
SESSION

TOOLS AND MODELS FOR PARALLELIZATION
AND INFRASTRUCTURE + POWER AWARE

COMPUTING AND POWER EFFICIENCY

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 1

2 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

High Performance I/O and Data Management

William W. Dai
Computer, Computational, and Statistical Sciences Division

 Los Alamos National Laboratory
E-mail: dai@lanl.gov

Abstract— A library for parallel IO and data management has
been developed for large-scale multi-physics simulations. The
goal of the library is to provide sustainable, interoperable,
efficient, scalable, and convenient tools for parallel IO and
data management for high-level data structures in
applications, and to provide tools for the connection between
applications. The high-level data structures include one- and
multi-dimensional arrays, structured meshes, unstructured
meshes, and the meshes generated through adaptive mesh
refinement. The IO mechanism can be collective and non-
collective. The data objects suitable for the library could be
either large or small data sets. Even for small data sets, the IO
performance is close to one of MPI-IO performance.

Keywords-IO, data structure, data management, high
performance.

I. INTRODUCTION
 Parallel IO and scientific data management have played
an important role since the beginning of large scale
scientific computing, and are getting more important due to
the increase of the scale of the computing. Existing
products, which have partially addressed the issue, include
HDF5 [1,2], SAF [3], CGNS [4,5,6], NetCDF [7,8], Silo
[9], UDM [10], and others. Each of the existing products
has certain advantages and disadvantages. Some of the
products have good functionalities for unstructured meshes,
but they either don’t have capabilities for running on
parallel computer environments or lack for good parallel I/O
performance. Some of them are designed for parallel
environments, but do not have the capabilities to deal with
unstructured meshes, or they get only a fraction of MPI I/O
performance. Some have good IO performance but lack the
functionality to query data sets for their relationship. Some
have a decent IO performance for large data sets, while they
failed to deliver the similar performance for small data sets.

 The HIO library is for parallel IO and data management
for high-level data structures used in numerical simulations.
It has been developed under Department of Energy (DoE)
Advanced Simulation and Computing (ASC) program for
ASC code projects. The HIO library is the further
development of the UDM library [10]. The HIO library
provides sustainable, interoperable, efficient, scalable, and
convenient tools for parallel IO and data management for
high level data structures in applications. In the DoE

community, such as national laboratories, data files
generated in one code project often have to be used in
another code project as inputs. The HIO library provides a
parallel tool for such connections.

Figure 1. Data on n computer processors are written into a single file.

 The HIO library writes simulation data to a single file on
parallel computer environments as shown in Fig.1. It
consists of functionalities for IO and data management for
high-level data structures encountered in numerical
simulations on parallel computer environments. The library
is built on the top of MPI I/O, and its I/O performance is
almost the same as MPI I/O. To our knowledge, the
functionality and performance of the library are superior to
existing products.

In this paper, we will report the library, and its main usages.
In Section II, we will present the main functionalities of the
library. The usage of the library will be demonstrated in
Section III. The IO performance of the library will be
discussed in Section IV, and in the final section we will
discuss some of our future plans.

II. FUNCTIONALITY OF THE HIO LIBRARY

The HIO library provides IO and data management tools

for single and multi-dimensional arrays, structured meshes,
unstructured meshes, and the mesh generated through
adaptive mesh refinement (AMR) in numerical simulations
on parallel computer environments. It also provides a
hierarchical data structure within a data file. The files
generated through the library are self-described.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 3

A. Functionality for Arrays
The HIO library provides IO tools for single and multi-
dimensional arrays used in numerical simulations. It
supports arrays with any number of dimensions. Since
simulations on parallel environments often involves ghost
elements, the library also supports ghost elements. Through
the library, values of an array on both real elements and
ghost elements may be written into data files. If instructed,
only real values can be written into a file.

 To get the highest possible IO performance on parallel
computer environments, the library writes a multi-
dimensional array on each computer processor contiguously
on a disk. To keep the logical view of the multi-dimensional
array for users, the library also writes the description of the
array into the file, such as the size and offset in each
dimension on each processor. Therefore, users get the best
possible IO performance and the logical structure for each
multi-dimensional array.

Figure 2. A 2D array distributed among 4 processors. The right is the
layout of the array on disk. The data on each processor are contiguously
written into the file.

To illustrate the layout of a multi-dimensional array on a
disk, we take an example of a two-dimensional array
distributed among four processors. As indicated in Fig.2, the
data on each processor are contiguously written onto a disk
file. This layout of the array on the disk lacks the global
structure of the two-dimensional array. Therefore, the HIO
library also stores additional information besides the array,
which is called meta data. The meta data together with the
data uniquely determine the global structure of the array.
The meta data, together with all other possible meta data,
will be written into the file when the file is closed.
Therefore almost there is no additional cost to store the meta
data. To avoid unnecessary meta data, all the arrays with a
same processor configuration share the same meta data in a
file.

Figure 3. A 2D array distributed among 4 processors. The right is the
layout of the array on disk. The data on each processor are contiguously
written into the file.

For the treatment of ghost elements, Figure 3 illustrates an
example, where each processor owns a 4x4 two-
dimensional, but only a part of the array, 2x2, contains real
data, as shown in the parts painted with colors. Other data
on each processor are ghost data shown in the white.
Although the ghost data are copied from real data during
simulations, the ghost data are not necessarily the same as
real data when the data are written into a file since ghost
data may not be updated in simulations when the data are
written into files. Through the library both real and ghost
data may be written into a file. Furthermore, each processor
may have different layers of ghost elements due to possibly
different physics problems each processor is solving or
different numerical algorithms used in different processors.
Due to the capability to handle ghost elements, users don’t
have to make memory copies before writing arrays to files.

After an array is written into a file, users may query any part
of data including ghost elements. For example, if a user
specifies offsets and sizes in all dimensions, and if the user
also requests a layer of ghost elements surrounding a part of
data, the result of the query will be a part of real data
surrounded by a layer of ghost data. The data on real
elements are always retrieved from real elements even if this
part of the array was written by more than one processor and
shadowed by ghost elements.

B. Functionality for Structured Meshes

Another major part of the HIO library is the one for
structured meshes and variables. In the library, writing a
structured mesh and variables is very similar to writing
single and multi-dimensional arrays. A structured mesh is
made from possibly three one-dimensional arrays, x, y and
z. Variables defined on a mesh may be represented through
a one-, or two-, or three-dimensional array.

 There are three aspects in which the functionality for
structured meshes is different from the one for arrays in the
library. First, although each processor supplies possible
three arrays for x-, y- and z-coordinates to write a structured
mesh, only a small number of processors actually write their
data. Compared to the procedure for users to use one-
dimensional array to write coordinates, this functionality
makes it easier for users to write a mesh since users can
treat all the processors uniformly. Second, the library
doesn’t write any problem-size data for a structured mesh if
the mesh is uniform in all dimensions. Third, a relationship
between a structured mesh and any variable associated with
the mesh is automatically built in the library for future
query.

 The variables associated with a structured mesh include
those typically used in simulation. For example, vectors
defined on nodes are typically used in numerical simulations

4 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

of fluid dynamics, and vectors defined on a set of faces are
often used in magneto-hydrodynamics. Variables in the HIO
library may be scalars, vectors, and tensors. Each variable
may be defined on zones (i,e. volumetric), or faces, or
edges, or nodes, as indicated in Fig.4. The information
about variables, and their associations with meshes are
stored as meta data. Therefore, there is almost no cost to
write the information into the file.

Figure 4. Illustration for variables defined on nodes, edges, faces, and
zones.

The HIO library writes minimum and complete information
for a structured mesh and variables defined by users. In the
library, one mesh definition is used to cover all the
situations for a variety of structured meshes used in
applications. For example, a mesh may have ghost elements,
the sizes of ghost elements on different processors do not
have to be the same, and sizes of different dimensions may
be different. Any dimension on any processor may be either
uniform or non-uniform. The coordinates in the mesh may
be either the centers of elements or grid points. The relative
location of the part of a mesh on the current processor in the
global structure of the mesh may be specified through either
offsets or a configuration of processors in simulations.

 Although the definition for structured meshes in the HIO
library covers a broad range of possible meshes used in
multi-physics applications, users deal with only their own
definitions. All other mesh definitions are set to invalid
through a function that initializes a mesh. For example, if
there are no ghost elements involved in an application, users
don’t have to touch ghost elements at any time. If users
always use coordinate arrays to indicate the grid points,
users don’t have to deal with any parameters for uniform
meshes at any time. Any file generated through the HIO
library supports more than one mesh, and each mesh may
have a different set of variables.

C. Functionality for Unstructured Meshes
One of the important and powerful functionality in the HIO
library is the management of unstructured meshes and their
associated variables. The library supports a broad range of
unstructured meshes, which include meshes with fixed
shapes, arbitrary polygons, and arbitrary polyhedrons. The
mesh elements with a fixed shape may be triangles,
quadrangles, pentagons, tetrahedrons, pyramids, wedges,
pentagon prisms, and points in particle simulations. A mesh
element may be a zone, or face, or edge, i.e., a mesh may be
a zone-mesh, face-mesh, edge-mesh, and points. An edge-
mesh may be one-, or two-, or three-dimensional, and a

face-mesh may be either two- or three-dimensional. Mesh
elements of a zone-mesh may be made directly from nodes,
or the elements may be made from edges, or the elements
may be made from faces and the faces are then made from
either edges or nodes. The HIO library also supports ghost
mesh elements, boundary faces, boundary edges,
boundary nodes, slip faces, slip edges, slip nodes, etc.
The variables associated with unstructured meshes
may be node-variables, or edge-variables, or face-
variables, or zone-variables, and variables may be
scalars, or vectors, or tensors.

Figure 5. Examples of mesh elements supported in the HIO library for
unstructured meshes.

To illustrate the meshes supported in the library, in Fig.5 we
list some examples for mesh elements. They include (a)
triangles, (b) quadrangles, (c) pentagons, (d) arbitrary
polygons, (e) hexahedrons, (f) tetrahedrons, (g) wedges, (h)
pyramids, (i) pentagon-prisms, and (j) arbitrary
polyhedrons. The mesh elements may be made from any
lower level entities, such as faces, edges, and nodes. Figure
6 shows three possible ways to make up three-dimensional
elements.

Figure 6. An element may be made from (a) nodes, or (b) faces and
nodes, or (c) faces, edges, and nodes.

Although the HIO library covers a broad range of
unstructured meshes, a user only has to set up his/her own
mesh definition, and all other mesh definitions are hidden
from the user. For example, for an unstructured zone-mesh
made from nodes, only the list of nodes for each element is
needed, if the elements are of a fixed shape, such as prisms.
If mesh elements are arbitrary polyhedrons made from
nodes, two arrays are needed, one for the numbers of nodes
for elements, and the other for the list of nodes for each
element. Like the capability for structured meshes, the
association between a mesh and a set of variables is
automatically built into the library.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 5

D. Functionality for Adaptive Mesh Refinement

Although a mesh generated through AMR may be
considered as an unstructured mesh in IO, but it involve
unnessary memory coyies and additional more memory
working memory requrement. The HIO library is able to
handle AMR meshs naturally without additional memory
requirement.

For element-based AMR structured meshes in the HIO
library, we store the center and width of each element in
each dimension. The scalar variables associated with the
meshes are one-dimensional and the associated vector
variables are two-dimensional arrays. The association
between the variables and a mesh is automatically built and
stored in the file. For block- or patch-based AMR structured
meshes, each block or patch is considered as a standard
structured mesh.

E. Functionality for Writing/Reading Descriptions
Users can add any description to any object, such as a file
itself, or an array, or a mesh, or a variable, as long as the
description is not of the problem-size, and each processor
has the same description. More importantly, writing all
descriptions almost doesn’t have any IO cost, since all the
descriptions will be buffered together with all the meta data
and are written at the end of a file when the file is closed.

The number of the descriptions and each description can be
automatically queried. As writing the description, reading
any description does not involve any additional IO cost
since all the descriptions together with all the meta data are
read into the memory when a file is open.

F. Functionality for Small Data Sets
Writing small data sets into a file on a parallel environment
will typically result in very IO performance. The HIO
library provides an automatic buffering mechanism so that a
large number of small data sets will automatically buffered
together before they, together with their names and
descriptions, are written into a file. Writing small data sets,
users will get the same IO performance as they get for large
data sets. But, users don’t have to keep track of the locations
of each individual small data set in the combined buffer and
the disk file.

To read a small data set, the HIO library actually only
copies small data set from a buffer to the user’s memory. If
the buffer is not available yet, the library will automatically
read the buffer first, and then copy the data. Therefore, the
library doesn’t involve reading from a disk with a small set
of data.

To users, all the tedious operations necessary for writing
and reading the small data sets are behind the scene. Writing
small data sets is the same as writing big data sets, and even
the names and arguments of the functions to be called are
the same.

Figure 7. Three parts of an unstructured mesh with 1.6 billion
elements. The left is read through an original processor rank, the
middle one is read through a set of global element ids, and the right
is read through a space domain.

6 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

G. Functionality for Querying
A file written through the HIO library is self-described.

All the information in the file may be queried by function
calls of the library. For example, for a given file, users may
find the number of arrays, meshes, and variables, the
description of each array, mesh, and variable, and any
association between meshes and variables. Through the
querying function in the library, meshes and variables may
be directly viewed through parallel graphics tools.

After a data object, such as array, mesh, and variable, is
written into a file, users may read any part of the data object
in terms of, for example, global ids, or a processor rank, or a
space domain. Figure 7 illustrates the capability for reading
three parts of an unstructured mesh with 1.6 billion
elements. The top image is a part read through a processor
rank, the middle one is a part identified through a set of
global element ids, and the lower image is read based on a
space domain.

H. Hierarchical Data Format
 The HIO library supports the hierarchical data structure
within each file, which is equivalent to the Unix file system,
although it is not necessary for the functionalities of the
library mentioned above. After a file is created, users may
create any number of groups within the file. A group is a
container in which other groups and data sets may be
created and written. A file is also a group. A data set is an
array, or a mesh, or a variable. A number of attributes may
be attached to a group or data set. An attribute is any
additional description users want to store into the file for a
group or data set. Due to the hierarchical data structure and
the attributes, users may build their own data format that is
self-described.

 All the data needed for the hierarchical data structure
and attributes are stored at the end of each file, which is
written to a file only when the file is closed. Therefore, the
cost for the hierarchical structure and attributes is very
minimal.

III. BASIC FUNCTIONS AND UAGE
One of the design principles of the HIO library was a small
number of functions. The following is the list of main
functions of the library.

• hio_open(filename, mode, fid)
• hio_close(fid)
• hio_init(type, fileid, obj)
• hio_write(type, fileid, obj)
• hio_query(type, fileid, filter, nobjs, objs)
• hio_clean(type, nobjs, objs)
• hio_get_size(type, domain, fileid, obj)
• hio_read(type, domain, fileid, objs, nobjs)
• hio_init_append(type, obj)

• hio_finalize_append(type, id)

The first two functions are for opening and closing files.
The function hio_init is to initialize any object before it is
being used, and the object includes array, structured and
unstructured mesh, AMR mesh, and variable defined on a
mesh. The function hio_query is for querying, which
include querying files, querying variables, querying
relationship between variables and meshes, querying
attributes, etc. The function hio_clean is to release the
memory allocated in the call of the function hio_query. The
function hio_get_size to determine the sizes of grid zones,
faces, edges, and nodes for a given part of a mesh, for
example, a spatial domain, a part associated with a specific
processor, or a number of elements. The function hio_read
is to read attributes and any data for a given part of a mesh,
which include coordinate, mesh, variable, etc. The
functions, hio_init_append and hio_finalize_append,
together with hio_write are for generating large meshes with
a small number of computer processors.

