrate that 
CAR’s performance is comparable to ARC, but substantially 
better than both LRU and CLOCK algorithms.  

3.2.5 Working set algorithms 

 Denning’s working set theory was developed to study 
what a favored subset is and how to maintain it in main 
memory to achieve the best performance [13].  It stated 
that for a program to run efficiently, the system must keep 
the pages of program’s working set in main memory, 
otherwise excessive paging activity may happen  to cause 
low processor utilization  - thrashing.  The working set is 
defined as W (t, w), where  w is the process’s working set  
window size referenced  during  the process  time  interval  
t − w to current process time  interval  t in Figure 1.  A 
working set memory management policy tries to keep only 
the current working set pages in main memory to exploit 
the performance in the execution of that process.  
However, the policy is usually heuristic since it is so hard 
for the system to know the current working set pages in 
advance. 

 
Figure1. Working set model 

Localities may change; however, generally locality sets 

repeat within the global locality. Working set algorithms 
assume during the working set time-window, the program 
could add or remove pages until the time has expired [33]. 
When the window finishes, the time window may be 
dynamically adjusted to provide maximal correspondence 
with locality changes [13].  The adjustments can be made 
in a variety of ways, but mainly as a function of the rate 
of page faults occurring within the program. 

Working set algorithms do not always use a specific 
time window to determine the active set.  For example, 
various page fault frequency (PFF) algorithms can be used 
to monitor the rate at which a program incurs faults [48].  
It is similar to modifying the time  interval  but is not 
subject  to  a  minimal  time  for change to occur:  When  
locality transits, page allocation  or release may  occur  
rapidly.   PFF has its limitations on the some applications.  
[33] gave an example that requires unrelated references to 
a database, causing a large fault frequency.  In this case, 
the program would not benefit from keeping the old 
references in memory.  Rapid changes in the fault 
frequency due to this kind of access would result in either 
wasted page allocation or rapid thrashing with the 
algorithm, both detracting from its usefulness. Other 
working set methods like the working set clock algorithms 
(WSClock) [8] could closely approximate a static method 
on a global scale. Frames are considered for replacement 
by a pointer moving clockwise along a circular list. 
Although WSClock algorithms generally behave like LRU, 
their actual performance can differ based on timing 
parameters and selection criteria. 

 

4 Memory Optimization Techniques 

4.1 DRAM Chip Design 

The main memory is generally made up of DRAM and has 
relatively large storage capacity as compared to a cache 
(SRAM), but it is slower, cheaper, and denser than a cache. 
Since the memory design needs to decrease the processor-
memory gap, technologies usually are developed to have a 
greater bandwidth. The first innovation is a new revolutionary 
addressing scheme by multiplexed  row and column addresses  
lines to cut the number  of address pins in half, introduced by 
Robert Proebsting  in Mostek  MK4096 in 1975 [16].  This 
design sent  row access strobe  (RAS) first and then the 
column access strobe (CAS), to reduce the cost and space by 
fitting a 4K DRAM into a 16 pin package instead of previous 
22 pin package. 

Fast page  mode  is one improvement  on conventional 
DRAM  when  the row- address  is held  constant and  data 
from multiple  columns  is read  without  another  row access 
time [36]. An additional basic change is Synchronous DRAM 
(SDRAM), unlike the conventional DRAMs are asynchronous 
to the memory controller, it adds a clock signal to the DRAM 
interface and has a register that holds a bytes-per-request 
value, and returns many  bytes  over several cycles per request  
[26].  Another major innovation to increase bandwidth is 
DDR (double data rate) SDRAM, which doubles the data 
bandwidth of the bus by reading and writing data on both the 

66 Int'l Conf. Computer Design |  CDES'12  |



rising and falling edges of the clock signal [41]. 

The above optimization techniques exploit the high 
potential DRAM bandwidth with adding  little  cost  to the 
system,  there  are  many  more  techniques  we cannot  list  
out since  of the  space limitation,  such  as  Extended  Data 
Out (EDO)  DRAM,  Enhanced Synchronous (ES) DRAM, 
Synchronous Link (SL) DRAM, Rambus  DRAMs 
(RDRAM), Direct Rambus  (DRDRAM),  Fast Cycle (FC) 
DRAM, etc. 

4.2 Software  Optimization 

Most of the techniques require changing the hardware; 
however, pure software approach such as compiler 
optimization could also improve the memory performance.   
Code can easily be rearranged to improve temporal or spatial 
locality to reduce misses. For example, interchanging 
independent statements might reduce instruction miss rates by 
reducing conflict misses [49].  Another  example is called 
branch  straightening,  when the compiler predicts  that a 
branch  to happen,  it rearranges  program  code by  swapping  
the branch target block with the block sequentially right after 
the branch. Branch straightening could improve spatial 
locality. 

Code and data rearrangement are mainly used on loop 
transformations. Loop inter-change is to exchange the order 
of the nested loop, making the code access the data in the 
order they are stored [58]. Loop fusion is a program 
transformation by fusing loops that access similar sets of 
memory locations.  After fusion, the accesses are gathered 
together in the fused loop and can be reused easily. In [61], 
authors combined loop interchange and loop fusion together 
and applied on a collection of benchmarks, and the results 
indicate that their approach is highly effective and ensures 
better performance.  When some arrays are accessed by rows 
and some by columns and both rows and columns are used in 
every iteration, Loop Blocking is used to create blocks instead 
of working on entire rows or columns to enhance reuse of 
local data [29]. 

4.3 Prefetching 

Demand fetching can be minimized if we can successfully 
predict which information will be needed and fetch it in 
advance - prefetching.  If the system is able to make correct 
predications about future page uses, the process’s total 
runtime can be reduced [7, 53]. Prefetching strategies should 
be designed carefully.  If a strategy requires significant 
resources or inaccurately preloads unneeded pages, it might 
result in worse performance than in a demand paging system.  
Assume that s pages are prefetched and a fraction α of these s 
pages is actually used (0 ≤ α ≤ 1). The question is whether the 
cost of the s × α saved page faults is greater or less than the 
cost of prepaging s × (1 − α) unnecessary pages.  If α is close 
to 0, prefetching loses; if α is close to 1, prefetching wins. 

Prefetching strategies often exploit spatial locality.  
Furthermore, the address and size of the prefetched data are 
derived when considering the reference history, access 
pattern, and trajectory of prior memory accesses.  Important 
criteria that determine the success of a prefetching strategy 

include: 

 prepaged  allocation - the amount of main memory 
allocated to prepaging 

 the number  of pages that are preloaded  at once 
 the algorithm used to determine which pages are 

preloaded. 
Prefetching strategies are applied in different memory 

levels, such as caches [40], main memory [53], and disks [19 
62].  Next we discuss the categories of hardware prefetching 
and software prefetching. 

4.3.1 Hardware Prefetching  

Both instructions and  data can  be prefetched.   Instruction 
prefetch is happening normally outside the cache. Instructions 
following the one currently being executed are loaded into 
instruction stream buffer.  If the requested instruction is 
already  in the buffer, no need to fetch it again but request the 
next prefetch.  Hardware data prefetching is used to exploit of 
run-time information without the need for programmer or 
compiler intervention.  The simplest prefetching algorithm  is 
sequential prefetching algorithm,  such as one block 
lookahead  (OBL)  in HP  PA7200 [9]. An adaptive sequential 
prefetching algorithm is proposed for a dynamic k value to 
match k with the degree of  spatial  locality of the program  at 
a particular  time.   Several algorithms  have been developed 
by using special cache called reference  prediction  table 
(RPT) to monitor the processor’s referencing pattern to  
prefetching with arbitrary strides [1, 17].  In [10], authors 
found out the RPT  may not be able to find an  access pattern 
for indirect ad- dressing mode and the RPT  only worked after 
an access pattern has been  established. However, during  
steady  loop state, the RPT  could dynamically  adjust its  
prefetching stride to achieve a good performance. 

4.3.2 Software  Prefetching  

Even there are some software prefetching on instructions 
[18], most software prefetching algorithms  are working for 
data only, applying mostly within loops  for large  array  
calculations  for both hand-coded  and  automated  by  a  
compiler [30]. [35] applied prefetching for affine array 
references in scientific programs,  locality analysis is 
conducted to find the part of array references suffered from 
cache misses. Then loop unrolling and loop peeling to extract 
the cache-missing memory references are used, finally to 
apply prefetch instructions on the isolated cache-missing 
references.   Jumper pointer prefetching connects non-
consecutive link elements by adding additional pointers into a 
dynamic data structure [46]. It is effective for limited work 
available between successive dependent accesses.  Jumper 
pointer  prefetching  can be extended  to prefetch array  [28], 
which overcomes  the problem  that jumper  pointer  
prefetching  is unable  to prefetch the early nodes because of 
no pointers.  To have prefetch instructions embedded in 
program incurring overhead, so compilers must ensure that 
benefits exceed the overheads. 

5 Conclusions 
 In this survey, we review the memory system design, 

memory management techniques, and optimization 

Int'l Conf. Computer Design |  CDES'12  | 67



approaches.  Given the constraints on the length of this paper, 
we have not addressed the role of memory management and 
optimization techniques in embedded system such as 
handheld devices.  [31] has examined data and memory 
optimization techniques to memory structures at different 
levels for embedded systems. And a survey has been 
conducted for techniques for optimizing memory behavior of 
embedded software in [59]. 

 Memory system will remain the vital part of the 
computers unless the conventional Von Neumann model is 
outdated.   DRAM has been dominating the primary memory 
since 1971.  The processor-memory latency gap continues to 
grow because the continual improvements in processor cycle 
speed is much faster than improvements in DRAM access 
latency.  Many processors and memory designs, architectures, 
optimization techniques are developed and proposed to 
minimize the gap.  However, there is no surprise that another 
technology will replace DRAM in the price/performance 
consideration soon. For example, Magnetic RAM  (MRAM)   
has  the advantage of being non-volatile.  Another choice is 
optical storage, which could transport the entire system 
memory image in a small three dimensional carrier.  No 
matter what technology is, it should balance cost, 
performance, power consumption, and complexity. 

6 References 
[1] Baer, J.L. and Chen, T.F. (1991) An Effective On-chip 
Preloading Scheme to Reduce Data Access Penalty,  
Proceeding  Supercomputing 91, Albuquerqu,  NM, 
November, 176-186. 
[2] Bansal,  S. and Modha,  D.S. (2004) CAR: Clock with 
Adaptive  Replacement,  Proceeding of USENIX Conference 
on File and Storage Technologies, 187-200, CA. 
[3] Belayneh, S. and Kaeli, D. (1996) A Discussion on 
Non-blocking/lockup-free Caches, ACM SIGARCH 
Computer Architecture News, 24(3), 18-25. 
[4] Bhandarkar, D.; Ding, J. (1997) Performance  
Characterization  of the Pentium Pro Processor,  Proceeding  
of High-Performance  Computer  Architecture,  1-5 Feb,  
288- 297, San Antonio, Texas, USA. 
[5] Black, B., Rychlik,  B., and  Shen,  J.P. (1999) The  
Block-based  Trace  Cache,  Proceeding  of the  26th  Annual  
International  Symposium on Computer Architecture,196-
207. 
[6] Burger,  D., Goodman,  J.R. and Sohi, G.S. (1997) 
Memory Systems. The Computer Science and Engineering 
Handbook, 47-461. 
[7] Cao, P., Felten, E.W., Karlin, A.R. and Li, K. (1995) A 
Study of Integrated Prefetching and Caching Strategies, Proc. 
of ACM SIGMETRICS,  188-197. 
[8] Carr,  W.R., Hennessy, J.L. (1981) WSClock-A Simple 
and Effective  Algorithm  for Virtual Memory Management, 
Proc. Of the ACM SOSP, 87-95. 
[9] Chan, K.K., et al. (1996) Design of the HP PA 7200 
CPU, Hewlett-Packard Journal, 47(1), 25-33. 

[10] Chen, T.; Baer, J. (1992) Reducing Memory Latency via 
Non-blocking and Prefetching Caches, Proceeding  of ACM 
SIGPLAN Notice, 27(9), 51-61. 
[11] Chen,  T.;  Baer,  J. (1994)  A Performance  Study  of 
Software  and  Hardware  Data Prefetching  Schemes,  
Proceeding  of the 21st Annual  International Symposium  on 
Computer Architecture, Chicago, IL, April, 223-232. 
[12] Cho, S. (2007) I-Cache Multi Banking and Vertical 
Interleaving, Proceeding of ACM Great Lakes Symposium on 
VLSI, March 11-13, 14-19, Stresa-Lago Maggiore, Italy. 
[13] Denning, P.J.  (1980) Working Sets Past and Present, 
IEEE Transactions on Software Engineering, SE6(1), 64-84. 
[14] Denning, P.J. (2005) The Locality Principle,  
Communications of the ACM, 48(7), 19 - 24. 
[15] Farkas,  K.I.;  Jouppi, N.P.;  Chow,  P.  (1994) How 
Useful Are Non-Blocking Loads, Stream Buffers,  and  
Speculative Execution in Multiple  issue Processors?   
Western Research Laboratory Research Report 94/8. 
[16] Foss, R.C. (2008) DRAM - A Personal  View, IEEE 
Solid-State Circuits  Newsletter 13(1), 50-56. 
[17] Fu,  J.W.C, Patel, J.H., and  Janssens,  B.L. (1992)  
Stride Directed Prefetching in Scalar Processors, Proceeding 
of 25th International Symposium on Microarchitecture, 
Portland, OR, December, 102-110. 
[18] Galazin,  A.B., Stupachenko,  E.V., and Shlykov, S.L. 
(2008) A Software Instruction Prefetching Method in 
Architectures with Static Scheduing, Programming  and 
Com- puter Software, 34(1), 49-53. 
[19] Gelenbe, E. and Zhu, Q. (2001) Adaptive Control of 
Prefetching, Performance  Evaluation, 46, 177-192. 
[20] Ghasemzadeh,  H., Mazrouee,S.,  Moghaddam,  H.G., 
Shojaei, H. and Kakoee, M.R. (2006)  Hardware  
Implementation  of Stack-Based  Replacement  Algorithms,  
World Academy of Science, Engineering and Technology,  
16, 135-139. 
[21] Glass, G. and Cao, P. (1997) Adaptive page replacement 
based on memory reference behavior,  Proc of the 1997 ACM 
SIGMETRICS,  25(1), 115-126. 
[22] Gupta, R.K. and Franklin,  M.a. (1978) Working Set 
and Page Fault  Frequency  Re- placement Algorithms:  A 
Performance  Comparison, IEEE  Transactions on 
Computers, C-27, 706-712. 
[23] Handy,  J (1997) The Cache Memory Book, Morgan 
Kaufmann  Publishers. 
[24] Hennessy,  J.L. and  Patterson, D.A. (2007) Computer  
architecture:   a quantitative approach, Morgan Kaufmann  
Publishers  Inc., San Francisco,  CA, 4th Edition. 
[25] Jayarekha, P.; Nair, T.R  (2009) Proceeding  of InterJRI 
Computer Science and Networking, 1(1), Dec, 24-30. 
[26] Jones, F. et al., (1992) A New Era of Fast Dynamic 
RAMs, IEEE Spectrum, 43-49. [56]  Kaplan, K.R. and 
Winder, R.O. (1973) Cache-based Computer Systems, IEEE 
Computer, 6(3), 30-36. 
[27] Kane, G. and Heinrich J. (1992) MIPS RISC 
Architecture, Prentice Hall. 
[28] Karlsson,  M., Dahlgren,  F., and Stenstrom,  P. (2000) 
A Prefetching  Technique  for Irregular  Accesses  to Linked 

68 Int'l Conf. Computer Design |  CDES'12  |



Data Structures, Proceeding  of the 6th International 
conference on High Performance Computer Architecture, 
Toulouse, France,  January, 206-217. 
[29] Lam, M.; Rothberg, E.; Wolf, M.E. (1991) The Cache 
Performance  and Optimization of Blocked  Algorithms,  
Proceeding  of the Fourth International  Conference on 
ASPLOSIV,  Santa Clara, Apr, 63-74. 
[30] Luk,  C.K and  Mowry, T.C  (1996) Compiler-based  
Prefetching  for Recursive  Data Structures, Proceeding of 7th 
Conference on Architectural Support for Programming  
Languages and Operating Systems, Cambridge,  MA, 
October, 222-233. 
[31] Mahapatra, N.R., and Venkatrao, B. (1999) The 
processor-memory bottleneck:  problems and solutions, 
Crossroads,  5(3). 
[32] Mahajan,  A.R. and Ali, M.S. (2007) Optimization of 
Memory System  in Real-time Embedded  Systems,  
Proceeding  of the 11th  WSEAS  International  Conference  
on Computers. 13-19. 
[33] Marshall, W.T. and Nute, C.T. (1979) Analytic 
modeling of working set like replacement algorithms, Proc. 
of ACM SIGMETRICS,  65-72. 
[34] Megiddo, N.; and  Modha,  D.S. (2003) ARC:A Self-
tuning, Low Overhead  Replacement Cache, Proceeding  of 
2nd USENIX conference on File and Storage Technologies, 
115-130, San Franciso, CA. 
[35] Mowry,  T.  (1991)  Tolerating  Latency  through  
Software-controller  Prefetching  in Shared-memory  
Multiprocessors,   Journal of Parallel  and  Distributed  
Computing, 12(2), 87-106. 
[36] Ng, Ray (1992) Fast Computer Memories, IEEE 
Spectrum, 36-39. 
[37] Olukotun, K., Mudge, T., and Brown, R. (1997) 
Multilevel Optimization of Piplelined Caches. IEEE 
Transactions on Computers, 46, 10, 1093-1102. 
[38] Ou, L., He, X.B., Kosa, M.J., and Scott, S.L. (2005) A 
Unified Multiple-Level Cache for High  Performance  
Storage  Systems,  mascots,  13th  IEEE International  
Symposium on Modeling,  Analysis,  and Simulation  of 
Computer  and Telecommunication Systems, 143-152. 
[39] Panda,  P.R. et al (2001) Data and Memory 
Optimization Techniques  for Embedded System, ACM 
Transactions on Design Automation of Electronic Systems, 
6(2), 149-206. 
[40] Perkins,  D.R. (1980) The Design and Management of 
Predictive  Caches, PH.D  dissertation, UC., San Diego. 
[41] Peters,  M. (2000) Enhanced  Memory Systems,  
Personal  Communications,  September. 
[42] Prieve,  B.G. and Fabry,  R.S. (1976) VMIN - An 
Optimal Variable  Space Page  Re- placement Algorithm,  
Communications of the ACM, 19(5), 295-297. 
[43] Ramirez,  A., Larriba-Pey, J.L., and Valero, M. (2005) 
Software Trace  Cache, IEEE Transactions on Computer, 
54(1), 22-35. 
[44] Rivers, J.A.; Tyson,  G.S.; Dividson, E.S.; Austin, T.M. 
(1997) On High-Bandwidth Data Cache  Design for Multi-

Issue  Processors,  Proceeding  of International Symposium 
of Microarchitecture, Dec, 46-56. 
[45] Rotenerg, E., Bennett, S., and Smith,  J.E. (1999) A 
Trace  Cache Microarchitecture and Evaluation, IEEE 
Transactions on Computers, 48(2), 111-120. 
[46] Roth,  A. and Sohi, G., (1999) Effective  Jump-pointer  
Prefetching  for Linked Data Structures. Proceeding of the 
26th International Symposium on Computer Architecture, 
Atlanta, GA, May, 111-121. 
[47] Pas,  R. (2002) Memory Hierarchy  in Cache-Based  
Systems, Sun Microsystems. 
[48] Sadeh, E. (1975) An Analysis of the Performance  of the 
Page Fault  Frequency (PFF)  Replacement Algorithm,  Proc 
of the fifth ACM SOSP, 6-13. 
[49] Samples,  A.D.; Hilfinger, P.N.  (1988) Code 
Reorganization for Instruction Caches, University  of 
California at Berkeley, Berkeley, CA. 
[50] Serhan,  S.I.  and  Abdel-Haq,  H.M.  (2007)  Improving  
Cache  Memory  Utilization, World Academy of Science and 
Technology,  26, 299-304. 
[51] Shemer,  J.E. and Shippey,  B. (1966) Statistical  
Analysis of Paged  and  Segmented Computer Systems. IEEE 
Trans.  EC-15, 6, 855-863. 
[52] Smaragdakis,  Y., Kaplan,  S. and Wilson, P. (2003) 
The EELRU Adaptive Replace- ment Algorithm, 
Performance  Evaluation, 53(2), 93-123. 
[53] Smith,  A.J.  (1978) Sequential  Program  Prefetching  
in Memory Hierarchies,  IEEE Computer, 11(12), 7-21. 
[54] Sondag,  T.  and  Rajan,  H. (2009)  A Theory  of Reads  
and  Writes  for Multi-level Caches. Technical  Report 09-
20a, Computer Science, Iowa State University. 
[55] Tuck, N; Tullsen, D.M. (2003) Initial Observations of 
the Simultaneous  Multithread- ing Pentium 4 Processor, 
Proceeding of Parallel Architectures and Compilation 
Techniques, Oct, 26-34. 
[56] A.M Turing  (1937) On Computable Numbers, with an 
Application to the Entscheidungsproblem, Proceedings  of the 
London Mathematical Society, 42(2), 230-265. 
[57] Turner,  R. and Levy, H. (1981) Segmented FIFO  Page 
Replacement, Proc. of ACM SIGMETRICS on Measurement 
and Modeling of Computer System, 48-51. 
[58] Wolf, M.E., Lam, M. (1991) A Data Locality 
Optimizing Algorithm.  Proceeding  of the SIGPLAN  
conference on Programming  Language  Design and  
Implementation, Toronto, 26(6), 30-44. 
[59] Wolf, W, Kandemir,  M. (2003) Memory System  
Optimization  of Embedded  Soft- ware. Proceeding of IEEE, 
Jan, 91(1), 165-182. 
[60] Yeager,  K.C.(1996)  The  MIPS  R10000 Superscalar    
Microprocessor,  IEEE  Micro, Apr., 16(2), 28-40, 1996. 
[61] Yi, Q. and Kennedy,  K. (2004) Improving Memory 
HierarchyPerformance  through Combined  Loop Interchange 
and  Multi-Level Fusion,  International Journal of High 
Performance  Computing Applications, 18(2), 237-253. 
[62] Zhu, Q., Gelenbe, E. and Qiao, Y (2008) Adaptive  
Prefetching Algorithm  in Disk Controllers, Performance  
Evaluation, 65(5), 382-395. 

Int'l Conf. Computer Design |  CDES'12  | 69



Synchronization of a complex dynamical network with nonidentical
nodes via dynamic feedback control

T.H. Lee1, J.H. Park1, H.Y. Jung1, S.M. Lee2
1Nonlinear Dynamics Group/Dept. EE/ICE, Yeungnam University, Kyongsan, Republic of Korea.

2Department of Electronic Engineering, Daegu University, Gyungsan, Republic of Korea.

Abstract— This paper considers synchronization problem
of a complex dynamical network with nonidentical nodes.
For this problem, a dynamic feedback controller is de-
signed to achieve the synchronization of the network. Based
on Lyapunov stability theory and linear matrix inequality
framework, the existence condition for feasible controllers is
derived in terms of linear matrix inequalities. The condition
can be solved easily by the application of convex optimiza-
tion algorithms. Finally, the proposed method is applied to
a numerical example in order to show the effectiveness of
our result.

Keywords: Complex dynamical network, synchronization, non-
identical node, dynamic feedback control.

1. Introduction
During the last decade, complex dynamical networks,

which are a set of interconnected nodes with specific dy-
namics, have been attracted increasing attention in various
fields such as physics, biology, chemistry and computer
science [1]. As science and society develop, our everyday
lives have been closed to complex networks, for instance,
transportation networks, World Wide Web, coupled biolog-
ical and chemical engineering systems, neural networks,
social networks, electrical power grids and global economic
markets. Many of these networks exhibit complexity in the
overall topological and dynamical properties of the network
nodes and the coupled units. Recently, one of the significant
and interesting phenomena in complex dynamical network is
the synchronization. Synchronization of complex dynamical
networks can be divided into two points of view. One is
the synchronization of a complex network that is called
’inner synchronization’ [2]-[5]. It means that all the nodes
in a complex network eventually approach to trajectory of a
target node. Another is called ’outer synchronization’ [6]-[8]
which considers the synchronization between two or more
complex networks. In this paper, a new control problem for
inner synchronization will be investigated.

The random-graph model had become a basics of modern
network theory since proposed by Erdös and Renyi [9]-[10].
In a random network, each pair of nodes is connected with
a certain probability. Watts and Strogatz [11] introduced
useful network model to translate from a regular network to
a random network, it is called small-world network. Then,

Newman and Watts [12] modified it to generate another
variant of the small-world model. And then, Barabasi and
Albert [13] proposed a scale-free network model, in which
the degree distribution of the nodes follows a power-law
form . Thereafter, small-world and scale-free networks have
been extensively investigated.

Synchronization of a complex dynamical network have
been well noticed that many researchers adopt the assump-
tion that all nodes dynamics are identical [2]-[3]. However,
this assumption about identical nodes is unlikely environ-
ment in most of complex dynamical networks. For example,
in a swarm robot system, every individual robots have differ-
ent dynamics of them, and even if the swarm robot system is
consisted of same robots, it has possibility to be nonidentical
network system due to uncertainties, saturation and so on.
When the nodes of a complex network is nonidentical, they
will show different dynamics. It should be noted that the
synchronization schemes for networks with identical nodes is
good for nothing. Therefore, the further investigation of new
synchronization schemes for a complex dynamical network
with nonidentical nodes is necessary. In this regard, only a
few papers have been reported until now [4]-[5].

In this paper, we will investigate the synchronization of a
complex network with nonidentical node via dynamic feed-
back control unlike previous works which usually treated a
complex network with identical nodes. Until now, in order
to treat this kind of problem for a complex network, several
control schemes such as adaptive control ([2], [7]-[8]) and
pinning control ([2]-[3], [6]) are applied. However, to the
best of the authors’ knowledge, the synchronization problem
via dynamic feedback controller for complex networks has
not been investigated up to now. In some real control
situations, there is a strong need to construct a dynamic
feedback controller instead of a static feedback controller
in order to obtain a better performance and dynamical
behavior of the state response. The dynamic controller will
provide more flexibility compared to the static controller
and the apparent advantage of this type of controller is that
it provides more free parameters for selection [14]. So it
is very worth to consider the design problem of dynamic
controller for synchronization in a complex network. The
existence condition of such controller is derived in terms of
linear matrix inequalities (LMIs) which can be easily solved
by standard convex optimization algorithms [15].

70 Int'l Conf. Computer Design |  CDES'12  |



Notation: X > 0 (respectively, X ≥0) means that the matrix
X is a real symmetric positive definite matrix (respectively,
positive semi-definite). In denotes the n-dimensional iden-
tity matrix. ⊗ denotes the notation of Kronecker product.

2. Problem statement and preliminaries
Consider a delayed complex dynamical network con-

sisting of N linearly coupled nonidentical nodes described
by

ẋi(t) = fi(xi(t)) +
N∑
j=1

cijxj(t) + ui(t), i = 1, . . . , N (1)

where xi = (xi1, xi2, . . . , xin)
T ∈ Rn is the state vector of

the ith node, fi : Rn → Rn is a smooth nonlinear vector
field, ui(t) is the control input of ith node, and cij is the
coupling configuration parameter representing the coupling
strength and the topological structure of the network, in
which cij is nonzero if there is a connection from node
i to node j(i ̸= j), and is zero otherwise. For simplicity,
let us define C = (cij)N×N . Also, the diagonal elements of
matrix C are assumed that

cii = −
N∑

j=1,j ̸=i

cij , i = 1, . . . , N. (2)

Definition 1. A complex network is said to achieve asymp-
totical inner synchronization, if

x1(t) = x2(t) = · · · = xN (t) = s(t) as t → ∞,

where s(t) ∈ Rn is a solution of a target node, satisfying
ṡ(t) = fs(s(t)).

Here, define error vectors as follows :

ei(t) = s(t)− xi(t). (3)

From Eq. (3), the error dynamics is given to

ėi(t) = fs(s(t))− fi(xi(t))−
N∑
j=1

cijej(t)− ui(t)

= f̄i(ei(t))−
N∑
j=i

cijej(t)− ui(t), (4)

where f̄i(ei(t)) = fs(s(t))− fi(xi(t)).
Also, a vector-matrix form of Eq. (4) is described by

ė(t) = F (t)− C ⊗ Ine(t)− U(t) (5)

where F =
[
f̄T
1 (e1(t)), f̄

T
2 (e2(t)), . . . , f̄

T
N (eN (t))

]T , e =[
eT1 (t), . . . , e

T
N (t)

]T
, and U =

[
uT
1 (t), u

T
2 , . . . , u

T
N (t)

]
.

3. Controller design
In this section, a dynamic feedback controller will be

designed to achieve the synchronization goal.
In order to stabilize the error system given in Eq. (5), let’s
consider the following dynamic feedback controllers:

ζ̇(t) = Ac ⊗ Inζ(t) +Bc ⊗ Ine(t),
U(t) = Cc ⊗ Inζ(t) + F (t), ζ(0) = 0,

(6)

where ζ(t) ∈ RNn is the controller state, and Ac, Bc and
Cc are constant gain matrices of N ×N dimensions.

Applying this controller (6) to error system (5) results in
the following closed-loop system

ż(t) = H ⊗ Inz(t), (7)

where

z(t) =

[
e(t)
ζ(t)

]
∈ R2Nn, H =

[
−C −Cc

Bc Ac

]
∈ RN×N .

Then we have following main result.
Theorem 1. There exists a dynamic feedback controller
given in Eq. (6) for synchronization of the complex network
Eq. (1) if there exist positive-definite matrices S, Y ∈ RN×N

and matrices X1, X2, X3 ∈ RN×N satisfying the following
LMIs :[

−Y CT − CY −X1 −XT
1 −C +X3

⋆ (2, 2)

]
< 0 (8)

and [
Y IN
IN S

]
> 0. (9)

where (2, 2) = −CTS − STC +X2 +XT
2 .

