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Abstract p53 is the most mutated tumor suppressor gene in 
cancers, which are usually inflammatory with aberrant NF-κB 
activation. However, how NF-κB family members and p53 
interact to globally regulate genes expression is not yet fully 
understood. Using head and neck squamous cell carcinoma 
(HNSCC) lines as the model system, we developed a novel 
integrative model based on Regulatory Component Analysis, 
which combined mRNA expression profile with transcription 
factor and microRNA binding for integrated analyses through 
matrix decomposition. We observed that the majority of p53 
targets are also co-regulated by NF-κB in p53 wild-type or 
mutant subset of HNSCC cells. We further constructed 
regulatory networks of NF-κB, p53 and microRNAs 21 and 
34s. Our results unraveled the cross-regulations among NF-
κB, p53, and microRNAs, provided an insight into 
understanding of underlying regulatory mechanisms, and 
showed an efficient approach to inferring the regulatory 
programs in these datasets. 

Keywords: Regulatory networks, Integrative modeling, NF-
κB, p53, Head and neck cancer  
 

1 Introduction 
 Reconstruction and modeling of gene regulatory 

networks are one of main challenges in computational 
biology. Various mathematical algorithms or 
computational methods have been developed for 
integrative analysis of microarray and transcription factor 
(TF) binding data for unraveling transcriptional regulatory 
modules. Several matrix decomposition methods, such as 
PSMF, ModulePro, NMF, have been recently presented for 
regulatory network reconstruction based on the constraints 
of sparseness, non-negativeness, or partial network 
connectivity information [1-3]. Although all these methods 
show an improved result in uncovering biologically 
meaningful regulatory networks than the decomposition 
methods without the constraints, they were conducted 
separately, and no integrative framework has been utilized 
that brings the sparseness and pre-knowledge of regulator-

target interactions together during matrix decomposition [1, 
2, 4]. Here, we devised a new methodology, based on 
Regulatory Component Analysis (RCA), for inferring 
regulatory gene networks and uncovering transcriptional 
modules. The RCA-based model performs matrix 
decomposition under the joint constraints of sparseness and 
partial information of TF-target connectivity, and allows an 
integrated analysis of gene expression profile and regulator 
binding data. We used the new method in studies of the 
head and neck squamous cell carcinoma (HNSCC). 

HNSCC is one of the most common human cancer 
worldwide. The development of HNSCC is associated with 
alterations in expression of a large set of genes, which 
could be underlined by shared TFs or regulators of key 
regulatory mechanisms that control transcriptional 
regulatory networks. Among these TFs, NF-κB has been 
demonstrated to play a central role in the control of gene 
expression that mediates cellular proliferation, apoptosis, 
angiogenesis, immune and proinflammatory responses, and 
therapeutic resistance [5, 6]. In a systems biology study, we 
defined 748 NF-κB target genes and their functional 
associations using an integrative model COGRIM in 
HNSCC, thus proposing that NF-κB is one of the critical 
regulatory determinants of expression of multiple gene 
programs, interacting pathways and malignant phenotypes 
[7]. Followed by that study, some challenging questions 
would be further asked with regard to NF-κB regulatory 
mechanisms. For example, whether NF-κB functions are 
affected by other TFs or regulators? If so, how NF-κB 
interacts with these TFs or regulators to modulate the gene 
programs of HNSCC? As a tumor suppresser, p53 is 
implicated as a master regulator of apoptosis, cell cycle and 
DNA repair, etc. Mutations of TP53 have been observed in 
near half cases for all types of human cancer, including 
HNSCC. In previous studies, tumor suppresser TF p53 was 
reported to also regulate NF-κB target genes [8-10]. 
However, the molecular basis underlying their interactions 
has not been adequately understood in HNSCC. In addition 
to p53, other cancer-related TFs such as AP1, STAT3, 
EGR1, CEBPB and SP1 were reported to be involved in 

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  | 3

mailto:bin1999@hkbu.edu.hk
mailto:mzhan@tmhs.org


complex regulatory systems of NF-κB [11-14]. Moreover, 
microRNAs are proposed to play as co-regulators that 
involve in modulation of gene expression at post-
transcriptional level. Therefore, genome-wide investigation 
of significant interactions between NF-κB and p53 or other 
regulators would enhance our understanding of 
transcriptional regulatory mechanisms associated with 
diverse HNSCC phenotypes. 

In this study, we applied a newly developed method 
to identify transcriptional regulatory programs by 
combining TF and microRNA binding information with 
expression profiling in HNSCC cells with the wild type 
(wt) p53-deficient and the mutant (mt) p53 status. Our 
studies demonstrated that two master TFs NF-κB and p53 
have a wide impact on expression profile of gene programs 
in the tumor cells. Furthermore, our results revealed that 
NF-κB, p53 and the microRNAs may form concerted 
regulatory modules for contributing to the gene programs 
in both wt p53-deficient and mt p53 phenotypes. 

2 Methods 
2.1 Microarray dataset 

The gene expression data was collected from GEO 
database http://www.ncbi.nlm.nih.gov/geo/ with an 
accession number GSE10774. The microarray data were 
generated from two subgroups: mt p53 and wt p53-
deficient HNSCC cell lines [7, 15]. The microarray data of 
differentially expressed genes satisfying 2.0 fold and above 
change were used for the RCA-based analyses. 

 
2.2 TF and microRNA binding data 

NF-κB and p53 binding data were extracted from 
available sources: 1) NF-κB and p53 websites 2) previous 
publications. The binding information of other TFs (AP1, 
EGR1, CEBPB, STAT3, and SP1) and microRNAs was 
gained from 1) website http://www.broadinstitute.org 
/gsea/msigdb/; 2) curated from previous publications. 

 
2.3 RCA-based method 

The method was performing matrix decomposition 
under the joint constraints of sparseness and partial 
information of TF-target connectivity. The method allows 
an integrated analysis of gene expression profiles with 
binding data of a set of regulators, including TFs, 
microRNAs, etc. 

The RCA-based method (see Figure 1) is a network 
structure-driven model for inferring gene regulatory 
networks and uncovering transcriptional modules. Given a 
microarray data matrix MN×ℜ∈X  with the sample size M 
and the numbers of genes N, our aim is to find LN×ℜ∈Y  

and ML×ℜ∈Z such that the square error (Euclidean 
distance) function:  

2),( YZXZY −=E      (1) 
is minimized under a desired degree of sparseness on the 
mixing matrix Y. We defined a sparseness measure 
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to one if and only if ly contains a single non-zero element, 
and takes a value of zero if and only if all elements are 
equal. Here, there are two interpretations of the 
decomposition YZX ≈ . First, the rows of Z represent the 
expression profiles of the L latent variables across samples. 
Second, the rows of Z can be viewed as the activity 
profiles of the L regulators. Thus, we can cluster genes 
based on corresponding non-zero coefficients of Y, which 
represent gene regulatory programs, i.e. transcriptional 
modules that are co-regulated by the L regulators.  
 
 

 

 

 

 

 

 

 

 

 

Figure 1. Overview of the Regulatory Component Analysis (RCA)-based 
method. R: regulators, such as transcription factors (TFs) and microRNAs. 
TG: target genes. TSS: transcriptional start site. 
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We devised an iterated learning algorithm that is 
capable of combining constraints of sparseness and limited 
information of regulator-target binding. The sparseness 
was used as a statistical parameter for modeling the 
regulatory components of regulators and their targets. The 
learning procedure was based on a projected gradient 
descent approach with sparseness constraints. The output 
(Y matrix) of the RCA procedure provided quantitative 
relationships between regulators (such as TFs and 
microRNAs in this study) and every gene from microarray 
dataset. The non-zero values stand for regulatory 
interactions or components which can be used to estimate 
how possible a gene is regulated by the regulators or 
whether a gene is target of the regulators. 

 

3 Results 
3.1 The RCA-based approach 
 In this study, we sought to unravel both TF- and 
microRNA-mediated regulatory gene networks responsible 
for the malignant phenotypes of HNSCC, and the analytic 
strategy is depicted in Figure 1. The integrative model 
exhibited several advantages in comparison with the 
COGRIM method, that was previously used in the same 
HNSCC gene profiling [7]. To justify our new method, we 
compared the results derived by using the RCA-based 
method in current study with those by COGRIM previously. 
The comparison was based on a Gene Ontology (GO) 
analysis of the target genes of the three NF-κB subunits, 
RelA, NFκB1 and cRel, predicted by using RCA and 
COGRIM, respectively, based on the same microarray 
dataset. We assessed the functional relevance of GO 
biological processes based on the enrichment analysis by 
Fisher's exact tests. Table 1 shows the statistical 
enrichment of biological processes among the target genes 
identified by the two methods. The enrichment level was 
calculated by transforming the enrichment P values after  
 
Table 1. Comparison based on GO functional enrichment 
 

HNSCC 
type 

TFs FDR by different methods 
RCA COGRIM 

wt p53- 
deficient 

RelA 1.92 1.81 
NFκB1 1.66 1.70 
cRel 1.59 1.08 
Average of TFs 1.72 1.53 

mt p53 RelA 1.80 0.89 
NFκB1 1.65 1.55 
cRel 1.74 1.42 
Average of TFs 1.73 1.29 

 
The enrichment level was calculated by transforming enrichment P values 
averaged over all GO processes with False Discovery Rate (FDR) corrected 
P<0.05. 
 

FDR correction to negative log10 values and averaged over 
all biological processes with corrected P<0.05. Overall, our 
RCA-method showed advantages than COGRIM, where 
the averaged P values of FDR values were lower than 
COGRIM in both wt p53-deficient and the mt p53 datasets. 
 
 

3.2 Prediction of HNSCC-specific target genes 
of TFs 

Next, we intent to identify TF and microRNA 
regulatory modules controlling different gene expression 
programs in both malignant subgroups. Our analysis 
identified 248 and 418 target genes of NF-κB, and putative 
169 and 81 p53 target genes in the wt p53-deficient and mt 
p53 HNSCC cells, respectively. Then significant overlaps 
of target genes between NF-κB and p53 was detected 
(Figure 2), that all p53 target genes predicted in the mt p53 
cells overlapped with NF-κB targets, whereas such overlap 
in the wt p53-deficient cells was 60% (overlapping P value 
= 2.56×10-18). On the other hand, we noted that the fraction 
of the NF-κB target genes that overlapped with p53 targets 
seemed different between the wt and mt p53 subgroups. 
Among the total NF-κB target genes, 41% overlapped with 
the p53 targets in the wt p53-deficient, which was greater 
than those in the mt p53 (19%). This difference is mainly 
due to their different fractions observed in the 
underexpressed gene subsets (61% vs. 16%). We did not 
find such a difference in the overexpressed gene subsets 
(28% vs. 24%). Our analyses provide a set of common 
genes co-regulated by the two master TFs in HNSCC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Overlaps between target genes of NF-κB and p53 in wt p53-
deficient HNSCC cells of overexpressed genes (A) and underexpressed genes 
(C), and mt p53 HNSCC cells of overexpressed genes (B) and 
underexpressed genes (D) 
 

Additional TFs (AP1, EGR1, CEBPB, STAT3, and 
SP1) were also previously implicated as important 
regulators in the tumorigenesis. To identify regulatory 
programs co-regulated by NF-κB and p53 with these TFs, 
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we first constructed two networks linking each TFs and 
their putative target genes predicted by the RCA-based 
method for the two tumor subgroups. Totally 298 and 232 
genes were identified as targets of at least two TFs in the 
wt p53-deficient and the mt p53 cells, respectively (data 
not shown). Next, we identified two regulatory programs 
consisting of genes putatively co-targeted by all the seven 
TFs (Figure 3). The programs of the wt p53-deficient 
comprised 37 genes, where 17 and 12 genes are consistent 
with known NF-κB and p53 targets based on previous 
publications, respectively. The percentage of known NF-
κB and p53 target genes in the program was greater than 
their total prediction (i.e. all of their predicted NF-κB or 
p53 target genes), where NF-κB is 46% vs. 19 % and p53 
is 34% vs. 14%. Similarly, 39 genes (including 12 known 
NF-κB and 18 known p53 ones) formed the regulatory 
programs of the mt p53. The prediction of the known target 
genes in the network was also relatively accurate by 
compared with the total prediction for NF-κB (31% vs. 15 
%) and p53 (46% vs. 29%). We further found that most 
genes in the TF regulatory programs were functionally 
classified to GO biological processes adhesion, 
angiogenesis, apoptosis, cell cycle, inflammatory and 
immune responses, proteolysis, regulation of transcription, 
etc. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Gene programs co-regulated by all seven TFs (NF-κB, p53, AP1, 
CEBPB, EGR1, SP1, and STAT3) in wt and mt p53 HNSCC cells. Genes in 
underlined, bold and bold-underlined refer to known targets of NF-κB, p53 
and NF-κB/p53, respectively. ↓↑ refer to genes differentially over- and 
underexpressed, respectively 

 
3.3 microRNA target genes and their 

interaction with TFs 
We applied the RCA-based approach to analyze target 

genes of microRNAs. Since oncogenic mir21 and tumor 
suppresser mir34s have been studied for their relationships 
with the p53 pathway [17, 18], we concentrated on their 
interaction with the NF-κB regulatory network. 
mir34ac_449 was used to represent mir34s because both 
microRNAs mir34ac and mir449 share the same binding 
motif consensus from the available website (see method). 
In our analysis, 32% and 72% of the mir34ac_449 target 

genes overlapped with NF-κB ones in the wt p53-deficient 
and mt p53 cells, respectively, suggesting more interaction 
between mir34s and NF-κB in gene regulation of mt p53 
tumor cells. By the contrast, we did not observe such a 
difference of overlapping between mir21 and NF-κB target 
gene sets (51-55 % in the wt and mt p53 subgroups).  

We then constructed two regulatory networks of NF-
κB, p53 and mir 21 or mir34s (Figure 4). The network of 
the wt p53-deficient comprised 49 common target genes of 
NF-κB, p53, mir21 or mir34ac_449, respectively. 
Relatively, the network of the mt p53 was composed of a 
small number of 21 genes including 7 common targets of 
the two microRNAs. Even though most of common targets 
in the networks were underexpressed, we still detected 
several overexpressed ones, for example, IL6 and ELF3 
(inflammatory), PTGES (proliferation), and CASP4 
(apoptosis) in the wt p53-deficient, and MMP1 (proteolysis) 
and PTK2 (angiogenesis and migration) in the mt p53 
(Figure 4). This analysis highlights a considerable 
interaction of regulatory programs among NF-κB, p53 and 
the two microRNAs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Regulatory gene networks of NF-κB, p53 and microRNAs 21  
and 34s in HNSCC cells. Every node represents a common target gene 
of NF-κB, p53, mir21 or mir34ac_449, and was annotated to processes 
with different colors. (A) the wt p53-deficient. (B) the mt p53. 
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4 Discussion 

Our integrative modeling is RCA-based and can 
capture the sparse structure existing in gene expression 
data for unraveling transcriptional regulatory networks. 
The efficiency of the RCA-based method is supported by 
its applicability in prediction of NF-κB targets, in 
comparison with the analysis by other methods. We 
compared the RCA-based method with a similar method, 
COGRIM. Among the NF-κB targets predicted by our 
method, 19% (in the wt p53-deficient) and 15% (in the mt 
p53) are consistent with known ones published previously. 
But the known NF-κB genes predicted by COGRIM only 
reaches to 10% of the total prediction [7]. More 
importantly, the NF-κB genes predicted by the RCA-based 
method are more functionally relevant than those by 
COGRIM (Table 1). Our method improved the efficiency 
and accuracy to indentify regulatory associations between 
NF-κB and their targets. The identified NF-κB genes by the 
newly developed method are highly associated with 
biological processes, suggesting that they are biologically 
more meaningful than those by other methods. 

A previous study has confirmed NF-κB function in 
the tumor cells with both wt and mt p53 status [19]. By 
promoter analysis, p53 and NF-κB were shown to play a 
reciprocal role in the two distinct over-expressed gene 
clusters of HNSCC [10, 15]. In the present study, we 
demonstrate a significant intersection of p53 and NF-κB 
regulated genes in HNSCC. However, the p53 and NF-κB 
interaction is different in the gene subsets underexpressed 
in the wt or mt p53 cells. In the wt p53-deficient cells, the 
two TFs can jointly regulate over 60% of the 
underexpressed genes. In contrast, all p53 targets were 
putatively regulated by NF-κB in the mt p53 cells (Figure 
2). This observation strongly suggests that a tight 
cooperation between NF-κB family members and p53 
controls the p53 network in the mt p53 cells, but to a less 
extent affects the p53 network of the wt p53-defieient cells. 
Moreover, our analyses showed a more accurate prediction 
of known NF-κB and p53 target genes in the regulatory 
programs of the seven TFs (Figure 3) in comparison with 
those in the total prediction, Such predicted programs from 
both computational and literature search suggest that the 
malignant progression of HNSCC is likely as a result of 
co-regulation by a combinatorial cooperation of NF-κB, 
p53, and the other five TFs.  

Identification of TF-microRNA modules enhanced 
our understanding of complex transcriptional regulatory 
architectures in cancer cells. In this study, our results 
support that both mir21 and mir34s likely participate in 
transcriptional control of gene expression by NF-κB and 
p53. Their functions may contribute to the progression or 
suppression of HNSCC cells. Several common genes were 

downregulated by NF-κB, p53 and the two microRNAs in 
both wt and mt p53 cells (Figure 4), such as ITGA3 and 
LAMA3 (adhesion), SERPINE1 (angiogenesis), and PLAU 
(proteolysis). These are suggested to favor cancer 
metastasis [20, 21]. The microRNAs likely cooperate with 
p53 and NF-κB to inhibit their expression so that 
repressing tumor progression of HNSCC. In contrast, 
several overexpressed genes in the networks may promote 
tumorigenesis of the wt p53-deficient cells by alterations in 
gene expression associated with inflammatory, 
proliferation, apoptosis and other processes, such as IL6, 
ELF3, PTGES, and CASP4, or trigger metastatic processes 
of the mt p53 cells. 

 
 

5 Conclusions 
In summary, our results provide a general view of 

cross-regulatory relationships among NF-κB, p53 and the 
microRNAs in different malignant phenotypes. To our 
knowledge, this is the first investigation of TF-microRNA 
regulatory interactions by modeling diverse data sources 
and integrating constraints of sparseness in HNSCC. 
Within experimental validation of predicted microRNA 
targets, it would help in understanding of TF-microRNA 
regulatory mechanisms responsible for different cancer 
phenotypes and heterogeneity of HNSCC. Also, successful 
application of the RCA-based method in HNSCC showed 
it could serve as a useful approach to study on regulatory 
networks of regulators in other complex biological systems. 
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Abstract- Generating inferences from a gene regulatory 
network is important to understand the fundamental cellular 
processes, involving gene functions, and their relations. The 
availability of time-series gene expression data makes it 
possible to investigate the gene activities of the whole 
genomes. Under this framework, gene interaction is explained 
through a set of fuzzy relational matrices. By transforming 
quantitative expression values into linguistic terms, the 
proposed technique defines a measure of fuzzy dependency 
among genes. Based on the fact that the measured time points 
are limited, we present an Artificial Bee Colony-based search 
algorithm to unveil potential genetic network constructions 
that fit well with the time-series data and explore possible 
gene interactions.  

Keywords- gene regulatory network; fuzzy relational system; 
fuzzy membership distribution; artificial bee colony 
optimization algorithm; differential evolution algorithm. 

1  Introduction  
Genes in living organisms form a virtual network through 

interaction with each other. This interaction mechanism is 
called gene regulatory network (GRN). GRNs form dynamic 
and distributed systems which control the expressions of the 
various genes in the cell. They explicitly represent the 
causality of developmental processes and explain exactly how 
genomic sequence encodes the regulation of expression of the 
sets of genes that progressively generate developmental 
patterns and execute the construction of multiple states of 
differentiation. 

The complex control systems underlying development have 
probably been evolving for more than a billion years. These 
control systems consist of many thousands of modular DNA 
sequences. Each such module receives and integrates multiple 
inputs, in the form of regulatory proteins (activators and 
repressors) that recognize specific sequences within them. The 
end result is the precise transcriptional control of the 
associated genes. Some regulatory modules control the 
activities of the genes encoding regulatory proteins. Functional 
linkages between these particular genes, and their associated 
regulatory modules, define the core networks underlying 
development. This regulatory mechanism of genes provides an 
insight into the interaction between different genes. 

With the rapid advancement of DNA microarray 
technologies, inferring genetic regulatory networks from time-
series gene expression data has become critically important in 
revealing fundamental cellular processes, investigating 
functions of genes and proteins, and understanding complex 
relations and interactions between genes. 

Several methods have been proposed to model maps of 
gene interaction, including Bayesian networks [1], dynamic 
Bayesian networks with hidden Markov model [2], and 
Boolean networks [3]. More recently, neural networks have 
also been applied to the problem of gene expression data 
analysis [4]. 

Boolean networks have been used to infer underlying GRN 
structures. In a Boolean network, the state of a gene is 
represented by a Boolean variable (ON or OFF) and 
interactions between genes are represented by Boolean 
functions. Boolean networks require that a number of 
assumptions be made to simplify analysis. Unfortunately, the 
validity of these assumptions has been questioned by many 
researchers, especially those in the biological community. To 
these researchers, there is a perceived lack of connection 
between simulation results and empirically testable 
hypotheses. 

Instead of Boolean networks, Bayesian networks can also 
be used for GRN inferences. Bayesian network is a 
probabilistic model that describes the multivariate probability 
distribution of a set of genes whose interdependencies are 
known. A Bayesian network allows the conditional 
dependencies and independencies to be displayed by means of 
a directed acyclic graph. However, this approach to the 
learning of network structures is a NP-hard problem, 
especially for high-dimensional data such as gene expression 
data. Another problem that needs to be tackled when using the 
Bayesian network approaches for gene expression data 
analysis is concerned with the effect of small sample sizes. 

A stochastic model of gene interactions capable of 
handling missing variables is proposed in [2]. It can be 
represented as a dynamic Bayesian network particularly well 
suited to tackle the stochastic nature of gene regulation and 
gene expression measurement. Parameters of the model are 
learned through a penalized likelihood maximization 
technique. The model referred to here is based on several 
strong assumptions, such as stationary or additive regulation. 
The model needs farther improvement in order to represent 
more realistic phenomena, such as non-linear and 
combinatorial regulations. 

Currently, with the advancements of the DNA micro array 
technology, it has become possible to simulate gene regulatory 
network from gene expression time-series data. In [6], a 
mathematical model for GRN has been proposed using fuzzy 
recurrent neural network to determine the numerical 
interaction values between genes. Due to the large number of 
model parameters and the small number of data sets available, 
the system of equations in GRN identification problem is 
highly underdetermined and ambiguous. GRN weights usually 
are multimodal functions of the gene expression time series 
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data. Hence, the solution sets of weights are non-unique, and 
naturally the solution does not guarantee the optimal selection 
of weights of the network. 

In this context, it is necessary to propose models that 
attempt to get good predictions, reducing the need for prior 
knowledge. For one to infer the structure of a GRN, it is 
important to identify, for each gene in the GRN, whether other 
genes can affect its expression and how they can affect it. To 
better infer GRN structures, we propose a technique which is 
able to discover interesting fuzzy dependency relationships 
among genes.  It can represent discovered fuzzy dependency 
relationships explicitly as “if a gene is highly expressed, its 
dependant gene is then lowly expressed” etc. These 
relationships can reveal biologically meaningful gene 
regulatory relationships that could be used to infer underlying 
GRN structures. 

In this work, we present a fuzzy logic based algorithm for 
analyzing gene expression data, and employ an Artificial Bee 
Colony (ABC) optimization algorithm [7] to find the optimal 
membership function of normalized gene responses as well the 
fuzzy relation between genes. The membership function thus 
obtained are then defuzzified by centroidal defuzzification 
technique, and the results are found to be promising. 

Using fuzzy logic, we have developed a technique to 
identify logical relationships between genes. The fuzzy logic 
has proved to be an important tool due to its ability to 
represent non-linear systems, its friendly language to express 
knowledge and the ability to incorporate and edit fuzzy rules. 
It can handle very noisy, high-dimensional time series gene 
expression data and can represent discovered fuzzy 
dependency relationships explicitly. These discovered 
relationships not only make hidden regularities easily 
interpretable, it also determines if a gene is supposed to be 
activated or inhibited and can be used to predict how a gene 
would be affected by other genes from an unseen sample (i.e., 
expression data that are not in the original database). The 
proposed technique has been tested with real expression data. 

The performance of the current work is significantly better 
than the one reported in [6] considering root mean square error 
and convergence speed of the procedure. ABC seems to be 
promising for this optimization problem because of the 
following reasons: 1) providing better solution quality to find 
out fuzzy membership distribution of relation between genes 
in GRN, 2) combining local search methods with global search 
methods attempting to balance exploration and exploitation 
processes giving high speed of convergence, and 3) preventing 
the search technique from premature convergence problem 
providing global search ability with the help of scout unit. 

The paper is organized as follows. First, the conventional 
concept of fuzzy sets and relations is described briefly in 
section 2. In section 3, we describe the fuzzy relational 
approach to solve GRN identification problem. The cost 
function used to determine the quality of a solution is 
proposed in section 4. In section 5, we describe the ABC 
optimization algorithm used to find the relational matrices 
between genes in the network and we explain the fuzzy 
technique to represent the membership values of gene 
response in section 6. In section 7, we present the simulated 
results and in section 8, we demonstrate the use of our model 
to simulate a gene regulatory network using real gene 
expression time series data. Section 9 concludes the paper. 

2 An Overview of Fuzzy Sets and Relations 
2.1 Definition 1 

A fuzzy set A is a set of ordered pairs, given by 

}:))(,{( XxxxA A               (1) 

where X is a universal set of objects (also called the universe of 
discourse) and µA(x) is the grade of membership of the object x 
in A. Usually, µA(x) lies in the closed interval of [0,1]. 
2.2 Definition 2 

A membership function µA(x) is characterized by the 
following mapping: 

XxxxA  ],1,0[:)(             (2) 

where x is a real number describing an object or its attribute, 
X is the universe of discourse and A is a subset of X. 
2.3 Definition 3 

A fuzzy relation is a fuzzy set defined in the Cartesian 
product of crisp sets X1, X2, …, Xn. A fuzzy relation R(x1, x2, 
.., xn) thus is defined as 
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where ].1,0[...: 21  XXX nR                              (3) 

In binary fuzzy relation instead of n universes we need only 
2 universes. 

2.4 Definition 4 
A fuzzy implication relation for a given rule: IF x is Ai 

THEN y is Bi is formally denoted by 
)},/(),({),( yxyx

iRyxRi                                               (4) 

where the membership function µRi(x, y) is constructed 
intuitively by many alternative ways. Here we have used 
Mamdani Implication. Mamdani proposed the following 
implication function: 

)](),(min[),( x
iBx

iAyx
iR                                     (5) 

2.5 Definition 5 
Let us consider two fuzzy relations R1 and R2 defined on 

X Y and Y Z respectively. The max-min composition of R1 
and R2 is a fuzzy set defined by 

RoRR 213   
     )},/(),(

3
{ zxzxR                                                     (6) 

where 
},,|)),(

2
),,(

1
{min(max),(

3
ZzYyXxzyRyxR

y
zxR   .  

2.6 Definition 6 
Let us consider a fuzzy production rule: IF x is A THEN y 

is B, and a fuzzy fact: x is A/.The Generalized Modus Ponens 
(GMP) inference rule then infers y is B/. Here A, B, A/, and B/ 
are fuzzy sets such that A/ is close to A, and B/ is close to B. 
The inference rule also states that the closer the A/ to A, the 
closer the B/ to B. Symbolically, the GMP can be stated as 
follows: 

Given: IF x is A THEN y is B. 
Given: X is A/. 
Inferred: y is B/. 
For evaluation of membership distribution of y is B/, 

µB’(y), we need to know the membership distribution of x is 
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A/, µA’(x), and the membership of the fuzzy relation for the 
given IF-THEN rule, µR(x, y). 

According to GMP 
),()()( // yxoxy RAB                                              (7) 

where µA’(x) and µR(x, y) are row vector and matrices of 
compatible dimension respectively. 

3 Solving the GRN Identification Problem 
by Fuzzy Relational Approach 

To describe the proposed technique, let us assume that we 
are given a set of gene expression time series data G={G1,…, 
Gj,…, GN}, consisting of N time series collected from 
experiments with N genes. Each of these N time series 
consists, in turn, of T data points collected at T different time 
instances. 

Here we have considered that the response value of gene gj 
at time instance t, Gj(t) has a fuzzy membership distribution 
µA(Gj(t)), and the corresponding fuzzy set A is given by the 
doublet (Gj

k(t)| µA (Gj
k (t)), where jϵ[1, N] and kϵ[1,F]. The 

Gj(t) is evaluated by centroidal defuzzification procedure 
given by  
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As an example let F=5; so that a particular gene expression 
at time instance t can be represented as {0.2|0.35, 0.4|0.57, 
0.6|0.62, 0.8|0.89, 1.0|0.93}, and after the de-fuzzification it 
becomes(0.2 0.35+0.4 0.57+0.6 0.62+0.8 0.89+1.0 0.9
3)/(0.35+0.57+0.62+0.89+0.93)= 0.68809. At this point, we 
want the attention of the reader on the above fuzzy set A; the 
members of fuzzy set A are 0.2, 0.4, 0.6, 0.8, and 1.0. 

Now, gene expression can be described in two different 
states such as “highly expressed” and “lowly expressed” to a 
varying degree based on a set of membership functions. For 
our application here, we define two different states, “highly 
expressed” and “lowly expressed” in terms of two fuzzy sets 
as shown in Figure 1. In our proposed work, we are 
considering two fuzzy sets A1= [0.1, 0.4] and A2= [0.5, 1.0]. 
Here µA1(Gj(t)) in fuzzy set A1 indicates the degree of 
membership of Gj(t) to be low and µA2(Gj(t)) in fuzzy set A2 
indicates the degree of membership of Gj(t) to be high. 

Let A=A1UA2. Hence, gene expression is considered to be 
low with a high membership value of gene response within a 
range of 0.1 to 0.4 and otherwise gene expression is 
considered to be high.  

From the membership distribution of µA1(Gi(t=0)), 
µA2(Gi(t=0)), µA1(Gj(t=0))  and µA2(Gj(t=0)) we can construct 4 
fuzzy relational matrices for each pair of gene responses Gi(t) 
and Gj(t), i, jϵ[1, N] following Mamdani rule of Fuzzy 
implication. 
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Figure 1. Fuzzy membership distribution of gene expression 
 
The descriptions of four relational matrices are given as 

follows. 
1) )))t(G j()),t(Gi((Min)l,k(R low_j,low_i l

A
k

A 00 11   

2) )))t(G j()),t(Gi((Min)l,k(R high_j,low_i l
A

k
A 00 21   

3) )))t(G j()),t(Gi((Min)l,k(R low_j,high_i l
A

k
A 00 12   

4) )))t(G j()),t(Gi((Min)l,k(R high_j,high_i l
A

k
A 00 22   

 k,l  [1,F]. 
The corresponding fuzzy production rules are given as 

follows. 
PR1: IF gi’s response is low  

THEN gj’s response is low. 
PR2: IF gi’s response is low  

THEN gj’s response is high. 
PR3: IF gi’s response is high  

THEN gj’s response is low. 
PR4: IF gi’s response is high  

THEN gj’s response is high. 
Now, the entire fuzzy relational matrix between response 

of genes gi and gj is given by Ri,j which is formed using 4 
relational sub-matrices. 

                           
                        
 
                                                                                   (9) 
 
 
 
Hence there will be such N N relational matrices each of 

dimension F F. 
Now our objective is to determine the membership 

distribution of gene gi at next time instance t+1. Let this is 
denoted as µA(Gi(t+1)). Once the relational matrix Ri,j has 
been formed between two genes gi and gj, we can evaluate 
µA(Gi(t+1)) by max-min composition between Ri,j and  
µA(Gj(t)), for i, j [1,N], as given by GMP inference rule 

                     N 
µA(Gi(t+1))=max[µA(Gj(t))oRj,i], i,j  [1,N]                     (10)      
                   j=1 
where µ(Gj(t))oRj,i=max[min{ µ (Gj

k (t), Rj,i(k,l)}]                  (11) 
                               k  F         

Ri_low,j_low Ri_low,j_high 

Ri_high,j_low Ri_high,j_high 
Ri,j = 
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4 Proposed Cost Function 
The proposed cost function in this work is designed 

keeping in mind the main issue of accurately identifying the 
existing relationship between genes in the network.Handling 
this issue is a tough job, since we do not have any knowledge 
except the available gene espression time series data. 
Therefore, a judicious choice of cost function can greatly 
influence the accuracy of the simulated network. To meet this 
issue, we evaluate the accuracy of the produced gene 
expression of our simulated network obtained using the fuzzy 
relational system by comparing it with the original gene 
expression with the hope that if the fuzzy relational matrices 
correctly identify the logical relationships between two genes 
then the difference (error) between the two set of gene 
expressions will be less. The error has been calculated by 
taking the squared difference between original gene 
expression, Gi_org(t), and experimental gene expression, 
Gi_cal(t), given by 
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5 Artificial Bee Colony Optimization 
algorithm (ABC) 

In ABC algorithm, the colony of artificial bees contains 
three groups of bees: 
 Onlooker bee makes decision to choose a food source. 
 Employed bee selects a food source.  
 Scout bee carries out random search for food source. 
Here, the position of a food source represents a possible 

solution of the optimization problem and the nectar amount of 
a food source corresponds to the fitness of the associated 
solution. The number of employed bees and onlooker bees is 
equal to the number of solutions in the population. ABC 
consists of following steps: 
5.1 Initialization 

ABC generates a randomly distributed initial population P 
(G=0) of Np solutions (food source positions). Each solution 
Xi (i=0, 1, 2,…, Np -1) is a D dimensional vector.  
5.2 Placement of employed bees on the food sources  

An employed bee produces a modification on the position 
in her memory depending on the local information (visual 
information) as stated by equation (14) and tests the nectar 
amount of the new source. Provided that the nectar amount of 
the new one is higher than that of the previous one, the bee 
memorizes the new position and forgets the old one. 
Otherwise she keeps the position of the previous one in her 
memory. 
5.3 Placement of onlooker bees on the food sources 

An onlooker bee evaluates the nectar information from all 
employed bees and chooses a food source depending on the 
probability value associated with that food source, pi, 
calculated by the following expression: 

             







1

0j
j

i

Np
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fitpi
                                      (13) 

where fiti is the fitness value of the solution i evaluated by its 
employed bee. After that, as in case of employed bee, 
onlooker bee produces a modification on the position and 
checks the nectar amount of the candidate source. Onlooker 
bee memorizes the better position only. 

 In order to find a solution  Xi
/ in the neighborhood of Xi, a 

solution parameter j and another solution Xk are selected on 
random basis. Except for the value of chosen parameter j, all 
other parameter values of Xi

/are same as in the solution Xi, for 
example, Xi

/=( xi0, xi1,…, xi(j-1), xij
’  , xi(j+1),…, xi(D-1) ). The value 

of xij
/ parameter in  Xi

/ solution is computed using the 
following expression: 

      xij
’ = xij +u(xij- xkj)                                               (14) 

where u is a uniform variable in [-1, 1] and k is any number 
between 0 to Np-1 but not equal to i. 
5.4 Send scouts for discovering the new food sources  

In the ABC algorithm, if a position cannot be improved 
further through a predefined number of cycles called ‘limit’, 
the food source is abandoned. This abandoned food source is 
replaced by the scouts by randomly producing a position. 
   After that again steps (B), (C) and (D) will be repeated until 
the stopping criteria is met. 

6 Extraction of Fuzzy Relationship between 
Genes Using ABC 

In our paper, we have used the well known Artificial Bee 
Colony (ABC) optimization algorithm to find the simulated 
network. To spread the initial candidate solutions as far 
possible in the search space with the hope that some of the 
solutions may be close to the original solution we have used a 
chaos system [5] in ABC. The process of producing the chaos 
is as follows: 

                          Zk+1=µZk (1-Zk)                                (15) 
where k = 0, 1, 2, 3… Θ, Θ is the number of chaotic 

iteration, µ is the control parameter. Zk takes any value 
between 0 and 1; it is the selected value in the kth iteration. 
We indeed found that this initialization improve the overall 
convergence rate of the artificial bee colony optimization 
algorithm. 

Each individual food source of ABC represents a complete 
solution. As an example one solution of the N=4 gene network 
contains N F=4F data points where F is the number of 
elements in each of the N=4 fuzzy sets. These sets represent 
the membership values of gene responses in the network. We 
maintain a pop_size number of individual food sources all the 
time in the population pool. The population pool of the ABC 
optimization algorithm for the four gene network with F=10 
can be represented pictorially as a two dimensional matrix as 
shown in Figure 2. 

In Figure 2, F=10 and µA(Gi
k) represents the fuzzy 

membership values of the gene expression Gi of any 
individual food source, k=1, 2, …, 10 with the Fuzzy members 
as {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. At each step 
of ABC we evaluate fuzzy membership distribution of gene 
response, de-fuzzify each membership, calculate the cost 
function, and make the appropriate decision whether to keep 
that particular food source for the next generation or not. 
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Figure 2. Individual solution used in optimization algorithm 

7 Simulation Results 
 The gene regulatory network identification problem is 

implemented in a Pentium processor. The results are generated 
with 4 time series data, one for each of 4 genes. The 
experiments are conducted for F=5, 10, and 20.  
7.1 Experiment with Artificial Bee Colony  

Figure 3 shows 16 fuzzy relational matrices Ri,j between 
responses of genes gi and gj,  i, j  [1,4] with 1000 iterations 
for ABC algorithm with limit=100 and 300 iterations for 
chaotic initialization algorithm. 
7.2 Experiment with Differential Evolution  

Figure 4 shows 16 fuzzy relational matrices Ri,j between 
responses of genes gi and gj,  i, j [1,4] with 1000 iterations 
for DE algorithm with Cr=0.9 and 300 iterations for chaotic 
initialization algorithm. 
7.3 Results on the time series data 

Using the relational matrices obtained from ABC- and DE- 
based simulations, and de-fuzzifying values of gene responses 
at t=1,2,…, 150, we obtain the calculated gene expression 
time-series data. The relative performance of ABC-, DE- 
based simulations using our approach as well as the fuzzy 
recurrent neural approach proposed in [6], can be studied 
through the plot (Figure 5(i)-(iv)). Each plot consists of the 
gene expression levels at different time instances obtained by 
our approach (using ABC and DE), work proposed in[6] and 
the original time series data for a particular gene. Now we 
compare the derived time series plot with the original gene 
expression time series data. It is evident from the figures that 
ABC- based simulation using fuzzy relational system has 
outperformed the other two approaches.   
7.4 Cost function evaluation 

In order to compare the ability of ABC- and DE- based 
simulations to provide better solution with less cost function 
value, we plot the cost function value of the best solution 
obtained in each iteration of ABC- and DE-based simulations 
in Figure 6. It is apparent that for a fixed number of iteration 
ABC provides better solution than DE. 

7.5 Performance analysis 
To analyze the performance of the proposed approach for 

identification of gene regulatory network, we measure the 
following two parameters. 
7.5.1 Root mean square error (RMSE) 

The performance metric used here to determine how close 
the estimated gene responses are close to the original values of 
gene expressions is Root Mean Square Error (RMSE) given as 
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Here, T=150 and N=4.We obtain the following results 
from the plot of time series data in Fig.5. 
 RMSE for ABC-based simulation with fuzzy relational 

system= 3.0239% 
 RMSE for DE-based simulation with fuzzy relational 

system= 5.0735% 
 RMSE for DE-based simulation with recurrent fuzzy 

neural model as in [6] = 15.6667% 
7.5.2 Run time 

After carrying out the experiment in a Pentium dual port 
computer using ABC optimization and DE algorithms, we find 
out 

 Run_timeABC=59 minutes 
 Run_timeDE=32 minutes 

 ABC- based simulation takes more time than DE- based 
simulation due to complexity involved in ABC. 

In Table-I, we represent the mean fuzzy relational matrix 
indicating relationship between expression of genes g2 and g1 
obtained using ABC-based simulation after 25 runs with 
F=10. A close inspection of Table-I indicates that membership 
value of expression of gene g2 is high (low) when that of gene 
g1 is low (high). It indicates that gene g1 regulates expression 
of gene g2 by inhibiting its response. 

8 Inferring GRN Using Real Data Set 
We have used our model to infer the gene regulatory 

network of e.coli. Bacteria S.O.S DNA repair network 
consisting of nearly 30 genes regulated at the transcription 
level. Four experiments have been conducted with different 
UV light intensities and eight major genes have been 
documented. These genes are uvrD, lexA, umuD, recA, uvrA, 
uvrY, ruvA, polB. This data set is available in the website 
[http://www.weizmann.ac.il/mcb/UriAlon]. We have 
conducted same experiment as with the above artificial data. 
The identified gene responses are represented in Figure 8. 

TABLE-I: Fuzzy Relational Matrix between expression of genes g1 and g2 
 
  

g2 response 
 low high 
  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

g1 
response 

low 

0.1 0.01 0.08 0.12 0.08 0.05 0.05 0.67 0.63 0.71 0.89 
0.2 0.01 0.27 0.45 0.19 0.19 0.04 0.69 0.71 0.67 0.86 
0.3 0.08 0.25 0.25 0.17 0.17 0.07 0.69 0.45 0.58 0.90 
0.4 0.27 0.05 0.36 0.17 0.19 0.17 0.55 0.45 0.55 0.71 
0.5 0.25 0.36 0.44 0.45 0.55 0.45 0.55 0.27 0.55 0.89 

high 

0.6 0.71 0.63 0.58 0.55 0.55 0.44 0.55 0.25 0.55 0.67 
0.7 0.89 0.72 0.69 0.69 0.69 0.69 0.45 0.55 0.60 0.55 
0.8 0.86 0.67 0.72 0.72 0.63 0.45 0.44 0.55 0.27 0.07 
0.9 0.90 0.69 0.71 0.69 0.71 0.44 0.35 0.12 0.08 0.17 
1.0 0.80 0.83 0.72 0.72 0.69 0.58 0.15 0.45 0.25 0.05 
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  Figure 3. Fuzzy relational matrices Ri,j,  i,jϵ [1,4], obtained from ABC-based simulation  

 
             Figure 4. Fuzzy relational matrices Ri,j,  i,jϵ [1,4], obtained from DE-based simulation  
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Figure 5(i). Plot of time series data for gene 1 

 
Figure 5(ii). Plot of time series data for gene 2 

 
Figure 5(iii). Plot of time series data for gene 3 

 
Figure 5(iv). Plot of time series data for gene 4 

 
Figure 6. Minimum cost function value in each iteration of ABC- and DE- 

based simulation 

 

 
Figure 8. The measured gene expression profile of e. coli. 

9 Conclusion 
In this paper, we have presented an effective fuzzy technique 

for the discovery of GRNs from time series gene expression 
data. We design the fuzzy rules according to expressing level 
of gene, and fuzzy set theory. The proposed technique can 
discover fuzzy dependency relationships in high-dimensional 
and very noisy data. Based on the discovered fuzzy 
dependency relationships, the user can not only determine 
those genes affecting a target gene but also can identify 
whether or not the target gene is supposed to be activated or 
inhibited. The simulation results on both the artificial and the 
real data demonstrate that the proposed method is very 
promising in capturing the nonlinear dynamics of genetic 
regulatory systems and unveiling the potential gene interaction 
relation.  
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Abstract - Understanding protein-protein and protein-DNA 

interactions is key to understanding the dynamics of   gene 

regulation [3,17].   We here review a previously presented 

method[1,15,20], based on a variation of  microarray 

expression profile correlation analysis, that seeks to identify 

interactions between a putative heteropolymeric transcription 

factor(TF) complex and DNA as well as some experimental 

results that bolster the argument for the method's validity.  

The method incorporates correlation coefficients between 

genes and transcription factors expression profiles, but also 

between genes and hypothetical TF co-factors, whose 

expression profiles are estimated by taking minima from 

constituent profiles.  Second, we extend the technique to 

search for fourth-order protein interactions (k=4).  Since a 

CPU-based analysis would require an execution time on the 

order of months, we have implemented the k=4 analysis on a 

CUDA-enabled NVIDIA GPU [16].  With CUDA, we 

achieved speedups of about 6-fold.  Finally, we present the 

results of the higher order analysis and discuss those results 

as well as the implementation of the method using CUDA.  To 

our knowledge CUDA has never been used to implement this 

particular algorithm for microarray gene expression profile 

analysis. 

 
Keywords: Microarrays, Biological Data Mining, CUDA, 

correlation coefficients. 

 

1 Introduction 

Since the sequencing of the human genome [2] has been 

completed, the interpretation and biological connotation of 

sequences and the annotation of functional elements of the 

genome have been of great interest to researchers. Although a 

large number of human genes have been identified, their 

complete regulatory mechanisms are not wholly known at the 

transcriptional level [3]. To understand gene regulation, we 

need to identify regulatory elements and the transcription 

factor complexes that can regulate gene expression, allowing 

the construction of transcription regulatory networks (TRNs).   

To control the expression of genes, TF proteins bind to cis-

elements in promoter regions and either facilitate or inhibit 

gene expression. Simply stated, trans-elements can be 

considered to be “keys”, cis-elements “locks”, and together 

“opened doorways” to transcription.  By establishing whole 

TRNs, we may be able to identify novel methods of gene 

regulation which could have applicability both in the 

laboratory and clinical settings. 

 

In the post-genomic era, it has been a challenging task in 

functional genomics to construct TRNs from protein-DNA 

interactions. In silico discovery of transcription regulatory 

elements is quite effective for prokaryotes, like Escherichia 

coli [4], where genomes are more compact with many genes 

being regulated by a single operon.  For higher multi-cellular 

eukaryotes, model-based approaches [3] that discover patterns 

among co-expressed genes with respect to regulating TFs have 

been proposed.  The techniques involve finding over-

represented DNA motifs and common transcriptional 

regulatory modules among co-expressed genes.  A number of 

statistical and machine-learning algorithms have been used; 

they include position-weighted matrices, position-specific 

score matrices, Markov chains, artificial neural networks, and 

expectation maximization [5-11].  However, it has been 

reported that techniques incorporating a model-prediction-

based approach are susceptible to a high false-positive 

prediction rate and that a majority of predicted TFBSs have no 

functional role in vivo [12]. 

 

Determining new ways to predict which proteins might 

participate in a heteromeric complex may facilitate the 

discovery of new TRNs.  In this paper, we hypothesize that 

heteromeric TF complexes can be predicted in silico based on 

their constituent TF expression profiles.  Using transcription 

factor expression profiles and gene expression profiles from 

microarray data, we review a technique that relies on 

combinations of TFs and correlation coefficients to predict 

TF-complexes [1,15,20].  Our dataset includes gene and TF 

expression profiles from a human female over 115 tissues 

samples [13].  The technique considers hypothetical TF-

complex expression profiles in a given tissue which are 

estimated by taking minima from the constituent factors from 

the given tissue.  By comparing these hypothetical profiles 

with each other and with the genuine expression profiles using 

correlation coefficients, we identify possible complexes. 

These proposed and hypothetical complexes are given a score 

based on the comparison.  These scores are then compared 

with scores from other proposed and hypothetical complexes.  

This comparison leads to the identification of complexes that 

we believe are more likely to be genuine, and not hypothetical. 
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Our technique relies on a combinatorial approach selecting a 

gene, and tuples of TFs and computing many correlation 

coefficients.  Due to extended program execution times, we 

decided to implement our algorithm using CUDA.  We were 

able to achieve a speedup of approximately 6-fold.  As a result 

of our analyses, we have been able to perform some validation 

of our technique as well as identify possible hetero-tetrameric 

transcription factor complexes.  In the following sections of 

this paper, we describe our technique, its implementation and 

validation, our findings, and conclude with a brief discussion. 

 

2 Methods and Materials 
 
To carry out the analyses, we used publicly available 

microarray expression data [13].  The dataset covers a number 

of human genes and transcription factors expressions across 

115 tissue samples, from adrenal tissue to uterine tissue.  The 

dataset is essentially a matrix of expression values with genes 

indexed by row indices and tissues by column indices; each 

entry in the data matrix thus represents a gene's expression in 

a specific tissue.  The data is different from typical 

microarrays in that the genomic DNA is used to estimate 

mRNA transcript abundance.  A subset of 3166 gene 

transcripts, representing 2526 unique genes, of the data was 

selected and set aside.  Additionally, 352 transcripts, based on 

information in the entrez-gene and TRANSFAC databases 

[23, 24] were tagged as transcription factors and also set aside. 

These data were used for all analyses. 

 

Initial experimental correlation coefficients led to a 

distribution of coefficients that were weak and centered 

around zero [1].  This led to the development of a gene data 

pre-processing step where each gene's expression value was 

transformed with the equation  y’=ye
αy

  where α is a constant.  

For all experiments done for this paper, the value of α was set 

to 0.5.  The graph in figure 1 demonstrates the motivation for 

the transformation. 
 
Given a dataset of 1 row of microarray data for a gene g and a 

set of rows of N transcription factors TF1,....TFN, our 

technique to asses the relationship between g and those 

transcription factors is as follows.  First, the expression data 

for the gene is transformed with the previously described 

alpha transformation.  Second, borrowing from previous 

techniques [12] N correlation coefficients are computed 

between the gene's expression values and the individual 

transcription factor expression values.  The Pearson 

Correlation Coefficients are computed using the formula:  
 
 
(1) 

 

 

 

 

 

Third, between all possible pairs, the hypothetical expression 

levels are computed and then as many correlation coefficients 

are computed.  The hypothetical dimeric expression profiles 

are computed by taking the minimum expression value 

between the two constituent TFs expression values for a given 

tissue and assigning that value to the corresponding tissue 

expression for the hypothetical dimer.  The same procedure is 

done for remaining k=3,...,N expression profile triplets, 

quadruplets, etc. of the corresponding hypothetical trimers, 

tetramers, etc.    

 

For example, for a hypothetical tetramer, its expression at 

tissue j would be min(TF1j,TF2j,TF3j,TF4j) where the TFxj is 

the x
th

 constituent factor at the j
th

 tissue.  This way, altogether, 

the sum of ),( kNC (“N choose k”), for k=1,2,...,N=kmax 

correlation coefficients are computed between the gene 

expression profile and the real and hypothetical expression 

profiles; N are real and the remaining are hypothetical.   

 

Fourth, the highest-order coefficient (kmax), where the minima 

of N values for a given tissue was taken is compared with the 

remaining, lower-order coefficients.  The value a, which we 

call the absolute improvement score is computed with the 

formula: 
 

 (2)  
 

 
where the minimal absolute value between the highest order 

correlation and all other correlations is taken.  This score we 

believe helps to distinguish any transcription regulatory signal 

from the highest-order hypothetical TF from the others.  Fifth, 

 
Fig. 1 Data such as depicted this chart helped motivate the α-transformation 

of the gene data. 
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this procedure is carried out for all genes and for all k-tuples 

of transcription factors.  In total,  
 
 
                  (3) 
 
 

where g is the number of genes, N is the number of 

transcription factors coefficients are computed, k is the 

different numbers of combinations of factors chosen, and kmax 

represents the highest-order polymerization under 

consideration.  For the CFOS/CJUN example later, kmax is 2; 

for data-mining for heterotetramers, kmax is 4.  Note that the 

sum over combinations is used in Eq. 3 because an analysis 

requires the computation of lower-order coefficients in the 

formula for computing the absolute improvement score.  

Finally, we rank the complexes by their scores.  Figure 2 gives 

a schematic giving an overview of the technique. 
 

 
Fig. 2. A schematic shows data-flow and operations of the algorithm.  TFs 

are chosen (k in total); a gene is chosen (box “G”) and then subjected to the 

alpha transformation (box “α”); 1-tuples, 2-tuples,…(kmax-1)-tuples, and kmax-

tuples of TFs are chosen and minima are taken to form hypothetical 

expression profiles (boxes labeled “TF” & “Cmin”).  Finally, correlations are 

computed between the gene and all of the TF profiles (box “ρ”) (both genuine 

and hypothetical) and compared to generate an absolute improvement score 

for the highest-order putative heteropolymeric TF complex (box “a”).  The 

scores are used for ranking hypothetical TFs as being likely transcription 

factor complexes.  Legend: The “*” represents the highest-order coefficient, 

“**”, intermediates, and “***” the lowest. 

 
When a gene shares a name with any of the transcription 

factors, or if any pair of the transcription factors share a name, 

then the corresponding coefficients and absolute improvement 

value are not computed.  Such analyses are not carried out 

because we do not wish to consider polymerization involving 

self-regulating genes or any degree of homo-polymerization.   

Central hypotheses of this project are that by taking the 

minima at a given tissue across expression profiles that we 

find the hypothetical expression profile of the corresponding 

polymeric TF and also that the computation and subsequent 

sorting of the absolute improvement scores may identify and 

distinguish a transcription regulatory signal from the 

transcription factors and their hypothetical joining to regulate 

the corresponding gene by binding to transcription factor 

binding sites on DNA. 

 

All analyses were completed with a custom-written C/C++ 

computer program running on a 64-bit Ubuntu/Linux platform 

with an Intel core i7-960 processor.  Perl and bash scripts 

played a role in loading data into our program as well.  Our 

dataset was not free of missing values.  Missing values were 

indicated with the value (-18).  In computing the correlation 

coefficients, columns (tissues) with missing values were 

ignored and skipped over.  In computing the hypothetical 

expression profiles, if any single component TF profile had a 

missing value in a given column, then the hypothetical profile 

was defined to also have a  missing value in that column.   
 

2.1 Methods Validation 
 
To explore the validity of our technique we selected two well-

known heterodimer-forming transcription factors CFOS and 

CJUN [26] from our dataset and applied our algorithm.  The 

two transcription factors together form AP-1.  Using the 

TRANSFAC and ENCODE [24, 25] databases we identified a 

total of 4 known target genes of the AP-1 TF complex in our 

gene dataset: TIMP1, GJA1, HMGA1, and MAP4K5.  A 

perfect data-mining technique to identify TFs and their target 

genes would identify at least these four known target genes for 

AP-1.  As described in the METHODS section, using every 

pair of transcripts in our dataset belonging to CFOS and 

CJUN, we carried out a kmax=2 analysis and computed 

correlation coefficients, hypothetical expression profiles, 

absolute improvement scores, and then sorted.  After sorting 

our list and discounting the reported target genes CFOS, and 

CJUN (the components of AP-1 itself), we found two of the 

known target genes (HMGA1 and MAP4K5) among the top 

ten  rows of the sorted list of absolute improvement scores and 

corresponding genes and TFs.  Using the hypergeometric 

distribution, similarly as elsewhere [21, 22], based on the null 

hypothesis that the four known positives are distributed in the 

list of 2526 genes at random, we computed that there is a P-

value of 8.4·10
(-5)

 for finding 2 or more of the known target 

genes in the top 10 of the list sorted by the absolute 

improvement scores.  This indicates that we may reject that 

null hypothesis, H0, that the four target genes are randomly 

distributed in the sorted list at the α=1% significance 

threshold.  The results are displayed in table 1.   
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2.2 Data Mining for Heterotetrameric 

Transcription Factors 
 

To search for putative heterotetrameric transcription factors, 

we decided to carry out our algorithm with kmax=4; we wrote a 

C/C++ computer program and ran four time trials.  Using a 

quad-core i7 Pentium processor and the OpenMP API for 

multi-threaded computer programming, our kmax=4 analysis 

was over a single gene running 1, 2, 3, and 4 OpenMP threads 

at a time.  Our time trials were done not to analyze the results, 

but solely to acquire execution-time data.  With four 

essentially identical time-trials with 1…4 OpenMP threads we 

saw average execution times of 3090, 1550, 1036, and 780 

seconds.  For analyzing all 3166 gene transcripts (including 

loading the data and printing results), this would be about 113, 

57, 38, and 29 days.   Preferring shorting execution times, we 

deemed such running times too long; in fact a previous 

analysis never completed [20]. Figure 3, along with some 

power curves generated with Excel, shows the timing data for 

the time trials of a single gene.   

 

For these reasons we decided to explore computing the 

correlation coefficients using C/C++ and NVIDIA’s CUDA 

architecture.  CUDA is a specialized GPU parallel computing 

architecture implemented on NVIDIA GPUs.  CUDA-enabled 

NVIDIA GPUs allow the parallel execution of threads on the 

GPU within logically organized grids.  The organization is 

known as an execution configuration.  The precise parameters 

for the execution configuration are set up by the program.  A 

complete description of CUDA is beyond the scope of this 

paper, but it suffices to say that it enables programs that run on 

the GPU, called “kernels” to run many threads in a parallel at 

a time and that CUDA is optimized for arithmetically intense 

compute-bound programs which have a high ratio of 

computation operations to I/O operations.  More information 

can be found about CUDA elsewhere [16, 19]. 
 

2.3 CUDA-accelerated Data Mining for 

Heterotetrameric Transcription Factors 
 

Our C/C++ CUDA-based implementation of the kmax=4 

analysis incorporated 42,875 grid blocks (a 35x35x35 cube of 

blocks) with each block composed of 1000 threads (a 

10x10x10 cube of threads) for its kernel execution 

configuration.  This way, each CUDA-kernel invocation led to 

the execution of (10*35)
3
=350

3
=42,875,000 CUDA threads.  

For a given kernel invocation, the gene is fixed.  In the large 

grid-cube of threads, the row, column, and height indices 

correspond to row indices in our dataset table of transcription 

factors.  This way, at cell x, y, z in the cube, the correlation 

coefficient with the hypothetical trimeric transcription factor 

made of the three transcription factors indexed by x, y, and, z 

is computed by a thread; control flow, partitioning the cube in 

two by the inequality x>y>z, prevents redundant computation 

of some coefficients however.  If any of the indices are equal, 

then the correlation is between the gene and either a dimer (if 

two are equal) or a monomer (if all three are equal).  This is 

because  

of the property of the minimum function: min (a1, a2,...aN)=a1 

if a1=a2=...=aN.  This way, a single kernel invocation 

computes correlations with k=1, k=2, and k=3 which yielded 

great computational efficiency. 
 

We chose the dimension 350 because of the maximal 1000 

threads per block limitation of the CUDA compute capability 

of the NVIDIA GTX 590 GPU we employed.  Because of the 

352 TFs in the dataset, the 350x350x350 grid could not 

accommodate the computation of all the coefficients.  To 

address this issue we introduced grid offsets into our code.  

This way, the grid always computes the aforementioned 42 

million coefficients, but across different indices.  By changing 

the offsets we are essentially moving a 3-D window that offers 

views into a 3-D correlation space.  To compute correlations 

for k=4, we also held an index for one of four TFs constant in 

addition to holding a gene’s index constant.   

 

By varying a gene index, a single transcription factor index, 

and adjusting the kernel's grid offsets we were able to compute 

a total of 2,013,884,773,648 (≈2 trillion) correlation 

coefficients.  Both the CUDA/GPU-based and CPU-based 

Table 1.  Genes and correlations (between CFOS, CJUN and the 

supposed but genuine AP-1 complex.  Known targets of the AP-1 

complex are underlined. AI is the absolute improvement score, used 

for ranking. 

 Gene C1 C2 CC AI 

1 VARS2 0.43 -0.32 0.07 0.36 

2 RNU3IP2 0.50 -0.23 0.15 0.35 

3 ZFX -0.40 0.37 -0.06 0.34 

4 AP2S1 0.46 -0.21 0.12 0.34 

5 LRP6 -0.37 0.37 -0.05 0.32 

6 MAP4K5 -0.35 0.32 -0.04 0.32 

7 LOC56902 0.42 -0.22 0.09 0.31 

8 ERG1 -0.04 0.61 0.30 0.31 

9 HMGA1 -0.25 -0.25 0.05 0.30 

10 TAPBP -0.22 -0.22 0.08 0.30 

 

Fig. 3.  Four essentially indistinguishable execution time data and power 

curves for a k=4 analysis with one gene using 1,2,3, & 4 OpenMP threads  
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analyses were done using single-precision floating-point 

numbers and calculations. Our architecture uses 4 bytes of 

memory to store a single-precision floating point number; the 

total number of correlation coefficients computed therefore 

corresponds to about 8 terabytes of data.  Because we do not 

have such memory capacity available, as we analyzed 

combinations of genes and TFs, we recorded combinations (as 

well as the correlations) that had improvement scores above an 

arbitrary threshold of 0.35.  The top 65,536 combinations 

were recorded; the remaining data points were not recorded. 
 

CUDA kernels, because of the specialized GPU architecture 

on which they execute, run faster with fewer control flow 

statements.  Our code could have computed a hypothetical 

expression profile conditioned on checks that none of the 

component expression profiles had missing values by looking 

to see if any of the values was missing (-18).  To avoid such 

control flow statements, a boolean flag was created from 

logical AND and in-equality testing operations on the values.  

In the code, the flag was used as an indicator whose value was 

interpreted as zero or one.  The indicator was incorporated 

into computations within a for loop; intermediate values and 

counters were adjusted accordingly.  During development, this 

change led to a dramatic speedup. 

3 Results 
 
Our C/C++ k=4 CUDA-based analysis led to two results: a) 

putative heterotetrameric TF complexes and target genes 

along with the corresponding coefficients sorted by their 

improvement scores and b) timing data for comparison with 

the CPU-based implementation.  

 

Table 2 presents the top 10 genes and putative TF-tetratmers 

of our analysis results.  The CUDA-accelerated program ran 

in approximately 4.6 days.  Figure 4 displays GPU speedup 

against estimated OpenMP thread running times (1, 2, 3, and 4 

OpenMP threads). 

 

Interestingly, we note that in the top 10 results from the 

CUDA-based k=4 analysis that the FGB gene is seemingly 

overrepresented as well as the SP110 transcription factor.  

FGB forms the beta portion of fibrinogen.  The protein helps 

form blood clots.  The SP110 transcription factor plays a role 

forming a part of a leukocyte-specific nuclear-body [14, 23].  

We submit these top results to the body of scientific literature 

as candidates for subjects of further research and inquiry.  In 

addition, the complete list of over 65,000 putative target 

genes, correlations, and tetrameric TF complexes, dataset and 

source code are available from the corresponding author of 

this paper as well. 

4 Discussion 
 

We here discuss the efficacy of our algorithm, the role of 

CUDA in it, its execution, and ways to possibly improve it by 

parameter adjustment and tuning.  We also discuss further 

ways to test the technique.  Finally, we discuss its role of the 

in a greater bioinformatics context. 

 

Regarding efficacy we note how the program detected two out 

of four known target genes for the AP-1 complex in the top ten 

listed target genes (out of 3166 transcripts total).  This 

outcome suggests that the algorithm has some value, but that 

to be more precise, it needs to be improved.  To further 

explore the algorithm's efficacy, other known dimers and their 

target genes could be considered and the program's output 

could be analyzed similarly as was done in this paper. 

 
All of the gene expression profiles were subjected to an alpha 

transform.  The parameterization of alpha leaves a place for 

experimentation, adjustment, and hopefully improvement.  In 

our analyses for this paper, alpha(α) was set to 0.5.  Perhaps, 

known heterodimers and their target genes could be set to 

vary, so that alpha, on a per-dataset basis, could be variable 

and calibrated or optimized to reveal the most known 

heteropolymeric transcription factors and their target genes as 

possible. 

 

Table 2.  The top-scoring genes and hypothetical transcription factors from 

the CUDA-based k=4 analysis.  Legend: AI “Abs. improvement” 

 AI GENE TF1 TF2 TF3 TF4 

1 0.73 SERPINA6 EPC1 PLAGL1 WT1 ZNF10 

2 0.73 FGB IRF1 MGA PAPOLA SNAPC3 

3 0.73 FGB PRKAR1A TWISTNB ZNF155 ZNF83 

4 0.72 FGB EPC1 HMGB2 ITGB3BP SP110 

5 0.72 FGB EPC1 ITGB3BP PAPOLA SP110 

6 0.71 AFP BCL6 ID4 SIAH2 ZNF212 

7 0.70 FGB E2F5 MHGB2 MGA SP110 

8 0.70 FGB HMGB2 MGA SP110 ZNF83 

9 0.70 FGB TWISTNB ZNF155 ZNF198 ZNF83 

10 0.70 FGB E2F5 HMGB2 ITGB3BP SP110 

 

Fig. 4 The speedup (GPU vs. CPU) achieved by the CUDA-based 

implementation of our algorithm compared with OpenMP threads (1…4). 
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Our program computed all of the correlation coefficients with 

the GPU.  Their computations and subsequent comparisons of 

the absolute improvement score for sorting were carried out by 

the CPU.  The majority of the program’s execution time was 

spent doing such things.  This suggests that having the GPU 

carry out such calculations presents a future avenue to expand 

the use of the GPU and further contract the running time of the 

program.  Such use of the hardware will require further and 

continued use of the CUDA API to coordinate kernel calling 

and data transfers between GPU memory and host memory. 

 

Our dataset set included a total of 44,886 missing values 

(40,080 in the gene dataset, 4806 in the TF dataset).  Thus, 

with a total of 3166+352=3518 expression profiles, there is 

an average of approximately 11.4 missing values per 

expression profile.  From this point of view, every composite 

hypothetical expression profile of two TFs would have 

approximately at least that many missing values.  Thus, for a 

given tissue (of 115 total), the probability that its expression 

value is missing is about 9.93%. Using the binomial 

distribution, for a hypoethical dimer there is a nearly 19% = 

P(X≥1|n=2;p=0.0993) chance that a given tissue’s data is 

missing.  For three TFs this value is just over 25%.  For four, 

it is nearly 35%.  The more TFs that are under consideration 

for a given tissue, then the more likely that at least one 

component TF expression value is missing increases at that 

tissue.  Thus, for higher order composite expression profiles, 

many tissue expression values would be missing.  Thus, for 

k=4, any results should perhaps be used with some caution.  

To make such analysis more meaningful, missing values could 

be estimated, but any results from analyses with such imputed 

values we believe should similarly be used with some, but 

perhaps less caution.  In addition, as k increases, because there 

are more missing values, the signal-to-noise ratio also 

increases and that is a further reminder for using results from 

higher-order analyses with some caution. 

 

Such ideas cause us to remember the fact that the “gold 

standard” techniques to definitively tell whether or not two or 

more proteins heteropolymerize include standard “wet lab” 

molecular biology techniques.  Such techniques include 

crystallography and co-immunoprecipitation (co-IP) [30].  

Crystallography [29] involves actual structures, crystallized 

and examined as 3D structures; co-IP extracts protein-protein-

DNA complexes from a solution using antibodies.  Such 

techniques however, are relatively time-consuming and 

expensive.  Moreover, as the number of combinations of 

proteins whose polymerization is considered increases, more 

experiments and procedures are necessary to determine 

whether they bind or not.  This means more time and money is 

needed to make such determinations.  Thus our technique 

explored in this paper may have some value in saving time and 

money. 

 

To our knowledge, CUDA has never been used to implement 

this particular technique for microarray data-mining for TF 

complexes.  A somewhat related work for microarray analysis, 

the TSP algorithm has also been ported to CUDA [27].  

Another exists as well that computes correlations and is 

integrated into the R package for statistical computing [28].  

We note that our CUDA kernels’ correlation coefficients here 

are distinct from other CUDA kernels’ coefficients in that here 

minima are taken. 

5 Conclusion and Summary 
 

In conclusion, we have presented a set techniques used to 

analyze a microarray dataset by computing correlation 

coefficients between gene expression profiles and 

transcription factor expression profiles across tissues.  Its goal 

is to find multiple transcription factors that bind together and 

have a target gene whose transcription is modulated.  The 

technique involves hypothetical heteromeric transcription 

factor profiles whose expressions are estimated by taking 

minima for each tissue.  A scoring function based on a 

comparison among the correlation coefficients is used to sort 

and prioritize combinations of genes and transcription factors.  

The higher scoring combinations are though to be more likely 

to form transcription factor complexes for the gene.  We 

presented some test data showing the efficacy of our program; 

it gave interesting results in revealing some 2 out of 4 true 

positives with a P-value of 8.4·10
(-5)

.  To consider 4 TFs at a 

time, the computational demands are high, so we explored 

using CUDA-enabled NVIDIA GPUs to speed up the 

computations.  We achieved speedups of about 6x.  For 

analyzing whether or not four TFs bind, we completed an 

analysis and have presented some the results from that 

analysis.  Finally, we discussed some of the strengths and 

weaknesses of the algorithm and our CUDA-implemented 

technique to speed it up; we also mentioned some ways that 

the technique could be further improved. 
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Abstract - Microarray analysis are becoming a powerful 
tool for clinical diagnosis, as they have the potential to 
discover gene expression patterns that are characteristic 
for a particular disease. This problem has received 
increased attention in the context of cancer research, 
especially in tumor classification. Various feature selection 
methods and classifier design strategies also have been 
used and compared. Feature selection is an important pre-
processing method for any classification process. Selecting 
a useful gene subset as a classifier not only decreases the 
computational time and cost, but also increases 
classification accuracy. In this study, we applied the 
correlation-based feature selection method (CFS), which 
evaluates a subset of features by considering the individual 
predictive ability of each feature along with the degree of 
redundancy between them as a filter approach, and three 
wrappers (J48, Random Forest and Random Trees) to 
implement feature selection; selected gene subsets were 
used to evaluate the performance of classification. 
Experimental results show that by employing the proposed 
method fewer gene subsets are need to be selected to 
achieve better classification accuracy. 

   
Key Words: Microarrays, Hybrid Method, Filter Method, 
Wrapper Method, Correlation Based Feature Selection 
 

1 Introduction 
          DNA microarray technology allows simultaneous 
monitoring and measuring of thousands of gene expression 
activation levels in a single experiment. This technology is 
currently used in medical diagnosis and gene analysis. 
Many microarray research projects focus on clustering 
analysis and classification accuracy. In clustering analysis, 
the purpose of clustering is to analyze the gene groups that 
show a correlated pattern of the gene expression data and 
provide insight into gene interactions and function. 
Research on classification accuracy is aimed at building an 
efficient model for predicting the class membership of 
data, produce a correct label on training data, and predict 
the label for any unknown data correctly.  
      Typically, gene expression data possess a high 
dimension and a small sample size, which makes testing 
and training of general classification methods difficult. In 
general, only a relatively small number of gene expression 
data out of the total number of genes investigated shows a 
significant correlation with a certain phenotype. In other 

words, even though thousands of genes are usually 
investigated, only a very small number of these genes 
show a correlation with the phenotype in question. Thus, in 
order to analyze gene expression profiles correctly, feature 
selection (also called gene selection) is crucial for the 
classification process. Methods used for data reduction, or 
more specifically for feature selection in the context of 
microarray data analysis, can be classified into two major 
groups: filter and wrapper model approaches [28]. 
       In the filter model approach a filtering process 
precedes the actual classification process. For each feature 
a weight value is calculated, and features with better 
weight values are chosen to represent the original data set. 
However, the filter approach does not account for 
interactions between features. The wrapper model 
approach depends on feature addition or deletion to 
compose subset features, and uses evaluation function with 
a learning algorithm to estimate the subset features. This 
kind of approach is similar to an optimal algorithm that 
searches 
for optimal results in a dimension space. The wrapper 
approach usually conducts a subset search with the optimal 
algorithm, and then a classification algorithm is used to 
evaluate the subset.  
        Several machine learning algorithms have already 
been applied to classifying tumors using microarray data. 
Voting machines and self-organising maps (SOM) were 
used to analyse acute leukemia [10]. Support vector 
machines (SVMs) were applied to multi-class cancer 
diagnosis by [21]. Hierarchical clustering was used to 
analyse colon tumor [1]. The best classification results are 
reported by Li et al.[17] and Antonov et al. [2]. Li et al 
[17]. employed a rule discovery method and Antonov et 
al.[2] maximal margin linear programming 
(MAMA).Given the nature of cancer microarray data, 
which usually consists of a few hundred samples with 
thousands of genes as features, the analysis has to be 
carried out carefully. Work in such a high dimensional 
space is extremely difficult if not impossible. One 
straightforward approach to select relevant genes is the 
application of standard parametric tests such as the t-test 
[24][25] and a nonparametric test such as the Wilcoxon 
score test[24][3]. Wilks’s Lambda score was proposed by 
[13] to access the discriminatory power of individual 
genes. A new procedure [2] was designed to detect groups 
of genes that are strongly associated with a particular 
cancer type. 
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       In this paper we have applied two general approaches 
of feature subset selection, more specifically, wrapper and 
filter approaches and then created a new model called 
hybrid model  by combining the characteristics of the two 
specified models for gene selection. We compared the gene 
selection performance of the filter model, wrapper model 
and hybrid model. Wrappers and filters differ in how they 
evaluate feature subsets. Filter approaches remove 
irrelevant features according to general characteristics of 
the data. Wrapper approaches, by contrast, apply machine 
learning algorithms to feature subsets and use cross-
validation to evaluate the score of feature subsets. Most 
methods of gene selection for microarray data analysis 
focus on filter approaches, although there are a few 
publications on applying wrapper approaches[14] [29] 
[28]. Nevertheless, in theory, wrappers should provide 
more accurate classification results than filters [15]. 
Wrappers use classifiers to estimate the usefulness of 
feature subsets. The use of “tailor-made” feature subsets 
should provide a better classification accuracy for the 
corresponding classifiers, since the features are selected 
according to their contribution to the classification 
accuracy of the classifiers. The disadvantage of the 
wrapper approach is its computational requirement when 
combined with sophisticated algorithms such as support 
vector machines.  
        As a filter approach, correlation-based feature 
selection (CFS) was proposed by Hall[12]. The rationale 
behind this algorithm is “a good feature subset is one that 
contains features highly correlated with the class, yet 
uncorrelated with each other.” It has been shown in Hall 
[12] that CFS gave comparable results to the wrapper and 
executes many times faster.  
      To evaluate and compare the proposed method to 
other feature selection methods, we used two classification 
algorithm namely, the K-nearest neighbour (KNN) and a 
Support Vector Machine (SVM) to evaluate the selected 
features, and to establish the influence on classification 
accuracy. The results indicate that in terms of the number 
of genes that need to be selected and classification 
accuracy of the proposed method is superior to other 
methods in the literature. The rest of this paper is organised 
as follows. We begin with a brief overview introducing the 
methods presented in Section 2. The experimental 
framework and settings are described in Section 3. Section 
4 consists of the results and a theoretical discussion 
thereof. Finally, the conclusion and future work is 
presented in Section 5. 
 

2 Related Methods 
2.1   Feature subset selection 

     We now define the basic notions used in the paper. 
Given a microarray cancer data set D, which contains n 
samples from different cancer types or subtypes, we have 
to build a mathematical model which can map the samples 
to their classes. Each sample has m genes as its features. 
The assumption here is that not all genes measured by a 
microarray are related to cancer classification. Some genes 
are irrelevant and some are redundant from the machine 
learning point of view. It is well-known that the inclusion 
of irrelevant and redundant information may harm 
performance of some machine learning algorithms. Feature 

subset selection can be seen as a search through the space 
of feature subsets. One major problem of filters that score 
individual features is the selection of a threshold by which 
to discard features. Although all the features will be given 
a score by the filter algorithm, it is not clear how to 
determine the optimal threshold for the data. One heuristic 
approach (the so called n − 1 rule) in microarray cancer 
analysis chooses the top n − 1 genes to start the 
analysis[16]. Golub et al. [11] chose 50 genes most closely 
correlated with leukemia subtypes. Nevertheless, ranking 
genes by filters does present an overall picture of the 
microarray data.  
      In general, filters are much faster than wrappers [31]. 
However, as far as the final classification accuracy is 
concerned, wrappers normally provide better results. The 
general argument is that the classifier that will be built  
from the feature subset should provide a better estimate of 
accuracy than a separate measure that may have an entirely 
different classification bias. The main disadvantage of 
wrapper approaches is that during the feature selection 
process, the classifier must be repeatedly called to evaluate 
a subset. For some computationally expensive algorithms 
such as SVMs or artificial neural networks, wrappers can 
be impractical.  
 
 2.2   The choice of filter algorithms and 
classifiers 

2.2.1   Correlation-based feature selection 
     CFS evaluates a subset of features by considering the 
individual predictive ability of each feature along with the 
degree of redundancy between them [12]. 

 
where CFS S  is the score of a feature subset S containing k 
features, r̄cf is the average feature to class correlation (f 
∈ S), and  r̄ff  is the average feature to feature correlation. 
The distinction between normal filter algorithms and CFS 
is that while normal filters provide scores for each feature 
independently, CFS presents a heuristic “merit” of a 
feature subset and reports the best subset it finds. 
  

2.2.2   Support Vector Machines (SVMs) 
     SVMs are relatively new types of classification 
algorithms. An SVM expects a training data set with 
positive and negative classes as an input (i.e. a binary 
labelled training data set). It then creates a decision 
boundary (the maximal-margin separating boundary) 
between the two classes and selects the most relevant 
examples involved in the decision process (the so-called 
support vectors). The construction of the linear boundary is 
always possible as long as the data is linearly separable. If 
this is not the case, SVMs can use kernels, which provide a 
nonlinear mapping to a higher dimensional feature space. 
The dot product has the following formula: 

 
where x and y are the vectors of the gene expression data. 
The parameter d is an integer which decides the rough 
shape of a separator. In the case where d is equals to 1, a 

(1) 

(2) 
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linear classification algorithm is generated, and in the case 
where d is more than 1, a nonlinear classification algorithm 
is generated. In this paper, when d is equals to 1, it is 
called the SVM dot product, when d is equals to 2, it is 
called the SVM quadratic dot product and when d is equals 
to 3, it is called the SVM cubic dot product. The radial 
basis kernel is as follows,  

 
where σ is the median of the Euclidean distances between 
the members and non-members of the class. The main 
advantages of SVMs are that they are robust to outliers, 
converge quickly, and find the optimal decision boundary 
if the data is separable [7]. Another advantage is that the 
input space can be mapped into an arbitrary high 
dimensional working space where the linear decision 
boundary can be drawn. This mapping allows for higher 
order interactions between the examples and can also find 
correlations between examples. SVMs are also very 
flexible as they allow for a big variety of kernel functions. 
Sequential minimal optimization (SMO) [20] is used in 
this paper to train an SVM. SVMs have been shown to 
work well for high dimensional microarray data sets [10]. 
However, due to the high computational cost it is not very 
practical to use the wrapper method to select genes for 
SVMs, as will be shown in our experimental results 
section. 
 

2.2.3   k-nearest Neighbour 
      The k-nn classification algorithm is a simple algorithm 
based on a distance metric between the testing samples and 
the training samples. The main idea of the method is, given 
a testing sample s, and a set of training tuples T containing 
pairs in the form of (ti, ci) where ti’s are the expression 
values of gene i and ci is the class label of gene i. Find k 
training sample with the most similar expression value 
between t and s, according to a distance measure. The class 
label with the highest votes among the k training sample is 
assigned to s. The main advantage of k-nn is it has the 
ability to model very complex target functions by a 
collection of less complex approximations. It is easy to 
program and understand. No training or optimization is 
required for this algorithm. It is robust to noisy training 
data. 
 

2.2.4    Decision Trees- J48, Random Forest, Random 
Trees 
         In decision tree structures, leaves represent 
classifications and branches represent conjunctions of 
features that lead to those classifications. There are 
advantages with decision tree algorithms: they are easily 
converted to a set of production rules, they can classify 
both categorical and numerical data, and there is no need 
to have a priori assumptions about the nature of the data. 
However multiple output attributes are not allowed in 
decision tree and algorithms are unstable. Slight variations 
in the training data can result it different attribute 
selections at each choice point within the tree. The effect 
can be significant since attribute choices affect all 
descendent sub-trees [27]. ID3 (Iterative Dichotomiser 3) 

is an algorithm used to generate a decision tree. 
Developed by J. Ross Quinlan [21], ID3 is based on the 
Concept Learning System (CLS) algorithm [19].  
         J48 is an improved version of ID3 algorithm. It 
contains several improvements, including: choosing an 
appropriate attribute selection measure, handling training 
data with missing attribute values, handling attributes with 
differing costs, and handling continuous attributes [21]. 
Random forest is another classifier that consists of many 
decision trees. It outputs the class that is the mode of the 
classes output by individual trees [6][8].  
  
3 Experimental procedure 

       The experiments were performed with the Weka 
machine learning package [26].We used the following 
three general strategies to identify predictive features. 
 
 3.1   Selecting genes using CFS 

a)  Choose a search algorithm. 
b) Perform the search, keeping track of the best subset 
encountered according to CFS. 
c)  Output the best subset encountered. 
 
3.2   Selecting genes using a wrapper method 

 a) Choose a machine learning algorithm to evaluate the 
score of a feature subset. 
b) Choose a search algorithm. 
c) Perform the search, keeping track of the best subset 
encountered. 
d) Output the best subset encountered.                             
      The search algorithm we used was best-first with 
forward selection, which starts with the empty set of genes. 
In this paper we report accuracy estimates for classifiers 
built from the best subset found during the search. Once 
the best subset has been determined, then a classifier 
evaluates the performance of the subset selected.  
 
4 The Proposed Hybrid Method 
       In this study, we hybrid the filter and wrapper model 
methods to select feature genes in microarrays, and used 
two different classification algorithms to evaluate the 
performance of the proposed method[18]. Figure 1 depicts 
the process of the hybrid filter and wrapper model feature 
selection method. 
        For example, let a microarray data set have 10 gene 
numbers（10 feature numbers which can be represented by 
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10). If only 5 genes (f1, f2, f4, f7 
and f10) conform to the CFS selection, only these 5 genes 
(f1 f2 f4 f7 f10) are used for the wrapper procedure to 
implement the selection process.  However, when using the 
filter model selection, the feature number could be reduced 
dramatically. In order to remove more effectively 
unwanted features, we used wrappers  namely, J48, 
Random Forest and Random Trees  after the initial filter 
model selection to select features again, and then applied  
KNN and SVM algorithm to measure the classification 
performance. 

(3) 
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Figure1. Hybrid filter and wrapper model feature 
selection method 

 

5 Experimental Results and 
Comparison 

        In this section, we perform comprehensive 
experiments to compare the CFS-J48, CFS-Random Forest 
and CFS-Random Tree selection algorithm with CFS filter 
algorithm and the wrapper algorithms (J48, Random Forest  
and Random Tree) on three different datasets using two 
different classifiers SVM and KNN. 
5.1  Datasets description and pre-processing  
     To evaluate the usefulness of the CFS-J48, CFS-
Random Forest and CFS-Random approaches, we carried 
out experiments on three datasets of gene expression 
profiles. The datasets and their characteristics are 
summarized in Table 1. The data is taken from  
http://sdmc.lit.org.sg/GEDatasets/Datasets.html. 
• The Colon tumor dataset consists of 62 microarray 
experiments collected from colon-cancer patients with 
2000 gene expression levels. Among them,40 tumor 
biopsies are from tumors and 22 (normal) biopsies are 
from healthy parts of the colons of the same patients. 
• The Leukemia dataset consists of 72 microarray 
experiments with 7129 gene expression levels. Two classes 
for distinguishing: Acute Myeloid Leukemia (AML) and 
Acute Lymphoblastic Leukemia (ALL). The complete 
dataset contains 25 AML and 47 ALL samples.  

• The Lung cancer dataset involves 181 microarray  

experiments with 12533 gene expression levels. 
Classification occurs between Malignant Pleural 
Mesothelioma (MPM) and Adenocarcinoma (ADCA) of 
the lung. In tissue samples there are 31 MPM and 150 
ADCA.    

Note that in these datasets, the samples in each class is 
generally small, and unevenly distributed. This, together 
with the large number of classes makes the classification 
task more complex. The original gene expression data are 
continuous values. We pre-processed the data so each gene 
has zero mean value and unit variance. We also discretized 
the data into categorical data to reduce noise.   
       We discretized the observations of each gene 
expression variable using the respective σ (standard  
deviation) and µ (mean) for this gene’s samples: any data 
larger than µ + σ/2 were transformed to state 1; any data 
between µ + σ/2  and  µ - σ/2 were transformed to state 0; 
any data smaller than µ - σ/2 were transformed to state -1. 
These three states correspond to the over expression, 
baseline, and under-expression of genes. 

  
5.2  Parameter Settings 

       We used Weka, a well known comprehensive toolset 
for machine learning and data mining [4], as our main 
experimental platform. We evaluated the performance of  
feature selection methods in Weka environment with two 
classifiers, using 10-fold Cross Validation .  
      To evaluate the performance of the proposed method, 
the selected feature subsets were evaluated by K-fold cross 
validation (K-fold) for KNN and SVM classifiers. For K-
fold cross validation, we set K=10 in this study.  

During K-fold cross-validation, the data was separated 
into 10 parts {D1, D2 , K, D10}, and training and testing 
was carried out a total of 10 times. When any part Dn , n 
=1, 2, K, 10 is processed as a test set, the other 9 parts will 
be training sets. Following 10 times of training and testing, 
10 classification accuracies are produced, and the averages 
of these 10 accuracies are used as the classification 
accuracy for the data set. We assumed that the obtained 
classification accuracy is an adaptive functional value. 
 
5.3   Results and Comparison 

• We started experiment by evaluating performance 
accuracies of both the classifiers, SVM and KNN on the 
three datasets using 10-fold Cross Validation (CV) without 
using feature selection algorithms. The result of the 10-fold 
CV accuracy for the two classifiers are shown in table 5. 
• After feature selection, the selected feature subsets 
were evaluated using two common classification 
algorithms SVM and KNN using 10-fold CV method. 
Table 2 and Table 3 show the accuracies achieved by the 
filter (CFS with a best-first search), wrapper (J48, RF, RT 
using best-first search) and hybrid model (wrapper method 

 
Table 1. Cancer related human gene expression datasets 

 

Dataset # of genes # of samples # of classes # of positive samples # of negative samples 
Leukemia 7129 72 2 47(ALL) 25(AML) 

Lung Cancer      12533 181 2 31(MPM) 150(ADCA) 

Colon Cancer 2000 62 2 22 40 

26 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



 
Table 2. KNN Accuracy performance of three microarray data sets for the Filter, Wrapper and Hybrid feature 

selection method. 
 

KNN (Statnikov et al)[22] Filter Wrapper Hybrid 
Dataset  CFS J48 RF RT CFS+J48 CFS+RF CFS+RT 
Colon  87.10 95.16 82.26 82.26 85.48 87.10 82.26 

Leukemia 83.57 98.61 93.06 88.89 90.28 95.83 98.61 94.44 
Lung Cancer  99.45 99.45 99.45 96.13 99.45 99.45 98.43 

 
Table 3. SVM Accuracy performance of three microarray data sets for the Filter, Wrapper and Hybrid feature 

selection method. 
 

 Filter Wrapper Hybrid SVM ( NO FS) 

Dataset CFS J48 RF RT CFS+J48 CFS+RF CFS+RT 
Akadi et al 

[23] 
Statnikov et 

al[22] 
Colon Cancer 75.48 87.10 79.03 75.81 89.03 87.10 85.48 85.48  

Leukemia 87.22 91.67 95.83 90.28 95.83 97.22 93.06 98.61 97.50 

Lung Cancer 95.45 99.45 97.45 96.13 100 99.24 98.34 87.67  

 
and CFS in conjunction with a best-first search) feature 
selection methods individually. In Table 2, the 
classification accuracy is evaluated by KNN and in Table 3 
by SVM.  
• The experimental results show that the accuracy of 
microarray data which had feature selection implemented 
was better than without feature selection. Comparing filter 
and wrapper selection methods, the accuracy of the 
wrapper model was better than for the filter model, and the 
number of selected feature was smaller for the wrapper 
model than for the filter model which can be observed 
from Table 4. 
• The J48, Random Forest (RF) and Random Tree (RT)  
wrapper models differ from the filter model in that it is 
dependent on a classifier and evaluates the combination of 
feature subsets using 10-fold CV internally. The wrapper 
model can identify interaction amongst all features 
simultaneously. However, how many gene subsets are truly 
necessary to identify cancer categories is still a question 
under debate [21]. 
 
• But filter selection does not reduce the number of 
features very much; hence another method is needed to 
reduce the number of features further. In order to select 
more effective feature subsets, we used wrapper models 
namely, J48, Random Forest(RF) and Random Tree(RT) 
algorithms after  implementing the filter approach. 
• Again, we can observed from Table 2 and Table 3 that 
the proposed method effectively increases classification 
accuracy and selects a smaller number of feature subsets. 
During the wrapper phase of the proposed method, we 
have implemented the same wrapper model and this 
method returns very small sets of genes compared to 
alternative variable selection methods, while retaining 
predictive performance. Our method of gene selection will 
not return sets of genes that are highly correlated, because 
they are redundant. This method will be most useful under 
two scenarios: 
 

 
(a) when considering the design of diagnostic tools, where 

having a small set of probes is often  desirable; 
(b) to help understand the results from other gene 

selection approaches that return many genes, so as to 
understand which ones of those genes have the largest 
signal to noise ratio and could be used as surrogates 
for complex processes involving many correlated 
genes.  

A best first search with forward direction, searches the 
space of attribute subsets by greedy                         
hilclimbing augmented with a backtracking facility. 

 
Table4. Number of feature selected  for the three 

microarray datasets using Filter, Wrapper and Hybrid 
feature selection method. 

 Filter Wrapper                 
                      Hybrid 

Dataset CFS J48 RF RT 
CFS 

+ J 48 
CFS 
+ RF 

CFS+ 
RT 

Colon 
Cancer 

26 3 4 3 2 9 5 

Leukemia 81 2 2 4 2 3 3 

Lung 
Cancer 

161 2 2 2 2 2 2 

 

Table 5.   10-fold cross validation accuracy (%) with all 
features 

                            
The experiment showed that the combination of decision 
tree wrapper model with a correlation based filter method 
achieves a better performance than CFS or single wrapper 
model. 
      Compared to previous works, it should be noted that  
 

Dataset SVM Accuracy KNN Accuracy 

Leukemia 68.06 80.56 

Lung Cancer      76.24 92.82 

Colon Cancer 80.65 82.26 
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without using feature selection Statnikov et al.[4] have 
obtained 83.57% accuracy for Leukemia dataset using 
KNN classifier. Whereas, our result is 80.56% without  
using selection method, 98.61% using CFS filter, 90.73% 
average classification performance of all three wrappers 
and 96.29% average accuracy using proposed hybrid 
method. 
      For multi class SVM with no feature selection, they 
obtained 2.50% error in Leukemia data classification and 
2.39% by Akadi et al.,[5]. On the other hand with binary 
SVM classifier the rate of error of our result using CFS 
was 2.72%, 7.41% average error of all three wrappers and 
4.67% average error of all three hybrid filter methods. For 
Colon dataset, our result obtained for hybrid filter CFS-
J48, CFS-RF and CFS-RT were better than Akadi et al.,[5]. 
For Lung dataset, we obtained 100% result for J48 wrapper 
and CFS-J48 hybrid filter and almost 98% for rest of the 
methods. Whereas Akadi et al.,[5] obtained only 87.67% 
classification accuracy in their work. 
      We believe that our results will motivate more 
microarray practitioners to use wrappers and hybrid using 
CFS as their analysis tools. These machine learning 
algorithms are implemented in WEKA, a publicly 
available open-source software package. This software can 
be used both by experienced and novice users. WEKA has 
been already applied in a number of bioinformatics studies 
as reviewed elsewhere [9]. 
 
6 Conclusion 
       In this paper, we hybrid the filter and wrapper model 
methods for microarray classification to implement a 
feature selection process, and then used KNN and SVM to 
evaluate the classification performance. Experimental 
results showed that the proposed method simplified gene 
selection and the total number of parameters needed 
effectively, thereby obtaining a higher classification 
accuracy compared to other feature selection methods. The 
classification accuracy obtained by the proposed method 
was comparatively higher than other methods for all three 
test problems. In the future, the proposed method can assist 
in further research where feature selection needs to be 
implemented. It can potentially be applied to problems in 
other areas as well. 
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Abstract—This interdisciplinary study investigated computa-
tional analytic methods used for biological hypothesis testing, and
applied the methods for the validation of the effects of nutraceuti-
cals on growth and immune response of Nile tilapia,Oreochromis
niloticus, in cool water. Farmers in cooler regions face problems
with cultivating tilapia, one of the most popular cultivated fish
species, due to poor survival rates at suboptimal temperatures.
We hypothesized that two nutraceuticals, phosphatidylcholine and
β-carotene, help tilapia adapt to cooler water temperatures, and
benefit tilapia’s growth and immune response. This hypothesis
testing problem was managed using an unsupervised learning
technique in data mining and statistics called cluster analysis.
The significance of clustering results are often computed using
external indexes and internal indexes. We show, in particular, that
the external index can be used for testing the biological hypothesis
by formulating the level of agreement between two different
partitions of samples: experimental groups and clusters based
on the similarity of features. Contrary to the findings of previous
studies which showed the beneficial effects of phosphatidylcholine
and β-carotene supplementation in a range of fish including
tilapias, our test result shows no significant difference among
the fish reared in cool water and fed with either the basal diet
or diets supplemented with the nutraceutical. This study also
shows our computational approach is a promising analytic tool
for similar hypothesis testing in biology domain including fish
biology.

Index Terms—tilapia, temperature, stress, phoshatidylcholine,
beta-carotene, data mining, clustering

I. I NTRODUCTION

Tilapia has quickly become one of the most popular culti-
vated fish species around the world [1]. Originating from the
African Great Lakes, this hardy, warm water fish is raised in
many regions of the world including indoor and outdoor ponds,
tanks, and waterways. However, farmers in cooler regions
face problems with low survival rates of tilapia in suboptimal
temperatures [2]. Although tilapia species have proved to be
very hardy, the decrease in growth rate and increased rates of
disease at low temperatures are the main factors preventing
cultivation at cooler temperatures, or in cooler regions.

The stress experienced by tilapia when subjected to sub-
optimal water temperatures elicits similar effects as other
common stressors present in aquaculture such as handling,
sorting, grading, and transporting [3], [4]. In recent years
dietary supplements termed “nutraceuticals” have been used in
an effort to combat the stress-induced effects in aquaculture.
Previous studies [5], [6] have shown positive effects of phos-
phatidylcholine (PC) andβ-carotene (BC) supplementation in
many fish species. We investigated that two nutraceuticals, PC

and BC help tilapia adapt to cooler water temperatures via
improved membrane fluidity, and improve growth and immune
response.

Experiments were conducted in two different environment:
warm water (28±1◦C) and cool water (16±1◦C), with dif-
fering the nutraceutical supplement in a basal diet, over an
8-week period. The sample data was collected with a set
of features such as length, weight, condition factor, plasma
concentration of glucose, hematocrit and phagocytic capacity
of macrophage cells, subject to measurements in different
experimental conditions and times.

Traditionally, statistical analysis plays critical roles in the
interpretation of experimental data across the life sciences,
including fish biology. A scientific question creates a set of
hypothesis tests to conclude statistically significant differences
among samples from different treatment groups. Each hypoth-
esis test is conducted in a series of formal stages. The first
stage is to state thenull hypothesis (H0). The null hypothesis
states that a biological treatment has no effect, or there is
no difference between treated and untreated populations. For
example, in the case of two groups,“control” and “treated”
samples, the null hypothesis can beθ1-θ2=0, whereθ is a
“statistic” (e.g., mean) on the data. The second stage states
the alternative hypothesis (HA) which proposes the opposite
of the null hypothesis. In the third stage, the statistics derived
from the data are compared with the statement of the null
hypothesis. Various methods exist to test whether there is a
difference in the treatment, for example, between control and
treated samples. Statistical exploratory methods [7] such as
descriptive statistics, correlations and t-Test are typically used
in fish biology [8], [9]. Statistically significant differences be-
tween samples (typically,ρ < 0.05) indicate that the observed
difference is unlikely to have occurred by chance, suggesting
a “real” difference between control and treated samples.

The null hypothesis is tested against each feature or a set
of features in the data for the scientific question, but each
result may not be of primary interest. Multiple hypothesis
testing eventually confirms the original scientific question.
Our work shows that the multiple hypothesis testing problem
can be managed with an unsupervised learning technique
in data mining and statistics, i.e.,cluster analysis, and the
cluster-based approach is applied to test the effect of the
two nutraceuticals (PC and BC) on the growth and immune
response of Nile tilapia in cool water.
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Fig. 1. Our methodology for hypothesis testing

In Section 2, we explain our methodology for hypothesis
testing in detail. Section 3 presents our design decision and
procedure. The test results with real experimental tilapia data
are presented in Section 4. Section 5 describes related work,
and ends with conclusion.

II. OUR METHODOLOGY FORHYPOTHESISTESTING

Fig. 1 illustrates our methodology for hypothesis testing.
A sample in the experimental dataD = {s1, . . . , sn} can be
formalized as a numerical vectorsi = (fi1, . . . , fim), where
fij is the value of thejth feature for samplesi where1 ≤
i ≤ n and 1 ≤ j ≤ m. Each si can be represented as a
data point inm-dimensional space. In Fig. 1, for simplicity,
samples are displayed in the 2-dimensional space. Clustering
algorithms seek to partition a given data set into groups so
that data objects within a group are more similar to each other
than data objects in different groups [10], [11], [12].

Groups based on the characteristics data possesses are called
clusters. The objects in each cluster are “similar” according to
the value of a distance or similarity function on their features.
Two sample datasi andsj are in the same cluster if and only if
(fi1, . . . , fim) ≃ (fj1, . . . , fjm). In Fig. 1, samples are divided
into two clusters,C1 andC2.

Clustering is called tounsupervised classificationbecause
clustering does not rely on predefined classes (or labels) and
training examples while grouping the data objects, and aims
to separate the data into a finite and discrete set of “natural”
structures. Therefore, samples which show similar responses to
a biological treatment are expected to be in the same cluster.
Our main idea of hypothesis testing with this unsupervised
learning technique is to first divide samples based on common
features and properties through clustering processing, and then
compare the clustering result (i.e., clusters) with experimental
groups.

Cluster validation is the process of assessing the quality
and reliability of the cluster sets that are derived from various

Partition/Cluster C1 C2 . . . Ck Sums
P1 n1,1 n1,2 . . . n1,k n1.

P2 n2,1 n2,2 . . . n2,k n2.

. . .

. . .

. . .
Pk nk,1 nk,2 . . . nk,k nk.

Sums n.1 n.2 . . . n.k n.=n

TABLE I
CONTINGENCY TABLE

clustering processes. Cluster validation techniques have the
potential to provide an analytical assessment of the amount
and type of data distribution captured by grouping. External
indexes and internal indexes are commonly used for cluster
validation [13], [14], [15], [11], [16]. We use the external index
for formulating the level of agreement between two different
partitions of sample data: experimental groups and clusters
based on the similarity of features.

External indexes are usually defined via acontingency table.
Let C = {C1, . . . , Ck} be a partition of samples inD into
k clusters, andP = {P1, . . . , Pk} be another partition ofD
into k groups.P is an external partition of the data, derived
from biological experimental controls, whileC is a partition
obtained by a clustering algorithm. Letni,j be the number
of samples in bothCi and Pj , 1 ≤ i ≤ k and 1 ≤ j ≤
k. Moreover, let|Ci|=ni. and |Pj | = n.j . These values can
be conveniently arranged in a contingency table as shown in
Table I. An external indexE is a function, which takes as
input, the contingency table values, and returns a valuep to
assess how close the clusterC is to the reference partitionP .
The external index valuep is 1 when the two partitions are
identical, and 0 when they are selected at random. That means
p close to 0 indicates a level of significance in the agreement
close to random, and the null hypothesis of no difference (H0)
cannot be rejected.

III. D ESIGN DECISION AND PROCEDURE

Our hypothesis testing procedure is summarized in Fig. 2.
This section describes our design decision for each step in the
procedure.

A. Data collection

For the experiment, fingerling Nile tilapias (mean weight
7.5 grams and mean length 6.8 cm)Oreochromis niloticus
were randomly stocked in eight tanks containing dechlorinated
water (four groups× two replicates) at a density of 25 fish
per tank. After the acclimation period, the room temperature
was lowered to achieve the cool water temperature of 16◦C,
while 100W heaters were used to maintain the optimal warm
water treatment at 28◦C. A basal diet which is a commercial
floating pelleted feed, and L-α-phosphatidylcholine (PC), and
β-carotene(BC) supplements were used. The four fish groups
were: warm water control(28 ± 1◦C), cool water control
(16 ± 1◦C), cool water with PC, and cool water with BC.
In this paper, the termswarm waterand cool waterare used
to describe fish reared at 28◦C and 16◦C, respectively.
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For the collection of experimental data, six fish per treat-
ment group (three fish per tank× two replicates) were ran-
domly sampled during the experimental phase at weeks 0, 2,
4, 6, and 8. The health and stress levels of these fish were
determined by the measures of following features: length,
weight, condition factor, plasma glucose, blood hematocrit,
and phagocytic capacity of macrophage. The condition factor
from length and weight was calculated according to [17]. The
equation isCondition factor = (weight × 100)/length3.
To determine blood glucose levels, methods were followed as
given by [18], [3]. Isolation of macrophages and assessment
of their phagocytic activity was accomplished by the technique
described in [9].

B. Data preprocessing and exploration

The first step in data analysis is data preprocessing [19].
Sample data may have noisy, missing, and inconsistent values.
There are a number of data preprocessing tasks: data cleaning,
data integration, data transformation, and data reduction [20],
[21]. For data cleaning, missing values in our samples were
filled with the median value of the feature of the missing value.
Task relevant data is selected and transformed into an input
data format which can be fed to data mining algorithms.

Exploratory data analysis is used for general insight into
data. Descriptive statistics such as count and average are used
to quantitatively describe the main features in a collection of
data [22].

C. Clustering

Clustering methods are applied to the pre-processed data.
The experimental condition type of each sample is hidden in
this stage.

1) Clustering algorithms:There are many clustering meth-
ods: partition-based methods, hierarchical-based methods,
density-based methods and grid-based methods [20], [23], [24],
[25]. We limit ourselves to the class of clustering algorithms
that take as inputD and an integerk, and return thek clusters
of D, since the clustering result should be compared with
pre-defined experimental groups. Partition-based method and
hierarchical-based methods are included in this category.

The K-means algorithm [46] is a typical partition-based
clustering method. Given a specified numberk, the algorithm
partitions a data set intok disjointed subsets in which each
data object belongs to the subgroup with the nearest centroid.
The K-means algorithm is known for being simple and fast.
In contrast to partition-based clustering, hierarchical clustering
generates a hierarchical series of nested clusters that can be
graphically represented by a tree, called a dendrogram. The
branches of a dendrogram not only record the formation of
the clusters, but indicate the similarity between the clusters
as well. By cutting the dendrogram at a certain level, we can
obtain a specified number of clusters.

We used clustering algorithms in WEKA (Waikato Envi-
ronment for Knowledge Analysis), which is a popular suite of
machine learning software [26], [27]. WEKA hasKMeans
for partition-based clustering andHierarchicalClusterer for
hierarchical-based clustering.

2 . D a t a p r e p r o c e s s i n g a n d e x p l o r a t i o nL D a t a c l e a n i n gL I n i t i a l e x p l o r a t i o n o f d a t aL R e l e v a n t d a t a s e c t i o n3 . C l u s t e r i n gl S e l e c t i o n o f c l u s t e r i n g a l g o r i t h m sl S e l e c t i o n o f a l g o r i t h m p a r a m e t e r sl A p p l i c a t i o n o f a l g o r i t h m4 . C l u s t e r v a l i d a t i o n� S e l e c t i o n o f v a l i d a t i o n i n d i c e s� A p p l i c a t i o n o f v a l i d a t i o n i n d i c e s5 . H y p o t h e s i s t e s t© T e s t o f t h e h y p o t h e s i s b a s e d t h e v a l i d a t i o n i n d e x v a l u e s

1 . E x p e r i m e n t a n d d a t a c o l l e c t i o n0 . H y p o t h e s i s s e t u p

Fig. 2. Our procedure for hypothesis testing

2) Similarity measures:Inter object similarity is a measure
of the correspondence or resemblance between objects to be
clustered. The specification and formalization of similarity
between data objects, depend heavily on the application do-
main [14], [23]. Distance measures of similarity are often
used to compare objects whose characteristics are measured
with quantitative variables. There are several popular proximity
functions such as Euclidean distance, Pearson’s correlation
coefficient, and Spearman’s rank-order correlation coefficient.
The most commonly used distance measure is Euclidean dis-
tance. On the other hand, if object characteristics are measured
with qualitative variables, association measures of similarity
are used. Since all features in our sample data are quantitative,
we used the Euclidean distance to measure the similarity of
two samplessi andsj .

Euclidean(si, sj) =

√

√

√

√

m
∑

l=1

(fil − fjl)
2, where si =

{fi1, . . . , fim}, wherefil is the value of thelth feature for
the ith sample,1 ≤ l ≤ m

D. Cluster validation

Most clustering algorithms do not provide estimates of the
significance of the cluster results returned. The verification of
clustering results is therefore based on a manual, lengthy and
subjective exploration process. Generally, cluster validity has
three aspects. First, the quality of clusters is measured in terms
of homogeneity andseparation based on the definition of a
cluster: “Objects within one cluster are similar to each other,
while objects in different clusters are dissimilar with each
other.” The second aspect relies on a given “ground truth”
of the clusters. The ground truth could come from domain
knowledge. The third aspect of cluster validity focuses on
the reliability of the clusters or the likelihood that the cluster
structure is not formed by chance. The first aspect is often
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validated using an internal index, and the second and third
aspects are examined using an external index.

1) Internal index:Internal indexes are used to measure how
well the data partitioned by a clustering algorithm corresponds
to the natural cluster structure of data. They are internal
because the quality of the partition is measured according
to information contained in the dataset without resorting to
external knowledge. We use internal indexes to estimate the
quality of clustering solutions generated from different cluster-
ing algorithms. The representative internal indexes are Within
Cluster Sum of Squares (WCSS) [20], [19], [11], KL: the
Krzanowski and Lai index [15], Gap statistics [28], and so
on. WCSS was used in our work since KL is based on WCSS,
and Gap statistics is for a special case of clustering, i.e., single
cluster. WCSS is defined as following: letC = {C1, . . . , Ck}
be a clustering solution, withk clusters.

WCSS(k) =

k
∑

i=1

∑

s∈Ci

|s − µi|
2, wheres is a data object

in clusterCi andµi is the centroid of clusterCi.
2) External index:External indexes are used to formulate

the level of agreement between two different partitions. We
used external indexes to formulate the level of agreement
between a partition of samples by the experimental control, and
another partition of the sample as the output of a clustering al-
gorithm. Rand index [29], Adjusted Rand index [16], Fowlkes
and Mallows (FM) index [30], and Fowlkes (F)-index [31] are
representative external indexes. Adjusted Rand index (RA) was
used in this study since it is a statistic often recommended in
the classification literature [32]. Adjusted Rand index can be
defined with the contingency table values in Table I as:
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Rand indexR is similar with adjusted Rand indexRA, but
it does not tell how significant is the concordance between
two partitions as measured by the value ofR. Therefore,RA

is often used instead ofR.

E. Hypothesis test

The adjust Rand indexRA has a maximum value of 1,
indicating a perfect agreement between the two partitions,
while its expected value of 0 indicated a level of agreement
due to chance. When a biological hypothesis is tested with
adjusted Rand indexRA, RA must be a non negative value
substantially away from 0 so that the null hypothesis can be
rejected.

IV. T EST RESULTS

The clustering-based approach described in the previous
sections was used to validate the effect of two nutraceuticals
on growth and immune response of tilapia in cool water. This
section presents the results.

We first compare the performance of two different cluster-
ing algorithms, K-means and Hierarchical clustering on our
experimental data, and then present the hypothesis test results
with all features, and with selected features.
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Fig. 4. Clustering results of all features

1) Algorithm performance:The quality of clustering re-
sults generated by K-means and Hierarchical clustering was
measured using an internal index, WCSS. Fig. 3 shows the
clustering results of growth related data. In this experiment,
the number of clusters was 3. The WCSS of K-means was
75.68, and the WCSS of Hierarchical clustering was 247.24. K-
means showed better performance than Hierarchical clustering
showing a much smaller WCSS value. Clustering results with
other feature data showed similar performances. Since K-
means showed better clustering performance than Hierarchical
clustering, we chose K-means for our hypothesis test.

2) Test with all features:In this experiment, we conducted
the clustering process with all feature data of samples at
week 8. Fig. 4 (a) shows the result. We can notice that
samples in four experimental groups are distributed over four
different clusters although most of the warm control samples
are included in the cluster 3. Although fish reared at the
optimal water temperature (i.e., warm) make a distinct group,
it is hard to find a difference in fish reared in cool water. The
adjusted Rand index between the two partitions,{Warm, Cool,
Cool with PC, Cool with BC} by the experimental control
and {cluster0, cluster1, cluster2, cluster3} by clustering, was
0.15. We can also notice some samples from cool water are
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Fig. 6. Clustering results of stress and immunity related features

in the same cluster with warm control samples. That indicates
that fish reared in 16◦C adapt to lower temperature, and remain
healthy.

To closely examine the effect of PC or BC in cool water
groups, we conducted the clustering with samples from only
cool water. Fig. 4 (b) shows the clustering result. The adjust
Rand index between the two partitions,{Cool, Cool with PC,
Cool with BC} and {cluster0, cluster1, cluster2} was -0.07
which is far from 1. With this index value, our null hypothesis
cannot be rejected. That means there is no evidence of a
beneficial effect of PC or BC to tilapia in cool water.

3) Test with growth features:In this experiment, the effect
of the two nutraceuticals on growth was examined. Fig. 5 (a)
shows the clustering result based on growth related features
when k=2. One cluster, cluster0, includes all warm water
samples, and cluster1 includes other samples. The adjusted
Rand index between two clusters and{Warm, Cool} was 1,
which shows a perfect agreement between the two partitions.
The growth of fish reared in warm water was significantly
different than the fish reared in cool water. On the other hand,
we compared samples from cool water with different diets.
Fig. 5 (b) shows the clustering result. The adjusted Rand index
between{Cool, Cool with PC, Cool with BC} and{cluster0,

cluster1, cluster2} was -0.127. No significant differences in
growth were found when comparing the fish reared in cool
water regardless of the diet.

4) Test with stress and immunity features:Fig. 6 (a) shows
the clusters based on stress related features. The adjust Rand
index was 0.011. It is hard to reject our null hypothesis with
this value. The stress measurements were not significantly
different for fish irrespective of the water temperature and
diet. The result with the immunity related feature data is
shown in Fig. 6 (b). The adjust Rand index was 0.08. No
significant differences in phagocytic capacity were seen among
the different groups regardless of temperature and supplement.

V. D ISCUSSION

We first describe a brief review of related work in biology
domain and computer science domain, and end with the
summary of this study.

A. Related Work

In aquaculture biology literature, several works [33], [34],
[35], [36], [5] have demonstrated the beneficial effects of
PC supplementation in a range of fish species including
tilapias. Farkas et al. [37] demonstrated involvement of PC in
increasing membrane fluidity in fish during adaption to lower
water temperature. Hu et al. [6] showedβ-carotene, a dimer
of vitamin A, increases growth rate in Nile tilapia. Blazer et
al. [38] showedβ-carotene has a role in disease resistance in
fish. However, there is no previous study on the effect of PC
or BC to tilapia in suboptimal water temperatures.

A very rich literature on cluster analysis has developed in
statistics and data mining over the past decades [39], [23],
[40], [10], [11], [12]. Xu et al. [23] conducted a survey
of clustering algorithms for data sets appearing in statistics,
computer science, and machine learning. In the bioinformatics
area, Jian et al. [41] gave a survey of cluster analysis for gene
expression data. Since clustering algorithms have been proved
useful for identifying biologically relevant groups of genes,
many conventional clustering algorithms have been adapted
or directly applied to gene expression data. Handl et al. [42]
explored computational cluster validation methods in post-
genomic data analysis. Kerr et al. [43] showed bootstrapping
cluster analysis for assessing the reliability of conclusions from
microarray experiments. However, as we know, there is no
work which uses clustering techniques for hypothesis testing
in fish biology domain.

B. Conclusion

This interdisciplinary work explored clustering methods
and clustering validation measures, and used them for the
validation of the effects of two nutraceuticals on the growth
and immune response of tilapia in cool water. Contrary to the
findings of previous studies which showed the beneficial effects
of PC and BC supplementation in a range of fish including
tilapias, our test results showed no significant difference of
growth and immune response in the tilapia fed the nutraceutical
supplemented diet in cool water, showing external index values
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close to 0. Thus, it is clear that there is no need to incur the
expenses of using BC or PC to enhance growth during cool
weather. It can be concluded that tilapia adapt to temperature
stress without deleterious physiological consequences. The
effect of PC of BC supplementation has no significant effect
on physiological or immunological response.

Our conclusion is consistent with the results proven by
traditional statistical methods in [8]. In [8], the means and their
standard errors of each feature in four different experiment
controls were compared, and tested with one-way analysis of
variance (ANOVA) andρ < 0.05. Our cluster-based approach
is particularly good for a multivariate hypothesis test where
all features are simultaneously considered. Our study shows
that the cluster-based approach is a promising analytic tool
for similar hypothesis tests in fish biology. In the future, to
show the scalability and effectiveness of our approach, we
plan to include many other biomarker features like plasma
cortisol, plasma glucose, hematocrit, leukocrit, RBC numbers,
hemoglobin, plasma protein, internal cell size, metabolic rate,
and hypoxia.
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Abstract - This paper presents a new approach for the 
prediction of proteins' molecular surfaces from their amino 
acid sequences, using a multilayer artificial neural network.  
Our novel approach allows one to learn, and to predict, a 
pose-invariant shape index describing the molecular surface 
of a protein, by starting from a descriptor of the amino acid 
sequence.  The input layer of the neural network is formed by 
a set of probability density functions associated with the 
correlation in between the constituent residues, while the 
output layer is formed by a pose invariant shape index 
describing the molecular surface. Once the neural network is 
trained, our molecular surface search engine allows one to 
retrieve the closest known molecular surface associated with 
an unknown, so-called query protein. We test our method 
against a database of more than 45,000 molecular surfaces. 
The neural network is evaluated for various topologies and 
optimization methods, and yield promising results. 

Keywords: Amino Acid, Correlation, Indexing, Invariant, 
Macromolecule, Molecular Surface, Neural Network, 
Protein, Structure 

 

1 Introduction 
  The prediction of a protein structure from the corresponding 
amino acid sequence is of great importance in bioinformatics 
and yet, it is a demanding task for machine learning 
algorithms. The knowledge of the macromolecular structure is 
essential in order to understand the protein functions and the 
biological processes [1].  Proteins are macromolecules formed 
by one or many chains of amino acids.  The chemical 
properties of their residues, their mutual interaction as well as 
their interaction with the surrounding environment determine 
their three-dimensional structure through a process called 
folding.  There are many repositories from which the amino 
acid sequence of proteins may be obtained: for instance, the 
Universal Protein Resource [2].  While the amino acid 
sequences are known for a vast number of proteins, a 
relatively small number of three-dimensional structures have 
been experimentally determined. This is due to the fact that 
experimental methods such as X-ray crystallography and 
nuclear magnetic resonance (NMR) are time consuming and 
labour intensive.  In contrast, amino acid sequences may be 

obtained though highly efficient automated high throughput 
experimental methods.  For all these reasons, it is important to 
bridge the gap in between the two approaches. That is, there is 
an urgent need for solutions to aid domain experts to predict 
proteins' three-dimensional structures solely from their 
corresponding amino acid sequences.   
 

 
 
Figure 1.  Four views of the molecular surface of protein phage T4 
lysozyme from bacteriophage T4 (142l). 
 
   A number of approaches have been proposed in the 
literature, which rely on an artificial neural network in order 
to predict the structure of a protein from its amino acid 
sequence [3, 4].  The network is first trained with a set of 
known amino acid sequences and their corresponding 
macromolecular structures.  Once the training phase is 
completed, unknown three-dimensional structures many be 
predicted from known amino acid sequences.  However, most 
of these approaches are limited to the prediction of the 
secondary structures which is a composite structure 
constituted of three basic elements namely the helix, the beta-
sheet, and the coil [5].  More complex structures may be 
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obtained through a process known as homology modelling or 
threading [6] which exploits the fact that two proteins whose 
sequences are evolutionarily connected display similar 
structural features. 
   In this paper, we propose a new approach that aims to 
predict directly the molecular surface of a given protein from 
its amino acid sequence.  Our motivation is as follows. The 
molecular surface is directly responsible for the interactions in 
between proteins and, consequently, is of prime importance in 
order to better understand their functions and their mutual 
interaction.  The prediction of the molecular surface or 
envelope is a complex task.  Let us consider Fig. 1 which 
shows four views of protein phage T4 lysozyme from 
bacteriophage T4 (PDB: 142l).  One immediately notices 
that the shape is highly complex and, as opposed to the 
secondary structures, there are no obvious basic geometrical 
elements, for instance the helix, from which the surface may 
be constructed. 
   In order to address this problem, we propose an approach 
based on a feed-forward artificial neural network.  Because 
the molecular surface has a complex shape, we first compute a 
descriptor or index that characterizes the entire three-
dimensional shape of the molecular surface.  The shape index, 
which shall be described later, is formed of the probability 
density functions (PDF) associated with the radial and angular 
distributions of the surface elements forming the molecular 
surface.  The structure and the size of the index are 
independent on the underlying shape, which makes it a perfect 
candidate to train a neural network. That is, the number and 
the meaning of the neurons are the same for each protein.  In 
addition, this index is invariant under rotation and translation, 
which implies that the underlying macromolecule may have 
any spatial orientation or pose.  That means that it is not 
required to align the proteins into a common orientation, prior 
to training the neural network. 
   The input of the neural network is formed from the 
probability density functions associated with the correlation in 
between adjacent amino acid: for instance, the first nearest 
neighbour, the second nearest neighbour, etc. As for the shape 
index, the structure and size of the probability density 
functions do not depend on the underlying amino acid 
sequence. This fact makes them suitable candidates in order to 
train a neural network.  Once the network has been trained, it 
is possible to predict the descriptor associated with the amino 
acid sequence.  The molecular surface is then obtained by 
searching through a database of shape indexes for the closest 
known molecular surface.  We have created such a database 
by analyzing more than 45,000 proteins from the Protein Data 
Bank [7]. 
   The paper is organized as follows.  In Section 2, we present 
our approach for the description of amino acid sequences.  
Then, in Section 3, we describe our shape index or descriptor.  
This is followed, in Section 4, with a depiction of the neural 
network and the training process.  We analyze the relative 
merit of various configurations for the neural network in 
addition to evaluate the effectiveness of many optimization 
methods for calculating the weights of the connexions.  

Finally, in Section 5, we describe our approach for molecular 
surface prediction and present some preliminary experimental 
results.  Our main conclusions are presented as well as some 
potentially promising research directions.    
 

2 Amino Acid Sequences Description 
 Approaches for the prediction of macromolecular structures 
are based on the assumption that there exist a strong 
correlation in between the three-dimensional structure and the 
underlying amino acid sequence.  This is one of the main 
motivations for using neural networks. That is, one may train 
the network with known pairs of amino acid sequences and 
three-dimensional structures and then determine an unknown 
structure from the corresponding amino acid sequence and the 
trained neural network. 
   Multilayer neural networks have a fix number of input and 
output neurons.  Consequently, in order to train efficiently the 
neural network, the structure of the input and output layer 
should not depend, for instance, on the length of the amino 
acid sequence or on the complexity of the corresponding 
molecular surface.  That situation potentially constitutes a 
problem.  Although similar three-dimensional structures tend 
to have similar amino acid sequences, it does not mean that 
they are identical.   Indeed, similarity here means that they 
share a high number of similar subsequences.  For various 
reasons, including mutation and evolution, uncorrelated 
outliers may appear in between the otherwise similar 
subsequences.  The compositions of the outliers, in terms of 
amino acid types, their number and their localization in the 
main sequence are practically unpredictable.  Furthermore, 
similar subsequences may have, for a given position in the 
subsequence, distinct amino acids which are nevertheless 
highly similar from their chemical properties point of view.  
Consequently, we need a metric in order to compare two 
amino acids which quantify their degree of similarity from a 
physicochemical point of view.  Various metric have been 
introduced for such a characterization.  In the present work, 
we use the BLOSOM (BLOcks of Amino Acid SUbstitution 
Matrix) [8] metric but another metric that characterized the 
similarity in terms of physicochemical properties may be 
substituted in the algorithm. 
   For the description of the amino acid sequences, we have 
introduced an approach based on two-points of correlation.  
For each amino acid of a given sequence, we compute the 
similarity, using a physicochemical metric, in between that 
particular amino acid and its two closest neighbours, or its 
closest neighbour if the amino acid is located at the end of the 
sequence.  Then, from all the similarity measures, we compute 
their corresponding probability density function.  The whole 
process is repeated for various distances in between amino 

acid pairs: i and 2i  , i and 3i   up to i  and maxi i i" .  

The similarity probability density functions associated with 
the various distances in terms of relative position are then 
concatenated, to form a unique descriptor for the main amino 
acid sequence.  In order to handle proteins constituted by 
more than one amino acid sequence, a descriptor is associated 
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with each sequence or chain.  In the present implementation, a 
maximum of three chains may be accommodated by the 
descriptor.   
   The proposed descriptor does not depend on the number of 
residues since the probability density functions are by 
definition normalized.  Also, it takes into account the local 
nature of the subsequences. These descriptors constitute the 
input of our multilayer neural network.  
 

3 Molecular Surfaces Description 
 As stated earlier, the molecular surfaces are complex three-
dimensional shapes characterized by an intricate geometrical 
structure.  The molecular surface represents the part of the 
protein that is exposed and accessible by the surrounding.  It 
is accessible to a solvent (such as water) and to other proteins; 
consequently it is the interface for interaction.  Thus, the 
molecular surface is fundamental in understanding biological 
processes since the later are mostly based on protein-protein 
interaction.  The molecular surface is computed from the 
position of the constituent atoms with a programme called a 
molecular solver. Various approaches are proposed in the 
literature; see, for instance, the work of [9]. 
   The molecular surface is anything but a suitable output for a 
neural network.  Indeed, the complexities of the surfaces vary 
immensely from one protein to the next as well as the number 
of vertices and triangles associated with the representation of 
the surface (assuming a triangular tessellation).  Additionally, 
the molecular surface, as a whole, may have an arbitrary 
spatial orientation, or pose, in space.  It is impossible to train 
a neural network for every possible spatial orientation of a 
given protein.  Besides, it may even prove difficult to train the 
neural network for a discrete sample of orientations.  
Consequently, it is not possible to normalize the shape in a 
compact and efficient way in order to accommodate a neural 
network output. 
   For these reasons, we propose to characterize each protein 
by a shape descriptor (or index) which is invariant under 
translation and rotation (pose) [10].  The index has a 
normalized structure which makes it suitable for neural 
networks.  The index is calculated as follow.  Firstly, if 
required, the molecular surface is tessellated with triangular 
simplices.  The barycentre and the symmetrical tensor of 
inertia of the molecular surface are calculated.  Then, the 
Eigen decomposition of the tensor is evaluated.  The Eigen 
vectors constitute a rotation invariant frame for the molecular 
surface: that is, the Eigen vectors are invariant under a 
rotation or a translation of the original molecular surface.  The 
axes of the reference frame are identified by their 
corresponding Eigen value. That is, the first axis is the one 
with the highest Eigen value, the second axis is the one with 
the second highest Eigen values, etc. Note that the reference 
frame may become unstable under reflection of the axis if 
there is an Eigen value ambiguity, i.e. if two or more Eigen 
values are very similar, but such an ambiguity may be 
efficiently handled through a procedure described in [11]. 

   Once the reference frame is determined, the probability 
density functions associated with of the radial distribution of 
the triangular simplices, the angular distribution of the 
triangular simplices relative to the Eigen vector corresponding 
to the largest Eigen value and the angular distribution of the 
triangular simplices relative to the Eigen vectors 
corresponding to the second largest Eigen value are evaluated.  
The distribution relative to the third axis is redundant:  it may 
be obtained from the other two with the cosine law.  The 
radial distribution is the distribution of the norm of the vectors 
starting at the barycentre of the molecular surface and ending 
at the barycentre of each triangular simplex.  The angular 
distribution is the distribution of the angles in between the 
previous vectors and a given reference axis of the Eigen 
frame.  The index is then formed by concatenating together 
the three distributions.  Such an index is translation and 
rotation invariant which means that an alignment of the 
molecular surfaces is superfluous.  Furthermore, its structure 
is normalized and does not depend on the molecular surface 
complexity or on its particular tessellation. 
 

4 Molecular Surfaces Prediction 
 Recall that the aim of our neural network is to predict the 
shape index from an amino acid sequence descriptor, as 
introduced in Sections 2 and 3, respectively.  In this paper, we 
restrict ourselves to the multilayer feed forward network. In 
our implementation, each neuron of each layer is fully 
connected to the neurons of the next layer and a sigmoid 
activation function is attributed to each neuron and a weight is 
associated with each connection.  In the present paper, we 
consider neural networks with one and two hidden layers.         
The multilayer neural network has been selected because of 
its efficiency and its versatility.   
   The first layer has a fixed number of neurons which 
correspond to the various probability distribution functions 
associated with the correlation evaluated with the closest 
neighbourhood, the second closest neighbourhood, etc. as 
described in Section 2.  In order to form the input layer, the 
probability distribution functions, which are by definition 
normalized, are simply concatenated with each other.  The 
second and the third layers correspond to the hidden layers.  
We consider both neural networks with one and two hidden 
layer and study their relative efficiency in predicting the 
molecular surface.  The last layer, which corresponds to the 
output layer, is associated with the shape index.  As stated in 
Section 3, the shape index is formed of three probability 
density functions corresponding to the radial distribution and 
the two angular distributions of the surfaces elements in the 
pose invariant reference frame (the Eigen frame of the tensor 
of inertia). 
   The training of the neural network is paramount to 
determine the weights in between the neurons.  Despite the 
fact that numerous algorithms have been introduced in order 
to compute the weights, the basic framework remains 
unaltered. That is, the weights are optimized in order to 
minimize the discrepancy in between the shape indexes 
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associated with the amino acid descriptors and the shape 
indexes predicted by the neural network.   In our case, the 
discrepancy is defined as the square of the Euclidean distance 
in between the real shape index and the predicted shape index.  
The optimization process involves the minimisation of an 
objective function which is equal to the sum, over all proteins 
in the training set, of the square Euclidean distance in 
between the real and the predicted shape indexes.  We 
consider various methods for the optimization namely three 
methods based on the gradient of the objective function: the 
gradient descent algorithm, the gradient descent algorithm 
with momentum and the Fletcher-Reeve conjugate gradient 
algorithm (FR).  The reader is referred to [12] for more details 
about these algorithms.  All these algorithms are based on the 
gradient of the objective function.  The first algorithm relies 

solely on the gradient, while the second algorithm aims to 
improve the performance by introducing a momentum or 
memory, while the later minimizes the objective function 
along mutually orthonormal directions.   
   We also consider two methods based on the Hessian of the 
objective function, namely the Levenberg-Marquardt (LM) 
and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) 
methods.  The LM algorithm is a method in which the 
objective function is approximated or modelled (trust region) 
by a multidimensional Taylor development up to the second 
order (gradient and Hessian).  The BFGS method, on the 
other hand, is a quasi-Newton method which approximates 
the Hessian of the objective function with a procedure based 
on the secant equation [12]. This suite of algorithms thus 
provides us with a variety of optimization methods. 

 
 

 
 
Figure 2.  Molecular surface search engine.  The unknown shape index obtained from the neural network is compared to the 45,000 shape 
indexes of the database and the most similar known molecular surfaces are retrieved.   
 
   The shape index, predicted by the neural network, provides 
an abstract description of the molecular surface associated 
with a given amino acid sequence. In its current version, our 
system does not allow for the direct reconstruction the 
molecular surface.  Consequently, in order to retrieve the 
molecular surface, an additional step is required.  Thus, 
instead of reconstructing the unknown molecular surface, we 
retrieve, from a database of known shape indexes, the known 
molecular surface which is the most similar to the unknown 
one.  The unknown shape index is compared to the known 
shape indexes with the Euclidean metric.   
      

 
      In order to provide the most complete searching space, we 
have indexed, with our shape descriptors, the molecular 
surface of the proteins that may be found in the Protein Data 
Bank (PDB).  A dedicated search engine, shown in Fig. 2, 
allows us to retrieve, for a given output of the neural network, 
the most similar known molecular surfaces out of the PDB.  
That is, we compare the proteins using a surface-based 
approach. In addition, the search engine provides us with an 
indication of the similarity between the known and the 
unknown structure.  The retrieval time is very fast, i.e. the 
answer is returned in less than one second. 
 

42 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



5 Experimental Results 
 Five multilayer neural networks are considered in our 
experiment.  All networks have 200 neurons in their input 
layer and 120 neurons in their output layer.  The networks 
differ by the structure of their hidden layer(s): the first, 
second, third and fourth neural network have one hidden layer 
with 18, 40, 55 and 70 neurons, respectively.  The fifth neural 
network has two hidden layers composed of 18 and 19 
neurons, respectively.  As mentioned earlier, neural networks 
are trained with the gradient descent method, the gradient 
descent method with momentum, the Fletcher-Reeves 
conjugate gradient method, the BFGS method and the 
Levenberg-Marquadt method.  The first three are based on the 
gradient of the objective function while the last two are based 
on an approximation of the Hessian of the objective function.  
The best results for training, in terms of mean squared error, 
are obtained with the gradient method with momentum when 
the neural network has one hidden layer and, with the 
Fletcher-Reeves conjugate gradient when the neural network 
has two hidden layers.  The momentum, in the gradient 
method with momentum, reduces the training mean squared 
error by almost 50% compared to the plain gradient method.  
    The Fletcher-Reeves is by far the method with the fastest 
convergence (at least an order of magnitude) which most 
likely originates from the fact that the optimisation space is 
explored with mutually orthonormal directions.  The BFGS 
method has by far the slowest convergence of all methods.  
The Levenberg-Marquadt performs poorly which means that 
the quadratic approximation of the objective function 
associated with this algorithm is not a priori justified.   
    In order to train our system and validate our results, we use 
the well-known 10-folds cross validation approach [13]. Here, 
we select randomly 90% of the members of each class in 
order to train the network and we validate the approach with 
the remaining 10%.  The whole process is repeated ten times.  
The training set is constituted of 241 proteins divided in 19 
families or classes: Complement control protein from 
Vaccinia virus, (Apo)ferritin from Mouse (Mus musculus), 
Immunoglobulin light chain kappa variable domain, VL-
kappa from Mouse (Mus musculus), cluster 1.1, p53 
tetramerization domain from Human (Homo sapiens), 
Penicillin-binding protein 5, C-terminal domain from 
Escherichia coli, Phosphoserine aminotransferase, PSAT from 
Bacillus alcalophilus, Chaperonin-10 (GroES) from 
Escherichia coli, Phage T4 lysozyme from Bacteriophage T4, 
Calmodulin from Cow (Bos taurus), Pertussis toxin S2/S3 
subunits, C-terminal domain from Bordetella pertussis, Red 
fluorescent protein (fp583 or dsred(clontech)) from Coral 
(Discosoma sp.), Histidinol-phosphate aminotransferase HisC 
from Escherichia coli, Transcription initiation factor TFIIB, 
N-terminal domain from Human (Homo sapiens), P22 
tailspike protein from Salmonella phage P22 and Catalase-
peroxidase KatG from Burkholderia pseudomallei.  Typical 
members of these families, identified by the PDB code, are 
1g40, 1h96, 1rum, 1sak, 1z6f, 2bi3, 2c7c, 

142l, 1xfw, 1bcp, 1ggx, 1gew, 1rly, 1tyv 
and 2b2s.     
    An unknown molecular surface is considered correctly 
predicted if both the known molecular surface retrieved from 
the unknown shape index output by the neural network and 
the unknown molecular surface belong to the same family.  
Among the families, eleven have a small number of proteins 
(2 to 8), two families have 28 and 32 members while the 
largest family is formed of 64 members.  In general, the best 
results are obtained with the Fletcher-Reeves conjugate 
gradient method which means that, for that particular 
problem, the other approaches tend to be trapped in a local 
minimum.  Increasing the number of neurons in the hidden 
layer tends to improve the results.  The single hidden layer 
neural network outperforms the two hidden layers neural 
network if the number of neurons superior to forty.  
Following the 10-folds cross validation, the predictions of the 
system are 100% accurate for 8 families out of the 19 families 
of the training set (1ggx, 1r1y, 1tyv, 1xfw, 1z6f, 
2bi3, 2c7c, 142l), as well as 80% and more for 
another three families (1bcp, 1g40, 1qfg).  The 
prediction accuracy for the low membership families is 
around 50% which may be explained by the fact that, due to 
random sampling, these families may not be always included 
in the training set during the 10-folds cross validation.  One 
family with a relatively high membership (1fsn), 16, has 
relatively low prediction accuracy, 63 %.  These results may 
be explained by the fact that, within that family, there is a 
relatively high variability in terms of amino acid sequence, 
while the variability is much lower from the molecular surface 
point of view. Consequently, it is more difficult to train the 
neural network as opposed to family in which similar amino 
acid sequences correspond to similar molecular surfaces. 
 

6 Conclusions and Future Work 
 In this paper, we have shown that it is possible to predict 
the molecular surface of a protein from its amino acid 
sequence.  We have introduced new descriptors for the amino 
acid sequence and the pose-invariant three-dimensional shape 
of the molecular surface. We have explored various 
approaches in order to optimize the objective function of the 
multilayer network.  Finally, we have proposed an approach 
to retrieve, from an unknown shape index, the most similar 
know molecular surface out of a very large database of 
molecular surfaces. Our results against a database of 45,000 
proteins, are promising, and showed that our molecular 
surface search engine allows one to retrieve the closest known 
molecular surface associated with an unknown, so-called 
query protein.  
   At this stage, our approach does not allow for the direct 
reconstruction of the molecular surface from the shape index.  
This is our main future research direction, and we are 
currently developing an algorithm to determine achieve this 
goal. We intend to replace the current shape index with one 
based on spherical harmonics [14] which, in addition to 
provide pose invariance, would allow for the direct 
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reconstruction of the molecular surface from the shape index 
by using the spherical harmonics decomposition. 
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Abstract - In this paper, we describe a fully 

pipelined VLSI architecture for sequence database 

search using Smith-Waterman algorithm. The 

architecture makes use of the principles of 

parallelism and pipelining to the greatest extent in 

order to take advantages of both intra-sequence and 

inter-sequence parallelization and to obtain high 

speed and throughput. First, we describe a parallel 

Smith-Waterman algorithm for general SIMD 

computers. The parallel algorithm has an execution 

time of O(m+n), where m and n are lengths of the 

two biological sequences to be aligned. Next, we 

propose a VLSI implementation of the parallel 

algorithm. Finally, we incorporate a pipeline 

architecture in the proposed VLSI circuit and result 

in a pipeline processor that can do sequence 

database searches at the speed of O(m+n+L), where 

L is the number of sequences in the database. 

 

Keywords: Sequence alignment, sequence database 

search, Smith-Waterman algorithm, parallel 

algorithm, VLSI circuit, pipelined architecture. 

 

1. Introduction 
 

     A sequence alignment is a way of matching two 

biological sequences to identify regions of similarity 

that may be a consequence of functional, structural or 

evolutionary relationships between the two biological 

sequences. Sequence alignment is a fundamental 

operation of many bioinformatics applications such 

as genome assembly, sequence database search, 

multiple sequence alignment, and short read 

mapping. 

     The Smith-Waterman algorithm [1] is the most 

sensitive but slow algorithm for performing sequence 

alignment. Here sensitivity refers to the ability to find 

the optimal alignment. Smith-Water algorithm 

requires O(m
2
n) computational steps, where m and n 

are lengths of the two sequences to be aligned. 

Smith-Waterman algorithm was later improved by 

Gotoh [2]. Gotoh’s algorithm can find an optimal 

alignment of two biological sequences in O(mn) 

computational steps. It was a great improvement for 

aligning two sequences. However, it’s not fast 

enough for sequence database searches. A sequence 

database search is to compare a query sequence with 

a database of sequences, and identify database 

sequences that resemble the query sequence above a 

certain threshold. 

     Due to substantial improvements in 

multiprocessing systems and the rise of multi-core 

processors, parallel processing became a trend of 

accelerating Smith-Waterman’s algorithm and 

sequence database searches. Many enhancements of 

Smith-Waterman algorithm based on the idea of 

parallel processing have been presented [3-18]. 

However, all these enhancements can only speed up 

Smith-Waterman algorithm by a constant factor. That 

is, all these enhancements still require an execution 

time of O(mn) to align two biological sequences. 

     Besides parallel processing, heuristic methods are 

other commonly used approaches for speeding up 

sequence database searches. A heuristic method is a 

method which is able to produce an acceptable 

solution to a problem but for which there is no proof 

that it’s an optimal solution. Heuristic methods are 

intended to gain computational performance, 

potentially at the cost of accuracy or precision. 

Popular alignment search tools such as FASTA [19], 

BLAST [20] and BLAT [21] are in this category. 

They did successfully gain some speed. However, the 

sensitivity is compromised. For sequence database 

searches, sensitivity refers to the ability to find all 

database sequences that resemble the query sequence 

above a threshold. 

     Without sacrificing any sensitivity, in this paper, 

we first describe a parallel Smith-Waterman 

algorithm for general SIMD (Single Instruction 

stream - Multiple Data stream) computers. This 

parallel algorithm requires an execution time of 

O(m+n) to align two biological sequences. Second, 

we propose a VLSI (Very-Large-Scale Integration) 

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  | 45

mailto:wang@csus.edu


implementation of the parallel algorithm. Finally, we 

use the pipeline technique to overlap the execution 

times of alignment checking of database sequences. 

The resulting pipeline has a throughput rate of O(1) 

execution time per database sequence. Consequently, 

the time complexity of the proposed pipeline 

processor is O(m+n+L), where L is the number of 

sequences in the database. 

 

2. The Smith-Waterman Algorithm 
 

     The Smith-Waterman algorithm is used to 

compute the optimal local-alignment score. Let A = 

a1 a2 ... am and B = b1 b2 ... bn be the two sequences to 

be aligned. A weight w(ai, bj) is defined for every 

pair of residues ai and bj. Usually w(ai, bj) <= 0 if ai ≠ 

bj, and w(ai, bj) > 0 if ai = bj. The penalties for 

starting a gap and continuing a gap are defined as ginit 

and gext respectively. The optimal local alignment 

score S can be computed by the following recursive 

relations: 

 

     Ei,j = max { Ei,j-1-gext, Hi,j-1-ginit }  (1) 

     Fi,j = max { Fi-1,j-gext, Hi-1,j-ginit }  (2) 

     Hi,j = max {0, Ei,j, Fi,j, Hi-1,j-1+w(ai,bj) } (3) 

     S = max { Hi,j };   (4) 

 

The values of Ei,j, Fi,j and Hi,j are 0 when i<1 and j<1. 

     Smith-Waterman algorithm is a dynamic 

programming algorithm. A dynamic programming 

algorithm is an algorithm that stores the results of 

certain calculations in a data structure, which are later 

used in subsequent calculations. Smith-Waterman 

algorithm uses a m×n matrix, called alignment 

matrix, to store and compute H, E, and F values 

column by column. 

 

3. An Intra-sequence Parallelized 

Smith-Waterman Algorithm For 

SIMD Computers 

 
    Intra-sequence parallelization means the 

parallelization is within a single pair of sequences, in 

contrast to inter-sequence parallelization where the 

parallelization is carried out across multiple pairs of 

sequences. 

     Figure 1 shows the computational dependencies of 

Smith-Waterman alignment matrix. Most of the 

existing parallelized Smith-Waterman algorithms in 

the literature are originated from this dependency 

structure. Since cells on a bottom-left to top-right 

diagonal have the same sum of indices, we number 

those diagonals with their sums of indices. 

Noticeably cells of a diagonal don’t dependent on 

cells of the same diagonal and thus can be computed 

simultaneously. Furthermore, cells of a diagonal only 

depend on cells of the previous two diagonals. So, the 

basic idea of the parallel algorithm is to fill the 

matrix diagonal by diagonal starting from the top-left 

corner. Moreover cells of a diagonal are filled 

simultaneously with multiple processors. 
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Fig. 1. Computational dependencies in the 

Smith-Waterman alignment matrix. 
 

     The pseudo code of the parallel algorithm is given 

in Figure 2. Note that in the pseudo code, we use the 

in-parallel statement to indicate things to be done by 

processors simultaneously. The in-parallel statement 

has the following syntax: 
 

     In parallel, all processor i, lo<=i<=hi do { 

 … 
     } 

 

Only processors with processor numbers between lo 

and hi are activated. Also note that in the pseudo 

code, ji is a variable for processor i only. In other 

words, different processors have different j’s. 

Furthermore, array maxH is used for processors to 

keep track of the largest Hi,j. Since there are m+n-1 

diagonals, the loop repeats m+n-1 times and thus the 

parallel algorithm has an execution time of O(m+n). 

 
In parallel, all processor i, 1<= i <=m do  

     E[i][0] = F[i][0] = H[i][0] = maxH[i] =  0; 
In parallel, all processor i, 1<= i <=n do  

     E[0][i] = F[0][i] = H[0][j] = 0; 

for (diag=2; diag<=m+n; ++diag) { 
     if (diag<=m+1) first = diag-1; 

     else first = m; 

     if (diag-n<=1) last = 1; 
     else last = diag-n; 

     In parallel, all processor i, first>= i >= last do  { 

          ji = diag – i; 
          E[i][ji]  = max {E[i][ji-1]-gext, H[i][ji-1]-ginit}; 

          F[i][ji]  = max {F[i-1][ji]-gext, H[i-1][ji]-ginit}; 

          H[i][ji]  = max {0,E[i][ji], F[i][ji], H[i-1][ji-1]+w(ai,bji)}; 
          if (H[i][ji]>maxH[i]) maxH[i] = H[i][ji]; 

     } 

} 
S = max { maxH[1], maxH[2], …max H[m]}; 

 

Fig. 2. The pseudo code 
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4. A VLSI Implementation 
 

     First we design a small processing element 

according to the recursive relations (1), (2) and (3). 

Processing elements will be used to implement cells 

of Smith-Waterman’s alignment matrix. Thus, each 

processing element will be numbered with the indices 

of its corresponding cell in Smith-Waterman’s 

alignment matrix. As follows, processing element 

PEi,j will be used to compute values Ei,j, Fi,j and Hi,j.  

As shown in Figure 3,  processing element PEi,j 

consists of 3 registers Ei,j, Fi,j and Hi,j and several 

simple combinational circuits such as adders and 

comparators (for finding maximum of two or three 

values). Since Hi,j depends on Ei,j and Fi,j, processing 

element PEi,j has two computational states and thus 

requires two clock signals to complete its 

computation of values Ei,j, Fi,j and Hi,j. Since the 

longest data path in the processing element consists 

of an adder and a comparator, the clock period, i.e. 

time between each clock signal, only needs to be set 

to the time delay caused by an adder and a 

comparator. 

     Each processing element PEi,j  has 5 input ports 

and 3 output ports. Input ports A and B are for 

inputting residues ai and bj from the two sequences to 

be aligned. Input ports Ein, Fin and Hin are for 

inputting corresponding values from cells on which 

PEi,j  depends. Output ports Eout, Fout and Hout are for 

exporting values to cells depending on PEi,j . 

     Additionally, in order to keep track of the largest 

hi,j value, register Hi,j of processing element PEi,j is 

connected to register maxHi as shown in Figures 3. 

     Next, we map our algorithm into a VLSI circuit. 

Figure 4 depicts our VLSI circuit at the register level 

for m=4 and n=6. Processing elements and registers 

maxHi are connected together according to recursive 

relations (1), (2), (3) and (4). As shown in Figure 4, 

processing elements are arranged into levels such that 

processing elements corresponding to cells of a 

diagonal are placed on the same level and thus will 

compute their values at the same time. For the clarity 

of the logic of the VLSI circuit, in Figure 4, levels are 

numbered with their corresponding diagonal 

numbers. 
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Fig. 3. Processing element PEi,j and register 

maxHi

 Ein   Hin   Fin

A   PE1,1  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE2,1  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE1,2  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE2,2  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE3,1  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE4,1  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE3,2  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE4,2  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE1,3  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE2,3  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE1,4  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE2,4  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE3,3  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE4,3  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE3,4  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE4,4  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE1,5  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE2,5  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE1,6  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE2,6  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE3,5  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE4,5  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE3,6  B
Eout  Hout  Fout

 Ein   Hin   Fin

A   PE4,6  B
Eout  Hout  Fout

0 0

000

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Sequence
 A

Sequence B

Level

2

3

4

5

6

7

8

9

10

Clock

MAX

S

maxH1

MAX

H1,j’s

maxH2

MAX

H2,j’s

maxH3

MAX

H3,j’s

maxH4

MAX

H4,j’s

 
 

Fig. 4. The VLSI circuit, m=4, n=6. 
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5. A Pipeline Architecture for 

Sequence Database Searches 
 

     Since sequence database search is different from 

sequence alignment, first, we modify our processing 

element PEi,j as shown in Figure 5. Instead of keeping 

track of largest hi,j, the new processing element PEi,j 

will generate a SELECT signal when its Hi,j value is 

above a threshold. 
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Fig. 5. Modified processing element PEi,j. 

 

To speedup sequence database searches, a pipelined 

architecture is incorporated in the VLSI circuit. 

Pipelining is a natural concept for increasing the 

throughput of a system when processing a stream of 

data, even though pipelining cannot speed up the 

process of a single datum. The space-time diagram in 

Figure 6 reveals the advantages of the pipelined 

architecture in processing database sequences. The 

diagram shows the succession of the levels in the 

pipeline with respect to time. From the diagram one 

can observe how independent sequences are 

processed concurrently in the pipeline. 
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Fig. 6. Pipeline space-time diagram 

 

    Since there are m+n-1 levels in the VLSI circuit, 

it’s very natural to organize the entire architecture as 

a linear pipeline with m+n-1 stages. To do so, as 

shown in Figure 7, we add m+n-1 registers to the 

VLSI circuit to hold database sequences one for each 

stage, i.e. level. Additionally, each database sequence 

register has a S flag which will be used to indicate 

whether the database sequence is selected or not. As 

shown in Figure 7, processing elements’ select 

signals are connected to S flags of corresponding  
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Fig. 7. The single-chip pipeline processor, m=4, n=6.
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database sequence registers. Furthermore, according 

to recursive relation (3), Hi,j depends on Hi-1,j-1 which 

is not in the immediate previous level of Hi,j. So, for 

the purposes of buffering and synchronization, we 

add hi,j buffer registers to hold Hi,j values. Since a 

processing element PEi,j needs two clock signals to 

compute its values, our pipeline takes 2 clock signals 

to move from one pipeline stage to another. 

     Apparently as soon as the first database sequence 

completes its alignment checking, every one stage 

time there is a database sequence completes its 

alignment checking. Consequently, the pipeline 

processor has a throughput rate of one database 

sequence per two clock signals. In other words, the 

pipeline has a time complexity of O(1) time per 

database sequence. Moreover, since the first 

sequence takes O(m+n) time to completes its 

alignment checking, the total time complexity of the 

pipeline processor is O(m+n+L), where L is the 

number of sequences in the database. 

     For most bioinformatics applications, m and n are 

in thousands and thus m×n is in millions. Since there 

are m×n processing elements in our VLSI circuit, the 

pipeline processor requires millions of combinational 

circuits and registers. As of today, a VLSI microchip 

can have billions of transistors. Since a register or a 

simple combinational circuit such as adder or 

comparator doesn’t need thousands of transistors, 

billions of transistors should be enough for millions 

of our processing elements. As a result, it’s possible 

to implement the pipeline processor in a single VLSI 

microchip. 

     For some applications such as genome assembly, 

the length of the query sequence may be more than 

thousands and thus requires multiple microchips to 

implement the pipeline processor. Figure 8 

demonstrates the scalability of the pipeline processor. 

In circuit design, scalability refers to the ability to be 

expanded to cope with increased use. As shown in 

Figure 8, we decompose the pipeline circuit into three 

sub-circuits each of which can be implemented in a 

microchip. Type 1 chip is for the head of a pipeline. 

Type 3 chip is for the tail of a pipeline. Type 2 chip is 

for the middle part of a pipeline. To handle long 

query sequences, we simply use more type 2 chips in 

the middle to lengthen the pipeline. 

 

6. Conclusion 
 

     In this paper, we have described a O(m+n) time 

intra-sequence parallelized Smith-Water algorithm 

for general SIMD computers, where m and n are 

lengths of the two sequences to be aligned. We have 

shown a VLSI implementation of the parallel 

algorithm. We have also shown that by incorporating 

a pipelined architecture into the VLSI circuit, we can 

speed-up sequence database searches without 

sacrificing the sensitivity. The resulting pipeline 

processor can do sequence database searches at the 

speed of O(m+n+L), where L is the number of 

sequences in the database. Moreover, we have 

demonstrated the scalability of the pipeline processor. 
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Fig. 8. A multiple-chip pipeline processor, m=3, n=6. 

50 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



Bimodal Gene Prediction via Gap Maximisation 
Abdullatif S. Al-Watban

1,2
, Zheng Rong Yang

1
  

1
School of Biosciences, University of Exeter, EX4 4QD, UK

  

  
2
Saudi Food and Drug Authority, Medical Devices Sector, Riyadh, KSA 

 
 

Abstract- Bimodal gene is one of the common phenomena 

frequently observed in gene expression data for certain 

types of studies including cancer studies and drug/therapy 

effect studies. There have been several algorithms proposed 

to predict bimodal genes with success. However, occasion-

ally their performance is not very satisfied. We propose a 

new algorithm to detect bimodal genes. The new algorithm 

is based on the assumption that the bimodality is related 

with the gap between two consecutive expressions. We show 

that this new algorithm demonstrates better performance 

compared with several benchmark algorithms using both 

real and simulated data sets. 

Keywords: bimodal distribution, non-parametric analysis, 

differential genes, heterogeneity. 

 

1 Introduction 

      Microarray experiments have benefitted the discovery of 

genetic differentiation pattern for interpreting the observed 

phenotypic differentiation for a decade [1]. The success is 

due to high-throughput and genome-wide examination. The 

discovery of differential genes in relation to phenotypic dif-

ferentiation can be implemented using standard student t test 

if data satisfy the assumption. However biological diversity 

makes this difficult because a large number of genes appear 

to have bimodal or multi-modal distribution [2]. Fig 1 shows 

such a typical bimodal distribution of samples in the same 

category (such as cancer samples) of a gene.  

        

  

Figure 1: Histograms for ERBB2 gene. The gene has bimodal distribution 
with the dashed vertical line representing the classification threshold between 

the two modes [3]. 

 

      Khalil et al have explained that cancer is a complex dis-

ease [4] because it has many subtypes . The existence of bi-

modal genes may be related to important subtypes of a dis-

ease. In medical science, bimodal genes can be the product of 

somatic mutations as the amplification of the receptor tyro-

sine kinase proto-oncogene "erbB2" during the development 

of cancer [5]. Another cause for the  bimodality in cancers is 

germ cell mutations such as SNPs [6]. It has been noticed  

 

that the majority of cancer data demonstrate this kind of het-

erogeneous pattern [7-9]. Genetic translocations are com-

monly occurred in cancer cell which is a result of the rear-

rangement of parts between non-homologous chromosomes 

[10]. However, these mutations play main role in cancer cell 

progression or, more generally, diseases development. Fur-

thermore, the genomic lesions may affect some samples but 

not all leading to the occurrence of bimodality. An example 

of recurrent fusion was observed by Tomlins and others in 

prostate cancer datasets where they found ERG and ETV1 

genes over expressed in some of the samples in multiple 

datasets [9]. A study has showed that oncogene HER2 is 

over-expressed in 15–20% of breast tumors compared with 

normal breast tissues [11]. In addition the bimodality appears 

in biological systems as noticed by Mason and his group 

[12]. It is observed that the expression levels for some genes 

showed a distinct bimodal distribution in human skeletal 

muscle tissue. Also bimodal distribution were studied in 

blood glucose samples [13, 14]. The bimodality can occur in 

humongous tissue as reported in these references [12, 15]. 

 

      This heterogeneity demonstrated that the fully under-

standing to both genotype and phenotypes is the critical key 

for drug design [8]. The researchers have made a great effort 

to study the complexity of cancer disease aiming to under-

stand the molecular characteristics [16, 17]. Cancer patients 

with similar tumour characteristics are likely not to response 

for the same treatment [18]. In breast cancer, for example, 

variant responses were found to drug such as Tamoxifen and 

Herceptin giving evidence of the heterogeneity in pathologi-

cal factors such as estrogen receptor (ER) and HER2 status 

[19]. Large number of patients gained from using Tamoxifen 

for hormone receptor-positive but the same drug failed in 

subgroup of patients who carry specific variants in the cyto-

chrome gene P450 2D6 (CYP2D6) [20, 21]. Trastuzumab, as 

a first drug approved by FDA for this purpose, has been a 

beneficial therapy, either alone or in combination with che-

motherapy, in about 25% of patients with positive HRE2 

cancer patients [22-25]. This raised an issue of an accurate 

grouping of HRE2-positive patients [21]. Gefitinib (Iressa) 

has been approved by FDA, which suppress the ATP binding 

function of EGFR, and has been of partially remission re-

gression for 10-30% of patients with non-small cell lung can-

cer [26-30].  It has been noticed, that genetic alterations are 

associated with drug response as proven in their study [31].  

 

     Due to the often observed heterogeneity in gene expres-

sion data,the conventional t test and correlation analysis may 

not be able to well detect partial differentiation. The kurtosis 

analysis [32], the likelihood ratio test [33] and the bimodality 

index [34] have been proposed to examine the bimodality 
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among genes. PACK (Profile Analysis using Clustering and 

Kurtosis) [32] clusters samples first and then uses kurtosis to 

find relevant classifiers. It was reported that about 80%-20% 

bimodal genes were missed using PACK [34]. The likelihood 

ratio test (LRT) [33, 35] examines the likelihood of bimodal 

over unimodal [13, 14]. Ertel and Tozeren used the 
2  test 

with six degree of freedoms. They set 0.001 as the signifi-

cance level to predict bimodal genes. Bessarabova and col-

leagues developed a τ indicator for detecting bimodality [36]. 

They combined a statistical method based around t test like 

statistic for direct comparison of gene expression from dif-

ferent platforms to identify bimodal genes based on the rela-

tive difference average between each peak of gene expres-

sion value in breast cancer. The Bimodality Index [34] used a 

mixture of two homogeneous Gaussians to model bimodality 

and outweighed the high-expressed samples. 

 

      Have applied these algorithms to our data, we have found 

that they often show dissatisfied performance. Some often 

over-predict bimodal genes and some do not provide a statis-

tical significance value for analysis. In this paper we present 

a novel algorithm further. The basic principle is to detect the 

maximum gaps between two clusters. This therefore avoids 

the parametric function to be used. We have evaluated this 

algorithm in comparison with several benchmark algorithms 

and demonstrate in this paper that this new algorithm pro-

vides another way to acquire insightful interpretation to bi-

modality among genes.  

 

      In the following sections, we discuss the implementation 

of hBI and evaluate its performance in comparison to some 

benchmark algorithms using real and simulated data. 

2     Methods 

     Our algorithm is a revision of Bimodal Index - BI [34], 

which is defined as: 

iii  )1(BIi   (1) 

where i  is the proportion of samples and i  is the distance 

between the two subgroups of the i
th
  genes. The use of this 

definition implies a homogeneous variance for two clusters 

of samples.  A one-side t statistics of the i
th
 gene can be de-

fined as 
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where 
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 is the variance of lowly expressed samples, 



 H ,i
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is the variance of highly expressed samples, 



nL,i  is the num-

ber of lowly expressed samples, 



nH ,i  is the number of highly 

expressed samples, 



L,i  is the mean of lowly expressed 

samples, and 



H ,i  is the mean of highly expressed samples 

of the i
th
 gene. if 



L,i
2  H,i

2  i
2
, this one side t statistic 

becomes 
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where 



 H ,i is the proportion of highly expressed samples of 

the i
th
 gene. If the sample size is fixed for all genes,  



ti  i
1  H,i (1  H,i)  (4) 

      It can be seen that if homogeneous exists across sub-

groups and genes, BI is equivalent to one side t statistic. 

However this can hardly be true in real applications. We 

therefore revise BI employing heterogeneous variance. In the 

one side t statistic, we use percentile estimations to replace 

parametric estimation of means and variances shown below 



ti 
qH ,i

25  qL,i
75

 L,i
2

nL,i


 H ,i

2

nH ,i

 (5) 

Here 



qH
25

 is the 25th percentile of highly expressed samples, 



qL
75

 is the 75th percentile of lowly expressed samples and 

the variances are calculated using 

34896.1

IQR
  (6) 

      We assume that the separation between lowly expressed 

samples and highly expressed samples occurs at one of the 

largest gaps between consecutive sorted samples. Therefore 

we introduce the gap between lowly expressed samples and 

highly expressed samples to enhance the bimodality test. Our 

heterogeneous bimodal index (hBI) is defined below 

  iiLiH tMm )1(hBI ,,i    (7) 

where 



mH ,i  is the minimum of highly expressed samples, 



M L,i  is the maximum of lowly expressed samples of the i
th

 

gene and 



  0  is a trade-off between the gap effect and t 

statistic. In this paper, 



  0.75.  

 

      BI uses an arbitrary threshold to make decision based of 

the indexes, we employ the sequential Monte Carlo approach 

[37] (Besag and Clifford 1996) to deliver significance analy-

sis. The procedure of our algorithm is shown below 

Step 1. BI calculation for each gene 

1.1. to sort expressions 
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1.2. to calculate the distance between every con-

secutive expressions and record them as a 

gap list 

1.3. to sort the gap list 

1.4. to calculate the revised BI for the top ten gaps 

and record them in a bimodality list 

1.5. to maximise the bimodality list 

Step 2. Apply BC algorithm to obtain p values 

 

      To evaluate our algorithm in comparison with likelihood 

test, Kurtosis test and BI test, we calculate sensitivity (Sen), 

specificity (Spe), total accuracy (Auc) and use receiver op-

erative characteristic (ROC) [38] analysis. The sensitivity is 

the ratio of correctly predicted bimodal genes. The specificity 

is the ratio of correctly predicted non-bimodal genes. The 

total accuracy is the ratio of corrected identified unimodal 

and bimodal genes. Specially, we calculate the area under 

ROC curve (AUC) for comparison.  

3     Results and discussions 

3.1 Simulated Data    

   For all five scenarios, 950 genes were designed as unimo-

dal and 50 genes were designed as bimodal. Each gene has 

40 replicates. Thirty replicates were designed of low expres-

sions. Ten replicates were designed of high expressions. Each 

simulation was repeated for ten times. 

Scenario 1- Samples of unimodal genes were drawn from a 

normal distribution of mean ten and standard deviation one. 

Lowly expressed samples of a bimodal gene were drawn 

from a normal distribution of mean ten and standard devia-

tion one. Highly expressed samples of a bimodal gene were 

drawn from a normal distribution of mean 12 with variable 

standard deviation drawn from a uniform distribution be-

tween one and five. Table 1 shows the comparison based on 

the mean values among ten simulations for four algorithms 

using specificity, sensitivity and AUC. It can be seen that hBI 

and Kurtosis have similar performance and hBI slightly out-

performs Kurtosis analysis. Likelihood test shows the worst 

performance with the sensitivity as 0.06 although its specific-

ity is 1. 

 

Table 1: The averaged measurements for scenario 1 

 LR K BI hBI 

Spe 1 0.983 0.975 0.992 

Sen 0.062 0.858 0.532 0.84 

Auc 0.995 0.964 0.852 0.992 

 

Scenario 2- Samples of unimodal genes were drawn from a 

normal distribution of mean ten and standard deviation one. 

Lowly expressed samples of a bimodal gene were drawn 

from a normal distribution of mean ten and standard devia-

tion one. Highly expressed replicates of a bimodal gene fol-

low a uniform distribution in the interval between zero and 

five in addition to maximum of low expressions. The aver-

aged measurements are shown in Table 2. In this scenario 

kurtosis has shown the worst accuracy (36%) while the other 

relatively similar and higher, 99.9%. Also the result has 

shown that the likelihood test has very low sensitivity while 

BI and hBI perform equally well.  

 

Table 2: The averaged measurements for scenario 2 

 LR K BI hBI 

Spe 1 0.986 0.997 0.9963 

Sen 0.058 0 0.954 0.924 

Auc 0.999 0.36 0.999 0.9985 

 

Scenario 3 - Samples of unimodal genes were drawn from a 

uniform distribution in the interval between ten and 12. 

Lowly expressed replicates of a bimodal gene were drawn 

from the same low expression distribution as bimodal genes 

and highly expressed replicates of a bimodal gene were 

drawn from a normal distribution with two units added to the 

maximum of the low expressions. Table 3 shows the sum-

mary of the simulations for this scenario. This scenario has 

shown that Kurtosis failed again to have a sensible accuracy 

(14%). hBI shows the highest AUC (0.999) similar to LR 

(0.996) and BI (0.993). hBI outweighs LR and BI in term of 

sensitivity, the sensitivities of BI and LR are 0.81 and 0.77, 

respectively while hBI's sensitivity is 0.94.  

 

Table 3: The averaged measurements for scenario 3 

 LR K BI hBI 

Spe 0.997 0.9519 0.9898 0.996 

Sen 0.774 0 0.812 0.94 

Auc 0.996 0.1413 0.9933 0.999 

 

Scenario 4 - Samples of unimodal genes were drawn from a 

normal distribution of mean ten and standard deviation one. 

Lowly expressed replicates of a bimodal gene were drawn 

from a mixture of a normal distribution of mean ten and a 

normal distribution of mean 12. The standard deviation of the 

former was designed as one and that of the latter was de-

signed as three. Highly expressed replicates of a bimodal 

gene were drawn from the low expressions plus white noise 

with two units above the maximum low expression. Table 4 

shows the summary of ten simulations on random samples 

for this scenario. All perform very well in terms of AUC. 

This means there are some suitable statistical significance 

levels by which perfect separation between unimodal and 

bimodal genes can be found. 
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Table 4 The averaged measurements for scenario 4 

 LR K BI hBI 

Spe 1 0.9861 0.9963 0.997 

Sen 0.468 0 0.93 0.952 

Auc 0.998 0.9572 0.9984 0.9988 

Scenario 5 - Samples of unimodal genes were drawn from a 

normal distribution of mean ten and standard deviation one. 

We organised lowly expressed replicates of a bimodal gene 

as a mixture of three normal distributions with mean values 

as ten, 11 and 12 as well as standard deviation values as 

three, two and one. Highly expressed replicates of a bimodal 

gene were drawn in the same way as scenario 4. Based on ten 

random simulations for this scenario, we have observed that 

although LR and BI show reasonably good values of AUC, 

their sensitivities are not acceptable. This shows that these 

two algorithms have the same problem encountered in sce-

nario 4 that their p values tend to be large, which leads to the 

difficulty of using command significance levels to make de-

cision. Kurtosis analysis does not work well because its AUC 

value drops to 0.66 not very far away from 0.5, a random 

classification.  In this scenario hBI perform the best in all 

measurements while BI has 69% sensitivity. 

 

Table 5: The averaged measurements for scenario 5 

 LR K BI hBI 

Spe 1 0.9844 0.9845 0.9873 

Sen 0 0 0.698 0.766 

Auc 0.9267 0.6676 0.9593 0.9867 

 

 

3.2  Real data  

     GSE11121 dataset: The data set was downloaded from 

GEO (Gene Expression Omnibus). It contains 200 lymph 

node-negative breast cancer patients who were not treated by 

systemic therapy after surgery. The data was derivation study 

to find prognostic motifs [39]. Gene expression profiling of 

patients was done using the Affymetrix HG-U133A microar-

ray platform compromising 22283 probs. The raw expression 

deposited at the NCBI GEO data repository under the acces-

sion number GSE11121. We have transformed the expression 

using base two logarithm before analysis. We used three sig-

nificance levels (0.001, 0.01 and 0.05) to predict bimodal 

genes. Table 6 shows the predicted bimodal genes using 

these three significance levels. The likelihood test predicted 

from 0.3% to 2.3% bimodal genes, BI predicted from 0.01% 

to 5% bimodal genes and hBI predicted bimodal genes from 

0.01% to 5% as well. However Kurtosis analysis ends up 

with too many predictions up to 54.7%, which is unreason-

able. Even for the significance level 0.001, it still predicts 

36.3% bimodal genes, which is far more than a realistic level. 

 

 

Table 6: Number of predicted bimodal genes for three significance 

levels for data set GDS11121 

Significance levels LHR K BI hBI 

0.001 72 8087 22 23 

0.01 182 10065 227 221 

0.05 523 12193 1112 1112 

          Fig 2 (a) shows the overlap analysis between four al-

gorithms based on the significance level 0.001 values using 

VennDiagram [40]. We have found that hBI is most similar to 

BI. The overlap percentage between these two algorithms is 

31.8%, i.e. 100*7/(7+14+1). The overlap degree between 

LHR and hBI is 20.2%. The overlap degree between LHR 

and BI is 5.6%. 91.3% of predicted bimodal genes of hBI are 

predicted by Kurtosis as well. This percentage drops to 

69.6% between hBI and LHR as well as 30% between hBI 

and BI. Also the overlap percentage between BI and hBI is 

27.7% for significance level 0.01 and  the overlap degree  is 

34.3% between the hBI and LHR and 7.9% between BI and 

LHR - Fig 2 (b). 90.9% of predicted bimodal genes of hBI is 

predicted by Kurtosis as well. This percentage drops to 

46.6% between hBI and LHR as well as 24% between hBI 

and BI. For significance level 0.05, we found the overlap 

between hBI and BI is 36.2% and the overlap degree be-

tween hBI and LHR is 28.2%  and 7.07% between BI and 

LHR - Fig 2 (c). In addition, 83.3% (32.3%, 36.2%) of hBI’s 

predictions are consistent with Kurtosis (LHR, BI).  

 

(a) (b) (c)  

Fig 2: Venn diagram illustrates the overlapped between the methods for 

GSE11121 with the significance levels 0.001(a),0.01(b) and 0.05(c). 

 

     Fig 3 shows top five bimodal genes predicted based on 

the significance level 0.001, where (a-d) predicted by all and 

(e) was predicted by hBI only. It can be seen that they show 

different types of distributions. Both GOXA1 - Fig 3 (a) - 

and GATA3 - Fig 3 (b) show a pattern that the high expres-

sions form a tight cluster. However the low expressions dem-

onstrate a more flat distribution or form more small clusters. 

TDRD12 - Fig 3 (c) - and GRIA2 - Fig 3 (d) have tight clus-

ters formed by low expressions and their high expressions 

display flat distributions. SH3GL3 shows a different pattern 

from other four. It is composed of two more tightly formed 

clusters, one small and one large. The gap between two clus-

ters is large. The analysis of these patterns proves one impor-

tant concept that the use of restrict assumption of data distri-

bution may not be sufficient for accurate prediction of bi-

modal genes in real applications, where distribution can vary 

in many different formats. 
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(a) (b) (c)  

(d) (e)  
Fig 3: Density analysis of four bimodal genes; (a-d) predicted by all four 

algorithms at the significance level 0.001 and (e) only predicted by hBI at the 
same significance level. The horizontal axes represent log2 expressions and 

the vertical axes represent frequencies. All these genes show typical bimodal 

(or multi-modal) distributions. 

     Table 7 shows the p values of four algorithms for the 

genes uniquely predicted by hBI at the significance level 

0.01. The data shows that for those bimodal genes predicted 

by hBI, their ranks of other algorithms are far behind. For 

instance, the Kurtosis rank of C6orf64 is 18643 and the Kur-

tosis rank of GULP1 is 22101. Fig 4 shows four of them, 

which have gene symbols. They are indeed bimodal genes. 

However other three algorithms failed to predict them. For 

instance, PSPH was ranked by hBI at the 66th position (p  = 

0.002). Likelihood, Kurtosis and BI ranked it at the 2990th (p 

= 0.2), 13507th (p = 0.1), and the 1293th (p = 0.05) respec-

tively. This gene is highly expressed in African Americans 

comparing to European Americans colorectal cancer patients 

[41]. Also PSPH is expressed at higher level in responding 

patients versus non-responding group, which support its im-

portance as therapeutic target for non-small-cell lung cancer 

[42]. RBBP5 was ranked at the 113
th
 position (p = 0.005), but 

was ranked at the 540
th
 position (p = 0.52), the 17000

th
 posi-

tion (p = 0.36), and the 974
th
 position (p = 0.043) by likeli-

hood, Kurtosis and BI tests. RBBP5 was found to be active 

in only 40% of Pancreatic ductal adenocarcinomas (PDAs) 

[43]. 

Table 7: p values of bimodal genes predicted ONLY by hBI at 

significance level 0.01 for GDS11121 

symbol LH K BI hBI 

PSPH 0.27(2990) 0.1(13507) 0.058(1293) 0.002(66) 

unknown 0.065(652) 0.03(11438) 0.039(864) 0.004(97) 

RBBP9 0.052(540) 0.36(17000) 0.043(974) 0.005(113) 

unknown 0.31(3584) 0.02(11311) 0.012(265) 0.008(195) 

C6orf64 0.07(713) 0.54(18643) 0.018(416) 0.008(199) 

GULP1 0.19(1879) 0.97(22101) 0.026(582) 0.009(226) 

 
Fig 4. Density analysis of two bimodal genes only predicted by hBI at the 
significance level 0.01. The horizontal axes represent log2 expressions and 

vertical axes represent frequencies. All these genes show typical bimodal (or 

multi-modal) distributions. 

4  Conclusion 

     We have proposed a novel bimodal gene prediction algo-

rithm via relaxing the constraints of BimodalIndex algorithm. 

First, the constraint of cross-cluster homogeneous variance 

has been removed. It is unrealistic to assume that two clusters 

of a bimodal gene should have the same variance. The ex-

amination of various data sets has clearly shown that one of 

two clusters, either being of lowly expressed samples or of 

highly expressed samples is very likely to demonstrate a 

comparatively flat distribution while the other shows a tight 

cluster. Second, we deliberately removed the constraint of 

homogeneous variance across genes because this constraint 

is certainly confusing. An obviously evidence is that the vari-

ance of unimodal genes and bimodal genes will not show 

homogeneous variance. In addition to these two revisions, we 

have also emphasised the impact of gaps between consecu-

tive expressions of sorted samples on bimodal formulation. 

This is because we have observed in real data sets that often 

lowly expressed samples demonstrate a tight cluster and 

highly expressed samples show; i) a comparatively large 

variance; and ii) distantly departing from the tight cluster of 

lowly expressed samples or vice versa. In this case the t sta-

tistic, although using percentiles to estimate mean values and 

standard deviations, is still not working well, i.e. the t statis-

tic can be very likely to be small due to the large variance of 

the highly expressed samples. We therefore introduced a gap 

impact onto the prediction of bimodal genes. Doing so, we 

admit that we have introduced a hyper-parameter. In order to 

remove this hyper-parameter, our future work will employ 

the Bayesian learning framework to overcome this difficulty. 

Nevertheless, we have documented our simulations, which 

all show that our new algorithm is better than the benchmark 

algorithms in simulated data sets. In the application to real 

data sets, we show that our new algorithm is partially consis-

tent with benchmark algorithms and does provide some new 

insights to the analysis of bimodal genes. Importantly, most 

of the predicted bimodal genes by our new algorithm do 

show typical bimodality. Particularly, not a small percentage 

of our unique predictions is unfortunately not favoured by 

benchmark algorithms. We therefore look forward to some 

even advanced approach, such as meta-analysis of prediction 
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to deliver even robust predictions of bimodal genes. Finally, 

it worth to note that significance analysis is critical to real 

biological/medical application, we therefore have enhanced 

the BimodalIndex for using the Besag’s sequential Monte 

Carlo approach to deliver significance analysis. 
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Abstract— Transition Initiation Sites (TIS) prediction is a 
challenging problem in computational biology. In the literature 
TIS is predicted using various machine learning techniques such 
as Neural Network (NN), Support Vector Machine, etc. We have 
applied Principal Component Analysis (PCA) to remove highly 
correlated features which improves the performance in terms of 
time and accuracy. In this paper we have used Group Model of 
Data Handling (GMDH) based algorithm Abductive Network 
(AN) to predict TIS and got accuracy of 93%. 

Keywords- Bioinformatics, Transition Initiation Sites (TIS), 
mRNA sequence, Machine Learning, Neural Network, Abductive 
Network, GMDH. 

I.  INTRODUCTION  

Proteins are synthesized from mRNAs by a process called 
translation. The region 

at which the process initiates is called the Translation 
Initiation Site (TIS). The coding sequence is ranked by non-
coding regions which are the 5' and 3' UnTranslated Region 
(UTR) respectively. The translation initiation site prediction 
problem is to correctly identify the TIS in a mRNA or cDNA 
sequence. This forms an important step in genomic analysis to 
determine protein coding from nucleotide sequences. In his 
research we have predicted TIS in human mRNA sequence. 

In eukaryotes, the scanning model postulates that the 
ribosome attaches first to the 5' end of the mRNA and scans 
along the 5' to 3' direction until it encounters the first AUG. 
The problem of predicting the TIS is compounded in real-life 
sequence analysis by the difficulty of obtaining full-length and 
error-free mRNA sequences. 

Machine learning techniques have been used successfully 
in TIS prediction using the mRNA or cDNA sequence. 

In this research the feature dimension reduction is 
performed using PCA to select the most significant features 
and finally AN and Multi Layer Perceptron is used for TIS 
prediction. 

The rest of the paper is organized as follows. Section 2 
deals with recent literatures. Section 3 describes the proposed 
recognition system. Section 4 shows experimental results. 
Finally Section 5 mentioned conclusion and future work. 

 

 

Figure 1.  TIS Terminology 

II. LITERATURE REVIEW 

Pedersen and Nielsen [1] found that almost 40% of the 
mRNAs extracted from GenBank contain upstream AUGs. 
This accords with the scanning hypothesis that the ribosome 
operates in a linear fashion on the sequence to recognize the 
start site. They have trained an artificial neural network (ANN) 
on a 203 nucleotide window centered on the AUG. They 
obtained results of 78% accuracy on start AUGs and 87% 
accuracy on non-start AUGs on their vertebrate dataset, giving 
an overall accuracy of 85%. This system is available on the 
Internet as the NetStart 1.0 prediction server. 

 

Zien et al. [2] obtain improved results on the same 
vertebrate dataset from Pedersen and Nielsen by using support 
vector machines (SVM). The same 203 nucleotide window is 
used as the underlying features to be learnt. They show how to 
obtain improvements by appropriate engineering of the kernel 
function - using a locality-improved kernel with a small 
window on each position, a codon-improved kernel using 
codon structure in the downstream sequence and a Salzberg 
kernel using conditional positional probabilities. With the 
nucleotide-based kernels [3], they obtain an accuracy of 69.9% 
and 94.1% on start and non-start AUGs respectively, giving an 
overall accuracy of 88.1%. The Salzberg kernel gives an 
overall accuracy of 88.6%. 
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Hatzigeorgiou [4] reports a highly accurate TIS prediction 
program, DIANA-TIS, using ANN trained on human 
sequences. Their dataset contains full-length cDNA sequences 
which has been altered for errors. An overall accuracy of 94% 
is obtained using an integrated method which combines a 
consensus ANN with a coding ANN together with the 
ribosome scanning model. 

 

Zeng et el. [5] obtained 94% overall accuracy on the dataset 
used in [1, 2, 4] by using simple feature generation and 
selection on a variety of standard machine learning methods. In 
the work of Zien et al. [2] and Hatzigeorgiou [4], improved TIS 
prediction is obtained by a more complex method. Zeng et el 
showed that the use of simple feature generation followed by 
correlation-based feature selection allows a variety of standard 
machine learning methods such as ANN, decision trees, SVM, 
Naive Bayes to obtain accurate TIS prediction. Feature 
selection results in only a very small number of features, at 
most 13, to get good results. The results from the simple TIS 
prediction are directly comparable with Zien et al. [2] and 
Pedersen and Nielsen [1]. The highest overall accuracy 
obtained is 89.4% which is better than previous results on this 
dataset. Incorporating distance as a feature improves this result. 
Finally with the use of a scanning model, they have obtained an 
overall accuracy of 94.4% which compares very favorably to 
Hatzigeorgiou [4]. 

III. DATASET 

The dataset used is the vertebrate dataset created by 
Pedersen and Nielsen [1]. This dataset was also used by [2, 4, 
5]. So our results can be compared directly with the two 
previous works. The original dataset of Pedersen and Nielsen 
[1] consists of a selected set of vertebrate genomic sequences 
extracted from GenBank [6]. It consists of sequences from Bos 
taurus (cow), Gallus gal-lus (chicken), Homo sapiens (man), 
Mus musculus (mouse), Oryctolagus cuniculus (rabbit), Rattus, 
norvegicus (rat), Sus scrofa (pig), and Xenopus laevis (African 
clawed frog). It has been shown by Pedersen and Nielsen that 
these vertebrates have similar start codon contexts [1].   These 
sequences are processed by removing possible introns and 
joining the exons. This is analogous to the splicing of mRNA 
sequences. From these sequences, only those with an annotated 
translation initiation site, and with at least 10 upstream 
nucleotides as well as 150 downstream nucleotides are 
selected. The sequences are altered to remove those belonging 
to same gene families, homologous genes from Different 
organisms, and redundant sequences, so as to avoid over-
optimistic performance resulting from biased data [7]. This 
resulting dataset consists of 3312 sequences. Since the dataset 
is processed DNA, the TIS site is ATG. In total, there are 
13503 ATG sites. Of the possible ATG start sites, 3312 
(24.5%) are the true start ATGs while the other 10191 (75.5%) 
are non-start ATGs. The dataset is available in  

http://datam.i2r.a-star.edu.sg/datasets/krbd/index.html 

An example entry from this dataset is given below in Figure 
2 and Figure 1 shows the basic TIS terminologies. 

 
Figure 2.  Human mRNA example 

 

Figure 3.  Feature Extraction 

 

A. Feature Extraction 

Frequency of k-gram amino acid. (k = 1,2,3.. Amino acid 
patterns) – 

• Count the frequency of amino acid X in upstream and 
downstream.    ( 20 amino acids + 1 stop symbols 
= 21 x 2 ). 

• Count the frequency of amino acid of XY in upstream 
and downstream.   ( 21 x 21 x 2 = 882 ). 

• 3 biological knowledge: “DOWN4-G”, “UP3-AorG” 
and “UP-ATG”. 

B. Feature Vector 

After extracting feature we have a feather vector 13,310 X 
927. We have used PCA to reduce the feature dimension from 
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927 to 70 which make the prediction faster by the machine 
learning techniques. 

C. Feature Vector 

After extracting feature we have a feather vector 13,310 X 
927. We have used PCA to reduce the feature dimension from 
927 to 70 which make the prediction faster by the machine 
learning techniques. 

IV. MACHINE LEARNING TECHNIQUES 

 

ANN, SVM, HMM, FUZZY LOGIC, Bayesian Network, 
Group Model of Data Handling Based Abductive Network 
(AN), etc are the well known techniques in machine learning. 
We have used ANN and AN to predict TIS. 

A. Abductive Network (AN) 

 

Abductive Networks approach based on the Group Method 
of Data Handling (GMDH) algorithm as an alternative learning 
tool. The GMDH approach to classification offers the 
advantage of simplified and more automated model synthesis. 
Abductory Inductive Mechanism (AIM) is a Machine Learning 
tool that automatically discover network solutions to complex 
decision, prediction, control and classification problems. The 
tool generate a mathematical models from relationships it finds 
in the training data. It does so by trying out all potential 
relationships of linear, multiple and polynomial on various 
combination of input variables. It iteratively build a network of 
numerical functional elements based on prediction performance 
using Predicted Square Error (PSE). 

PSE = FSE + CPM (2K/N)σ2 

 FSE   Fitted Square Error. 

 CPM   Complexity Penalty Multiplier. 

 K  # of Coefficients. 

 N # of Inputs. 

 σ    Estimation of predicted error. 

The unique property of automatic selection of only the most 
relevant input features by abductive network models gives 
useful insight into the contribution of the various features in the 
dataset. 

 
Figure 4.  AN Functional Elements 

 
AN Functional Elements 

 
 Normaliser: Transforms the original input into a 

normalized variable having a mean of zero and a 
variance of unity.  

 Unitizer:  Restores the result to the original problem 
space  

 Node: The node has input(1, 2 or 3) and the 
polynomial equation is limited to the third degree, 
that is: 

y = z0 + z1x + z2x2 + z3x3 
 

V. NEURAL NETWORK 

 
In this paper Multi Layer Perceptron (MLP) classifier is 

used which is one of the popular Artificial neural networks 
(ANN) consist of simple processing elements and a high 
degree of interconnection. The elements are organized into an 
initial input layer, intermediate “hidden” layers, and a final 
output layer (Figure 7). In MLP information proceeds from the 
input layer to the output layer through hidden layer(s). It uses 
back propagation algorithm makes to learn the weights within 
the elements and construct arbitrarily complex nonlinear 
decision boundaries to separate multiple classes. 

 

Figure 5.  Multi Layer Perceptron (MLP) 

Actually MLP operates in two distinct phases. The first is 
the recall phase in which the training pattern is presented to the 
input layer of the network and a corresponding output is 
recalled at the output layer. The second is the learning phase in 
which the network adjusts its synaptic weights in order to 
minimize the error between the recalled pattern and the correct 
pattern given by a teacher (supervised learning). The neural 
network is only as good as the data set with which it is trained 
upon. When selecting training data, the designer should 
consider: 

 Whether all important features are covered 
 What are the important/necessary features 

VI. PRINCIPAL COMPONENT ANALYSIS (PCA) 

Principal component analysis (PCA) is used to reduce 
highly correlated features. PCA was first introduced by Pearson 
in 1901 and become a standard tool in modern data analysis. 
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PCA is actually a technique to find the directions in which a 
cloud of data points is stretched most. PCA perform linear 
transformation by choosing a new coordinate system in such a 
way  that greatest variance by any projection of the data set 
comes to lie on the first axis (the first principal component). 
PCA can be used for reducing dimensionality by eliminating 
the later principal components. 

 
Figure 6.  Figure 1: PCA 

 

The objective of PCA is to perform dimensionality 
reduction while preserving as much of the randomness in the 
high-dimensional space as possible. PCA performs a linear 
mapping of the data to a lower dimensional space in such a 
way, that the variance of the data in the low-dimensional 
representation is maximized. At first, the correlation matrix of 
the data is constructed and the eigenvectors on this matrix are 
computed so that the eigenvectors that correspond to the largest 
eigenvalues (the principal components) can be used to 
reconstruct a large fraction of the variance of the original data. 
Moreover, the first few eigenvectors can often be interpreted in 
terms of the large-scale physical behavior of the system. The 
original space (with dimension of the number of points) has 
been reduced (with data loss, but hopefully retaining the most 
important variance) to the space spanned by a few 
eigenvectors. 