The following is an example to write an unstructured mesh
with general polyhedrons. To specify the mesh, each
computer processor has a number of elements, nzone. The
set of elements have a number of faces and nodes, nface and
nnode. The arrays, num_faces_for_zone and
facelist_for_zone, are to specify the elements, and the
arrays, num_nodes_for_face and nodelist_for_face, are to
define the faces. The arrays, x, y, and z, are the locations of
these nnode nodes. All these arrays and sizes are local to the
processor. Then code to write this unstructured mesh is as
follows.

hio_unstructured_mesh m;
hio_coord *c = &m->coord;
hio_init(hio_umesh, -1, &m);
m.dims = 3;
m.type = hio_general_mesh;
m.sizes[0] = nzone;
m.sizes[1] = nface;
m.sizes[3] = nnode;
m.num_nodes_for_face = num_nodes_for_face;
m.nodelist_for_face = nodelist_for_face;
m.num_faces_for_zone = num_faces_for_zone;
m.facelist_for_zone = facelist_for_zone;
c->coord[0] = x;
c->coord[1] = y;
c->coord[2] = z;
c->datatype = hio_double;
m.datatype = hio_int;
hio_write(hio_umesh, fileid, &m);

After this mesh is written to a file, this mesh can be queried
as described before.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 7

To generate a large mesh, suppose the mesh can be
generated part by part. The following segment of codes
demonstrates the usage to write this mesh into a file.

hio_unstructured_mesh m;
hio_coord *c = &(m.coord);
hio_init_append(hio_umesh, -1, &m);
m.dims = 3;
m.type = hio_general_mesh;
m.datatype = hio_int;
c->datatype = hio_double;
while (more_block) {
 generate a part of mesh
 write the part to file
}
hio_finalize_append(hio_umesh, m.id);

The segment of codes shown above in “write the part of
mesh” is the following.

m.sizes[0] = nzone;
m.sizes[1] = nface;
m.sizes[3] = nnode;
m.num_faces_for_zone = num_faces_for_zone;
m.facelist_for_zone = facelist_for_zone;
m.num_nodes_for_face = num_nodes_for_face;
m.nodelist_for_face = nodelist_for_face;
c->coord[0] = x;
c->coord[1] = y;
c->coord[2] = z;
hio_write(hio_umesh, fileid, &m);

An example mesh with 1.6 billion of unstructured elements
generated through 16 processors in this way is shown in
Fig.8.

Figure 8. An unstructured mesh with 1.6 billion elements written
through the “append” capability in the HIO library.

A cell_based AMR structured mesh is defined through
arrays for the centers of elements, x, y, z, and arrays for
widths of the elements, dx, dy, and dz. The following
segment of codes shows the usage to write a cell_based
AMR mesh.

Figure 9. A cell_based AMR structured mesh with four materials and the
variable of density written through the HIO library.

hio_Structured_Element_AMR m;
hio_init(hio_smesh_element_amr, -1, &m);
m.name = meshname;
m.dims = 2;
m.datatype_coord = hio_double;
m.size = nelement;
m.coord[1] = x;
m.coord[0] = y;
m.dcoord[1] = dx;
m.dcoord[0] = dy;
hio_write(hio_smesh_cell_amr, fileid, &m);

An example mesh is shown in Fig.9 that contain four
materials.

After a mesh is written into a file, a set of variables can be
written into the file, and the relationship between the mesh
and variables is automatically built. The following codes
show the usage to write a scalar variable defined on
elements, zone_density, and a vector defined on nodes,
node_velocity_x and node_velcity_y.

hio_Mesh_Var var;
hio_init(hio_mesh_var, -1, &var);
var.name = varname1;
var.mesh_ids[0] = m.id;
var.type = hio_zone;
var.datatype = hio_double;
var.rank = 0;
var.comps[0].buffer = zone_density;
hio_write(hio_mesh_var, fileid, &var);

8 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

hio_init(hio_mesh_var, -1, &var);
var.name = varname2;
var.mesh_ids[0] = m.id;
var.type = hio_node;
var.datatype = hio_double;
var.rank = 1;
var.comp_sizes[0] = 2;
var.comps[0].buffer = node_velocity_x;
var.comps[1].buffer = node_velocity_y;
hio_write(hio_mesh_var, fileid, &var);

Figure 10. A patch-based AMR structured mesh written through the
HIO library. The top image shows the first level of patches, and the
lower one is the second level of patches on the the top of the first
level patches.

After a mesh and a set of variables are written into a file.
Any part of the mesh and the variables associated with this
part of the mesh may be easily read. The following segment
of codes shows the usage to read a part of mesh defined

through domain, and nvar variables, vars, associated with
this domain.

int nvar;
hio_Domain domain;
hio_Unstructured_Mesh m;
hio_Mesh_Var *vars;
specify mesh and domain
hio_get_size(type, domain, fileid, &m);
allocate space for the part of mesh, and variables
hio_read(hio_umesh, domain, fileid, &m, 1);
hio_read(hio_mesh_var, domain, fileid, &vars,
nvar);

The other examples include patch-based AMR structured
meshes shown in Fig.10. The patches of the first and second
levels of a patch-based AMR mesh in a three dimensional
simulation are displayed in the figure. The rectangular with
each color in Fig.10 is a patch. Figure 11 at the end of this
paper shows the mesh partition of a cell_based AMR
structured mesh, where each rectangular with the same color
contains the elements in one of 256 computer processors.
The mesh is written and read through the HIO library.

IV. IO PERFORMANCE

The HIO library is built directly on the top of MPI-IO, and
files generated are machine-independent. Its functionality
and performance have been tested on from a couple of
dozen processors to the full machine, and its performance is
around 97% of that of the MPI-IO.

 The library depends on MPI I/O for its I/O performance,
and it currently supports both collective and non-collective
writes. The library doesn’t explicitly move data between
processors. The library itself doesn’t directly interact with
file systems. If it is necessary, the library have appropriate
functions to set parameters of the file system through MPI
calls. If the MPI is tuned to be of high performance in a
machine, the HIO library will have high IO performance
too.

To illustrate I/O performance, we used the Q, Lightning,
and Lobo machines in the Los Alamos National Laboratory
as examples. The Q machine has a HP proprietary parallel
file system, and the Lightning and Lobo machines have
global parallel file systems provided by Panasas. The MPI
library, mpich, is used on the Q and Lighting machines for
the tests, and OpenMPI is used on the Lobo machine. An
unstructured mesh and its 50 associated variables are used in
the example. The mesh is defined by three arrays for
coordinates, and an array for the list of nodes for elements.
We use 510 processors on the Lightning machine to write
the mesh with total elements 1.6 billion and 50 associated
variables. The resulting file size is about 405 Gbytes. As
stated before, the file generated through the library is

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 9

slightly larger than the file generated through MPI I/O. This
is due to the meta data used in the HIO library. The HIO
library gets 97% of writing performance of MPI I/O. On the
Q machine, we use 256 processors, resulting file size is
about 203 Gbytes, and the writing performance is also 97%
of the one obtained through MPI I/O. For 1024 processors
on the Lobo machine, for a data file of 813 Gbytes, the
performance of the HIO library is 98% of the one of raw
MPI-IO calls.

 A few points about the test are worth being mentioned
here. Firstly, for the pure MPI I/O test, all processors
collectively write 53 large arrays, and the sizes of data on
each processor are roughly equal. Secondly, the file
generated through the HIO library is self-described, and
may be queried and visualized, but the file generated
through MPI I/O may not. Last, for the case with 510
processors, the total overhead of file size in the HIO file is
110 kbytes, or 0.00004%. Each processor contributes about
200 bytes of the 110 kbytes, and remaining 8000 bytes are
the overhead for the description of the file structure.

 For the best possible performance, we take three main
steps. We first make sure that the data on each processor are
contiguously written onto a disk file, and therefore there is
no movement of data during writing. Second, the library
collects all the data for descriptions of arrays, meshes,
variables, relationship and associations, the hierarchical file
structure, etc., and writes the collection only when a file is
closed. Third, when reading a file, the library reads all the
meta data and the file structure together and reads it only
once.

V. ACKNOWLEDGMENTS
The work presented here has been supported by

Department of Energy through the Advanced Simulation and
Computing program.

REFERENCES

[1] Brown, S., Folk, M., Goucher, G., Rew, R., “Software for
Portable Scientific Data Management”, Computers in Physics,
vol. 7, no. 3, pp.304-308 (1993).

[2] HDF5 home page, HDF Group,
http://www.hdfgroup.org/hdf5

[3] Miller, M. C., Reus, J. F., Matzke, R. P., Arrighi, W. J.,
Schoof. L. A., Hitt, R. T., Espen, P. K., “Enable Integration of
High Performance, Scientific Computing Applications:
Modeling Scientific Data with the Sets and Fields (SAF)
Modeling System”, in Computational Science- ICCS 2001,
Alexandrov et al. (Eds.), Springer-Verlag Berlin Heidelberg
2001, pp.158-167, 2001.

[4] Poirier D., Allmaras, S., McCarthy D. R., Smith M., and
Enomoto F., “ The CGNS System”, 39th AIAA Fluid
Dynamics Conference, AIAA-98-3007, Albuquerque, NM,
June, 1998.

[5] CGNS home page,
http://www.lerc.nasa.gov/www/cgns/index.html

[6] Thauser Th., “Parallel I/O for the CGNS System”, 42nd AIAA
Aerospace Sciences Meeting and Exhibit, AIAA 2004-1088,
Reno, Nevada, January, 2004.

[7] Rew, R. K., Davis, G., “NetCDF: An Interface for Scientific
Data Access”, IEEE Computer Graphics and Applications,
vol.4, pp 72-82, July (1990).

[8] NetCDF home page,
http://www.unidata.ucar.edu/software/netcdf

[9] Roberts, L., J., “Silo User’s Guide”, University of California
Research Lab Report, Lawrence Livermore National
Laboratory, UCRL-MA-118751-REV-1 (2000).

[10] William W. Dai, Rob Aulwes, Michael Gaeta, and Ron Pfaff,
Unified Data Model (UDM): A Library for Parallel IO and
Data Management, The proceedings of the 2007 International
Conference on Parallel amd Distributed Processing
Techniquies and Appliciation,Arabnia et al (Eds.), CSREA
Press 2007, Vol.II, pp.697-702, 2007. .

10 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Figure 11. A cell_based AMR mesh partitioned among 256 processors. Each rectangular of a same color contains the elements in one of the
256 processors. The mesh is written and read through the HIO library.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 11

Generation ofCorrect Parallel Programs Guided by
Rewriting Rules

Hidekatsu Koike
Faculty of Social Information
Sapporo Gakuin University

11-banchi Bunkyoudai, Ebetsu, Hokkaido 069-8555, Japan
Email: koike@sgu.ac.jp

Kiyoshi Akama
Division of Large Scale Computing Systems

Information Initiative Center Hokkaido University
Kita 11, Nishi 5, Kita-ku Sapporo 060-0811, Japan

Email: akama@iic.hokudai.ac.jp

Abstract—In this paper, we propose a method for generation
of a correct parallel program from a given specification. In this
method, a sequential program is first generated by the program
generation method we have developed, and then a parallel
program is obtained by adding a set of abstracted parallel
procedures represented by rewriting rules into the sequential
program. Correctness of all the computation steps can be verified
based on the equivalent transformation computation model and
algorithms for correctness of parallelism. The generated parallel
program can be tailored to the computation where degree of
parallelism varies according to the run time situation and various
procedures run in parallel with shared variables. We introduce
several rewriting rules which abstract procedures for parallel
computation but can be executable. The rules encapsulate compli-
cated details of implementation taking into account computation
efficiency and enable us to generate a parallel program only
by adding the set of rules into an existing sequential program.
Generated parallel programs are written in rewriting rules which
are immediately executed by our original language system. We
can even obtain imperative programs such as C++ programs by
hand since the rewriting rules represent detailed procedures.

Index Terms—parallelism, programming language, equivalent
transformation, formal specification, program systhesis.

PDPTA

I. I NTRODUCTION

This paper introduces a method for generating a parallel
program, which is correct with respect to a given formal
specification, based on the equivalent transformation (ET)
computation model [1] and the additional algorithms for
correct parallel computation [15], [16]. In this model com-
putation can be regarded as a sequence of ETs and a program
consists of a set of ET rules and description for controls
of their application. We can use variety of computational
procedures with correctness theorem by using ET as a basis
for computation. The ET can be seen as generalization of
computation mechanism used by other computational models,
for example, SLD-resolution corresponds to unfolding [2]
which is an instance of ET [3]. In the ETCM, a problem
to be solved is specified by a declarative description, which
is a set of definite clause extended to be able to support
various data structures [4], set expression and operation [5],
high order expression, and logical negation [6]. A declarative
descriptionP mathematically determines its meaningM(P),
which is intuitively an extension of the declarative semantics of

logic programs. The formal definition can be found in several
papers related to the ETCM, for example [1], [3]. A rewriting
rule is an ET rule with respect to a declarative description
P iff the rule rewritesP into P ′ andM(P) = M(P ′).
We can use various ET rules for computation to improve
program efficiency since ET rules can represent more detailed
procedures than by clauses. We let our programming language
have the rule syntax to represent a variety of ET rules and
run efficiently by adopting specified head pattern, one-side
matching, and applicability conditions. A program is always
correct if it consists of all ET rules since correctness of a rule
is completely independent from each other. The independency
enables us to check correctness of an ET rule, which is newly
generated, and then add into a whole program one by one.
In addition, the independency allows us freely combine ET
rules that seem to run the fastest for a given problem. Given
a specification as a declarative description, a hand written
set of rewriting rules may be correct if carefully constructed
to preserve the semantic meaning of the specification. We
can check correctness of each rule with rigorous theory [3],
[7], [8], [9] and even can generate a wide class of ET rules
including non-trivial ones automatically [10].

Computation in the ETCM is generally nondeterministic
since we have to determine which rule is to be applied to
which atom in which clause. Such non-determinism can be
processed in parallel. Selections of clause and atom provide the
sources of OR-parallelism and AND-parallelism, respectively
which bear a close resemblance to those in parallel logic
programming [11], [12], [13], [14]. In this paper, we propose
a method for generation of a correct parallel program from
a given specification. In this method, a sequential program
is first generated by the program generation method we have
developed [10], and then a parallel program is obtained by
adding a set of abstracted parallel procedures represented by
rewriting rules into the sequential program. Correctness of all
the computation steps for parallelism can be verified if each of
the rewriting rues follows the theories proposed in [15], [16].
The generated parallel program can execute the computation
where degree of parallelism varies according to the run time
situation and various procedures run in parallel with shared
variables. We use nonogram puzzles as an example of such
situations. We introduce several rewriting rules which abstract

12 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

procedures forparallel computation. The rules encapsulate
complicated details of implementation taking into account
computation efficiency and enable us to generate a parallel
program by adding the set of the rules into an existing
sequential program. The introduction of the rules gives a
simplified framework for constructing a parallel program from
a sequential program based on the ETCM. The method is
especially useful in situation where we need both rigorously
correct results and adequate efficiency.

II. PROBLEM SOLVING BY ETCM

A. Definition of Objects
We here define the syntax of objects appearing in specifi-

cations and rules by the following psuedo-EBNF. A language
interpreter system based on the ETCM named ETI [17] accepts
objects and rules which are written in the following syntax and
ones introduced later.

<alphabet> ::=[a-zA-Z]
<number> ::= [0-9]
<symbol> ::= [+ * -+:= ...]
<name> ::= (<alphabet> | <number> | <symbol>)+
<var> ::= " * " <name>? | "?"
<term> ::=

(<name> | <number>+ | <var>) <term> *
<atom> ::="(" <name> <term> * ")"
<clause> ::= <atom> "<--" <atom> * "."