Proof. Consider the following Lyapunov function: V (t) =
zT (t)P ⊗ Inz(t) where P ∈ R2N×2N > 0. Then, the time
derivative of the Lyapunov function is

V̇ (t) = zT (t)(HTP + PH)⊗ Inz(t). (10)

Here, let us define

Σ ≡ HTP + PH. (11)

Thus, if the inequality Σ < 0 holds, then it can be said
that synchronization of a complex network with nonidentical
node is achieved by our proposed dynamic controller. How-
ever, in the matrix Σ, the matrix P > 0 and the controller
parameters Ac, Bc and Cc, which included in the matrix
H , are unknown and occur in nonlinear fashion. Hence, the
inequality Σ < 0 cannot be considered as an linear matrix
inequality problem. In the following, we will use a method
of changing variables such that the inequality can be solved
as convex optimization algorithm [16].

First, partition the matrix P and its inverse as

P =

[
S J
JT T

]
, P−1 =

[
Y M
MT W

]
, (12)

Int'l Conf. Computer Design |  CDES'12  | 71



where S, Y are positive-definite matrices, and M,N ∈
RN×N are invertible matrices. It should be pointed out that
the equality P−1P = I2N gives that

MJT = IN − Y S. (13)

Define two matrices as

F1 =

[
Y IN
JT 0

]
, F2 =

[
IN S
0 JT

]
. (14)

Then, it follows that

PF1 = F2, FT
1 PF1 = FT

1 F2 =

[
Y IN
IN S

]
> 0. (15)

Now, postmultiplying and premultiplying the matrix in-
equality, Σ < 0, by the matrix FT

1 and by its transpose,
respectively, gives

FT
2 HF1 + FT

1 HTF2 < 0. (16)

By utilizing the relation Eqs. (12)-(15), it can be easily
obtained that the inequality Eq. (16) is equivalent to[

Γ1 Γ2

⋆ Γ3

]
< 0 (17)

where Γ1 = −Y CT − CY − MCT
c − CcM

T ,
Γ2 = −C − Y CTS + Y XT

2 − X1S + MAT
c J

T ,
Γ3 = −CTS − STC + JBc + BT

c J
T . By defining a new

set of variables as follows: X1 = MCT
c , X2 = JBc,

X3 = −Y CTS + Y XT
2 −X1S +MAT

c J
T , then, Eq. (17)

is simplified to LMI (8). And the LMI (9) is equivalent to
the positiveness of P . This completes the proof. �

Remark 1. Given any solution of the LMIs given in Eqs.
(8) and (9) in Theorem 1, a corresponding controller of the
form Eq. (6) will be constructed as follows:

• Compute the invertible matrices M and J satisfying
Eq. (13) using matrix algebra.

• Utilizing the matrices M and J obtained above, solve
the equations Xi for Bc, Cc and Ac (in this order).

4. Numerical example
In order to show the effectiveness of the proposed method,

we present a numerical example which is inner synchro-
nization of a complex network with five nonidentical nodes.
Each nodes are different chaotic systems such as well-
known Lorenz, Chen, Lü, Chen-Lee and Genesio-Tesi sys-
tems. They are typical benchmark three dimensional chaotic
systems and their chaotic behavior are displayed in Fig. 1.
Thus, the complex network system consisting of five nodes
is described by:

ẋi(t) = fi(xi(t)) +

N∑
j=1

cijxj(t) + ui(t), (18)

−10
0

10

−20

0

20

10

20

30

40

50

x
11

Lorenz system

x
12

x 13

−20
0

20

−50

0

50
0

20

40

x
21

Chen system

x
22

x 23

−20
0

20

−20

0

20
0

20

40

60

x
31

Lu system

x
32

x 33

−50
0

50

−50

0

50
−20

−10

0

x
41

Chen−Lee system

x
42

x 43

−10
0

10

−10

0

10
−5

0

5

10

x
51

Genesio−Tesi system

x
53

x 52

Fig. 1: Original chaotic behavior of each nodes

where i = 1, . . . , 5 and

f1(x1(t)) =

 p1(x12 − x11)
p3x11 − x12 − x11x13

x11x12 − p2x13


f2(x2(t)) =

 p4(x22 − x21)
(p6 − p4)x21 + p6x21 − x21x23

x21x21 − p5x23


f3(x3(t)) =

 p7(x32 − x31)
p9x32 − x31x33

x31x32 − p8x33


f4(x4(t)) =

 q1x41 − x42x43

−q2x42 + x41x43

−q3x43 + (1/3)x41x42


f5(x5(t)) =

 x52

x53

−q4x51 − q5x52 − q6x53 + x2
51,


with the parameters p1 = 10, p2 = 8/3, p3 = 28, p4 = 35,
p5 = 3, p6 = 28, p7 = 36, p8 = 3, p9 = 20, q1 = 5,
q2 = 10, q3 = 3.8, q4 = 6, q5 = 2.92, and q6 = 1.2.
Each nodes represent chaotic behavior as follows :
f1(x1(t))− Lorenz System, f2(x2(t))− Chen System,
f3(x3(t))− Lü System, f4(x4(t))− Chen-Lee System,
f5(x5(t))− Genesio-Tesi System. And a target node is also
selected same one as first node, Lorenz system. In this
example, random function, |d(t)| < 10, is used to every
initial conditions of xi(0) = (d(t), d(t), d(t)), s(0) =
(d(t), d(t), d(t)), (i = 1, 2, . . . , 5) and coupling matrix,
C, is given by

C = 0.2×


−3 1 1 0 1
1 −4 1 1 1
0 1 −2 1 0
0 1 1 −3 1
1 0 0 1 −2

 . (19)

72 Int'l Conf. Computer Design |  CDES'12  |



In order to show original behavior of the complex network
(18) with nonidentical node, the trajectories of the complex
network (18) without controller is depicted in Fig 2.

0 2 4 6 8 10 12 14 16 18 20
−60

−40

−20

0

20

40

60

time

e

Fig. 2: Error signals of Example without control input

Now, we design a suitable dynamic feedback controller of
the form Eq. (6) for system Eq. (18), which guarantees the
asymptotic stability of the closed-loop system. By applica-
tion of Theorem 1 to the system Eq. (18) and checking the
feasibility of the LMIs given in Eqs (8) and (9), we can find
that the LMIs are feasible by use of LMI control toolbox and
obtain a possible set of solution of the LMIs. But, due to
limitation of space, the solutions are omitted here. Then, by
further calculation in light of Remark 1, we have a possible
stabilizing dynamic feedback controller for the system Eq.
(18):

Ac =


−1.6000 0.2667 0.0376 0.0580 −0.0638
0.3141 −1.6010 0.0853 0.3113 0.1537
0.0212 0.2735 −1.6185 0.0896 −0.1972
0.0639 0.2963 0.0465 −1.4779 0.1795
0.1297 0.1701 −0.1499 0.1795 −1.5026



Bc =


−1.1000 0.2000 0.1000 0.0000 0.2000
0.2904 −0.8863 −0.1097 0.5507 −0.5120
0.0294 0.8606 −0.0314 −0.0612 −0.7567
0.0609 −0.0716 0.2112 −1.0067 0.1488
0.0330 0.4988 −0.9123 0.0974 0.0563



Cc =


−1.1000 0.2904 0.0294 0.0609 0.0330
0.2000 −0.8863 0.8606 −0.0716 0.4988
0.1000 −0.1097 −0.0314 0.2112 −0.9123
0.0000 0.5507 −0.0612 −1.0067 0.0974
0.2000 −0.5120 −0.7567 0.1488 0.0563


The simulation result with control input is presented in

Fig. 3. As seen in Fig. 3, the trajectories of error systems
approach to zero as expected. This achieves asymptotic
synchronization of the complex network (18).

0 2 4 6 8 10 12 14 16 18 20
−15

−10

−5

0

5

10

15

time

e

Fig. 3: Error signals of Example

5. Conclusions
In this paper, the asymptotic inner synchronization of a

complex dynamical network has been studied. The noniden-
tical node was considered in the sense of reality. Unlike
other works, a dynamic feedback controller was designed
for the our synchronization scheme based on the Lyapunov
method. Then, a criterion expressed by LMIs for stability of
error dynamics was derived. Finally, one numerical example
was illustrated to show the effectiveness of the designed
controller.

Acknowledgements
This work was supported in part by MEST & DGIST (12-BD-0101,

Renewable energy and intelligent robot convergence technology develop-
ment.) This research was also supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education, Science and Technology (2010-0009373).

References
[1] S.H. Strogatz. Exploring complex networks. Nature 410 (2001) 268-

276.
[2] J. Zhou, J.A. Lu and J. Lu. Pinning adaptive synchronization of a

general complex dynamical network. Automatica 44 (2008) 996-1003.
[3] L. Xiang and J.J.H. Zhu. On pinning synchronization of general

coupled networks. Nonlinear Dynamics 64 (2011) 339-348.
[4] G. Solis-Perales, E. Ruiz-Velazquez, D. Valle-Rodriguez. Synchro-

nization in complex networks with distinct chaotic noeds. Commun.
Nonlinear Sci. Numer. Simulat. 14 (2009) 2528-2535.

[5] Q. Song, J. Cao, F. Liu. Synchronization of complex dynamical
networks with nonidentical nodes. Physics Letters A 374 (2010) 544-
551.

[6] D. Xu and Z. Su. Synchronization criterions and pinning control of
general complex networks with time delay. Appl. Math. Comput. 215
(2009) 1593-1608.

[7] H. Tang, L. Chen, J. Lu and C.K. Tse. Adaptive synchronization be-
tween two complex networks with nonidentical topological structures.
Physica A 387 (2008) 5623-5630.

[8] S. Zheng, Q. Bi and G. Cai. Adaptive projective synchronization in
complex networks with time-varying coupling delay. Physics Letters
A 373 (2009) 1553-1559.

[9] P. Erdös and A. Rényi. On random graphs. Pub. Math. 6 (1959)
290-297.

[10] P. Erdös and A. Rényi. On the evolution of random graphs. publica-
tions Mathematiques. Institut de Hungarian Academy of Sciences, 5
(1960) 17-61.

[11] D.J. Watts and S.H. Strogatz. Collective dynamics of small-world
networks. Nature 393 (1998) 440-442.

[12] M.E.J. Newman and D.J. Watts. Renormalization group analysis of the
small-world network model. Physics Letters A 263 (1999) 341-346.

[13] A.L. Barabási and R. Albert. Emergence of scaling in random
networks. Science 286 (1999) 509-512.

[14] J.H. Park. Convex optimization approach to dynamic output feedback
control for delay differential systems of neutral type. J Optimization
Theory Appl 127 (2005) 411-423.

[15] B. Boyd, L.E. Ghaoui, E. Feron and V. Balakrishnan. Linear matrix
inequalities in systems and control theory. Philadelphia: SIAM, 1994.

[16] C. Scherer, P. Gahinet, M. Chilali. Multiobjective output-feedback
control via LMI optimization. IEEE Transactions on Automatic
Control 42 (1997) 896-911.

Int'l Conf. Computer Design |  CDES'12  | 73



74 Int'l Conf. Computer Design |  CDES'12  |



SESSION

HPC AND MULTI-PROCESSOR MULTI-CORE
SYSTEMS + DESIGN ISSUES + FPGA + GPU + NOC

+ EMBEDDED SYSTEMS

Chair(s)

TBA

Int'l Conf. Computer Design |  CDES'12  | 75



76 Int'l Conf. Computer Design |  CDES'12  |



A Novel Branch Predictor Using Local History
for Miss-Prediction Bias

Lin Meng1, Katsuhiro Yamazaki1, and Shigeru Oyanagi2
1College of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan

2College of Information Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan

Abstract— Increasing accuracy of branch prediction is im-
portant for enhancing the performance of current processors.
This paper discusses an interesting behavior of a current
branch predictor that a large rate of miss-predictions is oc-
cupied by a few branches. We propose a novel branch predic-
tion mechanism by using local history for miss-prediction bi-
ased branches. This mechanism is attached to a conventional
branch predictor, and utilizes local history of biased branch
instructions without conflict aliasing. Experiments are done
by attaching proposed mechanism to several predictors. The
results show that the proposed mechanism reduces the miss-
predictions about 10%, and increases performance about 2%
comparing to the conventional predictors at SPECint2000.

Keywords: branch prediction; miss-prediction; miss-prediction
bias;

1. Introduction
Current processors use deeper pipeline and wider instruc-

tion issue width for exploiting instruction level parallelism.
However when a branch miss-prediction happens, it causes
heavy miss-prediction penalty, such as wasting large number
of cycles and power for miss-prediction recovery [1]. Hence,
increasing accuracy of branch prediction is more important
for improving the superscalar processor performance.

In 1981, the first branch predictor named Bimodal pre-
dictor [2] was proposed. Since then, many branch predictors
have been proposed for increasing accuracy of branch pre-
dictions. Bimodal predictor used a 2 bits saturating counter
to keep the behavior of branch. These 2 bits saturating
counters configure the PHT (Pattern History Table) which is
indexed by the lower branch instruction address bits. Gshare
predictor[3] is widely used in current processors. Gshare
predictor uses the exclusive OR of GBH (global branch
history) and branch address to make the PHT index.

One of the main reasons of miss-predictions is conflict
aliasing, which is caused by the different branches accessing
the same PHT entry. Major proposed predictors use global
history to utilize the correlation among recently executed
branches. Despite the steady improvements that have been
made, it is difficult to completely avoid conflict aliasing,
hence many branches are still miss-predicted [10].

This paper analyzes the behavior of branch predictor,
and focuses on the miss-predictions bias. Miss-prediction

bias means that miss-predictions of a few branches occupy
a large rate of all miss-predictions. We propose a novel
branch prediction mechanism by utilizing miss-prediction
bias. Proposed mechanism is attached to a conventional
branch predictor, and solves the conflict aliasing by prepar-
ing different PHT entry for each miss-prediction biased
branch and by utilizing local history of miss-prediction
biased branches.

The rest of this paper is organized as follows. Section 2
reviews the current branch predictors. Section 3 shows the
characteristics of miss-prediction bias by using conventional
predictors. Section 4 explains our proposal which targets
for miss-prediction biased branches. Section 5 describes the
evaluation of our proposal by simulation on SimpleScalar
Tool Set[15]. In this simulation, our mechanism is attached
to Combining, Bimode, Bimode-Plus, Agree, Hybrid and
TAGE predictors. Section 6 and 7 discuss conclusion and
future research.

2. Related Work
Many current branch predictors can be explained by

extending the base predictors to reduce miss-predictions.
The widely used base predictors are Bimodal and Gshare
predictors. Several predictors using this approach are shown
as follows.

Combining[3]: Combining predictor consists of a Bi-
modal predictor which works well for local history and a
Gshare predictor which works well for global history. A
selector is constructed by 2 bits saturating counter to select
the result from either Bimodal predictor or Gshare predictor.

Bimode[4]: Bimode predictor prepares two Gshare pre-
dictors, one for the branches biased toward Taken (Taken
Gshare predictor), and the other for the branches biased
toward NotTaken (NotTaken Gsahre predictor). Then, Bi-
mode predictor uses ChoicePHT to choose the result from
two Gshare predictors. Bimode predictor can reduce conflict
aliasing by dividing biased branches into different PHTs.

Bimode-Plus[7]: Some branches are strongly biased to-
ward one direction (Taken or NotTaken) until the program
finishes. Bimode-Plus predictor provides a Bias Table which
keeps Taken bit and NotTaken bit to detect the branches
which are strongly biased toward Taken or NotTaken. When
the strongly biased branches are detected, the predictor uses

Int'l Conf. Computer Design |  CDES'12  | 77



Table 1: Processor configuration
Pipeline 5 stages: 1 Fetch, 1 Decode, 1 Execute,

1 Memory Access, 1 Commit
Fetch,Decode 4 instructions
Issue Int: 4, fp: 2, mem: 2
Window Dispatchqueue: 256, Issue queue: 256
BTB 2K-entry 4-way associative BTB, 32-entry RAS
Memory 64KB, 4-way associative,

1-cycle instruction and date caches
2MB, 8-way associative, 10-cycle L2

Bias Table without using the result of Bimode predictor nor
updating into Bimode Predictor. By this way, Bimode-Plus
predictor reduces the conflict aliasing between the strongly
biased branches and normal branches.

Agree[6]: Agree predictor keeps the Taken biased bit
and NotTaken biased bit in BTB. PHT keeps the result
whether the prediction is same to the biased bit. When the
branch result is same to the biased bit, the entry of PHT is
incremented, otherwise it is decremented. Exclusive OR of
the biased bit and the PHT result is used for prediction.

Hybrid [5]: Hybrid predictor keeps several predictors
(2bc, Gshare, GAS, AVG) to predict the branch. BTB keeps
the result of each predictor, and is used at prediction to select
the most accurate one among the several predictors.

TAGE,L-TAGE [8], [9]: These predictors use PPM (pre-
diction by partial matching) to search the patterns in the
branch direction history[11]. This method has 4 PHTs which
are accessed by the exclusive OR of different parts of
GBHR and branch address. Every PHT entry has a tag (a
part of branch address) to protect the conflict. Hence, this
method uses the pattern of GBHR to improve the prediction
accuracy.

3. Miss-Prediction Bias
We observe that miss-predictions of a few branches

occupy a large rate of total miss-predictions on conven-
tional predictors. This section shows the behavior of miss-
prediction bias. Simulation is performed by using Bimode
predictor on SimpleScalar Tool Set. Table 1 shows the pro-
cessor configuration. Instruction set is PISA and benchmarks
are bzip, gcc, gzip, mcf, parser, twolf, vpr and vortex from
SPECint2000.

In experiments, top 8 and 16 miss-prediction branches
are observed. We call these branches miss-prediction biased
branches. Figure 1 shows the miss-prediction rate of top
8 and 16 miss-prediction biased branches to total miss-
predictions. The experiments run 100M instructions ranged
by 20M. The predictors size is set to 8KB, 16KB and 32KB.

In Figure 1, the horizontal axis means the executed
instructions, and the vertical axis represents the rate of miss-
predictions at the miss-prediction biased branches to total
miss-predictions.

Clearly, Figure1 shows that miss-predictions at top 8 miss-
prediction biased branches occupy more than 70% of total

Fig. 1: Miss-prediction bias rate in Bimode predictor.

miss-predictions, and those of top 16 miss-prediction biased
branches occupy more than 80% of total miss-predictions.

4. Proposed Predictor Attached on a
Conventional Branch Predictor

The behavior of miss-prediction biased branches has been
demonstrated in the last section. It means that a small
number of branches cause most of miss-predictions. This
section proposes a novel predictor to utilize this behavior.
One of the major reasons for miss-predictions of many
predictors is the conflict aliasing that the different branches
accessing the same PHT entry. Our approach to solve this
problem is to allocate different PHT entry for each miss-
prediction biased branch, and to utilize local history for
each miss-prediction biased branch without conflict aliasing.
The proposed mechanism can be attached to any kind of
conventional branch predictors.

Figure 2 shows a block diagram of our proposal. In this
proposal, MBD (Miss Bias Detector) and LHBP (Local
History Branch Predictor) are attached on a base predictor.
MBD is used to detect miss-prediction biased branches.
LHBP is used to predict the miss-prediction biased branches
by using local history.

The prediction flows as follows. At first, miss-predictions
of the base predictor are counted at the extended BTB
(EBTB). When the count of miss-predictions exceeds the
threshold, the branch is recognized as a miss-prediction
biased branch, and its local history is stored into MBB
(Miss Bias Buffer). Distinct LPHT entry is assigned for each
miss-prediction biased branch to predict the branch direction
based on the local history. At last, the Selector selects the
result from either LHBP predictor or the base predictor as
the final result.

78 Int'l Conf. Computer Design |  CDES'12  |



Fig. 2: Block diagram of proposed branch predictor

4.1 Detection of Miss-Prediction Biased
Branches by MBD

MBD is composed of EBTB and MBB. EBTB is used to
detect miss-prediction biased branches. EBTB is an extended
version of BTB by keeping a MCT(Miss Counter) on every
entry. MCT is a saturating counter for keeping the miss-
prediction count of the base predictor. EBTB also keeps a
Tag and branch target address (T addr) as conventional BTB.
MBB is composed of Addr, LH, U and FR for keeping the
information of miss-prediction biased branches. Addr keeps
the address of miss-prediction biased branch, LH is a shift
register for keeping the local history, U is a use bit for
marking whether the MBB entry is used, and FR (Failure
Rate) keeps the difference of miss-prediction count between
LHBP and the base predictor.

Since the top 8 or 16 miss-prediction biased branches
occupy most of total miss-predictions, MBB size is set to 8
or 16, and proposed predictor targets for top 8 or 16 miss-
prediction biased branches.

The action of MBD includes registering the miss-
prediction biased branches and updating the information of
the miss-prediction biased branches. The action of MBD is
explained as follows.

Registration of MBB : When the branch is committed,
the branch address is associated in EBTB. If EBTB hits and
miss-prediction occurs, EBTB’s MCT is incremented, else
if EBTB misses, Tag is changed as conventional BTB and
the MCT is set to 1. If MCT arrives at the threshold, the
branch address is registered into MBB, and corresponding
EBTB entry is reset.

At registering to MBB, the branch address is checked
whether it is already existed in MBB. If the address is not
existed in MBB, it is registered into the entry whose U bit is
0. Then, the corresponding U bit is set to 1. If all of MBB’s

U bits are 1, the predictor uses LRU logic to search for
the Least Recently Used entry, and registers the new branch
address into the entry. The U bit is set to 1.

Update of MBB : When a branch is committed, the
branch address is associated to MBB. If the branch address
is found in MBB, the direction of the branch is shifted
into LH. FR is used to denote whether the entry of LHBP
is effective or not. FR is incremented when the predicted
result of LHBP is incorrect and the predicted result of base
predictor is correct. It is decremented when the predicted
result of LHBP is correct and the predicted result of base
predictor is incorrect. By this way, FR keeps the difference
of miss-prediction count between LHBP and base predictor.
When FR arrives at the threshold, it is recognized that the
entry of LHBP is worse than base predictor. Then the LHBP
entry is reset.

4.2 Prediction by LHBP
LHBP is a predictor targeted for the miss-prediction

biased branches registered in MBB. Because the number
of miss-prediction biased branches is small, LHBP uses
local history of the miss-prediction biased branches for
making PHT index. For avoiding the conflict among miss-
prediction biased branches, distinct LPHT entry is prepared
for each miss-prediction biased branch. Namely, LPHT entry
is indexed by combining MBB entry address and its Local
History. Hence, there is no conflict on the LPHT.

LPHT entry size is decided by the product of MBB entry
size and local history length. Thus, when the local history
length is n and the number of MBB entry is m, LPHT
hasm ∗ 2n entries. Each entry of LPHT consists of NTCT
and CF. NTCT is a 2 bits saturating counter for keeping
the behavior of the branch. NTCT is incremented when the
branch is Taken, and decremented when it is NotTaken. CF

Int'l Conf. Computer Design |  CDES'12  | 79



Fig. 3: Miss detection rate of biased branch to MCT length.

Fig. 4: Miss-prediction reduction rate to MCT length.

is the confidence of the LPHT entry, which uses 2 bit Miss
Resetting Counter [12], [13], [14] of threshold at 3, because
Miss Resetting Counter is known as the best method for
increasing PVN(Predictive Value of a Negative Test)[12].

Update of LPHT: When the branch is committed, the
branch address is associated to MBB. If the branch exists in
MBB, the branch result (Taken/NotTaken) is used to update
NTCT of the corresponding LPHT entry. When the LHBP
prediction is correct, the CF is incremented, otherwise CF
is reset to 0.

Branch Prediction: When a branch instruction is fetched,
the branch address is associated to MBB. If the branch exists
in MBB, the corresponding NTCT and CF values in the
LPHT entry are used for branch prediction. At the same
time, the base predictor predicts too. Then, Selector selects
the result from either the base predictor or LHBP. If the
CF arrives at the threshold, the predicted result of LHBP is
selected, otherwise, the predicted result of the base predictor
is selected.

5. Evaluation
5.1 Analysis of the Component Size

To evaluate our proposal, the optimum component size
must be discussed.

Here we discuss MCT Length, MBB and LPHT en-
try size. MCT length is important for deciding the miss-
prediction biased instruction. MBB entry size and LPHT
entry size are important for increasing prediction accuracy.
This section discusses the optimum component size by

Fig. 5: Miss-prediction reduction rate to MBB and LPHT
size (Bimode).

experiment. The experiment is performed on SimpleScalar
Tool Set under the processor configuration given in Table 1.
Benchmarks are bzip, gcc, gzip, mcf, parser, twolf, vpr, vor-
tex of SPECint2000 and drr,reed_dec,reed_enc,rtr,zip_enc of
CommBench [16]. Instruction set is PISA.

MCT Length: MCT is a saturating counter for counting
the miss of BTB entries to detect the miss-prediction biased
branches. For determining the MCT size, experiment is
performed on the organization of Bimode Predictor as a base
predictor with 8 entries of MBB and 8K entries of LPHT
by ranging MCT length from 4 bits to 8 bits.

Figure 3 shows the rate of detected miss-prediction biased
branches to total miss-predictions by varying the MCT
length. Vertical axis is the average rate of miss detections.
Figure 4 shows the reduction rate of miss-predictions. Ver-
tical axis is the average reduction rate of miss-predictions.

By analyzing Figures 3 and 4, about 70% of miss-
predictions can be detected and about 10% of miss-
predictions can be reduced by our proposal. Besides, the
miss-prediction reduction rate does not change so much by
varying the MCT length. Hence, 4 bits MCT length is used
in the following experiments in order to minimize hardware
costs.

MBB and LPHT Entry Size: LPHT entry size is defined
by the product of number of MBB entry and local history
length. Generally, larger MBB size can store more miss-
prediction biased branches, and bring better performance.
Larger LPHT entry size can store longer local history, and
bring more accurate prediction. In this experiment, MBB
and LPHT entry size is set to (8,4K) with 9 bits LH, (8,8K)
with 10 bits LH, (16,8K) with 9 bits LH, and (16,16K) with
10 bits LH. Bimode Predictor are used as base predictors.
Figure 5 shows miss-prediction reduction rate by attaching
our proposal to the base predictors. Vertical axis shows the
average reduction rate.

By analyzing Figure 5, the difference of miss-

80 Int'l Conf. Computer Design |  CDES'12  |



Fig. 6: Miss-prediction reduction rate using 8KB predictor.

Fig. 7: Miss-prediction reduction rate using 32KB predictor.

prediction reduction rate between the largest setting
(MBB=16,LPHT=16K) and the smallest setting (MBB=8,
LPHT=4K) is only 2% in SPECint2000 and 1% in Comm-
Bench with Bimode predictor. Hence, considering the hard-
ware cost, the smallest setting (MBB=8, LPHT=4K) is used
in the following experiments.

5.2 Miss-Prediction Reduction Rate and IPC
Performance

We measure the performance of our proposal on several
base predictors (Combining, Bimode, Bimode-Plus, Agree,
Hybrid and TAGE predictor).

Figures 6 and 7 show the miss-prediction reduction rate
of our proposal to the 6 kinds of base predictors sized of
8KB and 32KB. Horizontal axis shows the benchmark and
vertical axis shows the miss-prediction reduction rate.

The results show that our proposal can reduce miss-
predictions in 6 kinds predictors on average. When the base
predictor size is 8KB, our proposal can reduce more than 7%
of miss-predictions on average to the base predictors. When
the base predictor size is 32KB, our proposal can reduce
more than 5% of miss-predictions on average.

Figures 8 and 9 show the IPC performance enhancement

of our proposal to the 6 kinds of base predictors sized of
8KB and 32KB. Horizontal axis shows the benchmark and
vertical axis shows the IPC performance enhancement. The
results show that our proposal can improve IPC about 2%
on average to the base predictors.

In these experiments, we find Combining, Bimode, and
Bimode-Plus predictors work similarly, because they use
gshare and bimodal predictor. We find that there are sev-
eral cases to prevent reducing the miss-predictions on our
proposal. One is that some benchmarks have already good
prediction on base predictor like reed_dec. In this case, our
proposal can not further improve the prediction. Another is
that the benchmark has a lot of miss-prediction branches like
gcc. Our proposal does not improve because MBB size is
not big enough to catch the miss-prediction bias branches
correctly. When the branch predictor has several kinds of
branch predictors like Hybrid Predictor, our proposal can
not bring a large reduction of the miss-prediction. This is
because Hybrid predictor can adopt to the branch behavior
by changing the branch predictor. Our proposal can not catch
the branch behavior so early.

Int'l Conf. Computer Design |  CDES'12  | 81



Fig. 8: IPC performance enhancement to 8KB predictor.

Fig. 9: IPC performance enhancement to 32KB predictor.

6. Discussion
6.1 Factors for Miss-Prediction

We think that major factors for miss-predictions are
random behavior, conflict aliasing and undetectable branch
patterns.

In order to improve the prediction accuracy, improvement
of the latter two factors is important. Our proposed predictor
aims to reduce conflict aliasing by detecting miss-prediction
biased branches and preparing dedicated predictor for them
by using local history. A number of predictors have been
proposed to reduce conflict aliasing as explained in chapter
2. But, these predictors do not utilize local histories of
miss-predicted branches. The key issue of our proposal is
to utilize local history of miss-prediction biased branches,
which makes it possible to detect patterns in the local history.
The effectiveness of our proposal is proved by the experi-
ment that the longer local history brings better performance,
and prediction accuracy is improved by attaching proposed
mechanism to conventional predictors.

6.2 Discussion on Hardware Costs
This subsection discusses hardware cost of our proposal

by measuring the required memory size. EBTB uses the
current BTB’s association port. Hence it does not need to add
any association port. Every entry in EBTB has additional 4

bits MCT and 2K entries, so additional hardware cost is only
1KB memory in BTB. MBB has 8 entries, every entry has
32 bits Addr, 9 bits LH, 1 bit U and 7 bits FR. So, MBB is
a small CAM of 392 bits total. LPHT has 4K entries, every
entry has 2 bits NTCT and 2 bits CF. So LPHT is a 2KB
memory total. Hence, added hardware is small enough in
our proposal.

Here we use MPKI (miss-predictions per kilo instructions)
as a measure. Table 2 shows the MPKI of 6 kinds of base
predictors (Combining, Bimode, Bimode-Plus, Agree, TAGE
and Hybrid). The MPKI is the average of SPECint- 2000
and CommBench, where the base predictor size is 10.5KB,
17.75KB, 30KB, and 60.5KB in Hybrid Predictor. and the
base predictor size is 8KB, 16KB, 32KB, and 64KB in other
predictors,

Table 2 shows that our proposal can reduce MPKI than
base predictors. In SPECint2000, our proposal attached on
8KB sized base predictor (Combining, Bimode, Bimode-Plus
and Agree predictor) can achieve the same MPKI as 64KB
sized base predictor. Experiment results show the same ten-
dency in CommBench. And attaching proposed mechanism
to smaller Hybrid and TAGE predictor can achieve the same
MPKI as the larger predictor too.