VII. FRAMEWORK OF TIS PREDICTION 

 

At first the TIS features are reduced using the Principal 
Component Analysis (PCA) by removing highly correlated 
features. 70% of the digits used for training the AN and MLP 
to build the model and 30% were used for testing. In the 
following sections the steps are described in details. 

 

Figure 7.  Figure 7: Framework for TIS Prediction 

VIII. EXPERIMENTAL RESULTS 

In this paper, the performance of two standard machine 
learning classifiers on the selected features is evaluated. We 
have used the Abductive Network model and Neural Network. 
We have used Abductive Network as a classifier. And later on 
we have used the features that are chosen by the AN as an input 
for Neural Network. Each ATG is labeled whether or not it's a 
true TIS site. Thus, each ATG in a sequence from the set of 
training sequences contributes one training instance. Training 
and testing is performed with a random sampling method. 70% 
of the dataset is taken as training and 30% is kept for testing.  

The results testing are evaluated using standard 
performance measures. To describe the performance, the 
results from testing a classifier can be arranged in the following 
matrix: 

TABLE 1 SLANDERED PERFORMANCE MEASURES 

  Classified as Yes  Classified as No  

Actual Yes 
Class  No. of True Positive  

No. of False 
Negative 

Actual No 
Class  

No. of Fales 
Positive 

No. of True 
Negative 

 

We have the following measures: 

 

True Positive Rate (also called Sensitivity) = 100 X TP

TP FN
   

True Negative Rate = 100 X  TN

TN FP
 

 Specificity = 100 X  TP

TP FP
 

Overall Accuracy = 100 X  TP TN

TP TN FN FP


  

 

 

Adjusted Accuracy =  
2

TPRate TN Rate  

 
Because the dataset consists of significantly more negative 

than positive examples, we have also used Adjusted Accuracy 
as a performance measure which gives a fairer comparison than 
overall accuracy for skewed datasets such as the one here 
where the number of non-start ATGs is disproportionately 
larger than the number of start ATGs. 

 

For example, if 80% of the ATGs are non-start, then a 
trivial predictor which simply classifiers every ATG as non-
start would already obtain an overall accuracy of 80%. 
Adjusted accuracy, on the other hand, is less skewed giving 
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50% accuracy. As the results in the literature do not give 
sufficient data to compare on the basis of adjusted accuracy, we 
continue to use overall accuracy in the comparisons with 
existing work. 

TABLE 2 RESULTS 

  Classified as No Classified as Yes 

Actual No 
Class  

True Negative 
2887 

False Positive 
177 

Actual 
Yes Class  

Fales Negative 
211 

True Positive 
737 

 

True Positive Rate (Sensitivity) = 77.74% 
True Negative Rate = 94.22% 
False Positive Rate (Specificity) = 5.77% 
Adjusted Accuracy = 85.98% 
Overall Accuracy = 90.33% 
 

A. ROC CURVE ANALYSIS for AN 

  

TABLE 3 RESULTS FOR AN 

AUC  S.E. 95% C.I. Comment 

0.95925 0.00455 0.95033 0.96816 Excellent test 

 

Standardized 
AUC  

100.9517  1-tail p-
value 

0.000000 

The area is statistically greater than 0.5 

 

Cut-off point for best Sensitivity and Specificity (blu circle 
in plot) = 0.2536 

In the ROC plot, the cut-off point is the closest to [0,1] 
point or, if you want, the closest to the green line 

Table at cut-off point 

TABLE 4 CUT-OFF  VALUES 

cut-off point 

867 423 

81 2641 

 

 Prevalence: 23.6% 

 

Sensitivity (probability that test is positive on unhealthy 
subject): 91.5% 

95% confidence interval: 89.7% - 93.2% 
False positive proportion: 8.5% 
  
Specificity (probability that test is negative on healthy 
subject): 86.2% 
95% confidence interval: 85.0% - 87.4% 
False negative proportion: 13.8% 
Youden's Index (a perfect test would have a Youden index of 
+1): 0.7765 
  
Precision or Predictivity of positive test (probability that a 
subject is unhealthy when test is positive): 67.2% 
95% confidence interval: 64.6% - 69.8% 
Positive Likelihood Ratio: 6.6 
Moderate increase in possibility of disease presence 
  
Predictivity of negative test (probability that a subject is 
healthy when test is negative): 97.0% 
95% confidence interval: 96.4% - 97.7% 
Negative Likelihood Ratio: 0.1 
Large (often conclusive) increase in possibility of disease 
absence 
  
F-measure: 77.5% 
Accuracy or Potency: 87.4% 
Mis-classification Rate: 12.6% 
 

 
Figure 8.  FiguROC for 

AN

 

Figure 9.  PARTEST GRAPH for AN 
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B. ROC CURVE ANALYSIS for ANN 

 

TABLE 5 RESULTSOF ANN  

AUC  S.E. 95% C.I. Comment 

0.97858 0.00333 0.97205 0.98510 Excellent test 

 

Standardized 
AUC  

143.7515  1-tail p-
value 

0.000000 

The area is statistically greater than 0.5 

 

Cut-off point for best Sensitivity and Specificity (blu circle 
in plot)= 0.3439 

In the ROC plot, the cut-off point is the closest to [0,1] 
point or, if you want, the closest to the green line 

 

Table at cut-off point 

TABLE 6 CUT-OFF VALUES 

cut-off point 

877 211 

71 2853 

 

Prevalence: 23.6% 

  

Sensitivity (probability that test is positive on unhealthy 
subject): 92.5% 

95% confidence interval: 90.8% - 94.2% 

False positive proportion: 7.5% 

  

Specificity (probability that test is negative on healthy 
subject): 93.1% 

95% confidence interval: 92.2% - 94.0% 

False negative proportion: 6.9% 

  

Youden's Index (a perfect test would have a Youden index 
of +1): 0.8562 

  

Precision or Predictivity of positive test (probability that a 
subject is unhealthy when test is positive): 80.6% 

95% confidence interval: 78.3% - 83.0% 

Positive Likelihood Ratio: 13.4 

Large (often conclusive) increase in possibility of disease 
presence 

  

Predictivity of negative test (probability that a subject is 
healthy when test is negative): 97.6% 

95% confidence interval: 97.0% - 98.1% 

Negative Likelihood Ratio: 0.1 

Large (often conclusive) increase in possibility of disease 
absence 

  

F-measure: 86.1% 

Accuracy or Potency: 93.0% 

Mis-classification Rate: 7.0% 

 

 
Figure 10.  ROC for ANN 

 

Figure 11.  PARTEST GRAPH of ANN 

Figure 12.   
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Figure 13.  Learning Curve of ANN 

Figure 14.   

 

Figure 15.  Trained Network of AN 

 

Figure 16.  Abductive Network of TIS Prediction Performance 

IX. CONCLUSIONS  

The experiments showed that the performance of Neural 
Network is better than Abductive Network. The overall 
accuracy of Neural Network is about 93.8% while the overall 
accuracy of Abductive Network is about 90.3%.  

 

X. ACKNOWLEDGMENT 

 
The Authors would like to acknowledge the support of 

King Fahd University of Petroleum and Minerals, Dhahran, 
Saudi Arabia. 

 

XI. REFERENCES 

 
[1] Pedersen, A.G. and Nielsen, H., Neural network 

prediction of translation initiation sites in eukaryotes: 
Perspectives for EST and genome analysis, Proc. 5th 
International Conference on Intelligent Systems for Molecular 
Biology, pp.226-233, 1997. 

 

[2] Zien, A., Ratsch, G., Mika, S., Scholkopf, B., Lemmen, 
C., Smola, A., Lengauer, T., and Muller, 

K.-R., Engineering support vector machine kernels that 
recognize translation initiation sites, 

Bioinformatics, 16: pp.799-807, 2000. 

 

[3] Zien, A., Ratsch, G., Mika, S., Scholkopf, B., Lemmen, 
C., Smola, A., Lengauer, T., and Muller, 

K.-R., Engineering support vector machine kernels that 
recognize translation initiation sites, Proc. German Conference 
on Bioinformatics '99, pp.37-43, 1999. 

 

[4] Hatzigeorgiou, A.G., Translation initiation start 
prediction in human cDNAs with high 
accuracy,Bioinformatics, 18: pp.343-350, 2002. 

 

[5] F. Zeng  et al.  “Using Feature Generation and Feature 
Selection for Accurate Prediction of Translation Initiation 
Sites”, Gen. Inf., vol. 13, pp.192-200, 2002, 

 

[6] Benson, D., Boguski, M., Lipman, D., and Ostell, J., 
Genbank, Nucleic Acids Res., 25:1{6, 1997. 

 

[7] Hobohm, U., Scharf, M., Schneider, R., and Sander, C., 
Selection of representative data sets,Prot. Sci., 1:409{417, 
1992. 

 

70 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



[8] http://www.cbs.dtu.dk/services/NetStart 

 

[9] Ricardo Gutierrex-Ozuna, Lecture: Dimensionality 
reduction (PCA), “Introduction to Pattern Recognition”, 
Wright State University, 

http://courses.cs.tamu.edu/tgutier/cs790_w02/l5.pdf. 

 

[10] Wikipedia Article, “Dimension Reduction”, 

http://en.wikipedia.org/wiki/Dimension_reduction. 

 

[11] C. Ma et al. “Feature Mining Integration for Improving 
the Prediction Accuracy of Translation Initiation Sites in 
Eukariotic mRNAs”, IEEE, 2006.  

 

[12]  Y. Saeys  et al. “Translation Initiation Site Prediction 
on a Genomic Scale: Beauty of Simplicity”, Bioinformatics, 
2007, vol. 23, pp. i418-i423. 

 

[13]  S. Tikole and R. Sankararamakrishnan, “Prediction of 
Translation Initiation Sites in Human mRNA sequences with 
AUG Start Codon in Weak Kozak Context: A Neural Network 
Approach”, 2008, BBRC, pp. 1166-1168.  

 

[14]  G. Li and T. Leong, “Feature Selection for the 
Prediction of Translation Initiation Sites”, 2005,Geno. Prot. 
Bioinfo., vol. 3, no. 2.  

 

[15]  J. Wegrzyn,  et al. “Bioinformatic Analyses of 
mammalian 5’UTR sequence properties of mRNA predicts 
alternative translation initiation sites”, 2008, BMC.  

 

[16]  F. Zeng  et al.  “Using Feature Generation and Feature 
Selection for Accurate Prediction of  Translation Initiation 
Sites”, 2002, Gen. Inf., vol. 13, pp. 192-200.  

 

[17]  G. Tzanis and I. Vlahavas, “Prediction of  Translation 
Initiation Sites Using Classifier  Selection”.   

 

[18]  R. Akbani and S. Kwek, “Adapting Support Vector 
Machines to Predict Translation Initiation Sites in the Human 
Genome”, 2005, IEEE. 

 

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  | 71



72 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



SESSION

PROTEIN CLASSIFICATION AND STRUCTURE
PREDICTION, AND COMPUTATIONAL

STRUCTURAL BIOLOGY

Chair(s)

TBA

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  | 73



74 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



A New Hybrid De Novo Sequencing Method For Protein Identification 

Penghao Wang1*, Albert Zomaya2, Susan Wilson1,3 
1. Prince of Wales Clinical School, University of New South Wales, Kensington NSW 2052, Australia 

2. School of Information Technologies, University of Sydney, Camperdown NSW 2006, Australia 
3. Mathematical Sciences Institute, Australian National University, Canberra ACT 0020, Australia 

*. Corresponding author 
Email: penghao.wang@unsw.edu.au; albert.zomaya@sydney.edu.au; sue.wilson@anu.edu.au 

 
 

Abstract—Tandem mass spectrometry is a powerful tool for 
studying proteins. However, an open problem for proteomics 
research is how to accurately identify proteins from the 
experimental mass spectra. De novo sequencing based protein 
identification is the only feasible approach for finding new 
proteins and studying protein post-translational modifications. 
In this paper, we describe our novel hybrid de novo sequencing 
based protein identification method. It differs from existing 
methods which rely on finding one maximum path from a 
spectrum graph. Instead, to identify peptides, our method 
applies a novel Bayesian network and dynamic programming 
hybrid algorithm to explore the sub-optimal space. Thus our 
method can better accommodate various interferences and 
artefacts present in the mass spectra. Evaluated on a large 
number of spectra, our method outperforms the most popular 
de novo sequencing methods and can significantly improve the 
accuracy of de novo sequencing based protein identification.  

Keywords-Protein identification, de novo sequencing, 
Bayesian network, dynamic programming, proteomics. 

I.  INTRODUCTION 
In recent years, tandem mass spectrometry (MS/MS) has 

become the leading technology for proteomics research [1, 
2]. In a single mass spectrometry (MS) experiment, 
thousands of proteins from multiple complex biological 
samples can be identified and their expressions accurately 
measured at nano-mol level, thus providing a high 
throughput and high sensitivity approach for proteomics 
research. In a typical MS experiment, samples are first mixed 
and treated with proteolytic enzymes (e.g., trypsin) to break 
the proteins down into shorter peptides. The peptides are 
then separated using High Performance Liquid 
Chromatography (HPLC) and injected into the mass 
spectrometer, where the peptides are fragmented into peptide 
fragments, ionised, and finally captured by the mass 
spectrometer. One experiment may generate thousands of 
MS/MS spectra, each of which theoretically corresponds to 
one of the proteins in the sample. However, mass spectra are 
usually tempered with noise and various artefacts. Thus the 
identification of proteins from mass spectra is a very 
challenging and error-prone process. Recent advances in 
mass spectrometry instruments and new fragmentation 
technologies provide unprecedented resolving power and 
mass accuracy in acquired spectra, which present a new 
opportunity to potentially identify 100% of the proteins and 
many more protein modifications than before [2 - 4]. 

However, with existing identification methods, only 50% of 
the proteins can be successfully identified and the protein 
post-translational modifications (PTM) are virtually 
unidentifiable [5 - 8]. Therefore, it has become a serious 
bottleneck for proteomics research and there is a critical need 
for more accurate protein identification methods that can 
fully utilise the resolving power of new instruments and 
identify more proteins and protein modifications. 

Existing identification methods may be roughly classified 
into two categories: the database search approach and the de 
novo sequencing approach. The database search approach 
has been widely used due to its accuracy and reliability. 
Database search methods identify proteins by generating 
theoretical spectra in silico from a given protein database and 
comparing the experimental spectra with the theoretical 
spectra to find the best match. The main difference between 
database search methods lies in the type of scoring functions 
utilised to rank-order the most probable protein matches. 
One popular scoring method is exemplified by the 
SEQUEST algorithm [9], which applies a signal processing 
technique known as cross correlation to mathematically 
determine the overlap between the theoretical spectra and the 
experimental spectra to find the best match. Another 
important scoring method is to employ a probability model 
to estimate the likelihood of a match between the 
experimental spectrum and the theoretical spectrum being a 
random event. A number of methods have been proposed 
using such an approach, including X!Tandem [10] which 
uses a hyper-geometric model, OMSSA [11] which applies a 
Poisson model, and MASCOT [12]. It is very desirable that 
the probability-based database search methods provide direct 
measurement of the statistical confidence of an identified 
protein. 

Despite the sophistication of database search methods, 
they have several limitations. Firstly, they are only effective 
if the proteins of interest are already known and the database 
used in the identification process contains the correct protein 
sequences. Unfortunately, for many scenarios this is difficult 
since many studies involve unknown proteins or proteins that 
have not been completely annotated [13]. Secondly, the 
database search methods have limited capability in detecting 
protein modifications. If the proteins in the samples are 
heavily modified, it usually leads to incorrect identifications 
for database search methods [14, 15]. Thirdly, specifying the 
enzyme used in the proteolytic digestion can also exclude the 
correct peptides from the search space and lead to 
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misidentifications [16]. The de novo sequencing approach on 
the other hand is able to address these issues because it 
identifies proteins by extracting protein sequence 
information directly from experimental spectra and does not 
require any protein database. De novo sequencing methods 
are the only feasible means for applications such as finding 
novel proteins, detecting amino acid mutations, studying the 
proteome at the same time as the genome, and so on. 
However, the main obstacle for the de novo sequencing 
approach is that it usually requires relatively higher quality 
spectra. The recent development of mass spectrometry 
instruments enables the measurement of high dimensional 
mass spectra and provides unprecedented mass accuracy, and 
this has removed the main obstacle for the de novo 
sequencing approach.  

Two different de novo sequencing methods have been 
developed. The first method, such as Sherenga [17] and 
Lutefisk [18], projects the problem into graph theory and 
applies algorithms for finding maximum path lengths in a 
network topology to achieve protein identification. The 
second method applies probability models in inferring the 
proteins from the spectra, for example NovoHMM [19] and 
PepNovo [20]. However, the main idea of these two methods 
is the same: to find the longest possible peptide sequence that 
best suits the observed experimental spectrum. Because 
many peaks in the spectra corresponding to real peptide 
fragment ions cannot be detected in the presence of protein 
modifications, and ion degradation generates many intensive 
peaks that cannot be explained, the optimal path may not 
always be the correct peptide identification. Therefore, we 
propose a new Bayesian network and dynamic programming 
hybrid de novo sequencing method to infer the most likely 
peptide sequences by exploring the sub-optimal space. The 
method firstly applies a Bayesian network probability model 
to infer a number of most probable peptide sequences given 
the spectra, and then utilises a dynamic programming 
algorithm to find the most likely sequence. Evaluated on a 
large number of tandem mass spectra, our method is able to 
outperform the most popular de novo sequencing algorithms.  

II. METHOD 

A. Terminology  
A peptide P which has n amino acids can be formalised 

as: P = p1p2…pn. The total mass of the peptide therefore can 
be formalised as:  

1
18n

ii
M m

=
= +∑ ,                                (1) 

where mi  is the residue amino acid mass, and 18 is the mass 
of H2O. When peptides are subjected to fragmentation, a 
typical event is a single cleavage along the peptide’s 
backbone. For an n amino acids peptide, there will be n 
possible cleavage positions, including the case that no 
cleavage happens. As a result, a peptide may result in a 
series of different ions based on the cleavage position. The 
N-terminal fragments (also called prefix fragments) can be 
denoted as: p1, p2… pi, and the C-terminal fragments (suffix 

fragments) are then denoted as: pi+1, … pn. These peptide 
fragments will generate corresponding fragment ions with 
positive charges after ionisation, and a tandem mass 
spectrum is the collection of all detected signals of generated 
peptide fragment ions. N-terminal ions are called a-, b-, and 
c-ions, while the C-terminal ions are called x-, y-, and z-ions. 
If a cleavage happens at the ith peptide bond, it will produce 
ai, bi, ci ions and xn-i, yn-i, zn-i ions. An illustration of possible 
peptide fragmentation positions and corresponding notations 
for the fragment ions is given in Figure 1. The peptide 
fragment ions may also have neutral losses, where chemical 
groups such as water or ammonia (NH3) are separated from 
the fragment ions.  
 

 
Figure 1.  An illustration of a 4 amino acids peptide fragmentation pattern 

and notation for the fragment ions. 

 

Figure 2.  An example of identifying a peptide from a tandem mass 
spectrum using a de novo sequencing approach. The peptide precursor is 

singly charged and the spectrum is generated from an ion-trap mass 
spectrometer. 

The mass spectrum of one peptide is a list of pairs of 
mass to charge ratio (m/z) and an associated intensity (m1, 
i1), (m2, i2), … (mj, ij)  known as peaks, coupled with a parent 
(also called precursor) peptide mass M. The de novo 
sequencing problem is to infer the sequence of the peptide 
that gives rise to these peaks. Ideally each peak corresponds 
to one fragment ion, and the peptide sequence can be 
inferred from the mass difference between two adjacent 
peaks. An example is given in Figure 2. This is a very 
difficult task in reality, because spectra are very noisy and of 
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complex nature. In addition, different fragment ions are not 
detected at the same probability and many fragment ions are 
hardly distinguishable from the background spectrum noise. 
For example, the signals of b- and y-ions may be up to 5 
times stronger than those of a- and x-ions; 1/5 of the b- and 
y-ions may suffer from neural losses; z-ions usually have 
very low intensities and so on [9]. 

B. Step 1: Spectrum Preprocessing 
Our method has three major steps: (1) spectrum 

preprocessing, (2) Bayesian network-based identification, 
and (3) inferring the most likely sequence. The first step is to 
preprocess the spectra peaks and normalise the peak 
intensities prior to the main de novo sequencing algorithm. 
Our method adopts the peak preprocessing procedure of 
PepNovo [20]. The method firstly determines the baseline 
intensity as the average intensity of the weakest 1/3 of the 
peaks in the spectrum. The method divides each peak’s 
intensity to the baseline intensity so that a normalised 
intensity is obtained. The normalised peak intensities are 
discretised into 4 levels: no signal, low signal, medium 
signal, and strong signal. The method then removes the low 
signal peaks by sliding a window of width h across the 
spectrum and removing all the peaks except the top k peaks. 
For our method, we use h = 15 Da and k = 3. The method 
also constrains the total number of selected peaks to be no 
more than 100. 

Because different regions of the spectrum have different 
characteristics and distributions of the peaks, our method 
organises the peaks into 5 regions based on their m/z 
positions and adds this information to the Bayesian network-
based model. Therefore, the correlation between the peptide 
fragmentation and the observed peak intensities can be better 
captured. For example, peaks are usually more intensive in 
the middle region of the spectrum because peptides are less 
likely to be cleaved at the positions near the two termini.  

C. Step 2: Bayesian Network Identification 
The second step is to infer a number of most probable 

peptide sequences using a Bayesian network probability 
model. This step involves 4 procedures. 

Procedure 1

TABLE I.  THE LIST OF ALL THE FRAGMENTIONS THAT ARE 
MODELLED;  M IS THE SUM OF THE AMINO ACID RESIDUE MASSES. 

: The method constructs a spectrum graph as 
introduced in [17]. A spectrum graph is a directed acyclic 
graph, whose vertices correspond to putative ions of the 
peptide fragmentation. Two vertices are connected by a 
directed edge from the vertex with a lower mass to the one 
with a higher mass if the mass difference between these two 
vertices approximates the residue mass of an amino acid or 
other mass offsets like ion neural losses (see Table 1 for the 
complete list of all considered mass offsets). Given a 
preprocessed mass spectrum S, we build the entire spectrum 
graph and connect all the edges given the peaks of S. Since 
the most intensive peaks in the spectrum tend to be b- and y-
ions, our spectrum graph has vertices for both 
interpretations: given a peak at mass mi, we create a vertex at 
mass mi – 1 interpreting the peak as a b-ion and also a vertex 
at mass M – mi + 1 interpreting the peak as a y-ion, where M 
is the sum of residue amino acid masses. A vertex for an 
empty peptide of mass zero and a vertex for intact peptide of 

mass M – 18 are also added to the graph. If vertices are too 
close to each other (mass difference < 0.5 Da), these peaks 
are likely to be isotopic peaks of the same ion and are 
therefore merged. DiMaggio and Floudas [16] gave 
visualisation of a spectrum graph (also see Figure 3).  

Ion Type Notation 
Mass offset Terminus 

b+
 M + 1 C-Terminus 

b+ - H2O  M – 17 C-Terminus 

b+ - NH3 M – 16 C-Terminus 

b+ - 2H2O M – 35 C-Terminus 

b+ - NH3 - H2O M – 34 C-Terminus 

b2+ (M + 2)/2 C-Terminus 

a+ M – 27 C-Terminus 

a+ - H2O M – 45 C-Terminus 

a+ - NH3 M – 44 C-Terminus 

y+ M + 19 N-Terminus 

y+ - H2O M + 1 N-Terminus 

y+ - NH3 M + 2 N-Terminus 

y+ - 2H2O M – 17 N-Terminus 

y+ - NH3 - H2O M – 16 N-Terminus 

y2+ (M + 20)/2 N-Terminus 

 
Procedure 2: Our method uses a Bayesian network model 

to calculate the probability of observing each vertex of the 
constructed spectrum graph. We adopted the fragmentation 
model proposed in [20] which incorporates several ion 
degradations (given in Table 1) and 3 additional factors into 
the model. These 3 factors are: (1) the relationship among 
different types of fragment ions; (2) the correlation between 
peptide cleavage position and the fragmentation efficiency; 
and (3) the influence of the last amino acid that is adjacent to 
the peptide terminus. Factor 1 models the strong correlation 
among a-, b- and y-ions. For instance, if a b-ion is detected, 
it is very common that its corresponding y-ion can be 
detected with high intensities, and its associated a-ion is 
usually detected. Although all ions have correlations, only a-, 
b- and y-ions regularly have strong signals therefore our 
method focuses on these ions. Factor 2 models that ions have 
different probabilities of being observed depending on the 
cleavage positions. For example, a-ions tend to be observed 
more often near the N-terminus, while b- and y-ions show 
much higher intensities in the middle region of the spectrum, 
and so on. Factor 3 models the N-terminal and C-terminal 
amino acids’ chemical effects on the peptide cleavage as 
reported in the literature [21, 22]. The rest of the vertices 
model the probabilities of observing ion degradations and 
ions carrying multiple charges. The whole Bayesian network 
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is given in Figure 4. Except for the top 3 vertices, which 
represent the 3 additional factors, each vertex of the network 
contains a conditional probability table given the values of 
its parent vertices. For instance, if we use the second red path 
in Figure 4, vertex y+ holds the probability table P(y+ = ti | b+ 
= tj, region(i) = Rk, NT(i - 1 or i + 1) = {any AA}, CT(i - 1 or 
i + 1) = {any AA}), where ti is the intensity of the y+ ion, tj is 
the corresponding intensity of b+ ion, Rk is the cleavage 
region of the spectrum, and NT and CT are the effects of the 
adjacent N-terminal and C-terminal amino acids 
respectively.  
 

 
Figure 3.  Visualisation of one spectrum graph, where each vertex 

represents one possible peptide cleavage position, and one directed edge is 
added if the mass difference between 2 vertices approximates the mass of 

an amino acid or an ion neutral loss. 

 
Figure 4.  The Bayesian network model for our method. One of the two 

red paths will be randomly selected. The probabilities of the fragment ions 
are indicated by the colour of the solid paths: red > yellow > light blue > 

green. The dash paths are the additional 3 factors. 

Our model differentiates itself from the one proposed in 
[20] in that it extends the way the probability tables are 
generated by incorporating singly charged, doubly charged, 
and triply charged tandem mass spectra from a mixture of 
mass spectrometry instruments. The Seattle dataset [23], 
which contains spectra from both ion-trap and quadrupole 
time of flight (TOF) mass spectrometers, was used for 
estimating the probability tables. More details are given in 
Section III. In this way, the model becomes more robust and 
can be applied to a much wider range of experiments.  

Procedure 3

( | , , , , )
( , ) log

( | , )
real j

i j
random j

P t m S R NT CT
O m S

P t m S
=

: Each vertex of the constructed spectrum 
graph is scored using the described Bayesian network. This 
is achieved by comparing one hypothesis that the peak is a 
real fragment ion to the other hypothesis that the match is 
random. It is calculated by the likelihood ratio given in 
Equation (2):  

,                    (2) 

where Oi represents the score for vertex i, mj is the mass of 
the peak, S is the mass spectrum, t is the complete set of all 
peak intensities of S, R is the peak region, NT represents the 
N-terminal amino acid’s chemical effect, and CT represents 
the C-terminal amino acid’s chemical effect. Assume V is the 
set of the vertices in the probability network except the top 3 
vertices, then V = {b+, y+, b+ - H2O, y2+…}. For each vertex v 
of V, w(v) denotes v’s parents’ assigned intensities given the 
network topology. Preal(tv = i | w(v) = {t1, t2, …}) is the 
probability of detecting intensity i at fragment ion v given the 
intensities detected at its parents. Because all the conditional 
probability tables of the network have been obtained through 
training the Seattle dataset and vertex v is to be independent 
of the other vertices given that the values of its parents are 
known, the probability of observing ion fragment intensities t 
given that the possible cleavage occurred at mass mj in 
spectrum S can be calculated by Equation (3): 

( | , ) ( | ( ), , , , , ).real j real v jv V
P t m S P t w v m S R NT CT

∈
= ∏    (3) 

One advantage of the model is that Preal can distinguish the 
likely combinations of ions and ion degradations from 
unlikely combinations, since the conditional probability 
tables are learnt from real data. For example, the probability 
of observing a y+ ion and its neural loss y+ - NH3 is higher 
than the probability of observing a y+ - NH3 ion without 
detecting the y+ ion itself.  

Under the hypothesis that the mass matches are random 
events, each peak is therefore considered to be independent. 
The probability of Prandom(t | mj, S) can be easily calculated as 
the product of the probability of observing individual peaks 
at their mass positions. Once we have both Preal and Prandom, 
the score for each vertex can be calculated.  

Procedure 4: Given the spectrum graph and the score for 
each vertex, the method then finds several highest scoring 
asymmetric paths as the most probable peptide sequences. It 
is important to preserve the asymmetry because each peak 
from the spectrum contributes to two vertices in the 
constructed spectrum graph since we model both b- and y-
ions for each peak. Dynamic programming is able to solve 
this problem and finds the highest scoring maximum path 
that goes through every pair of vertices corresponding to the 
same peak at most once. However, it has been shown that the 
maximum path may not be the best solution [24, 25]. There 
are two reasons: (1) a certain number of vertices on the 
optimal paths may be false positives because many high 
intensive peaks in the spectrum are signals from various 
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interferences, including protein modifications, unexpected 
peptide internal fragments, contaminations, etc; and (2) 
several vertices representing the real peptide fragment ions 
may not have the highest score so will not be included in the 
optimal path. It is common that real fragment ions have low 
intensive signals or even cannot be detected at all. Therefore, 
we utilise the algorithm proposed by Lu and Chen [25] to 
obtain a set of most probable peptide sequences by exploring 
the sub-optimal solutions from the spectrum graph. The 
algorithm firstly transforms the spectrum graph into a matrix 
and uses an iterative depth-first search algorithm to find the 
optimal path. Sub-optimal solutions are obtained by back-
tracking: at a certain iteration if a path showing close enough 
score to the optimal path, a sub-optimal path is then spawned 
and continued. Details of this algorithm can be found in [25]. 

D. Step 3: Inferring The Most Likely Sequence 
The third step is to infer the most likely peptide sequence 

given the optimal sequence and a set of sub-optimal 
sequences. This set of peptide sequences has two main 
characteristics: (1) the majority of these sequences will have 
identical or highly similar segments of sequences; and (2) 
certain regions or sites may have ambiguities and show 
conflicting sequences. An example is given in Figure 5. The 
highly similar segments of sequences correspond to the high 
intensity fragment ions that are very likely to be correctly 
identified, while the ambiguous segments are where the 
peaks do not match fragment ions well or the intensities of 
the ions are hardly distinguishable from baseline noise. In 
addition, these sub-optimal solutions may have different 
numbers of amino acids.  

 

 
Figure 5.  A set of sub-optimal peptide sequences generated in Step 3. The 
red regions are the highly likely regions; the yellow region is the borderline 

region; the green regions are ambiguous regions.  

Given these characteristics, the most likely peptide 
sequence can be extracted by adapting a dynamic 
programming-based algorithm similar to ClustalW [26] 
which has been used in multiple sequence alignment. In our 
case, the introduced “gaps” between the sub-optimal peptide 
sequences correspond to the ambiguous sections of the 
tandem mass spectrum. Our algorithm employs a progressive 
design and has 4 procedures in total. 

Procedure 1: The pairwise distances of the sub-optimal 
peptide sequences are calculated using the Smith-Waterman 
dynamic programming algorithm [27]. An n by n distance 
matrix is then constructed from the pairwise distances, where 
n is the number of sub-optimal peptide sequences.  

Procedure 2: A relationship for the sub-optimal peptide 
sequences is obtained given the distance matrix. The 
relationship is represented as a binary tree topology, and is 
constructed by applying the Neighbour Joining algorithm 
[28]. This algorithm is guaranteed to find the relationship 
topology that has the minimum overall distance. 

Procedure 3: The peptide sequences are progressively 
aligned following the branching order of the constructed 
binary tree representing the relationship. The alignment 
proceeds from the tips of the relationship tree toward the 
root. In this way, the closest peptide sequences are aligned 
first, while the order of the most distant peptide sequences to 
be aligned is delayed.  

Procedure 4

III. RESULTS 

: The final peptide sequence is obtained by 
identifying the highly likely segments of peptide sequences. 
Our method considers the regions highly likely if 85% or 
more of the peptide sequences agree on them. The most 
frequently appearing sequences will be used for these 
segments. The segments that are agreed by more than 55% 
(and less than 85%) of the sequences will be classified as 
borderline segments. Each amino acid in borderline 
segments will be determined based on its frequency across 
all the sub-optimal sequences. For example, if the 
frequencies for Glycine, Serine and Valine are 68%, 23% 
and 9% respectively at one site, then the algorithm will select 
one of these amino acids using the same probabilities as their 
frequencies. On the other hand, the “gaps” are interpreted as 
ambiguous sequence segments, which are denoted as 
undetermined “X” in the final identified peptide sequence.  

A. Evaluation Strategy 
As mentioned, we used the Seattle dataset [23] to learn 

the Bayesian network conditional probability tables. The 
Seattle dataset is a collection of reference mass spectra of 18 
commercial purified proteins generated by several mass 
spectrometers. We selected singly charged, doubly charged, 
and triply charged spectra to learn the conditional probability 
tables. We ignored all the quadruply charged spectra because 
they are less common and usually of poor quality. We also 
excluded all the spectra generated by the MALDI TOF mass 
spectrometers, because spectra acquired from these machines 
have low resolution.  

We compare the performance of our method with the 
most popular PepNovo and NovoHMM de novo sequencing 
methods by the criterion of identification accuracy. The 
identification accuracy is defined as the ratio of the number 
of correct amino acids to the number of identified amino 
acids. We use one large publicly available dataset to evaluate 
these 3 methods. The dataset is a collection of MS and 
MS/MS spectra of a mixture of 9 commercial purified 
proteins, generated by the Thermo Electron LTQ quadrupole 
linear ion-trap mass spectrometer. There are 3 technical 
replicas for this dataset, and in total the dataset contains 
58,081 tandem mass spectra. 
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B. Evaluation Results 
Our evaluation results are presented in Figure 6. Trypsin 

digestion was specified for running all 3 methods. Two 
amino acid pairs (Q and K), (I and L) are considered 
identical, since they have identical monoisotopic masses. 
Identification of either of these amino acids is considered 
correct. For example, if the peptide sequence is QFIER, the 
identifications such as QFLER and KFIER are all considered 
to be correct. PepNovo and NovoHMM were executed at 
default parameters. For our method, we used error tolerance 
of 0.1 Da and the maximum number of sub-optimal solutions 
that are explored to generate the final result was set to 20, 
which seemed to produce the best results.  

PepNovo and NovoHMM seem to have similar overall 
performance in terms of identification accuracy. However, 
NovoHMM tends to have slightly higher accuracy in 
identifying short length peptide sequences. As shown in 
Figure 6, NovoHMM outperforms PepNovo at sequence 
lengths from 3 to 6 amino acids; while PepNovo starts to 
display better accuracy than NovoHMM for sequence length 
of 7 and onward. This may be due to NovoHMM’s Hidden 
Markov model beginning to overfit when the spectra are 
more complicated. In any case, the performance difference 
between these two methods is quite small.  

 

 
Figure 6.  The comparison of identification accuracy. The x-axis is the 

identified peptide length in number of amino acids, the y-axis is the 
accuracy. The blue bar is PepNovo, the red is NovoHMM and the green is 

our method. The last 3 bars at the right end of the graph are the average 
accuracy across all peptide lengths.   

Our method, compared to PepNovo and NovoHMM, has 
significantly better performance. It can be clearly seen from 
Figure 6 that our method on average achieved around 10% 
higher accuracy than PepNovo and NovoHMM. It is very 
promising that our method has much better accuracy in 
identifying peptide sequences of more than 7 amino acids. 
This is important because the majority of the tryptic peptides 
have 7-13 amino acids. Our evaluation results also indicate 
that our method has increasingly higher accuracy for longer 
peptides. Figure 6 shows that the accuracy improvement of 
our method at length 5 is minor, then it keeps increasing, and 
becomes almost doubled at peptide lengths of 9 and 10. This 
is probably because our method is not constrained to the 

maximum path and takes advantage of sub-optimal solutions. 
When peptides have more amino acids, the number of 
observed fragment ions may grow very quickly. Therefore, 
the likelihood that the optimal path is the correct peptide 
sequence becomes smaller and smaller. The results 
demonstrate that the exploration of sub-optimal space can 
significantly improve the identification accuracy. 

IV. DISCUSSION AND FUTURE WORK 
De novo sequencing based protein identification methods 

are commonly considered by the community as inferior to 
database search methods. This might be true for older MS 
instruments but is not the case anymore. Database search 
methods may be the first choice for low resolution spectra 
generated by older instruments; however database search 
methods render useless the resolving power of the new 
instruments. The identification coverage of database search 
methods simply cannot be significantly improved by using 
high resolution spectra. This is due to their reliance on 
protein databases, which are seldom complete. The de novo 
sequencing approach on the other hand is able to make better 
use of the high resolution spectra from new instruments and 
does not suffer from the issues of the database search 
approach. From our experiments, de novo sequencing 
methods are able to outperform typical database search 
methods on high resolution Orbitrap spectra data (results not 
shown). Therefore, the applicability of the de novo 
sequencing approach should be reconsidered and more 
research effort should be devoted to the development of new 
de novo sequencing methods.  

Due to the complicated nature of mass spectra, not only 
the optimal solution but also the sub-optimal solutions 
should be utilised in order to improve the identification 
accuracy. Several de novo sequencing methods have been 
developed, all of which apply sophisticated algorithms. 
However, the central dogma of these methods remains the 
same: to find the maximum path in a spectrum graph under a 
specific model. Unfortunately, the optimal solution may not 
always be the correct identification. There are several 
explanations. Firstly, a large portion of highly intensive 
peaks in the spectra are not the expected signals from peptide 
fragment ions. This may be due to various reasons, such as 
peptide internal fragmentation, peptide post-translational 
modifications, contamination, chemical reactions, isotopic 
interferences, machine error, and many others. Secondly, 
many fragment ions are difficult to detect and usually have 
low intensities, for example c- and z-ions are barely 
distinguishable from noise. It is possible that even the 
dominant b- and y-ions are partially missing from the 
spectra. In any case, the fragmentation patterns still are not 
fully understood today. Therefore, the sub-optimal solutions 
are of great interest. The performance of our method clearly 
demonstrates that in a large number of cases the correct 
peptide sequences are not the optimal solutions, but can be 
obtained by exploring the top ranking sub-optimal solutions. 
This creates a new research direction and it would be very 
desirable to develop more efficient algorithms for exploring 
the sub-optimal space for accurate peptide identification.  
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The de novo sequencing approach has great potential for 
identifying protein modifications. One major advantage of 
our method is its ability to find the regions where the 
spectrum is difficult to explain. Many identified ambiguous 
regions turn out to be the locations where modifications tend 
to occur, especially phosphorylation. This is very interesting 
since phosphorylation is one of the most important protein 
modifications. It has been shown to activate or deactivate 
many protein enzymes and play key roles in cellular 
processes. This also indicates that protein modification is one 
important factor that greatly influences the accuracy of the 
de novo sequencing based identification. Although the 
identification of protein modifications is not the central 
concern of de novo sequencing, it remains the most effective 
approach because it infers the actual peptide sequences 
directly from the spectra rather than matching a database. If 
the de novo sequencing method has an efficient protein 
modification model, multiple protein modifications can be 
identified accurately by exploring the sub-optimal space. Our 
method may be easily extended for this purpose by 
incorporating further consideration of protein modifications 
into the Bayesian network, and this would be an interesting 
direction for future research. 
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Abstract - We explored how integration of different 

protein-protein correlation (PPC) networks improves the 

performance of a network based classifier, NetLoc, in 

predicting protein subcellular localization. We investigated 

different integration approaches such as integration with 

or without changing the scope of the base network and 

evaluated NetLoc performance using the resulting network.  

Results showed that integration of different PPC networks 

improves NetLoc performance significantly depending on 

the base networks for integration and the integration 

approaches. This significant improvement is due to the 

increase in connectivity in the resulting network and 

contribution of positive signals imported with co-localized 

interactions from other networks. 

Keywords: protein localization; protein-protein correlation 

network; network integration; diffusion kernel; PPI 

network. 

1 Introduction 

Literature shows that integrating multiple evidences can 

greatly improve the prediction accuracy [1-3] of classifiers 

for predicting protein localization. Wolf-PSort [1] achieved 

competitive results by combining features from PSORT, 

iPsort, amino acid content, and sequence length. Drawid 

and Gerstein [2] proposed a naïve Bayesian classifier to 

integrate features including motifs, sequence properties, 

and whole-genome gene expression features. Recently, 

Scott et al. [3] proposed a two-level Bayesian network 

approach to integrate information from InterPro motifs, 

targeting signals, and protein interacting partner 

relationships. 

In our previous work [4], we proposed a network based 

approach for protein localization prediction. We showed 

that different protein-protein correlation networks such as 

physical protein-protein interaction (PPPI), genetic PPI 

(GPPI), mixed PPI (MPPI), and co-expressed PPI 

(COEXP) carry different levels of localization information 

and the performance of the proposed algorithm, NetLoc [4], 

depends on the topological characteristics such as 

connectivity and percentages of co-localized PPIs in the 

network [5]. Figure 1 presents the distribution of PPIs 

among 4 different networks: PPPI(P), GPPI(G), MPPI(M), 

and COEXP70(C). Most of the PPIs of each network are 

not shared by other networks. For example, in PPPI 

network 43363 out of 50997 PPIs are not shared by other 

three networks. Similarly, GPPI has 103631 PPIs and 

95120 PPIs are not shared by other three networks. So, 

integration of different networks would change the 

topological characteristics of the resulting network and may 

improve the prediction performance. 

In the present study, we developed a PPC network based 

integration framework for protein localization prediction. 

This method is inspired by the successful application of 

network integration methods in protein/gene function 

prediction [6]. Integration of different networks may or 

may not change the scope of the resulting network from the 

original networks depending on the integration approach. 

The scope of a network in the present context is concerned 

with either the number of proteins in the network or the 

number of annotated proteins in the network or the number 

of PPIs in the network. Our objective is to find a unified 

network, with maximum scope in terms of network proteins 

and annotated proteins for a species by combining all 

available networks, which could be used as the standard 

network for protein localization prediction for that species. 

 

 

 

 
Figure 1. Distribution of PPIs in different networks. 
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2  Unified Network for a Species 

Different kinds of PPI networks exist for a species and 

they provide different level of information for protein 

localization as mentioned earlier.  One reasonable question 

to ask is how to come up with a unified network for 

network based classifiers such as NetLoc, which can be 

then used as the standard network for predicting protein 

subcellular localization for that species. Before 

enumerating the properties of the unified network, we 

define the following terms: 

Co-Localized PPIs (coPPIs): PPIs for which both proteins 

are localized at the same location. 

Non-co-localized PPIs (ncPPIs): PPIs for which two 

proteins are localized at two different locations. 

Signal to Noise Ratio (SNR): Ratio of coPPIs to ncPPIs. 

Density of coPPI (DCOP): Number of coPPI per annotated 

protein. 

Based on the results presented in [5, 7], criteria for a 

unified network for protein localization are: i) the network 

should have high values of SNR and DCOP [7]; ii) the 

network should have large connected components [5]; iii) 

the network should have maximum possible scope with 

respect to the number of proteins and the number of 

annotated proteins i.e., network with most of the proteins in 

a genome; and iv) the network should have more coPPIs. 

The more is the coPPI the better is the network [7]. 

Answers to the following questions would help in 

finding the unified network for a species. Question-1: 

which type of PPIs carries more information about protein 

localization? Question-2: does removing some PPIs from 

any network improve the performance? Question-3: how 

does the integration approach affect the performance? 

Question-4: which approach should we use to integrate 

different networks?  

3 Data and Methods   

3.1 Datasets 

We conducted experiments on data sets for 

Saccharomyces cerevisiae used by Mondal and Hu [4, 5, 7]. 

Two networks, physical PPI (PPPI) network and genetic 

PPI (GPPI) network, are obtained from BioGRID [8], 

mixed PPI (MPPI) network is from MIPS [9] and the co-

expression (COEXP) network is from gene expression data 

of Stanford University [10]. PPPI contains only physical 

interactions whereas MPPI contains both physical and 

genetic interactions. MPPI has much less interactions since 

it has not been updated since 2006.  

The localization data of Huh et al. [11] was used as the 

basis for annotation. The experiment was carried out using 

high-resolution localization (22 locations) for networks 

COEXP70, GPPI, MPPI and PPPI. Table 1 shows the 

summary of the four network datasets used in this study. In 

terms of the number of interactions, GPPI is the largest 

network followed by PPPI, COEXP70 and MPPI. 

Considering the number of proteins, PPPI is the largest 

network followed by GPPI, MPPI and COEXP70. GPPI is 

the densest graph, meaning it has the highest values in 

terms of the average degree of nodes, followed by PPPI, 

COEXP70 and MPPI. The PPPI network has the largest 

number of proteins with annotated localization followed by 

GPPI, MPPI, and COEXP70.  

TABLE 1. PPC Networks and Annotation 

Property COEXP70 GPPI MPPI PPPI 

Number of 

PPIs 
11954 103631 11421 50997 

Number of 
Proteins 

2004 5252 4319 5477 

Average 

Degree of 

Nodes 

11.92 39.46 5.28 18.62 

Number of 

Annotated 

Proteins 

1479 3732 3026 3803 

Localization 1961 4947 4049 5039 

 

3.2 Integration approaches  

3.2.1 Integration without changing the scope of the 

base network 

In this approach, a network is selected as the base 

network. Interactions from other networks that fit into the 

base network are imported to the base network. This 

integration does not change the scope of the base network 

in terms of network proteins and annotated proteins. The 

only changes are the number of PPIs or edges in the 

integrated network. This integration can be carried out in 

two different methods. In the first method, all types of PPIs 

from other networks that fit into the base network are 

imported and in the second method, only the coPPIs from 

other networks that fit into the base network are imported. 

In the second method we are avoiding importing noises or 

ncPPIs to maintain lower level of noise in the integrated 

network. For subsequent discussion, the scope of the 

integrated network in first method is called scope-1 and in 

second method it is called scope-2. 

Table 2 summarizes the network structures before and 

after integration without changing the scope of the base 

network in terms of network proteins and annotated 

proteins. For example, for integration considering MPPI as 

the base network, the number of network proteins (4319) 

and annotated proteins (3026) in the resulting integrated 

network remains the same as the base network. Integration 

using scope-1 produces a network with 119965 PPIs and 

scope-2 produces a network with 49066 PPIs. It is clear 

that integrated network with scope-2 is more connected 

(more edges or PPIs) than the base network (49066 > 

11421) and network with scope-1 is more connected than 

network with scope-2 (119965 > 49066) as expected. 
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TABLE 2. Networks upon integration without changing the scope of 
the base network 

  Proteins PPIs 

Networks Network Annotated Base Scope-1 Scope-2 

COEXP70 2004 1479 11954 34688 20468 

GPPI 5252 3732 103631 157423 124839 

MPPI 4319 3026 11421 119965 49066 

PPPI 5477 3803 50997 158983 83457 

 

3.2.2 Integration with changing the scope of the base 

network 

The resulting network upon union of two or more 

networks would have different scopes than the original 

networks in terms of network proteins and annotated 

proteins. In general, union of two or more networks would 

broaden the scope by increasing the numbers of both 

network proteins and annotated proteins. Two different 

methods are employed to integrate the networks in union 

approach. In the first method, the resulting network 

proteins are union of four original networks and the 

resulting annotated proteins are union of annotated proteins 

of four original networks. In the second method, a network 

is considered as the base and only the coPPIs from other 

networks are imported where coPPIs are determined based 

on the resulting annotated proteins found in the first 

method.  In the second method we are avoiding importing 

noises or ncPPIs to maintain lower level of noise in the 

integrated network. For subsequent discussion, scope in the 

first union method is called scope-3 and that in the second 

is called scope-4.  

 
TABLE 3. Networks upon integration with changing the scope of the 
base network.  

  Network Proteins Annotated Proteins PPIs 

Networks Base Scope-3 Scope-4 Base Scope-3 Scope-4 Base Scope-3 Scope-4 

COEXP70 2004 6079 4296 1479 3899 3771 11954 164908 62203 

GPPI 5252 6079 5389 3732 3899 3869 103631 164908 126807 

MPPI 4319 6079 5132 3026 3899 3839 11421 164908 62375 

PPPI 5477 6079 5544 3803 3899 3870 50997 164908 84057 

 

Table 3 summarizes the network structures before and 

after integration with changing the scope of the base 

network in terms of network proteins and annotated 

proteins. By definition, integrated networks in scope-3 have 

only one value for each network for each of the network 

attributes such as network proteins (= 6079), annotated 

proteins (= 3899), and number of PPIs (=164908). For 

completeness, the same value is shown for each of the base 

networks. Integration using both scope-3 and scope-4 

increases the scope in terms of network proteins and 

annotated proteins but the increase is less in scope-4. For 

example, for COEXP70, network proteins increase from 

2004 to 4296 in scope-4 and 2004 to 6079 in scope-3. 

Similarly, annotated proteins increase from 1479 to 3771 in 

scope-4 and 1479 to 3899 in scope-3. Scope-4 produces 

integrated networks of different sizes ranging from 62203 

PPIs for COEXP70 to 126807 PPIs for GPPI. In general, 

integrated networks are more connected (more PPIs or 

edges) than the base network.  

3.3 Classification algorithm 

We applied the diffusion kernel-based logistic 

regression (KLR) model [12] as used in [4, 5, 7] to predict 

protein subcellular localization. The KLR model based 

subcellular prediction problem can be formulated as in 

[12]. Given a protein-protein interaction network with   

proteins         with   of them         with unknown 

subcellular locations, the task is to assign subcellular 

location labels to the   unknown proteins based on the 

location labels of known proteins and the protein-protein 

interaction network.  

Let [ ] 1 1 1( ,..., , ,..., )i i i NX X X X X   , 
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  ,  

where ( , )K i j  is the kernel function for calculating the 

similarity distances between two proteins in the network. 

        is an indicator which indicates the interacting 

protein j does not have the location of interest and      

    indicates that protein j does have the location of 

interest. Diffusion kernel K, to represent the interaction 

network, is defined using the following equation. 

        

Where 

        
                                      

                                        
                                                              

  

Where    is the number of interaction partners of protein  , 

  is the diffusion constant, and      represents the matrix 

exponential of the Laplacian matrix  . Then the KLR 

model is given by: 
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which means that the logit of                  , the 

probability of a protein targeting a location   is linear based 

on the summed distances of proteins targeting to   or other 

location.  We then have: 
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The parameters           can be estimated using the 

maximum likelihood estimation (MLE) method. Note that 

here only the annotated proteins are used in the estimation 

procedure. 

Fig. 2 presents the schematic overview of the network-

based framework for protein localization prediction using 

the KLR model by integrating different PPC networks. 

First, an integrated network is obtained by combining 

different PPC networks using one of the four scopes. Then 

diffusion kernel type feature, which is a square matrix 

consisting of 1 (interaction) and 0 (no interaction), is 

developed for the integrated network.  
 

 

Figure 2. Protein localization prediction using the KLR model by 

integrating PPC networks. 

Annotation matrix, which is an m by n matrix, consists of 1 
(annotated) and 0 (not annotated), where m is the number 
of annotated proteins and n is the number of localizations, 
is developed from annotated proteins. KLR model is 
developed using kernel type features and annotation matrix 
using logistic regression. The KLR model produces 
confidences for each protein for all locations. Then a 
threshold on confidences is used to classify the proteins to 
be localized at a location or not. 

4 Results and discussion 

4.1 Quality of PPI 

To answer question-1, we need to find the quality of 

each type of PPI network, which depends on how much 

information is carried out by that type in predicting protein 

localization. There are three fundamental types of PPIs 

used in the present study – physical PPI, genetic PPI, and 

co-expressed PPI. In order to determine the quality of 

different types of PPI, we need to fix the scope of networks 

with respect to i) number of network proteins (same 

number of same proteins), ii) number of annotated proteins 

(same number of same proteins) and iii) number of PPIs 

(same number of PPIs but different types). Table 4 shows 

the common proteins among three fundamental networks 

and the corresponding PPIs in different networks. It is clear 

that there are 1710 network proteins and 1390 annotated 

proteins which are common among three fundamental 

networks but they have different number of PPIs 

(COEXP70:9007, GPPI:12369, PPPI:10136). Now, NetLoc 

performance is determined by selecting a fixed number of 

PPIs (6000, 7000, 8000, 9000) randomly for each network. 

For each selection, 10 different sets of PPIs are selected 

randomly and NetLoc performance i.e, AUC value, is 

evaluated using each set of PPIs.  Then the mean and 

standard deviation of 10 AUC values are determined. Table 

5 shows the statistics of performances for 10 experiments 

for each selection of PPIs. It is clear that for a specific 

number of PPIs, AUC for 10 experiments are very close for 

each network since the standard deviations are very small 

compared to mean values. This indicates that the 

performance results or AUC values produced by each 

selection are statistically significant. 

 
TABLE 4. Numbers of common proteins and corresponding PPIs 

Item COEXP70 GPPI PPPI 

Original PPIs 11954 103631 50997 

Original Network Proteins 2004 5252 5477 

Original Annotated Proteins 1479 3732 3803 

Common Network Proteins 1710 1710 1710 

Common Annotated Proteins 1390 1390 1390 

PPIs wrt common proteins 9007 12369 10136 

 
TABLE 5. Statistics of 10 AUC values obtained using  10 different 
sets of edges for each selection 

Selection 

Of PPIs  

COEXP70 GPPI PPPI 

Mean S.D. Mean S.D. Mean S.D. 

6000 0.7211 0.0072 0.6757 0.0089 0.7612 0.0085 

7000 0.7295 0.0042 0.6852 0.0084 0.7696 0.0062 

8000 0.7374 0.0054 0.6883 0.0077 0.7730 0.0037 

9000 0.7460 0.0001 0.6960 0.0066 0.7844 0.0040 

 

 
 

Figure 3. Contribution of PPI types in predicting protein 

localization. 

Figure 3 shows the trend of performance with different 

types of PPIs. It is clear that for a specific number of 

edges/PPIs, physical PPI produces the best performance, 

followed by Co-expressed PPI and then genetic PPI. For 

example, at edge equal to 7000, AUC values are 0.7696 for 

PPPI, 0.7295 for COEXP70, and 0.6852 for GPPI. This 
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trend increases with the increase of number of edges in the 

network. It can be concluded from this experiment that 

physical PPI has the highest contribution to predicting 

protein localization followed by co-expressed PPI and then 

by genetic PPI. So, Physical PPI network could be used as 

the basis for unified network. 

4.2 Effect of removing some interactions 

Both GPPI and PPPI are composed of only one 

connected component, table 4 of [4]. Any of these two 

networks could be a good candidate as the basis of a 

unified network. GPPI (network proteins = 5252, annotated 

proteins = 3732, PPIs = 103631) is the densest network or 

it has too many PPIs. On the other hand PPPI (network 

proteins = 5477, annotated proteins = 3803, PPIs = 50997) 

has less PPIs (about 50% of GPPI) and lower annotation 

coverage (69.44% < 71.06%). But PPPI produces better 

results than GPPI (AUC: 0.82 > 0.75), figure 2 of [4]. This 

suggests that for a unified network, we may not need too 

many interactions. Then question arises, does removing 

some PPIs from GPPI network improve the performance 

(Question-2)? Removing edges from the whole network 

makes some of the proteins isolated from the network, 

specially, proteins with single-degree of interaction. These 

single-degree proteins are located at the edge of the 

network. In order to avoid producing isolated proteins, 

removal is also carried out from the core of the network. 

The core for the present study is composed of proteins with 

at least degree equal to 4. 

Figure 4 shows the performance after removing edges 

from the whole network and from the core for both GPPI 

and PPPI networks. It is clear that removal of edges 

deteriorates the performance for both networks. But there is 

hardly any difference in performance in two different 

removal approaches. This suggests that for a unified 

network, we should not remove any edges or PPIs from any 

network. 

 

 

 
Whole: represents removal from the whole network 

Core: represents removal from the core of the network 

 

Figure 4. Effect of edge removal. 

4.3 Effect of without changing the scope of 

the base network 

  Table 6 summarizes the performance of integrated 

networks without changing the scope of the base network 

considering all locations (22 locations). It is clear that 

NetLoc performance significantly improves upon network 

integration. Using scope-1, performance improvement 

ranges from 3% for PPPI to 28% for COEXP70 and using 

scope-2, it ranges from 10% for PPPI to 36% for 

COEXP70. Two main reasons for improvement are- (i) 

each network becomes more connected (more edges) upon 

integration (Table 2) and (ii) increase in values for either 

SNR or DCOP or both. In our earlier study, we showed that 

NetLoc performance improves with the increase of SNR 

and DCOP [7]. In integration using scope-1, values of SNR 

for some integrated networks are slightly decreased from 

the corresponding base network but values for DCOP are 

significantly increased for each of the integrated networks 

compare to base networks, which in turn improve the 

performance of integrated networks. For a specific base 

network, values of DCOP for integrated networks using 

both scope-1 and scope-2 remain the same (14.16 for PPPI) 

but value of SNR in scope-2 (3.869 for PPPI) is 

significantly higher than that in scope-1 (0.987 for PPPI). 

As a result, scope-2 produces better results than scope-1 in 

general.   

 

TABLE 6. NetLoc performance upon integration without changing 
the scope of the base network 

  SNR DCOP AUC_All Improve 

Networks Base Scope-1 Scope-2 Base Scope-1 Scope-2 Base Scope-1 Scope-2 Scope-1 Scope-2 

COEXP70 1.451 1.147 4.388 2.84 8.60 8.60 0.6407 0.8229 0.8728 28% 36% 

GPPI 0.806 0.959 1.352 8.38 14.06 14.06 0.7851 0.8813 0.9086 12% 16% 

MPPI 0.996 0.961 11.709 1.16 13.60 13.60 0.7132 0.8692 0.9496 22% 33% 

PPPI 1.537 0.987 3.869 5.63 14.16 14.16 0.8525 0.8787 0.9401 3% 10% 

4.4 Effect of changing the scope of the base 

network 

Table 7 summarizes the performance of integrated 

networks with changing scope of the base network 

considering all locations (22 locations). It is clear that 

NetLoc performance also significantly improves upon 

network integration with changing scope of the base 

network. Using scope-3, performance improvement ranges 

from 3% for PPPI network to 37% for COEXP70 and using 

scope-4, it ranges from 10% for PPPI to 49% for 

COEXP70. As explained earlier, the improvement in the 

performance is due to increase either in SNR or DCOP or 

in both. For example, for base network COEXP70, 

integration using scope-3 decreases SNR from 1.451 to 

0.973 but increases DCOP significantly from 2.84 to 13.97, 
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which in turn improves the performance from 0.6407 to 

0.8809. In integration using scope-4, a significant increase 

happened to both SNR (from 1.451 to 18.784) and DCOP 

(from 2.84 to 14.44), which results in huge improvement in 

performance from 0.6407 to 0.9562. 

 
TABLE 7. NetLoc performance upon integration with changing the 
scope of the base network 

  SNR DCOP AUC_All Improve 

Networks Base Scope-3 Scope-4 Base Scope-3 Scope-4 Base Scope-3 Scope-4 Scope-3 Scope-4 

COEXP70 1.451 0.973 18.784 2.84 13.97 14.44 0.6407 0.8809 0.9562 37% 49% 

GPPI 0.806 0.973 1.402 8.38 13.97 14.07 0.7851 0.8809 0.9041 12% 15% 

MPPI 0.996 0.973 15.497 1.16 13.97 14.18 0.7132 0.8809 0.9565 24% 34% 

PPPI 1.537 0.973 3.913 5.63 13.97 14.07 0.8525 0.8809 0.9351 3% 10% 

 

4.5 Identifying unified network 

Figure 5 presents the performance of integrated 

networks using four different scopes compare to base 

network. It is clear that integration improves performance 

in all methods of integration. Now the question is which 

integrated network should we select as the unified network 

or which approach should we use for integration (Question-

4). 

 

 
 

Figure 5. NetLoc performance upon integration with different 

scopes. 

 

Unified Network based on Performance 

Integration using Scope-2 produces better performance 

than scope-1 for all networks since scope-2 comes with 

better signals (relatively more co-localized PPIs) than 

scope-1. Similarly, scope-4 produces better performance 

than scope-3 for all networks. Considering performance, 

integrated networks using scope-2 and scope-4 are possible 

candidates for unified network. Out of 8 integrated 

networks, integration using scope-4 with base network 

MPPI produces the best performance of AUC = 0.9565 

(Figure 5). So, integrated network obtained from MPPI 

network using scope-4 can be considered as the unified 

network. 
 

 

Figure 6. Network proteins upon integration with different scopes. 

 

Unified Network based on Scope 

Integration using scope-1 and scope-2 has the minimum 

scope, which is the same as base network, in terms of both 

network proteins (Figure 6) and annotated proteins (Figure 

7) for each of the base networks. Integration using scope-3 

has the maximum scope in terms of both network proteins 

(Figure 6) and annotated proteins (Figure 7), which are 

same for each of the base network. Integration using scope-

4 has the intermediate scope in terms of both network 

proteins (Figure 6) and annotated proteins (Figure 7) for 

each of the base networks. So, considering scope, 

integrated network using scope-3 can be used as the unified 

network. 
 

 

 

Figure 7. Annotated proteins upon integration with different 

scopes. 
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Balanced Unified Network 

Unified networks based on performance and on scope 

represent networks based on two extremes. The first unified 

network produces a maximum performance of AUC = 

0.9565 with a scope of 5132 network proteins and 3839 

annotated proteins. The latter produces a performance of 

AUC = 0.8809 with the maximum scope of 6079 network 

proteins and 3899 annotated proteins. A balanced unified 

network is the one that provides a balance between 

performance and scope. Considering base PPPI, integration 

using scope-4 achieved a performance of AUC = 0.9351 

with a scope of 5544 network proteins and 3870 annotated 

proteins.  This network has both scope and performance in 

between the two unified networks based on two extremes. 

So, integrated network obtained from PPPI network using 

scope-4 can be considered as the balanced unified network 

for predicting protein localization. The overall performance 

(AUC = 0.9351) is improved by 10% over the individual 

best performance (AUC = 0.8525) with base network PPPI. 

This proves our hypothesis that the unified network should 

be based on high quality network which is physical PPI in 

the present study (Figure 3). 

5 Conclusion 

Different kinds of integration approaches such as 

integration with or without changing the scope of the base 

network are explored to observe the influence of integrating 

different PPC networks on the performance of a classifier, 

NetLoc, to predict protein localization. We use four 

different PPC networks for integration such as physical 

PPI, genetic PPI, mixed PPI, and co-expressed PPI. Our 

results showed that integration of different networks 

significantly improves NetLoc performance. The resulting 

network upon integration has higher number of co-

localized PPI per annotated protein and/or higher signal to 

noise ratio, which in turn improves the NetLoc 

performance significantly. This study also showed that 

physical PPI has the highest contribution to predicting 

protein localization followed by co-expressed PPI and  

genetic PPI. Finally, we proposed a balanced unified 

network based on performance and scope of the integrated 

networks, and we found that the balanced unified network 

is based on a network with the best quality, which is 

physical PPI. 
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Finding better partitions and conserved modules in Wnt signaling
pathways

L. Nayak and R. K. De
Machine Intelligence Unit, Indian Statistical Institute, Kolkata, West Bengal, India

Abstract— Human Wnt signaling pathway is involved in
many crucial biological processes and its haywired behavior
is found to be associated with various kinds of human
cancers and other disorders. Modularized analysis will help
in understanding modus operandi of this pathway. Here we
partition the human Wnt signaling pathway into multiple
partitions/modules by five algorithms inspired from different
concepts. Greedy, Farhat’s and Kernighan-Lin’s algorithms
are graph partitioning techniques. Newman’s algorithm is
dedicated towards finding communities in networks. Modu-
larization algorithm detects functional modules in biological
networks. A comparative study was done among partitions
created by these algorithms by considering ‘valid attribute’
and ‘functional enrichment’ scores. Based on the functional
enrichment score comparison, Modularization algorithm
was found to create best partitions from the human Wnt
signaling pathway. Later modules of 31 species-specific Wnt
signaling pathways were studied and compared for detection
of conserved modules.

Keywords: KEGG, Gene Ontology, Modularization algorithm,
Functional enrichment score

1. Introduction
The justification for dividing a network into a number

of modules lies in the fact that the complexity of each
module is much less than that of the entire pathway. It
provides an easier means of studying the network by part.
The task is difficult, because the components of a pathway
always unite their mettle towards a common function. Hence,
separating them into different classes/clusters/partitions or
the latest term ‘modules’ is difficult. The partitions obtained
as a result of the separation process is expected to upgrade
existing knowledge and to simplify a task. There exist
several methods for creating partitions from networks, but
only a few of them have been applied to biological networks
like graph partitioning algorithms and community finding
algorithms. Methods based on graph partitioning algorithms
([1], [2], [3]) are rigid, as they demand cut number and cut-
size information. It is not possible always to provide this
information.

Community finding algorithms may help in finding ex-
isting communities in undirected metabolic pathways [4],
directed networks [5] as well as overlapping community
structure in DIP core list of protein-protein interactions of

S. cerevisiae [6]. But, they have not been able to divide a
network without existence of natural partition(s). Most of the
biochemical networks come into this undividable category
partially or fully. A newer flexible algorithm was required
to overcome such kind of restrictions. The authors have
devised an algorithm known as ‘Modularization Algorithm’
[7], in this regard. Modularization is a process by which
one can split a network into smaller sub-networks called
as modules. A module can be defined as a partition of the
original network. It tends to be self-sufficient by maintaining
minimal dependency on the rest part of the network. The
algorithm is based on connectivity and topology of networks
but does not require any cut-size or cut-number. It creates
partitions from a network by using a complexity parameter
‘c’ [7]. It can also split a network without existence of any
natural partition.

There are other existing partitioning approaches that can
help towards designing an efficient modularization algo-
rithm. A novel method to decompose biochemical networks
is based on minimizing retroactivity among the created
modules [8]. Retroactivity is the effect of the downstream
elements on upstream elements. Another method claims to
modularize biochemical networks based on classification
of Petri net t-variants [9]. MOdularized NETwork learning
(MONET) draws a whole network into overlapping modules
and then tries to get the global picture by integrating the
learned sub-networks [10]. Deterministic Modularization of
Networks (dMoNet), a new agglomerative algorithm, finds
even better modules in large-scale yeast and human protein
interaction networks [11]. Bayesian networks and Proba-
bilistic models are already used for identifying regulatory
modules from gene expression data to identify functionally
coherent modules and their correct regulators in S. cerevisiae
[12]. Repeated random walk (RRW) based methods are used
for discovering functional modules within large-scale protein
interaction networks. They can find multi-functional proteins
by allowing overlapping clusters [13].

Netsplitter [14] creates partitions progressively and the
interactive visual matrix presentation allows considerable
control over the process by the user, while incorporating
special strategies to maintain the network integrity and
minimize the information loss due to partitioning. Iterative
Network Partition (iNP) identified modules in yeast protein
complex network and breast cancer gene co-expression net-
work [15]. Structural Clustering Algorithm for Networks
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(SCAN) finds clusters or functional modules, hubs and
outliers in complex biological networks [16]. Cartographic
representation of networks can be used to find functional
modules and uncover important new results in metabolic
networks, such as the significant conservation of non-hub
connector metabolites [17]. But none of them have been
applied to signal transduction pathways. It will constitute
an interesting work to combine these ideas to create a more
robust partitioning algorithm and apply it to different kinds
of pathways including that of signal transduction.

In this article, we have partitioned the human Wnt signal-
ing pathway using various algorithms, viz., Modularization
algorithm [7], Newman’s community finding algorithm [4],
Greedy algorithm [1], Farhat’s algorithm [2], and Kernighan-
Lin’s algorithm [3]. Their performances are compared based
on ‘valid attribute’ and ‘functional enrichment’ scores in
order to find the best partitioning algorithm. In addition, we
have detected presence of conserved modules in 31 species-
specific Wnt signaling pathways.

2. Materials and Methods
Here, we describe various partitioning algorithms. Then,

we formulate a method for comparing these partitions by
associating them to gene ontology terms. First of all, we
describe different sources of pathway data.

2.1 Data
An exclusive list of all the signaling pathway databases is

provided at http://www.pathguide.org/. Wnt signaling path-
way data can be availed from some of these databases,
i.e., Reactome [18], BioCarta [19], PID [20], NetPath [21],
STKE [22] and KEGG/PATHWAY [23] in various formats.
No species-specific Wnt signaling pathway data is available
other than hsa in PID and NetPath. Wnt data is avail-
able for hsa and mmu only in BioCarta. STKE has data
for a few species (dme, dre, cel and hsa). In Reactome
database Wnt signaling pathway information is available
for 12 species. But, there is no option to download the
molecular interactions of Wnt signaling pathway specific
to each species. On the other hand, KEGG contains 48
species-specific Wnt signaling pathways (maximum number
of species covered in any database at present). XML data
files of the pathways along with their KGML and PNG
diagrams are publicly accessible. We took 31 species-specific
Wnt signaling pathways as raw data from this database
(data taken in August 2009). These species-specific data
are used for analysis in this work. Detailed information
of these species is given in Table 1. The database uses a
unique three letter code for each species along with their
biological and common names (wherever applicable), viz.,
‘hsa’ for H. sapiens (human). These three letter codes are
used extensively in this manuscript.

Table 1: Details of species taken from KEGG/PATHWAY
database. For all these species, separate species-specific
pathways are available in KEGG/PATHWAY database. The
database uses a unique three letter code, viz., ‘hsa’ for H.
sapiens (human) for each species along with their biological
and common names.

Sl. No. Species Name Common Name KEGG
code

01 H. sapiens Human hsa
02 M. musculus Mouse mmu
03 R. norvegicus Rat rno
04 B. taurus Cow bta
05 C. familiaris Dog cfa
06 P. troglodytes Chimpanzee ptr
07 M. mulatta Rhesus Monkey mcc
08 M. domestica Opossum mdo
09 G. gallus Chicken gga
10 D. rerio Zebrafish dre
11 X. laevis African clawed frog xla
12 S. purpuratus Purple sea urchin spu
13 X. tropicalis Western clawed frog xtr
14 D. melanogaster Fruitfly dme
15 E. caballus Horse ecb
16 N. vectensis Sea anemone nve
17 A. mellifera Honey bee ame
18 D. pseudoobscura - dpo

pseudoobscura
19 T. castaneum Red flour beetle tca
20 A. aegypti Yellow fever mosquito aag
21 O. anatinus Platypus oaa
22 C. elegans Nematode cel
23 A. gambiae Mosquito aga
24 S. scrofa Pig ssc
25 B. floridae Florida lancelet bfo
26 C. intestinalis Sea squirt cin
27 D. ananassae - dan
28 B. malayi Filaria bmy
29 A. pisum Pea aphid api
30 T. adhaerens - tad
31 C. briggsae - cbr

2.2 Algorithms
We have used the Biological Networks Gene Ontology

tool (BINGO) [24] for comparing performance among Mod-
ularization [7], Newman’s community finding [4], Greedy
[1], Farhat’s [2], and Kernighan-Lin’s [3] algorithms. C and
Matlab (Version 7.0.4) have been used for implementation
of these algorithms.

2.3 Scoring Method
BINGO is an open source java tool to determine the Gene

Ontology (GO) terms that are significantly over-represented
in a set of genes. GO [25] is a public consortium of databases
that provides a controlled vocabulary of terms aiming at
a gene’s or a cluster of genes’ biological annotations. It
consists of three hierarchically structured sets of vocabular-
ies that describe gene products in terms of their associated
‘Biological Process (BP)’, ‘Molecular Function (MF)’ and
‘Cellular Component (CC)’ information; ‘Go Full (GF)’
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being the superset of these sets. BINGO runs as a plug-
in to Cytoscape [26]. BINGO retrieves the relevant GO
annotations and propagates them upward through the GO
hierarchy, i.e., any gene annotated to a certain GO category
is also explicitly included in all parental categories. It tries
to answer the basic question, “While sampling X genes (test
set) out of N genes (reference set), what is the probability
that x or more of these genes belong to a functional category
C shared by n of the N genes in the reference set?”
Hypergeometric test answers this question in the form of
a P-value. P-values depict a created partition’s capability to
lie in one category of biological function. If a particular
partition created by a partitioning algorithm returns more
number of valid GO terms with lower P-values than the
others, the algorithm is believed as a better algorithm for
creating partitions. Based on this belief, we have designed
the ‘valid attribute score’.

Valid attribute-wise analysis takes into consideration the
number of valid GO attributes that the algorithm in consider-
ation gets as result from a query with respect to a background
database. Here, we have considered GO attributes obtained
with P-value of the order of 10−5 or smaller as valid. The
threshold P-value was fixed in such a manner that valid
attributes from majority of the partitions can be collected.
Counting the number of valid attributes that a partition is
found to be associated with, is a well established way of
determining the biological validity of that partition. Many
clustering algorithms follow it as a comparative measure to
establish their superiority among the others [27]. Here, we
have considered three background databases, namely ‘BP’,
‘CC’ and ‘GF’.

P-values give a good indication about the prominence of
a certain functional category. But, no index of validity exists
among the valid GO terms with lower P-values. Are they all
equally valid or some of them are more valid than the others?
Does such an index affect comparative results? By devising
a validity index (‘functional enrichment score’), the authors
have showcased the change in results. Functional enrichment
score-wise analysis takes into account functional enrichment
scores of a set of partitioning algorithms. The functional
enrichment score SA of an algorithm A is defined as the
mean of enrichment scores of the p partitions it has created.

SA =
1
p

p∑
i=1

SPi (1)

In turn the enrichment score SPi
of a partition Pi is

the average of the individual enrichment scores (STij ) of
associated individual attributes (Tijs). Thus SPi is given by

SPi =
1
q

q∑
j=1

STij
(2)

where q is the number of attributes. Enrichment score STij
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Fig. 1: Performance comparison of various partitioning al-
gorithms. (a) Comparison based on valid attribute score.
Newman’s community finding algorithm is performing bet-
ter. (b) Comparison based on functional enrichment score
of valid attributes. Modularization algorithm is performing
better. [BP- Biological Process, CC- Cellular Component,
GF- GO Full, M- Modularization algorithm, N- Newman’s
algorithm, G- Greedy algorithm, F- Farhat’s algorithm and
K- Kernighan-Lin’s algorithm]

of an individual attribute Tij is calculated by comparing
the performance of algorithm A with the performance of
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a background database in detecting over-expressed gene
category(s) associated with the attribute. STij

depicts the
efficiency of the partitioning algorithm in placing nodes
having a common attribute in a partition with respect to
a background database. Let x be the number of nodes
associated with an attribute Tij , which lies in a partition Pi,
and X (≥ x) be the number of nodes present in partition
Pi. Then x/X is the ability of an algorithm for placing
nodes in a partition that are associated with attribute Tij .
Let y be the number of nodes associated with an attribute
Tij in a background database, and Y (≥ y) be the number
of attributes in that database. Then y/Y is the ability of
the background database to associate genes to attribute Tij .
Thus STij

can be defined as

STij
=

x

X
/
y

Y
(3)

In other words, we have taken the ratio of the perfor-
mance of an algorithm with respect to the performance of a
background database in assigning an attribute to a partition.
Functional enrichment score is a measure to quantify the
level of performance of an algorithm in creating biologically
significant partitions. While comparing a few algorithms,
higher the value of SA, better is the algorithm for creating
significant partitions. We have created three sets of enrich-
ment scores, corresponding to three background databases,
for each algorithm (Modularization, Newman’s community
finding, Greedy, Farhat’s and Kernighan-Lin’s) to get a better
comparison.

3. Results and Discussions
Partitions of the human Wnt signaling pathway obtained

by Modularization [7], Newman’s community finding [4],
Greedy [1], Farhat’s [2], and Kernighan-Lin’s [3] algorithms
are described here. Human Wnt signaling pathway is a
network of 60 nodes and 70 relations.

The best set of partitions created by each of the aforemen-
tioned algorithms was needed for the purpose of comparison.
Hence, multiple sets of partitions were obtained by Modular-
ization, Greedy and Farhat’s algorithms where cut-number
can be predesigned. Every individual set of partitions was
evaluated by calculating their average functional enrichment
score of associated valid attributes. The set of partitions
having the highest functional enrichment score was deemed
the best and used for comparison. The Modularization al-
gorithm produced the best set of partitions (8 modules) for
c = 3. Hence, one way of comparison was to create a set
containing the same number of partitions from Greedy and
Farhat’s algorithm and then tally their average functional
enrichment score of associated valid attributes. But, it would
have been a biased way of comparison as some other set
of partitions created by Greedy and Farhat’s algorithm may
yield a better functional enrichment score. So for Greedy
and Farhat’s algorithm, we have considered three immediate

lower and higher cut-numbers including the cut-number 8 for
creating sets of partitions [range: 5-11]. The best set among
them (11 partitions for Farhat’s algorithm and 9 partitions
for Greedy algorithm) was used then for comparison. New-
man’s community finding algorithm created the best set of
partitions (8 partitions) for ∆Q value of 1.0470e−017. Two
modules were generated by Kernighan-Lin’s algorithm. The
best sets of partitions created by all these algorithms are
given in Table 2.

Fig. 2: Methods of Algorithm Comparison. (CASE A)
Comparison based on valid attribute score shows that al-
gorithm X is better than algorithm Y in creating parti-
tions as the partitions are associated with more number of
valid attributes. (CASE B) Comparison based on functional
enrichment score of valid attributes shows that algorithm
Y is better than algorithm X in creating partitions as the
partitions are associated with some attributes, those have
high association index (associated with more number of
nodes in the partitions). Functional enrichment score is
denoted as FE_Score. The later option is a better way in
assigning biological significance to a partition, as the method
of comparison can reflect the inner picture among the valid
attributes rather than treating them as equals.

3.1 Performance Comparison of algorithms
The attribute-wise study takes into account the total num-

ber of valid attributes associated with the partitions obtained
by an algorithm as a measure of their performance. Their
overall performance is demonstrated in Figure 1(a). It shows
that the Newman’s community finding algorithm’s partitions
are returning maximum number of valid attributes (241, 25
and 343) with respect to all the three background databases
namely ‘BP’, ‘CC’ and ‘GF’ followed by Kernighan-Lin’s
algorithm (65, 12 and 106). The next better performance is
that of Modularization algorithm (37, 9 and 60) followed
by Farhat’s algorithm (31, 2 and 47) and Greedy algorithm
(25, 3 and 39). Newman’s algorithm is appeared to be the
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Table 2: The best sets of partitions created by different partitioning algorithms. All the results are based on human Wnt
signaling pathway data. Entries list the nodes in a partition. [Farhat’s algorithm: 11 partitions; Greedy algorithm: 9 partitions;
Modularization algorithm: c = 3, 8 modules; Newman’s community finding algorithm: 8 partitions, ∆Q = 1.0470e−017;
Kernighan-Lin’s algorithm: 2 partitions, initial cut-size 8, final cut-size 4]

Partition Farhat Greedy Modularization Newman Kernighan-Lin
No.

01 PSEN1, CTNNB1,
PRKACA, CTNNBIP1,
CHD8, SIAH1

PSEN1, CTNNB1,
PRKACA, GSK3B,
AXIN1, CSNK1A1L,
SIAH1, TP53

LEF1, SMAD4, NLK,
SOX17, CTBP1, CREBBP,
RUVBL1, MYC, JUN,
FOSL1, CCND1, PPARD,
MMP7, MAP3K7

MAPK8, RAC1, ROCK1, RHOA, DAAM1, DVL1, PRICKLE1,
FZD10, VANGL2, WNT9A

DKK1, PORCN, LRP6, CER1, WIF1,
FZD10, WNT16, FZD10, SFRP1,
WNT9A, VANGL2, PRICKLE1,
WNT5A, PRKCA, DVL1, RAC1,
DAAM1, FZD10, MAPK8, RHOA,
ROCK1, PLCB1, CHP, CAMK2A,
NFAT5, SIAH1, TP53, NKD1, JUN,
FOSL1

02 GSK3B, DVL1, AXIN1,
FRAT1, FZD10

APC2, DVL1, TBL1X,
FRAT1, FZD10, CXXC4

CTNNB1, PSEN1,
CTNNBIP1, CHD8,
PRKACA, CSNK1A1L,
FBXW11, TBL1X

WIF1, CER1, PORCN, WNT16 CCND1, MMP7, MYC, PRKACA,
PSEN1, TBL1X, APC2, CTNNB1,
GSK3B, AXIN1, FBXW11, DVL1,
CSNK1E, PPP2CA, CTNNBIP1, CHD8,
FRAT1, CXXC4, SENP2, CSNK2A1,
CSNK1A1L, RUVBL1, MAP3K7,
PPARD, NLK, SMAD4, LEF1, SOX17,
CTBP1, CREBBP

03 WNT16, SFRP1, LRP6,
PORCN, CER1

SENP2, NKD1, DVL1,
FZD10, RAC1, DAAM1

DVL1, CXXC4, SENP2,
CSNK2A1, FRAT1, APC2,
NKD1

DKK1 –

04 DKK1, PPARD, APC2,
SMAD4, LEF1

VANGL2, PRICKLE1,
WNT9A, FBXW11,
CSNK2A1, PPP2CA

WNT16, PORCN, FZD10,
SFRP1, CER1, WIF1,
LRP6, DKK1

SIAH1, TP53 –

05 NLK, SOX17, CTBP1,
CREBBP, RUVBL1

CSNK1E, RUVBL1, LEF1,
SMAD4, NLK, SOX17

DVL1, FZD10, RAC1,
DAAM1, VANGL2,
PRICKLE1, WNT9A,
MAPK8, RHOA, ROCK1

NFAT5, PRKCA, CHP, CAMK2A, PLCB1, FZD10, WNT5A –

06 MAP3K7, MMP7, WIF1,
CXXC4, SENP2

CTBP1, MMP7, PPARD,
CCND1, FOSL1, JUN

AXIN1, CSNK1E, GSK3B,
PPP2CA

MMP7, PPARD, CCND1, FOSL1, JUN, MYC, CTBP1, SOX17,
SMAD4, CREBBP, RUVBL1, NLK, MAP3K7, LEF1

–

07 APC2, TBL1X,
CSNK1A1L, CCND1,
FOSL1

MYC, CREBBP, CHD8,
CTNNBIP1, LRP6, DKK1

PLCB1, FZD10, CAMK2A,
CHP, PRKCA, WNT5A,
NFAT5

CHD8, CTNNBIP1, CSNK1A1L, FBXW11, TBL1X, AXIN1,
PPP2CA, APC2, CTNNB1, PRKACA, PSEN1, GSK3B, CSNK1E

–

08 JUN, MYC, NKD1, DVL1,
FZD10

SFRP1, WNT16, PORCN,
CER1, WIF1, MAPK8

TP53, SIAH1 NKD1, FRAT1, SENP2, DVL1, CSNK2A1, CXXC4, LRP6, FZD10,
SFRP1

–

09 WNT9A, PRICKLE1,
VANGL2, DAAM1, RHOA

RHOA, ROCK1, MAP3K7,
WNT5A, FZD10, PLCB1,
PRKCA, CHP, NFAT5,
CAMK2A

– – –

10 MAPK8, ROCK1, RAC1,
FBXW11, CSNK2A1

– – – –

11 PPP2CA, CSNK1E,
WNT5A, FZD10, PLCB1,
PRKCA, CHP, NFAT5,
CAMK2A

– – – –

best algorithm for creating partitions as they are found to be
associated with the highest number of valid attributes.

At a deeper level we have found that small subsets of a
large partition were always found to be associated with many
attributes (Figure 2). A large partition ensures presence of
many subsets in it, which are associated with GO attributes;
some of them being unique. Thus the corresponding P-values
will be lower and they will be considered as valid. But only
validity of an attribute is not sufficient for defining goodness
of a module. Ideally, a valid attribute must be given more
preference if it is associated with more number of nodes
present in a partition than another one associated with less
number of nodes in the same partition. In other words, we
needed to know the number of attributes that actually show
some goodness (associated with more number of nodes) in
justifying a partition. Hence, a functional enrichment score
system was defined to give weightage to valid attributes
according to their goodness of performance.

Functional enrichment score depicts the efficiency of a
partitioning algorithm in placing nodes (having a com-

mon attribute) in a partition with respect to a background
database. Higher the value of the score, better is the algo-
rithm for creating partitions. The average enrichment scores
(SAs) (Equation 1) of the different algorithms are shown in
Figure 1(b). The Modularization algorithm is found to be
performing best among all the algorithms considered here,
courtesy this figure. The algorithm creates partitions with
average functional enrichment score of 163.22, 258.37, and
274.19 with respect to ‘BP’, ‘CC’ and ‘GF’ as background
databases. Kernighan-Lin’s algorithm creates partitions with
the least average functional enrichment score (17.66, 18.93
and 23.14 respectively) preceded by Newman’s algorithm
(34.45, 28.08 and 44.79 respectively), although, both the al-
gorithms have created partitions for which maximum number
of valid attributes are found to be associated (Figure 1(a)).
It proves that only counting valid attributes associated with
a partition is not a proper measure to deem that partition as
good. Among the valid attributes, an association index must
be established. Functional enrichment scores reflect such
association index. Among Greedy and Farhat’s algorithms,
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Table 3: Module information of species-specific Wnt signaling pathways. Details about the individual Wnt signaling pathway
modules of different species are given in this table [n: number of connected nodes in a species-specific pathway; r: number
of relations present the connected component of a species-specific pathway; t: total number of modules created from a
species-specific pathway]. The modules have been created for c = 3. The table throws light on the developmental trend of
Wnt signaling pathway among the taken set of species. Number nodes present in each module is listed along side it in
parentheses.

c n r t WNT (DVL)1 Axin β-catenin TCF Tp53 (DVL)2 PLC

hsa 60 70 8 WNT [8] (DVL)1 [7] Axin [4] β-catenin [8] TCF [14] p53 [2] (DVL)2 [10] PLC [7]
mmu 60 70 8 WNT [8] (DVL)1 [7] Axin [4] β-catenin [8] TCF [14] p53 [2] (DVL)2 [10] PLC [7]
rno 59 69 8 WNT [7] (DVL)1 [7] Axin [4] β-catenin [8] TCF [14] p53 [2] (DVL)2 [10] PLC [7]
bta 58 68 8 WNT [7] (DVL)1 [6] Axin [4] β-catenin [8] TCF [14] P53 [2] (DVL)2 [10] PLC [7]
cfa 58 68 8 WNT [8] (DVL)1 [7] Axin [4] β-catenin [7] TCF [13] p53 [2] (DVL)2 [10] PLC [7]
ptr 58 67 8 WNT [8] (DVL)1 [7] Axin [4] β-catenin [8] TCF [13] p53 [2] (DVL)2[10] PLC [6]

mcc 55 63 8 WNT [7] (DVL)1 [6] Axin [4] β-catenin [8] TCF [13] p53 [2] (DVL)2 [8] PLC [7]
mdo 54 64 7 WNT [8] (DVL)1 [7] Axin [2] β-catenin [9] TCF [11] - (DVL)2 [10] PLC [7]
gga 54 63 8 WNT [7] (DVL)1 [6] Axin [3] β-catenin [8] TCF [11] p53 [2] (DVL)2 [10] PLC [7]
dre 52 60 7 WNT [8] - Axin [4] β-catenin [7] TCF [13] p53 [2] (DVL)2 [11] PLC [7]
xla 43 45 6 WNT [7] - - β-catenin [8] TCF [11] p53 [2] (DVL)2 [8] PLC [7]
spu 39 45 6 - (DVL)1 [7] Axin [2] β-catenin [5] TCF [10] - (DVL)2 [9] PLC [6]
xtr 37 36 6 WNT [3] - - β-catenin [7] TCF [6] p53 [2] (DVL)2 [12] PLC [7]

dme 36 42 7 WNT [6] (DVL)1 [5] Axin [2] β-catenin [6] TAK1 [2] - (DVL)2 [9] PLC [6]
ecb 36 38 7 (Frizzled)1 [5] (DVL)1 [3] - β-catenin [9] TAK1 [2] p53 [2] (DVL)2 [8] PLC [7]
nve 32 33 6 (Frizzled)1 [5] - Axin [5] β-catenin [6] TAK1 [2] - (DVL)2 [7] PLC [7]
ame 30 32 5 - (DVL)1 [4] - β-catenin [9] TAK1 [2] - (DVL)2 [8] PLC [7]
dpo 28 30 4 (Frizzled)1 [8] - - β-catenin [7] - - (DVL)2 [8] PLC [5]
tca 26 27 4 (Frizzled)1 [7] - - β-catenin [7] - - (DVL)2 [6] PLC [6]
aag 24 22 4 (Frizzled)1 [4] - - β-catenin [4] - - (DVL)2 [10] PLC [6]
oaa 22 22 4 WNT [2] - - β-catenin [7] - - (DVL)2 [8] PLC [5]
cel 22 20 3 - - - β-catenin [10] - - RhoA [6] PLC [6]
aga 20 18 3 (Frizzled)1 [11] - - β-catenin [4] - - - PLC [5]
ssc 19 16 4 FRP [2] - - β-catenin [5] TCF [7] - - PLC [5]
bfo 18 16 3 - - - β-catenin [9] - - (DVL)2 [5] PLC [4]
cin 17 14 3 - (DVL)1 [7] - - - - (DVL)2 [5] PLC [5]
dan 16 12 4 - (DVL)1 [2] - β-catenin [4] - - (DVL)2 [5] PLC [5]
bmy 13 11 3 - (DVL)1 [4] - - - - (DVL)2 [5] PLC [4]
api 13 10 3 - (DVL)1 [4] - - - - (DVL)2 [5] PLC [4]
tad 6 4 2 - - - - - - Rac [2] PLC [4]
cbr 4 3 1 - (DVL)1 [4] - - - - - -

the later performs better for the background databases ‘BP’
(103.65), while Greedy algorithm creates partitions that are
found to be associated with more attributes of ‘CC’ and ‘GF’
databases (197.35 and 260.06).

3.2 Comparative analysis to find conserved
modules

Here, modules of 31 species-specific Wnt signaling path-
ways (aag, aga, ame, api, bfo, bmy, bta, cbr, cel, cin, cfa,
dan, dmw, dpo, dre, ecb, gga, hsa, mcc, mdo, mmu, nve,
oaa, ptr, rno, ssc, spu, tad, tca, xla and xtr) were analyzed
and subjected for comparative analysis. Module details of
these 31 species are given in Table 3. It is important to
mention here that the Wnt signaling pathway of each species
may vary in terms of nodes, relations and topology. More
number of absent nodes depict a pathway’s lower level
of development. Likewise more number of isolated nodes
indicate towards poorly developed architecture of a pathway.
But, in some cases nodes or relations absentia do mean
lack of information to indicate their presence in a pathway.
Table 3 gives individual details (number of nodes, relations
and modules) of all the pathways considered here.

Wnt signaling pathways of the aforementioned species

Fig. 3: One to one module wise comparison of Wnt signaling
pathway of 31 different species

were subjected to modularization for c = 3 as for the same
c-value meaningful modules were found in human Wnt
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signaling pathway. We were getting 2 to 8 modules for each
species that vary in their size (number of nodes present in the
module) as shown in Table 3. Modules Wnt and β−catenin
were found to be conserved in 9 species (hsa, mmu, rno, bta,
cfa, ptr, mcc, mdo and gga), module TCF was found to be
conserved in 5 species (hsa, mmu, rno, bta and cfa); module
Tp53 was observed in altogether 12 species (hsa, mmu, rno,
bta, cfa, ptr, mcc, gga, dre, xla, xtr and ecb) and it was
conserved by size and topology in all these species; module
(DV L)2 remained conserved in 11 species (hsa, mmu, rno,
bta, cfa, ptr, mdo, gga, dre, spu and dme); module PLC
turned out to be the most conserved module, found in a
maximum number of 17 species (hsa, mmu, rno, bta, cfa,
ptr, mcc, mdo, gga, dre, xla, spu, xtr, dme, ecb, nve and
ame). Conservation patterns are shown in Figure 3.

4. Conclusions
Modularization algorithm is a better algorithm to cre-

ate modules from human Wnt signaling pathway. A new
GO attribute based score (Functional enrichment score)
is designed for validating these modules. The score es-
tablishes a validity index among GO attributes and can
be extended for performance measurement of any kind of
partitions/clusters/modules created from biological networks.
A comparative study of 31 species-specific Wnt signaling
pathway modules is done by utilizing this algorithm. Module
PLC is found to be the most conserved module, found in
a maximum number of 17 species. Wnt signaling pathway
is found to be intrinsic in many diseases; being a major
player in the human cancer arena. Hence, knowledge about
conserved modules can be utilized in laboratory experiments
when a particular module is found to be associated with the
background mechanism of a disease.
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ministic GraphŰTheoretic Algorithm for Detecting Modules in Bio-
logical Interaction Networks,” International Journal of Bioinformatics
Research and Application, vol. 6, no. 6, pp. 101–119, 2010.

[12] E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and
N. Friedman, “Module networks: identifying regulatory modules and
their condition-specific regulators from gene expression data,” Nature
Genetics, vol. 34, pp. 166–176, 2003.

[13] K. Macropol, T. Can, and A. K. Singh, “RRW: repeated random walks
on genome-scale protein networks for local cluster discovery,” BMC
Bioinformatics, vol. 10, p. 283, 2009.

[14] W. S. Verwoerd, “A new computational method to split large biochem-
ical networks into coherent subnets,” BMC Systems Biology, vol. 5,
no. 25, 2011.

[15] S. Sun, X. Dong, Y. Fu, and W. Tian, “An iterative network partition
algorithm for accurate identification of dense network modules,”
Nucleic Acids Research, vol. 40, no. 3, p. e18, 2012.

[16] M. Mete, F. Tang, X. Xu, and N. Yuruk, “A structural approach for
finding functional modules from large biological networks,” BMC
Bioinformatics, vol. 9(Suppl 9), no. S19, 2008.

[17] R. Guimera and L. A. N. Amaral, “Functional cartography of complex
metabolic networks,” Nature, vol. 433, pp. 895–900, 2005.

[18] G. Joshi-Tope, M. Gillespie, I. Vastrik, P. DEustachio, E. Schmidt,
B. D. Bono, B. Jassal, G. R. Gopinath, G. R. Wu, L. Matthews,
S. Lewis, E. Birney, and L. Stein, “Reactome: a knowledgebase of
biological pathways,” Nucleic Acids Research, vol. 33, pp. D428–
D432, 2005.

[19] D. Nishimura, “A view from the Web: Biocarta,” Biotech. Software
and Internet Report, vol. 2, no. 3, pp. 117–120, 2001.

[20] C. F. Schaefer, K. Anthony, K. S, J. Buchoff, M. Day, H. T, and
B. K. H, “PID: The Pathway Interaction Database,” Nucleic Acids
Res., vol. 37, pp. D674–D679, 2009.

[21] K. Kandasamy, S. S. Mohan, R. Raju, S. Keerthikumar, G. S. S.
Kumar, A. K. Venugopal, D. Telikicherla, J. D. Navarro, S. Math-
ivanan, C. Pecquet, S. K. Gollapudi, S. G. Tattikota, S. Mohan,
H. Padhukasahasram, Y. Subbannayya, R. Goel, H. K. C. Jacob,
J. Zhong, R. Sekhar, V. Nanjappa, L. Balakrishnan, R. Subbaiah,
Y. L. Ramachandra, B. A. Rahiman, T. S. K. Prasad, J. Lin, J. C. D.
Houtman, S. Desiderio, J. Renauld, S. N. Constantinescu, O. Ohara,
T. Hirano, M. Kubo, S. Singh, P. Khatri, S. Draghici, G. D. Bader,
C. Sander, W. J. Leonard, and A. Pandey, “NetPath: a public resource
of curated signal transduction pathways,” Genome Biology, vol. 11,
p. R3, 2010.

[22] K. I. Fukuda and T. Takagi, “Knowledge Representation of Signal
Transduction Pathways,” Bioinformatics, vol. 17, pp. 8290–837, 2001.

[23] M. Kanehisa and S. Goto, “KEGG: Kyoto Encyclopedia of Genes and
Genomes,” Nucleic Acids Research, vol. 28, pp. 27–30, 2000.

[24] S. Maere, K. Heymans, and M. Kuiper, “BiNGO: a Cytoscape plugin
to assess overrepresentation of Gene Ontology categories in Biological
Networks,” Bioinformatics, vol. 21, pp. 3448–3449, 2005.

[25] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M.
Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A.
Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese,
J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock,
“Gene Ontology: tool for the unification of biology,” Nature Genetics,
vol. 25, pp. 25–29, 2000.

[26] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ra-
mage, N. Amin, B. Schwikowski, and T. Ideker, “Cytoscape: A Soft-
ware Environment for Integrated Models of Biomolecular Interaction
Networks,” Genome Res., vol. 13, pp. 2498–2504, 2003.

[27] A. Bhattacharya and R. K. De, “Divisive Correlation Clustering
Algorithm (DCCA) for grouping of genes: detecting varying patterns
in expression profiles,” Bioinformatics, vol. 24, pp. 1359–1366, 2008.

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  | 95



Identification and Bioinformatic Analyses of Vanillate 
Operon in Cyanobacterium Synechococcus sp. IU 625  

 
Robert Newby, Jr., and Tin-Chun Chu 

Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA 
 
 

Abstract - Vanillate is a byproduct of saprotrophic digestion 
of plant lignin. We demonstrated that Cyanobacterium 
Synechococcus sp. IU 625 (S. IU 625) is capable of utilizing 
vanillate as a sole carbon source when deprived of light for 
photosynthesis.  Result indicated that S. IU 625 is capable of 
utilizing vanillate as a sole carbon source at 0.5 and 1.0 mM 
concentrations when light is not provided for photosynthesis. 
Using the sequences obtained from Caulobacter crescentus 
NA1000, analysis of potential genes for vanillate utilization 
has been carried out.  Of the three proteins which are coded 
for in the vanillate utilization operon in C. crescentus, VanA, 
VanB, and VanR; homology from VanB has been found to 
two unique unidentified proteins in a related species of 
cyanobacteria Synechococcus elongatus PCC 7942.  This 
study was aimed at identification of the genes which compose 
vanillate operon in cyanobacteria to better understand 
potential cyanobacterial heterotrophic growth. 

Keywords: Cyanobacteria, Vanillate operon, Sequence 
alignment 

 

1 Introduction 
  Cyanobacteria (formally known as blue-green algae) 
are photosynthetic prokaryotes of great importance in many 
ecological settings. They affect water quality and play a huge 
role in global biogeochemical cycles [1]. Harmful algal 
blooms (HAB) caused by eutrophication have been reported 
in nearly every industrialized nation [2, 3]. Synechococcus 
sp. IU 625 (S. IU 625) is a non-toxin producing freshwater 
unicellular cyanobacterium which has been reported to cause 
HAB previously.   

 Heavy metals such as iron, copper, nickel, cobalt, and 
manganese are important trace nutrients and are often added 
to fertilizers to enhance plant growth [4]. These heavy 
metals are also released by unregulated industrial waste 
water effluent [5]. Several of these heavy metals have been 
designated by the US Environmental Protection Agency 
(EPA) as potential threats. These EPA targeted heavy metals 
include zinc, nickel, cobalt, iron and manganese.   

 HAB appear to be enhanced by not only eutrophication, 
but also by the presence of several EPA target heavy metals. 
Research has shown that a natural predator of cyanobacteria, 
cyanophage, is inhibited by the presence of high 
concentrations of heavy metals [6]. Cyanophages are 
important in regulating the growth of cyanobacteria [7]. 
Heavy metals appear to further alter their environment by 
altering the pH, changing the oxidative state of nutrients, 
and in some cases as reported with mercury, will 
bioaccumulate in the ecologic food web. This alteration of 
the environment is creating a niche for heavy metal resistant 
cyanobacteria to flourish and potentially bloom [8].  

 Cyanobacteria were originally generally considered 
obligate photoautotrophs [9]. Evidence provided in this 
study and other experimental studies shows that S. IU 625 
and other cyanobacteria can be photoheterotrophs under 
certain conditions [10]. Photoheterotrophic growth of 
cyanobacteria can be used as a potential tool for molecular 
studies of cyanobacteria much similar to that of other 
bacteria; such as lactose based expression in E. coli and 
vanillate based expression in Caulobacter crescentus (C. 
crescentus). Vanillate is the byproduct of the saprotrophic 
digestion of plant lignin [11].  It is a phenolic compound, 
which can be used a sole carbon source in several 
prokaryotic species.  Typically the vanillate operon (Van) 
consists of three genes: vanA, a monooxygenase; vanB, a 
phenolic demethylase; and vanR, a transcriptional repressor 
[12].  Work has previously been done in C. crescentus 
NA1000, for the characterization and cloning of the 
promoter from the Van region; and a set of molecular 
vectors has been established linking the expression of a gene 
of interest to the Van promoter [12]. This study focuses on 
identification, cloning and characterization of Van operon in 
S. IU 625 using bioinformatics analysis for screening S. IU 
625 for the ability to utilize vanillate as a sole carbon source.  

2 Materials and Methods 
2.1 Growth conditions of Synechococcus sp. 

IU 625 
 The unicellular Cyanobacterium S. IU 625 was 
obtained from American Type Culture Collection (ATCC; 
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Manassas, VA) and was maintained in sterile Mauro’s 
Modified Medium (3M) at a pH 7.9. The cells were grown at 
26°C, with constant fluorescent light and continuous 
agitation at 100 rpm in a Gyromax 747R incubator shaker 
(Amerex Instruments; Lafeyette, CA). S. IU 625 was 
maintained in sterile 250 ml Erlenmeyer flasks. 

2.2 Bioinformatic analysis 
 Known sequences from the van operon in C. crescentus 
were obtained from GenBank on the National Center for 
Bioinformatics (NCBI) website.  Using the sequences BlastP 
searches were carried out into Synechococcus elongatus 
PCC 7942 and queries of high match were recorded. 

2.3 DNA isolation and purification 
The exponentially growing S. IU 625 cells were 

collected for DNA isolation. Sambrook and Russell’s DNA 
extraction and purification protocol was followed with minor 
modifications [13]. The concentration and the purity of the 
isolated DNA were determined by NanoDrop ND-1000 
Spectrophotometer (Thermo Fisher Scientific, Wilmington, 
DE).      

2.4 Primer design 
 PCR primers were designed with National Center for 
Bioinformatics (NCBI) Primer-BLAST and Integrated DNA 
Technology’s (IDT) PrimerQuestSM software.  Designed 
primers were analyzed with IDT’s OligoAnalyzer 3.1 
program.  A closely related species of cyanobacterium, 
Synechococcus elongatus PCC 7942, whose sequence is 
known, was used as a template. Primers were obtained from 
Eurofins MWG-Operon (Huntsville, AL), and were 
resuspended in sterile diH2O to a final concentration of 100 
µM following manufactures recommendations. Primers were 
designed to encompass the entire hypothetical vanillate 
operon (vanR, vanA, and vanB), the size of the amplicons 
ranging from 300-800 bp. No primer was designed to 
amplify more than 850 bp.  Each oligo was designed to be 
under 30nt in length with melting temperatures of the oligos 
60°C or above.  

2.5 PCR-based assay, gel electrophoresis and 
sequencing 

 PCR-based assays were carried out with all the 
designed primers.  For each 25 μl reaction tube, it contains 
the following, 1 μl of genomic DNA template, 12.5 μl of 2X 
GoTaq® Hot Start Green Master Mix (Promega; Madison, 
WI), 1 μl of forward and 1 μl reverse primer (both 10 μM), 2 

μl DMSO and 7.5 μl of nuclease-free H2O. The general run 
method of reaction was activation of the Hot Start 
polymerase at 95°C for 2 minutes, followed by denaturation 
for 30 seconds, lowest Tm of primer group for 30 seconds, 
72°C for 30 seconds, for 35 cycles.  A final extension step 
was done at 72°C for 5 minutes.  Followed by the PCR, 1% 
agarose gel electrophoreses were carried out and the PCR 
products were also sent out for sequencing (Genewiz, Inc., 
South Plainfield, NJ).  

2.6 S. IU 625 growth monitoring with or 
without vanillate  

 Vanillate (50 mM) were purchased from Sigma-
Aldrich. The stock solution was prepared with sodium 
hydroxide and was filtered through a 0.2 μm filter.  Six 
sterile Erlenmeyer flasks for both light and dark sets (3 
flasks each) were autoclaved and labeled accordingly.  A S. 
IU 625 culture with OD750nm approximately 1.0 was used. 
Each flask contains 5 ml S. IU 625 and 95 ml 3M media.  
Vanillate was then added into the flasks in duplicates of 0 
(control), 0.5 and 1 mM final vanillate concentrations, 
respectively.  The light set of flasks was grown under the 
standard growth conditions while the dark set of the flasks 
were wrapped with aluminum foil to prevent the light 
exposure.  The cell growths were monitored with Ultrospec 
III (Pharmacia LKB, Sweden). Vanillate utilization for all 6 
flasks was also monitored with NanoDrop ND-1000 
(Thermo Fisher Scientific, Wilmington, DE). 

3 Results 
  Cyanobacteria Using the BlastP of the VanA in C. 
crescentus into Synechococcus elongatus PCC 7942, a 
comprehensive set of primers was designed using NCBI 
Primer-Blast and PCR-based assays were carried out.  Prior 
to primer design, bioinformatics work was carried out to try 
to elucidate the location of a potential vanillate response 
operon in cyanobacteria.  Using the known sequence from C. 
crescentus, Figure 1A shows the bioinformatic analyses of 
the protein sequence of VanA in C. crescentus compared 
with S. elongatus PCC 7942. Proposed Van operons in S. IU 
625 and S. elongatus PCC 7942 are shown in Figure 1B. 
Figure 1C shows a partial order alignment visualizer 
(POAVIZ) of the VanA protein in several species of bacteria 
compared to the hypothetical VanA sequence in S. elongatus 
PCC 7942.  Tables 1 listed out all the designed primers used 
in this study.  Gel electrophoreses for the PCR products were 
carried out and selected results are shown in Figure 2.  PCR 
products were sent out for sequencing and BLAST results 
were performed on the obtained sequences.  
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Figure 1. A) BlastP results for VanA proteins. BlastP matches are shown using the VanA protein sequence from C. crescentus 
into the genome of S. elongatus PCC 7942. The top two results are SynPCC7942_2035 and SynPCC7942_2036 respectively.  
B) Proposed Van operons in S. IU 625 and S. elongatus PCC 7942. C) POAVIZ result of known bacterial VanA compared 
with S. elongatus PCC 7942 (Smooth: 2) 

 

Table 1. Selected primers designed with NCBI Primer-BLAST and verified with IDT OligoAnalyzer 3.1 program. Ten primer 
sequences, Tm and the amplicon sizes are listed. 
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Figure 2. Selected gel electrophoresis results for the PCR 
products. All the sizes of the PCR products correspond to the 
estimated amplification size. 

 The results obtained indicated that S. IU 625 may be 
able to utilize vanillate as a sole carbon source when 
photosynthesis is unavailable.  By monitoring growth of S. 
IU 625 cultures inoculated with 0, 0.5 and 1.0 mM 
concentrations of vanillate, as well as presence or absence of 
light, the ability of S. IU 625 to utilize vanillate was 
experimentally shown.  Once the monitoring study was 
completed the information from the study was compiled and 
graphed to show the growth patterns of S. IU 625 when 
exposed to vanillate.  Figure 3 shows the growth of the S. IU 
625 cells in the light and the dark condition. 

 

 

Figure 3. The growth curves of S. IU 625 with 0, 0.5 and 1.0 mM vanillate under light (A-C) and dark (A’-C’) conditions.  
The cells in the light set had similar growth with or without vanillate. The cells in the dark set had minimal growth for all 
three conditions (0, 0.5 and 1.0 mM vanillate). 
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 The absorbance at OD286 was used to measure the 
degradation and utilization of vanillate in media.  Based on 
work in Thanbichler (2007), this was the measured non-
interfering absorbance of vanillate in supernatant. By 
comparing the readings at OD286 we were able to estimate 
the relative concentration of vanillate in the supernatant.  
Figure 4 shows the measured vanillate concentration in the 
supernatant for both the light and dark sets of cells.  Another 
indication that vanillate was being utilized is apparent for 

the dark set.  On day 22, the cultures were centrifuged to 
separate the cells and the supernatant. The color of the 
supernatant in the flask with 1.0 mM vanillate under the 
light was much darker compared with the flask with 0.5 mM 
vanillate; while all three flasks in the dark set contain 
colorless supernatant after centrifugation.  It indicated the S. 
IU 625 cells were able to utilize vanillate as carbon source 
when the light is absent.   

 

   
  
Figure 4. Degradation of vanillate (0, 0.5 and 1.0 mM) under (A) light and (B) dark conditions.  One ml of the culture in each 
flask was collected at 6 time points throughout 22 day period. Vanillate concentration in supernatant were measured in 
OD286nm.  The degradation curve indicates that the cells in the light set were able to utilize some vanillate while the cells in the 
dark set utilized the vanillate completely by day 20. 

 

4 Discussions 
 Vanillate has been experimentally shown to encourage 
heterotrophic growth of Synechococcus sp. IU 625.  This is 
a novel study indicated that the obligated photoautotroph S. 
IU 625 can also survive and grow in the dark condition with 
supplemented vanillate. Since experimental evidence exist 
which show the ability of S. IU 625 to utilize vanillate as a 
sole carbon source, a cluster of genes for its regulation and 
processing must exist.  In our experiments we showed that a 
high homology between vanillate response genes in other 
freshwater oligotrophs, such as Caulobacter crescentus, has 
homology to a cluster of genes in S. IU 625.  Sequencing of 
the operon, which was undertaken using Synechococcus 
elongatus PCC 7942 as a template for design, gave insight 
into the genome of S. IU 625 not previously seen.  One 
potential purpose of the genes might be to allow the cell to 
survive when nutrient deprived or in an area where sunlight 
is blocked by natural foliage.  The ability for S. IU 625 to 
utilize vanillate is an important finding since it allows a 
better understanding of how cyanobacteria respond to 
external sources of nutrients.  Unpublished data shows that 
this cluster of genes exists in several other species of 

cyanobacteria.  Based on the work in Thanbichler, 2007, 
vanillate is degraded by the enzyme complex VanAB.  The 
VanAB enzyme breaks down vanillate to pyruvate.  However 
the exact mechanism is not known in S. IU 625 and is an 
interest for further studies for this project.  

 This study sought to explore the use vanillate inducible 
gene expression to measure gene expression.  By cloning the 
hypothetical promoter from the vanillate operon, we sought 
to make a molecular switch, similar to the LacZ based 
promotion in E. coli.  This work has been previously 
described in great detail in C. crescentus, and a set of 
vanillate inducible plasmids exists based on work by 
Thanbichler, 2007.These vectors are similar to the xylose 
inducible vectors created for Staphylococci spp. in Wieland 
et al., 1995 [14].  

 Use of a carbon based inducible vectors has not been 
shown previously for cyanobacteria.  This study represents 
the first of its kind to show that S. IU 625 is capable of both 
heterotrophic and phototrophic growth.  Based on the results 
seen in Figures 3, S. IU 625 is capable of surviving up to 22 
days when supplemented with vanillate. However, vanillate 

A B 
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degradation is not an optimal source of energy to sustain the 
continued growth of S. IU 625. 
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Abstract- The paper addresses an interesting approach to 
protein- ligand docking problem using Artificial Bee Colony 
optimization algorithm. In this work, protein- ligand docking 
is formulated as an optimization problem. The docking 
energy is used as a scoring function for the solutions. Results 
are demonstrated for six different target proteins both 
numerically and pictorially. Experimental results reveal that 
the proposed method outperforms Variable string-length 
Genetic Algorithm based ligand design method considering 
the intra- and inter-molecular energies of the evolved 
molecules.   

Keywords- ligand; artificial bee colony optimization algorithm; 
fragment based approach; CHARMM energy; active site . 

1  Introduction  
Proteins are macromolecules consisting of two or more 

amino acids. They are greatly responsible for structural and 
functional characteristics of cells, and communication of 
biological signals among cells. Active sites in protein 
molecules refer to a part of the molecule primarily 
responsible for its functioning. They are usually hydrophobic 
pockets involving side chain atoms. All protein molecules 
available in the nature are not equally useful for the living 
organisms. On the contrary, there are evidences of proteins, 
causing fatal or infective diseases. Researchers are taking 
keen interest to selectively identify the right candidate 
structure that fits well in the active site of a protein. These 
molecules capable of binding at the active site and thereby 
changing the functional behavior of the protein are called 
ligands. 

Docking is of extreme relevance in cellular biology, 
where function is accomplished by proteins interacting with 
themselves and with other molecular components [6]. It is the 
key to oriental drug design. The result of docking can be used 
to find inhibitors for specific target proteins and thus to 
design new drugs. Protein-ligand docking is an energy 
minimization search problem with the aim to find the best 
ligand conformation and orientation relative to the active site 
of a target protein. 

Research aimed at solving the protein-ligand docking 
problem considers designing interesting algorithms to 
balance the efficient search for fitting the ligand optimally 
with the target protein with the order of complexity required 
to execute the algorithm. Application of evolutionary 
computation for ligand molecule discovery by searching the 

vast organic space of active site of receptor protein thus is 
apparent. 

In this paper, we study the scope of the well-known 
Artificial Bee Colony (ABC) optimization algorithm [3] to 
judiciously determine the ligand structure to be docked at the 
active site of a protein. The choice of ABC in the present 
context is inspired partly heuristically because of the 
background of the algorithm in the topic, and partly because 
of its established performance in the literature [3, 5]. 

Performance of an evolutionary algorithm in engineering 
search or optimization problem greatly depends on the data 
structure used to represent ‘evolvable trial solutions’. We 
observed that one interesting time-efficient solution to the 
ligand docking problem can be realized by selecting a tree-
structure for the ligand. The tree structure helps in connecting 
primitive fragments or radicals to determine the right 
candidate solution for the ligand that best suits to the active 
site of the protein. The swarm evolutionary algorithm to be 
employed randomly connects the radicals and then filters 
unwanted connection by providing higher penalty to the 
resulting trial solutions. The process of random selection is 
continued until an appreciably good ligand structure is 
selected based on its ‘fitness’ measure. 

A ‘fitness function’ is generally introduced in a meta-
heuristic algorithm to determine the desired solutions for an 
optimization problem. Naturally, the better the formulation of 
the fitness function, the better is the expected quality of the 
trial solutions. In the present context of the ligand docking 
problem, optimal selection of the ligand is inspired by 
minimization of an energy function that determines the stable 
connectivity between the protein and the ligand. So, the 
fitness function here is an energy function, whose 
minimization yields trial solutions to the problem. 

In this paper, the CHARMM energy function [7] is used 
as a scoring function to evaluate the affinity between the 
ligand and the protein. It is based on decomposition of the 
ligand binding energy into individual interaction terms such 
as van der Waals energies, electrostatic energies, bond 
stretching, bending, and torsional energies, etc., using a set of 
derived force-field parameters. 

In [1], fixed length genetic algorithm (GA) is used to 
evolve molecular structure of possible ligands that bind to a 
given target protein. The molecules are represented by tree-
like structure, composed of atoms at the nodes and the bonds 
as links. Evidently, an a priori knowledge of the size of the 
tree is difficult to obtain. Another approach for ligand design, 
which is based on variable length representation of trees on 
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both sides of the pharmacophore, was studied by 
Bandopadhyay et al. [2]. However, the approach is restricted 
to build the ligand in two-dimensional space from a small 
suite of seven functional groups. Furthermore, the fitness 
value of the ligand is determined by the measure of van der 
Waals force only.  

This paper has significantly improved the work proposed 
in [2] because of the following reasons. 1) It uses a new 
representation for the ligand utilizing dynamic memory 
allocation technique, 2) It constructs the ligand using a larger 
suite of fragments, 3) It optimizes both intra- and inter-
molecular docking energies of the docked molecule, and 4) 
ABC with its ability to handle combinatorial explosion 
appears to be very promising to the ligand design problem 
addressed here. It can be seen from the results that, ABC 
based optimization model has performed quite satisfactorily 
in comparison with Variable string-length Genetic Algorithm 
(VGA) as proposed in [2]. 

The rest of the paper is organized as follows. In section 2, 
we explain the formulation of protein- ligand docking 
problem. Section 3 depicts the principles used to predict the 
ligand structures. In section 4, we describe the artificial bee 
colony optimization algorithm used to find the best ligand 
structure. The pseudo-code for solving the given constrained 
optimization function is scripted in Section 5. We present the 
experimental results for six proteins in section 6. Section 7 
concludes the paper.   

2 Formulation of the Problem 
In protein- ligand docking problem, the objective is to 

minimize the energy. Firstly the internal energy of the ligand 
should be minimized for better stability of the ligand. This 
intra-molecular energy calculation is based on the calculation 
of interaction energy of the different functional groups within 
the ligand and incorporates the bond stretching, angle 
bending, and torsion terms. The inter-molecular energy 
value, which is thereafter optimized, is the interaction energy 
between the ligand and the active site of the receptor protein. 
This energy calculation is based on the proximity of the 
different residues in the active site of the receptor protein to 
the closest functional groups in the ligand and their chemical 
properties. The inter-molecular non bonding interaction 
energy is computed in terms of the van der Waals energy and 
the electrostatic energy. 

Hence, in order to perform a qualitative analysis of the 
conformation of ligands in large space, there is a need of 
some cost or energy functions, commonly known as force 
fields. In this work the CHARMM force fields are considered 
to evaluate the cost of the conformations which is commonly 
known as Chemistry at HARvard Macromolecular 
Mechanism. CHARMM models the dynamics and 
mechanism of macromolecular system using empirical and 
mixed empirical quantum mechanical force fields. 
CHARMM uses potential functions that approximate the total 
potential as a sum of bond stretching, bond bending, bond 
twisting, improper potentials which are used to maintain 
planar bonds, plus potentials representing the nonbonded van 
der Waals and electrostatic interactions. 

The energy of the bond stretching is approximated as 

)( 0

2
bbond bbKV                             

where Kb is a constant that depends on the identity of the two 
atoms sharing the bond in a ligand, b is the length of the bond 
and b0 is the unstrained bond length in equilibrium. 

The energy of the bond bending is approximated as 

)( 0

2
angle KV    

where Kθ is a constant that depends on the three atoms 
defining the angle θ within a ligand, θ is the angle between 
the atoms and θ0 is the unstrained angle in equilibrium. 

Determination of the energy of bond twisting (dihedral 
energy) requires four atoms of a ligand to define the bond 
and the amount it is twisted. It is approximated as  

))ncos(1(KV dihedral   
where Kχ and δ are constants that depend on the adjacent 
atoms, n is an integer that depends on the number of bonds 
made by atoms, and χ is the value of the dihedral angle.  

Improper forces or potentials are artificial forces or 
potentials that are used to hold a group consisting of one 
central atom that is bonded to three others in a particular 
configuration. The potential that is used in CHARMM for 
improper dihedrals of a ligand is  

)( 0

2
improper KV    

where Kψ is a constant and ψ is the improper angle that 
depends on the coordinates of the atoms and ψ0  is the 
equilibrium improper angle. 

More elaborate force field may include the Urey-Bradley 
term given as 

)( 0

2
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where KUB is the Urey-Bradley force constant, S is the 
distance between two atoms separated by two covalent bonds 
(1, 3 distance) and S0 is the equilibrium distance. 

Therefore, the intra-molecular energy of a ligand or 
bonded energy is given by 
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Van der Waals interactions between two atoms within the 

active site are approximated with a Lennard-Jones potential 
as 
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where εi,j is the Lennard-Jones well depth, r is the distance 
between atoms i and j, Rmin,i,j is the minimum interaction 
radius. 

The electrostatic interaction between two atoms is 
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where qi and qj are the charges of the two atoms, r is the 
separation, and ε is the dielectric constant of the surrounding 
medium. 

Hence, the inter-molecular or nonbonded energy between 
the ligand and receptor protein is given as 
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So the basic functional form of CHARMM force field to 
perform qualitative analysis of conformations of ligands is 
represented as follows.  

bondnonbondCHARMM VVV   
As mentioned before, a low total energy corresponds to a 

better solution with greater stability. Accordingly, the fitness 
value, fit, of a conformation is defined in this work as 

CHARMMV
1fit   

A few constraints for ligand building are incorporated in 
the objective function for the proposed optimization problem. 
Non-bonding interaction energies are calculated for the 
fragments constituting the ligand having distance not more 
than 5Å (range for the force to be applicable) and not less 
than 0.65Å (to avoid steric hindrance), from the interacting 
atom on the protein receptor molecule. A few chemical 
preferences are considered. For example, a polar hydroxyl 
group should be oriented in a way so that it lies close to 
positively charged groups on the protein active site.  
3 Formation of a Ligand 

In the proposed work, we consider that the ligands are 
built using the fragments from the suite as mentioned in Fig. 
2. A doubly linked list tree-like structure is used to represent 
a ligand conformation such that the ligand size can vary with 
the active site dimension. Each node of this tree-like structure 
symbolizes one of the fragments chosen from the suite as in 
Fig. 2 and the edges between two nodes represent the bonds 
between two fragments. 

In the present context, we represent a node by a structure 
containing (n+2) fields, where the first field is a fragment 
number from Fig. 2, the second field is the valency of the 
fragment, and the third onwards successive (n-1) fields 
represent pointer variables to other node structures which 
may be connected with their parent in a tree structure. Fig. 1 
gives a pictorial representation of a node. 

A simple example of the connection of HCCH   
using H ,  CC  and H is illustrated in Fig. 3(a). Fig. 
3(b) elucidates a structure encoding but-1, 3-yne as one 
additional construction of HCCCCH  in the form 
of a tree. 

 
Fig.2: A library of forty one fragments (groups) used building the ligands 

 
(a) 

 
 
 
 
 
 
 
 
 

(b) 
Fig.3. Pictorial representation of a solution encoding (a) acetelene (b) but-1, 
3-yene 

4 Artificial Bee Colony Optimization 
algorithm (ABC) 

In ABC algorithm, the colony of artificial bees contains 
three groups of bees: 
 Onlooker- waiting on a dance area to choose a food source  
 Employed-going to the food source visited by it previously  
 Scout- carrying out random search of food sources  

In ABC algorithm, the position of a food source 
represents a possible solution of the optimization problem 
and the nectar amount of a food source corresponds to the 

Fragment 
no. ‘i’ 

Valency of 
fragment ‘i’ . . ….…. . 

C        C C        C H   H 

node B node C 

node D node A 

                                             Pointer Fields 
                                           (No. of Pointer fields= valency of fragment ‘i’) 
 
Fig.1. Pictorial representation of a node in the tree-structure of a ligand 
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    (10) 
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fitness of the associated solution. The number of employed 
bees and onlooker bees is equal to the number of solutions in 
the population. ABC consists of following steps: 

4.1 Initialization 
ABC generates a randomly distributed initial population P 

of Np solutions (food source positions) where  Np denotes 
the size of population. Each solution Xi (i=0, 1, 2,…, Np -1) 
is a D dimensional vector.  

4.2 Placement of employed bees on the food sources  
An employed bee produces a modification on the position 

in her memory depending on the local information (visual 
information) as stated by equation (13) and tests the nectar 
amount of the new source. Provided that the nectar amount of 
the new one is higher than that of the previous one, the bee 
memorizes the new position and forgets the old one. 
Otherwise she keeps the position of the previous one in her 
memory. 

4.3  Placement of onlooker bees on the food sources  
An onlooker bee evaluates the nectar information from all 

employed bees and chooses a food source depending on the 
probability value associated with that food source, pi, given 
as 

             







1Nj
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j

i
i p
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fitp                                       (12) 

 where fiti is the fitness value of the solution i evaluated by 
its employed bee. After that, as in case of employed bee, 
onlooker bee produces a modification on the position in her 
memory and memorizes the position of better food source 
only. 

In order to find a solution  Xi
/ in the neighborhood of Xi, a 

solution parameter j and another solution Xk are selected on 
random basis. Except for the value of chosen parameter j, all 
other parameter values of Xi

/ are same as in the solution Xi, 
for example, Xi

/= (xi0, xi1, …, xi(j-1), xij
/, xi(j+1), …, xi(D-1)). The 

value of  xij
/ parameter in Xi

/ solution is computed as follows: 
      xij

/ = xij +u(xij- xkj)                                               (13) 
where u is a uniform random variable in [-1, 1] and k is any 
number between 0 to Np-1 but not equal to i.  

4.4 Placement of scout bee on the abandoned food source  
 In the ABC algorithm, if a position cannot be improved 

further through a predefined number of cycles called ‘limit’, 
the food source is abandoned. This abandoned food source is 
replaced by the scout by randomly producing a position. 
   After that again steps (B), (C) and (D) will be repeated until 
the stopping criteria is met. 

5 Solving the Constraint Optimization 
Problem using ABC 

In this section we propose a solution to the ligand design 
using ABC. A potential ligand is encoded by a food source in 
ABC. In every step of the optimization algorithm, bond 
length, bond angles and dihedral angles are calculated for 

every encoded ligand for fitness evaluation. An algorithm 
outlining the scheme is discussed below: 
Pseudo Code: 
Input: Coordinates of active site of receptor target protein P (active_site_P). 
Output: Desired ligand structure L for receptor target protein P. 
Begin 
  Call ABC (active_site_P); 
End. 
Procedure ABC (active_site_P) 
Begin 
  Initialize all the food sources Xi and triali=0, for i=0, 1, ..., Np-1, as in Fig.1 

& 3 within active_site_P using fragments from Fig.2 and algorithm 
parameters like “limit”.  

  Evaluate the fitness (fit (Xi)) of the population using (11) after decoding Xi. 
  For Iter=1 to Maxiter do 
   Begin 
    For each employed bee do 
     Begin 
      Produce a new solution Xi

/ from (13);  
      Calculate its fitness value  fit (Xi

/) using (11) after decoding Xi
/ as in 

Fig.3; 
       If  fit(Xi

/)> fit(Xi)Then Xi  Xi
/; triali=0; Else triali= triali +1;        

       End If; 
End For; 
For each onlooker bee do 

Begin 
Select the food source  Xi depending on pi as in (12);  
Produce new solution  Xi

/ from (13);  
Calculate its fitness value fit (Xi

/) using (11) after decoding as Xi
/ in 

Fig.3; 
       If  fit(Xi

/)> fit (Xi) Then Xi  Xi
/;  triali=0; Else   triali= triali +1;              

       End If; 
End For; 

    Memorize the best solution best_sol obtained so far; 
    Set index arg (max (triali)); 
     If trialindex >limit Then reinitialize  Xindex by scout bee; 
     End If; 
  End For; 
  Update: L   best_sol; 
Return. 

6 Experiments and Results 
The experiment was carried out on a simulated 

environment on Intel Core 2 Duo processor architecture with 
clock speed of 2GHz using MATLAB. Population size for 
ABC is taken to be 50 and the algorithm is run for 200 
generations. In each generation, each of the food sources is 
decoded to obtain the corresponding ligand structure. The 
three dimensional structure of this ligand is obtained using 
ChemSketch software. The ligand thus designed is docked 
with the corresponding receptor protein using PatchDock 
[http://bioinfo3d.cs.tau.ac.il/PatchDock/]. Results are taken 
for different possible positions of the ligand within the active 
site, and the evolved ligand having the lowest energy value is 
taken as the solution. The evolvable structures of the ligand 
for the breast cancer type 1 susceptibility protein (BRCA1) 
are presented in Fig. 4. 

For the experiments, five more different proteins are 
considered. These are HIV-I Nef, HIV-I Integrease, HIV-I 
Capsid, HIV-1 Protease and thrombin. The active sites 
conformations of these proteins are obtained from Protein 
Data Bank [http://www.rcsb.org/pdb/home/home.do] and 
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Active Site Prediction Server [http://www.scfbio-
iitd.res.in/dock/ActiveSite.jsp].  HIV proteins are responsible 
for the acquired immunodeficiency syndrome (AIDS), a 
condition in humans in which progressive failure of 
the immune system allows life-threatening opportunistic 
infections and cancers to thrive. Thrombin is a serine 
protease essential for blood coagulation. It hydrolyzes 
fibrinogen to fibrin for activating platelets to form the clot. 

Fig. 5(a)-9(a) show the two-dimensional structure of the 
ligands evolved using VGA as proposed in [2] for the five 
different proteins. Fig. 5(b)-9(b) represent the three 
dimensional structure of the complex obtained in PyMOL 
after docking of the designed ligand into the active site of 
corresponding receptor protein molecule. 

The two-dimensional structure of ligand molecule evolved 
using ABC are pictorially represented in Fig. 5(c)-9(c). Fig. 
5(d)-9(d) show the three-dimensional geometries of the 
protein- ligand docked molecules for the corresponding five 
proteins. Fig. 10(a)-(e) show the active site of the proteins 
after docking as obtained from PyMOL software. As is 
evident from the figures, the designed molecules using 

ABC are found to fill up the active site reasonably well. 
For the sake of comparison, the energy values of the ligands 
(obtained by the VGA based method and ABC based 
method) as well as those of the ligand-protein complexes are 
computed and are presented in Tables I and II.  

Lower internal energy value of ligands suggests better 
stability of the ligand. As seen from Table I, in all the cases 
ABC provides more stable ligands that are associated with 
lower energy values except for HIV-1 Protease. Significantly 
lower energy values of the molecules designed using the 
proposed ABC algorithm indicates more stable receptor 
ligand complexes as evident from TABLE-II. The ligands 
designed by the proposed algorithm are generally smaller and 
comprise of less aromatic groups (Fig. 4(c)-8(c)), causing 
less steric hindrance and better interaction with the target 
protein, in comparison to the ligands designed by the other 
method. 
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Fig. 4. Evolvable ligand structure for breast cancer type 1 susceptibility protein in each step of ABC- based simulation
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Fig. 5(a) & (b). Using the VGA based method for HIV-1 Nef protein (a) Structure of the evolved ligand molecule (b) Interaction of the ligand (represented 
as dots) with the protein (represented as sticks)  
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Fig. 5(c) & (d). Using the ABC- based method for HIV-1 Nef protein (c) Structure of the evolved ligand molecule (d) Interaction of the ligand (represented 
as dots) with the protein (represented as sticks)  
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Fig. 6(a) & (b). Using the VGA based method for HIV-1 Integrease protein (a) Structure of the evolved ligand molecule (b) Interaction of the ligand 
(represented as dots) with the protein (represented as sticks)  
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Fig. 6(c) & (d). Using the ABC- based method for HIV-1 Integrease protein (c) Structure of the evolved ligand molecule (d) Interaction of the ligand 
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Fig. 7(a) & (b). Using the VGA based method for HIV-1 Capsid protein (a) Structure of the evolved ligand molecule (b) Interaction of the ligand 
(represented as dots) with the protein (represented as sticks) 
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Fig. 7(c) & (d). Using the ABC- based method for HIV-1 Capsid protein (c) Structure of the evolved ligand molecule (d) Interaction of the ligand 
(represented as dots) with the protein (represented as sticks) 
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Fig. 8(a) & (b). Using the VGA based method for HIV-1 Protease protein (a) Structure of the evolved ligand molecule (b) Interaction of the ligand 
(represented as dots) with the protein (represented as sticks) 
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Fig. 8(c) & (d). Using the ABC- based method for HIV-1 Protease protein (c) Structure of the evolved ligand molecule (d) Interaction of the ligand 
(represented as dots) with the protein (represented as sticks) 
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Fig. 9(a) & (b). Using the VGA based method for Thrombin protein (a) Structure of the evolved ligand molecule (b) Interaction of the ligand (represented as 
dots) with the protein (represented as sticks) 
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Fig. 9(c) & (d). Using the ABC- based method for Thrombin protein (c) Structure of the evolved ligand molecule (d) Interaction of the ligand (represented as 
dots) with the protein (represented as sticks) 

TABLE-I 
Energy values of the ligands corresponding to target proteins (Kcal/mol) 
Process HIV-1 

Nef 
HIV-1 

Integrease 
HIV-1 
Capsid 

HIV-1 
Protease 

Thrombin

VGA 4.04 3.35 3.51 2.84 -2.09 

ABC -5.53 -9.23 2.84 4.76 -8.68 

 
 

TABLE-II 
Interaction energy values of the ligands with protein targets(Kcal/mol) 

Process HIV-1 
Nef 

HIV-1 
Integrease 

HIV-1 
Capsid 

HIV-1 
Protease 

Thrombin 

VGA 2.86 3.05 -5.97 2.06 1.97 

ABC -12.27 1.36 -4.01 -10.34 -10.09 

 
 

               
                      (a)                                              (b)                                           (c)                                               (d)                                            (e) 
Fig. 10(a) to (e). Interaction between ligand molecule (represented by cyan) within active site after docking using the ABC- based method for (a)HIV-1 Nef 
(b) HIV-1 Integrease (c) HIV-1 Capsid (d) HIV-1 Protease (e) Thrombin 
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TABLE-III 
Comparison of structures, intra- and inter-molecular energies of ligands obtained from Binding Database, ABC and VGA-based simulations 

 
In order to determine the synthesizability and the 

correctness in predicting the ligand structure corresponding 
to the target protein, we refer to the Binding Database 
(http://www.bindingdb.org/bind/index.jsp). The structures of 
the ligand molecules obtained from the Binding Database, 
VGA and ABC- based simulations are listed in Table- III 
along with their corresponding intra and inter-molecular 
energy values, corresponding to a fixed target protein. As 
evident, the structures as well as the docking energy values of 
the ligands designed using ABC are closer to those proposed 
by the database. This indicates in general the ligands 
conformations obtained by ABC- based simulation are more 
stable. 
7 Conclusion 

A novel method for protein ligand docking using dynamic 
memory allocation with doubly linked list node 
representation is proposed .The  proposed algorithm is 
observed to optimize the energy of protein –ligand compound 
close to the benchmark and also better than that of VGA as 
verified by  experimental results. The proposed technique can 
be used to provide a powerful exploratory tool for the 
medicinal synthetic chemist, to evolve molecular structure 
once the functional protein is given. 
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Proteins 

Ligand conformation 

Binding Database ABC- based simulation VGA- based simulation 

Structure 
Intra-

molecular 
energy 

Inter-
molecular 

energy 
Structure 

Intra-
molecular 

energy 

Inter-
molecular 

energy 
Structure 

Intra-
molecular 

energy 

Inter-
molecular 

energy 

BRCA1 -5.28 -12.48 

 

-2.57 2.08 

 

3.56 2.23 

HIV-1 Nef -10.43 -23.14 

 

-5.53 -12.27 

 

4.04 2.86 

HIV- 1 
Integrease 

 

-15.04 -25.25 

 

-9.23 1.36 
 

3.35 3.05 

HIV-1 
Capsid 

 

-9.77 -10.82 

 

2.84 -4.01 

 

3.51 -5.97 

HIV-1 
Protease 

 

-7.76 -21.27 

 

4.76 -10.34 

 

2.84 2.06 

Thrombin 

 

-10.81 -41.35 

 

-8.68 -10.09 

 

-2.09 1.97 
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Protein Query Language: A Novel Approach 
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Abstract - This paper introduces a Protein Query Language 
(PQL) for querying protein structures in an expressive yet 
concise manner, utilizing the work of Patel [1] and 
introducing constructs in principal similar to those in Roldan-
Garcia [2]. One of the objectives of the paper is to 
demonstrate how such a language would be beneficial to 
protein researchers to obtain in-depth protein data from a 
relational database without extensive SQL knowledge. The 
language features options such as limiting query results by 
key protein characteristics such as methyl donated hydrogen 
bond interactions, minimum and maximum phi and psi angles, 
repulsive forces, CH/Pi calculations, and other pertinent 
factors. In addition, front end applications can be developed 
to support retrieving, transforming, and preprocessing of 
information from the Research Collaboratory for Structural 
Bioinformatics (RCSB) [3] into the backend data repository. 
 
Keywords: Proteomics; Bioinformatics; Query Languages; 
Protein Query Language. 

 

1 Background 
  One of the major challenges facing biology and 
biochemistry researchers is the ability to view relationships 
among protein data, structures, functions, and pathways in a 
single query or at least in a concise and expressive manner 
[4]. For example, biochemists are performing cutting edge 
research into carbon-donated hydrogen bonds and their effect 
on protein structures [5]. To do so, they require data at the 
atomic level of the protein to perform calculations such as 
determining methyl-donated hydrogen bonds, repulsive 
forces, and CH/Pi interactions. Yet no online database is 
known to exist which supplies experimental data in an easy-
to-use format at the atomic level without parsing the data 
manually, nor do tools exist to facilitate the calculations once 
data is parsed. To support their research, chemists have been 
downloading files from the RCSB in Protein Data Bank 
(.pdb) format, parsing data manually, and loading data into 
spreadsheets to perform calculations. This approach is tedious 
and potentially error prone, and spreadsheet limitations as 
well as other limiting factors obviate the need for a more 
efficient solution. For example, it is complicated in 
spreadsheets to answer the question “find all ‘acceptor’ atoms 
(i.e., oxygen, nitrogen, sulfur, or carbon) in a given model 
and chain of a protein within +/- 5 angstroms of a hydrogen 
atom which is considered potential methyl-donated hydrogen, 
and calculate the distance between the two atoms.” In 

addition, the number of atoms alone in large proteins may not 
fit within older spreadsheet program row limitations.  

1.1 Dataset Repositories 
 Research chemists around the world do have access to 
various public protein data sources, but the access is not 
designed to support processing and retrieval at the atomic 
level. Online ‘databases’ supporting biochemistry research 
include Genbank, EMBL Data Library in the UK, the DNA 
Data Bank of Japan (DDBJ), and COLUMBA [6]. In essence, 
the only known public access to these databases is via a 
supplied front-end, and the returned data is formatted for user 
reading rather than for storing the data into a database for 
further processing and analysis.  
 
Genbank provides meta level information about research 
performed on a given protein. Researchers can view what 
chains have been investigated, and download the meta data in 
a variety of formats including variations of XML. Researchers 
may view sequence alignments, and view pictures of what the 
protein chain looks like. However, this meta level is of 
insufficient detail for performing the atomic level research 
required. 
 
Protein research data can be obtained via sites like the EMBL 
Data Library in the UK and the RCSB. The protein data is 
submitted to the RCSB by research investigators performing 
atom-level X-Ray crystallography, Nuclear Magnetic 
Resonance (NMR), and other types of studies. From these 
sites, researchers can download text files in a variety of 
formats (.pdb, .mmCIF, .xml and others) containing the 
detailed information required for research, yet the researcher 
has to parse the files to obtain the required detail data. Doing 
so for multiple files is a laborious process. In addition, error 
checking within the file and across multiple files for 
conditions which would preclude the researcher from using 
the protein is again a laborious process. These error 
conditions include but are not limited to: 1) atoms too close 
together in a given residue based on the van der Waals radius 
and/or in comparison to the average distance from one atom 
to another over multiple proteins; 2) atoms too close together 
across residues within a given protein under similar 
considerations as #1. In this research relational queries 
against a preliminary data model have already been written to 
find or confirm several active protein files on the RCSB 
where data is in an obvious error state. 
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Trissl presents a high level data model [6] as seen in Figure 1. 
This includes data from PDB, KEGG, SWISSPROT, CATH, 
SCOP, and others.  

Figure 1: COLUMBA high-level schema 
 

BioMolQuest [7] and iProt [4] both discuss importing protein 
data at the atomic level into a relational database. Also, Pryor 
and Fetrow discuss a relational database named PDB-SQL 
built in MySQL to handle protein-specific data at the atomic 
level [8]. The high level data model of PDB-SQL can be seen 
in Figures 2 and 3. In addition, this application was built for a 
specific purpose and had limited support for atom level data. 
Pryor proposed an extension to this model with fifty one (51) 
atom-level tables, one for each type of atom that may be 
included in a protein file. 

Figure 2: Base schema. The residue table would store the only 
atom-level detail, and only on carbon atoms. 

 

Eltabakh et al discussed an extensible database engine for 
biological databases [9][10]. The proposed engine “extends 
the functionalities of current DBMSs with (1) annotation and 
provenance management including storage, indexing, 
manipulation, and querying of annotation and provenance as 
first class objects in bdbms, (2) local dependency tracking to 
track the dependencies and derivations among data items, (3) 
update authorization to support data curation via content-
based authorization, in contrast to identity-based 
authorization, and (4) new access methods and their 
supporting operators that support pattern matching on various 
types of compressed biological data types.” While interesting, 
the focus of these researches is on annotation and provenance 
tracking, and is not the primary focus of this paper. However 

the concepts of annotation and provenance should be kept in 
mind during database design and maintenance. As 
demonstrated, there have been multiple attempts to import 
detailed protein data into relational databases. Yet the 
resulting database and data is either hidden by a front-end 
interface or is not available to the general public.  

Figure 3: Extended schema: 'alpha_carbon' and 'beta-carbon' 
are representatives of the 51 atom-level tables. 

1.2 Protein Data Parsing 
 As mentioned above, protein data obtained 
experimentally does exist and can be downloaded in .pdb, 
.mmCIF, and .xml formats. The .pdb format is designed for 
easy human reading. The .mmCIF and .XML formats are 
more structured in design, and use a data dictionary 
infrastructure [11]. These files may be downloaded from the 
RCSB via a web interface or via FTP. Software tools to parse 
the files include, but are not limited to, BioJava, BioPython, 
and CIFPARSE-OBJ. Software tools to facilitate loading the 
data into relational databases include but are not limited 
BioJava, BioSql, and “Db Loader”. A list of tools is available 
at the RCSB site [12] and the Bioinformatics Link Directory 
(Biolinks]. BioJava was chosen to parse .pdb files. More 
detail on this approach, including strengths and weaknesses, 
is expanded upon later. 
 
1.3 Query Tools 
 Online tools exist to find primary and secondary protein 
sequences, and to compare related primary sequences across 
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proteins [13][14]. However, there are no known tools which 
support querying the secondary structure of proteins, one of 
the goals of this research. And, again, there are no known 
tools for querying data at the atomic level. 
 
The current dearth of tools for querying protein data can be 
likened to the banking industry some thirty years ago, where 
procedural rather than declarative code was written to access 
data. This made for fragile code from an architectural 
standpoint. This research provides a declarative query 
language against standard relational databases and 
investigates the strengths and impedances of this approach in 
consideration of the vast data sets involved and the various 
query types that may be necessary.  
 
Patel describes a declarative protein secondary structure query 
language as well as an efficient implementation using 
histograms and optimization [1]. Since secondary structures at 
their simplest form can be described using an alphabet of 
three character (h=helices, e=beta-sheets, and l=turns or 
loops), a secondary structure for a given protein might be 
“eeeeeeeeelllllhh.” Patel suggests expressing the secondary 
structure sequences as a series of segments. The above 
example secondary structure would be represented as nine (9) 
e’s, five (5) l’s, and two (2) h’s. Patel then suggests a query 
language based on a triplet predicate of the form <type, min 
length, max length> where type refers to whether the segment 
is a helix, a beta-sheet, or a loop/turn, and the min length and 
max length refer to the length of the segment being queried. 
In addition, the type can be a wildcard. So, for example, a 
query such as <e 8 10><? 3 5><h 2 2> would match the 
example, since the first segment is of type ‘e’ and has length 9 
(between 8 and 10), the second segment type matches the 
wildcard and is of length 5 (between 3 and 5 units long, 
inclusive), and the last segment matches the type ‘h’ and is 2 
units long. The query would then be translated into SQL and 
executed against the database. Assuming the full sequence 
data is stored in the table protTbl and the segment data is 
stored in the table segTbl, the equivalent SQL code would be: 
 
SELECT *  
From protTbl p, segTbl s1, segTbl s2  
WHERE   s1.type = ‘e’  
  AND s1.length BETWEEN 8 AND 10  
  AND s2.type = ‘h’  
  AND s2.length = 2  
  AND s1.id = s2.id  
  AND s1.id = p.id  
  AND s2.start pos-(s1.start pos+s1.length)<=5 
  AND s2.start pos-(s1.start pos+s1.length)>=3 

 
Note how the second segment in the query needs to be written 
as a relation between the first and third segment. For anyone 
unfamiliar with SQL, writing such a query might be a 
daunting task, and subject to error. As such, the proposed 
query language is an elegant way for researchers to query 
secondary structures of proteins. The language as developed, 
however, does not extend into the atomic level. In addition, 
this language does not operate against multiple columns in the 
same table or across multiple tables. 

Although the subject area is the Semantic Web instead of a 
relational database, Roldan-Garcia proposed an interesting 
logic-based language named Extended Conjunctive Queries 
(ECQ) [2]. An example stated in the paper is: 
 
ans(?x,?y)fullprofessor(?x)  
OR assistantprofessor(?x)  
AND worksfor(?x,%university%)  
AND >=3 teacherof(?x,?y) AND  
ALL course(?y) 

 
which after processing would translate to the SQL query: 
 
SELECT distinct u1.url, u2.url  
FROM uri index u1, uri index u2, worksfor 1 p w1, 

teacherof 1 p t1, course 1 c c1  
WHERE u2.id=t1.object and url1.id=w1.subject  
        AND w1.subject=t1.subject AND (w1.subject in 

(SELECT url FROM fullprofessor 1 c) OR 
w1.subject IN (SELECT url FROM 
assistantprofessor 1 c )) and 
t1.object=c1.id w1.object in (SELECT ua.id 
FROM uri index ua, worksfor 12 p w1a WHERE 
ua.id=w1a.object AND ua.url LIKE 
’%university%’) AND t1.subject IN (SELECT 
subject FROM teacherof 1 p GROUP BY subject 
HAVING COUNT(DISTINCT object) >=3 ) AND 
t1.object=c1.url AND t1.subject IN (SELECT 
t1a.subject FROM teacherof 1 p t1a GROUP BY 
t1a.subject HAVING COUNT(DISTINCT 
object)=(SELECT count (DISTINCT object) FROM 
teacherof 1 p WHERE subject=t1a.subject AND 
object IN (SELECT url FROM course 1 c) GROUP 
BY subject)) ORDER BY u1.url 

 
An ECQ expression has the form:  

ans(V1,V2,V3,…,Vn)  Q1 AND Q2 AND … Qn 
 
where each Qi can take the form:  

1. C(x) 
2. P(x,y) 
3. C(x) OR D(x) 
4. ALL C(x) 
5. <=n P(x,y) 
6. >=n P(x,y) 
7. =n P(x,y) 

 
where C and D are class names, P is a property name, x and y 
are instance names or variables, and n is a natural number. 
The simplicity of ECQ’s approach may be useful in the target 
query language. 
 
Another language with interesting features is TQL, proposed 
by Conforti et al [15]. Again, TQL is a language for semi-
structured data that can be used to query XML, but is built on 
set comprehension in the tradition of SQL and other 
languages. An example stated in the paper of a query in TQL 
would be: 
 
FROM $Bib |= .bib[.book[.year[1991] And .title[$t]]] 
SELECT title[$t] 
which should be read: “there is a path .bib[.book[ ]] that 
reaches a place that matches .year[1991] And .title[$t], i.e. a 
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place where you find both a path .year[] leading to 1991 and a 
path .title[ ] leading to something, that you will call $t”. 
 
2 PQL 
 The Protein Query Language (PQL) is declarative in 
nature. Users of the language have access to the following 
features: 

 
1. Users may utilize familiar terms when referring to proteins, 

models, chains, residues, atoms, and other chemistry terms. 
The underlying relational model is abstracted from the user. 

2. The ability to use mathematical, boolean, and string 
functions as part of the language. However, constructs such 
as conditionals and looping are supported at this time. 

3. The user shall be able to save PQL constructs for later 
utilization. 
 

2.1 Grammar 
 The grammar for the PQL was developed in Backus-
Naur Form (BNF) using the grammar constructs provided 
within a software package named Gold-Parser Builder. The 
SQL statement was used to calculate the potential methyl-
donated hydrogen bonds for a given protein, and therefore 
represents a practical example in biochemistry research. It can 
be easily seen the PQL representation of this calculation may 
be much easier for a non-SQL expert to develop. Further 
explanation of the grammar follows below. 
 
The grammar is divided into five (5) distinct areas, two (2) of 
which are required and three (3) of which are optional as 
described here: 

 
1.  EQUIVALENCE (optional): An example best illustrates 

the use of an equivalence statement. Say, for example, in 
some portions of their query a user would like to reference 
a hydrogen atom as ‘h’ for brevity, whereas in other 
sections it might be more instructive to reference that same 
hydrogen atom as ‘hydrogenAtom’. A user may add the 
equivalence statement ‘h hydrogenAtom’ with the 
semantics ‘h is the same object as hydrogenAtom’. 

 
2.  INSTANCE: At least one statement required. An instance 

statement allows a user to tie an instance variable to a 
‘table’, or in user-terms a group of chemically related 
items. For example, the statement:  

 
  Protein(p).Model(?).Chain(?).Residue(r).Atom(a) 
 

    allows the user to tie the instance variable ‘p’ to a protein 
structure, ‘r’ to a residue structure, and ‘a’ to an atom 
structure. In the ASSIGNMENT and CONSTRAINT 
sections, the user can place stipulations on how these 
instance variables are bound. The ‘?’ variables are used as 
wildcards. In addition, multiple statements using the same 
instance variable tie statements together. For example: 

 

Protein(p).Model(m).Chain(c).Residue(r).Atom(c)   
Protein(p).Model(m).Chain(c).Residue(r).Atom(h) 

 
    means in essence that atom instance variables ‘c’ and ‘h’ 

share the same protein, model, chain, and residue. Again, 
in the ASSIGNMENT and CONSTRAINT sections the 
user might further restrict ‘c’ to be a carbon atom, and ‘h’ 
to be a hydrogen atom. ‘Fields’ within the instance variable 
can then be accessed in the ASSIGNMENT, 
CONSTRAINT, and RESULTS sections. For example, an 
atom has an atom name and potentially X, Y, and Z co-
ordinates (if it has 3-D data associated with it). In the 
above example, these fields within the hydrogen structure 
would be accessed as h.atomName, h.xcoor, h.ycoor, 
h.zcoor. The user would have a list of the accessible fields 
per structure. 

 
3.  ASSIGNMENT (optional): An assignment statement takes 

the form: 
 
a. thetaAngle=ThetaAngle(chDist,cxDist,hxDist) 
b. tempName = StringAdd('C', 

Subtring(h.atomName,2, Len(h.atomName)-
2),'%') 

c. s = A AND B OR C 
d. h.atomName = "H11" 

 
Assignment can be made to a temporary variable (e.g., 
tempName) or to an instance variable’s field (e.g., 
h.atomName). Assignments can include combinations of 
boolean, string, and mathematical expressions.  
 

4. CONSTRAINT (optional): The user can constrain certain 
conditions on the resultant returned data. Examples of 
constraint statements include: 
 
a. cxDist >= 4.2 
b. thetaAngle BETWEEN 150.0 AND 210.0F 
c. carbonAtom.atomName LIKE ('C' + 

Subtring(h.atomName,2,Len(h.atomName)-2) + 
'%') 

d. carbonAtom.atomName LIKE "CH11" 
 
Constraints can include combinations of boolean, string, 
and mathematical expressions.  

 
5.  RESULTS: At least one statement is required. Result 

statements are where users specify what the returned 
dataset looks like and how it is sorted. Typical statements 
look like: 

 
a. h.atomName ASC 1 
b. tempString as carbonAtomName DESC 2  
c. tempString2 DESC 3 NO OUTPUT 

 
User can specify an instance variable field (e.g., 
h.atomName) or a temporary variable (e.g., tempString) as 
well as an optional output name for that variable (e.g., 
‘carbonAtomName’ above) and an ascending or descending 
order (e.g., the ‘ASC x’ and ‘DESC y’ portions of the 
statements above). The result set is returned in the column 
order specified line-by-line, and sorted in the order 
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specified by the ASC (or ASCENDING) and DESC (or 
DESCENDING) sub-statements. Lastly, user can specify 
‘NO OUTPUT’ to restrict a given Result statement from the 
output. 

 
Users also have access to useful ‘method’ calls in the 
ASSIGNMENT and CONSTRAINT sections including 
methods such as: 
  
1. Distance(atom1,atom2) 
2. Distance(xcoor1,xcoor2,ycoor1,ycoor2,zcoor, 

zcoor2) 
3. ThetaAngle(distance1to3,distance1to2,distanc

e2to3) 
 

3 Conclusion 
 As detailed above, the vast preponderance of 
computational tools available to protein researchers seem to 
concentrate on predictions at the amino acid residue level, 
including prediction of the secondary state. Important 
biochemistry research is being done at the atom level, yet 
little or no computing tools are publicly available to 
biochemists to support this work. The PQL language is an 
attempt to provide an intuitive declarative language within 
query application to researchers who are unfamiliar with SQL 
coding. The PQL query system allows users to interrogate a 
relational database containing protein data downloaded from 
the RCSB Protein Data Bank. Users can create queries to 
identify important research interactions between methyl-
donated hydrogen bonds, amine repulsions, and CH/Pi 
interactions. We expect users of the new system to gain 
significant insight into research areas such as the tertiary 
structure of proteins. 
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Abstract - One of the most pressing problems of the post 
genomic era is identifying protein functions. Clustering 
Protein-Protein-Interaction networks is a systems biological 
approach to this problem. Traditional Graph Clustering 
Methods are crisp, and allow only membership of each node 
in at most one cluster. However, most real world networks 
contain overlapping clusters. Recently the need for scalable, 
accurate and efficient overlapping graph clustering methods 
has been recognized and various soft (overlapping) graph 
clustering methods have been proposed. In this paper, an 
efficient, novel, and fast overlapping clustering method is 
proposed based on purifying and filtering the coupling matrix 
(PFC). PFC is tested on PPI networks. The experimental 
results show that PFC method outperforms many existing 
methods by a few orders of magnitude in terms of average 
statistical (hypergeometrical) confidence regarding 
biological enrichment of the identified clusters. 

Keywords: Protein-Protein Interaction networks; Graph 
Clustering; Overlapping functional modules; Coupling 
Matrix; Systems biology 

 

1 Introduction 
  Homology based approaches have been the traditional 
bioinformatics approach to the problem of protein function 
identification. Variations of tools like BLAST [1] and Clustal 
[2] and concepts like COGs (Clusters of orthologous Groups) 
[3] have been applied to infer the function of a protein or the 
encoding gene from the known a closely related gene or 
protein in a closely related species. Although very useful, this 
approach has some serious limitations. For many proteins, no 
characterized homologs exist. Furthermore, form does not 
always determine function, and the closest hit returned by 
heuristic oriented sequence alignment tools is not always the 
closest relative or the best functional counterpart. Phenomena 
like Horizontal Gene Transfer complicate matters 
additionally. Last but not least, most biological Functions are 
achieved by collaboration of many different proteins and a 
proteins function is often context sensitive, depending on 
presence or absence of certain interaction partners. 

 A Systems Biology Approach to the problem aims at 
identifying functional modules (groups of closely cooperating 

and physically interacting cellular components that achieve a 
common biological function) or protein complexes by 
identifying network communities (groups of densely 
connected nodes in PPI networks). This involves clustering of 
PPI-networks as a main step. Once communities are detected, 
a hypergeometrical p-value is computed for each cluster and 
each biological function to evaluate the biological relevance 
of the clusters. Research on network clustering has focused 
for the most part on crisp clustering. However, many real 
world functional modules overlap. The present paper 
introduces a new simple soft clustering method for which the 
biological enrichment of the identified clusters seem to have 
in average somewhat better confidence values than current 
soft clustering methods. 

2 Previous Work 
 Examples for crisp clustering methods include HCS [4], 
RNSC [5] and SPC [6]. More recently, soft or overlapping 
network clustering methods have evolved. The importance of 
soft clustering methods was first discussed in [7], the same 
group of authors also developed one of the first soft clustering 
algorithms for soft clustering, Clique Percolation Method or 
CPM [8]. An implementation of CPM , called CFinder [9] is 
available online. The CPM approach is basically based on the 
“defective cliques” idea and has received some much 
deserved attention. Another soft clustering tool is Chinese 
Whisper [10] with origins in Natural Language Processing. 
According to its author, CW can be seen as a special case of 
the Random Walks based method Markov-Chain-Clustering 
(MCL) [11] with an aggressive pruning strategy. 

Recently, some authors [12, 13] have proposed and 
implemented betweenness based [14] Clustering (NG) method, 
which makes NG’s divisive hierarchical approach capable of 
identifying overlapping clusters. NG’s method finds 
communities by edge removal. The modifications involve node 
removal or node splitting. The decisions about which edges to 
remove and which nodes to split, are based on iterated all pair 
shortest path calculations. 

In this paper, we present a new approach, called PFC, 
which is based on the notion of Coupling matrix (or common 
neighbors). In the rest of the paper, we first describe PFC and 
compare its results with the best results achieved by the 
aforementioned soft approaches. The second part of this work 

114 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



aims to illustrate the biological relevance of soft methods by 
giving several examples of how the biological functions of 
overlap nodes relate to biological functions of respective 
clusters. 

3 PFC Method 
The method introduced here is based on the purification 

and filtering of coupling matrix, PFC. PFC is a soft graph 
clustering method that involves only a few matrix 
multiplications/ manipulation. Our experimental results show 
that it outperforms the above mentioned methods in terms of 
the p-values for MIPS functional enrichment [15] of the 
identified clusters. The PPI net works we used in the paper are 
yeast PPI networks (4873 proteins and 17200 interactions). 

Liu and Foroushani [16] proposed aPFC filtering by 
simple, local criteria. In this paper, we propose a new PFC 
approach, filtering by corroboration. 

3.1 Filtering by Simple, Local Criteria 

 The first Filtering approach is motivated by 
assumptions about the nature of the data and size of the target 
clusters. PPI data are for the most part results of high 
throughput experiments like yeast two hybrid and are known 
to contain many false positive and many false negative entries. 
For certain, more thoroughly studied parts of the network, 
additional data might be available from small scale, more 
accurate experiments. In PFC, the emphasis lies on common 
second degree neighbors and this can magnify the effects of 
noise. Under the assumption that Nodes with low degree 
belong in general to the less thoroughly examined parts of the 
network, it is conceivable that the current data for the graph 
around these low nodes contains many missing links. Missing 
links in these areas can have dramatic effects on the 
constellation of second degree neighbors. This means the 
Coupling data for low degree nodes is particularly unreliable. 
On the other hand, many extremely well connected nodes are 
known to be central hubs that in general help to connect many 
nodes of very different functionality with each other, hence, 
their second degree neighbors compromise huge sets that are 
less likely to be all functionally related. Additionally, it has 
been shown that most functional modules are meso-scale [6]. 
There are also some fundamental physical constrains on the 
size and shape of a protein complex that make very large 
modules unlikely. Taking these considerations into account, a 
filter is easily constructed by the following rules: 

Discard all clusters (rows of purified coupling matrix) where 
the labeling node (the _th node in the _th row) has a 
particularly low (< 14) or particularly high (>30) degree. 
Discard all clusters where the module size is too small (<35) 
or particularly large (>65). 

The selected minimum and maximum values for degree 
of labeling nodes and module size are heuristically motivated. 

The intervals can be easily changed to obtain or discard more 
clusters, but the enrichment results for these intervals seem 
reasonably good. The peak log value for the enrichment of 
selected clusters is at -91.00 and the average lies at -18.99. 
Using this filter, by clustering yeast PPI networks, PFC yields 
151 clusters from 52 different Functional categories. Figure 1 
gives an example. 

 

Figure 1 This Figure shows the community for the row 
labeled “YKL173w” in the purified coupling matrix of yeat 
PPI network. It is one of the clustered selected by PFC1. Out 
of the 63 proteins in this community, 58 belong to MIPS 
Funcat 11.04.03.01.  

3.2 Filtering by Corroboration 

 Filtering by local criteria gives impressing results but it 
does not guarantee that a few of the remaining clusters do not 
overlap in majority of their elements. Although PFC is an 
overlapping clustering algorithm, very large overlaps between 
clusters are bound to indicate presence of redundant clusters. 
At the same time, repeated concurrence of large groups of 
proteins in different rows does reinforce the hypothesis that 
these groups are indeed closely related, and that the 
corresponding rows represent a high quality cluster. These 
observations can be used to construct an alternative filter that 
removes both low quality and redundant clusters from the 
coupling matrix. The main idea is that a line A is corroborated 
by a Line B if the majority of nonzero elements in A are also 
nonzero in B. The following summarizes this filter:  
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Given the sparse nature of the involved matrices, this 
Corroboration based filter can be implemented very 
efficiently in Matlab. It discards by design redundant clusters 
(out-degree>0 in the confirmation graph indicates that there is 
a similar cluster with a higher rank) and retains only high 
quality clusters (clusters with a high in-degree in the 
confirmation graph have been confirmed by presence of many 
other clusters with similar structure). The ranking by row sum 
helps consolidate and summarize relevant parts of smaller 
clusters into larger ones. Figure 2 gives two examples of 
clusters selected by this approach on Yeast-PPI network. 
 

 

Figure 1: Two of the clusters selected by PFC2. The left 
Figure shows the selected community for the row labeled 
“YDR335w” in the purified coupling matrix. Out of the 35 
proteins in this community, 29 belong to MIPS Funcat 
20.09.01(nuclear transport). The right Figure shows the 
selected community for the row labeled “YKL173w” in the 
purified coupling matrix. It is one of the clustered selected by 
PFC1. Out of the 63 proteins in this community, 58 belong to 
MIPS Funcat 11.04.03.01(Splicing).  

 

4 Experimental Results and Discussions 
The results of the PFC are compared with results 

obtained by other soft clustering methods. A PPI network of 
yeast with 4873 Nodes and 17200 edges is used as the test 
data set. The other methods are an in-house implementation of 
Pinney and Westhead‘s Betweenness Based proposal [12], 
Chinese Whisper [10], CPM as implemented in C-Finder [9]. 
Whenever other methods needed additional input parameters, 

 

 
 
 
 
 
 
 
 
 
 
 
 

 we tried to choose parameters that gave the best values. The 
results from different methods are summarized in Table 1. 

 

4.1 Biological Functions of Overlap Nodes 

The hypergeometric evaluation of individual clusters is 
the main pillar in assessing the quality of crisp clustering 
methods. For soft clustering methods, further interesting 
questions arise that deal with relationships between clusters. A 
possible conceptual disadvantage, production of widely 
overlapping, redundant clusters was addressed in previous 
sections. Figure 2 is a clustering results of the PFC. The result 
demonstrates an important advantage of soft methods against 
crisp ones: They show how soft clustering can adequately 
mirror the fact that many proteins have context dependent 
functions, and how in some cases overlap nodes can act as 
functional bridges between different modules. 

Table 1 Comparison of results from different methods 
Method Cluster 

Count 
Average 
Cluster 
Size 

Average 
Enrichment 

Network 
Coverage 

Diversity 

Betweenness 
based 

20 302.70 -15.11 0.58 19/20 

Chinese 
Whisper 

38 23.45 -12.11 0.17 32/38 

C Finder 68 14.50 -15.70 0.19 48/68 
PFC1 183 44.76 -19.35 0.31 55/183 
PFC1 40 25.4 -19.40 0.17 36/40 

Figure 3. result #1: The dominant function for the left module 
is translation initiation (10 out of 31) for the right module, it 
is nuclear mRNA splicing (27 out of 33); both overlap nodes 
are involved in translation initiation and Protein-RNA 
complex assembly. 

Given the Binary version of the Purified Coupling Matrix � 
Calculate Overlap Matrix � = � ∗ � 
Normalize �(�, �) by Size of Module � 
Calculate Corroboration Matrix 
 = 	 �		�	./	�		�  
 Where: 0.5 < � ≤ 1 ; and “./”  is the Matlab cellwise division. 
Calculate Common Corroborator Matrix 
 Com= 
 ∗ 
′	
Rank the rows of  
com by the sum of their entries 
Interpret 
com as description of a directed Confirmation graph between clusters, where the direction of 
confirmation is from lower ranked to higher ranked rows. 
 Select clusters whose in-degree in the confirmation graph is higher than a threshold and whose out degree is 0. 
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5 Conclusions 

 This paper introduced PFC, a new clustering concept 
based on purification and filtering of a coupling (common 
neighbor) matrix. It discussed a very different filtering 
method. PFC consists of only a few matrix multiplications and 
manipulations and is therefore very efficient. The PFC 
outperforms current soft clustering methods on PPI networks 
by a few orders of magnitude in terms of average statistical 
confidence on biological enrichment of the identified clusters. 
The paper illustrated the importance of soft clustering 
methods in systems biology by giving a few concrete 
examples of how the biological function of the overlap nodes 
relates to the functions of the respective clusters. 
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Abstract: 

Background 

The C. elegans genome has been extensively annotated by the wormbase consortium that uses 
state of the art bioinformatics pipelines, functional genomics and manual curation approaches, as 
a result the identification of novel genes in silico in this model organism is becoming more 
challenging and require novel approaches.  The oligonucleotide-oligosaccharide binding fold is a 
highly divergent fold where proteins sequences of the family in spite of having the same fold 
share very little sequence identities (5-25%).  Therefore, sequence based annotation evidences 
may not be sufficient to identify all the members of this highly divergent family.  In C. elegans 
the number of OB fold proteins reported is remarkably low (n=46) compared to other 
evolutionary related eukaryotes such as yeast S. Cerevisiae (n=344) or fruit fly D. melanogaster 
(n=84). Genomics rearrangements during evolution may have occurred or differences in the level 
of annotation for this protein family may explain these discrepancies.   

Methodology/Principal Findings 

This study examines the possibility that novel OB fold coding genes exist in the worm. We 
developed a bioinformatics approach that uses the most sensitive sequence-sequence, sequence-
profile and profile-profile similarity searches methods followed by OB-fold 3D-structure 
prediction as a filtering step to eliminate false positive candidate sequences.  We have predicted 
18 coding gene containing the OB-fold.  Remarkably, most of their corresponding genes have 
not or partially been characterized in C. elegans.  

Conclusions/Significance 

Further study of the function of these novel candidates is critical to enhance our understanding of 
the biology of this family.  This study raises the possibility that the annotation of highly 
divergent protein fold families can be improved in C. elegans.  Similar strategies could be 
implemented for large scale analysis by the wormbase consortium when novel build and version 
of the genome sequence of C. elegans or other evolutionary related species are being released. 
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Introduction 

Bioinformatics analysis of the complete genome sequence of C. elegans by the wormbase 
consortium initially revealed over 19000 coding genes [1].  When the genome of C. elegans 
closely related species C. briggsae was sequenced and comparative analysis was performed 
between both species 6% more coding genes were predicted (20261 coding genes) [2].  Since 
bioinformatics annotation pipeline from the wormbase consortium are evolving new protein-
coding genes are constantly being predicted.  As such, the latest version of the C. elegans 
genome sequence (WS228) predict (24610) coding genes  [3] which may indicates that novel 
protein-coding genes remains to be identified considering that twice more genes have been 
predicted using gene prediction algorithm. Novel approaches can be developed to explore 
different search spaces that may reveal even more protein-coding genes. 

Indeed, additional evidences suggest that more protein may exist in C. elegans in the case of old 
protein fold families that have evolved long time ago from divergent (or convergent) evolution 
[4].  Such protein family members are renowned to be difficult to identify by conventional 
sequence alignment software since they share very little sequence identity.  The OB fold is one 
example [5]. The domain is a compact structural motif frequently used for nucleic acid 
recognition.  It is composed of a five-stranded beta-sheet forming a closed beta-barrel. This 
barrel is capped by an alpha-helix located between the third and fourth strands.  Structural 
comparison and analysis of all OB-fold/nucleic acid complexes solved to date confirms the low 
degree of sequence similarity among members of this family arisen from divergent evolution [6]. 
In addition, Loop connecting the secondary structures elements are highly variable in length 
making them difficult to compare at the sequence level.  In C. elegans the number of predicted 
proteins containing Ob-fold is remarkably low compared to other related organisms by evolution.  
The number of OB fold proteins vary widely from human (256 OB fold proteins), mouse (246 
OB fold proteins), yeast (Saccharomyces cerevisiae) (344 OB fold proteins) to fruit fly 
(Drosophila melanogaster) (84 OB fold proteins) and C. elegans (46 OB fold proteins at the time 
we started this project). Genomics rearrangements during evolution may have occurred or 
differences in the level of annotation for this protein family may explain these discrepancies.   

The identification of distant related sequences or remote homologues from functional domain 
families has been extensively improved this last decade.  Methods that can detect intermediate 
sequence to connect sequences sharing insignificant BLAST scores between each other have 
been implemented ([7,8]).  Sequence-sequence and sequence-profile alignment algorithm 
BLAST [9] and PSI-BLAST [10] have been cited more than 60000 times.  The sensitivity and 
alignment quality depend on the information that is used to compare proteins. The most sensitive 
methods use sequence-profiles or profile-profile alignments (Table 1. Sequence Discovery 
Module).  They contain position-specific substitution scores that are computed from the 
frequencies of amino acids at each position of a multiple alignment of related sequences. Further 
improvement have been remarkable by the introduction of Hidden Markov Model [11] and 
profile hidden markov model [12] that can compute more accurately gap, insertion and deletion 
in the alignments compared to previous methods.  Moreover, fold recognition methods that build 
a 3D structure model of a protein sequence from a sequence alignment have been very efficient 
in their ability to align correctly sequence/profile to profile of known structure (Table 1. 
Structure Discovery Module).  Building model that are very similar structurally to the templates 
structure from these alignments can been used to validate a correct alignment especially if such 
alignment is between sequence that have very low sequence similarities.  More recently, many 
bioinformatics studies suggest that consensus methods that pool together the results of different 
software that perform similar tasks perform better than isolated methods. 

This study examines the possibility that novel OB fold coding genes exist in the worm. We 
developed a consensus approach that uses the most sensitive sequence-sequence, sequence-
profile and profile-profile similarity searches methods followed by OB-fold 3D-structure 
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prediction as a filter to eliminate false positive candidate remote sequences.  We have predicted 
18 coding gene containing the OB-fold.  Remarkably, most of their corresponding genes have 
not or partially been characterized in the worm.  Few of them are essential genes since their 
knockout produces embryonic lethal phenotypes. 

Results 

From the 46 proteins used to generate the profile by MEME [13] and PSI-BLAST about 200 
candidate proteins that may contain OB fold were identified by SeqDIM.  Further validation by 
the StrucDIM package confirmed the OB fold prediction for only brc-2 and pot-1. This finding 
was not far from our expectation, since many OB fold family members share less than 10% 
sequence similarity between each others, which is consistent with the high degree of sequence 
divergence of this family that occurred during evolution. Therefore even though very sensitive 
sequence alignment methods are used, detection of novel OB fold proteins remained difficult. 

Since very divergent sequences that do not share significant sequences identity may have the 
same fold and considering the conserved structure of OB-fold, we used fold recognition methods 
of StrucDIM to investigate if more of OB fold proteins could be obtained directly.  The 
underlying assumption is that if a correct model can be build by comparative modeling using a 
sequence alignment between a protein sequence of an OB fold of known structure with an OB 
fold candidate sequence then the sequence alignment is significant if the model is correct.  It 
allow us to put some confidence in the pairwise alignment of sequences that share a level of 
sequence identity below the twilight zone (25% identity) since sequence alignment statistics 
cannot determine their significance at this level of identity.  Effectively, un-correct alignments 
do not generate well folded homology models. Using this direct approach, 4300 sequences from 
a dataset of genes present in the germline of C. elegans [14] were submitted directly to fold 
recognition servers using StrucDIM. This dataset is expected to be enriched in genes involved in 
DNA processes including DNA repair and replication which mostly posses OB fold 3D-
structure. 

By this direct approach, we determined that 35 out of 46 of the known OB fold proteins in C. 
elegans were present and predicted in this dataset [14]. These results confirm that the dataset is 
enriched in OB fold sequences.  It also shows that StrucDiM approach is valid and can be used to 
further identify novel Ob fold protein coding genes. Indeed, further analysis of these results 
revealed that we were correct since we could obtain 18 novel OB fold candidate proteins that 
have not been predicted previously to our knowledge (Table 2). However it should be noted that 
the Ob fold 3D-structure of the human homologue pot-1 has been recently deposited in the 
Protein Data Bank (PDB accession number: 1XJV).  

To further identify additional OB fold gene coding proteins we searched for orthologues and 
homologues of the identified candidates in both human and C. elegans.  Using the protein family 
orthologues, and paralogues module in the comparative genomics toolbox of ENSEMBL 
database we were able to identify 3 additional candidates homologues of pot-3 (pot-2, mrt-1, 
F48E8.6) and one homologues of F25B5.5 (Y92H12BL.2). We expected to see these proteins 
also have OB fold similar to their paralogues. In addition, we then used phyre2 a protein fold 
recognition server [15] to predict the structure of these proteins. As expected, all candidates were 
confirmed to contain OB fold. These 4 novel OB fold proteins  had not been previously predicted 
and annotated in wormbase however for 2 of them (mrt-1 and pot-2) we found one publication 
mentioning about these two genes as containing OB fold domain [16]. 

Discussion 

One important question regarding this study is why the annotation of these genes has been 
missed from wormbase.  The obvious lack of sequence similarity among members of this family  
is one possible explanation since it makes these proteins undetectable through sequence based 
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searches. This is consistent with our inability to identify novel OB fold protein coding genes 
using SeqDIM module. On the contrary, we showed that structural based methods are more 
robust at predicting OB fold proteins and these methods are generally not considered in genome 
annotation pipelines which may explain why many of these OB fold containing genes have not 
been annotated 

Regarding the genes that have been identified it is remarkable that most of these genes have not 
been well studied (Table 3).  However, a significant fraction of these genes seems to perform 
important function during development and are essential genes since RNAi phenotype (EXOS-3) 
as well as knockout when available shows embryonic lethality.  It includes protein coding genes 
involved DNA replication and repair (F12F6.7, BRC-2) and growth rate and reproduction 
(EXOS-1, C05D11.10, F10E9.4) as well as the protection of telomere protein POT-3 involved in 
telomere maintenance.  Other OB fold candidate proteins do not seems to be essential during 
development since they only shows no or non-lethal phenotype.  Those include gene coding 
proteins involved in nucleic acids and RNA binding (EXOS-2) a component of the exosome 
complex (with EXOS-1 and EXOS-3), DIS-3, ZK470.2, W08A12.2, T07C12.12, F25B5.5 as 
well as POT-1 involved in telomere maintenance.  To annotate further the function of these 
genes we look at protein-protein interaction in the STRING [17] and BIOGRID [18] database, no 
interactions were found for most of them in BIOGRID database with the exception of  EXOS-3, 
C05D11.10, POT-1, BRC-2  that interact with genes involved in cell division,  nucleic-acid 
binding and RNA processing, DNA repair for BRC-2  and POT-1 involved in IGF signaling, 
lifespan extension and longevity. 

We have shown that comparative modelling approaches are a powerful tools to identify novel 
protein coding genes with interesting and uncharacterized functions even in a genome and 
proteome of a model organism as extensively annotated as C. elegans  

Material and methods: 

Input sequences: 

Protein sequences used in this study to identify novel OB fold proteins were obtained from the 
46 OB fold known proteins in wormbase and an enriched data set of 4300 expressed genes in the 
germ line  of C.elegans [14].  This data set should be enriched in novel genes containing OB fold 
since OB fold proteins are generally involved in many DNA transaction and DNA repair process 
such processes are highly actives in C. elegans germline (). 

Consensus Discovery Pipeline: 

The pipeline has 3 modules (i) Sequence based Discovery Module (ii) Structure based 
Discovery Module and filtering (iii) Functional Discovery Module: 

Sequence based Discovery Module: 

From the 46 OB fold known proteins in C. elegans a position specific scoring matrix of OB fold 
motifs were built using PSI-BLAST [10] as well as a Hidden Markov Model using MEME [13] 
from sequences of the nr database.  Each of the profiles were subsequently submitted to different 
database scanning software using sequence-profile based alignment methods against 
wormpep210 protein sequence database.  For the profile-profile HHSenser [19] methods the 
database to scan for was made-up of sequence profiles of all the known protein families.  For 
each methods default threshold of significance were used to select for novel candidate OB fold 
protein sequences   
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Structural Discovery Module 

The 4300 sequences from claycomb et al. as well as the 200 sequences OB fold candidates 
obtained from SeqDiM were submitted to the consensus fold recognition metaserver [20] to 
perform and confirm fold prediction.  This method collects and score many different fold 
prediction results using the 3D jury consensus method from a protein sequence [21].   Model 
building for predicted OB fold motif in candidates were further performed by modeller [22] from 
metaserver alignment results and resubmitting candidate sequence to the 3D structure prediction 
server I-tasser [23].  Model quality and validation were further performed using TM-align [24]. 
A TM-score < 0.2 indicates that there is no similarity between two structures; a TM-score > 0.5 
means the structures share the same fold. 

Functional Discovery Module 

To gain some insight into the function of the novel OB fold candidates discovered, protein-
protein interaction databases, subcellular localization and gene ontology predictors were 
interrogated (Table 1. Function Discovery Module). 
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Figures 

 

 

 

Figure 1. Discovery Pipeline of novel OB fold protein coding genes.  It contains 3 
Discovery Modules.  SeqDIM: Sequence alignment DIscovery Module; StrucDIM:3D 
Structure prediction Discovery Module; and a Functional prediction Discovery Module 
FuncDIM. 
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Tables 

Table 1: Tools used in this study. 

Tools Description Reference 

Sequence Discovery 
Module 

  

PSI-BLAST Position-Specific Iterative Basic Local Alignment Search 
Tool 

Altschul et al. 1990 [10] 

MEME Motif based Hidden Markov Model of protein families  Grundy et al. 1997 [13] 

HMMER Bio-sequence analysis tool using profile hidden Markov 
Models 

Eddy, 1998 [12] 

HHpred Homology detection & structure prediction tool by HMM-
HMM comparison 

Soding et al. 2005 [25] 

COMPASS Alignment tool of multiple protein sequence profiles  Sadreyev et al. 2007 

[26] 

HHsenser Exhaustive intermediate profile search tool using HMM-
HMM comparison 

Soding et al. 2006 [19] 

Saturated-BLAST Automated toolbox that implement the multiple 
intermediate sequence search method 

Li et al. 2000 [7] 

   

Structure Discovery 
Module 

  

MetaServer A Server that submit and collect fold recognition results 
from different methods and makes 3D-prediction using a 
consensus approach called 3D-jury. 

Bujnicki et al. 2001 [20] 

I-Tasser Protein 3D-structure prediction server that uses threading 
methods 

Roy et al. 2010 [23] 

Modeller Protein 3D-structure modeling tool from target-template 
sequence alignment based on satisfaction of spatial 
restraints 

Fiser et al. 2003 [22] 

TM-Align Protein 3D-structure alignment algorithm that compute the  
TM-Score 

Zhang et al. 2005 [24] 

   

Functional 
Discovery Module 

  

BioGrid Database of Protein and Genetic Interactions Stark et al. 2006 [18] 

STRING Database of Functional protein association networks  Snel et al. 2000 [17] 

Worm Interactome A high quality yeast two-hybrid protein-protein interactions 
database of C. elegans 

Li et al. 2004 [27] 

WoLF PSORT Protein sub-cellular localization predictor Horton et al. 2007 [28] 

Kihara PFP Protein function predictor Hawkins et al. 2006 
[29] 
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Table 2: Model Quality of novel OB fold protein coding genes. 

OB fold Candidates 
target 

Template RMSD TM-score Equivalent C

superimposed 

F12F6.7  3E0J 0.9 0.91618 104/110 

F25B5.5 2QGQ 1.08 0.79684 57/64 

exos-2  2Z0S 0.39 0.91855 80/86 

exos-3  2Z0S 1.33 0.93357 66/66 

exos-1  2Z0S 0.97 0.83856 76/85 

dis-3 (First OB fold) 2IX1 2.15 0.77503 81/92 

dis-3 (Second OB 
fold) 

1UEB 3.66 0.51393 76/98 

ZK470.2 3BBN 1.22 0.90075 43/45 

C05D11.10 1HZA 1.88 0.8186 77/82 

W08A12.2 2C35 1.27 0.91183 58/59 

F10E9.4 1XJV 1.98 0.81487 61/61 

Pot-1 1L1O 1.11 0.89915 128/135 

brc-2 1XJV 3.43 0.43998 74/115 

Pot-3 3MXN 1 0.83903 115/133 

T07C12.12 1XJV 1.49 0.90455 132/139 

Pot-2 3KJO 0.4 0.86529 110/126 

mrt-1 2QGQ 1.03 0.83313 115/135 

Y92H12BL.2 1YZ6 0.62 0.89597 56/60 

F48E8.6 3E0J 2.27 0.64349 66/81 
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Table 3: Functional analysis of Novel OB folds protein coding genes.  

* refers to predicted functions. Homologues and paralogues referred to human 

OB folds WB ID Biblio RNAi 

Phenotype 

Knockout Function homologues Paral

ogs 

F12F6.7 WBGene0

0008722 

 NA Embryonic 

lethal 

ok2252 DNA replication, DNA 

binding, DNA-directed DNA 

polymerase activity 

POLD2  
polymerase (DNA 

directed), delta 2, 

regulatory subunit 

50kDa 

NA 

F25B5.5 WBGene0

0017776 

 NA NA NA RNA modification, iron-sulfur 

cluster binding,  4 iron, 4 

sulfur cluster binding, 

catalytic activity 

CDK5RAP1  

CDK5 regulatory 

subunit  

associated protein 1 

Y92H

12BL.