In the psudo-EBNF, we apply* , +, ? operators which mean
zero or more, one or more, and optional respectively, and other
regular-expression-like operators.<name> is a name which is
used to represent a name of variable or atom. It also can be
an operative symbol such as=, -, +, etc. <var> is a variable
which has an asterisk as a prefix of its name. A variable is
anonymous if a variable has? as its name.<term> is a term
appearing in an argument of an atom.<atom> is an atomic
formula. In this paper, an atomic formula is referred to as an
atom.<clause> is a definite clause which has a head as an
atom and a body as a possibly empty set of atoms. The head
and body of a definite clause are separated by<-- .

B. Substitution

Given substitutionsθ1 and θ2, θ1 ◦ θ2 denotes the compo-
sition of θ1 and θ2. tθ, aθ, and clθ denote substitutions of
term t, an atoma, and a clausecl by using a substitutionθ,
respectively.

C. Nonogram

Nonogram is a puzzle to reveal a picture in an n×m grid
implied by clue sequences of integers given at the side of the
grid. Fig. 1 (a) shows an example of nonogram and Fig. 1 (b)
shows the answer to (a) in whichrepresents afilled cell and
× represents a blank cell. Nonogram can be represented by
sequences of variables corresponding to rows and columns in
a gird and clue sequences of non-negative integers which are
given on each row and column. Answering a nonogram is to
determine each variable value according to the given numbers.
Each value represents fill or blank. Each number specifies the
number of cells which must be connected. Each group of cells
must be separated by one or more blank cells.

1
3 5 3 5 1 1

2

1 3
5
3
4
22
1

1
3 5 3 5 1 1

2

1 3
5
3
4
22
1

(a) (b)

Fig. 1. Example of Nonogram

We use a program for solving nonogram as a sample which
has AND-parallelism with synchronization overheads. The
degree of parallelism in solving a nonogram puzzle can vary
since threads share variables with each other and a certain
thread might need specialization of variables made by other
threads for further computation; this possibility depends on
a given specific puzzle problem and computational situation.
The application of the proposed approach is not limited to the
puzzle.

D. Formal Specification as a Declarative Description

In the ETCM, a declarative description is neither a program
nor has procedural semantics; thus, orders of atoms and
clauses are not significant, and a declarative description only
determines the meaning of a given specification mathemati-
cally. In contrast, a set of rules is a program which rewrites
the declarative description preserving its meaning. A simple
example of declarative descriptionP = D ∪Q is as follows.
D = {

(pat () * pl)<--(allZero * pl).
(pat (* n | * ns) (0 | * pls))

<--(check_c * ns * pl),(pat (* n | * ns) * pls).
(pat (* n| * ns) (1 | * pls))

<--(sub * n 1 * n2),(seq1 * n2 * pls * rest),
(start0 * rest), (pat * ns * rest).

(seq1 * n (1| * pls) * pls2)
<--(> * n 0), (:= * n2 (- * n 1)),

(seq1 * n2 * pls, * pls2).
(seq1 0 * pls * pls2)<--(= * pls * pls2).
(start0 ())<--.
(start0 (0| * rest))<--.
(allZero ())<--.
(allZero (0 | * rest))<--(allZero * rest).
(check_c * ns * pl)<--

(len * ns * nl), (len * pl * pll),
(listSum * ns * sum), (sub * nl 1 * nl2),
(add * sum * nl2 * ml), (>= * pll * ml).

}
Q = {

(ans (* 11 * 12 * 13 * 14 * 15 * 16
* 21 * 22 * 23 * 24 * 25 * 26
* 31 * 32 * 33 * 34 * 35 * 36
* 41 * 42 * 43 * 44 * 45 * 46
* 51 * 52 * 53 * 54 * 55 * 56
* 61 * 62 * 63 * 64 * 65 * 66))<--

(pat (1 3) (* 11 * 12 * 13 * 14 * 15 * 16)),
(pat (5) (* 21 * 22 * 23 * 24 * 25 * 26)),
(pat (3) (* 31 * 32 * 33 * 34 * 35 * 36)),
(pat (4) (* 41 * 42 * 43 * 44 * 45 * 46)),

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 13

(pat (2 2) (* 51 * 52 * 53 * 54 * 55 * 56)),
(pat (1) (* 61 * 62 * 63 * 64 * 65 * 66)),
(pat (1 3) (* 11 * 21 * 31 * 41 * 51 * 61)),
(pat (5) (* 12 * 22 * 32 * 42 * 52 * 62)),
(pat (3) (* 13 * 23 * 33 * 43 * 53 * 63)),
(pat (5) (* 14 * 24 * 34 * 44 * 54 * 64)),
(pat (2 1) (* 15 * 25 * 35 * 45 * 55 * 65)),
(pat (1) (* 16 * 26 * 36 * 46 * 56 * 66)).

}
P consists of the sets of clausesD andQ. D declaratively

defines the rule of Nonogram. A filled celland blankcell ×
are represented by 1 and 0, respectively.D is never chagned
in computation.Q presents a specific nonogram puzzle to
be solved and is changed by rewritting rules at run-time.P
implicitly determines the answer toQ. The answer is obtained
by repeatedly rewrittingQ until the answer is ovious, e.g.Q
is transformed intoQ′ by more than one rewritting as follows.
Q′ = {

(ans (0 1 0 1 1 1
1 1 1 1 1 0
0 1 1 1 0 0
1 1 1 1 0 0
1 1 0 1 1 0
1 0 0 0 0 0))<-.

}

E. ET Rules

In the ETCM, a program is a set of ET rules while
a declarative description only determines the meaning. An
application of an ET rule rewrites a set of clauses while
substitutions are often generated at the same time. We use
two sorts of ET rules, D (deterministic) rules and N (non-
deterministic) rules for both efficiency and simplicity. The D-
rules represent primitive procedures (including substitutions,
arithmetic operations, I/O access, and so on.) and user-defined
procedures in a deterministic way, and can be invoked by
N-rules which can specify procedures in a non-deterministic
manner and yield a result set of more than one element
as opposed to D-rules whose number of results is always
one. The application of D-rules is strictly deterministic. The
computation by the D-rules transforms the leftmost atom in
the body of a clause. If there are two or more applicable D-
rules, the topmost rule is selected. The atom transformed by
D-rules is called a D-atom. A D-rule, which is built into the
system, is called a built-in D-rule or B-rule. A D-rule has the
following syntax.

<D-rule> ::= <d_head><d_cond>
"-->" <d_body> "."

<d_head> ::= <D-atom>
<d_cond> ::= <empty> | ",{" <D-atom>+ "}"
<d_body> ::= <empty> | <D-atom> |

<D-atom> "," <d_body>
<D-atom> ::= <atom>

Note that the definition of<atom> is inherited from the
above definition. An N-rule is non-deterministic. Thus the
applicability condition depends on the current situation of
the computation. N-rules rewrite a set of clauses and have

the ability to create one or more clauses from one clause to
obtain all the answers. This can be seen as a guarantee of
completeness from the point of view of logic programming. N-
rules can call a sub-computation done by the D-rules to check
their applicability condition and to execute their more specified
application. An atom in a clause, which is transformed by N-
rules, is called an N-atom. The result of the sub-computation
can propagate through variable substitutions. An N-rule has
the following syntax.

<N-rule> ::= <name>?<head><cond><bodies>
<head> ::= <N-atom>("," <N-atom>) *
<cond> ::= (",{" <D-atom>+ "}")?
<body> ::= (<exec>("," <rep>)?)?
<rep> ::= <N-atom> *
<bodies> ::= "==>" <body> "." |

"==>" <body> ";" <bodies>
<exec> ::= ("{" <D-atom>+ "}")?
<N-atom> ::= <atom>

Note that the<atom>, <D-atom>, and <name> are inher-
ited from the above definitions.

F. Application of D-Rules

We here explain how the rules are applied during computa-
tion. LetT be the set{true, false} andexec a mapping from
a sequence of atoms toS × T whereS is the set of all the
substitutions. The mappingexec is recursively defined later.
Let sub be a mapping fromS × T to S and val a mapping
from S × T to T . The mappingssub and val are defined as
follows.

Given (s, t) ∈ S × T , sub((s, t)) = s andval((s, t)) = t.

Let sa be a sequence of D-atoms such assa = a1, . . . , an,
wheren ≥ 0, dcl be a clause of the formdh ← sa where
dh is a D-atom. A D-rule is applicable iff it satisfies all the
following conditions:

• There exists the most general substitutionθh ∈ S such
that<d head> θh = a1.

• val(exec(<d cond> θh)) = true.
• The rule appears first among the rules satisfying the above

conditions in the source code.
The application procedure of a D-rule is as follows. Letθc be
a composite substitution obtained by the above applicability
check such as

θc = sub(exec(<d cond> θh))◦θh.

Let <d body>be asequence of atoms such as< d body>=
b1, . . . , bm wherem ≥ 0. A new clausedcl′ is obtained from
dcl by the D-rule as follows.

dcl′ = (dh← b1, . . . , bm, a2, . . . , an)θc.

Primitive data operations from explicit substitution and math-
ematical operations to file I/O are realized by B-rule. A B-rule
is a special D-rule having an empty body and yields (possibly
empty) substitution according to the arguments in a D-atom to
be rewritten. We obtaindcl′ from dcl by a B-rule as follows.

14 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

dcl′ = (dh← a2, . . . , an)θb

where θb is substitution which is generated by application
of the B-rule and defined in its respective rule. Theθb may
vary according to the arguments in the target D-atom which is
rewritten by the B-rule if the atom has one or more arguments.

The mappingexec is recursively defined as follows. Assume
that no D-rules or B-rules are applicable after more than one
attempt to apply a rule to a clausedcl. Let θe be a composite
substitution of all the substitutions obtained by the one or more
attempts of applications of rules.

• If sa is empty, thenexec(sa) = (θe, true).
• Otherwiseexec(sa) = (θe, false).

Thus B-rules and D-rules define the mappingexec recursively.

G. Application of N-Rules

Let C be a clause of the forma ← {b} ∪ Bs wherea is
the head atom ofC, b is a body atom ofC, andBs is a set
of body atoms ofC, andQ = {C}∪Cs whereCs is a set of
clauses. Assume thatexec is given. An N-rule is applicable
iff it satisfies all the following conditions:

• There exists the most general substitutionθh such that
<head> θh = b.

• val(exec(<cond> θh)) = true.
• The rule has the highest priority of the rules satisfying

the above conditions.
Note that the applicability check never affects the target clause.
The application procedure of an N-rule is as follows. Letθc =
sub(exec(<cond> θh))◦θh. Assume that the rule hasn bodies.
For each i∈ {1, . . . , n}, if val(exec(<exec i> θc)) = true,
then a new clauseC i = (a← (< rep i > θc) ∪ Bs)θe i is
created, whereθe i =sub(exec(<exec i> θc)) ◦ θc.

Thenfinally, C is replaced with the set of the new clauses.
If no new clauses are created, thenC is merely removed. Thus,

Q′ = {C i | (i ∈ {1, . . . , n}) &
val(exec(<exec i> θc)) = true } ∪ Cs

is obtained fromQ by application of the rule.
This replacement will be repeated until no rule is applicable

or the clauses run out. Note that the applicability of a rule is
specified by a combination of head matching and the execution
of the applicability condition part, enabling very detailed
control of computational flow. The atoms in the same clause
can share common variables, therefore when a rule is applied
to an atom and variable substitution occurs, it affects the other
atoms and often makes it possible to apply other rules to them.
With this interaction, flexible computation is achieved.

H. Rule Priority

Applicability control of an N-rule can be specified in detail
by its head atom and applicability condition part. However
there is a situation where a program is simplified as a whole
if a way to specify control more globally exists; therefore the
way to specify priority of rule is introduced. Specification of
rule priority consists of the following steps:

1) Priority groups are made and each group is given a
priority order.

2) Each rule to be given a priority order is given a name.
3) Each rule is assigned its priority group by using its

name.

The first step is realized by RuleClassOrder directive which
has variable arguments. The third step is realized by Rule-
Class/2. An example of them is shown in Section III. In that
case, these directives make two priority groups named 0 and
1, and then define that default rule priority group is 0 and the
rule named pat2 is assigned into group 1 which means the rule
is lowest priority among all the other rules.

III. A N EXAMPLE OF ET RULES

We have developed a rule generation method [10] by which
we can obtain ET rules with respect to a given formal specifi-
cation described in declarative description. The following set
of rewriting rules is generated by the method.

?-(RuleClassOrder 0 1),(RuleClass pat2 1),
(RuleClass otherwise 0).

(pat (* n| * ns) ())==>{(false)}.
(pat () * PL)==>(allZero * PL).

pat2
(pat (* n| * ns) (* p| * pls))

==>{(= * p 0)},(check_const (* n| * ns) * pls),
(pat (* n| * ns) * pls);

==>{(= * p 1),(:= * n2 (- * n 1))},
(seq1 * n2 * pls * rest),(start0 * rest),
(pat * ns * rest).

check_const
(check_const * n * pl),

{(length * n * nl),(length * pl * pll),
(listSum * n * ns),(:= * nl2 (- * nl 1)),
(:= * ns2 (+ * ns * nl2))}

==>{(>= * pll * ns2)}.

(seq1 * N * PL * PL2),{(> * N 0)}
==>{(= * PL (1 | * PLS)), (:= * N2 (- * N 1))},

(seq1 * N2 * PLS * PL2).
(seq1 0 * PL * PL2)==>{(= * PL * PL2)}.

(start0 ())==>.
(start0 (* p | * rest))==>{(= * p 0)}.

(allZero ())==>.
(allZero (* p | * rest))==>{(= * p 0)},

(allZero * rest).

(length () * l)-->(= * l 0).
(length (* a | * rest) * l)-->

(length * rest * l1),(:= * l (+ * l1 1)).

(listSum () * s)-->(= * s 0).
(listSum (* n | * rest) * s)-->

(listSum * rest * s1),(:= * s (+ * n * s1)).

The first line which starts “?-” is a directive set for priori-
tizing rules. This is obtained by following the policy that as
a rule has more bodies, as it has lower priority. The reason
why we adopt such policy is that a rule having the plural
number of bodies increases computation complexity than a
single body rule; thus efficient computation can be done by
the prioritization of the rules.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 15

IV. PARALLELISM OF COMPUTATION IN ETCM

Computation in the ETCM has three kinds of non-
determinism: which clause, which atom, and which rule are
selected. In this paper, we treat non-determinism arising from
atom selection. This kind of non-determinism can be trans-
formed into AND-parallelism. In the ETCM, non-determinism
from clause selection can be also transformed into AND-
parallelism since clause selection can be reduced to atom
selection of which scope ranges over all the atoms in all the
bodies of a whole set of clauses.

V. OUTLINE OF PARALLELIZATION

To obtain a parallel program from a formal specification, we
prepare additional information in addition to the specification.
The information consists of:

• The maximum number of processes can be run in parallel,
• The atom to be processed in parallel, and
• Specification of the form of result which a server process

sends to a client.

The second and third information are given as a set of template
rules for parallelism which are described in Section VI.

VI. A BSTRACTION OFPARALLEL COMPUTATION BY

REWRITING RULES

A. Communication Object

A communication object is used to transfer data between a
client process and a server process. The object encapsulates
the procedures for parallel communication between a client
and a server such as mutual exclusion. The object consists of
a pointer to a server, a container for a result returned by a
server, and a flag showing the termination of a server.

B. Requesting Rules

Applicability condition for atoms to be processed in parallel
and procedures representing how to process the atoms are
generalized. Applicability conditions are as follows:

• An atom which has not been rewritten yet is always
applicable.

• An atom which has already rewritten is applicable iff its
shared variable is substituted by processing other atoms.

The first condition and respective procedure are represented
by the following rule:

(pat * n * cs)==>(pat * n ? * cs).