82 Int'l Conf. Computer Design |  CDES'12  |



Table 2: Result of miss-predictions per kilo instructions (Average)

Predictor Specint2000 CommBench
Size 8KB 16KB 32KB 64KB 8KB 16KB 32KB 64KB
Combining 5.53 5.30 5.06 4.84 7.34 7.20 6.96 6.67
Combining+proposal 4.76 4.60 4.43 4.30 6.48 6.43 6.35 6.18
Bimode 5.40 5.14 4.93 4.73 7.34 7.03 6.84 6.52
Bimode+proposal 4.76 4.55 4.38 4.28 6.50 6.37 6.27 6.15
Bimode-Plus 5.36 5.12 4.90 4.71 7.29 7.00 6.82 6.51
Bimode-Plus+proposal 4.71 4.50 4.35 4.24 6.45 6.34 6.23 6.13
Agree 6.71 6.49 6.35 6.21 7.51 7.44 7.35 7.20
Agree+proposal 5.94 5.79 5.69 5.61 6.78 6.88 6.82 6.75
TAGE 4.86 4.34 4.34 4.04 7.91 7.32 6.99 6.54
TAGE+proposal 4.41 4.15 4.08 3.90 6.81 6.55 6.37 6.09

Size 10.5KB 17.75KB 30KB 60.5KB 10.5KB 17.75KB 30KB 60.5KB
Hybrid 7.50 6.23 5.73 5.32 7.77 7.00 6.76 6.51
Hybrid+proposal 6.92 5.76 5.27 5.03 7.40 6.76 6.60 6.39

7. Conclusion and Future Work
Improving branch prediction accuracy is important for

the modern processors which exploit instruction level paral-
lelism by deeper pipeline and wider instruction issue width.
This paper proposed a novel branch predictor for improv-
ing prediction accuracy by utilizing the behavior of miss-
prediction biased branches. This predictor detects the miss-
prediction biased branches and predicts the branch direction
by using a local history based predictor attached on the base
predictor.

This proposal is evaluated by experiment on the Sim-
pleScalar Toolset. Our proposal is attached to Combining,
Bimode, Bimode-Plus, Agree, Hybrid, and TAGE predictors.
Miss-prediction reduction rate to the base predictors is
evaluated. The results of experiment show that our proposal
reduces the miss-predictions about 10%, and increases per-
formance about 2% at SPECint2000. It also reduces the
miss-predictions about 7%, and increases performance about
1% at Commbench.

Although our proposal reduces average miss-predictions
to the conventional predictors, miss-predictions increases in
some benchmarks. It must be detected and improved in the
future work.

8. Acknowledgment
This work is supported in part by Scinics Co.,Ltd.

References
[1] B. Sinharoy, R. Kalla, J. Tendler, R. Eickemeyer, and J. Joyner.

"POWER5 System Microarchitecture," IBM Journal of Research and
Development, Vol 49, No 4/5, May 2005.

[2] J.E.Smith, “A Study of Branch Prediction Strategies,” Proc. of 8th
ISCA, pp.135-148, 1981.

[3] S.McFarling, “Combining Branch Predictors,” Technical report TN-36,
Digital Western Research Laboratory,1993.

[4] Chih-Chieh Lee, I-Cheng K. Chen and Trevor N. Mudge, “The bi-mode
branch predictor,” MICRO97, pp.4-13, Dec.1997.

[5] M.Evers, P-Y.Chang and Y.N.Patt, “Using Hybrid Branch Predictors
to Improve Branch Prediction Accuracy in the Presence of Context
Switches,” ISCA 1996, pp.3-11, May 1996.

[6] E.Sprangle, Robert S. Chappell, Mitch Alsup and Yale N. Patt, “The
Agree Predictor: A Mechanism for Reducing Negative Branch History,”
ISCA 1997, pp.284-291, June 1997.

[7] K.Kise, T.Katagiri, H.Honda and T.Yuba, “The Bimode-Plus Branch
Predictor,” IPSJ Trans.ACS-10, pp.85-102,2005.

[8] A.Seznec, “The L-TAGE branch predictor,” The 2nd JILP Champi-
onship Branch Prediction Competition (CBP-2), vol.9, May 2007.

[9] M.pierre, “A PPM-Like, tag-based predictor,” The 1st JILP Champi-
onship Branch Prediction Competition (CBP-1), vol.7, April 2005.

[10] L.Porter and D.M.Tullsen, “Creating Artificial Global History to
Improve Branch Prediction Accuracy,” ICS’09, pp.266-275, 2009.

[11] I.-C.K.Chen, J.T.Coffey and T.N.Mudge, “Analysis of branch predic-
tion via data compression,” ASPLOS-VII, pp.128-137, Oct.1996.

[12] H.Akkary, S.T.Srinivasan, R.Koltur, Y.Patil and W.Refaai,
“Perceptron-Based Branch Confidence Estimation,” HPCA-10,
pp.265, Feb.2004.

[13] E.Jacobson, E.Rotenberg and J.Smith, “Assigning Confidence to Con-
ditional Branch Predictions,” MICRO96, pp.142-152, Dec.1996.

[14] Y.Ninomiya and K.Abe, “Power Reduction Based on Prediction Confi-
dence Using a Perceptron Branch Predictor,” SACSIS2009, pp.327-334,
May.2009.

[15] D.Burger and T.M.Austin, “The SimpleScalar Tool Set, Version2.0,”
Technical Report, University of Wisconsin-Madison Computer Sciences
Dept, July 1997.

[16] T.Wolf and M.A.Franklin, “CommBench - a Telecommunications
Benchmark for Network Processors,” ISPASS-2000,Austin,TX, pp.154-
162, April 2000.

Int'l Conf. Computer Design |  CDES'12  | 83



A Modular Processor Architecture for High-Performance Computing Applications on FPGA

Fritz Mayer-Lindenberg
Institute of Computer Technology

Technical University of Hamburg-Harburg 
mayer-lindenberg@tuhh.de

Abstract.

This  paper  presents  the  architecture  of  an  embedded  
processor for numeric applications that is tailored to the  
resources of current FPGA chips but not limited to FPGA  
based applications.  The architecture implements several  
non-standard  and  even  novel  features.  The  most  basic  
feature  is  to  modularize  the  processor  into  a  standard  
control core and the ALU, allowing the same controller to  
be used for several ALU circuits and thus exploiting the  
capability of the FPGA to support all kinds of data types.  
The  controller  also  provides  memory  control  for  a  
separate data memory attached to the ALU. Another basic  
feature related to the limited FPGA resources is to realize  
techniques such as multi-threaded control to fill the ALU  
pipeline otherwise found on high-performance processor  
chips only with a low circuit complexity. The controller is  
about  half  as  complex  as  a  simple  floating-point  ALU.  
Both together consume about 2500 LUT cells of an FPGA  
only.  As  an  example  for  an  ALU  using  more  of  the  
arithmetic  resources  of  the  FPGA we present  a  vector  
ALU operating on 144-bit data words encoding real or  
complex  vectors  and  quaternions.  For  the   processor  
based on this ALU the control overhead is below 10%.  
The  processors  are  interfaced  to  private  program  and  
data memories on the FPGA, and to external memory via  
an extra peripheral device on the FPGA.

Keywords: Harvard  architecture,  fine-grained  multi-
threading, soft caching, block floating point vector ALU, 
network-on-FPGA

Introduction.

Modern FPGA chips contain tens of thousands of single 
output bit cells as well as hundreds of hardwired complex 
arithmetic building blocks such as  parallel  18-bit  multi-
pliers,  and  embedded  memory  blocks.  It  is  thus  not 
astonishing that high-end FPGA chips have been proposed 
for supercomputing applications [1,8]. For a commercial 
FPGA system for HPC integrated with PC hardware see 
[11].  The  use  of  the  FPGA  for  processing  numbers 
demands for computational circuits, including scalar and 
vector floating-point units, to be implemented. Following 
[2],  we  take  the  approach  to  implement  individual 
sequential controllers for these, in other words networks of 
processors,  in  contrast  to  coprocessing  schemes.  To 
efficiently use the FPGA resources, the controllers must be 
simple, however. Conventional CPU designs like [4] sup-
porting a large memory space with caching and memory 
management and using a scalar general-purpose ALU are 
quite complex and involve large control overheads. They 

communicate  with their  on-  and  off-chip  memories  and 
peripherals via parallel  memory buses that don't  support 
more than a few processors.  We therefore set  out  for  a 
processor design with lower control  overheads,  allowing 
more processors to be implemented  on an FPGA chip to 
achieve a higher arithmetic performance, and also one that 
would  facilitate  the  use  of  more  powerful  application-
specific ALU circuits.

Actually, all of the current highest-speed processor archi-
tectures achieve their performance through the use of more 
complex ALU circuits using multiple pipelines and apply-
ing  SIMD  processing.  The  highest  performance  DSP 
family at the time being, the TMS320C667x family from 
Texas Instruments uses two arithmetic units each starting 
up to 4 single precision floating point multiply and 4 such 
add operations in a single cycle, using a VLIW instruction 
set architecture [12]. The highest performance chip of this 
family is the 8-core TMS320C6678 performing at a peak 
rate of 128GFLOPs in single precision at a clock rate of 
1GHz.  The  shader  circuits  of  the  recent  GPU  chips 
perform  similar  sets  of  scalar  operations  in  parallel  at 
similar rates and use extensive SIMD on top [13].

In the present work, the 45nm Spartan-6 family of FPGA 
chips from Xilinx [3] has been used to implement the new 
processor  architecture.  Spartan-6  is  a  low  cost  family 
within the FPGA world. The most complex chips of this 
family is the XC6XLS150T which contains about 92k 1-
bit cells, 180 multipliers and 258 separate RAM blocks of 
2k  bytes  each,  enough  to  implement  about  24  scalar 
floating point processors or 4 vector processors.  It  costs 
about as much as the TMS320C6678 yet performs about 
10 times slower if scalar  single precision operations are 
considered. This reflects the configuration overheads inhe-
rent in the FPGA architecture. If the extended single pre-
cision implemented in the FPGA processor is needed, the 
FPGA becomes more competitive. High-end FPGA chips 
can deliver a much higher performance than the Spartan-6 
FPGA, yet hardly a better price by performance ratio.

Processor  designs on FPGA have been used for  a  long 
time,  in  spite  of  the  involved  configurations  overheads, 
and are easy to achieve as far as the basic function of a 
programmable  processor  is  concerned,  and  are  used  in 
books and courses on digital design [10]. Some processor 
designs  addressing  the  FPGA  and  trying  to  exploit  its 
flexibility use features such as mutli-threading and VLIW 
that are also important in the present design [14,15,16]. Its 
unique features are to closely adapt to the FPGA resources 
for  maximum  efficiency,  including  an  ALU  design 
adapted to the avaiilable lookup table to multiplier ratio.

84 Int'l Conf. Computer Design |  CDES'12  |

file:///../Desktop/mayer-lindenberg@tuhh.de


Clock  rates  achieved  for  FPGA  based  processors  are 
between  20  and  200MHz.  [7]  reports  on  a  processor 
design  running  at  more  than  300MHz.  The  present 
architecture  has several  predecessors  [9,10].  It  was first 
implemented  at  a  clock  rate  of  100MHz  and  is  being 
updated to 200MHz by extending the controller and ALU 
pipelines.  Before  entering  in  the  details  of  the  new 
architecture, we make a few remarks on the resources for 
implementing on FPGA that have influenced its design.

1) The hardwired memory blocks are the natural choice 
to implement on-FPGA memories for the processors 
(e.g.,  cache  memories).  Their  maximum access  fre-
quency then places an upper limit on the processor 
clock frequency at about 300MHz, assuming caches 
to be accessed at the CPU clock rate. If an FPGA is 
filled up with processors, just a few k words remain 
for  each,  however.  This  actually sets  an  extra  pre-
mium on not implementing too many processors but 
rather a few only using complex ALU circuits instead.

2) The FPGA block RAM has some characteristics and 
benefits  that  can  be  exploited  for  the  processor 
design. First, the word width of the memory block can 
be configured to 9, 18, or 36 bits and hence provides 
some extra bits in comparison to the common 16 and 
32 bit instruction and data widths found in hardwired 
processor  designs.  Second,  the  memory  blocks  are 
dual ported and hence allow two independent acces-
ses to be performed simultaneously.

3) The hardwired arithmetic circuit functions include an 
18-bit  signed parallel  multiplier  and a 48-bit adder-
subtractor.  These  don't  suffer  from the  FPGA con-
figuration  overheads  and  operate  at  rates  of  up  to 
250MHz using their built-in output registers. They are 
significantly  faster  than  multipliers  built  from 
individual FPGA cells.  In  order  to fully exploit  the 
FPGA resources, integer data should be rather 18-bit 
than 16-bit, or 35-bit rather than 32-bit.

4) In order to achieve clock rates close to the maximum 
rates  of  the  memory  blocks  and  the  multipliers 
pipelining must be applied  to  the processor  design. 
Consequently,  ALUs  must  be  pipelined  and  need 
control  facilities  for  filling  their  pipelines  from 
several threads unless the algorithms to be executed 
happen to achieve this from a single thread [6].

5) The Spartan-6 family and some others offer a feature 
called distributed RAM which consists in configuring 
an individual FPGA cells that otherwise implements 
Boolean functions through a look up table (LUT) as a 
tiny RAM with up to 64 addressable single-bit loca-
tions. This feature permits to realize register files with 
about  the  same  cell  count  as  individual  registers. 
Register  files  are  most  useful  for  implementing 
addressable multi-port  data register  banks and dedi-
cated return stack memories. Multiple threads can be 
supported  by  performing  zero  overhead  context 
switches, subdividing large register files into sub files 
associated to and selected for the threads.

The controller architecture 

We  discuss  the  processor  architecture  in  terms  of 
architectural features. The first two of them are concerned 
with the diversity of data types supported by the FPGA.

AF1.  This  first  architectural  feature  is  to  subdivide  the 
programmable processor reading from an instruction list in 
memory to control its ALU for the different program steps 
into  a  controller  circuit  and  the  ALU.  The  controller 
addresses the instruction memory (IRAM) and reads out 
instructions, implements the control flow, computes data 
addresses and commands IO and memory accesses.
AF2. The ALU and the controller will get a memories of 
their own (Harvard architecture).  The controller controls 
the data memory (DRAM) of the ALU yet doesn't access 
the data. The data memory and the data registers provided 
for  the  ALU may have an  arbitrary width that  may be 
different from the width of the instruction memory.

AF3. The instruction memory is directly interfaced to the 
controller,  as is the data memory to the ALU. Both are 
implemented  with  FPGA  memory  blocks.  Memory 
addresses  and write  data are  applied synchronously.  No 
extensions  of  the  memory  interfaces  are  provided  to 
decode IO circuits or external memory locations.
AF4.  The  address  spaces  for  the  instruction  an  data 
memories are 15-bit only. The program counter used by 
the controller is even reduced to 14-bit.
AF5.  The  controller  provides  an  input  port  with DMA 
support  that  connects to peripheral  devices including an 
external memory controller. DMA input into the DMEM 
is supported, too.

The latter features serve to simplify the interfacing of the 
processor and of the address generation. In particular, no 
automatic cache control and no memory management are 
used. Instead, software controlled caching is implemented 
by setting up a DMA from an external memory controller 
and commanding it to send an instruction or data packet. 

AF6.  The  controller  also  performs data  accesses  to  the 
IRAM.  Controller  registers  and  data  are  18-bit.  Data 
accesses performed by the controller occur on the second 
port of the dual ported IRAM. Thus a single memory is 
accessed  both  for  instructions  and  controller  data,  yet 
using separate ports as in a Harvard computer.

The following is a performance feature permitting control-
ler instructions like jump instructions of memory accesses 
to occur in parallel to ALU operations. It  also allows to 
adapt to all kinds of ALU circuits.

AF7. The controller uses 18-bit instruction codes. These 
are extended by extra instruction bits passed to the ALU 
by widening the read port of the IRAM, thus using VLIW. 
For the ALU discussed below, the widening is to 36-bit, 
but larger instructions words could be used as well.

AF8. The controller executes up to 4 control threads, Zero 
overhead  context  switches  are  implemented  through 
register bank switches in response to an instruction bit.

Int'l Conf. Computer Design |  CDES'12  | 85



The  controller  provides  8  register  named  I0...I7  and  a 
single control flag used as branch condition. Table 1 lists 
the controller instructions. They are encoded in the lower 
17 bits of the instruction word. The remaining bit, the  'x' 
bit, is used to  control the context switches.

Table 1: The controller ISA

jp   addr unconditional absolute jump
call addr subroutine call
ret, it-=offs return from subroutine
cjf  addr conditional absolute jump for F=1
ijnzt addr increment and jump if negative
it=im(a) absolute register load
it=im(is-offs) indirect register load
im(a)=it absolute register store
im(is-offs)=it indirect register store
it = n load short constant
it+=n add short constant
it*=n multiply short constant
ir=it+is add modulo 2^18,  set  F=msb
ir=it-is subtract modulo 2^18,  F=msb
ir=it&is bitwise 'and' operation, F=parity
ir=it*is multiply modulo 2^18
ir=it register move
ir=time   etc. internal IO instruction group
ir=alu input from ALU port, F=af
alu=ir output to ALU
F=af flag input from ALU
F=iordy(a) external flag input from address a
it=io(a) data input to register and to F
io(a) = it output
dmaa=it DMA input control group
dt=dm(a) absolute load from ALU memory
dt=dm(is-offs) indirect load, is++ for offs=0
dm(a)=dt absolute store to ALU memory
dm(is-offs)=dt indirect strore, is++ for offs=0
dt=dm(is-offs),dt'=dm(s)    dual indirect load
spare codes reserved for ALU instructions

One  remarks  the  small  number  of  arithmetic  and  logic 
instructions. Even an add with carry is missing. The reason 
is that the controller is mainly involved in address compu-
tations while all numeric processing is performed by the 
attached  ALU.  Bitwise  'or'  and  'xor'  operations  can  be 
derived from the '+', '-' and '&' operations, if needed. The F 
bit is set by a preceding arithmetic or input instruction.

The  'io'  instructions  don't  handshake  and  behave  like 
memory  accesses.  They  save  the  decoding  of  memory 
mapped IO and can be performed in parallel to memory 
accesses.  Handshaking  becomes  available  through  the 
external  flag  input  instruction.  IO  is  further  supported 
through  two  DMA  input  channels.  Some  predefined 
interfaces can be accessed through internal IO instructions. 
The 'time' register provides a time reference for real time 
applications. Also, there are predefined interfaces to send 
to or receive from an external host computer.

The  'dm'  instructions  are  provided  to  control  the  data 

memory  attached  to  the  ALU.  One  is  a  dual  read 
instruction  using  the  second  port  of  the  dual  ported 
DMEM and an extra pointer register for each thread that 
can be loaded with another internal IO instruction. ALU 
data  can  only  be  transferred  via  the  18-bit  'alu'  port 
accesses  which  also  don't  perform  handshaking.  Data 
transfers with a numeric ALU can be combined with ALU 
conversion operations to and from 18-bit integers.

AF9. 18-bit integer codes converted by the ALU or to be 
converted  into  ALU  data  are  stored  in  the  controller 
memory and registers and are input and output there. ALU 
memory is  reserved  for  the  ALU  data  type.  The  same 
principle  applies  to  the  results  of  comparisons  of  ALU 
data. These are passed to the F bit of the controller.

In the 100MHz implementation, the controller pipeline has 
4 stages computing the next fetch address, performing the 
instruction  fetch,  decoding  and  selecting  operands,  and 
executing and writing back the result. During the decoding 
of a jump instruction, the instructions following the jump 
is still fetched such that all jumps are delayed.

Each of the 4 contexts comes with its own set of registers 
and an 8-level return stack. Thus no time is lost to save 
and  restore  registers  when  a  context  switch  occurs.  A 
context  switch  propagates  through  all  stages  of  the 
pipeline, shown here for the 4-level 100MHz pipeline:

Address    - |---K1---|---K2---| - -  

Fetch - - |---K1---|---K2---| - -  

Decode - - |---K1---|---K2---| - -  

Execute - - |---K1---|---K2---| - -
  
During the decode cycle for context 2 (K2) operands are 
selected from the registers of this context while the write 
back at the end of the execute cycle in K1 still occurs to a 
register in context 1.

Context switches are controlled in a non-standard way to 
never lose cycles through waiting and making sure that a 
sequence of ALU instructions can proceed at its maximum 
rate  even if some cycles  are  executed  by other  threads. 
Context switches occur in three cases, under program con-
trol in response to the 'x' bit of the controller instruction, 
by activating thread 3 or on request from the ALU. 

A context switch in response to the  'x' bit (AF8) in one of 
the threads 0-2 passes execution to another one of these if 
there is one that is ready to run. Thus with regular patterns 
of  'x'  instructions  the  execution  time  can  be  smoothly 
distributed between the threads. The 'x' combined with the 
an  external  flag  input  instruction  is  decoded  to  let  the 
calling thread become inactive until the external input gets 
active ('1'). If this occurs to thread 3, it immediately takes 
over due to its higher priority. A handshaking input thus 
takes two instructions:

X   F=iordy(a)   .. release thread, select iordy(a) to resume
       it=io(b)       .. after resuming, input from IO address b.

86 Int'l Conf. Computer Design |  CDES'12  |



More than one ready signal can be selected to resume to 
implement  alternative  input.  The  signals  waited  for  by 
some thread are continuously scanned. 

AF10. Finally, the ALU can force a context switch to the 
thread encoded by its ACTX output  by activating its FRC 
signal. Execution can thus be passed for just a few cycles 
to another thread  that  might start  more ALU operations 
during this time. The generation of FRC is decoded by the 
ALU from its instruction bits. 

The thread executing an ALU instruction with the 'x' bit 
set and implicitly or explicitly encoding the use of FRC, 
e.g. an add operation accessing some data registers like

XF d4=d6+d8  , 
is released after the start of the operation but resumed in 
response to FRC, typically at the earliest time at which the 
result of the operation can be used. For an ALU with a 4 
stage  execute  pipeline,  the  executing  thread  would  e.g. 
pause for 3 cycles and then continue.

The interface signals between the controller and an attach-
ed ALU are listed in table 2. They don't include an ALU 
instruction  code  which  might  be  decoded  by  the  ALU 
from the controller instruction word or be an extra instruc-
tion  word  read  in  parallel  to  the  controller  instruction. 
There is an 18-bit port for transferring data between the 
ALU and the controller (with or without a conversion to 
18-bit  integer  codes).  There  is  no  handshake  signal, 
however, for such exchanges. The controller instructions 
accessing the ALU port are simply read and executed in 
parallel to the transfer operation of the ALU.

Table 2: Interface signals to an ALU

IOUT 18-bit output to ALU
ALUIN 18-bit input from ALU
AFI flag input from ALU
CTX actual CPU context (decode cycle)
ACTX desired output context for ALU
ENA,FRC,INH context control signals
ARWD,ARWE ALU register write control
ARRA optional 4-bit ALU register address
FETCH signals a valid instruction fetch

    DBI       DMA

    DMA

      IO

        Fig.1: Modular processor

Fig. 1 shows a full processor based on the controller and 
an attached ALU. Finally, the controller is linked to a host 
controlled synchronous serial 5-bit bus via the DBI port. 

All processors implemented on the same FPGA are linked 
to this bus. The DBI interface implements the host inter-
face of the controller, supports the download of programs 
and some simple debug facilities. 

The controller  is  complemented by an external  memory 
controller and interfacing components used to construct a 
data network within the FPGA, and a controller of the host 
interface  bus  already mentioned.  External  memory data 
from the memory controller enter into the DMA port. The 
controller connects via its IO port to up to 16 interfaces. 
The  controller  manages  IO  for  the  ALU  data  by  first 
transferring them from the ALU to the controller or vice 
verse. Direct wide data IO from the ALU can be supported 
through corresponding ALU instructions.

AF11.  The  memory  controller  providing  access  to  an 
external  memory to the controller  is an interface device 
that  receives  or  sends  blocks  of  data  to  the  processor 
responding to  command words from the processor.  The 
command words  identify the  blocks  within the  external 
memory and typically contain the upper bits of its starting 
address.  The  lower  address  bits  are  generated  by  the 
memory  controller.  Only  the  memory  controller  is 
concerned  with forming wide addresses for the physical 
memory;  the  controller  only  addresses  the  on-FPGA 
memory.  The  memory controller  also  converts  between 
blocks of 18-bit data words from the controller and blocks 
of 16-bit words suitable for the external memory device.

Programs  of  unlimited  sizes  can  be  executed  on  the 
controller once software caching is used. It involves extra 
instructions commanding to the memory controller to send 
new  blocks  of  instructions  and  for  setting  up  and 
synchronizing DMA transfers.  Even so this technique is 
considered  superior  to  spending  FPGA  resources  for 
automatic  cache  control.  Software  caching  can  be  fully 
pipelined  with  program  execution  and  keeps  a  deter-
ministic timing for the latter. The extra instructions can be 
synthesized at compile time and in principle be generated 
automatically by a compiler.

AF12.  Processors  only  communicate  with  each  other 
through dedicated networking interfaces. For small num-
bers  of  processors,  directional  point-to-point  interfaces 
attached to their IO ports suffice.  For larger  numbers, a 
bus interface component is  being used,  even allowing a 
processor to connect to several communication buses. 

Processors on the same FPGA can't directly communicate 
by  simply  connecting  their  18-bit  IO  input  and  output 
ports  due to  the uncorrelated  execution of  their  instruc-
tions. At least a buffer register with handshaking signals is 
required. Moreover, the communicating processors can be 
far from each other on the FPGA such that large routing 
delays  occur.  The  timing  of  the  signals  must  then  be 
reestablished by introducing registers on the way, and a 
multi-word  receive  buffer  large  enough  to  support  the 
delay of the backward handshake. The resulting structure 
is  implemented  as  a  directional  link  component,  using 
distributed RAM for the buffering. 

IMC

con-
troller

DMEM

ALU

IMA

Int'l Conf. Computer Design |  CDES'12  | 87



AF13. Processors can also use their DMA port to receive 
data from a link or bus interface. Based on this, a proces-
sor can perform remote writes into the local  memory of 
another processor to make some of its state visible to it.

The bus interface component is not part of the CPU design 
but  essential  for  the  on-FPGA  networking  of  several 
processors.  Besides  the  port  by  which  it  attaches  to  a 
processor,  it  provides input and output ports to the bus. 
The bus is formed by connecting a number of bus interface 
components (up to 16) by their bus input and output ports 
into a directed ring. The bus input ports are registered, and 
the ring actually is a ring register in which the data words 
stored in the registers advance by one step in every clock 
cycle.  In  contrast  to  a  conventional  bus,  the ring hence 
transports several data words in parallel. It  is a synchro-
nous circuit using directional signals only. The data words 
on the bus are 24-bit words containing 18 bits of payload 
data, a 4-bit destination address and two bits required for 
managing  the  transfers.  The  destination  address  of  a 
message  is  defined  through  a  control  output  from  the 
sending processor.

The V144 ALU

The first ALU combined with the controller as described 
above has been a floating point ALU operating on 45-bit 
data words. The 35-bit mantissa requires 4 18-bit multi-
pliers only. It uses 4-level pipelines in the 100MHz imple-
mentation. Although the control overheads in a processor 
based on this ALU are quite acceptable 30% of the total of 
about 2500 LUT cells, additional overheads arise for the 
on-FPGA  networking  and  the  sharing  of  memory 
controllers.  The  control  and  communications  overheads 
can be reduced by using a smaller number of processors 
equipped with complex (non scalar) ALUs. This approach 
is  also  capable  of  using  more  of  the  large  numbers  of 
multipliers offered on the most recent FPGA families.

There are several choices to control an ALU with multiple 
multipliers and adders all of which are supported by the 
controller. The simplest and most common one is to use 
SIMD operations. The most flexible one is to use VLIW 
control and a bank of registers with multiple write ports. 
The wide instructions and the complex register structure 
raise  the  control  overhead,  however.  We  opted  for  an 
ALU providing SIMD instructions and some special non-
SIMD operations yet  requiring a single extra instruction 
word only. While the scalar floating point ALU consumes 
4 FPGA multipliers only, the vector ALU consumes 16 of 
them.  The  number  of  scalar  processors  that  fit  into  a 
Spartan-6 FPGA is bound by the number of available LUT 
cells  and  can't  exploit  all  multipliers,  the  number  of 
processors  based  on  the  vector  ALU  is  bound  by  the 
number of available multipliers. Only the vector ALU can 
fully exploit the combined performance of nearly all of the 
available  multipliers.  The  smaller  number  of  vector 
processors also reduces the communication overheads and 
somewhat  simplifies  the  programming.  The  most  recent 
FPGA chips pack still more multipliers in relation to the 

LUT count.  Then a port  of  the present design becomes 
LUT bounded again. Then an extension to still wider data 
words  can  be  considered,  using  SIMD  on  top  of  it 
similarly to what is done in recent GPU chips.

The V144 ALU uses a 144-bit data word holding a vector 
of 4 35-bit fixed point components that are encoded by an 
unsigned 34-bit number and a sign bit. There is a spare bit 
for each component that allows for temporary add over-
flows. The word (r,x,y,z)  is  also written as  r+ix+jy+kz. 
They can be interpreted as real 4-vectors, as complex 2-
vectors or as quaternions [5]. Sub types are the real and 
complex numbers r+ix,  and real  3-vectors (0,x,y,z).  The 
quaternion  product  is  the  bilinear  mapping  defined  on 
pairs of the base vectors 1,i,j,k by

1*1=1, 1*i=i*1=i, 1*j=j*1=j, 1*k=k*1=k, i*i=j*j=k*k=-1,

and   i*j=k, j*k=i, k*i=j, j*i=-k, k*j=-i,  i*k=-j .

It extends the multiplications on the sub types of real and 
complex numbers and the product of a complex number 
and a complex 2-vector. The conjugate of the quaternion 
q=r+ix+jy+kz  is defined by conj(q)=r-ix-jy-kz, extending 
the conjugation of complex numbers. Then

          q*conj(q) =r²+x²+y²+z² . 