2 

exos-2 WBGene0

0022232 

 [30] late larval 

arrest 

NA *nucleic acid binding, RNA 

binding, 

EXOSC2  

exosome component 

2 

NA 

exos-3 WBGene0

0010325 

 [30-32] Embryonic 

lethal 

NA growth,nematode larval 

development,receptor-

mediated endocytosis 

EXOSC3  

exosome component 

3 

NA 

exos-1 WBGene0

0012966 

 [30] Embryonic 

lethal, lethal 

ok807 positive regulation of growth 

rate, reproduction 

EXOSC1  

exosome component 

1 

NA 

dis-3 WBGene0

0001001 

 [33-35] Slow growth, 

sick, sterile 

progeny 

ok357 RNA binding, ribonuclease 

activity, sequence-specific 

DNA binding, reproduction 

DIS3 mitotic control  

homolog (S. 

cerevisiae) 

F48E

8.6 

ZK470.2 WBGene0

0022745 

 [36] NA ok5876 *single-stranded telomeric 

DNA binding, ion binding, 

monosaccharide metabolism 

NA NA 

C05D11.10 WBGene0

0015487 

NA Embryonic 

lethal, lethal, 

slow growth 

ok5298 growth, nematode larval 

development, positive 

regulation of growth rate, 

reproduction 

NA NA 

W08A12.2 WBGene0

0021079 

 NA NA NA *purine nucleotide binding, 

adenyl nucleotide binding, 

cellular macromolecule 

metabolism 

NA NA 

F10E9.4 WBGene0

0017356 

 NA Slow growth, 

larval lethal 

NA growth, nematode larval 

development, positive 

regulation of growth rate, 

reproduction 

NA NA 

Pot-1 WBGene0

0015105 

 [16,37,3

8] 

organism 

development 

variant, 

telomere 

homeostasis 

variant 

NA *cAMP-dependent protein 

kinase activity, transition 

metal ion binding, ion binding 

Pot1 Protection  

Of Telomeres 1 

NA 
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brc-2 WBGene0

0020316 

[39-51] Embryonic 

lethal, lethal, 

embryonic 

arrest 

ok1629 strand invasion, double-

strand break repair, 

reproduction, single-stranded 

DNA and protein binding 

Brca1 Breast Cancer 

type 1 susceptibility 

protein 

NA 

Pot-3 WBGene0

0007065 

 [16,38] lethal ok1530 *cation binding, adenyl 

nucleotide binding, 

heterocycle metabolism 

Pot1 Protection  

Of Telomeres 1 

pot-2, 

mrt-1 

T07C12.12 WBGene0

0011576 

 [52] Embryonic 

lethal 

NA *adenyl nucleotide 

binding,rRNA (adenine) 

methyltransferase activity, 

purine nucleotide binding 

RMI1, RecQ mediated  

genome instability 1 

NA 

Pot-2 WBGene0

0010195 

[16,38] NA NA *cation binding, adenyl 

nucleotide binding, 

heterocycle metabolism 

NA pot-3, 

mrt-1 

MRT-1 WBGene0

0045237 

[16,38,53

-55] 

Sterile, lethal oK758 Nuclear excision repair, 

telomere maintenance via 

telomerase, reproduction, 

Single stranded DNA binding 

NA pot-2, 

pot-3 

Y92H12BL.2 WBGene0

0022363 

NA NA NA Iron-sulfur cluter binding CDKAL1, CDK5 

regulatory  

subunit associated   

protein 1-like 1 

F25B

5.5 

F48E8.6 WBGene0

0018612 

NA NA NA RNA binding, ribonuclease 

activity 

DIS3L2, DIS3 mitotic  

control homolog  

(S. cerevisiae)-like 2 

dis-3 
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Abstract - Rabbit polyclonal immune serum against TLP was 

produced by immunizing rabbits with the RTNKEASIC (the 

1
st
) and NQRNRD (the 2

nd
) synthetic peptides, at the 

Rockland Immunochemicals Inc, PA. Protein extraction was 

performed from three cell lines of lung carcinoma including 

A549 cells, accordingly to previously studies. Cell lysates 

were loaded into two polyacrilamide gels and then were 

transferred to the nitrocellulose membranes. One 

nitrocellulose was hybridized with the anti-TLP serum and the 

other one with the pre-immunization serum. Preliminary 

results showed two major intense bands with a molecular 

weigh of 50 and 100kDa, which should correspond to the 

monomeric and dimeric form of TLP, respectively. In 

conducting a competition assay (PCA) to verify the specificity 

of the 50 and 100 kDa bands for TLP, the antibody anti-TLP 

was pre-incubated with the 1
st
 and the 2

nd
 peptides, before its 

hybridization with the nitrocellulose. In fact, a reduced 

intensity of the 100 kDa band following the PCA assay was 

observed, suggesting its specificity for the antibody anti-TLP. 

Currently, the Rockland Immunochemicals Inc is improving 

the signal specificity by purifying the antiserum on 

chromatographic columns, through the agarose matrix and the 

1
st
  and the 2

nd
  peptides. Moreover,  next purpose will be to 

immunoprecipitate TLP from the cell lysate and to load it on 

the SDS-PAGE gel. Then, the protein band of interest will be  

excised  from the stained gel and the peptides will be extracted 

from the gel slice and the aminoacid sequence will be 

analyzed.  

Keywords: TLP, NSCL, CRC, Immunotherapy, Vaccine 
 

1 Introduction 

  Long years of research were required for 

boosting the immune system to fight cancer [1]; [2]. 

In the 1890s,  mixtures of dead bacteria were injected by 

William B. Coley into cancer patients to stimulate the immune 

system. According to Paul Ehrlich (1909) the immune system 

may suppress tumor development. In the 1960s,  both in 

animals and men neoplastic cell antigens stimulated the onset 

of specific humoral and cellular antibodies [3]. In 1972 

Immunogenecity of a soluble transplantation antigen from 

adenovirus 12  - induced tumor cells was demostrated in 

inbred hamsters (PD-4) [4].  In 1975 there was the discovery 

of Monoclonal Antibodies, highly specific immunological 

tools, and in 1980 mass-production of interferon, the immune-

stimulating molecule,  was obtained after inserting its coding 

gene into bacteria. In 1986 Interferon is approved by the Food 

and Drug Administration (FDA) for the treatment of hairy cell 

leukemia. In 1997 the FDA okays the first monoclonal 

antibody (MA) treatment against cancer (for non-Hodgkin’s 

lymphoma), and in 1998 the FDA approves the MA Herceptin 

for the treatment of metastatic breast cancer. Basic cellular 

immune response to cancer [5]: 2002 – National Cancer 

Institute researchers prove that two kinds of immune cell – 

CD4+ T cells and CD8+ T cells-are required for the treatment 

against cancer. The CD4+ cell releases cytokine molecules 

that help to activate the CD8+ cells prompting them to attack 

other cells with the same antigen. Therapeutic Vaccine 

Strategies [6]; [7]: Tumor cells are removed from a patient 

and treated biochemically or irradiated. Then the extracts of 

the dead cancer cells are reinjected, boosting the immune 

system to attack the tumor cell. Tumor liberated protein (TLP) 

boosts the immune system’s cancer responsive capabilities, 

1983 [8]. TLP may have the potential to greatly improve the 

cure rate and/or serve as a lung cancer vaccine, 1991 [9]; [10]. 

Detection of lower levels of TLP/antiTLP may be of clinical 

relevance, 1992 [11]: TLP as candidate marker for the early 

detection of  NSCL cancer. More on therapeutic Vaccine 

Strategies: Tumor – associated antigens resulting from protein 

bits, or from synthesized peptides specific for the cancer 

tissue, can be used successfully as vaccine to mount a 

vigorous antitumor attack: Development of a vaccine approach  

for therapeutical and preventive application [12]. The 

dendritic cell is an immune cell that presents specific antigens 

taken from a tumor cell to two other immune cells, the CD4+ 

and CD8+ cells. The dendritic cells of a cancer patient are 

removed and loaded with antigens from the tumor. The 

dendritic cells grow outside the body and then are reinjected, 

triggering a powerful response by the T cells [13]; [14]. The 

FAA approves the first therapeutic cancer vaccine for 

advanced prostate cancer (Provenge 2010). 

Previously, we identified a -100 kDa protein, which is 

part of a protein complex named tumor liberated 

proteins (TLP), as a promising blood marker for early 
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diagnosis of lung cancer [12]; [15]. In particular, this 

protein proved to have high specificity and sensitivity 

for stage I patients with NSCL. TLP might also 

represent a predictive marker of cell transformation 

since it is expressed in interstitial lung fibrosis. 

Moreover, TLP showed a specific immunogenic 

activity, suggesting its possible use as an anticancer 

vaccine. Indeed, it is able to induce delayed 

hypersensitivity reactions and to promote blastogenesis 

in cultured lymphocytes from patients presensitized 

with TLP.  

Research is ongoing to obtain the complete sequence of 

TLP, by proteomics approaches, in order to achieve 

adequate antigen preparations that might be used to 

generate assays for early diagnosis and, possibly, a 

specific anticancer vaccine [16]  

 

2 Results 

 According to the partial sequencing of TLP, two 

peptides were synthesized: TLP peptide 1: Ac-

RTNKEASI-Ahx-C-amide TLP peptide 2: Ac-Ahx-C-

amide-NQRNRD A mixing of the two peptides was 

administered to two rabbits in order to obtain a  

serum for subsequent analysis. Therefore different sera 

samples were taken at various dates. The capability of 

sera to recognize TLP was analyzed by Western  

blotting using protein extracts of lung cancer cell lines 

(A549, H23, H82, H187) and control lines (MET -SA, 

NL-20 and primary line of fibroblasts). The signal 

obtained by anti-TLP antibodies was found to be not very 

specific.  

In order to improve the specificity of the anti- TLP 

antiserum a Peptide Competition Assay was carried on. In 

this assay, the antibody is preincubated with the peptides  

before its use in the immunoblotting.  

The immunoblotting experiment is conducted in 

duplicate, one with the antibody preincubated with the 

peptide and the other. one with the control antibody. The  

results show a better signal quality and on the basis of 

these data," a request has been made to the company 

responsible for the production of the sera to purify the  

antibodies on a series of resins conjugated with the 

peptidesTLP1 and TLP2.  

The serum obtained after purification was found to be 

more specific, in particular a sample specifically 

recognized the band of 100 kDa and 50 kDa protein, 

presumably corresponding to the TLP. However in 

numerous subsequent analysis the data has  

not been confirmed. For this reason the company has 

been requested a new specimen of purified anti- TLP 

serum.   

In parallel several immune precipitation assays were 

carried out using cell extracts of A549 and H23 lines in 

order to obtain a precipitate containing only the TLP  

protein (Fig 1). This would allow complete sequencing 

of the protein TLP and would also exclude the possibility 

that TLP and Corin are the same protein. Corin shows 

high homology with TLP and is present in various 

isoforms in the lung.  

 

Fig. 1

Western Blot on A549 and H23 Cell Lines.

Two Exposures at Different Times of the Same Experiment

A549 A549

 

From the first analysis of the immunoprecipitation 

followed by Western blotting TLP (Fig. 2) and corin 

seem to localize at the same height (around 50kDa) and 

are recognized by the same antibodies.  

 

Fig. 2

By Western blot TLP localized at abuot 50 kDa

 
 

We are currently trying to get enough staff of 

immunoprecipitated TLP in order to make the protein 

sequence and at the same time we would like to 

immunoprecipitate fragments of the two proteins (TLP 

and Corin). If the fragments from cutting with thrombin 

proved to be the same the data would support the 

hypothesis that TLP and Corin are the same protein.  

At the same time we are arranging to get a plasmid that 

allows us to transfect and over-express human Corin with 

the purpose to assess by Western blotting (with  

anti-TLP and anti-Corin antibodies) whether the two 

proteins are actually the same protein or are different 

proteins [17].  

132 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



 

3 Conclusions 

 TLP is a tumor-associated antigen and a 100 kDa protein 

overexpressed in lung tumors and other epithelial 

adenocarcinomas [12]. It is immunogenic in humans as shown 

by serum antibodies [18].  

Since TLP is a fragment of a protein identified in extracts of 

human NSCL cancer [19]; [20] and colorectal cancers (CRC) 

[21]; [22] and its sequences stimulate cytotoxic 

immunoresponse in humans and animal models, it is possible 

to design potential active and passive immunotherapies for  

NSCL cancer and CRCs based on TLP epitopes and 

humanized antibodies [23]; [24]. 

Therefore, TLP is a platform technology that can be used for: 

- a cancer diagnostic test  to measure TLP levels in serum 

[12]; [15]; - a cancer therapy monitoring test - might measure 

changes in  TLP levels in response to therapy [11]; [15]; - a 

cancer therapy - fragments of TLP can be used to stimulate 

immune response  to attack existing tumors [10]; [25]; - a 

cancer vaccine: at-risk populations could be inoculated with 

TLP fragments to  stimulate immune response to undetected or 

newly developing tumors [26]; [27]. 

We can use sequence information to express proteins, and then 

screen against  phage antibody libraries for “pull down” for 

single chains of antibodies and test antibody against cell lines, 

colon and lung tissue microarrays.  

Finally, the ability  of the immune system to recognize TLP, 

thus enabling development of a vaccine approach for 

therapeutic application, represents a main target of this field of 

research. 
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Abstract 
 

We produce putative biological functions of over 150 

non-coding RNAs in S.c., out of over 2,800 unknowns 

RNAs,  together with an analysis that provides 

confidence levels, obtained using two major  

computational intelligence  techniques, multilayer 

perceptrons (MLPs) and Self-Organizing Maps 

(SOMs).   The identifications fall in two groups, 

depending on the level of confidence with which the 

function is being assessed (high and low). In the 

remaining group of RNAs (over 2,700), “hard core” 

RNAs remain elusive to identification.  The first two 

groups of putative categories may be representing a 

new ontology worthy of further research and 

validation by the biological community, given other 

successes in the application of MLPs and SOMs as less 

researcher-biased classification tools. Although 

analyses of microarray data are plentiful by other 

techniques, a novel contribution of this paper is that 

the analyses has been  carried  out in the  researcher-

independent ontology  implicit in the inherent 

properties of neural network, which are based solely 

on the given data.    

 

Key Words: S. cerevisiae,  biological function, 
noncoding RNA, microarrary data analysis, neural 
networks. 
 

1. Introduction 
 

The human genome project of the 1990s marked a 

critical transition in the study of biological organisms 

and has transformed theory and practice of 

experimental biology. While sequencing has been in 

itself a challenge, enormous progress has brought 

genome sequencing to the verge of a commodity that 

can be had for well under $1,000 in the near future [1]. 

As already anticipated by many, this progress has 

brought to the front the second and more important 

phase of the post-genome project era, i.e. the 

elucidation of the molecular mechanisms underlying 

the genotype-phenotype coupling.  Despite the 

enormous amount of data generated by genome 

sequencing, they pale in comparison by the 

extraordinary amount of analytic and computational 

resources required to do the bioinformatics of 

assembling an accurate picture of the complex 

molecular interactions among  genes,  RNAs and 

proteins in living cells  that sustain life. A primary 

problem in this program is the identification of the 

metabolic functions of long non-coding RNAs 

(ncRNA) usually defined as non-polyadenylated RNAs 

with greater than 200 nucleotides [8,9,10].  Intense 

research over  the past decade  or so has demonstrated 

that many noncoding RNAs participate in regulating 

cell functions including RNA splicing, RNA editing, 

transcription factor transport, translation, and transcript  

degradation [9]. 

In this paper, we focus on identifying the metabolic 

functions of non-coding RNAs (ncRNAs) in one of the 

biologist’s favorite organisms, Saccharomyces 

cerevisiae (S.c. hereafter), or baker’s yeast [11]. This 

organism was sequenced  in 1996 (the first eukaryotic 

genome that was fully sequenced, annotated, and made 

publicly available) and shown to consist of over   6,000 

genes [6][11]. Of these, about 3,000 genes code for 

proteins with known metabolic functions, but the 

remaining genes code for RNAs that do not encode 

proteins and hence their metabolic functions are 

unknown. The RNAs encoded by such genes are 

referred to as non-coding RNAs [9].    Using two 

independent techniques described in Section 3, we 

have identified the possible metabolic functions of over 

170 of these ncRNAs with greater than 90% 

confidence and propose possible molecular 

mechanisms underlying their suggested functions  in 

Section 4.  Finally, some discussion of the credibility 

of this assessment, its interpretation and general 

biological significance is presented in Section 5. 

 

2. The measurement of the transcriptome  
 

In this Section we describe the tools used and the data  
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utilized to train and enable neural network to make the 

predictions subject of this paper.     

     DNA microarrays have been used as a means to 

ascertain the possible functions  of non-protein coding 

RNAs through analyses of their transcript levels (TL). 

In the study reported in  [3],  the S.c. strain BQS252 

was grown overnight at 28 °C in YPD medium (2% 

glucose, 2% peptone, 1% yeast extract) to exponential 

growth phase (OD600 = 0.5) [3].  Cells were recovered 

by centrifugation, resuspended  in  YPGal medium 

(2% galactose, 2% peptone, 1 % yeast extract), and 

allowed to grow in YPGal medium for 14-15 hours.  

Cell samples were taken at 0, 5, 120, 360, 450 and 850 

minutes after the glucose-galactose shift.  The 850 

minute sampling time corresponded to the exponential 

growth phase in the YPGal medium. The TLs were 

measured with DNA arrays as described in [3].  The 

total amount of poly(A) mRNA per cell was measured 

and used to normalize the microarray signals. The 

original data contained readings of 5,914 mRNAs 

(ORFs) which were assigned to  531 metabolic 

pathways (henceforth referred to as “categories”) as 

illustrated in Fig. 1. Therefore, there were 2,817 

remaining RNAs (and their transcripts designated as 

ncRNAs, or noncoding RNAs) whose metabolic 

functions remain unknown. Each RNA in the data is 

identified by a name, a category (perhaps “Unknown”), 

and mRNA expression level readings taken at the six 

different time points.  

 

 
Figure 1. Histogram of the genes assigned to the 
531 biological functions (categories) in S.c 

 

3. Genomics with Multi-layer Perceptrons 
 

      To determine the biological function of the ncRNA 

(i.e., RNAs with unknown functions), several methods 

exist in the literature that would allow an “educated 

extrapolation” based on a computational analysis of 

their microarray expression profiles (also called RNA 

trajectories, or RNA traces). Techniques vary from 

statistical approaches, to neural networks, to 

evolutionary algorithms, to ad-hoc approaches such as 

chaos theory. Neural networks appear most appropriate 

for this task because of their proven generalization 

ability, based solely on a large data corpus, as is the 

case here. Fig. 1 shows the distribution of the 

frequency of these genes across the 531 categories. 

Most common among these are protein synthesis, 

transcription, transport, cytosekeleton, DNA 

replication,  mRNA splicing, cell wall genesis, protein 

degradation, glycosylation, and signaling.  

 Neural networks can be obtained through the use of 

learning algorithms that “discover” patterns in the 

known data and enable them to extrapolate answers to 

unknown data. We used two types of neural networks, 

multi-layer perceptrons (MLPs, for which supervised 

learning algorithms such as the well-known 

backpropagation are available [7, Chap 4].) Another 

approach with self-organizing maps (SOMs, for which 

unsupervised learning algorithm are available) is 

described in Section 4. Both were trained on the data 

consisting of the six-feature vectors describing the 

expression profile of a given RNA molecule. The 

reader is referred to any textbook on neural nets ([7], 

for example) for further background details about these 

types of  neural networks. 

 Input RNAs must be encoded as so-called features 

(i.e., numerical vectors) to train a neural network. 

Given the mRNA expression profile data available, the 

easiest way was to use the 6-feature mRNA expression 

level for each RNA as a 6D input, and the categories  

(biological functions) an integer 1-531 as the output. 

 To fit the model of a multi-layer perceptron, the 

known data is usually partitioned into a training set and 

a testing set. Through trial and error, it was determined 

that selecting 33% of the mRNAs with known 

categories for training and the remaining 67% for 

testing gave the best results. In order to preserve the 

proportion of RNAs in the various categories, a 

random selection was made from data in each category 

in these proportions. To avoid unintended patterns in 

the data (due to alphabetic presentation by names, for 

example) the exemplars were presented at random in 

the learning phase. The RNAs with unknown 

categories were stripped down to only their 6D-feature 

vector so they could be used as an input after testing to 

determine results. In order to improve training, 

categories with less than 30 mRNAs in them were 

excluded, as they would probably lead to memorization 

of the inputs by the MLP and thus poor generalization 

(more below.) Although that reduced the number of 

RNAs to attempt identification to 1,696 in 25 

categories, the levels of confidence for the predictions 

increases substantially by avoiding poor generalization. 

 

3.1 Training Phase 
 

There were several possible approaches to training 

a network to predict ncRNA function (as a category). 

The ideal result is a single network able to correctly 
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classify all RNAs in S.c. . This approach failed for 

such a large number of RNAs and functions despite 

many attempts in strategy for coding, for architecture 

selection and for training. However, the alternate 

approach of training an individual network for each 

category separately, was very successful for all 

categories. That means that 531 networks were trained 

on the same data (creating separate exemplar sets by 

changing the desired answer to “1” for those RNAs in 

the most frequent category “376” and “0” for all other 

RNAs, for example). Therefore a neural network was 

created by backpropagation for the purpose of 

determining whether an RNA (with known or 

unknown function) is a member of a given category or 

not. Since all the networks received the same input, 

these 531 networks can be in fact assembled to produce 

a single MLP with 6 inputs and 531 outputs, each 

feature value in the output coarsely coding for the 

categories as a 531D-Boolean vector) whose 1 values 

may produce appropriate categories for every mRNA. 

To create a specific neural network for a given 

category, the standard training procedure for MLPs 

was followed: a neural network was first created with 

randomly assigned weights with mean 0 and small std 

(standard deviation.) In addition, multiple architectures 

were used in which only the number of nodes in the 

hidden layer(s) were changed. Neurons in these layers 

were assigned sigmoid functions as transfer functions 

(such as the inverse trigonometric tangent,  arctan) for 

the input and all hidden layers and a pure linear 

function for the output neuron/node, producing a 

continuous value in the interval [0,1]  for an output to 

other neurons, or as output of the neural network.  

 In backpropagation training, there is usually an 

optimal number of epochs (i.e., repeated presentations 

of the training data) that gives high values for both. 

Many choices for the number of epochs to train with 

were used until each architecture’s optimal number of 

epochs was determined. This was achieved  by 

choosing the number of epochs where the training and 

testing percentages were the highest but there was no 

large drop off from training percentage to testing 

percentage, i.e., there was little evidence of 

“memorizing” answers. If the testing percentage is 

high (> 90%), it was considered a success because the 

probability is greater than 90% that the predicted 

category for each RNA is the correct category. 

 

3.2 Testing Phase 
 

Once optimal training and generalization rates were 

obtained, the networks were then put to use in the 

testing phase. The ncRNA in the testing set put aside 

were, naturally, coded in the same form (as a 6D vector 

array of mRNA expression levels) and given to the 

network for a specific mRNA as an input in order to 

produce a putative category in which the network 

would put each. The output determines an answer to 

membership in a given category by assigning a certain 

threshold (0.5, consistent with the data) in order to 

predict whether the RNA belongs in a given category 

(>=0.5) or not (< 0.5). The generalization performance 

(i.e., testing accuracy) is based on the percentage of 

RNAs the neural network predicts correctly for a given 

category.  

 Once the training was complete and a satisfactory 

network was obtained for each mRNA from various 

architectures using a MLP, we selected the top three 

architectures that worked effectively on the training 

and testing data for most mRNAs, as can be seen in 

Table 1 and Fig. 2. These rates are considered very 

good to excellent for the typical performance of MLPs 

in this type of problem.  The mean square error (MSE) 

over all exemplars in Fig. 2 was used along with the 

training and testing accuracy percentages to determine 

how well the neural network is predicting the 

categories among the known data, and so build some 

confidence interval for the prediction phases, as shown 

in Fig. 3. The Mean Squared Error (MSE) is the usual 

average error between predicted values (0 or 1) and 

actual network outputs for a given RNA. Therefore, the 

MSE is a measure of the overall quality of the 

predictions by the neural network. 

  

Table 1. Average Training and Testing Accuracies 
for three best MLP classification of ncRNA in S.c. 

Architecture Avg. Train % Avg. Test % 

[6 4 1] 99.84 99.82 

[6 6 3 1] 99.83 99.83 

[6 12 9 1] 99.84 99.80 

 
Figure 2. Overall performance of the MLPs on the 
3,082 known mRNAs, given by the accuracy and 
MSE in the training and testing phases. 
Consistently with the training data, a prediction is 
considered accurate if the MLP produces a 
response at or over 0.5 for a target 1, whereas it 
is in error if the value is under 0.5 for a target 0,  
Low MSEs indicate confident predictions overall. 
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Figure 3. Predicted biological function of ncRNAs 

for the testing phase by three MLP architectures.  
 

 

3.3 Prediction Phase 
 

 Once optimal architectures with high training and 

generalization rates were obtained on the known data, a 

composite neural network was used to predict 

categories based on the 6D-vector of the ncRNA with 

unknown categories as opposed to mRNA with known 

categories as in testing. The results are displayed in 

Fig. 3. The results from the three architectures are not 

equal, as expected from the results in the testing phase, 

or even within the same architecture for a particular 

mRNA, so some more detail is required.   

 The predictions can be classified into three basic 

groups. The first group consists of 153 ncRNAs that 

are being claimed to be in a unique category (i.e., 

biological process.) Fig. 4 (top) shows them, as sorted 

by the level of confidence (as defined above) with 

which the network makes the prediction;  Fig. 4 

(bottom) shows the corresponding categories.   

    The second group consists of 391 mRNAs that are 

being claimed by more than one category. This may 

appear contrary to the data, in which every mRNA gets 

assigned a unique category. Upon reflection, however, 

it makes sense biologically because an mRNA may be 

involved in several biological processes. We interpret 

RNAs in this second group as being so, on the 

evidence presented by the corpus of data.  

    The third group consists of the remaining 1,596 

mRNAs, so-called “orphans” because they were not  

assigned to any given category by the MLP. This 

conclusion  can  be  interpreted  in  two different ways. 

 

 

 
Figure 4. Predicted biological function of ncRNAs 
for the prediction phase by three feedforward MLP 
architectures that tested as shown in Fig. 3.  
 

One possibility is that the MLPs are not “smart” 

enough to tell in which category they are. The 

alternative possibility is that there are yet unknown 

biological processes that are not present in the original 

data, so that the MLP is actually discovering hitherto 

unknown processes at play in S.c., or that these 

mRNAs do not share many features with the known 

ones to allow MLPs to ascertain one category. 

 

Table 2. Classification of biological function in S.c. 
by three best performing MLP architectures. 

      \mRNA Group 
Prediction\ 

Known Unknown 

1 (Unique Cat)   171    74 

2 (Various Cats)      3      3 

3 (Orphans) 2,908 2,740 

Totals (5,899) 3,082  2,817  

 

 

4. Genomics with Self-Organizing Maps 

(SOMs) 
A second set of predictions was produced by 

categorizing the ncRNAs (i.e., RNAs with unknown 

functions) using another neural network technique, the 

so-called Self Organizing Map (SOM) [7, Chap 9]. 

SOMs afford an unsupervised learning algorithm. 

While supervised learning imposes a specific 

assignment of biological function by requiring a label 

(”teacher”) on each input for training, SOMs takes the 
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inputs with no labeling and thus produces a 

classification with no a priori assumptions about how 

the inputs should be clustered together, based solely on 

any patterns of similarity that might be identified in the 

course of training. Therefore they have the potential to 

identify objective classifying criteria that may be 

complementary (or even conflicting) with MLPs or 

even individual researchers’ ontologies, but which, on 

the other hand, might suggest some more objective 

criteria on the transcriptomics of S.c. for further 

analyses. 

 

 SOM training uses the same input as the multi-layer 

perceptron (a 6D-feature vector) but produces a so-

called topological map of “locations” or “nodes” on a 

metric space (such as a common geometric plane or 3D 

space) whose relative proximity (or distance) is 

arranged to capture the relative similarities (or 

differences, respectively) among the clusters 

represented by the various locations/nodes. Therefore, 

the features that are mapped in the prediction phase to 

the same node are close enough to be considered to 

belong to the same category. 

 

4.1 Training Phase 
 

 Various topologies were tried to develop a SOM of 

the given data, including 1D and 2D architectures of 

various sizes (18x18, 24x24, 30x30, and 40x40). 

Eventually, as before, we selected the top performing 

couple of architectures, namely 40x40 locations/nodes. 

The 6D-feature vectors of the entire set of 91 RNAs 

representing approximately the top 50%+ of the 

mRNAs with known categories with 30+ mRNAs were 

taken from the original data and used as the input to the 

SOM for training. The training consisted in presenting 

an input vector to the SOMs, identifying the location 

with maximum output on that input (called “the 

winner”), strengthening the connections to it so that 

next time the same will happen again, and weakening 

the connections to other nodes proportionally to their 

topological distance (here in the plane) from the 

winner (hence the name “winner-takes-all” used to 

describe this type of network.) The SOM maps were  

trained for 15,000 epochs (3,000 in the ordering phase 

and the rest in the converging phase [7, Chap. 7].)  

 Once trained, the SOM will do a “forward” pass 

and produce a classification into a unique location (the 

winner for that input) for any given node. RNAs  

mapped to the same node can be regarded as belonging 

to the same category, which then has to be identified 

using prior knowledge about the data. 

 

 

4.2 Labeling Phase 

 

 Once the SOM is trained, it is necessary to figure 

out the meaning of the classification being made by it, 

before proceeding to the prediction phase.  That 

requires inspection of the results in light of preliminary 

prior experience with the data in order to figure out 

what input patterns each node may be capturing.  

 Ideally, every location/node in the SOM should be 

regarded as defining a single category (here, a 

biological process), although RNAs in a category could 

be mapped to several locations, which together would 

represent that category. In particular, if a location gets 

only RNAs from a single category, it is clear it should 

represent that category. Locations capturing an 

overwhelming number of mRNAs (over 80%) from a 

single category were also considered to be “uniquely” 

labeled by that category. The full category itself is thus 

represented by all such locations.  There were 932 such 

locations and they turn out to represent about 244 

unique categories shown in Fig. 5, a hit rate of over 

94%. The top  categories labeling locations with high 

confidence are shown by the distinct labels in Table 3.  

 

 
Figure 5. Results of classification by a 40x40 
SOM for mRNAs in 91 biological functions 
capturing all unknown mRNAs, trained over  
15,000 epochs.  Shown are the 932 uniquely 
labeled locations (as described in the text) 
representing 244 (out of 259, over 94%) 
categories (biological functions) over the 1,600 
locations. The radii of the circles are proportional 
to the number of mRNAs in a category being 
mapped to each location. 
  

The remaining locations get RNAs from more than one 

category, and therefore the label (the category they 

represent) is not obvious. They might represent 

mRNAs involved in several higher-level biological 

functions. More sophisticated analyses or additional 

data may be required to produce putative single 

categories for these mRNAs. 
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4.3 Prediction Phase 

 

 Once the SOM has been labeled, we proceeded to 

obtain its classification for the unknown ncRNAs by 

presenting them to the network. This time, the 

unknown ncRNAs can be placed in two groups, those 

for which a highly confident prediction is made, and 

those for which the prediction is unclear. Some of the 

results are shown in Table 3.  Once again, further 

analyses or additional data may be required to produce 

putative categories for the latter mRNAs.  

 

 

Table 3. Summary of predicted unique 
identification with high confidence of most 
important biological function for 74 mRNAs  in 
S.c. by MLPs and/or SOMS architectures 
described above. The prediction for boldfaced 
mRNAs are matched by both types of 
architectures and therefore can be assigned a 
very high level of confidence. Other putative 
predictions are made by the MLP (second 
column) or SOM (third column) architecture only 
and so are made with less confidence (not all of 
them are shown for lack of space.) 
 

 
 

5. Discussion and Conclusions 

 

 We have used two major  computational 

intelligence techniques, MultiLayer perceptrons 

(MLPs) and Self-Organizing Maps (SOMs), to identify  

putative biological functions of over 170  non-coding 

RNAs in S.c, together with an analysis that provides 

confidence levels about the identifications being made, 

in three groups. In the first, 174 of the unknown RNAs 

are given putative biological functions by one of the 

two networks. In the second group, 26 of the remaining 

RNAs are given a putative biological function that is 

less certain but still worthy of consideration given that 

none has been hitherto been suspected. In the 

remaining group of RNAs, “hard core” RNAs remain 

elusive to classification.  The first two groups of 

putative categories may now be subjected to further 

validation by the biological community, and may be 

representing a new ontology worthy of further 

research, given other successes in the application of 

MLPs and SOMs [7]. 

 Some of the results presented here can be ported to 

other cell systems. The theory of grand unification [4] 

holds that information about a shared gene and 

associated proteins contributes to our understanding of 

all the diverse organisms that share it, so that  

knowledge of such roles illuminate and provide strong 

inference of its role in other organisms. For example, 

about 12% of the worm genes (~18,000 genes) encode 

proteins whose biological roles could be inferred from 

their similarity to their putative orthologues in S.c. (or 

about 27% of the S.c. genes) [6]. Further, most of these 

proteins have been found to have a role in the ‘core 

biological processes’ common to all eukaryotic cells, 

such as DNA replication, transcription and metabolism 

[4]. It would not be surprising if the same is true of 

genes with noncoding RNAs. 

 Finally, a word of caution is in order in assessing 

the results presented in this paper in the proper context.  

It is important to keep in mind (i) that a given category 

refers to either a gene (which is a DNA molecule) or its 

transcript (which is an RNA molecule), depending on 

the context, and (ii) that the intracellular level of an 

RNA molecule at any given time (referred to as the 

transcript level, TL) is determined by the balance of 

two factors – the transcription rate (TR) and transcript 

degradation rate (TD), which can be algebraically 

represented by the following equation:  

         

                  dTL/dt = TR – TD                                (1) 

 

where dTL/dt indicates the rate of change in TL with 

time [2]. Garcia-Martinez et al. [3]  measured both 

genome-wide TL and TR simultaneously in S. 

cerevisiae following glucose-galactose shift.  Some 

examples of their data are plotted in Figure 6.  As 

evident in Fig. 6 (top), the average behaviors of the 

glycolytic and oxidative phosphorylation, RNA 

trajectories (also called TL kinetics, TL traces, or gene 

expression profiles) reflect the metabolic functions of 

the genes coding for the RNA molecules in a goal-

directed manner.  The glycolytic RNAs decrease, since 

they are no longer needed due to the removal of 

glucose, while the oxphos RNAs are required to 

metabolize ethanol left over from the previous glucose 

metabolism and the new nutrient galactose [2, 5].    
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   One of the most surprising findings of Garcia-

Martinez et al. [3] is that the rate of change in TL, i.e., 

dTL/dt, can vary  independently of  TR.  This 

observation is supported by the fact that, although TR 

can change in the same direction for  the glycolytic and 

oxphos pathways, their TL kinetics can be opposite 

(see the TL and TR traces between 5 and 360 minutes 

in  Fig. 6, top and bottom.)  This finding cannot be 

explained unless we take into account the transcript 

degradation  rate (TD), in agreement with Eq. (1). 

Thus, an important conclusion one can draw from Eq. 

(1) is that “It is impossible to infer the genes 

responsible for metabolic functions solely based on 

analyzing gene expression profiles.” [9].  However, 

theoretical considerations strongly indicate that it 

should be possible to infer the metabolic functions of 

unknown RNAs based on the similarity of their TL 

traces with those of known RNAs [5].  Although large-

scale prediction [8] have been used before in analyses 

of microarray data, a novel contribution of this paper is 

that the analyses has been  carried out in a researcher-

independent ontology  implicit in the inherent 

properties of neural networks, which are based solely 

on the given data.    

 

 

 
Figure 6.  The average time courses of  the 
transcript levels (TL) and rates (TR) of 14 each of  
the glycolytic and respiratory (also called oxidative 
phosphorylation, or oxphos) genes, as described 
in [2]. 
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Abstract— Accurate and in-phase de novo assembly of
highly polymorphic diploid and polyploid plant genomes
remains a critical yet unsolved problem. “Out-of-the-box”
assemblies on such data can produce numerous small con-
tigs, at lower than expected coverage, which are hypothe-
sized to represent sequences that are not uniformly present
on all copies of a homologous set of chromosomes. Such
“heterotigs” are not routinely identified in current assem-
bly algorithms and could be used for haplotype phasing
and other assembly improvements for such genomes. We
introduce an algorithm which attempts to robustly identify
heterotigs present in the assembly of a highly polymorphic
diploid organism. The algorithm presented is for use with
the 454 platform and for diploid assembly, but is readily
adaptable to other sequencing platforms and to polyploid
assembly.

Keywords: heterozygous, genome, assembly, plant, heterotig,
raspberry

1. Introduction
1.1 Background

Genome assembly is a relatively young field, but one
which has been the subject of intense research. Motivated
by a desire to reconstruct the human genome as rapidly as
possible, the Whole Genome Shotgun strategy for genome
assembly was introduced [1]. In this approach, genome
structure inference is left entirely to software which takes
as input a huge number of short DNA sequences (“reads”)
sampled from the entire genome. Although this approach
was initially met with skepticism, a seminal paper provided
the necessary proof of concept [2] and, due to its simplicity
and cost-effectiveness, this approach has dominated genome
projects since.

There are two primary classes of algorithms that are
applied today to the Whole Genome Shotgun assembly prob-
lem. The first approach is referred to as the “overlap-layout-
consensus” approach and the second approach is based on
De Bruijn graphs. See [3] for a comparison of the two. We

will focus on the overlap-layout-consensus approach, but the
ideas regarding identification of heterotigs are applicable to
both.

Overlap-layout-consensus assemblers often construct a
data structure known as a “contig graph”. A contig is simply
a contiguous sequence of nucleotides inferred, via alignment
of the input reads, to be present in the target genome.
For various reasons, but primarily because of repetitive
sequence, these contigs can essentially never be extended
to full chromosome length in reasonably complex genomes,
using current technologies. For this reason, the contig graph
must represent not only the contigs themselves but also all
of the possible adjacency relationships between contigs that
are supported by the alignments. A common approach to
representing this information, and the approach used in the
454 software, is to let the vertices of the graph represent
contigs and the edges represent adjacency relationships
between contigs. Because contigs have polarity (a 5’ and
a 3’ end) the edges do not directly connect contigs, per se,
rather, they connect specific ends of contigs. For example,
an edge may indicate that the 5’ end of contig 25 is adjacent
to the 3’ end of contig 1.

Critical to the upcoming discussion is a clear understand-
ing of why assembly algorithms tend to collapse repetitive
sequence into a single contig and the effect this has on
the contig graph. Consider the case where a sequence of
nucleotides (longer than the read length) occurs in the
genome 3 times. Reads which are sampled from entirely
within this repetitive sequence will align to each other with
near perfect identity and will likely be collapsed into a single
contig (in the absence of paired-end reads which align to
unique sequences bordering the repeat). We will assume for
demonstrative purposes that the sequences adjacent to each
of the 3 copies are themselves unique. In the contig graph,
the 5’ end of the repeat contig will be adjacent to 3 different
contigs, as will the 3’ end (see Figure 1).

Notice that in Figure 1, in order to extend the contig that
is currently represented as a collapsed 3-copy repeat any
farther than the repeat sequence itself, you must accurately
select a particular pair of contigs (one adjacent to the 5’
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Fig. 1: A 3-copy repeat (collapsed in the assembly into a
single contig) in a contig graph. Each circle is a vertex in the
contig graph representing a particular contig in the assembly.
Solid lines between contigs (more exactly between specific
ends of those contigs) suggest that the contigs are adjacent
to one another in the genome. Contigs 1-6 are single-copy
contigs, each of which is adjacent to one of the 3 copies
of the repeat. Each instance of the repeat is surrounded
by a pair of contigs (one from the set {1, 2, 3} and one
from the set {4, 5, 6}). The pair of contigs surrounding a
particular instance of the repeat constitute the “context” of
that instance. When an assembly algorithm is unable to
accurately determine the context around a particular copy of
the repeat, contig extension must end at the repeat boundary.
Worse, if the algorithm extends a contig through the repeat,
but with the incorrect context, the resulting contig will
contain sequence from 2 different locations in the genome.

end of the repeat and the other adjacent to the 3’ end)
with which to extend the contig. If you are not careful you
might select contigs to use for the extension that are adjacent
to different copies of the repeat in the actual genome,
thereby constructing a contig that doesn’t actually exist in the
genome and whose 5’ and 3’ ends are in different locations
in the genome. For this reason, repeats longer than the
read length produce fragmentation of the contig graph and
consequently smaller contigs in the assembly. The correct
“context” for each copy of the repeat must be constructed
carefully, usually using paired-end reads at a known distance
and orientation with respect to each other.

1.2 Motivation
Highly polymorphic diploid and polyploid plant genomes

have proven to be particularly difficult to assemble. Plants
tolerate hybridization and polyploidization much more read-
ily than most organisms that have been assembled by the
Whole Genome Shotgun approach. These data present differ-
ent challenges to assembly algorithms than those presented
by highly homozygous diploid or monoploid organisms, for
which traditional genome assembly algorithms are primarily
designed. Notable examples of recent plant genome assem-
bly projects include the small Fragaria vesca genome [4], a

relatively heterozygous grapevine variety [5] and the large
and ultra-repetitive maize genome [6].

Rubus idaeus cultivar ‘Heritage’ is an important com-
mercial variety of raspberry which holds both biological
and economic interest. Heritage is resistant to many of the
most common raspberry diseases and has two raspberry
subspecies in its recent pedigree, namely, Rubus idaeus ssp.
strigosus and Rubus idaeus ssp. vulgatus. Such a scenario
is not unique to Heritage, and is very common in raspberry
breeding. Furthermore, hybridization, in general, is relatively
common among plants.

Despite being very similar in appearance, amenable to
hybridization, and prominent in the pedigrees of many
commercial varieties of raspberry, these two subspecies have
historically been geographically isolated with strigosus being
a North American variety, and vulgatus a Eurasian variety.
Furthermore, despite both varieties often being labeled as
subspecies of Rubus idaeus taxonomists currently favor
classifying these organisms as two different species, namely
Rubus strigosus and Rubus idaeus.

Until recently, and to a great extent even today, the
genomes of diploid and polyploid organisms have been
assembled and presented in a monoploid form. Such an
approach minimizes sequencing cost (greater depth is often
required by algorithms that attempt to perform true diploid
or polyploid assembly) and increases algorithmic simplicity
for such tasks as genome assembly, mapping reads to a
reference, and viewing a genome in a genome browser.
Despite these advantages, such an approach also has distinct
disadvantages. For example, diploid assemblies can provide
a more accurate depiction of sequence diversity within a pair
of homologous chromosomes than simple mapping back to a
monoploid reference can provide. This information can then
be used to improve numerous downstream analyses.

Genome assemblers that provide only a monoploid repre-
sentation of a diploid or polyploid organism often contain al-
gorithms that obscure sequence diversity or, worse, produce
sequence not actually present in the target genome. For ex-
ample, sequence diversity can be hidden when an algorithm
deals with polymorphic regions by simply selecting one of
the possible paths and ignoring all other possibilities. In the
context of a highly heterozygous genome, the monoploid
representation of the assembly can often “jump” between
different members of a homologous set of chromosomes.
Worse, an assembler may deal with polymorphic regions
by producing a single contig that is a composite of the
polymorphic paths in the contig graph, thereby producing
sequence that isn’t actually present on any chromosome.

With the advent of next-generation sequencing technolo-
gies, the field of genome assembly is aggressively pursu-
ing more accurate and comprehensive representations. The
Broad Institute’s ALLPATHS-LG [7] is a notable example
which represents the genome as the assembler actually sees
it, that is to say, as a graph, thereby maintaining important
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information about sequence diversity that may otherwise
have been lost. Another fascinating approach, published very
recently, applies colored de Bruijn graphs to the genome
assembly problem in an attempt to assemble multiple eu-
karyotic genomes simultaneously [8] and to handle poly-
morphism in a more disciplined way.

We introduce an algorithm for identifying contigs present
in an assembly which represent sequences that are not
uniformly present on all members of a homologous set
of chromosomes. We have chosen to call such contigs
“heterotigs”, and their counterparts, which are present on
all members of the set, “homotigs”. The algorithm pre-
sented here leverages coverage statistics, adjacency patterns
between contigs in a contig graph, and paired end reads
to identify heterotigs present in the assembly of a highly
heterozygous diploid organism, and has been designed for
use with the 454 sequencing platform, but the concepts
are readily adaptable to polyploid assembly and to other
sequencing platforms. Robust identification of heterotigs
enables differential treatment of such sequences within an
assembly algorithm and presents opportunities for producing
more accurate and more complete assemblies of highly
polymorphic species.

2. Heterotig Identification
We are now in a position to more formally define the

problem with which this paper is primarily concerned. Let
R represent a whole-genome set of sequencing reads from
a highly polymorphic diploid species. Let C represent the
set of contigs produced by an assembly of R, parameterized
so as to separate “heterotigs” as cleanly as possible. Let
E represent the set of edges in the contig graph. Let
M represent the set of all meta-data available about the
assembly, for example, alignment depths for each contig,
contig lengths, etc. Let H represent the set of contigs whose
sequence is found on only one copy of a homologous pair
of chromosomes. Given C, E, and M is it possible to
determine H to within an acceptable degree of accuracy?
We will use a whole-genome sequencing data set from
the highly heterozygous diploid organism Rubus idaeus
‘Heritage’ throughout this section as an example data set.

2.1 Inference Based on Coverage Statistics
The first question that arises in the context of identifying

heterotigs is whether the depth of the read alignment from
which a particular contig is constructed can be reliably used
to infer the number of times the nucleotide sequence that
contig represents is likely to appear in the target genome.

Consider the idealized case where read sampling from the
genome is truly random and there are no other sources of
coverage bias, for example from PCR artifacts or cloning
bias. This idealized scenario is never realized in practice
but is instructive for the real-world case which we will
shortly turn to. Consider further that the organism being

sequenced is diploid and expected to have very high rates of
polymorphism. At every base in a particular contig there is
a multiple alignment depth. Take the average of these depths
across all bases in the contig and record this value as the
“contig alignment depth”.

What might the probability density function of contig
alignment depths in a highly polymorphic diploid assembly
look like? Let’s say for illustrative purposes that we have se-
quenced the genome to 60x coverage, which is now routinely
done with the advent of next generation sequencing. For a
diploid organism, genome coverage is typically calculated
in terms of the haploid genome size (total number of bases
/ haploid genome size), so this number is equivalent to the
coverage we should expect for a single-copy homotig. We
expect single-copy homotigs to be numerous and therefore
expect a mode at approximately 60 in the probability density
function. By this same logic, if heterotigs are indeed present
in the assembly in significant amounts a mode should also
be present at about half that coverage (30x). We expect there
to be some breadth to the distribution around each peak and
so high coverage will likely be necessary to determine if the
modes are indeed present. Some of the density will be at
much higher coverage (high-copy-number repeats) but we
probably have no reason to expect that a particular copy
number is more prevalent than another for high-copy-number
repeats, so we expect no significant modes above our single-
copy homotig mode.

Let’s now turn our attention to a real-world case. A
recent whole-genome shotgun assembly project collected
high-coverage sequence data from Rubus idaeus cultivar
‘Heritage’. The sequence was assembled using the 454
assembler and the resulting contigs were queried for their
contig alignment depths (see Figure 2).

Close examination of Figure 2 illuminates several inter-
esting properties of the contigs from this assembly. First,
and most obviously, modes corresponding to our theoret-
ical peaks (one peak composed primarily of single-copy
heterotigs and another peak composed primarily of single-
copy homotigs) are clearly discernible across contigs of all
lengths. If these peaks represent what we have hypothesized,
the homotig-mode to heterotig-mode ratio should be very
near 2, as is indeed the case, with the value ranging between
2.05 and 2.17 for the sets of contigs examined. Could
there be another explanation besides the heterotig-homotig
hypothesis we have presented for the strongly bimodal
distribution? If so, the alternate hypothesis must account for
why the lower mode (lower in terms of the coverage value,
not necessarily peak height) is at nearly exactly half the
coverage of the higher mode.

More encouraging (for the purposes of heterotig identifica-
tion) than the mere presence of the peaks is the observation
that for many of the sets of contigs examined the density
between the peaks is very low, suggesting that, at least for
this data set, coverage can be used to make inference on copy

146 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



20 40 60 80

0.
00

0.
04

0.
08

CL >= 10000

Coverage

D
en

si
ty

(a)

20 40 60 80

0.
00

0.
02

0.
04

8000 <= CL <= 10000

Coverage

D
en

si
ty

(b)

20 40 60 80

0.
00

0.
02

6000 <= CL <= 8000

Coverage

D
en

si
ty

(c)

20 40 60 80

0.
00

0.
02

0.
04

4000 <= CL <= 6000

Coverage

D
en

si
ty

(d)

20 40 60 80

0.
00

0.
02

0.
04

2000 <= CL <= 4000

Coverage

D
en

si
ty

(e)

20 40 60 80

0.
00

0.
02

0.
04

1000 <= CL <= 2000

Coverage

D
en

si
ty

(f)

20 40 60 80

0.
00

0.
02

500 <= CL <= 1000

Coverage

D
en

si
ty

(g)

● ● ● ● ● ● ●

1.
0

2.
0

3.
0

Mode/Mode ratios for (a) − (g)

(a) (b) (c) (d) (e) (f) (g)

(h)

Fig. 2: (a)-(g) Probability density functions (PDFs) of contig alignment depth calculated from the set of contigs produced in an
assembly of Rubus idaeus ‘Heritage’. Contig alignment depth is defined as the mean of the single-position alignment depths
calculated at each position in the contig. Each PDF analyzes contigs within a particular length class (CL = Contig Length).
Contigs with contig alignment depths outside of the interval [20, 90] are excluded. The largest contigs are predominantly at
“homotig” coverage while the smaller contigs are predominantly at “heterotig” coverage. (h) “Homotig” peak mode over
“heterotig” peak mode ratios for (a)-(g). The minimum value was 2.05 and the maximum value was 2.17

number. The bimodal nature of the distribution is consistent
across contigs of all sizes. In contrast, the relative density
under each peak differs dramatically for contigs in different
length classes. The longest contigs are predominantly single-
copy homotigs while the shorter contigs are predominantly
single-copy heterotigs. Furthermore, as the contig length gets
smaller the density between the peaks increases, although
never enough to make the peaks difficult to see.

2.2 Inference Based on Contig Graph Structure
If our hypothesis from the previous section is accurate,

namely, that the bimodal PDFs in the previous section
suggest an extremely heterozygous diploid genome where
many of the contigs are present on only a single chromosome
(as opposed to both chromosomes of a homologous pair),
then it is safe to assume that many of the heterotigs will be
broken at boundaries where they are adjacent to single-copy
homotigs. Consider a chromosome A and its homologous
pair B. Now consider a single-copy homotig C that is
present on both A and B. On chromosome A, C is adjacent
to a single-copy heterotig D. On chromosome B, by the
definition of heterotig, C must be adjacent to some sequence
other than D, and consequently, the extension of contig C
must be broken to account for these 2 different adjacencies.
Recalling that assemblers must break contigs whenever there

is a repeat longer than the read length (see Figure 1),
notice that in the context of such extreme heterozygosity,
single-copy homotigs can behave similarly to 2-copy repeats,
having one context in one homologous chromosome and
another context in the other, providing one explanation
for the extremely bimodal PDFs presented in the previous
section.

Assuming this explanation is correct, such data are not
likely to assemble well using traditional assembly algo-
rithms. First, the assembly is likely to be extremely frag-
mented, with thousands, if not hundreds of thousands, of
small contigs. There will be many more “ambiguous” ad-
jacency relationships between contigs than would be seen
in either homozygous diploid or monoploid assemblies.
Furthermore, the extent to which homotig order is consistent
in the two members of a homologous pair is critical to
the tractability of an algorithmic solution. If the order of
single-copy homotigs is strictly consistent the problem is
greatly simplified. Under that scenario, only a few different
signature patterns should occur in the contig graph, for
example, it is probably safe to assume that under such a
condition the graph should contain numerous “bubbles”,
locations where a single-copy homotig bifurcates to two
single-copy heterotigs which both immediately converge to
a second single-copy homotig.

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  | 147



Length Class Percentage
length >= 10000 78 %
8000 <= length <= 10000 76 %
6000 <= length <= 8000 78 %
(4000 <= length <= 6000 82 %
2000 <= length <= 4000 86 %
1000 <= length <= 2000 89 %
500 <= length <= 1000 90 %

(a)

Length Class Percentage
length >= 10000 2 %
8000 <= length <= 10000 2 %
6000 <= length <= 8000 6 %
4000 <= length <= 6000 8 %
2000 <= length <= 4000 18 %
1000 <= length <= 2000 31 %
500 <= length <= 1000 41 %

(b)

Fig. 3: (a) All contigs of alignment depth between 25 and 40 in various length classes were marked as “candidate heterotigs”.
The percentages given indicate the percentage of candidate heterotigs connected on either the 5’ or 3’ end to at least one
contig end which participated in exactly 2 edges (suggestive of a homotig-heterotig boundary possibly being the cause for
contig breakage). (b) The same as (a) except the percentage now reflects the percentage of candidate heterotigs that were
found in “perfect bubbles”. See Figure 4 for the precise way in which we have defined the term “perfect bubble”.

If this scenario predominates, assembling two homolo-
gous chromosomes exhibiting extremely high heterozygosity
would, to a considerable extent, reduce to the problem of
identifying heterotigs, and subsequently treating heterotig-
to-heterotig paired-end data differently than homotig-to-
homotig paired-end data. Homotig-to-homotig paired-end
data would help lay out the structure shared between the
two members of the pair and heterotig-to-heterotig paired-
end data could help keep one chromosome separate from
the other, to as great a degree as possible, when building
contigs. Notice that the higher the rate of heterozygosity in
this scenario the better because it gives you more heterotig
anchors for keeping each chromosome “in phase”.

What about the case where the order and orientation of
the homotigs differs somewhat between homologs? This
would mean that in addition to assembly “bimodality” in
the sense of having significant populations of both heterotigs
and homotigs, there would also be assembly bimodality
in the relationships between homotigs (a certain set of
relationships prevailing on one homolog, and another set
of relationships prevailing on the other). For example, on
one chromosome, a pair of homotigs may occur at one
distance and orientation with respect to each other, yet on
the homolog, the same pair of homotigs may occur at a
different distance and/or orientation. Such a scenario would
obviously pose tremendous difficulties to traditional genome
assembly algorithms. How do you correctly estimate the
singular distance between two homotigs using paired end
data when there are, in fact, two distances? How do you
layout a genome when there are, in fact, two different
layouts? The problems posed in this scenario would require
the assembler itself to also be “bimodal”, that is to say, it
would have to deal differentially with each homolog. The
multiple “modes” could be represented using multiple graphs
or by having multiple passes through the same graph. In
either case, the assembler would need robust and accurate
identification of heterotigs throughout the process.

The current manuscript does not attempt to perform a
comprehensive analysis of the contig graph patterns observed
in the assembly of Rubus idaeus ‘Heritage’, however, Figure
3 provides a sense of what the contig graph looks like inter-
nally. In particular it examines what the contig graph looks
like immediately around “candidate heterotigs” (contigs that
appear to be heterotigs based on coverage alone). Notice that
for contigs in every length class examined, large majorities
of the candidate heterotigs are connected either on their 5’ or
3’ end to a contig end that participates in exactly two edges,
providing a measure of supporting evidence for a homotig-
heterotig boundary (a particular end of a single-copy ho-
motig, which is adjacent to a heterotig in one homolog,
would likely be adjacent to exactly one other sequence in
the other homolog, thereby participating in exactly 2 edges).
Furthermore, only a relatively small percentage of heterotigs
are found in “perfect bubble” patterns in the contig graph,
suggesting that algorithms which rely on simple graph pat-
terns to identify heterotigs may significantly underestimate
the true sequence diversity. It is also interesting that, as the
average length of a set of candidate heterotigs decreases,
the percentage of those candidate heterotigs found in perfect
bubbles increases (see Figure 3).

3. Algorithm
Definitions:
A = Alignment depth of a contig
Bhc = Boolean, true if Hmin ≤ A ≤ Hmax

Bper = Boolean, true if Hcand is in a perfect bubble
C = A contig (a node from G454)
Ce = A contig end (5’ or 3’)
Cnum = The total number of contigs in the assembly
G454 = a 454ContigGraph.txt file (from Newbler)
H = The true set of heterotigs
Hc = {C : C ∈ H} (with high confidence)
Hcand = Any C where Bhc holds
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Fig. 4: Graphical depiction of a perfect bubble in a contig
graph. Edges connecting contig ends are denoted with solid
lines. A, B, C, and D identify contigs. (5’) and (3’) each
identify a particular end of a contig. We say the structure is
a perfect bubble when the following hold: (1) A, B, C, and
D are 4 distinct contigs. (2) All 4 ends of the heterotigs (B
and C) participate in exactly one edge each. (3) The ends of
A and D that are connected to the heterotigs participate in
exactly 2 edges each.

Hmax = Maximum A for a heterotig candidate
Hmin = Minimum A for a heterotig candidate
L = Length of a contig
P = The set of all “paired-end flows” reported in G454

Domain: {x : x = G454}
Range: {y : y = Hc}

function IDENTIFYHETEROTIGS(Hmin, Hmax)
Add to Hc all Hcand such that Bper holds
for all Hcand with L ≥ 2000 do

if Hcand connects to bifurcating Ce then
Add Hcand to Hc

end if
end for
while Hc grows with each iteration do

for all Hcand do
if P links Hcand with e ∈ Hc then

Add Hcand to Hc

end if
end for

end while
return Hc

end function

4. Discussion
We have presented evidence that complex plant genomes,

particularly highly heterozygous organisms arising through
hybridization or polyploidy, present unique and difficult
challenges to the Whole Genome Shotgun assembly problem
that are not encountered in either monoploid or homozygous

genome assembly.
When heterozygosity rates are sufficiently high, and

coverage sufficiently deep, it is possible to perform de
novo identification of “heterotigs” (sequences not uniformly
present on all copies of a homologous set of chromosomes)
via inference on a combination of coverage statistics, contig
graph patterns, and paired end reads (when available). These
heterotigs can then serve as guideposts in the assembly
process to improve assembly quality and completeness, as
well as to minimize how often the assembled scaffolds and
contigs “jump” from sequence in one homolog to sequence
in the other.

We have also given preliminary evidence suggesting that
algorithms that identify heterotigs via very simple graph
patterns, such as the perfect bubbles analyzed in section
2.2, are likely to underestimate true sequence diversity in
highly heterozygous species. Furthermore, we have sug-
gested several ways in which more robust identification
of heterotigs could lead to more accurate and complete
assemblies for such data. This scenario necessitates a more
rigorous treatment of “heterotigs” which we begin laying the
foundation for here.

We believe that robust identification of, and intelligent
treatment of, such sequences could dramatically improve
the state of the art with regards to the genome assembly
of highly polymorphic diploid and polyploid species.
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Abstract. To discern similarity and differences in partial 
DNA strings based on dissimilarity (distance/difference) among 
the various SNPs, one of the challenge aspects is to select 
felicitous metrics or measurements. Some of information 
theoretic quantities are often employed in practice. 
Unfortunately, certain information-theoretic variables for 
example, information distance and mutual information, may 
not yield consistent results for decision-making. In this paper, 
we investigate the consistency of information theoretic 
quantities Experiments are designed to show that the selection 
of measures and metrics in information-theoretic based analysis 
is crucial for decision-making. Future possible research 
directions are discussed. 

Keywords: Distance metric, information theory, DNA, SNPs 

1. Problem Specification. 
 
SNPs (single nucleotide polymorphisms) are DNA sequence 
variation that occurs when a single nucleotide in the genome 
differs.  SNP arrays are a type of DNA microarray that detect 
SNP occurrences and act as samples of DNA strings that can 
be extracted from microchips (hardware) and other devices 
that come in contact with the DNA of living organisms. 
These SNP arrays do not represent a complete DNA string, 
which, e.g. for a human, would consist of about 3.2 x 109 
base pairs of the human chromosome. A typical SNP arrays 
would represent a fragment of this string with a length of, 
perhaps, up to 500,000 base pairs. Each base pair of the 
human DNA may be in one of four states (A, C, T, or G). 
The goal is to correctly identify genetic sequences of 
different individuals to help classify chromosomal regions 
where genetic variants are shared.  For crops and animals, 
the study of SNPs is important in fertilization and breeding.  
For human DNA, the extracted SNPs may define how people 
contract diseases and respond to certain treatments, drugs, 
vaccines, chemicals, pathogens and other agents.  
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SNPs may be great enablers in developing personalized 
medicine, but there is some controversy of how this 
information may be possibly abused.  Some basic definitions 
are appropriate in this work: 
 
Definition 1:   Phenotype – Is a measure of a trait/skill of an 
individual. 
Definition 2:  Genotype – The information carried by the 
genes. 
Definition 3:  Homozygous – The chromosomes are identical 
in every state. 
Definition 4:  Heterozygous – There exists a SNP between 
two chromosomes. 

 
 It is noted in Definition 4, that a SNP is not a 
weighted difference, in the sense that no distinction has been 
made between the states, e.g. A and G as being further apart 
from A and C. Future work may weigh different pair 
combinations as having distances between SNPs that are 
predicated on which base pairs are involved.  For example, 
in Figure (1) three DNA strings are shown which are 
constructed, for simplicity, from a hypothesized 8 base pair 
fragment of DNA. For simplicity, the notation will be used 
that A=1, C=2, T=3, and G = 4, for the cells (alleles) 
although they are categorical variables. It is seen that DNA1 
and DNA2 differ from each other by only one base pair. 
However, DNA1 and DNA3 differ by four base pairs. In 
some similarity sense using a distance/difference metric then 
DNA1 is closer to DNA2 and DNA1 is further apart from 
DNA3. This paper will investigate how to characterize the 
distance/difference of the various SNPs to discern similarity 
and differences in partial DNA strings. The use of 
information-theoretic variables will be employed to study the 
use of a measure of distance of SNPs via mutual information 
as well as alternative means.  
 Since the investigation of the SNPs will clearly 
depend on the appropriate measure of distance/difference 
between candidate DNAs, the use of classical information 
theoretic variables will be employed. Figure (2) displays an 
information theory channel [1-4]. In Figure (2) – Basic 
elements of an Information Channel from Shannon [1].  
Figure (3) is a Venn diagram of the key information- 
theoretic measures involving two random variables X and 
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Y (Cover and Thomas [2], Sheridan and Ferrell [3], 
Repperger, et al. [4]).  

1 2 3 4 3 2 1 2

1 2 1 4 3 2 1 2

4 2 2 4 3 2 2 1

DNA1

DNA2

DNA3

distance(DNA1‐DNA3) > distance(DNA1‐DNA2)  
Figure (1) – Three DNA strings with Different Relative 
Distances. 
 

 
Fig. (2) – Basic elements of an Information Channel from 
Shannon [1] 
 

 
    Figure (3) – A Venn Diagram of the Key Variables 
 
 In Figure (3) the five information-theoretic 
quantities that describe the types of uncertainties (entropies) 
between the input and output elements of the information 
channel in Figure (2) are portrayed.  Three of these five 
variables can be shown to be independent. 
 From Figures (2,3), the five basic entities of an 
information channel can be expressed as follows: 
 
   H(x) = The input uncertainty to the channel                  (1) 
   H(y) = The output uncertainty of the channel.               (2) 
  H(x/y) = Equivocation lost to the environment.              (3) 
  H(y/x) = Spurious uncertainty from the environment     (4) 
    I(x;y) =  Mutual information transmitted                      (5) 
 

More specifically, equations (1-5) can be better described by 
letting p(.) represent the probability of an event. For an 
information channel with input symbol set in Figure (2),  
x  X, of size n, and received symbols y  Y at the output set 
of size q  (q may not equal n),  the following entropy (H(.)) 
relationships can be defined: 

        H(x)  =    2
1

( ) log (1/ ( ))
n

i i
i

p x p x

                       (6) 

         H(y) =  2
1
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j j
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i j i j
i j

p x y p x y       (9) 

 and    H(y/x)  = 
,

2
,

( , ) log (1/ ( | ))
n q

i j j i
i j

p x y p y x      (10) 

The important relationships that pertain to the modeling of 
the SNPs are dependent on the key variables (1-5).  From 
Figures (2,3) and the basic definitions (6-10), the following 
relationship can be shown to be true (Cover & Thomas [2]): 
                     I(x;y) = H(x) + H(y) – H(x,y)                     (11) 
where the mutual information I(x;y) also satisfies:    
                                        I(x;y) > 0                                 (12) 
Finally, another important variable that will be used in the 
sequel is the relative information distance DR(x;y): 
         DR(x;y) =  H(x/y)+H(y/x) =H(x)+H(y) –2I(x;y)     (13) 
where DR(x;y)  also has a positivity property, as in equation 
(12): 
                                    DR(x;y) >  0                                  (14) 
There are advantages the variable DR provides over I(x;y)  
which are known in the literature (Cover & Thomas, [2], [5], 
and [6]) and restated here: 
 
Property 1:   DR(x;y) is a metric; however, I(x;y) is only a 
measure. Please see the appendix and a counter example 
where I(x;y) fails as a metric by not satisfying the triangular 
inequality. 
A second property can be stated as follows: 
 
Property 2:  The relative information distance metric 
DR(x;y)  is the complement of  I(x;y), i.e. 
        

     );();( yxIyxDR    or   );();( yxDyxI R      (15) 

 
Appendix A demonstrates this second property. 

 
2. Methods and Technical Solutions 
 
Contingency tables (Sheridan and Ferrell [3], Repperger, et 
al., [4], and Kullback [7]) will be used to formulate the SNP 
similarity and difference problem to utilize information-

152 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



theoretic quantities in examining the distance/difference 
between DNA strings. 
 Using the DNA strings in Figure (1), Contingency 
Table 1 is constructed which compares DNA1 versus DNA2 

in terms of similarity and differences. Contingency Table 2 
then compares DNA1 versus DNA3, and finally Contingency 
Table 3 compares DNA2 versus DNA3.      

 
Contingency Table 1 – DNA1 versus DNA2 

 
DNA2 → 

DNA1   

↓ 
A=1 C=2 T=3 G=4 

A = 1 2 - - - 
C = 2 - 3 - - 
T = 3 1 - 1 - 
G = 4 - - - 1 

 
Contingency Table 2 – DNA1 versus DNA3 

 
DNA3 → 

DNA1   

↓ 
A=1 C=2 T=3 G=4 

A = 1 - 1 - 1 
C = 2 1 2 - - 
T = 3 - 1 1 - 
G = 4 - - - 1 

 
Contingency Table 3 – DNA2 versus DNA3 

 

DNA3 → 
DNA2   

↓ 
A=1 C=2 T=3 G=4 

A = 1 - 2 - 1 
C = 2 1 2 - - 
T = 3 - - 1 - 
G = 4 - - - 1 

 
Next, a normalized matrix is calculated based on the total 
number of responses in each table. The normalized matrices 
are summarized below for Contingency Tables 1-3.  
 
                              Table 1 – Normalized                  

2/8 0 0 0

0 3/8 0 0

1/8 0 1/8 0

0 0 0 1/8

2/8

3/8

2/8

1/8

3/8 3/8 1/8 1/8

H(x)

DNA2

DNA1

H(y)  
 
 

 
 
                             Table 2 – Normalized 

0 1/8 0 1/8

1/8 2/8 0 0

0 1/8 1/8 0

0 0 0 1/8

2/8

3/8

2/8

1/8

1/8 4/8 1/8 2/8

H(x)
DNA3

DNA1

H(y)  
 
                               Table 3 – Normalized 

0 2/8 0 1/8

1/8 2/8 0 0

0 0 1/8 0

0 0 0 1/8

3/8

3/8

1/8

1/8

1/8 4/8 1/8 2/8

H(x)

DNA3

DNA2

H(y)  
 

To calculate the requisite entropies, the following 
procedures are then employed: 
 
Step 1: Calculate H(x) across the rows and then 
summing down the column on the right side of the 
normalized matrix (cf. Table 1-Normalized). 
Step 2: Calculate H(y) down the columns and then 
summing across the row on the bottom of the 
normalized matrix (cf. Table 1-Normalized). 
Step 3: Calculate H(x,y) for all cells in the normalized 
matrix. Then        
            I(x;y) = H(x) + H(y) – H(x,y)                      (16) 
and    
DR(x;y) = H(x/y)+H(y/x)= H(x) + H(y) - 2 I(xy;).  (17) 
 
The calculations proceed as follows for Table 1, for 
example: 

       H(x) = -2 * (2/8)log2(2/8) - (3/8) log2(3/8) 
-   (1/8) log2(1/8) = 1.9056 bits                  (18) 

 
          H(y)  = -2* (3/8) log2(3/8)-2* (1/8)log2(1/8 ) 
                                        = 1.8113 bits                            (19) 
 

         H(x,y) = - (3/8)  log2(3/8) - (2/8) log2(2/8) -  
                          (3) *(1/8)log2(1/8) = 2.1556 bits           (20) 
 

              I(x;y)=H(x)+H(y)-H(x,y)=1.5613 bits               (21) 
 

                 DR =H(x)+H(y)–2I(x;y)= 0.594 bits               (22) 
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Finally, it is noted in Figure (1) that in a distance/difference 
sense, it is expected that: 
 
        dist. (DNA1- DNA3) >  dist.( DNA1 – DNA2)         (23) 
 
Table 4 summarizes these results. It is seen that 
dissimilarities between DNAs are generally associated with 
large DR values, small I(x;y) values, and larger Hamming 
distance values. The Hamming distance (independent of 
position) is defined as the percent of cells that differ in a 
dyadic comparison and is the gold standard in discerning 
differences between computer words. 
 
     Table 4 – Distances between the SNPs in Figure (1) 

Distance 
Variable 

DNA1- 
DNA2 

DNA2- 
DNA3 

DNA1- 
DNA3 

Hamming 0.125 0.50 0.50 
I(x;y) 1.5613 1.3113 0.9056 

DR(x;y) 0.5944 1.1887 1.8444 
 

Typically a reduction in the value of DR would be 
accompanied by an increase in I(x;y). For the two random 
variable case (as shown in the appendix), it can be 
demonstrated that DR and I(x;y) are complements of each 
other (i.e. RD  = I(x;y)  and  );( yxI   = DR). The results of 

Table 4 are consistent. As the Hamming distance increases 
(column 2 in row 2) when compared to either column 3 or 
column 4, then I(x;y) decreases and DR increases, as 
expected.  Two counter examples are now presented. 

 
3. Empirical Evaluation 

 
The first counter example is illustrated with Venn diagrams 
in Appendix A which shows that I(x;y) is not consistent in 
discerning distance/differences between DNAs because it 
does not satisfy the triangular inequality.  

 
Case 1 Counter Example with Venn Diagrams 
Please see appendix A for an example using Venn diagrams 
and set theory. This presentation is based on geometric 
arguments. It is shown that I(x;y) violates the triangular 
inequality thus does not satisfy the property of being a 
norm. The second counter example deals with SNPs. 
 
Case 2 Counter Example with SNPs 
To generalize the counter example, analogous to the Venn 
diagrams in appendix A to DNA identification, the 
following three DNA strings are constructed: 
 

1 2 3 4 3 2 1 3 2 4

1 3 2 1 2 4 1 4 3 1

1 2 2 4 3 2 3 4 2 4

DNA1

DNA2

DNA3
 

   Figure (4) – Counter Example in terms of SNPs 

To show that difficulties may occur by using I(x;y) as well as 
DR to characterize distance/difference between DNAs, the 
three normalized matrices resulting from the contingency 
tables are displayed for the counter example DNAs in Figure 
(4). Using similar notation, as before, Table 5 portrays  

 
Table 5 – Normalized 

2/10 0 0 0

0 0 2/10 1/10

0 2/10 0 1/10

2/10 0 0 0

2/10

3/10

3/10

2/10

4/10

H(x)

DNA2

DNA1

H(y)

2/10 2/10 2/10

 
 

Table 6 – Normalized           

  

1/10 0 1/10 2/10

0 1/10 1/10 0

0 2/10 0 0

0 1/10 0 1/10

4/10

2/10

2/10

2/10

1/10

H(x)

DNA3

DNA1

H(y)

4/10 2/10 3/10

    
 

Table 7 – Normalized 

1/10 0 1/10 0

0 3/10 0 0

0 1/10 1/10 1/10

0 0 0 2/10

2/10

3/10

3/10

2/10

1/10

H(x)

DNA3

DNA2

H(y)

4/10 2/10 3/10

     
 

DNA1 versus DNA2, Table 6 shows DNA2 versus DNA3, and 
Table 7 illustrates DNA1 versus DNA3. The calculations 
from Tables 5-7 are summarized in Table 8. Also enclosed in 
this table is the calculation from the Hamming distance, 
which has been a traditional measure of distance between 
computer words [8,9]. 
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Table 8 – Results of the Calculation of the SNPs in 
Figure 4 
Information-

theoretic 
Variable 

(bits) 

DNA1 vs. 
DNA2 

Table 5 

DNA1 vs. 
DNA3 

Table 7 

DNA2 vs. 
DNA3 

Table 6 

H(x) 1.971 1.9710 1.9219 
H(y) 1.9219 1.8464 1.8464 

H(x,y) 2.5219 2.6464 2.9219 
I(x;y) 1.371 1.1710 .8464 

DR(x;y) 1.151 1.4755 2.0755 
Hamming 
Distance 

.80 .30 .70 

 
Note the following conclusions are reached from Table 8: 
(1)  The Hamming Distance (gold standard) is a well 
accepted metric and will be used as a baseline (ground truth) 
to evaluate the information-theoretic variables investigated 
herein. 
(2)  In Table 8, bottom row, comparing column 3 to column 
4 (results of Table 7 versus Table 6), as the Hamming 
distance increased (from .3 in column 3 to 0.7 in column 4) 
then I(x;y), decreased from 1.171 to 0.8464 which was 
expected. Also, DR increased, accordingly. 
(3). However, when comparing column 3 to column 2 
(results of Table 5 versus Table 7), when the Hamming 
distance increased from 0.3 to 0.8, the I(x;y) should have 
decreased, but it increased from 1.171 to 1.371, which is 
inconsistent. This same inconsistency occurred with the 
variable DR. Thus the information variables differ in their 
determination of distance/difference between DNAs and are 
not consistent with the ordering provided by the Hamming 
metric.  
 
Next a discussion is presented on the transitive property of 
key variables and related to the measures and metrics 
discussed so far involving decision making, in general. 
 
4.   Transitive Property of Measures/Metrics 

 
From Logic:  Definition:  A dyadic relation R is said to be 
transitive in a set S if whenever    a R b and  b R c  imply  
a R c. For example, the relation “is greater than or equal” 
satisfies the transitive property for scalar numbers. 
 
The structure of transitivity is the mainspring of deductive 
reasoning. An argument is said to be deductive when the 
truth of the conclusion is purported to follow necessarily.  
Deductive reasoning is one of the two basic forms of valid 
reasoning. While inductive reasoning argues from the 
particular to the general, deductive reasoning argues from the 
general to a specific instance. The basic idea is that if 
something is true of a class of things in general, this truth 
applies to all legitimate members of that class. The key, then, 
is to be able to properly identify members of the class. Miss-
classifying (or miss-categorizing) will result in invalid 
conclusions and affecting decision making, adversely. 

 One of the most common and useful forms of 
deductive reasoning is the syllogism. The syllogism is a 
specific form of argument that has three easy steps, for 
example 

 
 1 .   Every X has the characteristic Y.  This thing is X. 

2. Therefore, this thing has characteristic Y. 

Also, the transitive property makes elimination possible; if  
a R b and b R c, we can eliminate b and assert a R c. 
 
Finally, as applied to decision making, if a decision is made 
that the distance/difference between two DNAs is greater for 
one pair as compared to another pair, then the data may be 
mined out if the goal was to find highly correlated DNA 
pairs. Using I(x;y) may lead to an error by mining out more 
correlated pairs of DNAs. If a distance metric such as the 
Hamming distance (as discussed in this paper) were 
employed, then the conclusion would not suffer from that 
error. As mentioned previously, the weakness of the 
Hamming distance is that it is a relative measure, not an 
absolute measure (the position of where the SNPs are is 
lost).  
 
5. Significance and Impact 
 
Decision making based on closeness as measured by 
distance/difference between candidate DNAs is critically 
important if DNA analysis is used to make accurate 
determinations in data. Problems of consistency are seen 
when selecting DR and mutual information (I(x;y)), being 
widely used in the literature. The property that DR is a metric 
and I(x;y) is only a measure, demands that proper decision 
making should be predicated on at least a good measurement 
tool (DR in lieu of I(x;y)). Apparently DR satisfying the 
triangular inequality still does not guarantee consistency in 
the decision making, as shown earlier, on the decision 
regarding simple binary choice of a string of DNA being 
more or less similar. 
 
6. Future Work and New Research Directives 
 
As mentioned previously, the classification of the similarity 
and differences between sample DNAs and the causality 
mapping between the SNP’s scripts with the phenotype traits 
is a wide open area of research. A discussion on some of the 
fundamental problems in this area and possible solutions are 
now conducted.  First some basic history is presented. 
 The human genome project has its early roots in the 
1940’s when the Department of Energy made an effort to 
develop new energy resources and still understand the 
potential health and environmental risks associated with 
these resources. In 2001, two publications [10, 11] described 
the initial sequencing and analysis of the human genome. By 
2003, the sequencing was completed, two years earlier than 
anticipated.  The generalizations are now far reaching. The 
DNA in each human cell is packaged into 46 chromosomes 
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arranged into 23 pairs. Each chromosome contains many 
genes (approximately 25,000 for the human genome), which 
are the basic physical and functional units of heredity. Genes 
are specific sequences of bases that encode instructions on 
how to make proteins. It is from the action of the proteins 
that the phenotype traits emerge.  
 Previously discussed, SNPs are variations in the 
DNA that may be extracted as SNP arrays by microchips or 
by other processes. The question arises if the sample is 
representative of that portion of the DNA string being 
relevant to the phenotype trait of interest?  This is better 
understood from some other properties that reside within the 
human DNA sequencing: (1) Only about 2% of the genome 
actually encodes the instruction for the synthesis of proteins, 
(2) The human genome sequence is almost (99.9%) exactly 
the same in all people, and (3) particular gene sequences in 
animals have been associated with numerous diseases and 
disorders, including breast cancer, muscle disease, deafness, 
and blindness. For example, in a mouse, [12] cancer 
susceptibility can be related to new gene-mapping resources 
and specific genes can be indentified that concur with mice 
that contract the disease.   
 The tumor classification problem is of high interest 
in the field of bioinformatics [13]. The design of the 
candidate chips to extract the fragment DNA (SNPs) is a 
problem of considerable concern. Such systems are far from 
perfect and the environment can exert an undue influence in 
the process.  The environment can mutate certain genes, thus 
producing a gene with a higher vulnerability to disease. For 
example, exposure to smoking is known to mutate a gene 
and thus produce cells that may start developing cancer. 
Thus if only one difference occurs in a base pair, this is still 
very important to capture since it may greatly influence a 
phenotype trait. 
 The future problems that may be studied in this area 
can be investigated in an algorithmic way on how certain 
SNPs signatures may result in a phenotype trait. The trait 
could be a “good attribute” like resistance to disease, 
increased strength, size, and other qualities. Alternatively, 
the modified SNP signature may also be a “bad attribute” 
including susceptibility to viruses, diseases, etc.  For 
simplicity of discussion, the presumption will be made that 
the phenotype trait will exist in only two states, e.g. 
   Phenotype trait 1:   No disease outcome (being resistant  
                                    to a  specific disease). 
   Phenotype trait 2:   Being vulnerable to a specific disease. 
 
Assume four DNA samples are taken from four individuals 
that equally fell into one of the two states above. Table 9 
would classify the four DNA samples: 
                                                 
                      Table 9 – Four DNA samples obtained 

Individual Number No Disease State Disease State 

1 DNA1  
2  DNA2 
3 DNA3  
4  DNA4 

Recall that only 2% of the DNA is related to producing 
proteins that will affect the phenotype outcomes, then to 
develop the similarities and differences between the sample 
DNAs in Table 9, the following six steps should be 
conducted: 
 

Step 1: Remove all common alleles (this includes the 
98% of the DNA not associated with the protein 
production). Let the symbol  represent those common 
cells (alleles) that are not related to differences between 
the DNAs. In a set theory description, it represents the 
intersection of all the sample DNAs, i.e. 
 
      =   DNA1    DNA2     DNA3    DNA4        (24) 
 
Then let the underlined notation characterize that part of 
each DNAi different from the common intersection of 
all SNPs, i.e. 
                               SNP1  = DNA1 -                        (25) 
                               SNP2  = DNA2 -                        (26) 
                               SNP3  = DNA3 -                        (27) 
                               SNP4  = DNA4 -                        (28) 
Next, from Table 9, take those common SNP values for 
the diseased State: 
Step 2:                    SNPD = SNP2     SNP4               (29) 
To characterize those common SNP values for the non 
diseased state: 
Step 3:                  SNPND =  SNP1      SNP3              (30) 
Step 4: Now check if   the disease and non diseased SNP 
portions are mutually exclusive: Is it true that:           
                              SNPD    SNPND =                     (31) 
where    is an empty set?   If (31) is not true, then 
recalculate steps 1-3 until the result in equation (31) is 
satisfied. 
Step 5:  Now repeat steps 1-4 for more than two 
individuals. 
Step 6:  With a sufficient data base built up on the two 
classes {SNDD} and {SNDND} predictions can then be 
made for individuals outside the data used to develop 
the two classes.  This will test the efficacy of this 
method. 
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Appendix A – Counter Example 1 – With Venn Diagrams 
 
Since geometric proofs using Venn diagrams are not technically 
permissible (Eves, [26]), we show as a test of relationships 
properties 1 and 2.  In this appendix, it will be stated (Cover and 
Thomas, [2]) that DR is a metric and satisfies the follow following 
four relationships for a metric (x,y): 
 

(M-1)   (x,y) >  0 if  x    y.   (positivity)                    (A.1) 
(M-2)   (x,y) = (y,x)      (similarity)                           (A.2)                                                      
(M-3)  (x,z) <  (x,y)+ (y,z)  (triangular inequality) (A.3)                                                     
(M-4)    (x,y) = 0    if and only if    x = y                    (A.4)                                                   

 
However, it is shown by a testing example below that I(x;y) violates 
equation (A.3), i.e.  
                           I(x;z)  >  I(x;y) + I(y;z)                       (A.5) 
for three random variables X, Y, and Z.   
 
Part A – A Constructed Example to Show That Equation (A.3) 
is Violated:    
 
 

Figure (A-1a) is presented to define areas A1, A2, and A3 consistent 
with Figure (3):         
                                  H(x|y) = A1                                   (A.6) 
                                  H(y|x) = A3                                   (A.7)                    
                                  I(x;y)  =  A2                                   (A.8)                    
Figure (A-1b) now generalizes this concept to three random 
variables X, Y, Z.   In terms of the seven areas (A1-A7) displayed, 
the following relationships become generalizations of Figure (A-1a) 
into Figure (A-1b):                                       

               I(x;y) = A2                                      (A.9) 
              H(x/y) = A1.                                    (A.10) 

 

H(Y|X)

Random

Variable
Random
Variable

Y
H(X|Y) I(X;Y)

Area A1

Area A2

Area A3

X
Area A3

Area A7

Area A1

Area A2

Area A5

Area A4
Area A6

X

Y

Z  
Figure (A-1a) Two Random Variables X and Y (left) 
Figure (A-1b) – Three Random Variables X, Y, and Z 

                                      H(y/x) = A3,                            (A.11)       
              H(x|y) = A1 + A6,   I(x;y) =  A2 + A5             (A.12) 
 

              H(y|x) =  A3 + A4,  I(y;x) =  A5 + A2             (A.13)                        
 

              H(z|x) = A4 + A7,   I(z;x) =  A5 + A6              (A.14)                                 
 

              H(x|z) = A1 + A2,    I(x;z) =  A6 + A5             (A.15)                                      
 

              H(y|z) = A2 + A3,    I(y;z) =  A5 + A4             (A.16)                                      
              H(z|y) = A6 + A7,    I(z;y) =  A4 + A5             (A.17) 

 

the left and the random variable Y to the right until:   

                              A6 > A2 +  A4  + A5.                       (A.18)                              
 

But:                            A6 = I(x;z) – A5                           (A.19) 
 

An                                               A2 =  I(x;y) – A5                         (A.20) 
 

                                  A4 =  I(y;z) – A5                           (A.21) 
Hence from (A.18):                  

             I(x;z) – A5 >  I(x;y) – A5 + I(y,z) – A5 + A5       (A.22) 
by construction, and  
                                   I(x;z)  >  I(x;y) + I(y;z)              (A.23) 
Thus it is demonstrated that equation (A.5) is satisfied and 
condition (A.3) is violated. 
 

A2

A5

A4
A6

X

YZ
 

Figure A-2 – Counter example to show (A6 > A2 + A4 + A5) 
 
Property 2:   DR and I(x;y) are complements of each other. 
It is intriguing that DR satisfies the property of a metric but 
property 2 states that its complement I(x;y) does not. With 
reference to Figure (A-1a) we wish to demonstrate that DR and 
I(x;y) are complements. By definition:                                                 
                    I(x;y) = H(x) + H(y) – H(x,y)                  (A.24)              
                      DR(x;y) = H(x/y) + H(y/x)                     (A.25) 
Let S represent the entire space in Figures (3) and (A-1a). 
Then let e be an element of S and S = A1  A2  A3 where  
indicates the union of sets.  Note A1, A2 and A3 are disjoint sets 
in Figure (A-1a).  From (A.11-A.12) and Figures (5) and (A-
1a) it follows that all the elements of I(x;y) are in A2 and all the 
elements of DR(x;y) are in A1  A3.  For notational simplicity 
denote the complement of a set A as A’, then (Eves, [26]) two 
cases now exist: (1) if e  A1  A3, then e   A2, thus 
                                 (A1  A3)’ = (A2)                   (A.26)                                    
or (2) if e   A2, then  e   A1  A3, thus                                                          
                               (A2)’ = (A1  A3)                      (A.27) 
It then follows that if e is an element of (A1  A3) then e is an 
element of (A2)’, and if e is an element of (A2), and if e is an 
element of (A1  A3)’, whence (A2) and (A1  A3) are 
complements.  
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Abstract – Glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH), the glycolytic enzyme, exists as an asymmetric 

homotetramer and is apparently a product of a single somatic 

gene. This protein is considered a moonlighting protein 

meaning that it exhibits functions typically ascribed to other 

proteins. The functions include cellular processes that involve  

gene expression and, intriguingly, those that are associated 

with membrane-binding. There are more than 60 human 

pseudogenes for GAPDH. These pseudogenes, by definition, 

are considered non-functional, although multiple transcripts 

for GAPDH have been reported, suggesting that one or more 

of these pseudogenes are active. To assess whether there is 

selective pressure to preserve these sequences, we developed 

criteria to identify whether or not disablement of these 

pseudogenes occurred. The criteria involve analysis of the 

structural features of the 1-helix of real and pseudo 

GAPDH proteins. This region is required for membrane-

association, a conserved property that may be lost in 

pseudogenes.  

Keywords: glyceraldehyde 3-phosphate dehydrogenase, 

pseudogenes, retrotransposition, membrane-associated 

proteins, Parkinson’s disease. 

 

1 Introduction 

  Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

plays a vital role in glycolysis, an energy-generating pathway 

in all human cells. Net energy is not generated until stage two, 

where glyceraldehyde 3-phosphate is converted to pyruvate. 

The first reaction of this stage of glycolysis is catalyzed by 

GAPDH. The substrates are D-glyceraldehyde 3-phosphate, 

inorganic phosphate and NAD
+
, and the products are 1,3-

bisphospho D-glycerate  and NADH. The reaction is an 

oxidative phosphorylation and involves a covalent 

intermediate between the substrate D-glyceraldehyde 3-

phosphate and the active site cysteine residue [6]. In addition 

to this well-known function of GAPDH, this protein 

participates in many other non-glycolytic functions including 

membrane fusion activity [7]. Additionally, it has been shown 

to be nitrosylated, tranlocated to the nucleus and participate in 

apoptotic signaling that has been linked to Parkinson’s 

disease. GAPDH, which is an abundant cellular protein, 

contains only one functional gene, which is on chromosome 

12. Curiously, however, the human genome contains over 60 

pseudogenes dispersed throughout the genome [8]. Other 

mammals have also been shown to carry an unusually high 

number of GAPDH pseudogenes. Pseudogenes refer to non-

functional genes that are related in some way to a functional 

gene in the genome. The pseudogenes may arise through 

duplication or retrotransposition [3]. Attendant with 

duplication are mutations that end up disabling the gene 

making it non-functional. These genes represent complete 

copies, but are not transcribed due to a disabling mutation and 

are called non-processed pseudogenes. Retrotransposition, on 

the other hand, involves the reverse transcription of an mRNA 

transcript and then the re-integration of the subsequent cDNA 

back into the genome. This type is called processed 

pseudogenes. In the absence of any selective pressure, one 

would expect that the pseudogenes would accumulate 

disabling mutations and that the pseudogenes would exhibit a 

decay that is at a faster rate than the parent gene [9]. Liu and 

coworkers [8] indicated that GAPDH pseudogenes are 

preferentially spared the disabling mutations that are typically 

seen with other pseudogenes. We were curious about the 

disablement of the GAPDH pseudogenes and in particular the 

interpretation of disablement. We were interested in 

examining the sequence associated with the first helix 

(designated as, 1-helix) that is found in the NAD
+
-binding 

domain, which is located from residues 12 to 23 (i.e. human 

numbering includes initial methionine). In addition to the 

entire NAD
+
-binding domain exhibiting conserved homology 

through evolution, the N-terminal end of the NAD
+
-binding 

region is particularly conserved [10, 11]. This 1-helix is 

thought to be imbedded in target membranes horizontal to the 

plane of the plasma membrane due to the amphipathic nature 

of this helix [4]. 

 

Interestingly, diverse pathogenic microorganisms have evolved 

to utilize GAPDH’s multi-functionality in unique ways. 

Listeria monocytogenes, for example, is an intracellular 

158 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



parasite that disrupts normal host cell phagocytosis by mono-

ADP-ribosylation (i.e. inactivation) of a host Rab protein [4]. 

Others have shown that GAPDH interacts with various target 

membranes [12, 13, 14, 15]. 

 

We wanted to explore whether this region exhibits significant 

disablement, presumably due to mutations following 

retrotranspostion, or, alternately, occurring prior to and as a 

selection pressure for promoting retrotransposition of the 

GAPDH transcript. The criteria for disablement would include 

a significant loss of functional conformational status. This is 

assessed by examining the structural properties of this initial 

helical region of the NAD
+
-binding domain. 

 

2 Materials and methods 

Materials. We utilized public accessible databases. The 

literature contains numerous articles on the multi-functionality 

of GAPDH. In addition to the GAPDH pseudogene literature, 

we consulted articles pertaining to GAPDH’s ubiquitous 

properties of reversibly binding to membranes. Furthermore, 

one website is solely focused on pseudogenes 

(http://pseudogenes.org/glycolysis) and maintained by the 

Gerstein Lab at Yale University. Another pseudogene database 

is NCBI (http://ncbi.nlm.nih.gov/gene).   

 

Computation of the Central Longitudinal Plane. The helix is 

assumed to exhibit a rigid cylinder. We set out to determine 

the central longitudinal plane of this cylinder that delineates 

the amphipathic parts with one half of the cylinder 

representing hydrophobic tendency and the other half 

hydrophilic. The standard helical wheel, which is a transverse 

image of the cylinder, was used to compute the central 

longitudinal plane. The central longitudinal plane was 

assigned to zero degree angle, dividing the alpha-helical wheel 

into equal halves, based on previous assignment [4] and 

placing the Gly-11 (i.e. Listeria monocytogenes GAPDH) at 

350. Each of the 12 residues that make up the helix was 

assigned their position (i.e. degree angle) around the wheel 

accordingly in a clockwise fashion that circumscribes 360. 

 

The most preferred position of a hydrophilic (or, hydrophobic) 

residue was assumed to be 90 relative to the central 

longitudinal plane, creating a theoretical amphipathic 

configuration for each residue (Figure 1). A counterclockwise 

displacement was designated as positive and a clockwise 

displacement as negative.  

 

This assumption allowed us to determine an assignment for the 

central longitudinal plane based on the summation of effects 

by all of the residues around the helical wheel. We computed 

the degree of displacement of the central longitudinal plane 

that would allow for optimal positioning of the residue.  

 

The contribution of this displacement by a single residue in 

the helix was determined mathematically by first assigning a 

polarity index using the Carugo’s hydrophobicity scale [5] and 

then determining the fractional coefficient, or fC (i.e. the 

relative polarity index of the residue) for each residue 

regardless of their position on the wheel as indicated by 

equation (1).  

 

fC  = PIn/< PI >     (1)      

 

Where, PIn is the polar index of the amino acid residue, n = 

1,2,3…, and the value < PI > represents the total sum of the PI 

values for all of the amino acid residues.  

 

PolarPolar

ApolarApolar

60 displacement of plane

(counterclockwise)

120 displacement of plane

(clockwise)

30

30

Hydrophobic Hydrophilic

Hydrophobic Hydrophilic

 
 

Figure 1: Procedure for determining degree of 

displacement of virtual plane bisecting the helix. An 

initial arbitrary plane is established delineating the 

hydrophobic and hydrophilic halves of the alpha-

helical wheel. Considering a polar residue that is 30 

off center (upper left), it would prefer displacement of 

the plane by 60 counterclockwise (upper right). 

Considering now an apolar residue that is 30 off 

center (lower left), it would prefer displacement of the 

plane by 120 clockwise (lower right). 

 

The fC represents the magnitude of each amino acid residue’s 

contribution to the overall hydrophobicity. Next, the effect of 

each of the residues on the degree of rotation was determined 
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by calculating the fractional effect, which is dependent on the 

residue’s location and its polar/apolar property (Table 1). 

 

For example, if an arginine residue was 30 from the default 

central plane, it would prefer a rotation of the helix 60 (and 

therefore the central plane is shifted 60) to reach the assumed 

90 optimal orientation. Each residue has a fractional effect on 

the determination of the ultimate angle of the central 

longitudinal plane ( CLP). The contribution of each residue 

on the position of the central longitudinal plane was 

determined by multiplying the fractional coefficient (equation 

1) by the relative degree of displacement (Table 1).  

 

fEn = fCn   Dn     (2)      

 

 CLP =  (fEn)i    (3)      

 

Where fEn is the fractional effect of each of the residues, n = 

1,2,3…, determined by the product of fCn (i.e. fraction 

coefficient) and  it corresponding angular displacement,  Dn, 

and where  CLP is the sum of the fractional effect of each 

residue, i = 1-12. The final helical rotation, or  CLP, created 

a bisecting plane for each of the 1-helicies in the various 

GAPDH sequences that were studied. 

 

Table 1: Description of the sequential order of 

amino acid residues, their respective start angular 

positions and their designated displacements 

required to meet the optimal amphipathic bisecting 

plane as described above. 

 

RESIDUE 
START 

ANGLE 

ANGULAR 

DISPLACEMENT 

( D) 

POLAR 

RESIDUE 

APOLAR 

RESIDUE 

1 350 +100 -80 

2 90 0 +/-180 

3 190 -100 +80 

4 290 +160 -20 

5 30 +60 +120 

6 130 -40 +140 

7 230 -140 +40 

8 330 +120 -60 

9 70 +20 -160 

10 170 -80 +100 

11 270 +/-180 0 

12 10 +80 -100 

 

Analysis of Deviation of the Helix from Horizontality. Once 

the central longitudinal plane was determined for a given 

helix, then the deviation from horizontality was determined 

(Figure 2). We developed a parameter, designated Pw (for, 

Positional Weight), that is the product of the polar index (or, 

Carugo’s hydrophobicity scale [5]) and the distance (or, d), in 

angstrom, perpendicular from the central longitudinal plane. 

These values (i.e. Pw) were then plotted as a function of the 

linear position from zero to 16.5 angstrom along the 

longitudinal axis of the helix. This plot generated a linear 

regression, which may represent a significant deviation from 

horizontality.  

Amphipathic -Helical Region

Longitudinal

Plane

Longitudinal

Plane

parallel

tilted

 

Figure 2: Procedure for determining degree of tilt. 

The calculated central longitudinal plane bisected the 

helix into hydrophobic and hydrophilic halves. We 

calculated the vertical distance of each residue from 

the central plane using sin  = distance/helical radius. 

We determined the angle  based on the position of 

the central plane and the helical radius of 6 angstrom. 

We included the vertical distance of those residues 

that are positioned in its incompatible environment 

(i.e. polar residue in the apolar half) and was 

designated a negative integer. We subtracted this 

distance from 6 angstrom (i.e. the preferred position 

of the residue in its ideal surroundings). This net 

distance was multiplied by the PIn (or, polar index). 

 

For example, an arginine residue that is positioned in the 

apolar half gives a calculated vertical distance of 2 angstrom 

from the central longitudinal plane. In order for this residue to 

reach its preferred position, it would have to traverse these 2 

angstrom as well as the 6 angstrom that represents the radius 

of the helix, suggesting that the distance is proportional to the 

force of repulsion. Therefore, this 2 angstrom distance was 

added to the 6 angstrom distance from the preferred position 

and the central plane for a total of eight angstrom. This net 

distance was multiplied by the residue’s Polar Index value, 

giving a parameter that we designated as Positional Weight. A 

plot was made showing Positional Weight as a function of 

longitudinal distance along the helix. 

 

The regression plot was made in SigmaPlot 11.0, which 

allowed for regression analysis, providing an r-squared value 

that was assessed statistically for deviation from horizontality. 

A significant correlation of Positional Weight and distance 
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along the longitudinal axis of the helix would suggest that the 

helix is significantly tilted and therefore was used as a 

criterion for disablement. 

 

3 Results 

 We observed that the calculated central longitudinal 

plane, determined by our mathematical procedure for the 

Listeria monocytogenes GAPDH, was not that divergent from 

the designated bisecting plane as presented by Alvarez-

Dominguez and coworkers [4]. It is presumed that those 

authors chose that plane by visual inspection. It appears that 

even by visual inspection the chosen bisecting plane is 

indisputable. The bisecting plane in their article exhibits the 

initial glycine residue (i.e. Gly-11 of Listeria monocytogenes 

GAPDH numbering includes the start methionine) positioned 

10 below the hydrophobic-hydrophilic bisecting plane into 

the hydrophobic half of the amphipathic helix - the half that is 

presumably imbedded in the target membrane. We observed a 

calculated central longitudinal plane displaced 24.5 from this 

arbitrary start plane (Table 2). 

Table 2: The calculated values for the central 

longitudinal plane for various gene products (or, in 

the case of pseudogenes, putative gene products) 

 

GENE CENTRAL 

LONGITUDINAL 

PLANE 

Human GAPDH 37.2 

L. monocytogenes GAPDH 24.5 

GAPDHP44 unstable plane 

GAPDHP23 unstable plane 

GAPDHP71 44.1 

GAPDHP62 38.6 

GAPDHP34 86.5 

GAPDHP2 34.4 

GAPDHP19 25.3 

GAPDHP58 65.3 

GAPDHP41 unstable plane 

Interestingly, the gene products for the human GAPDH and 

that of the pathogenic microorganism, Listeria 

monocytogenes, are not that different from one another in 

terms of the calculated central longitudinal planes. The 

required displacement for the wild-type human GAPDH from 

the arbitrary start plane is 37.2, a mere 12.7 difference from 

that of Listeria monocytogenes GAPDH. The putative gene 

products of the pseudogenes varied from 25.3 to 86.5. Four 

of the nine pseudogenes tested were within 12 of the wild-

type human somatic GAPDH gene product (i.e. GAPDH-P71, -

P62, -P2 and -P19). This minor difference would be - in the 

opinion of the present authors - not significant enough to 

consider them disabled (they still exhibit a defined central 

longitudinal plane). Two of the nine pseudogenes differed by 

over 24 in their required displacement. Even this greater 

requirement of displacement, these pseudogenes may not be 

disabled (again, for the same rationale that they exhibited a 

defined central longitudinal plane). However, there were three 

of the nine pseudogenes (i.e. GAPDH-P44, -P23 and -P41) 

that displayed a predicted unstable plane, as evidenced by at 

least one amino acid substitution that required a +/-180 

displacement for its optimal location, likely creating a 

tendency of the predicted helix to wobble relative to the 

amphipathic properties and its half-submersion in the lipid 

bilayer. By this criterion, we designate that these pseudogenes 

(i.e. GAPDH-P44, -P23 and -P41) exhibit significant 

disablement. 

The predicted center longitudinal plane for Listeria 

monocytogenes GAPDH is shown in Figure 3. One can see by 

visual inspection that the computed line gives a reasonable 

approximation of the longitudinal separation of the 

amphipathic helix. 
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Figure 3: Helical wheel for the 1-helix of Listeria 

monocytogenes GAPDH. The angular arrangement of 

amino acid residues 11 to 22 are given. The dotted 

line represents the calculated center longitudinal 

plane.  Black-filled circles indicate strongly polar 

residues. Unfilled circles represent apolar residues. 

Gray-filled circles are slightly polar residues.  
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The human GAPDH exhibits a bisecting line (Figure 4) that is 

slightly more displaced than that seen with the Listeria 

monocytogenes GAPDH.  

Despite the considerable sequence difference in pseudogene 

GAPDHP62, which is located on the q arm of chromosome 8, 

the calculated central longitudinal plane (Figure 5) was almost 

identical to that of the functional human GAPDH.  

 

The assessment of the deviation of the helix from horizontality 

showed that the Listeria monocytogenes GAPDH was almost 

perfectly horizontal (Figure 6). Since the Polar Index values 

used in these calculations included their sign, the Positional 

Weight values were either positive or negative, based on 

hydrophobicity (i.e. positive equates to hydrophobic forces).  
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Figure 4: Helical wheel for the 1-helix of human 

GAPDH. The angular arrangement of amino acid 

residues 12 to 23 are given. The dotted line represents 

the calculated center longitudinal plane. Black-filled 

circles, strongly polar residues; unfilled circles, 

apolar residues; gray-filled circles, slightly polar 

residues.  
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Figure 5: Helical wheel for the 1-helix of human 

pseudogene GAPDHP62. The angular arrangement of 

amino acid residues 12 to 23 are given. The dotted 

line represents the calculated center longitudinal 

plane. Black-filled circles, strongly polar residues; 

unfilled circles, apolar residues; gray-filled circles, 

slightly polar residues.  

 

The relationship in the graph, shown in Figure 6, exhibits a 

slight angle of displacement from a horizontal orientation, but 

this deviation was not considered statistically significant. 

 

The assessment of the human GAPDH exhibited an opposite 

pitch (Figure 7), but this deviation from the horizontal was 

also not statistically significant as evaluated by a Pearson r 

using 95% confidence limits. 
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Figure 6: Assessment of hoizontality of the 1-helix 

of Listeria monocytogenes GAPDH. The Positional 

Weights of each of the 12 residues were plotted over 

the longitudinal distance of the helix. The dotted line 

represents a reference point of horizontality. The 

solid line is the calculated regression, representing 

the asymmetric contribution of the repulsive forces of 

the amino acid residues. 
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Figure 6: Assessment of hoizontality of the 1-helix 
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of human GAPDH. The Positional Weights of each of 

the 12 residues were plotted over the longitudinal 

distance of the helix. The dotted line, a reference 

point of horizontality. The solid line is the calculated 

regression line. 

Upon evaluation of the six human pseudogenes (i.e. GAPDH-

P71, -P62, -P34, -P2, -P19 and -P58) that passed the first 

criterion of disablement in that they all showed a defined 

central longitudinal plane, we observed that all of them also 

passed the second criterion of disablement. Each of these 

pseudogenes was assessed by the same procedures used for 

Listeria monocytogenes GAPDH (Figure 6) and human 

GAPDH (Figure 7). While the was a visual displacement from 

the horizontal reference line, none of the regression lines 

exhibited a significant deviation from horizontality as 

determined by a Pearson r analysis. As a representative 

example, GAPDHP62 analysis is shown in Figure 8. 
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Figure 8: Assessment of hoizontality of the 1-helix 

of GAPDHP62. The Positional Weights of each of 

the 12 residues were plotted over the longitudinal 

distance of the helix. Dotted line, a reference point of 

horizontality; solid line, calculated regression line. 

 

4 Discussion 

 

GAPDH is a highly conserved glycolytic housekeeping 

enzyme that exists as an asymmetric homotetramer. It is 

thought to be derived from a single somatic gene. This protein 

exhibits moonlighting characteristic meaning that it partakes 

in multiple cellular functions. The cellular processes, with 

which GAPDH is involved, include gene expression and 

apoptotic signaling [7]. GAPDH’s pro-apoptotic function is 

associated with dopaminergic cell death and may contribute to 

Parkinson’s disease. We propose that expressed pseudogenes 

(i.e. GAPDHP44 is on the negative strand of an intron of a 

protein phosphatase gene) may play a role as a anti-sense 

oligonucleotide. This would modulate the active levels of 

GAPDH mRNA, representing a potentially important function 

in cell survival. 

 

Intriguingly, many of the moonlighting functions of GAPDH 

require that the protein reversibly associates with 

biomembranes. The ability to bind to biomembranes appears to 

be a highly conserved property [4, 10]. Overall GAPDH 

exhibits conformational malleability [1, 2, 16], though there 

are certain regions that appear highly conserved [10]. 

 

There are more than 60 human pseudogenes for GAPDH. 

These pseudogenes, are considered non-functional, although 

multiple transcripts for GAPDH have been reported [17], 

suggesting that one or more of these pseudogenes may be 

actively transcribed. We think that there is selective pressure 

to preserve these sequences. To examine the efficacy of this 

hypothesis, we developed criteria to identify whether or not 

disablement of these pseudogenes occurs. We define 

disablement in terms of protein structural changes that would 

affect functionality. In lieu of the ability to examine 

pseudogene products we examined the nucleotide sequences, 

converted them to putative amino acid sequences and 

developed criteria to assess if these sequences were considered 

disabled.  

 

The criteria for determining disablement involve analysis of 

the structural features of the 1-helix of real and in silico-

converted GAPDH proteins. This particular region is required 

for membrane-association [4, 10], which we know is a 

conserved property. The loss of structural integrity at this 

region of the protein would significantly alter GAPDH’s 

intrinsic properties, including but not limited to membrane-

association and NAD
+
-binding. These properties are not easily 

observable by just inspection of the nucleotide sequences. 

Mutations may or may not affect the biophysical properties of 

the resulting protein that may be a product of expressed 

pseudogenes.  

 

The first criterion involved computation of the central 

longitudinal plane of 1-helix. We applied a novel method of 

analysis to mathematically determine the plane that bisects the 

helix into hydrophobic and hydrophilic halves that would be 

partially immersed in the lipid bilayer. The results of this 

analysis on 1-helices from two functional GAPDH proteins 

(i.e. Listeria monocytogenes and human) indicate that the 

calculated central longitudinal plane is not much different that 

that drawn by visual inspection. We think that a mathematic 

approach avoids visual bias in assigning the amphipathic 

division. The assigned angle (i.e. relative to the default starting 

point) for Listeria monocytogenes GAPDH central plane was 

24.5. For the human GAPDH, it is 37.2. We examined nine 
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human GAPDH pseudogenes and three of them exhibited 

unstable central planes, suggesting that the gene product, if 

transcribed and translated would be severely dysfunctional. 

We conclude that these three (i.e., GAPDH-P44, -P23, and -

P41) pseudogenes contain mutations that render them 

disabled. The other six pseudogenes exhibited single values 

for assignment of the central longitudinal plane with four of 

the pseudogenes falling within 12 of the functional human 

GAPDH (Table 2).  

 

The next criterion involved looking at the deviation from 

horizonality due to the longitudinal asymmetric distribution of 

the residues along the helix. The Listeria monocytogenes 

GAPDH exhibited almost perfect horizontality. The human 

GAPDH was also not significantly different from a horizontal 

orientation. The six pseudogenes that passed the first criterion 

also passed the next criterion in that there was no indication of 

a significant deviation from horizontality.  

5 Conclusion 

We think that the criteria developed by this study provide a 

useful assessment of the functionality of amphipathic helices. 

The Listeria monocytogenes appears to display the most ideal 

horizontal helix among those examined, including the 

functional human GAPDH. Interestingly, Listeria 

monocytogenes utilizes GAPDH, and in particular this 1-

helical region, as part of the phagocytotic strategy of virulence, 

indicating that this sequence appears most ideal for membrane 

association.  

 

A limitation to these criteria include the chemical nature of the 

residues that a substituted in the amphipathic helix. While 

several human GAPDH pseudogenes showed reasonable 

defined central longitudinal planes and not deviation from 

horizontality, the amino acid substitutions in the putative 

pseudogene products may greatly alter their functional. For 

example, GAPDHP62 and GAPDHP34 exhibited histidine and 

cysteine substitutions for conserved arginines. These chemical 

differences may be significant. Conversely, all of these 

residues (i.e. arginines, histidines and cysteines) have been 

associated with mono-ADP-ribosylation, which is a catalytic 

property of Listeria monocytogenes GAPDH [4] and likely 

human GAPDH. This catalytic function is dependent on the 

1-helical region. 

 

A curious observation in the study was noted upon inspection 

of the results from assessment of horizontality of the Listeria 

monocytogenes GAPDH (Figure 6). The eighth residue (i.e. 

Phe-18) evokes a repulsive force towards the hydrophobic 

environment and the tenth residue (i.e. Arg-20) elicits a 

repulsive force towards the hydrophilic milieu. Both of these 

residues are close to the bisecting plane, dividing aqueous and 

lipid compartments. We proposed that these complementary 

repulsive forces contribute to the intrinsic mobility of the 

helix within a lipid bilayer. 
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Abstract— 1 Hardware accelerators have been used to ac-
celerate various bioinformatics applications without altering
their accuracy. These accelerators are used to speed up so-
phisticated algorithms where powerful computational tech-
niques are used to analyse, simulate and estimate biological
data. These are hardware accelerators mostly made up of
Field Programmable Gate Array (FPGA) or multiple FPGA
hybrid systems. One bioinformatics application in need for
acceleration is the haplotype inference application. This
application is essential in producing maps used to identify
complex diseases. It is also used in finding phylogenetic trees
that provide relationships among populations. The main
objective of this paper is to build an FPGA-hybrid system
connected to a host PC that will accelerate PHASE (one
important haplotype inference application) and enhance its
processing time while maintaining the same accuracy and
functionality.

Keywords: Hardware accelerators, bioinformatics, FPGA, haplo-
type inference.

1. Introduction
Bioinformatics is an area with strong demand for high

performance computing. The solutions for this high perfor-
mance demand are by using cluster implementations. In a
cluster implementation, the applications’ processes, that are
what the application is supposed to do by means of functions,
are executed in parallel [1].

Increase in bioinformatics research activities has led to a
huge increase in data stored in public databases like NCBI or
EMBL GenBank [2]. This increase in data is caused by three
main reasons [1]. One is the increase in research institutes
all specialized in various biological research fields with a
large amount of data to be generated and so much processing
time. Thus causing more demand on higher storage areas and
faster processing machines. Another reason is in modern
high throughput experiments and workflows. Modern bio-
logical studies and experiments, like microarrays, generate
huge amounts of data and information about gene expression

1The author wish to acknowledge the Optimization for Live Interactive
Multimedia Processing (OLIMP) project and the Lebanese National Council
for Scientific Research who supported this work through grant number 03-
08-06.

because of the thousands of experiments performed simul-
taneously. The third reason comes from the combination of
data and information from different independent sources or
databases. This means more processing time just to get these
data into the application’s needed format. In addition to the
increase in data amounts, new bioinformatics applications
have been developed to provide more accurate or better
quality results than existing solutions.

New forms of distributed and parallel computing were
developed to tackle the problem of long processing times.
The basic idea is to make the application that runs on the
cluster be parallelized on either the process or thread levels
and distributed over the available computing nodes. Note
also that parallelized code applications can benefit from the
use of an FPGA by means of speed. Meaning that, each
parallel thread will be executed faster on an FPGA than on
a host PC. Since an FPGA is made up of hardware gates,
that makes it a very high speed functional block capable of
being programmed by almost any function. So, one good
candidate for accelerating bioinformatics applications is by
implementing bottleneck functions on FPGA(s).

One good example to demonstrate the capability of having
an FPGA for accelerating bioinformatics software is the
one found in [3]. In this paper, the authors accelerated the
Smith-Waterman implementation in the European Molecular
Biology Open Software Suite (EMBOSS) suite for publicly
available bioinformatics code. This software is widely used
to screen gene databases for sequence similarities with many
different applications in bioinformatics research areas. They
achieved dropping in the processing time from 50,000 sec
to 2,000 sec (98%) for huge datasets [3].

In our paper, we present an FPGA based accelerator for
haplotype inference application. We start by presenting the
target application in Section 2. Following, we analyse and
discuss the candidate function in the application suitable for
acceleration in Section 3. In Section 4, we show in details
how the hardware accelerator is designed and mapped on an
FPGA. Results and analysis of the our system are presented
in Section 5 before concluding in the last section, Section
6.
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Table 1: Comparison between PHASE and HAPLOTYPER
in terms of error rates and execution times

SNPs PHASE error rate HAPLOTYPER error rate
1-8 0.0000 0.0298

10-14 0.0000 0.0106
16-24 0.0209 0.0230
25-35 0.0016 dnf
36-40 0.0193 0.1159

Processing Time (seconds)
SNPs PHASE PT HAPLOTYPER PT
1-8 46.89 4.29

10-14 44.58 54.56
16-24 52.47 7.93
25-35 60.99 dnf
36-40 34.64 20.36
dnf: did not finish, PT: Processing Time in seconds

2. Haplotype Inference and PHASE Ap-
plication

Haplotype inference is a way to infer haplotypes from
a given genotype sample dataset. This process is essential
in producing Single Nucleotide Polymorphism (SNP) maps
used to identify different genes associated with complex
diseases. It is also used in finding phylogenetic trees that
provide relationships among different populations. The de-
termination of haplotypes from a large dataset was very
expensive and nearly infeasible. But as the technology
improved, computers became faster processing units, and so
haplotypes determination became more and more reachable.
Researchers became interested in the topic of haplotype
inference after questioning how are different populations are
related to each others.

PHASE [4] is considered to be the most commonly used
application for haplotype inferences due to three major ad-
vantages: increased accuracy compared to other applications
(like HAPLOTYPER [5]), wider applicability, and the facil-
ity to assess accurately the uncertainty of PHASE calls [4].
This means that at each run iteration (if many iterations were
to be executed; optional), the uncertainty in the previous
iteration will be taken into account when executing the next
iteration for result enhancement. A comparison of PHASE
with its nearest competitor HAPLOTYPER is shown in Table
1 [6]. Table 1 gives for each certain SNP sequence [7]
and for each application software the error rate, which is
if the whole haplotype for a certain individual has not been
inferred correctly. Table 1 also summarizes the processing
time needed by each application to produce its output.
Regarding the measure of accuracy, PHASE substantially
outperforms the HAPLOTYPER application [6], but as for
the processing time, PHASE takes more processing time than
the HAPLOTYPER.

3. Application Study and Analysis
The application we want to accelerate is PHASE. It is

considered one of the best haplotype inference algorithms

Table 2: PHASE execution time for different datasets
Dataset Processing Time (seconds)

5 Individuals, 5 SNPs 1
5 Individuals, 10 SNPs 1.28
9 Individuals, 20 SNPs 2.54
20 Individuals, 10 SNPs 6.46
20 Individuals, 20 SNPs 86.8
34 Individuals, 20 SNPs 304.18
5 Individuals, 93 SNPs 7510.12

Table 3: Profiling results for a sample of 5 individuals, 93
SNPs dataset

%Time CS SS SC Name
69.9 6128.91 6128.91 6M ForwardsAlgorithm
6.01 6679.73 550.82 ieee754_exp
5.7 7201.84 522.11 4M FDLSProb

CS: Cumulative Seconds, SS: Self Seconds, SC: Self Calls

in terms of error rate [6]. In order to accelerate PHASE,
profiling of the application should be implemented in order
to pin out bottleneck functions.

3.1 PHASE Profiling
PHASE requires long processing times due to the high

computation demanding algorithms implemented, especially
when the input dataset becomes large. Table 2 shows
PHASE’s processing time as the input dataset varies. Note
that the datasets used throughout the entire study are for
Lebanese individuals extracted when studying the relation-
ship between the Lebanese population and other populations.
All measurements were taken when running PHASE on a 3
GHz Pentium IV machine with 1 GByte in RAMs.

To accelerate PHASE, we profiled the application in order
to find out where most of the processing time is taking place.
Furthermore, this will lead in finding out what functions
consumed most of the processing time. This will also help
in picking up candidate functions to be accelerated. Since
PHASE is run on a Linux machine, we used the Linux
GNU Profiler (GPROF) profiling tool to profile it. A GPROF
sample output summary can be seen in Table 3.

From results in Table 3 we have chosen the candidate
for acceleration to be the ForwardsAlgorithm function. This
is due to the facts that this function does not call any other
function (it has no branch functions), it does not use any file
transactions, and it consumes around 70% of all of PHASE’s
processing time (most time consuming function in PHASE).

3.2 ForwardsAlgorithm
ForwardsAlgorithm is the computation function inside the

function FDLSProb. Each time ForwardsAlgorithm is called,
it fills out either Alpha and AlphaSum arrays or Beta and
BetaSum arrays with minor changes among both arrays
calculations. The final returned output of ForwardsAlgorithm
will be a one element of the AlphaSum or the BetaSum array.
The naming of the variables inside ForwardsAlgorithm is
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Fig. 1: General flow of the ForwardsAlgorithm function.

always Alpha (declaration wise). The flow of ForwardsAl-
gorithm function is described in Figure 1.

In general, ForwardsAlgorithm calculates a two dimen-
sional array, Alpha, and a one dimensional array, AlphaSum.
Alpha is of size 2∗positiveHapsSize × NLoci. AlphaSum
is of size NLoci. First, Alpha[0][n] is calculated and then
AlphaSum[0] can be calculated by summing all the elements
of Alpha[0][n]. The function then calculates Alpha[i][n] that
depends on Alpha[i-1][n] and AlphaSum[i-1]. And then sum
all Alpha[i][n] elements to get AlphaSum[i]. At the end of
the function, ForwardsAlgorithm returns the last AlphaSum
element.

3.3 Software Optimization
In PHASE, the aim is to accelerate this application

software using FPGAs. And the most important function
we need to accelerate is the ForwardsAlgorithm function.
But in this function, some redundancy is found through the
following:

In FDLSProb, it is calculating a big vector called
TransProb. This array is used for further calculations within
the same function. Now, within FDLSProb we are calling the
function ForwardsAlgorithm that calculates the same vector
TransProb using the same calculations and inputs. TransProb
is also used by ForwardsAlgorithm for some calculations.
The problem rising here is if TransProb is the same vector
used in both FDLSProb and ForwardsAlgorithm so there
is no need to do the calculations twice especially inside
ForwardsAlgorithm since it is being called by FDLSProb.
The design alternative is to make a new function with
different input arguments in which the vector TransProb is
in these arguments.

As an alternative solution of this problem, we changed
only one header file that is the one containing only FDL-
SProb. Also, we calculated TransProb only once in FDL-
SProb rather than doing it two times and then, send TrasProb
as an input to ForwardsAlgorithm.

4. Hardware Accelerator Design
In this section, we will present the steps followed to build

up the hardware accelerator for PHASE, presenting also the
functional and interfacing blocks. But, before building up
the hardware accelerator, some tests should be implemented
to assure system correct functionality by means of arithmetic
precision.

4.1 Arithmetic Precision Issues
One of the most important variables used to calculate

some relevant elements in PHASE and that affects the
system’s final output, is a two element vector WEIGHTS. It
was found out that the best number of representative bits that
could not affect the system’s final output is 51 bits. Since, as
the number of bits decrease the value of WEIGHTS change,
it was relevant to study the effect of this change on PHASE’s
final output.

The reason for studying this vector is that it is not an input
to the ForwardsAlgorithm function but rather embedded in
it. PHASE’s input variables require 32 bits to be represented,
but WEIGHTS require more.

Before presenting the analyses done, it is important to
understand some major points found in the output files of
PHASE. At each heterozygous (1 at haplotype1 and 0 at
haplotype2 or vice versa), the system will give a certain
order of SNPs for each individual with a certain probability
that this is the correct combination. PHASE also gives an
’=’ character for each position it was 100% certain that it
is of a correct combination (that is given for two cases, the
first is for normal homozygous; 0 at haplotype1 and 0 at
haplotype2, and the second is for abnormal homozygous;
1 at haplotype1 and 1 at haplotype2). When changing the
values of WEIGHTS, the change was only at the heterozy-
gous positions and no change in WEIGHTS affected the
homozygous (normal or abnormal) final outcome compared
to the original output file. While analysing, we measured the
number of flips occurrence at the heterozygous positions for
all the population sizes. Figure 2 shows the total number of
flips for each population versus the number of representative
bits for WEIGHTS.

Notice that at a representation of 51 bits, the flips are 0
in all populations since the value represented by these bits
is still the same as the original value. But as the number
of representing bits decreases, more flips start to appear in
the genotype of each individual. The change is not uniform
in PHASE when the WEIGHTS change, sometimes this will
cause a flipping and in turn change the whole haplotype
of an individual. And in case this haplotype was the most
frequent one in the population, or repeated more often in
other individuals, then this haplotype will appear in other
individuals with the flipping in it and thus increasing the
number of flips in this data set. But sometimes there would
not be so much flips, talking only about the occurrence of
a flip, since when the number of representing bits decrease,
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Fig. 2: WEIGHTS Change Effect on PHASE’s Accuracy.

this may not give a flip. This will rather affect the probability
that this order (original order; not flipped) is correct.

4.2 Hardware Building Blocks
Referring back to Figure 1, the figure shows that the

function is divided upon two parts: Filling out Alpha[0][n]
and AlphaSum[0] part (that will be called Command 1), and
filling out Alpha[i][n] and AlphaSum[i] part (that will be
called Command 2).

4.2.1 Command 1
Command 1 starts by testing a variable called usequad

whether it is 1 or 0. If it is a 1 (execute Block 1), then
two elements of the Alpha[0][n] array will be filled using
the two elements in the WEIGHTS vector. And if it is a 0
(execute Block 2), one element of the Alpha[0][n] array will
be filled but without the use of the WEIGHTS vector. After
this is done, all the Alpha elements will be summed together
to give out AlphaSum[0].

Block 1 takes as inputs: SS, nchr, Freq array, PrHitTarg1
array, ismissing[0], and the WEIGHTS vector and gives as
an output, two elements in the Alpha array. Each time an
Alpha[0][n] element is calculated, a test of the ismissing[0]
value is implemented, if it is a 0, then the old value of
Alpha[0][n] is multiplied by PrHitTarg1[n][0;SS=1 / 1;SS=2]
to give an updated Alpha value. Else the value of Alpha[0][n]
is not altered. Figure 3 shows the exact calculations done
inside Block 1 when ismissing[0] is 1.

Block 2 takes as inputs: nchr, Freq array, PrHitTarg2
array, and ismissing[0] and gives as an output, one element
in the Alpha array. Each time a Alpha[0][n] element is
calculated, a test of the ismissing[0] value is implemented,
if it is a 0, then the old value of Alpha[0][n] is multiplied
by PrHitTarg2[n] to give an updated Alpha value. Else the

Fig. 3: Block 1 computations.

Fig. 4: Block 2 computations.

Fig. 5: Block 3 computations.

value of Alpha[0][n] is not altered. Figure 4 shows the exact
calculations done inside Block 2 when ismissing[0] is 1.

4.2.2 Command 2
Command 2 starts by testing the variable usequad whether

it is 1 or 0. If it was a 1 (execute Block 3), then two
elements of the Alpha[i][n] array will be filled using the two
elements in the WEIGHTS vector. And if it is a 0 (execute
Block 4), one element of the Alpha[i][n] array will be filled
by deducting the WEIGHTS vector. After this is done, all
the Alpha elements will be summed together to give out
AlphaSum[n].

Block 3 takes as inputs: SS, nchr, Freq array, PrHitTarg3
array, ismissing[i], TProb[i], AlphaSum[i-1], Alpha[i-1][n]
and the WEIGHTS vector and gives as an output, two ele-
ments in the Alpha array. Each time an Alpha[i][n] element
is calculated, a test of the ismissing[i] value is implemented;
if it is a 0, then the old value of Alpha[i][n] is multiplied by
PrHitTarg3[i][n][0;SS=1/1;SS=2] to give an updated Alpha
value. Else the value of Alpha[i][n] is not altered. Figure
5 shows the exact calculations done inside Block 3 when
ismissing[i] is 1.

Block 4 takes as inputs: nchr, Freq array, PrHitTarg4 ar-
ray, and ismissing[i], TProb[i], AlphaSum[i-1], and Alpha[i-
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Fig. 6: Block 4 computations.

1][n] and gives as an output, one element in the Alpha array.
Each time a Alpha[i][n] element is calculated, a test the
ismissing[i] value is implemented, if it is a 0, then the old
value of Alpha[i][n] is multiplied by PrHitTarg4[i][n] to give
an updated Alpha value. Else the value of Alpha[i][n] is not
altered. Figure 6 shows the exact calculations done inside
Block 4 when ismissing[i] is 1.

4.2.3 Building Blocks
Looking back into the blocks described earlier, there are

common operations among all blocks. From this concept, the
building of the hardware root components became essential.
These components are:

• 35 Bits Multiplier: Since the input data is 32 bits
masked, multipliers that can support this width should
be built.

• 69 Bits Multiplier: Since the WEIGHTS vector elements
need more than 51 bits to be represented, this multiplier
was built.

• Twos Complement Block: To avoid sending 1-TProb
to the system, the twos complement of TProb was
implemented to give 1-TProb.

• Division to Multiplication Converter: After monitoring
the variable nchar, its value seems not to exceed 100, so
a division by nchar was converted into a multiplication
by 1/nchar.

• Addition Accumulator Block: After calculating the Al-
pha array elements, each time one element is calculated,
it will be sent to this block in order to add it to the
previously calculated Alpha element and at the end
result in AlphaSum.

4.3 Implementation Summary
The hardware accelerator system consists of all the

Blocks 1 through 4, an internal control mechanism and
the communication core SV_IFACE. Additional FIFOs are
added (FIFO_x and FIFO_y) in order to buffer internal
values used by proceeding iterations in their calculations.
These FIFOs are used as temporary storage spaces only.
The flow of the system is described in the following steps:

Table 4: Resource Usage of our harsware design on a Virtex
II FPGA

Resource Available Consumed Util. %
Slices 14336 1762 12

Look Up Tables 28672 3154 11
Generated clocks 16 3 18

Flip Flops 28672 274 1
Input/Output Bounds 484 49 10

Block RAMs 96 11 11
18×18 Bits Multipliers 96 96 100

L1– Loop through PositiveHaps:
1- Read from the FIFO all the necessary data used by

B1B2 to produce an Alpha element.
2- Writ each Alpha element to a FIFO (Alpha_x_FIFO;

FIFO_x) for future usage and send this element to the
addition accumulator to later produce AlphaSum[0].

L1– End Loop PositiveHaps.
3- Send of AlphaSum[0] to command 2 in order to begin

command 2’s calculations (note that now Alpha[0][n]
is stored in Alpha_x_FIFO).

L2– Loop through Nloci:
4- Read from the FIFO all necessary data used by the next

stage to produce a new Alpha column and an AlphaSum
element. This procedure also includes sending Alpha-
Sum[0] to the next stage.

L3– Loop PositiveHaps:
5- Read an Alpha element from Alpha_x_FIFO, Alpha-

Sum, and all B3B4 needed data.
6- Writ each Alpha element to a new FIFO (Al-

pha_y_FIFO; FIFO_y) for future usage and send this
element to the addition accumulator to later produce an
AlphaSum.

L3– End Loop PositiveHaps.
7- Update the to be sent AlphaSum and flip the read-

ing and writings from and to Alpha_x_FIFO and Al-
pha_y_FIFO.

L2– End Loop Nloci.
8- Send the final AlphaSum value to the output.

4.4 Resource Management
The hardware accelerator system was implemented on an

XtremeDSP Development Kit-II with a Xilinx Virtex-II user
FPGA. Table 4 shows the kit’s available resources and the
resources consumed by the hardware accelerator.

In Table 4, the main and the most important resources
consumed by the hardware accelerator are the Input/Output
Bounds, Block RAMs and the 18×18 Bits Multipliers. Our
system uses 49 Input/Output Bounds all consumed by the
SV_IFACE component. The system also uses 11 Block
RAMs distributed as follows: 7 Block RAMs are used
for buffering the inputs, 2 Block RAMs are used in the
division to multiplication converter building block and 2
Block RAMs are used by both the FIFO_x and FIFO_y.
Our system consumes all the 96 embedded 18×18 Bits

170 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



Multipliers in which 36 multipliers are used in both Blocks
1 and 2, and 60 multipliers are used in both Blocks 3 and
4.

5. Results and Analysis
This section presents how much the ForwardsAlgorithm

function and PHASE application will measure in processing
time on a standalone PC and how much will it measure on
the new FPGA-hybrid system. Analysis for these processing
times is discussed in details.

5.1 ForwardsAlgorithm Execution Time on a
Standalone PC

The total time consumed by the function ForwardsAlgo-
rithm is a function of the time consumed by both Command
1 and Command 2. Command 1 runs positiveHapsSize+1
times which will be refered to as X, and Command 2 runs
Nloci(positiveHapsSize+1) times which we will be referred
to as XY.

Note that, quad variable represents when the quadrature
option is instantiated. Meaning that if qaud is 0 (do not
use the quadrature option), both Command 1 and Command
2 will be executing their computations once each time one
of these commands is being called. In case quad is 1 (use
the quadrature option), both Command 1 and Command 2
will be executing their computations two times each time
one of these commands is being called. When quad is 0,
the computations done in Command 1 consumed 100 ns to
execute and the operations done in Command 2 consumed
1000 ns to execute. When quad is 1, then Command 1
consumes 200 ns and Command 2 consumes 2000 ns. Now
that for different quad values, the execution time by each
command is known. In addition to the number of iterations
each command is called, two equations can be derived show-
ing the total execution time needed by ForwardsAlgorithm
on a standalone PC as a function of X and Y for quad equals
to 0 in (1) and for quad equals to 1 in (2).

Tquad=0(ns) = 100X + 1000XY (1)

Tquad=1(ns) = 200X + 2000XY (2)

5.2 ForwardsAlgorithm Execution Time on an
FPGA-Hybrid System

The time consumed by the accelerated system is divided
into two time consuming parts. The time consumed by the
operations running in the host PC (register reads, DMA
writes) and the time needed by ForwardsAlgorithm in hard-
ware to finish its operations and send the final result back
to the host PC.

5.2.1 Software Time
The FPGA-hybrid system needs some time to configure,

control, send input data, and read the output result from the
FPGA; these occur on the host PC. The time needed for

Table 5: Transaction times for quad=0 and quad=1
Operation quad=0 quad=1 Array Sent

Write to Register R2 25 ns 25 ns
Write to Register R1 25 ns 25 ns

Write DMA Burst 25X ns 50X ns PHT1
Write to Register R1 25 ns 25 ns

Write DMA Burst 25X ns 25X ns PHT2
Write to Register R1 25 ns 25 ns

Write DMA Burst 25X ns 25X ns FREQ
Write to Register R1 25 ns 25 ns

Write DMA Burst 25Y ns 25Y ns TPROB
Write to Register R1 25 ns 25 ns

Write DMA Burst 25XY ns 50XY ns PHT3
Write to Register R1 25 ns 25 ns

Write DMA Burst 25XY ns 25XY ns PHT4
Write to Register R1 25 ns 25 ns

Write DMA Burst 25Y ns 25Y ns ismissing
Read Register R2 0 ns 0 ns

the configuration of the board will not be calculated since it
can be accomplished before even running PHASE. The only
times, we are interested in measuring, are the execution times
needed by the sending and receiving operations.

There are 16 commands that need to be executed on the
host PC: 8 register writing operations (5 ns time consuming
each), 7 DMA data writing operations (5 ns time consuming
each), and one register reading operation (30 ns time con-
suming). These commands will end up consuming 105 ns in
total.

5.2.2 Hardware Time
Before discussing the time consumed by the hardware, it

must be noted that the FPGA clock period is 25 ns. On the
hardware side, the time is divided into two parts. One part is
consumed by the SV_IFACE while writing data to the input
FIFOs. Another part is consumed by ForwardsAlgorithm in
hardware to do its calculations and produce the final output.
Each writing or reading operation to a FIFO takes 25 ns.
ForwardsAlgorithm in hardware takes 25 ns to produce a
single element of Alpha array.

From the above, we need 25 ns to buffer each register
written while the reading of the final output register takes 0
ns because the data will be already valid and just ready to be
read (8 register buffering operations = 7 × 25 ns = 200 ns).
As for the DMA burst buffering, it depends on the size of the
buffered data array and the quad value. Table 5 summarizes
the time consumed by the hardware when quad=0 and when
quad=1.

The timings in Table 5 are consumed by the hardware to
only write data to the input FIFOs. The execution time of all
Command 1 in the hardware takes 25X ns for quad=0 and
50X ns for quad=1 while that of Command 2 in hardware
takes 25XY ns for quad=0 and 50XY ns for quad=1.

5.2.3 Total Time
The total time consumed by the FPGA-hybrid system

is simply the addition of all software and hardware time
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consumptions. But note that, not all the software time will
be added, but rather only the first 5 ns done for register R2
writing operation. The reason for that is because the time
consumed in the hardware part is much bigger than that of
the software part. So while the software is consuming some
time to send the rest of the data, the hardware has already
enough buffered data to process (in the interface FPGA).

So the total time consumed when quad=0 is the sum of
all what is in Table 5 (for quad=0), 5 ns, 25X ns, and 25XY
ns and that gives (3).

T
′

quad=0(ns) = 205 + 100X + 25Y + 75XY (3)

The total time consumed when quad=1 is the sum of all
what’s in Table 5 (for quad=1), 5 ns, 50X ns, and 50XY ns
and that gives (4).

T
′

quad=1(ns) = 205 + 150X + 50Y + 125XY (4)

While studying the timing of the system and the execution
schemes, some gain can be acquired. When measuring the
time needed by Command 1 on hardware to finish (including
input FIFO writing), we figured out that some pipelining can
be implemented and some gain in the speed can be achieved.

The point is to write to the input FIFO the data needed
by Command 1 to execute and then write the rest of the
data. By doing so, all the operations and cycles done in
Command 1 can be processed before the rest of the input
FIFO is being filled. Looking back at Table 5, Command
1 can start execution whenever FREQ has finished filling
its FIFO. From that 25X ns with quad=0 and 50X ns with
quad=1 can be considered as pipelining gain. Hence, by
subtracting these values from the new execution time of what
is in equation 3 will look like equation 5 and that of what
is in equation 4 will look like equation 6.

T
′′

quad=0(ns) = 205 + 75 ∗X + 25 ∗ Y + 75 ∗X ∗ Y (5)

T
′′

quad=1(ns) = 205+ 100 ∗X +50 ∗ Y +125 ∗X ∗ Y (6)

5.3 Acceleration of PHASE
After accelerating ForwardsAlgorithm, the acceleration’s

impact on PHASE is studied. As explained earlier, For-
wardsAlgorithm consumes around 70% of PHASE’s total
execution time. It is important to mention that the quad
value flips between 1 and 0 throughout the entire running
time of PHASE. For different datasets, different X, Y,
and quad values were deducted in order to calculate the
speedup factor (SUF) of ForwardsAlgorithm (FA) and in
turn find the total SUF acquired. Table 6 summarizes the
speedup factor of PHASE running on the new FPGA-hybrid
system. As a conclusion of the results in Table 6, for big
datasets, our system can achieve around 16 times speedup
for ForwardsAlgorithm, leading to a maximum speedup of
around 3 times of the PHASE total execution time.

Table 6: Accelerated PHASE Speedup Factors for different
datasets.

Dataset FA SUF PHASE SUF
5Indv_5SNPs 11.47 2.77

5Indv_10SNPs 12.61 2.81
9Indv_20SNPs 14.21 2.86
20Indv_10SNPs 14.34 2.86
20Indv_20SNPs 15.17 2.88
34Indv_20SNPs 15.88 2.90
5Indv_93SNPs 15.9 2.98

6. Conclusion
The aim of this paper, was to present an educational

like flow on how to accelerate a target application using
FPGAs following a step-by-step approach. Our work was
based on a FPGA based accelerator for haplotype inference
application PHASE. We start by providing an overview
of related biological topics and an overview of previously
implemented FPGA-based accelerators. We then discussed
some important existing algorithms that perform haplotype
inference. By selecting PHASE as our target application,
we analyse the application by means of input and output
parameters providing a brief analysis of its functionality.
Then, we profiled PHASE and picked up candidate functions
for acceleration. A full analysis of the acceleration candidate
function ForwardsAlgorithm was followed. In the implemen-
tation phase, we investigated the FPGA used and tested
its functionality in terms of resources, clocking schemes,
memory, etc. Following that, we dissected ForwardsAlgo-
rithm into small blocks and implement them on the FPGA
and use an interface scheme between the host PC and the
FPGA. Finally, we built and joined the whole system and
test it using real datasets. After implementing the system,
the results show that the developed FPGA based accelerator
managed to accelerate PHASE by an average factor of 2.9.
This means that we managed to eliminate around 63% of
PHASE’s total execution time.
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Abstract— Problems when dealing with imprecise or un-
certain features, e. g., problems of decision-making, can
be designed as fuzzy systems, since these systems allow
subjective and qualitative arguments, which are usually in-
trinsic in such problems, to be processed. Research involving
the discovery of single nucleotide polymorphisms (SNPs)
requires bioinformatics tools to be applied to different cases
with an ability to analyze “reads” from different sources and
levels of coverage and also to establish reliable measures.
These tools work with different methodologies in regards
to distinct attributes. When dealing with the same data
set, similar results are expected. However, sometimes such
different methodologies may yield different results, which
leads to uncertainty in the decision-making process. This
paper presents a methodology based on the fuzzy inference
decision model applied to bioinformatics, based on results
from two other tools for SNPs discovery.

Keywords: Fuzzy inference, decision support, single nucleotide
polymorphism, SNP, SNP discovery

1. Introduction
Data generation technologies for molecular biology chal-

lenge the development of appropriate computer systems and
require accurate bioinformatics tools for analyzing such data.
In this sense, machine learning appears as a promising
alternative for knowledge discovery in genomic databases,
using both decision-making and data mining techniques,
among other resources of artificial intelligence.

In the fields of genomics and bioinformatics, the already
great amount of data continues to grow very quickly, widen-
ing the gap between the generation and interpretation of such
data. Therefore, different ways to reduce the problem of
huge quantities of data as opposed to the ability to interpret
them are studied. For instance, fuzzy inference systems
implement computational models for data mining aimed
at discovering knowledge in databases. Such models are
capable of processing imprecise and qualitative information
and, therefore, they are suitable in situations that require
decision-making [1].

This paper aims at describing a computational model that
uses fuzzy logic as the basis for the implementation of an
inference system aimed at assisting decision-making. More
information about the inference model proposed and its

applications can be found in the research project “Computa-
tional models for the identification of genomic information
associated to the resistance to cattle tick” [2].

In support to such description, the concept of single nu-
cleotide polymorphism (SNP) and the use of fuzzy inference
to deal with uncertainty, imprecision and decision-making
problems will be presented. Following, the fuzzy inference
model and the methodological approach will be presented
and discussed. They work on previous results obtained by
different SNP discovery tools that have possibly conflict-
ing results; therefore, the methodology is applied to assist
decision-making in cases when information is conflicting and
also in the confirmation of coincident information.

2. Background
2.1 Single Nucleotide Polymorphisms

Sequencing projects have shown that genomes have more
variations and more complexity than initially expected. One
of such variations and peculiarities are the SNPs, that is,
base pairs in a single position in genomics DNA that are
presented in sequences with different alternatives [3]. SNPs
can be found in the genome of a single individual or groups
of individuals, in a given population (Fig. 1).

Fig. 1: Hypotetical instances of SNPs bi, tri and tetra-allelic,
respectively. The first line, in bold, shows the consensus
sequence and the underlined bases are the SNPs. Actually,
the ocurrence of bi-allelics SNPs it’s not only more common,
but almost absolute in relation to the others [4].

Individuality is a result of genetic expression, that is, in
essence, the nucleotide sequences form DNA and RNA, as
well as protein sequences, which interact and, in turn, form
cells, which also interact and form tissues, organs, until,
eventually, make individuals. In this relies the importance
of SNPs: if a single nucleotide, a single base in a given
sequence, is changed, it may alter the formation of proteins
and, altogether, these changes may cause variations in the
individuals.
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2.2 Fuzzy Inference Approach
Classical approaches are insufficient to analyze values

very close to the limits of a given category; therefore, one
may get results that are questionable, though mathemati-
cally and logically accurate. For instance, the Polyphred
Score (PPS) [5] determines six classes with precise inter-
vals (Tab. 1). Assuming that the scores 70 and 89 were taken
for two points, respectively, then, when deciding whether
these two points are SNPs, a 35% of true positives rate (Rank
4) would be considered for both.

Table 1: Accuracy by PPS and rank.
Rank PPS True positives rate

1 99 97%
2 95 – 98 75%
3 90 – 94 62%
4 70 – 89 35%
5 50 – 69 11%
6 0 – 49 1%

This logically and mathematically precise decision can be
questioned because of the subjectivity involved. Both scores,
70 and 89, are very close to the limits of the classes to which
they belong, and, therefore, different interpretations are
supported for these scores. However, traditional approaches
to logics and mathematics do not have the necessary tools to
handle threshold values, or even imprecision or uncertainty.
Specifically, threshold values result in doubt when it comes
do deciding whether a given base is polymorphic or non-
polymorphic, which suggests a fuzzy inference system for
handling this uncertainty.

Usually, the problem with threshold values is not as
simple as it may seem, if it were so, classical approaches
could easily solve it. However, the closer to the subjective
reasoning for the interpretation and the extraction of an
answer or a decision, the more complex it becomes and the
apparent simplicity is given by fuzzy logic modeling and by
its basis in the theory of fuzzy sets.

3. Decision-Making with Fuzzy Infer-
ence

The subjectivity inherent to reasoning is capable of deal-
ing with complex situations, based on inaccurate, uncertain
or approximate information and, therefore, the strategy is
to use human operators of an also imprecise nature, which
are expressed in linguistic terms or variables. In order
to describe or handle problems, such essentially human
proposal, generally, does not generate a solution in terms
or exact numbers, but, for instance, leads the solution to
a qualitative classification, clustering or aggregating results
into categories or possible solutions sets [1]. These solutions
can be seen as a result of the “principle of incompatibil-
ity” [6].

The linguistic terms or variables increase the complexity
of traditional models and computational systems concerning

their ability to handle exact numbers and discrete values –
which are, sometimes, mutually exclusive. Hence, working
with uncertain values may enable the modeling of complex
systems, even if they reduce the accuracy of the result,
without, thought, leading to loss of credibility.

If uncertainties, when viewed in isolation, are undesirable,
when they are associated with other characteristics, they
generally allow the reduction of system complexity and
increase the credibility of the results [7].

Fuzzy sets theory and fuzzy logics are appropriate to
represent, in mathematical terms, the inaccurate information
that can be expressed by a set of linguistic rules. Also, if
there is the possibility for human operators to be organized
as a set of conditional statements (in the if ANTECEDENT
then CONSEQUENT form); thus, subjective reasoning can
be expressed in the form of computationally executable
algorithms [8] [6] with the ability for imprecisely classify-
ing the antecedent and consequent variables of conditional
statements as qualitative (instead of quantitative) concepts,
which represents the idea of a linguistic variable [1].

Hence, since they are capable of efficiently processing in-
accurate and qualitative information, fuzzy inference models
are suitable in situations that require decision-making [1].

4. Fuzzy Inference model for identifica-
tion of SNP candidates
4.1 Methodological Procedure with Fuzzy In-
ference System for Decision-Making

The function structure of the machine learning model for
decision-making is represented inFig. 2 and 3, in which there
is emphasis on the division of the system’s workflow in well-
defined stages:

1) initial processing of the chromatograms, when bases
are read, and, consequently, sequences (“reads”) and
contiguous sequences are originated and, besides, the
quality of the bases of these sequences is determined.
This stage is done by phredPhrap pipeline [9], and
many files are generated, such as the “ace” file and
several “phd” files, from each sequence read (Fig. 2);

2) Polyphred [10] and Polybayes [11] software run on
“ace” and “phd” files, and each of these programs,
following its own methodology, identifies the SNP
candidate bases and determines a probability for
each of these bases. These results are recorded in
“polyphred.out” and “report.out” files, which will be
used as input to the learning procedure (Fig. 2);

3) in this next stage, preparation of the data is carried out.
Data from Phrap [9] – generated by the phredPhrap
pipeline – Polyphred and Polybayes are extracted and
selected from their respective files and, if necessary,
they are complemented. This stage of preparing the
data is done by parsepolyBayes.pl, parsepolyPhred.pl,
parsephrapQality.pl and joinparsersOut.pl scripts [2].
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Fig. 2: Synthesis of the functional structure of the model of
machine learning (I).

Furthermore, the joinparsersOut.pl script forms the
file in a specific structure to fuzzyMorphic.pl [12]
software (Fig. 3);

4) while running fuzzyMorphic.pl, the machine learning
procedure is performed, implementing a fuzzy infer-
ence system to make an output file with the same input
data, adding the inferred value about the investigated
feature (Fig. 3);

5) in order to analyze and assess the outcome, we use cer-
tified techniques and tools so as to check the inferred
results. In this case, a cluster analysis is carried out
in the resulting data set, which arises from the fuzzy
inference system (Fig. 3).

4.2 Review and Discussion of the Methodolog-
ical Procedure

The machine learning model implemented, functionally
speaking, explores the data set which was created by con-
necting Polyphred and Polybayes output data sets. Then, it
checks the probabilities for each element of this data set,
as specified by their different proposals. Next, this model
defines, for each element, a new attribute, which should be
used as a reference in the attempt to cluster data set into
groups of elements that can be seen as confirmed polymor-
phic points (SNP confirmed), non-polymorphic points (SNP
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��
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Fig. 3: Synthesis of the functional structure of the model of
machine learning (II).

discarded), and also points without sufficient evidence for a
conclusive definition (SNP not confirmed).

However, any classification one could propose might be
influenced by the data “form” or “behavior”. Also, in regards
to classes defined by exact limits, questionable decisions
may arise when the value is very close to the limits of
classes. These issues, among others, suggest the adoption
of non-hierarchical and non-supervised partitioning methods,
because these methods do not refer to any external premises
to establish the classes that may divide a set, but, rather,
its premises are established by specific features, which are
internal and inherent to the data set evaluated. Therefore, the
adoption of these methods removes or reduces the action of
external agents, such as a priori definition of precise limits
for the classes, on the model.

Premises of partitioning methods from non-hierarchical
algorithms are based on their own set of values assessed,
searching for maximum internal cohesion of a group of
objects and for maximum detachment between groups [13].
From another perspective, analyzing the set itself, they try to
identify the elements that, concerning the attribute evaluated,
are closer to the other elements of the group, and, once the
groups are established, the elements with a given feature
should be as far as possible from the elements belonging
to the elements in another group. Thus, as these premises
are due to their own values analyzed, the effect of data
behavior is reduced, that is, assuming that the attribute
evaluated presents a certain trend, all elements have the same
behavior and an undirected partitioning taken from elements
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themselves can reduce or eliminate this tendency.
The exclusion of external premises as well as the reduction

of the models adopted for assessing the results can be
advantageous, insofar as they simplify the answers, reduc-
ing the risk of them being manipulated. If possible, these
models should be self-contained, independent of external
components and use as few variables and parameters as
possible, avoiding “boundary conditions”, which enable the
“accommodation” of a result, instead of truly finding it.

Determination of data clustering is a complex and hard
to implement task, because it is necessary to find out
how the data are and into how many classes the data are
distributed, without any previous knowledge about them.
Classes may not even exist, if the elements are distributed
equitably over the space and do not feature any category,
for clusters or classes are based on the similarity between
elements. Eventually, the verification of resulting classes is
performed so as to assess whether there is some sort of useful
meaning [13].

Following this analysis, the model implemented from
machine learning techniques replaces, through fuzzy infer-
ence, a continuous probability measure in the interval [0,1]
associated with the probability of the point becoming an
SNP, by another attribute, which allows clustering the points
into three partitions: SNP confirmed, SNP discarded and
SNP not confirmed. Thus, after data processing by the fuzzy
inference system, which aims at clustering the resulting
data through a non-supervised algorithm and dynamically
establishing the number of groups, hoping that the result
obtained confirms the partitioning of the set into three groups
based on the new attribute.

Operationally, this procedure is done by fuzzyMorphic.pl
software, which implements the fuzzy inference system and
determines this new attribute, while the clustering analyses
are aided by Weka (Waikato Environment for Knowledge
Analysis) [14] software.

Among clustering algorithms, Weka implements the
Expectation-Maximization (EM) algorithm, which has the
feature of determining, in runtime, the number of clusters
which fits better the elements analyzed, without this infor-
mation being previously provided to it. EM algorithm was
developed for statistical inference problems in general, and
it seeks to locate the value for a parameter that maximizes
the likelihood function. For the clustering procedure, the
data standard division was adopted, that is, 2/3 and 1/3 for
training and testing, respectively.

5. Conclusion
Generally, fixed and precise criteria of classification are

not suitable when studies show results very close to a certain
limit, for instance, a classes division. Nevertheless, these
cases can be approached by fuzzy inference systems, which
are also convenient, as well as able to handle uncertain and
imprecise problems in decision-making.

When adding a new attribute to previous results, the
fuzzy system is able to decide, uniquely among the three
possibilities resulting from the model, and then it clusters
them through a non-supervised algorithm with dynamic
establishment of the number of clusters, hoping that the
outcome of this clustering confirms set partitioning into
three clusters, and requiring no fixed and/or precise limits
to classify and, thus, identify potential SNPs.
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Abstract - Due to high levels of heavy metal pollution in the 
environment, there has always been a high interest in 
organisms that have developed resistance to heavy metals. 
Extensive work has been done with respect to mechanisms of 
resistance to heavy metals in a wide array of microorganisms. 
However, mechanisms of resistance are yet to be explored in 
some microorganism such as cyanobacteria Synechococcus 
sp. IU 625. This microorganism has been known to show 
levels of resistance to Cu2+, Hg2+, and Zn2+. Understanding 
the mercuric resistance mechanism in this microorganism 
would enhance the development of bioremediation systems for 
toxic waste cleanup. In this study, genomic and proteomics 
analysis of currently identified mercuric resistance genes in 
prokaryotes were carried out to determine their relationship 
to putative mercuric resistant genes in S. IU 625.  Primers for 
genes encoding putative mercuric resistance were designed, 
amplified and attempted identified those genes from S. IU 
625. 

Keywords: Cyanobacteria, Synechococcus sp. IU 625, 
mercury resistance, heavy metal 

 

1 Introduction 
  Cyanobacteria are aquatic photosynthetic 
microorganisms [1].  They are the oldest known fossils; being 
in existence for more than 3.5 billion years.  They are 
however still part of the environment today and are one of the 
largest and most important groups of bacteria [2].  They have 
been attributed to being responsible for the oxygen rich 
atmosphere that most life forms on earth depend on today [2].  
Cyanobacteria occur in an enormous diversity of habitats, 
freshwater and marine, as plankton, mats, and periphyton [1].  
They have many beneficial functions such as nitrogen 
fixation and cycling of nutrients in the food chain.  Despite 
their beneficial roles, cyanobacteria are the major causing 
agent for blooms [3].  Blooms are associated with eutrophic 
water, especially with levels of total phosphorus > 0.01 mg/L 
and levels of ammonia- or nitrate-nitrogen > 0.1 mg/L. 

Optimal temperatures for blooms are 15-30 °C, and optimal 
pH is 6-9. 
 
 Synechococcus sp. IU 625 (S. IU 625), formerly 
Anacystis nidulans, is a non-motile, unicellular, rod-shaped 
organism, which is similar to gram-negative bacteria in cell 
wall structure, replication and ability to harbor plasmids [4]. 
S. IU 625 is an obligate photoautotroph whose photosynthetic 
apparatus is similar to that of plants. Due to its potential 
generation of algal blooms it serves as a good indicator of 
environmental pollution. S. IU 625 has been used in 
numerous studies to assess the effects of heavy metals as 
environmental pollutants [5-9].  

 
Mercury (Hg) is a heavy metal that transitions between 

several forms, most of which produce both chronic and/or 
acute toxic effects [10]. These forms include its zero 
oxidation state Hg0, which exists as a vapor or liquid metal, 
its mercurous state Hg+, which exists as inorganic salts, and 
finally its mercuric state Hg2+ which is able to form either 
inorganic salts or organomercury compounds [10]. Mercury 
toxicity is caused by exposure to either ionic mercury or one 
of its compounds. The effects of mercury toxicity include 
damage to neurological, gastrointestinal, and renal organs. 
Results of mercury poisoning include several diseases such as 
Acrodynia (pink disease), Hunter-Russell syndrome, and 
Minamata disease [10]. Many studies have reported on 
bacteria resistance to mercury compounds. Enzymatic 
reduction of Hg2+ is encoded by genes of the mer operon [11]. 
Bioinformatic analysis of the sequences of many of these 
operons cloned from a diverse range of bacterial species 
reveals considerable similarity of genetic organization from 
both Gram-positive and Gram-negative microorganisms. Most 
of the operons contain a regulatory gene, merR at one 
terminus, which is divergently transcribed from the structural 
genes from a mer O/P region (except in the cases of some 
Gram-positive organisms) [11]. Proximal to the mer O/P 
region are genes which encode transport functions: most 
operons possess merT and merP, and in other operons merC 
and an open reading frame, which has been suggested to 
encode a transport function due to its homology to merT [12]. 
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Research has shown that MerP retrieves mercuric ions from 
the extracellular environment and passes it along to MerT, 
which then passes it to mercuric reductase encoded by merA; 
which lies further downstream from the genes encoding 
transport functions. merD, encodes the presumptive down 
regulatory protein MerD [12]. And finally, in operons 
conferring resistance to both organic and inorganic mercury, 
merA and merD are separated by merB, encoding 
organomercurial lyase. The organomercurial lyase cleaves 
CH3-Hg bonds, which leaves the Hg2+ ion able to be 
detoxified by mercuric reductase [12].  

 
 In this study, genomic and proteomic analysis of all 
currently identified mercuric resistance genes in 
Synechococcus elongatus PCC 6301, a very closed related 
strain, was performed and their relationship to putative 
mercuric resistance genes of S. IU 625, as well as other 
species of microorganisms was determined.  In addition 
mercuric resistance genes, related genes and/or operon in S. 
IU 625 were analyzed by using the primers designed from 
bioinfomatics data.   These primers were then used for PCR-
based assay to identify and sequence these genes.  

2 Materials and Methods 
2.1 Cyanobacteria strain, media, and growth 

conditions 
 S. IU 625 stock cultures were obtained from the 
American Type Culture Collection, Manassas, VA (ATCC 
No. 27344). The cultures were grown and maintained in 
Erlenmeyer flasks containing 100 mL of sterilized Mauro’s 
Modified Medium (3M medium) [13]. Flasks with cells were 
maintained in an Innova™ 4340 incubator (New Brunswick 
Scientific, Edison, NJ) at a constant temperature of 30˚C with 
constant fluorescent light and continuous agitation at 100 
rpm. 

2.2 Genomic and proteomic analysis 
 Bioinformatic analysis was performed using BLAST 
(Basic Local Alignment Search Tool), BLAST Tree View, 
PSIPRED (Protein Structure Prediction Server) and, 
MEMSAT3/MEMSAT-SVM (Membrane Protein Structure 
and Topology Prediction). 

2.3 Primer design 
   Primers were designed using the PrimerQuestSM oligo 
design software from Integrated DNA Technologies, Inc. All 
primers were optimized to have melting temperatures between 
55˚C and 60˚C. GC content of all primers was also optimized 
to fall between 47% and 50%. Finally primers were designed 
for amplification of both intergenic and intragenic regions of 
genes that were of interest. All primers were designed based 

on the published genomic sequences of S. elongatus PCC 
6301 (Genbank Accession# NC_006576) [14]. 
 

2.4 Polymerase chain reaction, gel 
electrophoresis and DNA sequencing 

 

 Extracted DNA was subjected to polymerase chain 
reaction in order to determine the presence of putative 
mercuric resistance genes.  The designed forward and 
reversed primers were used in PCR-based assay using a pre-
heated Labnet MultiGene II thermal cycler (Labnet 
International, Edison, NJ). The reaction profile typically used 
was: initial denaturation at 95°C for 15 minutes followed by 
35 cycles of denaturation at 95°C for 1 minute, primer 
annealing at 56-64°C for 1 minute, and extension at 72°C for 
10 minutes. At the end of the 35 cycles, the reaction tubes 
were subjected to a final extension at 72°C for 5 minutes. The 
size of PCR products was estimated by 1% agarose gels in 
TAE buffer. The gels were analyzed under UV light using a 
Kodak Image Station 440CF (Perkin Elmer Life Sciences, 
Waltham, MA). The sequences of the amplicons were 
obtained using 3130 Genetic Analyzer sequencer (Applied 
Biosystems, Carlsbad, CA). The homologues searches of the 
obtained sequences were using NCBI Blast searches.  

3 Results 
 In order to determine the presence of the mer operon 

and/or individual mercuric resistance genes on the genome of 
S. IU 625, the reference strain of S. elongatus PCC 6301 was 
used for the in silico analysis. Strain 6301 was chosen due to 
its close phylogeny with S. IU 625, its completely sequenced 
and highly annotated genome. The search for putative 
mercuric resistance genes on strain 6301’s genome was done 
based on published genomic sequences of generic mer 
operons.  Identification of transport (merT, merP), 
detoxification (merA), and regulation (merR and merD) genes 
was carried out. The proximity of the above mentioned genes 
from each other was also determined. In order to assess final 
protein structure of identified genes, most of the comparisons 
were also performed with the amino acid sequences. 

3.1 In silico analysis of the mercuric reductase 
(merA) gene on genome of S. elongatus 
PCC 6301 

The search for the mercuric reductase gene in strain 
6301 revealed that the gene has previously been identified 
and assigned the Genbank accession number YP_171141.1 
[14]. It was revealed that the presence of two genes flanking 
this mercuric reductase gene. These genes have no homology 
to any of the identified genes on the generic mer operon of 
other prokaryotes. The first gene, syc0430_d, located 30 base 
pairs upstream from the mercuric reductase gene, encodes a 
hypothetical protein, which is yet to be identified. In addition, 
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this gene is transcribed in the same direction as the mercuric 
reductase gene. The second gene, syc0432_c, also 
unidentified, is located 21 base pairs downstream from the 
mercuric reductase gene and is transcribed in the opposite 
direction. This gene also has no homology to any of the 
identified genes on the generic mer operon of prokaryotes 
(Fig.1).  

 
 

Further bioinformatics analysis of syc0430_d, merA, and 
syc0432_c entire sequence on the structure of this mini 

operon shows that flanking of merA by these two genes of 
unknown function is only conserved among certain other 
species of cyanobacteria (Fig. 2). Flanking by syc0430_d is 
seen conserved in cyanobacteria such as Microcystis 
aeruginosa NIES-843, Nostoc punctiforme PCC 73102, 
Microcystis aeruginosa PCC 7806, and Anabaena variabilis 
ATCC 29413.  Flanking by syc0432_c is only observed in 
Synechococcus elongatus PCC 6301 and Synechococcus 
elongatus PCC 7942. 

 

Figure 1. Mercuric reductase gene of S. elongatus PCC 6301 and two genes (syc0430_d /syc0432_c) upstream and downstream, 
respectively.  Visual representation of putative operon: syc0430_d and merA get transcribed unidirectionally, while syc0432_c 
gets transcribed in the opposite direction. 

 

Figure 2. Identified merR gene in S. elongatus PCC 6301 along with five genes located 297 base pairs downstream. Visual 
representation of five genes within proximity of merR. All genes are differentiated by arrow fill. Note the distance of merR from 
other cluster of genes. 

 
3.2 In silico analysis of the mer operon 

regulatory gene (merR) on genome of S. 
elongatus PCC 6301 

Compared with the amino acid sequence, analysis of the 
merR nucleotide sequence of strain 6301 shows it only 
possesses significant sequence homology to the merR 
sequence of strain 7942.  However, further analysis of the 
amino acid sequence shows that it belongs to the helix-turn-
helix superfamily of merR transcription regulators, and bears 
homology to the MerR amino acid sequence of other 
cyanobacterial species. 

 
As previously mentioned, the merR gene of other 

mercuric resistance operons are usually located a few base 
pairs upstream from the group of other mercuric resistance 
genes, which collectively make up the mer operon. However, 
in the case of S. elongatus PCC 6301, the identified merR 
gene, which is assigned the Genbank accession number 
YP_173062.1, is located about 2 million base pairs 
downstream of merA and its flanking genes.  More intriguing 
is that 297 base pairs downstream from merR of strain 6301 is 
a group of genes that are evidently involved in the 
biosynthesis of iron-sulfur clusters (Fe-S) (Fig. 2). Fe-S 
clusters are involved in a wide range of functions such as 

controlling protein structure, acting as environmental sensors, 
serving as modulators of gene regulation, and participating in 
radical generation. However, their direct involvement of Fe-S 
clusters in mercuric resistance is yet to be fully researched.  It 
should also be noted that unlike the mer operon of most 
prokaryotes, the direction of the transcription of merR is in 
the same direction as the transcription of the Fe-S genes 
located a few base pairs upstream.   

 
The above mentioned genes located 297 base pairs 

downstream from merR are nifS, syc2354_c, ycf16, sufB, and 
ftrC.  An in silico analysis of the genes reveals their close 
relationship to Fe-S assembly genes of other microorganisms. 
However, their direct relationship of each individual gene to 
mercury detoxification is unclear.  Bioinformatic analysis of 
the whole nucleotide sequence BLAST results of merR 
together with the cluster of five genes reveal that the highest 
degree of conservation is seen from about sequence 2509998 
to 2512246. This homology falls within the nucleotide 
sequence coding for ycf16 and sufB, an ABC transporter 
ATP-binding protein and a cysteine desulfurase activator 
complex subunit, respectively. Also revealing a high degree 
of homology are the sequences that fall between 2507378 and 
2508367.  Located within this nucleotide sequence is the gene 
nifS which codes for cysteine desulfurase, an enzyme 
involved in the formation of Fe-S clusters. 
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3.3 Probing for presence of putative mercuric 
resistance genes on genome of S. IU 625 

3.3.1 PCR amplification and gel electrophoresis of 
putative genes 

 Upon completion of the bioinformatic analysis of the 
several putative mercuric resistance genes of strain 6301, we 
proceeded to probe the genome of strain 625 for the presence 
of these genes. Specific PCR primers were designed for use 

in amplification of distinct regions of each of the above 
mentioned genes. All the primer sequences used for PCR 
analysis were designed based on the genome of S. elongatus 
PCC 6301. Gel electrophoresis results for merA, ctaA, pacS, 
syc0430_d, and syc0432_c showed that they fell within the 
range of the expected amplicon sizes based on designed 
primers (Fig. 3). In addition, gel electrophoresis results for 
PCR reactions run on merR, nifS, sufD, ycf16, and ftrC also 
showed that their sizes fell within the expected ranges (Fig. 
4). All these primers were able to prime S. IU 625 DNA. 

 

Figure 3. Priming for merA, syc0430_d, syc0432_c, ctaA, and pacS with S. IU 625 DNA. Gel electrophoresis results of PCR 
reaction run on all five genes. Results show positive priming for all genes. Genes fall within expected range according to 1kb 
DNA ladder. Two sets of primers were designed for merA, and three sets each were designed for ctaA and pacS.   

 

Figure 4. Priming for merR, nifS, sufD, ycf16 and ftrC of S. elongatus PCC 6301 with S. IU 625 DNA. Gel electrophoresis 
results of PCR reaction for all seven genes. All amplicon sizes fall within their expected ranges.  

 
3.3.2 Sequencing of identified genes  

 After the presence of the genes was confirmed through 
gel electrophoresis, the PCR products from each identified 
gene were sequenced. Results revealed that sequence results 
of all identified genes were at least 95% homologous to strain 
6301. In addition, close analysis of the nucleotides of the 
overlapping regions of genes syc0430_d, merA, and 
syc0432_c, showed that the sequences were identical to those 
of strain 6301. The same was observed for overlapping 
sequences of merR, nifS, sufD, ycf16, and ftrC. Finally, the 
sequence results of the ctaA and pacS genes also show a high 
level of homology to the same genes of strain 6301.  

 
Based on the genome of S. elongatus PCC 6301 several 

hypothetical genes, including mercuric reductase, and the 
mercuric reductase regulatory gene, were able to be 
identified. Phylogenetic analyses of merA genes in 
cyanobacteria are shown in Figure 5. Unsurprisingly, the 
closet relative of S. elongatus PCC 6301 is S. elongatus PCC 
7942 regarding merA; followed by Synechocystis sp. PCC 
6803 and Microcystis aeruginosa NIES 843. Mercuric 
reductase in Nostoc punctiforme ATCC 29133, Nostoc sp. 

PCC 7120 and Anabaena variabilis ATCC 29413 are also 
very close related to both S. elongatus PCC 6301 and S. 
elongatus PCC 7942. Microcystis and Anabaena are toxin-
releasing, bloom-causing cyanobacteria that are usually the 
causing agents for harmful algal blooms in freshwater bodies.  
Bioinformatic analysis of the identified genes seemed to 
indicate that mercuric reductase was localized to the plasma 
membrane of the microorganism. In addition, the arrangement 
of the genes also seemed to indicate that along with 
detoxification by mercuric reductase, S. IU 625 might also 
utilize synthesis of its peptidoglycan layer in reducing the 
permeability of the mercuric ions, thereby reducing the 
amount of detoxification the cell needs to perform. 
 
 Unlike mer operon of other prokaryotes, the mercuric 
resistance regulatory gene was located about 2Mbps upstream 
from the location of the mercuric reductase gene. This left 
open the question as to how the mercuric reductase gene was 
being regulated. In addition, because of the close vicinity of 
iron-sulfur cluster genes and peptidoglycan biosynthesis 
genes to the mercuric resistance regulatory gene, it also led to 
the question of their involvement in mercuric resistance. 
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Figure 5. Phylogenetic analyses of merA gene in cyanobacteria. 
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Accelerating the Smith-Waterman Algorithm for Bio-sequence
Matching on GPU

Qianghua Zhu, Fei Xia, and Guoqing Jin
Electronic Engineering College, Naval University of Engineering, Wuhan, P. R. China, 430033

Abstract— Nowadays, GPU has emerged as one promis-
ing computing platform to accelerate bio-sequence analysis
applications by exploiting all kinds of parallel optimization
strategies. In this paper, we take a well-known algorithm
in the field of pair-wise sequence alignment and database
searching, the Smith-Waterman (S-W) algorithm as an ex-
ample, and demonstrate approaches that fully exploit its
performance potentials on GPU platform. We propose the
combination of coalesced global memory accesses, shared
memory tiles, and loop unfolding, achieving 50X speedups
over initial S-W versions on a NVIDIA GeForce GTX 470
card. Experimental results also show that the GPU GTX
470 gains 12X speedups, instead of 100X reported by some
studies, over Intel quad core CPU Q9400, under the same
manufacturing technology and both with fully optimized
schemes.

Keywords: Bio-sequence DB Searching, the Smith-Waterman
Algorithm, Code Performance Tuning, GPU, Bioinformatics

1. Introduction
There is fierce market competition for high-performance

computing platforms. General-purpose microprocessors,
usually called central processing units (CPUs), such as
X86 series from Intel and AMD, Power series from IBM,
have entered the multi-core era, dominating the market
of mainstream computing platforms. Hardware accelera-
tors, particularly general-purpose graphics processing units
(GPGPUs), are increasingly becoming important, especially
in computation-intensive disciplines, such as realistic 3D
computer graphics and high-performance scientific comput-
ing. Three supercomputers have entered the top 10 positions
in the supercomputer top 500 list and are all hybrid designs.
In contrast with the "heavy" core of CPUs equipped with
large caches and a rich instruction set, GPUs have hundreds
of "lean" processors with reduced instruction sets, small
local memories, and in-order execution mechanisms.

Despite many reports on the superiority of GPU ac-
celeration over CPU, there are still many open questions
that cause confusion, including debates in some academic
papers and website discussions [1, 2, 3]. In this paper,
we take the sequence alignment application, the Smith-
Waterman algorithm as an example, on GPU platform, to
explore several optimization schemes, including coalesced
global memory accesses, shared memory tiles, and loop

unrolling. The optimization schemes release the computing
power of hundreds of GPU cores completely, taking the
performance increase from 0.54∼0.73 GCUPS (109 Cell
Units Per Second) of initial version to 28.23 GCUPS, over
50X of speedups.

2. Background
In the area of modern molecular biology and bioin-

formatics, the S-W algorithm is a well-known algorithm
for performing pair-wise local sequence alignment. It has
become the kernel algorithm in the process of bio-sequence
matching, multiple sequence alignment, and database search-
ing to discover similarities between sequences and to further
explore the evolutionary history, critical preserved motifs,
and even the details of the tertiary structure and important
clues about protein functions [4].

The algorithm was first developed by Temple F. Smith and
Michael S. Waterman in 1981 [5] to determine the optimal
local alignment of two sequences. The bio-sequences (i.e.,
DNA, RNA or protein) serve as the input of the S-W
algorithm, and the output is an alignments score representing
the degree of similarity of the two input sequences. In
the alignment process, a two-dimensional matrix H , as a
temporary data structure, is used to store alignment scores
of subsequences. Consider two sequences S and L of length
M and N . The two subsequences in sequences S and L
are S1...Si and L1...Lj , respectively. The maximum simi-
larity score of subsequence S1...Si and L1...Lj is F (i, j).
The gap-penalty scheme provides the option of gaps being
introduced within the alignments. In our implementation,
we consider an affine gap penalty scheme that consists of
two types of penalties, the gap-open penalty α and the gap-
extension penalty β. The computation of H(i, j) for grid
cell (i, j) is given by the following recurrences:

for1 ≤ i ≤ M, 1 ≤ j ≤ N
H (i, 0) = E (i, 0) = H (0, j) = F (0, j) = 0; (1)

for2 ≤ i ≤ M, 2 ≤ j ≤ N
H (i, 0) = max {0, E (i, j) , F (i, j) , H (i− 1, j − 1)

+sbt (S [i] , L [j])} ;
E (i, j) = max {H (i, j − 1)− α,E (i, j − 1)− β} ; (2)
F (i, j) = max {H (i− 1, j)− α,E (i− 1, j)− β} ;

sbt is the character substitution cost table. We make
some observations on the characteristics of the S-W
algorithm. These observations suggest details of parallel
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implementation.

Observation 1: Inter-task parallelization
There is no data dependency in the multiple task of

executing the alignment of several database sequences
with a single query. Pair-wise alignment, called inter-
task parallelization or coarse-grained parallelization, can
be performed independently. The shared data are the
query sequence and the substitution cost matrix. Multiple
sequence alignment tasks can be distributed to GPU
platforms to utilize computing resources efficiently. These
implementations focus on database partitioning and load
balance, instead of the parallelism of pair-wise sequence
alignment.

Observation 2: Intra-task parallelization
Data parallelism also exists in pair-wise sequence align-

ment; it is called intra-task parallelization or fine-grained
parallelization. Recurrence Formula 2 implied regular data
dependency; that is, each cell H(i, j) depends on its left
neighbor E(i, j−1), H(i, j−1), upper neighbor F (i−1, j),
H(i−1, j), and upper left neighbor H(i−1, j−1) in filling
matrix H . If we fill the score matrix in a row column order in
turn, the process must be executed serially. Moreover, there
is strict data synchronization among adjacent anti-diagonals.
However, there is no data dependency among the elements
located in each anti-diagonal. Therefore, all cells along the
anti-diagonal k can be computed parallel from the anti-
diagonals k-2, k-1, which can be arranged in a wave-front
mode along the diagonal from up-left to down-right (Figure
1).
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Fig. 1: Example of the S-W algorithm to compute the local
alignment between two DNA sequences. The red arrows
represent the data dependency in the S-W algorithm and the
black arrow marked the computing order. The wave-front
computation moves along diagonals from up-left to down-
right.

The computational and spatial complexity of pair-wise
sequence alignment for two sequences of length M and N is
O (M ×N), and the computational complexity of the multi
sequence alignment is O

(
K ×N2

)
for K sequences with

average length N . Bio-sequence databases are undergoing
exponential growth; GenBank, for example, now stands with
over 100 million sequences and 100 billion base pairs [6].
Hence, although comparing two sequences using the S-W
algorithm is efficient in the classical sense, the execution
time is still intolerable for pair-wise sequence alignment
on the whole genome scale (more than 109 bases). Due to
differences in manufacture technology, hardware structure,
computing resource, and clock frequency across all kinds of
platforms, we use the standard measurement unit, GCUPS
(109 Cell Updates Per Second), to measure actual computing
power. The cell represents the workload for computing one
element of the score matrix.

3. Optimizations on GPU
Modern GPUs are designed as programmable processors

employing a large number of processor cores. It contains
a processor array, which consists of a number of streaming
multiprocessors (SMs) and hierarchical memory architecture
for programmers to utilize. GPUs are especially well-suited
to address problems that can be expressed as data-parallel
computations in which the same program is executed on
many data elements in parallel, by mapping data elements
to parallel processing threads. Thus, to achieve reasonable
parallel efficiency for GPU parallel computing, memory
optimization schemes have to be adopted carefully to utilize
fully the three layers of memory hierarchies: register, shared
memory, and global memory [7].

Considering the computation searching of the optimal
local alignment between a query sequence and a subject
sequence as a task, there are two approaches to the parallel
processing of sequence database searches using CUDA.
The first approach, as shown in Figure 2(a), is intra-task
parallelization, which assigns one task to a grid. In the
approach, all threads cooperate to perform the task in parallel
by calculating the alignment scores of cells within the same
diagonals.

The second approach is inter-task parallelization, which
assigns one task to exactly one thread. T1 thread takes task
1 to calculate the optimal alignment score between query
sequence and database sequence 1, T2 thread takes task 2,
and so on (Figure 2(b)). The method of intra-task paralleliza-
tion, reported by Liu [8], occupies less device memory space,
but suffers from frequent barrier synchronizations between
GPU cores. In the following optimizations, we only consider
the inter-task parallelization scheme that occupies more
device memory because of the need to store the intermediate
alignment results but achieves better performance than intra-
task parallelization, as presented in [9, 10] by Manavski and
Ligowski.
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Fig. 2: GPU parallel strategies based on single-thread. (a)
Intra-task parallelization. (b) Inter-task parallelization.

Based on inter-task parallelization, the following sec-
tions focus mainly on memory optimizations. The basic
data structure of the S-W algorithm includes one two-
dimension substitution cost table, one query sequence, and
one sequence database consisting of a number of subject
sequences. During the execution of the S-W algorithm,
additional memory is required to store intermediate align-
ment results. To support a much larger database, the global
memory is used to store the sequence database and the
intermediate alignment results. The substitution cost table
and query sequence are read-only, and are accessed by all
threads in the grid. Therefore, we store the substitution cost
table and query sequence into the texture memory and the
constant memory, respectively.

3.1 Coalesced global memory accesses

Data layout
GPU side

Global memory

CPU side

Main memory

DS 0 DS 1 DS n

ThreadsDevice 1 2 n

Threads

CPU side

Main memory

DS 0 DS 1 DS n

Data layout

GPU side

Global memory

1 2 3 4 5 nDevice

(a)

(b)

New area

Fig. 3: Global memory layout and access pattern. (a) Naive
implementation. (b) Interleaved implementation.

Coalesced global memory accesses can always have sig-
nificant improvements in performance over non-coalesced
global memory accesses due to the effective usage of global
memory bandwidth [7]. However, in the initial GPU version
of S-W algorithm, none of the memory accesses are coa-
lesced (Figure 3(a)). First, the database sequences loaded

from a disk file are allocated a contiguous area of memory
in the CPU side, where one sequence is represented by the
data structure of a one-dimension character array, and the
next sequence occupies the side contiguous area, as depicted
in Figure 3(a) (DS 0, DS 1...DS n). Second, the database
sequences area is copied directly to the GPU side global
memory, where all symbols of the sequences are kept in
order in the CPU side. All GPU threads begin to calculate the
alignment scores from the first symbol, the second, and so
on. The memory addresses generated from the same thread
warp are non-contiguous. The column of non-optimization
in Table 1 shows that no coalesced load or store operations
occur, other than 181.12 × 108 and 161.69 × 108 times of
scattered loads and stores respectively.

In the optimized version, we change the data layout of
database sequences in the GPU global memory, creating
coalesced memory accesses. Before the area of database
sequences is copied to the GPU side global memory, we
interleave the database sequences to a new area in CPU
side memory. The symbols with the same index of all
sequences are collected together. Thereafter, the new area
is copied to the GPU side global memory (Figure 3(b)).
The threads in the same warp access the global memory
addresses in a contiguous way, resulting in the removal of all
non-coalesced load/store. The rearranged data layout scheme
helps significantly in achieving better performance. The
GPU performance is increased from 0.54 to 5.79 GCUPS,
over 10X of speedup.

Table 1: Performance improvement using coalesced global
memory accesses.

without opt. with opt.

memory non-coalesced load 181.12 0
access non-coalesced store 161.69 0

number coalesced load 0 11.32
(108) coalesced store 0 10.09

performance GTX 280 0.73 5.54
(GCUPS) GTX 470 0.54 5.79

3.2 Shared memory tiles to reduce global mem-
ory accesses

After coalescing the contiguous global memory accesses,
we can estimate the total number of global memory accesses.
Figure 4(a) shows the order in which one thread calculates
the matrix, first in row, then in column order. This process,
which involves scanning the matrix from left to right and
then from top to bottom, requires 2×M×N global memory
transactions for the M × N matrix. Calculating H (i, j)
involves two global memory accesses, one for loading
H (i− 1, j), F (i− 1, j), and the other for storing H (i, j),
F (i, j).

We utilize tiles in the shared memory layer to reduce
global memory accesses. The whole matrix computation is
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Fig. 4: Memory layout and access pattern. (a) Without tiling.
(b) With tiling.

first divided into sub-matrices with K×N elements. There-
after, the execution order for calculating the sub-matrices is
changed, first in column, then in row order (Figure 4(b)).
One column in the sub-matrix is called a "tile" (circled by
black line in the figure). A tile consists of K vertically
contiguous cells, where K is the tile size. The sub-matrix is
processed horizontally tile by tile. The K − 1 elements of
a tile are stored in the shared memory layer, which will be
used in the calculation of the next tile. All operations within
the tile are performed in the shared memory and registers,
except for the loading of one element from the previous sub-
matrix and the storing of one element to the global memory
for the next sub-matrix calculation. Thus, for one sub-matrix
calculation, only two rows of global memory accesses are
performed, one for loading the top row and the other for
storing the bottom row. The total global memory transactions
are reduced to 2MN/K.

Table 2: Performance improvement using coalesced shared
memory tiles

Tile size 2 4 6 8 10

Num. of load (108) 5.66 2.83 1.91 1.42 1.13
Num. of store(108) 5.05 2.54 1.71 1.28 1.02
GTX280 (GCUPS) 7.95 8.96 9.35 — —
GTX470 (GCUPS) 11.36 15.65 16.98 17.64 18.07

The increase in tile size decreases the number of global
memory accesses to amortize the global latency cost, but the
tile size is strictly limited by the size of the shared memory
and the number of threads because each thread occupies
a tile area in the shared memory. As shown in the Table
2, for GPU GTX 280, the largest tile size only reaches 6,
with over 60% of performance gain, and for GTX 470, only
two elements in one tile brings nearly 2X speedups, and
the largest tile size can be 10 with over 3X speedups. The
decrease in the total number of global memory accesses with
the increase in tile size supports above performance gains.

3.3 Register-level optimization with loop un-
rolling

In the version of tiled GPU S-W algorithm, an additional
innermost loop has to be introduced to organize the tile
calculation. This loop has a small body and constant iteration
count. The tiling scheme reduces the number of global
memory accesses at the expense of additional shared mem-
ory accesses, branch instructions, and address calculations.
When the threads within a warp diverge via data-dependent
conditional branches, the warp has to execute each branch
path serially, causing severely performance bottlenecks [7].

Table 3: Performance improvement using register optimiza-
tion with loop unrolling.

Tile size 2 4 8 10

Register 19 25 — —
GTX280 Branch(107) 8.41 4.21 — —

GCUPS 10.96 13.11 — —
Register 24 28 32 32

GTX470 Branch(107) 25.24 12.64 6.35 5.07
GCUPS 11.49 18.76 25.15 28.23

The best performance can be achieved by unrolling the
loop completely and removing all innermost loop branches,
induction variable increments, and inner loop address cal-
culation instructions. Experiment results show that the loop
unrolling scheme greatly decreases branch instructions (Ta-
ble 3). Finally, with the help of all optimization schemes,
the most powerful performance on the GTX 470 platform
reaches 28.23 GCUPS, over 50X speedups compared with
the initial GPU version without any optimization schemes.

4. Result and Discussion
4.1 Environment and Test Methods

Our prototype system for performance evaluation consists
of a host PC and a GPU card. The host is equipped with
an Intel Q9400 Quad CPU, 2GB memory, and ASUS P5Q
Dulex motherboard [P45 chipset running Windows XP SP3
with Visual Studio 2008 development environment (Visual
C++ Compiler 15.00.30729.01)]. We use Redhat enterprise
Linux 5.4 operating system with GCC 4.1.2 compiler for
testing the Xeon CPU platform. We choose two commercial
graphics cards, Geforce GTX280 and GTX470 with CUDA
toolkit 3.1, as our GPU experimental platforms. The original
S-W source code is derived from the kernel of the ClustalW
[11], the famous program for multi-sequence alignment
application.