The rule rewrites two-argument-pat atom into three-
argument-pat atom whose second argument represents the
previous state of cells while the third argument represents
the current state of the cells. The new atom is applicable
since the third argument is more specialized than the second
argument which means the atom has new state and is need
to check whether new substitution is obtained from the atom.
The second condition and respective procedure are represented
by the following rule:

(pat * n * pcs * cs),
{(specialized * pcs * cs),

(sendReq * co (pat * n * cs))}
==>{(copy * cs * npcs)},(pat * n * npcs * cs * co).

The rule is applicable to three-argument-pat atom iff the
third argument is more specialized than the second argument
and a request of processing two-argument-pat atom is suc-
cessfully sent to a server. When the rule is applied, it copies
the current state of cells represented by the variable* cs to
* npcs and replace the original atom with a four-argument-
pat atom which has* npcs and * co which is an object
for communication with a server in addition to the original
arguments. The B-rulespecialized/2 checks whether the
second argument is more specialized than the first argument.
The B-rulesendReq/2 encapsulates a procedure to send a
request to a server for a parallel computation. The procedure
is defined as follows.

1) Perform none-blocking P operation.
2) If the P operation failed then returnfalse otherwise go

to the next step.
3) Get a server process id.
4) Create a communication object associated to the server

process id.
5) Set a termination flag in the communication object to be

false.
6) Make a copy of the second argument and send the copy

to a server.
7) Unify the first argument and the communication object.
8) Returntrue.

C. Receiving Rules
In this section, receiving a computation result from a server

is abstracted by the following rule:

(pat * n * pcs * cs * co),
{(terminated * co)}
==>{(copy * cs * cs2), (getResult * co * cs),

(makePCS * pcs * cs2 * cs * npcs)},
(pat * n * npcs * cs).

The rule is applicable to a four-argument-pat atom iff
computation of the server represented by the communication
object * co is terminated. When applied, the rule copies the
current state* cs to * cs2 , obtains a computation result from
server and unifies the result and* cs , makes a previous state
of cells as a variable* npcs according to* pcs, * cs , and
* cs2, and replaces the original atom with a new three-
argument-pat atom. The B-ruleterminated/1 checks
whether computation of the server specified by its argument
is terminated. The B-rulegetResult/2 obtains the result
from the server and unifies the result and the second argument.
The B-rule makePCS/4 makes a new previous state to be
the second argument of the new three-argumentpat atom
according to substitution made from the outside of the atom
while a server process runs and that from the server. If either
the outside substitution or the server substitution occurs, then
the new atom is applicable unconditionally by letting the new
previous state* npcs be a variable; as a result the current
state is always more specialized than the previous state.

D. Server Rules
A server processing a requested computation from a

client runs in parallel in a process. The process means

16 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

a conceptualparallel process and can be replaced with
a thread at implemental stage for example. A server re-
ceives an atom viasendReq/2 called by a client, and
then makes a clause from the atom. From example, if
(pat (1 3) (* 1 * 2 * 3 * 4 * 5 * 6)) is received, the
following setQs of a clause is made:
Qs = {
(pat (1 3) (* 1 * 2 * 3 * 4 * 5 * 6))

<--(pat (1 3) (* 1 * 2 * 3 * 4 * 5 * 6)).

}
By repeated application of ET rules in Section III toQs, Qs

′

is obtained as follows.
Qs

′ = {
(pat (1 3) (1 0 1 1 1 0))<--.
(pat (1 3) (1 0 0 1 1 1))<--.
(pat (1 3) (0 1 0 1 1 1))<--.

}
Qs

′ represents three answers. The server sends a result made
from Qs

′. A way how to make a result from a set of clauses
depends on the characteristics of the problem to be solved,
so that the way must be appropriately specified according to
the problem. In this case, a result is made by determining
common values. For example, result(? ? ? 1 1 ?) is
made fromQs

′ since the fourth and fifth elements of the
second arguments in thepat/2 atoms are all 1. The result
is sent via a communication object, i.e. the result is set to the
container in a communication object and then the termination
flag is set to betrue to notify a client of a termination of the
server process.

VII. E XECUTION OF A PROGRAM

The above mentioned set of ET rules represents procedures
for solving a nonogram puzzle in parallel, so that we can
regard the set as a parallel program. The program can be
executed in the following ways.

A. ETI

We have developed an interpreter system ETI [17] which
executes a set of ET rules directly. In this way, a completely
correct parallel program can be obtained with respect to a
given specification if the above mentioned rules for parallelism
are proved their correctness. The correctness can be verified
by checking each rule following the procedure described in
[18], [16]. Note that the number of the rules for parallelism is
limited in a whole program and the other rules can be gener-
ated by the program generation method [10]; thus verification
cost is reasonably low and we can obtain a program which is
correct with respect to a given specification at low cost.

B. Generating an Imperative Program

When efficiency is the most important factor, the advantage
of the proposed framework still exists. A set of rules represents
a parallel procedure in detail. This is a very detailed guide to
writing a correct parallel program when human translate a set
of rules into an imperative program such as C++ and Java
programs.

Processor Intel XeonX5355 2.6GHz 8 cores (2 Processors)
Physicalmemory 8GB
OS Windows Server 2008 R2 Enterprise 64bit
Compiler Visual Studio 2010 SP1 beta 64bit
Multithreading Lib boost 1.45

TABLE I
EXPERIMENTAL ENVIRONMENT

Q No. size 1 2 4 8

23179 30×30 101641 82389 54131 48207
22908 30×30 57239 33131 21891 14132
22528 25×25 8070 5409 4864 4774
22560 25×25 24193 25129 27473 33299
22551 25×25 38299 24960 25558 41131
13960 25×25 53710 36860 27036 26351
23329 30×30 30606 15940 9242 8792

TABLE II
EXPERIMENTAL RESULTS

When translates into C++, for example, classes representing
a term, an atom, a clause, and a set of clauses are prepared
first. After that, the methods corresponding to each rule are
written in the appropriate places of a program which might be
methods of each class.

VIII. E XPERIMENTAL RESULTS

We have developed a program written in C++ transferred
from the above-mentioned set of rules and run the program in
an 8-core processor computer. Table I shows the specification
of the experimental environment. The program finds all the
answers to a given puzzle. In other words, the program
guarantees that another answer does not exist besides found
answers.

We used nonogram puzzles published in the web site at
http:// http://www.minicgi.net/logic/. Table II shows execution
times the program takes for each puzzle. The first column
shows question numbers—we can obtain the URL of the
original source of the corresponding puzzle by connecting
“http://www.minicgi.net/logic/logc/”, a number in the column,
and “.html”. The second column shows the size of puzzle. The
third to sixth columns show the execution times (in msec)
took to solve each puzzle by using the number of threads
corresponding to the number on the top of column. The
execution times of question number 22560 are not improved
by any parallel computation. The reason is that the problem
can be solved deterministic way and essentially not for parallel
computation. Similarly the reason why these execution times
are not improved as much as the number of threads is that
there is determinism in processing a nonogram puzzle in some
degree where no parallel processes are applied. The proposed
method can treat this kind of problem where the degree of
parallelism varies at run time using as may resources as
possible.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 17

IX . COMPARISON

In the many parallel logic programming languages [12],
[11], [19], [14], the executable codes for parallel processing
are to be written by programmers and verifying their correct-
ness is often far more complicated than that of sequential codes
since they are not included in first-order logic that is the base
of correctness of LP. On the other hand, in our method, every
computation step can be verified by the rigorous theory and
efficiency of computation can be obtained by ET rules which
can specify detailed control with a consistent theory.

X. CONCLUSION

In this paper, we proposed a method for generate a correct
parallel program from a given formal specification. In this
method, a parallel program is made by adding abstracted par-
allel procedures, which are represented by rewriting rules, into
a sequential program which is a set of ET rules. A program
which is a set of ET rules means that its correctness is guar-
anteed. The correctness of the abstracted parallel procedure is
verified by following the theories and algorithms described in
[15], [16]. This paper also shows a set of executable rewriting
rules for parallel computation which follows the theories and
algorithms and encapsulates details of implementation such
as the use of specific library and directives for parallelism.
Our future work is to generate an efficient imperative program
(such as C++) from a set of rewriting rules automatically.

ACKNOWLEDGMENT

The work is partly supported by the collaborative research
program 2010, information initiative center, Hokkaido Univer-
sity, Sapporo, Japan.

REFERENCES

[1] K. Akama, T. Simizu, and E. Miyamoto, “Solving problems by equiv-
alent transformation of declarative programs,”Journal of the Japanese
Society for Artificial Intelligence, vol. 13, pp. 944–952, 1998.

[2] A. Pettorossi and M. Proietti, “A theory of logic program specialization
and generalization for dealing with input data properties,” inSelected
Papers from the International Seminar on Partial Evaluation. Springer-
Verlag, 1996, pp. 386–408.

[3] K. Akama, E. Nantajeewarawat, and H. Koike, “A class of rewriting rules
and reverse transformation for rule-based equivalent transformation,”
Electronic Notes in Theoretical Computer Science, vol. 59(4), pp. 1–
16, 2001.

[4] K. Akama, H. Koike, and H. Mabuchi, “Equivalent transformation by
safe extension of data structures,”Perspectives of System Informatics,
Lecture Notes in Computer Science, vol. 2244, pp. 140–148, 2001.

[5] H. Koike, K. Akama, and H. Mabuchi, “Multi-computation mechanism
for set expressions,” inInternational Conference on Computing and
Information Technologies (ICCIT 2001), 2001, pp. 391–397.

[6] K. Hidekatsu, A. Kiyoshi, M. Hiroshi, O. Koichi, and S. Yoshinori, “A
theoretical foundation of problem solving by equivalent transformation
of negative constraints,”Transactions of the Japanese Society for
Artificial Intelligence, vol. 17, pp. 354–362, 20021101. [Online].
Available: http://ci.nii.ac.jp/naid/10015771293/en/

[7] K. Akama, E. Nantajeewarawat, and H. Koike, “Componentwise pro-
gram construction: Requirements and solutions,” inWSEAS Transactions
on Information Science and Applications, ser. Issue 7, vol. 3, 2006, pp.
1214–1221.

[8] ——, “Program generation in the equivalent transformation computation
model using the squeeze method,” inPSI 2006, ser. Lecture Notes in
Computer Science, vol. 4378. Springer-Verlag, 2007, pp. 41–54.

[9] K. Akama and E. Nantajeewarawat, “Formalization of the equivalent
transformation computation model,”Journal of Advanced Computational
Intelligence and Intelligent Informatics, vol. 10, no. 3, pp. 245–259,
2006.

[10] H. Koike, K. Akama, and E. Boyd, “Program synthesis by generating
equivalent transformation rules,” inin Proceedings of the Second Inter-
national Conference on Intelligent Technologies (InTech’01), 2001, pp.
250–259.

[11] F. Bueno, M. G. de la Banda, and M. Hermenegildo, “Effectiveness
of abstract interpretation in automatic parallelization: a case study in
logic programming,”ACM Transactions on Programming Languages
and Systems, vol. 21, no. 2, pp. 189–239, Mar. 1999. [Online].
Available: http://www.acm.org/pubs/citations/journals/toplas/1999-21-
2/p189-bueno/

[12] J. C. de Kergommeaux and P. Codognet, “Parallel logic programming
systems,”ACM Comput. Surv., vol. 26, pp. 295–336, September 1994.
[Online]. Available: http://doi.acm.org/10.1145/185403.185453

[13] G. Gupta, E. Pontelli, K. A. Ali, M. Carlsson, and M. V. Hermenegildo,
“Parallel execution of prolog programs: a survey,”ACM Trans.
Program. Lang. Syst., vol. 23, pp. 472–602, July 2001. [Online].
Available: http://doi.acm.org/10.1145/504083.504085

[14] B. Ramkumar and L. V. Kalé, “Machine independent and and or parallel
execution of logic programs: Part ii-compiled execution,”IEEE Trans.
Parallel Distrib. Syst., vol. 5, pp. 181–192, February 1994. [Online].
Available: http://portal.acm.org/citation.cfm?id=628917.629259

[15] K. Akama, E. Nantajeewarawat, and H. Ogasawara, “Generation of
correct parallel programs based on specializer generation transforma-
tions,” in Proceedings of the 7th international conference on intelligent
technologies (InTech’06), 2006, pp. 90–99.

[16] H. Ogasawara, K. Akama, and H. Mabuchi, “Specialization-based paral-
lel processing without memo-trees,”International Journal of Electrical
and Computer Engineering, vol. 4, no. 8, pp. 518–523, 2009.

[17] H. Koike, K. Akama, and H. Mabuchi, “A programming language
interpreter system based on equivalent transformation,” in2005 IEEE
9th International Conference on Intelligent Engineering Systems (INES
2005), 2005, pp. 283–288.

[18] K. Akama, E. Nantajeewarawat, and H. Ogasawara, “Generation of cor-
rect parallel programs based on specializer generation transformations,”
in in Proceedings of the 7th international conference on intelligent
technologies, 2006, pp. 90–99.

[19] G. Gupta, K. A. M. Ali, M. Carlsson, and M. V. Hermenegildo,
“Parallel execution of prolog programs: A survey,”ACM Transactions
on Programming Languages and Systems, vol. 23, p. 2001, 1995.

18 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

AutoSCOPE: Automatic Suggestions for Code

Optimizations using PerfExpert

Olalekan A. Sopeju
1
, Martin Burtscher

1
, Ashay Rane

2
, and James Browne

3

1
Department of Computer Science, Texas State University, San Marcos, TX, USA

2
Texas Advanced Computing Center, University of Texas, Austin, TX, USA
3
Department of Computer Science, University of Texas, Austin, TX, USA

Abstract - Automated source-code performance optimiza-

tion has four stages: measurement, diagnosis of bottlenecks,

determination of optimizations, and rewriting of the source

code. Each stage must be successfully implemented to ena-

ble the next stage. The PerfExpert tool supports automatic

performance measurement and bottleneck diagnosis for

multicore and multichip compute nodes, i.e., it implements

the first two stages. This paper presents AutoSCOPE, a new

system that extends PerfExpert by implementing the third

stage. Based on PerfExpert’s output, AutoSCOPE automati-

cally determines appropriate source-code optimizations and

compiler flags. We describe the process for selecting opti-

mizations and evaluate the effectiveness of AutoSCOPE by

applying it to three HPC production codes. Each of these

codes is available in unoptimized and manually optimized

versions. AutoSCOPE succeeds in selecting the same

source-code transformations as were chosen by human ex-

perts in most cases. AutoSCOPE is an extensible framework

to which additional optimizations and further rules for se-

lecting optimizations can be added.

Keywords: optimization recommendation, filtering, rank-

ing, automatic performance assessment

1. Introduction

The performance of a program often varies considerably

when it is run on multicore chips with different architec-

tures. Structuring source code to obtain optimal perfor-

mance on a given multicore chip (or a compute node com-

prised of multiple multicore chips) requires detailed know-

ledge of the CPU, the memory subsystem, the compiler, and

the operating system, i.e., the entire system architecture.

Few application developers possess all of this knowledge

and, indeed, it would be wasteful of time and effort for eve-

ryone to be forced to acquire such knowledge. Performance

tools can help, but executing the measurement process is

tedious, and the results of the measurement may be difficult

to interpret. To make things worse, the necessary source-

code transformation to remedy a given performance bottle-

neck is often not obvious. As a result, it is frequently the

case that the performance obtained on multicore chips and

compute nodes comprised of multiple multicore chips is far

from optimal.

This paper presents an extensible method for automati-

cally selecting source-code transformations and compiler

flags to optimize program performance. The selection

process follows a set of rules and is guided by the results of

a performance measurement and analysis tool. This tool,

called PerfExpert [4], [21], assesses the performance of the

program executing on the chip/node on which improved

performance is desired. PerfExpert combines knowledge of

performance measurement, chip architectures, compilers

and runtime systems to generate actionable interpretations

of performance measurements. The AutoSCOPE framework

described in this paper, i.e., the selection process for choos-

ing good source-code transformations for a given perfor-

mance bottleneck and code section, currently represents the

final stage of the performance optimization process imple-

mented by PerfExpert.