If   r²+x²+y²+z²=1 then the mapping v→q*v*conj(q)  is a 
rotation  of  the  space  of  real  3-vectors.  Hence  unit 
quaternions  can  be  used  to  parametrize  rotations.  The 
quaternion type  thus summarizes several  useful  real  and 
complex data types.

The  V144  ALU  implements  the  quaternion  product 
through 4 instructions performing the multiplication of the 
different  combinations  of  half  words  (one  being  the 
complex multiply operation), and each performing 4 real 
multiplies  in  parallel,  and  some add  operations.  It  also 
provides  more  conventional  SIMD  type  add  operations 
and  multiply  and  dot  product  operations  both  with  a 
double precision result, and a radix-2 butterfly operation 
on complex 2-vectors.  For the latter,  a constant  table is 
included hold-ing the twiddle  factors,  using a  read-only 
memory block. 

The ALU uses separate 18-bit instructions that are fetched 
along with the controller instructions. Separate sub fields 
of the ALU instruction are used to independently select 
ALU operations and transfer operations to the controller. 
Operands are selected from 16 144-bit data registers. Each 
context  has  its  own  bank  of  registers.  The  banks  are 
subdivided  to  permit  two  parallel  register  writes.  To 
transfer data between a data register and the controller, 8 
transfer instructions are needed each moving an 18-bit sub 
field. The transfer operation of the ALU is used in parallel 
with an ALU port  access by the controller.  Data passed 
between the ALU and the controller are converted on-the 
fly between  the sign+magnitude and the twos-complement 
formats. The shifting hardware transferring an ALU word 
in multiple 18-bit packets to the ALU port of the control-
ler is also used to access and inspect the ALU registers 

88 Int'l Conf. Computer Design |  CDES'12  |



during single-stepping through a program. Table 3a lists 
the ALU operations and table 3b the transfer operations. 

Table 3a: Arithmetic instructions of the V144 ALU 

dr,dr'=ds*dt SIMD product, double result, frc
dr=ds+dt SIMD sum, first shift ds
dr=dt–ds SIMD difference, first shift ds
drl=dtl*dsl complex product L, single res., frc
drh=dtl*dsh complex product H, single res.,frc
drh+=dth*dsl quaternion product L, single
drl+=dth*dsh quaternion product H, single
dr=(dt,ds) dot product, double result, frc
dr+=(dt,ds) accumulate dot product,  frc
butterfly uses twiddle factor from ROM 
ds+dt',ds'*dt,dr=res  SIMD dot product, double, frc

Table 3b: Transfer instructions of the V144 ALU

shift dr use shift count in control register
dshift dr shift double to single
dr=dt register move
dr = conj(dt) complex/quaternion conjugation
dr=cpu shift from CPU
cpu=dr rotate into CPU

Some instructions include a multi-bit shift operation. The 
shift count is provided in a control register and is typically 
used for an entire 4n-vector composed of n 4-component 
data  words.  The  shift  operations  combine  with  the 
add/subtract  operations into floating point operations yet 
using the same exponent for all components of a vector. 
The 35-bit  fixed point  codes for  the vector  components 
can be considered as mantissas. In general, they can't be 
all normalized. During a multi-cycle vector operation, the 
shift count for a subsequent normalization is established 
automatically. Exponents for vectors are stored in the 18-
bit  controller  memory.  They are  not  part  of  the  vector 
codes in the data memory. The computation of shift counts 
is left to the controller. This simplifies the ALU but also 
causes some overhead for scalar floating point operations. 
The use of exponents and shift counts is optional. Fixed 
point processing can be used instead. The SIMD product 
and dot product operations accumulate the products with 
the full (double) precision. No further support is provided 
to increase the precision.

The two complex vector components used as inputs to the 
butterfly operation are loaded as a single data word but 
have a large indexing distance in the input vector to the 
current  FFT  pass.  In  the  next  pass,  the  butterfly  input 
needs  to  combine  the  outputs  of  two different  butterfly 
computations in the current pass. Therefore the results of 
both  butterflies  are  packed  accordingly before  restoring 
them to  the  memory locations  previously  holding  their 
vectors.  The  bit-reversed  address  sequences  and  the 
twiddle  factors  for  the  different  passes  are  selected  by 
means  of  the  control  register.  During  a  pass,  an  input 
vector  is  fetched  and  an  output  vector  stored  in  every 
cycle,  using  the  dual  memory  access  operation  of  the 
controller  in parallel  to  the butterfly instruction.  During 

each pass, the occurrence of an overflow is tracked, and 
the load operations in the next pass are combined with a 
shift operation to take care of it.

The current V144 ALU uses 16 FPGA multipliers which 
are  employed  to  close  to  100%  during  an  FFT  or  dot 
product computation. A stream of 3D vectors can be trans-
formed by a fixed rotation continuously using 3 of the 4 
multipliers. 10 V144 based processors running at 200MHz 
fit  into  an  XC6SLX150T  FPGA and  yield  a  peak  per-
formance  of  16  GFLOP/s  of  extended  single  precision 
block  floating  point  operations.  A variant  of  the  V144 
ALU is being developed using only 12 DSP modules (3 
for  a  34-bit  multiply).  Then  up  to  13  processors  are 
expected to fit  into the FPGA with a total  peak perfor-
mance of about 20GFLOP/s.

System applications and tools 

The described processor architecture ir ready to be used 
on  the  Spartan-6  family  of  FPGA.  The  minimum 
configuration   consists  of  a  single  controller  with  1-2 
memory blocks and some application specific peripherals 
attached to its IO port, and the host bus controller attached 
to  get  external  control,  program  download  and  debug 
support via a UART interface or the JTAG interface of the 
FPGA.  Larger  systems  are  easily  constructed  from the 
processors  and the interfacing building blocks.  The tiny 
XC6SLX9 FPGA with about 5700 LUT cells can already 
hold  a  system  of  two  scalar  floating  point  processors 
linked to each other and to a memory controller. A similar 
system  based  on  a  Spartan-3  FPGA  has  been  used  to 
provide  a  low-cost  micro  processor  lab.  The  lab  uses 
assembler programming; a C compiler is available, too.

The  current  architecture  implemented  on  Spartan-6  is 
supported by the  π-Nets compiler environment described 
in [10].  π-Nets can support  targets that  are networks of 
processors.  It  supports  multi-threaded  applications  and 
real-time control and can even be used to derive a suitable 
processor  network  from  a  multi-threaded  program  [2]. 
More programming tools are planned.

The main application of the new processor design is the 
design of an experimental  parallel  computer based on a 
network of XC6SLX150T chips. This system is intended 
to  study and  to  develop  tools  and  methods  for  FPGA 
based  high-performance  computing  (HPC)  applications. 
The individual FPGA nodes hold small networks of V144 
based processors. External memory chips attached to the 
FPGA nodes are accessible by all processors via memory 
controller interfaces as described above. The FPGA chips 
are  linked  by  high-speed  serial  interfaces  which  are 
transparently accessed from the on-chip networks using an 
additional  networking  interface  module.  The  current 
system contains  20  FPGA nodes  and  hence  up  to  200 
processors (depending on the configurations being used) 
with  a  peak  performance  of  320GFLOP/s.  The  peak 
performance of an individual processor can be achieved in 
some common applications.

Int'l Conf. Computer Design |  CDES'12  | 89



The performance features such as single cycle execution 
of all CPU instructions including memory accesses and the 
execution of ALU instructions in parallel to them, the low 
complexity of the CPU, the inclusion of DMA and real 
time control,  the capabilities  of  the two ALUs,  and the 
ready-to-use  interfaces  and  networking  functions  are 
attractive  for  other  applications  than  HPC  as  well,  in 
particular for embedded control and DSP applications.

Discussion

The  proposed  processor  architecture  takes  several  non-
standard choices which derive from the particular require-
ments  but  which may raise  doubts  on  its  usability.  We 
discuss some possible objections to our design and justify 
the design decisions taken.

The  first  objection  may regard  the  very  small  address 
space of the processors which is below the 65k range of 
very  early  processors.  The  general  trend  has  been  to 
extend the logical address spaces to 32-bit addresses and 
beyond. A complex operating system or a GUI can hardly 
be realized this way, but also the intended HPC applica-
tions require the handling of large vectors and matrices.

The  actual  amount  of  addressable  memory  is  not  that 
small, however. The 15-bit controller addresses are word 
addresses  and  allow for  up  to  about  65kBytes  for  the 
controller. The data memory is an extra address space on 
top of this which could be as large as 512kB for the V144 
data type. These memory sizes are far from what would 
ever  be  realized  within  the  FPGA  for  an  individual 
processor.  Large  HPC data  would have to  be  stored  in 
external memory and only be cached in the DMEM.

Modern processors come with many registers, but the con-
troller provides 8 registers only. Also, the return stacks are 
very small. There seems to be no room for stack frames.

For  this  objection  one  has  to  remark,  that  most  of  the 
registers are located in the ALU, e.g. 16 in the V144 ALU. 
The controller registers mostly serve as address pointers 
and loop counters. The controller has 8 registers for every 
context.  The  stack  used  by  the  'call'  and  'return' 
instructions is dedicated to holding return addresses and 
can't  be  used  to  pass  parameters.  A  stack  for  passing 
parameters and holding local variables can be realized in 
IMEM or DMEM using any of the 8 pointer registers. The 
'return' instruction optionally deallocates stack locations.

Why  do  the  jump  instructions  use  absolute  addresses? 
The  'x'  in  every  instruction  appears  to  be  a  waste  of 
instruction memory. Why is the DMA limited to inputs?

Absolute addresses save a bit of hardware. The input only 
DMA needs  a  single  address  register  only;  there  is  no 
counter as the last word of a block transfer is marked by a 
control  signal. 'x' is not related to particular instructions 
and  hence  needs  an  extra  field.  Most  choices  in  the 
instruction  set  and  in  the  hardware  design  have  alter-
natives and are to some degree arbitrary. Important is the 
decision  to  keep  the  controller  hardware  as  simple  as 

possible while providing maximum flexibiliy and efficien-
cy of control for the attached ALU.

HPC applications usually operate on IEEE standard single 
and double precision floating point numbers. Wouldn't it 
be  better  to  implement  these in  the ALU circuits?  And 
why should one consider  at  all  an exotic new processor 
architecture once there are ready-to-use high-performance 
chips?

The essence of the new architecture is the functionality of 
the controller and its interface to an ALU to form a full 
processor. The controller can be combined with an ALU 
for  one  of  the  standard  types.  The  chosen  types  really 
exploit the FPGA resources while for the standard types 
the  FPGA  is  much  less  attractive  than  some  recent 
hardwired  DSP  chip.  It  depends  on  an  analysis  of  the 
precision  required  for  an  HPC  application  whether  the 
types optimized for the FPGA can be applied. Whether a 
processor is adopted by many users only partly depends on 
its  technical  benefits.  Anyhow, the ideas  in a  published 
architecture can be taken up by other developments.

References:
[1] R. Baxter et al, Maxwell – a 64 FPGA supercomputer
      www.fhpca.org
[2] F.Mayer-Lindenberg, High-level FPGA Programming
        through Mapping Process Networks to FPGA
        Resources, ReConfig09, Cancun, 2009
[3] www.xilinx.com, Spartan-6 series user manuals
[4] www.xilinx.com, EDK with µBlaze processor 
[5] A.Watt, 3D Computer Graphics, Pearson 1999
[6] Hennessy, Patterson, Computer Architecture,
      Morgan Kaufmann Pub. Comp. 
[7]Andreas Ehliar, Performance driven FPGA design with
     an ASIC perspective, PhD thesis, Linköping 2009
[8] S.Craven, P.Athanas, Examining the viability of
    FPGA supercomputing, EURASIP J.Emb.Systems 2007
[9] C.Bassoy et al.,SHARF:An FPGA based Customisable
      Processor Architecture, FPL'09
[10] F. Mayer-Lindenberg, Dedicated Digital Processors,
      Wiley Interscience 2004
[11] www.sciengines.com, RIVYERA S6-LX150 system
[12] www.ti.com, TMS320C667x family documents
[13] www.amd.com, HD7000 GPU architecture
[14] R.Diamond, O.Mencer, W.Luk, CUSTARD -custom-
        isable threaded FPGA soft processor, FPL'05, 2006
[15] W.Chu et al, Customisable EPIC processor, design
        automation and test in Europe conference, 2004
[16] S.Wong, T.v.As, G.Brown, r-VEX: reconfigurable
        and extensible softcore VLIW processor, ICFPT'08

90 Int'l Conf. Computer Design |  CDES'12  |

http://www.amd.com/
http://www.ti.com/
http://www.sciengibes.com/
http://www.xilinx.com/
http://www.xilinx.com/
http://www.fhpca.org/


Field Programmable Gate Arrays for Computational Acceleration of
Lattice-Oriented Simulation Models

A. Gilman and K.A. Hawick
Computer Science, Institute for Information and Mathematical Sciences,

Massey University, North Shore 102-904, Auckland, New Zealand
email: { a.gilman, k.a.hawick }@massey.ac.nz
Tel: +64 9 414 0800 Fax: +64 9 441 8181

April 2012

ABSTRACT
Field Programmable Gate Arrays (FPGAs) have attracted
recent attention as accelerators for a range of scientific ap-
plications which had previously been only practicable on
conventional general purpose programming platforms. We
report on the performance scalability and software engi-
neering considerations when FPGAs are used to accelerate
performance of lattice-oriented simulation models such as
complex systems models. We report on the specifics of an
FPGA implementation of cellular automaton models like
the Game-of-Life. Typical FPGA toolkits and approaches
are well suited to the localised updating of the regular data
structures of models like these. We review ideas for more
widespread uptake of FPGA technology in complex sys-
tems simulation applications.

KEY WORDS
FPGA-based design; simulation; complex systems; imple-
mentation development; performance evaluation.

1 Introduction
Field Programmable Gate Array technology [1–3] has

developed considerably in recent years and commodity
priced FPGA development boards now make it feasible
to teach their use to students but also to deploy them in
applied scientific research [4] as a source of high perfor-
mance compute resource. FPGAs are finding increasing
uses for application development in areas including: ac-
celerating physics calculations [5]; agent-based modelling
[6]; bio-informatics data processing [7]; image process-
ing [8–10]; as well as cellular automata simulations [11].

Engineers have been using FPGAs for a number of
years in time-critical applications, such as real-time sig-
nal processing. Recent research showing real potential
for high performance computing [12], with FPGA im-
plementations of certain problems performing better than
CPU/GPU implementations [13]. This is due to inher-

Figure 1: ML605: Xilinx Virtex 6 development board

ent flexibility in custom architecture design, allowing for
better mapping of some applications to the hardware it
is being executed on. However, the time and expertise
required for implementation development is considerably
higher than for conventional software architectural devel-
opment. Even though the design entry is performed using
high level programming languages, the task is very dif-
ferent to writing a programme for a general purpose com-
puter. We found that a hardware-oriented minds-et is re-
quired for efficient implementation and performance opti-
mization.

In this article we explore designing FPGA based com-
putation engines for scientific simulations using a simple
cellular automaton [14], using Conway’s Game of Life
[15], as an example. We used a Xilinx ML605 FPGA
development board for this work. This device connects
using a conventional PCIe interface slot to a PC, as is seen
in Figure 1.

Our paper is structured as follows: In Section 2 we de-
scribe the general framework of use for FPGA architec-
tures. In Section 3 we describe our use of FPGA develop-
ment boards to simulate models like the Game of Life. We
present some performance results in Section 4. We dis-
cuss their implications, summarise our findings and sug-
gest some areas for further work in Section 5.

Int'l Conf. Computer Design |  CDES'12  | 91



Figure 2: Simplified example of an FPGA logic slice.

2 FPGA Framework
When performing computational tasks we generally use

general purpose computers. These are designed to solve
any computational task, as long as we can express it as a
program. This makes them versatile and relatively easy to
use to solve our computational problems. However, this
same ability to perform virtually any task we may ask of it
limits its computational performance for any one specific
task: the general purpose architecture is sub-optimal for
any specific task and can be very far from optimal for some
tasks.

As an alternative to using general purpose architecture,
we could design a custom architecture, optimized for the
specific task at hand in a way as to exploit any spatial or
temporal parallelism inherent to the problem. Implement-
ing this custom architecture on completely custom hard-
ware through the manufacture of an application-specific
integrated circuit (ASIC) would most likely result in much
better performance. Unfortunately, ASIC design and man-
ufacture is an extremely expensive and time-consuming
process. Only very few applications can qualify for this
approach.

There is, however, an alternative for implementing a
custom architecture - reconfigurable hardware or more
specifically field-programmable gate arrays. These pre-
manufactured chips contain a sea of programmable logic
with programmable interconnect fabric running in be-
tween. In addition, these devices also contain on-chip
memory, optimized digital signal processing (DSP) blocks
and a multitude of input/output pins to interconnect with
other hardware, like off-chip memory. Transistor count for
modern FPGAs is in the billions, allowing these devices to
implement some very complex designs.

FPGA chips are designed to be reconfigurable to carry
out any digital logic operation. The most basic building
block of these chips is a look-up table (LUT) and reg-
ister pair. 4- to 6- input LUTs are common in modern
devices and can implement any boolean logic function of
that many inputs. A number of LUT-Register pairs are
grouped together into blocks called ”logic slices”. In ad-
dition to LUT-Register pairs, logic slices also generally
contain dedicated arithmetic and carry logic and a num-

Figure 3: FPGA layout

ber of multiplexers that can be used to combine outputs of
the slice’s LUTs to implement logic functions with higher
number of inputs. A simplified example of a logic slice is
shown in figure 2.

A number of logic slices are grouped together to form
configurable logic blocks (CLBs). Many thousands CLBs
are located on one chip with a complex network of in-
terconnects occupying the fabric between them (see fig-
ure 2). Just like the logic slices within CLBs, the intercon-
nect network is programmable and can connect inputs to
outputs of various slices as needed to form more complex
logic functions. In addition to logic slices, FPGAs com-
monly contain on-chip RAM resources called block RAM
(BRAM). These blocks are generally only a few kilobytes
in size, but there are many of them and they can be ac-
cessed in parallel or combined into larger memories with
fairly large bandwidths.

FPGA design methodology has a number of levels of
abstraction ranging from the actual configuration of LUTs
all the way up to high-level programming languages, such
as Handle-C. It differs from software design in that an ac-
tual hardware device that would perform the desired func-
tion is being designed, rather than just a program to ex-
ecute on an existing computer architecture. A flowchart
of a typical design flow is shown in figure 4. The first
step is architecture design, where the computational task
at hand is analysed and decomposed into structural blocks
with each one described in terms of its functionality and
interfaces.

Once the device architecture has been designed, a
hardware-description language (HDL), such as VHDL or
Verilog, is used to formally describe the device. This pro-
cess can utilise both the behavioural and structural de-
scription of the device and its subcomponents.

Behavioural simulation is an important next step that
tests the HDL description of the problem against the de-

92 Int'l Conf. Computer Design |  CDES'12  |



Figure 4: FPGA Design Flow

sired behaviour. At this point any behavioural differ-
ences between the HDL code and its desired behaviour
are ironed out. A process called synthesis is used next to
infer combinatorial and sequential logic from HDL state-
ments. This produces an abstract representation of the de-
sired circuit behaviour called register-transfer level (RTL)
logic. This is then decomposed further into an even lower-
level (logic gates and transistor level logic) representation
called a netlist, generally recorded in a vendor-neutral rep-
resentation using EDIF format.

The actual implementation process uses a vendor-
specific tool to map the netlist representation of the de-
signed device to the actual resources available (LUTs,
BRAM, DSPs, etc) on the particular FPGA used for im-
plementation. A process called place and route then pro-
ceeds to allocate available resources and performs rout-
ing of the signals between them as required. These are
complex optimization procedures that are attempting to
balance multiple trade-offs, such as chip area uptake re-
duction, running power consumption minimization, tim-
ing performance and implementation process runtime re-
duction. If one of these goals is more important than oth-
ers, for example timing performance, it is possible to use
a different optimization strategy to put more emphasis on
increasing the maximum clock frequency. The final step
is the programming file generation, which creates a bit-
stream file containing the configuration settings of all the
FPGA resources. This file is then simply downloaded onto
the FPGA to configure it.

All of the above steps are performed using electronic
design automation (EDA) tools. Implementation tools
need to be vendor-specific, as they relate to the partic-

ular FPGA chip that is used for final implementation.
For HDL entry and synthesis, however, 3rd party vendor-
independent tools can be used (e.g. Cadence, Synplify)
and the resulting netlist can be implemented using any
suitable vendor. In addition to these EDA tools, design-
ers can choose to use an even higher-level language to
describe the system architecture. Recent research have
been aimed at developing techniques for hardware synthe-
sis from high level languages like C/C++ [16, 17]. Some
of these are already available on the market (e.g. Handle-
C, systemC); although, their uptake is slow and they are
nowhere near as popular as Verilog or VHDL.

For this project we have used a Xilinx FPGA. Xilinx
is one of two main vendors (Altera being the other one)
of FPGA technology. ML605 development board, hosting
an xc6vlx240t device from the Virtex-6 family was used.
The advantage of this board is the on-board PCIe interface
that can be used for exchanging the data between the host
PC and the FPGA. This device contains 150,720 LUTs
and 301,440 flip-flops in 37,680 logic slices and 416 36Kb
block RAMs, totaling 14,976 Kb on-chip memory. We
have used Xilinx ISE Design Suite 13.4 for HDL design
entry, synthesis and implementation and Xilinx ISIM for
behavioural simulation.

3 Simulation Formulation on FPGA
We chose to experiment with a simple Game of Life

(GoL) [15] simulation for this investigation. The GoL
model comprises a 2D array of bit-wise cells representing
the states live or dead. At each (synchronous) time step of
the model, each cell is updated according to a microscopic
rule based on the number of live cells in the Moore neigh-
bourhood of each focal cell. We can initialise the cells
randomly, but that is the only randomness in the model
definition, which is otherwise completely deterministic.

This class of model is interesting since GoL can be gen-
eralised to a whole family of similar automata that have
exhibit emergent complex systems behaviour that can only
be studied effectively using extensive simulations. FPGA
technology is particularly well suited to carrying out par-
allel and effectively synchronous updates on a regular lat-
tice model with localised neighbour communications. The
model rules are readily implemented using primitives that
can be easily implemented using FPGA component oper-
ations.

The architecture for our game of life implementation
consists of two parts: the data-path and the control cir-
cuitry. The data-path is a collection of modules that store
the data and operate on it. The control circuitry imple-
ments the logic required to execute the particular set of
steps required to fetch the data, perform the computation
and store the result. Separating the design into two parts
like this makes it easier to design and maintain complex

Int'l Conf. Computer Design |  CDES'12  | 93



Figure 5: Custom 1024× 1024 dual-port RAM.

architectures.
Along with the compute logic, the data-path must con-

tain some sort of storage to store the state of each cell in
the simulation. In software this would be stored in an ar-
ray of integers located in the main memory. On the FPGA
we can create a dedicated RAM to contain this data on the
chip itself, using multiple blocks of BRAM. These blocks
are designed to be highly configurable, allowing for a lot
of flexibility and can be connected in parallel to create
RAMs with any word width (number of bits per stored el-
ement) and any depth (number of stored elements). What
makes BRAM even more useful is the fact that it is dual-
port, meaning that we can read the state of current gener-
ation and write the computed next state at the same time.

The FPGA chip that we are using contains a total of
15Mb of storage in BRAMs, which is enough to store the
state of one million cells in a 1024× 1024 simulation that
we want to implement (storing one bit per cell). Memory
access is a significant bottleneck of modern computers. If
we are going to process more than one cell at the same
time, we need to have sufficient memory bandwidth to get
the required data. We can bit-pack the states of a whole
column of cells into a single 1024 bit-wide memory ele-
ment and create a 1024-deep RAM to store each one of the
columns (see figure 5). Doing this allows us to read/write
the state of 1024 cells simultaneously.

To process the each cell we employ a processing ele-
ment (PE) depicted in figure 6. There are 1024 instances
of this element, each one computing the next generation
state of the cells located in a single row, one element at a
time. To avoid having to perform nine memory accesses
for each computation (as the state of nine cells is required
to compute this) local buffers within each processing el-
ement are employed to store the state of three consecu-
tive cells, centered on the index of the cell, which is cur-
rently being processed. These stored states are used by
the next state-computation logic and also passed to the
processing elements directly above and below. The next
state-computation logic is shown in figure 7. Because the
value of state signals of all the neighboring cells are either
one for alive or zero for dead they can be simply added
together to compute the number of alive neighbors.

Figure 6: A single processing element contains a 3-bit
shift register and combinational logic to compute the next
state.

Figure 7: Combinational logic for next state computation.

To compute the next state for a column of cells three
separate operations need to be performed. A memory read
operation, next state computation and a memory write op-
eration. Because next state computation requires fairly
simple logic, memory read and write operations are rel-
atively long in comparison. It is possible to pipeline
these three operations to increase the overall throughput,
as shown in figure 8. If the next computation logic was
quite complex, it could be beneficial to also pipeline it by
dividing it up into smaller computation stages; however,
in this case it would not achieve any gains.

We used Verilog HDL to describe the design. Verilog
description of the processing element is shown in algo-
rithm 1. It consists of two parts: first part is the always
statement that describes a synchronous three-element shift
register using three non-blocking assignment <= opera-
tors. These assignments are executed simultaneously in a
single clock cycle, using the value of each variable on the
right hand side from the previous clock cycle. The value
of this shift register is assigned to the reg out port to
be passed to PE above and PE below. The second part
consists of computation of the number of alive neighbors
by summing their states and the computation of the next
state by applying the game rules. This code, along with

94 Int'l Conf. Computer Design |  CDES'12  |



Figure 8: Pipelined memory access: reading, processing
and writing each column in 3 consecutive clock cycles in-
creases overall processing throughput.

Figure 9: Processing element array contains a N PEs con-
nected in parallel to process N rows of cells simultane-
ously.

the description of input and output ports, forms a Verilog
module.

Each of the components in the architecture is described
in a separate Verilog module, which are instantiated and
interconnected using the in/out ports to complete the ar-
chitecture. Modular design allows for easy reconfigura-
tion. For example, we can change the simulation size,
as long as there are enough resources on the device, to
any simulation size N simply by changing the number of
instances of the PE module in the PE array and BRAM
configuration (figure 9). Or we can change the internal
implementation of any module and as long as the external
interface and functionality stays the same the design will
still work.

The modules can also be parameterized, with the pa-
rameters being set at compile time. This allows for more
flexibility and encourages re-usability. The processing el-
ements, for example, can be designed to allow for q states,
with q being a compile-time parameter. These can be
reused in implementation of other CA, such as Game of
Death [18], that require more than two states.

N = 512 1024 2048
Flip-flops 1550 3090 6166
LUTs 3793 7559 15113
Logic Slices 1568 3156 6571
Max clock (MHz) 269 238 187
Compilation Time (s) 149 215 375

Table 1: Resource utilization for different size simulation.

4 Performance Results
Table 1 shows resource utilization (the number of uti-

lized flip-flops and look-up tables and also the total num-
ber of used logic slices), maximum clock frequency in
megahertz at which each design is able to run and also
the compilation time in seconds for three simulation sizes:
512 × 512, 1024 × 1024 and 2048 × 2048. The amount
of utilized resources can be seen to go up linearly with
the number of instantiated processing elements (512, 1024
and 2048 in each case). The maximum clock frequency
goes down with simulation size. The largest simulation
size, which also has the largest number of processing el-
ements demonstrates highest throughput of 386 billion
individual cells being processed per second versus 244
billion cells/s for second largest and 138 billion cells/s
for the smallest. The overall performance of these three
designs is 92,000 generation updates per second for the
largest, 232,500 generation updates for second largest and
525,000 generation updates for the smallest.

Figure 10: Resource utilization as a percentage of total
available resources on xc6vlx240t device.

Figure 10 shows resource utilization figures as a per-
centage of the total resources available on xc6vlx240t de-
vice. It can be seen that even for a simulation as large as
2048×2048 elements, logic slice utilization is under 18%.

5 Discussion & Conclusions
The development process of this design followed the

design flow shown in figure 4. The overall time
was roughly split half and half between HDL entry/be-
havioural simulation and architecture design/optimization.

Int'l Conf. Computer Design |  CDES'12  | 95



Algorithm 1 Verilog code for the Processing Element.

1 always @( posedge CLK)
2 begin
3 r i g h t <= D a t a i n ;
4 c e n t r e <= r i g h t ;
5 l e f t <= c e n t r e ;
6 end
7 a s s i g n r e g o u t = { l e f t , c e n t r e , r i g h t } ;
8 a s s i g n numAlive = ( f romAbove in [ 0 ] + f romAbove in [ 1 ] + f romAbove in [ 2 ] + l e f t + r i g h t
9 + fromBelow in [ 0 ] + f romBelow in [ 1 ] + f romBelow in [ 2 ] ) ;

10 a s s i g n nextGen = ( numAlive == 4 ’ d3 ) | | ( ( numAlive == 4 ’ d2 ) && c e n t r e ) ;

We found both of these tasks to be highly iterative and the
use of good EDA tools can make a big difference to the
amount of time/effort taken up by these tasks.

Verilog HDL is a high-level language; however, we
found writing Verilog code to be very different to writing
a program in a software language, partly because the Ver-
ilog ’program’ actually represented a piece of hardware
with certain functionality, rather than an algorithm nor-
mally described by a program in a software language. The
inherent notion of time in the process of describing syn-
chronous logic also made it difficult to get the HDL de-
scription right the first time. This is where the behavioural
simulation proved to be extremely valuable.

Performance of compute engines such as the one de-
scribed here can be measured using throughput, a product
of how much computation is performed in one clock cycle
and the clock frequency. To increase performance, we can
either utilize a large number of the processing elements
or optimize the processing elements to increase the clock
frequency, or both. We have tried a number of ways to
simplify/optimize the processing element module and the
processing element array, for example by replacing the se-
ries of 4-bit additions on lines 8 and 9 in algorithm 1 with
an adder tree composed of smaller 2- and 3-bit adders and
one 4-bit adder, as illustrated in algorithm 2.

These attempts resulted in simpler RTL representation
of the design. This, however, did not necessarily equate to
any significant gains in maximum clock frequency or re-
source utilization. This is partly due to the synthesis tools
running various automated logical and physical optimiza-
tion of the RTL and doing a fairly good job for a relatively
simple design such as this one and partly due to the nature
of the way digital logic is implemented on FPGAs - using
a series of look-up tables.