Table 4 shows the experimental results of the S-W al-
gorithm for protein database searching application on CPU
and GPU platforms. For each kind of platform, we list
the performance measurements of two chips with different
manufacturing technologies.
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Table 4: Results on CPU and GPU platforms with different manufacturing technologies.
CPU GPU

Device Chip Dual-Core E2140 Quad Q9400 GTX280 GTX470
Development Year 2007 2008 2008 2010

Chip Technology (nm) 65 45 65 40
PE(Core) Number/Chips 2 4 240 448

Frequency (MHz) 1600 2660 1296 1215
Peak Memory Bandwidth 3.2 GB/s 10.6 GB/s 141.7 GB/s 133.9 GB/s

Cache Capacity (KB) 1,024 6,400 728 792
GCUPS (average) 0.35 2.18 13.71 28.23

Table 5: Compare the average performance (GCUPS) with related works.
Platforms Approach Performance

Alpern [12] Intel Paragon i860 Single thread, SIMD < 0.01
Wozniak [13] Sun Ultra SPARC 167MHz Single thread, SIMD 0.02

CPU Rognes [14] Intel Pentium III 500MHz Single thread, SIMD 0.15
Jacob [15] Intel Pentium 4 2.8GHz Single thread, SIMD 0.49

Ours Intel Q9400 Quad 2.66GHz Multi-thread, SIMD 2.18

Manavski [9] GeForce GTX 8800 Global memory optimization 1.75
GPU Ligowski [10] GeForce 9800 GX2 Shared memory optimization 8.67

Liu [8] GeForce GTX 295 Global and shared memory optimization 9.51
Ours GeForce GTX 470 Global, shared memory and register opt. 28.23

4.2 Compared to CPU Implementation
4.2.1 GCUPS Performance Comparison

We implement the S-W algorithm with the affine gap
penalty model for protein database search application on
CPU and GPU platforms with 65 nm and 45 nm manufactur-
ing technology, respectively. For each computing platform,
we test the average performance (GCUPS) of the S-W
algorithm with different optimization grades. As shown in
Figure 5, the horizontal axis is the average performance
represented by GCUPS, and the bar with different colors
and letters represent different optimization grades. The right
part with black oblique lines in each bar is the performance
improvement on the new generation 45 nm manufacture
technology as compared to 65 nm computing platforms using
the same optimization scheme.
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Fig. 5: Average performance growth of the S-W algorithm
with different optimization grade on CPU and GPU plat-
forms.

The naive S-W version running on the state-of-the-art
multi-core CPU platform is only 0.03 GCUPS. The per-
formance is improved steadily by adopting different opti-
mization strategies, including compiler auto options, single-
thread SIMD, and multi-thread SIMD. The performance
reaches 2.18 GCUPS, over 70X speedups, using multi-thread
SIMD on Intel Q9400 Quad CPU. On the GPU platform,
the performance of the naive version on Geforce GTX 470
without any optimization is just 0.73 GCUPS, lower than
that of the multi-thread SIMD implementation on the Q9400
Quad CPU. However, the final performance is increased by
nearly 40 times, reaching 28.23 GCUPS, on condition of the
highest optimization effort.

4.2.2 Misunderstandings on GPU and CPU comparison

We find three misunderstandings on performance compar-
ison between GPU and CPU implementations.

(1) Optimized version GPU vs. naive version CPU.
Form Figure 5, we observe that the GPU implementation
with register optimization shows a factor of more than 900X
speedup over the naive version running on CPU. However,
compared to the optimized version with multi-thread SIMD
with loop unrolling, the speedup factor is only by 12X.

(2) New manufacturing technology GPU vs. old man-
ufacturing technology CPU.
If we compare the performance of the S-W algorithm tested
on GPUs with 45 nm manufacture technology to that on 65
nm dual-core CPU, a factor of more than 80X speedup can
be achieved. However, the performance on the GPU platform
is only improved by 12X compared to the CPU with the
same 45 nm technology.
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(3) Optimized version on new GPU platform vs. naive
version on old CPU platform.
The most unfair comparison is that of the performance of the
optimized version on the new generation GPU platform to
the naive version running on the old CPU. If we adopt this
measure approach, the GPU implementation would show a
speedup factor of more than 1000X over the origin CPU
version without optimization. But this is beyond scientific
evaluation.

Conclusively, the performance of the GPU is superior to
the CPU version. Instead of hundreds of times speedup, GPU
shows a speedup factor of 12X over the CPU when both are
running the optimized version under the same manufacture
technology.

5. Comparison with Relatedworks
There are a number of efficient implementations of the S-

W algorithm on GPU platforms, as listed in Table 5. Most
work on GPU acceleration discussed intra-task paralleliza-
tion or global memory optimization schemes separately,
and none compared GPU with a fully optimized CPU
version. Our work combines three levels of optimizations
and reports fair comparison results. Recently, there have
been several papers evaluating the performance of CPU and
GPU computing platforms. Both [1] from Intel Lee and
[2] form IBM reported performance comparisons between
carefully tuned CPU version with optimized GPU version
collected from published papers. However, the comparisons
were taken from 45 nm CPUs to 65/55 nm GPUs.

6. Conclusion
This paper explored the parallel schemes on GPU plat-

forms to accelerate the S-W algorithm for pair-wise sequence
alignment. We tried various optimization schemes, including
coalesced global memory accesses, shared memory tiles,
and loop unfolding, and obtained over 50X speedups. The
experimental results show that GPU is obviously superior to
CPU. However, the performance difference does not reach
100X, only 12X on the condition of fair Comparative Study.
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Abstract
Unidimensional character strings are practical because of 
their simplicity. This simplicity made it possible to create the 
initial generation of tools for analyzing DNA. However there 
are some cases that these tools do not handle gracefully. DNA 
found in noncorrecting viruses or oncology and  “cloud” 
computing pose significant barriers to pushing these tools 
forward. The alternative we show here uses an abstract 
geometric representation of the DNA sequence called the W
curve. Geometric properties of these curves offer new 
avenues that bypass the roadblocks inherit in stringbased 
approaches. Our approach described here uses a database 
with geometric fields and spatial indexes originally 
developed for geocoding. The techniques improve handling 
of crossoverrecombinant sequences and are suitable for  
distributed  computing .

1. Background: Comparing DNA 
Character Strings.
The tools most commonly used today for analyzing DNA 
sequences are based on characterstring representation of the 
DNA sequence. Representing the sequences in this manner 
makes intuitive sense and works for the most common cases. 
Analysis with these tools assumes largely similar sequences 
and that any differences between the sequences are 
significant. This approach works in most cases: for example, 
humans and chimpanzees have nearly 96% of genetic material 
in common [1],and nearly 60% of human genes are common 
to that of the fruit fly, Drosophila melanogaster [2].

The assumption of similarity starts to break down in studies 
of noncorrecting RNA viruses or cancerous cells. The best
known example is HIV1, the group also includes the 
filoviruses Marburgvirus and Ebolavirus and sequences found 
in cells damaged by radiation or botched mitoses. The process 
of studying these sequences today starts with a shotgun 
sequence from Next Generation Sequencing (“NGS”) 
machines [3]. The following step is to align the small 
fragments output by NGS with template sequences. The high 

variance makes  the fragments difficult to align, often 
requiring longer sequences for success. [4].

Crossover recombination is a common problem with HIV1. 
The virus packages itself with two strands of RNA per viron. 
This leads leads to a fairly high rate of crossovers between the 
adjacent genomes in the viral progeny. Combined high rates 
of mutation and reinfection leave many patients with 
multiple distinct strains of HIV1 infecting the same cells [5]. 
HIV1's propensity for recombination makes hybrid strains 
relatively common compared to other viral infections. Similar 
problems arise in oncology studies where crossovers may be 
the cause of cancer: there is no good way to compare 
fragments to multiple template sequences at once utilizing the 
current generation of stringbased techniques.

Compounding the problem is the scoring mechanism used by 
existing software, which produces a single value for the entire 
match. These tools offer no mechanism for comparing 
fragments piecewise and choosing the most relevant matches 
for each section.

BLAST, FASTA, and ClustalX2 all perform their 
comparisons recursively [6]. This works well enough for 
singlythreaded applications but is difficult to run in parallel. 
The growth of distributed computing environments makes it 
important to start looking for algorithms that are adaptable to 
parallel and highlydistributed execution. This requires an 
algorithm suitable for a divideandconquer approach, with 
the ability to compare regions separately and combine the 
results for final analysis.

2. Alternative: The Wcurve
The Wcurve was originally developed as a visualization tool 
for comparing large sequences of DNA. It uses a state 
machine to generate threedimensional output based on the 
DNA sequence. The curve has a few useful properties for 
comparing sequences in the presence of SNPs and gaps, and 
its geometric result has more detail as the fine scale than a 
sequence of characters. Most important the location of points 
on the Wcurve are influenced by the prior points on the 
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curve. This produces a more detailed structure which can be 
queried independently at each point on the curve [7].

Previous papers have described generating a Wcurve in detail 
[8]. The Wcurve is produced by a state machine using four 
corners of a square with corners labeled for the four bases in 
DNA (Fig. 2a). The X and Y axis are unitless, the Zaxis is 
discrete, matching the sequence's base numbers. At each 
point on the curve, the next point is determined by gong half
way to the corner for the next base in XY (Fig. 2b). All 

curves begin at the origin, so the first point on all curves is at 
a distance of ½ along an axis with a Z value of 1. 

Two important properties of the Wcurve are shown in Figure 
2. One is that altering one base in the sequence will change 
the locations of successive points in the curve. This is an 
important difference with characterbased algorithms: Each 
point in the Wcurve depends to a certain extent on the 
sequence of prior points. There is no analogous relationship 
between the bases in a character string. For example, knowing 

Figure 1: (a) Each corner of a square is labeled with one DNA base. (b) Successive points are halfway from the current 
point to the corner labeled with the next base. Shown are the next points from P for each possible next base (P'(A), etc).

Figure 2: Wcurve divergence and convergence after a SNP at base number 3 (T vs. C). The curves diverge noticeably at 
base 3 but have largely converged by base seven.This combination of divergence with autoregression makes the curves 
useful for comparing sequences: local differences are detectable after which the curves converge due to autoregression.
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the xy location of a point on a Wcurve tells us something 
about the previous points. If nothing else, we know that if any 
of the last few points were different then the point would not 
be where we found it. This contrasts with a stringbased 
sequence of characters: replacing any character in the string 
has no affect on the ones before or after it.

Another important property is that after a few common bases 
the curves rejoin one another. This  property, called “auto
regression”, is how the Wcurve handles SNPs and gaps 
between the sequences. The effect can be seen in bases 47 of 
the curves in figure 2: the curves diverge noticeably at a SNP 
in base 3 but are nearly realigned by base 7.  A similar effect 
is seen with gaps: within a few bases after a gap the curves 
converge with a phaseshift equal to the gap size.

The balance of local divergence and autoregression makes it 
possible to align larger sequences while finding the 
differences between them. Autoregression permits piecewise 
comparison of the curves since the alignment of any number 
of fragments will match their alignment taken as a whole. 
Regardless of local divergences from SNPs or gaps, common 
sequences will still align. 

The following section will illustrate how the curves can be 
stored and compared using geometric extensions for relational 
databases.

3. Querying a Curve
Recent developments in relational database technology have 
added queryable geometric objects to the relational 
vocabulary [9]. We are using Postgres 9.1 with GiST objects 
(a.k.a. “postgis”). The geometric fields were originally 

designed for geographic or astronomical queries: find the 
roads in a city, or locations of postal codes. The constructs 
include points, lines, polygons, and circles which can be 
queried for overlap, intersection, inclusion or distance.

These database extensions also include “spatial indexes” 
which define  bounding boxes for the geometric elements in 
the indexed fields. The indexes greatly improve performance 
in intersection or “contained within” queries. 

There are any number of ways to apply these database 
extensions to model and query a Wcurve. Our initial 
approach was similar to ones used with stringbased 
approaches: began by selecting the template points close to 
the fragment's first base in XY. Then looking for points close 
in XY to the next point. However,  this approach has 
problems with SNPs or gaps leaving no points to select in the 
next iteration or an initial SNP filtering out the correct 
templates.

One workaround for internal SNPs and gaps is to keep 
searching with an expanding window until one point is 
selected, then continue from that point forward. This 
approach handles internal SNPs or gaps does not account for 
crossovers or mismatches at the start of a curve. The problem 
with recombinant fragments is that they stop matching on one 
template at its midpoint, leaving us with nothing to select 
going forward. This approach is also not suitable for 
distributed computing since the process of acquiring each 
base depends on the previous one selected.

Some limitations of selecting incremental bases can be 
worked around by proceeding from both ends of the fragment 

Figure 3: Overlap of  fixed (green) point vertexes with fragment (blue) vertexes as circles using a radius of 0.10. After the 
curves diverge at base 3, the template's points intersect the fragment circles at base 7. Adjusting the circle size allows for fuzzy 
matching and helps compensate for progressive rounding error, variations caused by the fragment starting at (0,0), or multi
base/ lowquality FastQ entries.
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at once: selecting any template points that match either end of 
the fragment and working back towards the fragment's center. 
This can handle crossovers but still leaves  curves orphaned 
due to a SNP or gap at the ends of a fragment and is still not 
really suitable for distributed computation.

Avoiding issues with the endpoints requires dealing with 
points in the middle. Querying all of the points,will locate all 
the candidate templates in one pass. A more efficient two
pass approach is to first query a sample of the fragment and 
use those results to filter out trivial matches. The sampling 
approach we have developed is derived from the Wcurve's 
original use as a visual tool: uses lining up the curves 
manually will start by making the extreme points match.  
Lining up these “peaks” in two curves is the fastest way to 
visually align the curves. In the database, this starts by 
selecting fragment points outside of a radius from the XY 
origin, usually 0.5. The first pass  sample points are used to 
select matching template points,. The sample results are then 
filtered using adjacencies to remove trivial matches, 
providing a set of templates for complete matches. In the 
second pass, all points are compared to the templates with 
added restrictions based on the sample point matches. The 
result of this second selection are  finally arranged for 
maximum  coverage of the fragment and ranked by total 
coverage to produce candidate alignments. 

This approach gracefully handles recombinant matches by 
simply locating the points on all available template curves. 
The queries are readily adapted to distributed computing 
since the point comparisons  are independent, depending only 
on the positions of individual fragment and template point 
locations. The queries can restrict the locations of points 
using the relative base numbers of sample points, delivering a 
manageable amount of data to the central node for filtering. 
Even the filtering can be parallelized to the number of 
template sequences selected since those evaluations are 
independent.

The main remaining issue is defining a database which can be 
suitably queried.

4. Database Layout & Queries
The database schema that supports these queries has to deal 
gracefully with rounding errors, gradual effects of auto
regression after a SNP, and phase shifts in the curves after a 
gap. It also needs to be compact in both for query 
performance and distribution to nodes in the cloud. 

One design that might seem attractive is storing the points as 
threedimensional entities and simply querying the curves for 
intersecting points. This fails on two fronts, however, since it 
permit querying the XY locations of points independently of 
their base numbers or the direct selection of base numbers.

Comparing the points without reference to their base numbers 
initially requires storing the curves with an XY value and 
separate base number. At this point storing XY values as 
points and querying the distance might seem reasonable. The 
storage is simple and compact, but the distance computation 
is too expensive and points alone are exquisitely sensitive to 
rounding errors. Storing all of the vertexes as polygons solves 
rounding errors but requires storing bulky objects with 
expensive intersect/overlap queries.

The final solution was a mixture of point and circle objects. 
The template Wcurve vertexes are stored using  XY points. 
The fragments, however, are stored as circles (Fig. 3). This 
provides a relatively compact database in both cases, with a 
simple query for the points contained within the circles. The 
circles also make effective use of spatial indexes, which store 
a bounding box containing the geometry. The bounding box 
for circles  is efficient to compute, minimizes rounding error, 
and is an effective filter for the containedwithin queries used 
with template points.

Storing fragment vertexes as circles also helps solve two 
issues with the Wcurve that have been ignored thus far: 
initial bases in fragments and multibase alternatives in the 
sequences. The former is a problem that Wcurves generated 
from short reads all begin at the origin before their first base, 
but the template curves are in midsequence. This leaves the 
first few bases of the fragment's curve are guaranteed not to 
match the corresponding points on the template. One solution 
is to prefix the curve with the 16 possible twobase 
alternatives and draw a larger circle around the resulting 
locations for the first 23 bases. These larger circles are 
essentially a fuzzymatching approach to the alignment. This 
approach permits matching in the first few bases of the 
fragment at the expense of filtering out more points due to 
extraneous matches. 

Multibase alternatives found in Fast Q output of NGS 
systems can be handled in a similar fashion: simply draw 
larger circles or store multiple circularstring objects in the 
database for the alternative bases. Resulting matches from 
each circle could be weighted according to the quality values 
for the final match. Again, the filtering process for 
adjacencies will remove any oneoff matches.

A skeleton database supporting these queries has four tables: 
two of identifiers with any additional nongeometric data and 
two of Wcurve values, one with points one with circles for 
the geometry (Fig. 4). The identifier tables have a candidate 
key of  the template's external identifier and an integer 
surrogate key for use in the geometry tables. The template 
geometry table has a candidate key of the  template's 
surrogate key (SK) and base number; fragment geometry 
requires a candidate key of the fragment's SK, a base number, 
and the base AA from which the geometry is defined. The 
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create table sequence
(
    id      serial          not null,
    parent  integer         not null references dna default 0,
    ident   varchar(32)     not null,
    sequence text            not null default '',

    primary key ( id ),
    unique ( ident, parent )
);
create table template
(
    seq integer not null references sequence,
    base integer not null,
    nucleotide char(1) not null,

    primary key ( dna, base_no )
);
create table fragment
(
    seq integer not null references sequence,
    base integer not null,
    nucleotide char(1) not null,

    primary key( dna, base_no, base_aa )
);

select AddGeometryColumn( 'template', 'vertex', -1, 'POINT', 2 );
select AddGeometryColumn( 'fragment', 'vertex', -1, 'CIRCULARSTRING', 2 );

create index fragment_vertex_ix on fragment using gist( vertex );

insert into sequence ( id, parent, ident ) values ( 0, 0, 'root' );
insert into sequence ( ident ) values ( “B.K03455” );
insert into sequence ( ident, parent ) values ( “gp120”, 1 );

prepare insert_template( integer, integer, char, varchar )
as insert into template ( seq, base, nucleotide, vertex )
values ( $1, $2, $3, St_GeometryFromText($4) );

prepare insert_fragment( integer, integer, char, varchar )
as insert into template ( seq, base, nucleotide, vertex )
values ( $1, $2, $3, St_GeometryFromText($4) );

insert_template( 1, 1, 'T', “POINT(0.5 0)” );
insert_fragment( 2, 1, 'A', “CIRCULARSTRING(-0.05 0.5,0.05 0.5, -0.05 0.5)” );

Figure 4: Skeleton database for storing template and fragment Wcurve vertices. Example inserts show the first vertex for 
HXB2 and its gp120 protein. 
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fragment's larger candidate key is required to accommodate 
storing multiple circles for handling FastQ results. 

The circles are handled via CIRCULARSTRING  objects. 
These can describe full circles using three points with the 
first and last points matching and the second point being 
opposite the first. Using an offset to the Xaxis value for each 
vertex requires minimal computation for the input data and 
produces a bounding box without rounding error. For 
example, in Figure 3 the first vertex for 'T' at ( 0, 0.5 ) 
produces a circle with points ( 0, 0.55 ), ( 0, 0.45); in Figure 4 
shows the input format with three points, with the initial 
vertex for 'A' at CIRCULARSTRING( 0.05 0.50, 
0.05 0.50, 0.05 0.50 ), 1.

The general query for alignments selects the dna.id, base_no, 
and base_aa values from template, fragment tables “where 
template.vertex && fragment.vertex”. The '&&' operator 
looks for intersecting geometry and makes efficient use of 
bounding boxes in the fragment's spatial index.

5. Further Research
Determining the most effective radius for the fragment radius 
and how to use either variableradius or multiplecircle 
designs will be important for matching short sequences 
provided as FastQ  inputs used with most NGS machines. In 
addition, an efficient, distributed filtering algorithm for the 
first pass selection from sample fragments will be key to 
making this approach efficient in cloudcomputing 
environments.

6. Conclusion
The Wcurves' abstract, threedimensional geometry for 
representing DNA sequences provides more detail than a uni
dimensional character sequence. Its balance of local 
divergence and global convergence make the representation 
useful for aligning sequences that characterbased algorithms 
cannot handle well. Geometric data objects now give us the 
tools to mine Wcurve databases effectively, handling highly 
variable and crossover recombinant sequences. The algorithm 
described here uses generic tools such as SQL, and is suitable 
for highlyparallel environments such as cloud computing.  
Although the examples here use HIV1,  other noncorrecting 
viruses or  oncology are also good candidates for its 
application. We are not saying that the Wcurve is a 
replacement for Fasta or Clustal, but used as an adjunct to 
them it opens up new opportunities for studying difficult 
sequences. And that has to be our goal going forward: 
expanding the range of tools available for studying the 
complexity of biology.
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Abstract— We present results of numerical simulations that
further validate the critical limits we previously proposed
for our universal Brain Injury Criterion (BIC). The BIC
extends the applicability of the translational Head Injury
Criterion (HIC) to arbitrary head motions by reformulating
the acceleration-based HIC formula in terms of the energy
transferred locally from the skull to the brain. Our simula-
tions are based on a generalization of the Kelvin-Voigt (K-V)
Closed Head Injury model that includes a nonlinear strain-
stress relation. We validate the proposed BIC limits against
(i) the critical limit HIC15 = 700, (ii) the Diffuse Axonal
Injury Tolerance Criterion (DAITC) for head rotations that
has been derived from the K-V model and from experiments
with animal brains, and (iii) recent experimental data on
strain levels leading to permanent neuronal damage. Our
results imply that for head rotations about various fixed axes,
the critical BIC15 limits coincide with theHIC15 critical
limit and are in agreement with the DAITC thresholds.

Keywords: brain injury, universal critical limits

1. Introduction
In previous work [1], [2], [3], we have introduced a

universal Brain Injury Criterion (BIC) that allows assessing
Closed Head Injury (CHI) caused by arbitrary traumatic head
motions. Our approach is based on the assumption that if
energy is transferredlocally from the skull to the brain in a
similar way, the likelihood and severity of a brain injury in
a given location should be similar in any traumatic scenario,
including traumatic head translations.

This article makes the following contributions: First, to the
best of our knowledge, we are the first to establish that the
way in which energy is transferred locally from the skull to
the brain can play a crucial role in determining the likelihood
and severity of a brain injury during arbitrary traumatic head
motions. Specifically, we consider the rate at which energy
(i.e., power) is transferred to the brain per unit mass from
the moving skull as well as the rate of power transferred to
the brain (i.e., whether energy is transferred to the brain in
an accelerated or constant way).

Second, by using the energy/power transferred locally
from the skull to the brain during traumatic head motions

as a predictor of a brain injury, we introduce a ‘common
denominator’ for assessing the severity and likelihood of the
injury appearing as a result of traumatic head translations
and rotations. This makes it possible to establish a direct
link between the translational and rotational critical limits
introduced by other researchers.

Third, we demonstrate how the operator norm of the strain
matrix can be used to evaluate the time evolution of the
spatial distribution of the maximal strain in the brain matter.

Fourth, by numerically simulating various traumatic sce-
narios using our nonlinear CHI model, we show that, for
head rotations aboutfixed axes lasting for 0.015s, the BIC
critical limits (i) do not depend in an essential way on the
position of the rotational axis, (ii) coincide with the new
critical limit HIC15 = 700, and (iii) are in agreement with
the existing rotational Diffuse Axonal Injury thresholds.

1.1 Derivation of the BIC formula
Based on our assumption regarding the local transfer of

energy from the skull to the brain, we derive the BIC formula
from the well-established translational Head Injury Criterion
(HIC) formula:

HIC1000T = maxA2.5T, (1)
whereT is a time subinterval of the head’s translational ac-
celeration time,A is the average (overT ) of the acceleration
magnitude’s absolute value, and the maximum is taken over
all subintervalsT .

Specifically, for monotone accelerations, we expressA in
terms of the energyE and the powerP as follows:

A=
√

2P
/(√

(E(t2) +
√

E(t1)
)
, (2)

whereE(t) denotes the average kinetic energy per unit mass
at time t transferred to the brain surface from a translated
skull, andP= |E(t2)−E(t1)|/T is the absolute value of the
average power transferred per unit mass to the brain in the
time intervalT= t2− t1, cf. [1] for details.

The reformulation of the accelerationA in terms of energy
and power allows us to generalize the applicability of the
HIC formula (1) to arbitrary traumatic head motions, i.e., to
introduce the following formula:

BIC1000T = max
( √

2P√
2E(t1) +

√
2E(t2)

)2.5

T. (3)
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Let us note that, contrary to the case of a head translation,
during an arbitrary head motion, energy is transferred non-
uniformly from the skull to the brain, i.e., bothE and P
depend not only on the timet but also on the localization of
the brain parcels. For instance, during a head rotation about
a fixedaxis, the energy transferred to the brain is negligible
near the axis because the magnitude of the rotational velocity
is very small there. Hence, in case of an arbitrary traumatic
head motion, the maximum in the formula (3) should be
taken not only over all time intervalsT but also over the
entire brain surface.

If, for a time intervalT= t2−t1 for which the maximum in
(3) is assumed, the velocity of an acceleration pulse is zero
at t1 or t2, the BIC formula (3) can be simplified to become
a function of only the average powerP and the duration of
the acceleration timeT :

BIC1000T = max 2P (2P/T )0.25, (4)

where the ratioP/T approximates the rate at which power is
transferred to the brain. Thus, our BIC formula (4) exposes
a new role that is possibly played in the creation of brain
injuries by an accelerated delivery of power from the skull
to the brain (second temporal derivative of energy).

1.2 Rotations about fixed axes
In the case of accelerated head rotations aboutfixedaxes

(which we focus on in this study), the requirement that the
maximum should be taken over the entire brain surface can
be relaxed by considering only a thin strip of the brain’s
surface located along the boundary of the 2D brain cross
section that is perpendicular to the rotational axis and is
characterized by thehighestvalue of tangential velocity.

Moreover, if the magnitude of this tangential velocity
over time is the same as the magnitude of the translational
velocity characterizing a head’s accelerated translation, the
likelihood and severity of a brain injury appearing in this
brain cross-section should be similar to the likelihood and
severity of an injury when the head is translated since the
local transfer of energy along the cross section’s boundary
is practically identical in both traumatic scenarios. Conse-
quently, it should be possible to directly use the critical HIC
limits introduced in [4], [5] to derive the critical BIC limits
for traumatic head rotations about fixed axes.

1.3 Correlation between translational and ro-
tational brain injury criteria

In deriving BIC critical limits for traumatic head ro-
tations about fixed axes, our approach allows us to also
use the rotational critical limits introduced by the Diffuse
Axonal Injury Tolerance Criterion (DAITC). DAITC has
been developed in 1992 based on experiments with baboon
brains and thelinear viscoelastic Kelvin-Voigt (K-V) CHI

model,cf. [6]. The DAITC is expressed in terms of the peak
rotational acceleration about afixedrotational axis positioned
centroidally, and the peak change of the rotational velocity’s
magnitude.

In fact, considering how energy is transferred locally from
the skull to the brain in traumatic situations as a brain injury
predictor allows us to link the translational critical HIC limits
with the rotational critical DAITC limits. For instance, the
maximum translational acceleration of a triangularly shaped
acceleration pulse characterized by the criticalHIC15=700
limit equals 150g=1,472m/s2 and the corresponding peak
change in the velocity is 5.4m/s,cf. Fig. 2 in Section 3.

If the same tangential pulse is used to centroidally rotate
an adult human head with an ‘average radius’ of 0.1m about
a fixed axis, the maximum rotational acceleration equals
14,460rad/s2 and the peak change in the rotational velocity
magnitude equals 55rad/s. This corresponds to a point that
is near the critical region defined by the DAITC analytic
model’s threshold curve and is inside the critical region
defined by the DAITC physical model,cf. Fig. 5 in [6].

2. Generalized Kelvin-Voigt CHI model
We further validate the critical BIC limits by conducting

simulations using our numerical nonlinear CHI model that
generalizes the K-V model used to derive DAITC.

2.1 Nonlinear stress-strain relation
Following experimental data obtained over the last two

decades,cf. [7], [8], [9], we include a nonlinear stress-
strain relation in our generalization of the K-V CHI model.
Thus, our computational model utilizes the following Partial
Differential Equations (PDEs) describing the propagation of
shear waves in incompressible viscoelastic materials:

∂v(x, t)
∂t

= 4(c2(x, t)u(x, t) + ν v(x, t)),

∂u(x, t)
∂t

= v(x, t), ∇·v(x, t) = 0, (5)

wherev(x,t)≡(v1(x,t),v2(x,t),v3(x,t)) with x≡ (x1, x2, x3)
represents the brain matter velocity vector field at timet in
an external coordinate system,u(x,t) is the corresponding
displacement vector field,c(x, t) describes the brain’s shear
wave velocity that depends on the distribution of strain in
the brain matter, andν is the brain’s kinematic viscosity.

Specifically, based on experimental data reported in [7],
we model the stress-strain relation as an exponential func-
tion, i.e., we set

c(x, t)≡c · exp(r · s(x, t)), (6)

wherec≡
√

G/δ denotes the basic shear wave velocity in the
absence of strain (withG andδ being the brain matter shear
modulus and density, respectively),s(x, t) describes the time
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evolution of the spatial distribution of the maximum strain
within the brain matter, andr is a coefficient determining
how the brain matter stiffens under strain.

Since there are no experimental data on the brain matter’s
strain-stress relation for very large strains, we make the
assumption that for strains larger thanm%, e.g., exceeding
m = 50%, the shear wave velocityc(x, t) given by (6)
‘saturates’, i.e., it smoothly becomes proportional to the
basic velocityc.

2.2 Spatial distribution of maximal strain
To find the spatial distributions(x, t) of the maximal

strain, we evaluate the components of the matrix:

S(x, t) ≡ ∇·U(x, t) + I ≡ ∂U
∂

x
(x, t) + I, (7)

where U(x,t)≡ (U1(x,t),U2(x,t),U3(x,t)) denotes the brain
matter’s displacement vector fieldrelative to the moving
skull, ∇·U(x, t) is the strain matrix of this field, andI
is the identity matrix in 3D.

The diagonal terms in the strain matrix∇·U(x,t) deter-
mine the contribution of the partial derivatives to the brain
deformation by evaluating the brain matter’sstrain with
regard to the directions of the base vectors used, whereas
the partial derivatives in the non-diagonal terms determine
their contribution to the brain deformation by evaluating the
total deformationof the brain matter.

Adding one to the diagonal terms in (7) puts all partial
derivatives on ‘equal footing’, i.e., enables us to evaluate
the maximal total deformation in each pointx of the brain
at time t by using the operator norm || ||O of the matrix
S(x, t). Next, by subtractingone from this maximal total
deformation, we obtain the spatial distribution of the maxi-
mal strain at timet. Thus, the functions(x, t) is given by:

s(x, t) ≡ ||S(x, t)||O − 1 ≡ sup||S(x, t) · y|| − 1, (8)

wherey≡ (y1, y2, y3), || || denotes the vector norm in 3D,
and the supremum is taken over all vectorsy with ||y|| = 1.
One can easily check that:

s(x, t) ≤ ||∇·U(x, t)||O, (9)

i.e., the operator norm ||∇ · U(x, t)||O of the strain matrix
provides an upper bound for the functions(x, t) describing
the spatial distribution of the maximal strain.

3. Simulation setup
In this paper, we present simulation results of head trans-

lations in a fixed direction as well as of head rotations about
certain fixed rotational axes. As mentioned above, this allows
us to directly verify the results of our numerical simulations
using the HIC and DAITC critical limits.

In both of these scenarios the forces applied to the head
have one zero component, and consequently, one component

of the 3D solutions is zero. Therefore, it suffices to solve
PDEs (5)−(8) only in 2D brain cross sections near which the
transfer of energy from the skull to the brain is the largest.

Thus, for forward head translations and rotations, we
present the results of our simulations in a sagittal brain cross
section that is positioned near the falx cerebri, whereas for
lateral head rotations, we present the results in a coronal
brain cross section that is positioned near the brain’s center
of mass and that includes the falx cerebri.

3.1 Skull-brain facsimile
As solution domains, we use 2D facsimiles of the skull-

brain cross sections consisting of three layers: (i) the skull
and dura layer, (ii) the Cerebro Spinal Fluid (CSF) layer,
and (iii) the brain matter layer,cf. Fig 1. Specifically, we
model the skull and the dura mater as a solid body layer,
the 4·10−3m thick CSF layer representing the pia-arachnoid
complex with the fluid is modeled as an incompressible
elastic medium, and the brain matter is modeled as an
incompressible viscoelastic medium.

Since there exist no conclusive experimental data on how
the stress depends on the strain in the gray matter, the brain
matter is assumed to be homogenous having the physical
characteristics of the white matter.

Fig. 1

THE THREE-LAYER SAGITTAL AND CORONAL HEAD CROSS SECTIONS

SOLID BODY SKULL AND DURA MATER - DARK GRAY, ELASTIC CSF

COMPLEX- BLACK ; VISCOELASTIC HOMOGENOUS BRAIN- LIGHT GRAY

Experimental data in [7], [10−17] imply that the shear
wave velocity in the white matter is approximately 1m/s,
the stiffening coefficient0.5 ≤ r≤ 2.5, the brain’s viscosity
0.009m2/s ≤ ν ≤ 0.017m2/s, and neurons can sustain
mechanical strain up to 80%.

According to [18], the CSF layer is predominately mod-
eled as an incompressible elastic medium with a shear
modulusGCSF as low as 200PA, which reflects the role of
the CSF in reducing the strain within the brain matter [19].
The simulation results presented here are obtained with the
following values for the constants in the system (5)−(8):
c=1m/s,ν =0.013m2/s, r=1.4, m=50%, GCSF =225PA.
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3.2 Acceleration loads used
We simulate forward head translations and forward head

rotations about fixed horizontal axes positioned at the head’s
center of mass, the chin, the neck, and the abdomen as well
as lateral head rotations about fixed vertical axes positioned
at the head’s center of mass, the skull, and at some distances
outside of the skull.

We present simulation results obtained using a triangular
acceleration load with the acceleration timeT = 0.015s and
the tangential acceleration and velocity magnitudes corre-
sponding toHIC15 = BIC15 ranging from 100 to 1000.
Fig. 2 depicts the dynamic characteristics of the critical load
used withHIC15 = BIC15 = 700.

Fig. 2

DYNAMIC CHARACTERISTICS OF THE ACCELERATION LOAD WITH

HIC15 = BIC15 = 700

4. Simulation results
To evaluate the possible severity of a brain injury, we find

the absolute maximumsmax of the functions(x, t), i.e., the
maximum strain value attained in a given brain cross section
during or some time after the head is accelerated.

4.1 Simulations of forward head translations
Table 1 depicts the values ofsmax attained in the coro-

nal and sagittal brain cross sections in our simulations of
forward head translations under loads characterized by four
HIC15 values ranging between 100 and 1000.

HIC15 100 400 700 1000
coronal 10% 20% 25% 27%
sagittal 17% 27% 35% 38%

Table 1

M AXIMAL STRAIN smax IN THE CORONAL AND SAGITTAL CROSS

SECTIONS ATTAINED DURING OR AFTER FORWARD HEAD

TRANSLATIONS WITH HIC15 RANGING BETWEEN100AND 1000

Experiments imply that neurons sustain permanent dam-
age due to a chemical imbalance when stretched by 25%-
30% [6], [7], [20]. For theHIC15 = 700 load, the average of
the smax values attained in both brain cross sections equals
30%. Thus, our translational results are in good agreement
with this critical HIC limit, which validates the predictions
of our computational CHI model.

The disparity between thesmax values in the coronal and
sagittal brain cross sections are most likely due to the fact
that the simulations with the sagittal cross section do not take
into account the impact of the falx cerebri, which seems to
lower the maximal strain,cf. [6].

4.2 Simulations of head rotations
Diffuse Axonal Injuries (DAI) appear predominantly as a

result of rapid head rotations,cf. [21]. To derive critical BIC
values that can be used to assess the severity and likelihood
of DAI, we conduct numerous simulations of head rotations
under loads characterized by a variety of BIC values.

Table 2 depicts the valuessmax attained underBIC15

loads ranging from 100 to 1000 in the sagittal brain cross
section during or after forward head rotations about fixed
horizontal axes positioned at the head’s center of mass, the
chin, the neck, and the abdomen.

smaxvalues in sagittal cross section BIC15

forward rotation about fixed axis at 100 400 700 1000
head’s center of mass 17% 32% 37% 39%

chin 17% 32% 36% 43%
neck 13% 29% 35% 40%

abdomen 19% 29% 36% 39%

Table 2

M AXIMAL STRAIN smax IN THE SAGITTAL CROSS SECTION ATTAINED

DURING OR AFTER FORWARD HEAD ROTATIONS ABOUT VARIOUS

HORIZONTAL AXES WITH BIC15 VALUES BETWEEN100AND 1000

Table 3 shows the valuessmax attained under the same
BIC15 loads but in the coronal brain cross section when
the head is rotated laterally, counter-clockwise about fixed
vertical axes positioned at the head’s center of mass, the
skull, 0.1m from the skull, and 0.2m from the skull.

smaxvalues in coronal cross section BIC15

lateral rotation about fixed axis at 100 400 700 1000
head’s center of mass 11% 25% 39% 40%

skull 17% 35% 40% 41%
0.1m from the skull 16% 35% 40% 40%
0.2m from the skull 15% 30% 35% 37%

Table 3

M AXIMAL STRAIN smax IN THE CORONAL CROSS SECTION ATTAINED

DURING OR AFTER LATERAL HEAD ROTATIONS ABOUT VARIOUS

VERTICAL AXES WITH BIC15 VALUES BETWEEN100AND 1000

These simulation results provide maximal strain values
smax that are slightly higher than (but still in line with) the
values obtained for head translations. Let us note, however,
that during rapid head rotations the absolute maximasmax

of strain are, in general, attained in a pointwise manner in
very small regions of the brain matter during a very short
period of time lasting for 0.01s to 0.02s.

Such localized high strain values lasting for such short
periods of time should only be used to obtain an upper bound
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t = T/2 = 0.0075s t = 0.014s< T t = T = 0.015s

t = 2T = 0.03s t = 4T = 0.06s t = 6T = 0.09s

Fig. 3

TIME EVOLUTION OF THE VELOCITY CURVED VECTORFIELD V(x1, x2, t) RELATIVE TO THE SKULL IN THE CORONAL BRAIN CROSS SECTION

DURING AND AFTER A LATERAL HEAD ROTATION WITH BIC15 = 700 ABOUT A VERTICAL AXIS POSITIONED AT THE BRAIN’ S CENTER OF MASS

estimate for predicting DAI likelihood and severity, since the
loss of axonal transport in a single axon does not properly
reflect the spatial scattering of DAI [22].

Instead, the Cumulative Strain Damage Measure (CSDM)
introduced in [23] has been accepted as a good DAI predictor
[24]. An initial analysis of our simulation results from the
point of view of the CSDM suggests that the critical HIC
value of 700 can be used as the BIC critical value for
head rotations about fixed axes and as a starting point for
establishing critical BIC limits for arbitrary head rotations.

Since commercial software cannot adequately depict
highly localized oscillations of vector fields, we have devel-
oped animated Curved Vector Field (CVF) plots [25]. CVF
plots use curved, dark-to-light shaded lines instead of arrows

to indicate the motion’s direction. They provide a good
depiction of vectors and portray potential trajectories of brain
parcels. Animated versions of our CVF plots are available at
http://www.funiosoft.com/brain/ in form of MPEG movies.

Fig. 3 (resp. 4) depicts time snapshots of CVF anima-
tions representing the brain matter’s velocity vector field
V(x1, x2, t) relative to the moving skull at various timest in
the coronal (resp. sagittal) 2D brain cross section when the
head is rotated laterally, counter-clockwise (resp. forward)
under theBIC15 = 700 load about an axis positioned at the
brain’s center of mass.

The highly localized brain matter oscillations depicted in
Figs. 3 and 4 create multiple local strain maxima that are
scattered over the entire brain cross section.
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t = T/2 = 0.0075s t = 0.014s< T

t = T = 0.015s t = 2T = 0.03s

t = 4T = 0.06s t = 5T = 0.075s

Fig. 4

TIME EVOLUTION OF THE VELOCITY CURVED VECTORFIELD V(x1, x2, t) RELATIVE TO THE SKULL IN THE SAGITTAL BRAIN CROSS SECTION

DURING AND AFTER A FORWARD HEAD ROTATION WITHBIC15 = 700 ABOUT A HORIZONTAL AXIS POSITIONED AT THE BRAIN’ S CENTER OF MASS
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Note that, in the case of the lateral head rotation, the
brain matter oscillations ‘spread’ throughout the entire cross
section at a later time in comparison to the forward head
rotation. This shows again that the falx cerebri plays a role
in shaping the DAI features.

5. Conclusions
Our idea that the severity and likelihood of brain injuries

can be assessed, regardless of whether a head is translated
or rotated, based on the analysis of how the energy is locally
transferred from the skull to the brain enables us to develop
a universal Brain Injury Criterion applicable for arbitrary
traumatic head motions. Our approach further allows to
correlate the new Head Injury Criterion critical limits derived
in [4], [5] with the Diffuse Axonal Injury Tolerance Criterion
critical values established in [6].

The results from numerical simulations based on our vis-
coelastic Closed Head Injury model that includes a nonlinear
strain-stress relation imply that, for centroidal and non-
centroidal head rotations aboutfixed axes with an accelera-
tion time periodT =0.015s, the criticalBIC15 limits:

• do not depend in an essential way on the position of
the fixed rotational axis,

• coincide with the new criticalHIC15 = 700 limit,
and

• are in agreement with the critical limits implied by the
DAITC threshold curves.

These results suggest that the criticalBIC15 = 700 limit
may be valid for arbitrary traumatic head motions.
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Abstract 

Advancing technologies in the healthcare industry has led 

to the idea of an electronic health record.  This form of 

document will allow healthcare institutions to store patient 

information more efficiently.  The technology that allows 

hospitals to create such a document is XML.  This paper 

discusses the emergence of XML in the healthcare field and 

also the HL7 standard, which provides guidelines for the 

creation and sharing of these documents.  Also discussed 

will be current issues regarding securing the XML 

language. 
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1. Introduction 
 

The development of the Hypertext Markup Language 

(HTML) brought about a significant change in the way 

electronic documents were exchanged.  The flexibility and 

simplicity of the language was key part in the growth of the 

World Wide Web.  HTML focuses on separating text 

information from presentation information through the use 

of a tagging system.  As websites became more widespread, 

the shortcomings of HTML began to be exposed.  The 

major problem was that HTML had no means of 

representing structured data.  Data elements that had a 

hierarchical relationship could not be efficiently 

represented in the language.  In an effort to mitigate these 

problems, the Extensible Markup Language (XML) was 

created [11].  

 

Initially XML was to take the place of HTML as the norm 

for the exchange of data and documents over the internet.  

However, HTML remained the standard for internet 

exchanges and XML found it’s calling in facilitating 

exchanges in transaction-based systems and various other 

disparate systems.  XML is considered a meta-language, 

meaning that it can be used to define a language [11].  A 

user constructs a new language by creating custom tags that 

are tailored for the type of data being manipulated. 

   

In recent years, there has been a rapid increase in the 

development of health information systems motivated by 

legislation intended to protect patients’ information and 

privacy, and the government’s interests in reducing the cost 

and improving the quality of healthcare. Electronic health 

record allows healthcare institutions to store patient 

information more efficiently. XML has become a basic 

technology for implementing electronic health record and 

health information systems.    

  

This paper introduces the basics of XML, and discusses 

Health Level 7 (HL7), an organization that sets standards. 

The Clinical Document Architecture (CDA) defined by 

HL7 is introduced, which provides guidelines for the 

creation and sharing of electronic health records. Current 

issues regarding securing the XML language is also 

discussed. 

 

This paper is organized as follows. Sections 2 and 3 

introduce the basics of XML and the advantages and 

disadvantages of XML. Section 4 discusses the history of 

patient records. HL7 is introduced in Section 5. Section 6 

discusses security issues in XML and Section 7 concludes 

the paper. 

 

 

2. XML Basics 
 

The creation of an XML document may consist of three 

parts.  The first of which is the data type definition (DTD).  

This layer describes the version of the data format, element 

descriptions, data structures, and some of the restrictions 

placed on the data.  Essentially the overall format of the 

document is specified by the DTD.  Here is a very simple 

example of a DTD that could hold a list of basketball 

players on a team: 

 

1. < !ELEMENT player_list (player) *> 

2. < !ELEMENT player (name, age, school? , country)> 

3. < !ELEMENT name (#PCDATA) > 

4. < !ELEMENT age (#PCDATA) > 

5. < !ELEMENT school (#PCDATA) > 

6. < !ELEMENT country (#PCDATA) > 

 

Line one says that player_list is a valid element name and 

any instance of such element contains any number of player 

elements.  The * signifies that there can be 0 or more player 

elements within the player_list element.  The next line 

states that player is a valid element and any instance of this 

element should be followed by elements of type name, then 

age, then school (optional), and finally country.  The ? 

character following an element signifies that the element is 

optional.  Lines three, four, five, and six merely declare the 

elements name, age, school, and country as valid element 

types.  The tag (#PCDATA) stands for parsed character 

data, meaning that the data is taken from what is entered by 

the author of the document.  The following is an example of 

a document that conforms to this DTD: 

206 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



<?xml version="1.0" encoding="UTF-8" 

standalone="no"?> 

<!DOCTYPE people_list SYSTEM "example.dtd"> 

<player_list> 

  <player> 

    <name>John Hooper</name> 

    <age>23</age> 

    <country>USA</country> 

  </player> 

</player_list> 

 

The second part of the document is a detailed explanation 

of what the user created tags mean.  The last layer of an 

XML document, which is optional, defines how the 

information will be presented [1].  Documents can be 

linked to use CSS or XSLT style sheet. 

 

 

3. Advantages and Disadvantages of 

XML 
 

The advantages of XML make it a viable solution to many 

of the data exchange problems that plague modern systems.  

There are many advantages to using a language like XML, 

but the major ones are: 

 

 The ability to support user created tags allows the 

language to be fully extensible and void of any type of 

tag limitations.  Since the language does not actually 

“do” anything, compatibility between systems is not an 

issue.  As long as both systems can support the XML 

application that actually uses the document then the 

exchange of data is possible.   

 

 Another key advantage of XML is its versatility.  Any 

type of data can be modeled and tags can be created for 

very specific contexts.  

 

 

There are also limitations to the XML that must be 

considered, such as: 

 

 The lack of powerful applications that can process 

XML data and actually make the data useful is a 

primary disadvantage of the language.  Only in recent 

history have browsers began to have the ability to read 

XML.  Even now, these browsers still make use of 

HTML to render the XML document.  This means that 

as of now, XML cannot be used as a language that is 

independent of HTML.  

 

 Another disadvantage of XML results from the 

unlimited flexibility of the language.  The tags 

implemented in a document are solely chosen by the 

creator.  There is not a standard or generally accepted 

set of tags to be used in an XML document.  As a result 

of this, designers can not just create general 

applications because each company will invariably 

have their own set of special tags and unique meaning 

for those tags. 

 

 

4. History of Patient Records 
 

The majority of medical institutions initially used paper to 

record various transactions that occurred.  Doctors used and 

still use the traditional pen and pad to record any medical 

notes about a patient.  The notes included general 

observations, possible diagnosis, and information about any 

follow up visits that need to be scheduled.  In addition to 

medical notes, medical centers also needed to keep 

financial information about each patient for billing 

purposes.  When considering the potentially high number of 

patients a doctor’s office or hospital could encounter, the 

cost of materials to store their records could easily reach a 

very high value. 

 

The first step to solving the cost problem was to incorporate 

information technology into the health care industry.  

Offices began to electronically deal with back-office 

operations such as billing.  Dramatic reductions in cost 

resulted from this shift towards the use of electronic 

business systems.  The success of the electronic business 

model sparked an even stronger focus on finding ways to 

integrate the latest technologies in information systems.  

The next major advancement was the creation of a system 

to digitize the process of Admitting, Discharging, and 

Transferring of a patient (ADT).  These ADT systems 

provided health care facilities the ability to not only locate 

patients but also keep an accurate count of them [10]. 

 

The next logical step to create a fully digitalized health care 

system is to develop an electronic system that is capable of 

storing a patient’s entire health history.  It is at this point 

that the idea of the Electronic Health Record (EHR) 

becomes the focus of research.  Imagine an electronic 

record that displays a patient’s lab results, billing 

information, allergies etc.  This type of record would serve 

to minimize costs and medical errors while increasing data 

accuracy and integrity.   The ultimate goal of all this work 

on EHR is to create a system where information can be 

shared between patients and medical institutions and also 

back and forth between independent medical practices.  

This system does not require some huge data center because 

each practice will store its information remotely.  However, 

there is a need for a standard that details how EHRs should 

be formatted. 
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5. Health Level 7 (HL7) 
 

Health Level 7 (HL7) is an organization that sets standards 

and is accredited by the American National Standards 

Institute.  This group is responsible for many 

communication standards used across America.  Some of 

the standards created by this organization consist of: 

 

 Arden Syntax – a grammar for representing medical 

conditions and recommendations 

 

 Structured Product Labeling – the published 

information that accompanies a medicine 

 

 Clinical Context Object Workgroup – an 

interoperability specification for the visual integration 

of user applications 

 

 Claims Attachments – a standard health care 

attachment to augment another healthcare transaction 

  

Their goal for the healthcare field is to provide standards 

for the exchange, management and integration of data that 

support clinical patient care and the management, delivery, 

and evaluation of healthcare services.  In addition to 

creating messaging standards HL7 is also working on 

developing standards for the representation of clinical 

documents such as discharge summaries and progress 

notes.  As a whole, these standards collectively make up the 

HL7 Clinical Document Architecture (CDA) [2].   

  

The CDA aims at solving the previously discussed problem 

of finding a reliable and standardized means of storing and 

exchanging clinical documents.  By specifying a mark-up 

and semantic structure through XML, the architecture 

works toward creating a universal way of allowing medical 

institutions to share clinical documents.   

 

5.1 Clinical Document 
 

A clinical document is defined as having these qualities: 

 

 Persistence  –  A clinical document remains in an 

unaltered state for a user specified amount of time 

 

 Stewardship – An entrusted person or party must 

have the responsibility of maintaining the 

document 

 

 Potential for authentication – The document is 

intended to be legally authenticated 

 

 Wholeness – Authentication applies to the whole 

document and not to just portions of the 

information 

 

 Human readability – A clinical document should 

be human readable 

 

5.2 Reference Information Model (RIM) 
 

Currently HL7 version 3 is being developed.  This family of 

standards includes The Clinical Data Architecture as well 

as rules for messaging.  The newly developed version 3 

allows clinical documents to contain not only text but also 

images, sounds, and other types of multimedia [3].   Both 

standards are implemented with XML and are derived from 

the Reference Information Model.  The Reference 

Information Model or RIM is an object-oriented graphical 

depiction of clinical data and aids to understanding the life-

cycle of events that messages and documents go through 

[6].  It focuses on five major themes: 

 

 Ensure coverage of HL7 version 2.x. It ensured 

that it included all the information content of HL7 

version 2.x. 

 Remove unsubstantiated content from the model. 

It removed content from the draft that the technical 

committee did not originate and could find no 

rationale for retaining. 

 

 Unified service action model (USAM). It 

introduced a concise, well-defined set of structures 

and vocabularies that address the information 

needs of a wide variety of clinical scenarios. 

 Ensure quality. It addressed inconsistencies in the 

draft model and conflicts between the model and 

the modeling style guide. 

 Address the "left hand side" of the model. It 

introduced powerful structures and vocabularies 

for the non-clinical portions of the model (patient 

administration, finance, scheduling). 

 

Figure 1 [4] shows an example of RIM represented in 

graphical form.  

 

5.3 The Hierarchical Structure of CDA 
 

The actual architecture of the CDA can be thought of as a 

set of hierarchically related XML Document Type 

Definitions.  As of now, only the top node, known as Level 

One, has been defined.  Level one is designed to include 

enough detail to mark up narrative clinical notes.  The 

objective of this level is to ease users into RIM.  It is 

intentionally not very complex to allow deeper levels the 

ability to mark up the document even more.  As seen in 

Figure 2 [6], level one material consists of the raw data 

gathered from an encounter.  There are no high level 

medical codes or terminologies used [8]. 

 

Level Two, which has not been developed, will be a set of 

templates that can be layered on top of Level One.  Level 

Two is envisioned to provide constraints to documents by  
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Figure 1. An example of Reference Information Model 

 

 

Employee 
jobCode: CD 
Job Class Code: CD 
Occupation Code: CD 
Salary Type Code: CD 
Salary Quantity: CD 
Lazard Exposure Text: ED 
Protective Equipment Text: 
ED 

 

Person 
addr: COLL <AD> 
marital status code: CD 
education level Code: CD 
race code: DSET <CD> 
disability code: DSET <CD> 
living arrangement code: CD 
religion affiliation code:CD 
ethnic group code: <CD> 

 

Place 
mobile hd: BL 
addr: AD 
directions Text: ED 
position Text: ED 
gps Text: ST. 
SIMPLE 

Organization 
addr: COLL <AD> 
standardClass Code: 
CD 

 

Living Subject 
administrativeGender Code: CD 
birth Time: TS 
deceasedID: BL 
deceasedTime: TS 
multiple Birth ID : BL 
multiple Birth Order Number: INT.POS 

Entity 
Class Code: CS 
determiner code: CS 
ID: DS ET CD 
Code: CD 
Quantity: PQ 
Name: COLL<EN> 
Deic: ED 
Telecom:COLL <TEL> 
riskCode: DS ET <CD> 
handlingCode: DS ET <CD> 

Role 
class Code: CS 
ID: DS ET CD 
code: CD 
negation ind: BL 
name: COLL<EN> 
addr: COLL<AD> 
Telecom:COLL <TEL> 
statureCode: CS 
effective Time: QS ET ET <TS> 
confidentiality; Code: DS ET <CD> 
quantity RTO 
priority number: INT POS 
position Number: 
LIST<INT.NONNEG> 

Played role 

0..1 

 

player 

0..1 

 

Scoper 

0..1 

 

Scope 
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Figure 2. The hierarchical structure of CDA 

 

 

requiring that specific types of medical documents contain 

a certain piece of information.  For example one of these 

templates might require that a document of type “blood 

work” requires an “insulin level” section.  As imagined, this 

type of structure would necessitate input from various 

professional groups to come up with an agreed upon 

template.  Level Three information consists of specific 

medical codes used by healthcare institutions.  A proper 

structure for information of such a deep level will require 

extensive collaboration between healthcare offices 

worldwide and the HL7 group. 

 

 

5.4 CDA Document Structure 
CDA documents are composed of a header and a body.  

The header is used to describe the context in which the 

document was created.  CDA document headers serve three 

purposes: 

1. Make document exchange possible within the same 

institutions and between separate institutions 

2. Facilitate document management 

3. Facilitate the compilation of an individual’s complete 

medical history 

 

The body of the document is made up of paragraphs, lists, 

and tables.  Each of these sections can contain data, medical 

codes, and multimedia that describe the patient health care 

based transactions [4]. 

 

6. XML Security 
  

When considering the security of XML documents, all the 

traditional qualities are desired: integrity, confidentiality, 

authorization etc.  To achieve these goals XML data is 

treated much like any other types of data, in terms of 

security.  XML data that is used to make up an individual’s 

health record must be secure [9].  A patient’s electronic 

health record could be potentially sent to many different 

institutions to be viewed by various doctors.  Patients need 

to be sure that their personal information is only seen by an 

authorized party. 

 

6.1 Digtial Signatures 
  

XML Signatures operate identically to regular digital 

signatures [5].  A signature contains three sections: 

 

 SignedInfo:  Contains information about what part of 

the document is actually signed. 

 

 SignatureValue:  This is the output of the encryption 

of the data. It is the actual digital signature. 
 

 KeyInfo:  Provides the key or information on 

finding the key that validates the signature. 
 

Level 1: Narrative Only 

Level 2: Section Codes 

Level 3: Entry Codes 
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An XML signature allows the signing of a whole or specific 

section of a document.  This standard provides integrity, 

message authentications as well as authentication for the 

signer of the document.  Consider a patient that has been 

instructed by her physician to see a cardiologist.  If the 

cardiologist makes any changes to the patient’s EHR, only 

the section changed should be digitally signed by the 

cardiologist.  

 

6.2 XML Encryption  

 
The recommended encryption techniques to provide 

confidentiality for XML documents are not a replacement 

for security protocols such as SSL/TLS.  Instead, XML 

encryption mandates requirements for areas not covered by 

SSL.  More specifically XML allows for certain parts of the 

data to be encrypted and also provides security for sessions 

between more than two parties.  Along with those two new 

areas covered, XML encryption still provides the traditional 

encryption methods. The need for an efficient encryption 

method, when dealing with healthcare documents is 

evident.  The ultimate goal of this EHR revolution is to 

facilitate the exchange and storage of medical information.  

As new technologies make these tasks easier, the measures 

for securing this type of sensitive information must be 

strengthened.  

 

6.3 Attribute Based Encryption (ABE) 

 
Attribute Based Encryption (ABE) is an encryption method 

that works well with XML.  ABE allows only users who 

have a specific set of attributes, which also match with the 

attribute set associated with a message, to decrypt the 

contents of that message.  Just like with the traditional 

Identity Based Encryption method, user will be assigned a 

secret key by a central authority.  However, the ABE secret 

key is based on the specific attributes of each user.  When 

messages are created, the author creates a policy that 

corresponds with the ciphertext.  The policy is just a 

Boolean statement that specifies the attributes a user must 

have to decrypt the information [7].  ABE secures message 

passing between separate entities.  The following example 

explains the ABE method. 

 

 Mary and John work for a company 

 Mary is a sales manager and John work in the IT 

department 

 When each employee’s private key is assigned by the 

authority, the key contains attributes about their 

position(Mary- Sales AND Manager ; John – IT) 

 A message is sent with a policy that maintains that only 

worker in the IT department are allowed to view it 

 John’s private key fulfils the policy, as a result, his key 

can decrypt the message.  Mary is unable to view the 

message because her private key attributes do not 

satisfy the policy of the message. 

 

When considering ABE’s application to electronic health 

records, think about a patient that has all of his medical 

history contained in one document.  After a routine visit of 

his regular physician an appointment to see a dermatologist 

is made because of a rash found on the patient’s arm.  As a 

result some of the patient’s medical history needs to be sent 

to the dermatologist’s office.  By making use of ABE, the 

patient’s entire medical record can be sent and the patient 

can be assured that only the dermatologist is able to view 

his personal information.  To accomplish this, the record 

needs to be sent with a policy that allows only the 

individual with the dermatologist’s credentials to view the 

document.  In addition, ABE can also be used to guarantee 

that only information pertinent to the skin problem can be 

seen by the dermatologist.  To achieve this all the 

information that the dermatologist is not allowed to see 

should be encrypted with a key that is different from the 

one used with the ABE. 

 

 

7. Conclusion 
 

It seems that in the future, the way medical information is 

stored and shared between institutions will be 

revolutionized.  The extensibility and versatility of XML 

will be used as a catalyst for this advancement.  The overall 

goal of creating an environment in which medical 

institutions can freely share information is far from 

becoming a reality but it is not impossible.  The most 

important key for achieving this goal will be creating a 

standard for the storage of documents and for the method of 

sharing these documents between independent medical 

entities.  

 

 Organizations, like the HL7 group are essential to this 

process.  As with many new technologies, as more people 

began to make use of this system, the necessity for creating 

a secure environment will increase.  Equally important as 

creating a structure for storing and sharing medical 

information is the issue of securing this information. As 

developers continue to create more powerful process and 

actually make use of XML data, the usefulness of electronic 

medical applications will grow. 
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Abstract— The goal of this work was to further improve
an experimental proton radiosurgery system at Loma Linda
University Medical Center to reach sub-millimeter accuracy
before proton radiosurgery with narrow beams can be used
in a clinical trial. Radiosurgery precisely targets a specific
anatomical region with high doses of radiation. We have
developed a program that provides correcting translational
offsets during target rotation and allows the proton beams
to be aimed at the target from multiple directions in the
proton research room. This was accomplished by develop-
ing and testing advanced image analysis software tools.
The targeting accuracy was determined with a commercial
stereotactic performance phantom. It was found that sub-
millimeter targeting accuracy can be achieved with the
current system.

Keywords: localization, proton radiosurgery, stereotactic target
localization, image analysis, sub-millimeter targeting accuracy

1. Introduction
Stereotactic radiosurgery (SRS) is a radiation therapy

method that precisely delivers very high dose of external
radiation to well-defined targets in the brain or to the
target within the body. SRS has many advantages over open
surgery. Since there is no incision with this method, there
is no risk of bleeding, infection or other possible surgical
complications. [2]

Functional radiosurgery is a sub-specialty of SRS that cre-
ates small lesions in an area of diseased brain that interrupts
pathological functions, such as abnormal movement or pain,
one can treat functional disorders. Diseases that are currently
treated with functional radiosurgery include, trigeminal neu-
ralgia, Parkinson’s disease and essential tremor.

The use of protons for functional radiosurgery will be
advantageous when the lesion is in close proximity to critical
neural structures. The methodology for functional proton
radiosurgery is currently being developed at Loma Linda
University Medical Center (LLUMC). With a margin of error
of 1-2 mm, there is a high risk of delivering a dose to the in-
correct location, which could result in serious complications
for the patient. Working in such close proximities to critical

brain features provides very little margin for error. Therefore,
a very accurate method for stereotactic target localization
must be developed and tested prior to deployment of a new
system for functional proton radiosurgery in human patients.
An experimental platform for testing these new methods has
been built and is used to develop and test new methods of
beam localization and verification.

Previous work centered on methods for accurately align-
ing the target to the proton beam using feedback from a
room-fixed camera-based system [3], [4], [5]. The primary
goal of the present work was to test a different strategy to
improve proton beam targeting accuracy for proton func-
tional radiosurgery by using a system that relies on accurate
characterization of 3D-stage movements and rotation relative
to a fixed proton beam.

An important task within the work, described in this paper,
was to develop an algorithm that will deliver proton beams
from multiple directions to the target without the need for
checking correct alignment before each beam delivery. The
performance of the algorithm was verified by analyzing
radiochromic films embedded in a quality assurance phantom
(Lucyr, Standard Imaging Inc.). In addition, development
of a user-friendly software interface was an important subject
of the present research work.

2. Approach
2.1 Experimental Setup

Unlike the proton treatment rooms at LLUMC with their
90-ton, three-story gantries that can be rotated 360 degrees
to deliver the proton beams at any angle prescribed by
the physician, a research platform for phantoms and small
animals (rats) was built and mounted on one of the fixed
horizontal proton beam lines that deliver the proton beams
through evacuated steel tubes (beam pipes) into the proton
research room.

The research system simulates the functional proton ra-
diosurgery treatment, which in the future will take place in
one of the proton treatment rooms. The stereotactic setup
consists of one rotational and three translational micro-stages
(Newport Corporation). The rotational stage rotates the

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  | 213



Fig. 1: Leksell coordinate frame and Leksell CT indicator
frame.

stereotactic system [1] around an axis that is approximately
parallel to the z axis of stereotactic system, thus, simulating
the rotation of the proton beam around the gantry axis in
the treatment room. The translational stages align the target
to the beam axis in longitudinal, horizontal and vertical
direction. The program developed within this research is able
to control the rotational micro-stage, acquire the position of
the target from the stereotactic localization software, and
to perform translational moves to bring a preselected target
into alignment with the beam axis. The performance of this
system was tested using the Lucy phantom.

2.2 Stereotactic and Stage Coordinate Systems
The main goal of this research was to develop and

test methodology to accurately align the proton beam to a
planned target in a stereotactic coordinate system.

The stereotactic coordinate system is defined by the Lek-
sell coordinate frame (Electa), an instrument often used for
clinical stereotatic radiosurgery, and the CT-indicator frame,
which used with computed tomography (CT) to define the
stereotactic coordinates of the target (see Figure 1). The
stereotactic coordinate system is a right-handed Cartesian
system. When the Leksell coordinate frame is mounted on a
human head, the positive x-axis points from the patient’s
right to the left, the positive y-axis from the back of
the head to the nose, and the positive z-axis from head
to feet. The Leksell coordinate frame is engraved with a
rectilinear coordinate scale, in which the origin (0, 0, 0) is
located superior, lateral, and posterior to the frame on the
patient’s superior right side. The coordinates are expressed
in millimeters. The center of the Leksell CT indicator frame
is at stereotactic coordinates (100, 100, 133) mm.

The stage coordinate system is defined by three orthogonal
translational stages, which move the stereotactic system
relative to the beam axis. Imagine one stands in front of
the stage system and the proton beam comes from the left
side, refer to Figure 2. The positive x-axis (longitudinal
translational stage) coincides with the stereotactic z-axis,
the positive y-axis points to the opposite direction of the

Fig. 2: Coordinate system of micro-stage and stereotactic
coordinate system.

stereotactic y-axis, and the positive z-axis points to the
opposite direction of the stereotactic x-axis.

In the proton research room, the radiosurgery cart is
aligned to the proton beam line. When correctly aligned,
the proton beam line passes through the center of the Lek-
sell CT indicator frame, which has stereotactic coordinates
(100, 100, 133) mm and stage coordinates (-6.5, 39.5, 0) mm.

2.3 Alignment Software
In order to relate the stereotactic coordinates of a target

and corresponding micro-stage coordinates that will align the
proton beam to the target, a software algorithm which takes
into account the different orientation and relative position
of these two systems was required. Assuming the stage
coordinates of the home position are (h1,h2,h3) and the
corresponding stereotactic coordinates are (s1,s2,s3). The
following transformation performs this task.

matrix =

 0 0 1.0000
−0.0034 1.0000 0
−1.0000 −0.0034 0

 (1)

vector = (h1, h2, h3)− (s1, s2, s3) ∗matrix(2)
(h1, h2, h3) = (s1, s2, s3) ∗matrix+ vector (3)

To prevent a user from accidentally changing the main
program, the home position coordinate and the associated
stereotactic coordinates are stored in an external text file.
The beam axis was carefully aligned to the stereotactic
coordinate system so that it is parallel to the stereotactic
x-axis, represented by the vector (-1,0,0). The translational
stages can only be moved from -50 mm to +50 mm in x-
and z- direction and from -8 mm to +93 mm in y direction.
In order to detect whether the movement is beyond these
limits, the program first calculates all required translational
corrections and validates them against the limitations. If
any correction is beyond the translational limits, the user is
alerted with a warning message. The translational corrections
along the beam direction (z-axis of the stage system) are
ignored to prevent collision of the object with the collimator.
The color code for "Off limits"(stage could not performed
move) and "Error"(stage did not reach destination) is red;

214 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



Fig. 3: Rotational system GUI.

the color code for "Not ready"(moves not yet complete) is
yellow, and the color code for "Ready"(all moves completed)
is green.

The input parameters of the alignment software includes
stereotactic target coordinates, the number of beam angles,
and the start and stop angles, so that all the beams can
be rapidly delivered in sequence. The software was written
to that the user can go to the preselected beam angles
in arbitrary sequence. In the home position, the rat is in
the orientation shown in Figure 3. This corresponds to an
absolute internal rotation of +90 degrees. The stage can
rotate counterclockwise only up to an angle of -170 degrees
and clockwise up to +360 degrees (a total of 530 degrees
range). In order to perform the stage rotation from the home
position by an angle of ϕ degrees, the stage needs to be
programmed to rotate to an absolute angle of ϕ + 90 degrees
if ϕ > -260 degrees and ϕ + 450 degrees otherwise. The
GUI shows the beam location relative to the rat, refer to
Figure 3. Legend of beam indicator: The beam location at
home position, usually at 0 degrees, is indicated by a grey
line; the pre-set beam angles is indicated by a blue line, and
the selected beam line is indicated by a red line, and once
the system is ready changes to a green line.

2.4 Method to Calculate Translational Correc-
tions

This section contains a mathematical description of the
translational corrections required after the rotation has been
made, one needs to perform a mathematical 3D rotation and
calculate the 3D vector that shifts the rotated target point
back to the beam axis. In case the rotational axis is parallel
to the z-axis, only a 2D rotation in the xy-plane is required
and the correction vector becomes a 2D vector.

A 3D rotation describes the motion of a rigid body around
a fixed axis in 3D space, while a 2D rotation describes the

Fig. 4: Geometry of the mathematical steps to perform a
target rotation by angle α around a micro-stage axis A.

Fig. 5: Once the micro-stage rotational axis has been shifted
to the origin, it needs to be aligned with the stereotactic
z-axis before applying the 2D rotation by angle α.

motion of a rigid body around a fixed point in a 2D plane. It
is mathematically convenient to perform a 3D rotation about
any axis in space by first making the rotational axis coincide
with one of the axes of the coordinate system and then to
perform a 2D rotation about that axis.

In the present experimental setup, the rotational micro-
stage axis is only approximately parallel to the z-axis of the
stereotactic reference system. To calculate a 3D rotation of
the target point T around the rotational micro-stage axis A
by an angle α mathematically, one first shifts the axis point
C that has the same z-coordinate as the target point to the
origin of the stereotactic reference system. The rotational
axis A′ now intersects the origin, but is still rotated by the
angle β relative to the z-axis, see Figure 4. The next steps
are to align the rotational axis A′ with the stereotactic z-axis
and then to apply the 2D rotation with angle α, see Figure 5.

One now needs to find the translational vector that shifts
the target point back to the fixed beam axis. Instead of
rotating the target point, one can also rotate the beam axis,
keeping the target point fixed, see Figure 6. The translational
correction is represented by the vector v3 which shifts the
target point back to the beam axis. The components of this
vector should be expressed along the axes of the translational
stages which perform the translational corrections. When
performed correctly, a series of rotated beam axis should
intersect at the target point, forming a star pattern.
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Fig. 6: Geometric representation of the translational correc-
tion. The beam axis is rotated by angle α relative to the
target point T . After rotation, the point on the beam axis
originally intersecting T is now T ′. P is the projection of
T onto the new beam axis. The translational correction v3
is calculated as shown.

A program was developed implementing an algorithm that
calculates the translational corrections in the stage coordinate
system. The algorithm initially assumed that the z-axis is
the rotational axis at the beginning, but the result was not
ideal. The stereotactic coordinates of the rotational axis were
further defined by another experiment and image analysis.
The details of this will be published in the thesis of one of
the authors. With the defined rotational axis, the structure of
the algorithm of the translational corrections is as follows:

1) Find the point on the rotation axis that intersects the
xy-plane containing the stereotactic target point (i.e.,
has the same stereotactic z coordinate). Since the z-
axis is practically perpendicular to the xy-plane, the
intersection point will be the point on the axis closest
to the target.

2) Find the translation vector that shifts the point found in
step 2 to the origin of the stereotactic reference system
(SRS) and shift the beam axis point (target point) by
adding the same vector to the coordinates of the target
point.

3) Find the 3D rotation matrix MA that aligns the hor-
izontal rotation axis with the stereotactic z-axis and
apply this rotation to the beam axis point and vector.

4) Perform the stage rotation for a given angle by using
a 2D rotation matrix in the xy-plane and apply it to
the beam axis point and beam axis vector.

5) Apply the inverse rotation matrix MA and then the
inverse translation vector to the shifted and rotated
beam axis point and vector found in step 4. This
will represent the new beam axis location in the SRS
coordinates system.

6) Find the vector that represents the shortest distance
from the stereotactic target point to the beam axis and
convert its components to correctional shifts of the
translational stages by applying the reverse rotation
matrix.

Fig. 7: Six beams from 0 degrees to -150 degrees, aiming
at the upper right pin of the Lucy phantom cassette. The
location of the marker pin is also visible on the film.

3. Performance Study
To verify the stereotactic targeting accuracy, narrow

proton beams were imaged with a radiochromic film
(Gafchromic EBT2 film, International Specialty Products),
embedded in the Lucy phantom and to find the beam axis in
relation to target points, also visible on the film. The 5 steel
pins of 0.5 mm diameter, which hold the radiochromic film
in place were used as stereotactic targets. The advantage
of using these targets was that they could be seen in CT
localization images and also created visible perforation holes
in the film. An image analysis method was developed to
support the data analysis of the performance study.

Each proton beam produces a dark footprint with lateral
penumbra on the radiochromic film. In order to digitize the
beam image meaningfully and efficiently, the intensity image
was converted to a binary image. Then the MatLab Canny
Edge Detector was applied to define beam edges in the
beam penumbra by looking for local maxima of the intensity
gradient of the image. Once the two edge lines of each beam
path were found, the beam axes equations were determined
by averaging parameters of the edge lines.

In addition to finding the beam axis, it was also necessary
to define the location of target pins on the film, which were
represented by small pin holes. Besides from serving as
target points, they can also be used to determine the length
scale (pixel per mm) of the digital image, as four of the five
pins in the Lucy phantom form a square with 40 mm side
length.

4. Conclusion
The results of the initial image analysis of a proton beam

star pattern were not ideal. It was found that the initial
assumption that the rotational axis was exactly parallel to
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Fig. 8: Beam axes pattern resulting from analysis of Figure 7.
The right half of image shows a close-up view of the beam-
axes intersection region. 1 pixel = 0.0844 mm

Fig. 9: Results of the six beams image. The largest raw
distance from the target to the beam path is 0.211 mm

the z-axis. After the z-axis was determined more accurately
by studying the change of a the proton beam position relative
to the radiochromic film during a series of discrete rotations,
localization accuracy was much improved to better than
0.32 mm. The average target error is significantly better
at 0.149 mm ± 0.058 mm, which demonstrates the high
repeatability of this method.

During this research, advanced methods of image analysis
of beam patterns visualized with radiochromic films were
developed. This included a consistent definition of marker
pin holes, the use of a high-resolution algorithm for edge
definition, definition of the best practice for film scanning,
and methods for taking into account the scanner distortion.
Most importantly, a rotational correction program was devel-
oped that performs translational corrections after each stage
rotation. This allows fast and accurate beam delivery from
many consecutive directions. A user-friendly GUI for this
program was also developed.
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Abstract - In the developed country, it is necessary that the 
enterprise should arrange the occupational physical 
examination yearly, there are millions cases, results in a 
heavy loading to the hospital. The occupational physical 
examination is a moving process. But the information flow of 
the general hospital is not designed for the occupational 
examination. Then the physical examination is usually a 
paper-based process. As a result, it needs lots of clerks for 
data key in and confirmation. The paper-based operation is 
time and manpower consuming, and difficult in future expand 
and inter-discipline data exchange. The XML (eXtensible 
Markup Language) is the most popular format, which supports 
global data exchange, and could be embedded in Web service. 
Health level 7 (HL7) clinical document architecture (CDA) is 
a XML based format, which provides a standard form for 
digitizing a series of medical documents, and cross-discipline 
data exchange. In this study, we demonstrate the electronic 
forms for the occupational physical examination basing on 
HL7 CDA standard, and there are two styles, one is an 
Android application, and the other is a RIA (Rich Interactive 
Application) for general web browser. 

Keywords: HL7 CDA, Physical Examination, Electronic Form, 
Android, RIA 
 

 

1 Introduction 
  In the developed country, it is necessary that the 
enterprise should arrange the occupational physical 
examination yearly, there are millions cases, results in a 
heavy loading to the hospital. The general occupational 
physical examination is a moving process, the person 
undergo examination is moving site to site. The 
information flow of the general hospital is designed for 
patient treatment not for physical examination. Then the 
physical examination is usually a paper-based process. 
The traditional paper-based workflow is shown in Fig. 1. 
As a result, there need lots of clerks for data key-in, and 
additional human resources should be involved for data 
confirmation [1]. 

The paper-based operation is difficult in future expand 
and cross-discipline data exchange. The key problem of 
data exchange is heterogeneous data format. The XML 
(eXtensible Markup Language) is the most popular 
format for global data exchange. Additionally, XML 
could be embedded in Web service. As a result, the 
XML document is easy shared via internet, accessed 
through Web browser. Health level 7 (HL7) clinical 
document architecture (CDA) is a XML based format, 
which is constituted by medical objects, including text, 
image, and voice. And then provides a standard form for 
digitizing a series of medical documents, and cross-
discipline data exchange [2, 3]. 

In this study, we demonstrate the electronic forms of the 
physical examination basing on HL7 CDA standard. The 
examined data and image are described by CDA level 3. It is 
not only going to transform the paper work to be a part of 
EHR (Electronic Health Record), but also is an extension of 
showing the richer medical contents, such as physiological 
signals, medical images and so on. The Android platform and 
RIA (Rich Interactive Application) are as well deployed to 
develop the electronic forms. 

 

Figure 1.  Paper-based working flowchart. 

2 Methods 
 The developed examination forms are referring the 
current occupational physical examination procedure of Taipei 
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Veterans General Hospital, and the related examination 
procedure of other outsourcing medical laboratories. We use 
C#, RIA and Android SDK to develop the form, the result 
data would finally be transmitted to MySQL database. The 
developed data flow is show in Fig. 2. The data format is HL7 
CDA compliant. 

 
Figure 2.  The developed data flow. 

2.1 Android 
 Android is a Linux-based operating system developed by 
Google. In addition to the operating system, it also provides 
Android SDK/NDK application software development kit that 
would facilitate the development of Android applications [4]. 
Compared with the iPad operating system (iOS), any study or 
debug of the program are limited by Apple Inc. So it’s more 
difficult to develop application in iPad operating system. 
Therefore, we utilize the Android operating system in our 
study. There are lots of facilities involved, include Eclipse, 
Java Development Kit (JDK), Android Development Tools 
(ADT), Android SDK, and ASUS TF101. 

 Eclipse is an open-source community that develops open 
platforms and products, and began as an IBM Canada project. 
Eclipse is a flexible environment to experiment with new 
computer languages or extensions to existing languages. The 
Java Development Kit (JDK) is an Oracle Corporation 
product aimed at Java developers. Since the introduction of 
Java, it has been by far the most widely used Java SDK. The 
ADT plug-in integrates the emulator into Eclipse so that it’s 
launched automatically when run or debug projects. In case of 
not using the plug-in or want to use the emulator outside of 
Eclipse, that can telnet into the emulator and control it from 
its console. The Android SDK provides the tools and libraries 
necessary to begin developing applications that run on 
Android-powered devices [5]. ASUS TF101 is a tablet 
computer, which is a super slim profile of only 12.98 mm thick 
in a frame that weighs only 680 g. The ASUS TF101 is 
comfortable to hold from any position. This provides access to 
a full keyboard along with unique Android Function keys, 
turning the tablet Transformer into a full-fledged notebook.. 

2.2 RIA 
 C# is an elegant and type-safe object-oriented language 
that enables developers to build a variety of secure and robust 
applications that run on the .NET Framework. It can use C# 
to create traditional Windows client applications, XML Web 

services, distributed components, client-server applications, 
and database applications, etc [6]. There are no separate 
header files, and no requirement that methods and types be 
declared in a particular order. C# programs run on the .NET 
Framework belong to a special non-mechanical code. 

 The .NET Framework is an integral Windows 
component that supports building and running the next 
generation of applications and XML Web services [7]. To 
provide a consistent object-oriented programming 
environment whether object code is stored and executed 
locally, executed locally but Internet-distributed, or executed 
remotely and to provide a code-execution environment that 
minimizes software deployment and versioning conflicts. 
The .NET Framework has two main components: the common 
language runtime and .NET Framework class library. 

 Common language runtime is the foundation of the .NET 
Framework, it can think of the runtime as an agent that 
manages code at execution time, providing core services such 
as memory management, thread management, and remoting, 
while also enforcing strict type safety and other forms of code 
accuracy that promote security and robustness. The class 
library is a comprehensive, object-oriented collection of 
reusable types that can use to develop applications ranging 
from traditional command-line or graphical user interface 
(GUI) applications to applications based on the latest 
innovations provided by ASP.NET [8]. 

2.3 MySQL 
 The MySQL database has become the world's most popular 
open source database, because of its high performance, high 
reliability and ease of use. It is also the database of choice for a 
new generation of applications built on the LAMP stack 
(Linux, Apache, MySQL, PHP/Perl/Python). Many of the 
world's largest and fastest-growing organizations including 
Facebook, Google and Adobe rely on MySQL to save time 
and money, and power their high-volume Web sites, business-
critical systems and packaged software. MySQL runs on more 
than 20 platforms including Linux, Windows, Mac OS, Solaris, 
IBM AIX, which provide the kind of flexibility [9]. 
2.4 HL7 CDA 
 The CDA document is constituted by Header and Body. 
The Body includes StructuredBody and nonXMLBody. The 
root element is defined in <ClinicalDocument> [10], and there 
are three descending element levels. The Header is Level I, 
and StructuredBody includes Narrative block-Level II and 
Entries-Level III [11]. 

The deployed XML editor is Oxygen XML Editor 10 
(Academic version). The Java CDA XML content is processed 
in Eclipse IDE. The Header is described by the logical 
observation identifiers names and codes (LOINC) [12]. There 
are three describe structure: 1. in <nonXMLBody> part, use 
<reference value="xx"> for target file index, 2. the out source 
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is coded by BASE64, and embeds in the <text> element of 
<nonXMLBody>, which constitutes the XML file, 3. 
<structuredBody> for content detail. Additionally, the 
<reference> and BASE64 codes should be integrated, and 
represented by XSLT (Extensible Stylesheet Language 
Transformations) technology, as shown in Fig. 3. 

 

Figure 3.  CDA body structure. 

The CDA structure confirmation schema is composed by 
POCD_HD000040.xsd, datatypes.xsd, datatypes-base.xsd, 
NarrativeBlock.xsd, and voc.xsd, as shown in Fig. 4. The 
facility for confirmation is CDA Validator developed by 
Alschuler Associates LLC [13]. 

 
Figure 4.  CDA structure confirmation blocks. 

3 Results 
 We have developed the HL7 CDA compliant electronic 
form to replace the paper form, which saves a lot of time, and 
reduces the errors in key-in or paper lost. The developed 
workflow of electronic form is shown in Fig. 5. The Web GUI 
of the RIA application is shown in Fig. 6. The GUI of the 
electronic form in Android platform is shown in Fig. 7. 

 

Figure 5.  Electronic forms of physical checkup shows on RIA. 

 

Figure 6.  The GUI of the electronic form in RIA technology. 
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Figure 7.  The GUI of the electronic form in Android platform. 

The report of physical examination could be shared by 
general browser, e.g. IE, Firefox, Chrome, which is shown in 
Fig. 8. 

 
Figure 8.  Physical examination report with StructuredBody. 

4 Conclusions 
 In this paper, we adopt RIA and Android technologies to 
develop a HL7 CDA-based cross-platform and highly mobile 
interactive tools, which provide the physical examination, and 
enables subjects to confirm their examination information by 
their self and upload to the database in the same time [14]. 
That reduces the back-end human cost and paper storage 
space. This study use RIA Web form in the status of Internet 
available, and use Android tablet when Internet is unavailable, 
then the examination information can be stored locally. We 
will develop personal health records system in the future, 
which would provide the patients access for health 
management by their self, especially for the chronic diseases 
patients. In addition, the design of interface can be re-
optimized makes healthcare providers conveniently in the 
future. 
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Abstract. The application of Information and 
Communication Technology in healthcare 
environment facilitates healthcare process and 
improves its service quality.  However developing 
healthcare via technology innovations usually faces 
many challenges such as fear of cost, maintenance 
difficulties and security threats. Electronic Health 
Record systems showed great effects on developing 
healthcare outcomes and many are adopting it, but 
still many others fear to use it or face problems 
during its implementation and maintenance. Cloud 
computing technology is a new technology that has 
been used in different life environments and showed 
large positive changes. Despite the great features of 
Cloud computing, they haven’t been utilized fairly yet 
in healthcare industry. This paper presents an 
innovative Healthcare Cloud Computing system for 
Integrated Electronic Health Records (EHRs). The 
proposed Cloud system applies Cloud Computing 
technology on EHR system, to present a 
comprehensive EHR integrated environment. The 
proposed Cloud system is composed of three main 
components; first is the Cloud’s Central Database 
that represents the data repository for EHR’s. The 
second part is the Unifier Interface Middleware; this 
component remains in the Cloud and responsible for 
masking the heterogeneity and standardising the 
communication between different EHR standards and 
the Cloud EHR system. Third component represents 
the web portal for the Cloud, it issues request 
messages and receives responses from the Cloud 
system via secured network connections.  

 
Keywords: Cloud Computing, Electronic 
Health Record, Integration, Middleware 

 
1 Introduction  

  
As healthcare remains one of the most important and 
expensive sectors in any community; many 
technologies have emerged and been funded by 
governments to improve healthcare delivery 
outcomes. The most common technologies that are 
designed to improve healthcare services are MHR 
(Medical Health Record), PHR (Personal Health 

Record), and EHR. EHR has many definitions, such 
as the electronic record that stores patient’s medical 
history information in a health record system, 
accessible and managed by care providers [1]. 
Despite its positive impact on healthcare services; its 
adoption progress is slow in most healthcare 
institutions in worldwide; especially in developing 
countries due to several common challenges. Several 
studies found that the main barriers for its adoption 
are: 74% because of its high purchase costs, 44% for 
its high maintenance costs, physician’s resistance 
36%, Unclear return on investment 32% and 
Shortage in skilled IT staff 30% [2]. Patients in 
developing countries or in rural areas suffer from 
travelling to large hospitals carrying their paper 
health records and crossing the land to reach the 
specialized physicians and medical care in large 
hospitals with EHR systems. Moreover, patients 
registered in independent EHR systems in different 
hospitals also suffer from transferring their files to 
other hospitals. Such difficulties can be defeated by 
integrating EHR systems in healthcare institutions. 
But EHR integration (the process of patient 
information sharing among health care providers and 
exchanging them over the internet with other 
healthcare providers) remains a challenge and a 
serious concern since it is exposed to theft, security 
violation, and standardization difficulties [3].  
Cloud computing technology is considered to be the 
new, most interesting and comprehensive solution in 
the IT world. Its main objective is to leverage Internet 
or Intranet for users to share resources [4]. The 
National Institute of Standards and 
Technology (NIST) defined it as:"a model for 
enabling convenient, on-demand network access to a 
shared pool of configurable computing resources (for 
example, networks, servers, storage, applications, and 
services) that can be rapidly provisioned and released 
with minimal management effort or service provider 
interaction”[5]. Cloud computing is a cost effective, 
automatically scalable, multitenant and securable 
platform that is managed by the cloud provider. 
Recently researchers have started to utilize Cloud 
computing services to solve many problems in 
healthcare IT adoption. But, not many researches 
entered the field of integrating EHR with the cloud 
services yet. A proposed system by Mohammed D., et 
al.[6]  ,which represents a private Health Cloud 
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eXchange (HCX) system; this system outlines a 
distributed web based infrastructure for EHR sharing 
on the cloud among both local clients and third party 
healthcare information system. NefeliPortal is 
designed as a cloud EMS/PHR prototype architecture 
proposed by Koufi V., et al. [7]. Another paper 
presented Artemis Cloud computing framework by 
McGregor, C. [8]; for patients with critical care units 
(CCU) in rural and remote centers. It captures/process 
the real-time medical monitoring data with EHR data 
from the clinical information system. Some other 
researchers have implemented Cloud computing for 
Medical Image systems such as Yang C., et al.[9], 
they proposed MIFAS (Medical Image File Accessing 
System).  There are more researches concentrating on 
patient’s information security during exchange among 
the cloud's platform and other health institutions such 
as EHR security reference model by Zhang R.[10]. 
Healthcare and human life care comes in the first 
priority to get advantage of such technology. 
Therefore, this research is proposed to prove that the 
above challenges can be defeated by applying Cloud 
Computing technology to integrated EHR system. 
This paper is divided into three parts, the first part 
describes the proposed system components and its 
process, and then the discussion part explains the 
system impacts on healthcare institutions and discuses 
the system advantages. The paper ends with the 
conclusion. 

2 Proposed Cloud system for EHR 
integration 

A new healthcare Cloud system has been proposed for 
unification and integration of EHRs. The proposed 
system utilizes all features of Cloud computing 
combining them with EHR system features to gain 
one unified central system that controls electronic 
health records in the cloud infrastructure. And 
represent the solution for all hospitals in the region 
with an opportunity to use and share EHR. The Cloud 
system components are explained bellow, where 
different situations and scenarios for using the cloud 
and sharing EHR’s are explained.  

2.1 System components 

The proposed public cloud infrastructure include: 
1) a Central Database server that represents the clouds’ 
IaaS data repository that communicates with the 
sharing hospitals through 2) a Unifier Interface 
Middleware (UIM). as an intermediary tool between 
the clouds central Database server and the sharing 
hospitals systems, 3) and the Cloud EHR Web Portal; 
that represent the cloud’s SaaS for retrieving and 
displaying any required patient information. 

 

2.1.1. Central Database server 
The IaaS cloud Datacenter contains the Central 

Database server as the data repository for storing 
EHR’s and retrieving patient information. The 
information is stored in XML format as a unified 
standard which can be stored and retrieved via query 
commands sent and resaved from the sharing 
hospitals Web Portal (web browser/EHR) system 
passing through the Unifier Interface Middleware 
(UIM). The Datacenter is managed by the Cloud 
Provider, and the Central Database applies 
virtualization techniques on its resources, where the 
hypervisor schedules the requests and handles the load 
balancing on each resource in the cloud datacenter. 

 
 

2.1.2. Unifier Interface Middleware (UIM) 
This part of the cloud provides an Interface that 

masks the heterogeneity of all sharing hospitals EHR 
standards, to facilitate the communication transactions 
between the Central Database and hospitals systems. 
It holds all types of EHR standards, so it recognizes 
any type it communicates with. It remains in the cloud 
infrastructure and communicates with the sharing 
hospitals via network connections. This is beneficial 
because rather than each hospital have to generate its 
own mask interface to benefit from the health cloud 
system; one interface will reside on the cloud and 
handle the heterogeneity from there.  This interface 
handles two conditions;  
2.1.2.1. Hospitals host their own EHR system 

locally 
The UIM receives the Request message, and 

translates it into XML format. Then resend it to the 
cloud's Central Database. 

 
2.1.2.2. Hospitals host their EHR's on the cloud 

(without local EHR system) 
The UIM receives the Request message then 

resends it to the cloud's Central Database. 
The request message (Req.msg) has three parameters, 
shown as: Req.msg (T N, CPID/LPID, NN): 

• T N: Source Hospital ID composed of two 
parts: 1) T=EHR Type, either 0 if in cloud, or 
1 if local, 2) N= hospital name 5 characters at 
most.  

• CPID/LPID: this holds the patient ID 
number either in the Cloud (CPID) which is 
equivalent to the national number (NN), or 
the independent hospital local patient ID 
(LPID). 

• NN: this holds patient national number; but 
this parameter is null when CPID exists.  

The response message (Resp.msg) has four 
parameters, shown as Resp.msg (CPID/LPID, NN, 
PCMH, PLMH): 

• CPID/LPID: Patient ID (either in Cloud or 
Locally) in the responding hospital. 

• NN: this holds patient national number, null 
if CPID exists. 
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• PCMH: this parameter holds Patient-Medical 
history stored in the cloud’s EHR database, 
can take null value if patient do not have 
EHR in Cloud database. Only one EHR 
(PCMH) exists for each patient registered in 
hospitals with Cloud EHR. 

• PLMH: this parameter holds Patient-Medical 
history stored in the local EHR system, can 
take null value if patient do not have EHR in 
local systems. PCMH and PLMH are 
collectively exhaustive. Each patient can 
have more than one local EHR, if he is 
registered in different hospitals with local 
EHR. 

 
2.1.3. Cloud EHR Web Portal 

This is the third part of the cloud (top layer). This 
layer provides an application (SaaS) for EHR systems. 
The proposed Health Cloud system presents for end 
users a configurable EHR web portal for the Central 
Database. The web portal is responsible to issue send 
messages and receive response messages between the 
UIM and the hospital system. If a hospital has its own 
EHR system the web portal offers the user two tabs, 
either enter the hospital’s local EHR system, or to the 
cloud Central Database. This web page provide the 
user with the ability to retrieve, update and receive 
EHR information from the cloud’s Central Database 
EHR with limited access depending on the end user’s 
privileges. The user can also, know from the retrieved 
information displayed on the web portal, if the 
requested EHR for a specific patient from a specific 
hospital exists inside the cloud or on the target 
hospital’s local system. And can choose to view EHR 
information about the patient even from locally 
independent hospitals connected to the cloud. 

 

2.2 System process 

The system process starts when the cloud's Central 
Database receives the request message via the UIM, 
issued by end user via the web portal, It analyzes the 
Request message (Req.msg), and response (Resp.msg) 
in different ways according to: 

• If Req.msg (0 #, CPID=NN) is true then the 
request message comes from a hospital that has 
its EHR on the cloud. It matches the CPID to 
retrieve patients EHR information stored in the 
cloud. Where all hospitals that doesn’t have a 
local EHR, they will have the same record for the 
same patient inside the cloud. So, only one online 
record for each patient with the visited hospitals 
names is stored in the cloud. The Central DB 
searches for a match for patient's National 
number since he might have EHR files stored in 
other hospitals with local EHR, if so: It resends a 
request message to the (match) found hospitals 
via UIM. The UIM reformat the request message 
according to the target hospital EHR standard 
format. The UIM send the reformatted request 
message and receives the response message, via 
network connection. After the UIM reformats the 
response message to XML format it sends it back 
to the clouds EHR. The central database 
combines the response message PLMH with the 
PCMH. Create a final response message in an 
XML format and send it to the requesting hospital. 

• If Req.msg (1 #, LPID, NN) is true then the 
request message is issued by an independent EHR 
system: The UIM resends the request message in 
an XML format to the Central Database. The 
Database start searching for a mach for the NN 
from the request message to a CPID; if it finds a 
mach this means the patient have visited hospitals 
that have the clouds EHR, and then determine 
those hospitals. Then the Database start searching 
a mach for the NN from the request message to 
NN column for other hospitals connected with the 
cloud; if it finds a mach, this means the patient 
have visited hospitals that have their EHR locally. 
In this case the Central DB reformats a request 
messages to the matching independent hospitals, 
for gathering the patient's medical history. And 
send them via UIM that will reformulate the 
message type depending on the target hospital 
EHR standard type. Then the response messages 
will pass through UIM via network connection 
and reformed again into XML format and passed 
to the Central Database. The Cloud's Central 
Database will combine the existing (cloud’s) 
EHR with the received medical history and form 
a complete report for the patient EHR in an XML 
Response message format. Finally the UIM will 
resend the final response message to the 
requesting hospital via network connection and a 
matching standard format. See figure1.  
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Figure 1 the proposed Healthcare Cloud system processes 

3 Discussion 

Cloud Computing can be applied to EHR system to 
facilitate EHR adoption for all types of healthcare 
institutions. Health Cloud features such as multi-
tenancy, automatic scalability, securable connections 
and authorized data transactions managed by the 
cloud’s provider; gives to many healthcare providers 
the ability to share a unified EHR system that handles 
as much users as possible with high performance. In 
fact the whole city is able to integrate into the cloud’s 
EHR system without disk space, maintenance and 
security worries. Many other features of the health 
cloud such as pay as you go, solves high costs barriers 
for small healthcare institutions to adopt EHR 
technology ready from the cloud. Moreover, the 
proposed health cloud system showed that it is 
possible to integrate different kinds of EHR systems 
using the UIM tool that eliminates the burden of 
masking heterogeneity for healthcare institutions to 
share their local EHR system and share the clouds 
EHR in the same time. Thus, the proposed system 
provides a standardised unified environment for 
different EHR systems to communicate freely without 
any barriers.  
The proposed system overcomes the challenges of 
implementing EHR systems for many hospitals such 
as maintenance complexities, staff training and high 

cost. In all cases the proposed system has the 
following advantages: Present a comprehensive and 
successful healthcare service. It allows’ many 
healthcare providers to communicate and easily share 
patients EHR information among the healthcare cloud. 
Moreover, It overcome the challenges of EHR system 
integration such as network security concerns and 
information standardization difficulties. And present a 
configurable and scalable EHR system in Cloud 
computing platform for healthcare providers. It also, 
maximizes healthcare services quality outcomes, by 
releasing them from technology problems. It offers 
the opportunity for any kind of healthcare institution 
especially; rural and small sized hospitals or clinics to 
use EHR and join the cloud. Finally, It release 
patients’ from suffering to find and move to the 
specialized healthcare providers they need, facilitate 
healthcare delivery process and then offer patients 
more easy, reliable and corporative healthcare life.      

4 Conclusion 

This paper proposed a novel solution for 
healthcare institutions to use EHR systems and 
overcome its challenges. The proposed system is 
composed of three main components, and applies 
cloud computing technology on EHR system 
integration. It provides a ready EHR system for all 

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  | 225



kinds of hospitals. Irrespective of the number or the 
size of hospitals that join the cloud; the system is 
capable to work in integrity and it will offer 
healthcare providers the ability to communicate in a 
controlled, scalable, safe and cost effective way under 
the cloud. Future work will focus on completing the 
implementation and on evaluating the system.  
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Abstract— The interpretation of nuclear magnetic reso-
nance (NMR) experimental results for metabolomics studies
requires intensive signal processing and multivariate data
analysis techniques. Standard quantification techniques at-
tempt to minimize effects from variations in peak positions
caused by sample pH, ionic strength, and composition.
These techniques fail to account for adjacent signals which
can lead to drastic quantification errors. Attempts at full
spectrum deconvolution have been limited in adoption and
development due to the computational resources required.
Herein, we develop a novel localized deconvolution al-
gorithm for general purpose quantification of NMR-based
metabolomics studies. Localized deconvolution decreases
average absolute quantification error by 97% and average
relative quantification error by 88%. When applied to a
1H metabolomics study, the cross-validation metric, Q2,
improved 16% by reducing within group variability. This
increase in accuracy leads to additional computing costs
that are overcome by translating the algorithm to the map-
reduce design paradigm.

Keywords: Metabolomics, quantification, map-reduce,
deconvolution
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1. Introduction
Metabolomics, the measurement of metabolite concen-

trations and fluxes in various biological systems, is one
of the most comprehensive of all bionomics [1]. Unlike
proteomics and genomics that assess intermediate products,
metabolomics assesses the end product of cellular function,
metabolites. Changes occurring at the level of genes and pro-
teins (assessed by genomics and proteomics) may or may not
influence a variety of cellular functions. But metabolomics,
by contrast, assesses the end products of cellular metabolic
function, such that the measured metabolite profile reflects
the cellular metabolic status. For instance, a disease process
or exposure to a xenobiotic may interfere at the genomic
or proteomic level, while it will always manifest itself at
the metabolomic level. Further, nuclear magnetic resonance

(NMR) spectroscopy of biofluids has been shown to be
an effective method in metabolomics to identify variations
in biological states [2], [3]. In contrast to various other
proteomic, genomic, and metabolomic analyses, NMR spec-
troscopy is non-invasive, non-destructive, and requires little
sample preparation [1].

Typically, NMR metabolic spectroscopic data are analyzed
as follows: (1) standard post-instrumental processing of
spectroscopic data, such as the Fourier transformation, phase
adjustment, and baseline correction; (2) quantification of
spectral signals commonly implemented via binning; (3)
normalization and scaling; and (4) multivariate statistical
modeling of data. Quantification of spectral signals, step (2),
is a key step in the development of classification algorithms
and biomarker identification (i.e., pattern recognition). A
common method of quantification employed by the NMR
community is known as binning or bucketing, which divides
a NMR spectrum into several hundred regions. This tech-
nique is performed to (1) minimize effects from variations
in peak positions caused by sample pH, ionic strength,
and composition (Spraul et al. 1994); and (2) reduce the
dimensionality for multivariate statistical analyses. The re-
sult is a data set with fewer features, thereby, increasing
the tractability of pattern recognition techniques, such as
principal component analysis (PCA) [4] and partial least
squares discriminant analysis (PLS-DA) [5].

The standard quantification method is to divide a spectrum
into several hundred non-overlapping regions or bins of
equal size. This simple technique has been shown to be
effective in the field of metabolomics [6], [7]. While standard
quantification mitigates the effects from variations in peak
positions, shifts occurring near the boundaries can result in
dramatic quantitative changes in the adjacent bins due to the
non-overlapping boundaries. This problem can be countered
by incorporating a kernel-based binning method that weights
the contribution of peaks by their distance from the center
of the bin [8] or by dynamically determining the size and
location of each bin [9], [10]; however, these techniques fail
to remove irrelevant adjacent signals.

There are several alternatives to spectral binning that still
provide data dimension reduction [11]. Examples of these
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include PARS [12], direct quantification [13], peak align-
ment tools in HiRes [14], and targeted profiling [15]. These
techniques identify peaks or specific peak patterns in the
spectra that are conserved across spectra. After the patterns
have been identified, they are quantified by determining the
peak area or amplitude. The accuracy of these algorithms
is dependent on the spectral resolution, the quality of the
peak alignment, and the breadth of spectroscopic pattern
databases. Since spectral resolution is dependent upon the
magnetic field strength (i.e., instrument specific), the spectral
patterns in complex mixtures (e.g., urine and plasma) are
also field dependent. This adds another level of complexity
to targeted profiling techniques that attempt to match spec-
tral patterns against standard spectra acquired at a specific
magnetic field.

Despite the development of these alternative quantification
techniques, binning remains a common technique for the
NMR community owing to high throughput quantification
technique [16], [11]. The wide spread use of advanced
quantification algorithms has been hindered by the addi-
tional computing resources and manual intervention required
to incorporate them into general metabolomics workflows.
Herein, we propose a novel localized deconvolution algo-
rithm for NMR spectroscopic data that removes adjacent and
convoluting signal for significantly improved full spectrum
quantification that does not rely on the breadth of annotated
spectral databases. By pursuing a localized strategy for
deconvolution, the algorithm is suited for implementation in
the map-reduce paradigm that will allow for web-scale high-
throughput availability. We show this technique is superior
to alternative high-throughput quantification techniques by
comparing the improvement in quantification accuracy on
complex 1H NMR spectroscopic data and realistic synthetic
spectra.

2. Approach
The variability and complexity inherent in 1H NMR

spectra of biofluids requires sensitive signal processing and
pattern recognition techniques to discover novel patterns in
the data. The technique of spectral quantification is a general
signal processing technique that reduces the dimensionality
of spectroscopic data by transforming full resolution spectra
into a feature vector for subsequent pattern recognition. The
goals of which are to retain pertinent information and mit-
igate quantitative effects of peak misalignment. Biomarker
identification can then be defined as finding a set of features
that describe a pattern between groups, thus the success of
biomarker identification is directly related to the quality of
the feature vectors. Here a biomarker is defined as a set of
NMR signals that change relative to some reference (i.e.,
before and after exposure to a toxin). Such an experiment
will have at least two groups (e.g., pre-dose and post-dose)
for which spectroscopic data is compiled. A significant step
prior to biomarker identification is spectral quantification,

our method, localized deconvolution, is comprised of three
steps:

1) Solve the peak registration (correspondence) problem
using an adaptive binning approach

2) Model the signals in each region using a Gauss-
Lorentzian peak construct

3) Deconvolve the localized subproblem by removing
adjacent and baseline signals

This technique is applied to a metabolomics study of
toxicology for the identification of biomarkers associated
with a kidney toxin (α-naphthylisothiocyanate) response.

3. Methods
3.1 Peak registration

The first step in localized deconvolution is to define
the subproblems of interest, which are defined as regions
containing a signal of interest across spectra. This problem,
also known as the peak registration or correspondence prob-
lem, is solved by applying an adaptive binning technique:
dynamic adaptive binning [9]. Peak registration is necessary
to overcome the variability in signals between subjects (or
samples). Our localized deconvolution technique leverages
an adaptiving binning technique to generate the regions
of interest, which can subsequently be solved in parallel;
however, our method can be easily adapted to other meth-
ods of registration, including peak alignment and targeted
approaches.

Dynamic adaptive binning determines the optimal bin con-
figuration of n observed peaks as measured by an objective
function. This process is divided into two steps: (1) deter-
mining the location of the observed peaks in each spectra
and (2) finding the optimal bin boundaries with respect to
the objective function. The identification of the observed
peaks in each spectrum is accomplished by identifying local
maxima after smoothing via a wavelet transform [17], [18],
[19], [20], [21]. After the observed peaks of each spectrum
have been determined, the algorithm determines the optimal
bin configuration using a dynamic programming strategy. A
detailed description of dynamic adaptive binning and proofs
verifying optimal substructure can be found in [9].

3.2 Model the signals
While peak registration provides a mechanism for match-

ing corresponding signals between spectra, quantification is
still impaired by adjacent signal and baseline distortions.
This problem is mitigated by removing adjacent signals that
affect the true value of the signal of interest. The observable
NMR free induction decay (FID) signal is an exponential
decaying sinusoid leading to an approximate Lorentzian peak
shape after Fourier transformation. These individual signals,
S, are modeled by a Gaussian-Lorentzian function that is
defined by the standard deviation of the Gaussian (σ), the
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center (xc), the width at half height of the Lorentzian (Γ),
and the magnitude (M ):

S([M,σ, P, xc], x) = P ∗ L([M,Γ, xc], x) +

(1− P ) ∗G([M,σ, xc], x) (1)

L([Mσ,P, xc], x) =
M ∗ Γ2

4(x− xc)2 + Γ2
(2)

G([Mσ,P, xc], x) = Mexp(−(x− xc)2/(2σ2)) (3)

where Γ = 2 ∗
√

2 ∗ ln(2σ) , and P is a real value between
0.0 and 1.0 that weights the contribution of the Lorentzian
( L(...) ) and Gaussian ( G(...) ) functions.

The mixture of the Gaussian and Lorentzian peaks is
selected to provide a flexible peak shape. The relationship
between the width at half height of the Lorentzian peak
and the standard deviation of the Gaussian peak is fixed by
assuming that both the height and the width at half height
are the same for both peaks. This simplifies the model by
avoiding a separate parameter for both the standard deviation
and width at half height.

3.3 Deconvolve

Noise and baseline distortions arise from congested areas
of the spectrum with multiple overlapping peaks, naturally
broad signals from proteins or lipids, and the amplifier
of a quadrature detection magnet system [22]. With the
previously described model for the underlying signals, our
algorithm removes unwanted signals from the region of
interest. This deconvolution procedure divides each spectral
subproblem into it’s constituent signals (baseline, noise,
and individual signal). These predefined regions and sub-
problems are adapted from the results of dynamic adaptive
binning. If a targeted or peak alignment approach is taken,
the regions can be defined as fixed width regions containing
the targeted or aligned peaks of interest.

The solution to each subproblem is obtained by breaking
each region into signal of interest, adjacent signal, and
baseline. The baseline and adjacent signals are then removed,
leaving the signal of interest. This construction of subprob-
lems allows the problem to be transformed into the map-
reduce paradigm (described later). As part of this work, two
alternative definitions of the subproblems were explored:

1) Region of interest
2) Region of interest with adjacent buffer regions

By including adjacent buffer regions, it is hypothesized
that better estimates of adjacent signals are obtained, thus,
improving the accuracy of the quantification. Solutions to
subproblems for both definitions are constructed by com-
bining a model of baseline and a set of Gauss-Lorentzian
peaks:

Θ(β, x) =
N∑
j=1

S([Mj , σj , Pj , xcj ], x) +

baseline([b1, ..., bk], x) (4)
β = [Mj , σj , Pj , xcj , b1, ..., bk] (5)

where Θ(β, xi) is the model for each region with the model
parameters, β. Further, N is the number of peaks in the
subproblem, thus, Mj , σj , Pj , and xcj refer to the height,
standard deviation, fraction of Lorentzian, and the center of
the j-th peak. baseline(...) is a piecewise baseline linear
function, where b1, ..., bk are the heights of the piecewise
segments.

The final locations of the peaks and their parameters (e.g.,
width, height) are determined algorithmically by solving the
corresponding nonlinear curve-fitting problem. The param-
eters of the nonlinear curve-fitting problem are estimated
by a subspace trust-region method based on the interior-
reflective Newton method (Coleman and Li 1994, 1996). The
parameters are adjusted to minimize the function:

1/2
m∑
i

(Θ(β, xi)− yi)2, (6)

where xi and yi are the chemical shift and intensity of the
i-th point in the segment, m is the number of data points in
segment, β is a vector of parameters, and Θ is the model of
each subproblem that will be fit.

The nonlinear curve-fitting algorithm estimates the opti-
mal model parameters using their initial values and bounds.
The initial location, xcj , of each peak is manually selected.
The initial height, Mj , of each peak is defined as the
difference between the maximum and minimum intensities
in the region surrounding the peak. The initial value of the
width at half height, Γj , is defined as double the distance
(ppm) between the maximum intensity in the region and
the location of the peak’s half height (i.e., initial height
divided by 2). The initial standard deviation, σj , can then be
computed from the width at half height. The initial fraction
Lorentzian, Pj , of each peak is defined as 0.5. The initial
baseline heights, bi , is defined as the minimum intensity in
the segment. The lower and upper bounds for parameters are
defined as:

0 < Mj ≤MAXi,

0 < σj ≤ |sL − sR|,
0 ≤ Pj ≤ 1.0,

αi ≤ xcj ≤ ωi,

0 ≤ bk ≤MAXi,

where MAXi is the maximum height in the i-th segment,
and sL and sR are the left and right boundaries of the
segment. The boundaries for location of each peak, [αj , ωj ],
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Fig. 1: Removal of adjacent signals (1st and 3rd peak) to
target signal of interest (2nd peak) in overlapping regions

are defined as the locations corresponding to the minimum
intensities between the current peak and the adjacent peaks.
In the special cases of the first and last peaks of each
segment, the segment boundary is used to define the region.

Through the solutions obtained for each subproblem, the
frequency domain spectral data can be transformed into
a feature vector by specifying a set of regions R =
{R1, R2, ...Rn}, where each region is identified by its chem-
ical shift boundaries and the adjacent signals to remove from
that region. The baseline is automatically removed from each
region. By design, regions are allowed to overlap to filter out
alternative sets of adjacent signals. This is demonstrated in
Figure 1. The characterization of the metabolomics study for
algorithm evaluation employs spectra binning to solve the
correspondence problem; however, localized deconvolution
can filter unwanted signals for the enhancement of targeted
quantification, alignment algorithms, and other alternative
quantification techniques.

3.4 Map-Reduce
A map-reduce architecture is employed to enable high-

throughput spectral deconvolution. This architecture exposes
cloud-based services using the web application framework
Ruby on Rails. The algorithm is implemented as a Hadoop
based map-reduce program using Hadoop streaming, a tech-
nique that allows one to use non Java based programs in the
Hadoop architecture. This implementation uses a MATLAB
implementation of the numerical optimization algorithm, in
a similar fashion as experimented by [23], [24].

The Hadoop streaming mechanism processes data in lines.
Hence the data format used as the input to the process is
an independent deconvolution problem on each line. This
is also important to maintain clear record boundaries for
the record splitter. Given that this task is map centric, i.e.
the critical process is performed during a map and reduce
is merely a combine operation, the number of mappers is
a sensitive operator. The map phase consists of solving the

aforementioned non-linear optimization subproblem. The re-
duce step is the recombination and ordering of these results.
In order to expose the Hadoop functions in a convenient
way to the biologists and also for better integration with
existing workflow engines, a web service is implemented.
The web service follows the REST paradigm and can be
accessed by an HTTP POST operation. The web service
is deliberately made into an asynchronous service due to
the longer processing time for larger jobs. The processing
time varies depending on the complexity of the spectra, and
therefore, could not be incorporated into a synchronous web
service.

3.5 Cluster Setup
The Hadoop cluster consists of 15 dedicated server com-

puters, each having 16GB of RAM and Quad core AMD
processor and connected via Gigabit Ethernet. The Hadoop
software version is 0.20.1. The cluster was configured to
have a total map task capacity of 120 and reduce task
capacity of 90. Jobs were submitted in groups of 5, 10, 15,
and 20 (e.g., 5 spectra at a time).

3.6 Synthetic Data
Both empirical and synthetic spectroscopic data are em-

ployed to show the application of localized deconvolution.
The synthetic spectroscopic data sets are based on urine
1H spectra and were developed by characterizing the salient
distributions in empirical spectroscopic data (Anderson et al.,
2009). These synthetic data sets enable the use of exacting
performance metrics because the true location and size of
each peak is known a priori.

A synthetic data set of 20 complex 1H spectra was
generated, and it was analyzed by two direct measures of the
spectral quantification accuracy for each algorithm: absolute
quantification error (AQE) and relative quantification error
(RQE):

AQE =
100

N ∗M

M∑
b=1

N∑
s=1

∣∣∣∣predictedb,s − trueb,strueb,s

∣∣∣∣ (7)

RQE =
100

M

M∑
b=1

∣∣∣∣std(predictedb)− std(trueb)

std(trueb)

∣∣∣∣ (8)

where predictedb,s is the localized deconvolution results
for bin b and spectrum s, trueb,s is the true deconvolution
results, M is the total number of bins, N is the total number
of spectra, and std(predictedb) is the standard deviation of
the set of all localized deconvolution results for bin b, and
std(trueb) is the standard deviation of the set of all true
deconvolution results for bin b.

3.7 Experimental Data
In addition to comparing spectral binning algorithms on

synthetic data sets, this manuscript demonstrates the applica-
tion of high-throughput localized deconvolution on empirical
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Table 1: Mean/median absolute and relative quantification
error for standard binning (Standard), localized deconvolu-
tion with positive baseline constraint (Region (+)), localized
deconvolution with additional buffer and positive baseline
constraint (Region & Buffer (+)), localized deconvolution
(Region (+/-)), and localized deconvolution with additional
buffer (Region & Buffer (+/-))

data from a 1H NMR-based experiment to monitor rat uri-
nary metabolites after exposure to α-naphthylisothiocyanate
(ANIT) [16]. A subset of this data set was used to compare
the quantification algorithms. Specifically, an ANIT dose of
20 mg/kg at 2 days post-exposure was selected, and the
performance of the algorithms were analyzed by studying
the results of a standard supervised learning procedure,
Orthogonal Projection onto Latent Structures (O-PLS) [25].

The O-PLS model was evaluated on its predictive ability,
using the Q2 (coefficient of prediction) metric. Q2 was
calculated as follows:

Q2 = 1− PRESS

SSY
= 1−

∑n
i=1 e

2
i∑n

i=1 (yi − ȳ)
2 (9)

where PRESS is the Predicted REsidual Sum of Squares
calculated as the residual e between the predicted and actual
Y during leave-one-out cross-validation, SSY is the Sum
of Squares for y, ȳ is the y mean across all samples, and
yi is the y value for sample i. As Q2 approaches 1, the
more predictive capability the model exhibits. A Q2 value
less than 0 shows the model has no predictive power.

4. Results and Discussion
Standard high throughput quantification techniques, such

as uniform binning or bucketing, have shown to be effec-
tive in reducing the dimensionality and mitigating spectral
misalignment; however, these techniques often introduce er-
roneous quantification errors due to overlapping and adjacent
signals. To illustrate the advantages of localized deconvolu-
tion, we analyzed synthetic and empirical data. The absolute
and relative accuracy of quantification was measured on re-
alistic 1H synthetic spectroscopic data, which were modeled
after a traditional urine NMR-based metabolomics study.
These results are summarized in Table 1. The difference in
performance by including a buffer region and constraining
the baseline to positive offsets are shown in Figures 2(a) and
2(b).

As determined by a one-way ANOVA (α = 0.05 assumed
for all subsequent statistical tests), the means absolute quan-
tification error for all quantification methods are signifi-

(a)

(b)

Fig. 2: Box and whisker plot of the absolute quantification
error (a) and the relative quantification error (b)

cantly different. Comparing pairs of methods shows that the
standard quantification mean absolute quantification error
is significantly different than all localized deconvolution
methods using the Tukey-Kramer multiple test correction.
To evaluate the median absolute error, the Kruskal-Wallis
test was applied to the performance data; the results of
which showed that there is a difference between quan-
tification methods as measured by the median absolute
quantification error. Specifically, the standard quantification
median absolute quantification error is significantly different
from all localized deconvolution methods. The mean relative
quantification error is significantly different for all meth-
ods (one-way ANOVA). The standard quantification mean
relative quantification error is significantly different from
all localized deconvolution methods (Tukey-Kramer multiple
test correction).

Among the four different versions of localized deconvo-
lution, a one-way ANOVA showed that the means of the
absolute quantification error are significantly different, and
the mean absolute quantification error of Region & Buffer
(+/-) is significantly different from the means of Region (+)
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and Region (+/-). Using the Kruskal-Wallis test, the medi-
ans are significantly different, and specifically, the medians
of Region & Buffer (+) and Region & Buffer (+/-) are
significantly different from the average rank of Region (+)
and Region (+/-). A Tukey-Kramer correction was applied
to correct for multiple tests. The one-way ANOVA on the
mean relative quantification error and Kruskal-Wallis test
on the median relative quantification error failed to reject
their null hypotheses. i.e., there is not a significant difference
among the localized deconvolution methods when examining
relative quantification error.

These significant results demonstrate the error in approx-
imating the underlying peak signals with standard binning.
If two peaks are adjacent in a spectrum, the degree to
which they influence each other will be proportional to their
intensity and proximity. Adjacent peaks that are drastically
smaller will be heavily influenced by the larger adjacent
peaks. Quantifying these smaller peaks is of particular
interest to the metabolomics community, as the magnitude of
the peak does not determine it relevance in any given study.
By modeling each peak individually while simultaneously
providing high throughput quantification, localized decon-
volution significantly improves the absolute and relative
quantification accuracy in NMR-based metabolomics.

In addition to demonstrating the improvement gained
through localized deconvolution on synthetic data, we an-
alyzed its effect on quantifying a study of toxicity, as mea-
sured by subsequent pattern recognition methods. Specifi-
cally, we observed an improvement of 16% in the cross-
validated measure Q2. during the application of a stan-
dard supervised learning method, orthogonal projection onto
latent structures (O-PLS). The Q2 metric improved from
0.7569 to 0.8782 after applying localized deconvolution
(Region (+/-)). The improved Q2 metric can be attributed
to removing within group variability. Figure 3 shows this
improvement in the projected space used to separate the two
groups (48 hrs, 20 mg/kg and 0 hrs, Control). The x-axis is
representative of the signal responsible for the difference in
the groups. The y-axis is signal uncorrelated to the difference
in the groups. The tightening of the within group variability
on the x-axis leads to the improvement of the Q2 metric.

The adoption of a general purpose high-throughput quan-
tification method by the metabolomics community is depen-
dent on its ease of applicability. This can be broken into two
parts: speed and flexibility. By providing access via RESTful
web interface, we are providing a resource that can be
incorporated in scientific workflows and other quantification
methods. Using a map-reduce framework allows us to paral-
lelize the deconvolution procedure and run the process at a
rapid rate. The running time is dependent on the number of
mappers, which is shown in Figure 4. On a moderately sized
cluster with 15 nodes, it requires approximately 4 minutes
to complete a detailed deconvolution of five congested 1H
spectra from the data using 20 mappers.

Fig. 3: O-PLS results showing the separation between 0 hrs,
Control and 48 hours after a 20 mg/kg dose using 10 fold
cross-validation

Fig. 4: The running time required to quantify different 1H
spectra as a function of the number of mappers

In our implementation, we set the default number of
mappers at 20 since it seemed to provide reasonable running
times for the typical file sizes encountered in our experi-
mental set up; however, for larger files, higher number of
mappers definitely makes an improvement and can be set
accordingly by passing the relevant parameter.

5. Conclusion
In conclusion, we have shown that localized deconvolution

is a robust method to process highly congested spectra that
improves accuracy over standard high-throughput quantifi-
cation methods. Our algorithm is naturally decomposed into
concurrent tasks which are implemented in a map-reduce
paradigm with a Web-service interface, thus, providing a
scalable and accessible tool for the metabolomics commu-
nity.
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Our experiments have shown that the removal of adjacent,
convoluting, and irrelevant signals results in significantly
improved absolute and relative quantification, as demon-
strated on realistic synthetic data. The performance metrics
also demonstrate that including a buffer region does not
improve overall accuracy, and allowing the baseline to be
positive or negative results in the best accuracy. However, it
was observed that specific spectral configurations did benefit
from including a buffer region. Developing an algorithm to
take advantage of the strengths of both methods is currently
in process.

The advantages of our method were also observed on
an experimental metabolomics data set of organ toxicity.
Specifically, the within group scatter was reduced by local-
ized deconvolution, resulting in an improved cross-validation
score (Q2); however, this increase in accuracy leads to addi-
tional computing costs. Such issues can easily be overcome
by parallelizing the process with map-reduce and making
use of cheaply available cloud resources. While our method
provides a significant improvement over standard binning
methods, alternative techniques that rely on annotated spec-
tral databases, such as targeted and direct quantification
methods, can also improve their accuracy by filtering and
removing obfuscating signals with localized deconvolution.
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Abstract— The structure and emergent behaviours of neu-
ronal networks remain important unknowns but can be in-
vestigated by computer simulation of biologically plausible
networks of microscopically simple individual neurons. We
describe a software model developed to simulate in excess of
106 individual Izhikevich neurons with connectivities of in ex-
cess of 100 connections per neuron. We simulate the effect of
adjusting some of the microscopic neuronal parameters and
observe emergent oscillatory phenomena that relate to the
introduction of anaesthetic drugs on the collective neuronal
system. We report some preliminary computational perfor-
mance results and comment on the feasibility of simulating
realistic sized collective networks of cortical spiking neurons.

Keywords: GPU; CUDA; spiking cortical neurons; anaesthesia

1. Introduction
The problem of understanding neuronal processes and

structures in the brain [1], [2] is a long standing one. Of
particular interest are those emergent collective properties
that are thought to arise from the complex network structure
[3] and nature of the brain rather than necessarily from
microscopic details of individual neurons. One process of
particular interest is the manner in which cortical neural ac-
tivity [4] rises and falls in states of consciousness. Campbell
and others have suggested an intriguing way to study this
through simulating the action of an anaesthetic drug [5] on
individual neurons [6], [7], [8] linked together in an artificial
network structure.

Although there are many outstanding questions and un-
knowns concerning real brain structure we have constructed
a simulated neural network structure on the assumption that
there are likely some emergent properties that we may ob-
serve due to the sheer size of a suitably simulated network
of many interacting individual neurons. In this paper we
discuss some preliminary simulation software development
work in scoping the computational feasibility of simulating
large ensembles of individual neurons [9] that are arranged
in structures and with connectivities that are at least plausible
if not biologically justified in detail [10].

In particular we describe our use of massively data parallel
computing techniques and graphical processing units (GPUs)
with many individual cores, to simulate around 106 individual
neurons arranged in regular and small-world interconnected
networks [11], [12], [13]. We focus on the use of the Izhike-
vich neural model [14] of cortical spiking neurons [15] for
the work reported here. Our simulation software apparatus
could be readily adapted to use other neuronal models such
as the Hodgkin-Huxley neuronal model [16].

Our article is structured as follows: In Section 2 we sum-
marise the properties of the individual neuronal model we
use. The simulated network structures are described in Sec-
tion 3 and details of our data-parallel Compute Unified De-
vice Architecture (CUDA) implementations for GPUs are
given in Section 4. We discuss some of the emergent prop-
erties and features of our simulated system in Section 6, in
which we also offer some tentative conclusions and suggested
areas for further work.

2. Neuronal Model
We use the Izhikevich model [14] to simulate the spiking

and bursting behaviour observed in cortical neurons [17].
Although more biophysically meaningful models do exist,
including the well known Hodgkin-Huxley [16] model, the
computational demands of these models are significantly
higher and the size of the simulated neuronal networks
is thus more limited. The aim of this paper is to lay the
computational foundations for further studies of large-scale
neuronal networks, specifically in terms of the spatial and
temporal effects of anaesthetic drugs on the neural interac-
tions. Size matters for simulations of such complex systems,
as some macroscopic behavioural patterns only emerge for
large systems with many microscopic interactions or when
system properties are analysed over several length-scales.
This is not to say that the quality of the model is not relevant,
of course, as a system that does not exhibit realistic behaviour
is essentially useless. However, in [15], Izhikevich compares
a number of commonly used models and shows that the
model proposed in [14] is computationally much cheaper
than the Hodgkin-Huxley model, but nevertheless capable of
reproducing realistic spiking and bursting behaviour.

The model uses four parameters, which can be adjusted
to produce different spike patterns, such as those observed
for real excitatory and inhibitory neurons. These spikes –
which are also called action potentials – produce an elec-
trochemical impulse that is transmitted to connected cells.
Action potentials created by excitatory cells depolarise the
membrane potentials v of their neighbouring cells and, thus,
decrease the distance to their spike thresholds, making them
more likely to ”fire” an action potential of their own. Spikes
created by inhibitory cells, on the other hand, hyperpolarise
the membrane potentials and increase the distance to the
threshold. Neurons are connected through transmitting fi-
bres called axons and receiving fibres called dendrites. The
synapse is the axon-dendrite junction. A postsynaptic neu-
ron receives a postsynaptic potential after a suitable delay
δ from the time the presynaptic action potential has been
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generated. But the postsynaptic potential does not apply all
at once, it rather diminishes exponentially over a period of
time as suggested in [18]. Our implementation uses separate
washout tables We,i for excitatory and inhibitory neurons,
which define the gradual washout as W (t) = Ae−t/τ , where
t is time measured in simulation steps, Ae,i regulates the
voltage amplitude and τe,i defines the exponential washout
rate. The washout table is chosen to be of length 3τ , which
allows the action potential to diminish to about 5% of its
base value before it stops having any effect.

In addition to the incoming currents from action potentials
generated by presynaptic neurons, every neuron also receives
an input current I . This is used to simulate currents received
from sources external to the cortex, for example other parts
of the brain – like the thalamus – or any other part of the
nervous system. I is calculated individually for every neuron
and at every time step as I = Ie,i + Inoise + Iboost, where
Ie,i is the base current for all excitatory (Ie) or inhibitory (Ii)
cells. Inoise = ne,i × rnorm is random noise computed from
a base noise value ne,i, times a normally distributed random
variable. Ie,i and Inoise are used to simulate a constant source
of activity that drives the cortex. Iboost, on the other hand, is
meant as a temporary boost, like an external shock delivered
to the neuronal network. It is applied to a fraction of all cells
selected at random during each simulation step that the boost
is active. Although Inoise can be negative, the sum of these
inputs I is not allowed to fall below zero.

The effects of anaesthetic drugs are modelled using pa-
rameters λA(e,i), λτ(e,i) and λI(e,i), which are defined in-
dividually for excitatory and inhibitory neurons. Different
combinations of these values can be used to simulate different
types of anaesthetics. The λ values can be updated between
simulation steps. They modify the corresponding base values
to get the effective values as follows:

For excitatory neurons:

A = Ae/λAe

τ = τe/λτe

I = Ie − λIe + 1

For inhibitory neurons:

A = AiλAi

τ = τiλτi

I = Ii + λIi − 1

Thus, values of λ > 1 simulate drugs that have a dampen-
ing effect when applied to excitatory neurons and a strength-
ening effect when applied to inhibitory neurons. No drugs
are administered when λ = 1.

3. Network Model & Data Structure
A 2-dimensional lattice is used to assign a unique global

ID to each neuron – which can be calculated from its (x, y)-
coordinates – and to restrict connections between neurons
to a maximum distance r that is defined by the user. The
one-way nerve connections are generated at random using
a normal distribution that is centered on the postsynaptic
neuron, that is, the end of the arc in graph terminology. The
standard deviation of the distribution is set to σ = r/3 and
the distance is strictly restricted to ≤ r. This results in a
network structure where most connections are relatively short,
with a decreasing number of longer distance connections.
While the number of outgoing connections varies between
neurons, every neuron has the same number of incoming
connections. This, together with the fact that arcs are stored

Fig. 1: The one-way connections between neurons are stored
in a 1D array of length N×k – here illustrated as a 2D array
with N columns and k rows – where N is the system size and
k is the in-degree. Each one of these arcs is only identified
by the global neuron ID of its source node. The destination
node is determined by the position in the array. As neurons
are processed in the order of the thread IDs given in Figure 2,
the source IDs are stored at index nidx × N + tid, where
nidx is the n’s neighbour of the neuron that is processed by
the thread with ID tid. This ensures fully coalesced memory
transactions when accessing this array.

in the adjacency-list of the postsynaptic cell as described in
the caption of Figure 1, is an important optimisation that
significantly improves the utilisation of the GPU’s memory
bandwidth. It makes it possible to use an information pull-
model for the transmission of action potentials. This process
is described in more detail in Section 4. Note that even though
the neurons are addressable by their coordinates in the grid,
the graph itself is far from regular, due to the way neighbours
are selected. It is possible to change the graph structure
without any modifications to the algorithm, as long as the
invariant of having the same number of incoming connections
per neuron is maintained. This flexibility allows for plenty of
future experimentation and a small-world network [19], [12]
may be a particularly interesting candidate.

The lattice structure is also used to determine which CUDA
thread gets to process a particular neuron when it is time
to evolve the simulation by another step. This mapping is
illustrated in Figure 2. It is chosen to maximise the data lo-
cality for threads within the same thread block when querying
information from neighbouring cells, taking advantage of the
texture cache available on CUDA GPUs1 and the knowledge
that cells located close to each other on the lattice are more
likely to share some of their neighbours than cells separated
by a larger distance.

Whether a neuron is excitatory or inhibitory as well as the
exact parameter values that determine its spike patterns are all
determined when the graph is generated using the approach
suggested in [14]. This leads to an approximately 4:1 ratio of
excitatory to inhibitory cells. The type information needs to
be available when the state of a neuron is queried, because
postsynaptic neurons need to know what effect an incoming
action potential has on their membrane potential. To do this
efficiently, the type and the current firing state of each neuron
are bit-packed into a single byte. All these bytes are stored in
a two-dimensional array Dd that is addressed using a cell’s

1See [20], [21] for details about the CUDA architecture.

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  | 237



Fig. 2: The mapping of CUDA threads to neurons. The
numbers represent the ID of the CUDA thread (tid) that
processes a particular neuron. The actual implementation uses
blocks of size 16×16 instead of the 4×4 blocks shown here.
Independent from the tid, the 2D lattice is used to assign a
global ID to each neuron. This global ID is implicitly defined
by the position in the grid using row-major ordering from
the top left to the bottom right. Note that the lattice structure
does not reflect the actual neuronal network, it is only used
to assign a unique global ID to each neuron and to restrict
the neighbour selection to a given radius r.

(x, y)-coordinates. 2D texture fetches are used to retrieve the
data when iterating over the adjacency-lists to identify any
incoming action potentials. As only the two least-significant
bits are used, the data could be compressed even more by
storing the information of four neurons in a single byte.
However, this is not done in the current implementation, as
it is expected that future versions will make use of this space
to store additional state information.

While all elements in Dd are read many times during each
simulation step, once for every nerve connection originating
from the respective neuron, the following arrays are all used
to store data that is only read and updated by the thread that
processes the cell it belongs to:

• Vd and Ud record the current values of the Izhikevich
variables v (membrane potential) and u (membrane re-
covery).

• ∆d stores the synaptic delay δ for each neuron. A min-
imum delay of δmin = 5 and a maximum delay of
δmax = 15 milliseconds are used in the current im-
plementation. The delay is defined on the postsynaptic
neuron and not on the link itself. This simplification re-
duces the memory requirements for the delay terms from
O(Nk) to O(N). The values are randomly initialised
within the given range.

• EVd is the extra volts array. It records the effective
input voltage from action potentials – both excitatory
and inhibitory – generated by all presynaptic neurons
over the last w + δ simulation steps, where w is the
current washout table length. Because w = 3τ and τ
can be modified by λτ(e,i), a maximum washout table

length Wmax is defined at compile time. Based on this,
EVmax = Wmax + δmax space is allocated for every
neuron.

• TVd records the type values that define the spike dy-
namics of individual neurons.

As each neuron only requires its own data, these arrays are
indexed using the thread ID tid and transactions are fully
coalesced. The only exception to this are transfers to and
from EVd during Phase1 of the simulation, which are only
partially coalesced. The reason being that the index used to
access EVd during this phase depends on the neural delay δ,
which is initialised randomly for each cell.

Next, memory for T instances of the CUDA implemen-
tation of the 64-bit random number generator Ran from
Numerical Recipes [22] is allocated. T is the number of
CUDA threads used to process the system. The optimal value
for T depends on the execution hardware, but it should be
a large power of two smaller or equal to the system size,
which is always a power of two itself. Every thread thus
processes an equal number of neurons. T = 219 is used for
the performance measurements, except when N < 219, in
which case T = N .

Finally, arrays Vsum and Fsum are used to record partial
sums of the membrane potentials and firing rates of all excita-
tory neurons. For reasons explained in the following section,
these arrays are of length 32×(number of thread blocks).

4. CUDA Implementation
The simulation is split into two distinct phases and each

of these phases is implemented as a CUDA kernel. Every
simulation step executes both phases, advancing the simu-
lation by one millisecond of model time. The control flow
and the secondary tasks processed by the host system are
described by the pseudo-code in Algorithm 1. The main task
of Phase1 is to update the membrane potentials v using
the equations proposed by Izhikevich [14] for all neurons
based on the various input currents reaching each cell at
the current time step. This includes the external currents
modelled by I as well as the inputs from all presynaptic
neurons that have generated an action potential during time
steps [−(δ+w),−(1 + δ)] from the current time as recorded
in EVd. When a neuron’s membrane potential reaches 30mV,
then it fires a new action potential. This event is recorded by
setting the respective bit in array Dd.

The only data that needs to be moved between the host and
the device at every time step – not counting kernel parameters
– are arrays Vsum and Fsum. The average membrane potential
of all excitatory neurons is used to plot a pseudo-EEG and
to compute the power spectral density. The firing rate is
plotted as an additional visual indicator of the current cortical
activity. Making the data immediately available to the host
makes it possible to monitor the simulation as it is running
and to store the generated data for later reuse. As mentioned
before, both of these arrays are of length 32×(number of
thread blocks) and not of length N . The reason for this is
that kernel Phase1 performs a parallel reduction to compute
the sum of the respective values for all neurons processed
by the threads that belong to the same thread block. The
reduction is done in the fast on-chip shared memory and the
process is only stopped when the number of elements in the
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Algorithm 1 This host function is called to evolve the simulation by STEPS simulation steps. The generated values vavg and
favg are the average membrane potential and the average firing rate of all excitatory neurons at the current time step. The
former can be used to plot a pseudo-EEG and to compute the power spectral density.

determine the current washout table length w
for s← 1 to STEPS do

do in parallel on the device using T threads: call kernel Phase1(EVidx)
wait until Phase1 is completed
increment EVidx, the index into the extra volts array EVd //wraps around when it reaches the end of the array
copy Vsum from device memory to host memory //asynchronous, can overlap with kernel Phase2
copy Fsum from device memory to host memory //asynchronous, can overlap with kernel Phase2
do in parallel on the device using T threads: call kernel Phase2(EVidx, w)
wait until Vsum and Fsum have been copied to host memory
vavg ← favg ← 0 //the average voltage v and firing rate f of all excitatory neurons
for i← 0 to (32 ∗ [number of thread blocks]) do

vavg ← vavg + Vsum[i]
favg ← favg + Fsum[i]

end for
vavg ← vavg/ntype0 //ntype0 is the number of excitatory neurons
favg ← favg/ntype0
wait until Phase2 is completed

end for

input reaches the warp size of 32 threads, at which point
the first warp in the thread block writes the partial sums to
Vsum and Fsum respectively. These arrays are then copied
to host memory, where the CPU can sequentially perform
the remaining summation. The memory copies and CPU
processing can be overlapped with the execution of kernel
Phase2 and, therefore, do not add to the overall runtime.

In Phase2, every neuron queries the current state of all its
neighbours using texture fetches from array Dd as discussed
in the previous section. To be able to do this, the global
IDs of the presynaptic neurons – which can be used to
compute the textures coordinates – are looked up from each
neuron’s adjacency-list using fully coalesced data transfers
as explained in Figure 1. The data from Dd is then used to
determine the number of new excitatory and inhibitory action
potentials generated by all neighbours. Then, the next w val-
ues of the extra volts array EVd are updated according to the
number of inputs, using the values provided in the washout
tables We,i to compute the resulting excitatory and inhibitory
effects over time. The fact that all threads update the next w
elements of their neuron’s extra volts array, starting from the
same offset into EVd, is very important. It means that all w
reads and w writes per neuron performed during this phase
are fully coalesced. This easily makes up for the single read
and write per cell that is only partially coalesced in Phase1.
The washout tables are stored in constant memory and can be
accessed very quickly. The entire process of using the extra
volts array is visualised in Figure 3.

As the performance results given in the next section show,
the system size is mainly limited by the on-board memory
of the GPUs used to run the simulation. In order to be able
to simulate much larger systems, or to reduce the execution
time, a multi-GPU implementation has been developed. It can
be executed either on a single host machine with multiple
GPUs or on a cluster of machines with one or more GPUs
each. OpenMPI is used for the communication between clus-
ter nodes. Figure 4 describes how the neuronal network is
split into multiple components and how the communication
time between GPUs can be at least partially hidden by com-
putation.

Fig. 3: This diagram illustrates how the extra volts array EVd
for a single neuron is indexed and modified over the two
phases of the simulation. Note that the actual implementation
interleaves the arrays of all neurons and uses a stride of N
between indices to facilitate coalesced memory transactions.
The neuron’s delay is δ = 3 and the current washout table
length is w = 6 in this example. At time step t, kernel
Phase1 reads the input value from index evidx−δ = 3−3 =
0, computes the new membrane potential and resets the
value in EVd to 0. Index evidx is incremented before kernel
Phase2 is called. This kernel first queries all neighbours and
finds that two of them are firing an excitatory action potential.
It then proceeds to add 2× the values from the excitatory
washout table Wc(e) to the corresponding w elements of the
extra volts array, beginning with index evidx = 4. The next
simulation step t+1 repeats this procedure, but finds that the
neuron is now receiving a single inhibitory input. Phase2
thus adds 1× the values from the inhibitory washout table
Wc(i) to the correct values in EVd.
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Fig. 4: This figure illustrates how the neurons are divided
up to be processed in a multi-GPU setup. The maximum
neighbour distance r determines the size of the border region
that needs to be exchanged between devices processing
neighbouring components before Phase2 can be completed.
The neurons located in the core region, however, can be
processed independently from all other devices. To exploit
this, each GPU concurrently processes its core region and
performs the data exchange to obtain the information for its
local border on devices that support this feature.

Please refer to [23] for more details about the CUDA
implementations of the different simulation phases and the
modifications necessary for the cluster implementation. The
reference provides detailed code listings and additional in-
formation about the model and its configuration options. It
also describes the signal processing techniques that are used
to obtain a power spectrum from the generated pseudo-EEG.

5. Performance Results
This section shows how the CUDA implementation per-

forms when executed in batch-mode. In this mode, the results
are not visualised in real-time. Instead, the average membrane
potentials and firing rates are written to a file. While the
graphical user interface is very useful when testing the effects
of certain parameter combinations on the model, more exten-
sive parameter value range scans are generally performed in
batch-mode, with an automatic extraction of relevant metrics
following the simulation run. A configuration file can be
used to specify the exact settings for each time step. Most
importantly, the values for each of the λ parameters can be
modified to define the beginning and end of periods during
which a particular drug effect is being simulated. This mode
also gives a more accurate measure of the actual performance
of the simulation code itself.

A number of different GPUs are used to compare the
execution speed on two generations of CUDA devices. The
GTX260 provides 896 MB of device memory and 216 CUDA
cores and represents the GT200 series of GPUs. All other

Fig. 5: The execution times for 10, 000 simulation steps with
system sizes ranging from N = 214 to N = 224. The in-
degree is set to k = 100, which adds up to a maximum of
≈ 1.68 × 109 neural connections in the largest system. The
the maximum neighbour distance r = 64.

devices are based on the Fermi-architecture. The GTX480
and GTX580 provide 1536 MB of memory and have a total
of 480 and 512 CUDA cores respectively. The clock speeds
and memory bandwidth of the GTX580 are approximately
8− 10% higher than those of the GTX480. The professional
M2070 offers a full 6 GB of device memory, 448 CUDA
cores and uses a slightly more moderate clock speed and
bandwidth. All results presented in this section are averaged
over 10 independent simulation runs. Error bars representing
the standard deviations are smaller than the symbol size.

Figure 5 shows the results for a range of system sizes
with fixed in-degree k = 100 for all neurons. The maximum
neighbour distance r = 64. Not every system size can be
simulated on all devices due to the different amount of mem-
ory available on each GPU. The multi-GPU implementations
require a system size of N ≥ 2562, as the local dimension
length l has to be at least 2r. Unsurprisingly, the GTX580
is the fastest GPU. It is capable of computing one second
of simulated time (1000 time steps) in the cortical model
with N = 262, 144 neurons and over 26 million neural
connections in about 1.85 seconds of real time. Although the
M2070 is slower than the GTX580, its large DRAM makes
it possible to process systems of up to 4.2 million neurons
on a single device.

The setup using four GTX480 GPUs, all installed in sepa-
rate x16 PCIe slots of the same host system, shows how well
the multi-GPU implementation scales given a large enough
system size. They complete the simulation 3.5 times faster
than a single GTX480 when running the largest system sup-
ported by both configurations. Both the MPI implementation
and the node with four M2070s, which have to share a single
x16 PCIe bus, scale very well, but have a much higher com-
munication overhead. They perform best when the system
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Fig. 6: The execution times for 10, 000 simulation steps with
in-degrees ranging from k = 60 to k = 1200. The system size
is N = 220 and the maximum neighbour distance is r = 64,
except for the second result set for the M2070 (k = 200 to
1200), which uses r = 96.

size is large, as the ratio of neurons located in the border
regions to those located in the core regions decreases, which
enables the devices to overlap more of the data transfer times
with computation. The large amount of device memory on the
four M2070s makes it possible to process a system of over
16 million neurons with a total of over 1.6 billion neural
connections.

Figure 6 shows the execution times for various in-degrees,
with a constant system size of N = 220 neurons and a
maximum neighbour distance r = 64 where not explicitly
marked otherwise. No results are given for multi-GPU config-
urations, as they can only increase the degree at the expense
of the sub-system size processed by individual devices. The
results offer no surprises, except that the GTX480 runs out
of memory when k = 260, whereas the GTX580, which
is supposed to have the same amount of device memory,
completes the simulation successfully. For the large degrees
of up to k = 1200 that are possible with the M2070, a
value of r = 96 is used to increase the size of the pool
of possible neighbours. This also shows the effect of the
neighbour distance on the performance, as a larger value of
r means that the texture fetches are less likely to result in a
cache hit.

6. Discussion & Conclusions
We have proposed a data-parallel implementation of a

neural network model that is based on Izhikevich type neu-
rons. The model is designed with the intention to simu-
late and analyse neural processes involved in anaesthesia.
We are interested in large scale simulations with millions
of neurons and many more neural connections to facilitate
emergent behaviour that may not be visible at smaller scales.
The implementation described in this article merely lays the

algorithmic foundation for further studies, as a significant
computational effort is still required to find parameter value
combinations that work well together and produce realistic
neural activity patterns. This is particularly difficult, as many
of the system parameters are correlated with each other,
which leads to disproportionally strong reactions to relatively
small parameter changes.

The implementation of the model also demonstrates how
some inherently irregular problems can be optimised for the
data-parallel architecture of modern GPUs. This is especially
true when it is possible to design the model with this architec-
ture in mind. One such example discussed here is the use of
an information pull model for the transfer of action potentials
along neural pathways and the decision to use the same in-
degree for every neuron. Although this is not biologically
realistic, we believe that it does not have a significant effect
on the behaviour of the model, as the out-degrees remain
randomly distributed. These decisions dramatically improve
the simulation performance on GPUs, as they reduce the di-
vergence of threads and increase the utilisation of the memory
bandwidth.

As demonstrated, the proposed implementation can be used
to simulate systems with more than four million neurons and
one hundred times that many neural connections on a single
CUDA capable graphics accelerator from the year 2011. A
multi-GPU implementation that divides the computational
workload and memory requirements between several devices
has also been discussed. Although the simulation has only
been tested with up to four devices, the implementation can
scale to significantly larger compute installations.

The model offers a number of opportunities for future stud-
ies, such as the use of different graph structures – in particular
small-world network based layouts – and the modelling of the
delay terms directly on the neural connections. An extension
of the model to include other regions of the mammalian brain
would also be of interest.
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Abstract - A fundamental problem in Doppler Ultrasound 
blood flow measurement is the computation of the signal 
instantaneous frequency. The Cohen class of Time-Frequency 
Distributions (TFD) has efficiently determined a very close 
estimation of the instantaneous frequency for quasi-stationary 
signals such as those associated to arterial blood flow. 
Nevertheless, its computation has an O(N3) complexity, where 
N is the sample length. This imposes a great limitation when 
working with real-time systems. Previous work has proposed 
simplified expressions with comparable order of complexity. 
In this work a study is conducted to observe the response of 
different distributions when truncating the TFD’s 
autocorrelation function. It also studies the relationship with 
the precision obtained in frequency estimation when 
considering different distribution kernels. SNR and sample 
length are considered in order to define a truncation 
procedure for minimizing RMS error. A real Doppler 
Ultrasound signal taken from a carotid artery is used for the 
performance evaluation. 

Keywords: Time-Frequency Distributions, Signal Analysis, 
Doppler ultrasound, Blood flow measurement. 

 

1 Introduction  
A classical method for spectral estimation is the so-

called Fourier Transform. However, its use is limited to 
stationary signals, giving as a result a poor frequency 
resolution when estimating non-stationary ones. Other types 
of spectral estimators, called time-frequency distributions, 
have been developed [2]. Unlike conventional methods, these 
distributions are not limited to the use of stationary signals. 
Despite of this important advantage, the number of 
calculations involved in obtaining the spectral estimation 
increases substantially compared to the traditional methods. 
Therefore, it is desirable to simplify the formulation of the 
distributions in such a way that the computations involved can 
be reduced without any loss in the spectral resolution. 
Simplified expressions that calculate the time frequency 
distributions have been previously introduced [1], [3], [11] 
and [12]. 

Also, previous works have suggested that a controlled 
truncation of the time frequency distributions’ autocorrelation 
function does not significantly affect the accuracy when 

estimating spectral parameters such as the pseudo 
instantaneous mean frequency and the RMS mean bandwidth 
[6], [7] and [8]. On the contrary, it further diminishes the 
amount of calculations involved. This strategy may be 
usefully in order to achieve efficient real time algorithms 
suitable to be implemented in high performance DSP 
architectures. This work accomplishes those studies and 
extends them with a performance evaluation using a real 
Doppler Ultrasound signal taken from the Carotid artery [6] 
and [7]. 

  
Figure 1. Signal’s pseudo instantaneous mean frequency 

(PIMF) wave form of the simulated Doppler ultrasonic 
quasi-stationary signal that represents a typical blood 
flow in the Carotid artery. 

 
2 Time-frequency distributions 

The time-frequency distributions (TFD) of the Cohen 
class considered in this work are the Bessel, the Born Jordan 
and the Choi Williams distributions [2]. The discrete Bessel 
TFD when it is evaluated at discrete time zero and optimized 
is: 
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where k is the discrete frequency taking integer values from 0 
to N-1, α is a scaling factor taking the half of any natural 
value, and W(n) is a Hanning window of length 2N-1 [5]. 
Note that 1TI N= − ; the exactly meaning of TI  parameter is 
explained in section 3. The discrete Born Jordan TFD when it 
is evaluated at discrete time zero and optimized is: 
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where k is the discrete frequency taking integer values from 0 
to N-1, α is a scaling factor taking the half of any natural 
value, and W(n) is a Hanning window of length 2N-1 [2]. 
Note that 1TI N= − . The discrete Choi-Williams TFD when 
it is evaluated at discrete time zero and optimized is: 
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where k is the discrete frequency taking integer values from 0 
to N-1, σ is a scaling factor taking any positive real value, and 
W(n) is a Hanning window of length 2N-1 [3]. Note that 

1TI N= − . 
 
3 Truncation Procedure 

The inner summation respect to index μ in equations (1), 
(2) and (3) is the generalized time-index autocorrelation 
function of the TFD. Observe that the autocorrelation function 
has a factor that vanishes as index μ increases. As a 
consequence, a controlled truncation in the index μ results in 
a controlled decrement in the accuracy of TFD calculation. 
That controlled decrement in the accuracy of TFD calculation 
provokes a controlled increment in the spectral estimation 
errors but a decrement in the amount of calculations involved.  

Such a truncation index (TI) has already been imposed 
in the inner summation respect to index μ in the equations (1), 
(2) and (3). The admissible values of TI are from 1 to N-2. 
Note that a TI values greater or equal than N-1 has a non-
truncation effect.  

Optimal scaling factors are considered in calculations 
[7]. These are presented in table 1. 

 
 
 

 
Win. Length Bessel Born Jordan Choi Williams 

L = 63 2=α  1=α  4=σ  
L = 127 5.2=α  1=α  5=σ  
L = 255 5.2=α  1=α  6=σ  

Table 1. Optimal scaling factors of TFD´s. 
 

 
4 Doppler ultrasound signal simulation 

In order to characterize the pseudo instantaneous mean 
frequency (PIMF) and the RMS mean bandwidth (RMSMB) 
error estimations when the TFD are used, it has been 
proposed the utilization of a simulated Doppler ultrasonic 
quasi-stationary signal that represents a typical blood flow in 
the Carotid artery. Its characteristics are well documented [8], 
[9] and [10]. 

Briefly, the signal’s duration is 0.7s., indeed, it is the 
signal’s mean period; it has a constant RMSMB of 100Hz and 
its PIMF wave form is shown in figure 1. The simulation 
procedure is accurate described in [6]. In this work, a 
sampling rate fo=19200Hz is considered, i.e. T=13440 
samples are taken. Note that the sampling rate must be four 
times the signal’s maximum frequency when TFD are used.  

A white noise is added to the whole signal before 
starting the signal analysis procedure, according to typically 
prescribed signal noise ratios (SNR). In this work, SNR of -10 
dB, -20 dB, -30 dB and –40 dB are considered (the minus 
sign will be omitted); also, noiseless case is treated. 
 
5 Spectral estimation 
The spectral estimation of both the RMSMB and the PIMF is 
worked out as in [4] and [6]. Their procedures have a 
common part. First, a signal piece of length L is taken from 
the nth to the (n+L-1)th elements of the whole signal, it will be 
called the nth signal window. In this work, L can be 63, 127 
and 255, and L=2N-1. The signal window’s elements are 
numbered in the discrete time domain from 1–N to N-1. 
Second, the analytic signal of this signal window is 
calculated. The analytic signal’s elements are also numbered 
in the discrete time domain from 1-N to N-1. Third, the TFD 
of this analytic signal is calculated using equation (1), (2) or 
(3), depending on the study case, and considering prescribed 
truncation indexes TI and optimal scaling factors. The TFD’s 
elements are numbered in the discrete frequency domain from 
0 to N-1. Note that the components corresponding to negative 
frequencies, which are numbered from N/2 to N–1, all are 
equal to zero. Finally, the pseudo instantaneous power 
distribution (PIPD) of this TFD is calculated. Its elements are 
also numbered in the discrete frequency domain from 0 to N-
1. Observe that the components corresponding to negative 
frequencies, which are numbered from N/2 to N–1, all are also 
equal to zero. The PIPD is defined as: 
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In case of the PIMF calculation, the pseudo instantaneous 
mean frequency associated to the nth window signal is stated 
by: 
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where fk is the real frequency associated to discrete frequency 
k. Observe that n can be considered as the whole signal’s 
discrete time variable, running from 0 to T-L. Indeed, it 
represents the total amount of fully overlapped signal 
windows of length L in the whole signal (an overlapping of L-
1 elements). That is, the PIMF(1) correspond to the 1st signal 
window; the PIMF(2), to the 2nd signal window; and so on. 
On the other hand, in case of the RMSMB calculation, the 
RMS mean bandwidth associated to the nth window signal is 
stated by: 
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with the same considerations as in equation (5). 
 
 
6 Error estimation 

Typically, in any spectral estimation, the error has two 
independent components [6]. The first component represents 
the mean of the errors of the estimated values respect to the 
theoretic values. That error will be called the bias. The second 
component represents the standard deviation of those errors. 
Then, the root mean square (RMS) error is estimated 
according to: 
 

 
22 stdbiaserror RMS +=    (7) 

 
In case of calculating the error estimation of the PIMF, it can 
be done with: 
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where m is the total amount of fully overlapped signal 
windows of length L in the whole signal of length T, in 

consequence, m= T-L+1. Whereas, in case of calculating the 
error estimation of the RMSMB, it can be done with: 
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with same considerations as in equations (8) and (9). 
 
7 Results 
Figures 2, 3 and 4 show the detailed results obtained for the 
Bessel, Born Jordan and Choi Williams TFD, respectively. 
Each figure shows a set of graphs which relates the  increment 
of jointly RMSMB and PIMF estimation error with the 
truncation index of the generalized time-index autocorrelation 
function of the considered TFD. Note that the calculations are  
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Figure 2. Bessel TFD Increment of jointly RMSMB and 

PIMF estimation error vs. Truncation index for SNR 
dynamical range (10-inf dB, 20-inf dB, 30-inf dB, 40-inf 
dB, inf dB), and window lengths of a) 63, b) 127, c) 255. 
Optimal scaling factors are considered. 
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made involving the TFD’s optimal scaling factors. Each graph 
takes in account several SNR dynamical ranges (10-inf dB, 
20-inf dB, 30-inf dB, 40-inf dB, inf dB), and several window 
lengths (63, 127, 255). The increment of estimation error is 
referred to that obtained when no truncation of the 
generalized time-index autocorrelation function is involved. 

Table 2 shows the truncation index (TI) that correspond 
to a jointly RMSMB and PIMF spectral estimation error 
increment of 5%, 3% and 1% for a SNR dynamical range of 
30-inf dB. Note that the admissible values of TI are from 1 to 
N-2, where the window length is L=2N-1. 
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Figure 3. Born Jordan TFD Increment of jointly RMSMB and 

PIMF estimation error vs. Truncation index for SNR 
dynamical range (10-inf dB, 20-inf dB, 30-inf dB, 40-inf 
dB, inf dB), and window lengths of a) 63, b) 127, c) 255. 
Optimal scaling factors are considered. 
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Figure 4. Choi Williams TFD Increment of jointly RMSMB 

and PIMF estimation error vs. Truncation index for SNR 
dynamical range (10-inf dB, 20-inf dB, 30-inf dB, 40-inf 
dB, inf dB), and window lengths of a) 63, b) 127, c) 255. 
Optimal scaling factors are considered. 

 
Error Win.length Bessel Born 

Jordan 
Choi 
Williams 

1% L = 63 TI=26 TI=20 TI=14 
1% L = 127 TI=52 TI=44 TI=36 
1% L = 255 TI=80 TI=88 TI=40 
     
3% L = 63 TI=24 TI=16 TI=14 
3% L = 127 TI=44 TI=44 TI=24 
3% L = 255 TI=72 TI=56 TI=32 
     
5% L = 63 TI=22 TI=16 TI=12 
5% L = 127 TI=36 TI=44 TI=24 
5% L = 255 TI=72 TI=48 TI=24 

Table 2. Truncation index corresponding to a SNR dynamical 
range of 30-inf dB. Jointly RMSMB and PIMF 
estimation error increment of 1%, 3% and 5%. 
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8 Analysis of a real Doppler ultrasound 
signal  
This section analyses a real Doppler ultrasound signal 

measured in the laboratory. Again, correspond to a signal that 
models the carotid artery blood flow mean velocity. Figure 5 
shows its PIPD using the Born Jordan distribution.  

 
 
 

 
 
 
 
 
 
 
 
 
  

Figure 5. PIPD corresponding to a Doppler ultrasonic signal 
measured in laboratory (Carotid artery blood flow mean 
velocity). Born Jordan distribution with 1α = , and 

127L = are used. 
 

 a  

 b  
Figure 6. Averaged PIMF and RMSMB per cardiac cycle 

corresponding to a Doppler ultrasonic signal measured in 
laboratory (Carotid artery blood flow mean velocity). 
Born Jordan distribution with 1α = , 127L = , a) no 
truncation and b) a truncating index 44TI = . 
 
Figure 6.a shows the PIMF and the RMSMB, both 

averaged per cardiac cycle. An optimal scaling factor 1α = , a 

window length 127L =  and no truncation ( 63TI = ) are used. 
Finally, figure 6.b shows the PIMF and the RMSMB but 
using a truncating index 44TI = . Similar waveforms are 
experimentally obtained using Bessel and Choi Williams 
distributions. Table 3 shows the RMS deviations obtained 
using truncation respect to the spectral estimations done 
without truncation. 

 
 L TI PIMF MBRMS 

Bessel 63 26 0.00 0.00 
  24 0.00 0.00 
  22 2.43 3.85 
 127 52 0.00 0.00 
  44 3.06 3.21 
  36 6.69 5.78 
 255 80 3.08 2.77 
  72 4.09 3.65 
     
Born 63 20 0.00 0.00 
Jordan  16 5.69 6.46 
 127 44 0.00 0.00 
 255 88 0.00 0.00 
  56 3.32 2.76 
  48 4.48 3.69 
     
Choi 63 14 1.20 1.13 
Williams  12 1.91 1.75 
 127 36 0.09 0.09 
  24 0.77 0.58 
 255 40 0.60 0.46 
  32 1.03 0.76 
  24 1.77 1.32 
Table 3. RMS deviations (Hz) using truncation respect to  

spectral estimations with no truncation. 
 
9 Conclusions 

A controlled truncation in the index of the generalized 
time-index autocorrelation function results in a controlled 
decrement in the accuracy of TFD calculation. Such a 
controlled reduction in the accuracy of TFD calculation 
produces a controlled increment in the spectral estimation 
errors but an important reduction in the amount of 
calculations is involved, this being the main motivation of this 
study.  

Three simplified expressions including an 
autocorrelation truncating index that calculate some TFD 
have been considered: the Bessel (1), the Born Jordan (2) and 
the Choi Williams (3) distributions. The optimal parameters 
of time frequency distributions (TFD) have been used (table 
1). The case study considered is a simulated Doppler 
ultrasonic quasi-stationary signal that represents a typical 
blood flow in the Carotid artery. Figures 2, 3 and 4 show the 
detailed results obtained. Those consist on the 
characterization of the increment PIMF and RMSBW 
estimation error as a function of the truncation index, the SNR 
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and the sample window length. Table 2 depicted the 
truncation index (TI) that corresponded to a jointly RMSMB 
and PIMF spectral estimation error increment of 5%, 3% and 
1% for a SNR dynamical range of 30-inf dB, respectively. 
Note that the truncation of the autocorrelation function is 
more convenient for the Choi Williams distribution. 

Finally, in section 8, a real Doppler ultrasound signal 
measured in laboratory is used for the TFD performance 
evaluation. The results corresponding to the Born Jordan 
distribution ( 1α = , 127L = ) with and without truncation are 
shown in figure 6. Similar waveforms are experimentally 
obtained using Bessel and Choi Williams distributions. Table 
3 shows the RMS deviations obtained using truncation respect 
to the spectral estimations done without truncation. Results 
are being applied to the development of a real-time spectrum 
analyzer for Doppler  blood flow instrumentation [13]. 
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ABSTRACT 

 

We developed a surface topological compensation algorithm 

to extend imaging range in common-path Fourier-domain 

optical coherence tomography configuration. A surface 

detection algorithm based on a Savitzky-Golay filter of A-

scan data and thresholding was applied to real-time depth 

tracking. The algorithm output controlled a motorized stage 

to adjust the probe position according to the sample’s 

topological variance in real-time. OCT images obtained 

using our algorithm showed a significantly extended imaging 

range, consequently, the devised algorithm demonstrated 

potential for improving endoscopic OCT. 

 

Index Terms— OCT, surface tracking, topological 

variance, motorized stage, Savitzky-Golay filter 

 

1. INTRODUCTION 

 

Optical coherence tomography (OCT), which is one of the 

various optical imaging modalities, is a novel imaging 

technology that provides high- resolution, subsurface depth 

profiling, and cross-sectional imaging in vivo with relatively 

simple optical arrangements and an inexpensive light source 

in a non-invasive manner. The concept of OCT and its 

application were first introduced by Fujimoto et al. in 1991 

[1]. It has several benefits for the non-invasive, high-

resolution and fast-acquisition tomography of the internal 

microstructure in biological systems and materials. First of 

all, it can provide much higher-resolution images (2-10 µm) 

than conventional imaging techniques, such as ultrasound 

(over 500 µm), MRI and CT (over 100 µm), although its 

depth information is limited to a range of approximately 2-3 

mm in turbid tissue [2]. Also, OCT has a faster scanning 

speed for acquisition and relatively wider dynamic range [3]. 

Moreover, the entire system is simple and portable and, thus, 

has the potential to enable OCT catheters to be incorporated 

into endoscopic instruments or bedside devices. Finally, 

since OCT is based on optics, it can be combined with other 

spectroscopic techniques to assess the optical and 

biochemical aspects of the tissue being imaged. 

Common-path OCT (CP-OCT) was proposed by 

Vakhtin et al. in 2003 [4]. In the CP-OCT configuration, the 

beam paths, which the sample signals backscattered from the 

sample and reference signals reflected from the reference 

plane follow, are commonly shared, thereby eliminating the 

need for the reference arm in the interferometer. This 

modality can minimize the effect caused by the mismatch of 

the polarization and dispersion states between the optical 

elements in the interferometer and the sensitivity to vibration, 

and enhance the scanning speed, simplicity and system 

robustness. Consequently, this configuration has the 

potential to be used as a microsurgical tool. Some 

researchers have reported the feasibility of an endoscopic 

CP-OCT implementation based on the common-path 

modality [5].  

However, unfortunately, most OCT systems generally 

suffer from a limited imaging depth range of only 1-3 mm, 

depending on the tissue type and, thus, this limitation 

restricts their clinical applications when the sample's 

topological variance is larger than the imaging depth range 

[6]. To overcome these limitations, some techniques such as 

the adaptive ranging technique based on depth tracking have 

been proposed in previous papers [7]. In these methods, the 

coherence gate offset and range on the reference arm are 

adaptively adjusted by means of an active tracker consisting 

of various optical lenses and a galvanometer. However, 

these techniques require the supplementary alignment of the 

various optical lenses or components and synchronization 

control and, thus, the composition and control procedure of 

the OCT system might become more onerous and 

complicated. Also, they compensate for the topological 

variance and motion by adjusting the optical pathlength on 

the reference arm and, therefore, this strategy might be 

inappropriate for the CP-FD-OCT system constructed in this 

study, since CP-OCT uses the common beam path of the 

sample and reference signal instead of using the reference 

mirror used in the conventional OCT composition. Recently, 

Zhang et al. [8] reported a CP-FD-OCT system providing a 

surface topology and motion compensation technique in the 

axial direction by means of a 1-D erosion-based edge-

searching algorithm, which makes use of the relatively 
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simple signal processing of the A-scan data instead of the 

alignment of complex optical components. 

To assess the feasibility of the system described in this 

paper, an active compensation algorithm of the topological 

variance by means of a sample surface detection algorithm 

using a Savitzky-Golay smoothing filter and feedback 

control for adjusting continuously the position of the 

motorized stage was developed in the present study. This 

algorithm makes it possible to image a deeper range along 

the z-axis by keeping the distance between the end of the 

probe and the sample's surface constant, as compared to the 

conventional scanning strategies. 

 

 

2. ACTIVE TRACKING WITH COMPENSATION 

ALGORITHM 

 

Figure 1 shows a flow chart of the active topological 

variance compensation algorithm during B-mode scanning in 

CP-FD-OCT, while the distance from the sample's surface 

exceeds the OCT imaging depth range or when the probe is 

too close to the sample.  
 

 

 

 

Fig. 1. Flow chart for active surface tracking algorithm. 

 
 
In 'Step-1', the A-scan data, a(z) is obtained from the 

probe (N is the total length of a(z), as shown in Figure 2(a).  

In 'Step-2', the distance (Dist) between the end of the 

probe and the sample's surface is determined, as follows; i) 

a(z) is smoothed by a 3rd-order Savitzky-Golay filter (its 

window length is 9), as shown in Figure 2(b). The main 

advantage of the Savitzky-Golay filter used in this algorithm 

is that it can preserve the unique features of the distribution, 

such as the relative maxima, minima and width, which are 

usually flattened by other adjacent averaging techniques, 

such as a moving average or low-pass filter, as well as 

effectively reducing the unnecessary speckle noise [9]. This 

attribute is quite useful for the more accurate detection of 

the edges from the A-scan data and, thus, over- or under-

estimation of the distance can be effectively diminished 

compared to the other smoothing methods. ii) the smoothed 

A-scan data, asm(z), is processed using a certain threshold 

level (thre) to avoid the noise effect, as follows (Figure 

2(c)); 







 >

=
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iii) Dist is given by the first increment point of the 

differential of the post-thresholding data, as shown in Figure 

2(d). 

 

 

 
 

Fig. 2. Active surface tracking algorithm. (a) Raw A-scan 

data, (b) A-scan data after Savitzky-Golay smoothing filter, 

(c) Thresholding of A-scan, and (d) First increment point 

detection for edge location. 

 

 

In 'Step-3', the discrepancy (Diff) between the preset 

(setDist) and measured (Dist) distances is calculated, as 

follows; 

Diff = Dist – setDist   (2) 

In 'Step-4', by using the Diff value obtained in 'Step-3', 

the control system sends the feedback control signal to the 

motorized stage. If the absolute value of Diff is outside of 

the preset acceptable range (AcptRng), the stage is moved 

either upward for a positive value of Diff or downward for a 

negative value of Diff. Subsequently, 'Step-1' is performed 

again until Diff is within AcptRng. On the other hand, if it is 

within AcptRng, the measured a(z) is rearranged and stored 

in memory. During recording, the values of a(z) are 
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repeatedly obtained while maintaining a constant distance 

between the end of the probe and the sample's surface and, 

thus, this a(z) can be rearranged by considering the 

practically moved height of the stage. The variable, dZ, is 

used for counting the relative displacement at the current 

position compared to that at the start of the B-scan (dZ=0) 

on the z-axis. For example, a positive value of dZ indicates 

that the probe has moved closer to the sample, so it implies 

that the practical depth of the OCT image might be relatively 

larger than that of the measured a(z), whereas a negative dZ 

means that the practical depth of the OCT image is relatively 

smaller than that of the measured a(z).  

In 'Step-5', the stage is moved laterally for one step, and 

'Step-1' is performed again until the moved position of the 

stage is the end of the scan on the x-axis. 

 

 

3. EXPERIMENTAL SETUP 

 

To obtain high-resolution OCT images with an extended 

range of imaging depths, a motorized-stage-based OCT 

system was developed. It consists of a high-resolution 

spectrometer, actively controllable motorized-stage, 

actuators and control modules, as well as basic compositions 

such as a light source, 50/50 coupler, and single mode fiber-

optic probe. Figure 3 shows the block diagram of the 

developed CP-FD-OCT system.  

 

 

 
 

Fig. 3. Block diagram of the developed CP-FD-OCT system. 

 

 

A superluminescent diode (SLD) (SLD-351, Superlum 

Diode Ltd., Ireland) with a central wavelength of 860 nm 

and spectral full-width at half maximum (FWHM) of ~60 

nm was used as the light source. A 50/50 coupler (FC850-

40-50-APC, Thorlabs Inc., U.S.) was used as the beam 

splitter, and only one branch on the right side was used as 

the common path for the signal and reference. The single 

mode fiber-optic probe constructed in this study was fixed 

on a standing vise, with A-scan (z-axis) and B-scan (x-axis). 

The two axes of the x and z directions were driven by a 

motorized stage (M-561D-XYZ, Newport Corp., U.S.) with 

two separate step motors (SE-SM243, N.T.C., Korea) 

installed on its lateral side. The reference signal came from 

the Fresnel reflection at the fiber probe end and the sample 

signal and the reference were received by a high-speed 

spectrometer (HR-4000, Ocean Optics, U.S.) with a charge-

coupled device detector array with 3648 pixels covering a 

range of 700-900 nm. This system make it possible to extend 

the imaging range, since the position of the probe can be 

adjusted actively and simultaneously according to the 

sample's topological variance, whereas the time needed for 

image acquisition is relatively longer.  

 

 

4. RESULTS 

 

The performance of the active topology compensation 

algorithm was tested under static conditions using an onion 

sample with several layers of highly curved surfaces. At first, 

a B-scan 2-D OCT image was obtained by the conventional 

fixed-stage method, as shown in Figure 4(a). The 860 nm 

CP-FD-OCT provided effective imaging in the range below 

500 nm and the structure of some of the layers was very 

clear within this range. However, the OCT image fades away 

as the probe is moved further away from the sample's surface, 

due to the limited depth range. 

Figure 4(b) shows an improved OCT image obtained 

using the active topological variance compensation 

algorithm. By using our algorithm, the probe could actively 

track the sample surface variance and, consequently, the 

effective imaging depth was extended to the probe’s free-

moving range. Also, the sub-layers of the sample could be 

monitored more clearly, even if the distance between the 

probe and sample's surface was outside of the limited 

imaging range. 

 

 

 

(a)                 (b) 

 

Fig. 4. Image of an onion sample obtained by (a) the 

conventional static stage on the z-axis with limited imaging 

depth and (b) active topological variance compensation 

algorithm with extended imaging depth. 
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5. CONCLUSION 

 

We devised an active surface tracking algorithm to extend 

the image range of OCT scanning for CP-FD-OCT 

configuration. Consequently, the OCT images obtained 

using the motorized-stage-based system showed a 

significantly extended imaging range through real-time 

accurate depth tracking. These results demonstrate that our 

OCT system and algorithms have good potential to resolve 

several of the limitations of conventional OCT systems. 
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Abstract - This paper proposes an algorithm for the 
development of an SDK to verify quality on iris images based 
on ISO/IEC 19794-6:2005, standard that is being mainly 
used by several manufacturers of biometric systems based on 
iris recognition. For the development of this algorithm an 
assessment is made for each parameter recommended in the 
standard, with the aim of determine a total quality score of 
iris images and decide if they have unacceptable, low, 
medium or high quality, selecting from this way the good 
ones and thus increase the efficiency of iris recognition 
systems. The proposed algorithm has been tested with images 
from a own dataset collection.  It is still a need to adopt 
a method to determine an overall value to the fusion of all 
the individual feature values. 

Keywords: Biometrics, iris image quality evaluation. 

 

1 Introduction 

        Currently, iris recognition has become the most 
reliable biometric system performance in terms of 
verification and identification of people. Today there are 
several systems dedicated to iris recognition, however the 
performance of these systems is affected due to poor quality 
iris images. The main problems that affect the system are the 
false accept (FMR) and the false reject (FNMR). If one can 
detect low-quality biometric samples, the information can be 
used to initiate the acquisition of new data and improve 
system performance. For best performance of the 
development of the SDK, the proposed algorithm refers to 
the ISO 19794-6 standard, which makes recommendations 
about the features which must be met by the iris biometric 
images to determine if you have a suitable quality for specific 
purposes.  
The main goal of standardization is to enable harmonized 
interpretation of quality scores and can differentiate them 
from the different vendors, algorithms and versions, enabling 
in this manner a competitive multi-vendor marketplace. As 
result of the measurement, the same quality measure can be 
used to selectively improve an operational biometric database 
by replacing low-quality biometric samples with high-quality 
samples of the same biometric. 
 

1.1 ISO/IEC 19794-6:2005 

 The International Organization for Standardization 
(ISO) has created the ISO/IEC 19794-6:2005. [1] in support 
to the necessity of iris images quality samples, which 
recommends the assessment of essential characteristics of iris 
images, giving an overall value between 0 and 100, with 100 
being the highest quality and 0 de poorest quality . However, 
this issue is not specifically defined and is still ongoing 
research. 

1.2 IREX -IQCE 

             The Iris Exchange (IREX) [2] was initiated at 
National Institute of Standards and Technology (NIST) in 
support of an expanded marketplace of iris-based applications 
based on standardized interoperable iris imagery, mainly in 
support of the ISO/IEC 19794-6 standard. Iris Quality 
Calibration and Evaluation (IQCE) [3] aims to evaluate the 
effectiveness of image quality assessment algorithms 
(IQAAs) that produce a scalar overall image quality in 
predicting the recognition accuracy of particular comparison 
algorithms (from the supplier of the IQAA), and of other 
algorithms. 
 

1.3 Current SDK´s 

             Some of the leading vendors in the iris biometric 
recognition system in the marketplace with their own SDK 
are LG, NEUROTECHNOLOGY, CROSSMATCH, 
AWARE, MORPHO, IRITECH, IRISID, KYNEN, L1, and 
exists different performance between their SDK results, of 
course they utilize their own algorithms for measurement of 
the features of the images, and compare some of these SDK 
with the current development one, compare some of these 
SDK´s may give us information about which one has better 
performance and create a competitive environment for best 
results. 

2 Proposed algorithm 

 For the development of the SDK, different algorithms 
must be adopted for measuring the individual characteristics 
that indicates the standard, and also for the segmentation of 
the iris in the images. There are several methods to achieve 
this purpose however is a challenge to select the appropriate 
one that complies with speed and accuracy for each feature. 
In this work we started with the identification and location of  
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Figure 1. Proposed Algorithm to the SDK 

 
the pupil, because if you find an image that of is not an iris, 
the SDK automatically rule it out, thus avoiding the image 
processing passes through the measurement of each feature. 
The image processing is described in the figure 1. 
As shown in the algorithm there are many individual 
characteristics to measure, so it is necessary to give a brief 
description of the most important ones according to IQCE [2]  
as following: 
Usable iris area is defined as the percentage of iris that is not 
occluded by eyelash, eyelid, specular reflections and ambient 
specular reflections. 
Iris pupil contrast is a measure of the image characteristics at 
the boundary between the iris region and the pupil. 
Pupil shape is a measure of regularity in pupil-iris boundary. 
Iris sclera contrast is a measure of the image characteristics 
at the boundary between the iris region and the sclera. 
Gaze angle is the deviation of the optical axis of the subject’s 
iris from the optical axis of the camera. 
Sharpness, defined as the absence of defocus blur, can result 
from many sources, but in general, defocus occurs when the 
object is outside the depth of field of the camera. 
Dilation is defined as the ratio of the pupil radius to iris 
radius. 
An image with a high Gray scale spread (good quality) is a 
properly exposed image, with a wide, well distributed spread 
of intensity values. 

Iris shape is defined as the shape of iris-sclera boundary. 
Iris size is defined as the number of pixels across the iris 
radius, when the iris boundary is modeled by a circle. 
Motion blur is defined as the blur cause by motion of the 
camera or the iris, or both. 
Once performed the measurement of the characteristics 
indicated in the algorithm, the system must create a feature 
vector containing the measurements of each characteristic 
separately and finally an overall score value should be given 
according to the ISO/IEC 19794-6:2005 standard [1] to 
determine if the image has a poor, low, medium or high 
quality. 
 

3 Experimental results 

      Tests have been performed with 60 biometric iris 
images from an own dataset collection, all images were 
acquired using an LG IRIS ID iCAM TD100 [11]. The iris 
images are 480x640 in resolution. 
 

3.1 Pupil Identification and Localization 

    First to locate the iris pupil, is used the method 
described by Lili Pan [4], using a binarization by selecting an 
appropriate threshold and finding the center where the true 
value of pixel intensity is minimal. As shown in Figure 2. 
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Figure 2. Binarized image to pupil detection 

 

3.2 Gray Scale Spread Measurement 

     Once identified that it is a true image of the iris, the 
measurement of the first feature 'Gray Scale Spread'. An 
image with a high GRAY SCALE SPREAD (good quality) is 
a properly exposed image, with a wide, well distributed 
spread of intensity values [3]. This is accomplished by 
performing a histogram as shown in Figure 3. Then the 
image is cropped for fast image segmentation of the pupil 
and iris as shown in Figure 4. 

 
             

Figure 3. Histogram wide spread image values 
  

 
 

Figure 4. Cropped image 
 

3.3 Contrast Measurement 

        The next step is to measure the contrast level of pupil 
and sclera, performing the measurement along the diameter 
of the iris, obtaining a graph as shown in Figure 5. 

 

 
 

Figure 5. Contrast in Sclera, Iris and Pupil 
 

 

3.4 Pupil and iris Shape 

             Continuing using the algorithm of Lili Pan [4], 
noting the graph of Figure 5 shows that the intensity values 
between pupil, iris and sclera vary drastically, based on this 
fact can be detected edges, result can be seen in Figure 6. 
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Figure 6. Iris and Pupil Segmentation 
 

3.5 Iris Size and Dilation Measurement 

             IRIS SIZE is defined as the number of pixels across 
the iris radius and DILATION as the ratio of the pupil radius 
to iris radius [3]. As a result of segmentation by edge 
detection, we can easily measure the diameter of the pupil 
and iris, and thus obtain the value of the dilatation. 
 

3.6 Usable Iris Area Measurement 

             USABLE IRIS AREA is defined as the percentage of 
iris that is not occluded by eyelash, eyelid, specular 
reflections and ambient specular reflections [3].  Occluded 
images are another big problem in iris image quality 
assessment and possibly one of the most difficult features to 
measure, because it is not possible to adopt a special 
algorithm. Lili Pan recommends compute the number of 
pixels in the iris area, then set two gray level thresholds one 
for detect eyelash and other for detect eyelid [4]. Which 
throws high error, because in many images the iris has both 
dark and light parts that may be confused with eyelashes and 
eyelids. Chunlei Shi recommends selecting the upper 
rectangle area of the pupil as the ROI, we regard the average 
gray value of it as the judgment criterion, and then get rid of 
the occlusion images [6]. By a combination of these methods, 
we obtain the results observed in Figure 7 (b). 
 

3.7 Sharpness Measurement 

            SHARPNESS, defined as the absence of defocus blur, 
mainly affects FNMR and FMR, images with low sharpness 
inflate FMR. [3]. For the measurement of this feature, using 
the high frequency power of the image to evaluate the degree 
of focus is a common method in previous research on image 
focus assessment [ 5,6,7,8 ]. Measuring with a high 
frequency filter on the ROI (Usable iris Area) as shown in 
Figure 7(c). 
 
 

 
 

 
(a) Segmented Iris     (b) Usable iris Area   (c) high frequency  

                                                                  filter 
Figure 7. Measurement of Visible Area and Sharpness 

 

4 Future work 

         It is necessary to adopt algorithms to asses missing 
features as Motion Blur, Signal to Noise Ratio, Gaze Angle, 
Interlacing. Papers [ 5,7,10 ] talk about different algorithms 
for the measurement of these features so they should be tested 
to check which have the best performance. Once all features 
have been measured, we obtain a Feature Quality Vector, as 
show in Figure 1, and the final step is to obtain an Overall 
Single Score. Not all features have the same weight of 
importance in the iris recognition system, thus giving an 
overall score is a problem, a bad quality in a feature with 
little weight of importance should not greatly affect the 
overall quality score .The papers [ 7,9,10 ] propose 
algorithms to obtain a score fusion, also this work intends to 
use a neuronal network, so continuous research and testing 
should be done to choose the best algorithm and finally 
succeed in developing a robust SDK with the best 
performance. Future tests will be made on dataset collection 
of standard biometric iris images. 
 

5 Conclusions  

         Iris Usable Area is the feature most important to weight 
the iris recognition system and is therefore a key factor for 
the overall score, this because although the image count with 
good lighting and good sharpness  if the iris is obstructed by 
eyelashes or eyelids, the necessary features for the recognition 
system never would be obtained for a good performance. so in 
this way, give priority in importance to all the features 
measured, where the second most weight  of importance is 
the Contrast, followed by Sharpness, after this the Dilation of 
the pupil, the Gaze Angle, Interlace, Gray Scale, Spread, Iris 
Size and finally  the, Motion Blur and Signal to Noise Ratio. 
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Abstract— Kinases are known to regulate the majority
of cellular pathways, especially those involved in signal
transduction. By modification of substrate activity, pro-
tein kinases also control many other cellular processes, in-
cluding metabolism, transcription, cell cycle progression,
cytoskeletal rearrangement, and cell movement, apopto-
sis, and differentiation. Because protein kinases have pro-
found effects on a cell, and because of their central role in
cellular processes, the number of kinases with potential as
drug targets is significant. Furthermore, because kinases
share common evolutionary backgrounds, they also share
structural attributes, making it difficult for drugs to
tell apart paralogs of clinical importance from off-target
kinases. Thus, multi-target kinase inhibitors (KIs) tend
to have undesired cross-reactivities with potentially lethal
or debilitating side effects.
In this paper, we present methods for analyses of kinase
inhibitor specificity and promiscuity that provide affir-
mative answers for the following two major questions:
(a) What is the smallest subset of kinases that any
compound needs to be screened against to obtain an
accurate indication of specificity or promiscuity? (b) How
do we find this small inferential set if it exists.

I. INTRODUCTION

Protein kinases are enzymes that modify other pro-
teins by chemically adding phosphate groups to them.
This process, called phosphorylation, usually results in
a functional change of the target protein (also known
as the substrate) by changing enzyme activity, cellular
location, or association characteristics with other pro-
teins. Kinases are known to regulate the majority of
cellular pathways, especially those involved in signal
transduction. By modification of substrate activity, pro-
tein kinases also control many other cellular processes,
including metabolism, transcription, cell cycle progres-
sion, cytoskeletal rearrangement, and cell movement,
apoptosis, and differentiation. Protein phosphorylation

_____
E-mail: qntran@lamar.edu

also plays a critical role in intercellular communication
during development, in physiological responses, and
in homeostasis and in the functioning of the nervous
and immune systems. Because protein kinases have
profound effects on a cell, and because of their central
role in cellular processes, the number of kinases with
potential as drug targets is significant. Kinases have
been implicated as drug targets not only in the treatment
of cancer, but also in a number of non-oncology indi-
cations, including central nervous system disorders, au-
toimmune disease, post-transplant immunosuppression,
osteoporosis, and metabolic disorders. Kinase inhibitors
are molecules that bind to enzymes and decrease their
activity. Since blocking an enzyme’s activity can kill a
pathogen or correct a metabolic imbalance, many drugs
are kinase inhibitors.

To fully explore and exploit this opportunity of
targeting kinases as drug targets, potent and selective
inhibitors are required for a multitude of kinases, both
as tool compounds for target validation and as leads
for drug development. Kinase-inhibitor discovery has
been a mainly linear process that addresses one kinase
at a time and requires significant investment of time
and resources for each target. In this resource-intensive
and time-consuming process, an inhibitor is screened
against a large size panel of kinases, typically 500 or
more, to identify hits that often have weak or modest
potency. Kinase selectivity is typically assessed on only
a subset of the screening hits, and is monitored only
at the end of the process. This strategy has significant
drawbacks. First, targets are addressed one at a time,
and the entire process has to be repeated for each
new target of interest. Second, decisions about which
targets to pursue are based on biology alone, with
minimal knowledge about the availability or quality
of hits against the designated target in the available
chemical library.

As the heterogeneous nature of cancer is delineated,
the focus of molecular therapy is shifting progressively
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towards multi-target drugs [1], [2], [3]. In the treatment
of tumors, scientists are advocating molecular therapies
based on a multi-pronged attacks [4], [5], [6], [7], [8].
For example, drug-based interference with several sig-
naling pathways provides a multi-pronged attack that is
proving more effective than single-pronged “magic bul-
let” attacks in hampering development and progression
of malignancy. Such therapeutic agents typically target
the kinases, thus blocking or interfering with signaling
pathways that control cell fate and proliferation.