 Loop in function main() at mmm.c:25 (100% of the total runtime)

 ==

 performance assessment LCPI good......okay......fair......poor......bad....

 * overall : 9.2 >>+

 upper bound estimates

 * data accesses : 14.6 >>+

 - L1d hits : 1.7 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

 - L2d hits : 0.9 >>>>>>>>>>>>>>>>>>

 - L2d misses : 11.9 >>+

 * instruction accesses : 0.6 >>>>>>>>>>>

 - L1i hits : 0.6 >>>>>>>>>>>

 - L2i hits : 0.0 >

 - L2i misses : 0.0 >

 * data TLB : 9.9 >>+

 * instruction TLB : 0.0 >

 * branch instructions : 0.1 >>

 - correctly predicted: 0.1 >>

 - mispredicted : 0.0 >

 * floating-point instr : 3.0 >>+

 - fast FP instr : 3.0 >>+

 - slow FP instr : 0.0 >

Figure 1: Sample PerfExpert output for a poorly performing

loop nest

PerfExpert presents a simple user interface for perfor-

mance assessment of programs. It combines the data col-

lected by a performance monitoring unit with system cha-

racteristics to compute a readily interpretable performance

metric. In particular, PerfExpert combines hardware per-

formance counter measurements with architectural parame-

ters such as cache latencies at different levels, the branch

misprediction penalty, etc. to compute upper bounds on Lo-

cal Cycles-Per-Instruction (LCPI) contributions of various

categories at the granularity of loops and procedures. The

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 19

LCPI values allow PerfExpert not only to determine which

code sections suffer from performance bottlenecks but also

to narrow down the cause of the poor performance to specif-

ic categories such as data accesses or branch instructions.

Figure 1 shows how PerfExpert presents the results of its

analysis of a triply-nested loop that performs a matrix-

matrix multiplication. Longer bars represent higher fractions

of runtime spent in executing the corresponding class of

operations. Figure 2 lists the source code of the assessed

loop nest. For illustration purposes, we used a poor loop

order and no optimizations so that executing the code will

result in bad memory access patterns. Indeed, PerfExpert

detects these weaknesses and correctly identifies data ac-

cesses and TLB accesses as the primary culprits.

 for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 for (k = 0; k < n; k++)

 c[i][j] += a[i][k] * b[k][j];

Figure 2: Simple triply-nested loop for matrix multiplication

There is, however, often a substantial gap between iden-

tification of a problem and its resolution. For example, how

should one resolve the problem of poor performance due to

the TLB? Many application programmers do not know, nor

should they have to know, what exactly a TLB is. Which

source-code statements can cause data TLB problems and

how can they be rewritten to yield better performance? The

difficulty of such questions is compounded when multiple

categories are reported to be a problem at the same time.

Loop in function main() at mmm.c:25 (100% of total runtime)

change the order of loops

loop i { loop j {...} } → loop j { loop i {...} }

employ loop blocking and interchange

loop i {loop k {loop j {

 c[i][j] = c[i][j] + a[i][k] * b[k][j];}}} →

loop k step s {loop j step s {loop i {for (kk = k; kk < k + s; kk++)

 {for (jj = j; jj < j + s; jj++) {c[i][jj] = c[i][jj] + a[i][kk] * b[kk][jj];}}}}}

componentize loops by factoring them into their own subroutines

... loop i {...} ... loop j {...} ... → void li() {...}; void lj() {...}; ... li(); ... lj(); ...

apply loop fission so every loop accesses just two different arrays

loop i {a[i] = a[i] * b[i] - c[i];} → loop i {a[i] = a[i] * b[i];} loop i {a[i] = a[i] - c[i];}

Figure 3: Abridged AutoSCOPE output with code examples

To make it easier and quicker to resolve such perfor-

mance problems, we designed AutoSCOPE, which is ac-

cessible through a simple web interface [21]. It analyzes the

output of PerfExpert and determines which categories are in

need of optimization. Then, it retrieves and ranks relevant

suggestions for those categories from an annotated optimi-

zation database and selects the most relevant recommenda-

tions based on their ranks. The final set of suggestions is

presented to the user. For example, AutoSCOPE “knows”

that the probable cause of the TLB access bottleneck is a

very long data access stride to an array. Thus, the PerfEx-

pert output from Figure 1 results in the optimization rec-

ommendations shown in Figure 3, which include reordering

of the loops in the loop nest. The recommendation for loop

blocking arises due to the high rate of L2 misses. Section 2

provides more detail and shows how the complete selection

and optimization process is applied to this triply-nested

loop. As we shall see later in the examination of real appli-

cation codes, the appropriate optimizations are sometimes

much less straightforward to identify.

Some of the suggestions include compiler flags (Figure

7). Since compiler flags depend on the compiler used, Au-

toSCOPE allows the user to choose among different compi-

lers. It further allows turning on and off the inclusion of the

code examples and compiler flags in the output.

We evaluated AutoSCOPE on three large-scale HPC ap-

plication programs, including one that is used as a standard

performance benchmark, on a supercomputing cluster at

TACC. It was, almost without exception, successful in iden-

tifying and recommending the optimizations that were

thought to be most appropriate by human performance ex-

perts that had tuned these codes before AutoSCOPE existed.

AutoSCOPE and PerfExpert are freely available at

http://www.tacc.utexas.edu/perfexpert/.

2. Filtering and ranking approach

This section explains how AutoSCOPE makes its rec-

ommendations. It uses the same process for each code sec-

tion in PerfExpert’s output. The purpose of filtering is to

eliminate inapplicable suggestions. The purpose of ranking

is to order the suggestions so that the most relevant recom-

mendations can be identified and outputted. The ultimate

goal is to make the final list neither too long nor too short

and, of course, to include the most appropriate optimization

suggestions for each code section. Additionally, we want

AutoSCOPE and its database to be easily extensible.

1. recommendation: use smaller types (e.g., float instead of double, short instead of int)

 categories: data-TLB, data-L2+memory-accesses attributes: -

2. recommendation: move loop invariant memory accesses out of loop

 categories: data-L1-accesses attributes: loop

3. recommendation: change the order of loops

 categories: data-TLB, data-L2+memory-accesses attributes: loop

4. recommendation: employ loop blocking and interchange

 categories: data-TLB, data-L2+memory-accesses attributes: loop

5. recommendation: fuse multiple loops that access the same data

 categories: data-L2+memory-accesses attributes: loop, multiple_loops

6. recommendation: componentize loops by factoring them into their own subroutines

 categories: data-L2+memory-accesses attributes: loop

7. recommendation: apply loop fission so every loop accesses just two different arrays

 categories: data-memory-accesses attributes: loop

8. recommendation: move loop invariant computations out of loop

 categories: FP-instructions attributes: loop

Figure 4: Simplified excerpt from AutoSCOPE’s recom-

mendation database

To support ranking and filtering, each entry in the opti-

mization database is annotated with a set of attributes and a

non-empty set of categories. The attributes specify condi-

tions that must be met for the corresponding entry to be use-

ful. For example, an attribute might state that this is a loop

20 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

optimization and therefore only applies to loops. In contrast,

the categories are used to compute weighted averages of

LCPI values for the ranking. Figure 4 shows a small excerpt

from the current optimization database, excluding code ex-

amples and compiler flags. We use this sample database

throughout this section, along with the PerfExpert output

from Figure 1, to illustrate the filtering and ranking process

of AutoSCOPE, which entails the following steps.

Function versus loop filtering: AutoSCOPE uses a dis-

joint set of recommendations for code sections that

represent loops and code sections that represent functions.

This separation is a consequence of how HPCToolkit [24],

upon which PerfExpert is build, treats functions and loops.

Whereas functions and loops are assessed individually and

do not include measurements from other functions they call,

a function’s assessment always includes the loops executed

by this function. Hence, for any loop that is listed by Perf-

Expert, the enclosing function is necessarily also listed, and

all suggested optimizations for the loop also apply to the

function, leading to unnecessary duplication of suggestions.

If, however, a function is listed but a contained loop is not,

then that loop is not important and therefore loop optimiza-

tions should not be suggested for this function. Combining

these two cases, we find that there is never a good reason to

suggest loop optimizations for functions or function optimi-

zations for loops. Consequently, AutoSCOPE only emits

suggestions with the loop attribute for loops and suggestions

without the loop attribute for functions. For example, entry

1 in the above database does not have the loop attribute and

is therefore not recommended for our example loop nest.

Multiple function or loop filtering: Several of the opti-

mizations in the database only apply if there are multiple

important functions or loops. For instance, recommenda-

tions that require the reordering of functions or loops as well

as recommendations to fuse multiple loops belong to this

category. AutoSCOPE only makes such recommendations if

multiple functions or multiple loops are included in PerfEx-

pert’s output. This is why it excludes entry 5.

Weighted LCPI ranking: Once the database entries with

suitable attributes have been identified, they are ranked

based on their category annotations. This is done by taking

the LCPI values of the listed categories of each entry and

adding them up. For instance, if a code section has a data

access LCPI of 14.6 and a data TLB LCPI of 9.9, optimiza-

tions that help with data access bottlenecks will be ranked

higher than optimizations that alleviate data TLB issues, but

optimizations that help with both problems are ranked high-

est. In our example, AutoSCOPE computes the following

weights: entry 3 = 22.7, entry 4 = 22.7, entry 6 = 12.8, entry

7 = 11.9, entry 8 = 3.0, and entry 2 = 1.7.

Ranking-based filtering: Because the ranking not only

orders the suggestions but also assigns a metric of relevance

to them, AutoSCOPE is able to filter out recommendations

that are unlikely to be relevant. It currently uses a 30% thre-

shold for this purpose, i.e., suggestions whose relevance is

less than 30% of the most relevant recommendation are dis-

carded. 30% of 22.7 is 6.81, so entries 8 and 2 are consi-

dered not relevant enough and are filtered out.

Attribute-based tie breaking: Because there are over an

order of magnitude more recommendations in our (growing)

database than there are categories, the weighted LCPI rank-

ing often yields multiple suggestions with the same rank. To

break these ties, recommendations with more attributes (that

must all match) are given priority. The intuition behind this

approach is that an entry with more attributes is more spe-

cific and therefore more likely to be a good match for the

given code section.

Order-based tie breaking: If there are still ties left, Au-

toSCOPE uses the order in which the suggestions are listed

in the database as the final tie breaker. This allows the data-

base writer to indicate which optimizations should be listed

first in case of a tie without having to resort to additional

annotations. In our example, entry 3 will be listed before

entry 4 even though both of them have the same ranking

(see below for why this is a good order).

Number-based filtering: This last step is optional and

not enabled in the current version of AutoSCOPE. If too

many suggestions are left, only the top k will be outputted,

where k is a user selectable threshold. The purpose of this

step is simply to curtail the list to no more than k sugges-

tions so as not to clutter the output.

Using the above ranking and filtering approach for the

loop nest assessed in Figure 1 results in the recommenda-

tions shown in Figure 3, both for the full database as well as

for the database shown in Figure 4. Even without knowing

what this loop nest does, it makes sense to exclude entry 1

because it is not restricted to loops and will therefore be

recommended for the function containing the loop nest, en-

try 2 because the L1 data cache does not represent the major

performance bottleneck, entry 5 because we only have a

single loop nest, and entry 8 because floating-point opera-

tions are not the major performance bottleneck. It also

makes sense to recommend entry 3 over entry 4 because

entry 3 requires only two nested loops whereas entry 4 re-

quires three nested loops, making entry 3 more likely to

apply in general (PerfExpert does not report the nesting

depth to AutoSCOPE). Entry 6 only helps with L2 data

cache and data memory access problems whereas entries 3

and 4 additionally help with data TLB problems. Thus, en-

tries 3 and 4 should be listed before entry 6. Finally, entry 7

addresses DRAM page conflicts and thus primarily helps

with memory issues, which is why it is listed last.

2.1 Suggestion relevance

Applying the first transformation suggested by Auto-

SCOPE in Figure 3 results in the code shown in Figure 5.

This optimization is simple. It improves the performance by

a factor of 2.5 and eliminates all TLB problems.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 21

 for (i = 0; i < n; i++)

 for (k = 0; k < n; k++)

 for (j = 0; j < n; j++)

 c[i][j] += a[i][k] * b[k][j];

Figure 5: Matrix-matrix multiplication code after exchang-

ing the j and k loops

Applying the second transformation from Figure 3 yields

the code shown in Figure 6. As this example illustrates, ap-

plying some optimizations is quite complex and the code

examples are essential to show the programmer what needs

to be done. In this case, all the user has to do after modify-

ing the code appropriately is find a good value for the para-

meter s, which can be done using manual trials or autotun-

ing. Applying this optimization eliminates the remaining

data-access bottlenecks and improves performance by a

factor of 5.2. At this point, the performance is very good

and no further optimizations are needed. Hence, Auto-

SCOPE not only correctly identified useful code optimiza-

tions but also eliminated a large number of irrelevant or

inapplicable recommendations from consideration, thus

helping the user by focusing his or her attention on just a

few optimizations that are targeted for this code section.

 for (k = 0; k < n; k += s)

 for (j = 0; j < n; j += s)

 for (i = 0; i < n; i++)

 for (kk = k; kk < k + s; kk++)

 for (jj = j; jj < j + s; jj++)

 c[i][jj] += a[i][kk] * b[kk][jj];

Figure 6: Matrix-matrix multiplication code after applying

loop blocking

2.2 Extensibility

Adding database entries is simple. The database is stored

in plain text format. New entries can be added using any

text editor. Of course, the new entries need to include proper

category and attribute annotations. Using plain text also

makes it easy to update existing entries, such as modifying a

code example, adding compiler flags, or altering attributes.

Adding extra categories is more involved. The database

entries that correspond to the new category need to be anno-

tated accordingly and the parser in AutoSCOPE has to be

extended to recognize the new category. However, the rest

of AutoSCOPE’s functionality, such as computing the

weighted average of the LCPI values and displaying the

results on a web page, can be reused.

Adding new attributes requires the affected database en-

tries’ annotations to be updated and AutoSCOPE to include

a new function to recognize or compute the new attribute.

For example, future versions of PerfExpert might output the

loop nesting depth, which is currently not available. This

would allow us, for instance, to annotate entry 3 in our sam-

ple database to require at least a doubly-nested loop. Such

an annotation would prevent AutoSCOPE from recommend-

ing entry 3 for any non-nested loops.

3. Related work

There are many performance evaluation tools with a

wide range of approaches and functionalities. Performance

tools may implement four functions: measurement, analysis

based on the measurements, recommendation of source-

code optimizations, and automation of source-code optimi-

zations. The tools can be further classified by the basis for

measurement and analysis: performance-counter-based ver-

sus event-trace-based and by whether the tool requires the

source code to be annotated to generate measurements.

Since the subject of this paper is derivation of recommenda-

tions for source-code optimizations for bottlenecks that are

identified and characterized through performance-counter

measurements and analyses, we only briefly mention papers

that do not, in our best judgment, consider source-code op-

timizations or where the analyses are based on event traces.

Tau [20], [25], PerfSuite [16], [22], HPCToolkit [12],

[24], IPM [14], and Open|SpeedShop [19] are among the

most powerful and widely used tools that provide perfor-

mance-counter-based measurement and analysis. Each of

these tools provides flexible and in-depth measurement and

association of performance bottlenecks with source-code

segments. Each tool provides the measurements and at least

some of the analyses upon which optimization can be based

but do not extend to recommendation of or automation of

source-code optimizations.