We found it difficult to manually optimize the design
prior to running the synthesis, as it was hard to tell whether
what we considered simpler and faster would result in sim-
pler and faster final implementation. This process of man-
ual optimization turned into a series of trial and error steps
to find out what worked and what didn’t. Unfortunately,
with a total compilation time of over 6 minutes for the

Algorithm 2 Verilog code representing an adder tree.

1 / / A l l o c a t i n g 2− b i t t emporary s t o r a g e :
2 wire [ 1 : 0 ] temp1 , temp2 , temp3 ;
3 wire [ 2 : 0 ] temp4 ; / / 3− b i t t emporary s t o r a g e
4 a s s i g n temp1 = fromAbove i [ 0 ] + f romAbove i [ 1 ]
5 + fromAbove i [ 2 ] ; / / 2− b i t adder
6 a s s i g n temp2 = f romBelow i [ 0 ] + f romBelow i [ 1 ]
7 + fromBelow i [ 2 ] ; / / 2− b i t adder
8 a s s i g n temp3 = l e f t + r i g h t ; / / 2− b i t adder
9 a s s i g n temp4 = temp1+temp2 ; / / 3− b i t adder

10 a s s i g n numAlive = temp4 + temp3 ; / / 4− b i t adder

2048× 2048 design this has become a very time consum-
ing process.

The numbers in table 1 indicate that this design scales
fairly well with simulation size in terms of resource uti-
lization. Large designs, however, cannot be clocked at the
same frequency as the smaller one, even though the main
difference between them is the number of instantiated pro-
cessing elements (all having the same complexity). This
is likely to be due to more complex internal signal rout-
ing that introduces more delay as resource utilization in-
creases.

Introducing more processing elements, whether it is
for a larger simulation size or to increase the through-
put even further by processing more than one column at
a time, would most likely decrease the maximum clock
frequency even further. Introducing more processing ele-
ments (if the memory bandwidth allows) would obviously
increase throughput, but only up to a certain point, since
this increase will have a detrimental effect on the maxi-
mum clock frequency.

Figure 10 shows that there is still a large portion of un-
used resources left on the device. This can either be uti-
lized by more PEs to process multiple columns at the same
time as stated above, or it can also be utilized to compute
any required measurements, such as statistical metrics, in
real-time as the simulation progresses, thus saving time on
further analysis. Performing the required measurements in
parallel to the running of the simulation can also greatly
reduce the amount of data that needs to be taken from the

96 Int'l Conf. Computer Design |  CDES'12  |



device, by discarding the raw data and only reading the
required metrics.

In summary, FPGA technology has a promising outlook
[19] and we have found it to be well suited to this sort
of complex systems simulation, that makes use of regular
data structures, localised communications and good use of
component primitive operations. FPGA implementations
of this class of model will potentially aid the systematic
exploration of a model space by providing very fast but
cheap simulation platforms.

There is additional scope to develop some of the model
measurement algorithms (such as tracking density of live
cells) and mechanisms for collecting statistics that would
even further enhance this platform’s suitability.

References
[1] Oldfield, J.V., Dorf, R.C.: Field programmable

gate arrays - Reconfigurable logic for rapid prototyp-
ing and implementation of digital systems. Number
ISBN 0-471-55665-3. Wiley (1995)

[2] Chu, P.P.: FPGA Prototyping by VERILOG Ex-
amples. Number ISBN 978-0-470-18532-2. Wiley
(2008)

[3] Herbordt, M.C., Gu, Y., VanCourt, T., Model, J.,
Sukhwani, B., Chiu, M.: Computing Models for
FPGA-Based Accelerators. Computing in Science &
Engineering 10(6) (November/December 2008) 35–
45

[4] Stitt, G., george, A., Lam, H., Readdon, C., Smith,
M., Holland, B., Aggarwal, V., Wang, G., Coole, J.,
Koehler, S.: An End-to-End Tool Flow for FPGA-
Accelerated Scientific Computing. IEEE Design and
Test of Computers July/August (2011) 68–77

[5] Danese, G., Leporati, F., Bera, M., Giachero, M.,
Nazzicari, N., Spelgatti, A.: An accelerator for
physics simulations. Computing in Science and En-
gineering 9(5) (September 2007) 16–25

[6] Chen, E., Lesau, V.G., Sabaz, D., Shannon, L., Gru-
ver, W.A.: Fpga framework for agent systems us-
ing dynamic partial reconfiguration. In: Proc. 5th
Int. Conf on Industrial Applications of Holonic and
Multi-Agent Systems (HoloMAS). Number 6867 in
LNAI, Toulouse, rance (29-31 August 2011) 94–102

[7] Anan’ko, A.G., Lysakov, K., Shadrin, M.Y., Lavren-
tiev, M.M.: Development and application of an fpga
based special processor for solving bioinformatics
problems. Pattern Recognition and Image Analysis
21(3) (2011) 370–372

[8] Gribbon, K.T., Bailey, D.G., Bainbridge-Smith, A.:
Development issues in using fpgas for image pro-
cessing. In: Development Issues in Using FPGAs for
Image Processing?, Proceedings of Image and Vi-
sion Computing New Zealand 2007, Hamilton, New

Zealand (2007) 217–222
[9] Bailey, D.: Design for Embedded Image Processing

on FPGAs. Wiley (2011) ISBN 9780470828496.
[10] Huang, Q., Wang, Y., Chang, S.: High-performance

fpga implementation of discrete wavelet transform
for image processing. In: Proc. 2011 Symposium
on Photonics and Optoelectronics (SOPO), Wuhan
(16-18 May 2011 2011) 1–4

[11] Olson, A.: Towards fpga hardware in the loop for
qca simulation. Master’s thesis, Rochester Institute
of Technology, New York (May 2011)

[12] El-Ghazawi, T., El-Araby, E., Huang, M., Gaj, K.,
Kindratenko, V., Buell, D.: The promise of high-
performance reconfigurable computing. Computer
41(2) (feb. 2008) 69 –76

[13] Che, S., Li, J., Sheaffer, J., Skadron, K., Lach,
J.: Accelerating compute-intensive applications with
gpus and fpgas. In: Application Specific Processors,
2008. SASP 2008. Symposium on. (june 2008) 101
–107

[14] Murtaza, S., Hoekstra, A.G., Sloot, P.M.A.: Cel-
lular automata simulations on a fpga cluster. High
Performance Computing Applications 25, Online(2)
(October 2010) 193–204

[15] Gardner, M.: Mathematical Games: The fantastic
combinations of John Conway’s new solitaire game
”Life”. Scientific American 223 (October 1970)
120–123

[16] Edwards, S.A.: The challenges of hardware syn-
thesis from c-like languages. In: Proceedings of
the 2005 Design, Automation and Test in Europe.
(March 2005) 66 –67

[17] Edwards, S.: The challenges of synthesizing hard-
ware from c-like languages. Design & Test of Com-
puters, IEEE 23(5) (May 2006) 375 –386

[18] Hawick, K., Scogings, C.: Cycles, transients, and
complexity in the game of death spatial automa-
ton. In: Proc. International Conference on Scien-
tific Computing (CSC’11). Number CSC4040, Las
Vegas, USA (July 2011)

[19] Constantinides, G.A., Nicolici, N.: Surveying the
landscape of fpga accelerator research. In: IEEE
Design and Test of Computers. Volume July/August.
(2011) 6–7

Int'l Conf. Computer Design |  CDES'12  | 97



Parallel Counter Formulation using a Generator Polynomial
Expansion
Lee A. Belfore II

Department of Electrical and Computer Engineering
Old Dominion University

Norfolk, VA 23323
USA

Abstract— Parallel counters have been studied for several
decades as a component in fast multipliers and multi-
operand adder circuits. Efficient design of these functional
units can produce fast & efficient multipliers and signal
processors. Proposed in this paper is a GF(2) generator
polynomial expansion that can be used to specify parallel
counters. The mathematical formalism provides a general
way of describing parallel counters. Furthermore, the ex-
pansion suggests a gate level implementation for parallel
counters.

Keywords: Parallel counter, generator polynomial, synthesis.

1. Introduction
Parallel counters are combinational logic circuits that take

as input a number of equally weighted binary inputs and
outputs a binary number which is the number of inputs inputs
that are one. Parallel counters are used in applications which
are sped up when multiple addends can be concurrently
added to form a result. This occurs in such applications as
fast combinational multipliers and signal processing appli-
cations.

Because applications vary thereby changing the number of
operands, a generalized approach for synthesizing parallel
counters is also of value. Many of the approaches build
general parallel counters from (3,2) parallel counters (e.g.
full adders) as well as higher order parallel counter building
blocks. Indeed, references [1], [2] provide good overviews
of the design and specification of parallel counters. Ap-
plications of parallel counters in fast multipliers were first
formulated in [3]. Because parallel counters are used in high
performance applications, they are often designed with high
speed and compactness in mind to manage the complemen-
tary issues of performance and implementation complexity.

This paper is organized into six sections including an
introduction, a presentation of the generator polynomial
formulation, an analysis of power of two combinatorics as
applied to the proposed GF(2) generator polynomial, an anal-
ysis of the properties of generator polynomial coefficients,
a proposed circuit synthesis approach, and a summary.

2. Generator Polynomial
Formulation

Before introducing the generator formulation, we first
state some assumptions. First, the GF(2) algebra is used
in the formulation. Recall that GF(2) has two operators,
Exclusive-ORand AND, which will be denoted by+ and
· (often implied) respectively. Literals in the GF(2) system
nominally take on the values 0 and 1. The GF(2) system
serves as the mathematical system that is used in a variety
of applications including, for example, encryption and error
correcting codes. In this section, we explore a generator
polynomial formulation for parallel counters.

Rather than formulating fixed coefficient generator poly-
nomial, the generator polynomial coefficients described here
are determined by literals. A literala can be represented by
the following factor

F(r) = 1 + a · r, (1)

wherer is the indeterminate for the generator polynomial.
Representing literals as in (1) suggests a mathematical
formulation for combining literal factors into higher order
generator polynomials. For example, the product of the
factors fora1, a2, anda3 is

F (3)(r) = (1 + a1r)(1 + a2r)(1 + a3r)
= 1 + (a1 + a2 + a3)r

+(a1a2 + a1a3 + a2a3)r
2

+(a1a2a3)r
3

= 1 + F
(3)
1 r + F

(3)
2 r2 + F

(3)
3 r3.

(2)

Note that the degree for each coefficient matches the num-
ber of literals in the contributing product terms, or cubes,
included in the coefficient. Furthermore, and curiously, the
second and first degree coefficients, respectively, are the sum
and carry functions for the full adder function for the literals
a1, a2, anda3. Indeed, these also define the encoded outputs
for the (3,2) parallel counter:

F
(3)
2 = S1 = Carry = a1a2 + a1a3 + a2a3

F
(3)
1 = S0 = Sum = a1 + a2 + a3.

(3)

98 Int'l Conf. Computer Design |  CDES'12  |



Traditionally, the full adder carry function is expressed
as sum of products form with AND and OR primitives.
While in GF(2) ‘+’ is exclusive-OR, it is easy to confirm
the correctness of the full adder carry function. Another
interesting observation for this simple case is that each
degreei coefficient is the sum of all distinct cubes that are
the product of a different combination ofi literals.

Extending this result, a generator polynomial can be
formulated in the general case forn literals a1, a2, ..., an

F (n)(r) =
n
∏

i=1

(1 + air)

= 1 + F
(n)
1 r + F

(n)
2 r2 + · · · + F

(n)
n rn

= 1 +
n
∑

d=1

F
(n)
d rd.

(4)

From (4), several useful properties can be elicited.
Theorem 1: Each coefficientF (n)

d in F (n)(r) is the
exclusive-OR of all

(

n
d

)

distinct degreed cubes.
Proof: From the binomial expansion,

F(r) = (x0 + x1)
n, (5)

which can also be expressed as

F(r) =

n
∏

i=1

(x0 + x1). (6)

In (6), the product is composed of2n terms where each can
be uniquely identified by ann bit codeword representing
the contribution of eitherx1 or x0 from each of then

factors at positioni. Furthermore, each individual product
term codeword can uniquely be defined by

Sm =

nn

i=1

{

x1 for mi−1 = 1
x0 for mi−1 = 0

(7)

where‖ is the concatenation operator andm be the "value"
of this codeword. The codeword value is determined by
associating a1 for x1, and 0 for x0 in the following
expression

m =

n
∑

i=1

{

2i−1 for x1

0 for x0.
(8)

Generalizing (6), we substitutex0 = 1 and x1 = air

resulting in the unexpanded and expanded polynomial forms
given in (4). Since it has been shown that all codewords, and
therefore all terms, are generated by the binomial product,
(4) is exhaustive and includes all unique cubes. In this
formulation, each polynomial coefficienti will be the sum of
all different cubes composed from exactlyi literals, because
cubes having greater or fewer literals will be included in
higher or lower degree coefficients.

Lemma 1: The number of degreed cubes in (4) isNd =
(

n

d

)

.

Proof: The Binomial Theorem can be used to determine the
number of product terms fitting a particular composition, i.e.
the multiplicity of x1 andx0. Consider the expression

F(r) =

n
∏

i=1

(1 + air). (9)

In (9), 2n cubes result, and each can be associated with an
encoding,m, that reflects the contribution of the literals,ai.
Each cube is unique because it reflects of a different selection
of literals from each of the respectiven factors. Furthermore,
each cube’s degree,d, is the number of literals in the product
and is also the the number of ones in the encodingm. Thus,
the number of cubes for a particular degree follows from the
binomial coefficient

Nd =

(

n

d

)

, (10)

whereNd is the number of degreed cubes. Each degreed
coefficient,F (n)

d , is the Exclusive-OR of theNd different
degreed cubes.

3. Power of Two Combinatorics
In §2, the first and second degree coefficients from

F (3)(r) were the sum and carry functions for the full adder.
In order to generalize the formulation to parallel counters
of arbitrary size, the number of cubes contributing to a
coefficient will be determined to study coefficient properties.
Since the polynomial is GF(2), the focus will be determin-
ing whether the number of cubes contributing to specific
coefficients is even or odd.

Lemma 2: For an integerk > 1, 2(2k
−1) is largest power

of two by which(2k)! is divisible.1

Proof: The lemma can be proven by repeatedly factoring out
two. Note that the number of even terms in(2k)! is 2k

2 , the

number divisible by four are2
k

4 , the number divisible by2i

for i ≤ k are 2k

2i . Let p be the number of twos that can be
factored out and is expressed as

p =
k
∑

i=1

2k

(2i)

=
k
∑

i=1

2k−i

=
k−1
∑

j=0

2j

= 2k − 1.

(11)

Equation (11) accounts for all factors of two and the final
step in (11) establishes that(2k)! is divisible by 2p =

2(2k
−1).

Lemma 3: Fork > j, (2k − 2j)! has exactly(2k − 2j −
(k − j)) factors of two.

1This property is generally attributed to Legendre.

Int'l Conf. Computer Design |  CDES'12  | 99



Proof: By Lemma 2,(2k)! is divisible by two with multiplic-
ity (2k)−1. Note that(2k−2j)! has2j fewer factors and will
thus reduce the multiplicity. Noting further that(2k − 2j)!
is on a2j boundary, the multiplicity is reduced by(2j)− 1.
The very last factor,2k has only been reduced by2j, and
so multiplicity must be further reduced by(k − j). We can
express the number of two factors in(2k − 2j)! as

p2 = (2k − 1) − (2j − 1) − (k − j)
= 2k − 2j − (k − j).

(12)

Lemma 4: Fork > j,
(

2k

2j

)

is divisible by2k−j .
Proof: Because

(

2k

2j

)

=
(2k)!

(2k − 2j)!(2j)!
(13)

and using the previous Lemmas, the divisibility by powers
of two can be expressed as

p2 = 2k − 1 − ((2k − 1) − (2j − 1) − (k − j))−
(2j − 1)

= (k − j).
(14)

Thus,
(

2k

2j

)

is divisible by2k−j .

Lemma 5:
(

2k+i

2j

)

is even fork > j and i < 2j.

Proof: For i = 0,
(

2k

2j

)

can easily be shown to be even by
applying Lemma 4. The remaining cases can be examined
by rearranging the factors in the numerator and denominator
as follows:

(

2k+i
2j

)

= (2k+i)!
(2k+i−2j)!(2j)!

=
(

(2k+i)···(2k+1)
(2k

−2j+i)···(2k
−2j+1)

)(

(2k)!
(2k

−2j)!(2j)!

)

= (2k+i)···(2k+1)
(2k

−2j+i)···(2k
−2j+1)

(

2k

2j

)

.

(15)
Because the numerator of (2k+i)···(2k+1)

(2k
−2j+i)···(2k

−2j+1) starts on a
2k boundary and the denominator starts on a2j boundary
not divisible by2j+1, each is divisible by the same number
of factors of two and thus is odd. By Theorem 2, the second
term,

(

2k

2j

)

has exactlyk − j factors of two. Thus,
(

2k+i

2j

)

is
even fork > j and i < 2j .

Lemma 6:
(

2k+i

2k

)

is odd fori < 2k.
Proof: Note that

(

2k+i
2k

)

= (2k+i)!
(2k)!(i)!

= ((2k+i)···(2k+1))(2k)!
(2k)!(i)!

= (2k+i)···(2k+1)
(i)! .

(16)

Since((2k +i) · · · (2k +1)) and(i)! begin on2k boundaries,
each is divisible by two in precisely the same way and

(

2k+i
2k

)

is thus odd.

4. Properties of Generator Polynomial
Coefficients

In this section, the properties of generator polynomial
coefficients will be studied in terms of their relation to the
number of literals that are one. In the previous section,
a collection of combinatorial relations were developed to
ascertain whether a particular combination specification was
even or odd. This is relevant to studying of coefficients
because if we can relate the number of literals that are one to
cubes in polynomial coefficients, coefficient values as well
as their relationships.

We will begin with the following definitions.
Definition 1: An instance,ι, of a degreed cube is denoted

by Cι
d and is an instanceι of a product term composed of

d different literals.
Definition 2: A cube of degreed, Cι

d coversa cubeCs
e ,

e ≤ d when the literals that formCs
e are a subset of the

literals used to form toCι
d.

Definition 3: The quantity|A| is the number of literals
in the vectorA = a1a2 · · ·an that are one.
From these definitions, we can state the following two
lemmas.

Lemma 7: If the cubeCι
2k = 1 and j < k, then each

covered cubeCζ

2j = 1.
Proof: If Cι

2k = 1, then all of the literals in the cube must
be one. Furthermore, any cubeζ formed by a subset of these
literals must also be one soCζ

2j = 1.

Lemma 8: The cubeCι
2k covers

(

2k

2j

)

degree2j cubes
when the2j literals are subset of the2k literals used to
form Cι

2k .
Proof: Since literals in the degree2j are a subset of the
literals formed fromCι

2k , the total number of different cubes
is the different2j degree cubes selected from a pool of2k,
or

(

2k

2j

)

Next, the following theorem considers the case where
|A| = 2k and the impact on the degree2j, j ≤ k coefficients
F

(n)
2j .

Theorem 2: If|A| = 2k, exactly one cubeF (n)

2k evaluates

to one and results inF (n)

2k = 1. All other coefficients,F (n)
2j =

0 for j < k.
Proof: If |A| = 2k, then exactly one the cube,Cι

2k is one

and it is included inF (n)

2k , so thereforeF (n)

2k = 1.

For j < k, the coefficientF (n)
2j includes the contribution

of
(

2n

2j

)

cubes, all covered byCι
2k , or

(

2k

2j

)

are one. By

Lemma 4,
(

2k

2j

)

is divisible by2k−j and thus is even. Since
(

2k

2j

)

is even,F (n)

2j = 0.
One interpretation of Theorem 2 is that if|A| = 2k, all

smaller cubesCζ

2j that are formed from the same literals are
covered and effectively masked out because the total number
of these smaller cubes is even. Next, we generalize this result
for cases where|A| 6= 2k in the following two corollaries.

100 Int'l Conf. Computer Design |  CDES'12  |



Corollary 1: For 0 ≤ i < 2k, if |A| = (2k + i), then
F

(n)

2k = 1.

Proof: Since(2k +i) ones cover
(

2k+i
2k

)

degree2k cubes and
each of these2k cubes is one, then the number of degree2k

cubes are odd by Lemma 6, andF
(n)

2k = 1.
Corollary 2: If |A| = (2k, 2k+1), one cubeCι

2k covers
2k literals and all cubes composed of these literals. The
remaining |A| − 2k literals are disjoint from Cι

2k and
uncovered.
Proof: By Corollary 1, an odd number of cubes are one
in the coefficient F (n)

2k . Without loss of generality, we
select one representative cubeCι

2k and the remaining even
number of cubes effectively cancel one and other out. By
Theorem 2, all lower order cubes covered byCι

2k make
no contribution to their respective lower order generator
polynomial coefficients. The remaining|A| − 2k uncovered
literals, Ad, are disjoint from the representative2k literals.

Corollary 3: The disjoint literals from Corollary 2,Ad,
form a lower order generator polynomial representative of
its constituent disjoint literals.
Proof: The original general polynomial was given in (4).
Factoring out the contribution of the2k literals that were
one leaves a generator polynomial with|Ad| = |A| − 2

k

factors.
We can use Corollaries 2 and 3 as a sieve to associate

literals that are one with power of two degree generator poly-
nomial coefficients. At this point, we are ready to present
the main result of this paper in the following theorem.

Definition 4: km is the largest power of two such that
2km does not exceedn or 2km ≤ n < 2(km−1).

Theorem 3: For a given assignment of the literals
a1a2 · · · an, the coefficients fromF (n)

2k for k ∈ {km, ..., 0}
encode a binary number which is the number literals that
are one and is expressed as

|A| =

km
∑

k=0

F
(n)

2k 2k. (17)

Proof: Given 0 ≤ |A| ≤ n, wheren = 2(km+1) − 1. In the
trivial case where|A| = 0, all literals are zero and therefore
all F

(n)

2k = 0.

Next, we will assume that|A| = 2k. In this case, thekth

bit of the encoding is one and the rest are zero by Theorem 2
andF

(n)

2k = 1.
The general case can be shown by repeated application

of Corollaries 2 and 3. If|A| = (2k, 2k+1), for higher
contributions,[k +1, km] are zero because the cubes for the
respective generator polynomial coefficients must be zero.
By Corollary 2,F (n)

2k = 1 and it covers the included2k lit-
erals in the lower order generator coefficients and contributes
2k to the literal count. By excluding the covered cubes
by Corollary 2 and specifying a reduced order generator

polynomial of the remaining literals by Corollary 3, the
process is repeated until all literals are covered, resulting
in the literal count specified by (17).

From Theorem 3 it is useful to define the binary number
that gives the literal count as follows.

Definition 5: Concatenating the coefficients fromF (n)

2k for
k ∈ {km, ..., 0} results in the binary string

S = F
(n)

2km
‖ F

(n)

2km−1 ‖ · · · ‖ F
(n)
20 . (18)

5. Parallel Counter Synthesis
To this point, we have developed a novel mathematical

framework for describing parallel counters in the general
case. In this section, we address some basic implementation
issues. Because the generator polynomial is formed with
AND and Exclusive-OR operations, in the context of the
generator polynomial coefficients, we can specify AND
Exclusive-OR logic circuits to implement the respective
logic functions.

Theorem 4: The expressions that specifyS can be imple-
mented with combinational logic circuits.
Proof: This is shown by implementing the logic functions
defined in Theorem 3 with Exclusive-OR gates and two-
input AND gates.

Assume that we start with the generator polynomial
F (j−1). We can expressF (j) as

F (j) = F (j−1)(1 + ajr)

= F (j−1) + ajF
(j−1)r.

(19)

Equation (19) implies three different relations describing
the determination of the coefficients inF (j) depending on
the degree of the associated coefficient. For the first degree
coefficient,

F
(j)
1 = F

(j−1)
1 + aj . (20)

Indeed, in the general case, the first degree coefficient is the
Exclusive-OR of all literals. For the highest degree, degree
j case,

F
(j)
j = F

(j−1)
j−1 aj . (21)

In this case, the highest degree coefficient is the AND of all
literals. In the remaining cases, the coefficients are

F
(j)
k = F

(j−1)
k + ajF

(j−1)
k−1 , (22)

where k < j. Equation (22) indicates a primitive unit
consisting of an AND gate and an Exclusive-OR gate can
be used to construct arbitrary sized parallel counters.

Equations (20)-(22) describe how thejth degree generator
polynomial can be determined from the(j − 1)th generator
polynomial and literalaj. Furthermore, each additional
literal contributes a layer to a combinational logic circuit
to give the implementation for the next higher order polyno-
mial. Beginning with the first degree generator polynomial,

Int'l Conf. Computer Design |  CDES'12  | 101



we can construct the circuit for thenth degree generator
polynomial. The resulting parallel counter outputs are the
are simply the coefficients from the generator polynomial
identified in Definition 5.

Theorem 4 can be used to describe all the circuitry
necessary to build the generator polynomial coefficients in
the general case. Indeed, the actual circuit can be pruned by
making a couple of observations. First, given2km ≤ n <

2km−1, only the coefficients up to2km need be considered.
In addition, coefficients not contributing to coefficients iden-
tified in S may be pruned as well.

The mathematical formulation just presented forms the
basis for the synthesis of parallel counters. Because the
mathematics employs AND and Exclusive-OR operations for
the expressions, these can be mapped directly to the imple-
mentation. Figure 1 gives a gate level schematic for a (7,3)
parallel counter. In addition, this figure is labeled to show
the generator polynomial coefficients used to synthesize the
circuit. Parts of the circuit that do not contribute to the count
are highlighted in gray and can be pruned from the circuit
representing the generator polynomial.

6. Conclusion
In this paper, we present a novel formalism to describe

parallel adders using a GF(2) generator polynomial expan-
sion. We have proven several useful properties that result
from studying the nature of the polynomial coefficients. In
particular, by selecting the coefficients that are associated
with a degree that is a power of two, the parallel counter
encoding for the literals results. Since the GF(2) system
is based on AND and Exclusive-OR operators, we can
further specify and synthesize parallel counter circuits of
any order. Future efforts will include analysis and research
into optimized parallel counter circuits.

References
[1] E. E. Swartzlander, Jr, “Parallel counters,”IEEE Transactions on

Computers, vol. C-22, no. 11, pp. 1021–1024, November 1973.
[2] ——, “A review of large parallel counter designs,” inProceedings of the

IEEE Computer Society Annual Symposium on VLSI Emerging Trends
in VLSI Systems Design (ISVLSI’04), 2004.

[3] L. Dadda, “Some schemes for parallel multipliers,”Acta Frequenza,
vol. 45, pp. 574–580, 1965.

a 5a 4

a 6

a 7

F(7)
7

F(7)
6

F(7)
5

=S F(7)
4

F(7)
2

F(7)
1

F(7)
1

F(7)
2

F(7)
4

F(7)
3

F(6)
3

F(6)
4

F(6)
2

F(6)
1

F(5)
1

F(5)
2

F(5)
4

F(5)
3

F(4)
3

F(4)
2

F(4)
1

F(4)
4

F(3)
2

F(3)
1

F(2)
2

F(2)
1

F(3)
3

F(5)
5 F(6)

5

F(6)
6

a 2a 1 a 3

Fig. 1

(7,3) PARALLEL COUNTER. NOTE THE PRUNED COMPONENTS(GRAY) AND THE GENERATOR POLYNOMIAL COEFFICIENTS.

102 Int'l Conf. Computer Design |  CDES'12  |



Performance Bound Energy Efficient L2 Cache 

Organization for Emerging Workload for Multi-Core 

Processor: A Comparison of Private and Shared Cache 
 

Ramya Arun and Eugene John 

Department of Electrical and Computer Engineering 

University of Texas at San Antonio,  

One UTSA Circle, San Antonio, TX 78249, U. S. A. 

 

 
Abstract - While multi-core design brings opportunity for 

more performance and power efficiency, there are 

performance challenges as the number of cores increase. This 

increase in performance can only be harnessed when issues 

like memory speed bottleneck and decreasing average cache 

size per core are overcome.  The target applications must be 

known to maximize the performance improvements through 

increasing parallelism and cache hit rates. Also applications 

require highly diverse cache configurations for optimal 

energy consumption in the memory hierarchy to support their 

implementation. In this paper various cache organizations for 

multi-core processors are simulated and their performance 

and energy tradeoff are studied for emerging workloads. 

Finally, the trend in performance and energy consumption for 

the optimized cache configurations with increasing number of 

cores is analyzed. 

Keywords: L2 cache, PARSEC benchmark, Multi-core, 

Energy efficient cache, Workload performance optimization 

 

1 Introduction  

The challenge of every microprocessor designer is to 

improve the processor performance. The quest for better 

performance gives rise to various challenges. The processor 

speed is increasing due to advancement semiconductor 

technology and due to instruction level parallelism, among 

many other factors. These are multiplicative and increases the 

speed of processor tremendously. But the performance 

improvement is not only dependent on the speed of the 

processor but also greatly dependent on the speed at which 

memory components can supply instructions and data. Modern 

microprocessors get faster at an average rate of 60% per year 

while system memory speed increases by only 7% per year 

[1]. This performance gap can to a certain extend be bridged 

by good cache design. 

In the past decade the performance of a processor was 

synonymous with clock frequency. Thus the quest to increase 

operating frequency has increased the power consumption of 

the processor. Power consumption increases linearly with 

frequency. Memory can consume as much as 50% of the 

system power in a microprocessor. Thus memory organization 

is not only a performance bottleneck, but also a major factor in 

efficient power design. 

 

2 Background and Motivation  

Memory bandwidth can be increased by implementing 

multiple main memory ports and using large number of 

memory banks. Thus memory bandwidth bottleneck is not a 

main memory problem but is an issue due to interconnect. The 

problem lies in how the memory units get interfaced to the 

cores. 

The main performance challenge of increasing number of 

cores is the network that connects the various cores to each 

other and the network connecting core and main memory. 

Multi-core systems rely on buses or rings for interconnects. 

Increasing the number of cores demand data at a higher rate.  

But interconnects don't scale and hence becoming a 

bottleneck. This slows overall system performance. Memory 

bandwidth problem can be mitigated by distributing caches 

along with the cores [2].  

The private cache will have smaller hit access time and 

smaller energy per access. Hits to the private partitions are 

fast, while hits to neighboring partitions are slower. If the 

threads running in different core have independent data needs 

then this type of partition will evolve as the best configuration. 