Small molecule kinase inhibitors are a new class
of drug with a tendency to inhibit multiple targets.
This new class of drug will grow remarkably as the
large number of compounds currently in preclinical
and clinical development progress towards the market.
However, because kinases share common evolution-
ary backgrounds, they also share structural attributes,
making it difficult for drugs to tell apart paralogs of
clinical importance from off-target kinases. Thus, multi-
target kinase inhibitors tend to have undesired cross-
reactivities with potentially lethal or debilitating side
effects. The issue of multi-target therapy has lead to the
requirement of analyzing the promiscuity or specificity
of kinase inhibitors. A pressing issue exists of which
type of clinical impact can only be achieved with a
promiscuous drug, and conversely, which clinical effect
lends itself to drug specificity.

Of central clinical importance in this regard is the
issue of whether the desired clinical impact is likely
to promote side effects or may be achieved by drugs
endowed with high specificity. Currently, compounds
must be screened against a large number of kinases
in order to obtain an accurate indication of specificity
and promiscuity. As this is a time consuming process,
methods for determining specificity and promiscuity by
screening compounds against fewer kinases are highly
desirable.

In the subsequent sections, we will first define a new
selectivity scale which is finer than the known scales
in the literature by using three different binding affinity
thresholds. We then use machine learning techniques
[9], [10], [11] to classify the inhibitors based on their
selectivity. Third, we use statistical analysis to reduce
the set of kinases from 317 to 85 without loosing
drug screening information. Finally, we use data mining
techniques to select very small subsets of kinases that
provides the most accurate predictive model for drug
inhibitors.

II. METHODS

A. Weighted Selectivity Scores

A first step in determining a kinase subset involves
the use of data from competition binding assays where
kinase inhibitors are evaluated against a panel of protein
kinases. For each interaction, a quantitative dissociation
constant (Kd) is needed. We develop a quantitative
description, called weighted selectivity score, for as-
sessing kinome-wide compound reactivities by suitably
coarse-graining the binding-affinity vector. The reasons
for introducing the weighted selectivity scores are two-
fold: (a) even though ligand-kinase interaction maps
provide a useful graphic overview of how compounds
interact with the kinome, these maps provide only a
qualitative overall measure of selectivity; (b) selectivity
scores calculated by counting the number of binding
interactions with less than a threshold constant such as
3µM divided by the number of kinases tested [12] do
not represent all the information at our disposal about
the strength of the binding interactions. In our approach,
we adopt the three main binding thresholds of 100nM,
1µM, and 3µM. Kinases found to bind with a dissoci-
ation constant less than 100nM will be given an indi-
vidual weight of 1.0. Similarly, kinases found to bind
with a dissociation constant greater than 100nM but less
than 1µM, and kinases found to bind with a dissociation
constant greater than 1µM but less than 3µM will be
given an individual weight of 0.75 and 0.6, respectively.
While inferential accuracy may be maintained within
some latitude in the selection of individual weights, our
choices responded to the need to maintain the coherence
of multiple bindings vis a vis the compound score. For
instance, two bindings with dissociation constant less
than 100nM should yield a higher compound score than
two bindings with dissociation constant less than 1µM
and three bindings with dissociation constant less than
3µM. The weighted selectivity score ∑

3
i=1 ni ·ci, where ni

is the number of dissociation constants within threshold
i and ci is the corresponding weight, is an unbiased
measure that enables quantitative comparisons between
compounds and the detailed differentiation and analysis
of interaction patterns. Scores ranged from 3.5 for GW-
2580 to 146.70 for Sunitinib.

B. Selectivity Classes Maximizing Inferential Accuracy

Once a weighted selectivity score for a particular ki-
nase inhibitor has been determined, the kinase inhibitor
may then be classified into one of three selectivity
classes, representing specificity (class S), promiscuity
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(class P), or neither specificity nor promiscuity (class
N), based upon the weighted selectivity score. The
selectivity scores of kinase inhibitors are assumed to
be generated by a sequence of probability distributions
in which each distribution generates one class. Since
the distribution parameters such as mean, standard de-
viation, and probability for the three selectivity classes
are not known, an Expectation-Maximization (EM)
algorithm [9], [10], [11] may be used to find these
unknown probability distributions.

To estimate the range of weighted selectivity scores
for the incomplete data using the EM algorithm, we
start with an initial guess of the mean and stan-
dard deviation µ(0)

S ,δ
(0)
S for selective compounds and

an initial guess of the mean and standard deviation
µ(0)N ,δ

(0)
N for non-selective compounds (Step 1). Next,

we calculate the probability wi for each compound
xi to be selective using the corresponding probability
distributions (Step 2). Then, the new guessing values are
calculated as µ(k+1)

S = ∑
10
i=1 wi·xi

∑
10
i=1 wi

, δ
(k+1)
S = ∑

10
i=1 wi·(xi−µ(k)S )2

∑
10
i=1 wi

,

µ(k+1)
N = ∑

10
i=1(1−wi)·xi

∑
10
i=1(1−wi)

, and δ
(k+1)
N = ∑

10
i=1 wi·(xi−µ(k)N )2

∑
10
i=1 wi

(Step
3). After some repetitions, the algorithm converges
to a local maximization of the log probability of the
observed data (Step 4). In this example, we only use the
weighted selectivity scores of 10 compounds. The prob-
ability distributions show that the range for selective
compounds is [0,40). Similarly, the range of weighted
selectivity scores for non-specificity can be partitioned
into a range that represents promiscuity, and a range
that represents neither of the two.

C. Modified Lorenz curves and the Gini coefficients

Once a kinase inhibitor has been placed into a
selectivity class, a kinase inferential bases may be
determined. A straightforward approach that evaluates
all possible subsets of kinases and finds the smallest
one with the highest predictive accuracy would be
an impossible task even for a computer, as there are
currently 2317 (or approximately 2.7×1095) subsets to
evaluate. Accordingly, as recognized by the methods
of the present disclosure, a better approach for finding
a target universe is to determine which kinases are
crucial in deciding the selectivity of inhibitors. It has
been found that not all kinases are equally crucial in
deciding the selectivity of inhibitors. Randomly chosen
subsets of kinases will not give an accurate measure of
selectivity. Figures 1 and 2 show the average accuracy
for predicting the selectivity status of a compound

when 10 randomly selected kinases and 300 randomly
selected kinases are used.

Furthermore, naive use of machine learning tech-
niques for predicting the selectivity of a kinase inhibitor
also may yield an unsatisfactory result because (a) an
inhibitor still has to be screened against almost the
whole set of kinases and (b) the accuracy for the
prediction is not high.

To improve the accuracy, a Gini-based method for
ranking the kinases due to its ability to overcome
biases may be used. We consider a simple example of
the dataset D of affinities with respect to a kinase A
where D has d elements and three classes. The values
were discretized into three ranges. When this kinase is
evaluated by the current methodologies, for example by
calculating the Gini index giniA(D) =∑

m
i=1
|Ri|
d ·gini(Ri),

the first two rows (called partitions) contribute equally
to the Gini index because gini(Ri) = 1−∑

n
j=1 p2

i, j where
|.| is the cardinality and pi, j =

|Ci, j|
|Ri| is the relative

frequency of class C j in partition Ri. That said, when
one just considers the probability distribution without
taking into account the order of the classes, the first
two partitions will be considered the same.
Clearly, the two partitions should not be considered
the same because partition R1 says that 75% of drug
inhibitors with affinity values within this range are
classified into Class C3 while partition R2 says that
75% of drug inhibitors with affinity values within this
range are classified into Class C2. Hence in order to
have a robust kinase selection method, one has to
differentiate the partitions with different class orders
because they have different amount of information. To
solve this problem, we modified the well known Lorenz
curves, a common measure in economics to gauge the
inequalities in income and wealth. In [13], [14], we
illustrated how modified Lorenz curves and modified
Gini coefficients are calculated. The Equality Line
(Eq) is defined based on the percentages of elements
in |C1|, |C1..2| = |C1|+ |C2|, . . ., |C1..n| = ∑

n
i=1 |Ci| at

x−coordinates 0, 1/n, 2/n, . . ., 1, where n is the number
of classes and |C1| ≤ |C2| ≤, . . ., ≤ |Cn|. The Lorenz
polygon L(R j) of a partition, say R j, is defined based
on the percentage of elements in |C j

1|, |C
j
1|+ |C

j
2|, . . .,

∑
n
i=1 |C

j
i | at x−coordinates 0, 1/n, 2/n, . . ., 1. The

Gini coefficient of a partition, say R j, is defined as
(
∫ 1

0 L(R j) ·dx-
∫ 1

0 Eq ·dx)/
∫ 1

0 Eq ·dx. One can easily see
that the partitions with different class orders are now
differentiated.
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Fig. 1. Accuracy of predicting the specificity or promiscuity when 10 random subsets (Rand_i, i=1..10) each containing 10 randomly
chosen kinases were used. The average accuracy (AVG) is ∼ 60%.
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Fig. 2. Accuracy of predicting the specificity or promiscuity when 10 random subsets (Rand_i, i=1..10) each containing 300 randomly
chosen kinases were used, the average accuracy (AVG) is ∼ 75%.

D. Kinase Bases

This section is devoted to systematically finding
small inferential bases. Our method reveals that not all
kinases are equally important in inferring the selectivity
of inhibitor, which explains why screening of randomly
chosen subsets of kinases [12] cannot give an accurate
measure of selectivity. Furthermore, our experiments
show that a direct use of traditional machine learning
techniques for predicting the selectivity of a kinase
inhibitor will give an unsatisfactory result because the
accuracy for the prediction would not be high. As an

illustration, the highest accuracy of 78.4% was obtained
when using all 317 kinases with the available machine
learning techniques in Weka [15] in that 2 out of 9
promiscuous inhibitors were falsely predicted as neither
promiscuous nor specific, 1 out of 9 specific inhibitor
was falsely predicted as non promiscuous nor specific,
and 5 out of 19 non promiscuous nor specific inhibitors
were predicted specific.

It is our intention to first find a small target uni-
verse, which is the inferential basis for promiscuity or
specificity for kinase inhibitors before using machine
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learning techniques for predicting the selectivity. But a
question arises: how small a target universe can be?

As we mentioned before, it is infeasible to test all
combinatorial possibilities from 317 kinases for find-
ing the smallest subset of kinases that any compound
needs to be screened against to obtain an accurate
indication of specificity or promiscuity because such
a task amounts to the building and testing of 2.7×1095

predictive models. It also requires many thousand years
to finish.

To reduce the size of the kinase subsets and to
improve the prediction accuracy at the same time, we
use the modified Lorenz curves and the Gini coefficients
[16], [13], [14], which take into account the order of
the classes and the order of affinity values, for selecting
relevant kinases.

To further reduce the size of the kinase subsets
we use different subset search techniques such as
Correlation-based Feature Selection (CFS) [17] to cre-
ate smaller kinase subsets. Since exhaustive search is
infeasible, other searching strategies must be employed
to identify the optimal kinase subsets. We use best-first
and greedy search methods in the forward and backward
directions as explained below. Greedy search considers
local changes to the current subset through the addition
or removal of kinases. For a given ‘parent’ set, a greedy
search examines all possible ‘child’ subsets through
either the addition or removal of kinases. The child
subset that shows the highest goodness measure then
replaces the parent subset, and the process is repeated.
The process terminates when no more improvement can
be made. Best-first search is similar to greedy search
in that it creates new subsets based on the addition or
removal of kinases to the current subset. However, it
has the ability to backtrack along the subset selection
path to explore different possibilities when the current
path no longer shows improvement in terms of infer-
ential power. To prevent the search from backtracking
through all possibilities in the kinase space, a limit is
placed on the number of non-improving subsets that are
considered. Subsets of kinases that are highly correlated
with the class while having low inter-correlation are
preferred. In our evaluation we chose a limit of five.
These subset search techniques resulted in a subset of
11 kinases that provides the most accurate indication of
specificity or promiscuity.

E. Building and Verifying the Predictive Models

To build a predictive model for specificity and
promiscuity, we exploited Bayesian networks [18], [19],

[20], [21]. The networks are structured as a combination
of a directed acyclic graph of nodes and links, and a
set of conditional probability tables. Nodes represent
kinases or classes, while links between nodes represent
the relationship between them. Conditional probability
tables determine the strength of the links. There is one
probability table for each node that defines the proba-
bility distribution for the node given its parent nodes.
If a node has no parents the probability distribution
is unconditional. If a node has one or more parents
the probability distribution is a conditional distribution,
where the probability of each feature value depends
on the values of the parents. From our experiments,
predictive models using Bayesian networks give a better
accuracy for our kinase selectivity prediction.

To test the accuracy of our kinase selectivity models,
we use k-fold cross validation, which is a common
method for estimating the error of a model on some
benchmark medical data sets [22]. The reason for using
this testing approach is that when a model is built from
training data, the error on the training data is a rather
optimistic estimate of the error rates the model will
achieve on unseen data. The aim of building a model
is usually to apply the model to new, partially screened
compounds–we expect the model to generalize to data
other than the training data on which it was built.
Another reason for using this testing approach is that
the available kinase-inhibitor data sets are small and no
test data set is available. It is well-known that k-fold
cross-validation is very useful for this type of data sets
[22].

For a reliable evaluation of the accuracy, we test the
classification algorithm for k = 6..10. For each value
of k, the data set D is randomly divided into k subsets
D1, D2 , . . ., Dk. Each time we leave out one of the
subsets Di, i = 1..k to be used as a test data set for
cross validation. The remaining subset ∪ j 6=iD j is used
to build the model. The cross validation costs computed
for each of the k test samples are then averaged to give
the k-fold estimate of the cross validation costs. To ease
the effects of the random partitions on the data set, this
whole process is repeated 10 times and the results are
then averaged again to give the estimated accuracy of
the comparing algorithms.

III. RESULTS & DISCUSSION

A. Input screening data

To build predictive models and test our algorithms,
we use the comprehensive data from a previous
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competition-binding assay [12], where 38 kinase in-
hibitors were screened against a panel of 287 distinct
human protein kinases, three lipid kinases and 27
disease-relevant mutant variants. The kinases in the
assay represent 55% of the predicted human protein
kinome. The compounds tested included 21 tyrosine
kinase inhibitors, 15 serine-threonine kinase inhibitors
and 1 lipid kinase inhibitor. We excluded staurosporine
from our selectivity analysis due to its obvious promis-
cuity and lack of therapeutic value, but will use it for
validating the accuracy of our results. Each compound
was screened against the panel of 317 kinases at a
single concentration of 10µM to identify candidate
kinase targets, and for each interaction observed in
this primary screening, a dissociation constant (Kd) was
quantitatively determined.

B. Very Small Sets of Targets
Using the methods described above, 85 highest rank-

ing kinases were selected with respect to the LorenzGini
indexes from the original set of 317 kinases. The
best-first and greedy searches were then used to find
an optimal subset of 11 kinases: RET, SLK, FGFR2,
FGR, FLT3(D835H), GAK, JAK2(Kin.Dom.2AJH1-
catalytic), KIT(D816V), MAP4K3, ABL1(E255K), and
CIT. After evaluating all possibilities of bases for this
small subset of 11 kinases, a small inferential basis
with five kinases was found: AMPK-alpha1, FGR,
FLT3(D835H), LOK, GAK. The affinity interactions
of kinase inhibitors with these five kinases gave a
robust measure of specificity or promiscuity with 100%
accuracy. All testing inhibitors were predicted correctly
whether it is specific, promiscuous or none of those.
While this small inferential basis of five kinases pre-
dicted the specificity and promiscuity of kinase in-
hibitors with 100% accuracy, random sets of the same
number of kinases gave an accuracy of approximately
52%.

Other small inferential bases of 5 kinases were found
using the above methods, which included SLK, FGR,
FLT3 (D835H), GAK and JAK2 and SLK, FGFR2,
FLT3 (D835H), GAK and JAK2. The affinity interac-
tions of kinase inhibitors with these two set of five
kinases also gave a robust measure of specificity or
promiscuity with 97.3% accuracy. Again, all inhibitors
that were specific were correctly predicted, and all
inhibitors that were promiscuous were correctly pre-
dicted. The only false prediction was a non-specific,
non-promiscuous inhibitor that was falsely predicted as
promiscuous.

Using the above methods, inferential bases with four,
three and two kinases were also determined. A two
kinase basis consisted of GAK, and MAP4K5 gives a
robust measure of specificity or promiscuity with 89.2%
accuracy. All inhibitors that were specific were correctly
predicted, and all inhibitors that were promiscuous were
correctly predicted. Only 3 out of 19 inhibitors that
were neither specific nor promiscuous were falsely pre-
dicted as specific. Only 1 out of 19 inhibitors that was
neither specific nor promiscuous was falsely predicted
as promiscuous.

Strikingly, the small inferential basis of two kinases
GAK, and MAP4K5 gives a kinome-wide measure of
specificity or promiscuity that is more robust then what
a random subset of 300 kinases can give. This attest to
the importance of our results.

Furthermore, the inferential bases have some very
special features. For example, if a kinase inhibitor hits
all kinases SLK, FGFR2, FLT3 (D835H) and GAK of
the inferential basis, it is promiscuous. If it misses all
kinases of the inferential basis, it is specific.

C. Discussion

The identification of kinases such as SLK that can
only be targeted with promiscuous ligands poses a
major challenge to structural biologists. This challenge
may be summarized by the following question: Why
is the affinity for this kinase driven exclusively by
targeting highly conserved structural features? Direct
examination of the kinase-inhibitor complex with PDB
accession 2UV2 reveals two backbone-drug hydrogen
bonds which surely promote promiscuity. These bonds
involve backbone proton donors and acceptors (amides
and carbonyls) of the nucleotide-binding loop (residues
109 & 111) whose spatial orientation is highly con-
served across the kinase super-family [23]. What re-
mains to be proven in this case is that SLK can only be
targeted by forming such intermolecular bonds. To the
best of our understanding this is an unsolved problem.
Thus, the dearth of structural information and our
inability to identify the structural culprits of promiscuity
at this juncture make the machine-learning approach
described in this work a most valuable predictive tool
for molecular therapy.

IV. CONCLUDING REMARKS

We presented a novel method enabling a highly
accurate prediction of a single attribute of a kinase
inhibitor, its promiscuity or specificity. The inference
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Fig. 3. Examination of the kinase-inhibitor complex with PDB
accession 2UV2 for the SLK protein kinase reveals two backbone-
drug hydrogen bonds which surely promote promiscuity. Pictured
from RCSB PDB Ligand Explorer 3.9 (powered by MBT) running
on 2UV2.

is based on a screening against a very small (2 to
5) set of target kinases. The target kinases have some
very special features: if a kinase inhibitor hits all target
kinases then it is promiscuous. If the kinase inhibitor
misses all kinases of the inferential basis, it is specific.
By dividing the experimental affinity fingerprinting of
37 inhibitors against 317 kinases into every possible
testing set of 4 inhibitors and a training set of 33
inhibitors, we obtained an accurate prediction in all
kinase inhibitors. This level of performance is reflective
of 100% accuracy for an optimal inference base of 5
kinase targets. Smaller bases yield only slightly less
accuracy. The method is build on a Bayesian Model and
uses as input a five-entry affinity vector. The method is
expandable whenever more kinases can be screened. Its
full implementation can be provided in Supplementary
Material. The main conclusion of this study is that the
choice of a multi-pronged or highly specific molecular
therapeutic agent is strictly conditioned by the desired
clinical impact on a very small set of targets. The type
of clinical impact determines whether promiscuity or
specificity is the relevant and inescapable therapeutic
constraint.

This work highlight the important of systematic
search algorithm and undermines random screening as
a tool of pharmaceutical informatics relevant.
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Abstract - The expansion of drug-related problems motivated 

healthcare organizations to use Pharmacoinformatics in 

pursuit of improving communications, signaling, analyzing 

and reporting of adverse drug reactions and facilitating 

scenario-based interventions. Despite their benefits, the use 

of such systems is limited and is not delivering a real value to 

healthcare professionals in different environments. This 

project aimed at the development of a reference multi-agent 

Pharmacoinformatics model that can be used to improve the 

quality of pharmaceutical care provided and the management 

of hospitals. The model reflects three main modules: a data 

capture and update module, diagnosis module and a 

pharmaceutical care and drug monitoring module. The study 

also reflected on the need to adopt co-evolutionary concepts 

which are related to system thinking and sociomateriality 

considerations.   

Keywords: software agents, pharmaceutical care; bio-

informatics; adverse drug events; interactions 

 

1 Introduction 

  The diversity of diet, traditions of societies, differences of 

diseases and prescribing practices and the growing use of 

Herbal medicines have been associated with a wide range of 

drug-induced complications originating from unexpected 

adverse effects. Therefore, healthcare organizations started to 

develop different methods, procedures, processes and systems 

to identify, analyze and manage adverse drug reactions 

(ADRs). Over the last couple of years there has been a 

growing interest in using information systems (such as 

Pharmacoinformatics) to increase information accessibility to 

healthcare providers, enhance outcomes and improve 

convenience for patients. Pharmacoinformatics is concerned 

with the use of information systems for the improvement of 

pharmacy decision making. It assists in the assessment and 

management of therapeutic outcomes in patients as well as in 

detecting, signaling, evaluating, and solving potential and 

actual drug-related problems (including adverse drug events 

or drug interactions) [1]. They aim at improving the capacity 

of clinical practitioners to efficiently acquire and develop new 

treatment strategies through the facilitation of information 

exchange, supporting the detection and management of 

adverse drug events and enabling supply chain management 

process. But in real practice, the realization of such 

applications is still limited. Pharmacoinformatics 

applications are used as sub-modules and tend to be limited 

to stock control, monitoring drug availability and issuance at 

outpatient and ward pharmacies. Even for stock control, there 

seems to be no emphasis on the use of electronic ordering and 

procurement processes for which no standard operating 

procedures exist. The analysis of drug therapies and 

management of prescription inconsistencies are not 

supported. There is no support for signaling and detecting 

adverse drug events manifested in patients and recorded by 

healthcare professional. Pharmacoinformatics therefore are 

not used at early stages of the medication process for the 

analysis of drug therapies, cross-checking prescriptions, 

alerting physicians and other medical professionals about the 

non-existence of drug prescription pre-requisites such as 

general lab analysis and recommending change of drug 

regimens and the use of free-use drugs wherever applies. 

There is no link between hospitals and Pharmacovigilance 

centers (PV) to enable the reporting and tracking of adverse 

events. The difficulty of restructuring hospital-wide processes 

has also limited the capacity of healthcare organizations to 

use Pharmacoinformatics in a patient-oriented format (to 

improve the knowledge of patients about drugs, the 

dysfunctional consequences of adverse drug events and their 

capacity and willingness to report such events).  

 

On the other hand, Pharmacovigilance Centers justify their 

existence by claiming that "pharmaceutical care systems in 

public hospitals are weak enough to provide relevant real 

time information about ADRs". Despite the fact that PVs are 

using specialized software (such as Empirica Trace), they 

have also been facing considerable difficulties in collecting 

and analyzing ADR signals using spontaneous reporting 

procedures widely used by them. Such inability to address 

ADRs will continue to grow if the concerned pharmaceutical 

care authorities continued to adopt fragmented thinking with 

regards to their information systems. Because of the 

"structural" and "functional" couplings that exist among such 

systems, they should "evolve together" rather than to assume 

the possibility of information sharing. This paper examines 

the context of co-evolution between pharmaceutical care 

systems at the level of "hospitals" and "Pharmacovigilance 

Centers" and proposes the use of a multi-agent 

Pharmacoinformatics reference model.   
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2 Methods 

 The methodology for this project was generally a 

descriptive analytical survey with both inductive and 

deductive methods applied including empirically driven 

qualitative and quantitative theories. To account for the 

diversity of information across the different managerial 

landscapes and to ensure the validity of the instruments of 

research, Anthony’s taxonomy of managerial levels, 

information modeling, agent oriented software engineering, 

and other "process-centered" and "resource-oriented" 

approaches are used for the articulation of variables and the 

development of the entire model and its corresponding 

modules. The majority of the project’s data was collected 

from electronic sources of many healthcare organizations and 

regulatory agencies such as the National Pharmacovigilance 

Center at the Food and Drugs Authority (FDA). The study 

also used a variety of tools and methods of analysis of data 

provided by international organizations such as WHO. The 

tools include data matrix, tables, diagrams, models and 

output of computer programs. Data has been also compiled 

from the use of questionnaires and interviews with key 

personnel in different healthcare organizations across the 

kingdom. In order to reduce the variance of estimators and 

gain sampling precision, the technique of optimum allocation 

has been used [2].   

 

3 Related work 

 Software agents are computational entities that perform 

some tasks on behalf of their users, other agents or programs 

with some degree of autonomy using the appropriate 

information and communication platforms. Their roles 

include task delegation, users training, event monitoring, 

information search, matchmaking and filtering [3]. They 

possess important properties such as autonomy, social ability, 

reactivity and pro-activeness, learning, mobility, 

benevolence, rationality, independence, cooperation, 

reasoning, intelligence and adaptivity [4][5][6][7]. In 

complex systems such as healthcare, agents are used in the 

form of multi-agent organizations. A multi-agent system 

includes multiple heterogeneous agents who interact and 

exchange information in a decentralized and “social” manner 

to solve larger and complex problems. With regards to their 

use in pharmaceutical care, the use of multi-agent system is 

recognized as a sub module under the umbrella of the entire 

hospital information system. According to [8], multi-agent 

systems can be structured into different ways such as 

"organizational structuring", "contracting", "multi-agent 

planning" and "peer-to-peer negotiation". The complications 

experienced in the healthcare sector has been accompanied 

with the tendency to address pharmacy-related issues in 

separate applications, such as the use of multi-agent systems 

for monitoring and reporting of adverse drug events, 

electronic prescriptions, managing drug therapies and 

mainstreaming pharmaceutical procurement activities, 

among others.  

In their work about drug prescription, [9] used multi-agent 

systems to monitor the prescription of restricted use 

antibiotics within the context of an electronic Institution (i.e., 

hospital) incorporating agents, roles, dialogic framework, 

scenes, and performative structure. The architecture included 

six types of (functional) agents: patient (a.k.a guardian 

angel), physician secretary, laboratory manger, pharmacy 

expert, and nurse agents. Different scenes were used to 

address communication among the agents such as: Patients 

Room, Physicians Room, Laboratory, Pharmacy, Dialog 

scene, Waiting Room and halls. The main functionalities are 

antibiogram authorization, antibiogram results and 

modification of the entire electronic medical record. 

However, despite its advantages, the architecture has a 

limited scope to provide comprehensive Pharmacoinformatics 

assistance. Multi-agent systems have also been used for 

revising therapies (getting clinical information, deciding 

alternative therapies, etc.) and signaling of adverse drug 

events. Their use in these functions is motivated by the need 

for collaboration and exchange of complementary skills from 

different experts (e.g. epidemiologists, biostatisticians, 

pharmacists and physicians) for the analysis and 

interpretation of reports, collecting additional relevant 

information, and drawing reliable conclusions [10]. Also [11] 

and [10] used intelligent agents with a fuzzy recognition-

primed decision model to develop a distributed adverse drug 

reaction detection system by utilizing distributed electronic 

patient data. The Recognition-Primed Decision (RPD) model 

is generalized to a fuzzy RPD model and utilizes fuzzy logic 

technology to represent, interpret, compute imprecise and 

subjective cues that were commonly encountered in ADRs 

and retrieve prior experiences reported by patients, physician 

and hospitals. Multi-agent systems have also been widely 

used for the management of pharmaceutical supply chains 

[12][13][14][15][16][17]. [18] proposed a generic process-

cantered methodological multi-agent supply chain 

management framework. [19] presented architecture for 

strategic information systems and [20] discussed the use of 

multi-agent systems and radio frequency identification 

(RFID) technologies to track pharmaceuticals supplies. [21] 

presented a multi-agents system collaborative production 

system to support the collaborative and autonomous mold 

manufacturing outsourcing processes. [22] focused on 

merging remote sensing data and population surveys in large, 

empirical multi-agent models. [23] combined a multi-agent 

framework with ontology-driven solutions to support and 

automate the procurement process. [24] developed a multi 

agent system to simulate the supply chain of the 

pharmaceutical industry.  

Despite their benefits, the use of multi-agent systems has 

some limitations that need to be taken into account. Such  
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limitations include the problems of domain specification 

(agent-oriented problem formulation),   communication 

problems (the most suitable protocols and languages 

necessary for enabling a possibly sophisticated and 

meaningful interaction among agents, co-ordination 

problems (the enforcement of the necessary teamwork), 

computational problems (designing and implementing multi 

agent systems in a way that avoids computational overload by 

means of load balancing strategies), implementation 

problems (the  techniques and tools needed to support multi-

agent system design and  implementation in a safe, easy, and 

productive way) and the verification problem [25]. To relax 

such limitations a wide range of techniques and 

communication languages have been developed 

[26][27][28][29][30][31][32][33][34].  

  

4 Co-evolutionary Pharmacoinformatics 

In real terms, strong functional and structural couplings 

exist between the socio-technical configurations of the 

healthcare system and other systems. According to [35], 

functional coupling refers to the context where strong input-

output relations exist between different regime elements of 

the same regime and/or across interacting regimes. Structural 

coupling refers to the situation in which the interacting 

regimes share the elements of socio-technical configurations 

(e.g., infrastructure, actor networks, technologies, 

institutions) or having a joint application regulations used by 

the two regimes. Such coupling necessitates the importance 

of understanding context-based interactions among 

healthcare systems (including pharmaceutical care) but most 

importantly to visualize and examine the way systems co-

evolve together in a dynamic pattern. This calls for a 

migration from system-based interactions to ensure that the 

use of software agents in pharmaceutical care reflects an 

integrated pattern of information acquisition and 

visualization. Co-evolutionary positions focus on optimizing 

the functionality of pharmaceutical care information systems 

not only at their local levels (healthcare institutions) but also 

at their surroundings. Such objective can't be maintained by 

focusing on meeting management information requirements 

and decision support for the management of pharmaceutical 

care processes and providing inputs to other related (yet 

independent institutions such as Pharmacovigilance Centers 

operated by Food and Drug Authorities) by filling forms. 

Instead, the improvement of country-wide pharmaceutical 

processes and systems requires that such systems innovatively 

"co-evolve together" rather than act in an input-provision 

(and sometimes regulatory) format. Borrowing from the 

concepts of system innovation and transition thinking, such 

co-evolution allows for the appropriate examination of all 

inevitable functional and structural couplings and enables the 

opeartionalization of innovations and transitions in an agent-

oriented format, at the levels of niches, regimes and 

landscapes of the entire pharmaceutical care processes. 

Niches represent new and relatively instable set of rules and 

institutions for innovative practices. A regime represents a set 

of cognitive, regulative and normative rules or institutions 

that are coherent and guide the choices and behavior of the 

actors in that regime. The landscape offers a metaphor for the 

background setting and developments for regimes and niches 

and the possibilities for regime change, including structural 

socio-economic, demographic, political and international 

developments [36]. It represents the source of pressure on the 

regime to change and the behavior and choices of actors. 

Each regime may change itself automatically by restructuring 

their internal goals and resources but others may wait for the 

emergence of change in other interrelated domains of 

changing or stable regimes as it is the case of shared 

regulations. Figure (1) below depicts the pharmaceutical care 

as a socio-technical system.     

 

 
Fig. 1 pharmaceutical care socio-technical system 

A typical out-patient pharmacy-based information system 

in a hospital follows a functional format by including patient-

oriented, diagnosis-based and drug inventory management 

information. With different levels of abstraction, it includes 

information about patients, active diagnosis, pharmacy orders 

and delivery (new, existing and regular orders, batch, dose, 

route, frequency, description, restricted medications (i.e., 

medications with conditions), authorization, ordering doctor, 

service department etc). The basic objective of such system is 

to provide necessary management information to enable 

executives to improve pharmaceutical care processes and 

enhance patient-oriented outcomes. The niches of such 

regime are depicted in figure (2) below.  

 

 
Fig. 2 hospital-based regime niche representation 

A typical Pharmacovigilance Center (PV) aims at 

maintaining safety, quality, efficacy and accessibility of drugs 
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(human, veterinary, cosmetics and biological products) and 

providing accurate information to the public and healthcare 

professionals through administration of country-wide 

regulatory systems that incorporate international best 

practices. It undertakes regulatory processes (such as 

establishing and updating the regulations and licensing 

procedures that govern the establishment of pharmaceutical 

care institutions and the approval of the design and 

application of new drugs). To support the implementation of 

national plans, PV centers undertake research-and-

development processes to administer post-market surveillance 

programs and develop port of entry inspection presence. They 

develop and update drugs and cosmetics listing databases and 

use them to advocate rational use of medicines and the 

detection of adverse drug reactions (ADRs) and their 

frequency rates. The processes used for the validation of 

signals examine three types of adverse drug events: A, B & 

C. Type (A) events are dosage-based and related to the 

pharmacokinetic properties of drugs; therefore, focus is 

usually made on improving dosage characteristics. Type (B) 

events are generally related to the patient’s reactions and tend 

to be allergic, idiosyncratic, immunological, or non-

immunological. Type (C) events tend to be serious and may 

result in significant implications on public health. They 

originate from the impacts of drugs used for improving the 

quality of life of patients with serious chronic diseases [37]. 

Figure (3) below depicts the niches of the entire 

Pharmacovigilance regime. 

 

 
Fig. 3: PV regime niche representation. 

 

The sustainability of the co-evolution processes and 

innovation experiments are benchmarked using niche 

attributes shown in figure (4) and figure (5) below. For the 

"data capture and update" niche of the hospital pharmacy 

regime the list of attributes include improved communication 

and data input, enhanced alerting abilities, improving the 

management of requests and managing established electronic 

medical records. The attributes for diagnosis niche include 

improved medical examination, diagnosis, prescription 

improved outcomes and reduced errors.   

 
Fig. 4: hospital pharmacy regime attributes characterization 

 

The attributes of the niches of the Pharmacovigilance regime 

are shown in figure (5) below. 

 
Fig. 5: Attribute characterization for the Pharmacovigilance 

regime 

Based on such characterization, innovations and transitions 

that take place at the data capture niche of the hospital 

pharmacy regime for example (such as building and 

operating databases at outpatient pharmacies) significantly 

affect all niches of the PV regime. Niche-based transitions 

promote Pharmacoinformatics innovations and guide 

effective the design and implementation of organizational 

and structural transformations. A transition towards 

decentralized management of drug, for example, results into 

organizational change (such as organizational structures) and 

shifts of the context of decision making (decision partners 

and their roles and degree of workflow automation). Regime-

based innovations shape the dynamics of 

Pharmacoinformatics applications and innovations, resource 

utilization and information sharing. 

 

5 Model description  

The co-evolutionary concepts discussed above have been 

used to develop the multi-agent Pharmacoinformatics model 

described in the following sub-sections.  

5.1 Process modeling 

 The process model of the proposed multi-agent 

Pharmacoinformatics model is designed using TROPOS 

methodology. As shown in Fig. 1 below, the context of 

interaction among the stakeholders involved (directly or 

indirectly) in the process of pharmaceutical decision making 

reflects the environment of the entire problem. Patients, 

physicians, pharmacists and other supporting departments 

constitute the stakeholders whose interactions are reflected in 
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the functionality of the multi-agent organization and its 

model. 

 

 

 

Supporting

depts

provide laboratory
and image tests &

administer drug
use in wards

 

 

Patient

medication
satisfied

 

 

Physician

develop
diagnosis,

treatment plans

&
updatescenarios

 

 
provide

therapy &
interactions

information

Pharmacy

drugs being effectively
managed

 
Fig. 1: Stakeholders representation and involvement [2] 

 

The analysis of "flows" depicted in fig. 2 below shows the 

set of flows that take place within the domain of the problem 

solving process among patients, physicians, pharmacists and 

other departments. The flow also depicts the movement of 

"requests for drugs" and "drug orders" that govern the 

maintenance of drug availability for the treatment of patients. 

The central entity in the relational conceptualization is the 

"drug order" initiated and itemized by the physician (in the 

form of a prescription), hospital, outpatient or ward 

pharmacies. It represents an authorization to provide a 

specified type and quantity of a specified drug from a specific 

drug source to a specific user. Drug inventories exist at 

different locations such as hospital, outpatient and ward 

pharmacies and are assumed to be capable of satisfying 

"requests for drugs" and placing orders for different types of 

drug. The entity representing transactions that move drugs 

in, out and through the entire pharmacy network is a 

movement or a flow. When drugs (flow) are provided against 

a drug order (prescription), a flow (movement) is recorded by 

the drug provider from a particular location (e.g., outpatient 

pharmacy). Should there be an excess flow (drugs) provided 

by mistake to a patient, it should be monitored and addressed 

by the “providing” location or other entities in the hospital 

during the course of medication. This may entail another 

kind of movement-related transaction to record it. When 

“stock control” is carried out (with adjustments increasing or 

reducing the stock balances at different hospitals), an 

increase can be recorded as a movement to the “inventory” 

with no “from source of” being indicated and a decrease 

recorded as a movement from the “inventory” with no “to 

destination of’ being identified. This means that physical 

flows are accompanied with information flows in different 

forms and formats. 
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Fig. 2: Flow analysis in pharmaceutical care systems [2] 

5.2 Multi-agent architecture 

 The architecture of the proposed reference model includes 

functional superior agents supported by subordinate ones (e.g. 

information, interface, task, etc) as shown in fig. 3 below. 

Superior agents representing health organizations (such as 

hospitals, Pharmacovigilance centers and Food and Drug 

Authorities (FDAs) act as “task mangers” and act on behalf 

of their users and subordinate agents for the implementation 

of hospital-wide functions organized in the form of business 

units such as surgery, pediatrics, etc. It also manages internal 

and external communication processes necessary for the 

management of the entire health organization and the 

coordination of its activities with other agencies such as 

Pharmacovigilance centers. They also manage the creation 

and access of electronic medical records (EMRs) and other 

data bases. Subordinate agents provide “functional”, 

“information” or “interface” support to physicians, 

pharmacists and nurses, and other Superior agents.   

A shown in fig. 3 below, the hospital agent is responsible for 

the corporate management of the entire hospital by 

coordinating the efforts of other agents. It directs all other 

agents towards the realization of corporate objectives and 

represents a link between the agents interacting inside the 

hospital and other agents or entities in the external 

environment. Therefore, it accesses all functional databases 

and investigates the role of agents and their operating 

procedures in facilitating joint functionality.  The patient 

agent exchanges information between the patient and other 

agents such as physicians and other personnel responsible for 

medical records, pharmacy and laboratory. Information 

exchange includes drug management, after-discharge 

complexities, drug reactions and alerts in relation to 

appointments, drug usages and confirmations. It also helps in 

reporting and signaling adverse drug reactions.   
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Fig. 3 Multi-agent Architecture [2] 

 

The physician agent supports physicians to do processes, 

functions, schedules and communication (including alerts). It 

allows an interface between the physician, patients, 

pharmacists, nurses and other laboratory experts handling 

microbiological analyses, pharmaceutical screening and 

drugs ordering, modification and administration. It interacts 

with the patient’s agent with regards to appointments, 

diagnosis, reporting of adverse drug reactions (especially 

post-discharge) and the confirmation and modification of 

drugs. The nurse agent collects medication instructions from 

the physician agent and monitors drug availability in wards 

in accordance with the medical order forms forwarded to it.  

The laboratory and images agent supports data acquisition, 

processing, update and communication among laboratory, 

imaging and other professionals in the hospital. It also 

interacts with other agents with regards to the requests and 

results of laboratory test requests. The pharmacy agent assists 

in the implementation of pharmaceutical functions and 

manages information acquisition and communication, 

analysis, reporting and recommendation of different 

alternative medication scenarios using its technical expertise 

and patient’s data. It liaises between the hospital agent and 

its subordinate agents with regards to drug therapies, 

pharmaceutical and medical analyses, as well as signaling, 

analyzing and reporting of adverse drug reactions. It gets 

support from tow task agents: (a) the drug therapy and 

interactions agent that uses information from the patient’s 

records, medical and laboratory test results, and prescription 

records to assist in managing drug therapies and the 

recommendation of changes in medications and drugs based 

on a data-mining algorithm. It is responsible for screening 

drug therapies and signaling adverse drug reactions 

occurring for hospitalized and discharged patients throughout 

the medication process, in collaboration with the other agents 

and informing the pharmacy agent to take necessary actions. 

(b) the drug management agent responsible for drug 

management at the level of the hospital, outpatient and ward 

pharmacies, where it manages drug availability, procurement,  

ordering and removal of near-expiry  drugs.  

5.3 The data processing model 

 As shown in fig. 4 below, the data processing model 

includes three main modules: (a) data capture and update 

(implemented through the functionalities of the agents 

representing the patient, physician, laboratory and images, 

and nurses), (b) diagnosis (implemented through the agents 

representing physicians and pharmacists), and (c) drug 

monitoring (therapies, interactions analyses and requests for 

supply implemented through the agents representing 

physicians and pharmacists).  
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Fig. 4 data processing model [2] 

 

In addition to its use of the database containing electronic 

medical records of patients, the model also incorporates a 

pharmaceutical database containing information about: 

a) Standard operating procedures that govern the examination 

of medical documents and requests coming to the pharmacy 

department, such as medical order forms and requests for 

drug supplies placed by different units in the hospital.  

b) Hospital Therapeutic Guide, which includes information 

about all routine drugs and medicines used in the hospital, 

as well as guidelines for acquiring and managing ad-hoc 

drugs. It also includes detailed recording of drug attributes 

such as correctness of drug types, dosage, route of 

administration, frequency, length of use etc.   

c) Allergy and microbiological information necessary for 

making associations between prescribed drugs and diseases, 

for example, isolated pathogen micro-organisms, and their 

corresponding sensitivities.  

d) Diseases-based drug groupings with each group including 

all drugs related to a particular disease for patients with 

certain allergies and symptoms. 

6 Discussion  

The use of multi-agent systems for the improvement of 

pharmaceutical care services brings to our attention a wider 

range of functional, organizational and technological 

concerns. The practical managerial context of the proposed 
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model is shown in its capacity to improve inter and cross-

regime communication and the operating efficiency of 

pharmaceutical care processes. One of the main advantages is 

that drug prescription processes can be guided by a 

pharmaceutical cross-checking which investigates and alters 

the compliance with the standard operating procedures and 

requirements (such as microbiological analysis) in a way that 

minimizes medical errors and the occurrence of adverse drug 

reactions. This is expected to eventually improve signaling 

and analyzing ADRs information exchange at the level of 

hospital pharmacy and PV centers. The adoption of con-

evolutionary concepts improves the performance of the 

corporate healthcare system and enhances cooperation. 

However, the use of such concepts has some critical impacts 

on healthcare organizations. The co-evolution of systems 

detects new axioms for developing multi-agent 

Pharmacoinformatics architectures and the level of change of 

focus, objectives and methods to be incorporated. 

Architecture specifies how the agent can be incorporated as a 

part of a multi-agent system and how these "parts" (hardware 

and/or software modules) should be made to interact using 

specific techniques and algorithms [38]. Existing 

methodologies are not satisfactory because they are based on 

the assumption that “any software life cycle, process or 

product model must be tailored towards the characteristic 

needs of the application domain of the target system [39]. 

The emerging co-evolutionary cross-regime interactions also 

incorporate information security issues that current risk-

based models are not capable of addressing. Moreover, 

special attention is required with regards to the way the 

utility matrix of pharmaceutical and healthcare stakeholders 

is being viewed and optimized. Because of the rich domain of 

interaction, the co-evolution among systems and regimes 

significantly shapes the objective functions of policy makers 

in healthcare organization.   

 

7 Conclusions  

 The emphasis of healthcare organizations on examining 

and analyzing ADRs will continue to grow and gather 

momentum attention of policy makers and the community at 

large. While the diversity of intervention mechanisms will 

continue to shape the responsiveness of healthcare 

organizations, deploying intelligent information systems in 

healthcare organizations is also expected to grow as a result 

of the foreseen technological developments. The limited use 

of multi-agent Pharmacoinformatics points towards high 

levels of expected support to be provided for pharmaceutical 

policy makers if additional effort is invested in addressing 

situation-specific and system development related issues. 

Especially in resource limited situations, the use of co-

evolutionary measures proved to be useful for relaxing 

organizational, institutional and procedural issues. This is 

because such measures call for not only the change of 

“programs” but also the change of “mind sets”. It is 

becoming of paramount importance that the evolution and 

deployment of multi-agent Pharmacoinformatics being done 

in a co-evolutionary fashion in which the entire system is 

continuously cross-referenced with its operating 

environment. It is only through such thinking, radical 

innovations can be incorporated into its niches and the entire 

pharmaceutical care being made more and more patient-

oriented.         
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Abstract— A new approach implementing Bernstein oper-
ational matrix method for the numerical solution of differ-
ential equations, that arises in various physiology problems
like oxygen diffusion, distribution of heat source in human
head, tumor growth and etc. Operational matrix of derivative
for Bernstein’s polynomials function are presented to reduce
these nonlinear differential equations to a system of nonlin-
ear algebraic equation. Computational results are provided
to demonstrate the viability of the new method.
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1. Introduction
Nonlinear differential equations are indispensable tools

for modeling many physiology problems such as study
of steady state oxygen-diffusion in a cell with Michaelis-
Menten uptake kinetics [1], [2], spring mass system [3] and
bending of beams [4]. These equations are also useful in
study of the distribution of heat sources in the human head
[5], [6] and tumor growth [7], [8], [9], [10], [11].

We consider a class of singular boundary value problem

y′′(x) + (a+
m

x
)y′ = f(x, y), 0 ≤ x ≤ 1, (1)

α1y(0) + β1y
′(0) = γ1, (2)

α2y(1) + β2y
′(1) = γ2, (3)

which arising in physiology. we assume that f(x, y) is
continuous, ∂f

∂x exists and is continuous and also ∂f
∂x ≥

0 , 0 ≤ x ≤ 1. Existence-uniqueness results for such
problems have been established by several researchers [12]–
[14].

It is a well-known fact that the solution of singularly
boundary-value problem exhibits a multiscale character.
That, there is a thin layer where the solution varies rapidly,
while away from the layer the solution behaves regularly
and varies slowly. This class of problems has recently
gained importance in the literature for two main reasons.
Firstly, they occur frequently in many areas of science
and engineering, for example, combustion, chemical reactor
theory, nuclear engineering, control theory, elasticity, fluid
mechanics etc. Secondly, the occurrence of sharp boundary-
layers as ε, the coefficient of highest derivative, approaches

zero creates difficulty for most standard numerical schemes,
see for example [15], [16], [17], [18].

Bernstein polynomials play a prominent role in various
areas of mathematics. These polynomials have been fre-
quently used in the solution of integral equations, differential
equations and approximation theory; see e.g., [19]-[23]. In
recent years the various operational matrices of the polyno-
mials have been developed to cover the numerical solution
of differential, integral and integro-differential equations. In
[24] the operational matrices of Bernstain polynomials are
introduced.

In this paper we used Bernstein operational matrix of
derivative for numerical solution of physiology problems.
The advantage of Bernstein operational matrices method to
other existing methods is its simplicity of implementation
besides some other advantages.

This paper is organized as follows: In Section 2, we
introduce Bernstein polynomials and their properties also
we showed the operational matrix of derivative for Bernstein
polynomials. In Section 3, the Bernstain polynomial approx-
imation and its operational matrix of derivative together with
collocation method are used to reduce the nonlinear singu-
lar ordinary differential equation to a nonlinear algebraic
equation that can be solved by Newton’s method. Section
4 illustrates some applied models to show the convergence,
accuracy and advantage of the proposed method and com-
pares it with some other existed method. Finally Section 5
concludes the paper.

2. Basic Definition
2.1 Definition of Bernstein polynomials basis

The Bernstein basis polynomial of degree n are defined
by [24]

Bi,n(x) =

(
n

i

)
xi(1− x)n−i, (4)

By using binomial expansion of (1− x)n−i, we have(
n

i

)
xi(1− x)n−i =

n−i∑
k=0

(−1)k
(
n

i

)(
n− i
k

)
xi+k. (5)

Now, we define

Φ(x) = [B0,n(x), B1,n(x), ..., Bn,n(x)]T , (6)
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where we can have

Φ(x) = A∆n(x), (7)

that A is an (n+ 1)× (n+ 1) upper triangular matrix with
rows

Ai+1 =
[ i times︷ ︸︸ ︷

0, 0, ..., 0, (−1)0
(
n
i

)(
n−i
0

)
, (−1)1

(
n
i

)(
n−i
1

)
,

..., (−1)m−i
(
n
i

)(
n−i
n−i
)]
,

(8)
and ∆n(x) is an (n+ 1)× 1 matrix as follows

∆n(x) =


1
x
...
xn

 .
2.2 Function approximation

A function f(x), square integrable in (0, 1), may be
expressed in terms of Bernstein basis [24]. In practice, only
the first (n+1)-terms Bernstein polynomials are considered.
Hence if we write

f(x) '
n∑

i=0

ciBi,n(x) = cT Φ(x), (9)

where
cT = [c0, c1, ..., cn], (10)

then
c = Q−1(f,Φ(x)), (11)

where Q is an (n + 1) × (n + 1) matrix and is said dual
matrix of Φ(x) [24]

Q = (Φ(x),Φ(x)) =
∫ 1

0
Φ(x)Φ(x)T dx

=
∫ 1

0
(A∆n(x))(A∆n(x))T dx

= A[
∫ 1

0
∆n(x)∆T

n (x)dx]AT = AHAT ,

(12)

A is defined in (8) and H is a Hilbert matrix

H =


1 1

2 . . . 1
n+1

1
2

1
3 . . . 1

n+2
...

...
. . .

...
1

n+1
1

n+2 . . . 1
2n+1

 . (13)

The elements of the dual matrix Q, are given explicitly by

Qi+1,j+1 =
∫ 1

0
Bi,n(x)Bj,n(x)dx

=
(
n
i

)(
n
j

) ∫ 1

0
(1− x)2n−(i+j)xi+jdx

=
(n
i)(

n
j)

(2n+1)( 2n
i+j)

,

(14)
where i, j = 0, 1, ..., n.

2.3 Operational matrix of derivative
The differentiation of vector Φ(x) in Eq.(6) can be ex-

pressed as [24]
Φ′(x) = DΦ(x) (15)

where D is the (n + 1) × (n + 1) operational matrix of
derivatives for Bernstein polynomials. From (7) we have
Φ(x) = A∆n(x) and then

Φ′(x) = A


0
1

2x
...

nxn−1

 . (16)

Defining (n+ 1)× (n) matrix V and vector ∆∗n as

V =


0 0 · · · 0
1 0 · · · 0
0 2 · · · 0
...

...
. . .

...
0 0 · · · n

 , ∆∗n =


1
x
x2

...
xn−1

 , (17)

equation (16) may then be restated as

Φ′(x) = AV∆∗n. (18)

We now expand vector ∆∗n in terms of Φ(x). By using [25],
we get ∆∗n = B∗Φ(x) where

B∗ =



A−1[1]

A−1[2]

A−1[3]

...
A−1[n]

 , (19)

so
Φ′(x) = AV B∗Φ(x), (20)

therefor we have the operational matrix of derivative as

D = AV B∗. (21)

If we approximate u(x) ' UT Φ(x), then for n ≥ 2 (n is
the order of derivatives), we get

u(n)(x) ' UT Φ(n)(x) = UTDnΦ(x). (22)

3. Implementation of Bernstein method
on physiology problems

In this section we solve nonlinear singular boundary value
problem of the form Eq.(1) with the mixed conditions (2)
and (3) by using Bernstein’s operational matrix method.

From Eq. (9) we can approximate our unknown as

y(x) ' cT Φ(x), (23)
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Table 1: Approximate solutions for Example 1.

x Present method Method in [26] Method in [27] Method in [28]
with n = 14 with m = 15 with n = 20 with n = 60

0.0 0.82848329035981 0.82848329035968 0.82848329481355 0.82848327295802
0.1 0.82970609243393 0.82970609243380 0.82970609688790 0.82970607521884
0.2 0.83337473359113 0.83337473359100 0.83337473804308 0.83337471691089
0.3 0.83948991395383 0.83948991395370 0.83948991833986 0.83948989814383
0.4 0.84805278499619 0.84805278499606 0.84805278876051 0.84805277036165
0.5 0.85906492716936 0.85906492716923 0.85906492753032 0.85906491397434
0.6 0.87252831995841 0.87252831995828 0.87252831569855 0.87252830841853
0.7 0.88844530562332 0.88844530562319 0.88844529949702 0.88844529589927
0.8 0.90681854806693 0.90681854806680 0.90681854179965 0.90681854026297
0.9 0.92765098836571 0.92765098836558 0.92765098305256 0.92765098252660
1.0 0.95094579849659 0.95094579849648 0.95094579480523 0.95094579461056

where Φ(x) and c are defined in Eqs.(6) and (10). By using
Eq. (22) we have

y′(x) = cT Φ′(x) = cTD1Φ(x), (24)

and
y′′(x) = cT Φ′′(x) = cTD2Φ(x). (25)

By substituting Eqs.(23), (24) and (25) in Eq. (1) we have

cTD2Φ(x) + (a+
m

x
)cTDΦ(x) = f(x, cT Φ(x)). (26)

Also by using Eqs.(2), (3), (23) and (24) we have

α1c
T Φ(0) + β1c

TDΦ(0) = γ1, (27)

α2c
T Φ(1) + β2c

TDΦ(1) = γ2. (28)

Eqs.(27) and (28) give 2 linear equations. Since the total
unknowns for vector c in Eq.(23) is (n + 1), we collocate
Eq.(26) in (n−1) Newton–Cotes points in the interval [0, 1]
as

xp =
2p− 1

2(n+ 1)
, p = 1, 2, . . . , n− 1, (29)

then we will have

cTD2Φ(xi) + (a+
m

xi
)cTDΦ(x) = f(xi, c

T Φ(xi)), (30)

for i = 1, ..., n − 1. Now the resulting Eqs. (27), (28) and
(30) generate a system of (n+1) nonlinear equations which
can be solved using Newton’s iterative method. We used the
Mathematica 8 software to solve this nonlinear system.

4. Some applied models in physiology
To illustrate the effectiveness of the proposed method in

the present paper, we implement it on two nonlinear singular
boundary problems that arise in real physiology applications.
Our results are compared with result in Refs. [26]–[30].

4.1 Example 1
Consider the following oxygen diffusion problem

y′′(x) +
2

x
y′(x) =

0.76129y

y + 0.03119
,

with boundary conditions:

y′(0) = 0, 5y(1) + y′(1) = 5.

Table 1 shows the numerical results for various number of
meshes, and present method solutions are compared with
results in Refs. [26], [27] and [28].

4.2 Example 2
Consider this problem that is coincide by heat conduction

model of the human head,

y′′(x) +
2

x
y′(x) = −e−y,

we consider the solution of this problem with conditions as
follows:

y′(0) = 0, y(1) + y′(1) = 0.

Table 2 illustrates results for this example by proposed
method alongside numerical solutions for this example that
have been given in Refs. [26], [29] and [30].

5. Conclusions
This work present a numerical approach for solving a class

of singular boundary value problems arising in physiology
by the operational matrix of Bernstein polynomials. The
operational matrix of derivative D beside collocation method
were used to transform the singular boundary value problems
to a nonlinear system of algebraic equations that can be
solved by Newton’s method. This method is very simple
and attractive. The implementation of current approach in
analogy to existed methods is more convenient. The numer-
ical examples that have been presented in the paper and the
compared results support our claim.
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Table 2: Approximate solutions for Example 2.

x Present method Method in [26] Method in [29] Method in [30]
with n = 14 with m = 15 with forth-order

0.0 0.3675168151 0.3675168151 0.3675181074 0.3675169710
0.1 0.3663623292 0.3663623292 0.3663637561 0.3663623697
0.2 0.3628940661 0.3628940661 0.3628959378 0.3628941066
0.3 0.3570975457 0.3570975457 0.3570991429 0.3570975842
0.4 0.3489484206 0.3489484206 0.3489499903 0.3489484612
0.5 0.3384121487 0.3384121487 0.3384136581 0.3384121893
0.6 0.3254435224 0.3254435224 0.3254450019 0.3254435631
0.7 0.3099860402 0.3099860402 0.3099878567 0.3099860810
0.8 0.2919711030 0.2919711030 0.2919789654 0.2919711440
0.9 0.2713170101 0.2713170101 0.2713185637 0.2713170512
1.0 0.2479277233 0.2479277233 0.2479292837 0.2479277646
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Abstract - In this paper we propose a new method of 
screening for breast cancer, based on fractal analysis of 
time series. The series is constructed using scanned digital 
images of the nuclei of interphase cells of buccal epithelium 
along the Peano curve. To do this, we compute the Hurst 
coefficients  of the time series  and use standard descriptive 
statistics. Digital images of interphase nuclei of buccal 
epithelium are studied in patients with benign tumors, 
malignant tumors and in individuals that were practically 
healthy (without tumors).  

Keywords: Breast Cancer, Screening, Hurst coefficient, 

Peano curve. 

1 Introduction 
The analysis of malignancy-associated changes 

(MAC) in cells distant from a tumor is one of  perspective 
methods for the  effective screening of cancer. Such 
methods can be divided in two groups: methods involving 
the analysis of MAC in non-tumor cells located near a 
tumor [1, 2] and methods involving the analysis of MAC in 
non-tumor cells located far from a tumor, in particular, in 
buccal epithelium (oral mucosa) [3, 4]. 

In a recent study, Redon et al[5] demonstrated  by 
using special cohorts of mice with B16 melanoma, 
MO5076 sarcoma, and COLON26 carcinoma,  that a tumor 
may induce malignancy-associated changes in tissues 
distant from the sites of  the implanted tumors.  Also, in 
2009 Lieberman-Aiden et al. [6] have shown that  DNA in 
the cell nucleus  is packaged as a fractal globula, i.e. as a 
polymer analogue of a 3D Peano curve.   
 The above  two papers inspired us to study MAC in 
buccal epithelium,  taking into account the fractal nature of 
DNA packaging in the chromatin. The results of this study 
led us to propose a  new method of screening for  breast 
cancer. 

2 Materials  
 We consider two groups of patients: 1G  – joined 

group of patients suffering from breast cancer (68 cases) 

and patients suffering from fibroadenomatosis (33 cases) 
and 2G  —group of practically healthy women (29 cases). 

Smears from various depths of the spinous layer were 
obtained (conventionally they were denoted as median and 
deep), after gargling and removing the superficial cell layer 
of the buccal mucous. The DNA content stained by 
Feulgen was estimated using the Olympus computer 
analyzer, consisting of the Olympus BX microscope, 
Camedia C-5050 digital zoom camera  and a computer. We 
investigated from 40 to 60 nuclei in each preparation. The 
DNA-fuchsine content in the nuclei of the epitheliocytes 
was defined as a blue component of a RGB-value. 

3 Methods 
When  scanning a digital image, one of the main 

condition that must be satisfied  is  invariance relative to 
the rotation of a scanogram, since the orientation of a 
nucleus on a slide of the microscope may be random. To 
provide for this invariance, we used space-filling fractal 
curves Peano [7-8]. This allowed us to consider an image 
as a time series, but not as a matrix.  

The digital images contain 160×160 pixels. Since the 
Peano curve covers a square with 3n pixels on a side,  we 
had to use random squares in the  of  scanogram (fig. 1-3). 

Based on the hypothesis of the fractal nature of 
chromatin distribution, we used the Hurst coefficient 
H =2 – D, where D is the fractal dimension. The Hurst 
coefficient is computed using the following algorithm [9]. 

1. Compute the deviation of time series values from 
the mean value during current period: 

( ),
1

m

m N i N
i

x x
=

δ = −∑ , 

where N  is the length of a period varying from 2 to 
the length of the whole time series, m  is the upper 

limit of summation varying from 1 to 1N − , ix  is a  

280 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



 
Fig. 1 Feulgen stained nuclei of cell  

in buccal epithelium 

 
Fig. 2. Three random scanning fields 

 

value of the time series and Nx  is the mean of the 

time series during the current period. Thus, we obtain 

1N −  values 2, 1,,...,N N N−δ δ . 

2. Compute the range of the deviation of the time series: 

, ,
2,...,2,...,

max minm N m Nm Nm N
R

==
= δ − δ  

 

 
Fig. 3. Peano curve of 4th order (34×34)  

covering part of scanogram 
 

3. Normalize the range: 
RQ
s

= , 

where s  is a standard deviation of the time series. 

4.  Take the logarithm of Q  and N . 

5.  Compute  lg Q and lg N , and construct a linear 

approximation of the dependence of lgQ  on lg N . 

6.  Compute the Hurst coefficient,  which is the tangent 
of the slope angle of the linear approximation of the 
dependence of lgQ  on  lg N . 

The Hurst coefficient characterizes the chaotic nature 
of the time series: 

 
1. If 0 < H < 0.5, then the time series is ergodic, i.e. if 

the time series increased during previous period then 
it is most probably that at the next moment the time 
series will  decrease, and vice versa.  

2. If H = 0.5, then the time series is chaotic, i.e. values of  
the time series do not affect to next values.  

3. If 0.5 < Н < 1.0, then the time series has a stable 
trend, i.e. if the time series increased or decreased 
during the previous period, then it will be increasing 
or decreasing respectively during the next period. 

4. If H > 1, then the time series is a random fractal time 
series, i.e. there are independent jumps of the 
amplitude during the time period and the time series is 
increasing. 

     For every patient we compute the      
   following indexes: 
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1.  The mean Hurst coefficient;  
2.  The maximal Hurst coefficient;   
3.  The minimal Hurst coefficients. 

 Then,  by constructing a decision tree [10]  we recognized  
29 healthy cases,  and 101 cases of breast cancer and fibro-
adenomatosis.  
The above procedure describes completely our proposed  
method of  breast cancer screening,   which is  based on  
fractal analysis of  time series. 

 

4 Conclusions 
We discovered new malignancy-associated changes in 

chromatin of buccal epithelium in patients suffering from 
breast cancer and fibroadenomatosis: the time series 
constructed using Peano curves in buccal cells of healthy 
individuals are more chaotic, than in the buccal cells of 
individuals with breast cancer or fibroadenomatosis  (the 
Hurst coefficients of healthy women are nearer to 0.5). The 
classification model based on 3 random Peano curves has 
the following characteristics: 

 
 Specificity = 27/29*100% = 93.1%,  
 Sensitivity = 101/101*100% = 100%,  
 Accuracy = (27+101)/(29+101)*100% = 98.46%. 
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ABSTRACT 

Motivation: Understanding emergent behaviors of complex biologi-

cal systems requires modeling and simulation of large and detailed 

models. Models must be both expressive and scalable to capture 

the size and complexity of molecular and cellular networks.  
Results: 

In this report we present GRANITE (Genetic Regulatory Analysis of 

Networks Investigational Tools Environment), an agent-based mod-

eling (ABM) and multi-agent simulation (MAS) approach to modeling 

large, complex, and dynamic systems. We have demonstrated the 

GRANITE capability on metabolic networks: specifically the mycolic 

acid biosynthesis pathway of the Mycobacterium tuberculosis. The 

agent-based model has been compared to Flux Balance Analysis 

(FBA) and shown to be able to emulate the internal and external 

properties of the system as modeled by FBA. We show that the 

approach is scalable and computationally efficient to allow re-

searcher interaction with a dynamically evolving simulation. The 

GRANITE tool enables the researcher to propose and test systems-

level hypotheses and make predictions for laboratory experiments to 

validate or refute these hypotheses. 

 
Availability and Implementation: 
The GRANITE software is open-source and available from the correspond-
ing author, Ross Henderson.   Please indicate GRANITE in the subject line 
of correspondence. 
Contact: rh@nih.gov * 

 

 

1 INTRODUCTION  

Living systems are complex systems. As such, they have emergent 

behaviors: input-response properties that can be observed but not 

  
*To whom correspondence should be addressed.  

predicted by first order knowledge of the functions of the system’s 

components. Systems biology is an approach to understand the 

general principles of living systems by elucidating the relationships 

between the components of a system and its emergent behaviors. 

 

Only through understanding living things as systems can one hope 

to understand the mechanisms of cellular and molecular biology. 

These systems are formed from the many interactions between 

molecules within the cell and between cells. Examples include 

metabolic networks, signal transduction networks, gene regulatory 

networks, and other epigenetic networks. The interplay between 

these systems creates another level of complexity that makes the 

modeling and simulation of living systems a serious computational 

challenge. 

 

Much of the focus of effort in systems biology involves the devel-

opment of models for biological function at the systems level. To 

be useful these models must be expressive, computationally tracta-

ble, and should yield predictions that can be tested with laboratory 

experiments. Our initial gap analysis indicated the need for an 

interactive M&S (Modeling & Simulation) tool that allows for 

real-time interaction with the simulation. Since Cytoscape 

(http://www.cytoscape.org/) has limited ability to allow real-time 

dynamic interaction, we identified two other tools that study dy-

namics of biological networks and evaluate perturbation hypothe-

ses. FERN (Erhard, et al, 2008) allows visualization of the dynam-

ics but it does not allow for real-time interaction with the simula-

tion. Even then, our attempts to integrate GRANITE with FERN 

proved cumbersome due to limitations of the available interfaces. 

Perturbation Analyzer tool (Fei Li, et al, 2009) was developed to 

investigate specifically the effects of single or combinatorial con-

centration perturbations by comparing two different steady states 

using law of mass action (LMA) in real-time and uses Cytoscape 
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for visualization.  In this report we present a modeling and simula-

tion approach, GRANITE, that is expressive enough to capture any 

kind of interaction network, can modularly use any kinetic model, 

is computationally tractable and scalable, and allows researchers to 

interact and dynamically perturb the system at different hierar-

chical levels to learn its rules for emergent behavior.  
 

2 METHODS 

The Genetic Regulatory Analysis of Networks Investigational 

Tools Environment (GRANITE) software consists of: 

 

 A simulation environment where software agents can be 

organized into dynamic models, 

 A domain specific language (DSL) for expressing bio-

logical function, and  

 A graphical user interface (GUI) for dynamic interaction 

with the simulation.  

 

The agent based modeling and simulation components, and the 

DSL are implemented in Scala and the GUI is implemented in 

Java. The GRANITE software is available upon request from the 

corresponding author. 

 

2.1 Agent-based Modeling (ABM) and Multi-agent 

Simulation (MAS) 

The evolution of assemblies of biological components is often 

modeled as a system of ordinary differential equations (ODEs) that 

can be solved using numerical methods. Alternatively, the ABM 

approach (Eric, 2002) creates an assembly of computational com-

ponents (agents) that would be governed by the same system of 

ODEs, but instead of explicitly solving the ODEs using classical 

numerical analysis, we simply allow the computational compo-

nents to evolve directly in a MAS environment. This in effect 

solves the ODEs approximately in a distributed manner. The pro-

cess of creating and running a system model for an experiment in 

the GRANITE context is as follows: A metabolic network model 

for the mycolic acid biosynthesis pathway (MAP) is instantiated 

from an SBML (Systems Biology Markup Language) model (Ra-

man, et al, 2005). A set of reaction agents and their associated 

metabolites are created by parsing the model, instantiating the 

agents, the environments, and populating the environment with 

metabolites. Simple Michaelis-Menten kinetics are used to model 

the agent reaction kinetics; GRANITE facilitates the use of other 

kinetic models by providing a generic agent-environment interac-

tion interface. Similarly, the non-agent entities (e.g. metabolites 

and enzymes) are added to the environment and given initial condi-

tions. The agents are then placed in the simulation framework with 

a set of parameters. A simulation scheduler strategy (deterministic 

or stochastic) is chosen and the progress of the simulation is meas-

ured in interaction time. For non-interactive simulations the simu-

lation is allowed to evolve until it reaches a steady state. For inter-

active simulations the simulation evolves under control of the re-

searcher via the Glimpse-GRANITE GUI. 

 

2.2 Scalability 

Agents interact with one another only indirectly using the envi-

ronment as a mediator. This decoupled approach leads to modulari-

ty and scalability. The approach is modular because it uses agents 

to encapsulate biological function, and scalable because it avoids 

combinatorial interactions and therefore results in an efficient sim-

ulation. The performance of the GRANITE system has been 

benchmarked using the MAP network. We have shown that the 

computation scales linearly with the number of reaction agents. In 

the MAS framework, we employed a scheduling capability that 

provides control of the computational demands by modulating the 

simulation fidelity. A GRANITE simulation is configured to em-

ploy a deterministic or a stochastic scheduler. The deterministic 

scheduler evolves the simulation using all agent-environment in-

teractions at all times based on the kinetic models of the agents; 

i.e., their strategies for turning reactants into products. However, 

an agent's interaction with the environment may not always lead to 

significant changes in the environment. For example, at very low 

substrate concentrations, the continuity assumption for the rate law 

does not hold and the reaction may not be moving forward at all 

times. Stochastic scheduling exploits this constraint and allows 

agents (reactions) to interact only if their interaction is significant; 

see Fig. 1. The uncoupled agents and the scheduling of their inter-

actions with the environment produce simulations that scale linear-

ly with the agent population size.  
 
Let c be the continuity threshold and let the maximum saturation 

rate of a reaction agent, ‘i’, be given Mi. Let the relative rate of the 

reaction, r, at any time t, ri,t = vi,t/Mi. The mixed strategy used by 

the agent’ ‘i’ for deciding on whether to interact or not at any giv-

en time is as follows: 

 

 If ri,t > c, the agent can interact with the environment at 

time t. Let the set of all agents in this category be denot-

ed as AI. 

 Else, let ri,t = ri,t / ri,t define a normalized distribu-

tion, r. We then choose a user defined percentage of the 

agents from the set AI using roulette wheel selection 

based on r. 

 

An important measure of scalability of MAS is the time it takes to 

evolve to some steady state: the settling time. Factors contributing 

to settling time include the number of agents participating in the 

simulation and the fidelity of the underlying kinetic model of each 

agent (fidelity impacts how closely the computational components 

can evolve to the solution prescribed by the ODEs). 
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Fig. 1. Agent Population Size vs. Simulation Time. Stochastic Scheduler needs on average 75% agent-environment interactions (166 agents interact on 

average) and at most 190 agents, 87%, interact at any given time compared to Deterministic Scheduler (all 219 agents interact all the time).  

 

The simulation framework manages this complexity by determin-

ing, at each time step, a trust region for each agent in which the 

agent can make a reliable contribution to environment evolution. 

The validity of this trust region is determined by the interactions of 

all the agents with the environment, driven by the scheduler. Fig-

ure 2 shows results from empirical experiments, demonstrating that 

a relatively coarse model of the trust region is sufficient to avoid 

very large settling times. We use the steady state flux to compare 

GRANITE to FBA where the GRANITE flux plots are scaled to 

compare with FBA on a gene by gene basis. The scaling approach 

we used is very straightforward and intuitive. We chose to group 

all reactions associated with each gene ‘i’ (Raman et al, 2005). Let 

fj be the FBA flux and gj be the GRANITE flux for reaction j, and 

Si be the set of reactions influenced by gene ‘i’. The affine scaling 

for all reactions in Si is then computed as follows: 

 

      

 

  

Fig. 2. Fidelity vs. Settling Time. Higher fidelity, trust parameter =0.1, moves the simulation slower to the steady state but the interactions are more accu-

rate (the first order linear approximator defines the trust region using more support points in the same interval). Coarsest fidelity, trust parameter =0.99, 

corresponds to only 2 support points (the end points of the closed interval) and advances the simulation faster although with less accuracy. 
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Fig. 3. The Belief-Desires-Intentions strategy is used to control the behavior of agents in a multi-agent simulation. For an agent that represents an enzymatic 

reaction, the Beliefs are the inputs to the reaction available from the environment and the entity properties; Desires are specified in one or more kinetic mod-

els for the reaction, and Intentions are the actions made by the agent onto the environment at each update step. 

 
All of the GRANITE reaction fluxes associated with a gene are 

then scaled with the scale found for that gene. The correlation be-

tween the flux profiles improves significantly with this scaling. 

Note that one can apply a feedback loop by incorporating these 

scales into the catalyst concentration values to drive the GRANITE 

simulation.  

 

3 RESULTS AND DISCUSSION 

In this report we present a software framework for ABM of biolog-

ical entities and a MAS environment for simulation of biological 

systems. This framework provides a means to create complex 

models of molecular networks that can evolve in an interactive 

simulation environment.  

3.1 Agency 

We employed classic ABM (Axelrod, 1997) to express units of 

biological function. Using the Belief-Desires-Intentions (BDI) 

model (Rao, 1995; and Weiss, 2000), as shown in Fig. 3, we creat-

ed a framework for expressing biological agents that can be com-

posed into complex systems. We discovered that this pattern works 

very well when agents represent biological function and specific 

entities. For example, an enzyme is represented by an agent that 

models its enzymatic reaction. Beliefs in the BDI model represent 

the world-view of the agent: the inputs to the agent from the envi-

ronment, such as the state of mutable properties of substrates, en-

zymes, inhibitors, and other effectors. Desires represent the agent’s 

goals such as the conversion of substrates to products, governed by 

stoichiometry and kinetic models for a reaction. Intentions are the 

actual steps an agent takes to affect its desires on the environment; 

the rate model for a reaction, for instance. The environment is then 

an arena where different agents compete through their intentions to 

achieve their desires. 

 

This approach to modeling units of biological function is both 

expressive and modular. There are no limits placed on the tech-

niques for expressing a functional response to environmental con-

ditions. Thus, alternative assumptions and models can be incorpo-

rated into the simulation and tested.  

3.2 Simulation 

We employed a multi-agent simulation with scheduling strategies 

to create a computationally tractable and scalable modeling and 

simulation capability. Agents compete with one another to achieve 

their goals in one or more environments. The simulation frame-

work’s job is therefore to manage the changes to the environ-

ment(s) resulting from agent activities scheduled in the system.  

 

3.3 Domain Specific Language (DSL) for Dynamic 
Biological Systems  

 
The feature that ties modeling and simulation together is a novel 

Domain Specific Language that enables the systems biologist to 

express agents and simulation context in a simple and concise form 

that they can relate to. Where SBML can express state, GRANITE 

DSL can express state, coordination, and activity. As such, the 

DSL can describe all of the dynamics of the system, i.e. the sys-

tem’s overall behavior with respect to time. The DSL is an exten-

sion of the popular Scala programming language, which is de-

signed for domain specific extensions, and benefits from all of the 

tools and documentation developed in the Scala community. In 

addition to GRANITE’s ability to use SBML models as inputs, the 

DSL facilitates creation of biological models in a more natural yet 

formal way which is biologist friendly. Consider units of measure 

as an example. Above, we stated that the GRANITE user can sup-

ply their own kinetic models. In fact, different reaction agents may 

employ different kinetic models as appropriate for the reaction. In 

order to maintain consistency among the different kinetic models, 

their units must be compatible. This is a hard bookkeeping prob-

lem, made harder when different models are developed by different 

people in different organizations. The GRANITE DSL provides 

“guardrails” for the user by supplying syntax for defining the units 
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of measure for the rate constants, or for any other values. The 

GRANITE system also supplies implicit conversions so that if one 

model assumes concentrations in moles/liter and another model 

assumes millimoles/liter, the GRANITE system will automatically 

make the appropriate conversions. When incompatible or unknown 

units are combined, GRANITE alerts the user rather than produc-

ing meaningless results. Adding two values in units of molarity 

produces an error because concentrations are not addable. Corre-

sponding volumes are needed for that operation to make sense, and 

so the GRANITE DSL prevents it. 

 

We discuss some simple steps to illustrate the use of DSL in the 

context of a metabolic network. The first step defines a meme 

called “a”. Memes are first class modeling objects that have muta-

ble and immutable properties. An immutable property, like molec-

ular weight, always has the same value.  A mutable property, like 

concentration, may vary at different times and in different envi-

ronments.  

 

val a = Species called "a" build 

 

The second step defines a simulation; interaction models that will 

be bound to an environment using a simulation context are created. 

In the example below, the interaction model is a metabolic network 

containing two reactions. Reaction r1 produces b and consumes a, 

whereas reaction r2 produces c and consumes b using given stoi-

chiometric coefficients, kinetic laws, rate parameters, and a deter-

ministic scheduler (in this example) to decouple and synchronize 

the agent interactions. 

 

def metabolicNetwork = CreateMetabolicNetwork of ( 

    Reaction called "r1" of (1*a) -> (1*b) 

             using (MichaelisMenten withSpecificityConstants(a->0.1)  

                    catalyzedBy(p) withCatalyticConstant(0.1)), 

    Reaction called "r2" of (1*b) -> (1*c) 

             using (MichaelisMenten withSpecificityConstants(b->0.1) 

                    catalyzedBy(p) withCatalyticConstant(0.1)) 

) scheduledBy DeterministicMetabolicModelScheduler(0.01) 

 

The specificity constant and the catalyst constant are typically 

denoted in the Michaelis-Menten kinetics as Km and Ko respective-

ly, and may be referenced as such in the DSL.   

 

The third step creates the simulation contexts; this involves the 

creation of environments and the assignment of interaction models 

affecting those environments. The environment is defined using a 

containing clause which specifies memes and associated proper-

ties.  Specifying which interaction models to use is accomplished 

by a using clause.  Below is an example of defining a simulation 

context where memes a, b, c, and p are associated with concentra-

tion properties which use a metabolic network interaction model. 

 

val sc1 = SimulationContext called "sc1" containing ( 

    a where ConcentrationIs(1000.0), 

    b where ConcentrationIs(0.0), 

    c where ConcentrationIs(0.0), 

    p where ConcentrationIs(1.0) 

) using metabolicNetwork 

 

Finally, a simulation is constructed by defining which simulation 

contexts are part of the simulation. Below is an example of defin-

ing a simulation.  The conciseness reflects the power of the DSL. 

 

Simulation of sc1 

3.4 Validation 

As the use of agents is a departure from traditional methods of 

modeling biological systems, we performed a set of experiments 

designed to validate the approach. Our basis for validation criteria 

was the ability to emulate results from established systems, as well 

as from accepted modeling or simulation methods. For this study 

we chose to model a metabolic network, the mycolic acid biosyn-

thesis pathway of the Mycobacterium tuberculosis which involves 

197 metabolites, 219 reactions, and 28 enzymes driving these reac-

tions. The pathway has been defined (Barry, 1998) and models 

exist in the SBML format (Raman, et al., 2005). Furthermore, 

systems-level analyses exist in the literature that provide metrics 

about the internal states of the system against which we can com-

pare the states of the agents and the environment. We chose to 

compare the ABM-MAS results to a Flux Balance Analysis of the 

mycolic acid pathway using the same SBML model of MAP as 

used by Raman et al. Instantiating the MAP model into a set of 

reaction agents with the same stoichiometric parameters, we at-

tempted to emulate the internal and external states of the metabolic 

pathway at steady-state using Michaelis-Menten kinetics. We ex-

amined the ability of the ABM-MAS system to emulate the output 

of the pathway in terms of the observed proportions of mycolic 

acids and the flux profiles of the reactions in the network. Initial 

results showed that we could either emulate the mycolate ratios or 

the flux profile (Table 1). Using group scaling based on gene-

reaction associations, and an optimized set of parameters, the 

ABM-MAS system was able to reproduce both the observed 

mycolic acid proportions and the reported flux profiles (Fig. 4). 

The method for optimizing and discovering the system parameters 

involves a novel use of genetic algorithms (Lawson, Singh, et al.) 

that will be published separately.  

 

3.5 Dynamic Systems 

 
Agent systems are particularly useful in modeling dynamic sys-

tems in a manner that allows the modeler to directly interact with 

the evolving system. The modeler can make changes to the system 

and immediately observe the response in real-time. We assert this 

is a novel technique for proposing and testing hypotheses at the 

systems level of molecular biology. 
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Table 1. A comparison of the observed and simulated mycolate ratios. 

 methoxy-mycolate 

to alpha-mycolate 

keto-mycolate to alpha-

mycolate 

trans to cis forms of methoxy-

mycolate and keto-mycolate 

Observed 0.54 0.49 0.14 

Randomly Chosen Parameters 0.49 0.47 1.0 

Manually Chosen Parameters 0.36 0.28 0.15 

Learned Parameters 0.54 0.49 0.14 

The first row presents the published output of the myolic acid pathway (Watanabe, 2001). Initial experiments with randomly chosen parameters were able to 

approximate the ratios except for the cis:trans bias (row 2). Altering the specific activity levels of the methylases MmaA1 and MmaA4 did improve the 

cis:trans bias but reduced the fidelity of the other mycolates (row3). Learned parameters using a genetic algorithm approach (Lawson, Singh, et al.) were 

ultimately used to create a model that produced the desired mycolate ratios (row 4). 

 

The Glimpse-GRANITE tool was developed to provide that capa-

bility to systems biologists. This GUI, see Fig. 5, provides a com-

mand-and-control interface to the simulation that includes the abil-

ity to create an agent system, start a simulation, observe the inter-

nals and externals of the simulation environment, and configure all 

aspects of the system and the simulation. The temporal aspect of 

the simulation is measured in number of interactions within the 

system. Since the agents are uncoupled from the simulation inter-

actions, a change to an agent is immediately reflected in the simu-

lation – no re-compilation or re-start is necessary. Furthermore, the 

state of the simulation can be check-pointed, or saved, such that if 

perturbations of the system destroy the integrity of the steady-state 

model, the simulation can be brought back to a stable state and 

new perturbations can be tested. 

3.6 Predictive Power of ABM-MAS 

In addition to the expressivity, scalability, and evolutionary proper-

ties of the ABM-MAS method, it also has the capability of making 

and testing predictions. Outcomes of the multi-agent simulations 

are not determined by a global objective or control function. Thus, 

the system, as a function of initial conditions, will evolve dynami-

cally into a steady-state, an oscillating state, or possibly degenerate 

into a chaotic state that is not sustainable. The observable features 

of the system state(s) are important components in measuring the 

predictive power of the model. If a change to the system model  

 

 
Fig. 4. Comparison of the FBA and ABM-MAS flux profiles. The reaction flux across each reaction point in the mycolic acid pathway (MAP) was com-

pared in this plot. The x axis values represents the numbered reactions in the MAP SBML model while the y axis values represents the flux value calculated 

using FBA (blue line) and the ABM simulation (black dot). The inset shows the comparison of the high-complexity region of the Flux plot. The comparison 

shows that the ABM approach is able to emulate the internal flux properties of the FBA analyses with a correlation of 0.99 
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Fig. 5. The GRANITE tool includes a visualization application that allows direct interaction with the simulation. The GUI view displays a directed 

graph in which nodes are GRANITE memes and directed edges are the relationships between them (the right hand plot is zoomed in on a specific reaction). 

An edge from a meme to a reaction node implies that the meme is a reactant; an edge to a meme from a reaction node implies that the meme is a product of 

that reaction. Node color and size are configured based on the interaction model. In a metabolic network, color represents meme type such as reaction or 

metabolite.  The size of a node represents reaction flux or concentration.  Researchers can easily identify highly active reactions (agents) and select a subset 

of memes to compare their property values in real time in a chart view. Users can also perturb the system by changing some meme properties at any time and 

observe the effects of those perturbations on the system evolution.   

 

(initial conditions inclusive) results in a new system-state with new 

observable features that can be recreated in the lab, the perturba-

tion is informative and the predictive capability of the model in-

creases for the next round of in silico experimentation. Iterations 

on this hypothetico-deductive cycle promise to build more accurate 

predictive models and reveal the general principles of the biologi-

cal system under study. Thus GRANITE is an expressive, scalable, 

and predictive environment for modeling and simulating biological 

systems that enables bench researchers to integrate existing system 

descriptions with current hypotheses, and construct in silico exper-

iments that lead to predictions which can be tested in the laborato-

ry.  The results of those experiments can inform refinements to the 

system model that improve the prediction capability and focus lab 

experimentation. We intend to apply this technique to other inter-

action networks and integrated systems of metabolic, gene regula-

tory, and signal transduction networks, that are of interest to sys-

tems biology researchers and developers..  Ongoing work is being 

directed toward establishing a GRANITE user community, so that 

comprehensive systems-level in silico simulations of biological 

and biochemical networks can be collaboratively designed, created, 

and developed.  
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Population Structure and Related Attribute-Weighting Schemes
Under the Assumption of Infectious Disease Scenarios
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Abstract— Epidemic modeling has been utilized to gain
a better understanding of the infectious disease spread by
means of studying the associated factors to the epidemic. In
this regard, demographics are factors that affect the prefer-
ence of individuals to interact with others of similar charac-
teristics. Similarly, geographic characteristics influence the
contacts dissemination within a physical boundary. The iden-
tification of specific groups within the population that favors
the progression of the disease and their interconnection with
other population subgroups are fundamental to assess the
correlation between the population and disease dynamics.
Furthermore, the correlation of the dominant demographic
features and their influence in the disease behavior would
not only give us insights of the disease dynamics, but also
permit to track down possible dissemination of secondary
infections to similar clusters. In this work, the resulting
distribution of the population into clusters is mapped into
graph representation so the clusters network properties can
be observed and studied.

Keywords: Population, Dynamics, Demographics, Geographics,
Epidemics, Structures

1. Introduction
Diverse population properties, such as demographics and

geographic characteristics, exert influence on the disease
dynamics and the distribution of people into groups. For
instance, changes on the final number of infectious individ-
uals or the velocity and the duration of a disease are dictated
by the relationship of the disease itself and the population
characteristics[1]. The Center for Disease Control and Pre-
vention has observed that characteristics of the population,
such as sex, age, race and ethnicity, and socioeconomic
factors are related to prevalence or emergence of a particular
disease[2]; nevertheless, the correlation between those fac-
tors and a disease has to be studied in order to gain a better
understanding of the disease dynamics. Methodologies and
theories have been proposed and implemented to learn more
about the disease attributes and its spatial-temporal structure;
also, observations of diverse infectious processes within
different population groups have been researched[3]. In this
regard, studies of varying population characteristics and the
impact in the disease progression have been made, and
the characteristics of population subgroups have been taken
into consideration for analysis. For instance, the disease

parameters such as the number of secondary infections and
the velocity of the disease transmission are influenced by
the population groups properties such as density[4]. Current
approaches take into consideration the population character-
istics at the group level and analyze their effects on popula-
tion aggrupations with diverse densities. The distribution of
people into groups is influenced by multiple factors such as
geographics and demographics. Under these assumptions, a
social environment within a group of individuals with similar
characteristics influences the number of interactions a person
can have inside and outside its group, and then as a conse-
quence the disease spread as well[5]. The social elements
that influence a disease spread are measured in terms of the
group characteristics such as individuals age and density[6].
School children is the sector of the population that bears the
highest risk for disease transmission due to their high contact
rate and limited immune response[7]. Current work focuses
on the population structure that entails a distribution into
groups by taking into account demographics, such as age,
and geographics such as schools zone belongingness.

2. Methodology
There exists a natural segregation of the population into

groups with people of similar characteristics[8]. In this
methodology, a synthetic population constructed from ag-
gregated data from the US Census 2000, is utilized to find
arrangements of people into groups in a sample county.
Demographics such as age, ethnicity, gender, and school
grade; and geographics such as school zone, are to be utilized
to build a structure of the population. A hierarchy of the
population attributes is generated to assign larger weights
on attributes of the interest of this study. The identification
of groups within the population follows a hierarchization of
attributes as seen in the Figure 1.

In this ranked chart it can be observed that, the geographic
location and the age attributes are assigned more weight
than the rest of the attributes. Concurrently, the weight
among the remaining demographic and geographic attributes
is not differentiated, and as a result, the distribution of the
population into groups is highly influenced by the age and
the geographic location. In order to obtain a distribution
that follows these rules, a document retrieval technique is
utilized for processing the synthetic population database.
The Vector Space model allows to represent entities, such as
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Fig. 1: Population Attributes Hierarchy

documents, as a collection of vectors of words. In this model,
each dimension of the vector is represented by a document-
term and its weight-value[9]. In our model, each individual
is an entity to be represented as a vector of attributes,
and each attribute is assigned a weight according to our
hierarchy of attributes depicted in Figure 1. The synthetic
population P with elements P = {p1, p2, p3, ..., pn}, where
pi = {a1, a2, a3, ...am} is an individual represented as an
array of weighted geographic and demographic attributes,
and the dimension m of the multidimensional space, is equal
to the number of the population attributes. Having mapped
the population into a multidimensional space, the similarity
between any two individuals is computed by means of a
distance metric. The cosine similarity permits to calculate
the similarity between any two individuals by computing
the cosine angle between them as seen in Equation 1.

sim(pi, pj) =

m∑
k=1

api,k × apj,k√
m∑
k=1

api,k ×
√

m∑
k=1

apj,k

(1)

In summary, this similarity metric is utilized to construct a
matrix of distances among the population individuals, which
in turn is used for the population clustering computation.

2.1 Clustering
In this section, a distribution of the population into groups

of people with similar characteristics is generated. The
criterion for people clustering is the hierarchy of attributes
previously introduced. Two experiments with different as-
sumptions are performed in order to show the effects of
attribute-weighting on the population structure and the dis-
ease dynamics as well. The presuppositions for the clustering
experiments on the synthetic heterogeneous population are
the following:

• Clustering with homogeneous attribute-weighting
• Clustering with non-homogeneous attribute-weighting

following a hierarchy scheme.

The algorithm to cluster the synthetic populating is shown
in the Algorithm 2.1.

Algorithm 2.1: CLUSTERING(P )

procedure HIERARCHYCLUSTERING(P )
while K == 1

do

DISTANCE(CK , CK−1)
if Distance← minDISTANCE(CK , CK−1)

then
{

MERGE(CK , CK−1)

procedure GOODNESS(clustering)
hubberts← HUBBERTS(clustering)
dunn← DUNN(clustering)
silhouette← SILHOUETTE(clustering)
goodness← sum(hubberts, dunn, silhouette)
return (goodness)

global P,K = N
optimal← 2
P ← {p1, p2, p3, ..., pn}
while Coptimal <= optimal

do



comment: Find nearest pair of clusters in P

Tree← HIERARCHYCLUSTERING(P )
comment: Cut the Tree

numberC ← CUTTREE(Tree)
comment: Goodness Metrics

clustering ← K-MEANS(numberC)
Coptimal ← GOODNESS(clustering)

According to current clustering procedure, the final distri-
bution of the population is the C clustering with k groups of
the population P within a partition C = {c1, c2, c3, ..., ck},
with k ≥ 1 clusters that satisfy ∀(ci, cj) such that i 6= j,
ci ∩ cj = ∅ and ∪ki=1ci = P . This partitioning of the
population is subject to change if any new assumptions for
the clustering are made. In current work, k-means clustering
is utilized to find groups within the population, however, this
method needs to know the k number of clusters in advance.
For this reason it is necessary to asses the appropriate choice
of k with alternate methods. In this regard, a hierarchical
clustering algorithm of the population is used in order to
estimate a tentative value of k. Hence, a dendrogram is
generated and studied so that the number of clusters can
be inferred. According to the properties of the dendrogram,
such as height and shape of the branches, a cut is performed
at an appropriate height of the tree, and a tentative value of
k is determined. Then, k-means makes use of the choice
of k to generate the partition of the population. Finally,
the quality of the resulting clustering has to be evaluated
by means of the within-cluster compactness and between-
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cluster distances. Goodness metrics, such as Hubert’s gamma
coefficient, the Dunn index, and Silhouette index, are utilized
to assess whether a new estimation of k is required or the
tentative k is chosen as the final k to perform the partition
of the population[10], [11], [12].

3. Results
Making use of the methodology described in the previous

section 2 for clustering the synthetic population of the
sample county, two different structures of the population
were generated. First, a clustering Cα = {c1 = 178, c2 =
323, c3 =, 270, c4 = 117, c5 = 402, c6 = 210} with six
clusters, and a second clustering Cβ = {c1 = 182, c2 =
1120, c3 = 31, c4 = 18, c5 = 22, c6 = 42, c7 = 19, c8 =
48, c9 = 18} with nine clusters. In this regard, Cα was
constructed under the assumption of zero attribute-weighting
for the population features, whereas Cβ was calculated
making use of the attribute-weighting hierarchy scheme for
the population features as shown in the Figure 1. On one
hand, in clustering Cα, the distribution of the population into
clusters has been roughly evenly distributed into medium
size clusters ranging from 117 to 402 individuals. On the
other hand, in the clustering Cβ , the cluster size is non-
uniformly distributed with one very large cluster of 1120
individuals and seven small clusters varying size from 18 to
48 individuals. This partitioning of the population into clus-
ters with different properties, shows the correlation between
the assignment of weights to the population attributes and
the non-uniform distribution of individuals into the clusters
when the weighted-population is utilized. In this context,
both Cα and Cβ are utilized as two distinct scenarios to
study an infectious disease spread and ascertain the potential
correlation between these two differentiated structures of the
population and the disease dynamics itself. The simulation
of a disease progression over two different scenarios Cα
and Cβ starts when a single individual within a given
cluster is randomly infected. Once the disease takes over,
more individuals are infected locally and infectious contacts
are exported globally to other clusters. Interactions among
infectious and non-infectious individuals take place locally
within clusters and globally between clusters. This makes
contagion to describe a path that is originated from the
cluster of the onset of the disease, following other clusters
in sequence. The resulting path of the disease spread over
the clustering is mapped into a graph representation so that
a contagion network is produced and its properties can be
observed and studied.

3.1 Scenario I
The contagion network for the Cα scenario is shown in

Figure 2. A graph Gα = (V,E) where Gα(V ) = Cα and
Gα(E) = (ci, cj).

In this contagion network it can be observed that there
exist a correlation between the density of the population
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Fig. 2: Contagion Network non-weighted population at-
tributes

and the number of individuals infected in each cluster.
It has been previously ascertained the quasi-proportional
distribution of the number of individuals into the clusters,
and such structure has provoked that the disease is also
evenly distributed in the clusters infecting approximately
from 50% to 60% of the total number of individuals in
each cluster. The disease spread follows a path that cover
all the clusters favoring the interactions between infectious
and non-infectious individuals back and forth among all the
clusters facilitating the global contagion. The correlation
between the disease spread and the population dynamics
also has effects on other epidemic characteristics such as
the disease duration and the time of onset. In addition,
this behavior can be observed In the Figure 3 where the
six clusters epidemics are presented with the same scale so
the differentiated dynamics can be visually discerned. Also,
it can be noted that the time between the onset and the
conclusion is about 30 days for each of the single cluster
outbreak. In addition, different onset times are observed in
each cluster, slightly shifted on time due to the fact that the
disease is randomly initiated in a single cluster and exported
to others in apparently different times. However, the lack of
synchronization between these times is barely perceptible
due to the intrinsic properties of the clustering, such as
cluster size and the between-cluster distance, that promotes
such behavior. Finally, an illustration of another perspective
of the six outbreaks is shown in the Figure 4. In this Figure,
every cluster is depicted with a different color so that the
six outbreaks that were started sequentially can be observed.
The order in which the clusters are infected depends on the
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population density of each cluster. As a result, in the Figure
4 it can be observed that the first outbreak onset occurs in
the most populated cluster, that is the highest bell curve, and
the rest of the outbreaks start sequentially following an order
of clusters that decrease in size.
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Fig. 3: Outbreaks SIR in each cluster: Scenario I
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3.2 Scenario II
The contagion network for the Cβ scenario is shown in

Figure 5. A graph Gβ = (V,E) where Gβ(V ) = Cβ and
Gβ(E) = (ci, cj).

The contagion in this network shares some properties
with the contagion in the Subsection 3.1 but also shows
contrasting behavior. The correlation between the density
of the population and the number of individuals for the
scenarios persists but in different proportions. The non-
uniform distribution of individuals into nine clusters has
affected the number of infected individuals per population
subgroup. In this experiment it can be seen that the smaller
the size of the cluster is, the smaller the number of infected
individual a cluster have. For instance, in the clusters where
the size oscillates around 38 individuals the proportion of
the local population being infected is about 35 percent. In
this contagion network the traffic of individuals from one
cluster to another is rather restricted. The size of the clusters
influences intrinsically and externally the disease dynamics
within-cluster and between-clusters. In the Figure 5 it can
be noted multiple zeroes in the between-clusters inward and
outward arrows, and within-clusters self pointing arrows as
well. This is because the number of interactions between
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Fig. 5: Contagion Network weighted population attributes

two individuals that lead to a successful infection within
the cluster ck, and between the clusters ck and ck+1, are
accounted in the final number of interactions of the cluster
where they originally were spawned. Also, in this experiment
it can be noted that the starting time of the disease spread
in each cluster is out of phase with each other. Furthermore,
the onset times for both experiments, Cα and Cβ , are out
of phase with each other as well. The shifting on the onset
time of the disease from cluster to cluster goes from three to
eight days and is larger than the scenario in the Subsection
3.1, where the shifting-time of the onsets is imperceptible. In
addition, details can be noted in the Figure 6 where the same
scale was preserved for the first eight clusters to facilitate the
comparison and contrast of the particular cluster properties.
For instance, in the cluster four the onset is around day three,
whereas in cluster number six it starts around day eight.
This shows a delay up to five days between onsets, whereas
in previous experiment it was barely of one day. Finally,
an illustration of another perspective of the nine outbreaks
is shown in the Figure 7. In this Figure, every cluster is
depicted with a different color so that the nine outbreaks
that were started sequentially can be observed. Nonetheless,
the scale utilized in the plot is the same as the smallest seven
clusters so that the onset of every epidemic can be observed
along with the two largest epidemics. The order in which
the clusters are infected depends on the population density
of each cluster as seen in the Scenario I. Consequently, in
the Figure 7 it can be also observed that the first outbreak
onset occurs in the most populated cluster, that is the highest
bell curve, and the rest of the outbreaks start sequentially

following an order of clusters that decrease in size.

3.3 Two Scenarios
A final outbreak graph for the Cα scenario is shown in the

Figure 8, and in the Figure 9, the scenario of Cβ is depicted.

Making use of these figures facilitates the comparison
and contrast of the properties of the disease dynamics. For
instance, in the Scenario II it can be noted that the velocity
of the spread of the disease in general is faster than the one
of the Scenario I. In the Scenario I the outbreak takes up
to 20 days to fade out, while on the contrary, it takes 15
days to the outbreak to die in the Scenario II. The attribute
of the population structures that plays an important role
in this contrasting characteristic is the population density.
The number of individuals clearly influences the number of
contacts that are been made locally and globally. This is
reflected on the total number of infected individuals for both
scenarios at the end of the outbreaks. Scenario I equals its
final number of infectious individuals to the total population
number, whereas, the final number of infectious individuals
in the Scenario II is 10% smaller than those in Scenario I.

4. Conclusion
Taking into consideration different assumptions to gener-

ate the partitions of the population into clusters produces two
different structures of the population. Assigning different
weights to the attributes of the population permits to study
different distributions of the same population: clustering
Cα and Cβ . Every arrangement of the population has
distinct properties in terms of population density. Under
these circumstances, the spread of the disease is affected
by the structure of the population itself. Changes in onset
times for the disease, the duration of an outbreak and the
final number of infected individuals are parameters that are
influenced by the structure of the population. Particularly,
the quasi-even distribution of people in the Cα’s clustering
causes the disease spread to have the same behavior in every
cluster, whereas, in Cβ’s irregular distribution of people
in its clusters generates diverse behaviors of the disease
dynamics. Finally, it can be concluded that there exists
a correlation between the clusters density, affected by the
selected weighting scheme that derives a particular structure
of the population, and the velocity and the duration of
the outbreak in the population. Current work studies an
abstraction of the disease dynamics. Under the assumption of
an infectious disease, demographics and geographics of the
population are mapped into a contagion network to facilitate
the analysis of the disease and the population dynamics;
nevertheless, the visualization is an important aspect of
the analysis that needs to be addressed. Making use of
the latitude-longitude coordinates of every individual of the
clustering, the future work involves the spatial mapping of
the contagion network information into a geographic map
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Fig. 6: Outbreaks SIR in each cluster: Scenario II
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Fig. 9: Final outbreak SIR: Scenario II
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taking into consideration the latitude-longitude coordinates
of the cluster elements. Allowing to geographically observe
the physical distribution of the population in a given spatial
region.
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Abstract— Hidden Markov models (HMMs) have been
widely used to represent families or superfamilies of proteins
that are regarded as evolutionarily-related groups. In a pre-
vious study, we have systematically analyzed the relationship
between HMMs using a network method for the Structural
Classification of Protein (SCOP) database and found high
similarity among HMMs in the database. Based on the HMM
network built in our previous study, we propose the concept
of a blended HMM, aiming to reduce the redundancy of
HMM models in the SCOP database. We construct a single
HMM to integrate multiple HMM models into one model
based on the similarity between HMMs reflected on the
network. HMMER3 is used to build blended HMMs that
represent the connected components (CC) in the original
HMM network. The performance of each blended HMM is
evaluated by measuring its ability to identify the correct
superfamilies or families. Results show that these blended
HMMs identify the correct protein sequence sets with ac-
curacy over 95%. Blended HMMs provide a more compact
representation of the protein families and superfamilies of
the SCOP database, thus their use can reduce the size of
an HMM database and decrease the computational cost of
a large number of database queries.

Keywords: HMM, SCOP, Redundancy, Superfamily

1. Background
Protein sequence homology detection is an important task

for understanding the evolutionary origin of different pro-
tein families. Homology among protein or DNA sequences
is typically inferred on the basis of sequence similarity.
Sequence-sequence comparison methods, such as FASTA or
BLAST [1], [2], are used to detect conserved regions be-
tween sequences. However, pairwise comparisons have less
sensitivity in detecting remote homology than profile-based
methods[3] , such as hidden Markov models (HMMs), which
have been described very effective in detecting conserved
patterns in multiple sequences [4], [5].

The Structural Classification of Proteins (SCOP) database
is a comprehensive protein database with a hierarchical
structure to classify proteins on the basis of their evo-
lutionary and structural relationships. It is organized in
a hierarchical structure consisting of four levels: family,
superfamily, fold, and class. Protein domain sequences are

classified according to these four levels. SCOP uses HMMs
to represent superfamilies or families. The basic procedure
of building an HMM for a particular superfamily starts
with a seed protein. Then, it performs a sequence search
in a database to obtain other proteins that have sequence
similarities above a set threshold. Finally a profile HMM is
built based on a multiple sequence alignment (MSA) of these
sequences. A previous study[6] demonstrated that multiple
HMMs, each of which was constructed from a different seed
sequence, produce better identifying results than a single
HMM that was constructed from one seed. However, this
is at the expense of redundancy in the HMM database[6].
To understand how the HMMs in the same or different
superfamilies are related, we performed an analysis of all
the HMMs in SCOP using a network approach[7]. We used
13,730 HMMs from seven protein classes to build an HMM
network using the HHsearch program[8]. The final network
consists of many connected components. Nodes in the net-
work represent HMMs and edges similarity between HMMs.
Consequently, HMMs within each connected component
show high similarity to one another. If we can achieve similar
performance by one HMM rather than multiple models,
then a more compact representation of the original database
is achieved. In this paper, we propose a method to build
blended HMMs that can represent two or more HMMs in
the same connected component obtained from our previous
paper[7].

Our method to construct a blended HMM consists of
two steps. First, a set of sequences is sampled from those
used to build the HMMs in a connected component in the
network and a multiple sequence alignment is constructed
by MUSCLE[9]. Second, a profile HMM of the set is built
from the multiple sequence alignment by HMMER3[10]. A
model-scoring program is used to assign a score to any
sequence of interest with respect to the blended profile
HMM; the better the score, the greater the chance that
the query sequence is a member of the protein family
represented by the profile HMM. In this way, each sequence
in a database can be scored to find the members of the family
present in the database. The performance of the blended
HMM was measured by its ability to identify members of a
protein family in sequence databases. Our results verify that
the blended HMM maintains high sensitivity without losing
resolution. It is also compared to the coverage of the original
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HMMs in a connected component to verify similarity and
resolution.

2. Methods
2.1 Notation

We first introduce notation. Let Ds denote the SCOP
HMM database and Db denote the blended HMM database.
The original HMMs in a connected component Ci with size
mi are referred to as Mi1,Mi2, ..., Mimi

. The blended HMM
corresponding to Ci is Bi. Each HMM Mij was built from
multiple sequence alignment (MSA) Aij , and Aij is created
by the set of sequences Sij . All the sequences for Ci are in

the set Fi =
mi⋃
j=1

Sij . The MSA for the blended HMM Bi is

sampled from the sequence set Fi.

2.2 Data Description
Our data have two sources. The first source is the

HMM network built in [7], where the nodes represent
SCOP HMMs and the edges represent the similarity
between HMMs. The network contains 151,461 edges and
11,929 vertices. There are 1524 connected components
(CCs), 1236 of which are fully connected. Overall, 566
CCs have size 2, 261 size 3, 140 size 4, 85 size 5,
60 size 6, and 124 sizes greater than 6. The second
source is the multiple sequence alignments (A3M format,
derived from aligned FASTA format) used to build the
corresponding profile HMMs, which were downloaded from
ftp://ftp.tuebingen.mpg.de/pub/protevo/HHsearch

/databases.

2.3 Building blended HMMs
There is one blended HMM Bi for each connected com-

ponent Ci. For a given Ci, Bi was built based on a multiple

sequence alignment sampling from Fi =
mi⋃
j=1

Sij . Sampling

was performed to select sequences from each Sij for Ci.
Let Ni = |Fi| and ti be the number of sequences sampled
(at most 2000 sequences were sampled), then ni = ti/Ni is
the fraction of sequences sampled from each Sij . Because
a blended HMM is used to represent a protein family
connected component without losing much coverage rather
than using multiple HMMs, we assume that all members in
the same CC belong to the same family or superfamily more
often than expected under a random network connection
model. Our previous work [7] shows that more than 95% of
connected components have only members from the same
superfamily.

MUSCLE[9] was used to do multiple sequence
alignment, muscle -in seqs.fa -out seqs.afa
-maxiters 2, where seqs.fa is the input FASTA file
and seqs.afa the output MSA file. Since the number of
sequences is large (typically > 1000), the MUSCLE option
-maxiters 2 was used to compromise between speed

and accuracy. Based on the resulting MSA, HMMER[10]
was used to build the blended HMM Bi with default
parameters using the command: hmmbuild blendhmm
seqs.afa, where blendhmm is the blended HMM
Bi. Bi is called a blended HMM Bi for the connected
component Ci. All blended HMMs were combined into a
database Db = {Bi | 1 ≤ i ≤ 1524}.

2.4 Scoring
The hmmscan program in the HMMER package takes

a query sequence and searches it against a profile HMM
database. A bit score is assigned to a target model if
it significantly matches the sequence. A bit score is a
log-odds ratio (base two) comparing the likelihood of the
profile HMM to the likelihood of a null hypothesis (an
independent, identically distributed random sequence model,
as in BLAST). More precisely, for a hidden Markov model
M , s(M) = log Pm

Pr
, where Pm is the probability of the

alignment to the HMM M and Pr the probability of the
sequence given the random overall sequence model.

3. Results and Discussion
3.1 Comparison between blended HMM and
original HMMs

Given a connected component Ci, Bi was compared with
Mij (1 ≤ j ≤ mi) by matching each sequence in Sij .
First, for a given Ci, Mij (1 ≤ j ≤ mi) and Bi were
concatenated as an HMM database Dmi, then each Sij

was matched against the database with hmmscan hmmdb
seq.fas. The parameter hmmdb is the HMM database
(Dmi) to be searched, and the file seq.fas contains the
query sequences (Sij). For each sequence, the program will
assign a bit score to a profile HMM in the database if the
sequence significantly matches the HMM.

All sequences Fi associated with Ci were classified into
two groups for a given HMM model Mij , the training set
Hij and the testing set Tij . The training set for Mij is the
sequence set used to build Mij , that is Hij = Sij , and
the testing set contain all other sequences in Fi, that is
Tij = Fi − Hij . The comparisons were categorized into
two cases. In the first case, when the numbers of sequences
in all Sij (1 ≤ j ≤ mi) are small (typically |Sij | < 50 ),
Bi has better performance than Mij if matched against the
sequences in Tij but not for the sequences in Hij . Example
1. For instance, suppose Ci contains five HMMs, referred to
as Mi1,Mi2,Mi3,Mi4,Mi5 and |Sij | (1 ≤ j ≤ 5) equals 20,
1, 1, 6, and 6 respectively. Figure 1 shows that the blended
HMM achieves a greater score for testing sequences but a
lower score for training sequences. In other words, the loss of
Bi is primarily on the training sequences. Another instance
is a CC with size mi = 2. Let sBi and sMij denote the
bit score for blended HMM Bi and HMM Mij respectively.
If we use sequence set Si1 to match against the database,
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Fig. 1: Pairwise comparison between blended HMM and original HMMs for Example 1 (small |Sij |, |Fi| = 34). HMM
models are d1bnba_, de14ra_, de14ta_, d1fd3a_, and d1kj6a_ in order respectively (all with SCOP ID g.9.1.1 (A:)). Each
point represents a sequence. The triangles and stars are the corresponding training set Hij and testing set Tij respectively
for a given Mij . Axes are bit scores.

over 95% of the sequences fit the model Mi1 the best, i.e.,
sMi2 < sBi

< sMi1 . For set S2, we have sMi1 < sBi
< sMi2

for most of the sequences. The average scores are shown in
Figure 2.

In the second case, when the numbers of sequences in all
Sij (1 ≤ j ≤ mi) are large (typically |Sij | > 1000), the
performance of Bi and the Mij tend to be similar. Example
2. For instance, for a CC with size mi = 5 and associated
with a large number of sequences, the scores for both HMMs
tend to be close to each other for a majority of sequences.
For a given sequence, we define the loss of a blended HMM
Bi with respect to an original HMM Mij as

Lij = sMij − sBi . (1)

The distributions for the loss of the blended HMM for
this example is shown in Figure 3. It shows that the original
HMMs and the blended HMM tend to have similar scores.
One may hypothesize that, in example 2, the loss function
has a normal distribution. To test normality, we combined all
the loss values for the blended HMM with respect to each

original HMM model in example 2 using all the sequences
in Fi and did a Shapiro-Wilk test[11]. The test showed that
W = 0.9597 with p-value < 2.2×10−16, indicating that the
loss function likely does not follow a normal distribution. For
each connected component Ci, based on Fi, we define a loss
matrix, where each entry Λ(i) is the loss score (Equation 1)
of Bi with respect to Mij based on sequence k (1 ≤ k ≤
|Fi|). We randomly tested 100 connected components each
with approximately 6,000 sequences, and pick the maximum
loss score from each sequence (row of the matrix) and fit the
data to a type I extreme value distribution[12]. The scaled
density distribution of maximum extreme value is shown in
Figure 3. The probability of the loss score being less than
or equal to zero is 0.746.

Based on the loss distribution, we hypothesize that, with
increasing numbers of sequences, the bit scores of the
blended HMM will be greater than or equal to those for
the original models. To test this hypothesis, we applied
Wilcoxon’s signed rank test. Randomly select 100 connected
components Ci each with around 6,000 sequences and
combine all the bit scores of the blended HMMs and their
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Fig. 2: Average score comparison between blended HMM
and original HMMs.

original HMM models based on all sequences in all the Fi.
The p-value < 2.2× 10−16 illustrates that the bit scores of
the blended HMMs are likely significantly greater than those
of the original HMMs.

3.2 Homology Detection
A blended HMM database Db was built by gathering all

the blended HMMs for the CCs. This HMM database is
used to identify the protein family that a protein sequence
belongs to. For testing the homology detection ability of
Db, a test sequence set X was made by randomly selecting
10,000 sequences from the pool of sequence sets

⋃
i

Fi and

Db was searched to see if the sequences were assigned
to the correct superfamilies (the correct blended HMMs).
Each query sequence to SCOP is attached to an HMM
that represents one of the protein superfamilies. For any
sequence in X , if Bi obtained the maximum bit score 4Bi ,
we classify the sequence to the superfamily represented by
Bi. A query sequence is misidentified when it selects the
incorrect model Bi or is ignored when it fails to select any
model Bi in the database. Table 1 shows that the precision
of Db (94.93%) is less than that of Ds (98.76%), however,
the precision of Db per HMM model is much greater than
that for Ds due to the size of the database. We also sampled
30 sets of queries each with 5,000 sequences and compute
the accuracies by searching Db (98.99%± 0.0035) and Ds

(95.34%±0.0049). To illustrate the efficiency of the blended
HMM database Db, we compare the computing time for
queries to the blended HMM database Db versus the original
database Ds. Figure 4 shows a linear relationship between
the computing time and the number of query searches, and

Table 1: Accuracy for Blended HMM database

Size Precision Time (s) misidentified ignored
Blended HMM 1524 94.93% 842 20 487
SCOP HMM 11,929 98.76% 2008 24 100

searching the blended HMM database is about 2.35 times
faster than the original SCOP database. Thus the blended
database Db improves computational efficiency by providing
a more compact representation of the SCOP protein families
and superfamilies.

3.3 Redundancy Measurement
We measure the redundancy of an HMM database using

the network density defined by

R(G) =
2|E|

|V |(|V | − 1)
, (2)

where |E| is the number of edges, |V | the number of
models (HMMs), and G the HMM network or connected
component in the network. Two HMMs are connected in
the network if they have high similarity according to the all-
against-all comparison using HHsearch. The density of the
entire network Gorig for the original HMMs is only 0.0017
(R(Gorig) = 151461/

(
13547

2

)
), but individual CCs tend to

have high densities [7], with more than 82% of the CCs
having densities more than 0.95, which illustrates a high
redundancy in the HMM database.

We create a network for the blended HMMs in the
same way as our previous work by using HHSearch[8].
HHsearch, similar to BLAST, uses a query that can be
either a protein sequence or an HMM to search a sequence
or HMM database. The HMM network was built in two
steps. First, HHsearch [8] was used to perform an all-
against-all HMM comparison with default parameters. Two
HMMs are matched if the E-value is below 0.001 [7]. As a
result, all 1,524 blended HMMs met the criterion, with 1,484
only having matches with themselves. Second, an undirected
network (graph) Gnew = (V, E) was constructed, where the
vertices V are HMMs, and there is an edge in E between two
HMMs, if their E-value is below the threshold. Since we are
trying to match a query HMM to our own HMM database, it
is necessary to calibrate all the query HMMs. To calibrate,
we use the command hhsearch -cal -i query.hhm
-d cal.hhm, where query.hhm is the query HMM (Bi)
and cal.hhm the calibrating HMM database that contains
only one HMM per SCOP folder. Then the command,
hhsearch -i query.hhm -d hmmdb was used for
searching the database, where hmmdb is Db. The density
of the entire network Gnew is 2.4127× 10−5 (R(Gnew) =
28/

(
1524

2

)
) with 15 connected components. Therefore, the

redundancy in the new network is greatly decreased from
the original network (R(Gorig) À R(Gnew)). There are 40
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Fig. 3: Histograms of Lij , 1 ≤ j ≤ 5, for Example 2 (large Sij , |Fi| = 6544). HMM models are d1h6ha_, d1kmda_,
d1kq6a_, d1ocsa_, and d1xtea_ in order respectively (all with SCOP ID d.189.1.1 (A:)). x axis is the loss score Lij . The
curve in the last figure is the fitted extreme value distribution.
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blended HMMs that match other blended HMMs apart from
themselves. If we select these blended HMMs to build a
subnetwork, the density is 0.036, which includes 11 CCs
with size 2, 3 CCs with size 3, and one CC with size 9 and
density 0.28 as shown in Figure 5.

4. Conclusions
An HMM database provides a way for detecting members

of protein families or superfamilies. It is an important
resource to understand protein evolution and function. The
HMM library in the SCOP database is widely used to

Fig. 5: The blended HMM connected components

identify and conduct SCOP domain assignment for new
sequences. However, the redundancy among HMMs influ-
ences its efficiency as our previous study revealed, which
will influence its efficiency. In this paper, we proposed
to use blended HMM to reduces the size of the original
HMM database but preserves its performance. Using blended
HMMs has obvious advantages when many queries are
required, which happens frequently when a new genome is
sequenced and many predicted protein sequences need to be
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annotated. Moreover the blended HMM database can also
serve as a preprocessing step. Sequences with high e-value
can be filtered out using the blended HMM database, the
remaining sequences with uncertainty may then be matched
against the SCOP HMM database. It is noted that our
approach of constructing blended HMMs can be one of many
methods to integrate multiple HMM models into one model.
Our method depends on connected components in the HMM
network and multiple sequence alignments. In future work,
we will extend our method. For example, instead of using
a network to imply the similarity among HMMs, we can
construct a hierarchical structure for HMM and integrate
two HMMs into one according to the characteristics of the
models. By adjusting the distance between two HMMs, we
can decide the size of clusters and thus the size of the
reduced database.
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Abstract—Stochastic simulation of reaction-diffusion systems
presents a great challenge because of the high computational cost
in these systems. Straightforward extension of Gillespie’s stochas-
tic simulation algorithm (SSA) to reaction-diffusion systems leads
to so-called Inhomogeneous Stochastic Simulation Algorithm
(ISSA). However, the ISSA can be prohibitively expensive in
computation if the discretization size is too small and results
in a large system. Thus a proper size of the discretization for a
reaction-diffusion system is critical. In this paper we present a
multiscale discretization method for stochastic reaction-diffusion
system simulation. With proper discretization scale, we can
greatly reduce the size of the system and achieve high efficiency.

I. I NTRODUCTION

Reaction-diffusion processes are used extensively in mod-
eling of complex systems in areas including biology, social
sciences, ecosystems, and materials processing. In recent
years, stochastic modeling and simulation of reaction-diffusion
processes have drawn more and more attention because of
their applications in spatially inhomogeneous biological sys-
tems. Theoretically, the dynamics of spatially inhomogeneous
stochastic system is governed by the reaction-diffusion master
equation (RDME) [1], which was developed in 1970s. But the
RDME is computationally impossible to solve for almost all
practical problems. Stochastic methods were then proposed to
simulate reaction diffusion systems. Spatial stochastic simula-
tion is an extremely computationally intensive task, due to the
large size resulted from the discretization of the system.

Gillespie’s stochastic simulation algorithm (SSA) [2] is a
widely used methodto simulate stochastic biochemical systems
under the assumption that the reaction system is in ther-
mal equilibrium (also called well-stirred system or spatially
homogeneous system under different circumstances). There
exist several implemention of the SSA, such as the direct
method [2], the first reaction method [2], and the next reaction
method [3]. Great effort has also been taken in order to
develop efficient approximation algorithms, such as theτ -
leaping method [4] and the slow scale SSA [5], since the SSA
is computationally intensive for most practical models.

When the ”well-stirred” assumption is not valid, the SSA
cannot be directly applied. Instead, it needs to be extended to
spatially inhomogeneous system and that results in the inho-
mogeneous SSA (ISSA). The spatial domain is discretized into
small voxels. Each voxel is well-stirred where the reactions

remain the same as in the homogeneous case. The diffusion
is modeled as the Brownian motion between neighboring
voxels. Each state variable of the system will have a local
copy as the number of molecules of each species in each
voxel at a given time. The key assumption is that within
each voxel, the system is well-stirred. Hence the discretization
size should be bounded by this homogeneity assumption. The
discretization size has been studied theoretically and numeri-
cally [12], [14] for uniform 1-D discretization. Moreover, 2-
D and 3-D uniform discretization methods have been applied
to simulate nonlinear reaction-diffusion systems [15]. Non-
uniform 1-D discretization strategies, such as adaptive and
unstructured meshes, have been applied in stochastic process
simulation. Additionally, Drawert et al. [11] have developed
the finite state projection (FSP) algorithm [8] to simulate
reaction-diffusion systems. Recent efforts, including the next
subvolume method (NSM) [6], MesoRD [7], MSA [9], and the
DFSP [11] methods, focused on speeding up the ISSA. The
next subvolume method (NSM) [6] utilizes the priority queue
structure originally proposed in the next reaction method.
MesoRD [7] implements this method and has been widely
used. The binomial tau-leap spatial stochastic simulation al-
gorithm [10] uses a similar technique by combining the idea
of aggregating diffusive transitions with the priority queue
structure used in the NSM. However, these methods can still
be prohibitively slow, due to the presence of fast diffusion. The
MSA [9] was developed for the scenario where the diffusion
rates are much greater than the reaction rates. The MSA
uses an approximation method to calculate the net intervoxel
diffusion transfers by realizing that the number of diffusion
events conforms to a multinomial distribution which can be
calculated and sampled. Drawert et. al. developed a novel
formulation of the finite state projection (FSP) method [8],
called diffusive FSP (DFSP) method [11] for efficient and
accurate simulation of diffusive processes.

In this paper, we introduce a multiscale discretization
method for multispecies systems with different diffusion
rates. By assigning different discretization sizes to different
species, we greatly reduce the diffusive transitions between
neighboring voxels, resulting in improvement on simulation
efficiency. The paper is organized as follows. Section II briefly
reviews the mathematical background, including the chemical
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master equation (CME), the stochastic simulation algorithm
(SSA), and the reaction-diffusion master equation (RDME).
In section III we present a simple one variable model and the
theoretical analysis for a proper diffusion subvolume length. In
section IV, we present numerical experiments that demonstrate
the efficiency and accuracy of our multiscale discretization
method. Finally, we conclude with an assessment of this
approach, the applications, and discussion about future devel-
opment.

II. BACKGROUND

A. Chemical Master Equation and Discrete Stochastic Simu-
lation

Consider a biochemical system ofN species
{S1, S2, . . . , SN} interacting throughM reaction channels
{R1, R2, . . . , RM}. The state vector is denoted by
X(t) ≡ (X1(t), X2(t), . . . , XN(t)), where Xi(t) is the
number of the molecules of speciesSi at time t. The
system is confined to a constant volumeΩ, and is well-
stirred. Each reaction channelRj can be characterized by
the propensity functionaj and the state change vector
νj ≡ (ν1j , ν2j , . . . , νNj). aj(X)dt gives the probability that
one Rj reaction will occur in the next infinitesimal time
interval [t, t+dt), andνij gives the change in theSi molecule
population induced by oneRj reaction. The matrixν makes
the stoichiometric matrix.

Once the propensity functions and stoichiometric matrix are
determined, the chemical master equation (CME) completely
depicts the dynamics of the system:

∂P (x, t|x0, t0)

∂t
= RP (x, t|x0, t0),

=

M
∑

j=1

[aj(x − νj)P (x − νj , t|x0, t0) − aj(x)P (x, t|x0, t0)],

(1)
whereR denotes the generating matrix for the Markov chain
that describes the chemical reactions andP (x, t|x0, t0) de-
notes the probability thatX(t) will be x given thatX(t0) =
x0. However, the CME is both theoretically and compu-
tationally intractable due to the huge number of possible
combinations of states.

Gillespie’s stochastic simulation algorithm (SSA) is an
“exact” simulation algorithm as it follows the same proba-
bility assumption that rules the CMEs. Instead of solving for
time evolution of the probabilities, the SSA generates sample
trajectories step by step. In each step, the SSA answers two
questions: when will the next reaction fire and which reaction
will fire. Let p(τ, j|x, t) denote the probability that given
X(t) = x, an Rj reaction will fire in the infinitesimal time
interval [t + τ, t + τ + dτ). It can be derived that

p(τ, j|x, t) = aj(x)e−a0(x)τ , (2)

wherea0(x) ≡
∑M

j=1 aj(x). Equation (2) is the mathematical
basis of the SSA approach. It implies that the timeτ to the
next reaction is an exponential random variable with mean

and standard deviation1/a0(x), while j is a statistically
independent integer random variable with point probability
aj(x)/a0(x). There are several Monte Carlo procedures for
generating samples ofτ and j according to their distribu-
tions. The simplest is the direct method, which generates two
uniformly distributed random numbersr1 and r2 in the unit
interval, and take

τ =
1

a0(x)
ln(

1

r1
),

j = the smallest integer satisfying
j

∑

j′=1

aj′(x) > r2a0(x).

(3)
The system is then updated according toX(t + τ) = x + νj .
This process will repeat until the simulation end criterion is
reached.

The SSA is exact in the sense that the sample paths it
generates are distributed according to the solution of the CME.
However the SSA is computationally intensive. There have
been many improvements over the direct method to improve
the efficiency, such as Tau-leaping method [4] etc.

B. Reaction Diffusion Master Equation

The dynamics of spatially inhomogeneous stochastic sys-
tem is governed by the reaction-diffusion master equation
(RDME), developed in the early works of Gardiner [1]. To
apply a similar strategy as the SSA method, the spatial domain
for inhomogeneous system is partitioned into voxels such that
species within each voxel are considered well-stirred.

Assume the domainΩ is partitioned intoK voxels Vk,
k = 1, 2, . . . , K. For simplicity, we assume at this moment
that the spaceΩ is one dimensional (1D). Each molecular
species in the domain is represented by the state vector
Xi(t) = (Xi,1(t), Xi,2(t), . . . , XiK(t)), whereXi,k(t) is the
number of molecules of speciesSi in the voxelVk at time t.
Molecules in a voxel can react with molecules within the same
voxel, and diffuse between neighboring voxels. The dynamics
of diffusion of speciesSi from voxelVk to Vj is characterized
by thediffusion propensity function di,k,j and thestate change
vector µk,j , whereµk,j is a vector of lengthK with −1 in the
kth position and1 in the jth position and 0 everywhere else,
anddi,k,j(x)dt gives the probability that, givenXi,k(t) = x,
one copy of speciesSi at voxelVk diffuses into voxelVj in
the next infinitesimal time interval[t, t + dt). If j = k ± 1,
thendi,k,j(x) = D/l2, whereD is the diffusion rate andl is
the characteristic length of voxel; Otherwisedi,k,j = 0.

Similar to the CME, the diffusion dynamics can be ex-
pressed by diffusion master equation (DME).

∂P (x, t|x0, t0)

∂t
,

= DP (x, t|x0, t0),

=

N
∑

i=1

K
∑

k=1

K
∑

j=1

[−di,k,j(xi)P (x, t|x0, t0)+

di,k,j(xi − µk,j)P (x1, . . . , xi − µk,j , . . . , xN,t, t|x0, t0)],
(4)

306 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



whereD denotes generating matrix for the Markov chain that
describes the diffusion of molecules in the system. The usual
method of solution of the DME is to simulate each diffusive
jump event explicitly. This is the method used by the ISSA and
NSM [6] algorithms. Combining the CME and DME yields
the reaction-diffusion master equation (RDME)

∂P (x, t|x0, t0)

∂t
= RP (x.t|x0, t0) + DP (x, t|x0, t0). (5)

The RDME has many more possible states than the cor-
responding CME. Thus, it is more difficult to solve. Many
techniques for accelerating the SSA can be applied to the
ISSA. Much effort has been focused on the improvement of
the ISSA, but ISSA remains computationally expensive. The
problem is that fast diffusive movements between adjacent
voxels dominate the computation time.

III. D ISCRETIZATION SIZE IN ONE DIMENSION

A. Theoretical Analysis

In this section, we will present theoretical analysis of
optimal discretization length for a reaction-diffusion system.
For the convenience of discussion, we will use a simple one
dimensional model. We note that the discussion here can be
easily extended to a general case.

Suppose a biochemical model with a 1D spatial domain
of size L. SpeciesA is the only reactive species in this
model, which gives a stoichiometry productB. A diffuses
within this 1D space, whileB stays where it is generated.
Suppose the whole 1D space is discretized with voxels with
lengthl. The reaction firing in thei-th cell is specified with a
subscripti. The productB is generated at the place whereA is.
The diffusion process can be expressed as chemical reactions
across the voxels. The reaction schema can be expressed as
follows for this simple model.

Ai
kd−→ Bi,

Ai
d
−→ Ai±1,

(6)

whered = D/l2 andD is the diffusion rate for speciesA. By
the finite-difference schema, the propensity function for the
reaction diffusion system (6) can be formulated as

a1(Ai) = kdAi,

a2(Ai) = D
Ai+1 − 2Ai + Ai−1

l2
,

(7)

whereAi denotes the population ofA at thei-th bin andl is
the length of the bin.

The assumption of the discretization requires that the
lengths of the bins be small enough, such that species within
the bins can be considered well stirred. Previous work [12]
has shown that this criterion is equivalent to

τr

τd
≫ 1, (8)

where τr is the mean free time with respect to the reactive
collision and τd denotes the mean free time, during which
a molecule will remain within a bin. For the first order

degradation with reaction ratekd, the mean life time of a
molecule can be expressed asτr = 1

kd
. The diffusion can

also be considered as a first order reaction with the reaction
rate constantd = D/l2. Hence, the mean free time for a
molecule staying within a bin can be expressed asτd = l2/D.
Kuramoto’s criterion (8) can be rewritten as

τr

τd
=

D

kdl2
≫ 1, or l ≪

√

D

kd
. (9)

Note that the discretization sizel have a lower boundaryl ≫
l0, wherel0 is the mean intermolecular distance.l0 does not
depend on specific type of the chemical reactions. Equation (9)
gives a large upper bound for general cases. Here we will
derive a more specified expression for the ideal discretization
length.

For spatially inhomogeneous systems, the discretization of
the space aims to result in a set of homogeneously populated
voxels, where in each voxel the CME is applicable. Appar-
ently, the smaller the voxel size is, the more accurate the
resulted system will be. However, a small voxel size often
results in large propensities for species jumping to neighboring
voxels, but the heavy computational cost on the back-and-
forth jumping makes little contribution to the actual population
distribution evolution. Thus, it is important to find a optimal
voxel size that is as large as possible while still maintaining
a reasonable simulation error.

The ideal discretization should be based on the assumption
that molecules of a species within a voxel are well-stirred, such
that any two copies of that species within a voxel have similar
probability distributions before one of them fires a reaction.
Suppose we have two molecules located at positionsx = 0
andx = l initially. After diffusing for time t, the probability
distribution of the two molecule’s position can be solved from
the following equation:

∂ui

∂t
= D

∂2ui

∂x2
, wherei = 1, 2, (10)

initial condition u1(x, 0) = δ(0),
u2(x, 0) = δ(l),

whereδ(x) is the Dirac delta function, with
∫ ∞
−∞ δ(x)dx = 1.

The solutions to the two diffusion functions are

u1(x, t) = 1√
4πDt

e−
x2

4Dt ,

u2(x, t) = 1√
4πDt

e−
(x−l)2

4Dt .
(11)

The difference of two probability distribution functions can
be calculated by the Kullback-Leibler divergence (K-L diver-
gence). In probability theory, the Kullback-Leibler divergence
is a non-symmetric measure of the difference between two
probability distribution functions. For probability distribution
functions P and Q, the K-L divergence is defined as the
integral:

DKL(P ||Q) =

∫ ∞

−∞
p(x) ln

p(x)

q(x)
dx, (12)
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wherep(x) and q(x) denote the probability density functions
of P andQ. Thus the difference of the two distributionsu1,
u2 can be formulated as:

DKL(u1||u2)

=
∫ ∞
−∞ u1(x) ln

u1(x)

u2(x)
dx,

=
∫ ∞
−∞

1
√

4πDt
e−x2/(4Dt) ln

1√
4πDt

e−x2/(4Dt)

1√
4πDt

e−(x−l)2/(4Dt)
dx,

=
∫ ∞
−∞

1
√

4πDt
e−x2/(4Dt)(

l2

4Dt
−

2lx

4Dt
)dx,

=
l2

4Dt
.

(13)
From equation (13), it is apparent that largel causes large

diffusion difference. We are concerned with the diffusion
time scale between chemical reactions. Thus we use the
mean life time with respect to the reaction. In the simple
reaction diffusion model, the mean life time of reaction is
τr = 1/kd. We require that the two molecules’ diffusion
probability distribution difference be smaller than a tolerable
threshold. If we set this threshold as5%, we will have an
analytic solution for the critical discretization size:

l2c = 0.05 × 4Dτr = 0.20
D

kd
, or lc ≈ 0.45

√

D

kd
. (14)

If we are a little more conservative to set the divergence
threshold as 1%, where we will achieve a more accurate and
safer simulation. The critical discretization size with respect
to the conservative threshold is:

l2c = 0.01 × 4Dτr = 0.04
D

kd
, or lc = 0.2

√

D

kd
. (15)

In the paper we will use5% as the threshold (and thus
formula (14)). Equation (14) and (15) satisfy Kuramoto’s

boundaryl ≪

√

D

kd
. And it specifies the “≪” relationship.

The discretization size smaller thanlc will provide a more
accurate simulation with heavier computational expense. For
a largerl, it will lead to larger simulation error with respect
to the homogeneous assumption. Note that when the diffusion
rateD → ∞, from (14) and (15) we getlc ≫ 0. That is the
”well-stirred” situation, and the ISSA reduces to the SSA.

In a general system, a species will be involved in many
reactions. However, the optimal discretization size for this
species still depends on the time scales of diffusion and
reaction. Equation (14) and (15) can still be applied, although
kd will be the overall change rate of this species rather than
the reaction rate for a simple reaction.

B. Numerical Experiment

Below we present the numerical experiment results for the
simple reaction-diffusion model (6). The parameters for this
simple model are given in table I.

We solve the chemical kinetics equations and simulate
the stochastic simulation with different discretization sizes.
Figure 1 gives the plot for the mean population within each

TABLE I
THE PARAMETER SET FOR THE ONE-VARIABLE MODEL

parameter value

L 1.0
kd 1.0
D 0.0005

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

position x

pr
ob

ab
ili

ty

 

 
theotical solution
bins=150
bins=100
bins=50
bins=20
bins=10

Fig. 1. Distribution density forB in the one-variable one-dimension simple
model. The parameters are: total length L=1.0,kd = 1.0, andD = 0.0005.
The stochastic simulation is averaged over 10,000 runs.

voxel for this simple model. As we derived above, a good

discretization sizel =
√

0.2 × D
kd

= 0.01 for the model
parameter set, which requires the domain be discretized into
aboutL/l = 100 voxels. We can see from the plot figure 1 that,
When the discretization size reduces to0.01, the stochastic
result matches well to the theoretical result, and larger dis-
cretization sizes lead to greater errors. In this simple model,
the5% K-L divengence threshold is good enough to obtain an
accurate simulation.

IV. M ULTISCALE DISCRETIZATION

A. Theoretical Analysis

Typical biological systems contain multiple species and
reactions. The reaction and diffusion rates may come across
a wide scale. From equation (14) we can see that fast
reaction (largekd) and slow diffusion (smallD) lead to
small discretization sizel. For a multispecies system, if a
uniform discretization is used,l has to using the largestkd

and the smallestD, and a small discretization sizel leads to
heavy computational burden. Here with the ideal discretization
size calculated in previous section, we propose a multiscale
discretization method, which assigns a proper discretization
size to each species, if necessary, depending on the diffusion
rates and the chemical kinetics.

Consider a biochemical system withN species
{S1, . . . , SN} interacting through M reaction channels
{R1, . . . , RM}. The domain Ω is partitioned differently
for different species, according to the diffusion and
reaction rate constants of each species.{h1, . . . , hN}
and {l1, . . . , lN} are the specific discretization bin numbers
and bin sizes for species{S1, . . . , SN} respectively. Each
species in the domain is represented by the state vector
Xi(t) = [Xi,1(t), . . . , Xi,hi

(t)], whereXi,k(t) is the number
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of molecules of speciesSi in k-th voxel of that species at
time t.

..... ....

........

Si

Sj

0 L

....

1 2 u m

1 2 p q n

Fig. 2. The diagram for multiscale discretization. The total space have a
lengthL. SpeciesSi is assignedm bins, whileSj n bins. Within the range
of the u-th bin for Si lies thep-th to q-th bins forSj.

With the multiscale discretization method, the RDME needs
some modification to describe the newly formed system.
The diffusion can still be modeled as the Brownian motion
across neighboring bins, except that different species may
diffuse across different-sized bins. The dynamics for diffusion
of speciesSi from k-th bin into the neighboring bins are
characterized by the diffusion propensity functiondik = D/l2i ,
wheredikdt gives the probability that one molecule ofSi atk-
th voxel will jump into the neighboring bins in the infinitesimal
time interval[t, t + dt). More concerns must be put into the
calculation of the reactive transformation propensity. With
the multiscale discretization strategy, the chemical reaction
between different species may not take place within the same
bins. However, they may react when their resided bins overlap
with each other. The reaction propensity function has to
be modified accordingly, based on the assumption that each
species in each of its own voxels must be homogeneous. The
propensity functions for several typical reactions are given
in Table II. Here we show two speciesSi and Sj , where
the u-th bin of Si overlaps with theq-th bin of Sj, as
in figure 2. Table II gives the propensity for some typical
chemical reaction, along with the chemical kinetics reaction
rates.

With multiscale discretization, we reduce the propensity for
diffusion by increasing the discretization bin length to lower
the computational cost. The total chemical reaction propensity
and reaction firings number is not affected by the multiscale
discretization.

B. Numerical Experiment

Our numerical experiment is based on a reaction-diffusion
model of Turing pattern. In this model, the full domain length
L is set to 1.3 unit length. The reactions schema and propensity
functions in the domain are shown in equation (16), where
P denotes polymer,M denotes monomer, andU denotes
a catalyst that promotes the polymerization. The monomer
is constantly synthesized and exponentially degraded. The
monomersM polymerize toP with the help of the catalyst
U . CatalystU is constantly synthesized and degraded with
a constant reaction ratekdu. The monomers, polymers, and
catalysts diffuse within the whole domain length. At one
end, there exist a binding site for catalystU , which causes
the catalyst level higher than the other end. Because of the
inhomogeneity of the catalyst, the polymers and the monomers
distribution are inhomogeneous too. The polymers, monomers,

TABLE II
PROPENSITIES FOR SOME TYPICAL CHEMICAL REACTION FOR THE

SPECIESSi IN u-TH VOXEL IN FIGURE 2 UNDER MULTISCALE

DISCRETIZATION METHOD, ALONG WITH THE CHEMICAL REACTION RATE

reaction type propensityaiu(Xiu)dt reaction rater
null −→ Siu ksyn ksyn

Siu −→ null kdegXiu kdeg[Xiu]a

Siu −→ Sjl
b k1Xiu k1[Xiu]

Siu + Sjl −→ Sk
ka

li

P

l XiuXjl
c ka[Xiu][Xjl]

d

aXiu denotes the population number ofSi in u-th bin, while
[Xiu] denotes the concentration ofSi in u-th bin

bl is the bins ofSj that overlap withi-th bin of Si.
cXjl is the total population ofSj with the bins overlapping with

u-th bin of Si. For the bins of which only part of it are in that
range, the population included in the formula is proportional to the
length within the range

dthe [Xjl] is the average concentration ofSj within the length
of the u-th bin of Si

TABLE III
THE PARAMETER SET AND INITIAL CONDITIONS FOR THE2-VARIABLE

MODEL

parameter value parameter value
ks 9.1 Dp 0.1

kdeg 0.05 Dm 100
kdp 5 Du 1.0
k1 10 0
k2 0.01
ksu 0.1 kdu 0.01
kas 2 kds 0.001

and the catalysts diffuse at different rates, making it a simple
model to test our multiscale discretization method.

null −→ Mi, a1 = kslm;
Mi −→ null, a2 = kdegMi;
Mi −→ Mi+1, a3 = Dm

l2m
Mi;

Mi −→ Mi−1, a4 = Dm

l2m
Mi;

Mi −→ Pj , a5 = k1Mi;

Mi −→ Pj ; Uk, a6 =
k2

l2P lu
MiP

2
j Uk;

Pj −→ Mi, a7 = kdpPj ;
Pj −→ null, a8 = kdegPj ;

Pj −→ Pj+1, a9 =
Dp

l2p
Pj ;

Pj −→ Pj−1, a10 =
Dp

l2p
Pj ;

null −→ Uk, a11 = ksulu;
Uk −→ null, a12 = kduUk;

Uk −→ Uk+1, a13 = Du

l2u
Uk;

Uk −→ Uk−1, a14 = Du

l2u
Uk;

Uright −→ Ubind, a15 = kasUright;
Ubind −→ Uright, a16 = kdsUbind;

(16)

The parameter values are in the table III. All the species
population are set to zero as the starting point.

For this system, the mean life timeτr of one species
is proportional to the summation of propensities of all re-
actions involved with this species. The table IV shows the
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TABLE IV
THE CRITICAL DISCRETIZATION BIN SIZE FOR THE2-VARIABLE MODEL

Species lc number of bins

M 0.18(0.009)a 7(150)
P 0.028 46
U 0.14 10

aU only have a high population at right end, so the discretization
size needs to be much smaller than the other bins
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Fig. 3. The mean population over the whole domain for different dis-
cretization. A shows the determinstic solutions. B is the stochastic simulation
result where the domain is partitioned into 100 bins for all species. C is for
multiscale discretization, where the domain was equally partitioned for each
single species. D is the result whereP and U is uniformly partitioned into
different bins, while M has a much smaller bins at the right end, due to the
large reaction rate at the end. The other domain is equally partioned into 10
bins for M .

critical discretization length for polymersP , monomersM
and catalystsU , based on the parameter set. Polymers are
spatially inhomogeneous. Besides, the monomer and catalyst
with in the whole domain are always at very low level, 0
for most bins. The critical discretization size forM is a little
complicated, because of the high order polymerization reaction
with catalyst.

To run the Gillespie’s algorithm over this model, it needs
hundreds of reaction channels to depict the system. Here
we applied the rule-based model technique, where the same
reaction type of a species is grouped into one rule. By the
rule based modeling, we not only simplify the the reaction
propensity calculation, but also improve the time efficiency.
A particle based method, network-free algorithm (NFA) [13]
was proposed for the rule based model. The NFA calculates
the propensity for a rule. The firing time and rule index
are calculated as in Equation (3). For each rule, reactant
candidate list are created to store all particles that satisfy the
rule condition. After a rule is selected, reacting particles in
that rule are selected from corresponding candidate list by
generating uniform numbers to calculate the indices of the
reacting particles.

To test the accuracy and time efficiency of this multiscale
discretization method, we run the simulation for different
discretization sizes. Figure 3 shows the average population
distribution over the whole domain under some typical dis-

TABLE V
THE AVERAGE CPU TIME OVER 100RUNS

Multiscale discretization Model
Mbins 100 50 10
Pbins 100 100 50
Ubins 100 50 10

CPU time 28min 11min 1min15s

TABLE VI
THE AVERAGE PERCENTAGE OF THE DIFFUSION RULE FIRINGS OVER100

RUNS

Multiscale discretization Model
Mbins 100 50 10
Pbins 100 100 50
Ubins 100 50 10

Mi → i + 1 3.1e8(45.2%) 7.5e7(38.4%) 6.8e6(26.1.0%)
Mi → i − 1 3.1e8(45.0%) 7.4e7(38.0%) 6.5e6(26.8%)
Pi → i + 1 2.1e7(3.0%) 2.0e7(10.3%) 4.8e6(19.0%)
Pi → i − 1 2.1e7(3.2%) 2.2e7(11.2%) 5.2e6(22.34%)
Ui → i + 1 1.2e7(1.7%) 1.8e6(0.9%) 1.8e4(0.03%)
Ui → i − 1 1.2e7(1.7%) 1.8e6(0.8%) 1.9e4(0.04%)

cretization cases: plot A shows the deterministic solutions.
Plot B is the stochastic simulation result where the domain
is partitioned into 100 bins for all species. C is for multiscale
discretization for different species, where the domain was
uniformlly partitioned for each single species. For plot D,P
andU are uniformly partitioned into corresponding bins, but
we use a nonuniform discretization strategy forM . Because
the catalytic polimerization has a much larger propensity
in the right end, we assign smaller bin size forM at the
right end. From the result, even though the plot D has a
larger discretization bin size, the result is still closer to the
deterministic result. Besides, when we apply the nonuniformly
discretization for M, the larger discretization size leads to less
simulation CPU time. Table V shows the simulation time for
this model under different discretization strategy.

The multiscale discretization technique does not affect the
number of the reactive firings, only the diffusive transitions
between the neighboring bins are reduced. Table VI shows
the percentage of the diffusion rule firings. As it shows in
the table, when the discretization bin length is twice large,
the diffusive transitions are almost one quarter of the original
firings.

For the other chemical reactions, the reactions firings keeps
similar, only fluctuated over the stochastic effect. The average
firings for different runs are listed in table VII.

From the statistics we collected, we can conclude that the

TABLE VII
THE AVERAGE NUMBER OF CHEMICAL REACTION FIRING OVER25 RUNS

Rules num of firings Rules num of firings

null → M 2989.5 P →null 2701.1
M → null 46.5 M →P; U 263977.5
M → P 9190.5 null→ U 32.5
P → M 270233.4 U→null 5.75
U → ur 25.7 ur → U 1.8
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multiscale discretization for different species, based on their
different kinetics, can decrease the CPU time for stochastic
simulation. A larger discretization bin size leads to smaller
diffusion propensity between neighboring bins, which further
shorten the simulation time.

V. CONCLUSION

In this work we have introduced a new method for efficient
stochastic simulation of reaction-diffusion system. With the
idea of critical discretization bin length, we assign each species
with a proper bin length, which reduces the possible diffu-
sion transition between neighboring bins. Larger discretization
sizes may bring larger simulation errors. However, we can set
a threshold for tolerable error and make a trade off between
accuracy and efficiency.

The critical discretization bin length is easier to compute for
the systems with only simple chemical reactions, such as first
order reaction. The higher order reaction will make the case
complicated. We believe the idea of multiscale discretization
can be extended to 2-D or 3-D reaction-diffusion system
simulation in a rather straightforward way.
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Abstract - It is shown that YinYang bipolar dynamic logic 
and bipolar quantum linear algebra make quantum cellular 
combinatorics possible. Basic structures of the new type of 
combinatorics are introduced and discussed from an 
equilibrium and non-equilibrium perspective. These include 
YinYang-1-element, YinYang-2-element, .., up to YinYang-n-
element cellular networks. The utility of the new 
combinatorics in biological computing is highlighted. 
Philosophical distinctions of the new approach are drawn 
from existing approaches. 
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1 Introduction 
  Based on YinYang bipolar dynamic logic (BDL) and 
bipolar quantum linear algebra (BQLA) [Zhang 2011a], this 
paper introduces the concepts of quantum cellular 
combinatorics (QCC). Algebraic models and graphs of 
YinYang-1-element, YinYang-2-element, .., up to YinYang-
n-element cellular networks are presented from an 
equilibrium or non-equilibrium perspective. The utility of the 
new approach in biological computing is highlighted. 
Philosophical distinction of this work is drawn from existing 
approaches.  

 The remaining sections are organized as follows: 
Section 2 presents a review on BDL, logically definable 
causality, and bipolar quantum linear algebra. Section 3 
presents the basic concepts and graphs of QCC. Section 4 
examines the properties of different QCC structures. Section 
5 draws a few conclusions. 

2 Background 
2.1 Bio-Quantum Computing 
 Despite the desire and efforts to bring quantum 
computing into the biological world, bio-quantum computing 
is still in its infant stage. A key barrier is the mystery of 
quantum entanglement. Although, numerous reported 
experimental successes in testing quantum entanglement have 
been reported, quantum non-local connection or entanglement 
remains logically unresolved. Many scientists believe that 

something fundamental must still be missing from the big 
picture. The missing fundamental is often traced to the 
ultimate unknown cause-effect relationship in quantum 
entanglement. Without logically definable causality, quantum 
entanglement could be deemed something beyond the realm 
of science because, if Aristotle’s causality principle is the 
doctrine of all sciences, there should be no science beyond 
the doctrine. 

2.2 YinYang Bipolar Quantum Lattice and 
Bipolar Dynamic Logic (BDL) 

 Aristotle’s causality principle became controversial in 
the 18th century after David Hume challenged it from an 
empirical perspective. Hume argued that causation is 
irreducible to pure regularity. Bipolar dynamic logic (BDL) 
has changed this situation in a fundamental way. 
 BDL is defined with Eq. (1)-(12) on a bipolar quantum 
lattice B1 = {-1.0}{0,+1} in background independent 
YinYang bipolar geometry (Fig. 1). It provides logically 
definable causality [Zhang 2011]. In B1, (0,0), (0,1), (-1,0),  
and (-1,1) stand, respectively, for eternal equilibrium, non-
equilibrium, another non-equilibrium; and equilibrium. The 
laws in Fig. 2 hold on B1. 

Bipolar Partial Ordering:  (x,y)(u,v), iff |x||u| and yv.             (1) 
(Note: The use |x| through this paper is for explicit bipolarity only.) 
Complement: (x,y)(-1,1)-(x,y)(x,y)(-1-x,1-y).                    (2) 
Implication: (x,y)(u,v)(xu,yv)(xu), yv).                         (3) 
Negation:     (x,y)  (y,x).                                                  (4) 
Bipolar least upper bound (blub):  
blub((x,y),(u,v))(x,y)(u,v)(-(|x||u|),yv);                                  (5) 
Bipolar greatest lower bound (bglb):    
bglb((x,y),(u,v))  (x,y) (u,v)  (-(|x||u|),yv));                              (6) 
-blub:  blub((x,y),(u,v)) (x,y)(u,v)  (–(yv), (|x||u|));                (7) 
-bglb: bglb((x,y),(u,v)) (x,y)(u,v) (– (yv), (|x||u|)));                 (8) 
Cross-pole greatest lower bound (cglb): 
cglb((x,y),(u,v))(x,y)(u,v)(-(|x|v||y|u|),(|x|u||y|v|));       (9) 
Cross-pole least upper bound (cglb): 
club((x,y),(u,v))(x,y)(u,v)(-1,1)–((x,y)(u,v));                         
(10) 
-cglb: cglb((x,y),(u,v))  (x,y)-(u,v)  ((x,y)(u,v));                  (11) 
-club: club((x,y),(u,v))(x,y)-(u,v) ((x,y) (u,v)).                   (12)

 

 
Fig. 1.  Hasse diagrams of  B1 in YinYang bipolar geometry 
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Excluded Middle  (x,y) (x,y)  (-1,1);  (x,y)(x,y)  (-1,1); 
Non-contradiction ((x,y)&(x,y))(-1,1);  

((x,y)&(x,y))(-1,1); 
Linear Bipolar 
DeMorgan’s 
Laws 

((a,b)(c,d))  (a,b)(c,d);        
((a,b)(c,d))  (a,b)&(c,d); 
((a,b) (c,d))  (a,b)(c,d);    
((a,b) (c,d))  (a,b)&(c,d); 

Non-Linear 
Bipolar 
DeMorgan’s  
Laws 

((a,b) (c,d))   (a,b) (c,d);   
((a,b)  (c,d))   (a,b) (c,d); 
((a,b)-(c,d))   (a,b)- (c,d);   
((a,b)- (c,d))   (a,b)- (c,d) 

Fig. 2.  Bipolar laws 

Unipolar Axioms (UAs): 
UA1:  ();  
UA2: (()) 
        (()());  
UA3: )(());  
UA4: (a) ;      (b) ;   
UA5: (); 

Bipolar Linear Axioms: 
BA1: (-,+)((-,+)(-,+));  
BA2: ((-,+)((-,+)(-,+)))  
         (((-,+)(-,+))((-,+)(-,+)));  
BA3: ((-,+)(-,+))   (((-,+)(-,+))  (-,+));  
BA4:  (a) (-,+)&(-,+)(-,+);          (b) (-,+)&(-,+)(-,+); 
BA5:  (-,+)((-,+)((-,+)&(-,+)));   

Inference Rule  
– Modus Ponens (MP): 
UR1: (()). 

Non-Linear Bipolar Universal Modus Ponens (BUMP) 
BR1: IF ((-,+)(-,+)), 
[((-,+)(-,+))&((-,+)(-,+))], THEN [(-,+)(-,+)]; 

Predicate axioms and rules 
UA6: x,(x) (t); 
UA7: x, () (x,);  
UR2–Generalization: x,(x) 

Bipolar Predicate axioms and Rules of inference 
BA6: x,(-(x),+(x))(-(t),+(t)); 
BA7: x,((-,+)(-,+))((-,+)x,(-,+);  
BR2-Generalization:  (-,+)x,(-(x),+(x)) 

Fig. 3(a)  Bipolar axiomatization 

=(-,+), =(-,+), =(-,+), and =(-,+)  B1, 
[( ) &[ } () ()]. 

Two-fold universal instantiation: 
1) Operator instantiation:   as a universal operator can be bound to &, 

, &, , , ,  , . ( ) is designated (bipolar true); ((-

,+)(-,+)) is undesignated. 
2) Variable instantiation:  
      x, (-,+)(x) (-,+)(x); (-,+)(A);  (-,+)(A).   

Fig. 3(b).   Bipolar Universal Modus Ponens (BUMP) 

 
Fig. 4. (a) Linear; (2) Cross-pole; (c) Oscillatory; (d) Entangled 

 An axiomatization of BDL  (Fig. 3) has been proven 
sound and complete [Zhang & Zhang 2004; Zhang 2005, 
2011]. The key element in the axiomatization is bipolar 
universal modus ponens (BUMP) which is a bipolar 
tautology, an equilibrium-based non-linear bipolar dynamic 
generalization of classical modus ponens (MP) and a logical 
representation of bipolar quantum entanglement. 

 BDL generalizes Boolean logic to a quantum logic 
where  and - are “balancers”;   and  are intuitive 
“oscillators”; - and - are counter-intuitive “oscillators”; & 
and &- are “minimizers.” The linear, cross-pole, bipolar 
fusion, oscillation, interaction/entanglement properties are 
depicted in Fig. 4. Based on BDL, bipolar equilibrium 
relations, bipolar linear algebra (BLA), bipolar cellular 
networks [Zhang et al. 2009], bipolar quantum computing 
have been presented [Zhang 2011]. Most interestingly, 

equilibrium-based bipolar causality is now logically 
definable1. 

2.3 Bipolar Causality and Relativity 
 BUMP makes bipolar causality logically definable in 
physical terms. It simply states: For all bipolar equilibrium 
functions , , , and , IF ()&(), THEN the 
bipolar interaction () implies that of (). With the 
emergence of space and time, BUMP leads to a complete 
background independent theory of YinYang bipolar relativity 
defined by Eq. (13) and a partial solution to Hilbert’s Problem 
6 [Zhang 2011]. 

a,b,c,d, (a(tx,p1))(c(ty,p3))]&[(b(tx,p2))(d(ty,p4))]  

 [(a(tx,p1))(b(tx,p2))(c(ty,p3))(d(ty,p4))].     (13) 

 In Eq. (13),  a(t1,p1), b(t1,p2), c(t2,p3), d(t2,p4) are any 
bipolar agents where a(t,p) stands for “agent a at time t and 
space p” (tx and ty can be the same or different points in time 
and px and py can be the same or different points in space). An 
agent without time and space is assumed at any time t and 
space p. An agent at time t and space p is therefore more 
specific. Time and/or space can be omitted in some discussion 
for simplicity. 

2.4 Bipolar Quantum Linear Algebra (BQLA) 
 The bipolar lattice B1= {-1 0}  {0 1} and bipolar fuzzy  
lattice BF = [-1 0]  [0 1] can be naturally extended to the 
infinite bipolar lattice B =  [-  0]  [0  +]. While B1  and 
BF are bounded complemented unit square crisp/fuzzy 
lattices, respectively, B is unbounded. (x,y),(u,v) B, two 
major operations can be defined as shown in Eq. (4a) and 
(4b). 

Tensor Bipolar Multiplication:   
(x,y)  (u,v)  (xv+yu, xu+yv);        (14a) 

Bipolar Addition:   

(x,y) + (u,v)  (x+u, y+v).          (14b) 

 In Eq. (14a),   is a bipolar cross-pole multiplication 
operator with the infused non-linear bipolar tensor semantics 
of --=+, -+=+-=1, and ++=+; in Eq. (14b) + is a linear bipolar 
addition or fusion operator. With the two basic operations, 
classical linear algebra is naturally extended to BQLA with 
bipolar fusion, diffusion, interaction, oscillation, and quantum 
entanglement properties. These properties enable biological 
agents to interact through bipolar bioelectromagnetic fields 
such as atom-atom, cell-cell, heart-heart, heart-brain, brain-
brain, organ-organ, and genome-genome bio-electromagnetic 
quantum fields as well as biochemical pathways in energy 
equilibrium or non-equilibrium. Thus, the bipolar properties 
are suitable for equilibrium/non-equilibrium based bipolar 
dynamic modeling with quantum aspects where one kind of 
equilibrium/non-equilibrium can have causal effect to another 
such as I/O energy equilibrium/non-equilibrium.  

                                                           
1 Causality discussed in this work meant to be those with bounded cause and effect. Of course, 
causality is undefinable without bounded cause or effect. 
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 Given an input bipolar row vector matrix E=[ei]=[(ei
-, 

ei
+)]) B,  i=1,2,..,k, and a bipolar connectivity matrix M = 

[mij] = [(mij
-, mij

+)], i=1,2,..,k and j = 1,2,..,n, we have V = E 
 M = [Vj] = [(vj

-, vj
+)]. While E is the input vector to a 

dynamic system characterized with the connectivity matrix 
M, V is the result row vector with n bipolar elements. 

Vj= )(
1

ij

k

i
j me 



.              (15) 

 Eq. (15)  has the same form as in classical linear algebra 
except for: (i) ej and mij are bipolar elements; (ii) the 
multiplication operator is defined in Eq. (14a) on bipolar 
variables with bipolar (quantum) entanglement; and (iii) the 

 operator is based on the addition operation defined on 

bipolar variables in Eq. (14b).  

 BQLA provides a new mathematical tool for modeling 
YinYang-n-element or YinYang-n-element cellular networks 
with explicit YinYang representation and equilibrium, quasi- 
or non-equilibrium states for energy and stability analysis. In 
this case, energy in a row matrix can be considered as 
biological energy of biological elements or agents such as 
energy for repression and activation of regulator proteins [Shi 
et. al 1991]; energy embedded in a connectivity matrix can be 
considered organizational energy of the biological agents such 
as the bipolar capacities of biological pathways.  

 YinYang Bipolar Elementary Energy. Given a bipolar 
element e=(e-, e+),   

(i)   ε−(e) = e- is the Yin or negative energy of e;   
(ii) ε+(e) = e+ is the Yang or positive energy of e;   
(iii) ε(e) = (ε−(e),ε+(e)) = (e-, e+) is the YinYang bipolar 

energy  measure of e;  
(iv) The absolute total |ε|(e) = |ε−|(e) +|ε+|(e)  is the total 

energy of e;  
(v) εimb(e)=|ε+|(e)  |ε-|(e) is the  imbalance of e; 
(vi) EnergyBalance(e) = (|ε|(e)−|εimb(e)|)/2.0  

= min(|e-|, e+); 
(vii) Harmony(e)=Balance(e)= (|ε|(e) − |εimb(e)|)/|ε|(e). 

 YinYang Bipolar System Energy. Given an k n 
bipolar matrix M = [mij] = (M−,M+) = ([mij

−], [mij
+]), where 

M− is the Yin half with all the negative elements and M+ is the 
Yang half with all the positive elements,  

(i)    ε−(M) = 
 


k

i

n

j
ij

1 1

  = 
 


k

i

n

j
ijm

1 1

is the negative or Yin 

energy of M;   

(ii) ε+(M) = 
 


k

i

n

j
ij

1 1

  = 
 


k

i

n

j
ijm

1 1

is the positive or Yang 

energy of M;  
(iii) the polarized total, denoted ε(M) = (ε−(M), ε+(M)) is the 

YinYang bipolar energy of M of M; 
(iv) the absolute total, denoted |ε|(M) = |ε−|(M) + |ε+|(M), is 

the total energy of M; 

(v) the energy subtotal for row i of M is denoted 

|ε|(Mi*)=|


n

j
ij

0

 |; 

(vi) the energy subtotal for column j of M is denoted |ε|(M*j) 

= |


k

i
ij

0

 |; 

(vii)  εimb(M) = 
 

k

i

n

j
ijimp m

1 1

)(  = 
 


k

i

n

j

mm
1 1

-
ijij |) | - (  is the 

YinYang imbalance of M; 
(viii) balance or harmony or stability of M is defined as 

Harmony(M) = Balance(M) = Stability(M) = (|ε|(M) − 
|εimb(M)|)/|ε|(M); 

(ix) the average energy of M is measured as h = (ε−(M)/(kn), 
ε+(M)/(kn)) where kn=kn  is the total number of 
elements in M. 

 Law 1. Elementary Energy Equilibrium Law. 
(x,y) B =[-, 0][0, +] and (u,v)  BF = [-1,0][0,1], 
we have  
(a) [ ||(u,v)  1.0]  [ ||((x,y) (u,v))  ||(x,y) ]; 
(b) [ ||(u,v)<1.0]  [ ||((x,y) (u,v)) < ||(x,y) ]; 
(c) [ ||(u,v)>1.0]  [ ||((x,y) (u,v)) > ||(x,y) ]. 

 Equilibrium/Non-Equilibrium System. A bipolar 
dynamic cellular system S is said an equilibrium system if the 
system’s total energy ||S remains in an equilibrium state or 
d(||S)/dt=0 without external disturbance. Otherwise it is said 
a non-equilibrium system. A non-equilibrium system is said a 
strengthening system  if d(||S)/dt>0; it is said a weakening 
system if d(||S)/dt<0.   

 Law 2. Energy Transfer Equilibrium Law. Given an 
nn input bipolar matrix E = [eik] = [(eik

-, eik
+)],  0<i,kn, an 

nn bipolar connectivity matrix M = [mkj] = [(mkj
-, mkj

+)], 
0<k,jn, and V = E  M = [Vij] = [(vij

-, vij
+)],  k,j, let 

|ε|(Mk*) be the k-th row energy subtotal and let |ε|(M*j) be the 
j-th column energy subtotal, we have, k,j,    

(a) [|ε|(Mk*)  |ε|(M*j)  1.0 ]   [||(V)   ||(E)]; 
(b) [|ε|(Mk*)  |ε|(M*j)   1.0 ]   [||(V) < ||(E)]; 
(c) [|ε|(Mk*)  |ε|(M*j) > 1.0 ]   [||(V) > ||(E)]. 

 From the above definitions and laws it is clear that 
without YinYang bipolarity, classical linear algebra cannot 
deal with the coexistence of the Yin and the Yang of bipolar 
elements and their interactions and quantum entanglement. 

 Law 3. Law of Energy Symmetry (Zhang et al. 2009). 
Let t=0,1,2,…, Y(t+1)=Y(t) M(t), |ε|Y(t) be the total energy 
of an YinYang-N-Element vector Y(t),  |ε|M(t) be the total 
energy of the connectivity matrix M(t), |ε|Mi*(t) be the energy 
subtotal of row i of M(t), |ε|M*j(t) be the energy subtotal of 
column j of M(t).  

1) Regardless of the local YinYang balance/imbalance of 
the elements at any time point t, the system will remain a 
global energy equilibrium if, t, d(|ε|Y(t))/dt  0,  or 
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(a)i,j, [|ε|(Mi*)  |ε|(M*j)  1.0 ] and (b) no external 
disturbance to the system after the initial vector Y(0) is 
given. 

2) Under the same conditions of (1), if, t,  |ε−(M*j)| >0 and 
|ε+(M*j))| >0, all bipolar elements connected by M will 
eventually reach a local YinYang balance (-|ε|Y(t)/(2N), 
|ε|Y(t)/(2N)) at time t. 

 Law 4. Law of Broken Symmetry (Growing) (Zhang et 
al. 2009). For the same system as for Law 3, if,i,j, |ε|(Mi*)  
|ε|(M*j) > 1.0, regardless of the local YinYang 
balance/imbalance of the elements at any time point t,  the 
system energy will increase and eventually reach a bipolar 
infinite (-,) state without external disturbance or we 
have,t, d(|ε|Y(t))/dt  0.   

 Law 5. Law of Broken Symmetry (Weakening) (Zhang 
et al. 2009). For the same system as for Law 3, if, i,j, 
|ε|(Mi*)  |ε|(M*j) < 1.0, regardless of the local YinYang 
balance/imbalance of the elements at any time point t, the 
system energy will decrease and eventually reach a (0,0) state 
without external disturbance or we have,t, d(|ε|Y(t))/dt < 0, 
until |ε|Y(t) = 0. 

3  Bipolar Quantum Cellular Combinatorics 
3.1 An Equilibrium/Non-Equilibrium Approach 
 Combinatorics is a branch of mathematics concerning 
the study of finite or countable discrete structures. Aspects of 
combinatorics include counting the structures of a given kind 
and size, deciding when certain criteria can be met, and 
constructing and analyzing objects meeting the criteria, 
finding "largest", "smallest", or "optimal" objects, and 
studying combinatorial structures arising in an 
algebraic context, or applying algebraic techniques to 
combinatorial problems (algebraic combinatorics). 

 Combinatorial problems arise in many areas of pure 
mathematics and also have many applications. One of the 
oldest and most accessible parts of combinatorics is graph 
theory, which also has numerous natural connections to other 
areas. Combinatorics is used frequently in computer 
science to obtain formulas and estimates in the analysis of 
algorithms. 

 BDL and BQLA provide a new mathematical basis for 
bipolar quantum combinatorics. While existing combinatorics 
is truth-based, the new approach is equilibrium or non-
equilibrium based focused on the negative or positive energies 
[Hawking and Mlodinow 2010] or the Yin and Yang of nature 
[Gore & van Oudenaarden, 2009] [Shi et al. 1991] [Zhang 
and Chen 2008][Zhang et. al 2009][Zhang 2011]. Based on 
BDL and BQLA, in this work we discuss the graphical 
aspects and their quantum cellular properties.  

3.2 Combinatorial YinYang-1-Element Graph 
 Fig. 5 shows the structure of a YinYang-1-element as 
the most basic structure of QCC. This element seems to be 
rather simple. But a closer examination reveals its 

quintessential role as the smallest and, at the same time, the 
largest structure in the new type of combinatorics for quantum 
cellular computing. 

 
Fig. 5. YinYang-1-Element 

 First, we consider it as a smallest equilibrium or non-
equilibrium structure. In this case, it can be used as a model 
for a particle-antiparticle pair variable E1= (e-,e+) or an energy 
input-output variable. For instance, if (e-,e+)=(-1,0) it can 
represent an electron or non-equilibrium; if (e-, e+)=(0,+1) it 
can represent a positron or another non-equilibrium;  if (e-, 
e+)=(-1,+1) it can represent an electron-positron pair or an 
energy equilibrium; if (e-,e+)=(0,0) it can represent an 
annihilation of the pair or eternal equilibrium.  

 Interestingly, the reflexive link L1 is also bipolar that 
can add dynamic change or mutation to the basic structure. 
For instance, when n is odd we have (-1,0)  (-1,0)  ..  (-
1,0) = (-1, 0)n = (-1,0) and when n is even (-1,0)n = (0,+1). 
This property seems rather bizarre but it can represent the 
most fundamental natural or biological processes in 
microscopic as well as macroscopic worlds. For instances, a 
subatomic particle can change polarity trillion times per 
second [Fermilab 2006]; some genetic agent exhibits 
YinYang bipolar repression-activation (-,+) abilities in gene 
expression regulation [Shi et al. 1991]. 

 Secondly, we consider YinYang-1-element as the largest 
equilibrium or non-equilibrium. Evidently, our universe can 
switch from big bang (0,+1) state to a black hole state (-1, 0). 
Interestingly, it may also switch from a black hole state to a 
big bang state. In that case, our universe would be a cyclic 
process where space and time would both be curved. 
Remarkably, we have (-1,0)(-1,0)2 = (-1,0)(0,+1)=(-1,+1) 
which shows a self-adaptation to equilibrium. 

 Thirdly, we consider YinYang-1-element as a medium-
sized equilibrium or non-equilibrium. This may sound 
impossible. But, evidently, a person’s mind can be depression, 
mania, equilibrium, eternal equilibrium or between. Actually, 
all human beings have to be in either mental equilibrium or 
non-equilibrium or between. To certain extent, we are all 
mentally bipolar, either in equilibrium or disorder or between 
because no one’s mind can escape equilibrium or non-
equilibrium and bipolar equilibrium/non-equilibrium is most 
fundamental. 

3.3 Combinatorial YinYang-2-Element Graph 
 Fig. 6 shows the structures of a YinYang-2-element as 
the 2nd most basic structure of QCC for bipolar interaction. 
Based on YinYang-1-element these structures added two 
more bipolar links between the two bipolar elements in 
equilibrium or non-equilibrium (green: harmonic; red: 
positive; blue: negative). The two more directed links can be 
simplified to L3 as shown in Fig. 6(d). The link weight of L3 
can be any (x,y) in B . For instance, where (0,0) shows no 
interaction; (-1,0) shows conflict or inhibition to each other; 
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(0,+1) shows coalition or excitation to each other; (-1,+1) 
shows harmonic interaction. As a basic combinatorial 
structure for equilibrium or non-equilibrium bipolar 
interaction, YinYang-2-element is critical in characterizing 
bipolar quantum entanglement for building larger 
combinatorial networks.  

 

Fig. 6. YinYang-2-Element 

3.4 YinYang-N-Element Structures 

 Fig. 7 shows YinYang-3-element structures; Fig. 8 
shows YinYang-4-element structures; Fig. 9 shows an 
YinYang-5-element structure. Fig. 10 shows YinYang-n-
element structures. The 3-element and 4-element structures 
both show some interesting properties that deserve further 
investigation. The YinYang-5-element structure is historically 
prominent in Chinese cosmology and traditional Chinese 
medicine [Zhang and Chen, 2008; Zhang 2011]. The 
YinYang-n-element structure is central in QCC and further 
discussed in the next section. 

 
Fig. 7. YinYang-3-element 

 
Fig. 8. YinYang-4-element 

 

Fig. 9. YinYang-5-element 

 
Fig. 9. YinYang-n-element 

4 Properties of Bipolar Quantum Cellular 
Combinatorics 

4.1  Quantum Cellular Properties 
 The YinYang-n-element structure is essential and 
general in QCC. First, it is quantum in nature due to bipolar 
quantum entanglement. Secondly, it is well defined based on 
BQLA and Laws 1-5. Thirdly, it forms a basis for an 
equilibrium or non-equilibrium-based computing paradigm or 
a theory of automata. Fourthly, it is scalable for upward 
integration. Fig. 10 shows such an integration with well-
defined properties. The random link weights can be optimized 
for different applications [Jaeger, Chen & Zhang 2009] 
[Zhang 2011a ]. 

 
Fig. 10. Integration of YinYang-N-Elements 

 QCC shows a number of unifying properties. These 
include particle-wave unification, matter-antimatter unifica-
tion and quantum-cellular unification [Zhang 2011a,b]. Fig. 
11 shows a combinatorial unification of matter and antimatter 
atoms with YinYang-n-element bipolar quantum cellular 
automata [Zhang 2011b]. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11 (a)  Bipolar representation of a hydrogen; (b) YinYang-N-Elements; 
(c) Matter atom; (d) Antimatter atom 
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 Stimulation of disturbance can be visualized as quantum 
entangled particle-waves with energy symmetry (e.g. Fig. 12). 
It can be shown that any bipolar harmonic wave can be 
generated with BQLA. This property makes it possible for 
system modeling of biological and neural networks to achieve 
bipolar equilibrium, non-equilibrium, harmony or disharmony 
[Zhang, Chen & Bezdek 1989] [Zhant et. al 1992] [Zhang 
2003] [Zhang, Pandurangi and Peace 2007] [Jaeger, Chen & 
Zhang 2009] [Zhang et al 2009] [Shi et. al 1991] [Jacobsen & 
Skalnik 1999] [Ai, Narahari & Roman 2000] [Palko et. al 
2004][Wilkinson, Park & Atchison 2006] [Liu et. al 2007] 
[Vasudevan, Tong and Steitz 2007]  

 
Fig. 12. YinYang particle-wave forms of energy rebalance  

after a disturbance to one element 

 It sounds like an unbelievable hype but it is not because 
nothing in the universe including the universe itself can 
escape from equilibrium or non-equilibrium whose bipolar 
forms are the most forms that lead to logically definable 
causality. For instances, (1) in a black hole all truth will be 
gone but particle-antiparticle bipolarity will miraculously 
survive due to Hawking radiation or particle/antiparticle 
emission; (2) every living being must have input and output 
energy; (3) without bipolar mental equilibrium we would all 
be in bipolar disorder and there would be no truth [Zhang et. 
al 2011]. From (3) it can be asserted that, to a certain extent, 
equilibrium or non-equilibrium is a unifying property of 
mind-body. 

4.2 Philosophical Distinctions 
 Despite the continuing debate among scientists and 
philosophers on various theories regarding the meaning of 
truth, Western philosophy is being-centered and truth-based. 
Now, the truth-based philosophy, the oldest field of study, is 
faced with the crisis of extinction.  

 After German Philosopher Hegel pronounced the end of 
philosophy about two centuries ago, many famous 
philosophers such as Nietzsche and Heidegger concurred with 
him. Following Heidegger, most philosophers believe that the 
modern world is a blind-sighted society dominated by 
science/technology. They believe in what Heidegger claimed: 
although philosophy as metaphysics still thinks, science does 
not think.  

 While the end of philosophy was meant to be “the top” 
or “apex” by Hegel, some philosophers and scientists went 
further to announce the death of philosophy. For instance, in 
their influential 2010 book titled The Grand Design, two 
world renowned physicists, namely, Stephen Hawking and 
Leonard Mlodinow declared:  “philosophy is dead”, 

“philosophy has not kept up with developments in modern 
science, particularly physics”, “scientists have become the 
bearers of the torch in humans’ quest for knowledge”, “M-
theory predicts that a great many universes were created out 
of nothing” and “Their creation does not require the 
intervention of some supernatural being or god.” But can we 
solve any problem without philosophical thinking? Why has 
the truth-based and being-centered intensive search for ether, 
strings and monopoles either failed or got no result so far? 
Why dipoles are everywhere?  

 When Hawking and Mlodinow advocated M-theory in 
their book, they also promoted the concept of negative and 
positive energies. However, they stopped short of pointing out 
the unavoidable consequence that the negative and positive 
energies are respectively the Yin and Yang of nature [Gore & 
van Oudenaarden, 2009] and, based on YinYang bipolar 
equilibrium or non-equilibrium, the many dimensions of M-
theory can be unified with a YinYang bipolar geometry for 
supersymmetric bipolar interaction and quantum 
entanglement. As a result, leaving God alone, we still need to 
answer the following two immediate follow-up deeper 
questions: 

(1) Do the many universes in M-Theory need to follow the 
same equilibrium or non-equilibrium conditions as 
manifested by the 2nd law of thermodynamics?  

(2) Can all the truth-based and being-centered universes be 
unified under a single equilibrium-based and harmony-
centered universe? 

(3) Why is relativity and quantum theory still not unified? 
(4) What is the driving force of mutation, natural selection 

and evolution? Could it be equilibrium or non-
equilibrium? 

 Evidently, the equilibrium or non-equilibrium approach 
presents a new philosophical thinking and a new 
computational paradigm that cannot be dismissed because it is 
both scientific and philosophical. Even after the universe 
disappeared in a black hole, bipolar equilibrium or non-
equilibrium of negative-positive energies would still be there 
due to particle or antiparticle emission [Hawking 1974, 1975].  
Actually, the most fundamental property of the universe is not 
being and truth but equilibrium-based YinYang bipolarity. 
Thus, the equilibrium or non-equilibrium thinking has the 
potential of leading to a scientific reincarnation of philosophy. 
The dynamic nature of the new philosophy can lead to new 
approaches for problem solving especially for bio-quantum 
computation.  

5   Conclusions 
 YinYang bipolar dynamic logic and bipolar quantum 
linear algebra have been introduced in a completely 
background independent YinYang bipolar Geometry. Basic 
structures of the new type of combinatorics have been 
presented and discussed. The potential utilities of the new 
structures in biological computing have been outlined. 
Philosophical distinctions of the new approach have been 
drawn from existing approaches.  
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 It is noted in bioinformatics that, despite one insightful 
surprise after another the genome has yielded to biologists, 
the primary goal of the Human Genome Project – to ferret out 
the genetic roots of common diseases like cancer and 
Alzheimer’s and then generate treatments – has been largely 
elusive [Wade 2010]. Bipolar quantum cellular combinatorics 
has been presented as a complementary or alternative 
approach to bioinformatics. 
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Abstract 

 

Influenza neuraminidases are glycoproteins that  facilitate the transmission of the influenza virus from cell 

to cell.  Laninamivir is a neuraminidase inhibiting drug approved for general use in Japan in 2010 for the 

treatment of influenza, and for emergency use in the US in 2011.  Here I provide a computational docking 

analysis of  laninamivir with the active site of the neuraminidase of the 2009 Influenza A/H1N1 strain.  The 

computed inhibitor/receptor binding energy suggests that laninamivir would be effective against that  

strain.  
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1.0  Introduction 
 

 Influenza neuraminidases are 

glycoproteins that  facilitate the transmission 

of the influenza virus from cell to cell.  
Laninamivir (4S,5R,6R)-5-acetamido-4-

carbamimidamido-6-[(1R,2R)-3-hydroxy-2-

methoxypropyl]-5,6-dihydro-4H-pyran-2-

carboxylic acid; [14]) is a neuraminidase 

inhibitor approved in Japan in 2010 for 

general use in the treatment of influenza and 

for emergency use in the US in 2011. 

 In the World Health Organization 

serotype-based influenza taxonomy, 

influenza type A has nine neuraminidase-

related sero-subtypes, and these subtypes 

correspond at least roughly to differences in 

the active-site structures of the flu  

neuraminidases. The subtypes fall into two 

groups ([3]): group-1 contains the subtypes 

N1, N4, N5 and N8;  group-2 contains the 

subtypes N2, N3, N6, N7 and N9.  

Laninamivir was designed to target the 

group-2 neuraminidases. 

 

 The available crystal structures of 

the group-1 N1, N4 and N8 neuraminidases 

([1]) reveal that the active sites of these 

enzymes have a very different three-

dimensional structure from that of group-2 

enzymes. The differences lie in a loop of 

amino acids known as the "150-loop", which 

in the group-1 neuraminidases has a 

conformation that opens a cavity not present 

in the group-2 neuraminidases. The 150-

loop contains an amino acid designated Asp 

151; the side chain of this amino acid has a 

carboxylic acid that, in group-1 enzymes, 

points away from the active site as a result 

of the 'open' conformation of the 150-loop. 

The side chain of another active-site amino 

acid, Glu 119, also has a different 

conformation in group-1 enzymes compared 

with the group-2 neuraminidases (8]).

 The Asp 151 and Glu 119 amino-

acid side chains form critical interactions 

with neuraminidase inhibitors. For 

neuraminidase subtypes with the “open 

conformation” 150-loop, the side chains 
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of these amino acids might not have the 

precise alignment required to bind 

inhibitors tightly ([8]).    The active site 

of the 1918 H1N1 strain has the 150-

loop configuration. 

 The difference in the active-site 

conformations of  the two groups of 

neuraminidases may also be caused by 

differences in amino acids that lie 

outside the active site. This means that 

an enzyme inhibitor for one target will 

not necessarily have the same activity 

against another with the same active-site 

amino acids and the same overall three-

dimensional structure.    
 Influenza 

A/California/04/2009(H1N1)  is an atypical 

group 1 NA with some group 2-like features 

in its active site (lack of a 150-cavity) ([4]). 

 

2.0  Method 
 

 The general objective of this study 

is straightforward:  to computationally 

assess the binding energy of the active site 

of crystallized A/California/04/2009(H1N1)) 

neuraminidase with laninamivir.    Unless 

otherwise noted, all processing described in 

this section was performed on a Dell 

Inspiron 545 with an  Intel Core2 Quad CPU 

Q8200 (clocked @ 2.33 GHz) and 8.00 GB 

RAM, running under the Windows Vista 

Home Premium (SP2) operating 

environment.   

 Protein Data Bank (PDB) 3TI3 ([6]) 

is a structural description of most of the 

crystallized neuraminidase of  Influenza 

A/H1N1  3TI3 consists of two identical 

chains, designated Chain A and Chain B.  

 3TI3was downloaded from PDB on 

22 February 2011.  A PDB description of  

laninamivir was extracted from PDB 3TI8 

([4]) using AutoDock Tools v 4.2 (ADT, 

[9]).  ADT was then used to perform the 

docking of laninamivir to the receptor.  

More specifically, in ADT, approximately 

following the rubric documented in [12] 
 

 -- Chain B, and the water in Chain 

A, of 3TI3 were deleted  

 

 -- Chain A's active-site was 

extracted.  (3TI3 identifies the active site of 

Chain A as 15  amides:  ARG118,  GLU119,  

ASP151,  ARG152,  ARG156,  TRP178,  

ARG224,  GLU227,   SER246,  GLU276,   

GLU277,  ARG292,   ASN294, ARG371,  

and TYR406.) 

 

 -- the hydrogens, charges, and 

torsions in the ligand and active site were 

adjusted using the ADT-recommended 

defaults 

 

 -- and finally,  the ligand, assumed 

to be flexible wherever that assumption is 

physically possible, was auto-docked to the 

active site, assumed to be rigid, using the 

Lamarckian genetic algorithm  implemented 

in ADT.  The best-fit (lowest-energy) 

configuration from the analysis was saved, 

and the distances between the receptor and 

ligand in 3TI3, and those computed here, 

were compared. 

 The ADT parameters for the 

docking are shown in Figure 1.  Most values 

are, or are a consequence of,  ADT defaults. 