PerfExplorer [13] extends Tau with additional analysis

and diagnostic capabilities. However, PerfExplorer/Tau uses

code instrumentation and event tracing, which can perturb

the execution behavior, and does not recommend source-

code optimizations. In contrast, PerfExpert bases its analysis

and optimization recommendations upon data provided by

HPCToolkit, which requires no code instrumentation and

uses CPU performance counters to minimize perturbation.

There are several tools that provide source-code optimi-

zations for some types of bottlenecks. ThreadSpotter [26]

captures information about data access patterns from a

cache simulator and offers advice on related losses, specifi-

cally latency exposed due to poor locality, competition for

bandwidth, and false sharing. It recommends possible opti-

mizations for bottlenecks resulting from data accesses. Perf-

Expert attempts a more comprehensive diagnosis of bottle-

necks, targeting not only data locality but also instruction

locality, floating-point performance, etc. and recommends

optimizations across this spectrum. ThreadSpotter does not

attempt automated optimizations.

SLO [2] uses cache profiling to measure data reuse dis-

tances and other locality metrics. It associates these meas-

ures with code segments, particularly loops, and suggests

optimizations such as loop tiling or loop interchange.

Paradyn [17], based on Dyninst [3], is a performance

measurement tool for parallel and distributed programs.

Performance instrumentation is inserted into the application

and modified during execution. It associates bottlenecks

22 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

with specific causes and program parts but does not extend

to recommending application optimizations.

Periscope [11] collects and aggregates performance in-

formation through an agent-based approach. It provides

identification of the source-code locations of performance

bottlenecks and analyses of causes for the bottlenecks.

MAQAO [9] is a performance analysis tool that com-

bines performance counter measurements with static infor-

mation to generate diagnoses. It derives the static informa-

tion from the assembly code. It contains a knowledge base

of important assembly patterns, which can be associated

with hints for possible code optimizations.

The IBM Productive, Easy-to-use, Reliable Computing

System (PERCS) project [5], [6], [27] is building an auto-

mated system that detects and analyzes performance bottle-

necks in application codes, identifies potential source-code

optimizations, and includes automated optimization capabil-

ities. The Bottleneck Detection Engine (BDE), which is the

core of the framework, utilizes a database of rules to detect

bottlenecks in the given application. The BDE feeds the

information on bottleneck locations, including metrics asso-

ciated with the bottlenecks, to the user. It may also suggest

how much improvement could be obtained by the optimiza-

tion of a given bottleneck. In addition to suggestions to the

user, IBM’s tool also supports directly modifying the source

code and applying standard transformations through the

compiler. The limitation of PERCS is that it requires the use

of IBM’s proprietary software stack including its compilers.

Systems that base their analyses on event traces include

KOJAK [18], KappaPI [10] and the Parallel Performance

Wizard [23]. KOJAK aims at the development of a generic

automatic performance analysis environment for parallel

programs. The Parallel Performance Wizard attempts auto-

matic diagnosis as well as automated optimization. It is,

however, based on event trace analysis and requires pro-

gram instrumentation. Its primary applications have been

problems associated with the partitioned global address

space (PGAS) programming model, although it applies to

other performance bottleneck issues as well.

Cray’s ATExpert [15] graphically displays the perfor-

mance of parallel programs. It points the user to specific

problem areas in the source code, tries to explain why the

problems are occurring, and suggests steps to resolve them.

It does not provide code templates or rank suggestions.

The Performance Engineering Research Institute (PERI)

Autotuning project [1] combines measurement and search-

directed auto-tuning in a multistep process to obtain auto-

mated optimization. It can be viewed as a special case of an

expert system where one flexible solution method is applied

to all types of bottlenecks. It is unclear whether autotuning

by itself can effectively optimize the wide spectrum of bot-

tlenecks that arise when executing complex codes on multi-

core chips and multi-socket nodes. We hope to be able to

incorporate methods from this project in the optimization

capabilities of a future version of PerfExpert.

4. Evaluation methodology

4.1 System

We used the PerfExpert installation on Ranger, the su-

percomputing Sun Constellation Linux Cluster at the Texas

Advanced Computing Center. Ranger contains 3,936 16-

way SMP compute nodes made of 15,744 quad-core 2.3

GHz AMD Opteron (Barcelona) processors, i.e., 62,976

compute cores. It has 123 TB of main memory, 1.7 PB of

global disk space, and a theoretical peak performance of 579

TFLOPS. All compute nodes are interconnected using Infi-

niBand in a seven-stage full-CLOS fat-tree topology provid-

ing 1 GB/s point-to-point bandwidth.

4.2 Applications

We have tested AutoSCOPE on MANGLL/DGADVEC,

HOMME, and LIBMESH/EX18. These large-scale HPC

programs represent various application domains. They were

all compiled with the Intel compiler v10.1.

MANGLL is a scalable adaptive high-order discretiza-

tion library. It supports dynamic parallel adaptive mesh re-

finement and coarsening, which is essential for numerical

solution of the partial differential equations (PDEs) arising

in many multiscale physical problems. DGADVEC is an

application built on top of MANGLL for the numerical so-

lution of the energy equation that is part of the coupled sys-

tem of PDEs arising in convection simulations, describing

the viscous flow and temperature distribution in Earth’s

mantle. MANGLL and DGADVEC are written in C.

HOMME is an atmospheric general circulation model

consisting of a dynamical core based on the hydrostatic equ-

ations, coupled to sub-grid scale models of physical

processes. The HOMME code is designed to provide 3D

global atmospheric simulation similar to the Community

Atmospheric Model. The benchmark version of HOMME

we are using was one of NSF’s acceptance benchmark pro-

grams for Ranger. It is written in Fortran 95.

The LIBMESH library provides a framework for the

numerical approximation of partial differential equations

using continuous and discontinuous Galerkin methods on

unstructured hybrid meshes. It supports parallel adaptive

mesh refinement computations as well as 1D, 2D, and 3D

steady and transient simulations on a variety of popular

geometric and finite element types. EX18 uses LIBMESH

to solve the transient nonlinear problem using the object-

oriented FEMSystem class framework. LIBMESH and

EX18 are written in C++.

5. Results

This section compares the suggestions produced by Au-

toSCOPE with actual optimizations that performance ex-

perts implemented to accelerate large-scale HPC codes. Due

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 23

to space reasons, we only show one key loop per program.

Figure 7 shows the recommendations AutoSCOPE

makes for the most important loop in LIBMESH/EX18.

This loop performs a large number of memory accesses,

most of which hit in the L1 data cache, and quite a few

floating-point operations. Hence, AutoSCOPE focuses on

suggestions that reduce the number of load instructions,

boost the bandwidth to the L1 data cache, and reduce the

number of floating-point instructions.

Loop in function NavierSystem::element_time_derivative(…) (23.3% of runtime)

move loop invariant memory accesses out of loop

loop i {a[i] = b[i] * c[j]} → temp = c[j]; loop i {a[i] = b[i] * temp;}

enable the use of vector instructions to transfer more data per access

align arrays, use only stride-one accesses, make loop count even (pad arrays)

struct {double a, b;} s[63]; for (i = 0; i < 63; i++) {s[i].a = 0; s[i].b = 0;} →

__declspec(align(16)) double a[64], b[64]; for (i = 0; i < 64; i++) {a[i] = 0; b[i] = 0;}

use the “-opt-streaming-stores always” compiler flag

move loop invariant computations out of loop

loop i {x = x + a * b * c[i];} → temp = a * b; loop i {x = x + temp * c[i];}

Figure 7: Condensed AutoSCOPE recommendations for the

most important loop in EX18

When we manually optimized this code (before Auto-

SCOPE existed), we obtained a substantial speedup by ap-

plying the first and third recommendation, i.e., by factoring

out common subexpressions involving memory accesses

and by moving loop invariant code [4]. Based on simple

tests, the author of EX18 had assumed that the compiler

would do this automatically. However, several of the com-

mon subexpressions we found involve C++ templates and

most of them use pointer indirections, which seem to make

the code too complex for the compiler to optimize. These

simple optimizations (for a human) made the loop 32% fast-

er, yielding an application-wide speedup of 5%.

Figure 8 shows AutoSCOPE’s recommendations for one

of the two key loops in DGADVEC. This loop’s perfor-

mance profile is quite similar to that of the EX18 loop dis-

cussed above except it performs significantly more floating-

point operations. Hence, the recommendations are similar

but the order in which they are listed is different.

Loop in function dgadvecRHS() at dgadvec.c:993 (19.4% of total runtime)

move loop invariant computations out of loop

loop i {x = x + a * b * c[i];} → temp = a * b; loop i {x = x + temp * c[i];}

componentize loops by factoring them into their own subroutines

... loop i {...} ... loop j {...} ... → void li() {...}; void lj() {...}; ... li(); ... lj(); ...

move loop invariant memory accesses out of loop

loop i {a[i] = b[i] * c[j]} → temp = c[j]; loop i {a[i] = b[i] * temp;}

enable the use of vector instructions to transfer more data per access

align arrays, use only stride-one accesses, make loop count even (pad arrays)

struct {double a, b;} s[63]; for (i = 0; i < 63; i++) {s[i].a = 0; s[i].b = 0;} →

__declspec(align(16)) double a[64], b[64]; for (i = 0; i < 64; i++) {a[i] = 0; b[i] = 0;}

use the “-opt-streaming-stores always” compiler flag

Figure 8: Condensed AutoSCOPE recommendations for the

most important loop in DGADVEC

Together with the developers of DGADVEC, we have

been able to accelerate this loop through vectorization. The

primary performance problem is the L1 load-to-use hit la-

tency of three cycles, which cannot be hidden as there are

not enough independent instructions available to execute.

Since this latency is fixed in hardware, we can only reduce

the average latency by increasing the bandwidth, i.e., ac-

cessing multiple data items per memory transaction through

the use of SSE instructions. Hence, we rewrote the loop so

that the compiler can vectorize it [8] (i.e., we applied the

fourth recommendation). Comparing the old and new loop

implementations, we found that the number of executed

instructions is 44% lower and the number of L1 data-cache

accesses is 33% lower due to the vectorization [4].

Figure 9 shows the optimization suggestions for an im-

portant loop in HOMME, which has also been manually

tuned. This loop suffers primarily from bad memory access

performance. Many of the accesses miss in all cache levels

and go to main memory. As a consequence, AutoSCOPE

recommends optimizations that aim at helping the compiler

optimize the code better, enhance the memory access pat-

terns, and improve the main memory latency.

Loop in function preq_robert() at prim_si_mod.F90:846 (8.9% of total runtime)

componentize loops by factoring them into their own subroutines

... loop i {...} ... loop j {...} ... → void li() {...}; void lj() {...}; ... li(); ... lj(); ...

change the order of loops

loop i { loop j {...} } → loop j { loop i {...} }

employ loop blocking and interchange

loop i {loop k {loop j {

 c[i][j] = c[i][j] + a[i][k] * b[k][j];}}} →

loop k step s {loop j step s {loop i {for (kk = k; kk < k + s; kk++)

 {for (jj = j; jj < j + s; jj++) {c[i][jj] = c[i][jj] + a[i][kk] * b[kk][jj];}}}}}

apply loop fission so every loop accesses just two different arrays

loop i {a[i] = a[i] * b[i] - c[i];} → loop i {a[i] = a[i] * b[i];} loop i {a[i] = a[i] - c[i];}

move loop invariant computations out of loop

loop i {x = x + a * b * c[i];} → temp = a * b; loop i {x = x + temp * c[i];}

Figure 9: Condensed AutoSCOPE recommendations for an

important loop in HOMME

A performance expert has successfully sped up this loop

by applying microfission (the fourth recommendation) to

reduce DRAM page conflicts, which makes the main memo-

ry accesses substantially faster [4], [7]. On a Ranger node,

only 32 DRAM pages can be open at once. With 16 threads

running on the 16 cores of a node, each thread can access at

most two different memory areas simultaneously without

losing performance. Thus, applying microfission so that

each loop only processes two arrays eliminates DRAM page

conflicts. However, because the compiler automatically fus-

es the loops, it was necessary to also break out each loop

into a separate procedure (the first recommendation), which

results in a 62% speedup and much better core utilization.

6. Conclusion and future work

AutoSCOPE helps programmers by automatically re-

commending source-code optimizations and compiler flags

for alleviating node-level performance bottlenecks that have

been identified by the PerfExpert measurement and analysis

24 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

tool. AutoSCOPE processes PerfExpert’s output using a set

of rules to identify matching recommendations in its anno-

tated database. It then ranks these recommendations to se-

lect the most appropriate ones. AutoSCOPE is constructed

as an extensible framework to which we can add annotations

and rules to extend its capabilities or to adapt it to different

execution environments. Our evaluation on real HPC appli-

cations has demonstrated almost 100% conformance to hu-

man expert optimization selections. While the output some-

times still includes inapplicable suggestions, AutoSCOPE

correctly eliminates over 95% of the suggestions from the

database that do not apply, thus helping the user a great deal

by focusing his or her attention on just a few targeted opti-

mizations. In future work, we plan to add more rules and

annotations to further improve the selection quality and to

apply selected source-code optimizations automatically for

straightforward cases.

7. References

[1] D. Bailey, J. Chame, C. Chen, J. Dongarra, M. Hall, J.

Hollingsworth, P. Hovland, S. Moore, K. Seymour, J.

Shin, A. Tiwari, S. Williams, and H. You. “PERI Auto-

Tuning.” Journal of Physics: Conference Series,

125(1):012089, 2008.

[2] K. Beyls and E. D’Hollander. “Refactoring for Data Lo-

cality.” IEEE Computer, Vol. 42, no. 2, pp. 62-71. 2009.

[3] B. R. Buck and J. K. Hollingsworth. “An API for Runtime

Code Patching.” Journal of High Performance Computing

Applications, 14:317-329. 2000.

[4] M. Burtscher, B.D. Kim, J. Diamond, J. McCalpin, L.

Koesterke, and J. Browne. “PerfExpert: An Easy-to-Use

Performance Diagnosis Tool for HPC Applications.” SC

2010 Int. Conference for High-Performance Computing,

Networking, Storage and Analysis. November 2010.

[5] Chung, G. Cong, D. Klepacki, S. Sbaraglia, S. Seelam, and

H-F. Wen. “A Framework for Automated Performance

Bottleneck Detection.” 13th Int. Workshop on High-Level

Parallel Programming Models and Supportive Environ-

ments. 2008.

[6] G. Cong, I-H. Chung, H. Wen, D. Klepacki, H. Murata, Y.

Negishi, and T. Moriyama. “A Holistic Approach towards

Automated Performance Analysis and Tuning.” Euro-Par

2009. 2009.

[7] J. Diamond, M. Burtscher, J. McCalpin, B.D. Kim, S.

Kecker, and J. Browne. “Making Sense of Performance

Counter Measurements on Supercomputing Applications.”

2011 IEEE International Symposium on Performance

Analysis of Systems and Software. April 2011.

[8] J. Diamond, B.D. Kim, M. Burtscher, S. Keckler, K. Pin-

gali, and J. Browne. “Multicore Optimization for Ranger.”

2009 TeraGrid Conference. June 2009.

[9] L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J.-T. Ac-

quaviva, and W. Jalby. “Exploring Application Perfor-

mance: a New Tool for a Static/Dynamic Approach.” The

Sixth Los Alamos Computer Science Institute Symp. 2005.

[10] Antonio Espinosa, Tomas Margalef, and Emilio Luque.

“Automatic detection of parallel program performance

problems.” SIGMETRICS Symposium on Parallel and Dis-

tributed Tools, p. 149. 1998.

[11] M. Gerndt and M. Ott. “Automatic performance analysis

with Periscope.” Concurrency Computation: Practice and

Experience. 2009.

[12] HPCToolkit: http://www.hpctoolkit.org/. Last accessed

April 1, 2011.