Dedicated cache provides rapid access for each core as it is 

good for threads with strong locality and increases memory 

bandwidth. As number of cores increases the average cache 

size per core will decrease. Number of cache blocks per core 

will be reduced which causes additional capacity and conflict 

misses. Potential solutions for this problem are to increase the 

number of cache blocks by increasing cache sizes and 

reducing cache block size and by increasing the level of 

associativity. Limitations of these solutions are:  larger the 

cache size larger the power dissipation and chip area. Larger 

also means slower, sometimes limiting the clock rates of the 

cores. 

As the transistors are scales down in size architects can 

integrate more number of cores in the same area which was 

occupied by a single core of older technologies.  As the 

number of cores increases the available cache space has to be 

Int'l Conf. Computer Design |  CDES'12  | 103



shared among the processors thereby increasing the chances of 

cache miss. This problem can be dealt by using shared cache. 

Cache can be dynamically partitioned [3] and the thread that 

needs more workspace can be allocated more space, which 

would reduce the cache miss rate.  

Shared cache also has larger hit access time and higher 

energy per access. Flexible cache sharing can also introduce 

complexities like requiring tremendous OS work when 

running multi-programs concurrently, increased hardware and 

architecture complexities like control complexity, coherence / 

consistency protocol complexity, and block replacement 

complexity. Private and shared cache configurations have the 

advantage of one as the disadvantage of the other and vice 

versa. Hence they prove to be best candidates to be evaluated 

and compared. 

Further, cache architecture and memory technology can 

be selected to improve access latency. Alternately slow cache 

with high hit-rates can yield the same or better speed-up than 

fast cache with low hit-rates. Hit-rate is predominantly 

impacted by the application memory access pattern, the cache 

organization, and the cache size. This fact can be used to build 

multi-level cost efficient cache hierarchies. Cache architecture 

and memory technology can be selected to improve access 

latency, data transfer speed and bandwidth. Even different 

phases of the same application may benefit from different 

cache configurations in each phase. Recent technologies have 

enabled the tuning of cache parameters to the needs of an 

application. Core-based processor technologies allow a 

designer to designate a specific cache configuration. 

Additionally, processors with configurable caches are 

available that can have their caches configured during system 

reset or even during runtime. Such configurable caches have 

been shown to have very little size or performance overhead 

compared to non-configurable caches [4]. 

In this paper we compare the two cache configurations – 

private and shared by addressing the two microprocessor 

challenges mentioned earlier.  The performance and power 

consumption characteristics for various cache configurations 

are simulated and analyzed.  

 

3 Methodology  

Architecture simulated: 

The design of L2 cache has become very important 

because of the large die area it occupies. There is a tradeoff 

between cache latency and hit rate. Larger caches have better 

hit rates but longer latency and power dissipation. Cache 

hierarchy used here is separate L1 data and instruction cache. 

L2 unified cache private and shared. 

Symmetric multiprocessor (SMP) is the most common 

architecture used today. It is a system with multiple identical 

processors that share main memory and controlled by a single 

OS instance. The multi-core used for analysis in this paper is 

SMP. It is created by duplicating the entire processor core 

with almost all of its subsystems on a single die and they often 

have caches sufficiently large to accommodate most of their 

working sets.  

Simulators Used:   

(1) Multi2Sim 2.3 which is a simulation framework modeling 

superscalar, multithreaded and multi-core processor [5]. It can 

run programs compiled for the x86 architecture. Memory 

hierarchy with the MOESI cache coherence protocol. 

Interconnection network simulation with bus and P2P 

topologies. 

 

(ii) ACTI 6.5 which is integrated cache access time cycle time 

area, leakage, and dynamic power model [6]. 

 

Multi-core performance fully harnessed by 

parallel workload: 

      The full potential of multicore processors can be harnessed 

when the application running on them shows parallelism. 

Ideally n cores can yield n times the performance.  However, 

this only applies to applications with inherent parallelism; 

multicore performance on a single sequential application 

might be worse than that of a high-powered sequential CPU.  

       To achieve a speedup of 80 with 100 processors 

according to Amdahl’s Law the fraction of the original 

computation that can be sequential is 0.25% 

 

        

 

 

 

 

Today’s applications and workloads have ample parallelism 

Many applications like networking (like IP forwarding), 

wireless (Viterbi decode and FIR filters), security firewalls 

(AES), and automotive applications (engine control) 

demonstrates parallelism properties. Emphasis on parallel 

programming is increasing as the performance improvement 

due to hardware advances are slowing down. Hence the 

performance and energy analysis is done with parallel work 

load on the processors. 

       Same amount of workload is allocated to each core. For 

example, to tune a cache for quad-core processor, four threads 

each comprising of same workload is created and one thread is 

run per core. This enables the energy consumed to be 

normalized per core. Also, the creation of independent process 

threads can reduce the interaction of threads on shared data 

and also will reduce the impact on hit rate due to inter 

processor communication. By eliminating the effect of inter 

99.75%  0.9975Fraction

)Fraction(1
100

Fraction

1
    80

Parallel

Parallel
Parallel







(1) 

104 Int'l Conf. Computer Design |  CDES'12  |



processor communication, the effect of data bandwidth 

between on-chip cache and off-chip memory with the increase 

in number of cores can be analyzed clearly. 

 

Benchmark 

PARSEC - Princeton Application Repository for Shared-

Memory Computers has programs that focus on emerging 

workloads and represents next-generation shared-memory 

programs for chip-multiprocessors [7]. Bodytrack benchmark 

chosen has working set no larger than 16 MB and well suited 

for cache capacity of the latest generation of SMPs. 

 

Procedure 

Optimal cache size selection is based on the fact that too 

large of a cache results in cache fetches consuming 

excessively high energy and access latency [8]. Too small of a 

cache could also result in wasted energy due to thrashing in 

the cache. By increasing the associativity for certain 

applications the hit rate can be improved. In some 

applications, the higher associativity would cause wastage of 

energy as set-associative cache consumes higher power than 

direct-mapped cache. When dealing with many memory 

accesses with sequential addresses large caches line size are 

advantageous. Miss penalty, is increased since the data 

brought into the cache is more. As the line size increases, the 

number of blocks will decrease. 

Applications require highly diverse cache configurations 

for optimal energy consumption in the memory hierarchy. 

Cache memories should satisfy certain performance bound 

requirement by the applications while the power is being 

lowered. In short size, associativity and line size of the cache 

should reflect the working set of the application. 

Various cache configurations are simulated for Uni-core, 

dual-core, quad- core and octa-core with private and shared 

configurations respectively. Cache size, cache line size (32 

bytes, 64 bytes) and associativity (direct mapped, 2 way 

associative, 4 way associative and 8 way associative) are 

varied and performance and energy tradeoff are studied for 

workload  bodytrack benchmark.Performance bound energy 

efficient L2 cache configuration for the workload is selected 

by analyzing  static energy consumption, dynamic energy 

consumption, total energy consumption and average memory 

access time. From these data Energy-Delay tradeoff 

characteristics is generated and analyzed. The most energy 

efficient cache configuration under best application 

performance is chosen. This is done by using the performance 

and energy metrics. 

 

 

 

Performance Metrics 

Average memory access time is used as the performance 

metric. This parameter is closely related to the actual number 

of cycles if the application is memory-intensive. The average 

memory access time is calculated according to the formula 

Average memory access time = hit time + miss rate × miss 

penalty 

Hit time is calculated from cacti while miss rate is 

calculated from multi2sim. The miss penalty is 40 times 

longer than the hit time [9]. 

 

Energy Metrics  

The total energy is the sum of dynamic and static energy 

given by the equation  

Etotal = Edynamic + Estatic. 

Dynamic energy is dependent on the total number of 

cache accesses and the number of cache misses and the energy 

per-access. The energy consumption for a miss includes the 

energy for accessing off-chip memory, energy for the 

microprocessor when it is stalled due to cache misses and 

energy to fill the cache with a new block. The energy due to 

cache miss is 100 times the energy spent for a hit [9]. Static 

energy is calculated using total number of cycles and static 

energy consumed per cycle. Total cache access is calculated 

using multi2Sim while the static energy is calculated from 

cacti. As the cache size increase the static energy per cycle 

(Estatic per cycle) increases and thus there is an increase in total 

static energy consumed by the benchmark.  

Different energy-performance graphs are generated for 

different cores, cache sizes, block sizes and associativities. 

From these graphs i.e. total energy and average memory 

access time (AMAT) graphs, optimal cache configuration is 

chosen for each type of core. The process of selecting the 

optimal configuration involves the selecting the range of cache 

size for the block size and associativity where the AAT is low. 

Then from the range of cache size the optimal cache size 

having the least energy value is selected.  

Energy delay metrics is given by the product of energy 

and average memory access time. These graphs are useful in 

choosing the optimal cache configuration for which the power 

consumption and delay are minimal. The cache configuration 

having the minimum energy delay metrics is the optimum 

cache configuration. 

 

4 Results and Analysis  

For all the cores, block size 64 showed good performance 

characteristics and their corresponding energy consumption 

values scored better than the 32 byte line caches. Associativity 

2 and 4 showed good energy delay metrics when compared to 

(3) 

(2) 

Int'l Conf. Computer Design |  CDES'12  | 105



the other two associativities. The cache size for which the 

performance and energy are optimum are selected and 

tabulated in Table1 and Table 2. 

 

Table1 Cache configuration optimized for performance 

and energy - Associativity 2 

  Associativity 2 

  

Size 

(kB) AAT ns Energy (nJ) 

Unicore  16 1.5231 7671.3896 

Dualcore 

Private 16 1.2094 7649.8689 

DualCore 

Shared 32 2.2008 39427.325 

QuadCore 

Private 32 1.669 30747.334 

QuadCore 

Shared 64 2.8625 80345.983 

Octacore 

Private 64 1.663 62220.956 

Octacore 

Shared 128 4.0208 286938.77 

 

 

Table2 Cache configuration optimized for performance 

and energy - Associativity 4 

  Associativity 4 

  

Size 

(kB) 

AAT 

(ns) Energy (nJ) 

Unicore  32 1.9257 8043.3855 

Dualcore 

Private 32 1.8775 11668.27 

DualCore 

Shared 64 2.393 50849.715 

QuadCore 

Private 64 1.8987 23778.883 

QuadCore 

Shared 128 2.9187 87552.418 

Octacore 

Private 128 1.8625 46865.048 

Octacore 

Shared 256 3.858 390748.06 

Cache Size 

The scaling of cache size in private L2 cache is linear but the 

shared caches show a super linear increase. This signifies that 

the required cache area increases super linearly with increase 

in number of cores. 

 

Figure1: Cache size trend for private and shared L2 cache 

increasing number of cores  

 

Average Memory Access Time (AAT) 

In the graphs above private cache seems to perform better. 

The AAT seems to increase linearly for shared cache while 

private cache seems to have a very slight increase in AAT with 

increase in number of cores. 

 

Figure2: AAT trend for private and shared L2 cache with 

increasing number of cores  

For shared cache the access latency increases as its size 

keeps doubling with number of cores. Total L2 cache size for 

the private cache configuration doubles with increase in the 

number of cores but the private L2 cache dedicated to each 

processor is of the same size (8k). L2 cache access latency for 

the private partition remains the same as the number of cores 

106 Int'l Conf. Computer Design |  CDES'12  |



increase. As there is less true sharing of data between the 

different threads most of the L2 cache accesses belong to the 

private cache partition Another reason for this trend is the 

low memory bandwidth for shared cache and as the private 

cache can supply more data to the processor cache misses are 

reduced. Miss penalty is approximately 40 times that of hit 

time. 

 

Energy Consumed 

For shared cache energy increases exponentially with doubling 

the number of cores and doubling the workload. For private 

cache the energy increases linearly. The reason for this is the 

high energy consumed for a miss and hit for a larger cache 

when compared to a smaller cache. As the total area of private 

cache is divided into as many blocks as there are cores, the 

effective capacitance for the private cache block is less than 

the total capacitance of a shared cache. Hence the energy 

consumed for miss and hit for a private cache is less. Another 

reason for more energy spent by a shared cache is due to the 

increased cache misses due to the bandwidth reason as 

mentioned earlier. Energy consumed for a miss is 

approximately 100 times when compared to the energy 

consumed for a cache hit. 

 

 

Figure3: Energy consumption for private and shared L2 

cache with increasing number of cores 

 

Figure 4: Energy consumed normalized per core 

 

Again the private cache scores better in terms of Energy 

per core as the energy hit is smaller for smaller cache sizes. 

Banked cache can be used to reduce energy consumption in 

shared cache to reduce this effect.  

Private L2 cache size is half the size of shared L2 cache 

for all the four types of multi-core processors i.e. 50 % 

savings in cache area. In the case of parallel threads with no 

data sharing there are more conflict misses in a shared cache 

than a private cache. For set associative or direct mapped 

block placement strategies, conflict misses occur when several 

blocks are mapped to the same set or block frame, also called 

collision misses or interference misses. This is dependent on 

the degree of data shared between the threads i.e. one thread 

can replace the data needed by another thread. Using higher 

associativity can minimize this effect but higher the 

associativity, higher the access time and counteracts the 

improvement provided by it. 

Performance bound energy efficient cache size for private 

cache configuration for dual-core, quad-core and octa-core are 

16k, 32k and 64k respectively which translates to dedicated 8k 

L2 cache block per core. So the access latencies for these 

blocks are the same. Work load on each processor is the same 

and the cache miss rate should be approximately same. From 

the graph it can be seen that a quad-core has a little more 

delay than the dual core. As the processes on each processor is 

independent the coherence complexities is mainly due to false 

sharing rather than true sharing. 

The energy consumed by private L2 cache for dual core is 

only 20% of the energy consumed by shared L2 cache. For 

quad-core private L2 cache consumes 38% of that consumed 

by shared L2 cache. Octa-core private cache consumes 22% of 

shared L2 cache. Average of 27% of shared cache’s total 

energy being consumed by a private cache. Energy saved is 

73% in the case of private cache when compared to the shared 

cache. This ideal environment power savings percentage 

Int'l Conf. Computer Design |  CDES'12  | 107



shows a good scope of energy savings in the real time 

environment. 

 

5 Conclusion 

In this paper various cache organizations are simulated for 

multi-core processors and their performance and energy 

tradeoff are studied for emerging workload. The trend in 

performance and energy consumption for the optimized cache 

configurations with increasing number of cores is also 

analyzed. 

For parallel workloads with little data sharing when the 

number of core is small, shared cache can be used and 

performance and energy dissipation as close as or better than 

private cache can be achieved by using techniques such as   

dynamic cache tuning and dynamic cache partitioning. As the 

number of cores increase the energy consumption increases 

exponentially and the performance increase linearly for a 

shared cache system. This is mainly due to the increase in 

mismatch between the processor data consumption and 

memory data supply rate. For a single memory multiprocessor 

this difference can be eliminated by using private cache and 

good off-chip memory to on-chip network. To make this type 

of multiprocessor design work efficiently, cores should be 

allocated the most independent processes that tend to share 

less data. Thus as the number of cores increase in a chip 

multiprocessor private L2 caches should be used instead of a 

shared cache when the workload shows ample parallelism and 

the threads don’t share much data. 

 

6 References  
[1] Jurgen Reinold, “Performance Implications of Next-

Generation PowerPC Micorprocessor Cache Architecture”, 

IEEE Proceedings of COMPCON ’97.  

[2] A. Agarwaland M. Levy, “Going Mulitcore Presents 

Challenges and Opportunities”, EE Times Design, 

http://www.eetimes.com/design/ signal-processing-

dsp/4007064/Going-multicore-presents-challenges-and-

opportunities. 

[3] Ed Suh, L Rudolph, S Devadas, “Dynamic Cache 

Partitioning for Simultaneous Multithreading Systems”, 

Proceedings of  International Conference on Parallel and 

Distributed Computing and Systems 2001, August. 

[4] Michael Zhang and Krste Asanovi´c, “Victim Migration: 

Dynamically Adapting Between Private and Shared CMP 

Caches”. 

Implications”, Princeton University Technical Report TR-811-

08, January 2008. 

[5] R. Ubal, J. Sahuquillo, S. Petit and P. L´opez, “Multi2Sim: 

A Simulation Framework to Evaluate Multicore-Multithreaded 

Processors”, Proc. of the 19th Int'l Symposium on Computer 

Architecture and High Performance Computing. 

 [6] N Muralimanohar, R Balasubramonian, N P. Jouppi, 

“CACTI 6.0: A Tool to Model Large Caches”, Published in 

International Symposium on Microarchitecture, Chicago, Dec 

2007. 

[7] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh and 

Kai Li, “The PARSEC Benchmark Suite: Characterization and 

Architectural Implications”, Princeton University Technical 

Report TR-811-08, January 2008. 

[8] Paul Sweazey and Alan Jay Smith, “A Class of Compatible 

Cache Consistency Protocols and their Support by the IEEE 

Futurebus”, 1986, IEE Transactions. 

 [9] Y Leipo, S K Lam, T.Srikanthan, Wu Jigang “Energy 

Efficient Cache Tuning with Performance Bound”, 

Proceedings of the Third IEEE International Workshop on 

Electronic Design, Test and Applications (DELTA’06). 

 [10] A Gordon-Ross, F. Vahid and N.D.Dutt, “Fast 

Configurable-Cache Tuning With a Unified Second-Level 

Cache”, IEEE Transactions on Very Large Scale Integration 

(VLSI) systems, vol. 17, no. 1, January 2009. 

[11] P. Stenstrom, “The Paradigm Shift to Multi-Cores: 

Opportunities And Challenges”, Appl. Comput. Math. 6 

(2007), no.2, pp.253-257.   

[12] William James Dally and Brian Towles “Principles and 

Practices of Interconnection 

Networks”, Morgan Kaufmann, 2004. 

 [13] Ian K. T. Tan, I Chai, P K Hoong, “Pthreads 

Performance Characteristics on Shared Cache CMP, Private 

Cache CMP and SMP”, 2010 Second International 

Conference on Computer Engineering and Applications. 

 [14] Ed Suh, L Rudolph, S Devadas, “Dynamic Cache 

Partitioning for Simultaneous Multithreading Systems”, 

Proceedings of  International Conference on Parallel and 

Distributed Computing and Systems 2001, August. 
 

108 Int'l Conf. Computer Design |  CDES'12  |



Simplified FPGA Design with Robei 
 

Guosheng Wu 

Robei LLC, Henderson, NV, USA  
robei@robei.com 

 

 

Abstract – Robei is a tiny cross platform FPGA design tool 

that aims to simplify design procedure, transparent 

intellectual properties and reduce complexity.  It makes FPGA 

design like playing with boxes by breaking down hardware 

into three basic elements: module, port and wire. Through 

these elements, engineer can implement either top-down or 

bottom-up design. Standard Verilog code can be integrated 

with other EDA tools generated from design diagram. Robei 

also runs on embedded platforms, which makes it distinctive 

from other EDA design software. 

Keywords: Robei; FPGA; Verilog; EDA; Simulation;  

 

1 Introduction 

  FPGA is a technology intensive field full of innovations. 

Because of its low cost, easy to change and short time to 

market advantages, plenty of companies and individual 

engineers choose it to prototype products. Hardware engineers 

are focusing on developing their new designs in programming 

languages like VHDL and Verilog [1].   

 Although the future is very bright, there are still some 

obstacles that prevent FPGA market from fast growing, like 

high background requirement, opaque intellectual properties, 

and huge, complexity design tools. First of all, FPGA design 

requires not only knowledge of physics and circuits, but also 

digital design and logic synthesis. However, most of such 

knowledge is offered in universities and graduate schools, 

which limits the market growing. Second, FPGA tools are 

unique to each other. In order to implement a project on 

certain FPGA chips, the designer must stick to FPGA vendor's 

software and intellectual properties. Design engineers need to 

spend a lot of time to get familiar with these tools for the first 

time. Third, FPGA tools are huge in size and complex in 

contents. Current size of FPGA design software already 

counts in gigabytes. Bugs are increasing as the software size 

increase, which lead to the phenomenon that most engineers 

choose to use older version of design tools. Because there are 

so many options and features in design tools, which already 

beyond engineers' play-to-learn ability, so FPGA vendors 

need to spend a lot of time and money on training customers. 

 On the other hand, the successful stories of Apple's iOS 

and Google's Android [6] on mobile platforms proved that 

user interface become more and more important for 

customers. A lot of software companies already transferred 

their products from personal computer to mobile platform. 

However, FPGA design on mobile platform is still a challenge 

due to the high complexity and huge size of FPGA design 

tools. 

 
Fig.1 Robei user interface 

 
 This paper proposes a cross platform FPGA design 

software named Robei, shows in Fig.1. It is based on the most 

popular cross platform GUI framework, QT [7] which is 

already ported to iOS and Android platform. Robei can be re-

compiled on many platforms without much modification. It 

aims to simplify user interface for FPGA design, transparent 

intellectual properties and reduce design complexity. The 

modern user interface of it combines diagram design method 

to represent circuit connections and coding method for 

algorithm inputs. Robei is designed to be as simple as possible 

for engineers. Let them mange in 15 minutes as long as they 

are familiar with Verilog language. Any pre-designed and 

system provided models are transparent to users. Property 

editor offers the most convenient method for viewing and 

modifying properties for each element. There are only three 

elements to representing the circuits: module, port and wire. 

By simply playing with these elements, FPGA designers can 

construct project by either bottom-up or top-down mechanism 

easily.  

 The remainder of this paper is organized as follows: 

element description is illustrated in Section 2; Code 

Int'l Conf. Computer Design |  CDES'12  | 109



generation is presented in Section 3 and a simple FIR filter 

design example is depicted in Section 4; screen captures of 

Robei running on Android platform is shown in section 5; 

conclusions and future work are given in Section 6. 

2 Robei Elements 

 Robei employs three elements to represent Verilog 

components in hardware design: module, port and wire. In 

Verilog, circuits are represented by a set of "modules". A 

module may be only a gate, a flip-flop, a register, but also can 

be an ALU, a controller or a SOC system. We can consider a 

module as an abstract chip, which have different ports (pins) 

to communicate with other chips. A finished design module 

can be considered as model, which locates in "Toolbox" area 

and can be reused. Port is the interface channel for each 

module and model. Wire is used to connect ports on different 

module or model for signal transmission.  

 

2.1 Module 

 In Robei, a module, the basic in a design, can be 

considered as a black box. Inside this box, designer can place 

ports algorithm codes and models. Each module can have zero 

or more ports for communication with other modules or 

models. The code view tab allows engineers to add or modify 

algorithm code easily to realize certain behaviors. 

 
Fig. 2 module and model: only the biggest rectangle 

(coder_example) is module, the other smaller rectangles and 

rectangles in "ToolBox" are all models, which are pre-

designed modules. 

  

 Based on usage status, a module can have different 

types. Currently under developing one has the type of 

"module", but once it is used in other modules, the type will 

automatically change to "model" as only certain properties 

can be modified in order to keep consistency with previous 

design. Fig.2 illustrates "module" and "model". There is 

another special type named "testbench", which is the top level 

design with stimulate code for simulation. 

 

2.2 Port 

 A port may correspond to a pin on a chip, an edge 

connector on a board, or any logical channel of 

communication with a block of hardware. The detail 

properties are listed in fig.3. The type of port varies a lot as 

Robei supports many types in Verilog, like reg, wire, tri, 

supply, etc. There is "Datasize" option for port, which 

specifies the size of port if it is a bus. Some interesting 

features worth to mention are port can only slide on edges of 

module, and when module moves, port keeps sticking to edges 

all the time.   

 
Fig. 3 Port properties 

 

2.3 Wire   

 
Fig. 4 Wire 

 

 Wire connects two ports and responses for signal 

transmission. Most of time, wire will inherent the color and 

data size from the first connected ports (as shown in fig.4). 

Based on different data size, wire has different thickness. 

Robei helps to check whether two connected ports have same 

data size or not when simulation start. 

 Module, port and wire are basic elements and used very 

often. Robei break down FPGA structure level design to these 

simple elements so even high school student can play with it. 

110 Int'l Conf. Computer Design |  CDES'12  |



3 Code Generation 

  The simplified user interface helps designer to reduce the 

code input and avoid mistakes. Instead of typing complete 

code for a project, hardware designers just need to write their 

core algorithm with code editor, while the interface design can 

be completed by playing with elements. For example, fig.5 

and fig.6 show a simple counter design and its core algorithm 

that requires user to type in. The code under "Code start here" 

are core algorithm part. The other part like parameters, port 

declaration, module instantiation and extra signal declaration 

are generated based on designed property by Robei.   

 

 
Fig. 5 Simple counter example 

 

 
Fig.6 core algorithm that requires user to type in (on left), and 

generated code by Robei (right).  Robei can generate code 

based the design diagram, while integrating with algorithm 

code from engineer. 

 

 Unlike Matlab toolbox [2], which encapsulates 

everything into its own model that makes custom model 

design complex, Robei displays every property (shows in 

property editor) to users. Users have the control of their own 

design. At the same time, model is transparent to users as they 

can view inside at any time by double clicking on it. 

 

4 FIR Filter Example 

 Finite Impulse Response (FIR), which is weighted 

summations of input sequences, has been widely used in 

digital signal processing because of its advantages of linear 

phase, inherently stability, less precision errors and efficient 

implementation [3, 4]. Equation 1 is mathematical 

representation of FIR filter. 





L

k

knxkhny
0

][][][                                  (1) 

Where ][nx  is input data at discrete time n , L is length of 

FIR filter, ][kh  is filter coefficient and ][ny is the output at 

discrete time n .  

 

   In this example, choose 3L , the other coefficients as 

2/1]1[,4/1]0[  hh and 4/1]2[ h to avoid floating 

point calculation. So the output sequence would be: 

]2[
4

1
]1[

2

1
][

4

1
][  nxnxnxny     

              ])2[]1[2][(
4

1
 nxnxnx            

   2)(  nf                                                         (2) 

Where ]2[]1[2][][  nxnxnxnf . In order to 

simulate the result accurately, instead of analyzing 

][ny response to ][nx , this paper analyzes the response of 

][nf  to input data sequence.  Design 

structure ][][ nfnx   shows in fig. 7. 

 

 
Fig. 7 FIR filter design example: there are two D flip flops to 

perform delay, and three multipliers with parameter of 1, 2, 1 

correspondingly. The "adder1" performs summation of three 

inputs.       

 

In order to verify the design, unit step response [5] is 

employed as stimulate for test bench. When 0n , 

]0[]0[ hf  , and ]1[]0[]1[ hhf   if 1n . The 

Int'l Conf. Computer Design |  CDES'12  | 111



relation between ][nf  and coefficients shows in equation 3 

when 1 Ln . 





L

k

L

k

khnukhnf
00

][][][][                         (3) 

 

  The output signal value proves statement above in 

simulation result (fig.8). 

 

 

 
Fig.8 Step response of FIR filter 

    

5 Embedded Platform 

 Thanks to Necessitas, which is the code name for porting 

of Qt to Android Operating System, and Verilog Behavioral 

Simulator (VBS) which is the first cross platform Verilog 

simulator designed by Jimen Ching, Robei is the first FPGA 

design tool that can perform simulation on embedded 

platforms like Android. Here are some images captured on 

android 2.3 platform when running. With Robei, developers 

can realize their design anywhere on mobile phones or tablets. 

 
(a) User interface 

 
(b) Waveform simulation 
Fig. 9 Robei on Android 

 

6 Conclusions 

 Robei starts a brand new way for FPGA design by 

providing simplified hardware design procedures, transparent 

property and incredible mobility.  The goal of this design tool 

is letting everyone to play with FPGA design at anywhere and 

increasing the innovations from new sources other than 

hardware engineers.  

 The design concept of Robei is not only suitable for 

FPGA design, but also feasible in other fields. In future, It 

will be improved and extended for other research and 

industrial field to provide more practical values. 

7 References 

 
[1] Chinedu O.K., Genevera E.C., Akinyele O.O., “Hardware description 

language (HDL): An efficient approach to device independent designs 
for VLSI market segments,”  IEEE International Conf. on Adaptive Sci. 
& Tech. (ICAST). Abujia, Nigeria, pp. 262–267, Nov. 2011.  

[2] Vila-Rosado D.N. and Dominguez-Lopez J.A., “A Matlab toolbox for 
robotic manipulators,”  Mexican International Conference on Computer 
Science. Guanajuato, Mexico, pp. 256–263, Sep. 2005.  

[3] Chandra A., Chattopadhyay S., Sanyal S.K., “An efficient algorithm to 
minimize the number of coefficients of an FIR pulse-shaping filter,”   
IEEE India Conf.. Kolkata, India, pp. 1–4, Dec. 2010.  

[4] Jongsun Park, Woopyo Jeong, Mahmoodi-Meimand, H., Yongtao 
Wang, Choo, H., Roy, K., “Computation sharing programmable FIR 
filter for low-power and high-performance applications,”  IEEE Journal 
of Solid-state Circuits. Vol.39, pp. 348–357, Feb. 2004.  

[5] Yutthagowith P., Pattanadech N., Kunakorn A., Phoomvuthisarn S., 
“Computer Aided-Program for Validation of Measuring System from 
Unit Step Response by Time Convolution Method,”  IEEE TENCON 
2005, Region 10,  pp. 1–6, Nov. 2005.  

[6] Paul K., Kundu T.K., “Android on Mobile Devices: An Energy 
Perspective,” IEEE Intern. Conf. on Computer & Inf. Tech. (CIT), 
Bradford, West Yorkshire, UK, pp. 2421–2426, Jul. 2010.  

[7] Lobur M., Dykhta I., Golovatsky R., Wrobel J., “The usage of signals 
and slots mechanism for custom software development in case of 
incomplete information,” Intern. Conf. On The Experience of Designing 
& Application of CAD Systems in Microelectronics (CADSM), 
Polyana-Svalyava, Ukraine, pp. 226–227, Feb. 2011.  

 

 

112 Int'l Conf. Computer Design |  CDES'12  |



SD-MARC: A New Multi-Processor Architecture 
 

A. Somdip Dey 
Department of Computer Science, 

 St. Xavier’s College [Autonomous]  
Kolkata, India. 

 
 

Abstract - In modern day, HPC (High Performance 
Computing) is applied to do massive scientific or huge 
computational works, but HPC architecture  mostly consist of 
computer clusters (series of computers connected to each other 
to solve a single problem / task). Thus it is problematic for 
many institutions or organizations to maintain a computer 
cluster for doing huge computation. So, with the advancement 
of technology and efficient multiprocessor architecture, it is 
possible to integrate thousands of processors in one computer 
system and apply that system for doing the huge computation. 
This paper basically provides the idea of a new model to apply 
multiple processors (in order of n2 (n x n) processors) in one 
computer system Architecture and how to implement the model 
to compute different problems faster than they can compute in 
reality; provided:  n>=4 and n=2m, where m=0, 1, 2, 3, 4 
…….. N. 