________________________________________________________________________ 

 
autodock_parameter_version 4.2       # used by autodock to validate parameter set 

outlev 1                             # diagnostic output level 

intelec                              # calculate internal electrostatics 

seed pid time                        # seeds for random generator 

ligand_types C HD OA N               # atoms types in ligand 

fld 3TI3_active.maps.fld             # grid_data_file 

map 3TI3_active.C.map                # atom-specific affinity map 

map 3TI3_active.HD.map               # atom-specific affinity map 

map 3TI3_active.OA.map               # atom-specific affinity map 

map 3TI3_active.N.map                # atom-specific affinity map 

elecmap 3TI3_active.e.map            # electrostatics map 

desolvmap 3TI3_active.d.map          # desolvation map 
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move laninamivirA.pdbqt              # small molecule 

about 22.7762 -20.7805 -52.3029      # small molecule center 

tran0 random                         # initial coordinates/A or random 

axisangle0 random                    # initial orientation 

dihe0 random                         # initial dihedrals (relative) or random 

tstep 2.0                            # translation step/A 

qstep 50.0                           # quaternion step/deg 

dstep 50.0                           # torsion step/deg 

torsdof 9                            # torsional degrees of freedom 

rmstol 2.0                           # cluster_tolerance/A 

extnrg 1000.0                        # external grid energy 

e0max 0.0 10000                      # max initial energy; max number of retries 

ga_pop_size 150                      # number of individuals in population 

ga_num_evals 2500000                 # maximum number of energy evaluations 

ga_num_generations 27000             # maximum number of generations 

ga_elitism 1                         # number of top individuals to survive to next 

generation 

ga_mutation_rate 0.02                # rate of gene mutation 

ga_crossover_rate 0.8                # rate of crossover 

ga_window_size 10                    #  

ga_cauchy_alpha 0.0                  # Alpha parameter of Cauchy distribution 

ga_cauchy_beta 1.0                   # Beta parameter Cauchy distribution 

set_ga                               # set the above parameters for GA or LGA 

sw_max_its 300                       # iterations of Solis & Wets local search 

sw_max_succ 4                        # consecutive successes before changing rho 

sw_max_fail 4                        # consecutive failures before changing rho 

sw_rho 1.0                           # size of local search space to sample 

sw_lb_rho 0.01                       # lower bound on rho 

ls_search_freq 0.06                  # probability of performing local search on 

individual 

set_psw1                             # set the above pseudo-Solis & Wets parameters 

unbound_model bound                  # state of unbound ligand 

ga_run 10                            # do this many hybrid GA-LS runs 

analysis                             # perform a ranked cluster analysis 

 

Figure 1.  ADT parameters for the docking in this study 

 

______________________________________________________________________________ 

 

3.0  Results 

 
 The interactive problem setup, 

which assumes familiarity with the general 

neuraminidase "landscape", took about 20 

minutes in ADT;  the docking proper, about 

28 minutes on the platform described in 

Section 2.0  The platform's performance 

monitor suggested that the calculation was 

more or less uniformly distributed across the 

four processors at ~25% of peak per 

processor (with occasional bursts to 40% of 

peak), and required  a constant 2.9 GB of 

memory. 
 Figure 2 shows the best-fit 

laninamivir/receptor energy and position 

summary produced by ADT under the setup 

shown in Figure 1.  The estimated free 

energy of binding under these conditions  is 

~ -9.2 kcal/mol; the estimated inhibition 

constant, ~179 nanoMolar at 298 K.   
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MODEL        1 

USER    Run = 1 

USER    Cluster Rank = 1 

USER    Number of conformations in this cluster = 10 

USER   

USER    RMSD from reference structure       = 45.375 A 

USER   

USER    Estimated Free Energy of Binding    =   -9.21 kcal/mol  [=(1)+(2)+(3)-(4)] 

USER    Estimated Inhibition Constant, Ki   =  178.50 nM (nanomolar)  [Temperature = 

298.15 K] 

USER     

USER    (1) Final Intermolecular Energy     =  -11.89 kcal/mol 

USER        vdW + Hbond + desolv Energy     =   -8.64 kcal/mol 

USER        Electrostatic Energy            =   -3.25 kcal/mol 

USER    (2) Final Total Internal Energy     =   -1.55 kcal/mol 

USER    (3) Torsional Free Energy           =   +2.68 kcal/mol 

USER    (4) Unbound System's Energy  [=(2)] =   -1.55 kcal/mol 

USER     

USER     

USER   

USER    DPF = 3TI3_active.dpf 

USER    NEWDPF move laninamivirA.pdbqt 

USER    NEWDPF about 22.776199 -20.780500 -52.302898 

USER    NEWDPF tran0 29.995228 14.716856 -20.257575 

USER    NEWDPF axisangle0 0.364842 0.651628 0.665035 136.195393 

USER    NEWDPF quaternion0 0.338509 0.604594 0.617033 0.373025 

USER    NEWDPF dihe0 -37.44 42.58 -154.69 9.42 75.29 -0.69 -63.75 -2.17 -22.15  

USER   

USER                              x       y       z    vdW   Elec        q     RMS  

ATOM      1  CAA LNV A 901      29.490  13.269 -22.647 -0.15 +0.15    +0.235 45.375 

ATOM      2  CAB LNV A 901      30.930  13.773 -22.576 -0.31 +0.01    +0.103 45.375 

ATOM      3  CAC LNV A 901      31.331  14.532 -21.306 -0.31 -0.00    +0.059 45.375 

ATOM      4  CAD LNV A 901      30.201  14.801 -20.271 -0.20 +0.03    +0.090 45.375 

ATOM      5  CAE LNV A 901      28.733  14.540 -20.712 -0.17 +0.05    +0.107 45.375 

ATOM      6  OAF LNV A 901      28.472  13.928 -21.961 -0.16 -0.23    -0.334 45.375 

ATOM      7  NAZ LNV A 901      32.666  14.349 -20.823 -0.24 +0.04    -0.194 45.375 

ATOM      8  HAZ LNV A 901      33.075  13.416 -20.882 -0.31 -0.15    +0.184 45.375 

ATOM      9  CBA LNV A 901      33.464  15.400 -20.262 +0.01 +0.08    +0.669 45.375 

ATOM     10  NBC LNV A 901      33.177  16.681 -20.494 -0.24 +0.06    -0.235 45.375 

ATOM     11  NBB LNV A 901      34.569  15.045 -19.644 -0.31 -0.14    -0.235 45.375 

ATOM     12 1HBC LNV A 901      33.745  17.429 -20.095 -0.33 -0.10    +0.174 45.375 

ATOM     13 2HBC LNV A 901      32.320  16.956 -20.973 +0.07 -0.07    +0.174 45.375 

ATOM     14 2HBB LNV A 901      34.788  14.065 -19.467 -0.41 +0.17    +0.174 45.375 

ATOM     15 1HBB LNV A 901      35.137  15.793 -19.245 -0.45 +0.08    +0.174 45.375 

ATOM     16  NBG LNV A 901      30.418  15.692 -19.167 -0.04 -0.20    -0.324 45.375 

ATOM     17  HBG LNV A 901      30.088  16.652 -19.263 +0.10 +0.09    +0.169 45.375 

ATOM     18  CBD LNV A 901      31.060  15.336 -17.944 -0.25 +0.24    +0.218 45.375 

ATOM     19  OBF LNV A 901      31.328  14.168 -17.680 -0.68 -0.43    -0.274 45.375 

ATOM     20  CBE LNV A 901      31.334  16.452 -16.985 -0.30 +0.14    +0.117 45.375 

ATOM     21  CAG LNV A 901      29.038  12.521 -23.857 -0.23 +0.31    +0.204 45.375 

ATOM     22  OAH LNV A 901      29.994  11.981 -24.676 -1.04 -1.48    -0.646 45.375 

ATOM     23  OAI LNV A 901      27.913  12.739 -24.274 -1.07 -1.55    -0.646 45.375 

ATOM     24  CAJ LNV A 901      27.685  14.292 -19.673 -0.06 +0.16    +0.210 45.375 

ATOM     25  OAW LNV A 901      27.479  12.937 -19.582 +0.01 -0.30    -0.381 45.375 

ATOM     26  CAX LNV A 901      28.329  12.184 -18.788 -0.06 +0.13    +0.202 45.375 

ATOM     27  CAK LNV A 901      26.441  15.111 -19.950 -0.21 +0.12    +0.177 45.375 

ATOM     28  OAY LNV A 901      26.236  16.106 -19.010 -0.19 -0.29    -0.390 45.375 

ATOM     29  HAY LNV A 901      25.326  16.177 -18.744 -0.27 +0.06    +0.210 45.375 

ATOM     30  CAL LNV A 901      25.224  14.253 -20.211 -0.25 +0.15    +0.198 45.375 

ATOM     31  OAM LNV A 901      24.033  14.668 -19.586 -0.18 -0.21    -0.398 45.375 

ATOM     32  HAM LNV A 901      23.974  15.593 -19.378 -0.40 -0.17    +0.209 45.375 

TER 

ENDMDL 

 
 

                   

 

Figure 2.  ADT's laninamivir energy and position predictions. 
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Figure 3 is a rendering of the active-site/inhibitor configuration computed in this study. 

 
_________________________________________________________________ 

 

 
 

Figure 3.  Rendering of laninamivir computationally docked with the active site of PDB 

3TI3.  The molecular surface of the receptor is shown in white; the inhibitor, in stick form 

in grey.  Only the interior, inhibitor-containing region of the molecular surface of the active 

site can be compared to in situ data: the surface distal to the interior is a computational 

artifact,  generated by the assumption that active site is detached from the rest of the 

receptor. 

______________________________________________________________________________ 

 

The distances between ligand and receptor 

atoms in 3TI3, and the corresponding 

distances in the present computation were 

within 10% of each other. 

 

 

4.0  Discussion 
 

The method described in Section 2.0 and the 

results of Section 3.0 motivate several 

observations: 

 

 1.  The inhibition constant computed 

in this study (~179  nanoMolar at ~298 K) is 

much smaller than the inhibition constant of 

neuraminidase inhibitors that are not 

clinically effective ([10], [11], [13], [14], 

[15]) against several H1N1 genotypes. This 

suggests that laninamivir would  be more 

effective against Influenza 

A/California/04/2009(H1N1)) than either 

oseltamivir or zanamivir. 

 2.  The docking study reported here 

assumes that the receptor is rigid.  This 

assumption is appropriate for the binding 

energy computation for PDB 3TI3 per se.  

However, the calculation does not reflect 

what  receptor "flexing"  could contribute to 

the interaction of the ligand with native 

unliganded receptor.   
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 3.  The analysis described in 

Sections 2.0 and 3.0 assumes receptor is in a 

crystallized form.  In situ, at physiologically 

normal temperatures (~310 K), the receptor 

is not in crystallized form. The 

ligand/receptor conformation in situ, 

therefore,  may not be identical to their 

conformation in the crystallized form. 

 4.  Minimum-energy search 

algorithms other than the Lamarckian 

genetic algorithm used in this work could be 

applied to this docking problem.  Future 

work will use Monte Carlo/simulated 

annealing algorithms. 

 5.  A variety of torsion and charge 

models could be applied to this problem, and 

future work will do so. 

 6.  3TI3 has two chains, each with 

its own active site.  The work described in 

this paper was performed on Chain A only.  

Chain B appears to have an active site 

highly similar to the Chain A active site.  

Future work will assess the ligand/receptor 

binding energies of Chains B. 
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Towards a Motor Ability Training Table for Rehabilitating
Children with Obstetric Brachial Plexus Lesion
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Abstract— Obstetric Brachial Plexus Lesion (OBPL) is an
injury of the cervical spine and chest characterized by
blockage of one or more brachial plexus nerves, usually
during the child delivery procedure. Research indicates that
the number of infant OBPL cases has being growing in a
much faster rate than the population growth. Despite that,
most of the equipment and electronic devices employed to
help and accelerate the OBPL treatment are designed for
adult use, treating kids as a miniaturized adult. This work
proposes a simple yet efficient motor ability training table,
specifically designed for infant use. The training table uses
games, with light, sound and several complexity levels to
arouse the child interesting and to make the treatment more
challenging. On the top of that, a computer system that
presents patient progress through graphical reports helps the
professional to further analyzed the treatment result.

Keywords: OBPL, rehabilitation engineering, motor ability train-
ing table

1. Introduction
The OBPL - Obstetric Brachial Plexus Lesion - is caused

by excessive traction of the neck, head and arm during the
delivery procedure, exceeding the tolerance thresholds of the
nerves [1], [2].

The rate of OBPL cases has been growing along with pop-
ulation growth, but in a much more considerable proportion,
about 76 %, in Brazil. According to [3], children rehabilita-
tion technology did not follow this growth, the technologies
developed are still based on adults characteristics.

This project proposes the development of a motor ability
training table to aid in the treatment of OBPL having as its
main focus children rehabilitation. In the following sections,
topics concerning the formation of OBPL lesion, treatment
techniques, types of injury, the project development and its
specifications are discussed.

2. Obstetrical Brachial Lesion
This section presents fundamental concepts such as the

formation of Obstetric Brachial Plexus Lesion, its causes,
residual deformities, and current treatment possibilities.

2.1 Lesion Formation
The Obstetric Brachial Lesion or Obstetric Brachial

Plexus Lesion is an injury of the cervical spine and chest
characterized by blockage of one or more nerves of the
brachial plexus [4]. The lesion is usually the result of direct
trauma caused during delivery. [2].

Research conducted in 2000 and 2010 shows that the
rate of tocotraumatism cases (one should take into account
the aggregation of all cases of various types of traumas)
occurring during delivery, increased approximately 75.6 %,
and mortality involving this type of injury accounts only
to 0.6 cases per 100,000 births [5], [6]. It should be taken
into account, when interpreting such data that, according to
the Demographic Census of 2000 and 2010, the Brazilian
population grew by 12.3 % during this period [7].

Research indicates that the number of cases is incremented
as the infant approaches the range between 4 and 5 kg, which
can be seen from the graph of Figure 1.

Fig. 1: Relationship between number of cases of OBPL and
weight (in grams) of the fetus at birth. Based on [8].

A study conducted by [9] relates, in 311 cases, the number
of individuals affected by OBPL versus the type of delivery.
This is depicted by Table 1. Note that the sum of births by
forceps and suction exceeds the number of assisted births,
this is due to the fact that births with the aid of forceps
were performed after failure of Ventouse use and Caesarean
section.
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Table 1: Types of birth versus number of cases. Adapted
from [9].

Type of Birth Studed Group England 1994-1995
N. % %

Spontaneous vertex delivery 183 59 73
Assisted delivery 113 36 * 10,6

Ventouse 87 28 5
Forceps 45 14,5 7
Breech 10 3 1

Caesarean section 5 1,5 15,5

2.2 Types of Lesion
The OBPL is classified taking into account the gravity and

the components involved in the lesion. Thus, the lesion can
be split into three types: Erb-Duchenne Palsy, Total Brachial
Plexus Lesion and Klumpke’s Palsy [4].

• Erb-Duchene Palsy: in this modality, the injury occurs
between the C5 and C7 vertebrae. The arm is in
a position called "waiter’s tip", with extension and
pronation at the elbow and wrist and fingers flexed,
as shown in Figure 2. In this case exists decrement of
sensitivity, but the movement of grip is intact [6]. Note,
when comparing photo A and B, how the arm position
and the fingers flexion are characteristics of this type
of injury.

Fig. 2: Typical appearance of the newborn with Erb-
Duchenne brachial plexus lesion. Adapted from [10], [11].

• Total Brachial Plexus Lesion: in this case, all verte-
brae from the C5 to T1 have their roots affected. The
sensibility and all reflections are absent, the children
does not move or lift the arm[6], [11], this can be
observed by the Figure 3, note how the left arm of
the patient is shown still.

• Klumpkes’s Palsy: in this modality the vertebrae C7,
C8 and T1 are envolved, paralyzing the hand muscles,
arm flexors and wrist and fingers flexors [13]. The
Klumpke’s Palsy is the most rare of all types of
brachial plexus lesions and response to less than 1 %
of the cases [5]. This type of paralysis may affect the

Fig. 3: Total Brachial Plexus Lesion, Clinical Case. Based
in [12].

cervical sympathetic fibers, taking ipsilaterally Horner’s
syndrome, present on the same side of the affected limb
[2], [14].

2.3 Residual Deformities
The limitations showed by the subjects affected by the

OBPL may vary according with the type of the lesion.
According to [15], the patient may present inability to
understand and execute tasks requiring bilateral motor skills
such as catching a ball or a large object. The residual
deformities, according to [16], may be classified in 4 distinct
types, taking into account the physiological/anatomical point
of this deformity, being:

• Shoulder: the subjects affected by OBPL usually
present difficulties in the movements of adduction and
abduction of the arm, the main motor function of the
shoulder [11]. Individuals may also present limitations
of active abduction and lateral rotation, which can be
seen from Figure 4. Note how the right upper limb
movements are limited when compared to the left upper
limb [11].

• Elbow: the residual deformity at elbow is often de-
veloped as a flexion of 45-90 degrees, which may
be aesthetically disturbing. There is also a muscle
imbalance summed with forced flexion of the elbow,
resulting in abnormal bone growth caused by the use of
very rigid immobilizing or splints during the recovery
process [11].

• Forearm and Hand: residual deformities in the fore-
arm and hand are determined by lot distribution, exten-
sion and type of the OBPL. While hand paralysis due to
Klumpke lesion may be continuous, in the forearm, is
common the appearance of deformities of pronation, as
shown in Figure 5. Note the contraction of the forearm
and elbow flexion [11].
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Fig. 4: Residual deformities in the right shoulder of a 6 years
old child with obstetric brachial plexus palsy.

Fig. 5: Residual deformities of the forearm and hand in a
child affected by OBPL.

2.4 Treatment
The Orthopedic Management or physical therapy, is the

most appropriate treatment for the ones affected by OBPL
and has as objective the early treatment in the newborn and
child, in order to avoid deformities during the period of
spontaneous recovery [15].

According to [11], the passive movements made during
the exercise promotes the extension and flexion of the
complete arc of all articulations.

Below are shown some of the exercises used during OBPL
treatment. According to [15], each of the exercises should
be performed repeatedly, several times per day.

2.4.1 Sensorial Development Exercises
The sensorial stimulus, in order to increase awareness that

breastfeeding has on its own member, can be performed
using a soft towel, gently massaging the arm, or using his/her
own arm, massaging his/her own body [17].

Be aware of the affected limb is essential for the good
progress of treatment as a patient who has no sensibility to

the member can neglect it and continue to perform tasks
only with the "normal" member.

2.4.2 Motor Ability Training Exercises
It is necessary to train grip and manipulate objects with

both hands and also just the affected limb. To this end,
the therapist can use objects of any kind. To encourage the
active use of the atrophied member exercises that are used
in everyday situations, such as tying shoes, draw and pick
up objects may be strategies for the refinement of activities
and for developing more accurate coordination for specific
activities [17].

Exercises to gain motion amplitude or motion range
are also important since by gaining motion amplitude one
reduces the risk of contractures, mental and physical stress
and improves blood circulation [18].

3. The Motor Ability Training Table:
Specification

The training table proposed is a therapeutic device for
the purpose of bringing the physiotherapist and the bearer
of OBPL an alternative tool for qualitative and quantitative
analysis of brachial plexus injury treatment.

According to [18], the therapist has tools for application
of the exercises, but none of these are devoted exclusively
or focuses on the OBPL treatment. The tools used by
professionals are usually improvised materials such as toys,
weights, pulleys and balls.

The development of rehabilitation technologies is occur-
ring at a fast pace and the devices are becoming more
individualized, when taken into consideration the type of
disability or inability to move. In [3], published in 1996, the
authors were concerned with enabling technologies exclu-
sively for children. Current technologies are aimed at adults,
eventually considering children as miniaturized adults. This
is not enough, since the motor and cognitive functions of a
child are in constant change during his/her growth.

The training table constructed consists of a module made
of wood and glass, and divided into eight segments, as shown
by the diagram of Figure 6. Each of the eight segments has
an infrared touch sensor and LEDs in two colors, green and
red, and play a note of a eight-note musical scale, from C
to C.

These features together form a tool for dynamic ex-
ercises. The patient exercises by triggering the segments
through touch, as soon as the training table asks for it. The
physiotherapist has the ability to choose what will be the
exercise performed. An example is to perform a sequence
of ordered movements, i.e., the patient should operate with
the OBPL affected member by all segments, one at a time,
progressively. The table will temporarily turn on the leds of
Red color in one segment to tell which should be activated,
emits a musical note (for the segment) and wait for the
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Fig. 6: Diagram of the training table.

patient. If the patient triggers the correct thread it turns
green again, otherwise the thread will flash symbolizing the
error. Figure 7 shows step-by-step the training table basic
operations.

Fig. 7: Basic operation of the training table.

During the exercise, the training table system sends data,
related to the exercise, to the computer to which it is
connected. The table is able to count time and errors during
the exercise execution. Whenever the table system asks the
patient to trigger a segment, the time between the actuation
by the table itself and by the patient is accounted, this is
called arrival time. Whenever a segment is triggered by the
patient, the table accounts the duration of this actuation,
this is called actuation time. Such measures are important
to further analyze the progress of the patient response time
according to the complexity of the exercise.

The system allows the physiotherapist to select the com-
plexity of the exercise and stores the progress of each
patient in each exercise performed. The exercise complexity
is related to how fast each of the segments is trigger by
the system, the shorter the time of drive, more attention and

flexibility are required by the patient. There are 10 levels of
complexity, which can be used in all exercises, ranging from
one second apart (easy level) to 1/10th of a second (hardest
level).

To monitor the exercise, a computer system was devel-
oped. The system controls/monitors the exercises, receives
data regarding the patient movement and presents a graphical
analysis of such information. The system is capable of
registering patients and storing personal data progress of
each registered patient, as shown in Figure 8. The physical
therapist can also monitor and control the execution of the
exercises through the computer system, as shown in Figure
9.

Fig. 8: Registration Screen of the Controling System.

Fig. 9: Exercises Execution Screen.

The system allows a temporal analysis of the exercise,
through the construction of graphs with the data collected
during the execution of the exercise. Figure 10 shows the
history exercise screen. It is important highlight that the
system, by itself, does not have any intelligence to perform
data analysis at this moment. It only generates graphics to
be analyzed by the responsible professional.
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Fig. 10: Exercise history.

3.1 Related Work
The search for related work did not pointed out many

items. As mentioned before, there is a bad habit of con-
sidering children as miniaturized adults, thus there is not
many training devices for kids. This section presents the
more relevant related work found.

The authors in [19] describe the development of a generic
programmable platform to aid in patient care with physical
disabilities, based on a set of non-invasive sensors that
can track movements, touches and eye poking. The sensor
signals are conditioned and processed in a computer system.

[20] describes the development of a multimedia worksta-
tion for children rehabilitation. Based on a cognitive/sensory
system, one of the first ever developed, that works on
neuromuscular functions. The proposed system uses EMG
signals captured to study muscular information.

Finally, although there is not an equipment or device
developed, it is important to mention that the authors in[21],
[22] discuss about exercise techniques that can be applied
during a motor dysfunction treatment.

3.2 Discussion and Results
Is it possible to train a carrier of obstetric paralysis

through physical therapy methods? The literature states
that it is. According to [15], [11], [23], the orthopedic
management is highly recommended as an instrument of
neuromuscular recovery and surgical treatment is indicated
only in cases of delayed recovery or when there is no
response to physiotherapy treatment.

Although all the concepts discussed in the section 2.4,
2 and research using the methodology discussed in section
3.1, there were no positive results for the development of
technologies for OBPL treatment, which allows the con-
clusion that professionals do not have specific devices for
performing a focused OBPL physical therapy and that the
development of these technologies could result in abbrevi-
ation of patient’s recovering time and also the reduction of

residual deformities, these are the objectives that we hope
to achieve by using the training table proposed in this work.

4. Conclusions
The training table, proposed in this project, is an alter-

native to conventional treatments that brings to a physical
therapist and patient a ludic technique capable of arousing
the interest of the child using a game as a treatment model.
The presence of light and sound and the presence of several
complexity levels make the exercise more interesting and
challenging. By the other hand, the computerized system
allows a better analysis of the patient’s progress throughout
the exercise sessions. Thus, the professional can accurately
assess the development of motor skills.
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Abstract 

 
Cytochrome P450 17A1 (also known as CYP17A1) catalyses the biosynthesis of androgens in humans. Because 

prostate cancer cells proliferate in response to androgen steroids,  CYP17A1 inhibition can help to prevent 

androgen synthesis and treat lethal metastatic prostate cancer.   Here I report the results of a computational 

docking of abiraterone, a steroidal inhibitor of CYP17A1 recently approved by the FDA,  with the CYP17A1 active 

site,  based on recent X-ray crystallography of the receptor/ligand complex. 
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1.0  Introduction 

 
Cytochrome P450 17A1 (also known as 

CYP17A1 and cytochrome P450c17) is a 

membrane-bound monooxygenase that plays a 

fundamental role in the synthesis of several 

human steroid hormones ([5]).  The 17α-

hydroxylase activity of CYP17A1 is required for 

the generation of glucocorticoids such as 

cortisol;  the hydroxylase and 17,20-lyase 

activities of CYP17A1 are required for the 

production of androgenic and oestrogenic sex 

steroids.  CYP17A1 is thus an important target 

for the treatment of breast and prostate cancers 

that proliferate in response to oestrogens and 

androgens ([6],[7]).  

 

Until recently,  steroidal CYP17A1 inhibitors 

were thought to bind the cytochrome P450 haem 

iron, more or less parallel to the plane of the 

haem group in the active site ([8]).   

 

Abiraterone is the active form of a steroidal 

prodrug recently approved by the US Food and 

Drug Administration for metastatic prostate 

cancer ([9],[10]); it is also is under investigation 

for breast cancer ([11]).  Recent X-ray 

crystallography of abiraterone complexed with 

the active site of CYP17A1 shows the drug 

binds the haem iron in the receptor active site, 

forming a 60° angle above the haem plane and 

packing against the central I helix with the 3β-

OH interacting with aspargine 202 in the F helix 

([1],[3]). This conformation differs substantially 

from those that are predicted by homology 

models and from steroids in other cytochrome 

P450 enzymes with known structures; some 

features of this conformation are more similar to 

steroid receptors ([1]). 
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2.0  Method 
 
The general objective of this study is 

straightforward:  to computationally assess the 

binding energy of the active site of  crystallized 

cytochrome p450 17A1 with abiraterone.    

Unless otherwise noted, all processing described 

in this section was performed on a Dell Inspiron 

545 with an  Intel Core2 Quad CPU Q8200 

(clocked @ 2.33 GHz) and 8.00 GB RAM, 

running under the Windows Vista Home 

Premium (SP2) operating environment.   

 

Protein Data Bank (PDB) 3RUK is a structural 

description of a crystallized cytochrome p450 

17A1  bound to abiraterone.  3RUK has 4 

chains, designated A-D.  

 

3RUK was downloaded from PDB ([6]) on 30 

January 2012.  The ligand and receptor-active-

site portions of 3RUK Chain A were extracted to 

separate files, one each for the ligand and the 

receptor, using AutoDock Tools (ADT, [2]).    

ADT was then used to perform the docking of 

the ligand to the receptor.  More specifically, in 

ADT, approximately following the rubric 

documented in [4] 

 

 -- all waters, and Chains B-D of 3RUK 

were deleted  

 

 -- the ligand (abiraterone) and Chain A's 

active-site were extracted  (3RUK identifies the 

active site of Chain A as 7 residues: ALA113, 

ASN202, ILE205, ASP298, ALA302, 

THR306, and HEM600.) 

 

  -- the hydrogens, charges, and 

torsions in the ligand and active site were 

adjusted using ADT default recommendations 

 

and finally,  the ligand, assumed to be flexible 

wherever that assumption is physically possible, 

was auto-docked to the active site, assumed to 

be rigid, using the Lamarckian genetic 

algorithm  implemented in ADT. 

 

______________________________________________________________________________ 

 
autodock_parameter_version 4.2       # used by autodock to validate parameter 

                                       set 

outlev 1                             # diagnostic output level 

intelec                              # calculate internal electrostatics 

seed pid time                        # seeds for random generator 

ligand_types A C OA HD N             # atoms types in ligand 

fld 3RUK_A_active_receptor.maps.fld  # grid_data_file 

map 3RUK_A_active_receptor.A.map     # atom-specific affinity map 

map 3RUK_A_active_receptor.C.map     # atom-specific affinity map 

map 3RUK_A_active_receptor.OA.map    # atom-specific affinity map 

map 3RUK_A_active_receptor.HD.map    # atom-specific affinity map 

map 3RUK_A_active_receptor.N.map     # atom-specific affinity map 

elecmap 3RUK_A_active_receptor.e.map # electrostatics map 

desolvmap 3RUK_A_active_receptor.d.map# desolvation map 

move 3RUK_A_ligand.pdbqt             # small molecule 

about 27.936 -1.9813 32.3924         # small molecule center 

tran0 random                         # initial coordinates/A or random 

axisangle0 random                    # initial orientation 

dihe0 random                         # initial dihedrals (relative) or random 

tstep 2.0                            # translation step/A 

qstep 50.0                           # quaternion step/deg 

dstep 50.0                           # torsion step/deg 

torsdof 2                            # torsional degrees of freedom 

rmstol 2.0                           # cluster_tolerance/A 

extnrg 1000.0                        # external grid energy 
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e0max 0.0 10000                      # max initial energy; max number of 

                                       retries 

ga_pop_size 150                      # number of individuals in population 

ga_num_evals 2500000                 # maximum number of energy evaluations 

ga_num_generations 27000             # maximum number of generations 

ga_elitism 1                         # number of top individuals to survive 

                                       to next generation 

ga_mutation_rate 0.02                # rate of gene mutation 

ga_crossover_rate 0.8                # rate of crossover 

ga_window_size 10                    #  

ga_cauchy_alpha 0.0                  # Alpha parameter of Cauchy distribution 

ga_cauchy_beta 1.0                   # Beta parameter Cauchy distribution 

set_ga                               # set the above parameters for GA or LGA 

sw_max_its 300                       # iterations of Solis & Wets local 

                                       search 

sw_max_succ 4                        # consecutive successes before changing 

                                       rho 

sw_max_fail 4                        # consecutive failures before changing 

                                       rho 

sw_rho 1.0                           # size of local search space to sample 

sw_lb_rho 0.01                       # lower bound on rho 

ls_search_freq 0.06                  # probability of performing local search  

                                       on individual 

set_psw1                             # set the above pseudo-Solis & Wets 

                                       parameters 

unbound_model bound                  # state of unbound ligand 

ga_run 10                            # do this many hybrid GA-LS runs 

analysis                             # perform a ranked cluster analysis 

 
Figure 1.  ADT parameters used in this study.  The setup uses a Lamarckian genetic algorithm 

minimum-energy search; all other ADT parameters are defaulted. 

 

______________________________________________________________________________ 

 

 

The minimum-energy configuration among 

those configurations sampled was saved. 
Interatomic distances between ligand and 

receptor in the computed form were compared to 

those in [3]. 

 

 

3.0  Results 
 
The interactive problem setup, which assumes 

familiarity with the general CYP17A1 

"landscape", took about 20 minutes in ADT; the 

docking proper, about 24 minutes on the 

platform described in Section 2.0  The platform's 

performance monitor suggested that the 

calculation was more or less uniformly 

distributed across the four processors at ~25% of 

peak per processor (with occasional bursts to 

40% of peak), and required  a constant 2.9 GB 

of memory. 

 

Figure 2 shows the ligand/receptor energy and 

position summary produced by ADT for the 

best-fit conformation obtained under the 

conditions described in Figure 2.0.  The 

estimated free energy of binding is ~ -6.7 

kcal/mol; the estimated inhibition constant, 

~13.4 microMolar at 298 K.  All distances 

between receptor and ligand atoms in the 

computed ligand position lie within 10% of the 

distances of the corresponding atoms in 3RUK.   
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_________________________________________________________________________________________________ 

 

  

        LOWEST ENERGY DOCKED CONFORMATION from EACH CLUSTER 

 ___________________________________________________ 

 

 

 

Keeping original residue number (specified in the input PDBQ file) for outputting. 

 

MODEL       10 

USER    Run = 10 

USER    Cluster Rank = 1 

USER    Number of conformations in this cluster = 4 

USER   

USER    RMSD from reference structure       = 7.035 A 

USER   

USER    Estimated Free Energy of Binding    =   -6.65 kcal/mol  [=(1)+(2)+(3)-(4)] 

USER    Estimated Inhibition Constant, Ki   =   13.35 uM (micromolar)  [Temperature = 298.15 K] 

USER     

USER    (1) Final Intermolecular Energy     =   -7.25 kcal/mol 

USER        vdW + Hbond + desolv Energy     =   -7.21 kcal/mol 

USER        Electrostatic Energy            =   -0.03 kcal/mol 

USER    (2) Final Total Internal Energy     =   -0.21 kcal/mol 

USER    (3) Torsional Free Energy           =   +0.60 kcal/mol 

USER    (4) Unbound System's Energy  [=(2)] =   -0.21 kcal/mol 

USER     

USER     

USER   

USER    DPF = 3RUK_A.dpf 

USER    NEWDPF move 3RUK_A_ligand.pdbqt 

USER    NEWDPF about 27.936001 -1.981300 32.392399 

USER    NEWDPF tran0 24.047148 -7.767324 34.456233 

USER    NEWDPF axisangle0 -0.914130 0.398130 -0.076547 106.589001 

USER    NEWDPF quaternion0 -0.732874 0.319188 -0.061369 0.597702 

USER    NEWDPF dihe0 -168.56 4.04  

USER   

USER                              x       y       z    vdW   Elec        q     RMS  

ATOM      1  C1  AER A 601      21.948  -8.070  37.535 -0.23 +0.00    +0.016  7.035 

ATOM      2  C2  AER A 601      21.541  -7.891  38.991 -0.16 +0.00    +0.033  7.035 

ATOM      3  C3  AER A 601      22.742  -7.712  39.883 -0.16 +0.03    +0.122  7.035 

ATOM      4  C4  AER A 601      23.549  -6.485  39.449 -0.28 +0.02    +0.066  7.035 

ATOM      5  C5  AER A 601      23.830  -6.469  37.972 -0.34 -0.02    -0.072  7.035 

ATOM      6  C6  AER A 601      25.043  -6.039  37.636 -0.40 -0.01    -0.023  7.035 

ATOM      7  C7  AER A 601      25.658  -6.228  36.271 -0.50 +0.01    +0.033  7.035 

ATOM      8  C8  AER A 601      24.627  -6.516  35.184 -0.38 -0.00    -0.001  7.035 

ATOM      9  C9  AER A 601      23.541  -7.465  35.716 -0.35 +0.00    +0.003  7.035 

ATOM     10  C10 AER A 601      22.792  -6.934  36.948 -0.25 -0.00    -0.017  7.035 

ATOM     11  C11 AER A 601      22.612  -8.006  34.626 -0.27 -0.00    +0.007  7.035 

ATOM     12  C12 AER A 601      23.364  -8.531  33.397 -0.20 -0.00    +0.014  7.035 

ATOM     13  C13 AER A 601      24.287  -7.478  32.849 -0.31 +0.00    -0.016  7.035 

ATOM     14  C14 AER A 601      25.256  -7.237  33.987 -0.41 +0.00    +0.003  7.035 

ATOM     15  C15 AER A 601      26.525  -6.656  33.368 -0.48 +0.00    +0.010  7.035 

ATOM     16  C16 AER A 601      26.619  -7.229  31.965 -0.35 +0.00    +0.036  7.035 

ATOM     17  C17 AER A 601      25.239  -7.844  31.760 -0.36 +0.01    -0.060  7.035 

ATOM     18  C18 AER A 601      23.513  -6.267  32.298 -0.11 +0.00    +0.020  7.035 

ATOM     19  C19 AER A 601      21.807  -5.832  36.583 -0.08 +0.00    +0.020  7.035 

ATOM     20  C20 AER A 601      24.880  -8.690  30.556 -0.35 +0.01    -0.018  7.035 

ATOM     21  C25 AER A 601      23.658  -8.502  29.887 -0.18 -0.01    +0.014  7.035 

ATOM     22  C24 AER A 601      23.349  -9.288  28.789 -0.14 -0.01    +0.018  7.035 

ATOM     23  C23 AER A 601      24.280 -10.236  28.386 -0.12 -0.08    +0.087  7.035 

ATOM     24  N22 AER A 601      25.451 -10.402  29.044 -0.15 +0.46    -0.375  7.035 

ATOM     25  H22 AER A 601      26.106 -11.116  28.722 -0.34 -0.34    +0.164  7.035 

ATOM     26  C21 AER A 601      25.771  -9.655  30.107 -0.30 -0.07    +0.099  7.035 

ATOM     27  O3  AER A 601      22.257  -7.463  41.198 -0.06 -0.08    -0.395  7.035 

ATOM     28  H3  AER A 601      21.326  -7.653  41.195 +0.03 +0.03    +0.210  7.035 

TER 

ENDMDL 

 
Figure 2.  Coordinates of abiraterone generated by this study. 
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Figure 3 is a rendering produced in ADT of the CYP17A1/abiraterone docking described in Section 2.0. 

 

_____________________________________________________________________________________ 

 

 

 
 

 
Figure 3.  AutoDock Tools (ADT,[2]) rendering of a computational docking of abiraterone (the 

ligand, shown in stick-and-ball form in darker grey) with molecular surface of the active site of 

Chain A of cytochrome p450 17A1 (shown in lighter grey),  derived from PDB 3RUK ([1],[3]).  The 

lower right end of the ligand lies directly above the center of the haem group in the active site.   

 

__________________________________________________________________ 

 

 

4.0  Discussion 

 
The method described in Section 2.0 and the 

results of Section 3.0 motivate several 

observations: 

 

 1.  The inhibition constant computed in 

this study (~13.4 microMolar at ~298 K) is 

comparable to the inhibition constant of cancer-

therapeutic ligand/receptor interactions that are 

clinically effective.   

 

 2.  All distances between receptor and 

ligand atoms in the computed ligand position lie 

within 10% of the distances of the corresponding 

atoms in 3RUK.  (For electrostatic forces, a 10% 

distance difference would correspond to a ~20% 

difference in electrostatic force and potential 

energy, in the worst case.  One could of course 

apply other statistics to the coordinate sets and 

provide a more comprehensive comparison of 

other forces/energies.   Future work will address 

those issues.) 
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 3.  The docking study reported here 

assumes that the receptor is rigid.  This 

assumption is appropriate for the binding energy 

computation for PDB 3RUK per se.  However, 

the calculation does not reflect what  receptor 

"flexing"  could contribute to the interaction of 

the ligand with native unliganded receptor.   

 

 4.  The analysis described in Sections 

2.0 and 3.0 assumes receptor is in a crystallized 

form.  In situ, at physiologically normal 

temperatures (~310 K), the receptor is not in 

crystallized form. The ligand/receptor 

conformation in situ, therefore,  may not be 

identical to their conformation in the crystallized 

form. 

 

 5.  Minimum-energy search algorithms 

other than the Lamarckian genetic algorithm 

used in this work could be applied to this 

docking problem.  Future work will use Monte 

Carlo/simulated annealing algorithms. 

 

 6.  A variety of torsion and charge 

models could be applied to this problem, and 

future work will do so. 

 

 7.  3RUK has four chains, each with its 

own active site.  The work described in this 

paper was performed on Chain A only.  Chains 

B-D appear to have active sites highly similar to 

the Chain A active site.  Future work will assess 

the ligand/receptor binding energies of Chains 

B-D. 

 

 8.  CYP17A1 is a membrane-bound 

protein; 3RUK describes a conformation that is 

not bound to a membrane.  The membrane-

bound conformation of CYP17A1 may differ 

from the conformation in 3RUK.   
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Abstract - In this paper we present a computational model 

for the first humoral immune response initiated in the 

Lymph Nodes organs against both T-Independent and T-

Dependent antigens. The model is an AnyLogic Agent based 

model in which the behavior of the constitute agents are 

modeled using the Statecharts formalism. Using AnyLogic 

as an implementation platform wherein Statecharts can be 

programmed very conveniently; offers a great advantages 

especially final models can be modified, extended  and 

handled in an elegant way. The results issued from our 

AnyLogic simulation respect several immunology 

experimentations (B-Cell activation, proliferation, 

differentiation and antibody generation). 

Keywords: Simulation, AnyLogic, Multi-Agent system, 

Statecharts, First humoral immune response, Lymph Node. 
 

1 Introduction 

 Lymph Nodes (LNs) [Figure 1] are a part of our 

secondary lymphoid organs that are filtering lymphatic 

fluid from bacteria, viruses, and foreign particles [1].  They 

are distributed at various points in the lymphatic system of 

our bodies and they are considered as sites that initiate and 

orchestrate the humoral immune response which refers to 

the production of antibodies and the accessory process that 

accompany it in response to antigens [2],[3]. These antigens 

are classified either [4] into T-Independent antigens, that 

can instantly mount an humoral immune response without 

the implication of T-Helper Cells, or T-Dependent antigens, 

that must implicate T-Helper cells to mount an humoral 

immune response. 

 The first humoral immune response results from the 

first exposure of an antigen. This last once it’s recognized, 

it leads to the activation of unstimulated naïve B 

lymphocytes [2],[4],[5] that enter so on into the clonal 

expansion phase where large clones of identical cells are 

produced; the proliferating cells will then differentiate 

either into antibody-producing plasma cells or memory 

cells. Some of the antibody-producing cells migrate to the 

bone marrow and live in this site for several years; the 

others circulate in the blood and participate in the process 

of destructing or neutralizing antigens. 

 
 Afferent lymphatic: drain lymph fluid from tissues, including 

antigen presenting cells (APC) and antigen from infected sites to 

the lymph node (LN).  

 HEV (High Endothelial Venules): the capillary walls where T and 

B cells enter the LN from the blood. Paracortex: the T cell zone. 

  Primary Follicles (PF): where B cells are localized, includes 

Follicular Dendritic Cells (FDC’s). 

  Germinal Center (GC): is formed when activated B cells 

proliferate in the PF.  

 Medullary Cords: where plasma cells secrete Antibodies.  

 Efferent lymphatics: the only exit from the LN, where activated or 
re-circulating T and B cells, as well as antibodies (Ab’s) leave the 

LN and join the blood circulation. 

Figure 1: Lymph Node schematic structure [1]. 

2 Modeling 

The simulation of such immune system is extremely 

complex due to the high mechanisms and interactions being 

behind these systems; however great efforts are taking 

place to better understand these mechanisms and 

interactions. The researches that have been issued during 

the last years to simulate the immune system as a whole 

system or as a part of it such as LNs varies from 

mathematical simulation models [6],[7],[8]
 

to Cellular 

Automata models (CA) [9],[10],[11] to Multi-Agent based 

models (ABM) [12],[13] and finally to the Reactive 

Animation (RA) models [1],[14],[15]. The RA models, 

which aim to couple between: state-of-the-art reactivity and 

338 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



state-of-the-art animation [14],[16], are the recent modeling 

methods having used in biology simulation. They are based 

on two combined techniques: the Statecharts formalism 

[17] to model the system’ behavior and the front-end 

animation tool to visualize the animation simulation with 

enabling natural-looking. The most well-known 

immunology works based on this technique is the David 

Harel’s works: modeling the maturation of T-cells in the 

thymus [14] and the development of the lymph node [1]. 

This last studies the dynamic development of the LN with a 

focus on the behavior of a subset of immune cells that enter 

a single 2-dimentionel LN with immunogenic antigens. 

2.1 Model development 

 We have focused heir on modeling the first humoral 

immune response initiated in the LN as an encountered 

antigen (either a T-Independent or a T-Dependent one) is 

recognized. Our model is an ABM [18],[19],[20],[21]
 
that 

is defined as a computational model aiming to offer a 

manner on how to build complex systems composed of 

autonomous interacting computing elements called agents. 

 The behavior of our constitute agents; that are 

modeled with regard to their behavior, movement, location, 

and interactions; is modeled via the Statecharts formalism 

which is an essentially Finite State Machines diagram 

extended into a modular, highly structured, and economical 

description language [22],[23],[24]. 

The modeled agents are on continuous movement 

between the different LN zones wherein the agents are 

initially situated and wherefrom they enter or live them, a 

simplified process of the whole modeled system from the 

time that B-Cells enter the LN to the moment that they exit 

it is illustrated in [Figure 2]. 

The presented model is developed under the 

AnyLogic [25] simulation tool which is a Java based multi-

approach simulation modeling tool based on advanced 

technologies such as UML, hybrid systems theory, and best 

numerical methods. The AnyLogic simulation tool provides 

great features such: reducing development cost and time, 

developing more models with one tool and improving the 

visual Impact of models. 

Our AnyLogic simulation takes into account the three 

correlated modeling activities suggested in [19]: “the 

behavior module”, concerns modeling the agent behaviors; 

“the environment module”, defines the virtual place 

wherein the agents evolve and interact; and finally, “the 

scheduling module” which is related to the definition of 

how the two above modules are coupled and managed with 

taking into account the time factor. 

2.1.1 Modeling the Time 

 Time is an important factor in every biologic system 

and in certain cases it’s too long to model directly the entire 

processes that take place during these systems. Immune 

response is one of these biologic systems for which we 

should be careful when simulating the time of its processes. 

In our simulation, in addition to attempt calculating the 

corresponding time values, we have tried to keep the 

relative times between its different processes correct; for 

that we have used the AnyLogic simulated time unit (TU) 

which is fixed to (0.001) and which in our model 

corresponds to 1 second so an hour is evaluated to (0.36 

UT). In immunology many processes, for which time is an 

important factor, were examined; for example: a typical 

lymphocyte circulation cycle takes 12–24 hours [1] (so: 

4.32 – 8.64 UT); normal proliferation takes 8–12 hours [1] 

(2.88 – 4.32 UT); etc.  
 

Figure 2: Simplified view of the process launched in the 

LN. 

2.1.2 Modeling the LN environment 

In our AnyLogic model, we have tried to let the 

simulation realistic. For that it’s suitable to use a real image 

of a LN (taken from [26]) which can show its different 

constitute regions. To model these regions we have used a 

set of closed curves each represents a special LN areas. The 

agents can move continuously between these areas with 

regards to the biologic experiments. 

In the main ActiveObject class of the simulation, we 

have developed a set of functions that is shared by all the 

agents indicating the movement to one zone to another, for 

example the function moveToGC (AgentContinuous2D cell) 

move a given cell from its current location to one of the 

modeled GCs. the path followed to reach the target location 

is specified automatically by the AnyLogic move API. 
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2.1.3 Modeling the Immune Cells agents  

 As we are simulating a part of the humoral immune 

response being initiated in the LN against both T-

Dependent and T-Independent antigens, the captured 

developed agents include: 

1. The Lymphocyte Agent: represents B-Cells, B-

Memory Cells and T-Helper Cells.  

2. The Plasma Agent, 

3. The Antibody Agent, 

4. And the Antigen Agent. 

The behavior of each modeled agent is specified by 

the use of the AnyLogic integrated Statecharts formalism. 

Each behavior is divided into two main Statecharts: one to 

model the life cycle of the agent, the other model the 

location cycle of the agent. 

2.1.3.1 Representative Example of our AnyLogic 

Agent Model: The Lymphocyte Agent 

 In this section we present the Lymphocyte agent 

which is an example of one of our Anylogic agents giving 

all its most detailed properties, methods and behaviors. The 

lymphocyte agent models different lymphocytes including 

B-Cells, Memory B-Cells, and T-Helper Cells. For each of 

the B-Cells  and Memory B-Cells two kinds of cells are 

taken into account: ones are matured to recognize T-

Dependent antigens, the others are matured to recognize T-

Independent antigens; the T-Helper Cells are implicated 

only in the humoral immune response to T-Dependent 

antigens.   

The biologic experimental [1],[2],[4],[5] illustrates 

that B-Cells enter permanently into the LN via HEVs and 

migrate to its zone area (Follicles) where they may meet 

antigens. If a B-Cell recognizes the encountered antigen, 

the humoral immune response process will differ belongs to 

the presented antigen type:  

If the antigen is a T-Independent one the B-Cell 

becomes an activated cell and migrates to the Follicle 

Center (FC) where it begins what the immunologist called 

colonel expansion phase. At this moment a large number of 

B-Cell clones are generated; some of them become a 

plasma cells, others become a memory B-Cells and the 

others are died. 

Whereas if the type of presented antigen is a T-

Dependent: the stimulated B-Cell will be completely 

activated when it migrates to the Paracortex zone and waits 

for an activated T-Helper Cell to interact with it, the B-Cell 

is then activated  after a set of stimulating events 

interactions between them. The activated B-Cell will 

instantly take the same process of colonel expansion 

followed by a matured B-Cell activated by a T-Independent 

antigen. 

All the lymphocyte cells which either recognize or do 

not recognize antigen live the LN via efferent zone than 

restart the recirculation process. They are death after an 

expiration of their life duration. 

In our AnyLogic model we have developed a 

Lymphocyte class which extends the 

AnyLogicAgentContinuous2D subclass. The behavior of 

the Lymphocyte agent is specified alike the other modeled 

agents by using the AnyLogic integrated Statecharts 

formalism. We have used two main parallel Statecharts to 

model the behavior of the agent: one is for modeling its life 

cycle; the second is for modeling its location cycle. The 

Lymphocyte properties, methods and Statecharts behavior 

are illustrated in [Figure 3]. The whole AnyLogic models 

can be checked in [27]. 

 

 

Figure 3: The Lymphocyte agent: properties, methods and Statecharts behavior. 
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3 Results 

In this section we describe firstly the behavior of the 

simulator, and then show the type of results it generates.   

During a typical run of the simulator, a number of emergent 

behaviors can be seen that result from the rules of the 

model described in the previous section. At the beginning, 

the user defines the initial number of different immune 

agents that are implicated in the simulation, the agents 

include: Th-Cells, two kinds of antigens (T-Dependent 

antigens and T-Independent antigens), two kinds of B-Cells 

each kind is matured to recognize an antigen type, and as 

also by the same two kinds of B-Memory Cells, two kinds 

of plasma and two kinds of secreting antibodies. After all 

these parameters were specified, the user can switch to the 

root simulation that shows the initial allotment of the entire 

implicated agents in their LN zones. The running 

simulation illustrates firstly the random distribution of the 

concerned defined agents, then the simulation begins 

showing the movement of each agent from its current 

location to its target zone with regards to the movement 

rules defined in its Statecharts location behavior. The user 

can interact whenever he wants with the simulation 

interface by a set of available controls: for example he can 

inject T-Independent antigens to the LN environment where 

they enter it from the afferent zone. Each antigen starts 

subsequently moving and if it’s recognized by any specified 

B-Cell that is matured to recognize this kind of antigen, the 

humoral immune response will instantly begin processing 

from the activation of the specified B-Cells to the clonal 

expansion phase finished by plasma secreting antibody 

phase. In our model the details behind the antigen 

recognition phase isn’t taken into account due to the 

extreme chemical interconnection signals known in this 
 

Figure 4: Simulation of a plasma secreting antibodies phase. 
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case between an antigen and a B-Cell; in consequence we 

have only develop an event that periodically calculate the 

distance between the current B-Cell and all the antigens 

cells; if the calculated distance is less or equal to two (2), 

the concerned B-Cell is then becoming in the active state of 

the Clonal_Expansion composite state that invokes an 

immediate migration of the concerned B-Cell to one of the 

modeled FCs and starts proliferating with a specific 

modified proliferate rate initially has the value 

ρ=(24/6.24)*Ln(2) [28]. The proliferation process, which 

itself involves the creation of additional instances of the 

same object, is stopped when the number of the total 

proliferate B-cells exceeds the allowed total proliferated 

number which in our model assigned the 

value  (𝑇𝑝𝑟𝑜𝑙𝑖𝑓 = (2𝜌 − 1) ∗ 100). The proliferated cells 

will then either dye with a probability of 1% [1]
 

or 

differentiate either to Plasma cells or Memory B-Cells; the 

probability of this differentiating phase is defined by the 

user (the initial used probabilities are [1]: (Pplasma=66%) to 

become a plasma cell and (Pmem=33%) to become a 

Memory Cell). After that the generating cells migrate to the 

Medullary Cords zone where each plasma cell has a user 

defined probability initiated to 25% to begin secreting a 

huge number of antibodies (it’s around 2000 antibodies are 

secreted every second for a few days [1]); in our model the 

total number of secreted antibodies is fixed to  
(Tab=(Tprolif*Tplasma)/2) per plasma cell for the raison of 

the limitations of the computer’ resources (memory and 

processor frequency)  we have used for the simulation. 

 The result illustrated in [Figure 4] mentions a running 

simulation situation of complete plasma secreting 

antibodies phase launched after a previous initiation of two 

complete clonal expansion phases in response to 

encountered T-Independent antigens; these clonal 

expansion phases are taking place in two of the Follicles 

center zones of our modeled LN. 

During the simulation the user can also modify the 

parameters that control the proliferation rate, differentiation 

rate and antibody secreting rate. Our model offers also to 

the user statistical analyses showing him in every time unit 

the occupation of the total number of each Cell per LN 

zone; the graphs viewed in the left side of the shown 

snapshot illustrate the occupation of: the both types of B-

Cells, Memory Cells, Plasma Cells, Th-Cells and antibodies 

for each of: the GCs zone, the Paracortex zone, the 

Medullary cords zone, the HEVs zone and the Efferent 

zone. 

The user has moreover a possibility to know the 

current state of any agent via the tools offered by the 

AnyLogic toolbar. For instance the snapshot mentioned in 

[Figure 5] highlights the current state of a given generated 

B-Cell matured to recognize a T-Independent antigen 

(remember that a B-Cell is a Lymphocyte instance class); 
 

Figure 5: The current highlighted active state for a T-Independent B-Cell at run time. 
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the figure shows that the concerned Lymphocyte is actually 

on parallel composite states: the Cell_cycle one and the 

Cell_Location one.  Inside the Cell_Cycle Statechart the 

Lymphocyte is currently in its proliferating state that 

belongs to the Clonal_Expansion state which is a sub-state 

of the BCell composite state; whereas inside the 

Cell_Location statechart, the figure shows that the specified 

Lymphocyte is actually in the inLN composite state wherein 

the current active state inside it is the inGC state. 

4 Discussion  

The study described in this issue demonstrates how we 

can use an Agent-Based approach for which every agent 

behavior is controlled completely by the Statecharts 

formalism to simulate a part of the first LN humoral 

immune response against antigens. The use of the 

Statecharts technique; that has been used together with a 

front-end-animation tool in the work of [1] to serve as an 

enlightenment of the manner on how a LN computational 

simulation can be translated into realistic animation; proves 

that it’s a suitable and powerful visual modeling technique 

to be applied in biologic systems as they are considered as 

reactive systems.  

The work presented heir; which is developed with the 

AnyLogic simulation tool; is considered as the first attempt 

in our Laboratory to model and simulate such biologic 

system using the AnyLogic environment.  

The approach adopted heir is looking to profit from 

the work done in [1]; in which the Statecharts technique has 

used as a state-of-the-art reactivity to model the 

development of a LN; we have remodeled completely the 

LN using the AnyLogic simulation tool with regards to the 

immunological experimentations. Although we haven’t 

model all the experimental details that are issued from the 

immunology researches due to its immense complexity, 

however our simulation results those are compared at run 

time with a real LN image are closes to the reality. 

The results issued during the execution of our 

AnyLogic simulation model show that the process of 

mounting a LN humoral immune response against both T-

Dependent and T-Independent antigens is well-fitted to the 

biologic experiments; all the phenomenon emerged from 

the application of the behavior rules defined in the 

Statecharts of each implicated cell are compared with the 

real images issued from the immunology experimentations.  

The obtained results demonstrate also that we were able to 

transform a part of these static experimental data into 

dynamical behavior including: cell migration from LN zone 

to another, cell proliferation, cell differentiation into 

memory or plasma cells and generation of antibody-

producing plasma cells; statistical analyses of the dynamic 

occupancy of the different LN zones are also given to the 

final users in order to illustrate statistics about the total 

numbers of cells that are actually  residing in each LN zone. 

As a deep analyze of our LN AnyLogic model which 

has much been simplified due to the immense complexity 

of some immune mechanisms, and with regards to the LN 

model established in [1]; our model haven’t detailed the 

cell interactions signals that can be viewed during an 

immune response. For example: the antigen-BCells 

interaction signals, the antigen-ThCell interaction signals 

and BCell-ThCell ones aren’t carried out in our model. The 

model also doesn’t take into account the orthogonal states 

feature used in the work of [1] for the raison that the 

AnyLogic simulation tool doesn’t support in its 

professional used current release (6.5.1) this powerful 

Statecharts features; nevertheless we have simulated this 

feature on profiting from the ability of the AnyLogic 

simulation tool to create multi-statecharts for the same 

agent. These multi-statecharts can be executed on parallel 

manner with the same execution fashion of orthogonal 

states. 

A positive view point of our model is that it deals with 

two kinds of antigens: T-Dependent and T-Independent, it’s 

also developed with one simulation tool that can combine 

different modeling approaches at once, and which 

integrates also a 2D and 3D render engine that can animate 

the simulation in two or three dimensions. Contrary to the 

model of [1] which dials only with the T-Dependent 

antigens and it’s developed using two different tools: the 

IBM Rhapsody developer tool to model the cells behavior 

and the Adobe Flash tool as a render engine to animate the 

cells behavior. 

5 Conclusion & Future Works 

In the AnyLogic model proposed in this paper we 

have focused on modeling the first humoral immune 

response initiated in the LN as an encountered antigen is 

recognized. The model dial with two kinds of antigens: the 

T-Independent antigens and the T-Dependent ones.  

Although the simulation of such an immune response 

is very highly complex due to the high complexity of the 

mechanism behind it; we believe that we have succeeded to 

build a simplified AnyLogic model that models the first LN 

humoral immune response with taking into account a part 

of the immunology experimentations. Our results obtained 

during the execution simulation of the modeled system 

show that the model respects several immunology 

experimentations (B-Cell activation, proliferation, 

differentiation and antibody generation) even that some 

behaviors such as cell signal interactions, activation of Th-

cells, etc.., aren’t carried on for which a perspective future 

work can be initiated to extend the model. The model also 

can be extended to tack into account the secondary humoral 

immune response that results from the second exposure or 

more of an antigen; in this case Memory B-Cells play the 

major factors in mounting such humoral immune response.  
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We hope also that other AnyLogic immune researches 

works can be initiated to involve the other immune organs 

such Spleen, Bone Marrow and Thymus for the aim to 

model the entire immune response by gathering piece to 

piece the models of each immune organ. This also can 

initiate a collaboration work between computing 

laboratories as a computing simulation research side with 

hospital immunology laboratories as biology research side. 

Finally it would be a great pleasure for us that our 

AnyLogic model is the first attempt in our laboratory even 

in the entire world to initiate a simulation of a first LN 

humoral immune response against antigens using the 

AnyLogic simulation tool; as consequence we hope that we 

have enriched the existing immune models that have taken 

place and we have opened a research windows for the 

future extension of our work and for other researches area. 
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Abstract— Bioinformatics is a multidisciplinary field.  
Statistics is getting immense popularity in bioinformatics 
research.  The goal of this paper is to introduce a survey of 
two sample tests applied to bioinformatics.  The vast 
majority of these methods do not follow the classical two 
sample test techniques, which require strict assumptions.  
Thus, unlike other classical surveys, this paper will 
emphasize the justifications behind the deviations from the 
standard approach, and the implementation of such 
deviations.   
 

Index Terms— Statistical Methods, Sequence Analysis, 
Microarray, Two-sample Testing, Bootstrap Hypothesis 
Testing, Non-traditional Hypothesis Testing 

I. INTRODUCTION  

   Bioinformatics is a rapidly growing discipline that has 
matured from the fields of Molecular Biology, 
Computer Science, mathematics, and Statistics.  It refers 
to the use of computers to store, compare, retrieve, 
analyze and predict the sequence or the structure of 
molecules.   According to Cohen [2], “The underlying 
motivation for many of the bioinformatics approaches is 
the evolution of organisms and the complexity of 
working with incomplete and noisy data.”  
Bioinformatics is a multidisciplinary field in which 
teams from Biology, Biochemistry, Mathematics, 
Computer Science, and Statistics work together to 
stipulate perception into the functions of the cell [3], 
and [10].  More precisely, Bioinformatics is the 
marriage between the fields of biology and computer 
science together in order to analyze biological data and 
consequently solve biological problems [12].   
   The need for collaboration in bioinformatics research 
and teaching is inevitable.  “The explosive increase in 
biological information produced by large-scale genome 
sequencing and gene/protein expression projects has 
created a demand that greatly exceeds the demand for 
researchers trained both in biology and in computer 
science” [4]. According to the European Bioinformatics 
Institute [5], “Bioinformatics is an interdisciplinary 
research area that is the interface between the biological 
and computational sciences. The ultimate goal of 
bioinformatics is to uncover the wealth of biological 
information hidden in the mass of data and obtain a 

clearer insight into the fundamental biology of 
organisms. This new knowledge could have profound 
impacts on fields as varied as human health, agriculture, 
environment, energy and biotechnology.”   
   The field of statistics plays a vital role in 
bioinformatics.  Modified statistical techniques are 
being constantly evolving.  Statistics is the science of 
collection, organization, presentation, analysis, and 
interpretation of data. [16], [18].  Statistical methods 
which summarize and present data is referred to as 
descriptive statistics. Data modeling methods that 
account for randomness and uncertainty in the 
observations and drawing inferences about the 
population of interest lie within the inferential statistics.  
When the focus is on the biological and health science 
information, biostatistics is applicable [18].   
   The techniques of statistics that have been applied 
include hypothesis test, ANOVA, Bayesian method, 
Mann–Whitney test method, and regressions tailored 
mainly to microarray data sets, which take into account 
multiple comparisons or cluster analysis and beyond.  In 
bioinformatics, microarrays readily lend themselves to 
statistics resulting in a number of techniques being 
applied [15], [22].   The above mentioned methods 
assess statistical power based on the variation present in 
the data and the number of experimental replicates.  
They even help to minimize Type I and type II errors in 
demanding analysis.  While these methods sound 
familiar to people with statistics background, they might 
be foreign to researchers in the field of bioinformatics.  
On the other hand, statisticians will enjoy the benefit of 
seeing how these techniques are being applied to the 
field of bioinformatics when getting to know what DNA 
sequences or protein sequences are.          This paper 
aims to survey some basic statistical techniques, 
especially different kinds of hypothesis testing 
techniques that have been developed lately and used in 
the context of bioinformatics.  The goal of this survey is 
to pinpoint the motivations for modifying the classical 
two-sample tests when applied to bioinformatics by 
researchers.  The classical two-sample tests have strict 
assumptions.  The reason that forced researchers to 
relax or violate some of these assumptions will be 
explored.    

Alternative Two Sample Tests in Bioinformatics 
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II. CLASSICAL TWO-SAMPLE t -TESTS 

The classical two-sample t-test has been applied to only 
few bioinformatics problems.  The reason for that 
should be clear shortly.  An example is the following 
scenario.  When measuring the level of gene expression 
in a segment of DNA, the process usually requires 
several repeated experiments in order to obtain the 
measurements of one cell type.  This is due to biological 
and experimental variability.  The objective is to 
compare the levels of the gene expression between two 
types of DNA based on the measured levels of gene 
expressions for these two types of DNA’s.  Such a 
procedure is a typical classical two sample t-test.  
Assuming that 

ttitM , are the measurements from type 

2 , 1 t  respectively, with tt ni 1 , the null 

hypothesis 210 :  H is tested with alternative 

hypothesis 21   .  The appropriate test statistics is 

(1)                                               ,
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   Using the assumptions that 
titM , are tn ),( 2

ttNID 
random variables, the statistics t follows a t
distribution with degrees of freedom 221  nn if the 

null hypothesis is true.   While this test procedure is 
very simple, it requires very strict assumptions.   Some 
or all of these assumptions cannot be met in real life 
applications.  In some cases, it is either not known or 
hard to confirm whether the variables 

titM , are normally 

distributed. If they are normally distributed, then the 
requirement of both normal populations sharing a 
common variance could be hard to fulfill.  Another 
requirement to be satisfied mandates these variables to 
be independent, which is generally true in many gene 
expressions measurements.  In practice, some or all of 
these conditions are not satisfied, but the decision on the 
equality of two means is still needed.   Thus, 
alternatives to this standard classical t-test are required.  
In this paper, we will survey several modified tests 
appearing in recent bioinformatics literature.  

III. TWO SAMPLE TEST WITH INTRA-DEPENDENCY 

   Gilbert et al [9] compared the genetic diversity of the 
virus between two groups of children who were infected 
with HIV at birth.  The children were classified into a 
group of 9 slow/non-progressors (group 1) and a group 
of 12 progressors (group 2).  Between 3 to 7 HIV gag 
P17 sequences were sampled from each child and pair-

wise sequence distances were derived for each child’s 
sample as the measures of diversity within a child.  The 
goal was to assess whether the level of HIV genetic 
diversity differed between the two groups in order to 
help identify the role of viral evolution in HIV 
pathogenesis.  In what follows, we will show why the 
authors have to deviate from the standard two sample 
test.  We will first introduce and explain their statistical 
model. 

   Let g
kijM  represent the distance between sequence i

and j of child k in group 2or 1  , gg .  It was found 

that if a sequence is involved in two distances of a 
child’s sequences, then the two distances are positively 
correlated. Also the contrasts involving common 
individual are also positively correlated.  Therefore, the 
conditions for a classical t -test described in section II is 
violated.  This will force the application of this 
procedure to produce bias results.  The natural option is 
to perform the test based on a subset of independent 
samples in which not all the information is fully 
considered.  Thus, a new two-sample test that took 
account of the correlations between samples was 
proposed.  The detail is described as follows: 
   Assume that there are gn children from group g , 

2or   1 g  respectively, and child k  has g
km sequences 

sampled. Then there are 2/)1(
1 

 gn

k

g
k

g
kg mmN

many pair-wise distances from each group.   There are 

also  
 gn

k

g
k

g mQ
1

)2(2 many covariances between 

the distances for the individuals in each group. The test 

statistics is similar to (1) above, 
)( 21

21

MM
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. The 

main idea is to estimate the standard deviation 

)( 21 MM  with the correlations between g
kijM , 

assuming the null hypothesis 210 :  H is true.  

Here, the mean distances are defined as 

  
 gn

k ji

g
kijg

g MNM
1

1)( .  It is noticeable that 

the correlation only occurs within the group and 
particularly within individuals, so the estimate of the 
variance within one group can be discussed without 
indexing on g and k . Since there are 2/)1( nn pair-

wise distances, the standard estimate for the variance of 
M is 
 


 

ji ij MMnnM 212 )()12/)1(()(  . 

   But this estimate is too small because it did not 
account for the positive correlations between distances 
sharing the same sequences.   Another option is
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ji ij MMnM 212 )()1()( .  However, this 

one is too large unless the correlations between the 
sequences are perfectly linear.   Therefore, something in 
between these two estimates could be a more accurate 
estimate of the variance.   Because the correlation only 
occurs between the pair-wise distances sharing the same 
sequence, this variance can be estimated by calculating 
the covariance in two parts: 
 

})2(2{)2/)1(()( 2
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where )cov( ,
2
1 ilij MM is the covariance of the pair-

wise distances that share the same sequence, and 

)var(2
2 ijM  is the variance of all pair-wise 

distances.   
   The empirical estimates of these two variances are: 
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Since there are two groups, the estimate can be modified 
to  

})2(2{)( 2
2,

2
1,

2

1 1

1212
ggg

n

k

g
kg

g mNMM      


                                                                                      (4) 
where  
 
 

) )})((

))({((

)13/)2)(1((
1

12
1

gg
kij

gg
kij

lji

gg
kil

gg
kij

n

k

g
k

g
k

g
kg

MMMM

MMMM

mmm
g
















 

and 
 
 

  
  gn

k ji

g

ij

g
kijgg MMN

1

212
2          )()1(  

 
 

Modified this way, the test statistics 
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will have asymptotic normal distribution, provided that  
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 is large enough, where g is  

the correlation coefficient of the two pair-wise distances 
sharing the same sequence in group g .   

   The authors provided the comparative results for the 
DNA sequences of the 21 children described earlier.  
Classical two sample t –test was performed on the 
differences based on synonymous distance with sample 

means 0113.01 D  and 00713.02 D , and sample 
sizes 3871 N and 5232 N respectively.  The result 

suggested a difference between the two groups with
6102.2 p .    However, it was estimated that the 

correlations of the pair-wise distances within individuals 
are 55.01  and 61.02  respectively.  The classical 

t –test ignored these positives correlations, which 
resulted in a smaller estimated variance for the 
difference of the means.  Thus, the newly developed 
procedure was applied producing 56.0p , which 

indicates that the difference between the mean distances 
of the two groups is not significant.   

   The above two-sample test method provided an 
alternative to the traditional two-sample t –test to 
accommodate the situation where data within the group 
may be correlated.  This approach will have significant 
impact on many areas.  First, a new method for the 
existing statistical tests is introduced. This method not 
only can be applied in the area of bioinformatics, but 
can also be applied in other fields, such as finance, 
engineering, chemistry, and behavior science.  Most 
important, it can have distinct significance in the 
bioinformatics domain.  For example, in the analysis of 
DNA sequences [6], one of the tasks is to test the 
similarity or differentially expressed genes of two 
sequences by matching the subsequences.  One of the 
assumptions for such matching rules is that the 
occurrences of the nucleotides must be independent.   
Such an assumption was found to be inaccurate in many 
DNA sequences.  This method provides an alternative 
formula for the test statistics by calculating the variance 
of the mean of data that might be dependent on each 
other.  Furthermore, the method for calculating the 
variance can be extended to building statistical models 
from data that might be interdependent. 

IV. BOOTSTRAP AND PERMUTATION METHODS 

      The test discussed in last section dealt with 
comparing means from two samples.  With the 
advancements of biology and other bioscience, 
collections of microscopic DNA spots attached to a 
solid surface called microarrays are studied.  With the 
power of computation, scientists use DNA microarrays 
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to measure the expression levels of large numbers of 
genes simultaneously.  One of their objectives is to 
detect differentially expressed genes between two types 
of cells. 
   Suppose we have two types of cells.  Associated with 
each cell are a number of microarrays.  Let the number 
of microarrays be n1 and n2 respectively.  The n1 arrays 
contain m  genes from the first type of cells, and the n2 

arrays have m genes from the second type.  Let c
ijM be 

the expression value of the i th gene in the j th array in 

cell 21  , ,cc  . Let miti ...2,1   ,  be the two sample test 

statistics calculated using formula (1).   The null 
hypothesis for each test is 21: iiioH   .  When this 

hypothesis is being rejected as a positive result, the two 
genes will be differentially expressed.   Assuming the 
cumulative distribution function of it is )(tDi when the 

null hypotheses are true, the p -value of each test can be 

calculated as |))|(|)(|1( iiiii tDtDp  . These p -

values are arranged in ascending order

)()2()1( ... mppp  . Any gene tested with a p -value 

below certain threshold will be rejected (indicating the 
test is positive). These genes are ranked in the order of 
p -values with the smallest value as the most significant 

for further study.  The remaining task is to find the 
distributions )(tDi .  

   There are many different ways to identify these 
distribution functions.  Under the classical assumptions 
that all c

ijM are normally identically distributed, the 

distributions are either student t –distribution or 
standard normal distribution. As discussed in the last 
section, such an assumption is either unrealistic or 
difficult to verify.  As a result of increasing computing 
power, resampling methods, such as permutation and 
bootstrap methods are being widely used. These 
methods generate empirical distributions iD , which are 

also the distributions of ip .   

   The classical bootstrapping/permutation resampling 
scheme is described as follows. 
 Calculate the test statistics from the original sample 

it for each gene using formula (1). 

 All 21 nn  arrays are put in the same pool. The 1n

arrays are randomly drawn to be assigned to type 1 
cell, and 1n arrays are randomly drawn to be 

assigned to type 2 cell.  
 If the draws are with replacement, the bootstrap 

method will be used.  If the draws are without 
replacement, the permutation method will be 
applied.   

 Repeat the above steps B times. In the case of 
permutation, not all possible permutations have to be 

considered. In this paper, the two methods will be 
treated similarly.   

 Calculate the t –statistic b
it , Bi ,...,2,1 using 

formula (1) for each sample.  
 Under the null hypotheses that there is no 

differentially expressed gene, the t –statistics 
should have the same distribution regardless of how 
the arrays are arranged.  Hence, the empirical p -

values can be calculated by: 

(5)           
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   This scheme was discussed and applied in a number of 
papers [1], [8], [13], [19]-[21].  It also has another 
alternative described in [13] as Posterior Mixing 
Scheme: 
 
 Resample the 1n  arrays from type 1 cell and place 

on type 1 cell, and resample 2n arrays from type I 

cell and place on type II cell. 

 Using the data in question, calculate b
it 1 , Bi ,...,2,1  

for each sample using formula (1).  

 Repeat the above two steps on the array from type 

II cell and obtain b
it 2 , Bi ,...,2,1 .  Finally, 

calculate
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Then ip ’s are calculated with formula (5).  It was 

concluded that the Posterior Mixing Scheme will have 
better power [1 – P (type II error)] than the classical 
one.  To our knowledge, this formula for calculating the 
test statistics has not been employed in the 
bioinformatics literature yet.  The formula should be 
appealing to researchers to further investigate and 
validate it, and obtain more accurate results for 
identifying differentially expressed genes. 
   Mukherjee et al [17] took the bootstrap method for 
calculating these statistics a step further.   From the 
bootstrap schemes described above, the bootstrap, it ’s 

are assumed to be normally distributed with empirical 

mean  


B

b

b
iit t

B 1

1 and standard deviation .  

Formula (5) was not used to calculate the p -values.  

Instead the expected p -value was calculated by 

dxxGxDxDpEp
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where iD is the cumulative distribution function of it  

and G is the Gaussian.   
   This procedure was applied to some widely analyzed 
microarray data with iD replaced by t -distribution with 

degrees of freedom 221  nn , and the variance 2
was set between 1 and 3.  Results of ranking on the 
genes by this proposed bootstrap method and classical 
two sample t test were compared. It was found that 
the genes identified to be differentially expressed were 
subsequently confirmed by further costly test to rank an 
average of 25.5 places higher than genes ranked by the 
classical method [17].  This shows that the bootstrap 
method provides a powerful alternative to the classical 
method by estimating the p -values more accurately. 

   Bootstrap two sample test is widely used by many 
researches in identifying the differentially expressed 
genes. This method is particularly suitable for the cases 
when the underlining distributions are unknown. For 
example, Troyanskaya et al [21] used this procedure to 
perform 50,000 permutation on a data set comprised of 
normal lung and squamous cell lung tumor specimens 
with the Bonferroni correction p -values.  The result of 

this method was compared to the result of rank sum test 
and ideal discriminator method.  It was concluded that 
the bootstrap two sample test is most appropriate for a 
high-sensitivity test [21].  Many other researchers, such 
as Pan [19], Ge [8], and Abul [1] also used this method 
as an integral part of their more comprehensive study of 
microarrays. 
   The procedure of bootstrapping requires intensive 
computation. Computer packages/algorithms are also 
developed to tackle the issues related to computation 
time, storage and efficiency.  Li et al [14] developed an 
algorithm, Fast Pval, to efficiently calculate very low p-
values from large number of resampled data.  The 
software package, SAFEGUI, was designed to bootstrap 
resampling t-tests for testing gene categories [7]. 
 

V. MULTIPLE TESTING WITH Q-VALUES 

      Modified two-sample tests, and bootstrap two-
sample tests introduced in the last section concentrated 
on finding the p -values of the test so that genes can be 

ranked accordingly.  Notice that the p -value is only the 

probability that the test statistic falls in the critical 
region controlled by the maximum tolerance of Type I 
error for one test. In the case of multiple tests, such as 
the gene expressions in microarrays, the Type I error 
can be inflated.  For example, assume that 1000 genes 
are represented in each array of the two types of cells, 
and 20 out of the 1000 genes are differentially 
expressed.  To find these 20 genes, two-sample t -tests 
are performed among 1000 pairs of genes using a p -

value for 5% Type I error.  This will produce 49 [5% of 
(1000-20)] miss-identified genes, which is even more 
than the actual differentially expressed genes.  Thus, the 
Type I error for the entire array is greater than 5%, 
which is undesirable result.  A well-known classical 
procedure to correct this problem is the Bonferroni 

correction by replacing the cut-off Type I error  by
m



where m is the total number of tests [6], [21].  For
1000m , Type I error becomes 0.0005, which forces 

the test to miss most of the significantly differentially 
expressed genes. Actually, the possible outcomes of any 
multiple tests can be described in the tabular format 
(Table 1) below.  The numbers in parentheses represent 
the intended scenario. 
   A variety of measurement schemes in the 
development of procedures dealing with microarray data 
were proposed.  These include Per-comparison error 
rate (PCER), Family-wise error rate (FWER), False 
discovery rate (FDR), and positive False discovery rate 
(pFDR).  They are stated as [8]: 
 
 

PCER=
m

V )E(
 

FWER= )0Pr( V  

FDR= )0Pr()0|(E  RR
R

V
 

pFDR= )0|(E R
R

V
 

 
TABLE 1 

POSSIBLE OUTCOMES FOR 1000 GENES WITH 5% P-VALUE 

 

 
    

   Among these four measures, the most commonly used 
is the pFDR.  Since this quantity is only meaningful and 
useful when R  is positive, this rate is usually written as 

FDR= )E(
R

V
 which is the symbol used here.  A 
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straightforward estimate for FDR is
R

V
FDR , which 

represents the ratio of number of false positive and the 
total tested positive.  While the traditional multiple tests 
have to deal with thousands of test with only one cut-off 
value for the p -values, the false discovery rate takes 

into account the joint behavior of all the p -values. The 

false discovery rate is therefore a useful measure of the 
overall accuracy of a set of significant tests. We will 
discuss a method using a q -value developed by Storey 

et al [20]. The q-value method took into consideration 
the FDR balancing the identification of as many 
significant features as possible, while keeping a 
relatively low proportion of false positives.  This 
method and an important application of this method [1] 
will be discussed below.   
   A value similar to the p -value is defined by Storey et 

al [20] as the q –value corresponding to a particular p –

value. Assume the p -values for each test are calculated 

as ip by one of the methods introduced in previous 

sections. Then the q –value is calculated by: 

}
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where },...,2,1  ,  | positive false{#)( mipV i   , 

and },...,2,1  ,{#)( mipS i   . The objective is to 

simultaneously control the q -value and the p -value so 

that the FDR will not be out of proportion.  A procedure 
for finding the q -values and the criteria for selecting 

the threshold in a sequential procedure are described 
below [20]. 
 
1) Assume the test statistics are calculated by (1), with 
p -values ip calculated by (5), for mi ,...,2,1 .  

 
2) Arrange the p –values in ascending order

)()2()1( ... mppp  , which is also the order of genes 

in terms of their order against the null hypotheses. 
  
3) Use one of the options described below to estimate 
the value of  0
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   Now, two lists for p -values and q -values are 

simultaneously formed: 

)()2()1( ... mppp 
 ,

)(...)()( )()2()1( mpqpqpq 
 

One can select the maximum index mk 1  in the 
above lists so that both p -values and q -values up to 

k th gene will satisfy both thresholds. 
   The quantity 0  in step 3 is the proportion of null 

genes (no differences between the two cell types) of the 
total number m of genes tested. Despite the fact of 
having a difficult task to deal with, three different ways 
have been developed to estimate this quantity [20]. 
 

A. Rule of Thumb Method 

Let 
)1(

)(#
0 








m

pi  for some 
λ, 10   .   

The rationale for this estimate is that the null p –

values are uniformly distributed after certain value, 
 .  A simple rule of thumb is choosing 5.0 . 
This implies that the value of π0 is estimated by 

.
5.0

)5.0(#
0 m

pi 
 

 

B. Bootstrap Method 

Assumed that all p -values are calculated from the 

original set of data. Calculate 
)1(
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 Mkkk

from these p -values. Here, max is close to 1 and 

M is the number of desired points. Let
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 .  Resample the data B times, 

calculating 
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bootstrap p -values for all k each time.  Define the 

mean square error to be: 

 
 

B
MSE

B

b k
b

k
 


 1

2
0 ))((

)(


 . 

 

350 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



Then the estimate of the proportion of null genes 
will be: 
 

}1),({min 00 k
k


 


, where  is the collection of 

k s such that )( kMSE  is minimum.  A simple 

algorithm was given in [1]. 
 

C. Curve Fitting Method 

 
   The ideal estimate for )(0   is )( max0  , where 

max is close to 1 since genes should be null in this  

region. However, the value of )(0  is very sensitive to 

change of . To obtain a stable estimate, a natural cubic 
spline )(f is suggested to be fitted to the points

}..,,, ,0{|))(,{( max kkk , the estimate is

)1(0 f .  There were two suggestions for fitting the 

curve.  Storey et al [20] suggested that the curve fitting 
should be weighted by )1(  to control the instability 

near 1.  However, Abul et al [1] suggested that the result 
with no weighting is better to avoid underestimation.  
For any new set of data, both weighted and un-weighted 
fitting should be tried and the better estimate used. 
   The procedure of estimating 0 was extended to one-

sided hypothesis [1] with some adjustments. For 
example, if the tests are right-sided (up-regulated), the 
formula for the t -statistics remains the same as (1).  
The corresponding p values can also be calculated by 

the bootstrap process described in last section.  
However, formula (5) for calculating the p values 

should be modified to 
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This change will make 1)(lim 0
1







, which is 

meaningless.  The adjustment will be to set max as the 

upper bound of  for which 1)(0  . This results in

}1)(|10sup{ 0max   .  Bootstrap or curve 

fitting will be deployed to estimate 0


, which is needed 

for finding the q -values.   

   Experiments on some artificial data demonstrated that 
this approach could provide very accurate estimates.  
The procedure described above can guide researchers to 
fine tune the selection of genes for further experiments.  By 

bounding false-discoveries, the amount of wasted time and 
cost can also be bounded with the same rate of false-
discoveries beforehand. This procedure has many 
applications in microarray experiments and gene analysis. 

VI. CONCLUSIONS 

  Bioinformatics is being used in many fields such as 
molecular medicine, preventative medicine, gene 
therapy, drug development, and waste cleanup.  The 
interdisciplinary nature of bioinformatics demands close 
collaboration between biologists,   computer scientist, 
mathematicians, and statisticians.  Statistics is playing a 
significant role in various applications of 
bioinformatics.  One of the important areas of statistics 
that has been heavily used is two sample tests.  These 
tests classically have rigorous postulations.  Researcher 
involved in bioinformatics concluded that these tests are 
not readily suitable for their work due to the nature of 
many of the bioinformatics applications.  Consequently, 
they were forced to weaken some/all of these 
postulations.  This paper surveyed a number of methods 
that pushed researcher to diminish these constraints.   
Assumptions that were relaxed and the reasons behind 
this relaxation were demonstrated. 
   It is our future goal to introduce studies dealing with 
variation of formulas for two sample tests, variety 
methods of controlling the false discovery rate, such as 
selecting proper sample size, methods taking into 
account the dependency of sample data, and extension 
of these techniques to multi-sample testing.  While 
many of these techniques were proposed based on 
certain set of data or artificial data, work needs to be 
done on different data sets to validate the results.  More 
importantly, statisticians can help in seeking theoretical 
justification or support for these methods. Computer 
scientists can assist in developing more efficient 
algorithms to implement these techniques.  It is hoped 
that these methods can spark new ideas in the future 
research in bioinformatics.
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Abstract 

 

Influenza neuraminidases are glycoproteins that  facilitate the transmission of the influenza virus from cell 

to cell.  Oseltamivir is the most widely used neuraminidase inhibitor.  Here I provide a computational 

docking analysis of  oseltamivir with the active site of the neuraminidase of the 2009 Influenza A/H1N1 

strain.  The computed inhibitor/receptor binding energy suggests that oseltamivir would be effective 

against that  strain.  
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1.0  Introduction 
 

 Influenza neuraminidases are 

glycoproteins that  facilitate the transmission 

of the influenza virus from cell to cell.  
Oseltamivir ((3R,4R,5S)-4-(acetylamino)-5-

amino-3-(pentan-3-yloxy)cyclohex-1-ene-1-

carboxylic acid; [4]) is the most widely used 

influenza therapeutic. 

 In the World Health Organization 

serotype-based influenza taxonomy, 

influenza type A has nine neuraminidase-

related sero-subtypes, and these subtypes 

correspond at least roughly to differences in 

the active-site structures of the flu  

neuraminidases. The subtypes fall into two 

groups ([3]): group-1 contains the subtypes 

N1, N4, N5 and N8;  group-2 contains the 

subtypes N2, N3, N6, N7 and N9.  

Oseltamivir was designed to target the 

group-2 neuraminidases. 

 The available crystal structures of 

the group-1 N1, N4 and N8 neuraminidases 

([1]) reveal that the active sites of these 

enzymes have a very different three-

dimensional structure from that of group-2 

enzymes. The differences lie in a loop of 

amino acids known as the "150-loop", which 

in the group-1 neuraminidases has a 

conformation that opens a cavity not present 

in the group-2 neuraminidases. The 150-

loop contains an amino acid designated Asp 

151; the side chain of this amino acid has a 

carboxylic acid that, in group-1 enzymes, 

points away from the active site as a result 

of the 'open' conformation of the 150-loop. 

The side chain of another active-site amino 

acid, Glu 119, also has a different 

conformation in group-1 enzymes compared 

with the group-2 neuraminidases (8]).

 The Asp 151 and Glu 119 amino-

acid side chains form critical interactions 

with neuraminidase inhibitors. For 

neuraminidase subtypes with the “open 

conformation” 150-loop, the side chains 

of these amino acids might not have the 

precise alignment required to bind 

inhibitors tightly ([8]).    The active site 

of the 1918 H1N1 strain has the 150-

loop configuration. 
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 The difference in the active-site 

conformations of  the two groups of 

neuraminidases may also be caused by 

differences in amino acids that lie outside 

the active site. This means that an enzyme 

inhibitor for one target will not necessarily 

have the same activity against another with 

the same active-site amino acids and the 

same overall three-dimensional structure.   

 Crystallized 

A/California/04/2009(H1N1))  is an atypical 

group 1 NA with some group 2-like features 

in its active site (lack of a 150-cavity) ([4]). 

 

 

2.0  Method 
 

 The general objective of this study 

is straightforward:  to computationally 

assess the binding energy of the active site 

of crystallized A/California/04/2009(H1N1)) 

neuraminidase with oseltamivir.    Unless 

otherwise noted, all processing described in 

this section was performed on a Dell 

Inspiron 545 with an  Intel Core2 Quad CPU 

Q8200 (clocked @ 2.33 GHz) and 8.00 GB 

RAM, running under the Windows Vista 

Home Premium (SP2) operating 

environment.   

 Protein Data Bank (PDB) 3TI3 ([6]) 

is a structural description of most of the 

crystallized neuraminidase of  Influenza 

A/H1N1 3TI3 consists of two identical 

chains, designated Chain A and Chain B.  

 3TI3was downloaded from PDB on 

22 February 2011.  A PDB description of  

oseltamivir was extracted from PDB 2HU4 

([4]) using AutoDock Tools v 4.2 (ADT, 

[9]).  ADT was then used to perform the 

docking of oseltamivir to the receptor.  More 

specifically, in ADT, approximately 

following the rubric documented in [12] 
 

 -- Chain B, and the water in Chain 

A, of 3TI3 were deleted  

 

 -- Chain A's active-site was 

extracted.  (3TI3 identifies the active site of 

Chain A as 15  amides:  ARG118,  GLU119,  

ASP151,  ARG152,  ARG156,  TRP178,  

ARG224,  GLU227,   SER246,  GLU276,   

GLU277,  ARG292,   ASN294, ARG371,  

and TYR406.) 

 

 -- the hydrogens, charges, and 

torsions in the ligand and active site were 

adjusted using the ADT-recommended 

defaults 

 

 -- and finally,  the ligand, assumed 

to be flexible wherever that assumption is 

physically possible, was auto-docked to the 

active site, assumed to be rigid, using the 

Lamarckian genetic algorithm  implemented 

in ADT.  The best-fit (lowest-energy) 

configuration from the analysis was saved, 

and the distances between the receptor and 

ligand in 3TI3, and those computed here, 

were compared. 

 The ADT parameters for the 

docking are shown in Figure 1.  Most values 

are, or are a consequence of,  ADT defaults. 

 

________________________________________________________________________ 

 
autodock_parameter_version 4.2       # used by autodock to validate parameter set 

outlev 1                             # diagnostic output level 

intelec                              # calculate internal electrostatics 

seed pid time                        # seeds for random generator 

ligand_types C HD OA N               # atoms types in ligand 

fld 3TI3_active.maps.fld             # grid_data_file 

map 3TI3_active.C.map                # atom-specific affinity map 

map 3TI3_active.HD.map               # atom-specific affinity map 

map 3TI3_active.OA.map               # atom-specific affinity map 

map 3TI3_active.N.map                # atom-specific affinity map 

elecmap 3TI3_active.e.map            # electrostatics map 

desolvmap 3TI3_active.d.map          # desolvation map 

move oseltamivir.pdbqt               # small molecule 

about 0.5292 81.1637 109.1143        # small molecule center 

tran0 random                         # initial coordinates/A or random 
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axisangle0 random                    # initial orientation 

dihe0 random                         # initial dihedrals (relative) or random 

tstep 2.0                            # translation step/A 

qstep 50.0                           # quaternion step/deg 

dstep 50.0                           # torsion step/deg 

torsdof 7                            # torsional degrees of freedom 

rmstol 2.0                           # cluster_tolerance/A 

extnrg 1000.0                        # external grid energy 

e0max 0.0 10000                      # max initial energy; max number of retries 

ga_pop_size 150                      # number of individuals in population 

ga_num_evals 2500000                 # maximum number of energy evaluations 

ga_num_generations 27000             # maximum number of generations 

ga_elitism 1                         # number of top individuals to survive to next 

generation 

ga_mutation_rate 0.02                # rate of gene mutation 

ga_crossover_rate 0.8                # rate of crossover 

ga_window_size 10                    #  

ga_cauchy_alpha 0.0                  # Alpha parameter of Cauchy distribution 

ga_cauchy_beta 1.0                   # Beta parameter Cauchy distribution 

set_ga                               # set the above parameters for GA or LGA 

sw_max_its 300                       # iterations of Solis & Wets local search 

sw_max_succ 4                        # consecutive successes before changing rho 

sw_max_fail 4                        # consecutive failures before changing rho 

sw_rho 1.0                           # size of local search space to sample 

sw_lb_rho 0.01                       # lower bound on rho 

ls_search_freq 0.06                  # probability of performing local search on 

individual 

set_psw1                             # set the above pseudo-Solis & Wets parameters 

unbound_model bound                  # state of unbound ligand 

ga_run 10                            # do this many hybrid GA-LS runs 

analysis                             # perform a ranked cluster analysis 

 

Figure 1.  ADT parameters for the docking in this study 

 

______________________________________________________________________________ 

 

3.0  Results 

 
 The interactive problem setup, 

which assumes familiarity with the general 

neuraminidase "landscape", took about 20 

minutes in ADT;  the docking proper, about 

28 minutes on the platform described in 

Section 2.0  The platform's performance 

monitor suggested that the calculation was 

more or less uniformly distributed across the 

four processors at ~25% of peak per 

processor (with occasional bursts to 40% of 

peak), and required  a constant 2.9 GB of 

memory. 
 Figure 2 shows the best-fit 

oseltamivir/receptor energy and position 

summary produced by ADT under the setup 

shown in Figure 1.  The estimated free 

energy of binding under these conditions  is 

~ -8.5 kcal/mol; the estimated inhibition 

constant, ~603 nanoMolar at 298 K.   
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MODEL        8 

USER    Run = 8 

USER    Cluster Rank = 1 

USER    Number of conformations in this cluster = 10 

USER   

USER    RMSD from reference structure       = 146.946 A 

USER   

USER    Estimated Free Energy of Binding    =   -8.49 kcal/mol  [=(1)+(2)+(3)-(4)] 

USER    Estimated Inhibition Constant, Ki   =  603.08 nM (nanomolar)  [Temperature = 

298.15 K] 

USER     

USER    (1) Final Intermolecular Energy     =  -10.57 kcal/mol 

USER        vdW + Hbond + desolv Energy     =   -6.89 kcal/mol 

USER        Electrostatic Energy            =   -3.68 kcal/mol 

USER    (2) Final Total Internal Energy     =   -1.06 kcal/mol 

USER    (3) Torsional Free Energy           =   +2.09 kcal/mol 

USER    (4) Unbound System's Energy  [=(2)] =   -1.06 kcal/mol 

USER     

USER     

USER   

USER    DPF = 3TI3_oseltamivir.dpf 

USER    NEWDPF move oseltamivir.pdbqt 

USER    NEWDPF about 0.529200 81.163696 109.114304 

USER    NEWDPF tran0 30.119561 14.578922 -20.694645 

USER    NEWDPF axisangle0 0.665691 -0.552718 0.501357 -102.866417 

USER    NEWDPF quaternion0 0.520492 -0.432160 0.392002 -0.623427 

USER    NEWDPF dihe0 168.80 -157.63 -177.46 -10.23 -55.65 -0.70 28.39  

USER   

USER                              x       y       z    vdW   Elec        q     RMS  

ATOM      1  C2  G39 A 800      29.602  13.195 -22.935 -0.22 +0.06    +0.091 146.946 

ATOM      2  C3  G39 A 800      31.208  13.233 -22.632 -0.25 +0.00    +0.050 146.946 

ATOM      3  C4  G39 A 800      31.725  14.395 -21.669 -0.22 -0.05    +0.209 146.946 

ATOM      4  C5  G39 A 800      30.777  14.481 -20.473 -0.19 +0.03    +0.143 146.946 

ATOM      5  C6  G39 A 800      29.308  14.818 -20.993 -0.17 +0.05    +0.147 146.946 

ATOM      6  C7  G39 A 800      28.741  13.977 -22.105 -0.21 +0.03    +0.049 146.946 

ATOM      7  O7  G39 A 800      28.408  14.858 -19.795 -0.01 -0.25    -0.379 146.946 

ATOM      8  C8  G39 A 800      27.326  15.852 -19.571 -0.24 +0.09    +0.121 146.946 

ATOM      9  C9  G39 A 800      27.103  16.932 -20.666 -0.40 +0.01    +0.027 146.946 

ATOM     10  C91 G39 A 800      26.896  18.375 -20.179 -0.45 +0.01    +0.007 146.946 

ATOM     11  C81 G39 A 800      26.079  15.023 -19.329 -0.28 +0.02    +0.027 146.946 

ATOM     12  C82 G39 A 800      25.448  14.581 -20.611 -0.36 +0.00    +0.007 146.946 

ATOM     13  N5  G39 A 800      31.316  15.593 -19.600 -0.06 -0.14    -0.352 146.946 

ATOM     14  H5  G39 A 800      31.504  16.508 -20.010 +0.10 +0.01    +0.163 146.946 

ATOM     15  C10 G39 A 800      31.552  15.389 -18.289 -0.28 +0.19    +0.214 146.946 

ATOM     16  C11 G39 A 800      32.087  16.540 -17.517 -0.30 +0.11    +0.117 146.946 

ATOM     17  O10 G39 A 800      31.350  14.297 -17.682 -0.76 -0.42    -0.274 146.946 

ATOM     18  N4  G39 A 800      33.088  14.075 -21.248 -0.18 +0.04    -0.073 146.946 

ATOM     19  H42 G39 A 800      33.671  13.752 -22.021 -0.11 -0.43    +0.274 146.946 

ATOM     20  H41 G39 A 800      33.480  14.890 -20.776 +0.18 -0.03    +0.274 146.946 

ATOM     21  H43 G39 A 800      33.133  13.232 -20.676 -0.27 -0.24    +0.274 146.946 

ATOM     22  C1  G39 A 800      29.038  12.409 -24.007 -0.24 +0.29    +0.177 146.946 

ATOM     23  O1B G39 A 800      27.789  12.427 -24.260 -1.03 -1.58    -0.648 146.946 

ATOM     24  O1A G39 A 800      29.818  11.689 -24.695 -0.96 -1.48    -0.648 146.946 

TER 

ENDMDL 

 

Figure 2.  ADT's oseltamivir energy and position predictions. 

______________________________________________________________________________ 

 

Figure 3 is a rendering of the active-site/inhibitor configuration computed in this study. 
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Figure 3.  Rendering of oseltamivir computationally docked with the active site of PDB 

3TI3.  The molecular surface of the receptor is shown in white; the inhibitor, in stick form 

in grey.  Only the interior, inhibitor-containing region of the molecular surface of the active 

site can be compared to in situ data: the surface distal to the interior is a computational 

artifact,  generated by the assumption that active site is detached from the rest of the 

receptor. 

______________________________________________________________________________ 

 

 The distances between ligand and 

receptor atoms in 3TI3, and the 

corresponding distances in the present 

computation were within 10% of each other. 

 

 

4.0  Discussion 
 

 The method described in Section 2.0 

and the results of Section 3.0 motivate 

several observations: 

 

 1.  The inhibition constant computed 

in this study (~603  nanoMolar at ~298 K) is 

much smaller than the inhibition constant of 

neuraminidase inhibitors that are not 

clinically effective ([10], [11], [13], [14], 

[15]) against several H1N1 genotypes. This 

suggests that oseltamivir would  be effective 

against Influenza 

A/California/04/2009(H1N1)). 

 

 2.  The docking study reported here 

assumes that the receptor is rigid.  This 

assumption is appropriate for the binding 

energy computation for PDB 3TI3 per se.  

However, the calculation does not reflect 

what  receptor "flexing"  could contribute to 

the interaction of the ligand with native 

unliganded receptor.   

 

 3.  The analysis described in 

Sections 2.0 and 3.0 assumes receptor is in a 

crystallized form.  In situ, at physiologically 

normal temperatures (~310 K), the receptor 

is not in crystallized form. The 

ligand/receptor conformation in situ, 

therefore,  may not be identical to their 

conformation in the crystallized form. 
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 4.  Minimum-energy search 

algorithms other than the Lamarckian 

genetic algorithm used in this work could be 

applied to this docking problem.  Future 

work will use Monte Carlo/simulated 

annealing algorithms. 

 

 5.  A variety of torsion and charge 

models could be applied to this problem, and 

future work will do so. 

 

 6.  3TI3 has two chains, each with 

its own active site.  The work described in 

this paper was performed on Chain A only.  

Chain B appears to have an active site 

highly similar to the Chain A active site.  

Future work will assess the ligand/receptor 

binding energies of Chains B. 
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Abstract - With the advent of implantable hearing aids, the 
implementation and acoustic sensing strategy of the implanta-
ble microphone becomes an important issue. Previously, im-
plantable microphones were inserted under the skin, which 
caused loud noise signals whilst touching or moving the skin. 
In this paper, a microphone was mounted in a hole drilled in 
the middle ear cavity and the acoustic signal was measured. 
Based on experiments, a simple finite element model was 
conducted to predict the optimal placement of the microphone. 
From experiments with guinea pigs (n=2), the loss of trans-
mission observed from the proposed microphone was little as 
was as the total harmonic distortion. Furthermore, the simu-
lation model predicted that there was no significant difference 
between the placements of the microphones. 

Keywords: Hearing aids, Microphones, Implantable 
biomedical devices, Acoustic, Transmission loss 

 

1 Introduction 
  Hearing aids are devices that assist in providing a better 

understanding of communication for hearing-impaired pa-
tients. Over the past few decades, many implantable hearing 
aid devices have been developed which provide a better sound 
quality and treat hearing loss more effectively than conven-
tional hearing aids [1-6]. The implantable hearing aids are 
composed of four parts: a microphone, an amplifier, a trans-
ducer and a battery. The microphone is the most challenging 
part to implement fully implantable because various noises 
are generated from the human body, and the implantable mi-
crophones are usually inserted under the skin meaning that the 
effects of ear canal resonance and pinna effects are not usea-
ble [7]. Furthermore, the skin dramatically decreases the sen-
sitivity of the microphone at high frequencies because the 
mass of the membrane increases [8]. In order to overcome the 
sensitivity problem, implantable microphones are designed 
with a large size to increase sensitivity. However, patients and 
surgeons often request small microphones to aid in a fast 
recovery and safety. Jung et al used a resonance technique 
with the effects of the skin set to the maximum audible range 
[8]. In spite of above effect, placing the implantable micro-
phone under the skin caused fundamental problems with skin 

movement such as chewing food and combing hair can cause 
large sound noises [9]. This is because of skin movements and 
motion artifacts that cause large deformations of the mem-
brane when the sound is transmitted into the skin. 

In order to overcome the above barriers, methods involving 
measuring from the ear canal, tympanic membrane, or ossicu-
lar chain were proposed. Leysieffer et al. proposed the place-
ment of the microphone inside the ear canal skin [10]. Alt-
hough this method has the advantages of using pinna and can 
avoid skin movement noise, the associated surgical operation 
is very difficult and the sensitivity of the microphone is af-
fected by the skin density and thickness. 

Ko et al. proposed attaching a displacement or acceleration 
sensor onto the ossicular chain and measuring the vibration 
motions [11]. Surgical operations using this method are diffi-
cult because the ossicular chain is very fragile and it is hard to 
place proper attachments for drilling a hole because of the 
limited locations. Esteem® proposed to measure the dis-
placement value from the malleus using a piezoelectric trans-
ducer (PZT) [12]. Surgical operations using this method are 
easier than previous methods, but it is still not easy to perform 
and can’t be used for patients with middle ear mechanic prob-
lems.  

In this paper, sensing the acoustic signals from the middle 
ear cavity (MEC) is proposed. Unlike previous methods, the 
proposed method does not require a difficult surgical opera-
tion, as the microphone can be directly mounted onto the bone 
after drilling a hole into the MEC. Simple finite element anal-
ysis was conducted to determine the optimal attachment 
placement for the microphone in the MEC and concluded that 
there would be no significant difference with the placement. 
A calibrated commercial microphone was packaged in a tita-
nium screw and attached to the MEC. The transmission loss 
(TL) total harmonic distortion (THD), and vibration differ-
ences between skin implantable microphones and the imple-
mented microphone were measured. 
 

2 Methods 
Figure 1 (a) illustrates how a skin implantable microphone 

is placed under the skin resulting in the deformation of the 
membrane when it is touched by the hand. Furthermore, the 
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hairs are displaced at the skin and cause large deformations 
while combing the hair. Figure 1 (b) illustrates the proposed 
method that places the microphone at the MEC. All implanta-
ble hearing aids require a hole to be drilled in the MEC, in 
order to place the transducer in various positions [13]. There-
fore, the microphone can be placed in an existing hole to 
sense the sound so that some of the signal from the outside is 
transmitted into the tympanic membrane and the microphone 
can sense the signals from inside the MEC. 
 

 

Figure 1. Illustrations of a proposed microphone. (a) The 
implantable microphone located under the skin and its weak-
nesses. (b) Proposed placement of the implantable micro-
phone. 
 

2.1 Simple FEM analysis of transmission loss from the 
tympanic membrane 

 Figure 2 (a) and (b) shows the generated meshes and 
tympanic membrane displacement results for the Finite Ele-
ment Analysis (FEM). The ear canal was ignored because this 
experiment also does not measure. Although the shape of the 
MEC is a similar oval, it can be simplified to a plain cylinder. 
Total numbers of elements were 35,868 and average element 
quality was 0.93. 90dB SPL plane wave radiation source was 
applied to the tympanic membrane and all of the walls were 
set as hard boundaries, because the acoustic impedance of the 
bone was much higher than that of air. The tympanic mem-
brane was set as a linear elastic solid model and the ossicular 
chains were ignored. COMSOL was used to calculate the 
multi physics between solid walls and acoustic transmissions. 
Figure 3 (b) shows the normalised surface displacement of the 
membrane and red signifying high displacement and blue 
indicating values close to zero. From the FEM simulation, the 
position of the microphone was not found to be important 
when the microphone is approximately 3mm from the mem-
brane because sound reflects from the wall and becomes simi-
lar sound pressures. Figure 3 (a) shows the isosurface of the 

sound pressure from a 5 kHz radiation source without a hard 
boundary, and (b) depicts the same surface with a hard 
boundary. The sound pressure near the membrane varies de-
pending on the position, but it becomes similar when there is 
a hard boundary in comparison to without a hard boundary. 
Simulation results of other frequencies between 0.2 and 10 
kHz also show a similar trend. Therefore, the position of the 
microphone is not critical because the bone of the MEC will 
work as hard boundary. 

 
Figure 2. FEM analysis. (a) Simplified diagram of the 

MEC and generated meshes. (b) Displacement results of the 
tympanic membrane.  
 

 
Figure 3. FEM analysis of isosurfaces of sound pressure at 

5 kHz source. (a) Without hard boundary. (b) With hard 
boundary. 
 

3 Experiments 
Figure 4 (a) shows a simple block diagram of current ex-

periment. The experiments were performed in a sound cham-
ber (TL: 40dB) using an ER-1 speaker (Etymotic Research), 
which was calibrated. Although the speaker was calibrated, 
the actual sound pressure in front of the tympanic membrane 
was very different [14]. Therefore, a probe microphone (ER-
7C, Etymotic Research, sensitivity: 50 mV/Pa) was used to 
measure the sound pressure in front of the tympanic mem-
brane. An electret condenser microphone (ECM, BSE co., 
sensitivity: 23 mV/Pa), which was calibrated, was used to test 
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the implantable microphone. After pre-amplification, the 
signal was collected using LabVIEW with an AES17 20 kHz 
low-pass filter and a 200 Hz high pass filter. The high pass 
filter was set higher than for basic acoustic measurements 
because of the instability of the ECM sensor signal below 200 
Hz. Sampling rate and period were set as 44.1 kHz and 1 
second per sinusoidal wave, and exponentially increased 100 
points for frequencies between 200 Hz and 10 kHz. A linear 
weighting and 1/3 octave analysis was used to measure the 
vibration level or noise level.  

Figure 4 (b) shows animal experiment setup. Hartley guin-
ea pigs (n=2) weighing between 130g and 180g were used in 
this study, and the experiments were performed according to 
the guidelines of the Committee on Animal Experimentation 
of Kyungpook National University. The guinea pigs 
were sacrificed with concentrated potassium chloride injec-
tion into their hearts and then the hairs were removed.  A hole 
was drilled into the mastoid about 8mm from the ear canal in 
order to open the MEC. A microphone was mounted into a 
hole and fixed using polycarboxylate cement (HY-bond, 
SHOFU inc.). The membrane was observed to check for any 
problems at the tympanic membrane. 

The microphone was fully covered with the cement to pre-
vent the leakage. In addition, a vacuum sealing compound 
(HIVAC-G, ShinEtsu) was used to block sound leakage. The 
experiment was performed within two hours of death of the 
animal. All experiments were conducted two times and mean 
and standard deviation values were plotted. 

 

Figure 4. Experiment setup. (a) Block diagram of the experi-
ment. (b) Picture of an animal experiment. 

 

3.1 Experiment results 
Figure 5 shows signals measured at the MEC while apply-

ing three different types of constant acoustic pressures (70, 80, 
and 90dB SPL) to the tympanic membrane. Since the refer-
ence microphone was placed in front of the tympanic mem-
brane, there was no significant difference between different 
input sound pressures. Therefore, only data for 80dB SPL was 
plotted. There were no significant attenuations from low fre-

quencies and small resonance was only seen around 4-5 kHz. 
In high frequency bands, of around 10-15dB, attenuation was 
observed.  Further, there were no significant differences of 
placement. 
 

 

Figure 5. Experiments with the normal tympanic membrane 
for different input sound levels. 

 

4 Conclusions and Discussion  
In this paper, a microphone placed at the MEC was pro-

posed and its characteristics were measured. The proposed 
method did not cause severe attenuation problems and was 
less sensitive to motion artifacts. In this paper, simple FEM 
analysis was performed to determine the proper position for 
the microphone and showed there is no significant difference.  

The greatest problem encountered with attaching the mi-
crophone to the tympanic membrane or ossicular chain is 
feedback, which can easily cause hallowing. Since the pro-
posed method does not attach the microphone to the tympanic 
membrane, it has the potential to be less sensitive to the feed-
back problem. The size of the MEC in guinea pigs was too 
small for the attachment of the available transducers (2x3mm), 
so this issue will be researched in the near future. 

In this experiment, there was no significant sound TL at 
low frequencies. This could be as a result of the difference 
between the tympanic membranes in human and guinea pigs, 
as all of the previous experiments were conducted on the 
human tympanic membrane. In addition, the experiments 
outlined here used a reference in front of the tympanic mem-
brane, which is the usual method for hearing aid products. 
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Abstract 

 

Influenza neuraminidases are glycoproteins that  facilitate the transmission of the influenza virus from cell 

to cell.  Zanamivir is a widely used neuraminidase inhibitor.  Here I provide a computational docking 

analysis of  zanamivir with the active site of the neuraminidase of the 2009 Influenza A/H1N1 strain.  The 

computed inhibitor/receptor binding energy suggests that zanamivir would be only marginally effective 

against that  strain.  
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1.0  Introduction 
 

 Influenza neuraminidases are 

glycoproteins that  facilitate the transmission 

of the influenza virus from cell to cell.  
Zanamivir (5-(acetylamino)-2,6-anhydro-

3,4,5-trideoxy-4-

[(diaminomethylidene)amino]-D-glycero-D-

galacto-non-2-enonic acid 

(4S,5R,6R)-5-acetamido-4-

(diaminomethylideneamino)-6-[(1R,2R)-

1,2,3-trihydroxypropyl]-5,6-dihydro-4H-

pyran-2-carboxylic acid; [10]) is a widely 

used influenza therapeutic. 

 In the World Health Organization 

serotype-based influenza taxonomy, 

influenza type A has nine neuraminidase-

related sero-subtypes, and these subtypes 

correspond at least roughly to differences in 

the active-site structures of the flu  

neuraminidases. The subtypes fall into two 

groups ([3]): group-1 contains the subtypes 

N1, N4, N5 and N8;  group-2 contains the 

subtypes N2, N3, N6, N7 and N9.  

 Zanamivir was designed to target 

the group-2 neuraminidases. 

 The available crystal structures of 

the group-1 N1, N4 and N8 neuraminidases 

([1]) reveal that the active sites of these 

enzymes have a very different three-

dimensional structure from that of group-2 

enzymes. The differences lie in a loop of 

amino acids known as the "150-loop", which 

in the group-1 neuraminidases has a 

conformation that opens a cavity not present 

in the group-2 neuraminidases. The 150-

loop contains an amino acid designated Asp 

151; the side chain of this amino acid has a 

carboxylic acid that, in group-1 enzymes, 

points away from the active site as a result 

of the 'open' conformation of the 150-loop. 

The side chain of another active-site amino 

acid, Glu 119, also has a different 

conformation in group-1 enzymes compared 

with the group-2 neuraminidases (8]).

 The Asp 151 and Glu 119 amino-

acid side chains form critical interactions 

with neuraminidase inhibitors. For 

neuraminidase subtypes with the “open 
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conformation” 150-loop, the side chains 

of these amino acids might not have the 

precise alignment required to bind 

inhibitors tightly ([8]).    The active site 

of the 1918 H1N1 strain has the 150-

loop configuration. 

 The difference in the active-site 

conformations of  the two groups of 

neuraminidases may also be caused by 

differences in amino acids that lie 

outside the active site. This means that 

an enzyme inhibitor for one target will 

not necessarily have the same activity 

against another with the same active-site 

amino acids and the same overall three-

dimensional structure.    
 Crystallized Influenza 

A/California/04/2009(H1N1)) 

neuraminidase is an atypical group 1 NA 

with some group 2-like features in its active 

site (lack of a 150-cavity) ([4]). 

 

 

2.0  Method 
 

 The general objective of this study 

is straightforward:  to computationally 

assess the binding energy of the active site 

of crystallized A/California/04/2009(H1N1)) 

neuraminidase with zanamivir.    Unless 

otherwise noted, all processing described in 

this section was performed on a Dell 

Inspiron 545 with an  Intel Core2 Quad CPU 

Q8200 (clocked @ 2.33 GHz) and 8.00 GB 

RAM, running under the Windows Vista 

Home Premium (SP2) operating 

environment.   

 Protein Data Bank (PDB) 3TI3 ([6]) 

is a structural description of most of the 

crystallized neuraminidase of  Influenza 

A/H1N1 3TI3 consists of two identical 

chains, designated Chain A and Chain B.  

 3TI3was downloaded from PDB on 

22 February 2011.  A PDB description of  

zanamivir was extracted from PDB 3B7E 

([10]) using AutoDock Tools v 4.2 (ADT, 

[9]).  ADT was then used to perform the 

docking of zanamivir to the receptor.  More 

specifically, in ADT, approximately 

following the rubric documented in [12] 
 

 -- Chain B, and the water in Chain 

A, of 3TI3 were deleted  

 -- Chain A's active-site was 

extracted.  (3TI3 identifies the active site of 

Chain A as 15  amides:  ARG118,  GLU119,  

ASP151,  ARG152,  ARG156,  TRP178,  

ARG224,  GLU227,   SER246,  GLU276,   

GLU277,  ARG292,   ASN294, ARG371,  

and TYR406.) 

 -- the hydrogens, charges, and 

torsions in the ligand and active site were 

adjusted using the ADT-recommended 

defaults 

 --  and finally,  the ligand, assumed 

to be flexible wherever that assumption is 

physically possible, was auto-docked to the 

active site, assumed to be rigid, using the 

Lamarckian genetic algorithm  implemented 

in ADT.  The best-fit (lowest-energy) 

configuration from the analysis was saved, 

and the distances between the receptor and 

ligand in 3TI3, and those computed here, 

were compared. 

 The ADT parameters for the 

docking are shown in Figure 1.  Most values 

are, or are a consequence of,  ADT defaults. 

 

________________________________________________________________________ 

 
autodock_parameter_version 4.2       # used by autodock to validate parameter set 

outlev 1                             # diagnostic output level 

intelec                              # calculate internal electrostatics 

seed pid time                        # seeds for random generator 

ligand_types C HD OA N               # atoms types in ligand 

fld 3TI3_active.maps.fld             # grid_data_file 

map 3TI3_active.C.map                # atom-specific affinity map 

map 3TI3_active.HD.map               # atom-specific affinity map 

map 3TI3_active.OA.map               # atom-specific affinity map 

map 3TI3_active.N.map                # atom-specific affinity map 

elecmap 3TI3_active.e.map            # electrostatics map 
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desolvmap 3TI3_active.d.map          # desolvation map 

move zanamivir.pdbqt                 # small molecule 

about -29.5772 12.7517 -20.6465      # small molecule center 

tran0 random                         # initial coordinates/A or random 

axisangle0 random                    # initial orientation 

dihe0 random                         # initial dihedrals (relative) or random 

tstep 2.0                            # translation step/A 

qstep 50.0                           # quaternion step/deg 

dstep 50.0                           # torsion step/deg 

torsdof 9                            # torsional degrees of freedom 

rmstol 2.0                           # cluster_tolerance/A 

extnrg 1000.0                        # external grid energy 

e0max 0.0 10000                      # max initial energy; max number of retries 

ga_pop_size 150                      # number of individuals in population 

ga_num_evals 2500000                 # maximum number of energy evaluations 

ga_num_generations 27000             # maximum number of generations 

ga_elitism 1                         # number of top individuals to survive to next 

generation 

ga_mutation_rate 0.02                # rate of gene mutation 

ga_crossover_rate 0.8                # rate of crossover 

ga_window_size 10                    #  

ga_cauchy_alpha 0.0                  # Alpha parameter of Cauchy distribution 

ga_cauchy_beta 1.0                   # Beta parameter Cauchy distribution 

set_ga                               # set the above parameters for GA or LGA 

sw_max_its 300                       # iterations of Solis & Wets local search 

sw_max_succ 4                        # consecutive successes before changing rho 

sw_max_fail 4                        # consecutive failures before changing rho 

sw_rho 1.0                           # size of local search space to sample 

sw_lb_rho 0.01                       # lower bound on rho 

ls_search_freq 0.06                  # probability of performing local search on 

individual 

set_psw1                             # set the above pseudo-Solis & Wets parameters 

unbound_model bound                  # state of unbound ligand 

ga_run 10                            # do this many hybrid GA-LS runs 

analysis                             # perform a ranked cluster analysis 

 

 

Figure 1.  ADT parameters for the docking in this study 

 

______________________________________________________________________________ 

 

3.0  Results 

 
 The interactive problem setup, 

which assumes familiarity with the general 

neuraminidase "landscape", took about 20 

minutes in ADT;  the docking proper, about 

28 minutes on the platform described in 

Section 2.0  The platform's performance 

monitor suggested that the calculation was 

more or less uniformly distributed across the 

four processors at ~25% of peak per 

processor (with occasional bursts to 40% of 

peak), and required  a constant 2.9 GB of 

memory. 
 Figure 2 shows the best-fit 

zanamivir/receptor energy and position 

summary produced by ADT under the setup 

shown in Figure 1.  The estimated free 

energy of binding under these conditions  is 

~ -8.7 kcal/mol; the estimated inhibition 

constant, ~408 nanoMolar at 298 K.   

______________________________________________________________________________ 

 
MODEL        1 

USER    Run = 1 

USER    Cluster Rank = 1 

USER    Number of conformations in this cluster = 10 

USER   

USER    RMSD from reference structure       = 56.144 A 

USER   

USER    Estimated Free Energy of Binding    =   -8.72 kcal/mol  [=(1)+(2)+(3)-(4)] 

USER    Estimated Inhibition Constant, Ki   =  408.13 nM (nanomolar)  [Temperature = 

298.15 K] 
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USER     

USER    (1) Final Intermolecular Energy     =  -11.40 kcal/mol 

USER        vdW + Hbond + desolv Energy     =   -8.30 kcal/mol 

USER        Electrostatic Energy            =   -3.10 kcal/mol 

USER    (2) Final Total Internal Energy     =   -2.75 kcal/mol 

USER    (3) Torsional Free Energy           =   +2.68 kcal/mol 

USER    (4) Unbound System's Energy  [=(2)] =   -2.75 kcal/mol 

USER     

USER     

USER   

USER    DPF = 3TI3_zanamivir.dpf 

USER    NEWDPF move zanamivir.pdbqt 

USER    NEWDPF about -29.577200 12.751700 -20.646500 

USER    NEWDPF tran0 29.961176 14.781299 -20.419074 

USER    NEWDPF axisangle0 -0.004045 -0.391949 0.919978 3.081993 

USER    NEWDPF quaternion0 -0.000109 -0.010540 0.024740 0.999638 

USER    NEWDPF dihe0 4.89 175.54 139.90 180.00 67.18 1.07 -179.74 0.58 -36.96  

USER   

USER                              x       y       z    vdW   Elec        q     RMS  

ATOM      1  C2  ZMR A1001      29.610  13.398 -22.778 -0.14 +0.09    +0.144 56.144 

ATOM      2  C3  ZMR A1001      30.901  13.720 -22.564 -0.34 +0.01    +0.045 56.144 

ATOM      3  C4  ZMR A1001      31.277  14.664 -21.442 -0.27 -0.00    +0.150 56.144 

ATOM      4  C5  ZMR A1001      30.226  14.586 -20.317 -0.17 +0.04    +0.143 56.144 

ATOM      5  C6  ZMR A1001      28.817  14.747 -20.891 -0.14 +0.08    +0.185 56.144 

ATOM      6  O6  ZMR A1001      28.541  13.810 -21.924 -0.14 -0.22    -0.335 56.144 

ATOM      7  NE  ZMR A1001      32.576  14.369 -20.810 -0.22 +0.04    -0.217 56.144 

ATOM      8  HE  ZMR A1001      32.843  13.389 -20.711 -0.26 -0.16    +0.178 56.144 

ATOM      9  CZ  ZMR A1001      33.401  15.265 -20.371 +0.01 +0.06    +0.665 56.144 

ATOM     10  NH1 ZMR A1001      33.240  16.579 -20.493 -0.24 +0.05    -0.235 56.144 

ATOM     11  NH2 ZMR A1001      34.493  14.843 -19.724 -0.31 -0.14    -0.235 56.144 

ATOM     12 2HH1 ZMR A1001      32.407  16.900 -20.987 +0.08 -0.07    +0.174 56.144 

ATOM     13 1HH1 ZMR A1001      33.890  17.285 -20.148 -0.38 -0.08    +0.174 56.144 

ATOM     14 2HH2 ZMR A1001      34.617  13.835 -19.630 -0.39 +0.16    +0.174 56.144 

ATOM     15 1HH2 ZMR A1001      35.144  15.549 -19.378 -0.44 +0.11    +0.174 56.144 

ATOM     16  N5  ZMR A1001      30.437  15.627 -19.309 -0.02 -0.20    -0.352 56.144 

ATOM     17  H5  ZMR A1001      30.130  16.576 -19.525 +0.10 +0.07    +0.163 56.144 

ATOM     18  C10 ZMR A1001      31.013  15.406 -18.112 -0.24 +0.22    +0.214 56.144 

ATOM     19  C11 ZMR A1001      31.268  16.657 -17.329 -0.34 +0.13    +0.117 56.144 

ATOM     20  O10 ZMR A1001      31.344  14.278 -17.729 -0.74 -0.41    -0.274 56.144 

ATOM     21  C1  ZMR A1001      29.129  12.658 -23.951 -0.19 +0.35    +0.233 56.144 

ATOM     22  O1A ZMR A1001      30.010  12.129 -24.683 -1.05 -1.46    -0.642 56.144 

ATOM     23  O1B ZMR A1001      27.908  12.571 -24.177 -1.03 -1.48    -0.642 56.144 

ATOM     24  C7  ZMR A1001      27.690  14.594 -19.863 -0.09 +0.13    +0.180 56.144 

ATOM     25  C8  ZMR A1001      26.561  15.617 -20.084 -0.25 +0.09    +0.173 56.144 

ATOM     26  O8  ZMR A1001      25.343  14.887 -20.303 -0.20 -0.19    -0.391 56.144 

ATOM     27  H8  ZMR A1001      24.662  15.515 -20.514 -0.40 -0.11    +0.210 56.144 

ATOM     28  C9  ZMR A1001      26.902  16.556 -21.266 -0.21 +0.02    +0.198 56.144 

ATOM     29  O9  ZMR A1001      25.780  16.637 -22.140 -0.01 -0.06    -0.398 56.144 

ATOM     30  H9  ZMR A1001      25.104  16.044 -21.835 -0.35 -0.03    +0.209 56.144 

ATOM     31  O7  ZMR A1001      27.148  13.287 -19.968 +0.01 -0.32    -0.390 56.144 

ATOM     32  H7  ZMR A1001      27.094  13.052 -20.887 +0.08 +0.19    +0.210 56.144 

TER 

ENDMDL 

 

  
Figure 2.  ADT's zanamivir energy and position predictions. 

______________________________________________________________________________ 

 

 

Figure 3 is a rendering of the active-site/inhibitor configuration computed in this study. 
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Figure 3.  Rendering of zanamivir computationally docked with the active site of PDB 3TI3.  

The molecular surface of the receptor is shown in white; the inhibitor, in stick form in grey.  

Only the interior, inhibitor-containing region of the molecular surface of the active site can 

be compared to in situ data: the surface distal to the interior is a computational artifact,  

generated by the assumption that active site is detached from the rest of the receptor. 

______________________________________________________________________________ 

 

 

The distances between ligand and receptor 

atoms in 3TI3, and the corresponding 

distances in the present computation were 

within 10% of each other. 

 

 

4.0  Discussion 
 

The method described in Section 2.0 and the 

results of Section 3.0 motivate several 

observations: 

  1.  The inhibition constant 

computed in this study (~408  nanoMolar at 

~298 K) is comparable inhibition constant of 

neuraminidase inhibitors that are not 

clinically effective ([10], [11], [13], [14], 

[15]) against several H1N1 genotypes. This 

suggests that zanamivir would be only 

marginally effective against Influenza 

A/California/04/2009(H1N1)).  It would, 

however, be more effective than oseltamivir 

(Tamiflu®) against that strain. 

 2.  The docking study reported here 

assumes that the receptor is rigid.  This 

assumption is appropriate for the binding 

energy computation for PDB 3TI3 per se.  

However, the calculation does not reflect 

what  receptor "flexing"  could contribute to 

the interaction of the ligand with native 

unliganded receptor.   

 3.  The analysis described in 

Sections 2.0 and 3.0 assumes receptor is in a 

crystallized form.  In situ, at physiologically 

normal temperatures (~310 K), the receptor 

is not in crystallized form. The 

ligand/receptor conformation in situ, 

therefore,  may not be identical to their 

conformation in the crystallized form. 

 4.  Minimum-energy search 

algorithms other than the Lamarckian 
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genetic algorithm used in this work could be 

applied to this docking problem.  Future 

work will use Monte Carlo/simulated 

annealing algorithms. 

 5.  A variety of torsion and charge 

models could be applied to this problem, and 

future work will do so. 

 6.  3TI3 has two chains, each with 

its own active site.  The work described in 

this paper was performed on Chain A only.  

Chain B appears to have an active site 

highly similar to the Chain A active site.  

Future work will assess the ligand/receptor 

binding energies of Chains B. 

 

 

 

5.0  Acknowledgements 
 
This work benefited from discussions with 

Tony Pawlicki.  For any problems that 

remain, I am solely responsible.  
  

 

 

6.0  References. 
 

[1]  Russell RJ et al. The structure of H5N1 

avian neuraminidase suggests new 

opportunities for drug design.  Nature 443 (6 

September 2006), 45-49. 

 

[2]  Johnson NP and Mueller J.  Updating 

the accounts: global mortality of the 1918-

1920 "Spanish " influenza pandemic.  

Bulletin of the History of Medicine 76 

(2002), 105-115. 

 

[3]  World Health Organization.  A revision 

of the system of nomenclature for influenza 

viruses: a WHO memorandum.  Bulletin of 

the World Health Organization 58 (1980), 

585-591. 

 

[4]  Vavricka CF, Li Q, Wu Y, Qi J, Wang 

M, Liu Y, Gao F, Liu J, Feng E, He J, Wang 

J, Liu H, Jiang H, and Gao  GF.
.
 Structural 

and functional analysis of laninamivir and 

its octanoate prodrug reveals group specific 

mechanisms for Influenza NA inhibition.  

PLoS Pathogens 7 (October 2011): 

e1002249. 

doi:10.1371/journal.ppat.1002249. 

 

[5]  Butler D.  Avian flu special:  The flu 

pandemic: were we ready? Nature 435  (26 

May 2005), 400-402.  doi: 

10.1038/435400a. 

 

[6]  PDB ID = 10.2210/pdb3ti3/pdb.  See 

also [4]. 

 

[7]  US Centers for Disease Control.  

Summary: Interim Recommendations for the 

Use of Influenza Antiviral Medications in 

the Setting of Oseltamivir Resistance among 

Circulating Influenza A (H1N1) Viruses, 

2008-09 Influenza Season.  19 December 

2008.  URL 

http://www.cdc.gov/flu/professionals/antivir

als/summary.htm. 

 

[8]  Luo M.  Structural biology: antiviral 

drugs fit for a purpose. Nature 443 (7 

September 2006), 37-38.  

doi:10.1038/443037a,  published online 6 

September 2006. 

 

[9]  Morris GM, Goodsell DS, Huey R, 

Lindstrom W, Hart WE, Kurowski S, 

Halliday S, Belew R, and Olson AJ.   

AutoDock v4.2.  

http://autodock.scripps.edu/.  2010. 

 

[10]  PDB ID =  10.2210/pdb3b7e/pdb.  Xu 

X, Zhu X, Dwek RA, Stevens J, Wilson IA. 

Structural characterization of the 1918 

influenza virus H1N1 neuraminidase. 

Journal of Virology 82 (2008), 10493-
10501. 

 

[11]  Govorkova EA et al.  Comparison of 

efficacies of RWJ-270201, oseltamivir, and 

zanamivir against H5N1, H9N2, and other 

avian influenza viruses.  Antimicrobial 

Agents and Chemotherapy 45 (2001), 2723-

2732. 

 

[12]  Huey R and Morris GM.  Using 

AutoDock 4 with AutoDock Tools: A 

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  | 369

http://dx.doi.org/10.2210/pdb3ti3/pdb
http://www.cdc.gov/flu/professionals/antivirals/summary.htm
http://www.cdc.gov/flu/professionals/antivirals/summary.htm
http://dx.doi.org/10.2210/pdb3b7e/pdb


Tutorial.  8 January 2008.  

http://autodock.scripps.edu/.   

 

[13]  Cheng Y and Prusoff WH.  

Relationship between the inhibition constant 

(Ki) and the concentration of inhibitor which 

causes 50 per cent inhibition (I50) of an 

enzymatic reaction. Biochemical 

Pharmacology 22 (December 1973),  3099–

3108. doi:10.1016/0006-2952(73)90196-2. 

 

[14]   Horner JK. Simulated docking of 

oseltamivir with the 1918 pandemic strain 

Influenza A/H1N1 zanamivir-conformed 

neuraminidase active site.  Proceedings of 

the 2011 International Conference on 

Genetic and Evolutionary Methods.  CSREA 

Press.  2011.  pp. 130-135. 

 

[15]   Horner JK. Simulated docking of 

zanamivir with the 1918 pandemic strain 

Influenza A/H1N1 neuraminidase active 

site.  Proceedings of the 2011 International 

Conference on Genetic and Evolutionary 

Methods.  CSREA Press.  pp. 136-142. 

 

 

 

370 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |

http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1016%2F0006-2952%2873%2990196-2


Developing the Information Architecture for the 

Outsourcing Physical Examination 
P.Y Hung

1
, P.Y Lee

1
, C.H Hsiao

2
, A.J Lee

3
, and S.T Tang

1
 

1
 Department of Biomedical Engineering, Ming Chuan University, Taoyuan, Taiwan 
2
 Department of Medical Informatics, Tzu Chi University, Hualien, Taiwan 

3 
Department of Healthcrae Information and Management, Ming Chuan University, Taoyuan, Taiwan 

 

 

Abstract - In the developed country, it is necessary that the 

enterprise should arrange the occupational physical 

examination yearly, there are millions cases, results in heavy 

loading to the hospital. Because of the limited scale, the 

hospital usually needs outsourcing physical examination 

institutes. But the introduction of the outsourcing institute 

results in problems of examination information sharing. 

Although the information systems for hospital have been 

developed for decades, and now there are various successful 

systems. But the information system for outsourcing institute 

integration is not yet developed. This study is to develop the 

information architecture for outsourcing institute integration, 

which is basing on the relational medical information 

standards, includes DICOM, HL7 CDA, and IHE XDS. The 

proposed architecture would provide the information sharing 

in heterogeneous systems for different hospitals. 

Keywords: IHE XDS; HL7 CDA; DICOM 

 

1 Introduction 

  In the developed countries, it is usually necessary that 

the enterprise should arrange the physical examination for the 

employees yearly. As a result, there are million employees 

should undergo examination every year, which makes the 

heavy loading to the hospitals and lots of traffic time to the 

employees. Additionally, basing on the cost considerations, the 

enterprise always requests the hospital to provide on-site 

examination service. The general hospital is originally 

designed for treatment, not for physical examination. But 

physical examination should be done by the hospital is 

necessary by law. Then the hospital needs the outsourcing 

institute for on-site physical examination.  

 Along with the development of the healthcare process 

that has involved complicated information flow [1]. Nowadays 

there are various information systems for the operation of the 

hospital, and due to the heterogeneity, the hospital information 

systems can not share data between different hospitals. As a 

result, when a hospital requests the outsourcing institute, 

which would be problems in examination information sharing. 

The outsourcing institute is impossible to design different 

system for different contract hospital. Although the 

information systems for hospital have developed for decades, 

and now there are various successful systems, e.g. HIS, RIS, 

LIS. But the information system for outsourcing physical 

examination is not yet developed. As a result, the outsourcing 

institute usually adopts the modified commercial MIS 

(Management information system) for institute management, 

and the associated paper-forms for data sharing with contract 

hospital. The general paper-form [2] workflow is shown in Fig. 

1. In the workflow of the on-site physical examination, before 

the examination the employee should get a blank form firstly, 

and then fill his/her personal information, and then the 

healthcare provider note the results of physical examination on 

the form. Then the paper form would deliver to clerks for data 

key-in for the information system of contract hospital, 

additional double checking process is necessary. Finally the 

examination report is generated, and then sends to the 

employee. 

 Paper-form based workflow is a error-prone process, and 

consuming lots of time and manpower. With more and more 

outsourcing institutes being introduced into hospital, a key 

issue is how to design the necessary information architecture, 

which can reduce data errors, time consuming and even the 

data loss risk. This study is to develop the information 

architecture for outsourcing institute, which transfers the 

current process from paper-form to electronic-form, would 

well reduce lots of processing time and manual resources. 

Additionally, the developed architecture is basing on the 

relational medical information standards, which provides the 

information sharing in heterogeneous systems for different 

contract hospitals. 

 

Figure 1.  Traditional paper-form based on-site physical 

examination flow. 
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2 Methods 

 For the outsourcing physical examination, the 

development of the information architecture is to re-design the 

workflow firstly. Then the key information modules are 

developed for replacing the current manual operations, which 

includes electronic form, ultrasonography encapsulation. 

Additionally, the architecture development is basing on the 

medical information standards for data exchange with the 

current healthcare information systems. 

2.1 Redesign workflow 

 The workflow is redesigned, which referred the current 

examination procedure of Taipei Veterans General Hospital, 

and the current workflow of outsourcing institute. 

2.2 Electronic form 

 We use Android SDK to develop the electron-form 

system. Android is a Linux-based operating system developed 

by Google. In addition to the operating system, it also 

provides Android SDK/NDK application software 

development kit that allows embedded systems developers to 

develop Android platform applications. There are lots of 

facilities involved in the study, include Eclipse, Java 

Development Kit (JDK), Android Development Tools (ADT), 

Android SDK, and ASUS TF101. 

2.3 Ultrasonography acquisition 

 The most common medical image modalities are 

ultrasonography for its non-radical. But the most general 

ultrasonography is non-dicom compatible for its cost. The 

proposed ultrasonography acquisition module includes three 

parts: the driver for image acquisition device, DICOMDIR 

generator, and the shared dynamic link libraries (DLLs), which 

as shown in Fig. 2. For inherent low resolution of 

ultrasonography and the ease of future maintenance, the off-

the-shelf image acquisition device was adopted. As a result, 

the driver should be developed for controlling the acquisition 

device. The acquired image is JPEG format, and then a 

DICOMDIR generator is required for image converting. 

Additionally, the acquired image could be also import to other 

DICOM applications in local clinics for further study, which is 

necessary to develop shared dynamic link libraries for 

cooperating with other software applications. 

 National Instruments (NI) LabVIEW is a graphical based 

programming language, which support rich libraries to 

facilitate the development of device driver or instrument 

control console [3]. NI LabVIEW Plug and Play Instrument 

Drivers is deployed to develop the driver for the off-the-shelf 

image acquisition device. The LabVIEW Instrument Driver 

Finder (IDFinder) is firstly applied to find, download, and start 

using the similar instrument driver. The DICOMDIR is a 

directory object, which is to serve as an index for organizing 

and finding DICOM files inside a physical storage media [4]. 

The DICOMDIR object formal definition and its structure are 

in part 3-annex F and part 10-section 7 of the DICOM 

standard document. The DICOMDIR file contains 

hierarchically sorted registers with the information related to 

objects stored into a DICOM files set. [5] In most DICOM 

storage media, a set of DICOM information is described by an 

index file, DICOMDIR, which accompanies the files that it 

references. The main function of the DICOM encoder is to 

convert the NTSC video signal into a DICOM-compatible 

digital file. Besides NI LabVIEW, the Intel JPEG Library and 

DicomObjects are also included for developing the DICOM 

encoder. The NI LabVIEW Application Builder to pack the 

developed application and the shared dynamic link libraries. 

 

Figure 2.  Ultrasonography acquisition module. 

2.4 Report generation 

 Currently, the text and image reports of physical 

examination are separately. We use NI LabVIEW Report 

Generation Toolkit for Microsoft Office in report generation, 

which integrates the results of text and image.  

2.5 Medical information standards 

 We referred the IHE XDS standards [6] and the 

requirements for healthcare institute. The system framework is 

based on HL7 [7] and DICOM [8] standards. The report 

system is basing on the HL7 [9] CDA [10], which shares the 

medical text files in different platforms. 

 The XML (eXtensible Markup Language) is the most 

popular format, which supports global data exchange. 

Additionally, XML could be embedded in Web service. As a 

result, the XML document is easy shared via internet. Health 

level 7 (HL7) clinical document architecture (CDA) provides a 

standard form for digitizing a series of medical documents, 

and cross-discipline data exchange [11, 12]. The CDA is a 

XML based format, which is constituted by medical objects, 

including text, image, and voice. As a result, the CDA 

document could be accessed via Web browser. In this study, 

we demonstrate the electronic forms of the physical 
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examination basing on HL7 CDA standard. The examined data 

and image are described by CDA level 3. 

3 Results 

 The developed electron-form based architecture is shown 

in Fig. 3. The developed ultrasonography acquisition 

application is shown in Fig. 4, which had been confirmed in 

hospital. The GUI of ultrasonography DICOM transformer is 

shown in Fig. 5. The GUI of report generation is shown in Fig. 

6. The remolded information architecture is shown in Fig. 7. 

During the on-site physical examination, healthcare staff 

confirms the examination items with employee firstly. Then 

collect specimens and medical images (X-ray or 

ultrasonography). After investigation, transmit all data to the 

database. Then output report from database and deliver via 

Internet. 

4 Conclusions 

 In order to exchange data between outsourcing 

laboratory and hospital. We provide the information 

architecture for outsourcing medical laboratory, which 

referred the standards of IHE and HL7. The research aims is 

not only to improve the information exchange, but also 

effectively reduce incident errors. We will develop personal 

health record system in the future, so the subjects can search 

personal healthy situation in real-time at home and provide 

long-term caring services. 

 

 

Figure 3.  The GUI of electronic form. 

 

Figure 4.  The developed ultrasonography acquisition 

application. 

 

Figure 5.  The GUI of ultrasonography DICOM transformer. 

 

Figure 6.  The GUI of report generation. 
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Figure 7.  Developed information architecture. 
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Abstract 

 

Neuraminidases are glycoproteins that  facilitate the transmission of the influenza virus from cell to cell.  

Laninamivir is a neuraminidase inhibiting drug approved for general use in Japan in 2010 for the 

treatment of influenza, and for emergency use in the US in 2011.  Here I provide a computational docking 

analysis of  laninamivir with the active site of the neuraminidase of the 1918 strain (A/Brevig Mission/1/18 

H1N1). The computed inhibitor/receptor binding energy suggests that laninamivir would not be effective 

against that  strain.  

 
Keywords: Influenza, H1N1, neuraminidase, laninamivir 

 

 

1.0  Introduction 
 

 Neuraminidases are glycoproteins 

that  facilitate the transmission of the 

influenza virus from cell to cell.  
Laninamivir (4S,5R,6R)-5-acetamido-4-

carbamimidamido-6-[(1R,2R)-3-hydroxy-2-

methoxypropyl]-5,6-dihydro-4H-pyran-2-

carboxylic acid; [14]) is a neuraminidase 

inhibitor approved in Japan in 2010 for 

general use in the treatment of influenza and 

for emergency use in the US in 2011. 

 In the World Health Organization 

serotype-based influenza taxonomy, 

influenza type A has nine neuraminidase-

related sero-subtypes, and these subtypes 

correspond at least roughly to differences in 

the active-site structures of the flu  

neuraminidases. The subtypes fall into two 

groups ([3]): group-1 contains the subtypes 

N1, N4, N5 and N8;  group-2 contains the 

subtypes N2, N3, N6, N7 and N9.  

Laninamivir was designed to target the 

group-2 neuraminidases. 

 

 The available crystal structures of 

the group-1 N1, N4 and N8 neuraminidases 

([1]) reveal that the active sites of these 

enzymes have a very different three-

dimensional structure from that of group-2 

enzymes. The differences lie in a loop of 

amino acids known as the "150-loop", which 

in the group-1 neuraminidases has a 

conformation that opens a cavity not present 

in the group-2 neuraminidases. The 150-

loop contains an amino acid designated Asp 

151; the side chain of this amino acid has a 

carboxylic acid that, in group-1 enzymes, 

points away from the active site as a result 

of the 'open' conformation of the 150-loop. 

The side chain of another active-site amino 

acid, Glu 119, also has a different 

conformation in group-1 enzymes compared 

with the group-2 neuraminidases (8]).

 The Asp 151 and Glu 119 amino-

acid side chains form critical interactions 

with neuraminidase inhibitors. For 

neuraminidase subtypes with the “open 

conformation” 150-loop, the side chains 
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of these amino acids might not have the 

precise alignment required to bind 

inhibitors tightly ([8]).    The active site 

of the 1918 strain has the 150-loop 

configuration. 

The difference in the active-site 

conformations of  the two groups of 

neuraminidases may also be caused by 

differences in amino acids that lie outside 

the active site. This means that an enzyme 

inhibitor for one target will not necessarily 

have the same activity against another with 

the same active-site amino acids and the 

same overall three-dimensional structure 

([17]).    

 

 

2.0  Method 
 

 The general objective of this study 

is straightforward:  to computationally 

assess the binding energy of the active site 

of crystallized 1918 pandemic strain 

neuraminidase with laninamivir.    Unless 

otherwise noted, all processing described in 

this section was performed on a Dell 

Inspiron 545 with an  Intel Core2 Quad CPU 

Q8200 (clocked @ 2.33 GHz) and 8.00 GB 

RAM, running under the Windows Vista 

Home Premium (SP2) operating 

environment.   

 Protein Data Bank (PDB) 3BEQ 

([6]) is a structural description of most of the 

crystallized neuraminidase of  Influenza 

A/Brevig Mission/1/18 H1N1 (the principal 

1918 pandemic mutant).  3BEQ consists of 

two identical chains, designated Chain A 

and Chain B.  

 3BEQ was downloaded from PDB 

on 31 January 2011.  A PDB description of  

laninamivir was extracted from PDB 3TI8 

([4]) using AutoDock Tools v 4.2 (ADT, 

[9]).  ADT was then used to perform the 

docking of laninamivir to the receptor.  

More specifically, in ADT, approximately 

following the rubric documented in [12] 
 

 -- Chain B, and the water in Chain 

A, of 3BEQ were deleted  

 

 -- Chain A's active-site was 

extracted.  (3BEQ identifies the active site 

of Chain A as 14  amides:  ARG118,  

GLU119,  ASP151,  ARG152,  ARG156,  

TRP178,  ARG224,  GLU227,   SER246,  

GLU276,   GLU277,  ARG292,   ARG371,  

and TYR406.) 

 

 -- the hydrogens, charges, and 

torsions in the ligand and active site were 

adjusted using the ADT-recommended 

defaults 

 

 -- and finally,  the ligand, assumed 

to be flexible wherever that assumption is 

physically possible, was auto-docked to the 

active site, assumed to be rigid, using the 

Lamarckian genetic algorithm  implemented 

in ADT.  The best-fit (lowest-energy) 

configuration from the analysis was saved. 

 The ADT parameters for the 

docking are shown in Figure 1.  Most values 

are, or are a consequence of,  ADT defaults. 

 

________________________________________________________________________ 

 

 
autodock_parameter_version 4.2       # used by autodock to validate parameter set 

outlev 1                             # diagnostic output level 

intelec                              # calculate internal electrostatics 

seed pid time                        # seeds for random generator 

ligand_types C HD OA N               # atoms types in ligand 

fld 3BEQ_receptor.maps.fld           # grid_data_file 

map 3BEQ_receptor.C.map              # atom-specific affinity map 

map 3BEQ_receptor.HD.map             # atom-specific affinity map 

map 3BEQ_receptor.OA.map             # atom-specific affinity map 

map 3BEQ_receptor.N.map              # atom-specific affinity map 

elecmap 3BEQ_receptor.e.map          # electrostatics map 

desolvmap 3BEQ_receptor.d.map        # desolvation map 

move laninamivirA.pdbqt              # small molecule 
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about 22.7762 -20.7805 -52.3029      # small molecule center 

tran0 random                         # initial coordinates/A or random 

axisangle0 random                    # initial orientation 

dihe0 random                         # initial dihedrals (relative) or random 

tstep 2.0                            # translation step/A 

qstep 50.0                           # quaternion step/deg 

dstep 50.0                           # torsion step/deg 

torsdof 9                            # torsional degrees of freedom 

rmstol 2.0                           # cluster_tolerance/A 

extnrg 1000.0                        # external grid energy 

e0max 0.0 10000                      # max initial energy; max number of retries 

ga_pop_size 150                      # number of individuals in population 

ga_num_evals 2500000                 # maximum number of energy evaluations 

ga_num_generations 27000             # maximum number of generations 

ga_elitism 1                         # number of top individuals to survive to next  

                                       generation 

ga_mutation_rate 0.02                # rate of gene mutation 

ga_crossover_rate 0.8                # rate of crossover 

ga_window_size 10                    #  

ga_cauchy_alpha 0.0                  # Alpha parameter of Cauchy distribution 

ga_cauchy_beta 1.0                   # Beta parameter Cauchy distribution 

set_ga                               # set the above parameters for GA or LGA 

sw_max_its 300                       # iterations of Solis & Wets local search 

sw_max_succ 4                        # consecutive successes before changing rho 

sw_max_fail 4                        # consecutive failures before changing rho 

sw_rho 1.0                           # size of local search space to sample 

sw_lb_rho 0.01                       # lower bound on rho 

ls_search_freq 0.06                  # probability of performing local search on 

                                       individual 

set_psw1                             # set the above pseudo-Solis & Wets parameters 

unbound_model bound                  # state of unbound ligand 

ga_run 10                            # do this many hybrid GA-LS runs 

analysis                             # perform a ranked cluster analysis 
 

 

Figure 1.  ADT parameters for the docking in this study 

 

______________________________________________________________________________ 

 

3.0  Results 

 
 The interactive problem setup, 

which assumes familiarity with the general 

neuraminidase "landscape", took about 20 

minutes in ADT;  the docking proper, about 

28 minutes on the platform described in 

Section 2.0  The platform's performance 

monitor suggested that the calculation was 

more or less uniformly distributed across the 

four processors at ~25% of peak per 

processor (with occasional bursts to 40% of 

peak), and required  a constant 2.9 GB of 

memory. 
 Figure 2 shows the best-fit 

laninamivir/receptor energy and position 

summary produced by ADT under the setup 

shown in Figure 1.  The estimated free 

energy of binding under these conditions  is 

~ -7 kcal/mol; the estimated inhibition 

constant, ~7.7 microMolar at 298 K.   

 

_____________________________________________________________ 

 
MODEL        6 

USER    Run = 6 

USER    Cluster Rank = 1 

USER    Number of conformations in this cluster = 1 

USER   

USER    RMSD from reference structure       = 61.496 A 

USER   

USER    Estimated Free Energy of Binding    =   -6.97 kcal/mol  [=(1)+(2)+(3)-(4)] 
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USER    Estimated Inhibition Constant, Ki   =    7.72 uM (micromolar)  [Temperature = 

298.15 K] 

USER     

USER    (1) Final Intermolecular Energy     =   -9.66 kcal/mol 

USER        vdW + Hbond + desolv Energy     =   -7.32 kcal/mol 

USER        Electrostatic Energy            =   -2.34 kcal/mol 

USER    (2) Final Total Internal Energy     =   -1.56 kcal/mol 

USER    (3) Torsional Free Energy           =   +2.68 kcal/mol 

USER    (4) Unbound System's Energy  [=(2)] =   -1.56 kcal/mol 

USER     

USER     

USER   

USER    DPF = laninamivirA_3BEQ.dpf 

USER    NEWDPF move laninamivirA.pdbqt 

USER    NEWDPF about 22.776199 -20.780500 -52.302898 

USER    NEWDPF tran0 7.783660 14.900163 -0.696761 

USER    NEWDPF axisangle0 0.051041 0.607910 0.792364 70.549071 

USER    NEWDPF quaternion0 0.029476 0.351065 0.457586 0.816394 

USER    NEWDPF dihe0 121.24 76.63 152.14 144.19 61.46 -14.16 72.74 160.39 -28.29  

USER   

USER                              x       y       z    vdW   Elec        q     RMS  

ATOM      1  CAA LNV A 901       6.776  14.665  -3.341 -0.26 +0.21    +0.235 61.496 

ATOM      2  CAB LNV A 901       7.292  16.072  -3.047 -0.24 -0.00    +0.103 61.496 

ATOM      3  CAC LNV A 901       7.903  16.305  -1.661 -0.32 -0.01    +0.059 61.496 

ATOM      4  CAD LNV A 901       7.836  15.114  -0.662 -0.16 +0.03    +0.090 61.496 

ATOM      5  CAE LNV A 901       6.930  13.905  -1.032 -0.13 +0.07    +0.107 61.496 

ATOM      6  OAF LNV A 901       6.325  13.844  -2.309 -0.17 -0.36    -0.334 61.496 

ATOM      7  NAZ LNV A 901       9.014  17.205  -1.573 -0.15 +0.08    -0.194 61.496 

ATOM      8  HAZ LNV A 901       8.940  17.997  -0.936 -0.33 -0.16    +0.184 61.496 

ATOM      9  CBA LNV A 901      10.223  17.056  -2.327 +0.12 +0.00    +0.669 61.496 

ATOM     10  NBC LNV A 901      10.559  15.885  -2.869 -0.17 -0.15    -0.235 61.496 

ATOM     11  NBB LNV A 901      11.054  18.076  -2.330 -0.13 +0.02    -0.235 61.496 

ATOM     12 1HBC LNV A 901      11.420  15.780  -3.406 -0.24 +0.15    +0.174 61.496 

ATOM     13 2HBC LNV A 901       9.914  15.094  -2.867 +0.10 +0.14    +0.174 61.496 

ATOM     14 2HBB LNV A 901      10.797  18.972  -1.915 -0.46 -0.14    +0.174 61.496 

ATOM     15 1HBB LNV A 901      11.916  17.970  -2.867 -0.25 +0.08    +0.174 61.496 

ATOM     16  NBG LNV A 901       8.170  15.300   0.721 -0.04 -0.03    -0.324 61.496 

ATOM     17  HBG LNV A 901       7.439  15.653   1.340 -0.37 -0.11    +0.169 61.496 

ATOM     18  CBD LNV A 901       9.445  15.029   1.297 -0.06 +0.12    +0.218 61.496 

ATOM     19  OBF LNV A 901      10.320  14.445   0.665 -0.03 -0.22    -0.274 61.496 

ATOM     20  CBE LNV A 901       9.637  15.445   2.722 -0.19 +0.06    +0.117 61.496 

ATOM     21  CAG LNV A 901       6.172  14.373  -4.674 -0.21 +0.34    +0.204 61.496 

ATOM     22  OAH LNV A 901       6.227  13.087  -5.141 -0.23 -1.38    -0.646 61.496 

ATOM     23  OAI LNV A 901       6.010  15.307  -5.441 -0.40 -0.90    -0.646 61.496 

ATOM     24  CAJ LNV A 901       7.195  12.570  -0.411 -0.08 +0.15    +0.210 61.496 

ATOM     25  OAW LNV A 901       7.776  11.761  -1.357 +0.02 -0.05    -0.381 61.496 

ATOM     26  CAX LNV A 901       7.113  10.609  -1.750 +0.01 +0.07    +0.202 61.496 

ATOM     27  CAK LNV A 901       5.940  12.009   0.227 -0.15 +0.21    +0.177 61.496 

ATOM     28  OAY LNV A 901       4.781  12.513  -0.337 -0.56 -0.66    -0.390 61.496 

ATOM     29  HAY LNV A 901       4.366  13.173   0.207 -0.46 +0.32    +0.210 61.496 

ATOM     30  CAL LNV A 901       5.970  12.083   1.737 -0.16 +0.27    +0.198 61.496 

ATOM     31  OAM LNV A 901       4.910  12.785   2.340 -1.16 -0.93    -0.398 61.496 

ATOM     32  HAM LNV A 901       4.515  13.471   1.815 -0.45 +0.44    +0.209 61.496 

TER 

ENDMDL 

 

 

                   

Figure 2.  ADT's laninamivir energy and position predictions. 

______________________________________________________________________________ 

 

 

Figure 3 is a rendering of the active-site/inhibitor configuration computed in this study. 
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Figure 3.  Rendering of laninamivir computationally docked with the active site of PDB 

3BEQ.  The molecular surface of the receptor is shown in white; the inhibitor, in stick form 

in grey.  Only the interior, inhibitor-containing region of the molecular surface of the active 

site can be compared to in situ data: the surface distal to the interior is a computational 

artifact,  generated by the assumption that active site is detached from the rest of the 

receptor. 

 

______________________________________________________________________________ 

 

4.0  Discussion 
 

 The method described in Section 2.0 

and the results of Section 3.0 motivate 

several observations: 

 1.  The inhibition constant computed 

in this study (~7.7  microMolar at ~298 K) 

is comparable to the inhibition constant of 

neuraminidase inhibitors that are not 

clinically effective ([10], [11], [13]) against 

several H1N1 genotypes. That inhibition 

constant  is less than the inhibition constant 

of oseltamivir (~11 microMolar, at 298 K; 

[14]), and greater than the inhibition 

constant of zanamivr (298 nanoMolar, at 

298 K; [15]), against the 3BEQ active site 

This suggests that laninamivir would not be 

effective against the principal 1918 

pandemic mutant, A/Brevig Mission/1/18 

H1N1. 

 2.  The docking study reported here 

assumes that the receptor is rigid.  This 

assumption is appropriate for the binding 

energy computation for PDB 3BDQ per se.  

However, the calculation does not reflect 

what  receptor "flexing"  could contribute to 

the interaction of the ligand with native 

unliganded receptor.   

 3.  The analysis described in 

Sections 2.0 and 3.0 assumes receptor is in a 

crystallized form.  In situ, at physiologically 

normal temperatures (~310 K), the receptor 

is not in crystallized form. The 

ligand/receptor conformation in situ, 

therefore,  may not be identical to their 

conformation in the crystallized form. 
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 4.  Minimum-energy search 

algorithms other than the Lamarckian 

genetic algorithm used in this work could be 

applied to this docking problem.  Future 

work will use Monte Carlo/simulated 

annealing algorithms. 

 5.  A variety of torsion and charge 

models could be applied to this problem, and 

future work will do so. 

 6.  3BEQ has two chains, each with 

its own active site.  The work described in 

this paper was performed on Chain A only.  

Chain B appears to have an active site 

highly similar to the Chain A active site.  

Future work will assess the ligand/receptor 

binding energies of Chains B. 
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ScaffoldScaffolder: An Aggressive Scaffold Finishing Algorithm

P. Bodily1, J. Price1, M. Clement1, and Q. Snell1
1Department of Computer Science, Brigham Young University, Provo, Utah, USA

Abstract— With next generation sequencing technologies
producing vast amounts of nucleotide data, it becomes
imperative to streamline and automate the genome assembly
process as much as possible. Contig scaffolding algorithms,
ideally designed to reconstruct full chromosomes, more
often tend to produce a still intractable number of disjoint
sequences, requiring further manual finishing of the genome.
To this end we present ScaffoldScaffolder, an aggressive au-
tomated scaffold finisher which further reduces the scaffold
set using paired-end data. We evaluate the performance of
ScaffoldScaffolder on Newbler scaffolds created from the
Rubus idaeus cultivar heritage raspberry species. Further
automated genome finishing methods are discussed.

Keywords: Genome Assembly; Scaffolding

1. Introduction
1.1 Motivation

Genetic variation is the root cause for numerous diseases
or predispositions to life-threatening diseases such as cancer
and heart disease. Genetic variation in plants is the basis for
variability in crop yields, nutritional value, and flavor. The
future of scientific study in these areas depends heavily on
the ability to study and characterize genetic variation.

Despite the direct bearing that genetics has on each of
these instances, the specific genetic variations at play are not
well-characterized, their effects are not well-understood, and
the ability to scientifically study them is limited. To a large
extent this is due to the relatively sparse amount of data
that is available. This shortage derives in large part from
the cost-prohibitive and somewhat unrefined nature of the
technology and software used to obtain and analyze genetic
data. The first human genome was sequenced less than 10
years ago and cost upwards of 3 billion dollars. Though
DNA sequencing costs have decreased significantly, the time
and manual effort required to produce finished genome
sequences are still very restrictive. Despite global efforts to
collect and sequence any and all forms of life, only about
1,200 organisms have been sequenced, most at a primitive
level, hardly enough to begin to adequately characterize
the patterns responsible for genetic variations of interest1.
In order to deduce and characterize the effects of genetic
variation, we need a larger number of high-quality sequenced
genomes, implying the need for improved technology and
software to produce them.

1http://www.ncbi.nlm.nih.gov/About/tools/restable_mol.html

To this end we have undertaken to develop ScaffoldScaf-
folder, an automated scaffold finisher.

1.2 Background
Technology has thus far been only moderately successful

at solving the problem of genomic sequencing. The most
prominent methods require large-scale replication of genetic
material which is then broken through sonication into an
amalgam of short fragments of various sizes (called reads).
From this mixture are extracted sequences suitable to the
sequencing capacity of sequencing machines. The most
cost-effective machines are capable of sequencing reads of
approximately 100 bases while maintaining reasonably low
error rates. Reads as long as 600 base pairs can be sequenced
at a much higher price and with slightly higher error rates. In
any case, the sequencers are unable to sequence anything that
even begins to approximate the size of an entire chromosome
which, for example in a raspberry, averages lengths of
several million base pairs. The algorithmic challenge is to
reassemble the full-length chromosomes from short DNA
reads. The genome reconstruction is divided into two phases:
the overlapping of reads to form consensus contigs and the
scaffolding of contigs to form chromosomes.

In the initial phase of the assembly process reads are used
to form long contiguous sequences of known bases. This is
accomplished by combining overlapping reads to produce
longer consensus sequences called contigs (see Figure 1a).
If all read-length genomic sequences were unique, we could
continue this process until we reconstructed the original
chromosomal sequence in its entirety. However, due to the
presence of repetitive regions throughout a genome, reads
will exist which support multiple paths of reconstruction
(see Figure 1b).The ambiguity of this result is often modeled
as a graph where the nodes are the unambiguous consensus
contig sequences produced from combining overlapped reads
and the edges are possible ways in which these contigs
could be sequentially combined (see Figure 1c). Often the
number of contigs can outnumber the actual number of
chromosomes by as much as a factor of 103. The graph
will often be missing nodes or edges due to insufficient
coverage of certain areas of the genome or by erroneous
contigs produced from errors during the read-sequencing
phase.

Scaffolding is the step in the assembly process where
additional information is leveraged to infer the relative
distance and orientation of contigs. This is most commonly
done using paired-end data. Paired-end data consists of pairs
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Read 1:! ACCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGC
Read 2:!  CCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCA
Read 3:!   CCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAG
Read 4:!    CGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGA
Read 5:!     GGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAA
Read 6:!      GCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAG
Read 7:!       CGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAGC
… 

Consensus: !ACCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAGC…

Read 1:! ! TATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAA
Read 2:! ! CATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAA
Read 3:! !  ATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAA
Read 4:! !  ATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAG
… 

Contig (reads 1 & 3): !TATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAA
Contig (reads 1 & 4): !TATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAG
Contig (reads 2 & 3): !CATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAA
Contig (reads 2 & 4): ! CATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAG

Reads

Possible assemblies:

(a)

Read 1:! ACCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGC
Read 2:!  CCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCA
Read 3:!   CCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAG
Read 4:!    CGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGA
Read 5:!     GGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAA
Read 6:!      GCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAG
Read 7:!       CGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAGC
… 

Consensus: !ACCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAGC…

Read 1:! ! TATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAA
Read 2:! ! CATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAA
Read 3:! !  ATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAA
Read 4:! !  ATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAG
… 

Contig (reads 1 & 3): !TATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAA
Contig (reads 1 & 4): !TATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAG
Contig (reads 2 & 3): !CATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAA
Contig (reads 2 & 4): ! CATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAG

Reads

Possible assemblies:

(b) (c)

Fig. 1: (a) Short reads whose sequences overlap are overlaid such that their consensus is a reconstruction of the original
sequence from which the reads are taken. (b) Repetitive regions whose length exceeds that of sequenced reads create different
possible reconstructed consensus paths. (c) The different reconstructions can be modeled as a graph where unambiguous
consensus sequences are collapsed into nodes and evidence for the different paths are represented as edges.

of short reads whose distance and orientation is known from
the technique used to sequence them. Due to the read-size
constraints mentioned above, the paired-reads are the same
length or shorter than normal unpaired DNA reads. However,
the paired-reads are sequenced from either end of a longer
insert sequence of known length using one of a number of
paired-end sequencing technologies (see Figure 2a). Unique
mappings of the paired reads to the pre-determined contigs
are supporting evidence for the inference of distance and
orientation of contigs (see Figure 2b). Scaffolding thus aims
to reconstruct the chromosomal sequences by orienting the
contigs and fixing them at distances suggested by paired-
end linkages (see Figure 2c). The gaps are reported using the
inferred number of bases in the gap (denoted using the letter
‘N’). The goal of scaffolding is to continue to properly orient
and fix contigs at the correct distances until the number of
scaffolds approaches the number of expected chromosomes.
The quality of an assembly notably increases by using a
large variety of clone sizes in the scaffolding phase [1].
However, additional measures are required to reduce the
resulting scaffold number to the chromosome number.

We have developed ScaffoldScaffolder, a lightweight tool
designed to automate the scaffolding of scaffolds using
paired-end data. Whereas it is the purpose of a scaffolder
to recover the orientation and placement of contigs inas-
much as the data will accurately allow, the purpose of the
ScaffoldScaffolder is to act as a post-processing step to

aggressively reduce the number of sequences as much as
possible by leveraging remaining unused linkages inferred
from paired-end data. Rather than simply concatenating
resulting scaffolds in random order, at random distances, and
in random orientations, ScaffoldScaffolder attempts to infer
the correct scaffolding, though in a somewhat less cautious
manner than a scaffolder.

2. Related Work
The Newbler assembler, developed by 454 Life Sciences

and distributed with 454 sequencing machines, has been
used on a number of assembly projects [2], [3], [4]. Its
efficiency in contigging is particularly notable given that
it works natively with the .SFF data format to account
for the specifics of pyrosequencing errors. Newbler requires
uniquely mapping mate-pairs (i.e. paired-reads) as scaffold-
ing evidence, disregarding reads which potentially map to
multiple contigs.

Bambus [5] uses mate-pair information together with
other types of linking data to infer the orientation and
ordering of contigs to hierarchically construct scaffolds.
The linkage data is used to create a graph where nodes
are contigs and edges represent linkage evidence. Unlike
many scaffolding algorithms, Bambus does not disregard
ambiguous linkage evidence (for example multiply mapped
pairs), and is capable of outputting pertinent data for manual
finishing of ambiguous paths. However, this data is not
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Fig. 2: (a) Paired-end reads or mate-pairs are formed by sequencing the ends of a sequence of known length. (b) Because
the orientation and distance of the paired-end reads is known, they can be used to position and orient contigs relative one to
another. (c) The result is a reconstructed sequence composed of known and unknown regions. Unknown bases are denoted
using the letter ‘N’.

used to inform the finishing algorithm in the case that
automated finishing is required. Rather this simple greedy
algorithm repeatedly finds the longest non-self-overlapping
path without consideration of graph structures characteristic
of repetitive or polymorphic sequences.

Arachne [6], [7] is a Whole Genome Shotgun (WGS)
assembler which has been used to assemble heterozygous
genomes [8]. In the contigging phase, Arachne uses depth
of coverage and the presence of conflicting links as evidence
of repetitive regions in order to avoid erroneous extension
of contigs. These contigs are incorporated in filling intra-
scaffold gaps.

SOAPdenovo is a short-read assembly algorithm devel-
oped by the Beijing Genomics Institute (BGI) which has
been employed in a large number of genome projects [9].
The program is designed primarily to function with Illumina
GA short reads in reconstruction of large genomes.

MAIA [10] integrates multiple de novo and comparative
assemblies by creating a graph of the contigs from these
assemblies and their alignments. Four properties for the
edge weighting are implemented, namely contig length,
overlap length, length of non-aligned overhang, and original
assembly quality. This approach makes it possible to use
specific assemblers for different next-generation data sources
and enables the use of multiple known related genomes in
the assembly process. The algorithm was applied on the
de novo sequencing of the Saccharomyces cerevisiae and
demonstrated improvements upon single assembly methods
(Velvet, Celera, MAQ) and other hybrid methods (Velvet,
Minimus). The disadvantages are that MAIA inherently
relies on a very closely related genome in the assembly
process and the computational expense of the algorithm

renders the approach impractical for larger genomes. The
algorithm, like many, is designed for use with homozygous
genomes.

3. Methods
ScaffoldScaffolder is designed to be used as an iterative

algorithm where each successive iteration utilizes a paired-
end library of a larger insert size than the previous iteration.
Each iteration requires as input a series of sequences to be
scaffolded in fasta format and any number of similarly-sized
paired datasets. The high-level purpose of the algorithm is
to use the paired datasets to infer scaffoldings of the input
sequences and then to select and output an unambiguous sub-
set of the scaffoldings in fasta format. It additionally outputs
information detailing the specifics of the input sequences
which compose the new scaffolds.

Internally the algorithm stores input sequences in the
context of a graph where nodes represent sequences and
edges between nodes indicate that paired data exists to
suggest that two sequences should be scaffolded. We must
make a slight modification on how we define nodes in the
context of this problem. In classic graph theory, we say
that if (u,v) is an edge in a graph G = (V,E), then node
v is adjacent to node u. However, in the context of our
problem it is possible for two sequences to be adjacent in
one of four different orientations. One possible solution to
this problem relies on the biological concept of sequence
orientation which defines one end of the sequence as the 5’
(said five prime) or upstream end and the opposite end of
the sequence as the 3’ or downstream end inasmuch as DNA
synthesis proceeds in a 5’ to 3’ direction. This directionality
is an inherent characteristic of each sequence.
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One way to uniquely distinguish between the four differ-
ent orientations of two DNA sequences is to specify which
two ends are adjacent (see Figure 3a). We can model this
in our graph by defining our nodes as bi-terminal, where
edges to one terminal represent adjacency to the 5’ end of
the represented sequence and edges to the second terminal
represent adjacency to the 3’ end of the same sequence (see
Figure 3b). This concept of a graph can be reduced to the
standard definition of a graph by making each terminal its
own node and creating an edge between them.

In the ScaffoldScaffolder, this scaffold graph is initialized
only with the sequence nodes; edges are later progressively
added as each input dataset is processed for linking evidence.
It is assumed that contigs represent unique sequences and
thus there is a one-to-one relationship between nodes and
sequences.

The algorithm uses an external mapping algorithm, Bowtie
[11], to map reads in the input paired datasets to the
sequences to be scaffolded. While the algorithm is heavily
modularized to support other mapping algorithms (including
GNUMAP [12] and BLAST [13]), testing has been limited

5' ACGT 3'! ! 5' ACGT 3'

5' ACGT 3'! ! 3' TGCA 5'

3' TGCA 5'! ! 5' ACGT 3'

3' TGCA 5'! ! 3' TGCA 5'
(a)

(b)

Fig. 3: (a) There are four possible ways for two sequences to
be adjacent. The correct orientation can be uniquely defined
by specifying which ends are adjacent. (b) Orientation can
be preserved in a graph model using bi-terminal nodes where
each terminal represents a sequence end.

to Bowtie. Experimentation to date has required mappings to
be unique (meaning no more than a single alignment location
exists for the mapped read) in order to maximize confidence
in the resulting scaffolds. ScaffoldScaffolder currently gives
the user the option of adjusting this parameter as well
as parameters dictating read-trimming options, alignment-
mismatch options, and options for skipping the first n reads
in a dataset. A parameter allows the user to specify the
paired-end orientation either as -fr (Illumina paired-end
protocol), -rf (Illumina mate-pair protocol), or -ff (454 mate-
pair protocol).

From the Bowtie results ScaffoldScaffolder then identifies
pairs for which both ends are uniquely mapped. In cases
where both ends map within the same sequence, the distance
between the mappings is cataloged in order to infer an insert
size for the library. In cases where ends map to distinct
sequences, the algorithm infers the orientation and gap size
between the two base sequences. Assuming that the gap size
is viable (i.e. nonnegative), the weight of the corresponding
edge in the scaffold graph is linearly incremented and the
inferred gap size for the scaffolding of the two oriented base
sequences is cataloged. The final gap size is the mean of the
inferred gap sizes.

The process of mapping paired-reads and then loading
the scaffold graph according to the mapping results is re-
peated for each provided paired-end source in the respective
iteration of the algorithm. At the conclusion of this phase,
the scaffold graph contains a number of ambiguous linkages
where a given base sequence may have multiple possible
scaffoldings in the upstream and/or the downstream direc-
tion. ScaffoldScaffolder assumes that a given base sequence
will be scaffolded with only one sequence in either direction.
In order to reduce the graph to include an unambiguous
subset of scaffold edges, the edges are sorted by weight,
following which edges are greedily considered for inclusion
in the final graph. If adding an edge creates an ambiguous
scaffolding, the edge is skipped. A minimum support pa-
rameter determines the minimum number of unique pairs
required as support for an edge to be included.

Scaffold sequences are constructed from the disam-
biguated scaffold graph and these sequences, together with
any unscaffolded sequences, are output in fasta format by
decreasing order of length.

4. Results
We tested the ScaffoldScaffolder algorithm on Newbler

scaffolds created for the heterozygous Rubus idaeus cultivar
heritage raspberry genome.

Contigs were first assembled from the reads using the
Newbler assembler. Due to memory and time constraints, the
5k dataset was not incorporated into the Newbler assembly.
Aside from this exception, the same data used in the Newbler
assembly was used as input to ScaffoldScaffolder.

388 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



Table 1: Reduction of Newbler Scaffolds via Multiple Iterations of ScaffoldScaffolder

Iteration (insert size) Reads Uniquely Aligned Scaffold Count Max Scaffold Size Avg Scaffold Size

Initial 13,037 4,456,429 19,313
400b 171,490,959 11,620 4,456,429 21,905
3kb 397,429 11,271 4,456,429 22,643
5kb 99,333,568 8,695 4,456,429 30,976
20kb 893,745 7,638 4,678,214 37,961

The assembler parameters were set to require a minimum
length of 30 bases, a minimum overlap length of 70 bases,
and a minimum overlap identity of 98 bases. The large
genome assembly, heterozygotic, and scaffold flags were
enabled. Using these parameters, Newbler produced 123,121
contigs and 13,037 scaffolds.

ScaffoldScaffolder was parameterized to use Bowtie for
the mapping of paired reads, with a maximum of 3 mis-
matches, and only allowing uniquely mapping reads. The
minimum support required for valid links was 1.

ScaffoldScaffolder was able to reduce the scaffold count
by 5399, representing a reduction of over 40% of the
scaffolds produced using Newbler’s scaffolding algorithm
alone (see Table 1).

The 3kb and 20kb datasets (those produced using the 454
mate pair protocol) had noticeably lower rates of alignment.
We suspect this derives from the inability of the Bowtie
aligner to consider insertions or deletions when aligning
reads. This proves troublesome for reads sequenced using
the 454 protocol which often have insertions and deletions
in homopolymorphic sequences. Consequently, selection of
other short-read mapping algorithms capable of handling
indels could further improve the performance of the Scaf-
foldScaffolder algorithm.

5. Discussion
ScaffoldScaffolder attempts to provide an algorithmic

solution to automated finishing using paired-end data. Al-
though it may be argued that the aggressive nature of the
algorithm will lead to inaccuracies in the resultant assembly,
similar inaccuracies are common to other prevalent finishing
methods of which we will briefly discuss two.

5.1 Genetic Linkage Map
Biological assays are capable of inferring the relative

distance along chromosomes of a number of specific genetic
sequences based on what is called the recombination rate of
protein-coding sequences (i.e. genes). Recombination refers
to the rearrangement and exchange of genetic material that
occurs when chromosomes cross over one another. The
likelihood of such a rearrangement occurring between two
genes, known as the recombination rate, increases as a
function of the distance between the two genes. Thus the

relative distance and ordering of certain observable genes
can be inferred biologically in order to create a genetic
linkage map. These genes, whose sequences are known, can
be used to guide the finishing of the assembly. Assuming that
such a genetic linkage map is available, this process is quite
accurate, but may still fail to place a number of scaffolds.

5.2 Related Genomes
A second approach to genome finishing attempts to infer

the distance and orientation of contigs by using the known
sequence of a closely related genome. We refer to the degree
of genetic similarity in gene-order between different species
as synteny. To the extent that the genomes of two species are
syntenic, the ordering and orientation of similar sequences
on the related genome can be used to guide the assembly
of the target scaffolds. The challenge with this approach is
proper identification and treatment of genomic differences.

6. Conclusion
In this research, we present ScaffoldScaffolder, an ag-

gressive automated scaffold finisher. We have illustrated its
effectiveness in significantly reducing a set of Newbler scaf-
folds created for the Rubus idaeus cultivar heritage raspberry
genome. Future development aims to address the complexi-
ties of scaffolding heterozygous genomes with inclusion of
structural/sequence-based heuristics to identify and assemble
distinct haplotypes. Improved input data analysis will aim
to infer parameters so as to reduce the information required
from the user for execution.
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Abstract 

 

Amphibians are threatened worldwide by climate change, chytridiomycosis, and land-use change.  Recently, data 

sufficient to estimate the combined effects of these threats, at least in the near term, has become available.  The 

combined effect can be modeled as a linear combination of the individual effects.  Here I describe EGAD, a 

Bayesian network implementation of such a model.  The tool is especially useful in assessing the sensitivity of the 

estimate of the combined effect to uncertainty in the components.  In addition, it can automatically recalibrate itself 

as new data becomes available. 

   

 

1.0  Introduction 
 
Amphibians are threatened worldwide by 

climate change, chytridiomycosis, and land-use 

change ([1]).  The loss of a large fraction of the 

world's amphibians could profoundly disrupt the 

control of insect vectors of a variety of human 

diseases, including malaria, sleeping sickness, 

and dengue fever. 

 

EGAD is a Bayesian network ([4]) calculator of 

the globally averaged "threat" of  

 

   (F) -- fractional climate change  

 -- fractional chytridiomycosis change 

 -- fractional land use change   

 

to species diversity of each of   

 

   (O) -- frogs 

 -- salamanders 

 -- caecilians 

 

based on [1]. 

 

 

All "changes" in (F) are measured as the fraction 

of the area of Earth's surface inhabited by at 

least one species in the amphibian orders in (O) 

in  the reference state of (F) (identified in [2]).  

By fiat, "change", as used in the context of (F), 

means "change that reduces amphibian 

diversity". Any increase in the area affected by 

climate change, chytridiomycosis, or human 

land use, can reduce amphibian diversity. 

 

EGAD assumes that the net global average threat 

("Threat to O", reduction in the species 

diversity) of each of (O) is linear in (i.e., is a 

weighted sum of) each of (F).   

 

2.0  Method 
 
The weighting coefficients for each of (F) in the 

threat formulas for each of (O) are derived from 

the data is reported in [2], Table S1.  [2], Table 

S1 reports effects by pairs of threats 

 

 1.  Climate change (CL) and 

chytridiomycosis (CH) 

 2.  Climate change and land use (LU) 

 3.  Chytridiomycosis and land use 

 

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  | 391



 

 

for each member of O.   

 

Analysis reveals that this pair-wise data is 

modelable as a system of three independent 

linear equations, one for each of O.  This system 

was solved for each of CL, CH, and LU, for 

each of O.  For each of O, these values were 

then summed.   

 

The weighting coefficient for a threat factor (F) 

in the formula for Threat_to_O was computed 

by dividing the observed value (in Table S1) for 

each of these factors by that sum.  Table 1 shows 

these weighting factors, in the form N (M), 

where N is the non-normalized value of the 

weighting coefficient from Table S1, and (M) is 

the sum-normalized value of that coefficient.  

 

______________________________________________________________________________ 

 
Table 1.  Weighting coefficients of threat terms in formulas for threats to amphibian orders 

    

 
                Order  CL  CH  LU 

        ----------- ----------- ----------- ----------- 

   Frogs  132 (0.377) 109 (0.311) 109 (0.311) 

   Salamanders 58 (0.249) 152 (0.652) 23 (0.099) 

   Caecilians 17 (0.202) 2 (0.024) 65 (0.774) 

 
More specifically,  the formulas for each Threat_to_O are: 

 

 
 Threat_to_Frogs       = (0.377)*Fractional_Climate_Change + 

                              (0.311)*Fractional_Chytridiomycosis_Change + 

                              (0.311)*Fractional_Land_Use_Change 

 

 Threat_to_Salamanders = (0.249)*Fractional_Climate_Change + 

                              (0.652)*Fractional_Chytridiomycosis_Change + 

                              (0.099)*Fractional_Land_Use_Change 

 

 Threat_to_Caecilians  = (0.202)*Fractional_Climate_Change + 

                              (0.024)*Fractional_Chytridiomycosis_Change + 

                              (0.774)*Fractional_Land_Use_Change 

_____________________________________________________________________________________ 

                         

Bayesian prior probabilities were set at 0.1 for 

each member of (F).  (Other prior probability 

distribution are of course possible.) 

 

Given these formulas and prior probabilities, for 

each user-selected combination of 

Fractional_Climate_Change, 

Fractional_Chytridiomycosis_Change, and 

Fractional_Land_Use_Change, EGAD computes 

the posterior probability of Threat_to_Frogs, 

Threat_to_Salamanders, and 

Threat_to_Caecilians in accordance with Bayes' 

Theorem ([4], pp. 17, 124). 

 

 

3.0  Results 
 

EGAD is implemented as a Windows Netica 

([3]) application.  A nominal user view of 

EGAD is shown in Figure 1. 
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Figure 1.  A nominal EGAD user view. 

______________________________________________________________________________ 

 

 
On the screen, there is one box each for each of 

(F) and one box for each of (O). Arrows depict 

the dependence of each of (O) on each of (F). 

The top row of boxes represent (F), expressed as 

discrete percentage ranges of change from 

reference values for the members of (F) defined 

in [2].  The bottom row of boxes represent the 

fractional decrease in species diversity, 

expressed as a percentage, based on the user 

selections for each of (F), one box for each of 

(O). 

 

Each box in Figure 1 has three regions, 

delimited by horizontal borders.   

 

The top region of a box contains the name of a 

(random) variable of interest, e.g., 

"Fractional_Climate_Change".   

 

The middle region of a box consists of three 

elements (read horizontally):  

 

 i.   a textual value-range for the variable 

named in the top region of the box 

 

 ii.  to the right of (i), a numerical literal 

(expressed as a percentage) indicating the 

probability that the variable of interest has a 

value lying in the value-range 

 

 iii. to the right of (ii) a (segment of a) a 

histogram representation of  the probability  that 

the variable of  interest has a value lying in the 

value-range denoted by (ii).  Taken as a whole, 

the  histogram spanning the middle                 

region of the box represents the probability 

distribution for the variable named in (i),  

conditional on the variables at the tails of the 

arrows whose heads touch the box.  For  

example, in Figure 1 the box in the lower left is 

associated with the variable              

Threat_to_Frogs, conditional on each 

Fractional_XX_Change.  For example, the  

probability that Threat_to_Frogs has a value 

lying in "70 to 80 (percent reduction in  

diversity)" is 0.50.   

 

The bottom region of a box  reports the  "mean  

one_standard_deviation" of the distribution 

shown in (ii).  For example, in Figure 2, the 

mean for the distribution for Threat_to_Frogs is 

57.4 (percent) and the standard deviation is 22 

(percent). 
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For typical operation, the top row of boxes have 

a grey background; the bottom row of boxes, a 

pink background.   A box with a grey 

background means the variable corresponding to 

that box is intended as an "input" (also called an 

"asserted-value" or "finding") variable. Input 

variables represent information that is posited as 

given.   For example, in Figure 1, 

Fractional_Chytrid_Change is an "input" with an 

asserted value of "40 to 50" percent.  A box with 

a pink background means the variable 

corresponding to that box is intended as an 

"output" (also called a "calculated") variable.  

For example, in Figure 1, 

Threat_to_Salamanders is an 

"output"/"calculated" variable that has a 

probability distribution, with most of the 

probability in the "50 to 60" percent range. 

 

The basic operation of EGAD is simple.  The 

user places the mouse pointer over a percentage 

label in a threat-factor ((F)) box and clicks once.  

The resulting threat values (fractional reduction 

in species diversity) in each of (O) will appear in 

the "Threat_to_O", where O = [frogs | 

salamanders | caecilians].   

 

EGAD can also analyze problems in which we 

don't have asserted values for all nominal input 

variables.  Suppose, for example, we don't know 

what the fractional climate change is, and  

assume as a starting configuration the one shown 

in Figure 1.  EGAD  can, given these "inputs",  

recalculate all the probabilities in the list (see 

Figure 2).  Note how the probability 

distributions for Threat_to_O change in this 

setup: they tend to "smear", which is what we 

would expect, given that this setup contains less 

information than the setup for Figure 1.  Note 

also that Fractional_Climate_Change, under 

these settings, defaults to its prior probability 

distribution.   

 

______________________________________________________________________________ 

 

 
 

 
Figure 2.  The result of changing Fractional_Climate_Change to an output variable, starting with 

the configuration of Figure 1. 

 

 

394 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



 

 

Because any variable in EGAD can be toggled 

between asserted, and calculated, status, we can 

use amphibians as "probes" of the nominal input 

variables.  Suppose, for example, we wanted to 

uses changes in salamander diversity to estimate 

the global change in chytridiomycosis.  We 

could start with the configuration in Figure 1,  

toggle Fractional_Chytrid_Change to be an 

output variable (pink background), and  toggle 

Threat_to_Salamaders to be an asserted-value 

variable (grey background).  To toggle the mode 

of these variables, we place the mouse cursor 

between a value-range label and the numeric 

literal to its right in the middle region of the box 

and click the left mouse button once or twice 

until the background color has the desired value.  

We then place the mouse cursor over "20 to 30" 

in Threat_to_Salamanders and click the left 

mouse button once.   

 

The result is shown in Figure 3.  EGAD 

determines that the probability that the 

Fractional_Chytrid_Change has a value lying in 

the 0 to 10 percent range is 0.4 (40%).  In 

addition, EGAD computes new probabilities for 

Threat_to_Frogs and Threat_to_Caecilians.   

 

This is just one example of the ~10
6
 predictions 

EGAD can make based on different input 

conditions. 

 

 

 

______________________________________________________________________________ 

 

 

 
 

 

Figure 3.  The result of changing Fractional_Chytrid_Change to be an output variable, and 

Threat_to_Salamanders to be an input variable, then asserting that the Threat_to_Salamaders is 

"20 to 30" (percent decrease in salamander species diversity), starting with the configuration in 

Figure 1. 

 

_____________________________________________________________________________ 
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This latter behavior -- the propagation of 

probability changes across the net --  is one of 

the most powerful features of Bayesian network 

modeling.  Not only does this kind of model 

show localized probability changes, but it also 

shows how such changes constrain probability 

distributions elsewhere in the net.  When a 

network contains at least one variable that is 

connected to more than one other variable, such 

network-wide dependencies can help to support 

more nuanced and sensitive testing than would  

be possible in two-variable models. 

 

For any application running under it (such as 

EGAD), Netica provides an impressive spectrum 

of mouse-selectable  analysis, network editing, 

simulation, automated learning-from-data,  

graphics, and  reporting functions. Netica also 

provides a C-like, richly featured programming 

language and support library.  APIs to C, C++, 

C#, Visual Basic, Matlab, and CLisp are 

available.   

 

 

4.0  Discussion and conclusions 
 

 1.  Does EGAD produce results we 

expect?  Providing an exhaustive answer to the 

question is not tractable, but the tool produces 

results we expect in several "intuitive" cases.  

Let YY = [Climate | Chytrid | Land_Use].  Then: 

 

  a.  If each 

Fractional_YY_Change is set to "0 to 10", 

starting with the configuration shown in Figure 

2, most of the probability in the distributions 

shown in Threat_to_O becomes "0 to 10".   In 

other words, EGAD predicts small changes in 

the amphibians' environment produces small 

changes in their species diversity. 

 

  b.  If each 

Fractional_YY_Change is set to "90 to 100", 

starting with the configuration shown in Figure 

2, most of the probability in the distributions 

shown in Threat_to_O becomes "90 to 100".  In 

other words,  EGAD predicts large changes in 

the amphibians' environment produces large 

changes in their species diversity. 