[13] K. A. Huck, A. D. Malony, S. Shende, and A. Morris.

“Knowledge Support and Automation for Performance

Analysis with PerfExplorer 2.0.” Large-Scale Program-

ming Tools and Environments, Special Issue of Scientific

Programming, vol. 16, no. 2-3, pp. 123-134. 2008.

[14] IPM: http://ipm-hpc.sourceforge.net/. Last accessed April

1, 2011.

[15] J. Kohn and W. Wiliams. “ATExpert.” Journal of Parallel

and Distributed Computing, 18:2, pp. 205-222. 1993.

[16] Rick Kufrin. “PerfSuite: An Accessible, Open Source Per-

formance Analysis Environment for Linux.” 6th Int. Con-

ference on Linux Clusters: The HPC Revolution. 2005.

[17] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hol-

lingsworth, R. B. Irvin, K. L. Karavanic, K. Kunchithapa-

dam, and T. Newhall. “The Paradyn Parallel Performance

Measurement Tool.” IEEE Computer, 28:37-46. 1995.

[18] B. Mohr and F. Wolf. “KOJAK - A Tool Set for Automat-

ic Performance Analysis of Parallel Applications.” Int.

Conference on Parallel and Distributed Computing. 2003.

[19] Open|SpeedShop: http://www.openspeedshop.org/wp/.

Last accessed April 1, 2011.

[20] S. Shende and A. Malony. “The Tau Parallel Performance

System.” International Journal of High Performance

Computing Applications, 20(2): 287-311.

[21] PerfExpert: http://www.tacc.utexas.edu/perfexpert/. Last

accessed April 1, 2011.

[22] PerfSuite: http://perfsuite.ncsa.uiuc.edu/. Last accessed

April 1, 2011.

[23] H-H. Su, M. Billingsley, and A. D. George. “Parallel Per-

formance Wizard: A Performance Analysis Tool for Parti-

tioned Global-Address-Space Programming.” 9th Int.

Workshop on Parallel & Distr. Scientific and Engineering

Computing. 2008.

[24] N. R. Tallent, J. M. Mellor-Crummey, L. Adhianto, M.W.

Fagan, and M. Krentel. “HPCToolkit: performance tools

for scientific computing.” Journal of Physics: Conference

Series, 125. 2008.

[25] Tau: http://www.cs.uoregon.edu/research/tau/home.php.

Last accessed April 1, 2011.

[26] ThreadSpotter:

http://www.roguewave.com/products/threadspotter.aspx.

Last accessed April 1, 2011.

[27] H. Wen, S. Sbaraglia, S. Seelam, I. Chung, G. Cong, and

D. Klepacki. “A productivity centered tools framework for

application performance tuning.” Fourth International

Conference on the Quantitative Evaluation of Systems, pp.

273-274. 2007.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 25

MapReduce with Deltas

R. Lämmel and D. Saile
Software Languages Team, University of Koblenz-Landau, Germany

Abstract— The MapReduce programming model is extended
conservatively to deal with deltas for input data such that
recurrent MapReduce computations can be more efficient
for the case of input data that changes only slightly over
time. That is, the extended model enables more frequent
re-execution of MapReduce computations and thereby more
up-to-date results in practical applications. Deltas can also
be pushed through pipelines of MapReduce computations.
The achievable speedup is analyzed and found to be highly
predictable. The approach has been implemented in Hadoop,
and a code distribution is available online. The correctness
of the extended programming model relies on a simple
algebraic argument.

Keywords: MapReduce; Delta; Distributed, Incremental Algo-
rithms

1. Introduction
We are concerned with the MapReduce programming

model [1], which is widely used for large-scale data process-
ing problems that can benefit from massive data parallelism.
MapReduce is inspired by functional programming idioms,
and it incorporates specific ideas about indexing and sorting;
see [2] for a discussion of the programming model. There
exist several proprietary and open-source implementations
that make MapReduce available on different architectures.

Research question
The problem of crawling the WWW may count as the

archetypal application of MapReduce. A particular crawler
may operate as follows: web sites are fetched; outlinks are
extracted; accordingly, more web sites are fetched in cycles;
a database of inverse links (“inlinks”) is built to feed into
page ranking; eventually, an index for use in web search is
built; see Fig. 1 for the corresponding workflow.

In many MapReduce scenarios (including the one of
crawling and indexing), the question arises whether it is
possible to achieve a speedup for recurrent executions of a
MapReduce computation by making them incremental.

A crawler is likely to find about the same pages each
time it crawls the web. Hence, the complete re-computation
of the index is unnecessarily expensive, thereby limiting the
frequency of re-executing the crawler as needed for an up-to-
date index. A more up-to-date index is feasible if the index
is incrementally (say efficiently) updated on the grounds of
the limited changes to the crawl results.

Fig. 1: Workflow of a simple crawler with indexing

Contributions
• The MapReduce programming model is enhanced to
explicitly incorporate deltas of inputs of recurrent MapRe-
duce computations. This enhancement is based on a sim-
ple algebraic insight that has not been exploited elsewhere.

• Based on benchmarks for delta-aware MapReduce com-
putations, it is found that deltas are of limited use when
used naively, but they provide substantial, predictable
speedups—when applying specific techniques for comput-
ing deltas and merging them with previous results.
Our implementation and corresponding measurements are

based on Apache’s Hadoop [3]—an open-source implemen-
tation of MapReduce which targets clusters of networked
computers with a distributed file system. A code distribution
is available online through the paper’s website.1.

Road-map
Sec. 2 expands on the introductory problem of crawling

and indexing, thereby clarifying the motivation of our work.
Sec. 3 rehashes MapReduce in a way that is specifically
suitable for initiating a discussion of deltas. Sec. 4 extends
the MapReduce programming model to incorporate deltas.
Sec. 5 discusses different options for computing deltas.
Sec. 6 defines and executes benchmarks for delta-aware
MapReduce computations. Sec. 7 discusses related work.
Sec. 8 concludes the paper.

2. Motivation
Crawling without deltas Any search engine relies on one
or more indexes that are computed from information that is

1http://softlang.uni-koblenz.de/deltamr

26 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

http://softlang.uni-koblenz.de/deltamr

obtained by web crawls. A typical crawler, such as Nutch [4],
performs several tasks that can be implemented as a pipeline
of MapReduce jobs; we refer again to Fig. 1 for a simple
workflow for crawling and indexing. The crawler maintains a
database, CrawlDb, with (meta) data of discovered websites.
Before crawling the web for the first time, CrawlDb is ini-
tialized with seed URLs. The crawler performs several cycles
of fetching. In each cycle, a fetch list (of URLs) is obtained
from CrawlDb. The corresponding web sites are downloaded
and CrawlDb is updated with a time stamp and other data.
Further, the crawler extracts outlinks and aggregates them
in LinkDb so that each URL is associated with its inlinks.
The resulting reverse web-link graph is useful, for example,
for ranking sites such as with PageRank [5]. Eventually,
CrawlDb and LinkDb are used to create an index, which
can be queried by a search engine.

Fig. 2: Crawler using deltas

Crawling with deltas Suppose only a small fraction of
all web sites changes. Then it can be more efficient to
determine those changes (say, “deltas”) and to update the
index accordingly. Fig. 2 revises the simple crawler from
Fig. 1 so that deltas are used in several positions. That is,
in each crawl cycle, a delta of changed sites is determined
and corresponding deltas of outlinks, CrawlDb, and LinkDb
are derived so that the index can be updated incrementally.

3. A simple view on MapReduce
For the rest of the paper, we will not deal with the complex

scenario of crawling and indexing. We resort to “the problem
of counting the number of occurrences of each word in a
large collection of documents” [1]. In sequential, imperative
(pseudo) code, the problem is solved as follows:

Input: a collection of uri-document pairs c
Output: a map m from words to counts
Algorithm:

for each 〈u, d〉 in c do
for each w in words(d) do
m[w] = m[w] + 1; // m[w] is initially 0.

Fig. 3: Sequential, imperative word-occurrence count

This direct approach does not stipulate massive paral-
lelism for iterating over c because of the use of a global
data structure for the map (say, dictionary) m. The aspects of
data extraction and reduction are to be separated. Extraction
is supposed to produce a stream of word-occurrence counts
as follows:

Input: a collection of uri-document pairs c
Output: a stream s of words-occurrence counts
Algorithm:

for each 〈u, d〉 in c do
for each w in words(d) do

yield 〈w, 1〉; // per-document extraction

Fig. 4: Extraction amenable to parallelism and distribution

(The role of the boxed code is explained in a second.)
In general, extraction returns a stream of key-value pairs to
be reduced eventually (see below). In the example, words
are keys and counts are values. The intermediate stream can
be produced in a massively parallel manner such that input
partitions are assigned to nodes in a cluster of machines.
Subject to a distributed file system, the partitions may be
readily stored with the nodes that process them.

Reduction requires grouping of values by key:

Input: a stream s of key-value pairs
Output: a map (say, a dictionary) m′ of key-list pairs
Algorithm:

for each 〈k, v〉 in s do
m′[k] = append(m′[k], v); // m′[k] is initially the empty list.

Fig. 5: Group key-value pairs

Reduction commences as follows:

Input: a map m′ of key-list pairs
Output: a map m from words to counts
Algorithm:

for each 〈k, g〉 in m′ do {
r = 0;
for each v in g do
r = r + v;

// per-key reduction

m[k] = r;
}

Fig. 6: Reduction amenable to parallelism and distribution

(The role of the boxed code is explained in a second.)
Grouping and reduction can be distributed (parallelized) by
leveraging the fact that the key domain may be partitioned.

The original sequential description of Fig. 3 is much more
concise than the sliced, parallelism-enabling development of
Fig. 4–6. However, it is easy to realize that most of the code
is problem-independent. In fact, the only problem-specific
code is the one that is boxed in Fig. 4 and Fig. 6. That is, the
first box covers data extraction at a fine level of granularity;
the second box covers data reduction per intermediate key. In
practice, MapReduce computations are essentially specified
in terms of two functions mapper and reducer:

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 27

function mapper(u, d) {
for each w in words(d) do

yield 〈w, 1〉;
}
function reducer(k,g) {
r = 0;
for each v in g do r = r + v;
return r;

}

Fig. 7: The functionality for word-occurrence counting

Summary MapReduce computations extract intermediate
key-value pairs from collections of input documents or
records. Such extraction can be easily parallelized if input
data is readily partitioned to reside on machines in a cluster.
The resulting intermediate key-value pairs are to be grouped
by key. The key domain is partitioned so that parallelism can
be applied for the reduction of values per key. MapReduce
implementations allow the specification of the number of
mapper and reducer nodes as well the specification of a
partitioner that associates partitions of the intermediate key
domain with reducers.

4. MapReduce with deltas
Deltas The input for MapReduce computations is generally
a keyed collection, in fact, an ordered list [1]. Given two
generations of input data i and i′, a delta ∆i,i′ can be defined
as a quadruplet of the following sub-collections:

∆i′+
Part of i′ with keys not present in i.

∆i− Part of i with keys not present in i′.
∆i 6= Part of i whose keys map to different values in i′.
∆i′6=

Part of i′ whose keys map to different values in i.

The first part corresponds to added key-value pairs; the
second part corresponds to removed key-value pairs; the
third and fourth parts correspond to modified key-value pairs
(“before” and “after”). Modification can be modeled by
deletion followed by addition. Hence, we simplify ∆i,i′ to
consist only of two collections:

∆+ = ∆i′+
+ ∆i′6=

∆− = ∆i− + ∆i 6=

The simple but important insight is that MapReduce compu-
tations can be applied to the parts of the delta and combined
later with the result for i so that the result for i′ is obtained
more efficiently than by computing i′ naively.

Algebraic requirements Correctness conditions are needed
for the non-incremental and incremental execution to agree
on the result. This is similar to the correctness conditions for
classic MapReduce that guarantee that different distribution
schedules all lead to the same result.

In the case of classic MapReduce, the mapper is not
constrained, but the reducer is required to be (the iterated
application of) an associative operation [1]. More pro-
foundly, reduction is monoidal in known applications of

MapReduce [2], [6]. That is, reduction is indeed the iterated
application of an associative operation “•” with a unit u. In
the case of the word-occurrence count example, reduction
iterates addition “+” with “0” as unit. The parallel execution
schedule may be more flexible if commutativity is required
in addition to associativity [2].

Additional algebraic constraints are needed for MapRe-
duce computations with deltas. That is, we require an
Abelian group, i.e., a monoid with commutativity for “•” and
an operation “ · ” for an inverse element such that x•x = u
for all x. In the case of the word-occurrence count example,
addition is indeed commutative, and the inverse element
is to be determined by negation. Hence, we assume that
MapReduce computations are described by two ingredients:
• A mapper function—as illustrated in Fig. 7.
• An Abelian group—as a proxy for the reducer function.

MapReduce computations with deltas We are ready to
state a law (without proof) for the correctness of MapReduce
computations with deltas. Operationally, the law immedi-
ately describes how the MapReduce result for i needs to be
updated by certain MapReduce results for the components of
the delta so that the MapReduce result for i′ is obtained; the
law refers to “•”—the commutative operation of the reducer:

MapReduce(f, g, i′) = MapReduce(f, g, i)
• MapReduce(f, g,∆+)
• MapReduce(f, g,∆−)

Here, f is the mapper function, g is an Abelian group,
and f denotes lifted inversion. That is, if f returns a stream
of key-value pairs, then f returns the corresponding stream
with inverted values. In imperative style, we describe the
inversion of extraction as follows:

Input: a stream s of key-value pairs
Output: a stream s′ of key-value pairs
Parameter: an inversion operation · on values
Algorithm:

for each 〈k, v〉 in s do
yield 〈k, v〉; // value-by-value inversion

Fig. 8: Lifted inversion

Fig. 9 summarizes the workflow of MapReduce com-
putations with deltas. Clearly, we assume that we can
compute deltas; see the node “Compute delta”. Such deltas
are then processed with the MapReduce computation such
that deleted pairs are inverted; see the node “MapReduce′”.
One can either merge original result with the result for the
delta, or one can propagate the latter to further MapReduce
computations in a pipeline.

5. Computation of deltas
Deltas can be computed in a number of ways.

28 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 9: MapReduce with deltas

MapReduce-based delta If we assume that both generations
of input, i and i′, have been regularly stored in the distributed
file system, then the delta can be computed with classic
MapReduce as follows:

Input: the concatenated input append(i, i′)
Output: the (encoded) delta ∆i,i′

Algorithm (MapReduce):
function mapper(k, v) {

if k in i then sign := “-”; else sign := “+”;

return 〈k, 〈sign, v 〉 〉; // attach sign
}
function reducer(k,g) {
〈s1, v1〉 := g.next();
if ¬ g.hasNext()

then return [〈s1, v1〉]; // “added” or “deleted”
else {
〈s2, v2〉 := g.next();
if v1 == v2

then return []; // “preserved”
else return [〈s1, v1〉, 〈s2, v2〉]; // “modified”

}
}

Fig. 10: Computing a delta with MapReduce

The mapper qualifies the values of key-value pairs from
i and i′ with “-” and “+” respectively—for potential dele-
tion or addition; see the condition “k in i” in the figure.
Hadoop [3] and other implementations of MapReduce can
discriminate between different input files in the map phase.

Reduction receives 1-2 values per original key depending
on whether a key occurs in either i or i′ or both. For
simplicity, keys are assumed to be unique in each of i and i′.
(Irregular cases require a slightly more advanced reduction.)
In the case of a single value, a potential deletion or addition
becomes definite. In the case of two values, two equal values
cancel out each other, whereas two unequal values contribute
to both deletion and addition.