Keywords: Multiprocessor; High Performance Computing; 
Architecture; Matrix; Computer model; 

 

1 Introduction 
With the rising demand of Computational power, 

new architecture in multiprocessor system and 
technology advancement in multicore computers have 
been seen. This gave rise to High Performance 
Computing and parallel processor computer systems. 
Now a day huge processing power is required to compute 
and process a huge amount of data. So there is indeed an 
urgent need in advanced multiprocessor computer 
architecture to compute these huge amount of data within 
a short span of time.  

The objective of this paper is to provide an 
overview concept of a new architecture in Multiprocessor 
System and how this architecture, SD-MARC, is 
beneficial in terms of computation and how to implement 
it. 

2  The Architecture 
This section covers the details regarding the architecture 
of SD-MARC.  

Before moving on to SD-MARC, first let us see the 
various techniques and architectures used in 
multiprocessing systems. 

Multiprocessor architecture can be basically classified 
into: 

1. Symmetric Multiprocessing (SMP) 
2. Asymmetric Multiprocessing (AMP) 
3. NUMA (Non Uniform Memory Access 
Multiprocessing) 
4. Cluster Multiprocessing (CM) [Concept of Distributed 
Computing] 
 
SMP (Symmetric Multiprocessing): 

In a multiprocessing system, when all CPUs / processors 
are treated equally, then the system is called Symmetric 
multiprocessing system (SMP). In SMP two or more identical 
processors are connected to a single shared main memory 
(computer memory) and are connected by a single Operating 
System instance, i.e. monolithic kernel type of OS (Operating 
System) is used for this type of system to utilize the resources. 
Now a day most of the multiprocessor architecture uses SMP. 
In SMP the processors are either connected to each other buses 
or crossbar switches or on-chip mesh networks. 

 The advantages of SMP include a large global memory 
and better performance per power consumption by the system. 
SMP also provides simple node-to-node (processor to 
processor) communication. The main disadvantages of SMP 
include the fact that the memory latency and bandwidth of a 
given node can be affected by other nodes, and cache 
“thrashing” may occur in some applications. 

 
AMP (Asymmetric Multiprocessing): 

AMP (Asymmetric Multiprocessing) designs uses SMP 
hardware architecture where a common global memory is 
shared between the various processors. In AMP designs, 
application tasks are sent to the system’s separate processors. 
These processors may all be located on different boards or 
collocated on the same board, but each is essentially a separate 
computing system with its own OS and memory partition 
within the common global memory. One advantage of an AMP 
design is that asymmetric memory partitions can be assigned 

Int'l Conf. Computer Design |  CDES'12  | 113



from one large global memory, making more efficient use of 
memory resources and potentially reducing system cost. 

SMP architectures differ from AMP in that a single block 
of memory is shared by the multiple processors or by multiple 
cores on a single multi-core processor. A single OS (Operating 
System) image runs across all the cores enabling truly parallel 
processing. 

 
NUMA (Non Uniform Memory Access Multiprocessing): 

In NUMA (Non Uniform Memory Access) 
multiprocessing the memory access time depends on the 
memory location relative to a processor. In recent time 
processors work faster than the memories used by them, so 
there is a big gap in the speed of a processor and a memory. So 
in a multiprocessor architecture to get high performance, one 
person have to install high-speed cache memory and use 
advanced algorithm to reduce the cache-‘miss’. NUMA tries to 
solve this problem by providing separate memory for each 
processor, avoiding the performance hit when several 
processors attempt to address the same memory. 

 
CM (Clustered Multiprocessing): 

In Clustered Multiprocessing, many computers are 
loosely connected to each other, which forms computer cluster, 
and they work together so that in many respects they can be 
viewed as a single system. Usually the computers in a cluster 
are connected via high speed local area networks and this 
concept evolved from the concept of Distributed Computing, 
where different computers are connected to do one common 
task or achieve one same goal. In CM architecture we can see 
the use of master node and computing node, where the master 
node controls and distribute work (processes) to the compute 
node. 
 

In SD-MARC, we combine the logic and ideas of most of 
these multiprocessor architecture, so that a new powerful 
architecture can be made out of it and can be implemented to 
compute faster and save cost of implementation relatively. 

 
2.1 SD-MARC: 

A. The Basic Design of SD-MARC 

The basic design of SD-MARC consist of n2 (‘n x n’) 
number of processors. Here, in this architecture the 
arrangement of the processors can be thought of square matrix 
formation of ‘n x n’, where ‘n x n’ signifies the square matrix 
system in which the number of columns and the number of rows 
are equal to ‘n’ and, n>= 4 and n is even number, i.e. n=2m , 
where m= 1,2,3,4,5,…………… 

  So, from the above statement we get to know that the 
system consist of ‘n x n’ number of processors, as shown in the 
Fig 1.1, where the processors or the CPU (Central Processing 
Unit) are arranged in ‘4 x 4’ formation and the total number of 
processors in this figure is 16 processors / CPU: 

N.B.: In Fig 1.1 the number of processors in each row and 
each column are 4 and so it forms 4 x 4 multiprocessor 
system. From the figure Fig 1.1 we can see that 16 processors 
are arranged in 4 x 4 matrix formation and just like this ‘n x n’ 
number of processors can be arranged in the ‘n x n’ square 
matrix formation, where each row and each column contains 
‘n’ number of processors. 

Now this ‘n x n’ processor formation can be further 
divided into four divisions: Division 1, 2, 3, 4, where each 
division will have ((n x n) / 4) number of processors.  So for 
example, if a system consists of 16 (4 x 4) processors then 
each Division will have 4 processors in it, or, for example in a 
system of 36 (6 x 6) processors there will be 9 processors in 
each division. This concept of Division system can be clear 
from the Fig 1.2, where the Division System of the Processors 
in 4 x 4 processor system has been shown. 

Now along with this Division System we can use the 
concept of Computer Clusters. In Computer Clusters there is a 
concept of Master Node and Compute Node, where the 
Master node distribute the workload to different Compute 
node. Just like this concept, in the Division System of 
multiprocessor architecture, the concept of ‘Master 
Processors’ are implemented.  Each division of processors has 
a master processor, which distribute the workload of that 
division to the different other processors, namely called 
Compute Processors, in that division. So basically there are 4 
master processors in this multiprocessor architecture system. 

Each Division has the processors numbered in order, like, 
CPU 1, CPU 2,……… and out of these processors, one is a 
master processor of that division, which is denoted as M CPU, 
as shown in Fig 1.3. So in the first division, i.e. Division 1, 
there will be CPU 1 to CPU j, where ‘j’ is the last processor 
number in that division and the starting number of processor in 
the next division will be CPU j+1, which goes up to CPU k, 
where ‘k’ is the last processor number in the Division 2, and so 
on.  

In this system the 4 master processors are placed in side 
by side fashion, so that they can communicate with each other 
easily and very fast. The 4 master processors of 4 divisions 
communicate with each other time to time and synchronize 
among themselves the works / processes they are coordinating. 
The above mentioned concept can also be figured out from the 
Fig 1.3. 
 

B. Processor Architecture and Relation between each 
Processor 

 
     Each processor will have high speed register memories of 
their own along with L1 (Level 1) Cache memory. Two 
adjacent processors / CPUs will be having or sharing a L2 
(Level 2) Cache memory and then four adjacent processors 
will share L3 (Level 3) Cache memory. In Fig 2.1 we can 
visualize the concept clearly, where the relation between 
processors/CPU in terms of memory has been shown. 
    In modern world, the main computer memory can be 
classified basically in three ways:  

a. Distributed Memory 
b. Shared Memory 

114 Int'l Conf. Computer Design |  CDES'12  |



c. Distributed Shared Memory  
Mostly Distributed Memory and Distributed Shared Memory 
concepts are used in case of computer architecture, where 
each CPU has a private memory block of its own.  
    But in this architecture a concept of ‘Hybrid Memory 
Distribution’ is used. The ‘Hybrid Memory Distribution’ 
concept is:  A memory block will not be private only to one 
CPU but each memory block will be shared by four CPUs / 
Processors, as seen in the Fig 2.1.  

Since, four CPUs will be sharing only one memory, so 
there can be possibility of resource holding, which may give 
rise to Dead-lock situation. So to do away with that, each 
memory block will have memory address of its own and that 
memory address will not be same in any way in any of the 
other memory blocks. For example, in Memory 1the starting 
address is 1000 (Hex Address) and the end address in the 
memory is F000 (Hex Address), then the starting address in 
Memory 2 can be F001 (Hex Address) and the address in 
memory2 will never be the same as the addresses in Memory 
1. 

So from Fig 2.1 we can see that one memory is shared by 
four CPUs and these four CPUs form a ‘Block’. In Fig 2.1 we 
can see two blocks of CPUs, Block 1 and Block 2. Basically 
in this architecture the whole multiprocessor system is divided 
in ‘matrix’ system, then each matrix system is divided in four 
‘Divisions’ and at last each division has several Blocks. 

Now each block has a memory of its own which is not 
shared with other blocks or other CPUs of other blocks, and 
the addresses in the memory never coincide with the address 
of other memories of other blocks. 

  If a matrix system of multiprocessor is of such a form 
that   ((n x n) / 4) = ans, where ans is not perfectly divisible by 
4 again then that system must have a sinlge CPU / processor 
left out of the block formation. For example there are 36 
processors in a system then it is of form ‘6 x 6’ CPU system. 
Now if we form four Divisions then there will be 9 CPUs in 
each Division. And if we try to form Blocks out of each 
Division then we can see that only two blocks can be made in 
each Division and there will be one CPU left out of the block 
in that Division. Then in that case we will consider the last 
CPU as the Master CPU and will attach that CPU to the last 
block formed in that Division. This concept can be clear from 
the Fig 2.2. 
N.B.: In Fig 2.2 The ‘BUS’ means the Bus system through 
which each of the interaction of CPUs and memory system 
takes place.  
Since ‘6 x 6’ multiprocessor system is taken as an example so 
as from Fig 2.2 we can see that these two Blocks are in each 
Division and so there are 8 Computer Memory in the 
architecture. 

C. Interaction Between the Processors 
 

    In Fig 3.1 the interaction and communication between the 
processors are shown. In this multiprocessor architecture, all 
the Compute processors in a Division are connected to the 
Master processor. The Master processor of that Division is 
again connected to other Master processors adjacent to it. The 
Master processor of a Division controls and distribute 

workloads to other Compute processors, and the Master 
processors then communicate with each other to synchronize 
the tasks they have performed. When a Master Processor is 
assigned a work (process) to perform, it first breaks that work 
into several small processes (can also be denoted as ‘threads’) 
and assign these small processes to different Compute 
processors of that Division along with the instructions of 
fetching different memory addresses needed to perform the 
small processes. The Master processor keeps track of each 
task (thread) assigned to each Compute processor and the 
memory addresses accessed by those Compute processors. 
After the completion of each task (thread), each Compute 
processor synchronize their tasks (threads) with the master 
processor and free the memory addresses used for the 
threads, which are again being tracked by the Master 
processor. And then that Master processor synchronize the 
process completed by it with the other Master processors of 
other Divisions. 
 

D. Operating System to this Architecture 
 

   To utilize the computational capacities of the hardware of a 
computer an Operating System is most important. A kernel is 
a central component of an operating system. It acts as an 
interface between the user applications and the hardware. In 
most of the Computers in the world, either Micro Kernel or 
Monolithic Kernel type of Operating Systems is used. 
Monolithic Kernel can perform all the operations and consist 
of only one layer, i.e. in PCs (personal Computers) monolithic 
kernel is used to perform computation. And Micro Kernel can 
perform mainly few operations along with one global 
operation, i.e. it can perform one global process and other 
small low-level processes. Micro kernels are mainly used in 
Distributed Systems or Multiprocessor Systems. 
       Since, in this Architecture multiple processors are 
integrated in one single computer, so use of either of the two 
Operating Systems only will not be feasible to perform the 
processes. To solve this problem, a new concept of Operating 
System is introduced along with this architecture.  
    The new concept is that the system will have a basic 
monolithic kernel. This monolithic kernel will again have 
many small kernels (just like the micro kernels) inbuilt within 
it. These micro kernels will perform small tasks along with a 
global task and will be assigned to each Master processor. 
Since micro kernel can perform only one global process at a 
time, the Master processor can utilize this fact and perform 
that one global process at a time along with small other 
processes. This type of a Kernel is called a ‘Hybrid Kernel’. 
3 List of Figures: 

 
Fig 1.1: Figure shows  16 processors arranged in 4 x 4 matrix 

pattern. 

Int'l Conf. Computer Design |  CDES'12  | 115



 

 
Fig 3.1: The Interaction between CPUs / Processors in ‘4 x 4’ Processor System 

 
 

  
Fig 1.2: Division System in 4 x 4 Processor System 

 
 
 

 
Fig 1.3:  Division System with the concept of Master Processors and Compute Processors in (6 x 6) processor System 

116 Int'l Conf. Computer Design |  CDES'12  |



 
Fig 2.1: Relation between CPUs in terms of memory 

N.B.: R1 – R8 are Register Memories of the CPU 1 – CPU 8 
 

 
 

Fig. 2.2: Attachment of the M CPU (Master CPU) to the last Block in a division 
 

N.B.: R1 – R8 are Register Memories of CPU 1 – CPU 8; R9 is the Register Memory of M CPU 
 

Int'l Conf. Computer Design |  CDES'12  | 117



4 Few More Details 
A. Cooling of the System 

 
Since multiple processors are integrated within a single 

computer, it is obvious that the system will get very hot and 
will generate a lot of heat. So to deal with this problem high 
level of cooling system is needed to be installed within the 
system. Both Air Cooling and Liquid Cooling systems can be 
used to keep the computer cool and ventilate out the hot air. 

 
B. Need of Multiple Processors in one System 

 
In HPC (High Performance Computing) or in Super 

Computers mainly the concept of Computer Clusters are used 
to compute a task, where many computers are connected to 
each other via a network. But there is an ever growing 
demand of fast computers in todays world. If Computer 
Clusters are used then the system become huge to maintain 
and are also very costly economically. So if multiple (in order 
of hundreds or thousands) processors are integrated in one 
computer using nano-technology or recent technological 
advancement then it will be easier to manufacture smaller (in 
size) super computers and will be easier to maintain. If 
multiple processors are used in one system then it will be 
easier to compute and finish a task faster than it could be, and 
to make the system easier to be maintained. 

 
C. Use of A Single Computer Memory for 4 CPUs 

 
In this Architecture four CPUs (processors) share a single 

computer memory (RAM or Random Access Memory in 
general). If the concept of Distributed Memory System or 
Distributed Shared Memory System is used then the number 
of processors will have equal number of computer memory, 
and in this architecture it is of the order ‘n x n’ (n2) which is a 
very large number. So the number of computer memories 
used would have been n2 for ‘n x n’ number of processors 
and it would have made the system pretty large to maintain. 
To deal with this problem four CPUs share a single computer 
memory and for a system with ‘n x n’ number of processors, 
the number of computer memories needed in this architecture 
is ( abs[(n x n) / 4] * 4 ), where abs() denotes the absolute 
value or the integer value of a number, for example: 
abs(2.25)= 2. 
 

D. Architecture Usage and Future Scope 
 

Since, SD-MARC uses all the advantages of the different 
types of multiprocessor architecture system, it is beneficial to 
use and implement it, but still there’s a drawback of this 
architecture. There’s no Operating System till date to support 
this architecture. If this architecture is used in small systems 
or very few number of processors are used to built a 
multiprocessor system using this architecture, then there may 
be lack of performance, as it will be in a system with 
thousands of processors. 

 

5 Conclusion 
Since, this multiprocessor architecture, SD-MARC, is 

used in a single computer system, it can be used in any field 
of application, where intense computational power is needed 
in one single system. For example, this architecture can be 
used by hospitals to compute different problems and 
chemical structures of medicines, can solve and diagnose 
different diseases in very less amount of time. Even computer 
enthusiast can use this architecture to build their own 
Personal Super Computers and use those to compute time-
consuming problems in really less amount of time. 

  
6 References 

 
[1] W. Anderson, F. J. Sparacio, and R. M. Tomasulo, ‘‘The 
IBM System/360 Model 91: Machine Philosophy and 
Instruction-Handling,’’ IBM Journal of Research and 
Development,  Vol. 11, No. 1, pp. 8-24, January 1967.  

[2] Proceedings. Supercomputing '88 (IEEE Cat. 
No.88CH2617-9) ,November, 1988. 

[3] Norman P. Jouppi, ‘‘The Nonuniform Distribution of 
Instruction-Level and Machine Parallelism and Its Effect on 
Performance,’’ IEEE Transactions on Computers, Vol. 38, 
No. 12, pp. 1645-1658, December 1989.  

[4] Youngjin Kwon, Changdae Kim, Seungryoul 
Maeng, Jaehyuk Huh, “Virtualizing performance asymmetric 
multi-core systems”, International Symposium on Computer 
Architecture, pp. 45-56. 

[5] Rajkumar Buyya (editor): High Performance Cluster 
Computing: Architectures and Systems, Volume 1, ISBN 0-
13-013784-7, and Volume 2, ISBN 0-13-013785-5, Prentice 
Hall, NJ, USA, 1999. 

[6] Internet Source: 
http://www.intel.com/pressroom/archive/reference/whitepaper_
QuickPath.pdf [last visited 10/03/2012] 

[7] Internet Source: 
http://users.ece.utexas.edu/~bevans/papers/2009/multicore/Mu
lticoreDSPsForIEEESPMFinal.pdf [last visited 11/03/2012] 

 

118 Int'l Conf. Computer Design |  CDES'12  |



A New Technique To Use A Parallel Compiler for Multi-
core Microcontrollers 

 
A.  Somdip Dey  

Department of Computer Science, 

St. Xavier’s College [Autonomous] 

Kolkata, India. 

 
 

Abstract - Now a day multi-core microcontrollers are being 
used in various fields. Due to resource limitation of 
microcontrollers, programming them is difficult. This work 
presents a simple parallel compiler that can exploit multi-
core to speed up parallel tasks on a multi-core 
microcontroller. The parallel constructors are introduced. 
A scheme to use compiler directives to hint the compiler is 
discussed. Experiments on the real processors are 
performed to validate the scheme. The results show that the 
compiler can exploit multi-core to speed up the 
computation tasks on the target microcontroller. 

Keywords: multi-core microcontroller; parallel compiler; 
processing; multi tasking; 

 

1 Introduction 
  Microcontrollers are very interesting and fascinating 

due to their vast applications nowadays. They are used in 
many embedded systems from a tiny robot to a car and even 
an enormous airplane. New development of 
microcontrollers occurs at very fast pace. Currently multi-
core microcontrollers become available. However, 
programming model for such platform is still rare, 
especially the parallel compiler. This lack of proper 
compiler has hindered the use of multi-core 
microcontrollers. 

Many programming models exist for desktops and 
servers. For example, OpenMP [1], Data parallel [2], 
including Intel Threading Building Block [3]. They are not 
suitable to multi- core microcontrollers due to the limit of 
resource of the target architecture. In particular, we are 
interested in one cost- effective multi-core microcontroller 
from Parallax Inc., an eight-core processor called 
"Propeller"[4]. Its architecture is very unusual. It has a 
global shared memory with very slow access and fast but 
small local memory for each core (see Fig. 1). Its 
instruction set is tailored to some specific way of using 
individual core. All of these results in a rather difficult 
programming model for this architecture. 

The chip architecture was designed to have the 8 
parallel independent cores which named cog by Parallax 
Inc. There is 2KB internal memory or register in each core. 
The share memory of 32KB RAM and 32KB ROM are 
accessible through memory hub which grants access only a 
single core at a time starting from cog 0 to 7. All I/O pins 
are connected to every core. Input pins value can be read 
and output pins value can be written at any time but the 
output pins value is the logical "OR" value from all 8 cores 
as the output pins can be driven by those cores. 

This work presents a compiler of a parallel language 
targeted for Propeller. The approach we use in this work is 
to take a simple imperative language (in this case, a 
simplified C) and add some decoration to present a parallel 
constructor for a block of sequential code. The compiler 
will recognize this decoration and generates proper parallel 
code for that section. Of course, this approach has the 
limitation that the type of parallel constructor is limited. We 
show a number of useful constructors and their 
applications. 

The flow of the article is as follows. The next 
section discusses the target language, Spin [5], which is 
embedded with the processor. Section III explains the 
compiler. Section IV shows examples of the parallel 
constructors. The conclusion is given in the end. 

2 Propeller Spin Language 
Spin language is embedded as an interpreter in the 

microcontroller. This is the solution embedded with the 
chip. Its intention is to make available a language that is 
used to control and specify the parallel operations of its 
multi-core thus simplify how users can program many cores 
of the chip. The structure of a Spin program is as follows. A 
global variable is declared before functions then the 
constant declaration. Object modules, which are a kind of 
function library or the class in OOP concept, also can be 
declared for use as well. The main function has all local 
variables declared immediately after the function 
declaration. The body of the function then follows with the 
function's statement. 

Int'l Conf. Computer Design |  CDES'12  | 119



The Fig. 2 shows a simple program written in Spin to 
generate frequency specified by user at customizable 
starting output port 16. There is one global variable named 
"wait_delay" which will be initialized to be user delay and 
growing in each iteration. The loop is created by the 
command "repeat" with a local variable i which will be 
used to step the output port forward. The value of the pin 
port A which is the pin 0 to 31 is set by the register name 
OUTA. The port is specified by the array variable indexing. 
The counter register CNT is added to the delay time and put 
as a parameter of the "waitcnt" function to interrupt the 
hardware to stop. 

Special commands are used to start and stop a 
Propeller core. The command "cognew" initializes a new 
available core by uploading the corresponding source code 
to be run (similar to spawning a thread). The other 
command "coginit" related to the core initialization 
command is used when programmer need to identify a 
specific core of its availability. Both commands require the 
parameter to be used as a stack memory which is used for 
temporary calls and expression evaluation when the core is 
starting. A suitable amount of stack space is necessary for a 
program on a core to properly run. Also to stop the running 
core, "cogstop" command is used. Fig. 3 shows an example 
for swapping the output using many cores. The coginit 
command is used to start the specified core with the swap 
function at the given pin port. 

3 Compiler For Parallel Programs 
The base-language for our compiler is a simplified C 

called RZ [6]. RZ is a small language. Its syntax is very 
similar to the language C (but without type). It is the 
language used in a teaching class about compiler. The full 
set of compiler source code and tools are available in our 
institution [7]. The new parallel operations are added into 
the language by using compiler directives scoped over a 
section of normal code. 

"#pragma parallel for" is used to specify parallel 
operations over a for-loop body. The parameters in the for-
loop head: initialization, conditional and increment of loop-
index, are parsed and stored. They are used for generating 
the output parallel code. Here is an example of the use of 
the pragma (see Fig. 4). 

The output of the compiler is the statements in Spin to 
distribute the work in the body of for-loop over the 
available cores. In Spin language, the command for 
iteration is "repeat" and to start a new process, the 
command "coginit" is used. 

As the to-be-run parallel code is issued to many cores, 
the command to start each core is called. The number of 
calls is equal to the number of cores. The body of loop is 
generated as a parameterized function. The parameters of 
the loop are used as the parameters of the "coginit" 

command. 

The code-generator generates the body of loop as a 
function with arguments for sharing task and the local 
variables. This function contains the loop with specified 
iteration (the output Spin code will be shown with examples 
in the next section). 

3.1 Parallel Constructors: 

To illustrate the idea of using #pragma in parallel 
programs, two constructors are discussed. Example of 
parallel programs and the output code from the compiler are 
shown. These examples are: matrix multiplication, 
reduction and odd-even sort. We believe these examples 
show the intended use of the parallel #pragma which can be 
applicable over a wide range of parallel programs. 

3.2 Matrix Multiplication: 

Fig. 5 shows the pseudo code for matrix multiplication 
(NxN). Initially C is zero. The number of calculation is 
growing rapidly when the size of matrix is increasing. 
When the matrix size grows from 2x2 to 3x3, the number of 
calculations is grown from 8 to 27. It is growing at the rate 
of N3 where N is the matrix size (NxN). 

There are three nested loops. Each element of C[i][j] is 
the inner product of the row i of A and the column j of B. 
The parallelization is made at the deepest inner loop. By 
distributing the calculation to each core, it will reduce the 
execution time in proportion to the number of core used in 
the calculation. Here is how to write a parallel version of 
the matrix multiplication (see Fig. 6). 

We distribute the different "C += A * B" over the 
different core. To put a large amount of work to the limited 
number of cores, two loops (the innermost) are required. 
The first loop is used to issue work to several cores and the 
second loop is used to strip the vector properly for each 
core. Here is the output of the compiler (see Fig. 7). 

The innest loop is stripped over many cores (a 
constant CORE) and "coginit" is called for each core. The 
function "par_fun" is the body of the for-loop. The 
"@stack[32*l]" is required to allocate a stack space for the 
core. 

3.3 Reduction Sum: 

Fig. 8 shows the code of reduction sum. We use 
"#pragma parallel for reduction" to indicate the type of 
parallel constructor. Initially sum is zero. The vector V (of 
size N) is reduced to a scalar value by summation. 
Reduction is done by the divide and conquer method. The 
vector is divided into two halves. The operation is applied 
on a pair with one element from the first half and another 
element from the second half. The result is stored "in-place" 

120 Int'l Conf. Computer Design |  CDES'12  |



at the first half of the array. Each iteration reduces the 
vector by half if there is enough processors to perform the 
operation concurrently and there is no data dependency. It 
takes log2N to reduce a vector of size N to a scalar. Each 
pair of numbers can be processed in each core in Propeller. 
Using two cores, a vector of size 1024 can be reduced to a 
scalar value with 10 iterations. Here is the output Spin code 
for reduction sum (see Fig. 9). 

The logarithm function is used to calculate the number 
of the iteration. Also the power function, it is used to find 
the size of each level of the tree to correctly distribute the 
work to the available cores. 

3.4 Odd-Even Sort: 

This is an algorithms used for sorting on parallel 
systems. The comparison operation can be done in parallel. 
The algorithm compares the adjacent elements. Assume the 
first round is an even-round. The comparison starts at the 
0th element. The next odd-round starts at the 1st element. If 
there are N cores, in N-1 iterations the sorting is done. Fig. 
10 shows the parallel code for odd-even sort. Assuming the 
index starts at 1.  

The output Spin Code is shown in Fig. 11. 

The first loop iterates over all items. The second loop 
iterates over half of the items because each iteration is 
dealing with odd-only or even-only. The iterations needed 
in each round is N/2. The third loop distributes the work 
over many cores starting from the odd or even index. The 
index is calculated using modulo function which can be 
seen as the double-slash symbol. 

Each of the algorithms is compiled and the result 
contained the parallel code section. All codes have a 
dedicated function for "coginit" command to be called 
when starting and initializing a core to run in parallel mode. 

4 List of Figures 

 
Fig. 1. The architecture of Propeller 

 

 
Fig. 2. The sample LED toggling program in Spin language 
 

 
Fig.3. An example of a parallel program written in Spin 

 
 

 
Fig. 4. The example of the pragma compiler directive 

 
 

 
Fig. 5. Pseudo code for matrix multiplication 

 
 

 
Fig. 6. The ready-to-compile parallel version of the matrix 

multiplication 
 
 

Int'l Conf. Computer Design |  CDES'12  | 121



 
Fig. 7. The matrix multiplication compilation output 

 
 

 
Fig. 8. The parallel code of reduction sum 

 
 

 
Fig. 9. The reduction sum output Spin code 

 
 

 
Fig. 10. The parallel code for odd-even sort 

 
 

 
Fig. 11. The odd-even sort output Spin code 

5 Experiment 
Three algorithms: matrix multiplication, reduction 

sum and odd-even sort, which can exploit the parallelism 
are used. Each program is compiled and then run in the 
Propeller microcontroller chip. The results are recorded for 
each specific test configurations related to number of core 
used. 

The following figures listed, show the comparison of 
the execution time of each program varies by the number of 
core used. For the matrix multiplication, Fig. 12 shows that 
the speedup increases when more cores are used. Compare 
to single core, the speedup of the 6-core on 48x48 is 1.2. 
The larger matrix size have higher speedup as the overhead 
is smaller compare to the total time of execution. 

The result of the reduction sum program is shown in 
Fig. 13. The result of the small data size indicates that the 
6-core is slower than the 3-core. When increase data size, 
the 6-core speed up is better than the 3-core. The reason of 
anomaly, which the 6-core is slower on small data size is 
that there is larger overhead in core initialization process. 
The result of the odd-even sorting is shown in Fig. 14. For 
the 3-core, it seems that the speedup is almost independent 
from the size of data. 

 
Fig. 12. Matrix multiplication execution time: multi-core 

vs. single-core 
 

 
Fig. 13. Reduction sum execution time: multi-core vs. 

single-core 
 

122 Int'l Conf. Computer Design |  CDES'12  |



 
Fig. 14. Odd-Even sorting execution time: multi-core vs. 

single-core 
 

6 Conclusion 
This work presents a parallel compiler for a 

particular multi- core microcontroller. The compiler 
directive "#pragma" is used to hint the compiler to generate 
a proper code for parallel section. Two parallel constructors 
are introduced. The experiments are performed to measure 
the speed up of the execution time while varying the 
number of cores used. The results show that the compiler 
generates correct output code that can exploit multi-core to 
speedup the computation. 

7 Acknowledgment 
Somdip Dey expresses his gratitude to all his fellow 

students and faculty members of the Computer Science 
Department of St. Xavier’s College [Autonomous], 
Kolkata, India, for their support and enthusiasm. He also 
thanks Dr. Asoke Nath, professor and founder of Computer 
Science Department of St. Xavier’s College (Autonomous), 
Kolkata, for his constant support and helping out with the 
preparation of this paper.  
 
8 References 
[1] L. Dagum and R. Menon, “OpenMP: An Industry 
Standard Api for Shared Memory Programming,” IEEE 
Computational Science and Engineering, vol. 5, no. 1, pp. 
46-55, Jan-Mar 1998. 