 

    c.  If each Fractional_YY_Change is set 

to "40-50" ["50-60"], starting with the 

configuration shown in Figure 2, most of the 

probability in the distributions shown in 

Threat_to_O becomes "40 to 50" ["50 to 60"]. 

 

    d.  Based on the coefficients shown in 

Section 3.0, we expect changes in 

chytridiomycosis to affect salamanders most, 

frogs somewhat less so, and caecilians least.  If 

we start with the configuration shown in Figure 

2, and set each of climate change and land use to 

"0 to 10", then change the asserted value of 

Fractional_Chytrid_Change one value-interval at 

a time, the probability distributions in 

Threat_to_O exhibit exactly the expected 

numerical order of effects. 

 

    e.  Based on the coefficients shown in 

Section 2.0, we expect changes in land use to 

affect caecilians most, frogs somewhat less so, 

and salamanders least.  If we start with the 

configuration shown in Figure 1, and set each of 

climate change and chytrid change to "0 to 10", 

then change the asserted value of 

Fractional_Land_Use_Change one value-

interval at a time, the probability distributions in 

Threat_to_O exhibit exactly the expected 

numerical order of effects. 

 

 
 2.  EGAD depends heavily on the data in 

[1] and [2], on the assumption that the combined 

effect is linear in its components, and to a lesser 

degree, on the uniform prior probability posits 

noted above.    

 

 3.  The tool is especially useful for 

providing probability-constrained predictions 

when we have only partial information about 

threats or effects. 
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Abstract - Web-based synteny visualization tools are 
important for sharing data and revealing patterns of 
complicated genome conservation and rearrangements. Such 
tools should allow biologists to upload genomic data for their 
own analysis. Recently, we published a web-based synteny 
viewer, GSV, which was designed to satisfy the above 
requirement [1]. However, extending the functionality of GSV 
to visualize multiple genomes is important to meet the 
increasing demand of the research community. 

 We have developed a multi-Genome Synteny Viewer 
(mGSV). Similar to GSV, mGSV is a web-based tool that 
allows users to upload their own genomic data files for 
visualization. Multiple genomes can be presented in a single 
integrated view with an enhanced user interface. Users can 
navigate through all selected genomes to examine conserved 
genomic regions as well as the accompanying genome 
annotations. A web server hosting mGSV is provided at 
http://cas-bioinfo.cas.unt.edu/mgsv. 

Keywords: synteny, genome browser, visualization, 
bioinformatics 

 

1 Background 
 Since patterns of genome conservation and 
rearrangements can be complicated, visualization tools are 
critical to reveal those patterns.  A variety of web-based 
synteny visualization tools exist for this purpose (e.g., 
SynBrowse [2] and CoGe [3]).  Compared to standalone 
bioinformatics software, those web-based analysis tools are 
more convenient for users since no local software installation 
or maintenance is necessary. However, some of these tools 
only allow users to analyze a small number of pre-selected 
genome sequences available at those web resources. This 
limitation is becoming a serious issue since biologists often 
need to examine synteny for their own sequences of interest 
that are typically not available at those web resources.  

2 Design and Implementation 
 To use the mGSV web tool, users submit one or two 
input files, as described below, and are then presented with 

first a synteny overview page, and then the main synteny 
browser. 
 
2.1 mGSV input files 
 The synteny data file allows users to specify the 
genomic location of each conserved region in each pair of 
genomic sequences. Users can provide additional information 
such as alignment score or percentage of similarity or identity 
to characterize each of the conserved regions, which can then 
be used to filter regions shown in the synteny display. An 
optional genome annotation file can also be submitted to list 
the accompanying genomic features (e.g., genes) to be 
displayed as annotation tracks along with the reference 
genomes. 
 
2.2 Synteny overview page 
After the data upload, users are first presented with an 
overview display, in which all the input genomes are arranged 
in a circle showing the overall conserved regions among each 
other. An “Associations Provided” table is also shown in the 
overview page listing all pairs of genomes specified in the 
user-uploaded input data and the number of conserved 
regions for each pair. When the genome order has been 
chosen, the user is brought to the main synteny browser. 
 
2.3 Main synteny browser 
 At the top of the main synteny browser, multiple pull-
down menus are available that allow users to select specific 
genomes to display in the order of their choice. Additional 
pull-down menus can be added and removed, so that each 
genome can be displayed more than once if necessary. 
Buttons at the top left corner allow users to control all the 
genomes displayed by zooming in/out, moving left/right or 
viewing entire genomes on all genomes. mGSV is then 
divided into two main display windows with control panels 
(for zoom and filtering functions) on the left and synteny 
displays on the right. 
 The conserved regions between any pairs of selected 
genomes are displayed as colored translucent blocks. When 
users click on a conserved region, a pop-up menu appears 
showing its numerical start and end positions. Users can 
zoom in/out, move left/right or select specific regions on 
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individual genomes for display by using the embedded 
control panels on the left of the view. Users can also filter the 
conserved regions based on their associated characteristics 
listed in the synteny files such as length of the conserved 
regions, similarity score, and so on. 
 If an annotation file is also provided, a selected 
annotation track (e.g., gene) will be displayed inside each 
selected genome.  Users can easily switch among the tracks or 
change the colors and shapes of the selected tracks on the fly. 
 
3 Discussion 
 Although embedding sequence comparison software 
may facilitate users, we have chosen not to do so in mGSV 
mainly for three reasons: (1) Sequence comparison among 
large genomes is not often practical at a web server due to 
heavy computational demands. (2) It is unrealistic for a 
centralized web server to decide which software or methods 
users should use for their data set. (3) Sequence comparison is 
not the only means for synteny identification. Other types of 
data (e.g., genetic mapping) may also provide synteny 
information. 
 
4 Conclusions 
 mGSV is a web-based synteny visualization tool that 
enhances the original functionalities of GSV by allowing 
biologists to upload their own data sets and visualize the 
synteny among multiple genomes simultaneously in a single 
integrated view.  The novel design and the implementation of 
mGSV provide the research community with an important 
alternative to currently available tools. 
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Abstract 

 
Producing biohydrogen on a commercial scale will likely require the genetic re-engineering of natural 

hydrogen-producing organisms.  Kinetic modeling of hydrogen-producing metabolic pathways can cost-

effectively help to characterize systemic (e.g., mass/energy/charge conservation) constraints in these 

organisms. In vitro kinetic studies suggest that the activity of the hydrogenases in several photolytic 

biohydrogen producers (PBPs) could be increased to as much as four times their nominal in vivo rate. It is 

much less clear, however, whether the in vitro activity maximum could be realized in vivo.  Here I use an S-

system photosynthesis-based PBP (PS-PBP) simulator  to analyze the light-saturation response of  C. 

reinhardtii.  The analysis strongly suggests that the H2 production of the alga cannot be increased at 

incident light intensities greater than ~10 hν. 

 

Keywords:   biohydrogen, S-system, metabolic modeling 

 

 

1.0  Introduction 
 

Kinetic modeling of hydrogen-producing 

metabolic pathways can cost-effectively 

help to characterize systemic (e.g., 

mass/energy conservation) sensitivities in 

photolytic biohydrogen producers, even if 

all the details of hydrogen-gas producing 

metabolic pathways are not known. Among 

the more promising candidates for 

hydrogen-production optimization are 

photolytic biohydrogen producers (PBPs) 

such as the microalga Chlamydomonas 

reinhardtii ([7], [8]). It is generally held that 

the hydrogen-producing pathways in many 

PBPs incorporate segments of the PS-I and 

PS-II photosynthetic pathways ([6],[13]), 

and electrons from the anaerobic 

degradation of starch, to help accumulate the 

electron free energy required to allow a 

hydrogenase to convert protons to H2 ([14]). 

In vitro kinetic studies suggest that the 

activity of hydrogenases  isolated from 

several PBPs could be increased to as much 

as four times their nominal in vivo rate ([1]).   

Among other constraints C. reinhardtii 

exhibits a light-saturation response, 

hypothesized to arise from "shading" of the 

light-receptor structures by each other, and 

by electron-throughput limitations of the 

organism's light receptors ([17]). Here I use 

bioh2gen ([15]), an S-system ([2], [11]) PS-

PBP kinetics simulator, to argue that within 

the context of the model, the H2 production 

of C. reinhardtii cannot be increased with  

incident light intensities greater than ~10 hν. 
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2.0   S-systems 

 
An S-system ([11],[12]) is a power-law-

oriented, differential, difference-equation  

system of ordinary differential equations 

(SODE) each of whose dependent variables 

Xi is described by a kinetic equation of the 

form   

 

________________________________________________________________________ 

 

                                   
                                                                                          Eq. 2.1 
 

where  

 

 the left-hand side of Eq. 2.1 is the first derivative of Xi with respect to time 

 

 i , j = 1, 2, 3, ..., N 

 

 {Xi}  is the set of real-valued dependent variables of the system   

     

 for any given Xi, only those independent and dependent variables Xj that have an action 

on Xi are included as factors in the products on the right-hand-side (RHS) of Eq. 2.1.  

The factors in the first term on the RHS  of Eq. 2.1 correspond to just those entities that 

increase or inhibit the production of Xi; the factors in the second term of the RHS of Eq. 

2.1 correspond to just those entities that contribute to, or inhibit, the consumption of Xi. 

 

 i , i > 0 

 

 gi_j, hi_j are real-valued  

______________________________________________________________________________ 

 

 

There is a natural mapping from a 

biochemical map,  K, to equations that have 

the  form of Eq. 2.1.   In particular, let K = 

<{Xk}, E>, E  {Xk}   {Xk},  k = 1, 2, …, 

N, be a directed graph in which each distinct 

Xi   {Xk} corresponds to a distinct variable 

(e.g., the concentration of  a distinct 

chemical species in the map), and w  E if 

and only if w = (Xm, Xn) is a directed edge 

in K , m  n = 1, 2, ..., N.    

 

i  and i are called  generalized rate 

constants (or just rate constants) for Xi, and 

gi_j and hi_j are called the generalized 

kinetic orders (or just kinetic orders) for Xi, 

on analogy with standard chemical kinetic 

theory.   The subexpression i_j indicates the 

action of Xj on Xi. 

 

An S-system has several desirable features, 

including the fact that it is fully 

characterized by its rate constants and 

kinetic orders.  Any SODE can be recast 

([10],[11]) as an S-system without loss of 

accuracy or precision; the recasting, 

however, is not in general unique.  In 

addition to biochemical systems, S-systems 

have been successfully used to model 

epidemics, forest diversification, and world 

dynamics. 
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3.0 A network model of 

hydrogen production in PS-PBPs 
 

I will call bioH2 producers that exploit 

portions of the PSII or PSI pathways 

“photosynthetic” PBPs (PS-PBPs).  The 

schematized PS-PBP model used in the 

present study is shown in Figure 1 and is 

similar to [3], [4], [5], [9] and [14].  It 

represents a consensus working hypothesis 

held by the biohydrogen research 

community about the high-level metabolics 

of hydrogen production in PS-PBPs ([7]).   

 

________________________________________________________________________ 

 

 
 

Figure 1.  Schematized hydrogen producing metabolic network for PS-PBPs. Rectangles 

represent sources or sinks of physical quantities of interest (such as mass,  concentration, or 

photon count) named in those rectangles, ellipses represent transforms (which may be 

complexes of reactions not individually modeled here), and an arrow from an ellipse to a 

rectangle  means that the transform named in the ellipse affects the quantity/concentration 

of the chemical species named in the rectangle.  Legend:  PSI = photosynthesis stage I; PSII 

= photosynthesis stage II;  SO4 = sulfate; hv-I = photons incident to PSI; hv-II = photons 

incident to photosynthesis PSII; ADP = adenosine diphosphate; ATP = adenosine 

triphosphate; PO4 = inorganic phosphate; O2 = oxygen gas; ATPase = adenosine 

triphosphatase; e from starch = electrons from anaerobic starch degradation; H2ase = 

hydrogenase; ETC = electron transport chain; e from PSII = electrons from PSII; e from 

PSI = electrons from PSI; Fdred = ferredoxin, reduced; Fdox = ferredoxin, oxidized; H2 = 

hydrogen gas; H+ from PSII = protons from PSII;  H+ from ATP = protons from ATPase.  

Not all interactions exist in all PS-PBP species. 
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In sulfur-deprived C. reinhardtii, oxygen 

gas production under the experimental 

conditions of [7] (1-L, 6 x 10
6
 cell/mL 

preparation) is about 1 mmol/h  after 

beginning of sulfur deprivation, and 

spontaneously ceases ~10 h thereafter.  30 - 

50 h after beginning of sulfur deprivation, 

the algae begins releasing hydrogen at a rate 

of ~0.17 millimole H2/h (1-L, 6 x 10
6
 

cell/mL preparation) after beginning of 

sulfur deprivation.  ~100 h after beginning 

of sulfur deprivation,  hydrogen production 

ceases.   These trajectories  provide strong 

constraints on any model of bioH2 

production by C. reinhardtii. 

 

 

The S-system equations used in this study 

are shown in Figure 2. 

 

______________________________________________________________________________ 

 
// protons from PSII 

X2' = a2 X1^g2_1 X3^g2_3 X5^g2_5  -  b2 X10^h2_8 X2^h2_2 X5^h2_5 

 

// e from PSII 

X4' = a4 X1^g4_1 X3^g4_3 X5^g4_5 -  b4 X16^h4_16  X4^h4_4 

 

//  protons from ATPase 

X8' = a8 X6^g8_6 X7^g8_7 X2^g8_2 -  b8 X8^h8_8 X24^h8_24   

 

// other ATP consumers 

X9' = a9 X10^g9_10 -  b9 X9^h9_9 

 

// ATP 

X10' = a10 X2^g10_2 X7^g10_7 X6^g10_6 -  b10 X13^h10_13 X9^h10_9 X10^h10_10 

 

// starch 

X13' = a13 X12^g13_12 X11^g13_11 X10^g13_10  -  b13 X14^h13_14 X15^h13_15 X13^h13_13 

 

// e from starch 

X14' = a14 X13^g14_13 -  b14  X16^h14_16 X14^h14_14 

 

// pyruvate 

X15' = a15 X13^g15_13 -  b15 X25^h15_25 X18^h15_18 X17^h15_17 X15^h15_15 

 

// e from ETC 

X16' = a16 X14^g16_14 X4^g16_4 -  b16 X20^h16_20 X16^h16_16 

 

// formate 

X17' = a17 X15^g17_15  -  b17 X17^h17_17 

 

// acetate 

X18'  =  a18 X15^g18_15 -  b18 X15^h18_25 X18^h18_18 

 

// e from PSI 

X20' = a20 X16^g20_16  -  b20 X22^h20_22 X20^h20_20 

 

// Fdox 

X21' = a21 X22^g21_22 -  b21 X21^h21_21 

 

// Fdred 

// X22' = a22 X20^g22_20 -  b22 X21^g22_21 X23^g22_23 X22^h22_22 

 

// e from Fdred 

X23' =  a23 X22^g23_22 -  b23 X24^h23_24 X23^h23_23 

 

// H2 gas 

X24'  =  a24 X23^g24_23 X8^g24_8 -  b24 X24^h24_24 

 

// Intracellular CO2 

X25' = a25 X15^g25_15 X18^g25_18 X26^g25_26 -  b25 X25^h25_25 

 

// oxygen 

X26' =  a26 X1^g26_1 X3^g26_3 X5^g26_5 -  b26 X26^h26_26 X25^h26_25 X5^h26_5 
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Figure 2.  S-system equations for the dependent variables used in this study.  “^” is 

exponentiation.  “>>” means “expression continuation”.  “’” means “first derivative with 

respect to time”.  Note that the equation for X2' has light as a consumption factor because 

activity decreases as light intensity increases above an optimal value. 

______________________________________________________________________________ 
 

Table 1 shows the values of the independent variables of the system. 

 

______________________________________________________________________________ 

 

Table 1.  Values of the independent variables of the system. 
 

Independent variable Value (relative units) 

X1 (water) 1 

X3 (SO4) 0.3 

X5 (hv-II) 2.363 

X6 (ADP) 100 

X7 (PO4) 100 

X11 (Extracellular CO2) 3e-3 

X12 (NADPH) 1e-6 

X19 (hv-I) 2.363 

 

______________________________________________________________________________ 

 

Much of the system in Figure 1 is based on 

PSII and PSI kinetics.  The model was 

calibrated (to produce the "nominal" 

configuration) on PSII/PSI kinetic data in 

[16], setting all generalized rate constants to 

0.1, except a2 (= 3e-4), b2 (= 1e-4), a4 

(=0.01), a24 (=1e-4), b24 (= 0.001), a26 

(=10), and b26 (=1000); these exceptions 

were based on  in vitro experimental values 

obtained in [7].  All generalized kinetic 

orders were set to 1. 

 

bioh2gen and  the model used in [14] differ 

in a few ways.  First, following the 

conventions in [11] for modeling metabolic 

systems in the absence of gene-circuit 

dynamics, no enzyme is an explicit variable 

of bioh2gen ;  several enzymes are variables 

in [14].  Second, bioh2gen employs  more 

rate constants derived from experiment than 

does the model used in [14].  Third, all the 

kinetic orders in bioh2gen were set to 1; two 

kinetic orders were set to 2 in [14].  Fourth, 

bioh2gen study models the photon inputs to 

each of PSII and PSI individually; the model 

in [14] represents only the photon inputs to 

PSII. 

 

The nominal H2 and O2 production rates of 

bioh2gen were compared to [7], and the 

response of the organism to light intensities 

ranging from 0.01 - 20.0 hν  were computed. 

 

   

4.0 Results and discussion 
 

Figure 3 show the nominal (hv-I and hv-II = 

2.363) hydrogen and oxygen output 

predicted by the model described in Section 

3.0.  The H2 and O2 outputs agree well with 

[7]. 
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Figure 3.  Nominal (for hv = 2.363) total hydrogen and oxygen gas production as a function 

of time (units on the horizontal axis are hours after t0).  The values predicted by the model 

agree well with the results shown in [7]. 

_____________________________________________________________ 

 
Figure 4 shows the H2 gas production in the model as a function of incident light intensity at PSII 

and PSI.  

 

______________________________________________________________________________ 

 

 

 
 

 
Figure 4.  H2 production as a function of incident light intensity at PSII and PSI.  Note the 

saturation effect as the intensity exceeds ~10.0 hν. 

 

______________________________________________________________________________ 
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Figure 4 strongly suggests that, within the 

model described in Section 3.0, the H2 

production of C. reinhardtii cannot be 

increased with light intensities  > ~10 hν.  

These results are generally consistent with 

the results reported in  [17]. 
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Abstract – Chatroom Bobs, which derived from the concept of 

‘Uncle Bob’ being a name for a less than responsible family 

man, are characterised by being online community users 

driven by seeking out satisfaction for their ‘urgeances’ (or 

biological drives). Some of these are akin to the ‘office loser’ 

who tries to impress others but is despised, others have more 

ulterior motives for sexual satisfaction. This paper presents an 

intervention – called MEDIAT – which uses TAGTeach to 

retrain people who are sexually damaged by society and 

demonstrate impairment in how they interact with others. The 

paper presents an equation for measuring such ‘social 

orientation impairment’ as a reflection of its relationship to 

serotonergic and dopaminergic activity in the prefrontal 

cortex as a result of differences in ‘Neuro-response plasticity’. 

The paper concludes that by using MEDIAT to reverse 

dopaminergic-serotonergic asynchronicity caused by 

traumatic experience can lead to increased constructive 

participation in online and other environments. 

Keywords: Personality disorders, social orientation 

impairments, evolution, human-computer interaction 

 

1 Introduction 

  The chatroom bob is a prolific character in online 

communities, characterised by constant references to sex and 

other desires [1]. They range from the one extreme of 

dangerous people who want to seduce others to get their way 

with them in whatever form they want, to more harmless ones 

who simply post ‘rude jokes’ or make double ententes. The 

term ‘chatroom bob’ was first described in NetLingo as “A 

nickname girls give to the kind of guy who uses the Internet 

primarily to hang out in chat rooms and search for photos of 

naked women. If he finds a pretty girl's Web site, he will send 

flirty e-mail messages ad nauseum, even though he would 

‘never in a million years’ approach her face-to-face”. 

Chatroom bobs may come from a number of well understood 

backgrounds, from victims of sex abuse to people who 

otherwise lack maturity in the way they have psychologically 

developed to understand others and have relationships with 

them. Many chatroom bobs will experience specific social 

behavior traits (SBTs) which this paper argues differ based on 

someone’s neurological make-up, specifically the degree to 

which their prefrontal cortex is optimal or not. 

A social behavioral trait can restrict an actor’s optimal 

performance in an environment, and this can be seen to be a 

‘social orientation impairment’ (SOI) and also an SBT that 

enables optimal performance, which can be seen as a ‘social 

orientation advantage’ (SOA). It is clear that the extent of 

these vary between different types of chatroom bob. Those 

who are able to use their social orientation to seduce others 

and take advantage of them could be considered to have an 

SOA. On the other hand, those who are not able to convince 

others of their worldview, such as through not reading their 

theory of mind can be seen to have SOIs. 

The SOIs that result from those SBTs which have their basis 

in medical conditions, are either from a physical basis, such as 

due to traumatic brain injury or genetic mutations [2] , or 

from a mental basis, such as due to childhood sex abuse. For 

instance it is known that the genes TPH1 and TPH2 

associated with the prefrontal cortex are associated with 

known social impairments, like autism and schizophrenia. 

Those SBTs that are derived from medical conditions can be 

seen to differ from those caused by genetic differences, such 

as those which affect the sex or race or a person, which may 

result in differences in gender or cultural identification. The 

acceptance of a person’s social behavioral traits by the 

environment affect whether these become an SOI or an SOA. 

To explain this throughout the paper the concept of “Darwin’s 

birds” will be used as well as “Norman’s doors”. Essentially, 

Darwin’s birds, refers to the concept that a difference in a 

person’s make-up can have huge effects on their chances of 

survival in an environment. In The Origin of the Species, 

Darwin showed that birds with one type of beak would 

survive over the others where the food sources were best 

suited to consumption by those with that type of beak. 
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Norman’s doors on the other hand refers to a concept that 

humans, when designing their own environments can do so 

that is disadvantageous to those without a high-level 

knowledge of that system, as it operates differently to what 

they would expect. In other words, a Norman door could 

make a Darwin bird disabled if it did not have the right beak 

to open that door. A disability in this context is where an 

actor’s SBT becomes an SOI due to the environment imposed 

on them by other actors who may not share that SBT.  

1.1 The role of the pre-frontal cortex in social 

orientation construction 

The pre-frontal cortex is composed of several anatomical 

regions that are responsible for numerous functions including 

planning, language production, working memory, artistic 

expression, some aspects of emotional behavior and attention 

among others[3] . Neuroimaging studies have provided some 

of the most consistent evidence that dysfunction of the 

prefrontal cortex is a characteristic of schizophrenia[4] . The 

Diagnostic and Statistical Manual for Mental Disorders 

(DSM) also makes it clear that one should not give a 

diagnosis for an autism spectrum condition where there are 

grounds for schizophrenia, which suggests an overlap in 

symptoms or causation. This leads one to suggest that the 

difficulties people with schizophrenia have with regards to 

constructing an accurate interpretation of the situation they are 

in, may be reflected in people with autism who have difficulty 

constructing an interpretation at all. Damage to the prefrontal 

cortex is associated with impaired emotional and social 

interactions such as angry outbursts, increased lability, 

interpersonal skills deficits, insensitivity, and sexual 

disinhibition[5] . Some of these have been found in people 

with autism and social phobia, and attempts have been made 

to develop technological interventions that help people with 

these disabilities overcome them [6, 7] . 

The pre-frontal cortex is involved in the behavioral inhibitory 

mechanism and not just participating in the behavioral 

excitatory mechanism [8] and this is also something known to 

play a big role in bipolar disorder[9] , which may also explain 

why some persons get less effect at work when they have 

developed a thinking pattern of discarding any opportunities 

in the environment. Because the pre frontal cortex is involved 

in the organization of behavior, abstraction, and 

consciousness, its disruption could also facilitate violent 

behavior indirectly by interfering with the individual's 

perception of the situation [10], which may be why persons 

with schizophrenia misinterpret others and therefore express 

inappropriate actions. 

1.2 Social behavioral traits 

An SBT that manifests itself as an SOI and which is 

propagated as a disability has serious consequences of an 

actor’s psychopathy, specifically their ability to appreciate 

and navigate the social and emotional world compared to 

those not disabled by the environment in which they are. The 

ability of an actor to form reactions to a particular situation 

they are in is in part related to the plasticity of their ‘neuro-

response’ functioning [11], which is aided by what is called a 

‘seduction mechanism’. The seduction mechanism is the main 

change stimulus an actor responds to that transforms them 

from one set of mental or physical states to another through 

influencing their dopaminergic and serotonergic activity. 

Recent research finds that neurochemical and 

neurophysiological hyper-reactivity of the dopaminergic 

reward system may comprise a neural substrate for impulsive-

antisocial behavior and substance abuse in psychopathy [12] . 

Dopaminergic hyper-reactivity has been shown to be a factor 

in compulsive use of Internet environments [13, 14] . This is 

known to significantly affect the psychopathy of users, with 

particular regard to those chatroom bobs with sex addiction 

[15], as one can see from Table 1.  

Groups 

 

Dimensions 

RELATION 

Distorted Attachment 

Chatroom Bob 

TRANSACTION 

Adaptable Chatroom Bob 

VIOLATION 

Hyper-Sexualized 

Chatroom Bob 

Hypothesised Dopamine/Serotonin 

Link 

 

Previous convictions 

No No Yes Reduced serotonergic activity (Yes), 

increased (No) 

 

Use of identity 

Own Other Other Increased dopaminergic activity 

 

Indecent image use 

No No Yes Low dopaminergic flow, High 

serotonergic involvement 

Contact other offenders No No Yes High dopaminergic flow, low 

serotonergic involvement 

Offence-supportive 

belief 

Friendship and love Exchange compliance Dehumanised as object Increased dopaminergic flow 

 

Speed of contact 

Long before meeting Tailored escalation Fast sex talk and action Increased dopaminergic flow 

 

Contact method 

Personalized contact by 

phone 

 

Contingent contact 

approach 

Non-personal contact 

approach 

Reduced serotonergic involvement 

 

Contact maintenance 

Persistence of caring 

and 

love 

 

Offers of help and service 

Threats of punishment High dopaminergic flow, low 

serotonergic involvement 

 

Offence outcome 

All want to meet offline Some want to meet offline Some want to meet 

offline 

N/A 

Table 1. The psychopathy of the Chatroom Bob 
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This paper will show the role of dopaminergic and 

serotoninergic activity in understanding these people. It had 

been previously thought in virtual reality disciplines that the 

terms ‘involvement’ and ‘flow’ were synonymous, but the 

separation of the two offers huge insights into the role the 

computer plays as a dopaminergic and serotonergic antagonist 

and agonist [16] . Flow, in this context, is a term that refers to 

a dynamic state of arousal that characterizes consciousness 

when experience is attended to for its own sake [17] and the 

higher the flow the higher the loss of consciousness. It would 

therefore be appropriate to link this to increased dopaminergic 

activity. 

Decision-making in such a state becomes more fluid and 

actors respond almost without thought for the consequences of 

their actions. This has advantages, particularly in chat rooms, 

where constructive conversations can flourish and people can 

have a sense of self-worth and feel their contributions are 

welcomed. Equally, in a state of flow, those users who have 

an anti-social disposition, known as Snerts [1], will not see the 

consequences of them posting offensive messages, known as 

flames, and in particular the effect this will have on deterring 

lurkers from becoming posters. Involvement on the other 

hand, in this new context, refers to the amount of effort one 

has to put into a task for it to have the desired effect. It is 

proposed in this paper that involvement is linked to 

serotonergic activity and flow is linked to dopaminergic 

activity. This could create a view of SOIs, as persons with 

inopportune neuro-response plasticity variation (INRPV), 

which results in serotonergic-dopaminergic asynchronicity 

(SDA) in the worst of occasions. 

1.3 The role of serotonergic-dopaminergic 

asynchronicity in influencing social orientation 

Serotonergic-dopaminergic asynchronicity (SDA) can be seen 

to manifest in situations where the neuro-response plasticity is 

high at the same time as serotonergic activity and 

dopaminergic activity being high. This can be caused in a 

particular situation an actor has constructed, such as having 

obsessive thinking about inviting a person one is attracted to 

online to meet in the real world resulting in increased 

dopamine levels. Coupled with the anxiety due to 

apprehension this increases serotonin levels while at the same 

time the increase attention focus driving up neuro-response 

plasticity for rapid thinking and responding.  A sudden 

rejection by the now unrequited love, might throw the person 

into turmoil due to their increased serotonergic responses to 

the resulting anxiety. In order to deal with the ‘rejection’ the 

actor tries to get that person out of their mind, which while 

driving down dopaminergic activity does not at the same time 

drive down neuro-response plasticity and therefore results in  

serotonergic-dopaminergic asynchronicity. One can see in this 

case, that the actor thought they had an optimal Darwin beak, 

being a suitable companion for their ideal mate, but when that 

person revealed themselves to be a Norman door, that was not 

suited to their Darwin beak, then that led them to believe their 

beak was not suitable for pecking at their preferred doors, 

which was what they thought was the be-all-and-end-all of 

life, even if mistakenly. 

It could be argued that such a traumatic series of events 

creates a mental block, lodged in their prefrontal cortex, 

which is referred to as a phantasy. This seriously affects their 

pre-disposition to specific social behavioral traits, which if 

ego-dystonic will result in a self-constructed social orientation 

impairment. The actor would normally seek to avoid an action 

yet they have a drive to do it, and in other situations where 

they would normally seek to get involved for gratification, 

meaning they would experience severe dissonance when 

attempting to engage. This in turn causes severe discomfort. 

Both of these can involve phantasies that restrict the optimal 

synaptic flow of connections to the prefrontal cortex, and can 

thus result in the impairments common to SOIs. These 

conditions include an impaired ability to form appropriate 

responses in social and emotional activities, due to lack of 

utilization of the blocked neural pathways.  

Table 2 Rules of calculating Neuro-response plasticity 

Productivity (knol) 

 

The following equation shows how to identify the value of a 

particular phantasy (on a scale of -5 to 5) affecting neuro-

response plasticity using the values of the cognitions specific 

to the particular individual whose social orientation is being 

constructed. 

 

Equation 1 Calculating a Phantasy 

In this context x refers to the object cognition and y the 

subject cognition. The element x1 refers to a number that is 

added to the object variable to aid conversion into a phantasy. 

Equally the element y1 refers to the addition to the subject to 

aid conversion, and the     refers to a value that is re uired to 

shift the new variable, which once divided by the centrepoint 

Rule Example 

If dopaminergic flow increases and 

serotonergic involvement remains 

unchanged, then it leads to higher 

knol and humanpower. 

A person with an SOI is highly 

involved in applying emotion 

recognition training. They 

become so involved in the task 

this acts as a seduction 

mechanism to lose track of time. 

If dopaminergic flow decreases and 

serotonergic involvement remains 

unchanged, then it leads to lower 

knol and humanpower. 

A person with an SOI is highly 

involved in applying emotion 

recognition training. The 

difficulty, acts as a seduction 

mechanism to reduce the amount 

of time they can spend on the 

task. 

If serotonergic involvement increases 

and dopaminergic flow remains 

unchanged, then it leads to lower 

pression and higher humanpower. 

 

An SOI is really interested in an 

activity to the exclusion of others 

and then something disrupts that 

concentration, acting as a 

seduction mechanism to increase 

the time they spend on the task, 

decreasing efficiency. 
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(c) then fits onto a -5 to +5 scale as a phantasy. In the case of 

the previous example one could use the cognitions of 

‘Interest’ (i.e. 1 to 10) and ‘Detachment’ (i.e. 0 to 6). The 

actor that suffered from unrequited love, had an interest (x) in 

the other person of 10, because they were very much attracted 

to them. They also had a detachment of 0 (y), because they 

were essential to their future in their minds.  ith the 

appropriate x1 being 0 and y1 being 0,    being  0 and c being 

-6, this results in the phantasy being 5, which is the strongest. 

This is the equivalent of an optimal Darwin beak being able to 

peck at a sub-optimal Norman door without any dissonance or 

other disruption. Following the ‘rejection’ which kept the 

optimal Darwin beak whilst forcing an undesirable optimal 

Norman door, the actor went into an unwanted dilemma. This 

resulted in a sudden shift in the once desirable phantasy to a 

state that was undesirable. The actor’s interest in the other 

person remained at 10, yet their detachment decreased to 0, 

resulting in the phantasy becoming -5. 

1.4 The impact of phantasies on neuro-response 

plasticity 

In this study, neuro-response plasticity is measured through 

what is called ‘Pression’ (P). This come from the French word 

for pressure, and is a common word in French personal injury 

law, particularly with regard to psychiatric injury, so it is 

suitable to be used here. Equation 2 shows how to calculate a 

Pression by factoring a number of phantasies (pi) where ‘i’ is 

the identifier for the phantasy and n is the number of 

phantasies. Force (F) reflects the maximum number of hours 

of working time someone should produce in order to maintain 

a healthy amount of productivity, which is 48, based on the 

European Working Time Directive. 

 

 

Equation 2 Calculating a Pression (Pressure) 

Equation 2 shows how to calculate a knol, which is the unit 

used to represent the serotonergic-dopaminergic synchronicity 

(usually between 0 and 1, but minus infinity and plus infinity 

are possible). The symbol H stands for humanpower, which is 

the individual’s weekly Neuro-response plasticity potential, 

calculated by squaring the potential force (F) of 48 hours and 

subtracting the baseline (B) of actual working time (i.e. 37 

hours for most full-time workers in Great Britain) from it. 

Also, n is the number of phantasies and i is the identifier of 

the phantasy in question. 

 

2  Measuring Neuro-response plasticity 

in the prefrontal cortex 

It has long been known that past memories can affect the ways 

in which one interacts with others and the environment, 

though these need not always be traumatic [18]. These 

‘phantasies’ in the prefrontal cortex, including the cognitions 

are called, ‘detachments’. It is proposed that this detachment 

cognition place an important role in understanding the 

emotions that create unwanted behavior and thoughts in those 

with social orientation impairments. Someone with significant 

INRPV will have significant more detachments in terms of 

quantity and strength, which impairs access from the rest of 

the brain to the functions in the prefrontal cortex where they 

are located. 

Table 2 shows a number of phantasies, based on the emotional 

category ‘bothered’[19], which reflect the hypothesised 

interaction between the pre-frontal cortex functions identified 

in the literature and the other cognitions identified in the 

ecological cognition research [11, 20]. 

 

Equation 3 Calculating a knol 

Figure 1 shows a representation of Equation 3 in relation to 

two persons. Once a person with an SOI represented in blue 

who can only work 16 hours per week (H1), and the other a 

person with a SOA who can work 37 hours per week (H2), 

x cognition x

1 
y 
cognitio
n 

y1     C Pre-
frontal 
cortex 
function 

Detachment 3 Goal 3 36 -9.6 Problem-

solving 

Detachment 0 Plan 0 0 -2.4 Self-

control 

Detachment 0 Value 0 12 -2.4 Conscienc

e 

Detachment 0 Belief 0 0 -3.6 Working 

Memory 

Detachment 0 Interest 0 30 -6 Empathy  

Detachment 0 Detach

ment 

0 18 -3.6 Deception 

Interest 0 Goal 0 45

.5 

8.9 Problem-

solving 

Interest 0 Plan 3 1.

5 

4.3 Self-

control 

Interest 0 Value 0 20

.5 

3.9 Conscienc

e 

Interest 0 Belief 4 2 6.4 Working 

Memory 

Interest 0 Interest 0 50

.5 

9.9 Empathy 

Interest 0 Detach

ment 

0 30 -6 Deception 

Table 3 Phantasy construction from interaction between pre-

frontal cortex detachments/interests and other cognitions 
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represented in green. The purple lines represent serotonergic 

involvement (I), which is the amount of task-focussed anxiety 

that someone has to go through in order for them personally to 

achieve a particular goal. The red and yellow lines represent 

the amount of dopaminergic flow (F1) an actor has when 

performing that task, which reflects the ease at which it can be 

performed. The startpoint (y) for a dopaminergic flow 

measurement is a Pression of 96, which is 48 hours force (F) 

squared minus the baseline (B) and then multiplied by a knol 

of 1. The endpoint (x) for measuring knol is where that line 

meets the cross between an actor’s Pression value and their 

Humanpower. In the case of dopaminergic flow, the startpoint 

(y) for calculating dopaminergic flow is 0 and the endpoint (x) 

is the same as their Humanpower (H). 

 

Figure 1 Calculating Neuro-response plasticity Productivity 

(knol) 

In the case of the example in Figure 1, the role of calculating 

a knol in understanding neuro-response plasticity (NRP) shall 

be explained. The SOA actor has a Humanpower (H1) of 64 

(16+48) and the SOI actor a Humanpower (H2) of 88 

(37+48). An example of an actor with an SOI, who will have 

at least one phantasy will be used. This phantasy is valued at -

5, representing a sub-optimal Darwin beak pecking at an 

optimal Norman door and an actor with an SOA who has at 

least one phantasy, valued at 5, representing a sub-optimal 

Darwin beak, pecking at an optimal Norman door is the 

example to be used. This would give the SOI a Pression of 47 

and the SOA actor a Pression of 49.  hen the SOA actor’s 

Pression (P1) is divided by their Horsepower (H1), this gives 

them a knol of 0.73.  

2.1 An intervention and cause 

The concept of measuring traumatic phantasies in the 

prefrontal cortex could lead to huge leaps in humanitarian 

well-being and social justice. For instance, the concept of 

‘psychiatric shock’, such as that experienced by the author 

during the sex abuse in childhood, could take on a new 

dimension beyond that discussed in cases like Alcock v Chief 

Constable of South Yorkshire Police [1992] 1 AC 310. With 

the advancement of Internet abuse through misuse of ‘trolling’ 

[21] to harm others from the safety of their personal 

computers, then there is going to need to be a way of 

measuring psychological trauma to determine the extent of 

psychiatric injury, in the same way one can with physical 

abuse. This could mean those families denied justice in the 

aforementioned case because they observed the indescribable 

injury to a loved one on television, should have strong 

evidence of the psychiatric shock they sustained so the 

judgement can be overturned. 

Many of the social relation theoretic principles that apply to 

online dating between adults [21], also apply in relation to 

attraction to minors by online sex offenders seeking 

gratification, generically known as paedophilic chatroom bobs 

[1]. Using the findings above in relation to the dopaminergic 

and serotonergic activity involved in coming to terms with a 

formerly dystonic sexual identity can offer insights into how 

this can facilitate undesirable activity in paedophilic chatroom 

bobs which reduces the positive participation of minors in 

online environments. Table 5 presents links between the three 

types of grooming-orientated paedophilic chatroom bob 

identified by Gottschal [22] with the findings above. 

3 Towards the Mediated Emotion 

Demonstration Intervention using 

Avatars and TAGTeach 

Using a number of patents [23-25] to create an iterative 

prototypical intervention called the ‘The Mediated Emotion 

Demonstration Intervention using Avatars and TAGTeach’ 

(MEDIAT) is proposed. The intervention, which developed 

throughout the study, can provide a simulated environment 

with visual feedback, very similar to that used elsewhere[26], 

in order to display an output onto a computer screen which 

shows neuro-response plasticity and dopaminergic and 

serotonergic synchronicity. Beyond the scope of the original 

patent, it was possible for users to track their thought 

processes and then use a metronome-like tool, such as a 

clicking pen, to indicate when they have achieved the desired 

mental state, so it is easier to gain that mental state when 

absent from the brain-scanner, just by clicking the pen for 

instance. 

3.1 Role of MEDIAT for re-training online sex 

predators 

The links between the dimensions and paedophilic chatroom 

bob activity and dopaminergic and serotonergic activity can 

be generally seen to affect the conscience of these groomers. 

A higher dopaminergic flow and lower serotonergic 

involvement will make the paedophilic chatroom bob feel less 

guilty and more motivated to engage in their activities, and 

thus make them have a stronger advantageous ‘Darwin beak’ 

and make their victims less like a Norman door. A reduced 

dopaminergic flow and increased serotonergic involvement 
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will manifest itself when a sex offender is committing an 

inappropriate sexual act, and this will normally be connected 

with a high level of neuro-response plasticity (i.e. attention 

focus). This suggests that any form of therapy for turning 

around paedophilic chatroom bobs to make them see minors 

as Norman doors may need to look at interventions that 

reduce dopaminergic-serotonergic asynchronicity so that 

when the individual has a phantasy that consists low 

dopaminergic flow and high serotonergic involvement that 

their associated neuro-response plasticity is low. Equally it 

may be appropriate to develop appropriate phantasies so that 

the paedophilic chatroom bob’s Darwin’s beak changes to one 

more suitable for not identifying with Norman doors. Such 

phantasies would involve the individual having high 

dopaminergic flow when thinking about an ‘appropriate’ 

sexual partner, as well as low serotonergic involvement. 

When this is paired at the same time with high neuro-response 

plasticity then this could redirect the drive of paedophilic 

chatroom bobs that are interested in minors, to being 

interested in age-appropriate users of online environments. 

4 Discussion 

This paper has provided strong preliminary evidence of the 

role of the prefrontal cortex in the manifestation of social 

orientation impairments, such as autism. Further research, 

such as through more extensive brain imaging is needed to 

validate the assumptions made in the study, such as with 

regards to the links between pre-frontal cortex functions and 

memories carrying the attributed emotions. 

The link between abnormal sex-related thoughts or traumas 

and increased Neuro-Response Plasticity, increased 

serotonergic involvement, reduced dopaminergic flow and the 

dopaminergic-serotonergic asynchronicity (DSA) opens up 

opportunities for exploring treatment opportunities to people 

with sexual identity disorders as suggested in the previous 

section. Studies could look at whether interventions that 

reduce DSA by reducing attention focus (i.e. NRP) on 

undesirable thoughts at the same time as reducing the 

dopaminergic while maintaining the high serotonergic 

involvement can reverse someone’s propensity to criminal 

manifestations of abnormal sexual thinking, such as 

paedophilia, rape, among others. 

In terms of advancing diagnosis and measurement of 

phantasies associated with these abnormal thought processes, 

social psychological studies can identify whether the use of 

subjective quantitative instruments such a Q-methodology can 

be used to identify common phantasies among different social 

groups, particularly as the scale for phantasies proposed 

above is -5 to 5, as it typical of these studies. 

5 References 

[1] J. Bishop. "Increasing Capital Revenue in Social 

Networking Communities: Building Social and Economic 

Relationships through Avatars and Characters"; Social 

Computing: Concepts, Methodologies, Tools, and 

Applications (IGI Global) S. Dasgupta (Ed.), 1987-20042009. 

[2] C. S. Leblond, J. Heinrich, R. Delorme, C. Proepper, C. 

Betancur, G. Huguet, M. Konyukh, P. Chaste, E. Ey, M. 

Rastam, H. Anckarsäter, G. Nygren, C. Gillberg, J. Melke, R. 

Toro, B. Regnault, F. Fauchereau, O. Mercati, N. Lemière, D. 

Skuse, M. Poot, R. Holt, A. P. Monaco, I. Järvelä, K. 

Kantojärvi, R. Vanhala, S. Curran, A. Collier, P. Bolton, A. 

Chiocchetti, S. M. Klauck, F. Poustka, C. M. Freitag, R. 

Waltes, M. Kopp, E. Duketis, E. Bacchelli, F. Minopoli, L. 

Ruta, A. Battaglia, L. Mazzone, E. Maestrini, A. F. Sequeira, 

B. Oliveira, A. Vicente, G. Oliveira2, A. Pinto, S. W. Scherer, 

D. Zelenika, M. Delepine, M. Lathrop, D. Bonneau, V. 

Guinchat, F. Devillard, B. Assouline, M. C. Mouren, M. 

Leboyer, C. Gillberg, T. M. Boeckers & T. Bourgeron. 

"Genetic and Functional Analyses of SHANK2 Mutations 

Suggest a Multiple Hit Model of Autism Spectrum Disorders"; 

PLoS Genetics, 8., 2, 2012. 

[3] E. Miller & L. Buys. "Is Generation X the new Civic 

Generation? An exploratory analysis of social capital, 

environmental attitudes and behaviours in an Australian 

community". Paper presented to the Social Change in the 21st 

Century Conference, Centre for Social Change Research, 

Queensland University of Technology. Queensland University 

of Technology, 2004. . 

[4] K. B. Yancey. "2008 NCTE Presidential Address: The 

Impulse to Compose and the Age of Composition"; Research 

in the Teaching of English, 43., 3, 2008, 2009. 

[5] D. Pekarsky. "Excellence in Teaching—Here Too, it Takes 

a Village"; Journal of Jewish Education, 75., 3, 203-215, 

2009. 

[6] J. Bishop. "The Role of Augmented E-Learning Systems 

for Enhancing Pro-social Behaviour in Socially Impaired 

Individuals"; Assistive and Augmentive Communication for 

the Disabled: Intelligent Technologies for Communication, 

Learning and Teaching (IGI Global) B-T Lau (Ed.), 2011. 

[7] J. Bishop. "The Internet for educating individuals with 

social impairments"; Journal of Computer Assisted Learning, 

19., 4, 546-556, 2003. 

[8] M. Watanabe. "Prefrontal unit activity during delayed 

conditional Go/No-Go discrimination in the monkey. II. 

Relation to Go and No-Go responses"; Brain research, 382., 

1, 15-27, 1986. 

[9] D. R. Hirshfeld-Becker, J. Biederman, S. Calltharp, E. D. 

Rosenbaum, S. V. Faraone & J. F. Rosenbaum. "Behavioral 

inhibition and disinhibition as hypothesized precursors to 

psychopathology"; Biological psychiatry, 53., 11, 985-999, 

2003. 

412 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



[10] N. D. Volkow, L. R. Tancredib, C. Grant, H. Gillespie, 

A. Valentine, N. Mullani, G. J. Wang & L. Hollister. "Brain 

glucose metabolism in violent psychiatric patients: a 

preliminary study"; Psychiatry Research: Neuroimaging, 61., 

4, 243-253, 1995. 

[11] J. Bishop. "Ecological Cognition: A New Dynamic for 

Human-Computer Interaction"; The Mind, the Body and the 

World: Psychology after Cognitivism (Imprint Academic) B. 

Wallace, A. Ross, J. Davies & T. Anderson (Eds.), 327-

3452007. 

[12] J. W. Buckholtz, M. T. Treadway, R. L. Cowan, N. D. 

Woodward, S. D. Benning, R. Li, M. S. Ansari, R. M. 

Baldwin, A. N. Schwartzman & E. S. Shelby. "Mesolimbic 

dopamine reward system hypersensitivity in individuals with 

psychopathic traits"; Nature neuroscience, 13., 4, 419-421, 

2010. 

[13] D. H. Han, Y. S. Lee, K. C. Yang, E. Y. Kim, I. K. Lyoo 

& P. F. Renshaw. "Dopamine genes and reward dependence in 

adolescents with excessive internet video game play"; Journal 

of Addiction Medicine, 1., 3, 133, 2007. 

[14] B. D. Ng & P. Wiemer-Hastings. "Addiction to the 

internet and online gaming"; CyberPsychology & Behavior, 

8., 2, 110-113, 2005. 

[15] L. E. Marshall, M. D. O’Brien, A. R. Beech, L. A. Craig 

AND K. D. Browne. "Assessment of sexual addiction"; 

Assessment and treatment of sex offenders: A handbook 

(Wiley) A. R. Beech, L. A. Craig & K. D. Browne (Eds.), 

1632009. 

[16] K. Gillan & J. Pickerill. "Transnational anti-war activism: 

Solidarity, diversity and the Internet in Australia, Britain and 

the United states after 9/11"; Australian Journal of Political 

Science, 43., 1, 59-78, 2008. 

[17] M. Csikszentmihalyi. "Flow: the psychology of optimal 

experience". New York: Harper & Row, 1990. 

[18] S. M. Valente. "Evaluating and Managing Adult PTSD in 

Primary Care"; The Nurse practitioner, 35., 11, 41, 2010. 

[19] O. Golan & S. Baron-Cohen. "Systemizing Emotions: 

Using Interactive Multimedia as a Teaching Tool"; Learners 

on the Autism Spectrum: Preparing Highly Qualified 

Educators (Autism Asperger Publishing Company) K. D. 

Buron (Ed.), 235-2542008. 

[20] J. Bishop. "Increasing participation in online 

communities: A framework for human–computer interaction"; 

Computers in Human Behavior, 23., 4, 1881-1893, 2007. 

[21] J. Bishop. "Increasing Capital Revenue in Social 

Networking Communities: Building Social and Economic 

Relationships through Avatars and Characters"; Social 

Networking Communities and eDating Services: Concepts and 

Implications (IGI Global) C. Romm-Livermore & K. 

Setzekorn (Eds.), 2008. 

[22] P. Gottschalk. "A Dark Side of Computing and 

Information Sciences: Characteristics of Online Groomers"; 

Journal of Emerging Trends in Computing and Information 

Sciences, 2., 9, 2011. 

[23] A. Junker AND C. R. Berg. "Brain-body actuated 

system". 09/857,660, 2003. . 

[24] A. Junker. "Brain-body actuated system". 1997. . 

[25] J. Bishop. "Assisting Human Interaction". 

PCT/GB2011/050814, 2011. . 

[26] E. Hazelkorn. "International Comparisons: The Good, the 

Bad and the Ugly"; Other resources, 24, 2010. 

 

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  | 413



Research on BRATUMSS System of Detecting 

Transmission Model and Breast Tissues Target Spectrum 

Distribution  
 

Zhifu Tao
1
, Zhonglin Han

2
, Meng Yao

2, 3 *
 Yizhou Yao

2 

Blair Fleet
3
, Erik D. Goodman

3
, Huiyan Wang

4
 and John R. Deller

4
 

1
Depart of Electronic Information Engineering, Suzhou Vocational University, Suzhou China 

2
Institute of information science and technology East China Normal University, Shanghai China 

3
BEACON Michigan State University, East Lansing, MI 

4
ECE Michigan State University, East Lansing, MI 

 

*Corresponding Author, e-mail: myao@ee.ecnu.edu.cn 

Abstract - BRATUMASS system uses the difference on 

dielectric constant between breast cancer tissues and normal 

breast tissues from target tissues microwave response back 

scatter echo to screen the various tissues. The characteristics 

of detection object can be determined through of analysis of 

characteristic of echo. The paper also forwards the 

transmission loss model depending on the characteristics of 

the system detection data, and gives fitting analysis results of 

in vivo real data. 
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Coefficient, Dielectric Constant  

 

1 Introduction 

  The environment of microwave propagation determines 

the transmission loss. For the environment is too complex, 

people usually summarize empirical model in different 

environments based on testing data when establishing 

microwave propagation prediction models. BRATUMASS 

system makes use of the difference on dielectric constant 

between breast cancer tissues and normal breast tissues which 

obtain object tissues back scatter echo through of microwave 

irradiation. By analyzing echo characteristics, and thus 

determine the system of characteristics of detecting targets. 

Since microwave signal power launched by the 

BRATUMASS system is about 6mW which is received by 

receiving antenna after transmission in sounding target space. 

In a relatively longer distance, attenuation becomes the main 

factor of sampling data quality. This paper is to solve the 

estimation problem of signal transmission loss of 

BRATUMASS system and to identify region of tissues 

echo in power spectrum and provide useful reference for 

the separation of echo. BRATUMASS system transmission 

loss model is proposed in analysis of in vivo real data and 

gives the corresponding valuation formula. 

2 BRATUMASS System Transmission 

Loss Estimation Model 

 Figure 1 is BRATUMASS system experimental model 

and antenna structure at present. Zheng, S[1] and others have 

simulated the electric field distribution within the breast in the 

electromagnetic field of 1.5GHz and prove that there is a huge 

difference of the electric field distribution between the breast 

model of uniform tissue distribution and malignant breast 

tissues. The transmission of electromagnetic wave within the 

breast is attributed to near-field problems. Considering the 

vicinity region of transmission antenna, all possible 

transmission patterns have been encouraged and there are 

many high-order modes each of which has it own particular 

transmission direction and the transmission path. In theory, 

mode number is infinite, so fast fading phenomenon is very 

obvious. After a propagation distance high-order mode is 

almost faded out, then enter the transfer mode mainly based 

on the base band transmission in which attenuation has 

become slow down obviously.  

BRATUMASS system adopts FM microwave, and the 

center frequency is 1.5GHz. The propagation velocity of 

microwave in medium of the detection region (breast tissues) 

is smv /10766.0 8 [1] and wavelength is 

cmm
Hz

sm

f

v
1.50510.0

105.1

/10766.0
9

8







 
In the BRATUMASS detection environment, detection 

target is located in near-field where guided propagation has 

not been established and propagation of electromagnetic wave 

here is the multimode, which is similar to propagation mode 

in free space, so electromagnetic wave mode in free space can 

be used for prediction. In free space we have 
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Where, tP
 is the transmission power,Pr is the power of 

receiver, rt GG ,
is seperateraly gain of transmitting antenna 

and receiving antenna , d is line-of-sight distance between 

transmitting antenna and receiving antenna, unit is m， is 

electromagnetic wavelength, f is electromagnetic frequency, 

here adopt 1.5GHz. 

The microwave propagation speed of breast tissues 

detected by BRATUMASS system is smv /10766.0 8  

Suppose gain of transmitting antenna and receiving antenna 

are both 1, and then formula (1) can be given as: 
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Based on the above data, we can obtain the following formula  
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Figure1 BRATUMASS System Sketch Map 

 

The following is the calculation of compensating 

relationship. 

As seen in figure 1, suppose transmission power at 

transmitting antenna is 1tP
, the power of electromagnetic 

wave reaching on target surface is 1rP
 , the distance between 

transmitting antenna and target is d1, 2-order (echo power) 

transmission power on target surface aroused by 

electromagnetic wave is 2tP
, the power at receiving antenna 

from echo is 2rP
, the distance between target and receiving 

antenna is d2. Considered separately from transmitting 

antenna and receiving antenna, we can obtain. 
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 is echo power ratio of target, and that is 
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Substitute (3) into (5) 
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ddd  21  then formula above can be simplified 

as follows： 
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Considering (6) is the estimation value of object in 

homogeneous medium, secondary emission signal power of 

target aroused by microwave is weaker than that of 

microwave antenna ignoring 2-order dispersion and other 

factors, relationship between echo signal intensity in detection 

space of BRATUMASS system and distance is： 

lg10)8214.47lg20(lg10  d
P

P

t

r

     

（7） 

3 Simulation Results of BRATUMASS 

System 

 In order to validate the above estimation model, this 

paper adjusts the sampling of system as follows: Place 

BRATUMASS system combined antenna (shown in figure2d) 

at the triangle mark position shown in figure2a; Place sheet 

metal of which diameter is 1cm at the ellipse mark position 

(and the metal
1 ). The size of combined antenna and the 

position of object space are shown in figure2b and Figure2c. 

The base circle size of breast is different depending on 

different objects. Corresponding data of 14 objects are got. [2]  

        Figure3 and Figure 4 show two examples of the curve 

relationship between responding echo of sheet metal and loss 

estimation curve. And the distance between the sheet metal 

and detection antenna are separately 175mm and 122.5mm the 

(3) curve is attenuation value of estimation by formula (3) for 

metal material. The (6) curve is the attenuation value of 

estimation by formula (6).  

As shown in Figure 3 and Figure 4, signals of (distance) 

100mm-200mm received by BRATUMASS system receiving 

antenna basically located in the estimation region of (3)and 

(6). And echo of sheet metal is fairly close to the (3) curve of 

(3). So, it is basically reasonable to use transmission model in 

free space to estimate attenuation relationship. 

Tx Ant 

Rx Ant 

 

1tP

 1rP

 

2tP

 
2rP

 

1d

 

2d
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          Fig. 2 a                                                    Fig. 2 b                                       

      
 Fig. 2 c                                        Fig. 2 d 

Figure2. Experimental antenna and position of sampling 

sketch map in target space.  2a structure of breast, triangle 

mark point is the position of real data sampling and ellipse 

mark point is position of sheet metal.  2b. BRATUMASS 

system testing position sketch map of which red point is the 

position of real data sampling and green point is position of 

sheet metal   2C. Sketch map of parts of combined antenna, A 

is transmitting antenna. B is receiving antenna.   2d. 

Combined antenna 

 

Figure 5 shows sheet metal echo spectrum of 14 objects 

detected by formula (5) accords with the estimation of 

formula (3). Of which the mark   is the peak value 

distribution of metal piece echo spectrum. 

 
Figure3. Echo Power Spectrum when distance between metal 

piece and detection antenna is 175mm 

 

As seen from the figure 5, the estimation value is close 

to the distribution of real echo. The echo peak value 

distribution of sheet metal is close to the estimation of 

formula (3), which accords with the distribution of
1 . 

 
Figure4. Echo Power Spectrum when distance between metal 

piece and detection antenna is 122.5mm 

 

 
Figure5. Sheet metal echo spectrum of 14 objects detected by 

(5) accords with Estimation of (3), of which the mark is the 

peak value distribution of metal piece echo spectrum 

 

4 Conclusions 

According to the theory of near-field transmission, this 

paper gives the estimation of microwave transmission loss in 

target space of BRATUMASS system. The echo of sheet 

metal is close to the ideal value distribution of 
1 based 

on the real testing data. Echo of real breast tissues is close to 

simulation distribution when dielectric constant is between 

10.04-14.93.The dielectric constant of normal breast tissue is 

between 10 and 15 under frequency of 1.5GHz [3], and sheet 

metal can’t be inserted into living breast for detection because 

of current conditions. The attenuation can only be estimated 

by measuring microwave intensity outside. Mode data accords 

well at distance of  beyond  2λ. 

The destination of BRATUMASS system is to confirm 

the distribution information within tissue of breast object. 

This paper only involves the region location of useful 

information of echo in the power spectrum, and details of 

isolation technical of useful information will continue to be 

discussed in the following articles. 
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Abstract - Desktop applications for managing dental 
laboratories operation are available; however, these 
applications are not sufficient. Many information need 
to be shared between dentists, assistant, laboratory 
technicians and others. With the development of the 
Internet technology, there is a need for an effective web 
application to manage such operation and to control 
accessing this shared information. The Dental 
Laboratory WCMS would be used as a channel for 
dentists to technician, dental clinic-to-dental laboratory, 
to provide the long-distance service.  With dental 
laboratory WCMS, the medical data, pictures and 
patient records all can be accessible online. Dental 
laboratories can track and manage lab cases and 
payments online. Besides, dental clinics and dentists can 
access to track the lab cases, and they can be notified by 
email about the status of their lab cases. Both have an 
account and can view their lab case history, their 
current balance, and pay bills online. It aids in reducing 
paperwork and automating the approach to process lab 
cases. Any dental laboratory can have its own instance 
of the system to manage its content and to ease 
communications with dental clinics its working with. 
The system adopts three layers technical architecture to 
design the system as in [1]. The main contribution of 
this paper is to design a simple Web Content 
Management System (WCMS) for Dental Laboratories 
and to discuss why there is a need to develop a 
standalone WCMS for Dental Laboratories whilst other 
open source WCMSs can be utilized such as Joomla, 
Drupal and WordPress. 

 

Keywords: Web content management system, Dental 
laboratory system, Three-tier architecture, Commercial 
content management system, Open source content 
management system 

1. Introduction 
Not all dental clinics have their own dental laboratories. 
Small to medium clinics send their patient lab cases to 
local, national or sometimes international dental 
laboratories. Communication is done through mailing 
handwritten forms or sending files and bills by email.  
Usually each dental clinic works with one dental 
laboratory. However, dental laboratories receive lab 
cases from different dental clinics. Lots of time is 
wasted in both sides on trying to track down missing lab 
case information over the phone or email, working out 
unreadable handwritten prescriptions, or following up on 
billing and payments.   

Maintaining a long-term relationship between dental 
laboratories and their customers (dental clinics and 
dentists) urges active communication process between 
two sides. According to a Marketing Director   at the 
Continental Dental Laboratories: “communication—or a 
lack of it—will make or break the relationship between a 
laboratory and the dentist”. Until now, this 
communication process is done through a handwritten 
prescription and an impression that may or may not have 
been able to completely give the required information to 
the technician to meet the dentists’ expectations. Vice 
President, Sales & Marketing at Trident Dental 
Laboratories agrees that the fewer laboratories have to 
depend on verbal or written instructions, the better. The 
laboratory work depends on the prescription form 
received from the clinic, any simple mistake or 
incomplete information will result in loss in money and 
customers [2]. 

It is not only about lab case management, the dental 
laboratory, the dental technicians, and the laboratory 
owner have an obligation towards dentists to share their 
knowledge with them and to educate them regarding 
new products. Whether for product education or case 
management, communication between the dentist and 
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the laboratory is the most important factor that has a 
great influence on the success of the relationship [2]. 
 
The market is crowded with desktop applications for 
managing dental laboratories operation; however, we are 
looking for a system that utilizes both case management 
and a relationship between dental laboratory and its 
customer. Many information need to be shared between 
dentists, dentist assistant, laboratory technicians, 
laboratory owner and others. With the development of 
the Internet technology, there is a need for an effective 
web application to manage such operation and to control 
accessing this shared information.   Thus, the motivation 
of this paper is to design a simple Web Content 
Management System (WCMS) for creating dental 
laboratories websites. 

In daily services, a dentist in a certain clinic fills a form 
as in Figure 1 to order a lab case from a certain dental 
laboratory. Then, the dental assistant and other staff 
arrange with the laboratory for pickup, payment and 
delivery. This paper-based recording imposes several 
major drawbacks namely miscommunication between 
the laboratory and the clinic and lack of visual 
interactivity.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1- Dental Laboratory Form 

With dental laboratory WCMS, the medical data, 
pictures and patient records all can be accessible online. 
Dental laboratories can track and manage lab cases and 

payments online. Besides, dental clinics and dentists can 
access to track the lab cases, and they can be notified by 
email about the status of their lab cases. Both have an 
account and can view their lab case history, their current 
balance, and pay bills online. It aids in reducing 
paperwork and automating the approach to process lab 
cases.  

Any dental laboratory can have its own instance of the 
system to manage its content and to ease 
communications with dental clinics its working with.  

The basic idea of web content management systems is to 
get organized and find a logical, consistent and easy way 
to place content on the web [3]. It allows non-technical 
users to create, edit, manage and control a large, 
dynamic collection of web material (HTML documents, 
images and video). WCMS involves a lifecycle starting 
from creation to destruction of content. The lifecycle 
includes reviewing the content before publishing it and it 
may include archiving before destroying. WCMS helps 
in keeping the site more consistent, ease the navigation, 
and most important it aids in controlling and tracking the 
content [4].  
 
Figure 2 shows the framework for the dental laboratory 
WCMS. The core of this dental laboratory WCMS is the 
content, which is the patient lab case that is being sent 
from a certain dental clinic to the dental laboratory to be 
produced. The full content lifecycle starts from a dentist 
in a clinic submitting new patient lab case to the system 
and then, a laboratory technician is assigned to process 
this lab case. The content will be archived and later 
destroyed after delivering the patient lab case and 
receiving the payment.  

Figure 2-System Framework of Dental Laboratory 
WCMS 
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2. Related Background 
2.1  Commercial Dental Laboratories 

WCMS 

Similar dental laboratory management systems 
envisaged is available on the international market 
in various formats, however the products available 
have several disadvantages. The greatest and most 
obvious disadvantages are: 

• They are costly and usually unaffordable for 
small to medium dental clinics. 

• They do not combine web management and 
content management. 

• They normally do not have user friendly 
interface. 

• They do not offer any kind of 
personalization or customization to their 
customers. 

• They only offer dentist account; there is no 
dental clinic account. 

 
We conduct a research and create a short list of 
systems in order to be further examined and 
narrowed or widened to fit the small to medium 
dental laboratories need. Table 1 shows a 
comparison between some of the systems. 
 

 
 
 
 

 
 
 
 

 
 

Table 1: Comparison between a few system 
 
 
 
 
 

                                                           
1
 http://evidentlabs.com/ 

2
 http://www.labnet.net/ 

3
 http://www.sarals.com/Precise.htm 

4
  DDX is a web based system that turns Labnet into a Web-

enabled application. 

 

1 

2 
 

3  
Precise 

Web-based √ Only via DDX 4 X 

On line scheduling √ √ √ 

Rescheduling √ Only via DDX X 

Patient lab case on line tracking √ Internal only √ 

Billing √ √ √ 

Dentists Profile √ √ √ 

Clinic Profile X X X 

Attaching files √ Only via DDX X 

Reports √ √ X 

Customer Service √ √ X 

Chatting system X X X 

Personalization X X X 

Customization X X X 
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2.2 Open-source WCMS Utilized 
by Dental Laboratories 

In addition to these commercial WCMS 
solutions, many open source solutions are 
utilized using Joomla, Drupal and WordPress. 
We have studied some websites which are 
utilized by different open-source solutions: 
• Websites powered by Joomla: 

o Quest Dental Laboratory5 
o A+ Dental Laboratory6  

• Websites powered by Drupal: 
o Vision Dental Laboratory7 
o Mascol Dental Laboratory8 

• Websites powered by WordPress: 
• ArrowHead Dental Laboratory9 
• Keller Laboratory10  
• Nik Dental Laboratory11 

 
 Following are the common features of these 
websites: 

• Sending a Lab Case: By filling 
handwritten form and schedule for 
pickup.  

• Online Account: For scheduling a 
pickup. 

• Lab Case Tracking: Not available.  
• Shipment Tracking: Via carrier. 
• Billing and Statements: Sent by mail. 
• Product Education: promotes education 

for dentists through all the typical means, 
such as direct mail, journal ads, articles 
that they place in journals, and their Web 
site content. 

 
Among all of the envisaged websites, none of 
them offer clinic and dentist account. 
Besides, they do not have a user-friendly 
interface. They are more likely static 

                                                           
5
   http://questdental.us/ 

6
   http://www.a-plusdentallab.com/ 

7
  http://visiondentallaboratory.co.uk/ 

8
  http://mascoladentallab.com/ 

9
  http://www.arrowheaddental.com/ 

10
  http://www.kellerlab.com/ 

11
  http://www.nikdentallab.com/ 

WebPages of mostly informational content 
with simple designs.  On the next section, a 
discussion is presented whether it is better to 
build a custom WCMS or to utilize an open-
source solution.  

2.3 Commercial vs. Open-source 
WCMS 

As mentioned previously, there are many open-
source solutions. Some of them are being created 
for many years, empowered by developers with 
technical background. A question may arise why 
we need standalone WCMSs for dental 
laboratories? Why dental laboratories do not utilize 
open source WCMSs solution? Although this is not 
the main goal of this research, it is worth it to bring 
up this discussion. 

On the one hand, having a commercial WCMS 
specifically for dental laboratories will allow for 
full flexibility in developing [5]. Once it is 
available, many dental laboratories can utilize it 
instead of utilizing open-source solutions, this is 
because, the entire application is setup so it works 
exactly how needed by the dental laboratory.  It 
will be faster to implement and associates a certain 
degree of safety as opposed to open-source. 
Moreover, it offers more support and stronger 
training documentation than open-source [6]. 
Probably the most important concern regarding the 
commercial WCMS especially for small to medium 
dental laboratories is the cost.  

 
On the other hand, for small to medium dental 
laboratories, open source WCMSs offer a low cost 
alternative to commercial solutions. Besides, 
Troubleshooting is made easier because of the 
technical support and online community. However, 
potential concern regarding the open-source 
solutions is the security. As the source code is 
available for public, attackers can use the source 
code to identify vulnerabilities. Thus, these systems 
raise significant security issues [7]. 
 
According to [8] in 2010 and [9] in 2011, the best 
WCMSs today are Joomla and Drupal. Having 
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studied them, Drupal is the best to utilize when 
developing large websites with hundreds of pages 
but smaller websites with lesser number of pages 
are better developed by Joomla [10]. Drupal is not 
very user-friendly, terms are confusing and the 
admin interface is relatively poor, whilst Joomla is 
more user-friendly with a more active developer 
and designer community. With Drupal, unlimited 
user permissions levels can be created, but Joomla 
offers only three user levels (Public, Registered and 
Special). Drupal does not support multimedia, 
photo galleries by default but Joomla supports 
multimedia by its default editor [11]. Of course 
both of their developers have overcome these 
issues by developing modules to extend their 
usability. However, modules not always free or 
easy to install. 

To sum up the discussion, both approaches the 
commercial and the open-source have their 
advantages and disadvantages. It is depending on 
the requirements of the system, so there is no 
absolute answer to which is ‘best’.  However, 
open-source WCMSs does not fit the 
requirements of the system presented in this 
paper. We need many levels of permissions with 
user-friendly interface. In addition to secure 
websites to handle payments.    
As we will see in the next section, the system and 
user requirements are not supported by the 
available dental laboratories commercial WCMS, 
thus, we are designing a new commercial WCMS 
for Dental Laboratories.  

 

3. Overall System Analysis and 
Design 

3.1 System Analysis 

3.1.1 System Components and System 
Users for Dental Laboratory 
WCMS 

The system has three major types of system 
engines (components) similar to the system 
proposed on [12, 14] in addition to the data 
warehouse repository: 

 

• A Content Editorial Engine provides content 
and repository maintenance and approval 
functions for different levels of administrators 
in the dental laboratory. 

• A Content Reception Engine collects content 
from external sources, and then delivers it to 
different parts of the system for approval and 
publication.  

• A Content Publishing Engine stores approved 
content and send them to different parties via 
different channels (such as email, fax, and text 
messaging). It also serves as the Web storefront 
of the dental laboratory for user enquiries.  

 
Figure 3 depicts an overview of the Dental 
Laboratory WCMS highlighting the main system 
components and system users. A Dental Laboratory 
WCMS must be designed specifically to match the 
need and interest of each system user within and 
related to the dental laboratory. Besides the 
management, there are four main types of system 
users involved, namely, Content Creators, Content 
Providers, Content Distributors, and Content 
Users:  
 
1. Content Creators collectively refer to internal 

users who are involved in the content creation 
processes of the dental laboratory. The Dental 
Laboratory WCMS should be able to 
accommodate the different operational and 
administrative requirements of these different 
roles of internal users and to maintain 
appropriate security control. They interact 
mainly with Content Editorial Engines of the 
Dental Laboratory WCMS.  

 
2. Content Providers are external sources (such 

as PayPal) providing content (such as 
payments) to the dental laboratory through a 
Content Reception Engine. To ensure 
timeliness, content from trusted sources are 
usually forwarded automatically to the Content 
Publishing Engine for immediate delivery. 

 
3. Content Distributors are external service 

providers that render the content and deliver 
them to clients via different (traditional or 
electronic) channels, such as mass fax, mail, 
email, hardcopy delivery, and so on.  
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4. Content Users, who can be internal or external 
to the dental laboratory, are classified into three 
types in our case. Content Users obtain content 
access through a Content Publishing Engine. 
Based on their subscription data, the Content 
Publishing Engines also actively send 
appropriate content to the subscribed users. 
The three types are: 
• Public Visitors – Anonymous users are 

often allowed to access some limited 
amount of public content through a portal. 
This helps attract them to visit the dental 
laboratory’s Web site. 

• Clients (dental clinics and dentists) – 
Customers who do basic business with the 
dental laboratory are allowed access and 
subscription to all unrestricted content. 
They have their own gateway where they 
can track their lab cases, pay and check 
their bills. 

•  Internal Users – Internal staff can access 
“internal only” content related to them, as 
well as all the content for external users. 
They are also automatically subscribed to 
relevant content, according to their job 
functions, secretary, technician, driver, and 
so on.  

Figure 3. System users and components 

 

3.1.2 Description of the Main System’s 
Functions and Workflow 

As mentioned earlier, the core of this dental 
laboratory WCMS is the content, which is the 
patient lab case that is being sent from dental 
clinic or a dentists to the dental laboratory to be 
processed. The full content lifecycle content 
creation, content editing, content approval and 
content publishing, which together consist of 
the core part of the website content 
management system. Following is description 
of each cycle: 
 

1. Lab case creation: ability to create new 
lab case and submit it. In addition, content creation 
should provide basic editing methods and editing 
tools and be able to upload and download images in 
the content. Dentists can login using their accounts 
into the system and submit their cases online using 
an electronic form. In addition, the system will 
allow dentists to choose the technician if they wish. 
If the technician is available and able to accept the 
case and finish it by required time then the case 
will be assigned to that technician. Otherwise, the 
system will notify the dentist that the technician is 
not available and will give him/her the choice to 

choose someone else or just leave it for the 
laboratory staff to assign the lab case to a 

technician. Approximate pricing will be 
calculated after filling the form and 
indicating the due date for delivery. In 
addition, the system will offer the ability to 
attach files to lab cases. Dentists can attach 
images and any other file that is needed for 
better understanding of the lab case. 
 

2. Lab case editing: editing should 
satisfy the requirement of submitted lab 
cases in terms of querying, previewing, 
modifying, deleting, submitting, etc. such 
basic operation and management, edit 
content items without affecting the 
published work and distribute the authority 
to approval submitted contents. In addition, 
lab case editing should track the process of 
lab case submission and approval status 
which has been rejected or in the process 
of approval. Thus, laboratory staff can 
view the lab cases as soon as they are 
submitted so they can arrange a pickup. 
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When the lab case arrived, its status is 
updated as received.  
 

3. Approval process: Approval process can 
add, modify, delete and manage the 
authority of the allocation roles and 
individuals. Provide a workflow that is 
configurable for users to allow different 
approval processes with varying case item 
status during the authoring, establish a 
variety of roles within a workflow process, 
and assign workflow to classes of content 
items as well as roles and individuals. The 
workflow in the dental laboratory will be 
managed by the ability to check the status 
of every lab case. In addition, the dental 
clinic will be notified by email about the 
status of the lab cases whether they have 
been received, processed or out for 
delivery, etc. Of course dentists can login 
to system and check the status as well.  
 

4. Case approval: ability to approve the submitted 
lab case which is in the edit process, query and 
view the submitted lab cases for approval. There 
are two kinds of approval states: passed and not 
passed. The function that approval process should 
implement is to ensure each approval step can 
authorize only one approver.  

 
5. Case publishing: The editorial content can 

be published after passing the approval 
process, in the process of content 
publishing, cancellation and republished 
function should be provided. Published 
content should apply static html pages as 
contents storage form, with the publication 
of the contents, the unpublished content 
and page module can be updated as well, 
which also makes publishing Web pages 
convenient to manage and update. Thereby 
increase the speed of page browse and 
access. Laboratory staff will be alerted 
when lab cases are ready to deliver.  
 

6. Website configuration and management: 
Ability to classify and manage the website 
columns of the publishing content, 
including the basic operation of the 
columns, such as columns add, modify, 

delete, as well as the template option of 
page modules and website columns. 
Besides, Website resource management 
can achieve the basic functions, such as 
upload and download files management, 
configuration and management of the 
published website parameters.  
 

7. Rights authority: include allocation of 
operating authority in various sectors of 
system function module. 

3.2  System Design 

In the dental laboratory context, the initial structure 
that would be used in the WCMS had the following 
characteristics:  
 

1. One central site for the dental laboratory 
(each dental laboratory would contain a 
unique domain). 

2. The entire application is installed on a 
hosting web server for that dental 
laboratory. 

3. A separate instance would be created for 
every dental clinic or dentists. 

 
The proposed WCMS adopts Three-Tier 
Architecture design as shown in Figure 4 and is 
composed of three layers [1]. Since there are many 
computers with different kinds of operating system 
will work in coordination in the system, platform 
independent system architecture is needed to adapt 
the change in future use. Following is brief 
description for each tier [15]: 

 
• The first (bottom) layer of the system is the 

database layer. It saves the system’s content 
such as lab cases’ data, dentists’ data and 
images, etc. Content is frequently stored as 
XML since variety of data sources are used and 
each has its own characteristics [16]. XML is 
used to solve the incompatibility of different 
structures. XML facilitates reuse and enable 
flexible presentation options [13]. This layer 
mainly complete the local query, extract and 
transform distributed information from 
heterogeneous data sources. It uses Wrapper 
technology including the queries translate 
function and result translate function. It can 

424 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



 

translate the query result which gets from 
middle layer to local process. Extract the query 
result and makes a XML document. Finally 
return the document to middle layer [4].  

 
• The second (middle) layer is the system 

transaction layer, which is consisted of the 
system function modules, such as the lab case 
tracking. This layer mainly contains the query 
splitter and results Integrator two functions. In 
order to implement centre process, the system 
must use a common model which comes from 
different sources of information from a variety 
of data XML’s characteristics determine that it 
is can describe a variety of data. It is means 
that it is a common data model. 
Heterogeneous data integration can solve this 
problem. It also enables the dynamic data 
release. Therefore, this system uses the XML 
model as a common model. It provides a 
unified query view by middleware layer on the 
client. It accepts the client's query command, 
split into various sub-queries and assigns to 
various data sources; and then integrates the 
results of its inquiries, sends to the client's 
browser displays for the user [4]. 

 
• The third (top) layer is the user interface layer, 

which included the client side of the system 
and displays the content to the users.  

4. Conclusion and Future Work 
This paper proposed Three-Tier architecture design 
to develop a WCMS for Dental Laboratories based 
on a study of the requirements of dental 
laboratories. The system would enhance the clinical 
management level and would be used as a channel 
for dentists to technician, dental clinic-to-dental 
laboratory, to provide the long-term relationship 
and information sharing. The paper also discussed 
the need to have a standalone WCMS for dental 
laboratories other than the open-source WCMS. 
The system will significantly improve performance 
of dental laboratories and will assure long-
relationship term between dental laboratories, 
dental clinics and dentists. It is expected that in a 
couple of years, the proposed system will be 
developed and implemented in several dental labs 
in Riyadh, Saudi Arabia.  
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Abstract 

 
Producing biohydrogen on a commercial scale will likely require the genetic re-engineering of natural 

hydrogen-producing organisms.  Kinetic modeling of hydrogen-producing metabolic pathways can cost-

effectively help to characterize systemic (e.g., mass/energy/charge conservation) constraints in these 

organisms. In vitro kinetic studies suggest that the activity of the hydrogenases in several photolytic 

biohydrogen producers (PBPs) could be increased to as much as four times their nominal in vivo rate. It is 

much less clear, however, whether the in vitro activity maximum could be realized in vivo.  Here I use an S-

system photosynthesis-based PBP (PS-PBP) simulator  to analyze the H2 production of sulfur-deprived C. 

reinhardtii, a water-photolyzing PS-PBP microalga.  The analysis strongly suggests that maximum H2 

production by the alga requires some sulfate to be present in order to  enable an initial purge (in the form 

of O2)  of the oxygen arising  from the photolysis of water, accompanied by a corresponding rise in proton 

(also from the photolysis of water)  pressure which helps to drive the H2 formation.  After the initial O2 

burst, residual oxygen from the photolysis of  water is consumed by CO2  formation in the mitochondria. 

 

Keywords:   biohydrogen, S-system, metabolic modeling 

 

 

1.0  Introduction 
 

 Kinetic modeling of hydrogen-

producing metabolic pathways can cost-

effectively help to characterize systemic 

(e.g., mass/energy conservation) sensitivities 

in photolytic biohydrogen producers, even if 

all the details of hydrogen-gas producing 

metabolic pathways are not known. Among 

the more promising candidates for 

hydrogen-production optimization are 

photolytic biohydrogen producers (PBPs) 

such as the microalga Chlamydomonas 

reinhardtii ([7], [8]). It is generally held that 

the hydrogen-producing pathways in many 

PBPs incorporate segments of the PS-I and 

PS-II photosynthetic pathways ([6],[13]), 

and electrons from the anaerobic 

degradation of starch, to help accumulate the 

electron free energy required to allow a 

hydrogenase to convert protons to H2 ([17]). 

In vitro kinetic studies suggest that the 

activity of hydrogenases  isolated from 

several PBPs could be increased to as much 

as four times their nominal in vivo rate ([1]).   

C.  reinhardtii produces H2 only if deprived 

of sulfur.  Here I use bioh2gen ([15]), an S-

system ([2], [11]) PS-PBP kinetics 

simulator, to argue that maximum H2 

production by the alga requires some sulfate 

to be present in order to  enable an initial 

purge (in the form of O2) of the oxygen 

arising from the photolysis of water, 

accompanied by a corresponding rise in 

proton pressure which helps to drive H2 

formation.  After the initial O2 burst, 

residual oxygen from the photolysis of water 
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is consumed by CO2 formation in the 

mitochondria. 

 

2.0   S-systems 

 

 An S-system ([11],[12]) is a power-

law-oriented, finite-difference system of 

ordinary differential equations (SODE) each 

of whose dependent variables Xi is 

described by a kinetic equation of the form    

________________________________________________________________________ 

 

 

                                   
                                                                                          Eq. 2.1 
 

where  

 

 the left-hand side of Eq. 2.1 is the first derivative of Xi with respect to time 

 

 i , j = 1, 2, 3, ..., N 

 

 {Xi}  is the set of real-valued dependent variables of the system   

     

 for any given Xi, only those independent and dependent variables Xj that have an action 

on Xi are included as factors in the products on the right-hand-side (RHS) of Eq. 2.1.  

The factors in the first term on the RHS  of Eq. 2.1 correspond to just those entities that 

increase or inhibit the production of Xi; the factors in the second term of the RHS of Eq. 

2.1 correspond to just those entities that contribute to, or inhibit, the consumption of Xi. 

 

 i , i > 0 

 

 gi_j, hi_j are real-valued  

______________________________________________________________________________ 

 

 

 There is a natural mapping from a 

biochemical map,  K, to equations that have 

the  form of Eq. 2.1.   In particular, let K = 

<{Xk}, E>, E  {Xk}   {Xk},  k = 1, 2, …, 

N, be a directed graph in which each distinct 

Xi   {Xk} corresponds to a distinct variable 

(e.g., the concentration of  a distinct 

chemical species in the map), and w  E if 

and only if w = (Xm, Xn) is a directed edge 

in K , m  n = 1, 2, ..., N.    

 i  and i are called  generalized rate 

constants (or just rate constants) for Xi, and 

gi_j and hi_j are called the generalized 

kinetic orders (or just kinetic orders) for Xi, 

on analogy with standard chemical kinetic 

theory.   The subexpression i_j indicates the 

action of Xj on Xi. 

 An S-system has several desirable 

features, including the fact that it is fully 

characterized by its rate constants and 

kinetic orders.  Any SODE can be recast 

([10],[11]) as an S-system without loss of 

accuracy or precision; the recasting, 

however, is not in general unique.  In 

addition to biochemical systems, S-systems 

have been successfully used to model 

epidemics, forest diversification, and world 

dynamics. 
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3.0 A network model of 

hydrogen production in PS-PBPs 
 

 I will call bioH2 producers that 

exploit portions of the PSII or PSI pathways 

“photosynthetic” PBPs (PS-PBPs).  The 

schematized PS-PBP model used in the 

present study is shown in Figure 1 and is 

similar to [3], [4], [5], [9] and [14].  It 

represents a consensus working hypothesis 

held by the biohydrogen research 

community about the high-level metabolics 

of hydrogen production in PS-PBPs ([7]). 

  

________________________________________________________________________ 

 

 
 

Figure 1.  Schematized hydrogen producing metabolic network for PS-PBPs. Rectangles 

represent sources or sinks of physical quantities of interest (such as mass,  concentration, or 

photon count) named in those rectangles, ellipses represent transforms (which may be 

complexes of reactions not individually modeled here), and an arrow from an ellipse to a 

rectangle  means that the transform named in the ellipse affects the quantity/concentration 

of the chemical species named in the rectangle.  Legend:  PSI = photosynthesis stage I; PSII 

= photosynthesis stage II;  SO4 = sulfate; hv-I = photons incident to PSI; hv-II = photons 

incident to photosynthesis PSII; ADP = adenosine diphosphate; ATP = adenosine 

triphosphate; PO4 = inorganic phosphate; O2 = oxygen gas; ATPase = adenosine 

triphosphatase; e from starch = electrons from anaerobic starch degradation; H2ase = 

hydrogenase; ETC = electron transport chain; e from PSII = electrons from PSII; e from 

PSI = electrons from PSI; Fdred = ferredoxin, reduced; Fdox = ferredoxin, oxidized; H2 = 

hydrogen gas; H+ from PSII = protons from PSII;  H+ from ATP = protons from ATPase.  

Not all interactions exist in all PS-PBP species. 
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 In sulfur-deprived C. reinhardtii, 

oxygen gas production under the 

experimental conditions of [7] (1-L, 6 x 10
6
 

cell/mL preparation) is about 1 mmol/h  

after beginning of sulfur deprivation, and 

spontaneously ceases ~10 h thereafter.  30 - 

50 h after beginning of sulfur deprivation, 

the algae begins releasing hydrogen at a rate 

of ~0.17 millimole H2/h (1-L, 6 x 10
6
 

cell/mL preparation).  ~100 h after 

beginning of sulfur deprivation, under the 

experimental conditions of [7], hydrogen 

production ceases.   These trajectories  

provide strong constraints on any model of 

bioH2 production by C. reinhardtii. 

 The S-system equations used in this 

study are shown in Figure 2. 

 

______________________________________________________________________________ 

 
// protons from PSII 

X2' = a2 X1^g2_1 X3^g2_3 X5^g2_5  -  b2 X10^h2_8 X2^h2_2 X5^h2_5 

 

// e from PSII 

X4' = a4 X1^g4_1 X3^g4_3 X5^g4_5 -  b4 X16^h4_16  X4^h4_4 

 

//  protons from ATPase 

X8' = a8 X6^g8_6 X7^g8_7 X2^g8_2 -  b8 X8^h8_8 X24^h8_24   

 

// other ATP consumers 

X9' = a9 X10^g9_10 -  b9 X9^h9_9 

 

// ATP 

X10' = a10 X2^g10_2 X7^g10_7 X6^g10_6 -  b10 X13^h10_13 X9^h10_9 X10^h10_10 

 

// starch 

X13' = a13 X12^g13_12 X11^g13_11 X10^g13_10  -  b13 X14^h13_14 X15^h13_15 X13^h13_13 

 

// e from starch 

X14' = a14 X13^g14_13 -  b14  X16^h14_16 X14^h14_14 

 

// pyruvate 

X15' = a15 X13^g15_13 -  b15 X25^h15_25 X18^h15_18 X17^h15_17 X15^h15_15 

 

// e from ETC 

X16' = a16 X14^g16_14 X4^g16_4 -  b16 X20^h16_20 X16^h16_16 

 

// formate 

X17' = a17 X15^g17_15  -  b17 X17^h17_17 

 

// acetate 

X18'  =  a18 X15^g18_15 -  b18 X15^h18_25 X18^h18_18 

 

// e from PSI 

X20' = a20 X16^g20_16  -  b20 X22^h20_22 X20^h20_20 

 

// Fdox 

X21' = a21 X22^g21_22 -  b21 X21^h21_21 

 

// Fdred 

// X22' = a22 X20^g22_20 -  b22 X21^g22_21 X23^g22_23 X22^h22_22 

 

// e from Fdred 

X23' =  a23 X22^g23_22 -  b23 X24^h23_24 X23^h23_23 

 

// H2 gas 

X24'  =  a24 X23^g24_23 X8^g24_8 -  b24 X24^h24_24 

 

// Intracellular CO2 

X25' = a25 X15^g25_15 X18^g25_18 X26^g25_26 -  b25 X25^h25_25 

 

// oxygen 

X26' =  a26 X1^g26_1 X3^g26_3 X5^g26_5 -  b26 X26^h26_26 X25^h26_25 X5^h26_5 
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Figure 2.  S-system equations for the dependent variables used in this study.  “^” is 

exponentiation.  “>>” means “expression continuation”.  “’” means “first derivative with 

respect to time”.  Note that the equation for X2' has light as a consumption factor because 

activity decreases as light intensity increases above an optimal value. 

______________________________________________________________________________ 

 
 

Table 1 shows the values of the independent variables of the system. 

 

 

Table 1.  Values of the independent variables of the system. 
 

Independent variable Value (relative units) 

X1 (water) 1 

X3 (SO4) 0.3 

X5 (hv-II) 2.363 

X6 (ADP) 100 

X7 (PO4) 100 

X11 (Extracellular CO2) 3e-3 

X12 (NADPH) 1e-6 

X19 (hv-I) 2.363 

 

______________________________________________________________________________ 

 

 Much of the system in Figure 1 is 

based on PSII and PSI kinetics.  The model 

was calibrated (to produce the "nominal" 

configuration) on PSII/PSI kinetic data in 

[16], setting all generalized rate constants to 

0.1, except a2 (= 3e-4), b2 (= 1e-4), a4 

(=0.01), a24 (=1e-4), b24 (= 0.001), a26 

(=10), and b26 (=1000); these exceptions 

were based on  in vitro experimental values 

obtained in [7].  All generalized kinetic 

orders were set to 1. 

 bioh2gen and  the model used in 

[14] differ in a few ways.  First, following 

the conventions in [11] for modeling 

metabolic systems in the absence of gene-

circuit dynamics, no enzyme is an explicit 

variable of bioh2gen ;  several enzymes are 

variables in [14].  Second, bioh2gen 

employs  more rate constants derived from 

experiment than does the model used in 

[14].  Third, all the kinetic orders in 

bioh2gen were set to 1; two kinetic orders 

were set to 2 in [14].  Fourth, bioh2gen 

study models the photon inputs to each of 

PSII and PSI individually; the model in [14] 

represents only the photon inputs to PSII. 

 The nominal H2 and O2 production 

rates of bioh2gen were compared to [7], and 

the responses of the model to sulfate 

concentrations ranging from 0.01 to 5.0 

(relative units)  were computed. 

 

  

4.0 Results and discussion 
 

 Figure 3 show the nominal (hv-I and 

hv-II = 2.363) hydrogen and oxygen output 

predicted by the model described in Section 

3.0.  The H2 and O2 outputs agree well with 

[7]. 
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Figure 3.  Nominal (for SO4 = 0.3) total hydrogen and oxygen gas production as a function 

of time (units on the horizontal axis are hours after t0).  Note the initial oxygen burst. The 

values predicted by the model agree well with the results shown in [7]. 

_____________________________________________________________ 

 
Figure 4 shows the H2 gas production in the model as a function of sulfate concentration.  

______________________________________________________________________________ 

 

 
 

 
Figure 4.  H2 production (in relative units) as a function of sulfate concentration.  (The 

trajectory for a sulfate concentration of 5.0 relative units may not be biologically realistic.) 

 

______________________________________________________________________________ 

 

 Figure 4 strongly suggests that, 

within the model described in Section 3.0, 

maximum H2 production by the alga 

requires some sulfate to be present in order 
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to facilitate an initial burst (in the form of  

O2 (See Figure 3))  of the oxygen resulting 

from the photolysis of water,  accompanied 

by a corresponding rise in proton (also from 

the photolysis of water) pressure which 

helps to drive the H2 formation.  (Even if the 

algal growth medium contains no sulfate, 

some sulfate is still available within the 

reactions supporting PSII.)   After the initial 

O2 burst, residual oxygen from the 

photolysis of water is accommodated by 

CO2 formation in the mitochondria (X25 in 

the model). 
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Abstract: Contrary  to  the accepted belief,  incontrovertible 
evidence  indicates  that  all  commands  are  issued  in  one 
hemisphere  (major, command center, speech hemisphere), 
with majority of people (~80%) left hemispheric in laterality 
of  their command center. Thus,  those commands  intended 
for moving the nondominant side of the body, including the 
eyes, are  first  transmitted  to  the opposite hemisphere  via 
the  corpus  callosum,  before  they  are  implemented  by  the 
minor  hemisphere  (which  is  devoid  of  any  conscious 
awareness).  This  article  reviews  the  many  faces  of  the 
behavioural  consequences  of  this  one‐way  callosal  traffic 
circuitry  underpinning  lateralities  of  motor  and  sensory 
control; including our inability to divide a line in exactly two 
halves without using a ruler (i.e. pseudoneglect). Review of 
the  relevant  time  resolved  data  in  the  literature  indicates 
that  the  well‐known  laterality  indexed  asymmetries  in 
visual  span  (e.g.  the  right  visual  field advantage  in  lexical 
decisions), optimal viewing position in reading (OVP), point 
of  subjective  equality  (PSE) and  the  tau  effect are among 
the many faces of pseudoneglect, all based on the laterality 
of motor and sensory control which  is unidirectional:  from 
the major to the minor hemisphere for motor and from the 
minor to the major hemisphere for sensory signals  (arising 
from the nondominant side of the body).     
  
 

Humanity possesses twin disabilities, for which the 
reason  has  been  discovered  recently.  Firstly,  we  cannot 
divide  a  line  precisely  in  halves  and  resort  to  a  straight‐
edge or a  tape measure  for securing a valid  result. This  is 
not because we do not  know  that  the middle  is between 
the two halves; rather, we cannot determine exactly where 
the half mark must  lie without actually measuring the  line 

and  deducing  the  middle  mathematically.  Short  of  this, 
depending on our neural handedness (i.e. see below for the 
distinction  between  neural  hand  behavioral  handedness), 
we either deviate to the left or to the right of the veridical 
center  by  a  percentage  point  of  the  length  of  the  line 
without  ever  realizing  that we  have  erred  in  the  process 
[1].  Similarly, when  viewing  a  target  in  the middle of our 
view,  vast majority  of  right  handed  people will  initiate  a 
search to the left of the midline, focusing slightly to the left 
of the middle of a word target, or display a  leftward point 
of subjective equality (PSE) when acknowledging the arrival 
of the stimuli  just to the  left of the midline using the right 
hand [2, 3]. It has been shown repeatedly that interference 
with  this  automatic  process  will  result  in  diminished 
efficiency  in  the  reading a  text  [4‐6]. Whereas  the  first of 
these twin failings appears sensory  in nature the second  is 
more clearly motoric. Thus, starting from the same distance 
of  a musical  keyboard,  humans  are  incapable  of  striking 
two keys at the very same time. Musicologists have known 
about this disability for a long time and since the melody of 
a tune is traditionally written for the right and the harmony 
for  the  left  hand  have  formally  named  the  phenomenon 
the  “melody‐lead  of  the  right  hand”  in  piano  players  [7]. 

Importantly,  however,  it  has  been  known  for  over  forty 
years  that  severing  the  anterior  aspect  of  the  corpus 
callosum  (the  neural  bridge  between  hemispheres) 
intensifies  the  above  described  interlimb  asynchrony  by 
further prolonging the performance of left hand [8, 9].     

The purpose of  this article  is  to explore evidence 
that  the  twin phenomena mentioned above are based on 
the  fact  that  the  interhemispheric  traffic,  underpinning 
laterality of motor control,  is one‐way  (from  the major  to 
the  minor  hemisphere,  as  here  defined)  and  that  the 
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nature  of  signals  employed  for  the  purpose  of  activating 
the nondominant side is purely excitatory. It will be shown 
that  the  line  bisection  deviation  mentioned  above 
represents an automatic  trading of  “time” and  “space”  in 
the  human mind  as  the motor  command  for moving  the 
eyes to the  left traverses the  interhemispheric bridge  (the 
corpus  callosum)  from  the  action  hemisphere  to  its 
neighboring counterpart (minor hemisphere); which in turn 
implements  the  commands  issued  in  the  former, moving 
the  eyes  to  the  left  (in  a  real  right  handed  person,  see 
below). Thus,  the  longer  route  imposed on  the  command 
for moving the eyes to the left is interpreted by the person 
clocking the event as a longer “time,” and by the subject as 
additional  “space”  (hence  the over‐estimation)  [1, 10‐12]. 
Accordingly, for the person who initiates looking to the left, 
the  automatic  “time‐stamping”  of  the  event  begins  after 
the  emanation  of  the  related  commands  from  the major 
hemisphere  [1,  13].  Because  of  the  additional  callosum‐
width  routing  imposed, however, an asymmetry occurs  in 
the excursion of the two eyes, with those to the left coming 
out  short  (by an  IHTT).  In moving  the extremities, on  the 
other hand, when exactly the same excursion is imposed on 
the  right and  left arm,  the  latter must add  the additional 
(callosum‐width) extent  to  its  journey’s  length  in order  to 
accomplish the aim set forth by the decision‐maker located 
in the major hemisphere [14].  
 
The Line Bisection Test, Further Observations: 
 
First described by Hall and Hartwell (1884) [15], deviations 
to  the  left  in  bisecting  a  line  is  seen  in  vast majority  of 
normal right handed people. Only in more recent times the 
phenomenon was named “pseudoneglect,” by Bowers and 
Heilman  [16]. According  to  1‐Way  callosal  traffic  circuitry 
underpinning lateralities of motor and sensory control, the 
reason  for  the  left  deviation  in  bisecting  lines  in  visual 
paradigms  is  that all movements occurring on or  towards 
the  nondominant  side  of  the  body  are  bi‐hemispherical 
events requiring callosal participation. This delay applies to 
all  movements  of  or  toward  the  nondominant  side, 
including  the  saccades  (gaze) or  those of  the diaphragms 
for breathing. Thus, while conjugate eye movements to the 
dominant side do not require callosal participation, moving 
them  to  the  left demands an  intact corpus callosum  [8, 9, 
13].  Similarly,  sensing  from  the  nondominant  side  of  the 
body requires callosal participation to convey those signals 
arising  from  the nondominant  side of  the body  that have 
reached  the  right  hemisphere  to  the  left  hemisphere 
before they are consciously apprehended. Accordingly, left 
sided  movements  incur  a  delay  equal  to  the 
interhemispheric  transfer  time  (IHTT) as  the motor signals 
move from the left to the right hemisphere and the sensory 
signals  incur a similar delay  in  the opposite direction  [17]. 

Therefore,  as  expected, when  drawing  two  straight  lines 
with  both  hands  simultaneously,  the  lines  drawn  by  the 
two hands are unequal, with  those by  the dominant hand 
(the  side  in  direct  contact  with  the  major  hemisphere) 
being  longer  than  those  by  the  hand  ipsilateral  to  the 
command center (regardless of the behavioral handedness 
of  the person; see under  fake  (ostensible)‐handedness  for 
exceptions) [9].  

To recapitulate, in assessing the middle of a line, it 
takes  longer  for a right handed person to move his or her 
eyes  to  the  left  than  moving  them  to  the  right  by  an 
amount equal to  IHTT. As a result of an automatic trading 
of space and time an overestimation of the left side of the 
line  will  occur,  giving  rise  to  the  left  deviation  of  the 
marking  [1].  similarly,  in  the  somatosensory  realm,  an 
overestimation  of  the  size  of  an  object  occurs  which  is 
reported  when  judging  the  same  size  disks  manipulated 
between our  thumbs and  index  fingers  simultaneously by 
both hands (with eyes closed). The disk on the left is judged 
as  bigger  due  to  automatic  “time  stamping”  of  motor 
events  in measuring  as  the  subject manipulates  the disks 
[18, 19]. Here, therefore, the  left deviation  in “visual”  line 
bisection has its “appendicular” counterpart, similar to the 
tau phenomenon described by Helson (1930) [20]. Turning 
to the abovementioned paper and pencil test, if the hands 
holding the pencils are moved from the side of the page to 
the middle,  the  lines  drawn will meet  on  the  left  of  the 
midline,  reproducing  the  results of  the  line bisection  test.     
Those who remain skeptical of the above explanation may 
take solace by attempting to draw two separate lines of the 
same length with each hand with their eyes closed as they 
count to a certain arbitrary number while drawing a line. It 
will  again  be  noted  that  the  line  drawn  by  the  neurally 
dominant hand is longer than that by the other hand by an 
amount equal to IHTT, again reflecting the aforementioned 
inevitable “trading of time with space”  in the human mind 
[1,  9,  21].  Similarly,  the  right  visual  field  advantage 
described in tachistoscopic experiments on naming latency, 
the wider excursion of the eyes to the right (which is based 
on  the  same  anatomy  just  mentioned)  “becomes  more 
pronounced with the number of letters in the word” [22].  

In  the past,  these visuo‐motor asymmetries were 
erroneously  accounted  for  by  the  faster  speed  of  signals 
traveling  from  the  minor  to  the  major  hemisphere 
compared  to  those  moving  in  the  opposite  way  (i.e. 
assuming a Newtonian division of visual half fields between 
the hemispheres) [23, 24]. The fact remains, however, that 
in  right  handed  subjects  laterality  of  tachistoscopically 
presented stimuli in Poffenberger paradigm is irrelevant to 
the  reaction  time  of  the  dominant  hand  and  the 
performances of both hands remain unchanged in response 
to stimuli appearing in the left visual field [23, 24]. 23Finally, 
the  absence of  a  role  for  the  corpus  callosum  in  vision  is 
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indicated by the fact that the asymmetries described above 
persist  while  performing  the  bimanual  drawing  task 
blindfolded  [9,  21].  Additional  observations  point  to  the 
same conclusion [25‐27].   
 
Initial Visual  Exploration  (IVE), Optimal Viewing Position 
(OVP) and Point of Subjective Equality (PSE): 
 

According  to  the abovementioned scheme  (i.e. 1‐
way callosal traffic circuitry), what appears to be the center 
of  a  scene  to  an  observer  incurs  a  slight  leftward  shift 
compared  to  the  veridical  center  of  that  scene.  For 
example,  in  a  paradigm  employing  targets  made  from 
texture  numbers  scattered  to  the  right  and  left  of  the 
midline, 65 % of normal controls “started exploration in the 
left half of the arrays” and in a paradigm using overlapping 
figures,  neurological  control  subjects  (with  lesions  in  the 
brainstem or below) displayed a strong tendency to identify 
first the parts of a composite diagram  lying  just to the  left 
of  the midline  [2,  28]. On  the  other  hand,  in  the  studies 
mentioned,  patients  with  right  hemisphere  damage 
displayed  an  initial  directional  bias  to  items  ipsilateral  to 
the  damaged  hemisphere,  regardless  of  presence  or 
absence  of  other  signs  of  neglect  (such  as  those  seen  in 
bilateral  simultaneous  stimulation,  line  cancellation  and 
copying  tasks);  while  measurements  of  the  landing 
positions of the gaze while reading demonstrated a  left of 
midline  positioning  of  the  gaze when  viewing words  (see 
Introduction).  Lastly,  using  a  speeded  reaching  task  in 
thirteen  right  handed  participants,  Oliveira  et  al 
documented  a  leftward  shift  in  their  mean  PSE  in  an 
experiment  in which  the participants chose  the hand with 
which  to  respond  to  stimuli  appearing  in  the  right or  left 
visual  field  [3].  The  authors  also  documented  faster 
response by the right hand to stimuli occurring in the right 
visual  field  compared  to  those  of  the  left  to  stimuli 
appearing  on  the  left  side  (p=0.0499).  Nevertheless,  the 
authors,  following  a  conventional  understanding  of  visual 
sense of space as well as that of motor control, the authors 
failed to provide a valid  interpretation of their results  (i.e. 
the  callosum‐width proximity of  the dominant  side of  the 
body  to  the  command  center/macular  vision  in  vast 
majority of right handed people) [9, 17, 26]. 
 
Asymmetry in Perceptual Span: 
 

There  is  a  substantial  literature  in  which  faster 
responses  in  moving  the  eyes  to  the  right  than  moving 
them  to  the  left,  in  vast  majority  of  right  handers  is 
documented  [11,  17,  22].  However,  the  relationship 
between  this  asymmetry  to  the  asymmetry  in  visual 
perceptual  span  has  never  been  explored  [3,  11,  29‐31]. 
Instead,  the  totality  of  the  literature  ascribes  the  right 

visual field advantage (RVFA) in lexical decision and naming 
tasks  to  the  “specialization”  of  the  left  hemisphere  for 
speech, without proving  comments or  specifications as  to 
the  mechanism  underpinning  the  same.  In  this  respect, 
Orbach’s  [31]  and  Bub  and  Lewine’s  [22]  articles,  by 
demonstrating a wider perceptual  span  to  the  left  in  two 
groups of  left handed participants, provide  solid evidence 
in  favor of directionality  in callosal  traffic by documenting 
that abovementioned asymmetry  is  indexed  to a person’s 
laterality  of motor  control  as  espoused  in  this  article;  as 
does the demonstration of a faster verbal response to right 
sided visual stimuli  in a group of  right handers studied by 
Melamed et al who also noted  that participants displayed 
wider  excursions  to  the  right  (RVFA)  in  an  experiments 
involving lexical decision task [33].  
 
Scrotal,  Galvanic  Skin  Response  and  H‐reflex 
Asymmetries: 
 

There  are  numerous  autopsy  reports  of  patients 
with  unilateral  supratentorial  lesions  involving  the 
dominant  hemisphere  associated  with  bilateral  Babinski 
signs or with bilaterally absent abdominal and cremasteric 
responses associated with bilateral up going  toes  [34‐38].

 

Importantly,  only  one  of  the  eleven  patients  reported  in 
the aforementioned five articles  (the case by Adams et al) 
involved  the  right  hemisphere  of  the  patients  described. 
Thus,  the  knowledge  that  traffic  between  hemispheres  is 
one‐way  and  that  all  transcallosal  influences  are  purely 
excitatory [39] allow the clinicians familiar with the concept 
of  interhemispheric  diaschisis  (separation  shock)  to 
properly  interpret  the  above  described  findings;  i.e.  the 
diaschitic  paralysis  of  contralateral  hemisphere  in  lesions 
affecting  the  action/major  hemisphere  associated  with 
paralysis  of  the  contralateral  side  of  the  body  directly 
connected to the action hemisphere.  

The  largest  series  of  similar  cases,  i.e.  paralysis 
ipsilateral  to  a  lesion  affecting  the  major  hemisphere, 
remains  the  classical  study  by  Kernohan  and  Woltman 
where  only  one  half  (17  of  the  35)  of  patients  with 
supratentorial  lesions displayed  ipsilateral pyramidal signs, 
regardless  of  presence  or  absence  of  a  Kernohan  notch 
[40]. Failure to consider or understand the above‐described 
mechanism (i.e. interhemispheric diaschisis) as the cause of 
ipsilateral  paralysis  in  lesions  affecting  the  major 
hemisphere  has  led  to  numerous  expressions  of 
bewilderment by  some  the most distinguished  luminaries 
of  clinical  neurology  upon  confronting  similar  findings  in 
their  patients  [38,  41],  or  has  prevented  well  known 
clinicians  from correctly  interpreting  the numerical  results 
obtain in their otherwise excellent clinical research [14].  

The  circuitry  described  above  also  provides  a 
plausible  explanation  for  other  laterality  indexed  findings 
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such  as  the  asymmetrical  positioning  of  testicles  in 
response to gravity [42, 43] and the longer latencies of the 
nondominant side to electrical stimulation  in Huffman and 
Galvanic  skin  response  measurements  [44,  45];  i.e.  a 
callosum‐width  proximity  of  the  body’s  dominant  side  to 
the command center located in the major hemisphere. 
 
Fake (ostensible)‐handedness: 
  

The  footprints  of  one‐way  callosal  circuitry  is 
visible  in  all  circumstances  in  which  laterality  of  motor 
control plays a  role  in our daily  lives, as  in dueling  sports 
[26] and  the  laterality of  seizure onset  [46, 47].There  is a 
caveat, however, as follows: Statistically, it has been shown 
that  one  in  five  persons  display  a  behavioral  handedness 
opposite  for which  the person  is wired  (see above). Thus, 
about one half of the left handed people and 20 % of right 
handers are wired in the opposite direction as judged from 
the  laterality  of  their  speech  or  the  speed  of  their 
movements  [9,  48‐50].  Neurologists  have  long  known 
about  this  disparity  starting  with  Bramwell’s  article  on 
“crossed aphasia” in a left hander who lost his speech and 
became  agraphic  after  a  right  sided  hemiplegia  [51]. 
According to observations supporting 1‐way callosal traffic 
scheme,  it  is  the higher speed of  the side contralateral  to 
the command center, relative to the side  ipsilateral to the 
same,  that unmistakably points  to  the  laterality of motor 
control  in  any  individual,  regardless  of  his/her  declared 
handedness [17, 52, 53].Understandably, there are no data 
on  manual  reaction  times  of  those  who  later  become 
crossed  aphasics.  Nevertheless,  since  the  incidence  of 
crossed  aphasia  among  the  right  handers  is  about  20 
percent [48, 49] there is a likelihood of running into one or 
two of such person with “anomalous brain organization” in 
any gathering of 10  right handers;  i.e. persons who  react 
more  quickly  to  a  signal,  or  tap  faster  in  a  short  span  of 
time, with  their  left  hand  than  their  right  hands  despite 
their avowed handedness to the opposite [9, 12, 21, 50, 54‐
56].  Historically,  the  Imperial  Counselor  described  by 
Liepmann  [56],  the  famous  neuroanatomist  Alf  Brodal, 
whose  description  of  his  own  aphasic  performance when 
writing  with  his  right  hand  [58]  and  David  Kinnebrook 
whose  consistent  500‐800  milliseconds  tardiness  in 
responding to events  in his view finder compared to those 
of  his  superior  (Nevil Maskelyne,  Royal  Astronomer)  cost 
him his  job as an assistant at Greenwich observatory  [59, 
60].  At  the  same  time,  it  appears  that  ostensible  right 
handers  may  have  played  a  role  in  the  early  twentieth 
century drama unfolded after Pierre Marie’s attack “on the 
basic  tenets  of  Broca’s  aphasia,”  by  the  absence  of  “left 
third frontal lesion without l’Aphasie de Broca” [61] Finally, 
reference  must  be  made  to  the  syndromes  of  crossed 
nonaphasia [62, 63] and occurrences of right sided neglect 

in ostensibly right handed subjects after insults to their left 
hemisphere  to  complete  the  list  of  behavioral  surprises 
seen in those with “anomalous brain organization” [46, 47, 
55, 62, 63].                     
 
Conclusion:  

Much harm has  come  from  the blind  faith  in  the 
Newtonian  hypothesis  of  contralateral  representation  of 
vision and its counterpart in the motor realm as opined by 
Valsalva.  Neither  the  right  visual  field  advantage  in 
perceptual  span  nor  the  right  hand  advantages  in  timed 
movements  can  be  explained  by  the  Newtonian  and 
Valsalva’s  schemes  (leaving  aside  for  now  the  issue  of 
macular  sparing  in  hemianopia).  Nor  can  these  dogmas 
account for the known asymmetries in initial visual search, 
line bisection or optimal viewing point as reviewed above. 
In  this article  I have  reviewed critical studies  that support 
the  existence  of  1‐way  callosal  traffic  circuitry, 
underpinning  lateralities of motor and sensory controls as 
represented  in  our  daily  lives.  Bimanual  simultaneous 
drawing  test  reveals  the  laterality  of motor  control  in  all 
those who  are  able  to  perform  the  test  by  allowing  the 
brain  to speak  for  itself  in a simple paper and pencil  test. 
The  test allows  identification of members of  that minority 
of humans who  for over a century have wreaked havoc  in 
our  understanding  of  brain  structures  underpinning  the 
laterality of motor control and consciousness.   
 
Acknowledgments: This article is dedicated to the memory 
of my sister Farkhondeh and mother Rebecca Derakhshan, 
Melbourne,  Australia.  Their  kindness  and  dedication was 
limitless. 
 
References:   
 
1. Derakhshan  I. Overestimation of numerical distances  in 
the left side of space. Neurology. 2005; 64:1822‐1823. 
 
2. Ebersbach G, Trottenberg T, Hättig H, Schelosky L, Schrag 
A, Poewe W. Directional bias of initial visual exploration. A 
symptom  of  neglect  in  Parkinson's  disease.  Brain. 
1996;119:79‐87.   
 
3. Oliveira FT, Diedrichsen J, Verstynen T, Duque J, Ivry RB. 
Transcranial  magnetic  stimulation  of  posterior  parietal 
cortex affects decisions of hand choice. Proc Natl Acad Sci 
U S A. 2010;107:17751‐17756. 
 
4.  O'Regan  JK,  Lévy‐Schoen  A,  Pynte  J,  Brugaillère  B. 
Convenient  fixation  location  within  isolated  words  of 
different  length and structure.  J Exp Psychol Hum Percept 
Perform. 1984;10: 250‐257.   
 

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  | 437



5.  O’Regan JK, Jacobs AM. Optimal position effect in word 
recognition:  A  challenge  to  current  theory,  J  Exp  Psychol 
Human Percept Perform. 1992; 18: 185‐197. 
 
6.   Brysbaert M, Vitu F, Schoyens W. The right visual  field 
advantage and the optimal position viewing effect: On the 
relation  between  foveal  and  parafoveal word  recognition 
Neuropsychology. 1996; 10: 385‐395. 
 
7.  Laeng  B,  Park  A.  Handedness  effects  on  playing  a 
reversed or normal keyboard. Laterality. 1999; 4:363‐377.   
 
8.  Preilowski  BF.  Possible  contribution  of  the  anterior 
forebrain  commissures  to  bilateral  motor  coordination. 
Neuropsychologia. 1972;10:267‐277. 
 
9.  Derakhshan  I.  Attentional  asymmetry  or  laterality  of 
motor  control? Commentary on Buckingham et al. Cortex. 
2011; 47:509‐510.  
 
10. Derakhshan  I.  In defense of  the  sinistrals: anatomy of 
handedness  and  the  safety  of  prenatal  ultrasound. 
Ultrasound Obstet Gynecol. 2003; 21:209‐212.  
  
11.    Elias  LJ,  Bulman‐Fleming  MB,  McManus  IC.  Visual 
temporal  asymmetries  are  related  to  asymmetries  in 
linguistic  perception.  Neuropsychologia.  1999;37:1243‐
1249.   
 
12.  Shen  YC,  Franz  EA.  Hemispheric  competition  in  left‐
handers  on  bimanual  reaction  time  tasks.  J  Mot  Behav. 
2005; 37:3‐9.   
 
13. Derakhshan  I. How do  the  eyes move  together? New 
understandings help explain eye deviations in patients with 
stroke. CMAJ. 2005 18; 172:171‐173. 
 
14. Mack  L, Gonzalez‐Rothi  LJ,  Heilman  KM.  Hemispheric 
specialization for handwriting in right handers. Brain Cogn. 
1993; 21:80‐86. 
 
15.  Hall GS, Hartwell EM. Bilateral asymmetry of function. 
Mind 9: 93–109, 1884 
 
16.  Bowers  D,  Heilman  KM.  Pseudoneglect:  effects  of 
hemispace  on  a  tactile  line  bisection  task. 
Neuropsychologia. 1980;18:491‐498.   
 
17. Derakhshan  I. Crossed‐uncrossed difference  (CUD)  in a 
new  light: anatomy of  the negative CUD  in Poffenberger's 
paradigm. Acta Neurol Scand. 2006; 113:203‐208.   
 

18.   McPherson A, Renfrew S. Asymmetry of perception of 
size between the right and left hands in normal subjects. Q 
J Exp Psychol. 1953; 5: 66–74. 
 
19. MacDonald  PA,  Paus  T.  The  role  of  parietal  cortex  in 
awareness  of  self‐generated  movements:  a  transcranial 
magnetic  stimulation  study.  Cereb  Cortex.  2003;  13:962‐
967.   
 
20. Helson H. The  tau effect; an example of psychological 
relativity. Science. 1930; 71: 536‐537.   
 
21. Derakhshan I. Right sided weakness with right subdural 
hematoma:  motor  deafferentation  of  left  hemisphere 
resulted  in  paralysis  of  the  right  side.  Brain  Inj. 
2009;23:770‐774.   
 
22. Bub DN, Lewine J. Different modes of word recognition 
in  the  left and right visual  fields. Brain Lang. 1988;33:161‐
188.   
 
23. Bisiacchi P, Marzi CA, Nicoletti R, Carena G, Mucignat C, 
Tomaiuolo  F.  Left‐right  asymmetry  of  callosal  transfer  in 
normal  human  subjects.  Behav  Brain  Res.  1994;  64:173‐
178.   
 
24. Nougier V, Azemar G, Stein JF, Ripoll H. Covert orienting 
to  central  visual  cues  and  sport practice: Relations  in  the 
development of visual attention. J Exp Child Psychol. 1992; 
54: 315‐333. 
 
25. Berlucchi G, Heron W, Hyman R, Rizzolatti G, Umiltà C. 
Simple reaction  times of  ipsilateral and contralateral hand 
to lateralized visual stimuli. Brain. 1971; 94:419‐430.   
 
26. Derakhshan I. Handedness and macular vision: laterality 
of motor control underpins both. Neurol Res. 2004; 26:331‐
337.   
 
27.  Azémar  G,  Stein  SF,  Ripoll  H.  Effects  of  ocular 
dominance on eye‐hand coordination in sporting duels. Sci 
& Sports 2008; 23:263‐277.  
 
28. Gainotti G, D'Erme P, Bartolomeo P. Early orientation of 
attention  toward  the half space  ipsilateral  to  the  lesion  in 
patients with unilateral brain damage.  J Neurol Neurosurg 
Psychiatry. 1991; 54:1082‐1089.   
 
29. Summers DC, Lederman SJ. Perceptual asymmetries  in 
the  somatosensory  system:  a  dichhaptic  experiment  and 
critical review of the  literature from 1929 to 1986. Cortex. 
1990; 26:201‐226.   
 

438 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



30.  Lindell  AK,  Nicholls  ME,  Kwantes  PJ,  Castles  A. 
Sequential processing in hemispheric word recognition: the 
impact of  initial  letter discriminability on  the OUP naming 
effect. Brain Lang. 2005; 93:160‐172.   
 
31.  Rayner  K,  Well  AD,  Pollatsek  A.  Asymmetry  of  the 
effective visual field  in reading. Percept Psychophys. 1980; 
27:537‐544.   
 
32. Orbach J. Differential recognition of Hebrew and English 
words in right and left visual fields as a function of cerebral 
dominance and reading habits. Neuropsychologia. 1967; 5: 
127‐134. 
 
33.  Melamed  F,  Zaidel  E.  Language  and  task  effects  on 
lateralized word recognition. Brain Lang. 1993;45:70‐85. 
 
34.   Allison  RS, Morison  JE.  Cerebral  vascular  lesions  and 
the tentorial pressure cone.  J Neurol Psychiatry. 1941; 41: 
1‐10.  
 
35.  Riese W.  Aphasia  in  brain  tumors;  its  appearance  in 
relation to the natural history of the lesion. Confin Neurol. 
1949; 9:64‐79.   
 
36.  Sherman  IC,  Krumholz  S.    A  case  of  intradural 
hematoma with  ipsilateral hemiplegia and  ipsilateral  third 
nerve palsy, J Nerv Ment Dis. 1942; 95: 176‐182. 
 
37.  Peyser  E,  Doron  Y.  Ipsilateral  hemiplegia  in 
supratentorial  space  occupying  lesions.  Int  Surg.  1966; 
45:689‐695.   
 
38. Adams RD, Scully RE, Richardson EP. Case records of the 
Massachusetts  General  Hospital.  Weekly 
clinicopathological exercises, case 35. N Engl  J Med. 1966; 
275:325‐331.   
 
39. Lee H, Kydd RR, Lim VK, Kirk IJ, Russell BR. Effects of 
trifluoromethylphenylpiperazine  (TFMPP)  on 
interhemispheric  communication.  Psychopharmacology 
(Berl). 2011;213:707‐174.  
 
40.  Derakhshan  I.  The  Kernohan‐Woltman  phenomenon 
and laterality of motor control: fresh analysis of data in the 
article  "Incisura  of  the  crus  due  to  contralateral  brain 
tumor". J Neurol Sci. 2009; 287:296. 
 
41. Haaland KY, Schaefer SY, Knight RT, Adair J, Magalhaes 
A,  Sadek  J,  Sainburg  RL.  Ipsilesional  trajectory  control  is 
related  to  contralesional  arm  paralysis  after  left 
hemisphere damage. Exp Brain Res. 2009;196:195‐204.   
 

42. Chang KS, Hsu FK, Chan ST, Chan YB. Scrotal asymmetry 
and handedness. J Anat. 1960; 94:543‐548.   
 
43. Bogaert AF. Genital  asymmetry  in men. Hum Reprod. 
1997; 12:68‐72. 
  
44.  Olex‐Zarychta  D,  Koprowski  R,  Sobota  G,  Wróbel  Z. 
Asymmetry of magnetic motor evoked potentials recorded 
in  calf muscles of  the dominant  and non‐dominant  lower 
extremity. Neurosci Lett. 2009; 459:74‐78.  
 
45. Danilov A, Sandrini G, Antonaci F, Capararo M, Alfonsi E, 
Nappi  G.  Bilateral  sympathetic  skin  response  following 
nociceptive stimulation: study  in healthy  individuals. Funct 
Neurol. 1994; 9:141‐151.   
 
46.  Derakhshan  I.  Anatomy  of  handedness  and  the 
laterality  of  seizure  onset:  surgical  implications  of  new 
understandings in motor control. Neurol Res. 2005; 27:773‐
779. 
 
47. Derakhshan I. Laterality of seizure onset and the simple 
reaction  time:  revamping  the Poffenberger's paradigm  for 
seizure surgery. Neurol Res. 2006; 28:777‐784. 
 
48. Mohr  JP, Weiss GH, Caveness WF, Dillon  JD, Kistler  JP, 
Meirowsky  AM,  Rish  BL.  Language  and  motor  disorders 
after penetrating head injury in Viet Nam. Neurology. 1980; 
30:1273‐1279.   
 
49.  Thomson  AM,  Taylor  R,  Whittle  IR.  Assessment  of 
communication  impairment  and  the  effects  of  resective 
surgery  in  solitary,  right‐sided  supratentorial  intracranial 
tumours: a prospective study. Br J Neurosurg. 1998;12:423‐
429.  
  
50.  Buckingham  G,  Main  JC,  Carey  DP.  Asymmetries  in 
motor attention during a cued bimanual reaching task: left 
and right handers compared. Cortex. 2011; 47:432‐440.   
 
51.  Bramwell  B.    On  “Crossed  Aphasia”  and  the  factors 
which go to determining whether the ‘leading” or “driving” 
speech  centers  shall  be  located  in  the  left  or  the  right 
hemisphere of the brain. Lancet 1899; 153: 1473‐1479.  
 
52. Satz P.   Satz P.   Correlation between assessed manual 
laterality  and  predicted  speech  laterality  in  a  normal 
population. Neuropsychologia 1967; 5: 295‐310. 
 
53.  Wyke  M.    Wyke  M.  Influence  of  direction  on  the 
rapidity  of  bilateral  arm  movements.  Neuropsychologia 
1969; 7:189‐194. 
 

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  | 439



54. McKeever WF, Hoff AL. Evidence of a possible isolation 
of  left  hemisphere  visual  and  motor  areas  in  sinistrals 
employing  an  inverted  handwriting  posture. 
Neuropsychologia. 1979;17: 445‐455.   
 
55. Kim M, Barrett AM, Heilman KM. Lateral asymmetries 
of pupillary responses. Cortex. 1998; 34:753‐762.   
 
56.  Walsh  RR,  Small  SL,  Chen  EE,  Solodkin  A.  Network 
activation  during  bimanual  movements  in  humans. 
Neuroimage. 2008; 43: 540‐553.  See page 7, EMG Results 
 
57. Jeannerod M. The origin of voluntary action: history of 
a physiological concept. C R Biol. 2006; 329:354‐362.  
 
58.  Brodal  A.  Self‐observations  and  neuro‐anatomical 
considerations after a stroke. Brain. 1973; 96:675‐694.   
 
59.  Mollon  JD,  Perkins  AJ.  Errors  of  judgement  at 
Greenwich in 1796. Nature. 1996; 380:101‐102.   
 
60. Derakhshan I. From Celestial to Terrestrial: A New Light 
on  David  Kinnebrook’s  Systematic  Error  of  Judgment  at 
Greenwich in 1796. 2010; BIOCOMP 2010: 666‐670.  
 
61.  Mohr  JP.  Broca’s  Area  and  Broca’s  Aphasia.  In  H. 
Whitaker  and  H.A.  Whitaker  (Eds):  Studies  in 
Neuroliguistics, Vol 1, Academic Press, 1976 (p 218).      
 
62.  Hund‐Georgiadis M,  Zysset  S, Weih  K, Guthke  T,  von 
Cramon  DY.  Crossed  nonaphasia  in  a  dextral  with  left 
hemispheric  lesions:  a  functional  magnetic  resonance 
imaging study of mirrored brain organization. Stroke. 2001; 
32: 2703‐2707. 
 
63. Derakhshan I. Crossed nonaphasia in a dextral with left 
hemispheric  lesions:  handedness  technically  defined. 
Stroke.  2002; 33:1749‐1750.  Erratum  in:  Stroke.  2002  33: 
2524.   
 

440 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



In silico Docking Study of Active Constituents Identified 

in Morinda Citrifolia Linn as Enzyme targets of 

Alzheimer’s Disease 

J. Srikanth
1
, S. Kavimani

2
, and C. Uma Maheswara Reddy

1
 

1
Department of Pharmacology, Faculty of Pharmacy, Sri Ramachandra University, Porur, 

Chennai – 600 116, Tamil Nadu, India 
2
Dept of Pharmacology, Mother Theresa Post Graduate and Research Institute of Health Sciences, 

Puducherry - 605006, India 

 

 

Abstract - Alzheimer's disease (AD) or Senile Dementia of 

the Alzheimer Type (SDAT) is an irreversible but 

progressive neurodegenerative disorder caused by the loss 

of neurons and synapses in the cerebral cortex and certain 

sub-cortical regions. Cholinesterases (ChEs) are family of 

enzymes that share extensive sequence homology (65%). 

ChEs in vertebrates have been classified into two types, 

acetylcholinesterase (AChE) and butyrylcholinesterase 

(BChE), on the basis of distinct substrate specificities and 

inhibitor sensitivities which serves as enzyme targets for AD. 

The search can be focused on plant natural products that 

may offer treatment for AD than currently used drugs. As an 

attempt to identify such natural alternates with 

cholinomimetic & neuroprotective activities, a set of 22 

compounds identified from Morinda citrifolia fruit juice was 

docked against human AChE (PDB ID:1B41) / 

Butyrylcholine esterase (PDB ID: 2PM8) enzymes retrieved 

from protein data bank using Molegro Virtual Docker 

(MVD). Among the compounds analysed, five compounds, 

namely, (+)-3,3'-bisdemethyltanegool ,3,3'-

bisdemethylpinoresinol, (-)-pinoresinol, isoamericanoic acid 

A, quercetin are docked with a MolDock score of -124.227, 

-115.403, -107.812, -106.993, -106.634 respectively for 

AChE and (+) -3,3'-bisdemethyltanegool, (-)-pinoresinol, 

americanin A, Deacetylasperuloside, 3,3'-

bisdemethylpinoresinol are docked with a MolDock score -

132.26, -126.487, -115.81, -114.994, -109.8 respectively for 

BChE and all these phytoconstituents satisfies Lipinski’s 

rule of ‘5’ for drug likeliness property. The compounds were 

identified as potent and selective inhibitors of AChE/BChE 

compared to currently available drug molecules, tacrine, 

rivastigmine and huperazine A which showed inhibitory 

activity for AChE (MolDock score was -69.7799, -95.5779 

& -72.1161) and for BChE (MolDock score was -70.3026, -

91.32 & -68.5103). These phytoconstituents from M. 

citrifolia may serve as potential lead compound for 

developing new anti- alzheimer drug. 

Keywords: Morinda Citrifolia, Docking, Acetylcholine 

esterase, Butyrylcholine esterase.  

 

1 Introduction 

  Morinda citrifolia Linn (Rubiaceae) known 

commercially as Noni grows widely throughout the Pacific 

and is one of the most significant sources of traditional 

medicines among Pacific island societies. A number of 

phytoconstituents has been identified in the fruits of 

Morinda citrifolia such as Allantoin, Octanoic acid, 

Vanillin, n Decanoic acid, 1, 2-dihydroxy-anthraquinone, 

Hexoic acid, Isoscopoletin, Morindin, 1, 3-dimethoxy-

anthraquinone, quercetin , scopoletin , kaempferol , 

Asperuloside,, americanin A, citrifolinin B, 

Dehydromethoxygaertneroside, (-)-pinoresinol, 3,3'-

bisdemethylpinoresinol, (+)-3,3'-bisdemethyltanegool , 

Borreriagenin, Deacetylasperuloside, isoamericanoic acid A 

[1-5]. Traditional synthesis of a series of new compounds 

utilizing combinatorial chemistry and high-throughput 

screening can be carried out at high cost and also are time 

consuming whereas on the other hand, docking various 

ligands to the protein of interest followed by scoring to 

determine the affinity of binding and to reveal the strength 

of interactions has become increasingly important in the 

contest of drug discovery. As the extracts and fruit juice of 

M.citrifolia have been shown to possess neuroprotective 

against alzheimer’s disease in some earlier studies [6, 7], it 

was considered worthwhile to study the interaction of 

phytoconstituents identified with both AChE / BChE and 

compared with existing drug molecules by molecular 

docking studies. 
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2 Materials & Methods 

2.1 Preparation of Ligand 

 We have collected the structures of phytoconstituents of 

M.citrifolia and currently available drug molecules from 

PubChem database (http://puBChEm.ncbi.nlm.nih.goc/).Our 

AChE/ BChE inhibitor database comprises 22 bioactive 

compounds from M. citrifolia. The inhibitors were converted 

to .pdb format and optimized by means of ligand preparation 

using default settings in Molegro Virtual Docker (MVD-

2010,4.2.0) [8]. The collected structures (ligands) were 

prepared for further studies. 

2.2 Preparation of receptor 

 The X-ray crystal co-ordinates of AChE (PDB ID: 1B41) 

& BChE (PDB ID: 2PM8) were retrieved from protein data 

bank. Since ChEs have their crystal structure in a state that 

represent the pharmacological target for the development of 

new drugs to cure AD, these two PDBs were selected for 

modeling studies. It is well known that PDB files often have 

poor or missing assignments of explicit hydrogens, and the 

PDB file format cannot accommodate bond order information. 

Therefore, proper bonds, bond orders, hybridization and 

charges were assigned using the MVD. The potential binding 

sites of both ChE receptors were calculated using the built-in 

cavity detection algorithm implemented in MVD. The search 

space of the simulation exploited in the docking studies was 

studied as a subset region of 25.0 Angstroms around the active 

side cleft. The water molecules are also taken in to 

consideration and the replaceable water molecules were given 

a score of 0.50. 

2.3 Molecular docking 

2.3.1 MVDs docking search algorithms and scoring 

functions 

 Ligand docking studies were performed by MVD, which 

has recently been introduced and gained attention among 

medicinal chemists. MVD is a fast and flexible docking 

program that gives the most likely conformation of ligand 

binding to a macromolecule. MolDock software is based on a 

new heuristic search algorithm that combines differential 

evolution with a cavity prediction algorithm [9]. It has an 

interactive optimization technique inspired by Darwinian 

Evolution Theory (Evolutionary Algorithms - EA), in which a 

population of individuals is exposed to competitive selection 

that weeds out poor solutions. Recombination and mutation 

are used to generate new solutions. The scoring function of 

MolDock is based on the Piecewise Linear Potential (PLP), 

which is a simplified potential whose parameters are fit to 

protein-ligand structures and a binding data scoring function 

[10, 11] that is further extended in GEMDOCK (Generic 

Evolutionary Method for molecular DOCK) [12] with a new 

hydrogen bonding term and charge schemes. 

2.4 Parameters for docking search algorithms 

2.4.1 MolDock Optimizer 

 

 In MVD, selected parameters were used for the guided 

differential evolution algorithm: number of runs =5 by 

checking constrain poses to cavity option), population 

size=50, maximum interactions =2000,cross over rate=0.9,and 

scaling factor=0.5.A
o
 variance-based termination scheme was 

selected rather than root mean square deviation(RMSD).To 

ensure the most suitable binding mode in the binding cavity, 

Pose clustering was employed, which lead to multiple binding 

modes. 

2.5 Parameters for scoring functions 

2.5.1 MolDock score 

 

 They ignore-distant-atoms option was used to ignore 

atoms far away from the binding site. Additionally, hydrogen 

bond directionality was said to check whether hydrogen 

bonding between potential donors and acceptors can occur. 

The binding site on the protein was defined as extending in X, 

Y & Z directions around the selected cavity with a radius of 25 

Angstroms. 

2.6 Results & Discussions 

2.6.1 Binding mode 

 The active site of AChE& BChE is subdivided into 

several subsites; the esteratic subsite, also called the catalytic 

triad (CT, Ser200, His440, Glu327), oxyanion hole (OH, 

Gly118, Gly119, Ala201), anionic subsite (AS, Trp84, 

Tyr121, Glu199, Gly449, Ile444), acyl binding pock`et (ABP, 

Trp233, Phe288, Phe290, Phe292, Phe330, Phe331) and 

peripheral anionic subsite (PAS, Asp72, Tyr121, Ser122, 

Trp279, Phe331, Tyr334) are buried at the bottom of a 20 A 

deep aromatic cleft . It was found out by ligand energy 

inspector that the phytoconstituents as well as the drug 

molecules were able to bind to the any one of the sub sites of 

AchE & BchE. 

2.6.2 Predicted ADME properties 

We analysed 22 physically relevant properties of 

bioactive compounds from Morinda citrifolia, among which 

were molecular weight, H-bond donors, H-bond acceptors and 

Log P (octanol/water), according to Lipinski’s rule-of-five 

(Tables 1 & 2) by EPI suite software [13]. Lipinski’s rule of 5 

is a thumb to evaluate drug likeness, or determine if a chemical 

compound with a certain pharmacological or biological activity 

has properties that would make it a orally active drug in 

humans. The rule describes molecular properties important for 

a drug’s pharmacokinetics in the human body, including its 

ADME. However, the rule does not predict if a compound is 

pharmacologically active. In this study, all the showed allowed 
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values for the properties analysed and exhibited drug-like 

characteristics based on Lipinski’s rule-of-five. Four 

compounds of Morinda citrifolia namely 

Dehydromethoxygaertneroside, citrifolinin B, Asperuloside & 

Morindin deviate Lipinski’s rule-of-five even though they had 

the maximum Moldock score [14, 15]. 

 

2.7 Tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Top 1 pose for each ligand based on Moldock score and applying Lipinski’s rule of 5 on AChE (PDB ID: 1B41)  

Ligand  MolDock 

Score  

Re rank 

Score  

H Bond  Molecular 

Weight 

[g/mol]  

Log 

P  

H-

Bond 

Donor  

H-Bond 

Acceptor  

Dehydromethoxygaertneroside  -179.614  -109.844  -8.71295  240.21092  -0.1  5  14  

Morindin  -168.25  -99.7315  -9.67862  332.30474  -0.6  8  14  

Asperuloside  -135.728  -98.4434  -5.61205  286.2363  -2.4  4  11  

Deacetylasperuloside  -130.287  -97.5299  -8.58053  144.21144  -3  5  10  

citrifolinin B  -124.937  -85.3398  -7.6983  172.2646  -3.2  5  12  

(+)-3,3'-bisdemethyltanegool  -124.227  -94.7819  -10.4588  192.16812  0.6  6  7  

3,3'-bisdemethylpinoresinol  -115.403  -93.4557  -5.44479  268.26408  1.6  4  6  

(-)-pinoresinol  -107.812  -83.2098  -2.5  192.16812  2.3  2  6  

isoamericanoic acid A  -106.993  -84.3006  -8.97877  116.15828  1.7  3  7  

quercetin  -106.634  -81.4073  -8.8934  328.31604  1.5  5  7  

americanin A  -105.994  -74.0129  -7.85951  214.21516  1.7  3  6  

kaempferol  -97.2375  -77.3282  -6.32952  158.11544  1.9  4  6  

Rivastigmine  -95.5779  -75.4124  -1.78946  250.34  2.24  0  4  

Borreriagenin  -88.1042  -71.2213  -5  152.14732  -1.5  3  5  

Allantoin  -84.2071  -66.7818  -6.03864  576.50282  -2.2  4  3  

n- Decanoic acid  -76.3079  -63.1102  -2.98015  414.36068  4.1  1  2  

1, 2-dihydroxy-anthraquinone  -75.6724  -63.5793  -0.14404  418.34938  3.2  2  4  

Huperazine A  -72.1161  -58.8041  -2.14292  242.32  1.54  0  3  

Isoscopoletin  -71.1847  -60.2539  -1.41837  330.33192  1.5  1  4  

1, 3-dimethoxy-anthraquinone  -70.5029  -65.5463  -2.52925  302.2357  2.8  0  4  

scopoletin  -69.9682  -59.3564  -0.745131  358.38508  1.5  1  4  

Tacrine  -69.7799  -64.0732  0  234.7246  2.71  2  0  

Vanillin  -68.04  -56.2506  -4.89722  372.324  1.2  1  3  

Octanoic acid  -66.7875  -55.739  -3.4205  564.49212  3  1  2  

Hexoic acid  -60.5111  -48.9568  0  348.3472  1.9  1  2  

Table 2: Top 1 pose for each ligang based on Moldock score and applying Lipinski’s rule of 5 on BChE (PDB ID: 2PM8) 

Ligand  MolDock 

Score  

Re rank 

Score  

H Bond  Molecular 

Weight 

[g/mol]  

Log 

P  

H-

Bond 

Donor  

H-Bond 

Acceptor  

Dehydromethoxygaertneroside  -174.148  -119.883  -15.1737  576.5028  -0.1  5  14  

citrifolinin B  -149.789  -93.8147  -11.8618  418.3494  -3.2  5  12  

Asperuloside  -133.606  -94.1912  -8.84191  414.3607  -2.4  4  11  

Morindin  -132.945  -2.96198  -9.31293  564.4921  -0.6  8  14  

(+)-3,3'-bisdemethyltanegool  -132.26  -63.2503  -12.2203  348.3472  0.6  6  7  

(-)-pinoresinol  -126.487  -80.7681  -5.041  358.3851  2.3  2  6  

americanin A  -115.81  -86.7568  -5.72732  328.316  1.7  3  6  

Deacetylasperuloside  -114.994  -81.5302  -11.4067  372.324  -3  5  10  

3,3'-bisdemethylpinoresinol  -109.8  -81.0274  -13.6929  330.3319  1.6  4  6  

isoamericanoic acid A  -109.506  -70.1125  -5.88322  332.3047  1.7  3  7  

quercetin  -99.4821  -29.3219  -11.4941  302.2357  1.5  5  7  

kaempferol  -95.065  -65.5896  -6.58358  286.2363  1.9  4  6  

Rivastigmine  -91.32  -69.1692  0  250.34  2.24  0  4  

Octanoic acid  -90.1963  -68.9598  -4.58812  144.2114  3  1  2  

1, 2-dihydroxy-anthraquinone  -82.4872  -68.386  -6.08512  240.2109  3.2  2  4  

Allantoin  -82.2958  -64.3674  -4.89054  158.1154  -2.2  4  3  

Borreriagenin  -81.8557  -64.565  -5  214.2152  -1.5  3  5  

1, 3-dimethoxy-anthraquinone  -80.0551  -67.1951  -0.63643  268.2641  2.8  0  4  

Isoscopoletin  -78.277  -61.4975  -4.46503  192.1681  1.5  1  4  

scopoletin  -78.135  -59.0394  -2.42021  192.1681  1.5  1  4  

n-Decanoic acid  -75.7889  -60.7082  -2.5  172.2646  4.1  1  2  

Vanillin  -71.7359  19.2429  -5.50472  152.1473  1.2  1  3  

Tacrine  -70.3026  -55.7944  -1.46667  234.7246  2.71  2  0  

Hexoic acid  -69.2025  -56.9533  -4.57399  116.1583  1.9  1  2  

Huperazine A  -68.5103  -57.8567  -0.44966  242.32  1.54  0  3  
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3 Conclusions 

 Molecular docking studies revealed that the potential of 

plant phytoconstituents of Morinda citrifolia to inhibit ChE’S 

was attributable to cumulative effects of strong H2-bonds, 

cationin-π,π-π interactions and hydrophobic interactions.A 

comparison of the docking results of selected 

phytoconstituents with standard drugs/molecules 

(Rivastigmine, Tacrine, Huperazine A) was found to have 

better affinity.This study has revealed the fact that herbal 

medicinal plants identified in Indian systems of Medicine are 

more efficacious compared to allopathic system of medicine 

but it draws back due to the difficulty in standardization and 

lack of literature. These modern techniques and analysis will 

be helpful in evaluating and documenting these herbal 

compounds identified in the Indian system of medicine as 

potent compounds for treatment for various ailments. 
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Abstract 

 

It has recently been argued that, based on a maximum parsimony analysis of a broad set of oviraptorosaur, 

archaeopterygid, and basal deinonychosaur morphological data, Archaeopteryx is not on the main line of 

avian evolution, and instead is more similar in general morphology to the oviraptorosaurs than to the 

archaeopterygids and basal deinonychosaurs.  A  Bayesian phylogenetic analysis does not sustain this 

view. 
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1.0  Introduction 
 
 Archaeopteryx is widely accepted as 

the most basal bird discovered to date, and 

thus has been central to our understanding of 

avialan origins ([8],[9]).  It has recently been 

argued ([4]) that, based on a maximum 

parsimony phylogenetic assessment ([6]) of 

oviraptorosaur, archaeopterygid, and basal 

deinonychosaur morphological data,  

together with the discovery of a new 

Archaeopteryx-like theropod, Xiaotingia 

zhengi, Archaeopteryx is not on the main 

line of avian evolution, and instead is more 

similar in general morphology to the 

oviraptorosaurs than to the archaeopterygids 

and basal deinonychosaurs.  These 

relationships are depicted in Figure 1. 

 

 

2.0  Method 
 
 The taxon descriptors used in [5]  

were converted from PDF to MS-DOS text 

format using the deskUNPDF Standard 

Version 3.1 software ([7]). The resulting text 

file was reformatted under Microsoft 

Notebook  to be compatible with [1].  There 

are 8 two-valued character-positions in 

among the taxon descriptors in data in [5], 

yielding 2
8 

= 256 distinct phylogenetic data 

sets.  Each of these data sets was derived 

from the original data, using an ad hoc batch 

editing program written in Mathematica 

([13]).  Each data set was inserted, one data 

set per execution, in the data matrix block of 

the script schematized in Figure 2.  The 

character-legend and references for [5] were 

then inserted as comments in the template 

shown in Figure 2.  The resulting script was  

then executed under a Bayesian 

phylogenetic ([2]) software package 

(MRBAYES, [1]). The software was run on a 

Dell Inspiron 545 with an Intel Core2 Quad 

CPU Q8200 clocked at 2.33 GHz, with 8.00 

GB RAM, under Windows Vista Home 

Premium/SP2.  The above experiment was 

repeated with X. zhengi removed from the 

taxon set in [5], and the phylogenetic trees 

generated by [1] with, and without (not 

shown), X. zhengi were compared

. 
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Figure 1. Simplified cladogram from [4] (p. 469) showing the systematic position of 

Xiaotingia and Archaeopteryx. 
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_____________________________________________________________ 

 

 
begin data; 

     dimensions ntax=89 nchar=374; 

     format datatype=Standard gap=- missing=?; 

  

     matrix 

 

[data matrices adapted from [5] go here, not shown] 

; 

end; 

 

begin mrbayes; 

   log start filename=archae4_log.log replace; 

   set autoclose=yes; 

   mcmcp nruns=2 ngen=3000000 printfreq=100  

       samplefreq=100 nchains=4 savebrlens=yes  

       filename=archae; 

   mcmc; 

   plot filename=archae.run1.p; 

   plot filename=archae.run2.p; 

   sumt filename=archae burnin=10000 contype=halfcompat; 

   log stop; 

end; 

 
Figure 2.  Template of the MRBAYES  script [1]) used in this study.  The script creates 3000000 

(ngen) Markov Chain ([10]) generations, (Monte Carlo, [11]) sampling every 100 (samplefreq) 

generations.  The first 10000 (burnin) trees are discarded.  Partial tree consensus (contype) is allowed.  

For definitions of other parameters used in this script, see [1].   

 

_____________________________________________________________ 

 

3.0  Results 

 
 Figure 3 (which includes  X. zhengi) 

is representative of the trees output by the 

script shown in Figure 2.    The time to 

produce each tree on the platform described 

in Section 2.0 was about 3 hours, for a total 

of ~1540 hours to produce trees for  the 

entire collection of phylogenetic data sets 

derived from [5].   

 

________________________________________________________________________ 
                                                                                                                                                                                                                       
      /- Allosaurus_fragilis (1) 

      |                                                                                

      |- Sinraptor (2) 

      |                                                                                

      |    /- Dilong_paradoxus (3) 

      |    |                                                                           

      |    |-- Eotyrannus_lengi (4) 

      |    |                                                                           

      |    |  / Tanycolagreus_topwilsoni (7) 

      |    |/-+                                                                        

      |    || \ Coelurus_fragilis (8) 

      |    ||                                                                          

      |    ||    /- Ornitholestes_hermanni (9) 

      |    ||    |                                                                     

      |    ||    |        /---- Falcarius_utahensis (22) 
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      |    ||    |        |                                                            

      |    ||    |        |  /- Beipiaosaurus_inexpectus (23) 

      |    ||    |     /--+  |                                                         

      |    ||    |     |  |  | / Alxasaurus_elesitaiensis (24) 

      |    ||    |     |  \--+ |                                                       

      |    ||    |     |     | |/-- Nothronychus_mckinleyi (25) 

      |    ||    |     |     | ||                                                      

      |    ||    |     |     \-+|- Erliansaurus_bellamanus (26) 

      |    ||    |     |       ||                                                      

      |    ||    |     |       ||---- Nanshiungosaurus_brevispinus (27) 

      |    ||    |     |       ||                                                      

      |    ||    |     |       \+ Neimongosaurus_yangi (28) 

      |    ||    |     |        |                                                      

      |    ||    |     |        |- Segnosaurus_galbiensis (29) 

      |    ||    |     |        |                                                      

      |    ||    |     |        | Erlikosaurus_andrewsi (30) 

      |    ||    |     |        |                                                      

      |    ||    |     |        \-- Therizinosaurus_cheloniformis (32) 

      |    ||    |     |                                                               

      |    ||    |     |   /-- Protarchaeopteryx_robusta (33) 

      |    ||    |     |   |                                                           

      |    ||    |     |   |        /---- Elmisaurus_rarus (34) 

      |    ||    |     |   |        |                                                  

      |    ||    |     |   |       /+--- Hagryphus_giganteus (71) 

      |    ||    |     |   |       ||                                                  

      |  /-+|    |     |   |       |\- Chirostenotes_pergracilis (76) 

      |  | ||    |     |   |       |                                                   

      |  | ||    |     |   |       | Rinchenia_mongoliensis (35) 

      |  | ||    |     |   |       |                                                   

      |  | ||    |     |   |       | Citipati_osmolskae (36) 

      |  | ||    |     |   |       |                                                   

      |  | ||    |   /-+   |       |/ Ingenia_yanshini (37) 

      |  | ||    |   | |   |     /-++                                                  

      |  | ||    |   | |   |     | |\- Heyuannia_huangi (39) 

      |  | ||    |   | | /-+     | |                                                   

      |  | ||    |   | | | |     | |/ Khaan_mckennai (38) 

      |  | ||    |   | | | |     | |+                                                  

      |  | ||    |   | | | |     | |\- Conchoraptor_gracilis (75) 

      |  | ||    |   | | | |    /+ |                                                   

      +  | ||    |   | | | |    || | Oviraptor_philoceratops (74) 

      |  | ||    |   | | | |    || |                                                   

      |  | ||    |   | | | |    || \ IGM100_42_unnamedoviraptorid (78) 

      |  | ||    |   | | | |  /-+|                                                     

      |  | ||    |   | | | |  | |\-- Microvenator_celer (72) 

      |  | ||    |   | | | |  | |                                                      

      |  | ||    |   | | | |  | \---- Avimimus_portentosus (73) 

      |  | ||    |   | | | |  |                                                        

      |  | ||    |   | | | | /+-- Caudipteryx (84) 

      |  | ||    |   | | | | ||                                                        

      |  | ||    |   | | | \-+\ Similicaudipteryx (83) 

      |  | ||    |   | | |   |                                                         

      |  | ||   /+   | | |   \- Incisivosaurus_gauthieri (77) 

      |  | ||   ||   | | |                                                             

      |  | ||   ||   | | |        / Byronosaurus_jaffei (40) 

      |  | ||   ||   | | |        |                                                    

      |  | ||   ||   | | |        |- Sinornithoides_youngi (41) 

      |  | ||   ||   | | |      /-+                                                    

      |  | ||   ||   | | |      | |- IGM100_44_unnamedtroodontid (42) 

      |  | ||   ||   | | |      | |                                                    

      |  | ||   ||   | \-+      | |  /- Troodon_formosus (43) 

      |  | ||   ||   |   |      | |  |                                                 

      |  | \+   ||   |   |     /+ |  |- Saurornithoides_mongoliensis (44) 

      |  |  |   ||   |   |     || \--+                                                 

      |  |  |   ||   |   |     ||    \ Zanabazar_junior (45) 

      |  |  |   ||   |   |   /-+|                                                      

      |  |  |   ||   |   |   | |\- Mei_long (82) 

      |  |  |   ||   |   |   | |                                                       

      |  |  |   ||   |   |   | \- Sinovenator_changii (81) 

      |  |  |   ||   |   |   |                                                         

      |  |  |   ||   |   |   |     /--- Unenlagia (46) 

      |  |  |   ||   |   |   |    /+                                                   
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      |  |  |   ||   |   |   |    |\--- Rahonavis_ostromi (48) 

      |  |  |   ||   |   |   |   /+                                                    

      |  |  |   ||   |   |   |   |\-- Buitreraptor_gonzalezorum (47) 

      |  |  |   ||   |   |   |   |                                                     

      |  |  |   ||   |   |   |   |   / Bambiraptor_feinbergi (49) 

      |  |  |   ||   |   |   |   |   |                                                 

      |  |  |   ||   |   |   |   |   | /- IGM100_1015undescribeddromaeosaurid (53) 

      |  |  |   ||   |   |   |   |   | |                                               

      |  |  |   || /-+   |   |   |   | |/ Velociraptor_mongoliensis (55) 

      |  |  |   || | |   |   |   |   | ||                                              

      |  |  |   || | |   |   |/--+ /-+ || Saurornitholestes_langstoni (56) 

      |  |  |   || | |   |   ||  | | | ||                                              

      |  |  |   || | |   \---+|  | | | |+/ Deinonychus_antirrhopus (57) 

      |  |  |   || | |       ||  | | | |||                                             

      |  |  |   || | |       ||  | | | |||  / Achillobator_giganticus (58) 

      |  |  |   || | |       ||  | | | |\+  |                                          

      |  |  |   || | |       ||  | | \-+ | /+ Dromaeosaurus_albertensis (59) 

      |  |  |   || | |       ||  | |   | | ||                                          

      |  |  |   || | |       ||  \-+   | \-+\-- Utahraptor_ostrommaysi (60) 

      |  |  |   || | |       ||    |   |   |                                           

      |  |  |   || | |       ||    |   |   \- Atrociraptor_marshalli (61) 

      |  |  |   || | |       ||    |   |                                               

      \--+  |   || | |       ||    |   \- Adasaurus_mongoliensis (54) 

         |  |   || | |       ||    |                                                   

         |  |   || | |       ||    | / Sinornithosaurus_millenii (50) 

         |  |   || | |       ||    | |                                                 

         |  |   || | |       ||    \-+/ Microraptor_zhaoianus (51) 

         |  | /-+| | |       ||      \+                                                

         |  | | || | |       ||       \ NGMC91_unnameddromaeosaurid (52) 

         |  | | || | |       ||                                                        

         |  | | || | |       \+                /-- Epidendrosaurus_ningchengensis (62) 

         |  | | || | |        |          /-----+                                       

         |  | | || | |        |          |     \- Epidexipteryx_ningchengensis (63) 

         |  | | || | |        |        /-+                                             

         |  | | |\-+ |        |        | \- Jeholornis_prima (66) 

         |  | | |  | |        |        |                                               

         |  | | |  | |        |   /----+ /- Sapeornis_chaoyangensis (67) 

         |  | | |  | |        |   |    | |                                             

         |  | | |  | |        |   |    \-+ /--- Confuciusornis_sanctus (68) 

         |  | | |  | |        |   |      | |                                           

         |  | | |  | |        |   |      \-+/- Protopteryx_fengningensis (69) 

         |  | | |  | |        |   |        \+                                          

         |  | | |  | |        |   |         \-- Yanornis_martini (70) 

         |  | | |  | |        |---+                                                    

         |  | | |  | |        |   |- Wellnhoferia_grandis (65) 

         |  | | |  | |        |   |                                                    

         |  | | |  | |        |   \ Archaeopteryx_lithographica (64) 

         |  | | |  | |        |                                                        

         |  | | |  | |        | /- Anchiornis_huxleyi (79) 

         |  | | |  | |        \-+                                                      

         |  | | |  | |          \----- Xiaotingia_zhengi (80) 

         |  | | |  | |                                                                 

         |  | | |  | |       /- Patagonykus_puertai (86) 

         |  | | |  | |       |                                                         

         |  | | |  | |     /-+  /- Mononykus_olecranus (87) 

         |  | | |  | |     | \--+                                                      

         |  \-+ |  | \-----+    \- Shuvuuia_deserti (88) 

         |    | |  |       |                                                           

         |    | |  |       \- Alvarezsaurus_calvoi (89) 

         |    | |  |                                                                   

         |    | |  \------ Haplocherius (85) 

         |    | |                                                                      

         |    | |    /--- Deinocheirus_mirificus (12) 

         |    | |    |                                                                 

         |    | |    | /--- Pelecanimimus_polyodon (14) 

         |    | |    | |                                                               

         |    | |    | | /- Archaeornithomimus_asiaticus (16) 

         |    | |    | | |                                                             

         |    | |  /-+ | | /-- Anserimimus_planinychus (18) 

         |    | |  | |/+ | |                                                           

         |    | |  | |||/+ | Ornithomimus_edmontonicus (19) 
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         |    | |  | |||||/+                                                           

         |    | |  | ||||||\ Struthiomimus_altus (20) 

         |    | |  | ||\+\+                                                            

         |    | \--+ \+ | \ Gallimimus_bullatus (21) 

         |    |    |  | |                                                              

         |    |    |  | \- Garudimimus_brevipes (17) 

         |    |    |  |                                                                

         |    |    |  \ Shenzhousaurus_orientalis (15) 

         |    |    |                                                                   

         |    |    \- Harpymimus_okladnikovi (13) 

         |    |                                                                        

         |    | /- Huaxiagnathus_orientalis (10) 

         |    | |                                                                      

         |    \-+/- Sinosauropteryx_prima (11) 

         |      \+                                                                     

         |       \- Compsognathus_longipes (31) 

         |                                                                             

         |  / Tyrannosaurus_rex (5) 

         \--+                                                                          

            \ Gorgosaurus_libratus (6) 

                                                                                       

      |---------------| 0.500 expected changes per site 

 

       

 

      Credible sets of trees (38866 trees sampled): 

         50 % credible set contains 18865 trees 

         90 % credible set contains 34866 trees 

         95 % credible set contains 36866 trees 

         99 % credible set contains 38466 trees 

 

 

Figure 3.  Phylogenetic tree produced by the script shown in Figure 2, with X. zhengi, 

showing that Archaeopteryx (in italics) is more similar  archaeopterygids and basal 

deinonychosaurs than to the oviraptorosaurs.  The relative phylogenetic position of 

Archaeopteryx does not change if X. zhengi is removed from the dataset (tree not shown). 

_____________________________________________________________ 

 
                                                                                                                                                                                                         
 Based on the system monitor of the 

platform described in Section 2.0, two of the 

four cores on the system performed 99% of 

the computational work for the MRBAYES 

script.  Utilization of these two cores ranged 

from about 25% to 50%.  The computation 

required approximately 1.5 GB memory. 

 

 

4.0  Conclusions and discussion 

 
 The results in Section 3.0 motivate 

several observations: 

 1.  Figure 3 demonstrates that 

Archaeopteryx is more similar to the 

archaeopterygids and basal deinonychosaurs 

than to the oviraptorosaurs, even when X. 

zhengi is included in the dataset. 

 

 2.  None of the phylogenetic data 

sets described in Section 2 produced trees in 

which the relative phylogenetic position of 

Archaeopteryx differed from its position in 

Figure 3. 

 3.  The results of this study 

generally agree with those of [3]. 

 4.  It is not unusual for different 

phylogenetic methods to produce somewhat 

different results when applied to the same 

data set.  Except on data sets containing no 

more than a few tens of taxa, today's 

practical phylogenetic algorithms must use 

some approximations and heuristics in order 

to execute in tolerable time.  The MP 

algorithm used in [5], for example, restricts 

its combinatorial tree searches to a relatively 

localized region of tree space; the Bayesian 

algorithm used in the present study samples 

less than the full population of generations 
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produced.  Bayesian methods have the 

distinct theoretical advantage, however, that 

if the sample selected is large enough, the 

Central Limit Theorem ([12], Chap. 7) 

guarantees the solution based on the sample 

will converge to the population distribution 

of trees; heuristic MP cannot be guaranteed 

to satisfy this criterion. 
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Abstract - Bioinformatics is emerging as a new major or 

emphasis of study or work as a merge between biology and 

information technology majors or field of work. In addition, 

Web Services have emerged as a new Web-based technology 

paradigm for exchanging information on the Internet using 

platform-neutral standards, such as XML and adopting 

Internet-based protocols. This has helped in the birth of what 

is called Bioinformatics Web Services. In this paper, I will 

introduce bioinformatics web services, and survey the 

different existing tools and mechanisms available to develop 

such systems. 

Keywords: Bioinformatics, Web Services, Bioinformatics 

Web Services.  

 

1 Introduction 

  These The recent advances in the field of molecular 

biology and genomic sequences technologies have resulted in 

flood of data and biological information from the research 

community. In order to utilize this huge volume of data in an 

efficient way, there was a need for the use of information 

technology and computerized tools to store, manage, view, 

index, and analyze this volume of data. This has led to the 

birth of what is called bioinformatics. It is a new science field 

in which biology, computer science, and information 

technology merge to form a single discipline. The ultimate 

goal of this field is to create a global perspective from which 

unifying principles in biology can be determined [1]. To 

accomplish this goal, there is a clear need for a technology 

environment or system that links together and make use of  

data and tools in different formats and shape found at 

different computers in different locations to create workflows 

that can be used by biologists from anywhere at anytime. Web 

Services technology is the right platform to be used to fulfill 

this requirement. 

     Web services represent a new programming approach 

based on a document-oriented model designed for 

interoperability at a document, typically XML, level. They are 

modular, self-describing, self-contained applications that are 

based on open standards and can be published, located, and 

invoked across the Internet/Web. Web services are a 

distributed computing technology that provides software 

services over the web and enable us to build Web-based 

applications using any platform, object model, and 

programming language that we may require [2]. Because of its 

features, Web Services is the perfect choice for bioinformatics 

applications developments. 

     The rest of this paper is organized as follows: Section 2 

introduces and discusses the bioinformatics field. Section 3 

introduces the Web Services technology and environment. 

Section 4 introduces and discusses the Bioinformatics Web 

Services in general, and surveys and discusses the different 

types of existing Bioinformatics Web Services in particular 

with their benefits and shortcomings. Finally, section 5 

concludes the paper.Instructions for authors 

2 Bionformatics 

 Please Bioinformatics is the analysis of biological 

information using computers and information technology. 

According to Oxford dictionary, bioinformatics is 

conceptualizing biology in terms of molecules and applying 

information technologies to understand and organize the 

information associated with these molecules, on a large scale. 

In short, bioinformatics is a management information system 

for molecular biology and has many practical applications.  

The National Center for Biotechnology Information defines 

bioinformatics as [3]: "Bioinformatics is the field of science 

in which biology, computer science, and information 

technology merges into a single discipline. There are three 

important sub-disciplines within bioinformatics: the 

development of new algorithms and statistics with which to 

assess relationships among members of large data sets; the 

analysis and interpretation of various types of data including 

nucleotide and amino acid sequences, protein domains, and 

protein structures; and the development and implementation 

of tools that enable efficient access and management of 

different types of information." 

        In the past, the main concerns of bioinformatics were 

storing, managing, analyzing volume of biological 

information, and development of complex interfaces to access 

this information and submit new and updated information by 

different researchers. In February 2001, the scientists have 

mapped the human genome, the complete set of genes. The 

process is called sequencing. It is an overwhelming process 

requiring complex analytical tools and techniques, and it was 

considered as the greatest success of bioinformatics tools [4]. 

With time, the bioinformatics field has evolved and is 

currently using different computational techniques which 

includes besides sequencing and structural alignment, 

database design and data mining, macromolecular geometry, 
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prediction of protein structure and function, gene finding, and 

expression data clustering. 

      In brief, the main objectives of bioinformatics can be 

stated as follows: The creation and maintenance of a database 

to store biological information, the development of complex 

interfaces for researchers to access and update existing data, 

and to develop tools and computational techniques for 

analyzing and interpreting the various types of data.. 

3 Web Services 

 Web Services are based on a collection of standards and 

protocols that allow us to make processing requests to remote 

systems by speaking a common, non-proprietary language and 

using common transport protocols such as HTTP and SMTP. 

Web services represent a new programming approach based 

on a document-oriented model designed for interoperability at 

a document, typically XML, level. They are modular, self-

describing, self-contained applications that are based on open 

standards and can be published, located, and invoked across 

the Internet/Web. Web services enable us to build Web-based 

applications using any platform, object model, and 

programming language that we may require. In  addition, they 

are implemented using a collection of several related, 

established and emerging technologies and communication 

protocols that include HTTP, XML, Simple Object 

Application Protocol (SOAP), Universal Description 

Discovery and Integration (UDDI), Web Services Description 

Language (WSDL), Common Object Request Broker 

Architecture (CORBA), Java Remote Method Invocation 

(RMI) , and .NET [2]. 

 

        Figure 1. The web service model 

           The web service model consists of three entities, the 

service provider, the service registry and the service 

consumer. Figure 1 shows a graphical representation of the 

traditional web service model. The service provider creates or 

simply offers the web service. The service provider needs to 

describe the web service in a standard format, which in turn is 

XML and publish it in a central Service Registry. The service 

registry contains additional information about the service 

provider, such as address and contact of the providing 

company, and technical details about the service. The Service 

Consumer retrieves the information from the registry and uses 

the service description obtained to bind to and invoke the web 

service. 

           Web Services have several benefits and can offer 

solutions to several problems faced in bioinformatics. Web 

Services can make it possible for scientists to access 

biological data and analysis applications residing at different 

servers in different labs all over the world as if they were 

installed on their laboratory computers. In addition, Web 

Services can provide easier integration and interoperability 

between bioinformatics applications and the data they require 

from different locations. In the following section, I will be 

discussing and surveying some of the well known 

Bioinformatics Web Services. 

4 Bioinformatics Web Services 

 This Web Services features and environment turned out 

to be the solution to some of the challenges faced in 

bioinformatics, in terms of integration and automation. Web 

Services can combine different types of bioinformatics tools 

available at different location on the Internet into one 

comprehensive set of bioinformatics services accessible from 

anywhere at any time. In addition, they provide easier 

integration and interoperability between bioinformatics 

applications and the data they require 

     Web Services technology enables scientists to access 

biological data and analysis applications as if they were 

installed on their local laboratory computers. Similarly, it 

enables programmers to build complex applications without 

the need to install and maintain the databases and analysis 

tools. Using Web Services users can browse various data 

resources and invoke analysis tools available on different 

computers/servers at different locations from anywhere in the 

world. In their simplest form, Web Services can provide a 

middle layer between a database and the user interface. This 

layer analyzes the user submitted data by intelligent 

computing or searching against certain databases, and finally 

provides user the domain knowledge as shown in Fig. 2 [5]. 

 

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  | 453



 

   Figure 2. Web Services as a layer of data analysis. 

    Over the past decade many tools have been generated for 

the bioinformatics field; however most of these tools are web 

HTML forms-based tools. This is because it is easy for 

developers to develop an interface for their program that can 

be accessed using a web browser than to develop an interface 

for specific platform. In addition, the use of web browsers as 

the interface for bioinformatics services makes the 

development of simple graphical user interfaces relatively 

easy. Although these tools are very popular, they have a 

serious disadvantage which is the difficulty of integrating 

different tools and using different data from different sources 

to create workflows and data analysis. To overcome this 

difficulty, the bioinformatics community has generated several 

tools simplify the developing of workflows using Open 

Source libraries, such as BioPerl, BioJava and BioRuby [6]. 

These reusable procedures in different languages allow 

developers to develop systems for automatic generation of 

wrappers around web form-based tools to ease the integration 

of workflows and data from different sources [7, 8]. An 

example of a web form-based tool that does not need 

programming skills to use is the Sight project [9]. It is 

advertised as ‘Automatic genomic data-mining without 

programming skills’. It is a web form analyzer that extracts 

data from a web form and presents it to the user. The user can 

then select the data of interest and create an agent from this 

selection. To create a workflow, it simply connects. However, 

the main disadvantage of this kind of tools is that each time a 

service provider updates its interface; the web form analyzer 

has to be used to reanalyze the interface and fix the 

corresponding agent.  

      More advanced tools are required to overcome the 

integration problems of web form-based tools. The 

introduction of Extensible Markup Language (XML) provided 

the solution for simplifying the application integration 

process. XML is a meta language that has a well-defined 

syntax and semantics [10]. It is used in the Web Services 

architecture as the format for transferring information/data 

between a Web Services provider application and a Web 

Services client application. It enables developers to separate 

the content of data exposed over the Web from its 

presentation. More importantly, XML has been widely 

accepted as the universal language of choice for exchanging 

information over the Web and is not the proprietary product 

of any company. As a result, researchers in bioinformatics can 

develop new standards for specific functions based on XML. 

They can define new tags like gene names and biology-

specific names and tags.. This main property and others made 

XML very popular in Bioinformatics Web Services. 

       In addition to XML, SOAP (Simple Object Access 

Protocol) gained a lot of popularity in the bioinformatics web 

services community. It is an XML-based protocol for 

exchanging information in a decentralized, distributed 

environment [10]. It defines a mechanism to pass commands 

and parameters between clients and servers. The main reason 

for its popularity is its simplicity in using the Hyper Text 

Transfer Protocol (HTTP) for transporting data as messages 

instead of defining any new protocols. This use of HTTP 

ensures that Bioinformatics Web Services provider’s 

applications and client applications can communicate using 

the Internet. 

     The numbers of Bioinformatics Web Services being 

developed are increasing every day. At the time of writing this 

paper, the number of such services listed in the BioCatalog 

(http://www.biocatalogue.org/) is 2278 services [11]. Most of 

these services provide programmatic access to data sources 

and/or algorithmic implementations to analyze biomedical 

data. These data and the corresponding analysis tools are 

mainly accessed using browser-based interfaces. They can 

efficiently answer specific data extraction and analysis needs. 

However, biomedical problems such as characterizing a gene 

in terms of a sequence, its translation, expression profile, 

function and structure requires accessing widely distributed 

services, exploring and globally evaluating the numerous 

available data, and the integration and linking  of several 

database information retrieval and analysis services [12]. This 

tedious task can be achieved using Web Services 

technologies. 

     The European Bioinformatics Institute (EBI) has been 

using Web Services technology to enhance and ease the use of 

the bioinformatics resources it provides [13, 14] Currently, 

the European Bioinformatics Institute provides access to more 

than 200 databases and to about 150 bioinformatics 

applications. 

      Some of the well known Bioinformatics Web Services 

include the followings: 

• ToolBus is an integrated environment in which 

bioinformatics data and tools can be interoperable and 

accessible in an open and flexible manner [5].  It is 

developed at The Cyber infrastrucure Group (CIG) at 

the Virginia Bioinformatics Institute. 

454 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  |



• Distributed Annotation System (DAS) is open 

source software from biodas.org that provides access to 

complete genome annotations using a SOAP web 

interface [15, 16]. 

• BLAST, Basic Local Alignment Search Tool, is a 

Web Service family of applications that allow biologists 

and scientists to easily identify and find homologues of 

an input sequence in DNA and protein sequence 

libraries [17]. Many genomics laboratories provide a 

Web-based BLAST interface to their sequence 

databases for this purpose [18]. 

• Pathway Database System is an integrated system 

of a set of software tools for modeling, storing, 

analyzing, visualizing, and querying biological pathways 

data at different levels of genetic, molecular, and 

biochemical detail [19]. 

•  KEGG, Kyoto Encyclopedia of Genes and 

Genomes, API was initiated by the Japanese human 

genome programme in 1995. It uses SOAP based 

interface to provide access to a collection of online 

databases dealing with genomes, enzymatic pathways, 

and biological chemicals [20].  

• PDBML, Protein Data Bank Markup Language, is 

an XML-based schema for the data in the Protein Data 

Bank (PDB) [21, 22]. The PDB is a repository for the 3-

D structural data of large biological molecules, such as 

proteins and nucleic acids. One of the members of the 

PDB organization, Protein Data Bank Japan (PDBj), has 

developed a tool called xPSSSS that provides a 

SOAPbased service to retrieve PDBML data [21]. 

•  MAGE-ML Server is a tool to map proprietary 

database schemas for storage of microarray data into 

Microarray And Gene Expression Markup Language 

(MAGE-ML) and make them accessible using SOAP 

[23]. The main objective was to have a standardized 

Extensible Markup Language format for describing 

microarray experiments and their results. 

• AGML Central provides access to databases 

containing proteomics information in Annotated Gel 

Markup Language (AGML) using a SOAP interface 

[24]. It is a web-based open-source public infrastructure 

for dissemination of two-dimensional Gel 

Electrophoresis (2-DE) proteomics data in AGML 

format. It includes a growing collection of converters 

from proprietary formats to AGML format. A JAVA 

applet visualizer was developed to visualize the AGML 

data with cross-reference links. In order to facilitate 

automated access a SOAP web service is also included 

in the AGML Central infrastructure. 

• EMBOSS, European Molecular Biology Open 

Software Suite, is an Open Source analysis software 

suite that contains over 200 bioinformatics applications 

[25].  Jemboss is a graphical user interface for the 

EMBOSS, it consists of a client and server both written 

in Java [26]. The client communicates using SOAP with 

a Tomcat server that passes requests to the Jemboss 

server. The Jemboss server can then indirectly execute 

EMBOSS applications. This Jemboss server could 

easily be used to provide access via SOAP to other 

clients than the Jemboss GUI by describing and 

publishing the interface in WSDL.  

• BioMOBY is an Open Source project that aims at 

providing a system for the discovery and processing of 

biological data using web services [27, 28]. It is 

emerging as the standard of fact for data exchange and 

web services inter-communication in bioinformatics. 

BioMOBY is actually two projects in one: there is 

Semantic MOBY (S-MOBY) and MOBY Services 

(MOBY-S). MOBY-S tries to solve the interoperability 

problem by specifying the syntax and messaging layer to 

link clients and service providers via information in a 

central registry. MOBY Services uses SOAP for 

communication between client, central registry and 

services. Semantic MOBY takes a little different 

approach. It tries to solve the interoperability problem 

by providing a way to clients and providers to describe 

their data and identify the data relevant to them.  

• MOWServ is the bioinformatic platform offered by 

the Spanish National Institute of Bioinformatics to 

provide integrated access to databases and analytical 

tools [29]. It is a BioMoby-based web client that enables 

the secure and integrated analysis of data and 

straightforward access to databases, services and 

computational resources.  

• jORCA is a desktop client aimed at facilitating 

seamless integration of Web Services [30]. It does so by 

making a uniform representation of the different web 

resources, supporting scalable service discovery, and 

automatic composition of workflows. 

• myGrid is a project from the UK e-Science 

Programme funded by the Engineering and Physical 

Sciences Research Council (EPSRC). All myGrid 

components are developed in Java and its code base is 

available as Open Source [31]. It can access several 

types of services using Java and SOAP. The tool to 

create workflows for myGrid is called Taverna [32], 

which can be used to integrate several types of services 

including web services described by a WSDL document, 

SOAPlab services, and local applications. To describe a 

workflow, Taverna uses a custom XML-based language 

called simple conceptual unified flow language (Scufl).  
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• caCORE is a project developed by the National 

Cancer Institute Center for Bioinformatics and 

Information Technology (NCI CBIIT) to provide 

building blocks for development of interoperable 

information management systems and aimed at 

integrating bioinformatics services to support research in 

cancer biology and medicine [33]. It is an 

interconnected set of software and services. Enterprise 

Vocabulary Services (EVS) provide controlled 

vocabulary, dictionary and thesaurus services. The 

Cancer Data Standards Repository (caDSR) provides a 

metadata registry for common data elements. Cancer 

Bioinformatics Infrastructure Objects (caBIO) 

implements an object-oriented model of the biomedical 

domain and provides Java, Simple Object Access 

Protocol and HTTP–XML application programming 

interfaces. caCORE has been used to develop scientific 

applications that bring together data from distinct 

genomic and clinical science sources. 

• Mummer is a Web service for genome wide 

sequence comparison to find Maximum Unique Matches 

between two sequences. MUMmer 3 is the latest version 

according to its web site: 

(http://mummer.sourceforge.net/). It is an open source 

project based on the mummer algorithm which is a 

suffix tree algorithm designed to find maximal exact 

matches of some minimum length between two input 

sequences [34]. The match lists produced by mummer 

can be used alone to generate alignment dot plots, or can 

be passed on to the clustering algorithms for the 

identification of longer non-exact regions of 

conservation. These match lists have great versatility 

because they contain huge amounts of information and 

can be passed forward to other interpretation programs 

for clustering, analysis and searching. 

    The above list is not a complete list of available 

Bioinformatics Web Services. I have only mentioned some of 

these services and tools to give an idea about the importance 

of this new field that combines computer science, information 

technology, biology, and the internet. In addition, it shows the 

continuous progress and advancement in this area starting 

from pure bioinformatics to HTML-based interfaces to 

bioinformatics arriving to more powerful and beneficial 

systems of what is called Bioinformatics Web services. 

5 Conclusions 

 Researcher, in general, can easily publish their research 

results on the internet, compare their findings with others, and 

building on existing results to make new or more advanced 

progress. This is true in all fields of research, in general, and 

in the field of biology in particular. The value of accessing 

data from other institutions and the relative ease of 

disseminating this data has increased the opportunity for 

multi-institution collaborations, which produce dramatically 

larger data sets than were previously available and require 

advanced data management techniques for full utilization.  

     The rapidly emerging field of bioinformatics promises to 

lead to advances in understanding basic biological processes 

and, in turn, advances in the diagnosis, treatment, and 

prevention of many genetic diseases. Bioinformatics has 

transformed the discipline of biology from a purely lab-based 

science to an information science as well. Increasingly, 

biological studies begin with a scientist conducting vast 

numbers of database and Web site searches to formulate 

specific hypotheses or to design large-scale experiments. 

Users can access all data and applications as if they were 

installed in their local machines, providing seamless 

integration between disparate services and allowing the 

construction of workflows to perform complex tasks. 

However, these benefits come with some unresolved 

difficulties. 

       One of these difficulties is the service quality 

management. Several groups might offer same type of service 

for redundancy or load balancing, but they may be 

inconsistent or out of synchronization. In other words, some 

of these services may be out-of-date. It is currently not 

possible to discover the most up-to date service. Several 

servers may host different versions of the database and there 

might be changes in the available data. To deal with such 

issues, information about the quality of services needs to be 

implemented in the tools to handle and query the service 

directories. As an example, BioMOBY requires web service 

providers to register their services in a central repository. 

Service providers are expected to make sure that the 

information for their services is kept up to date. 

       Another difficulty has to do with standardization. Most, if 

not all Bioinformatics Web Services take advantages of the 

extensibility of XML to define their own tags to describe 

biology data.  This extensibility feature of XML turns out to 

have a fire back effect in a sense that it enables scientists to 

describe every piece of data in the bioinformatics domain in 

XML by choosing different extensions for the same type of 

data. The problem surfaces when linking and integrating 

different services to form workflows to analyze collected data, 

and these set of data need to be converted from one XML 

schema into another. Therefore there is a need for standards in 

the area of bioinformatics or some kind of code of conduct for 

service providers such as the one proposed in [35] to prevent 

unnecessary and inefficient conversions between different 

data formats or tags. Although Web Services main feature is 

the ability to integrate and link data and tools with different 

formats. But this will only be efficient if the bioinformatics 

developers can reach consensus on one or couple of standards 

to describe bioinformatics data. 
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Abstract—In this research, we applied both supervised and un-
supervised machine learning methodologies to spirometric data from
patients with cystic fibrosis (CF). We developed an ensemble of neural
networks to evaluate the severity of chronic CF within an individual,
given the appropriate clinical input data, and a series of reference
equations to describe the CF patient’s pulmonary function at different
ages, heights, and sex groups in order to determine longitudinal
spirometric trends. The neural networks were able to be eighty-eight
percent accurate when evaluating chronic disease severity and our
regression analysis revealed several trends, such as in females with
CF, obstruction and functional airflow movement within the lungs
generally tends to deteriorate at an accelerated rate compared to
males with CF. Our findings have the potential to serve as useful
reference tools to physicians in the diagnosis and treatment of cystic
fibrosis.

Keywords: Cystic fibrosis, neural networks, best-fit regres-
sion analysis, spirometric trends

I. INTRODUCTION

Cystic fibrosis is an inherited chronic disease that affects the
lungs, digestive system, and even the circulatory system of CF
patients. Most commonly, CF is characterized by both chronic
airway inflammation and recurrent infections, typically leading
to permanent structural lung changes and a progressive decline
in lung function. Spirometric testing, commonly used by
pulmonologists to assess pulmonary function, involves taking
measurements to quantify the degree of airway obstruction.
Oftentimes, CF patients will go through a series of different
tests and treatments in hopes of alleviating their chronic
disease symptoms; this results in the accumulation of vast
quantities of longitudinal spirometric data and makes this
research possible. Defined as the volume of air a patient can
forcibly exhale in one second, FEV1 is one of the most signifi-
cant parameters obtained by spirometry, since it identifies both
restrictive and obstructive respiratory symptoms. It is also a
powerful predictor of increased risk of lung cancer and other
obstructive lung diseases [Miller et al. 2005; Pierce 2004;
Wagner et al. 2006]. All CF spirometry data was collected
at the Adult Cystic Fibrosis Clinic (ACFC) and Pulmonary
Function Laboratory (PFL) at the Veteran’s Affairs Medical
Center in La Jolla CA, and was made available by Dr. Douglas
Conrad, M.D., the ACFC and PFL director.

In different research studies, pulmonary measurements have
been collected from healthy individuals of both sexes across

range of ages. They provide reference equations for the
different aspects of the spirometry test, including FEV1 mea-
surements for males and females of various race/ethnic groups
[Hankinson et al. 1999]. On the other hand, CF investigators
do not have sufficient statistical analyses for assessing the rela-
tionship between pulmonary function outcomes and predictor
parameters of interest [Edwards 2000]. The aim of this paper is
to discuss some of the important features of statistical analysis
on the CF patient FEV1 database. This will include grouping
CF patients based on their longitudinal FEV1 data through the
use of a clustering method and an evaluation of a regression
analysis on the FEV1 data. Next, we find the corresponding
reference equations that can be used in predicting the CF
patients FEV1 value. Furthermore, we present an ensemble
of artificial neural networks to predict the severity of chronic
cystic fibrosis within an individual by comparing against fifty
patients ranked ordinally by increasing disease severity.

II. SPIROMETRY REGRESSION AND CLUSTERING
ANALYSIS

The two most important values from a spirometric test are
FVC and FEV1. The forced vital capacity (FVC) indicates
the maximum volume of air that can be forcibly expired from
the lungs. FEV1 represents the forced expiratory volume in
the first second. According to the research that was conducted
by Hankinson and Odencrantz the best fit regression equation
describing the lung function parameter FEV1 was in terms
of age and height for different age groups in both males
and females of different ethnicities. The general form of their
regression equation for Caucasians is as follows:

FEV 1 = b0 + b1 ·Age+ b2 ·Age2 + b3 ·Height2 (1)

For research purposes, we use only the corresponding re-
gression equation for Caucasians. This is due to the fact
that of all ethnic groups, they hold the highest inherited risk
for CF, where approximately 1 in every 25 Caucasians is
a carrier for this recessive condition, and 1 in 2,500 are
clinically affected [Tsui et al. 1997]. Table I illustrates the
corresponding regression equations among healthy Caucasian
individuals. In this study, we used the 2004-2009 spirometry
test results of patients from the University of California San
Diego Adult Cystic Fibrosis Center (UCSD-ACFC), which
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Fig. 1. Age vs. FEV1 with 2 clusters. Fig. 2. Age vs. FEV1 with 3 clusters. Fig. 3. Age vs. Height vs. FEV1 with
2 clusters.

Fig. 4. Age vs. Height vs. FEV1 with
3 clusters.

TABLE I
FEV1 REGRESSION EQUATIONS FOR HEALTHY INDIVIDUALS

Sex Caucasian < 20 years of age Caucasian > 20 years of age

Female
Fev1 = −0.8710 + 0.06537×

Age + 0.00011496×Height
2

Fev1 = 0.4333− 0.00361×

Age− 0.000194× Age
2

+ 0.00011496×Height
2

Male

Fev1 = −0.7453− 0.04106×

Age + 0.0004477× Age
2

+ 0.00014098×Height
2

Fev1 = 0.5536− 0.01303×

Age− 0.000172× Age
2

+ 0.00014098×Height
2

includes approximately a total of 6,000 samples. Our first
attempt was to find the possible clusters within our samples
to help us group CF patients based on their lung function.
Figures 1 through 4 are the cluster plots using the K-mean
method. In data mining, K-means clustering is an algorithm
for partitioning (or clustering) N data points into K disjoint
subsets Sj containing Nj data points in a way that minimizes
the following sum-of-squares criterion.

J =
K∑
j=1

∑
n∈Sj

|xn − µj |2 (2)

where xn is a vector representing the nth data points, and µj is
the geometric centroid of the data points in Sj[Bishop1995].
This will result in K clusters in which each observation
belongs to the cluster with the nearest mean. As depicted in
Figure (1) , the FEV1 values of CF patients can be divided
into two different groups one above and one below age 15.
On the other hand, Figure (2) shows that when we used
three clusters the additional group formed between ages 30
to 60. According to the CF foundation, more than 45% of
the CF patient population is age 18 or older, additionally the
predicted median age of survival for a person with CF is 37
years [Cystic Fibrosis Foundation]. Therefore, we can refer to
the blue (darker) part of Figure (2) as the survival group. In
Figures (3) and (4) we plot age vs height vs FEV1 values. As
both figures show, age 25 is the main separation line regardless
of the number of clusters. This could be due to the growth in
height during that age span. In Figure (4), even though we have
three clusters, two have similar heights and the one showing
age 25 and under falls into a separate cluster, which is easily
seen in Figure (3) with only two clusters. By clustering our
CF FEV1 data we realized that as the height of the CF patients
increases throughout their developing years, between the ages
of 0-25, their FEV1 values increase.