[2]  W. Daniel Hillis, Guy L. Steele, Jr., "Data parallel 
algorithms," Communications of the ACM - Special issue on 
parallelism, IEEE Magazine, vol 29, no. 12, Dec 1986. 

[3] N. Popovici and T. Willhalm. "Putting Intel Threading 
Building Blocks to work," Proc. of the International 
Workshop on Multicore Software Engineering (IWMSE 
2008), Leipzig, Germany, May 11 2008. 

[4]  Parallax Propeller, 
http://www.parallax.com/tabid/407/Default.aspx, 2012. 
[ONLINE] 

[5] Martin, J. and Lindsay, S., "Parallax Propeller 
Manual," 2006. 

[6]  RZ language and its compiler, 
http://www.cp.eng.chula.ac.th/faculty/pjw/project/rz3/index
-rz3.htm, 2012. [ONLINE] 

[7] RZ compiler tools kit, 
http://www.cp.eng.chula.ac.th/faculty/pjw 
/project/rz/rz2compiler.htm, 2012 [ONLINE] 

 

 

Int'l Conf. Computer Design |  CDES'12  | 123



Data Center Design and Implementation at the University 
 

Askar Boranbayev
1
, Sergey Belov

1
 

1
Nazarbayev University, Astana, Kazakhstan 

 

 

Abstract - Universities are trying to make their academic and 

business processes more efficient and effective. In our opinion 

the appropriate use of information technology may be an 

important source of future success for the university.  This 

paper talks about one of the strategies for moving a university 

toward more effective IT using data center virtualization 

technologies, while building a modern data center.  

Virtualization is a technology to help data centers enable 

more agile operation process, increase availability, improve 

security, and possibly reduce cost. 

Keywords: Data center, virtualization, information 

technology, servers, network 

 

1 Introduction 

A university’s fundamental technological base needs to be 

composed of appropriate modern IT hardware and software 

systems.  We have designed and implemented a new data 

center at our university. It has a good physical security, with 

card-based access and tracking of all personnel entering the 

data center; video recording of all activity, good cooling 

system, raised floors, UPS power for the entire data center, 

latest blade server technology, using server virtualization, and 

information systems running on servers to automate various 

business processes and academic processes at the university. 

 This project was initiated to solve many of the IT 

infrastructural problems the university was facing such as 

backup and recovery services and other conditions.  The 

design included the review and evaluation of experiences of 

other data center implementations and their infrastructure, and 

the development of a component selection and configuration.  

The design consists of a combination of proprietary and open 

source infrastructural solutions.    

2 Virtualization  

 Usually a large percentage of university’s expenditures 

involve IT.  The university IT department had a task to 

implement high-performance, efficient and yet cost-effective 

solutions for the server hardware and software for the data 

center.  We have looked at a variety of architectures of server 

platforms such as Itanium, SPARC, PA-RISC, x86, and we 

stopped on the x86 architecture because of the efficient, 

economical and fast-growing technology. 

 After studying the experience of other universities, we 

have understood that most high-performance servers are 

loaded only at 25-30 percent [1] when performing their daily 

tasks.  This is why we have decided to emphasize on 

virtualization technology.  Nowadays, the concept of "virtual 

machine" has ceased to be something unusual.  Many 

universities have learned to use virtual machines in their daily 

operation to increase the efficiency of their IT-infrastructure. 

 The IT infrastructure virtualization is a process of 

representing a set of computing resources, storage resources, 

or any of the applications by combining them logically and by 

centralized management, which provides various advantages 

over the original standard configuration. [3][4]  The virtual 

way to resources on-demand is not limited to the geographic 

location or physical configuration of the components.  Usually 

virtualized resources include computing power, data storage, 

and efficiency. 

 Several useful aspects of this technology have been 

taken into account during the implementation: 

- The use of multiple virtual servers on one physical can 

increase the percentage of server utilization up to 80 percent, 

while providing substantial savings on the purchase of 

hardware. 

- Virtual servers are a very good solution, as they may be 

moved to other platforms in a short time, when the physical 

server is experiencing increased overload. 

- Backing up virtual machines and restoring them from 

backups takes much less time and is easier. In case of failure 

of equipment, the backup copy of the virtual server can be 

started immediately on another physical server. 

- There is a simplicity and flexibility of managing a virtual 

infrastructure that enables centralized management of virtual 

servers and provides load balancing and migration. 

- Decrease of demand for floor space and electric power and 

cooling, reducing electricity costs by 80 percent. [2] 

- By simplifying the management of virtual servers entails 

savings on technical specialists, managing the infrastructure of 

the data center. 

 The university acquired 57 Hewlett-Packard servers with 

12-core AMD Opteron 6174 processors and with a frequency 

of 2.2 GHz.  The total number of processors is 132, and the 

total amount of installed RAM is 6912 GB.  The two central 

modular Hewlett-Packard switches provide a communication 

with the servers combined by a proprietary technology for 

making backup called IRF at a speed of 10 GB Ethernet. (see 

the Diagram 1 bellow)   

124 Int'l Conf. Computer Design |  CDES'12  |



 

Diagram 1 

SAN (fibre channel) network was also deployed at speeds up 

to 8Gb/ps.  For storage, we used 3par array oriented on virtual 

software of 100 Tb size.  

   

2.1 VMware-based virtual environment 

 The software package called VMware vSphere 

Enterprise Plus license was purchased and implemented as 

virtualization software, which is one of the pioneers of this 

technology, which provides great features, both today and in 

the future.[3]  It was developed by a software company 

VMware.[4]  In 1998, VMware has patented its technology 

virtualization software and has since released many effective 

and professional virtualization products at various levels. We 

have tested and tried using the freeware version of this 

software product of this company, before procuring this 

product. 

 The hypervisor Vmware ESXi version 4.1 was installed 

on each of the 57 servers.  VMware first introduced its ESXi 

hypervisor at the end of 2007. [5]  To provide fault tolerance 

all servers have been divided into two groups. The first group 

was dedicated for organizing business administrative services, 

and the second group was dedicated for services needed for 

teaching and for research centers.  Both groups were 

combined into two fault-tolerant clusters for high availability 

with load balancing. 

 VMware vCenter Server, a critical component of a 

VMware-based virtual environment, is used to manage the 

entire infrastructure. [6]  This solution allows reallocating 

computing resources between virtual servers depending on 

load and resource requirements. 

 In the event of failure of one or more servers in a cluster, 

a group of virtual machines that were located on the failed 

server is automatically restarted on the surviving server.  A 

workload of each server is taken into account, when we restart 

virtual machines on a surviving server through dynamic 

allocation of resources.  A clustering service called vCenter 

Server HeartBeat is deployed to ensure a high availability of 

the server management service VMware vCenter Server, 

which combines two servers Vmware Vcenter active and 

passive.  These two constantly exchange messages about the 

availability and in the case of the failure of the active server - 

all the services will automatically start on the passive server.  

The vCenter Server HeartBeat works like a traditional cluster. 

[7] We need to have a private link between the Active/Passive 

nodes, to maintain the heartbeat process.[7]  vCenter Server 

HeartBeat hides the passive node from the network using 

packet filtering, so it is not entirely like MSCS where we have 

separate IP address for each node and virtual IP to operate on. 

[7] 

 The established infrastructure has successfully passed 

several tests for fault tolerance, during which we emulated 

various emergency situations. 

 Up until this year the university experienced difficulties 

associated with maintenance of computer classes and access 

to students' personal computers.  As a result of analysis, we 

have implemented desktop virtualization VDI (Virtual 

Desktop Infrastructure), which reduced the cost of supporting 

IT-infrastructure and provided students with the opportunity 

to work with all the necessary resources from any computer 

and thin client. [8] 

 When using this solution - instead of physical machines - 

tasks are performed on the virtual machines in a virtual 

environment, which are based on servers in the data center.  A 

user can connect to a virtual machine, from any workstation 

and can work with it through the network.  In this case a 

physical workstation serves as an access point, and is not tied 

to a particular place or user. This allows creating a virtual 

machine for each student without having to buy additional 

computers. Now we can use "thin clients” or regular PCs as 

an access point.  This kind of setup has a high degree of 

security and virus protection, because of centralized storage 

of all the workstations on the servers of the university. 

 VMware View holds a central place among the proposed 

solutions of VMware, which was chosen for the task desktop 

virtualization.  A new remote access protocol PCoIP (PC-

over-IP) has been used to implement the technology of remote 

desktops, which is able to adapt to the characteristics of a 

network connection and the capabilities of a computer client, 

choosing the optimum parameters for the job.  PCoIP was 

designed and developed by a company called Teradici.  

PCoIP is a type of display protocol used by remote desktops 

when doing desktop virtualization. [9] A display protocol is 

what delivers the desktop from the host server to the remote 

user along with capturing mice and keyboard inputs.[9]  The 

protocol transmits HD-image access to USB devices, access 

to LAN and WAN.  It served as the basis for implementing 

Int'l Conf. Computer Design |  CDES'12  | 125



virtualization platform VMware vSphere / ESXi. 

 We have deployed three pools of virtual desktops with 

their own unique settings.  The first pool is designed for 

students, the second pool for faculty, and the third for 

administrative and academic management.  This allowed 

granting access for users to a full-fledged workstations, 

running Windows 7 Professional, to meet the requirements of 

each class of users.  For the infrastructure of VDI, we used a 

separate fail-proof cluster of VMware.  The first two pools are 

used to allow access for students and teachers to personal 

workstations, and personal information. The third pool is used 

for temporary access under guest credentials in public access 

places and a library. 

 View Client was installed on a thin client or client 

system, which provides access to the workstations.  Two 

versions are offered – the regular and «with local mode».  The 

second one allows us to upload a virtual machine on our local 

computer to work without a connection to the View Manager. 

 A problem with a speed of PCoIP protocol was noticed 

when using VDI, resulting in noticeable slowdown of 

windows personal workstations.  At the moment, we are 

looking for solutions to optimize the protocol speed together 

with VMware experts.  This experience should be a good 

feature to research and to discuss in future papers. 

3 Conclusions 

 In conclusion of this paper I would like to mention that 

VMware View is a complex product, but easy to manage.  

Most of the setup options are intuitive and transparent to our 

systems administrators and do not require relying on 

documentation very often.  Overall, the implementation of 

virtualization technologies as part of the university’s data 

center was successful.  The selected technologies have proved 

to be efficient and functional, and the overall goals have been 

achieved. 

4 References 

 

[1] http://www.vmware.com/ru/virtualization/cost-

savings/index.html 

[2] http://www.vmware.com/ru/products/datacenter-

virtualization/vsphere/ 

[3] VSphere Enterprise Plus: Persuading your boss to 

upgrade your VMware licenses, by Eric Siebert:  

http://searchvmware.techtarget.com/tip/VSphere-Enterprise-

Plus-Persuading-your-boss-to-upgrade-your-VMware-licenses 

[4] http://www.vmware.com/products/vsphere/mid-size-and-

enterprise-business/buy.html 

[5] ESX vs. ESXi: Convincing your boss to move to ESXi, 

by Eric Siebert: http://searchvmware.techtarget.com/tip/ESX-

vs-ESXi-Convincing-your-boss-to-move-to-ESXi 

[6] Stratus Uptime Appliance For VMware vCenter Server, 

by Dan Kusnetzky, February 22, 2012: 

http://www.zdnet.com/blog/virtualization/stratus-uptime-

appliance-for-vmware-vcenter-server/4644 

[7] vCenter Server Heartbeat, the concept, deployment and 

considerations, by Hany Michael, April 4th, 2009: 

http://www.hypervizor.com/2009/04/vcenter-server-heartbeat-

the-concept-deployment-and-considerations/ 

[8] Virtual Desktop Infrastructure Has Cost-Cutting 

Potential, by Cameron Sturdevant, January 13 2009: 

http://www.eweek.com/c/a/IT-Infrastructure/Virtual-Desktop-

Infrastructure-Has-CostCutting-Potential/ 

[9] PC-over-IP remote display technology: The inner 

workings of VMware View 4, by: Eric Siebert, November 11 

2009: 

http://itknowledgeexchange.techtarget.com/virtualization-

pro/pc-over-ip-remote-display-technology-the-inner-

workings-of-vmware-view-4/ 

 

126 Int'l Conf. Computer Design |  CDES'12  |

http://www.vmware.com/ru/virtualization/cost-savings/index.html
http://www.vmware.com/ru/virtualization/cost-savings/index.html
http://www.vmware.com/ru/products/datacenter-virtualization/vsphere/
http://www.vmware.com/ru/products/datacenter-virtualization/vsphere/
http://searchvmware.techtarget.com/tip/VSphere-Enterprise-Plus-Persuading-your-boss-to-upgrade-your-VMware-licenses
http://searchvmware.techtarget.com/tip/VSphere-Enterprise-Plus-Persuading-your-boss-to-upgrade-your-VMware-licenses
http://www.vmware.com/products/vsphere/mid-size-and-enterprise-business/buy.html
http://www.vmware.com/products/vsphere/mid-size-and-enterprise-business/buy.html
http://searchvmware.techtarget.com/tip/ESX-vs-ESXi-Convincing-your-boss-to-move-to-ESXi
http://searchvmware.techtarget.com/tip/ESX-vs-ESXi-Convincing-your-boss-to-move-to-ESXi
http://www.zdnet.com/blog/virtualization/stratus-uptime-appliance-for-vmware-vcenter-server/4644
http://www.zdnet.com/blog/virtualization/stratus-uptime-appliance-for-vmware-vcenter-server/4644
http://www.hypervizor.com/2009/04/vcenter-server-heartbeat-the-concept-deployment-and-considerations/
http://www.hypervizor.com/2009/04/vcenter-server-heartbeat-the-concept-deployment-and-considerations/
http://www.eweek.com/c/a/IT-Infrastructure/Virtual-Desktop-Infrastructure-Has-CostCutting-Potential/
http://www.eweek.com/c/a/IT-Infrastructure/Virtual-Desktop-Infrastructure-Has-CostCutting-Potential/
http://itknowledgeexchange.techtarget.com/virtualization-pro/pc-over-ip-remote-display-technology-the-inner-workings-of-vmware-view-4/
http://itknowledgeexchange.techtarget.com/virtualization-pro/pc-over-ip-remote-display-technology-the-inner-workings-of-vmware-view-4/
http://itknowledgeexchange.techtarget.com/virtualization-pro/pc-over-ip-remote-display-technology-the-inner-workings-of-vmware-view-4/


Online Task Scheduling Algorithm for Sporadic Tasks in 
Single-ISA Heterogeneous Multi-Core Architectures* 

Yen-Ting Huang1, Yi-Jung Chen2, and Dyi-Rong Duh3,† 

1,2Department of Computer Science and Information Engineering 
National Chi Nan University 

Puli, Nantou Hsien 54561, Taiwan 
{s98321504, yjchen}@ncnu.edu.tw 

3Department of Computer Science and Information Engineering 
Hwa Hsia Institute of Technology 

111, Gong Jhuan Rd., New Taipei City 23568, Taiwan 
drduh@cc.hwh.edu.tw 

 

 

* This work is partially supported by NSC 100-2221-E-146-014-. 
† Correspondence to: D.-R. Duh; E-mail address: drduh@cc.hwh.edu.tw 

Abstract –Single-ISA heterogeneous multi-core architecture 
has been proposed to reduce processor power dissipation. This 
work targets single-ISA heterogeneous multi-core architecture, 
and proposes an on-line task scheduling algorithm that 
dynamically assigns independent sporadic tasks in the system. 
Different from previous works that schedule tasks to minimize 
power consumption or maximize performance only, the proposed 
on-line task scheduling algorithm considers performance and 
power consumption at the same time. The experimental results 
show that, when comparing the energy-delay product, our 
algorithm has only 1.07 times over the algorithm that has oracle 
information and achieves the best results on the average. 

Keywords - Single-ISA multi-core architecture; heterogeneous 
multi-core architecture; performance; power consumption; on-line 
algorithm. 

I. INTRODUCTION 
Recently, single-chip multi-core processors have been a 

new trend in the design of high performance and low power 
consumption microprocessors [4, 5, 6, 7]. In order to provide 
significantly higher performance in the same area than a 
classic chip multiprocessor, a single instruction set architecture 
(single-ISA) heterogeneous multi-core architecture, which is a 
chip multiprocessor made up of cores of varying size, 
performance, and complexity, has been proposed by Kumar et 
al. [5]. In this architecture, the various tasks of a diverse 
workload are assigned to the various cores for reducing power 
consumption or improving performance according to the user 
demand. Notably, multi-core processors improve performance 
through thread-level parallelism but this type of architecture 
can provide high single-thread performance even when thread 
parallelism is low [5]. Since each core in single-ISA 
heterogeneous chip multiprocessor executes the same ISA, 
each task or task phase can be mapped to any of the cores [6]. 
The heterogeneous multi-core architecture possesses different 
type of cores and the multi-core architecture consists of the 
same type of cores. According to the different tasks, 

heterogeneous multi-core architecture can provide more 
suitable cores than homogeneous multi-core architecture. The 
energy consumption and the running time are different when 
different tasks work on different cores. Some cores provide 
high performance may consume more energy and some cores 
consume less energy may execute more slowly. Different tasks 
suit to different cores for lower power consumption and 
shorter time. If the tasks are always assigned on a high speed 
core, it may spend shorter time than assigned on a low energy 
core, but increase the power consumption. If the tasks are 
always assigned on a low energy core, it may spend a longer 
time than assign on a high speed power core, but reduce the 
power consumption. Therefore, the scheduling of tasks 
running on a single-ISA heterogeneous multi-core architecture 
is an important issue. 

Several works that target single-ISA heterogeneous multi-
core architecture have been proposed. Kumar et al. proposed 
the idea of single-ISA heterogeneous multi-core architecture to 
reduce processor power dissipation [4]. Rao et al. used the 
upper bound of the core’s temperature to get the maximum 
throughput [7]. Then efficiently online computed the speed of 
the cores and thus got the speed matrix. Impose the matrix to 
determine the optimum speed combination. Xu et al. proposed 
a light-weight operating system scheduler for single-ISA 
asymmetric multi-core processor by using online profiling [8]. 
Xu et al. classified cores to fast cores and slow cores, analyzed 
the programs, assigned the CPU-intensive programs run on 
fast core and assigned the memory-intensive or I/O-intensive 
programs run on slow core. Notably, Kumar et al. only 
consider the offline problem. Since the coming time of every 
task is usually unknown, this work focuses on the more reality 
problem–online task scheduling problem. Recall that Rao et 
al.’s work should first computes the speed matrix such that the 
optimum speed combination can be obtained. Xu et al.’s work 
only classified the tasks to two types: CPU-intensive and I/O-
intensive. Each task can be partitioned into several phases 
which may not work well on one core. This paper decomposes 

Int'l Conf. Computer Design |  CDES'12  | 127



every task into several phases, maps them to appropriate cores 
and analyzes every phase of the task. 

This work derives an on-line task scheduling algorithm for 
sporadic tasks that execute in single-ISA heterogeneous multi-
core architectures. We assume the tasks are invoked randomly, 
and the arrival time of each task in the task set is unknown. 
The goal of the proposed on-line task scheduling algorithm is 
to reduce the energy-delay product. The proposed algorithm is 
a greedy-based method that assigns a coming task to the core 
that has the least energy-delay product and among the 
unoccupied cores. We compare the proposed algorithm to 
three algorithms: the random algorithm, the energy-optimize 
algorithm and the oracle algorithm. When the tasks coming, 
the random algorithm assigns the tasks to the cores randomly; 
the energy-optimize algorithm assigns the tasks to the core 
which energy consumption is the least in order, and the oracle 
algorithm will compute the energy-delay products of all sets, 
and choose the set which has least energy-delay product. In 
energy-optimize algorithm, only one task can run on a core at a 
time, the task will always choose the core which saving energy 
most. This algorithm saves most energy but wastes time. The 
oracle algorithm is an algorithm that we assume we already 
know the coming time of the tasks and always choose the most 
saving energy set of various tasks on various cores. 

The experimental result shows that the average of energy-
delay products of our algorithm have only 1.07 times over the 
oracle algorithm, which is very close to the oracle algorithm. 
Moreover, the energy consumption of the proposed on-line 
task scheduling algorithm achieves 1.2 times over the energy-
optimize algorithm on the average. 

The rest of the paper is organized as follows. Section 2 
describes the proposed online task scheduling algorithms on 
the single-ISA heterogeneous multi-core architecture. Section 
3 states the experimental setup this paper. Conclusion and 
summary of this work are drawn in Section 4. 

II. PROPOSED ALGORITHM 
A greedy-based online task scheduling algorithm is provided 
to reduce the energy-delay product. Assume energy 
consumption and execution time of a task running on a specific 
core is known in advance. Each single core could only run a 
single task at a time, and the unused cores are completely 
powered down. The tasks will be reassigned to cores when a 
context switch happens. Tasks are non-preemptive; every task 
will not be interrupt if the task is starting executing. 

The input of the online task scheduling algorithm is the 
target single-ISA heterogeneous platform and task set. The 
platform includes the energy consumption and working 
frequency of each core. For each task in the task set, we record 
the energy consumption and running time of it on each single-
ISA core. The output of the online task scheduling algorithm is 
a scheduling of tasks to cores. The optimization goal of this 
work is to reduce the energy-delay product of the tasks on the 
cores. The energy-delay product is the total execution time 
multiplied by the sum of the energy consumption of each task. 

Let T and Ei denote total execution time and energy 
consumption of task i. Show the formula as follow. 

energy-delay product = T × ΣEi 
As mentioned earlier, the proposed on-line task scheduling 

algorithm is a greedy-based method that assigns tasks to the 
cores. The flow of the online task scheduling algorithm is 
detailed as follows and shown in Figure 1. 

 
Figure 1. The flow of the online task scheduling algorithm. 

Algorithm Online Task Scheduling 
{ 
When the context switch happens, check if there any task 
coming. 

If there is any task coming, check if there is any idle core. 
1. If so, check to the information of energy 

consumption and execution time of a task on each 
single-ISA core. 

2. Find the idle core with the least energy-delay 
product and then assign one million instructions 
of the tasks. 

3. Check if there is any waiting task. 
If so, check if there is any idle core. 

Any task 
coming? 

Idle core? 

YES 

Check to the data 

Find the idle core with the least energy-
delay product. 

Assign million instructions of 
the task to the core. 

Waiting task? 

NO 

NO 

YES 

Context switch 

YES 

NO 

Execute the million instructions of the tasks  

128 Int'l Conf. Computer Design |  CDES'12  |



If so, jump to 1. 
4. Otherwise, execute the million instructions of the 

tasks and wait for the next context switch 
happens. 

Otherwise, wait for the next context switch happens. 
} // End of Algorithm Online Task Scheduling 

III. EXPERIMENTAL RESULT 
A. Experimental Setup 

To evaluate the proposed on-line task scheduling 
algorithm, we develop a simulation platform by C++ to 
simulate the behavior of the proposed algorithm on the target 
single-ISA multi-core architecture. The host machine to run 
the simulation platform is a PC with Intel® Core™ i5-2005S 
2.7GHz CPU, 4.00GB RAM with Windows 7. 

In our experiments, we assume the target single-ISA 
heterogeneous multi-core architecture is composed of four 
cores (Core A, Core B, Core C and Core D). The ranges of the 
power of four cores refer to the cores of the Alpha [1, 2, 3], 
they are Alpha 21064 (known as the EV4), Alpha 21164 (EV5), 
Alpha 21064 (EV6) and Alpha 21364A (EV78). Table 1 is the 
information of the cores of the Alpha this paper refers to. The 
range of the power of Core A refers to Alpha 21064. The range 
of the power of Core B refers to Alpha 21164. The range of the 
power of Core C refers to Alpha 21264 and the range of the 
power of Core D refers to Alpha 21364A. Therefore the ranges 
of the power consumption of each of the four cores are listed 
as follows: Core A: 20~40 Watt, Core B: 46~66 Watt, Core C: 
63~83 Watt and Core D: 110~130 Watt. The range of the 
execution time is usually related to the power of core in an 
inverse proportion. Therefore we set the range of the execution 
time of each core based on this assumption. As shown in Table 
2, the ranges of the execution time of each of the four cores are 
listed as follows, Core A: 110~130 unit time, Core B: 63~83 
unit time, Core C: 46~66 unit time and Core D: 20~40 unit 
time. 

Table 1. The information of the cores this paper refers to. 

Core Model number Power 
[W] Die size [mm2] 

EV4 21064 30 234 
EV5 21164 56 299 
EV6 21264 73 314 

EV78 21364A 120 300 

Table 2. The information of the cores. 

Core Range of the 
Power [W] 

Range of the Execution 
Time [unit time]  

Core A 20~40 110~130  
Core B 46~66 63~83  
Core C 63~83 46~66  
Core D 110~130 20~40  

For every task set, assume there are ten distinct tasks; 
each task has ten million instructions, and every core randomly 
picks a power and an execution time in the range of the core. 
The ten distinct tasks will also come randomly. The context 
switch time is defined as the interval of one million 
instructions (corresponding roughly to an OS time-slice 
interval). 

B. Algorithm of Comparison 
This section compares the online task scheduling 

algorithm to three algorithms: the random algorithm, the 
energy-optimize algorithm and the oracle algorithm. 

The first algorithm is the random algorithm. When the 
context switch happens, each coming task will be randomly 
assigned to any idle core until all cores are occupied. If all 
cores are occupied, the waiting task will wait until any core is 
free. 

The second algorithm is the energy-optimize algorithm. It 
is the optimum algorithm to save the energy. Every coming or 
running task will choose the core with the lowest energy 
consumption by every millions instructions. Only one task can 
be executed at a time. The next coming task will wait for the 
previous task finished. Next coming task then choose the core 
with the lowest energy consumption. This algorithm might 
spend lots of time but the tasks can always choose the most 
energy saving core. 

The third algorithm is the oracle algorithm. This 
algorithm provides the upper bound of the optimization goal. 
Assume the execution times of the tasks are known. The 
coming task will choose the core that has the least energy-
delay product. If there are other tasks need to be executed, 
calculate the information of the tasks on the cores including 
the execution time, the power consumption and the energy-
delay product. According to the information of the tasks to the 
cores, choose the least of the sum of the energy-delay product 
combination. Notice that if all cores are occupied, the next 
task will wait for the previous tasks until there is an idle core. 

C. Simulation Result 
This section analyzes the synthesis results of the online task 
scheduling algorithm. This work runs one hundred task sets for 
the simulator, and gets one set of the energy consumptions and 
running times of each task set on each single-ISA core. Then 
calculate their energy-delay product. 

Figure 2 shows the results. The energy-delay product is 
normalized to the oracle algorithm. In 100 different task sets 
of experiments, in few of the sets, the energy-delay product of 
the random algorithm is close to the online task scheduling 
algorithm. Significantly, for most of the sets, the energy-delay 
products of the online task scheduling algorithm are much 
smaller than the energy-delay product of the random 
algorithm. For the information shown in Figure 2, the online 
task scheduling algorithm is close to the oracle algorithm but 
the online task scheduling algorithm do not know the coming 
time of the tasks. 

Int'l Conf. Computer Design |  CDES'12  | 129



 
Figure 2. Normalized the energy-delay product to the oracle 

algorithm. 

This paper also aims at the tasks if they consume more 
than 20% of energy to the original tasks. Figure 3 is the 
energy-delay product normalized to the oracle algorithm when 
the tasks spend more than 20% of energy. According to Figure 
3, for few sets, the energy-delay product of the random 
algorithm is close to the online task scheduling algorithm and 
even smaller than the online task scheduling algorithm, but for 
the average, the energy-delay product of online task 
scheduling algorithm still much better than the random 
algorithm. The energy-delay product of online task scheduling 
algorithm is still close to the oracle algorithm. 

 
Figure 3. Normalized the energy-delay product to the oracle 

algorithm when the tasks spend more than 20% of 
energy. 

Figure 4 is the energy consumption normalized to the 
energy-optimize algorithm. The random algorithm spends 
more energy than the online task scheduling algorithm and the 
oracle algorithm. The energy consumption of the online task 
scheduling is close to the energy consumption of the oracle 
algorithm. 

 
Figure 4. Normalized the energy consumption to the energy-

optimize algorithm. 

IV. CONCLUSION 
This work provides an online task scheduling algorithm to 
reduce the energy-delay product of the single-ISA 
heterogeneous multi-core architecture when the coming times 
of the tasks are unknown. The energy-delay product of the 
online task scheduling algorithm is close to the oracle 
algorithm and better than the random algorithm and the 
energy-optimize algorithm. Furthermore, the energy 
consumption of the online task scheduling algorithm is close to 
the oracle algorithm and better than the random algorithm. 
According to the requirement, user can choose the most 
suitable algorithm. 
 

REFERENCES 
[1] Alpha 21064 and Alpha 21064A: Hardware Reference Manual. 
[2] Alpha 21164 Microprocessor: Hardware Reference Manual. 
[3] Alpha 21264/EV6 Microprocessor: Hardware Reference Manual. 

Compaq Corporation, 1998. 
[4] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan and D. M. 

Tullsen, “Single-ISA Heterogeneous Multi-core Architecture: The 
Potential for Processor Power Reduction”, In: Proceeding of the 36th 
International Symposium on Microarchitecture, Dec. 2003, pp. 81–92.  

[5] R. Kumar, D. M. Tullsen, P. Ranganathan�, N. P. Jouppi and K. I. 
Farkas, “Single-ISA Heterogeneous Multi-core Architectures for 
Multithreaded Workload Performance”, In: Proceedings of the 31st 
International Symposium on Computer Architecture, June, 2004, pp. 
64–75. 

[6] R. Kumar, D. M. Tullsen, N. P. Jouppi and P. Ranganathan, 
“Heterogeneous Multi-core Architectures ”, IEEE Transactions on 
Computers, pp. 32–38, 2005. 

[7] R. Rao and S. Vrudhula, “Efficient Online Computation of Core Speeds 
to Maximize the Throughput of Thermally Constrained Multi-Core 
Processors.” In: Proceedings of the 2008 IEEE/ACM International 
Conference on Computer-Aided Design (ICCAD), San Jose, California, 
pp. 537–542, November 10–13, 2008. 

[8] Y. Xu, L. Du and Z. Zhang, “A Light-Weight Scheduler for Single-ISA 
Asymmetric Multi-core Processor Using Online Profiling." In: 
Proceedings of 12th ACIS International Conference on Software 
Engineering, Artificial Intelligence, Networking and 
Parallel/Distributed Computing, 2011, pp. 183–188. 

 
 

130 Int'l Conf. Computer Design |  CDES'12  |