III. REGRESSION ANALYSIS OF LONGITUDINAL CF FEV1

In this section, we find the best fit equation for different
sex and age groups. According to Figure (1) and (2), the
cut-off age should be 15, yet due to the fact that we are
trying to compare lung function between healthy individuals
and CF patients, we preferred to use the same age grouping
as Hankinson and Odencrantz [1999]; that is before and after
age 20 which is close to our cut-off age. For each group
we conducted a regression analysis to identify the best-fit
equation among the following four equations:

Reg 1) FEV 1 =b0 + b1 ·Age+ b2 ·Height
Reg 2) FEV 1 =b0 + b1 ·Age+ b2 ·Age2 + b3 ·Height
Reg 3) FEV 1 =b0 + b1 ·Age+ b2 ·Age2 + b3 ·Height2

Reg 4) FEV 1 =b0 + b1 ·Age+ b2 ·Age2 + b3 ·Height
+ b4 ·Height2

In order to find the best fit equation for each group,
we considered corresponding residual plots, normal plot of
residuals, coefficient of determination as well as Akaike’s
information criterion values. Therefore, we selected a model
with the following characteristics:
Lowest RSS (Residual Sum of Square) value:

RSS =

n∑
i=1

ε2i (3)

Highest coefficient of determination:

R2 = 1− RSS

SStot
where SStot =

∑
i

(ȳ − y)2 (4)

Lowest Akaike information criterion (AIC):

AIC = 2K + n · [ln(2 · π · RSS
n

) + 1] (5)

where k is the number of parameter and n is the number of
sample. Generally, having more parameters in a regression
equation will result in a higher R2, and lower RSS. How-
ever, the optimal model is one consisting of only necessary
parameters. Traditionally we would add a parameter to our
model only if it increases the R2 value by a minimum of
5%. Given a data set, several competing models may be
ranked according to their AIC, with the one having the lowest
AIC being considered to be the best. The AIC methodology
attempts to find the model that best explains the data with
the minimum number of free parameters. Table II displays
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our regression results for females over the age of 20. Based

TABLE II
FEV1 REGRESSION VALUES FOR FEMALES OVER AGE OF 20

Model RSS R2 AIC
Reg1 0.9318 0.88591 -16.6689
Reg2 0.9169 0.88774 -15.1704
Reg3 0.9137 0.88813 -15.2779
Reg4 0.6325 0.92257 -24.6821

on Table II, residual plots and normal plots show the best
fitted equation for females above the age of 20 is FEV 1 =
b0 + b1 ·Age+ b2 ·Age2 + b3 ·Height+ b4 ·Height2, since it
captures the lowest AIC value, highest regression coefficient
and lowest RSS values. The same model was selected as the
best fit equations for females under the age of 20 as well.

Female > 20 :

FEV 1 =664.0178− 0.0232 · age− 0.0010 · age2−
8.1568 ·Height+ 0.0251 ·Height2

(6)

Female < 20 :

FEV 1 =0.00008 + 0.49077 · age− 0.1219 · age2+

0.02319 ·Height+ 0.00004 ·Height2
(7)

We repeated the same regression analysis on the male
sample data. Using the Table III regression results and their
corresponding residual normal plots, we selected the second
regression model as the best to define the FEV1 for male CF
patients over, as well as under the age of 20.

TABLE III
FEV1 REGRESSION VALUES FOR MALES OVER AGE OF 20

Model RSS R2 AIC
Reg1 1.5006 0.75899 -13.8053
Reg2 1.4055 0.77427 -14.4240
Reg3 1.4057 0.77423 -14.4176
Reg4 1.4029 0.77468 -12.4970

Male > 20 :

FEV 1 =9.6464− 0.0634 · age+ 0.0004 · age2−
0.0332 ·Height

(8)

Male < 20 :

FEV 1 =− 0.119− 0.0339 · age+ 0.0054 · age2−
0.0094 ·Height

(9)

IV. HEALTHY VS. CF FEV1 COMPARISONS

After finding the best fit equation of FEV1 for Cystic
Fibrosis patients, using the same ages and heights, we found
the FEV1 value for healthy individuals by using the lung func-
tion parameter equation found by Hankinson and Odencrantz
[1999] . We then compared the ratio of the two regression
equations. As Figures (5) and (6) depict, the FEV1 values for
healthy individuals are always higher than the FEV1 of those
with Cystic Fibrosis. As shown in Figure (7), average females
with CF begin with almost 75 percent lung function at age 8

Fig. 9. Median percent predicted FEV1 vs. Age for years 1990 and 2004.

Fig. 10. Median percent predicted FEV1 vs. Age for year 2008.

and that number drops down to only 10 percent by age 60 (for
the survival group). On the other hand, Figure (8) shows FEV1
values for men with CF begin with almost 90 percent lung
function at age 8 and only 40 percent of lung function by age
60. Figures (9) and (10) represent the functional lung volume
of CF patients as the percents of the normal lung for the years
1990, 2004 and 2008 respectively. We can see a significant
improvement compared to year 1990 when at age 30, the
average CF patient had only 40 percent normal lung function
compared to 2004 and 2008 where this value has increased
to 55 percent. This may be due to the advanced treatments
developed since 1990 that help CF patients to control the
progress of the disease.

V. ARTIFICIAL NEURAL NETWORKS

In this section we develop an ensemble of artificial neural
networks (ANNs) to predict chronic disease severity within
cystic fibrosis patients as an experienced pulmonary physician
would. ANNs are a form of machine learning algorithm
based on the functionality and structure of a biological neural
network, as observed in the brain. Used to observe complex
trends and patterns in a set of data, they are capable of
applying sets of non-linear equations to inputs to achieve a
desired outcome. These equations can be used to apply to
further data. The data was collected from the Adult Cystic
Fibrosis Clinic (ACFC) and Pulmonary Function Laboratory
(PFL) at the Veteran’s Affairs Medical Center. Fifty patients
were selected and ordinally ranked by Dr. Douglas J. Conrad,
director at the ACFC and PFL, in order of increasing disease
severity ranking 1 to 50 as a training dataset for the ANNs.
The 50 patients and their corresponding 14 variables were
compiled as a matrix, along with their actual rankings, and
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Fig. 5. CF FEV1 compare to healthy FEV1 (female).
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Fig. 6. CF FEV1 compare to healthy FEV1 (male).

5 10 15 20 25 30 35 40 45 50 55 60
10

20

30

40

50

60

70

80

P
e
rc

e
n

t

Age

Fig. 7. Functional lung volume of CF patients as a percent of
the healthy lung (female).
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Fig. 8. Functional lung volume of CF patients as a percent of
the healthy lung (male).

Fig. 11. Age vs. Rank vs. Gender for the 50 patient data set

imported to Matlab. Such variables included results from lung
function tests (FEV1, FVC, FEV1/FVC), physical descriptions
(age, height, weight, gender, BMI) and longitudinal regression
values based on FEV1 vs. time graphs (m, b, r2, sem, seb). For
each patient, only the best FEV1 value from the previous year
was considered.

VI. ANN TRAINING

To obtain the artificial neural networks, a progression of
training, validating and testing steps were taken to develop
the ability to predict with an acceptable amount of error.
In training, each network is supplied with a set of data as
inputs, and through a series of equations, returns an answer.
Once the tested outputs of the network accurately reflect the

answers provided in the training data, the ANNs can then
be used to classify future data. For an ANN to follow the
trends in cystic fibrosis data, the variables were run through a
series of equations, deemed “layers.” Four matrices of random
numbers were generated, two representing weights and two
being biases. Let w1 and w2 denote the weight matrices, b1 and
b2 the biases, and “in” represents the vector of one patient’s
inputs. The layout of a single-hidden layer ANN is as follows:

hidden layer =squash((in× w1)− b1) (10)

CF severity =(hidden layer)× w2 − b2 (11)

squash(x) =
1

1 + e−x
(12)

Once the severity has been run through the above layers for
each patient, the ANN returns its predicted severity, and the
error is calculated between its prediction and the actual answer.
The weights and biases are adjusted using Matlab’s fminsearch
optimization function, and after each adjustment, the squared
error is recalculated between the ANN outputs and the actual
provided patient severity. Fminsearch is set to repeat these
adjustments until a minimum in the total calculated error is
found. However, if the entire set of 50 patients were to be used
in training a network, there would be no unknowns upon which
to test its accuracy. For this reason, only thirty of the fifty
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Fig. 12. Observed SSE during Training and Validation

patients, or 3/5 of the original data set, were randomly selected
and used to train each ANN. The remaining 20 patients are
randomized and split evenly into validation and testing groups.
In validation, the purpose is to halt the fminsearch function
once a network begins to over-train. Between the fminsearch
iterations of the training set, the squared error is calculated
and recorded for the ten validation patients. Once the weights
and biases have become overly specific for the training set, the
validation error will increase and halt the network training, as
shown in Figure (12). The test set for the network is recorded
along with the adjusted parameters.

VII. INITIAL ANN TESTING

A set of twenty networks’ parameters and test sets was
compiled. Each patient defined to be in a test set was run
through the layers using the corresponding network’s weights
and biases, and averaged with the other participating networks.
Thus, each ANN only ”voted” on the severity of inputs that
were not used in its training or validation processes. The
averaged output consists of fifty patients, to be compared
against the actual severities provided on the original fifty-
patient data sheet (Figure (14)).

VIII. SUBSEQUENT INPUTS

Following the testing of the original networks, the im-
portance of the 14 training variables was determined. Using
the computational program R and the randomForest toolbox,
FVC, FEV1, and obstruction ratio were found to hold the
strongest predictive power for CF severity (Figure (13)). A
new ensemble of 50 ANNs were trained and tested using
only the FVC, FEV1, and obstruction ratio as training features
(see Figure 15). A new dataset was then assembled including

Fig. 13. Inputs used in both matrices

Fig. 14. Severity prediction from ANNS

several new inputs. Multiproduct and powerproduct attempt to
place emphasis on age, and were generated from the equations:

multiproduct =Age× FEV 1% (13)

powerproduct =FEV 1%× e
Age
10 (14)

Other variables included the Brasfield score and its com-
ponents. The randomForest toolbox predicted multiproduct,
FEV1, FVC, powerproduct, obstruction ratio, and the overall
Brasfield score as the most important variables of the new set
(Figure (13)). An ensemble of ANNs were trained from these
six variables and tested for their performance (Figure (16)).
For each of the 3 sets of inputs, the R2 values and ranking
accuracies were calculated, shown in Table IV. The ranking
accuracy is defined by the ability of the ANNs to identify the
more severe case of CF for any two patients.

TABLE IV
RESULTS OF ANN VOTING

Dataset Inputs Train Time (min) R
2 Ranking Accuracy %

1 14 360 0.8261 86.67
1 3 10 0.7845 85.14
2 6 30 0.8109 88.48
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Fig. 15. Severity prediction from ANNS

Fig. 16. Severity prediction from ANNS

IX. CONCLUSION

In conclusion, we were able to find the best fit equations for
identifying lung function parameters (FEV1) for both male and
female among CF patients. Using these equations we were able
to see the overall trend of reduction in their lung function as a
over time. Females’ FEV1 and FVC values decline faster than
males when afflicted with CF. The overall trends of CF lung
function have improved due to advanced treatments discovered
in more recent years. Using our reference equations, clinicians
can predict CF patients’ FEV1 and use it as a reference tool
for evaluating their treatments. Ensembles of neural networks
were able to be trained from the provided inputs and accurately
vote upon unseen CF patients. The variables FEV1, FVC, and
obstruction ratio appeared to hold the greatest ability to train
the ANNs from the original list of inputs. Of the second list
of inputs, the Brasfield Index, multiproduct, and powerproduct
were also found to be useful in ANN training. The patient
data provided has shown potential leeway for training ANNs
to perform other medical analysis, such as predicting CF
exacerbations per year or the severity of a given patient in five
years. These ANNs can be programmed into a GUI available
for practitioner use.
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Abstract  

A cylindrical drug delivery device was analyzed using a Laplace transform-based method. The two-dimensional 

model represented a pharmaceutical agent uniformly distributed in a polymeric matrix, which was surrounded by an 

impermeable layer. Molecules could only be transferred through a thing ring located on the lateral surface of the 

device.  A closed-form solution was obtained to help study the effects of design parameters and geometries on the 

cumulative amount of drug released. The latter variable increased with the mass transfer and diffusion coefficients 

and decreased with any increment in the device’s length. The delivery rate was described by an effective time 

constant calculated from Laplace transforms. Reducing the height of thing ring would delay transport of the 

medication. Simplified expressions for the release profile and the time constant were derived for special design 

cases.          

            

Keywords: Mathematical model; Diffusion; Drug transport; Cylindrical matrix device; Laplace transforms; 

Residue theorem; Effective time constant; Computational drug discovery; Biomedical engineering.  

 
1.  Introduction 

 
At present the pharmaceutical industry seeks permanent improvement of methods of supply of medicines 

through computational methods that can contribute to the development of new technologies associated 

with mathematical models [1,2,3].  Recently computer algebra methods [4,6] have been applied to predict the 

evolution of the profiles of the active agents both in vivo and in vitro situations. In the present work is performed the 

analysis of a cylindrical device for delivering pharmaceutical agents using the method of the Laplace transform. The 

cylindrical device is a polymeric matrix for which the transfer of the activate agent will be done only by a thin 

ring located on the side surface of the device, which will allow the controlled passage of the pharmaceutical agent. 

 
2. Problem 

 
The system studied is a cylindrical monolithic structure inside of which an active agent, A, is dissolved or dispersed 

uniformly. The matrix device is covered by an impermeable coating substance. The drug is released through a thin 

ring located on the lateral surface of the device   such as is showed in Fig. 1.  
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Fig 1.  Geometry and Design of the Cylindrical Drug Delivery Device with Radial Discharge through a Thin Ring 

A balance on component A is given by the diffusion equation which takes the following form in cylindrical 

coordinates: 

                     (1) 

where CA(t,r,z) denotes the concentration of A located at the point with coordinates (r,z) and A is the drug diffusion 

coefficient in the matrix. The initial condition for (1) is: 

 

                                                                                                                                        (2) 

where ASc is the saturated concentration  of A in the matrix.  The boundary conditions are 

    

         (3),                               (4);                                      

                                                                                                                

                                    (5) 

These boundary conditions Eqs. (3)-(5) correspond to the previously described situation according to which the drug 

is released only through the thin ring  of radius R  located between the planes  z = H/2 - h0 and z =H/2 + h0. The 

parameter km is a boundary-layer mass transfer coefficient. A high km is indicative of a low mass transfer resistance 

due to factors, such as vigorous mixing, that can reduce the thickness of the layer. Low km values would decrease the 

rate at which drugs leave the device.     

The equations (1)-(5) can be written in the following dimensionless form:   

 

                                          (6) 

  (7),                (8),                (9);                                                          
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                              (10) 

The dimensionless magnitudes which appear in the equations (6)-(10) are defined as follows: 

                                                               (11) 

The Sherwood number Sh is a dimensionless number that represents the ratio of convective to diffusive mass 

transfer. This parameter is directly proportional to km and inversely proportional to A. 

 
3. Analytical Solution 

  
The analytical solution to the dimensionless problem, Eqs. (6)-(10), can be derived using the Laplace transform 

technique with the Bromwich integral and the residue theorem. The procedure is implemented in Maple 

(Waterloo Software Inc.). Taking the Laplace transform of Eq. (6) gives 

 

 

   
2 2
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                                                        (12) 

after using the initial condition.  The general solution of Eq. (12) is 

         1 1 2 1 3 0 1 4 0 1

1
, , sin cosC s C s c C s c C J c C Y c

s
                 

   
        (13)  

where J0 and Y0  are Bessel functions of the first kind and second kind, respectively;  C1, C2 ,C3, C4 and c1 are 

constants to be determined using the boundary conditions. Because Y0(x) is singular around x = 0, the constant C4 

should be zero for a finite solution at  = 0. Equation (13) becomes: 

       1 1 2 1 3 0 1

1
, , sin cosC s C s c C s c C J c

s
            

 
          (14) 

Without any lost of generality, C3 is set equal to 1, which yields: 

 

       1 1 2 1 0 1

1
, , sin cosC s C s c C s c J c

s
            

 
                                              (15) 

After applying Eq. (8) and Eq. (9), we obtain 

  

                                                                  (16) 

where n is an integer from 0 to . Application of the superposition principle results in 

  

                           (17)  

Now, applying the boundary condition given by Eq. (10) to Eq. (17), the following equality is obtained: 
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                                                                                                                                                     (18) 

Now, integrating with respect to   both sides of Eq. (18) from 0 to H/R leads to 

                                 (19) 

Isolating A0 from (19) we obtain 

            (20) 

 

On the other hand, multiplying both sides of Eq. (18) by  and integrating the results from 0 to H/R  

lead to the following system composed of an infinite number of equations: 

 

                                                                                                                                                                                    (21)   
which can be solved for An  when Eq. (20) is replaced in Eq. (21).  The subscript m  is an integer that varies from 1 

to  . Expressions for A0 and the first M  Ai  
coefficients (i.e., 1,...i M ) can be replaced in Eq. (17) to yield the 
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transform ( , , )C s   . The parameter M  is selected to achieve a  desired degree of accuracy. A formal expression 

for the dimensionless concentration in the time domain can be derived by taking the inverse Laplace transform of 

( , , )C s    using the Bromwich integral and the residue theorem. The inverse Laplace transform of Eq. (17) is 

given by  

                                      (22) 

where 

                                                                                                                                            

   (23) 

                                                                                                                                              (24) 

                                                                   (25) 

                                

                      (26) 

Being αp the roots of the equation 

                                                                                                             (27) 

and being Sq the roots of the equation Qn(s)=0. 
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THE SPEED OF THE CUMULATIVE RATIO OF DRUG RELEASE PROFILE 

From the concentration  , ,AC t r z it is possible to derive the time that the cylindrical matrix device takes to 

release the total amount of active agent initially dissolved in the device. The method proposed by Simon is applied.
15

 

By definition, the cumulative amount of the active agent released to the environment at time t, denoted M(t), is the 

difference between the amount of active agent initially dissolved in the device and the amount of the active agent 

remaining at time t :
10

 

                                                                      (28) 

Equation (28) is rewritten in terms of dimensionless variables as 

                                                         (29) 

The normalized form of Eq. (29) is  
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where M() = cASR
2
H.  The Laplace transform of Eq. (30) is 

 

 
 

1

0 0

M 1 2
, ,

M

H

R
s R

C s d d
s H

     
     (31)  

or  

                                                                                                                                                                                    (32) 
After computing the integrals in Eq. (32), the following equation is obtained: 

                                                                                                              (33) 

 

and finally  

                                                                                                                                                                                 (34) 

Now according to the work by Simon and Collins, the effective relaxation time is defined by [1,5]:  
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                           (35) 

where ss
is the steady-state value  and 


 is the Laplace transform of 


.  When Eq. (35) is applied to Eq. (34) we 

obtain the effective time given by 

                   (36) 

 

4. Conclusions 
 

An analytical and computational study of a cylindrical matrix device for controlled drug release was conducted. 

Expressions for the time constant and the cumulative amount of drug released were provided. The transient two-

dimensional model was studied using Laplace transform techniques, the Bromwich integral, and the residue 

theorem. When the release ring and the cylinder were of equal height, the total amount of drug delivered was an 

increasing function of the mass transfer and diffusion coefficients and a decreasing function of the device length. 

The release rate increases with the mass transfer coefficient. A similar conclusion was reached when the length of 

the ring was marginally smaller than that of the system. However, the expressions obtained in this case were more 

computationally demanding when compared to the equal-height design specification. The last case study showed 

that the methodology was well-suited for any size requirement but came at the expense of more elaborate 

calculations. A potential application of the method is the prediction of the time to reach a desired plasma drug 

concentration following the application of the device.           
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Abstract- In Magnetic Resonance Dynamic Contrast 
Enhanced (MR DCE) studies, one of the key elements is 
estimating the AIF at the tissue level. So far, no 
analytical model has been implemented to address 
dispersion at all vascular branching levels down to the 
tissue, to give a realistic profile of the blood flow at the 
this level. Here, we introduce a model that we have 
proposed using laws of fluid dynamics and morphology 
of the vascular structure and have employed that to find 
dispersion of the contrast agent profile in the brain 
vessels and also the transfer function of the vessels at 
different levels.   

Keywords: Arterial Input Function, Vascular Modeling, 
Dynamic Contrast Enhanced MRI, Contrast Agents. 

1     Introduction 
Estimating the AIF of a Contrast Agent (CA), the 

time-concentration curve in plasma, has long presented a 
problem in MR-DCE and Dynamic Susceptibility 
Contrast (DSC) imaging studies. The AIF is used in 
estimating Mean Transit Time (MTT) , Cerebral Blood 
Flow (CBF), Cerebral Blood Volume (CBV), vascular 
forward transfer rate constant (Ktrans), vascular volume 
fraction (vD), and extracellular-extravascular space (ve) 
in DSC and DCE studies[1, 2]. Inaccurate estimation of 
the AIF for evaluation of permeability and perfusion 
could substantially increase bias in the estimated 
hemodynamic and permeability maps. This is one of the 
main reasons for finding the correct Arterial Input 
Function (AIF) at the tissue level (which we will refer to 
as “Tissue Input Function” or TIF).  One of the first steps 
toward this goal is modeling the vascular system in the 
brain and using that to find the blood flow at the 
capillary (tissue) level.  

Some of the earliest studies to understand and 
quantitate the morphology of the vascular system and 
dynamics of blood flow was done by Cecil Murray[3, 4] 
in the early 20th century where the relationship between 
the rate of blood flow and the volume of the vessel and 

also his well-known arterial branching rule[4, 5] were 
interpreted. In the past couple of decades, many 
researchers have attempted to model vasculature for 
applications in DSC and DCE studies using different 
approaches. In one study Calamante et al used 
Independent Component Analysis (ICA) in perfusion 
studies as a tool to define a local AIF for obtaining more 
accurate quantification of CBF in DSC-MRI studies[6] 
based on a semi-manual approach.  In another study, 
Mouridsen et al used Bayesian methods for estimation of 
cerebral perfusion [7]. The model that they designed for 
capillaries is basically a set of parallel delay lines each 
representing an arteriole and a capillary and each having 
a different transit time. The assumption for the AIF in 
this work was having a gamma-variate PDF which is a 
simplified form of the actual AIF in vasculature; this 
function or the exponential decay function for the local 
AIF are assumptions that have been used in other studies 
as well[8, 9]. In another study, Kazan et al have modeled 
the effects of laminar dispersion in Arterial Spin 
Labeling[10]; however, in their work they have not 
considered the effects of multiple pathways of flow 
through the vasculature for modeling the overall 
dispersion. Cebral et al used noninvasive methods to 
develop detailed assessment of blood flow patterns from 
direct in vivo measurements of vessel anatomy and flow 
rates using finite element methods[11].  In a recent work, 
Li et al created a method for tracking the AIF in DCE-
MRI images of the breast[12]. However, this method was 
only focused on finding the voxels in the images that 
showed characteristics of being representative of the AIF 
and the goal was not finding a TIF. Another approach 
has been modeling the blood circulatory system of the 
whole body and finding the flow at different locations in 
the vascular system. In this category, Sherwin et al built 
a one dimensional network based on space-time variables 
and linear and non-linear modeling[13]. Another 
modeling approach is 3D-1D coupled models [14]. In 
other studies,  Bagher-Ebadian et al  suggested  models 
based on the blood-circulatory system for estimating the 
CA time-concentration curve in arterial plasma after an 
intravenous bolus injection[15-17]. These methods show 
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different models for the AIF but these models either 
represent the input function only at the level of the major 
arteries (such as the carotid artery) or if they have an 
estimation of the input function at a lower level, the 
model does not represent all the major parameters that 
affect the AIF at the capillary level. In a recent study, 
Gall et al simulated delay and dispersion in a vascular 
tree model by calculating dispersion in a single vessel 
due to laminar flow and also by using a scaling rule for 
modeling the arterial tree[18]. This model has mainly 
been used for ASL and DSC bolus measurements[19, 
20]. Here we have used a similar approach to this 
problem but have applied different rules for modeling the 
structure of the vascular tree and we also present a model 
for the TIF.  For validating our model, we have used 
Dynamic Contrast Enhanced Computed Tomography 
(DCE-CT) images. 

2     Methods and materials 

2.1 Parametric expression of dispersion in a 
single vessel 

The largest vessel entering the brain is the Carotid 
Artery which has a Reynolds Number less than 4000[21], 
therefore we exclude the possibility of having turbulent 
flow in any of the vessels in the brain. Based on this, we 
will focus on the arteries, arterioles, veins and venules in 
the brain where flow is laminar and will calculate the 
dispersion due to laminar flow. Figure 1 shows the effect 
of laminar flow on the shape of the profile of the contrast 
agent along the vessel. In Laminar flow the velocity of 
the fluid is dependent on the radial distance to the center 
of the tube [21]: 

푣 = 	 푣 (1− )   (1) 

where 푣  is the velocity of blood along the central axis of 
the vessel (maximum velocity) and 푣 is the blood 
velocity at the radial distance 푟 from this axis (with a 
radius of	푅). The fact is that at every point in time, we 
can assume that flow has reached a steady state and the 
velocity in the vessel has a magnitude that is dependent 
on the overall structure of the vascular system and 
therefore from this point on, we will only deal with 푣 . 
As shown in Figure 1-a, we introduce a contrast agent to 
the entrance of the vessel in the form of a step function. 
Our goal is to find an equation that shows the 
concentration of the Contrast Agent (CA) in the volume 
enclosed by the two planes at 퐷  and 퐷 + ∆퐷 as a 
function of time. We will use this equation to find a 
transfer function for this vessel.  
First, we consider the situation as in Figure 1-b that CA 
enters this space, but does not pass through the second 
plane. We consider the time taken for the CA to reach 
this position is 푡, therefore 퐷  and 푡 are related through: 

퐷 = 푣 (1− )푡  (2) 

 

Figure 1. a) Introduction of contrast agent in the form of a step function 
to a vessel with laminar flow. b) The parabolic form of the CA after 
flowing the distance of D0 in the vessel at time t while entering the 
volume enclosed by planes at D0 and D0+ΔD.  c) The next step where 
the tip of the parabola exits the enclosed volume.  

We define the time for the bolus to reach the  퐷  
plane as	푡 : 

푡 = 	    (3) 

Based on this definition, and also by dividing the volume 
of the CA by the enclosed volume, we can calculate the 
concentration of the CA between the two planes: 

 

퐶퐴 = 0        for            푡 < 	 푡  

퐶퐴 = 	
∆

1−  for  푡 ≥ 	 푡  and 푡	 < 	 푡 + ∆  

퐶퐴 = 	 ∆ ∆ ∆
	∆ 	

      for 푡	 ≥ 	 푡 + ∆  and 

푡	 < 	 ∆      (4) 

where 푣  is the slip velocity.  These equations show the 
CA concentration with respect to time for unit step 
function as the input. For each of these cases if the time 
derivative is calculated, the response to the delta function 
or transfer function can be calculated.  If we consider a 
case where ∆퐷  is very large and also the slip velocity 
being zero, this will result in the second and third cases 
to be the same.  In this case to calculate the CA 
concentration we have: 

퐶퐴 = 			 1− = 	 1−    (5) 

Now by calculating the derivative with respect to time, 
the impulse response or transfer function of a single 
vessel can be found. This is a time varying function and 
is dependent on 푡 . Considering the fact that the no  
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Figure 2. Plot of the transfer function of a single vessel. t0 represents 
the time the tip of the CA wave reaches the end of the vessel. 

contrast agent passes through the 퐷  plane before 
time	푡 , the transfer function of a single vessel is as 
follows: 

ℎ(푡) = 	
0 푡 < 	 푡

푡 ≥ 푡    (6) 

Figure 2 shows the plot of the transfer function of a 
single vessel. If we consider the time that the contrast 
agent takes to reach the end of the vessel,  퐷  would 
basically be the length of the vessel and 푣  the maximum 
velocity of blood in that vessel. This is the building block 
of our vascular model.  

2.2 Morphological model of the vasculature  

After calculating the transfer function of a single 
vessel, the next step is finding the transfer function (and 
distortion) of a cascade of branching vessels such that the 
morphological model of the brain vasculature is 
implemented and the flow and distortion at each level 
(and the overall distortion) is calculated. For this 
purpose, we designed a model of the vessels for finding 
the flow and dispersion from an artery to arterioles and 
all the way to capillaries and from those to the venules 
and veins. Figure 3 shows the 3D representation of this 
model. In this model, the artery at the first level is 
assigned a diameter and a flow rate, close to the same 
values of the carotid artery. At the end of this vessel, 
bifurcation happens and two daughter vessels are created 
with their radii following Murray’s branching law of 
vessels [3, 5]: 

푟 = 	 푟 + 	 푟    (7) 

where 푟  is the radius of the parent vessel and 푟  and 
푟  are the radii of the two daughter vessels.  In our 
model, first 푟  is selected randomly as a fraction of 푟  
and next, 푟  is calculated based on Murray’s law. The 
length of the daughter vessels are also selected randomly  

 

Figure 3. Morphological structure of the vascular model. Branching of 
arteries and arterioles has been done down to six levels. As seen here, 
the veins and venules have a larger volume and diameter compared to 
arteries and arterioles. The volumetric flow rate of blood entering this 
model equals the efferent flow. Every segment of the capillary bed is 
modeled as a single tube vessel in which the flow is non-laminar.  

within a range as a fraction of the length of the parent 
vessel. This procedure is done recursively to create many 
levels of branching to get to the last level of arterioles 
[reference]. The next level in the vascular system 
following the arterioles is the capillary bed. 

Here, we have assumed that every section of the 
capillary bed is fed by only one arteriole and the efferent 
blood is collected by only one venule. Also, we have 
modeled the whole capillary network between the 
arteriole and venule as a single vessel of larger diameter 
with non-laminar flow.  Finally, we model the veins and 
venules.  The overall volume of veins and venules in the 
body is about 4 times that of arteries and arterioles[21] 
and we have considered that in our model.  

After implementing the morphological model of the 
vascular structure, the next step is calculating the flow 
rate in the branches which can be calculated as 
follows[21]: 

푄 = 	 푄 + 푄    (8) 

In our model, we assume that the blood flow is 
divided between the two daughter vessels based on their 
cross sectional areas. Using this, the velocity in all the 
branches and sub branches can be found. 

2.3 Dispersion in a cascade of vessels     

The next step in implementing the vasculature model 
is finding the transfer function of the vessels between the 
input artery and nodes in the structure. Based on this, the 
transfer function for a vessel at each level can be found 
as follows: 
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Figure 4. The transfer function of vessels from the input artery to the 
6th level of the sub-branches 

ℎ(푡) =
푡

2(푡 − 푡 − 푡 −⋯	푡 ) 														 

			푓표푟						푡 ≥ 		 푡 + 푡 +⋯+ 푡   (9) 

In this function, 푡  through 푡  are the time delays of 
each vessel. The transfer function of the vessels from the 
input to the nth level of sub-branches is:  

ℎ(푡) 	 	 = ℎ(푡) ∗ ℎ(푡) ∗… 	∗ ℎ(푡)   (10) 

3    Results 

3.1 Simulation results 

After implementing the vascular model described in 
the previous section, by assigning a flow to the input 
artery, the flow to all the vessels in the model can be 
found. This, along with the physical characteristics of the 
vessels in the model can all be used to find the 
parameters of the transfer function (which are basically 
the time delays of the segments). Figure 4 shows the 
transfer function between the first node and a node at 
level 6 which has been analytically found using our 
model. This transfer function along with the AIF input to 
the main artery can be used for finding the AIF at 
different branching levels and the tissue. 

This model can be validated using DCE Computed 
Tomography (CT) experimental data of the brain 
obtained with a bolus injection of Iodine. The advantage 
of using CT images instead of MR images is the higher 
time resolution of the dynamic series (0.55 sec vs. 5sec) 
and the linearity of the intensity of the CT images with 
respect to the CA concentration. Our validation method 
is based on measuring the AIF in every voxel of the 
image (or in other words, the TIF) and also the AIF of 
the main input artery that is seen in the image volume. 
Using parametric equations of the transfer function of the 
vascular structure (with different layers of branching), 
the goal is to find the best function that would distort the 
main AIF in a way to obtain the TIF for that voxel 
(Figure 5)  

 

Figure 5.  The parameters of the best fit transfer function describe the 
characteristics of the vascular structure between the main artery and the 
tissue. 

4    Conclusion 
We have designed a parametric model of the 

vasculature in the brain which is based on laws of fluid 
dynamics and laws governing the morphology of the 
vascular structure. Not all real life parameters have been 
addressed since that would make the model too 
complicated, beyond the needs of our applications. One 
advantage of our model is that it incorporates all the 
levels of the brain vascular system (capillaries, arteries, 
arterioles, veins and venules).  At this point the proposed 
model lacks the results of validation with experimental 
data which is being worked on as the continuation of this 
work. 
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Abstract— Protein torsion angles provide essential infor-
mation about the three-dimensional structure of a protein.
Accurate prediction of backbone angles can enchance the
quality of tertiary (3D) structure prediction, sequence align-
ment and fold recognition. In this paper, we introduce
a machine learning classifier that is able to predict the
torsion angle category of an amino acid with high accuracy.
Our method combines dynamic Bayesian networks with a
neural network and is capable of incorporating information
from multiple input representations such as position specific
scoring matrices (PSSM) derived using sequence alignment
methods. We show that 3D structure prediction accuracy of
the widely used Rosetta program improves in theab initio
setting when the predicted torsion class information is used
during the fragment selection step.

Keywords: torsion angle prediction, fragment selection, dynamic
Bayesian network, neural network, protein structure prediction

1. Introduction
Protein structure prediction is one of the most fundamen-

tal problems in computational molecular biology. Structure
prediction is important because the biological functions of
proteins are dependent on their 3D structures. Therefore,
accurate prediction of the structure provides information on
the functional role of the protein. Furthermore, structure
prediction is necessary because experimental methods that
solve structure are time consuming and cannot be easily
applied to some classes of proteins. Finally, knowledge of
protein structure enables us to design novel proteins and
drugs, which is a fundamental task on the path toward
treating diseases.

In tertiary structure prediction, the goal is to estimate the
three dimensional coordinates of the atoms in a given target
protein. Methods developed for structure prediction can be
grouped into two main categories: template-based modeling
and free modeling. In template-based modeling, the protein
structure is built by matching the target to a template protein,
which can be applied when structurally related templates
are available in the Protein Databank (PDB). When such
templates cannot be found, structure prediction is performed
by free modeling. In this paper, we concentrate on free
modeling (i.e., theab initio setting), in which we first select

a set of short amino acid fragments with known structures
at overlapping segments of the target and then determine the
tertiary structure of the target by assembling these fragments
while minimizing an energy function [1]–[3].

Tertiary structure prediction greatly benefits from informa-
tion such as secondary structure, solvent accessibility, torsion
angles, and residue interactions, which are projections of
the 3D structure to less complex representations. Therefore,
instead of directly solving the 3D structure of a protein,
which is a challenging task, an alternative approach is
to predict these structural attributes and combine them to
predict the full 3D coordinates of the atoms.

Torsion (i.e., dihedral) angles contain important informa-
tion for characterizing the three dimensional structure of a
protein. The structure of an amino acid molecule can be
defined with high precision by the torsion angles between
three successive chemical bond vectors. Compared to other
structure representations such as secondary structure, solvent
accessibility or residue interactions, torsion angles provide
not only complementary information but also a deeper
insight into the 3D structure of a protein. Therefore, accurate
prediction of torsion angles will significantly contribute to
the accuracy and quality of 3D structure prediction.

Over the past couple of years, there has been a growing
interest in predicting torsion angle information of a given
amino acid sequence. Several methods have been proposed
that concentrate on different sets of structural torsion states
[4]–[13]. These methods exhibit a wide range of diversity.
For instance, some of these methods predict real-valued
torsion angles [11], while others predict discrete torsion
labels [4], obtained by categorizing or clustering real-valued
angles. Moreover, some methods rely on the availability of
experimentally obtained NMR chemical shift data [13] and
are therefore significantly more accurate than the ones which
do not use such information. However, because NMR data
is not available for all proteins, these methods should be
considered in a separate category.

In this paper, we selected a previously defined 5-state
torsion alphabet [14], and we concentrated our efforts on
improving ab initio 3D structure prediction accuracy using
torsion angle class predictions. Our torsion angle class
prediction method is a hybrid architecture of a dynamic
Bayesian network and a neural network. The model is
capable of incorporating information from multiple position
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specific scoring matrices (PSSM) derived using sequence
alignment methods such as PSI-BLAST [15] and HH-
MAKE [16]. In comparison with other predictors that use
a similar alphabet, we obtain highly accurate torsion class
predictions. Furthermore, we demonstrate that we are able
to improveab initio prediction of protein 3D structure by
incorporating the torsion class predictions into Rosetta.

2. Methods
2.1 Problem Definition

An amino acid has three associated torsion angles as
shown in Fig. 1. The angleφ denotes rotation about theCα-
N bond of the amino acid,ψ denotes rotation about the bond
linking Cα and the carbonyl carbon, andω denotes rotation
about the bond between the carbonyl carbon of the current
residue and the nitrogen of the next residue. We computeφ,
ψ, andω from the 3D coordinate information in PDB. Each
of these angles is constrained to the range[−180, 180].

Following [14], we subdivided the amino acids into five
torsion angle classes, which represent the major clusters
observed in the PDB (see the Ramachandran plot in Fig. 2).
The resulting five labels are described in Table 1.

Fig. 1: Torsion angles of an amino acid. Image obtained from
http://www.bmb.uga.edu/wampler/tutorial/prot2.html. Cour-
tesy of Prof. John E. Wampler, University of Georgia,
Athens, GA USA.

Table 1: The five torsion angle classes, their definitions, and
the percent of amino acids assigned to each class in the 90%
identity data set.

Label Definition Percent
A |ω| ≥ 90, φ < 0, −125 < ψ ≤ 50 50.22
B |ω| ≥ 90, φ < 0, ψ ≤ −125 or ψ > 50 42.23
E |ω| ≥ 90, φ ≥ 0, |ψ| > 100 1.94
G |ω| ≥ 90, φ ≥ 0, |ψ| ≤ 100 4.73
O |ω| < 90 0.88

Based on this definition, our 5-state torsion angle class
prediction problem can be stated as follows. For a given
protein, the goal is to assign to each amino acid a torsion
angle label from the alphabet{A,B,E,G,O} as shown in
Fig. 3.

B

A

B

G

E

E

Fig. 2: Torsion angle classes obtained by partitioning the
space of real-valued angles into discrete labels as in Table 1.
The image is a high resolution version of Fig. 1(b) in [17].
Courtesy of Ben Blum, UC Berkeley, CA, USA.

amino acid sequence: 
 torsion angle labels: 

 

LWGLVKQGLKCEDCGMNVHHKCREKVANLC 
BBEABGABBBBAAAGBBBBAAAAAABBABO 
 

 Fig. 3: 5-state torsion angle class prediction problem. The
torsion labels are defined according to Table 1.

2.2 Prediction Model
Our ab initio torsion class predictor is a hybrid arcthi-

tecture, in which several dynamic Bayesian network (DBN)
models are combined with a neural network. In this archi-
tecture, we first generate marginala posteriori probability
distributions of protein torsion angle classes using the DBNs.
We then concatenate these distributions with the PSSM
data and use as input features in the neural network as
explained in Section 2.2.2. For completeness, we start with
a brief description of our DBN model, which was previously
introduced in [18] for protein secondary structure prediction.

2.2.1 A dynamic Bayesian network model for torsion
angle class prediction

We implemented the DBN shown in Fig. 4, which is
similar to the model proposed by [19]. Each node in a DBN
model represents a random variable. Our model contains
five types of random variables:state, state class history,
state count down, change state, and amino acid profile.
These variables are observed during training, because the
true torsion angle labels are available. During testing, only
theamino acid profileis observed, and the other variables are
hidden. An example showing the values ofstate, state count
down, andchange stateis given in Fig. 5. The variables are
briefly explained as follows:

• Thestatevariable models the torsion label of an amino
acid, as defined in Section 2.1.

• Theamino acid profilevariable models the observation
data, which is a 20-dimensional vector of PSSM scores
(i.e., a column of the PSSM) derived by running a
sequence alignment software against a protein database
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(see Section 2.4).
• The state class historyvariable keeps track of the

current and preceding torsion labels. This variable is
represented as a tuple withLT + 1 elements, where
LT + 1 is the size of the label dependency window,
including the current label.

• The state count downvariable models the length of a
torsion label segment. When the length of a segment is
less than or equal toDmax, then the value ofstate count
down is the number of residues between the current
position and the end of the segment. If the length of
a segment is greater thanDmax by k residues, then
state count downis set toDmax for the first k + 1
residues and is set toDmax − 1, Dmax − 2, . . . , 1 for
the remaining residues in that segment.

• The change statevariable also models the length of
a torsion label segment. It simply signals when a
transition to a new segment should be made. It is set
to 1 if state count downis 1 and 0 otherwise.

 

state count down 

state 

state class history 

amino acid profile 

change state 

state count down 

change state 

state 

state class history 

amino acid profile 

Fig. 4: A dynamic Bayesian network for torsion angle
class prediction. The first column shows the variables of
the prologue (models the first amino acid) and the second
column shows the variables of thechunk(models the second
up to the last amino acid).

state: 

state count down: 

change state: 

AAAAABBBEEOBBBBBBBBEAAAA 

543213212117765432114321 

000010010110000000110000 

 

Fig. 5: An examplestate sequence and the values ofstate
count downandchange statevariables forDmax = 7.

A DBN models the generation of observation data for
all possible values of hidden variables in a probabilistic
framework. The relations among discrete variables in the
DBN are defined by conditional probability distributions

(CPDs), and continuous variables are modeled by probability
density functions. For instance, the state transition distri-
bution assigns probabilities to transitions from one torsion
angle state to another; distributions related to the lengths
of the segments assign probability values for all possible
lengths of torsion label segments, and the observation density
models the generation of the observed data. Because of the
dependencies among adjacent amino acids, the first amino
acid is modeled slightly differently than the rest of the amino
acids. Therefore, in Fig. 4(A), the first column (prologue)
shows the nodes for the first amino acid, and the second
column (chunk) is a model for the rest of the amino acids. By
extending thechunkN − 1 times to the right, we obtain the
full network structure, whereN is the number of amino acids
in the protein. Detailed formulations for the CPDs that define
the relations among discrete nodes can be found in [19] and
the probability density function that models the generation
of observation data can be found in [18].

Our DBN has the following hyper-parameters: a one
sided PSSM window size (LA), a one sided torsion angle
label window (LT ), a segment length threshold (Dmax), a
diagonal covariance component regularizer weight (ω) and
a PSSM contribution weight (α). Detailed description of
these parameters can be found in [18]. In this work, we
set the parameters as:LA = 9, LT = 4, Dmax = 13,
(ω, α) = (0.05, 0.5) when PSI-BLAST PSSM data is used
as input features and(ω, α) = (0.035, 0.4) when HHMAKE
PSSM data is used (see Section 2.2.2). We implemented the
model shown in Fig. 4 using the Graphical Models Toolkit
(GMTK) [20], a C++ package for DBNs and other dynamic
graphical models.

2.2.2 Combining multiple DBNs by a neural network
classifier

Motivated by previous work [18], [19], we make our
predictions by combining the results from multiple DBN
models. In the first model, we allow dependencies from past
positions only. Conversely, in the second model, we reverse
the PSSM profiles as well as the torsion angle class labels
and use the same model depicted in Fig. 4. Effectively, the
second model only allows dependencies from future posi-
tions [18]. In both models, we use PSI-BLAST’s PSSMs [15]
as the observation data. Additionally, we implement a similar
pair of DBNs characterizing past and future dependencies for
PSSM profiles derived using HHMAKE (see Section 2.4).
As a result, we have a total of four DBNs. Each model
produces a marginala posteriori distribution over torsion
labels for each amino acid. In this work, we combine these
distributions using a neural network classifier, which is a
multi-layer perceptron as shown in Fig. 6. The input units
of this network represent the elements of a rich feature set.
For each amino acid position, we use a symmetric window of
PSSM vectors derived from PSI-BLAST and HHMAKE as
well as a window of marginala posterioriprobabilities that
are generated from the four DBNs. We set the lengths of the
PSSM and the posterior probability windows to be 15. Our
feature set contains the followinga posterioridistributions:
(1) average ofa posterioriprobabilities from the four DBNs,
(2) average ofa posteriori probabilities from the DBNs
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that use PSI-BLAST PSSMs, (3) average ofa posteriori
probabilities from the DBNs that use HHMAKE PSSMs.
This gives a total of 825 features. Hence, our input layer has
825 input units. For positions at which the feature window
extends beyond the boundaries of a protein (i.e., those that
are close to the N- or C-terminus), we include zeros in the
feature set. Our neural network has a single hidden layer
with 75 hidden units and an output layer with 5 output
units. We use gradient descent to learn the parameters of this
neural network where we optimized the mean square error by
setting the number of iterations to 50, and the learning rate
to 0.005. In the hidden layer, we use the hyperbolic tangent
(i.e., tanh) and in the output layer, we use the softmax
transformation as the activation function. Our neural network
predicts the torsion angle label of the amino acid at the center
of the feature window by selecting the particular label with
maximum score at the output layer. We implemented our
neural network classifier using Torch5 [21].
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Fig. 6: A multi-layer perceptron for predicting the torsion
angle class prediction. The neural network contains the input,
hidden and output layers. A softmax transformation is used
as the activation function at the output layer to estimate the
torsion angle class probabilities.

2.3 Fragment based prediction of protein ter-
tiary structure

We used the Rosetta software to select the amino acid
fragments and to predict the 3D structure of proteins in
our test set. We generated two versions of the fragment
selection module of Rosetta. The first version utilizes the
PSI-BLAST PSSM, predicted secondary structure and the
rama score as input features and the second version utilizes
the same features as well as the predicted torsion angle class
information. Further details about the fragment selection in
Rosetta can be found in [22]. Detailed description of the
structure prediction experiments can be found in Section 3.

2.4 Generating position-specific scoring matri-
ces for torsion angle class prediction

We use PSSMs generated by the PSI-BLAST [15] and
HHMAKE [16] algorithms as input features. Detailed

descriptions of these PSSMs can be found in [18]. In this
work we used BLAST version 2.2.20 and the NCBI’s
non-redundant (NR) database dated June 2011 to generate
PSI-BLAST PSSMs. The command line we used to derive
the profiles was:./blastpgp -i protein.fasta
-o protein.align -Q protein.pssm -j 3
-e 0.001 -h 1e-10 -d nr.filtered. The PSI-
BLAST software can be downloaded from the help section of
http://blast.ncbi.nlm.nih.gov/Blast.cgi.

We derive HHMAKE PSSMs from HMM-profiles created
using the HHMAKE algorithm, which is the first step of
the HHsearch method [16]. To obtain the HMM-profiles
with HHMAKE, we used the following pair of command
lines: ./buildali.pl protein.fasta followed by
./hhmake protein.a3m. In this work, we used HH-
search version 1.5.1 to generate profiles. The recommended
database for HHMAKE is the NRE database, which is a
combination of the NR and the ENV databases. In this
work, we used NRE90 and NRE70, which are the filtered
versions of the NRE database at 90% and 70% identity
thresholds, respectively. The binaries used for generating the
HMM-profiles can be obtained fromftp://toolkit.
lmb.uni-muenchen.de/HH-suite/.

Previous work suggests the utility of scaling the PSSM
values by applying a transforming function [19], [23]. In this
work, we employ the following sigmoidal transformation to
scale the PSI-BLAST and HHMAKE PSSMs:

fsigmoid(x) =
1

1 + exp(−x)
. (1)

The sigmoid transforms the PSSM values into the range
[0, 1]. Presumably, one of the benefits of the sigmoidal
transform is that it maps PSSM values in (−∞,∞) to [0,1],
which normalizes the variance.

2.5 Datasets
2.5.1 PDB-PC90 dataset

To obtain the PDB-PC90 dataset, we used the PISCES
server [24] with the following set of criteria: percent identity
threshold of 90%, resolution cutoff of 2.5 Å, and R-value
cutoff of 1.0. We also used PISCES to filter out non-X-ray
and Cα-only structures and to remove short (< 30 amino
acids) and long (> 10000 amino acids) chains. This dataset
contained 17056 chains.

2.5.2 Training and test set for evaluating torsion angle
class prediction accuracy

We randomly selected 5161 proteins from the PDB-PC90
dataset. Among those, we randomly selected 994 proteins to
form our first test set, which is used to evaluate the torsion
angle class prediction accuracy of our method. From the
set of 5161 proteins, we then removed those proteins that
are similar to the set of 994 proteins using a 10% sequence
identity threshold. The remaining set contained 4205 chains,
which is used to train our torsion angle class prediction
method.
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2.5.3 Training and test set for evaluating the improve-
ment in 3D structure prediction accuracy

We generated the 3D structure prediction models on a
benchmark set of 61 proteins that is commonly used for
ab-initio structure predicion assessment [22]. To generate
torsion angle class predictions for this test set, we compiled
a second training set as follows. We started from the PDB-
PC90 dataset and removed proteins that are similar to the
benchmark set of 61 proteins at 10% sequence identity
threshold. The remaining set contained 17018 proteins and is
used to train our method to generate torsion angle predictions
on the benchmark with 61 proteins.

2.6 Accuracy Measures
To assess the accuracy of torsion angle class predictions,

we used the amino acid level accuracy [25], segment overlap
score [26] and Matthew’s correlation coefficients (MCC)
[27]. All three of these metrics are widely used in protein
secondary structure prediction. The amino acid level accu-
racy is computed as the total number of amino acids with
correctly predicted torsion labels divided by the total number
of amino acids in the test set. The segment overlap score
measures how well the predicted torsion label segments
match the true segments and is biologically more meaningful
than the amino acid level accuracy. Matthews correlation
coefficient is a correlation score between the observed and
predicted binary classifications. It is a balanced measure
which can be used even if the individual classes are of very
different sizes. For the amino acid level accuracy, segment
overlap score, and Matthew’s correlation coefficient, a high
score indicates a more accurate prediction as compared to a
low score.

To evaluate the accuracy of fragment selection, we used
the CRMSD measure, which is the root mean square devi-
ation between theCα atoms of the native (true) amino acid
segment and a fragment selected from the library [22]. A
low CRMSD score represents a more accurate fragment as
compared to a high CRMSD score. Finally for 3D structure
prediction, we used the GDTMM score, which is a variant of
the Global Distance Test measure. GDTMM represents the
percentage of residues superimposable to the experimentally
determined native structure calculated across a number of
different distance thresholds [28]. A high GDTMM score is
more accurate than a low GDTMM score in predicting the
3D structure of a protein.

3. Results
3.1 Torsion class prediction accuracy

We evaluated the torsion class prediction performance
of our classifier on our large benchmark dataset with 994
proteins where we trained our method on the set of 4205
proteins (see Section 2.5.2). We randomly split our training
set into two and used the first half to train the DBNs
and the second half to train the neural network. Table 2
shows the confusion matrix and Table 3 includes the amino
acid level accuracy, segment overlap measure and Matthew’s
correlation coefficient measures for the 5-state torsion angle
class prediction.

Table 2: Confusion matrix for the 5-state torsion class
prediction on the set of 994 proteins.

True Pred A B E G O Row Sum
A 105914 12488 178 1123 8 119711
B 12968 81124 460 1013 72 95637
E 613 1320 1722 774 13 4442
G 2319 1976 563 6136 12 11006
O 177 539 37 27 1078 1858

Column Sum 121991 97447 2960 9073 1183 232654

Table 3: Confusion matrix for the 5-state torsion class
prediction on the set of 994 proteins.

Acc(%) SOV(%) MCCA MCCB MCCE MCCG MCCO

84.23 78.65 0.74 0.73 0.47 0.60 0.73

At this point, we are not able to directly compare our
results to other methods because none of the torsion pre-
diction methods available in the literature used the same
5-state mapping defined in Table 1. The closest torsion
alphabet contains grid-defined four states (A, B, G, E) [29]
excluding the O state in our 5-state alphabet. In this 4-state
representation, Bystroffet al. [30] obtained 74% amino acid
level accuracy, Kuanget al. [8] achieved 77% and Faraggi
et al. [11] reached 84%. Note that, the dataset utilized by
Faraggiet al. was obtained using a 25% sequence-identity
threshold, which is higher than the threshold we used to
compile our train/test sets. In other words, the rules we used
to generate our train/test sets are significantly more stringent
than Faraggiet al., which makes our testing conditions more
difficult. Furthermore, we evaluated our performance on a
5-state torsion angle alphabet, which is more difficult than
a 4-state prediction because as the number of torsion states
increases the torsion angle prediction accuracy decreases [4].
Therefore, we claim that our 5-state torsion class prediction
accuracy is potentially at a level comparable to the state of
the art. However, we are more interested in improving the 3D
structure prediction using the torsion class information than
in out-performing existing torsion angle prediction methods.
Therefore, in the next section, we analyze the effect of
incorporating torsion class information into Rosetta.

3.2 Fragment selection using torsion class pre-
diction

In this section, we analyze the quality of fragments
selected by Rosetta when we use the torsion class predictions
in the fragment picker. We considered two possible scenarios
in the score function of the fragment picker: (1) torsion
score component is off (the control group) (2) torsion score
component is on. We predicted 5-state torsion classes of the
benchmark set of 61 proteins using our method. For this
purpose, we used the dataset with 17018 proteins to train
our models (see 2.5.3). Similar to Section 3.1, we randomly
split our training set into two and used the first half to train
the DBNs and the second half to train the neural network.
The accuracy measures for these predictions is summarized
in Table 4.

We selected 200 fragments at each fragment window
position using Rosetta on the same benchmark. Fig. 7
summarizes the fragment quality measures. Fig. 7(a) shows
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Table 4: Accuracy measures for the 5-state torsion class
prediction on the benchmark set of 61 proteins.

Acc(%) SOV(%) MCCA MCCB MCCE MCCG MCCO

88.34 82.90 0.87 0.51 0.68 0.83 0.80

the histogram of the average CRMSD measures such that
the average is computed over the set of 200 fragments
in a given fragment window. In this plot, the blue curve
shows the histogram for the control group in which the
torsion prediction information is not utilized during fragment
selection and the red curve depicts the histograms when the
torsion class predictions are considered in fragment picker.
The mean and standard deviation of the histograms shown
in Fig. 7(a) are tabulated in Table 5. As a lower CRMSD
value indicates a better fragment quality, we are able improve
the mean of the average CRMSD measure by 0.23 CRMSD
when we use the torsion prediction information during
fragment selection. Fig. 7(b) illustrates the average CRMSD
values for each fragment window such that the average is
computed over the set of 200 fragments. In Fig. 7(b), the
fraction of points below the diagonal line is 73.76%, which
means that on average, we are able to improve the fragment
quality on the majority of positions.

Table 5: Mean and standard deviation of the average
CRMSD values of the fragments picked for the benchmark
set of 61 proteins.

Torsion OFF Torsion ON
Mean/std of Average CRMSD 1.85/1.04 1.62/1.00

3.3 3D structure prediction improvement by
torsion class prediction

In the next step, the 3D structures of the 61 benchmark
proteins are predicted using Rosetta. In this experiment, the
GDTMM scores of the 3D models predicted by Rosetta are
computed for the two cases (torsion score on vs off during
fragment selection), where a higher GDTMM score repre-
sents a closer match to the native structure. In both cases,
PSI-BLAST profile similarity score, secondary structure
similarity score, and rama score (obtained from constraints
in Ramachandran space) are also used as input features of the
fragment selection algorithm. Fig. 8 compares the accuracies
of 3D structure prediction for the cases where torsion class
predictions are used or not in fragment selection. Each box-
plot shows the average, minimum, maximum, and standard
deviation values of the GDTMM scores. Method 1 represents
the case where torsion class predictions are used during frag-
ment selection and Method 2 shows the case where torsion
class predictions are excluded. Fig. 8 clearly shows that there
is an improvement in the overall 3D structure prediction
accuracy when the torsion class predictions are included
during fragment selection. The GDTMM score improved
in 44 out of 61 proteins and the average improvement is
computed as 3.61%. These results demonstrate that more
accurate 3D predictions can be obtained by improving the
feature set of the fragment selector.
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Fig. 7: Fragment quality improvement using 5-state torsion
class prediction. (a) Histogram for the average CRMSD for
all the fragments. The blue curves show the control group
in which the torsion similarity score component is turned
off and the red curves demonstrate the behavior when the
torsion similarity score is included in fragment selection
step of Rosetta. A negative shift of the control distribution
indicates an improvement in the fragment quality. (b) Aver-
age CRMSD values for all the fragments evaluated for the
benchmark set of 61 proteins. Average CRMSD values for
each fragment window is depicted for the cases where the
torsion prediction information is utilized and excluded. Each
point below the y=x axis represents an improvement in the
fragment quality.

4. Conclusion
In this paper, we developed a machine learning clas-

sifier that is capable of predicting 5-state torsion angle
classes with high accuracy, and we demonstrated that the
resulting predicted torsion angles can be used to generate
more accurate 3D structure models. This work suggests
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Fig. 8: Box-plots of GDTMM scores showing the average,
minimum, maximum and standard deviations. The y-axis
depicts the GDTMM scores of the 3D model predictions
generated by Rosetta, and the x-axis shows the two cases
where the torsion predictions are utilized or not during
fragment selection. A higher GDTMM score represents a
closer match with the native structure (i.e., more accurate
predictions). Method labeled 1 represents the case where the
5-state torsion predictions are incorporated into the fragment
selection algorithm of Rosetta and the method 2 shows the
statistics for the case where the 5-state torsion predictions
are excluded. Employing torsion predictions shows a clear
improvement in 3D structure prediction accuracy.

several directions for future research. First, it is possible to
consider different torsion angle alphabets by clustering the
real-valued torsion angles into discrete bins and analyzing
which alphabet is most useful for 3D structure determination.
Second, additional feature representations can be employed
as input to our method so that the information contained in
these representations is combined with that of the existing
feature set by our DBN framework. Finally, the torsion class
prediction method can easily be extended to operate in a
comparative modeling setting, in which template proteins
that are structurally similar to the target protein are used
when available.

References
[1] K. T. Simons, C. Kooperberg, E. Huang, and D. Baker, “Assembly of

protein tertiary structures from fragments with similar local sequences
using simulated annealing and bayesian scoring functions.”Journal of
Molecular Biology, vol. 268, pp. 209–225, 1997.

[2] J. Lee, S. Y. Kimb, and J. Lee, “Protein structure prediction based on
fragment assembly and parameter optimization,”Biophysical Chem-
istry, vol. 115, no. 2-3, pp. 209–214, 2005.

[3] J. B. Holmes and J. Tsai, “Some fundamental aspects of building
protein structures from fragment libraries,”Protein Sci, vol. 13, no. 6,
pp. 1636–1650, 2004.

[4] P. Kountouris and J. D. Hirst, “Prediction of backbone dihedral angles
and protein secondary structure using support vector machines,”BMC
Bioinformatics, vol. 10, no. 437, 2009.

[5] A. G. de Brevern, C. Etchebest, and S. Hazout, “Bayesian probabilistic
approach for predicting backbone structures in terms of protein
blocks,” Proteins, vol. 41, no. 3, pp. 271–287, 2000.

[6] O. Zimmermann and U. H. E. Hansmann, “Locustra: accurate pre-
diction of local protein structure using a two-layer support vector
machine approach,”J. Chem. Inf. Model, vol. 48, no. 9, pp. 1903–
1908, 2008.

[7] Q. Dong, X. Wang, L. Lin, and Y. Wang, “Analysis and prediction of
protein local structure based on structure alphabets,”Proteins, vol. 72,
pp. 163–172, 2008.

[8] R. Kuang, C. S. Leslie, and A. S. Yang, “Protein backbone angle
prediction with machine learning approaches,”Bioinformatics, vol. 20,
no. 10, pp. 1612–1621, 2004.

[9] S. Wu and Y. Zhang, “Anglor: a composite machine-learning al-
gorithm for protein backbone torsion angle prediction,”PLoS One,
vol. 3, no. 10, p. e3400, 2008.

[10] E. Faraggi, B. Xue, and Y. Zhou, “Improving the prediction accuracy
of residue solvent accessibility and real-value backbone torsion angles
of proteins by guided-learning through a two-layer neural network,”
Proteins, vol. 74, no. 4, pp. 847–856, 2009.

[11] E. Faraggi, Y. Yang, S. Zhang, and Y. Zhou, “Predicting continuous
local structure and the effect of its substitution for secondary structure
in fragment-free protein structure prediction,”Structure, vol. 17,
no. 11, pp. 1515–1527, 2009.

[12] C. Mooney and G. Pollastri, “Beyond the twilight zone: Automated
prediction of structural properties of proteins by recursive neural
networks and remote homology information,”Proteins: Structure,
Function, and Bioinformatics, vol. 77, pp. 181–190, 2009.

[13] Y. Shen, F. Delaglio, G. Cornilescu, and A. Bax, “Talos+: A hybrid
method for predicting protein backbone torsion angles from nmr
chemical shifts,”J. Biomol. NMR, vol. 44, pp. 213–223, 2009.

[14] B. Blum, M. Jordan, D. Kim, R. Das, P. Bradley, and D. Baker,
“Feature selection methods for improving protein structure prediction
with Rosetta,” inAdvances in Neural Information Processing Systems
20, J. Platt, D. Koller, Y. Singer, and S. Roweis, Eds. Cambridge,
MA: MIT Press, 2008, pp. 137–144.

[15] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang,
W. Miller, and D. J. Lipman, “Gapped BLAST and PSI-BLAST: A
new generation of protein database search programs,”Nucleic Acids
Research, vol. 25, pp. 3389–3402, 1997.

[16] J. Soding, “Protein homology detection by HMM-HMM comparison,”
Bioinformatics, vol. 21, pp. 951–960, 2005.

[17] B. Blum, M. I. Jordan, and D. Baker, “Feature space resampling for
protein conformational search,”Proteins, vol. 78, no. 6, pp. 1583–
1593, 2010.

[18] Z. Aydin, A. Singh, J. Bilmes, and W. S. Noble, “Learning sparse
models for a dynamic Bayesian network classifier of protein secondary
structure,”BMC Bioinformatics, vol. 12, p. 154, 2011.

[19] X.-Q. Yao, H. Zhu, and Z.-S. She, “A dynamic bayesian network
approach to protein secondary structure prediction,”BMC Bioinfor-
matics, vol. 9, no. 49, 2008.

[20] J. Bilmes and G. Zweig, “The Graphical Models Toolkit: An open
source software system for speech and time-series processing,” in
Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, 2002.

[21] R. Collobert, “Torch,” NIPS Workshop on Machine
Learning Open Source Software, 2008, software available at
http://torch5.sourceforge.net/.

[22] D. Gront, D. W. Kulp, R. M. Vernon, C. E. M. Strauss, and D. Baker,
“Generalized fragment picking in Rosetta: Design, protocols and
applications,”PLoS One, vol. 6, no. 8, 2011.

[23] D. T. Jones, “Protein secondary structure prediction based on position-
specific scoring matrices,”Journal of Molecular Biology, vol. 292, pp.
195–202, 1999.

[24] G. Wang and R. L. Dunbrack, Jr., “PISCES: a protein sequence culling
server,” Bioinformatics, vol. 19, pp. 1589–1591, 2003, web server at
http://dunbrack.fccc.edu/PISCES.php.

[25] B. Rost and V. A. Eyrich, “EVA: Large-scale analysis of secondary
structure prediction,”Proteins: Structure, Function, and Bioinformat-
ics, vol. 45, no. S5, pp. 192–199, 2002.

[26] A. Zemla, C. Venclovas, K. Fidelis, and B. Rost, “A modified
definition of Sov, a segment-based measure for protein secondary
structure prediction assessment,”Proteins, vol. 34, pp. 220–223, 1999.

[27] B. W. Matthews, “Comparison of the predicted and observed sec-
ondarystructure of t4 phage lysozyme,”Biochim Biophys Acta, vol.
405, no. 2, pp. 442–451, 1975.

[28] A. Zemla, “LGA – a method for finding 3d similarities in protein
structures,”Nucleic Acids Research, vol. 31, pp. 3370–3374, 2003.

[29] B. Olivia, P. A. Bates, E. Querol, F. X. Aviles, and M. J. Sternberg,
“An automated classification of the structure of protein loops,”Journal
of Molecular Biology, vol. 266, no. 4, pp. 814–830, 1997.

[30] C. Bystroff, V. Thorsson, and D. Baker, “HMMSTR: A hidden markov
model for local sequence-structure correlations in proteins,”Journal
of Molecular Biology, vol. 301, pp. 173–190, 2000.

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'12  | 483



Cryptography and Information Protection in the

Living WorldNaya Nagy1, Marius Nagy1, and Paul Hodor21 College of Computer Engineering and SienePrine Mohammad Bin Fahd University, Al Khobar, KSA
{nnagy,mnagy}@pmu.edu.sa2 Booz Allen Hamilton, Rokville, MD, USA

hodor paul@bah.com

Abstract. This paper explores parallels between onepts de�ned inryptography and onepts of biology at di�erent levels of organization.Cryptographi settings, inluding the presene of an eavesdropper areextensive in the realm of plants and animals. It also turns out that prin-iples of information protetion show strong similarities between the twodisiplines: omputer siene and moleular biology. Biologial informa-tion, as held by the DNA moleule, and digital information, as used indigital ommuniation systems, are subjet to analogous proedures ofprotetion and repair when damaged.
Keywords: information protetion, error orretion, ryptography, mimiry,DNA, DNA repair

1 IntroductionCryptography is a �eld that spreads human ativities. The need to ommuniateprivately, or seretly, enters various orners of human private and soial life, suhas �nanial transations, personal privay of ommuniation, ompany serets,information protetion at the level of a ountry, a state, a group, or organiza-tion. In fat, the possibility to ommuniate privately with another human isonsidered to be an individual freedom. It has the avor of a human right.The idea behind this paper is that the need for seret ommuniation, or moregenerally, the existene of ryptographi needs is not inherently pertaining to hu-mans. Cryptographi settings and ryptographi solutions an be enounteredthroughout the living world. The point of view may be that of an information-arrying moleule, a ell, an entire organism, a population, or an eosystem.This paper explores various senarios in whih enryption/deryption, and ryp-tographi identities are part of vital proesses.
2 The Players in Cryptography and Their InterestsWe may onsider the lassi model of a ryptographi setting to be suÆient forthe biologial realities to be disussed here. This model involves three entities:
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two ommuniation partners and a third malevolent party that intends to orruptthe ommuniation. The orruption of the ommuniation refers to its privayand the reliability and truthfulness of the exhanged messages.
2.1 The Good PlayersBy standard now, it is Alie and Bob that intend to ommuniate seretly andreliably. Alie and Bob are usually equivalent partners. The ommuniation issymmetri and as suh, Alie's and Bob's points of view are idential. For theommuniation to omply to serey and reliability, Alie's expetations are thefollowing:1. Alie wants to get all messages from Bob. This means that the onnetionbetween Alie and Bob should be permanently working. Or else, if the on-netion is broken, both Alie and Bob should be aware of it. Any message

sent by Bob should reach Alie.2. Any message Alie gets from Bob is indeed sent by Bob. This is alledauthentiation. Bob's message may arry Bob's unique signature. For log-ial ompleteness, any message that is not oming from Bob, is known tohave another sender. That is, Alie reognizes the message to have a foreignsender.3. For any message that Alie sends to Bob, Alie knows whether Bob hasreeived the message. This is a handshake.4. When Alie reeives a message from Bob, the ontent of Bob's message isomplete and unaltered. No parts of the message were lost, no meaning hasbeen altered or twisted.5. Bob's message is understandable to Alie. That is, they speak the samelanguage, use the same alphabet, semantis, and syntax. Additionally, anynew onept that Bob may start using, should �rst be de�ned to Alie, beforeits usage.These expetations have been formulated for Alie. As Bob is an equivalententity, all of the above items apply symmetrially to Bob.
2.2 The Bad PlayerThe third party, alled Eve, makes every e�ort to meddle, interrupt, or attakthe privay of Alie's and Bob's ommuniation. Thus any form of orruptingthe transfer of messages is in the domain of Eve. Eve may listen to the ommuni-ation, or break the onnetion, or may have any other destrutive behavior. Theinterest of Eve may vary, depending on the pratial setting and goals. Some ofEve's possible attaks may not be ompatible with one other. For example, if Evehooses to interrupt a onversation by severing the onnetion, this means sheannot gain any knowledge on what Alie and Bob would have ommuniatedto eah other. It means she obviously annot eavesdrop on the onversation.Consider the following list of attaks that Eve may plan on the ommunia-tion:
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1. Eavesdropping. Eve may listen to the ommuniation hannel and readthe enrypted messages.2. Tampering. Eve may tamper with the ontent of a message. For example,if the message is a string of haraters, Eve deletes a substring from themessage and/or inserts a substring of her own into the string of the message.3. Inserting. Eve may insert a false message. Eve may send a false message toAlie or Bob.4. Intercepting. Eve may interept a message sent from Bob to Alie anddrop it.5. Masquerading. Eve may masquerade as Bob and send messages to Aliepretending she was Bob. This is in the realm of identity theft.6. Disconnecting. Eve may ompletely sever the onnetion between Alieand Bob so that no further messages an be transmitted.The question lends itself to where we an �nd Eve in Biology. There is aninteresting aspet to the parallel of Eve, as a ryptographi entity, and its ounterharater in Biology. We an find Eve at every level of biologial srutiny, thatis to say, both at sub-ellular, as well as ellular and multiellular levels withinthe hierarhy of life.The next setion explores a few enounters of Eve in nature, as the aboveryptographi identity. They show the range and diversity of parallels that anbe drawn between ryptography and biology.
3 The presence of Eve in nature

3.1 Eve at high levels of biological organizationLet us �rst explore ryptographi needs during the interation of organisms suhas animals or plants. Organisms typially ommuniate through visual, aousti,or hemial signals. We think that many of Eve's ations as desribed in subse-tion 2.2 an be found in interfering with a variety of modes of ommuniation.
Eavesdropping. Eavesdropping is pervasive among animal predators. Apredator, suh as a large at, stalks its prey before bouning on it. Stalkingimplies listening, or studying the prey's behavior, and also trying to oneal thepresene of the predator. Analogously, Eve in ryptography listens to the om-muniation hannel between Alie and Bob and endeavors to hide her ation.
Masquerading.Masquerading was desribed as the attempt of Eve to presentherself as Bob. Eve sends messages to Alie pretending that she is Bob. Eveahieves this by forfeiting Bob's signature on a message, or more generally, Eveexhibits Bob's harateristis.Many animal and plant speies have evolved to take the visual aspet ofanother speies or of an inanimate objet, in order to gain some advantageover their predators or pray. Suh phenomena of deeit are alled mimicry inbiology[15℄, and were �rst desribed over a entury ago by Henry Walter Bates[1℄ as he studied butteries in the Amazon forest.
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The biologial onept of mimiry is very large and enompasses di�erenttypes of signaling and behavior. In aggressive mimicry, a predator aims to hideunder the harateristis of a harmless speies or objet. It is the "wolf wearinga sheep's skin". Consider the North Amerian Photuris �rey [15℄. The Photurisfemale attrats males of another �rey genus, namely Photinus, by emitting lightash patterns that mimi those emitted by Photinus females. When a Photinusmale mistakenly approahes a Photuris female, he is eaten. Thus, Photuris fe-males mimi the behavior of another genus, by sending out wrong signals.
Defensive mimicry aims to protet a speies against its predator, while mas-querading as a dangerous or unpalatable speies. There are many ases of de-fensive mimiry. For example, there is a snake speies alled the false obra,

Malpolon moilensis. Its venom is mild ompared to the Indian obra, Naja naja.Nevertheless, the false obra has a similar hood to threaten with. The dupedenemy usually baks o� at the false threat.
Inserting a false message. In this ase Eve sends a false message to Alie. Astrategy used by some birds, �sh, or insets is brood parasitism. In this behaviorindividuals of a host speies are manipulated to raise the young of another,alled the brood parasite. For instane, females of the North Amerian brown-headed owbird Molothrus ater lay their eggs into the nests of a large number ofother speies. The parasiti young ompete with their foster siblings for parentalare. By begging for food more intensely and loudly [6℄, the parasites have anadvantage in attrating the attention of the parents.

3.2 Eve at the molecular levelWhen we think of Eve in terms of ryptography, Eve has the full harateristisof a person. She has her own will, has intentional ations, is intelligent, unningand shrewd.Aidental damage of the ommuniation hannel between Alie and Bobis possible and has to be onsidered. Nevertheless, the treatment of aidentalfailures of the ommuniation is rather a problem of tehnial reliability in apossibly adverse physial environment, not so muh a problem of seurity. Itis rather the "human" harateristis of Eve that bring us into the realm ofryptography. The enemy is an enemy that thinks and ats based on her will.Also, Eve understands the unenrypted ontent of a message as a human woulddo ... "Eve knows English".When we deal with biologial entities, espeially at the suborganismal andsubellular levels, it is rather a strething of the mind to onsider an enemy withthe proper harateristis of evil intentions and intelligene. To be able to keepthe same setting as we are austomed to in ryptography, the person of Evehas to be understood in a larger ontext. Eve would beome a dummy person,responsible of any destrutive ation on the integrity and life of a ell. In thisontext, suh attaks would not have a real intention behind them, but may bede�ned as attaks with a physial or hemial, or even biologial ause. Suhattaks an be repetitive, foring the ell to develop methods to protet itselffrom them.
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The most important message and information arrying moleules found inells is DNA, whih onstitute the genome of an organism. Chemially, DNA isa linear polymer onsisting of a phosphate-sugar bakbone. To eah sugar one offour nitrogenous bases, adenine, thymine, ytosine, and guanine, is attahed. Thelinear sequene of bases within a DNA moleule allows for an enormous numberof possible ombinations. The sequene itself enodes the information arried bythe moleule, and onstitutes the geneti message. Within a ell, DNA is presentas a double helix, onsisting of two omplementary strands, whih means that ifwe know the sequene of one strand, we an dedue the sequene of the other.The information stored in DNA is used by ells in two ways. First, through aproess alled transcription, seleted short strethes of sequene are opied intoRNA, another type of information arrying moleule. RNA transripts then goon to support all ellular funtions. Seond, before a ell an divide, eah DNAmoleule undergoes replication, by whih two idential opies are reated. Thetwo opies are distributed to the two daughter ells during ell division.Damage to DNA may be physial or hemial, i.e. lesions produed by en-dogenous and exogenous agents. Endogenous agents have the soure inside theell or organism, whereas exogenous agents originate in the environment. Evenif the damage is physial or hemial in nature, it has biologial onsequenes[5℄. It a�ets the health of the ell and onsequently of the organism and mayfully inhibit the repliation proess of the DNA moleule. Some ommon physialagents are ultraviolet light and ionizing radiation (e.g. X-rays and gamma rays).Chemial agents that a�et DNA sequene integrity are alled mutagens. Theyhave diverse modes of ation, and many ause diret damage to DNA throughspei� hemial reations. Others, however, interfere with repliation, ausingerrors during opying of the sequene into newly synthesized DNA.A remarkable lass of agents that a�et DNA integrity at by altering thesequene itself, without produing strutural damage to the DNA moleule. Suhagents reside at the boundary between living and nonliving matter, as theyexhibit some, but not all harateristis of living organisms.One suh type of agent is represented by transposons, also alled transposableelements or "jumping genes" [12℄. Transposons are relatively short sequenesegments found in the DNA of many speies. They are mobile, in the sensethat they an insert themselves into a new loation within the DNA moleulethrough a mehanism of either "ut and paste" or "opy and paste". When atransposon moves, it alters the sequene of the DNA at the old and/or newloation, whih possibly has onsequenes on biologial funtion and is a threatto genome integrity.Certain viruses are sequene-altering agents as well. Viruses are biologialentities that have a de�ned strutural organization, have their own DNA orRNA, and are able to reprodue. However they are not omposed of ells, anddo not support their own metabolism, and thus lak some key harateristis ofliving things. Some types of viruses, suh as the bateriophage λ [4℄, or the HIVvirus [11℄, insert their own sequene into the DNA of host ells. Through this
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proess they are able to alter the funtion of the host ell, hijaking the ellularmahinery for their own purpose.
4 Electronic and Molecular Information SafetyThe present setion is dediated to the ations that Alie and Bob may taketo ensure or at least improve the reliability of their ommuniation. Problemsof proteting the message ontents, orreting errors and mistakes, reoveringas muh as possible from the initial message are inherent to ommuniationproesses. The following is a non-exhaustive study of reliability or safety issues.The purpose is to parallel the two information holders: eletroni and biologial,in view of the fat that the problems faed by them are similar.
4.1 Protected Public InformationThe �rst ation that would be onsidered here is to protect the informationfrom attempted hange. Proteting information is rarely disussed expliitly inryptography, but is nevertheless presupposed in several instanes, suh as publikey ryptosystems.Most ommerially suessful ryptosystems rely on publi key ryptosys-tems, suh as the Rivest-Shamir-Adleman (RSA) protool [13℄. Aeptable se-urity levels are reahed using \one-way" funtions, funtions that are easy toompute but diÆult to invert. Suh a system needs two keys: a publi key and aprivate key. Bob enrypts a message with Alie's publi key, and then sends themessage to Alie. Alie derypts the message using her private key. Note that,the publi key, as the name suggests, is visible and known to everyone, inludingEve. Nevertheless, the message is unintelligible to anyone unless it is deryptedwith the private key, whih is known only to Alie. In order for the protool towork, the publi key is guaranteed to be proteted, unhangeable. There is aonsensus about the publi key value. Eve is not allowed to hange the publikey value, or else Bob may not orretly enrypt the message. It is a strong re-quirement in publi key ryptosystems, that publi information can be protetedfrom interferene. This may not seem theoretially so obvious but works aept-ably in pratie. For example, if many opies of Alie's publi key exist, suh ason the internet, and in several other publi multi-media of a large audiene, itan be assumed that Eve annot ontrol all publi hannels of ommuniation.Similar mehanisms of proteting information an be found at the moleularlevel, onerning the DNA moleule. The struture of the moleule itself hasproperties that o�er protetion in a possibly adverse hemial environment. Inthe DNA double helix, the phosphate sugar bakbone faes the outside, whilethe information-arrying bases are hidden inside. Thus the bases themselves are
protected from hemial attak [3℄.Considering the idea that publi information an be proteted by keepingit in many opies, ells and organisms have several methods to provide thesame kind of redundany. Baterial ells often ontain several replias of their
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DNA. In organisms where DNA is organized into multiple hromosomes andpakaged into a nuleus, hromosomes typially exist in pairs in eah ell, suhthat there are two opies of eah DNA sequene available at all times. If oneof the opies is altered and loses a ertain gene funtion, the other opy anoften times ompensate. Tissues suh as skin or bone ontain large numbers ofells, thousands to millions, and thus the same number of opies of the full DNAomplement of a single ell. If the information in any single ell is damaged, theell is destroyed by the immune system and replaed through ell division froma normal ell.A way of proteting information is to keep it in di�erent formats, or ondi�erent hardware supports. Bakups are very usual for humanly manipulatedinformation. An interesting analogy is represented by the two strands that makeup the DNA double helix. They ontain the same information, but in two om-plementary formats. At any partiular loation along the DNA, only one of thestrands is biologially funtional. The other serves as the "bakup". If either ofthe strands is damaged, it an be reonstruted from the omplementary strand.DNA repair mehanisms exist for various situations [10℄.Another strategy for proteting information is to identify and "quarantine"hanges to the original message. Cells have mehanisms by whih they an in-ativate de�ned regions of their DNA. Inserted foreign sequenes, suh as trans-posons or viral DNA, an be identi�ed and silened. One suh mehanism foundin animals and plants involves a hemial modi�ation, i.e. methylation, of y-tosine in the DNA moleule. Transposon sequenes are spei�ally identi�edand methylated, thus preventing them to jump and insert themselves into newloations [9℄.
4.2 Error Correcting or Repair MechanismsIf binary information is transmitted over an unreliable hannel, the messagemay reah its destination in a orrupted form. If the message has been partiallyaltered by faulty transmission, the orret message needs to be reonstruted.The �eld of error orreting odes [7℄ aims to develop enoding tehniques thatallow for errors to happen during transmission, while preserving the full ontentof the message. Shannon proved [14℄ that at a rate below the apaity of theommuniation hannel, the message an be sent with arbitrarily high auray.Probably the best known error ode is the Hu�mann ode. Error odes protetthe message in that some n bits of information are enoded into m (m > n) bitsto be sent aross the hannel.Similarly, DNA information needs to be orreted when damaged. Moleularmehanisms that deal with reonstruting the DNA moleule after a damageare alled repair mehanisms [10℄. Some repair mehanisms deal with spei�damage types, others work more generally.For example, ultraviolet light of type UV-C and UV-B produes a spei�damage on DNA hains for whih a spei� repair mehanism exists [8℄. Therange of UV-C and UV-B radiation is from 180 to 320 nm, and inludes theDNA absorption maximum at 260 nm. When two adjaent thymine bases absorb
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a photon, they bond ovalently forming a dimer. This results in a struturaldistortion of the DNA double helix that physially prevents repliation. Througha proess alled photoreativation, the ovalent bond in the thymine dimer isreversed, and the DNA strand is diretly repaired. Photoreativation ours inmost organisms (but not in humans), and requires the ation of the enzymephotolyase, whih depends on the presene of light in the range of 313-475 nm.Another example of a DNA repair mehanism is nuleotide exision repair [2℄.Faults in the pairing of omplementary strands are deteted by the presene ofdistortions in the DNA struture. A streth of one strand around a distorted areais ut o� from the double helix. Subsequently, the enzyme DNA polymerase �llsout the missing part aording to its omplementary strand. In the end, DNAligase seals the niks and thus ompletes the sugar-phosphate bakbone of therepaired strand.
5 ConclusionWe have shown that some rules that apply to seure ommuniation amonghumans are diretly translatable to rules in biology, at di�erent hierarhial lev-els of organization. As omputer siene and biology have developed separately,meaning in their own sienti� ommunity, we observe that the language that de-sribes similar onepts, naturally di�ers from the omputer siene ommunityto the biology ommunity.This paper explores basi ryptographi needs for moleular biology, suhas proteting information and orreting errors. At the higher level of interat-ing organisms, the eavesdropper has a higher level personality, inluding theapability of masquerading.With the advent of quantum explanations to biologial proesses, we maywell look forward to �nd mehanisms of quantum ryptography imbued in theproesses of life.
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Abstract— Sequence similarity algorithms are used to re-
construct increasing large evolutionary trees involving in-
creasingly distant evolutionary relationships. This paper
proposes two sequence similarity algorithms, called the
Greedy Tiling and the Random Tiling algorithms, that are
both based on the idea of tiling one sequence by parts of
another sequence. Experimental comparisons show that the
new algorithms are better at detecting distant evolutionary
relationships than the Needleman-Wunsch sequence similar-
ity algorithm.

Keywords: bioinformatics; Needleman-Wunsch; protein; se-
quence; similarity.

1. Introduction
Sequence similarity in genetics is often used to identify

homologous genes, that is, genes which have evolved from
a common ancestry. Similarly, sequence similarity of pro-
teins allows identification of homologous proteins whose
encoding genes evolved from a common ancestor. Therefore,
similarly to the case of genes, biologists can describe an
evolutionary hierarchy of proteins.

There are several ways of measuring the similarity be-
tween pairs of proteins [1]. Most protein similarity algo-
rithms are based on the alignment of the sequences of
the amino sequences. Such sequence similarity algorithms
include Needleman-Wunsch [4], Smith-Waterman [9], and
its extension by Gotoh [2]. Other protein similarity measures
consider the 3-D structure of the proteins, especially the
binding sites of the proteins, to determine their similarity
[5,8]. In this paper we are only interested in sequence sim-
ilarities because while sequence information is commonly
available in databases because the 3-D structure of most
proteins is still unknown [10].

Although sequence similarity plays a major role in genet-
ics, there is little information about the relative reliability
of various similarity measures, which is a general problem
in data integration [7]. This project proposes two novel
sequence similarity algorithms, called the Greedy Tiling
and the Random Tiling algorithms, and compares their
effectiveness with older similarity measures in recreating the
evolutionary hierarchy of related proteins. Both of the tiling
algorithms implement the tiling similarity measure that was
non-algorithmically defined by Revesz [6] based on the idea
of tiling one sequence by parts of another sequence.

This paper is organized as follows. Section 2 describes
two new algorithms for finding the tiling similarity of
two sequences. Section 3 describes experimental results.
Section 4 analyses the results. Finally, Section 5 concludes
the paper.

2. Implementations of Tiling Similarity
Revesz [6] introduced the tiling similarity measure, which

is based on the idea of tiling one sequence with parts of
the other sequence. The tiling similarity value depends on
finding the optimal tiling and is an intractable problem for
large sequences. Nevertheless, we give below two algorithms
that in many cases give a good approximation of the optimal
tiling. Our approximation algorithms, called Greedy Tiling
and Random Tiling, both run efficiently even on large
sequences.

2.1 Greedy tiling
Given as input two protein sequences X and Y with

length(Y) ≤ length(X), GreedyT iling tries to reconstruct
Y using segments, called tiles, from X. This is done using
the algorithm with the following pseudocode:

Greedy Tiling GreedyT iling(X,Y, T iling)
1. X ′ = X
2. Y ′ = Y
3. Tiling = ∅
4. i = 0
5. while Y ′ is not empty do
6. i = i+ 1
7. Smith-Waterman(X ′, Y ′, xi, yi)
8. X ′ = X ′ − xi

9. Y ′ = Y ′ − yi
10. if xi and yi are subsequences of X and Y then
11. Tiling = Tiling ∪ {(xi, yi)}
12. else split xi and yi into proper subsequences
13. xi = x′i | x′′i | . . .
14. yi = y′i | y′′i | . . .
15. Tiling = Tiling ∪ {(x′i, y′i), (x′′i , y′′i ), . . .}
16. end-if
17.end-while

The above algorithm assumes that we have the func-
tion Smith-Waterman(X,Y, x, y) that finds the best locally
matched segments x in X and y in Y , when given as
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input the sequences X and Y . LCS∗ repeatedly calls the
Smith-Waterman algorithm to find the longest common
subsequences between X ′, the remaining X , and Y ′, the
remaining Y . In each iteration, the pair of longest common
subsequences xi of X ′ and yi of Y ′ are added to the set of
tiles and deleted from X ′ and Y ′. Each segment xi and yi
is inspected whether it is a proper subsequence of X and
Y , respectively, or a concatenation of two or more parts of
X and Y . Accordingly xi and yi are broken up into its
constituent components as necessary and added to the tiles
as a set of pairs. This process is repeated iteratively until Y ′

is empty.

Example 1: Suppose we have the following two sequences:
X = WARICDFLRE and Y = FIREICEWAR.

In the first iteration, the Smith-Waterman algorithm finds
between X ′ = X and Y ′ = Y the best local alignment
to be x1 = WAR and y1 = WAR, which are proper
subsequences of X ′ and Y ′. Hence x1 and y1 are added
as a pair to Tiling and deleted from X ′ and Y ′ to yield
X ′ = ICDFLRE and Y ′ = FIREICE, respectively.

In the second iteration, the best matching segments are
x2 = FLRE and y2 = FIRE, which are also proper
subsequences of X ′ and Y ′. Deleting those yields X ′ =
ICD and Y ′ = ICE.

In the third iteration, the best matching segments are x3 =
ICD and y3 = ICE, which are also proper subsequences
of X ′ and Y ′. Deleting y3 from Y ′ will make it empty.
Hence the algorithm terminates. Hence in this case, LCS∗

will return the following:

Tiling = {(WAR,WAR), (FLRE,FIRE), (ICD, ICE)}

As a measure of the similarity between X and Y , we use
the tiling similarity, or TS, measure of Revesz [6], which is
defined as follows:

TS(X,Y ) =

∑i=n
i=1 si
n

where n is the number of segments used for reconstruction
and si is the similarity score between tiles xi and yi. For
example, if we use the BLOSUM62 similarity matrix, then:

s1 = simBLOSUM62(WAR,WAR) = 20

s2 = simBLOSUM62(FLRE,FIRE) = 18

s3 = simBLOSUM62(ICD, ICE) = 15

Hence the tiling similarity will be:

TS(X,Y ) = 20+18+15
3 = 53

3 = 17.66

2.2 Random tiling
The second algorithm uses a randomized approach to find

the different segments/tiles required for the reconstruction
of sequence Y. It randomly breaks up sequence X into tiles
of different lengths. Then filters out a select few using a
constraint for a valid range of tile-length. Finally it uses
this selected set of tiles (say x1, x2, x3.....xn) to match the
different portions of Y. Since this approach is randomized
the entire process needs to be iterated an arbitrary number of
times, each time with a set of randomly generated tiles, and
the tiling with the highest tiling similarity score selected.
Below we give only the pseudocode of the basic algorithm
that needs to be repeated.

Random Tiling RandomTiling(X,Y, T iling)
1. Split X into a random set of tiles T (X)
2. YU = Y
3. Tiling = ∅
4. while YU is not empty and longer than the shortest tile
do
5. BestScore = −100
6. for each tile xi ∈ T (X) do
7. ym = prefix of YU with length(xi)
8. if BestScore < sim(xi, ym) then
9. BestScore = sim(xi, ym)
10. BestPair = (xi, ym)
11. end-if
12. Tiling = Tiling ∪BestPair
13.end-while

In each iteration we begin the tile-matching from the
leftmost end of Y. Let YU denote unmatched section of Y.
Clearly, initially YU = Y. For each tile xi from the tile set
we match it with left most segment ym of YU which is of
same length as xi. We always select the tile which gives the
highest matching score. In the next iteration we update YU

by deleting from it the initial segment ym. Then we continue
the tile-matching process with the updated YU . This iteration
is carried out from left to right until Y is fully matched. In
the last iteration, if there is a case that the length of the
current YU is less than the length of smallest tile then that
remaining YU is matched with gaps.

Example 2: Consider the following two sequences:
X = ABCDEFGHIJKLOIY ITB and
Y = WUFGDJVMBKUG.
We will reconstruct Y using tiles from X. Let the tiles
obtained from X be x1 = BCDE, x2 = IJKL, x3 = DEFGHI,
x4 = LOIYITB, and x5 = AB. Initially YU = WUFGDJVM-
BKUG. We start by matching each tile xi with left-most
portions of YU which is of same length as xi. That is we
match x1 with WUFG, x2 with WUFG, x3 with WUFGDJ,
x4 with WUFGDJV and x5 with WU. Say x1 gives the best
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matching. So now YU becomes DJVMBKUG. The above
process is repeated again. That is x1 matched with DJVM,
x2 with DJVM, x3 with DJVMBK, x4 with DJVMBKU and
x5 with DJ. Let the best tile be x4. So now YU = G. This
is matched with a gap as its length is less than that of x5.
So the reconstructed Y looks like:

Y = WUFG | DJVMBKU | G
X = BCDE | LOIY ITB | −
We can repeat the above process an arbitrary number of

times and select the tiling which gives the highest tiling
similarity score. Obviously, the more the basic algorithm
is repeated, the higher tiling similarity is found. However,
there is a trade-off between repetitions and increased tiling
similarity values. There is a point where the increase in
execution time may not be worth the diminishing chance
of an increase in the tiling similarity score.

3. Experimental Results
In the experiments we focused on the Type III Pyridoxal

5-phosphate(PLP) dependent enzymes subfamily. This is
important and well-studied subfamily is composed mainly
of proteobacterial alanine racemases that help in the inter-
conversion between L- and D-alanine, which is an essential
component of the peptidoglycan layer of bacterial cell walls.
Figure 1 shows a small portion of this subfamily hierarchy
as described in the National Center for Biotechnology Infor-
mation (NCBI) Conserved Domain Database [3].

Fig. 1: Hierarchy tree.

Each node in Figure 1 is a also cluster of subsequences.
That is, each node is composed of closely related bacterial
genome sequences, which have a hierarchical relation among
themselves as well. For instance, the node cd06825 is
actually composed of nine sequences shown in Figure 2.

Figure 2 shows the gi version numbers (164602518,
44805037, etc.) which uniquely identify each sequence. The

Fig. 2: cd06825 cluster

FASTA sequence description was also obtained from the
NCBI website and used as input to our similarity algorithms
and to the Needleman-Wunsch algorithm.

Both our algorithms take all possible combinations of
two subsequences from the clusters to measure their tiling
similarity scores (TSs). For example, the cd06825 cluster
contains 36 pairs of sequences and yields as many similarity
scores. Because of the large set of data, our experiments
focused on the following five randomly selected clusters:
cd06815, cd06817, cd06822, cd06825 and cd06826. The size
of each cluster (in terms of number of constituent sequences)
and the number of associated tiling similarity TS score
combinations obtained is shown below in Table 1.

Table 1: Cluster details.
Cluster Size Score Combinations

cd06825 9 36
cd06826 11 55
cd06817 15 105
cd06822 36 630
cd06815 39 741

We define below the following relationship terminologies
that are used in comparison of the similarity measures:

Siblings are sequences that are separated by only one
evolutionary branching from a common ancestor in
the evolutionary family tree. For instance, in Figure 2
sequences 44805037 and 160915859 are separated by a
single evolutionary step from their common ancestor, hence
they are siblings.

First cousins are sequences that are separated by at most
two branching from a common ancestor in the evolutionary
family tree. For instance, in Figure 2 sequences 164602518
and 44805037 are both at most two evolutionary steps
distant from the common ancestor, which makes them first
cousins.

Second cousins are sequences that are separated by at most
three branching from a common ancestor in the evolutionary
family tree. Again in Figure 2 sequences 164602518 and
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20140922 are second cousins.

ith cousins are sequences that are separated by at most
(i+1) branching from the closest common ancestor.

In our experiments, we compared the Needleman-Wunsch
algorithm [4], the greedy tiling, and the random tiling
algorithms. We ran for each of the five above listed clusters
each of the three algorithms. We calculate the similarity
scores between siblings, first cousins and second cousins. For
the calculation of the similarity scores, we used the common
PAM250 substitution matrix [1] and a constant value of -8 as
the gap-penalty. In addition, for the random tiling algorithm,
the larger sequence X is always divided into 70 segments
randomly to generate the available tiles T (X). In the case of
the random tiling algorithm, we ran the basic algorithm 1000
iterations before selecting the tiling that gave the highest
score. The scores Needleman-Wunsch, the greedy tiling, and
the random tiling are shown in Tables 2, 3, and 4.

Table 2: Needleman-Wunsch similarity scores.
Sequence Siblings First Cousin Second Cousin

cd06815 860.20 704.88 653.56
cd06817 672.00 333.17 76.96
cd06822 496.50 115.25 143.17
cd06825 2050.33 -199.14 -1593.89
cd06826 987.75 985.43 815.75

Table 3: Greedy Tiling similarity scores.
Sequence Siblings First Cousin Second Cousin

cd06815 472.87 353.09 321.17
cd06817 391.52 313.01 190.65
cd06822 357.96 236.28 175.46
cd06825 1499.11 327.42 128.24
cd06826 325.48 387.07 289.09

Table 4: Random Tiling similarity scores.
Sequence Siblings First Cousin Second Cousin

cd06815 37.07 23.90 20.93
cd06817 56.23 44.63 42.90
cd06822 22.88 25.82 27.36
cd06825 68.57 49.08 83.88
cd06826 39.55 33.65 23.44

We also show the same results as a set of graphs in
Figures 3, 4, and 5.

4. Discussion of the Results
The essential difference between the Needleman-Wunsch

and the tiling similarity measures is that the Needleman-
Wunsch method is good for random mutations, insertions

Fig. 3: Needleman-Wunsch similarity scores.

Fig. 4: Greedy Tiling similarity scores.

and deletions but is not good for reordering of parts of
the sequences. In contrast, the tiling similarity measures
are designed to be able to detect similarities in case of
reordering. For example, recall that for the sequences X =
WARICDFLRE and Y = FIREICEWAR a high tiling
similarity was found in Example 1. In this case, it is possible
to imagine a common ancestor A = FLREICDWAR that
branches and develops first as

FLREICDWAR→mutate L/I, D/E FIREICEWAR

and second as

FLREICDWAR→switch WAR/FLRE WARICDFLRE

yielding, therefore, Y and X , respectively.

Transpositions of parts of the genome are known to occur
and would be reflected also in the amino acid sequences of
the corresponding proteins. While mutations are expected
to be much more frequent than such transpositions, they
may not be enough to explain very distant evolutionary
relationships because over large evolutionary distances some
transpositions may also occur. The proteins we studied are
considered ancient proteins because they help build the
bacterial cell wall, which is an essential part of bacteria.
Hence some transpositions may have occurred in various
branches of this ancient evolutionary tree.
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Fig. 5: Random Tiling similarity scores.

The natural expectation for all the similarity measures
was the following:

1. All the similarity values were positive.

2. The average similarity among siblings was higher than
among first cousins which was higher than among second
cousins.

The Needleman-Wunsch algorithm, as shown in
Figure 3, did not fulfil these expectations in three instances.
In two instances, it gave a negative similarity value, namely
for first and second cousins for cluster cd06825. In addition,
for cluster cd06822 the similarity for first cousins was
significantly less (115.25) than the similarity for second
cousins (143.17).

The greedy tiling method gave only positive scores. The
average scores for first cousins were always larger than the
average scores for second cousins. The only anomaly was
in cluster cd06826 where the average sibling similarity was
slightly less (325.48) than the average first cousin similarity
(387.07).

The random tiling method also gave only positive
scores. The average scores for first cousins were less than
the average scores for second cousins in the case of two
clusters, namely, cd06822 and cd06825. In the case of
cd6822, the average sibling similarity was also slightly
less than the average first cousin similarity. Hence the
random tiling method did not fulfil the expectations in three
instances.

Therefore, our experiments suggest that the greedy tiling
method is the most robust method, especially comparing
larger evolutionary distances (first cousins versus second
cousins). The random tiling method seems intermediate in
performance. Probably it can be improved to be as good
as the greedy tiling method by increasing the number of
times its basic algorithm is repeated. Finally, the Needleman-

Wunsch algorithm was good in comparing shorter evolution-
ary distances (siblings versus first cousins) but deteriorated
considerably in comparing longer evolutionary distances
(first cousins versus second cousins).

The experimental results suggest that the tiling similarity
measure is better than the Needleman-Wunsch measure
for distant evolutionary relationships. Intuitively, the reason
seems to be that the tiling similarity allows transpositions
of a subsequence on the genome. These transpositions may
be only relatively rare evolutionary changes compared to
random mutations, Nevertheless, if a significant number of
transpositions accumulate in at least one branch of a large
evolutionary tree, then the Needleman-Wunsch algorithm
may be unable to detect them and give a low (even negative)
similarity score for distantly related sequences. Based on the
experimental results, we suspect that cluster cd06825 may
contain some transpositions because the Needleman-Wunsch
algorithm gave negative similarity scores for first counsins
and second cousins, but both of the Greedy Tiling and the
Random Tiling algorithms gave positive scores. Further, in
the Random Tiling method the average similarity increased
from first cousins to second cousins for the same cluster.

The above type of anomaly may be explained in an
example. Suppose that in an evolutionary tree branch A has
some transpositions that are not shared with its first cousin
branch B and also not shared by A and B’s second cousin
branch C. In this case, the similarity between A and B, which
is a first cousin similarity, could be lower than the similarity
between B and C, which is a second cousin similarity. Hence
if the evolutionary tree is extremely simple and has no other
first cousin pairs and no other second cousin pairs beside
A and C and B and C, then the average similarity among
first cousins could be less than the average similarity among
second cousins. The larger the evolutionary tree, the less
likely such anomalies could occur. It is important to note
that the cd06825 cluster is the smallest in size as shown in
Table 1.

5. Conclusion and Future Work

We need to investigate further the reasons why the tiling
similarity measure is better than the Needleman-Wunsch
similarity measure for distant evolutionary relationships. In
particular, it would be interesting to find actual examples of
transpositions of subsequences within any of the clusters.

Another direction for further experiments would be to con-
sider even larger evolutionary trees where we have enough
data for third and fourth cousins. Experiments on such a
larger data could show clearer the differences among the
similarity measures. We suspect that the Needleman-Wunsch
algorithm will perform even poorer on higher cousins but the
tiling similarity algorithms will keep detecting well the more
distant evolutionary relationships.
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Abstract - Bioinformatics is a new science that is glowing 

out in the recent years. It is a multidisciplinary science that 

is made out of different kinds of other scientific fields like 

biology, computer science, chemistry, statistics, mathematics 

and others. It was a big challenge for researchers to describe 

this new field in a systematic scientific way and bring out the 

attention of its applications and services; one of these 

important services that Bioinformatics can be applied in, is 

the cancer studies, research and therapies for many 

beneficial reasons.  This paper will give a clear glance 

overview of bioinformatics, its definition, aims, applications, 

technologies, the large amount of data produced in the 

biological field and how bioinformatics can organize, analyze 

and store them, discuss some algorithms that can be 

implemented over bioinformatics data, and how to apply 

bioinformatics to discover and diagnose diseases like cancer. 

Keywords: Bioinformatics, Applications, Technologies, 

Data, Algorithms, Cancer.  

 

1 Introduction 

  Bioinformatics is a new multidisciplinary field that 

comes out from the combination of other sciences and fields 

like biology, computer science, statistics, chemistry, 

mathematics and even more [3, 6, 8, 9, 14, 15, 16, 17]. In 

recent years new sciences have risen up due to the demand in 

understanding more the world around us like Bioinformatics, 

Biotechnology, Computational Biology, Biochemistry and 

others. It was a big challenge for researchers and scientists to 

give an adequate definition for each of these newly emerged 

sciences [5, 9, 18]. One of these sciences that have a huge 

influence in the medical field is Bioinformatics but also can 

play a key role in other fields like agriculture, livestock and 

even space explorations [1, 19]. Bioinformatics which 

attracts people in the academic field in addition an interest to 

those in the medical industry [4, 15, 20, 21]. 

There were many contributions to define and explain 

Bioinformatics in scientific ways, but all researchers agree 

that it is a combination of Biology, Computer Science, 

Statistics and Mathematics. Each one of these disciplines is 

playing an important role for collecting, organizing, 

analyzing and digitizing the biological data and even 

classifying and storing it in an efficient manner [1, 3, 12, 16, 

19]. 

The main purpose of this paper is explore and explain 

Bioinformatics in a more scientific way, the paper will try to 

define Bioinformatics scientifically and try highlight 

applications of bioinformatics in the medical sector specially, 

and in the diagnosis of critical diseases like cancer. The race 

of bioinformatics research is now passing long rounds in 

many areas in the Biological life, so; the goal of this paper is 

to provide an overview summary of bioinformatics definition 

from different articles written in this field, what are the main 

implementations and aims under the skin of this science, 

how to understand the data and what are the most important 

databases used, give a snapshot over the most common 

algorithms implemented in the field and how important to 

apply bioinformatics in the cancer research and study. 

This paper will target four categories of readership who are 

interested in the field. (1) Students who are interested in 

studying this new field. (2) Instructors who would like to 

prepare a fundamental course to teach in bioinformatics. (3) 

Researchers who would like to understand more about 

Bioinformatics and the relationship with cancer. (4) Experts 

in the medical field who are interested in implementing the 

understanding of this field in the medical life. 

The remainder of this paper will be structured as follows: 

Section 2 will discuss the background in methodologies 

applied in this paper; while Section 3 will focus on 

Bioinformatics definition, on the other hand section 4 will 

figure out the aim of studying the field. Moreover in section 

5 data, data types and databases will be presented in 

Bioinformatics. On the other hand, section 6 will discuss the 

most common Algorithms implemented in Bioinformatics. 

Section 7 will discuss the role of Bioinformatics in cancer 

research and how important to be implemented in that field. 

In section 8 current problems in Bioinformatics are 

represented, and finally section 9 will conclude this paper. 

2  Background in methodologies 

 As well as sufficient number of papers, articles, 

websites, and books are talking about Bioinformatics. It was 

clear to us that all have no unified definition for 

Bioinformatics as a science or a new born field emerging in 

the life of biology and technology, add to that there were rare 

papers systematically constructing and directing the road for 

all Bioinformatics basic knowledge. From this point an effort 

was implemented to conduct a deep search to collect as many 

papers and articles discussing the historical and 
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fundamentals of Bioinformatics in order to establish a 

unified basis form understanding the basics of Bioinformatics 

and links that with importance of applying the field in the 

cancer study, research and therapy.  More than seventy 

papers, articles, websites and books that are talking about 

introduction in bioinformatics were collected. A profound 

reading took place to classify the papers. To write about the 

basics, we put out all the keywords (bioinformatics, database, 

algorithms, technologies, cancer, applications), then we 

started classifying the papers related to the collected data as 

in Table 1.  

Table 1: Summery of Papers Number Read 

Topics No. of Papers 

Bioinformatics Definition 49 

Databases 12 

Algorithms 6 

Technologies and Tools 12 

Applications 12 

Cancer 12 

 

To remark the numbers in the table, 49 references were 

introducing a definition to Bioinformatics, 12 of them talked 

about the databases in bioinformatics, 6 discussed the most 

important algorithms used in Bioinformatics, 12 mentioned 

out the most important technologies and tools used in the 

field, the same number discussed where Bioinformatics is 

applied, and also the same number introduced the 

relationship of the field with cancer. After that grouped out 

the data that are relevant together from the different 

resources and put them together for the literature review and 

the findings. It was noticed that the different resources 

collected were not focusing on a basic knowledge of 

Bioinformatics, they started by defining the field then 

highlighting one part of the field like databases, tools, 

applications, algorithms, etc… 

Our contribution in this paper is to gather all the distributed 

fundamental information about Bioinformatics and 

summarize them in a systematic fundamental way. Jawdat 

[1] discussed that the storage and analysis of biological data 

using certain algorithms and computer software is called 

Bioinformatics, so it was defined as the design, construction 

and use of software tools to generate, store, annotate, access 

and analyze data and information related to molecular 

biology.  The authors in [2] said that bioinformatics is 

basically a study to model, to organize, to understand and to 

discover interesting information associated with the large 

scale molecular biological databases. The term Bio 

(Molecular Biology) informatics (Information Technology) 

which encompasses tools and methods used to manage, 

analyze, and manipulate large set of biological data.  In [3] 

the authors claimed that the use of bioinformatics to 

organize, manage, and analyze genomic data which is the 

genetic material of an organism, this new IT discipline fuses 

computing, mathematics, and biology to meet the many 

computational challenges in modern molecular biology and 

medical research. Chavan in [4] argued that biological data 

include extensive information regarding genomic sequences 

of different species, changes due to evolution, and changes in 

their protein sequences. Such a massive data cannot be 

handled with ease. This requires systematic sieving of data to 

categorize and catalogue them. Based on this need arose the 

field of Bioinformatics. So Bioinformatics can be defined as 

the discipline, which encompasses branches like biology, 

computer science, IT and mathematics. It is a science of 

managing and analyzing vast biological data using advanced 

computing techniques. On the other hand, in [5] the authors 

commented that defining the terms bioinformatics and 

computational biology in addition is not an easy task. They 

are both multidisciplinary fields, involving researchers from 

different areas of specialty, including (but in no means 

limited to) statistics, computer science, physics, 

biochemistry, genetics, molecular biology and mathematics. 

In [6] Zadeh defines bioinformatics as a new discipline that 

has emerged from the areas of biology, biochemistry, and 

computer science. Bioinformatics is an interdisciplinary and 

rapidly evolving field that has emerged from the fields of 

biology, chemistry and computer science. Add to that 

Kasabov in [7] said that bioinformatics is concerned with the 

application and the development of the methods of 

information sciences for the analysis, modeling and 

knowledge discovery of biological processes in living 

organisms. Furthermore in [8] the authors illustrate 

Bioinformatics as the combination of biology and 

information technology which focuses on cellular and 

molecular levels for application in modern biotechnology. So 

as a result they said that Bioinformatics is the combination of 

biology and information technology. It is the branch of 

science that deals with computer based analysis of large 

biological data sets. Fenstermacher in [9] is defining 

Bioinformatics as a multifaceted discipline combining many 

scientific fields including computational biology, statistics, 

mathematics, molecular biology, and genetics. So 

Bioinformatics is conceptualizing biology in terms of 

macromolecules and then applying “informatics” techniques 

to understand and organize the information associated with 

these molecules, on a large scale. Moreover, Nair in [10], 

explained Bioinformatics to be the application of computer 

sciences and allied technologies to answer the questions of 

Biologists, about the mysteries of life. In addition the authors 

in [11] discussed that bioinformatics is a new and rapidly 

evolving discipline that has emerged from the fields of 
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experimental molecular biology and biochemistry, and from 

the artificial intelligence (AI), database, pattern recognition, 

and algorithms disciplines of computer science. Finally, in 

[12] the authors summarized the definition of bioinformatics 

as the application of computer technology to the management 

of biological information. 

 

3 Bioinformatics Definition 

 The origin of bioinformatics goes back to Mendel’s 

discovery of genetic inheritance in 1865. Since the 1953, big 

revolution achievements took place by James Watson and 

Francis Crick as they determined the structure of DNA [13]. 

Later in 1960s, the hard work of bioinformatics research 

started, symbolized by Dayhoff’s atlas of protein sequences 

and the early modeling analysis of protein and RNA 

structures [12]. After a while, the term Bioinformatics came 

to sense and use in around 1990s and was described by the 

management and analysis of DNA, RNA, and protein 

sequence data.  Later in 2000 a big achievement took place 

which is the announcement of the initial draft of the Human 

Genome Sequence. Later after 13 years of research and work 

from 1990 up to spring 2003, in which the official 

announcement of the Human Genome Sequence Project took 

place. In this project around 20,000 – 25,000 of human genes 

where discovered, so the access to this huge amount of gene 

data and its information was not an easy task for the 

biologists and for this it opened the doors for a new era in 

modern biology with an assistant to new computerized 

technology or in other words the marriage between Biology 

and Computer Science to bear a new baby known as 

Bioinformatics which will play a significant role in 

gathering, analyzing, classifying and storing genetic data 

collected from the human project or at biological points in a 

more efficient or powerful way. From here raised the 

question, what is the importance of Computers in Biology? 

The accurate answer of this question will be resulted out 

from the following formula: Biology + Computer Science = 

Bioinformatics. So what is Bioinformatics? What are the 

main problems that this field can help in?  

As a result of the literature review, Bioinformatics can be 

defined from different perspectives, first from the English 

Oxford Dictionary, and then from the summary of all 

researchers’ definitions. 

Bioinformatics: (According to the Oxford English 

Dictionary) (Molecular) bio – informatics: bioinformatics is 

conceptualizing biology in terms of molecules (in the sense 

of Physical chemistry) and applying “informatics techniques” 

(derived from disciplines such as applied math, computer 

science and statistics) to understand and organize the 

information associated with these molecules, on a large scale. 

In short, bioinformatics is a management information system 

for molecular biology and has many practical applications. 

So, Bioinformatics can be defined as a new hybrid emerging 

field of science in which biology, computer science, 

mathematics, statistics and Information Technology merge 

and interact together to form a whole new discipline field. It 

is a science used to manage, analyze, organize, and classify 

the huge amount of biological data by using well developed 

algorithms, computational and statistical techniques, 

designing and construction of software tools and theories to 

solve different problems arising from biological data and 

help in generating, storing, accessing and analyzing data and 

information that are related to molecular biology. Noting that 

the suffix “informatics” is from European origin; 

“informatique” means and indicates computer science in 

French and Bio means Biology [13]. Figure 1 below 

illustrates all the sciences that make up the Bioinformatics 

field. 

Bioinformatics

Computer 

Sciences
Biology

Biochemistry

StatisticsMathematics

Information 

Technology

 

Figure 1: Bioinformatics multidisciplinary sciences 

Bioinformatics has four main components: Databases, 

Computational Tools, Algorithms and Software. Biologists 

and other related people must be aware of the difference 

between Bioinformatics and Computational Biology and this 

is not an easy task, the latter is not a “field” like 

bioinformatics but it is “an approach” involved in using 

computers to study biology [9]. So, bioinformatics is 

concerned with information while computation biology is 

concerned with hypothesis [14]. 

4   Bioinformatics Aims 

 There are five main aims of Bioinformatics [12]: 

1. To organize the biological data in an easy manner that 

helps biologists and researchers to store and access exiting 

information. 

2. To develop and design software tools that help in the 

analysis and management of data. 
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3. To use these biological data in the analysis and 

interpretation of the results in a biological meaningful 

manner. 

4. To assist researchers in the pharmaceutical industry to 

understand the protein structures that lead and help in the 

drugs industry development. 

5. To help and assist physicians in the medical fields to 

understand gene structures that will help in detecting and 

diagnosing disease like cancer. 

 

5 Biological Data, Data types and 

Databases 

 Biological Data is often characterized by huge size. 

There are four important data generated and collected at 

biological points [10]: DNA, RNA, Protein Sequences, and 

Micro Array images. The first 3 of them are text data and the 

last one is a digital image. As the different biological data 

generated, it can be noticed that these data is represented 

with different types. There are four types of the data 

structures [13]: String to represent DNA, RNA, and protein 

sequences; Trees to represent protein structures; Graphs to 

represent metabolic and signaling pathways; and Strings 

(like words and phrases) are also used to express comments 

that reflect meanings to researchers. Moreover, researchers 

and biologists are also interested in substrings, subtrees and 

subgraphs.  

The large, huge and complex amount of biological data 

needed to be stored, accessed and manipulated in an efficient 

and powerful manner. So it was the need to build 

Bioinformatics databases which are classified into sequence 

databases, microarray databases, genome databases, protein 

structures databases and many more [2].  

The sequence databases represent sequence information of all 

the organisms. GeneBank at the National Center for 

Biotechnology information, EMBL (European Molecular 

Biology Laboratory) DNA database,  Bethesda and DNA 

Data Bank Japan (DDNJ), and Protein databases at SWISS-

PORT (Protein sequence database at Swiss Institute of 

Bioinformatics, Geneva) all of them are the largest databanks 

of the sequence databases.  Micro array databases include 

micro array gene expression under different biological 

conditions. Example databases of this category are Array 

Express, and Gene Expression mnibus. Genome databases 

collect organisms’ gene (DNA) sequences. Example of this 

category databases are Xenbase, Corn, SEED, and RGD. 

There is another example of Bioinformatics databases that 

comes from the integration with cheminformatics which is 

the DrugBank database 

(http://redpoll.pharmacy.ualberta.ca/drugbank), this database 

contains 4300 drug entries for and more than 6000 protein 

sequences which are linked to these drug entries [1]. 

6 Common Bioinformatics Algorithms 

[12-13] 

 This section sheds the light on algorithms that are of 

interest to bioinformatitions and researchers. The following 

are some of the most important algorithmic trends in 

bioinformatics: 

1. Finding similarities among strings (such as proteins of 

different organisms). 

2. Detecting certain patterns within strings (such as 

genes). 

3. Finding similarities among parts of spatial structures 

(such as motifs). 

4. Constructing trees (called phylogenetic trees expressing 

the evolution of organisms whose DNA or proteins are 

currently known). 

5. Classifying new data according to previously clustered 

sets of annotated data. 

6. Reasoning about microarray data and the corresponding 

behavior of pathways. 

7 Bioinformatics Applications in Cancer 

Research 

 Cancer is classified as a genetic disease in which the 

cells cannot follow the sequential phases of the cell cycle and 

divide in a normal manner. That is cells will lose the control 

in the cell cycle and starts to divide uncontrollably and the 

chromosomes of the cancer cells will be arranged incorrectly, 

or have large pieces missing. 

Due to large and fast steps in the medical field research, a lot 

of efforts are extended in order to find a way to detect, 

diagnose and treat such hazardous disease. Also the raise of 

the Human Genome project discovery in 2003 had put more 

pressure on Bioinformatics to be applied in the cancer 

therapy.  Bioinformatics is now being applied in the cancer 

research and therapy [21], and it is clear that experts and 

researchers have implemented rapid and expanded amount of 

research on the tools of bioinformatics that are considered 

necessary during the cancer therapies. One of these 

applications is to use the computerized models that represent 

biological data and information to know about the quantity of 

cancer cells in the body or about the biological state of the 
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patient [22]. Such way has a positive result after the cancer 

therapy in which experts are now being able to monitor the 

tumor growth that was not possible earlier during the 

absence of bioinformatics. In addition, many studies have 

indicated that gene expression of cancer cells is imperative 

and this will ensure efficient results after the treatment [9, 

23]. Also bioinformatics can be applied to cancer by using 

the database among the cancer cells’ expression and to study 

the drug response and tumor response also [23]. Until now 

bioinformatics studies show that it had succeeded in the cases 

of breast and ovarian cancer and future will insure the 

effectiveness of bioinformatics in the therapies of other 

cancer types [24]. Moreover, bioinformatics has made it 

possible for therapists to analyze immune responses that 

allow an understanding of the differences between controlled 

and uncontrolled tumors for better treatment of cancer 

patients. In other words bioinformatics succeeded in 

explaining out the effects of the chemotherapy and the 

radiation therapy with the help of the mathematical models 

that are part of the bioinformatics discipline. It was noticed 

that experts and physicians try to use the multiple databases 

available and the different search engines like Google in 

order to look for biological data and apply bioinformatics in 

cancer research and treatment, that due to some 

organizations and experts limit their work and information 

and do not allow other experts to benefit from the same work 

and information. In other words, integration of 

bioinformatics databases data types, and structures are an 

important factor to decide the future of Bioinformatics 

application the medical field science and especially in the 

cancer treatment and therapies. 

The Human Genome Project has enriched the human 

research community with massive amount of huge biological 

data and information by the year 2003 [1]. In this case 

Bioinformatics has found its applications in many areas, and 

below is a list of some of the important problems where 

applications in Bioinformatics can be applied in[4, 10]: 

• Analyzing DNA sequence data to locate genes. 

• Analyzing RNA sequence data to predict their structures. 

• Analyzing protein sequence data to predict their location 

inside the cell. 

• Analyzing gene expression images. 

• Understanding genetic diseases like cancer, cystic fibrosis, 

and sickle cell anemia. 

• For gene therapy in general. 

• In designing drugs for better treatment, and avoid drugs 

side effects and develop better drug delivery system.  

Moreover, NASA’s experts are using Bioinformatics in their 

operations to explore the space and study the universe. So, 

NASA is also interested in Bioinformatics in their researches 

and discoveries. 

8 Conclusions 

 The paper tried to give an overview of this 

multidisciplinary field, by forming a unique clear definition 

that is introduced by the reaction of Biology and Computer 

Science in addition to some assessment factors like statistics 

and mathematics to result into the newly born field 

“Bioinformatics” after this strong reaction.  At the end the 

paper highlighted the importance of applying bioinformatics 

in cancer research which will open the horizons for experts 

and researchers to continue in this specialized field.  The 

future of Bioinformatics will be bright in many biological 

and life areas, but one of the important issues that must be 

worked in for this; is the integration of the wide and huge 

amount of data sources and databases to unify them for better 

life and for a huge revolution in the biological life as will 

reaching the moon. 
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Abstract 

In the present study, a novel series of 3,4 dihydro pyrimione derivatives were docked against 
the mycobacterium tuberculosis protein. Docking study was performed to rationalize the 
possible interactions between test compounds and active site of protein 1DQZ. The SAR 
study reveals the importance of presence ofelectronegative group for better activity.The 
selected residues for docking are LEU540, MET625, PHE650, ILE662, and ASP668. Library 
of the molecules was constructed based upon structural modifications of pyrimidine nucleus. 
Structural modifications  were performed for the series of pyrimidines.Thus a library of 
pyrimidine derivatives was constructed based upon the feasibility of synthesis and in silico 
screened to prioritize the molecules and to obtain potential lead molecules as  inhibitors.The 
three Dimension structure of the  protein is retrived from the PDB and its active sites are 
predicted from Qsite Finder.All the 48 structures of the ligand were drawn using 
Chemsketch12 and they are converted to PDB format. The docking was carried out using 
auto dock software 4.In these docking studies thio analogues are showing good binding 
energy.Fourteen compounds exhibiting good binding energy.The  compounds can be 
synthesised in future and invivo activities can be carried out.Further structural analysis of 
docking studies on our compound suggests attractive starting point to find new lead 
compounds with potential improvements. 
 

. 
Keywords: InSilicScreening, Docking,anti tubercular, Pyrimidines. 
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INTRODUCTION 

Tuberculosis (TB) is a chronic infectious disease caused by mycobacteria of the 
‘‘tuberculosis complex’’, including primarily Mycobacterium tuberculosis, but also 
Mycobacterium bovis and Mycobacterium africanum . It was estimated that nearly 1 billion 
more people will be infected with TB in the next 20 years. About 15% of that group  will 
exhibit symptoms of the disease,and about 3.6% (36 million) will die from TB if new disease 
prevention and treatment measures are not developed  The identification of novel target sites 
will also be needed to circumvent the problems associated with the increasing occurrence of 
multi-drug resistant strains. To do this, biochemical pathways specific to the mycobacteria 
and related organisms’ disease cycle must be better understood. Many unique metabolic 
processes occur during the biosynthesis of mycobacterial cell wall components . One of these 
attractive targets for the rational design of new antitubercular agents are the mycolic acids, 
the major components of the cell wall of M.tuberculosis[1] . Mycolic acids are high 
molecular weight C74eC90 a-alkyl, b-hydroxy fatty acids covalently linked to arabino-
galactan.In silico screening methods such as docking have a great advantage as compared to 
2D similarity and 3D pharmacophore search methods as it utilizes the 3D receptor structure a 
quantitative way..[4] 
Docking is often used to predict the binding orientation of   ligand to their protein targets in 
order to predict the affinity and activity of the small molecule. Hence docking plays a vital 
position in the rational design of drugs. M.tuberculosis a small aerobic non motile bacillus is 
the primary cause of tuberculosis. High lipid content of this pathogen accounts for many of 
its unique clinical characteristics. Each protein possesses a mycolyl transferase activity 
required for the biogenesis of trehalose dimycolate, a dominant structure necessary for 
maintaining cell wall integrity[3].The docked complex of the designed compounds were 
found to display good binding affinity to the receptor. Molecular docking studies help to 
determine possible interaction of ligand with the enzyme[2]. 

METHODOLOGY 

• All chemical structures were drawn using chem sketch software and all the files were 

converted to PDB file format.  

• Protein target was downloaded from the PDB(Protein Data Bank). PDB ID 1DQZ 

• Active site in protein target were determined from the online software qsite finder. 

• Docking of protein with pyrimidine derivatives were carried using Autodock 4.0. 

• The binding energy and the hydrogen bonds were observed as docking parameters. 

RESULTS AND DISCUSSION 
5-(1H-benzimidazol-2-yl)-4-(4-phenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one has two 
hydrogen bond. The hydrogen 1- NH of 3,4 pyrimidine dione  interact with the carbonyl 
oxygen of tryptophan TRP765 amino acid residue of protein to form hydrogen bond and its 
bond length is 2.176 A.The carbonyl oxygen of   3,4 pyrimidine dione interact with the amine 
part of aspargineASN 721 and its bond length is 2.083. 5-(1H-benzimidazol-2-yl)-4-(2-
chlorophenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one forms two hydrogen bond. The 
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carbonyl oxygen of   3,4 pyrimidine dione interact with the amine of serine SER 624 forms 
hydrogen bond with length of 2.108 A.The 3-N of benzimidazole of ligand interact withNH 
in indole nucleus of  tryptophanTRP762 and its bond length is 2.017. 5-(1H-benzimidazol-2-
yl)-4-(4-chlorophenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one hydrochloride forms one 
hydrogen bond. The 3-N of benzimidazole of ligand interact with2 aminoin side chain of  
tryptophan762 and its bond length is 2.485. 5-(1H-benzimidazol-2-yl)-4-(4-hydroxyphenyl)-
6-methyl-3,4-dihydropyrimidin-2(1H)-one hydrochloride forms three hydrogen bond. The  4’ 
OH of the ligand interact with carbonyl oxygen of  glutamic acid GLU 655 and its bond 
length is 2.152. The  4’ OH of the ligand interact with NH of in indole nucleus of  
tryptophanTRP762 and its bond length is 2.061A. The 2nd position oxygen of 3,4 pyrimidine 
dione  interact with the hydrogen of hydroxyl  of threonine THR760 amino acid residue of 
protein to form hydrogen bond and its bond length is 1.747 A. 5-(1H-benzimidazol-2-yl)-4-
(2-hydroxyphenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one has two hydrogen bond . The 
2nd position oxygen of 3,4 pyrimidine dione  interact with with NH in indole nucleus of  
tryptophanTRP762 to form hydrogen bond and its bond length is 1.747 A. The 3-N of 
benzimidazole of ligand interact with NH of imidazole ring in histidine and its bond length is 
2.24A. -(1H-benzimidazol-2-yl)-4-(furan-2-yl)-6-methyl-3,4-dihydropyrimidine-2(1H)-
thione forms one hydrogen bond . The hydroxyl group of serine  SER 624 interact with the 3-
N of benzimidazole of ligand and its bond length is 1.923A. 

 

 Ethyl 4-(4-chlorophenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate forms 
two hydrogen bond . The free amino group of asparginine ASN 552 interact with carbonyl 
oxygen of the ester moiety of ligand and its bond length is 2.142. The 2nd position oxygen of 
3,4 pyrimidine dione  interact with free amino group of leucine LEU 540 and its bond length 
is 2.009A. ethyl 4-(3-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-
carboxylate forms two hydrogen bond. The 2nd position oxygen of 3,4 pyrimidine dione  
interact with free amino group of leucine LEU 540 and its bond length is 1.023A.The 
carbonyl oxygen of ester moiety interacts with hydrogen of carboxylic acid group of glycine 
GLY 518. ethyl 4-(4-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-
carboxylate formed two hydrogen bond. The 2nd position oxygen of 3,4 pyrimidine dione  
interact with free amino group of leucine LEU 540 and its bond length is 2.138A and also 
interact with the hydroxyl group of serine SER 624 and its bond length is 1.325. ethyl 4-(2-
hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate had three 
hydrogen bonds.The hydroxyl  oxygen interact with the guanidine nitrogen of arginine and its 
bond length is 1.992A. The carbonyl oxygen of ester moiety interacts with hydrogen of 
hydroxyl group of serine SER 124 and its bond length is 1.968A and also interact with amino 
group of leucine LEU 40 and its bond length is 2.159. ethyl 4-(4-aminophenyl)-6-methyl-2-
thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate forms two hydrogen bond . The 2nd 
position oxygen of 3,4 pyrimidine dione  interact with NH of in indole nucleus of  
tryptophanTRP262 and its bond length is 2.25A.The 3rd position NH of  3,4 pyrimidine dione  
interact with carboxylic hydrogen of histidine HIS 250and its bond length is 2.06A. 
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 Ethyl 4-(4-hydroxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate 
had two hydrogen bonds. The carbonyl oxygen of ester moiety  interact with amino group of 
leucine LEU 40 and its bond length is 2.108.The oxygen of ester moiety interact with the 
hydrogen of hydroxyl group of  serine SER 124 to form hydrogen bond with length of 
2.048A. ethyl 4-(2-hydroxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-
carboxylate had three hydrogen bond . The carbonyl oxygen of ester moiety  interact with 
amino group of leucine LEU 41 and its bond length is 2.235A. The carbonyl oxygen of ester 
moiety  interact with hydroxyl group of serine SER124 and its bond length is 1.047A.The 2’ 
hydroxyl oxygen of ligand interact with the hydrogen of amino group of arginine ARG41 and 
its bond length is 2.004.ethyl 4-(4-hydroxy-3-methoxyphenyl)-6-methyl-2-oxo-1,2,3,4-
tetrahydropyrimidine-5-carboxylate had three hydrogen bond. The hydroxyl oxygen of 
vaniline interact with hydroxyl hydrogen of serine SER 624 and its bond length is 
2.223A.The 3-NH  of 3,4 pyrimidine dione  interact with oxygen of carboxylic acid of 
tryptophan TRP765to form hydrogen bond with length of 1.583A. The 2nd position oxygen of 
3,4 pyrimidine dione  interact with free amino group of ASN 721andforms hydrogen bond 
with length of 2.115A. The carbonyl oxygen of ester moiety  interact with NH of in indole 
nucleus of  tryptophanTRP762 with hydrogen bond length of 1.003A. 

Conclusion: 

The benzimidazole substitution at 5 the position increases the binding energy.unsubstituted 
3,4 dihydro pyrimidones have good binding energy and more number of hydriogen bond.In 
pyrimidine derivative first positionNH, 2nd position carbonyl, 3n of benzimidazole is needed 
for the activity electro negativity substitution increases the activity.The predicted active sites 
from docking were TRP765,ASN721,SER624GLU 655 HIS 760etc.. 
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Abstract -  The present paper proposes a comparative study 

of two statistical tools integrated in R-Bioconductor Project, 

Expander, and Bioinformatics ToolBox of Mathworks, for 

gene selection in microarray data analysis. The main 

objective is to show the impact of results on selected genes 

when using statistical algorithms under different 

environments. This study compares results related to two data 

sets, the first one is the well knows Latin Square Affymetrix 

data, and the second one is provided from a public data base. 

Keywords: Gene Selection, Statistical Algorithm, Soft Tools 

Comparison 

 

1 Introduction 

The technology of DNA microarrays currently experiencing 

an exceptional growth and has attracted tremendous interest in 

the scientific community. This interest lies in its efficiency; 

speed of obtaining results; and in its ability to study the 

expression of thousands of genes simultaneously [1].  

The use of microarray in various fields including biology and 

health, allows development of several technologies grafting 

and in situ [2, 3]. Therefore several computational and 

statistical tools were developed to store, analyze and organize 

data [4].  

A DNA chip consists of a DNA fragment immobilized on a 

solid support according to an ordered arrangement. The 

principle is based on the chip hybridization using a probe 

carrying the radioactive labeling [5]. Intensity of the signal 

generated is measured using a scanner. Image obtained, is 

analyzed to quantify the level of gene expression. Given the 

volume of data generated by this technology, several statistical 

methods based on the statistical t-test [6] were developed 

under some soft- tools for analyzing and selecting genes. But, 

the literature remains very poor in comparative studies 

showing the impact of the used algorithm and used materials 

in gene selection procedure. For this, the study proposed in 

this paper comes to show the performance of the statistical 

algorithm when using different soft tools. 

This paper is organized as follows: an overview on 

Affymetrix technology and description of the three soft tools 

and statistical methods used in gene selection are given in 

section 2. In section 3, we present our comparative study of 

the data sets with some explanatory plots. We concluded this 

paper by discussing the results of this study. 

2. Technologies and Tools 

 Affymetrix Gene Chip represents a very reliable and 

standardized technology for genome-wide gene expression 

screening [7]. In this technology; probe sets of 11–20 pairs 

with 25-mer oligonucleotides are used to detect a single 

transcript. Each oligonucleotide pair consists of a probe with 

perfect match to the target (PM probe) and another probe with 

a single base mismatch in the 13th position (MM probe) [8]. 

In the absolute analysis the goal is to answer the question: if 

the transcript of a particular gene is present or absent? The 

advantage to answer this question is that we can easily 

evaluate the expression and interpretation of results, by 

comparing the p-values expression levels off all genes to 

threshold α1 and α2. Affymetrix technology offers two levels 

by default of α1 and α2 significances (α1=0, 04 and α2=0, 06). 

Genes with expression p-values under α1 are called Present, 

genes with expression p-valueshigher then α2 are called 

Absent,the genes with p values between α1 and α2are 

calledMarginal (Fig.1). 

 

 
Fig.1: Significance levels in absolute analysis study 

 

When the experiments concerned comparison of two 

conditions (treated # baseline) the objective of the 

comparative analysis is to answer the question: does the 

expression of a transcript on a chip (treated) change 

significantly with respect to the other chip (baseline)? In this 

context, five possible distinct answers are: Increase, Decrease, 

Marginal Decrease, Marginal Increase and No Change. These 

detections calls are giving by comparing change p-values of 

each gene thefour thresholds chosen by the analysis for 

Affymetrix technology. Those thresholds are given in the 

Fig.2 [9]. 

Based on absolute and comparative analysis results, several 

methods have been developed to select the genes of interest. 

Many of these methods would be quite appropriate if genes 

would be analyzed one at a time. Some methods like T-test, 
ANOVA and F-test can easily be carriedout for many genes 

simultaneously [10], 
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In the case of a lot of experiments, statistical test for 

selection is difficult to apply and multiple corrections need to 

be made. The most common multiple comparisons correction 

is the Bonferoni correction [11]: Rather than adjusting p-

values for individual genes, he suggests to control the False-

Discovery Rate (FDR) which is the fraction of false positives 

among the genes that are called, changed [12]. 

 

 

Fig.2: Significance levels in analyzer comparative study 

 

In the comparison study of this work, we have chosen two 

well used methods for gene selection: 

The SAM statistical algorithm [13] 

The FDR controlling algorithm [11]  

These algorithms, integrated in three software tools, are 

used as gene selection tools. Before presenting results, we 

recall in the two followed subsections the used data and 

software tools.  

We used two data sets available on the public databases 

(NCBI and EBI) [14,15].  

The first data set [16] includes 14 samples each of three 

replicated microarray oligonucleotides, in which multiple 

RNAs were added to the growing concentrations a common 

RNA preparation. Genes that should show variations in 

intensity are known (spikes genes), for this these data are 

generally used as references to validate developement 

algorithms and software. 

The second data we used provide from the article [17]. In 

this study we have to compare healthy and affected 

individuals, where this last have a dysfunction of lymphocytes 

.Different samples were taken for each dysfunction: 10 

samples with Waldenstrom Macroglobulinemia (WM), 12 

with Multiple Myeloma (MM), 11 with Chronic Lymphocytic 

Leukemia (CLL), with normal cases, 8 of B Lymphocytes 

(NBL), and 5 Plasma Cells (NPC). The differentially 

expressed genes explain relationship between the various 

syndromes or dysfunction [17]. 

Several software’s has been developed to facilitate the 

analysis of microarray data. In this context, the most used free 

softwares is Bioconductor. However, Bioinformatics ToolBox 

of Mathworks and Expander offer a convivial interface to 

analyze data provided from microarray. 

Standardization of the chips is applied on all chips and 

assumes that the distributions of intensities must be 

homogeneous. Several studies have focused on the 

performance of different normalization methods. In this study 

we use the Robust Multichip Analysis algorithm (RMA). This 

last provides accurate estimation of inter-array variability 

through a robust background correction and quantile 

normalization computed over the whole dataset [18]. The first 

used software is Bioconductor that is a collaborative project 

using the statistical programming language R [19].It allows 

statistical analysis on the use of different packages grouped 

under the name "biocLite". Bioconductor develops between 

other free applications especially designed for the analysis of 

biological data including microarray.For the analysis of 

Affymetrix chips with Bioconductor, we must first ensure that 

the Affymetrix libraries are installed [20]. The selection of 

differentially expressed genesis realized by the "limma" 

package integrated in Bioconductor. 

To assess the significance of genes, it is interesting to 

compare the value of 'fold change' which gives the direction of 

the stimulation of the gene, with the significance that 

quantified the importance of this direction. The volcano plot 

(Fig.3) arranges the genes along two axis that represent 

statistical significance and biological significance. 

Bioinformatics ToolsBox of Mathworks offers biologists an 

open systems environment and stretch in which to explore 

ideas, prototype share new algorithms, and build applications 

for the analysis and simulation of biological systems [21]. It 

also offers interactive tools for designing and editing graphics 

(Fig.4). 

Expander (Analyzerand Expression Displayer) is integrated 

software for the analysis of gene expression data. It was 

originally designed as a classification tool [22]. Today it has 

evolved to support all stages of data analysis chips, from the 

normalization of raw data to the inference of regulatory 

networks transcriptional [23]. 

 

3. Results and Discussions 

We analyzed the performance of statistical tests integrated 

in Soft Tools cited below using Latin square and Leukemia 

data. Results are evaluated on the  with the percentages of 

True Detection Rate (TDR=number of Spike detected / 

number of modulated genes reported). In leukemia data 

we consider the 69 genes cited in the work of [17] as spikes. 

 

 
Fig.3: Volcano plot of leukemia data using Bioconductor 
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Fig.4: Volcano plot Latin Square data using 

Bioinformatics ToolBox of Matworks 

 

For Both SAM and FDR controlling algorithm, we used two 

cutoff of pvalue for gene selection. Results are summarized in 

Figures 5 and 6 that represent the distributions of genes 

selected according to each software and each statistical 

algorithm. 

Our comparative study allows us to define and determine that 

p-values 0.001is more significant than p-values of 0.01 for 

both SAM and FDR , and the Expander allows to select a 

maximum of TDR and Spike. In addition we show that this 

analysis confirms that selected genes depend both on the used 

algorithm and the used Soft Tools. This analysis gives some 

list of new interest genes.   

Finally, we remind that this work  focus the problem of used 

algorithm and tools in gene selection problem. In this context 

we have used two p-values with screening tests: FDR and 

SAM. To highlight the difference between these two selection 

methods we tested their effectiveness on three environmental 

developments chips Bioconductor, Bioinformatics tool box 

and Expander, using Latin square data and leukemia public 

data. We conclude that in microarray data analysis, the best 

way is to work with different approaches for statistical 

analysis at the same time for a better validation of results. 
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Table I: Results of Latin Square Dataset 

 

 

 

 

 

 

 

 

 

Fig.5: Number of genes selected and grouped according to the used statistical tool. 

 
Table II: Results of Leukemia Dataset 

Pvalues 0,01 0,001 

Statistical Test 
T-Test FDR T-Test FDR 

TDR Spike TDR Spike TDR Spike TDR Spike 

Bioconductor 36,5% 86,95% 51,85% 79,71% 93,84% 56,52% 55,6% 46,37% 

Bioinformatics Tools 

Mathworks 33,82% 79,71% 45,39% 75,36% 71,13% 50,72% 98,57% 42,02% 

Expander 55,64% 89,85% 70,4% 58,5% 66,45% 65,21% 65,34% 56,52% 

 
Fig.6: Number of genes selected and grouped according to the used statistical tool. 

Pvalues 0,01 0,001 

Statistical Test  
T-Test (SAM) FDR T-Test (SAM) FDR 
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Abstract - In  this  study,  we  applied  principal  component  
analysis (PCA), a well-established data reduction technique,  
to   helix angle maps generated from high-resolution 3D DTI  
datasets  acquired  on  a  group  of  11  normal  and  2  
hypertrophied  mouse  heart  specimens.  Results  of  the  study  
show that ventricular myocardial fiber orientations among the  
hearts  have  three  main  modes  of  variation  which  include  
variation  in  constant  offsets,  transmural  slope  and  the  
longitudinal slope  of the associated helix angles. Moreover  
leave-one-out experiments indicate that in general a subset of  
as few as 10 hearts is adequate in capturing he variability in  
the most prominent patterns of myocardial fiber structure as  
well  distinguishing  between  normal  and  diseased  hearts.  
These results strengthen the fact that structural variability is  
spatially  dependent  and  suggest  that  whole-heart  based  
approach  can  be  more  advantageous  over  voxel-based  
statistics for analyzing and comparing the myocardial  fiber  
structure. 

Keywords: diffusion  tensor  imaging;  myocardial  fiber 
structure; mouse ; principal component analysis

1 Introduction
 The structure of the heart is highly organized and is a 
key determinant  in  its  electrophysiological  and  mechanical 
properties.   A well-known hallmark  of  the  left  ventricular 
myocardium is that its fiber orientation undergoes a counter-
clockwise rotation from the epicardium to the endocardium 
[1].  Magnetic resonance diffusion tensor imaging (MR-DTI, 
or DTI for short) [2] has emerged as a promising alternative 
to  conventional  histology  for  characterizing  myocardial 
structures [3].  The non-destructive, inherently 3D and high-
resolution  nature  of  DTI  allows  the  myocardium  to  be 
examined at unprecedented level of detail.

To  date,  DTI  has  been  used  to  characterize  structures  of 
normal hearts across a variety of species, ranging from mouse 
[4] to humans [5].  DTI has also been utilized to characterize 
heart  diseases,  including  infarct  [6-9],  heart  failure  [10,11] 
and  hypertrophic  cardiomyopathy  [12].   The  data  analysis 
employed in most studies has relied on ROI-based or voxel-
by-voxel statistics.   The main limitation in this approach is 
that it requires standardization of the coordinates among the 
hearts,  which  is  performed  mostly  by  visual  inspection. 
Additionally, the statistics often assumes that different voxels 
or  regions  of  the  heart  behave independently,  which is  not 

necessarily true given the highly organized structure-function 
relationship of the organ.

Recently,  advances  in  computational  anatomy  have  made 
possible atlas-based approaches to analyze biomedical images, 
including cardiac DTI datasets [13].  Besides more objective 
coordinate  standardization  for  group  analysis,  atlas-based 
analyses  allowed the  computation of  the group average  (or 
atlas) of heart structures.  However, a mathematical average is 
not necessarily the representative average for the group.  For 
the  latter,  the  average  needs  to  be  accompanied  by  some 
estimate of the variability. Given the conspicuous patterns that 
exist,  an  analysis  of  variability  can  likely  identify ways in 
which  myocardial  structures  vary  and  facilitate  the 
comparisons of both normal and diseased hearts.

The aims of the current study are two-fold.  First, principal 
component analysis (PCA), a well-established data reduction 
technique,  is  used  to  determine  whether  they  exist  and  to 
identify the main modes of fiber structural variability among a 
group  of  similar  hearts.   Second,  in  a  preliminary 
demonstration,  the  PCA  variability  analysis  is  applied  to 
diseased  hearts  to  determine  whether  the  approach  can  be 
used for detecting structural remodeling.

2 Methods
Hearts  were  isolated  from  normal  8-month-old  male 

129/ola  mice (n =  11)  and  additional  animals  with cardiac 
hypertrophy (n = 1 for each mild and severe case) induced via 
aortic  banding.  DTI  datasets  were  obtained  as  described 
previously [3] on a 9.4 T MRI instrument.  Each DTI dataset 
consisted of a fully encoded 128 x 128 x 128 (readout x phase 
x slice) matrix-size b0 (i.e., b ~ 0) and 12 reduced-encoded 
(128  x  64  x  64)  spin-echo  diffusion-weighted  (b  =  1130 
s/mm2) images sensitized in each of an optimized set of 12 
directions  [14]  The  diffusion-weighted  scans  were  then 
reconstructed using reduced encoding imaging via generalized 
series  reconstruction  (RIGR)  [15]  to  full  matrix  size. 
Diffusion tensors were computed on a voxel-by-voxel basis 
via nonlinear least squares fitting and diagonalized.  

All post processing was conducted via custom codes written in 
Matlab (Mathworks, R2011b). The eigenvector of the largest 
diffusion tensor eigenvalue was taken as the local myocardial 
fiber  orientation,  which was then projected  onto  a  cylinder 
coaxial with the cardiac long axis to obtain its helix angle [3]. 
The  3D  helix  angle  maps  of  the  normal  hearts  were 
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transformed  onto  a  common template  using  unbiased  large 
deformation  diffeomorphic  metric  mapping  (LDDMM) 
registration  [16-18].  To  reduce  the  data  dimensionality  for 
subsequent analysis, each 3D volume was downsampled by a 
factor of 4, cropped to span the cylindrical portion of each left 
ventricle (~75% of the chamber), vectorized and inserted row-
wise into the data matrix. 

PCA was then performed on the data matrix to yield the PCA 
coefficients and the data scores, which respectively represent 
the  transformation  coefficients  that  define  the  principal 
components forming the PCA space and the coordinates of the 
location of the original data points in this space. To determine 
which of  the PCA components  or  modes of  variation  were 
significant, Parallel Analysis [17] was performed. Briefly, the 
correlation coefficient matrix (CCM) of the data matrix was 
calculated,  diagonalized,  and  its  eigenvalues  compared  to 
those similarly obtained from CCM of a normally distributed 
random  data  matrix  (with  the  same  size  as  that  of  the 
combined matrix) and averaged 100 times. The eigenvalues of 
the data matrix that surpassed their noise-derived counterparts 
were deemed as the significant modes of variation.  

To visualize the modes of variation, the normal heart datasets 
were  projected  onto  each  of  the  significant  principal 
component. Subsequently, the projections were reshaped back 
onto 3D space and averaged. Transmural profiles of the mean 
and standard  deviation,  for  each principal  component,  were 
taken and plotted at the left ventricular hemispherical slice and 
center of the free wall between the papillary muscles at the 
center  of  the  free  wall  between the  papillary muscles  on  4 
equally spaced short-axis slices.

Lastly,  to evaluate the extent of the variability captured by 
PCA  and  demonstrate  whether  the  analysis  is  suitable  for 
detecting, for example, remodeled (i.e., non-normal) cardiac 

structure,  leave-one-out  trials  [18]  were  conducted  by 
excluding one heart at a time and forming combinatorial 10-
heart  subsets  (n  =  11)  of  the  original  normal  heart  group. 
PCA was  performed  on  each  subset  and  the  normal  heart 
excluded and the hypertrophy hearts were projected onto the 
principal component space spanned by the subset of normal 
hearts.  Based  on  the  Gaussian  statistics  where  95% of  the 
distribution is contained within 2 standard deviations from the 
mean,  hearts  that  lie  outside  the  ellipsoid  spanned  by  2 
standard  deviations  along  each  significant  principal 
component axis were treated as being significantly different 
from the subset.

3 Results
Figure 1 shows a cut-open view of the 3D myocardial 

fiber  helix  angle  map  of  a  representative  normal  heart, 
demonstrating  the  distinctive  counter-clockwise  helical 
pattern of the fiber structure [3].  The results from the Parallel 
analysis  is  shown in Fig.  2,  which indicates  that  only first 
three principal components or modes of variation exceed the 
average noise level and are thus deemed significant. Figure 2 
also  indicates  that,  together,  first  3  principal  components 
capture approximately 50% of the total variation observed in 
the datasets. 

Figure  3  shows  transmural  profiles  obtained  from  the  LV 
lateral  wall that provide a visual representation of the mean 
and one standard deviation variability along the 3 significant 
principal  components.  The  profiles  at  different  short-axis 
slices suggest that the first and second principal components 
capture mostly the constant offsets and slopes of in the helix 
angles, respectively. On the other hand, the third component 
captures  largely  the  longitudinal  variation  in  helix  angle 
transmural  slope.   All  principal  components  capture  the 
longitudinal (base-to-apex) variation in the transmural slope of 
the helix angle.

Figure  2: Bar  graphs of percent variance captured by each 
principal  component  of  11  normal  hearts.  The dashed  line 
represents  the average  eigenvalues  calculated  from random 
(noise)  data.  Only the  first  3  principal  components  of  the 
heart data are higher than noise average.

Figure  1: Helix angle of the primary eigenvector of 3D LV 
volume represented in the local cylindrical coordinate system 
and shown in false-color (in degrees). The region shown was 
used for analysis.
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Figure 4 shows the PCA space plotted for  a  representative 
leave-one-out trial. Among the trials tested, the excluded heart 
was projected inside the 2-standard deviation ellipsoid in 10 
out  of  the  11  cases.   One  normal  heart  was  consistently 
projected  outside of  the ellipsoid,  suggesting that  the heart 
may be an outlier of the normal group (due to several possible 
causes  such  as  mislabeling  or  inconsistency  in  specimen 
preparation, etc).  Aside from the outlier, the inclusiveness of 
the left-out heart in all trials suggests that each of the 10-heart 
PCA space sufficiently span the variability space of the fiber 
structure.  For the case shown in Fig. 4, the two hypertrophic 
hearts  lie  outside  the  2-standard  deviation  ellipsoid, 
suggesting that their myocardial fiber structure as represented 
by the helix angle, in terms its offset and slope, has higher 

variability than the normal hearts.  Among all the trials tested, 
the severely hypertrophic heart lies outside the ellipsoid in 10 
out of the 11 tests, whereas the same is true for the mildly 
hypertrophy heart  in only 2 out of 11 cases.  Although it  is 
unclear whether fiber structural remodeling has taken place in 
the mildly hypertrophic heart, the successful exclusion of the 
heart  with  severe  hypertrophy  is  promising  for  the  PCA 
approach as a means to detect cardiac structural remodeling.

Figure 3: Profiles from the mean of the projected data using the first three significant principal components. Left column: 
first  principal  component,  middle  column:  second  principal  component,  and  right  column: third  principal  component.  
Profiles were selected from the lateral  wall in 4 slices evenly spaced  from base to apex (shown in rows).  Solid lines  
represent the mean whereas the dashed dot lines represent one positive standard deviation around the mean. For each image 
the x-axis represents the transmural distance (in mm) and the y-axis represents the helix angle (in degrees). From base to 
apex, the first and second components capture the offset variation while the third component captures the slope of the helix 
angle (from epi- to endocardium).All component capture some longitudinal variation.
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4 Discussion
Results of the current study, combined, indicate that the 

left ventricular myocardial fiber orientations among the hearts 
examined  varied  in  only  specific  manners,  including  the 
constant offsets, transmural slope and the longitudinal slope 
change of the associated helix angles.  Although the finding is 
not surprising given the known and distinctive organization of 
the left ventricular fiber structure, to the authors’ knowledge, 
the study is the first time these spatial patterns of variability 
among  similar  hearts  have  been  identified  and  quantified. 
Because  the  structural  variability is  spatially dependent,  an 
immediate impact is that myocardial structures across hearts 
cannot be simply compared on a voxel-by-voxel or ROI-by-
ROI basis.  

The leave-one-out experiment, although preliminary, is also a 
first  of  its  kind  in  evaluating  the  robustness  of  the  PCA 
variability  space,  and  to  apply  the  identified  patterns  of 
variability to detect structural remodeling in diseased hearts. 
Despite that the “accidental outlier” in the normal group and 
the remodeling of  the mildly hypertrophic heart  need to be 
further verified, the results in general suggest that a subset of 
as few as 10 hearts is adequate in capturing the variability in 
the most prominent patterns of myocardial fiber structure. The 
number required  is  an  order  of  magnitude smaller  than the 
100s  of  datasets  typically  involved  in  the  construction  of 
common structural atlases of the brain.

One  potential  limitation  of  the  current  study  is,  due  to 
logistical  constraints,  its  small  dataset  size.  Ideally  a  larger 
size  is  preferable,  which  would,  for  example,  allow 
independent  subsets  of  the  hearts  to  be  generated  to 
investigate the robustness of the PCA variability.  Although a 
larger dataset size can possibly identify more significant minor 
PCA  components  and  increase  the  detection  sensitivity  of 

diseased hearts, it is unlikely to change the few major patterns 
of structural variability.  Another limitation is that the current 
study focuses on a specific species and strain, and the results 
may or may not be extended to hearts of other species or other 
strains of the same species.  However, the methodology taken 
by the study is expected to be applicable for the latter studies.

In  summary,  PCA  was  performed  on  mouse  cardiac  DTI 
datasets  to  investigate  the  intra-species  variability  of 
myocardial  fiber  structure.  Results  indicate  that  the  fiber 
structures vary among only specific spatial patterns, and that 
the  variability  can  be  captured  by  relatively  few datasets. 
Taken  together,  these  findings  are  supportive  of  the 
construction of representative atlases or parametric analytical 
models of the myocardial structure.

5 Conclusion
In summary,  PCA was performed on  mouse cardiac  DTI 

datasets  to  investigate  the  intra-species  variability  of 
myocardial  fiber  structure.  Results  indicate  that  the  fiber 
structures vary among only specific spatial patterns, and that 
the  variability  can  be  captured  by  relatively  few  datasets. 
Taken  together,  these  findings  are  supportive  of  the 
construction of representative atlases or parametric analytical 
models of the myocardial structure.
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Abstract Splicing codes, defined as cis-regulatory sequences 
conferring pre-mRNA splicing specificities, have been poorly 
understood. Here we reported that in humans, as well as 
other vertebrates, there are 2.5-5 fold more cases of ≥6 nt 
identical length between 5’ exonic (E5) and 3’ intronic (I3) 
sequences than between 5’ intronic and 3’ exonic ones. This 
disparity in conservation extends well beyond 5’ exonic CAG 
and raises the provocative possibility that 5’ exonic 
sequences are similar to the intronic-binding sites (IBS) of 
group II ribozymes. Based on this finding, a web-base 
software system has been developed to predict alternative 
splicing. The mouse insulin receptor gene is predicted to 
encode complex splice sites, 58.3% of which have been 
verified. This work not only provides accurate computation 
systems to predict alternative splicing, but also has laid 
foundations to develop simple, accurate and personalized 
diagnosis and therapy methods for complex diseases. 
 
Keywords: splicing code, spliceosomal introns, splice 
junctions, cis-elements, splicing specificity, spliceovariants 
 
1. Introduction 

Most genes of eukaryotic organisms have spliceosomal 
introns, whose lengths and sequences are highly variable and 
range from 20 bp to 800 kb[1]. 5’ splice sites of introns have 
the conserved motif of an exonic AG followed by an intronic 
GTRAGT (R: purine). 3’ splice sites are composed of the 
branch point (YNYURAC, Y: pyrimidine), the 
polypyrimidine tract and the conserved splice site YAG[1]. 
The majority of mammalian spliceosomal introns undergo 
extensive alternative splicing[2, 3],  which has been 
suggested to be responsible for the “missing” protein-coding 
genes and proteomic diversity in mammals.  Aberrations in 
pre-mRNA splicing have played an essential role in almost 
every known disease with genetic aetiology, disease 
susceptibility and severity[4] and  in development, 
differentiation, aging and cancer[5].  

Spliceosomal introns are removed from nuclear pre-
mRNAs via two consecutive trans-esterification reactions 
before mature mRNAs are exported into the cytoplasm for 
translation into proteins. Intron removal from pre-mRNAs is 
mediated by spliceosomes which are known to be comprised 
of several hundred proteins and five small U snRNAs 
packaged as ribonucleoprotein particles (RNPs)[6]. These U 

snRNAs have highly conserved secondary structures among 
eukaryotic organisms and are similar to domains of group II 
introns[7, 8], which are believed to be ancestors of 
spliceosomal introns[1].  

Many methods have been developed to predict alternative 
pre-mRNA splicing with limited success. Traditionally, 
alternative spliceovariants were identified by aligning 
different cDNAs/ESTs to the different regions of the same 
genomic sequences. Next-generation sequencing (NGS) 
provides more tools to identify novel splice variants. Using 
paired-end RNA sequencing and RNA-seq, surprisingly 
>23,000 introns have been identified in D. melanogaster[9]. 
More recently,  Pickrell et al. has used RNA-seq technology 
to sequence cDNA libraries constructed from the mRNAs of 
human cell lines and have identified approximately 150,000 
previously unannotated splice sites out of 306,606 splice 
junctions[10].  While 50% of all observed junctions are not 
present in gene models, these account for only 1.7% of all 
junction-spanning sequencing reads[10].  

Splicing codes have been proposed to explain the 
conundrum of the diversity and specificity of pre-mRNA 
splicing, trans-splicing and alternative splicing[11]. Exonic 
and intronic splicing enhancers and silencers have been 
suggested to be potential candidates of splicing codes[11]. 
Recently, Barash et al. have assembled “the splicing code” 
representing several hundreds of RNA features and predicted 
mouse tissue-dependent changes in alternative splicing for 
thousands of exons[12]. 

However, the approaches described fail to explain the 
universality (cis- vs trans-splicing) and diversities (fungi vs 
mammals) as does specificity of pre-mRNA splicing and 
splice site choices in alternative splicing [13]. In an attempt 
to identify and characterize the sequences that confer pre-
mRNA specificity, here we have analyzed spliceosomal 
intron datasets from invertebrates and vertebrates, proposed 
that 5’ exonic and 3’ intronic sequences constitute splicing 
codes of spliceosomal introns and discussed our findings. 

2. Results 
2.1 Asymmetric conservation of 5’ exonic (E5) 
and 3’ intronic (I3) sequences. 

We previously had shown that recently-acquired human 
spliceosomal introns had signatures of similar 5’ and 3’ 
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splice sites[14]. The signatures of such introns 
were 5’ and 3’ intron boundaries that were 
very similar to each other (Fig. 1a, middle and 
bottom panels) and that did not conform well 
to the typical splice site consensus sequences 
(Fig.1a, top panel). To assess if the degree of 
similarity was uniform along the splice 
junctions, we divided each splice junction into 
its exonic and intronic portions (designated as 
E5 and I5 for the 5’ splice site and I3 and E3 
for the 3’ splice site) and starting from the 
splice junction, we scored the length of 
identical nucleotides (LIN) in an uninterrupted 
stretch independently for the E5-I3 and I5-E3 
alignments. Figure 1b gave a specific example 
showing the sequences flanking intron 8 of the 
human ciz1 gene which encoded Cip1-
interacting zinc finger protein 1[15]. This was 
done for human introns as well as those for 
other vertebrates (mouse, zebrafish and 
chicken) and the invertebrates C. elegans and 
D. melanogaster (Fig.1c, Figure 2). Notably, 
as shown in Figure 1c, the percentage of E5-I3 
alignments with LIN ≥6  is significantly higher 
(p < 0.001) than for I5-E3 in humans (by 3-
fold), in other vertebrates (by 2.4 to 5.3 fold) 

and in the invertebrate D. 
melanogaster (by 4.5 fold). 
Interestingly, in C. elegans whose 
genome was believed to contain 
relatively few recently-gained 
introns[16], there was a 14-fold 
excess of E5-I3, driven in part by a 
low frequency of I5-E3 with LIN 
≥6 (compared to vertebrates).  

To examine the distributions of 
E5-I3 and I5-E3 alignments for the 
full range of LIN from 0 to ≥20, 
we plotted their frequencies for 
human, mouse, zebrafish, chicken, 
C. elegans and D. melanogaster 
(Fig. 2a-f and Supplementary 
Tables 1-6). The black arrows 
delimited the window for which 
there was a significantly higher 
value observed for E5-I3 (black) 
than for I5-E3 (gray), as judged by 
U-test with p <0.001, and the 
values for all vertebrates were 
significantly higher than for 
random sequences (Fig. 2a-d, 
black). For large LIN (≥10 for 
human and C. elegans, ≥8 for D. 
melanogaster and ≥9 for the 
others), no significant differences 
were  seen between E5-I3 and I5-
E3 at distances that were more 

  
Fig.2. Comparison of LIN (length of identical nucleotides) distributions for 
E5-I3 and I5-E3 alignments from various animals. a) human, b) mouse, c) 
zebrafish, d) chicken, e). C. elegans and f) D. melanogaster. The solid black 
squares and gray triangles represent E5-I3 and I5-E3 alignments, 
respectively. The dashed lines show the random sequence controls. The 
black arrows delimit the windows for which the frequencies of E5-I3 were 
statistically significantly higher than those of I5-E3 (p< 0.001), with the 
exception of one case in each of zebrafish and human (p<0.05). 

  
Fig.1 Splice junction features. a) Consensus sequences of 5’ and 3’ splice sites from the 
total human intron dataset (top panel), for E5-I3 with LIN ≥6 (middle panel) and I5 -E3 
with LIN ≥6 (bottom panel). The graphics are generated by Pictogram 
(http://genes.mit.edu/pictogram.html).  The splice junctions are shown by arrows. The 
blue sequence below E5-I5 shows the 5’ splice site recognition motif of U1 snRNA. b) 
Example of E5-I3 and I5-E3 alignments for intron 8 (168 bp) of the human ciz1 gene. 
The black and gray italic uppercase letters represent the 5’ and 3’ exonic sequences at 
splice sites, respectively, and the gray italic and black lowercase letters indicate the 5’ 
and 3’ intronic sequences. The vertical lines indicate uninterrupted identical 
nucleotides extending from the splice junctions for the E5-I3 and I5-E3 alignments, and 
are designated as LIN (length of identical nucleotides). Asterisks represent identical 
nucleotides outside of this region.  c) Sizes of animal intron datasets, and proportion 
with LIN ≥6, also expressed as the ratio between E5 -I3 and I5-E3. All observed 
differences between E5-I3 and I5-E3 are statistically significant (p< 0.001).  
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than 10 nt away from the splice junctions, suggesting that the 
asymmetry was restricted to the vicinity near splice sites. For 
LIN between 2 and 9 in C. elegans, there was a very marked 
excess of E5-I3 relative to I5-E3 (Fig.2e), whereas D. 
melanogaster showed a more vertebrate-like profile (Fig.2f). 
For both D. melanogaster and C. elegans, the virtually 
complete absence of introns with long LINs was consistent 
with few recent intron gains[16, 17]. Moreover, the observed 
bias was not the result of multiple linked evolutionary events 
in a few genes for any of the six organisms (data not shown). 
The E5-I3 and I5-E3 alignments were also compared to 
scramble (mix-and-match) data produced by randomly 
aligning E5 with I3, and I5 with E3, from a non-redundant 
intron dataset, and again, statistically significant differences 
were seen in all cases (Supplementary Tables 7 and 8 for 
human and C. elegans). 

Because it was known that U1 snRNA, in addition to base-
pairing with sequences at the 5’ end of the intron, also 
imposed a strong constraint on the terminal exonic cAG 
(within E5)[18], as does the binding of U2AF35 to the cAG 
region at the 3’ end of the intron (within I3)[19], we repeated 
the analysis omitting the sequences located at positions -3 to 
+3 of both the 5’ and 3’ splice sites. As shown in 
Supplementary Table 9, the frequencies of LINs with values 
≥1 and ≥5 for human E5-I3 and I5-E3 were significantly 
higher (p<0.05) than those of the corresponding scrambles. 
The same held for the C.elegans E5-I3 alignments and their 
scrambles, whereas no statistical differences were observed 
for I5-E3 (Supplementary Table 10), consistent with the 
profiles shown in Fig. 2e. The E5-I3 values for the LIN ≥3 
(and therefore comparable to LIN ≥6 in Fig. 1c) were still 
significantly higher (p< 0.001) than those for I5-E3 by about 
0.3-fold for human introns and about 2.7-fold higher in the 
case of C. elegans. Taken together, our analyses indicated 
that the known preference of AG at the 5’ (E5) and 3’ (I3) 
splice sites, although strong, was not entirely responsible for 
the observed E5-I3 bias. Thus, the excess of introns with 
high LIN values for the E5-I3 alignment (compared to I5-E3) 
appeared not to be due simply to the conservation of 
sequences that are part of the splicing consensus motifs.  

2.2 Asymmetric E5-I3 conservation supported 
by hexamer distributions of splice sites  

To explore the specific nature of the splice junction 
sequences, we plotted the distributions of hexamers which 
are adjacent to the 5’ and 3’ splice sites (from positions -1 to 
-6 and from +1 to +6) for each of E5, I5, I3 and E3 for the 
total human intron set (Supplementary Fig. 1a-d), and for the 
LIN  ≥6 su bset for E5 (Supplementary Fig.1e-f) and E3 
(Supplementary Fig. 1g-h). For the total set, the distribution 
of exon hexamers (E3) located immediately downstream of 
introns, was much broader than for those upstream (E5) 
(Supplementary Fig. 1b vs. 1a).  This uneven distribution of 
E5 for the I5-E3 with LIN  ≥6 dataset was supported by an 
E5 variance (σ2) which was 50% larger than E3 variance for 
the E5-I3 LIN ≥6 set (F -test, p<0.00001) (Supplementary 
Fig. 3g vs. 3f grey), suggesting that E5 hexamers were not 
randomly distributed and more constrained than E3 ones. 

These non-random distributions were also seen for the subset 
of E5 hexamers which end with CAG (Supplementary Fig. 
1a-c).  In the case of the I5 hexamer plots, the two sharp 
peaks (Fig. 3d, green), namely GTGAGT and GTAAGT 
were consistent with a role in U1 snRNA base-pairing (see 
Fig. 1a), as are those seen in the LIN  ≥6 dataset, namely 
GTAAGA and GTAAGT (Fig. 3h). For the profiles in 
Supplementary Fig. 1e (blue) and Supplementary Fig. 1h 
(blue) (which overlaid perfectly in keeping with their LIN ≥6 
values), the highest peaks represent the hexamer, CTGCAG, 
which incidentally was present in Alu repeats. Furthermore, 
the E5 hexamers (from positions –4 and –9) of E5-I3 with 
LIN ≥3  are much clustered and m ore uneven distributed  
than the E3 hexamers (from positions +4 and +9) of E5-I3 
with LIN ≥3 (Supplementary Fig.3 e vs f), while the 
corresponding I5 hexamers and I3 pyrimidine-rich hexamers 
were more restricted (Supplementary Fig. 3g&f). Therefore, 
the evolutionary constraints of E5 sequences upstream of 5’ 
exonic CAG are much stronger than corresponding E3 
sequences and much weaker than I5 and I3 sequences.  

2.3 Use of splicing code to predict novel 
alternative splice sites. 

The conservation beyond exonic cAG and evolutionary 
divergence between E5 and I5 hamers raised the possibility 
that conservation of the 5’ exonic sequences upstream of 
spliceosomal introns were similar to intronic-binding sites 
(IBS1 and IBS2) recognized by exonic-binding sites (EBS1 
and EBS2) of their ancestors. If spliceosomal introns had 
inherited this splicing feature, one would expect that 5’ 
exonic sequences immediately upstream of spliceosomal 
introns and 3’ intronic sequences constituted the splicing 
code of spliceosomal introns and could be used to predict 
alternative splicing.  The numbers of predicted splice sites 
were functions of intron sequence lengths and the size of 
splicing code. Based on our findings, a web-based software 
system (http://splicingcodes.com/) had been developed to 
accurately predict alternative splice sites of sequences from 
human, mice, D. melanogaster and C. elegans and more 
species would be added in the future. 

For example, a mouse gene (insr) encoding an insulin 
receptor (IR), which was 128,255 bp in length and 
interrupted by 20 introns and well studied, was chosen to 
predict alternative splicing because mouse tissues could be 
obtained more conveniently. We first had used 9 bp E5 
sequence plus the first intronic dinucleotides and the last 9 bp 
intronic nucleotide sequence to construct a 20 bp mouse 
splicing code table, which contained 290,000 unique 
sequences. A probability to find one of 20 bp identical 
sequences in the mouse genome is 9X10-13. Assuming intron 
sizes of 150 bp to 50,000 bp, the mouse insr gene was 
predicted to encode large numbers of 4,631 putative novel 
splice sites (PPASSs), which was 3.4 times larger than the 
expected number of 1358 PPASSs  (p<0.001) (Fig.3a and 
Supplementary Table 11).  

To further understand the dynamics of predicting 
mammalian PPASSs predicted by the software, we further 
used variable lengths of E5 sequences plus the first intronic 
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dinucleotide and fixed 9 bp of I3 sequences to look up their 
respective splicing code tables to predict PPASSs. The solid  
line in Fig. 3a showed that the numbers of PPASSs displayed 
two distinct phases as the total numbers of nucleotides were 
increased: from 20 to 24 bp, from which numbers of PPASSs 
were dramatically decreased and from 25 to 40 bp, from 
which numbers of PPASSs declined slowly and became 
almost flat. The predicted numbers of PPASSs were 
statistically significantly larger than what had been expected 
by chance (p<0.001) (Supplementary Table 11). Similarly, 
we used fixed numbers of nine bp E5 sequences plus the first 
intronic dinucleotide and variable lengths of I3 sequences to 
search their corresponding mouse splicing code tables, 
respectively (Fig.3a, dashed line). The mouse insr I3 
sequences showed two distinct phases similar to that of E5 
sequences. The difference was that the numbers of PPASSs 
from 30 bp to 36 bp were 2.4 to 4.8 folds smaller than those 
observed by corresponding E5.  

At 40 bp (or 29 bp of E5), the mouse insr gene was still 
predicted to encode 17 PPASSs, among which 7 were 
alternative splice sites of the existing exons (1, 9, 13, 14, 15, 
16, and 17) and the remaining 10 were novel putative splice 
sites (Supplementary Fig.4). Based on intron-types, 12 of 
them were GT-AG, five were GC-AG introns and zero AT-
AC introns.  Using 36 bp (9bp of E5-(GT/GC/AT)-25 bp of 
I3 sequences), the mouse insr gene was predicted to encode 
the nine PPASSs, which showed characteristics similar to E5 
(Supplementary Fig.5).  Only, three out of 17 E5 PPASSs 
and two of nine E3 PPASSs had ≥6 bp of identical sequences 
between 5’ and 3’ splices had ruled out that long-stretch of 
DNA conservation between 5’ and 3’ splice sites in this 
study and in our previous study[14] was caused by template 
switching and misplicing[20]. 

2.4 Experimental verification of predicted 
putative alternative splice sites (PPASSs) 
   One of the natural questions was how many of 4,631 
PPASSs predicted by the 20 bp splicing-code table of the 9 
bp E5-(GT/GC/AT)-9 bp I3 sequences, were expressed. To 
verify our prediction, we had pseudo-randomly selected 12 

PPASSs, which resulted in 
alternative splicing in the IR β 
tyrosine kinase region[5]. To 
perform isoform-specific PCR, 
a primer was designed to cross 
the putative splice junction of a 
PPASS while the other primer 
was located upstream or 
downstream of the mouse insr 
exonic sequences as shown in 
Supplementary Table 12. RT-
PCR was performed on the 
pooled cDNAs from various 
mouse tissues as described in 
Materials and Methods and 
PCR products were separated 
on a 2.0% agarose gel.  Nine 
out of 12 PCR reactions had 

products and were cloned and eight of them were shown to 
have inserts. Seven of the clones (7 out of 12) in Figure 3b 
had been verified by RT-PCR and sequencing of cloned RT-
PCR products. Supplementary Figure 6 showed that these 
alternatively-spliced isoforms from these seven sequences 
resulted in truncated IR β subunits, which had functions 
different from full-length wild-type IR proteins[5].  Out of 
seven IR isoforms, three of these alternatively-spliced 
spliceovariants would produce almost identical truncated IR 
proteins and therefore had similar functions. These data 
indicated that the mouse insulin receptor gene encoded a far 
more complex system of alternatively-spliced isoforms than 
what had been discovered so far and were further confirmed 
by “splice-site walking” PCRs (data not shown). Many of 
these isoforms resulted in truncated proteins secreted into 
cellular matrix and blood, which were thought to be “protein-
shedding” products[21].  Our computational and 
experimental data supported that mouse insr gene encoded 
large numbers of tissue-specific and low-level expressed 
alternatively-spliced isoforms, which enable mice to  support 
their diverse functions[5]. 

3. Discussion 
In this report, we have analyzed the spliceosomal intron 

datasets from invertebrate and vertebrates and have 
demonstrated that E5 sequences are more conserved than E3 
ones.  In C. elegans, there was a 14-fold excess of E5-I3 
alignments with LIN ≥6 than the corresponding I5 -E3 ones, 
which are much larger than invertebrate D. melanogaster 
whose E5-I3 alignments with LIN ≥6 is 4.5 folds than those 
of I5-E3. Since both D. menogaster and C. elegans are 
believed to contain relatively few recently-gained introns,  
one intriguing possibility is that this pronounced asymmetry 
might relate to trans-splicing which has played a significant 
role in gene expression in C. elegans[22] unlike in the other 
animals surveyed in this study.   

In contrast to invertebrates, in mammalian spliceosomal 
introns, E5-I3 alignments are much longer, the majority of 
which are due to recently-gained introns. One of the 
questions is whether these longer E5-I3 alignments are 

 
Fig.3 Verification of splicing code model. a) Relationship between PPASSs and lengths of 
splicing code. Black line indicates that numbers of PPASSs are predicted when the numbers 
of I3 sequences are fixed at 9 bp and variable lengths of E5 sequences plus the first intronic 
dinucleotide while dashed line represents numbers of PPASSs using fixed 9 bp of E5 
sequences plus the first intronic dinucleotide and variable lengths of I3 sequences. b). RT-
PCR verification of PPASSs. M is DNA markers. CK is negative control. 
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caused by 5’ exonic CAG that is base-pairing with U1 
snRNA.  If this is the case, one would expect that the 
sequences upstream of the 5’ CAG would be randomly 
distributed. The repeated analyses after omitting the 
sequences located at positions -3 to +3 of both the 5’ and 3’ 
splice sites have shown that the frequencies of LINs with 
values ≥1 and ≥5  for human and C. elgens E5-I3 and I5-E3 
were significantly higher (p<0.05) than those of the 
corresponding scrambles whereas much smaller differences 
were observed for I5-E3 (Supplementary Tables 9&10), 
consistent with E5 being more conserved than E3. In C. 
elegans, E5-I3 alignments of LIN values from 2 to 5 are 
statistically significantly higher than their corresponding 
scrambles (Supplementary Table 10). In contrast, there are 
no statistical differences between the I5-E3 alignments and 
their corresponding scrambles (Supplementary Table 10).  
These differences between E5-I3 and I5-E3 alignments are 
consistent with the notion that 5’ exonic sequences beyond 
exonic CAG are conserved. 

To confirm this, we performed hexamer plot analysis and 
have shown that the subset of E5 hexamers ending with CAG 
is not randomly-distributed (Supplementary Fig. 2.a-c). Since 
the 5’ exonic CAG and conserved GTAAGT was recognized 
by the same U1 snRNA, one would expect that these 
sequences would share a common evolutionary trend. When 
the total E5 and I3 hexamers and the E5 
and I3 hexamers with LIN≥6, which have 
been thought to be more recently-gained 
introns, are compared (Supplementary 
Fig.1a vs Fig.1e & Fig.1g and Fig.1b vs 
Fig.1f & Fig.1h), the total I5 hexamers 
have become more clustered together 
while total E5 hexmaers are more evenly 
distributed. This opposite evolutionary 
trend of 5’ splice sites is further confirmed 
by existence of much higher proportions 
of 5’ exonic sequences ending without 
CAG in the invertebrate D. melanogaster 
and C. elegans, which have fewer 
recently-gained introns than the mammals, 
such as human and mice. Thus, the excess 
of introns with high LIN values for the 
E5-I3 alignment (compared to I5-E3) and 
conservation of 5’ exonic sequences is 
caused by additional evolutionary forces.  

Because 5’ asymmetric conservation 
extends well beyond the 5’ exonic CAG 
sequences at the splice junctions, it cannot 
simply reflect constraints imposed by the 
core known spliceosomal machinery, such 
as interactions with U1 snRNA and 
U2AF35 and suggests that these sequences 
are constrained by yet-to-be characterized 
functions. This observation leads us to 
examine the features of the self-splicing 
group II ribozymes. It raises the 
possibility that conservation of 5’ exonic 
sequences immediately upstream of 

spliceosomal introns is similar to intronic-binding sites (IBS1 
and IBS2) which are base-paired with exonic-binding sites 
(EBS1 and EBS2) of the self-splicing group II ribozymes.  
Therefore, we have proposed that the 5’ exonic and 3’ 
intronic sequences of the splice junctions constitute splicing 
codes of the spliceosomal introns, which are sequence-
specifically decoded by as yet uncharacterized 
RNAs/proteins (Fig.4a&b)[23]. One can expect that these 
yet-to-be-characterized splicer RNAs/proteins can easily 
evolve from exonic-binding sequences (EBS1, EBS2 and 
EBS3)[24] while other conserved structural domains have 
evolved into spliceosomal U1 snRNAs. The mechanisms of 
deciphering splicing codes by splicer RNAs (or proteins) are  
similar to that of genetic codons decoded by tRNAs except 
that splicer RNAs/proteins hybridize to both E5 and I3 
sequences, bring two exons together and guide spliceosome’s 
removing intronic sequences.  Both splicer RNA and protein 
models of pre-mRNA splicing can explain the conservation. 
However, evolutionary evidence favors the splicer RNA 
model over splicer-protein one. For example, S. pombe and S. 
cerevisiae have similar genome sizes (13.8 Mb vs 12.2 Mb) 
and encode similar protein-coding genes (4730 vs 5796)[25], 
which make it unlikely that S. pombe encodes superfamilies 
of RNA-binding proteins.  

Since intronic-binding sites (IBS1 and IBS2) determine the 

 
Fig.4 Schematic model of a nuclear pre-mRNA splicing pathway involving a 
splicer RNA (a) and proteins (b). The black and gray boxes represent the 5’ and 
3’ exon sequences, respectively, and the shadowed oval represents a core 
spliceosome. The circled A is the branchpoint adenosine, and gu and ag 
represent the nucleotides typically present at the 5’ and 3’ ends of introns, 
respectively. a). Schematic model of E5 and I3 sequences that are recognized 
by splicer RNAs. The lines represent the intron and putative splicer RNA 
sequences, respectively.  The vertical lines represent base-pairing between the 
putative splicer RNA and pre-mRNA (although these two cis-elements in a 
splicer RNA are not expected to be identical). The last nucleotide of the 5’ 
exon and the last two nucleotides of the intron may lack perfect 
complementarities. For simplicity, a single splicer RNA has been shown, 
although the model is compatible with two RNAs (recognizing the 5’ exon and 
3’ intron, respectively) in conjunction with other spliceosomal components. 
This model is conceptually similar to that first proposed by Holliday and 
Murray. b. Schematic model of E5 and I3 sequences that are recognized by as 
yet uncharacterized proteins. The E5 interacts in a sequence-specific manner 
with an as yet uncharacterized protein (square) and I3 is recognized by a 
different unknown protein (oval). These two proteins interact with each other to 
assist in bringing together the 5’ and 3’ splice sites. 
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splicing specificity of the self-splicing group II ribozymes, 
splicing code of spliceosomal introns can be used to predict 
alternative splicing accurately. Since splicing code and their 
deciphering splicer RNAs/proteins co-evolve like the base-
pairing between IBSs and EBSs, the splicing code is species-
specific. When total lengths of splicing code are determined, 
the numbers of expected splice sites are functions of length 
of the intronic sequence (or total gene sequence length) and 
the size of splicing code table. That is, the longer an intron 
sequence is, the more alternative splice sites are expected.  If 
an organism has a larger size splicing code table, a gene is 
more likely to have more isoforms.  Since human has the 
largest numbers of spliceosomal introns characterized so far 
and some of the longest introns, one would expect that 
human encodes large numbers of alternative splice sites.  
This may explain why mammalian genomes encode much 
smaller numbers of protein-coding genes than expected while 
the numbers of introns and intron lengths are significantly 
increased.  

Based on the splicing code model, a web-based software 
system has been developed to predict alternative splicing. 
Now, it can predict alternative splice sites from four model 
organisms: human, mice, D. melanogaster and C. elegans.  
More species will be added in the future. Many factors may 
affect the software accuracy to predict alternative splice sites. 
Since we have limited information about evolutionary history 
of IBS3-EBS3 interaction and our 3’ intronic data come from 
the computation analysis, we still need to test combinations 
of different lengths of 5’ exonic and 3’ intronic sequences to 
identify the best model to predict alternative splicing in 
mammals. Since the EBS1 and EBS2 are located in different 
parts of the self-splicing group II ribozymes, it is reasonable 
to believe that the 5’ exonic sequences with splicer 
RNAs/proteins may be similar to those IBSs-EBSs, which 
may also have significant impacts on the prediction accuracy. 
For predicting alternative splice sites of mammalian genes, 
since we cannot distinguish conserved sequences of splicing 
code from repeated elements, which have played an 
important role in exonization and alternative splicing, 
additional characteristics of splicing code are required to be 
identified to differentiate them from recent-duplications with 
assistance of experimental data.  

Both our computational and experimental data suggest that 
mammalian insulin receptor (insr) gene encodes much larger 
numbers of alternatively-spliced isoforms than what have 
been known previously, which are much larger than the 
numbers of single nucleotide polymorphisms (SNP) and 
many of which have very similar functions at the protein 
level (redundancy). Therefore, impacts on mammals by each 
of genetic mutations will be reduced to the minimum and 
their ability to adapt to their environments would be 
maximized. That means that a single gene possesses complex 
traits and the phenotypes controlled by a single gene behave 
like complex traits.  

For example, the insulin resistance, which is a 
physiological condition where the natural hormone insulin 
becomes less effective at lowering blood sugars, is thought to 
be complex traits. The genetic and physiological studies have 

shown that the insulin receptor gene is responsible for 
Leprechaunism (OMIM 246200), the most extreme form of 
the insulin resistance syndromes, Rabson-Mendenhall 
syndrome (OMIM 262190), severe forms of insulin 
resistance syndrome, and type A insulin resistance (OMIM 
147670), milder forms of insulin resistance. However, it 
seems that there is no relationship between insulin resistance 
and insulin receptors in mammals. One of the reasons is that 
the mammalian insr gene encodes extremely complex and 
highly-redundant alternatively-spliced isoforms, which are 
supported by our verified >30 isoforms. The majority of low-
level and tissue-specifically expressed PCR products encode 
truncated soluble insulin receptors that are secreted into 
blood and/or extracellular matrixes and have been thought to 
be generated by a poorly-characterized “protein shedding” 
process[21].  Since soluble insulin receptors have the same 
affinities as insulin receptors on plasma membranes to bind 
insulin competitively, one can envision that elevated soluble 
receptors will form receptor-insulin complexes and reduce 
amounts of insulin to reach target cells and tissues and 
therefore cause insulin resistance. That insulin resistance is 
caused by elevated soluble insulin receptors has been directly 
supported by the fact that increasing blood soluble insulin 
receptors have been shown to be associated with type I and 
type II diabetes among Japanese patients[26]. However, the 
method used in that study can detect small fractions of 
insulin receptor isoforms. One would expect that these results 
will be incomplete and less dependable.  If we can detect all 
forms of alternatively-spliced isoforms of insulin receptors, it 
is quite possible that we can establish clearer relationships 
between the alternatively-spliced isoforms and insulin 
resistances.  It will help us to develop simple and accurate 
diagnosis and therapy methods for diabetes and metabolic 
syndrome.  
 

4. Conclusions 
We have demonstrated that 5’ exonic sequences 

immediately upstream of spliceosomal introns are similar to 
the intronic-binding sites (IBS1 and IBS2) of the self-
splicing group II ribozymes—ancestors of spliceosomal 
introns. Based on this observation, we have proposed that 5’ 
exonic and 3’ intronic sequences constitute splicing code of 
spliceosomal introns, which are deciphered by splicer 
RNAs/proteins originated from exonic-binding sites (EBS) of 
the group II ribozymes. Based on our findings, we have 
developed a web-based software system to predict pre-
mRNA splicing. Computational and experimental data have 
demonstrated that the mouse insulin receptor gene encodes 
complex alternatively-spliced isoforms, many of which are 
secreted into cellular matrix and blood, where they are able 
to bind the insulin before it reaches target cells and tissues. 
This work has laid the foundation to develop simple, accurate 
and personalized diagnosis and therapy methods for complex 
diseases from diabetes to cancer.  
5. Materials and Methods 

See Supplementary data. 
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