Delta after iteration It is possible to aggressively reduce
the volume of delta by exploiting a common idiom for
MapReduce computations. That is, extraction is typically
based on uniform, structural decomposition, say iteration.
Consider the for-loop for extracting word-occurrence counts
from documents—as of Fig. 7:

for each w in words(d) do
yield 〈w, 1〉;

That is, the document is essentially decomposed into
words from which key-value pairs are produced. Instead,
the document may also be first decomposed into lines, and
then, in turn, into words:

for each l in lines(d) do
for each w in words(l) do

yield 〈w, 1〉;

In general, deltas could be determined at all accessible
levels of decomposition. In the example, deltas could be
determined at the levels of documents (i.e., the values of
the actual input), lines, and words. For the problem at
hand, line-level delta appears to be useful according to
established means for delta creation such as “text diff” [7].
MapReduce computations with deltas are easily configured
to exploit different levels. When computing the delta, as
defined in Fig. 10, the case “¬(v1 == v2)” must be refined
to decompose v1 and v2 and to compute the delta at the more
detailed level. In implementations of MapReduce, one can
indeed exercise different levels. For instance, Hadoop [3]
assumes that MapReduce jobs are configured with “input
formatters” which essentially decompose the input files.

Delta based on map-side join Overall, the costs of
MapReduce-based computation of the delta are substantial.
Essentially, both generations of input have to be pumped
through the network so that a reducer can cancel out match-
ing key-value pairs. These costs would need to be matched
by the savings achievable through deltas in a MapReduce
computation or a pipeline.

There is a relevant MapReduce-like abstraction, which can
be used to drastically reduce network communication during
delta computation. That is, map-side join [8], [9] can be used
to map over multiple inputs simultaneously such that values
with the same key but from different inputs are mapped
together. To this end, the inputs must be equally sorted
and partitioned so that matching partitions can be dealt
with simultaneously. Network communication is reduced
since no reduction is involved. Network communication is
completely eliminated if matching partitions are available on
the same machine. (Map-side join is available, for example,
in Hadoop [3].) It is often possible to meet the requirements
of map-side join. For instance, a crawler may be set up to
write crawling results accordingly.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 29

Streaming delta An even more aggressive optimization is
to produce and consume the second generation of input
data in streaming mode. Just as before, it is necessary to
assume that both generations are sorted in the same manner.
Such streaming is feasible for tasks that essentially generate
“sorted” data. Streaming can be also used to fuse two
MapReduce computations—as known from functional pro-
gramming [10]. Compared to all other forms of computing
deltas, streaming delta does not write (and hence not read)
the second generation.

6. Benchmarking
We present simple benchmarks to compare non-

incremental (say, classic) and incremental (say, delta-aware)
MapReduce computations. We ran the benchmarks on a
university lab.2 The discussion shows that speedups are
clearly predictable when using our method.

TeraByte Sort TeraByte Sort (or the variation—MinuteSort)
is an established benchmark to test the throughput on a
MapReduce implementation when using it for sorting with
(in one typical configuration) 100-byte records out of which
10 bytes constitute the key [11], [12], [13]. The mapper and
reducer functions for this benchmark simply copy all data.
The built-in sorting functionality of MapReduce implies
that intermediate key-value pairs are sorted per reducer.
The partitioner is defined to imply total ordering over the
reducers. Hadoop—the MapReduce implementation that we
use—has been a winner of this benchmark in the past.

The established implementation of TeraByte Sort (see,
e.g., [12], [13]) samples keys in the input from which it
builds a trie so that partitioning is fast. Instead, our parti-
tioner does not leverage any sampling-based trie because we
would otherwise experience uneven reducer utilization for
MapReduce jobs on sorted data. Here we note that we must
process sorted data in compound MapReduce computations;
see the discussion of pipelines below. We use datatype long
(8 bytes) for keys instead of byte sequences of length 10,
thereby simplifying partitioning.

Fig. 11 shows the benchmark results for TeraByte Sort.
The “incremental” version computes the delta by a variation
of Fig. 10. There are also optimized, incremental versions:
(map-side) “join” and “streaming”—as discussed in Sec. 5.
The shown costs for the incremental versions include all
costs that are incurred by recomputing the same result as in
the non-incremental version: this includes costs of comput-
ing the delta and performing the merge. It is important to
note that we implement merge by map-side join.

It is not surprising that the non-incremental version is
faster than all incremental versions except for streaming.

2Cluster characteristics: we used Hadoop version 0.21.0 on a cluster
of 40 nodes with an Intel(R) Pentium(R) 4 CPU 3.00GHz and 2 x
512MB SDRAM and 6GB available disk space. All machines are running
openSUSE 11.2 with Java version 1.6.0_24 and are connected via a 100Mbit
Full-Duplex-Ethernet network.

Fig. 11: Runtimes in seconds (y-axis) for non-incremental and
incremental TeraByte Sort for different input sizes in GB (x-
axis) where the size of the deltas for the incremental versions
is assumed to be 10 % of the input size.

That is, computing a delta for data on files means that both
generations are processed whereas non-incremental sorting
processes only the new generation. Also, the merge performs
another pass over the old generation and the (small) delta.

Streaming stays very close to the non-incremental base-
line. Its costs consist of the following parts: read original
input data on file and compare it with new input data
available through streaming so that delta is written (15.3 %);
process delta (20.8 %); merge processed delta with original
output (63.9 %)—the percentages of costs are given for
the rightmost configuration in Fig. 11. Essentially, merging
original input and delta dominates the costs of streaming, but
those costs are below the costs of processing the new input
in non-incremental fashion because the former is a map-side
join while the latter is a regular MapReduce computation.

Pipelines In practice, MapReduce jobs are often organized
in pipelines or even more complicated networks—remember
the use case of crawling in Sec. 2. In such compounds,
the benefit of processing deltas as opposed to complete
inputs adds up. We consider a simple benchmark that shows
the effect of cumulative speedup. That is, four MapReduce
jobs are organized in a pipeline, where the first job sorts,
as described above, and the subsequent jobs simply copy.
Here, we note that a copy job is slightly faster than a sort
job (because of the eliminated costs for partitioning for
total order), but both kinds of jobs essentially entail zero
mapper/reducer costs, which is the worst case for delta-aware
computations.

The results are shown in Fig. 12. The chosen pipeline
is not sufficient for the “naive” incremental option to
outperform the non-incremental option, but the remaining
incremental options provide speedup. MapReduce-scenarios
in practice often reduce the volume of data along such
pipelines. (For instance, the counts of word occurrences
require much less volume than the original text.) In these
cases, costs for merging go significantly down as well,
thereby further improving the speedup.

30 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 12: Sort followed by three copy jobs.

7. Related work
An approach to update PageRank computations in the

context of changes in the web is introduced by [14]. Similar
to our approach, existing results are updated according to
computed additions and deletions. However, the approach
specifically applies to graph-computations, whereas our ap-
proach deals with incremental MapReduce computations in
general.

Percolator [15] is Google’s new approach in dealing with
the dynamic nature of the web. Percolator is aimed at
updating an existing index that is stored in BigTable [16],
Google’s high performance proprietary database system.
Percolator adds trigger-like procedures to BigTable columns,
that are triggered whenever data is written to that column
in any row. The paper states that Percolator requires more
resources than MapReduce and only performs well under
low crawl rates (i.e., the new input is a small fraction of the
entire repository). Our approach uses essentially the same
resources than classic MapReduce. We do not understand
well enough how to compare our speedups (relative to delta
sizes and other factors in our approach) with Percolator’s
scalability (relative to crawl rates).

Twister [17], a distributed in-memory MapReduce run-
time, is optimized for iterative MapReduce by several modi-
fications to the original MapReduce model. Iterative jobs are
run by a single MapReduce task, to avoid re-loading static
data that does not change between iterations. Furthermore,
intermediate data is not written to disk, but populated via
distributed memory of the worker nodes. CBP, a system for
continuos bulk processing [18], distinguishes two kinds of
iterative computations: several iterations over the same input
(e.g., PageRank), and iteration because of changed input
(e.g., URLCount). CPB introduces persistent access to state
re-use prior work along reduction. Our approach does not
introduce state, which contributes to the simple correctness
criterion for MapReduce computations with deltas. Our ap-
proach does not specifically address iterative computations,
but instead it enables a general source for speedup for
MapReduce computations.

Dryad [19], [20] is a data-parallel programming model
like MapReduce, which, however, supports more general

DAG structures of dataflow. Dryad supports reuse of iden-
tical computations already performed on data partitions and
incrementality with regard to newly appended input data
for which computed results are to be merged with previous
results. While the idea of merging previous and new results
is similar to deltas, our approach is not restricted to append-
only scenarios.

Map-reduce-merge [21] enhances MapReduce to deal with
multiple heterogenous datasets so that regular MapReduce
results are merged in an extra phase. The enhanced model
can express relational algebra operators and implement sev-
eral join-algorithms to unite multiple heterogenous datasets.
In contrast, the merge phase in our approach is a problem-
independent element of the refined programming model
which simply combines two datasets of the same structure.

For our implementation we used Hadoop [3], an open
source Java implementation of Google’s MapReduce frame-
work [1]. Hadoop’s MapReduce-component [22] is built on
top of HDFS [23], the Hadoop Distributed File System
which has been modeled after the Google File System
(GFS) [24]. Hadoop happens to provide a form of streaming
(i.e., Hadoop Streaming) for the composition of MapReduce
computations [25]. This form of streaming is not directly
related to streaming in our sense of delta computation.

MapReduce Online [26] is a modified MapReduce ar-
chitecture which introduces pipelining between MapReduce
jobs as well as tasks within a job. The concept is im-
plemented as a modification of Hadoop. A more general
stream-based runtime for cloud computing is Granules [27].
It is based on the general concept of computational tasks,
that can be executed concurrently on multiple machines,
and work on abstract datasets. These datasets can be files,
streams or (in the future) databases. Computational tasks
can be specialized to map and reduce tasks, and they can be
composed in directed graphs allowing for iterative architec-
tures. Granules uses NaradaBrokering [28], an open-source,
distributed messaging infrastructure based on the publish/-
subscribe paradigm, to implement streaming between tasks.
We believe that such work on streaming may be helpful in
working out streaming deltas in our sense.

Our programming model essentially requires that reduc-
tion is based on the algebraic structure of an Abelian group.
This requirement has not been set up lightly. Instead, it is
based on a detailed analysis of the MapReduce programming
model overall [2], and a systematic review of published
MapReduce use cases [6].

8. Conclusion
We have described a refinement of MapReduce to deal

with incremental computations on the grounds of computing
deltas, and merging previous results and deltas possibly
throughout pipelines. This refinement comes with a simple
correctness criterion, predictable speedup, and it can be

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 31

provided without any changes to an existing MapReduce
framework. Our development is available online.

There are some interesting directions for future work.
The present paper focuses on the principle speedup and

the correctness of the method. A substantial case study
would be appreciated to reproduce speedup in a complex
scenario. For instance, an existing WebCrawler could be
migrated towards MapReduce computations with deltas.

Currently, we do not provide any reusable abstractions
for streaming delta. In fact, the described benchmark for
streaming TeraByte Sort relies on summation of assumed
components of the computation, but we continue working
on an experimental implementation.

Our approach to streaming delta and map-side join for
merge may call for extra control of task scheduling and
file distribution. For instance, results of processing the delta
could be stored for alignment with the original result so that
map-side join is most efficient.

As the related work discussion revealed, there is a sub-
stantial amount of techniques for optimizing compound data-
parallel computations. While the art of benchmarking classic
MapReduce computations has received considerable atten-
tion, it is much harder to compare the different optimizations
that often go hand in hand with changes to the programming
model. On the one hand, it is clear that our approach
provides a relatively general speedup option. On the other
hand, it is also clear that other approaches promise more
substantial speedup in specific situations. Hence, a much
more profound analysis would be helpful.

Modern MapReduce applications work hand in hand with
a high performance database system such as BigTable. The
fact that developers can influence the locality of data by
choosing an appropriate table design, could enable very effi-
cient delta computations. Database systems such as BigTable
also offer the possibility to store multiple versions of data
using timestamps. This could facilitate delta creation sub-
stantially.

Acknowledgment The authors are grateful for C. Litauer and
D. Haussmann’s support in setting up a MapReduce cluster at the
University of Koblenz-Landau for the purpose of benchmarking.

References
[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing

on Large Clusters,” in Proceedings of the 6th Symposium on Operating
Systems Design and Implementation. USENIX Association, 2004,
pp. 137–150.

[2] R. Lämmel, “Google’s MapReduce programming model—Revisited,”
Science of Computer Programming, vol. 70, no. 1, pp. 1–30, 2008.

[3] “Apache Hadoop,” http://hadoop.apache.org/.
[4] “Apache Nutch,” http://nutch.apache.org/.
[5] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank

Citation Ranking: Bringing Order to the Web,” Stanford Digital
Library Technologies Project, Tech. Rep., 1998.

[6] A. Brandt, “Algebraic Analysis of MapReduce Samples,” 2010, Bach-
elor Thesis, University of Koblenz-Landau.

[7] J. W. Hunt and M. D. McIlroy, “An Algorithm for Differential File
Comparison,” Bell Laboratories, Tech. Rep., 1976.

[8] J. Venner, Pro Hadoop. Apress, 2009.
[9] J. Lin and C. Dyer, Data-Intensive Text Processing with MapReduce.

Morgan and Claypool Publishers, 2010.
[10] D. Coutts, R. Leshchinskiy, and D. Stewart, “Stream fusion: from lists

to streams to nothing at all,” in Proceedings of the 12th ACM SIG-
PLAN International Conference on Functional Programming, ICFP
2007. ACM, 2007, pp. 315–326.

[11] “Sort Benchmark,” web site http://sortbenchmark.org/.
[12] O. O’Malley, “TeraByte Sort on Apache Hadoop,” 2008, contribution

to [11].
[13] A. C. Murthy, “Winning a 60 second dash with a yellow elephant,”

2009, contribution to [11].
[14] P. Desikan and N. Pathak, “Incremental PageRank Computation on

evolving graphs,” in Special interest tracks and posters of the 14th
international conference on World Wide Web, ser. WWW ’05. ACM,
2005, pp. 10–14.

[15] D. Peng and F. Dabek, “Large-scale incremental processing using
distributed transactions and notifications,” in Proceedings of the 9th
USENIX conference on Operating systems design and implementation,
ser. OSDI’10, 2010, pp. 1–15.

[16] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable:
A distributed storage system for structured data,” in Proceedings
of the 7th USENIX Symposium on Operating Systems Design and
Implementation - Volume 7, ser. OSDI ’06, 2006, pp. 205–218.

[17] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and
G. Fox, “Twister: a runtime for iterative MapReduce,” in Proceedings
of the 19th ACM International Symposium on High Performance
Distributed Computing, HPDC 2010. ACM, 2010, pp. 810–818.

[18] D. Logothetis, K. C. Webb, C. Olston, K. Yocum, and B. Reed,
“Stateful Bulk Processing for Incremental Analytics,” in SoCC ’10
Proceedings of the 1st ACM symposium on Cloud computing. ACM,
2010, pp. 51–62.

[19] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,”
in Proceedings of the 2007 EuroSys Conference. ACM, 2007, pp.
59–72.

[20] L. Popa, M. Budiu, Y. Yu, and M. Isard, “DryadInc: Reusing work in
large-scale computations,” in HotCloud’09 Proceedings of the 2009
conference on Hot topics in cloud computing, 2009.

[21] H. chih Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker Jr., “Map-
reduce-merge: simplified relational data processing on large clusters,”
in Proceedings of the ACM SIGMOD International Conference on
Management of Data. ACM, 2007, pp. 1029–1040.

[22] “Hadoop MapReduce,” http://hadoop.apache.org/mapreduce/.
[23] D. Borthakur, The Hadoop Distributed File System: Architecture and

Design, The Apache Software Foundation, 2007.
[24] S. Ghemawat, H. Gobioff, and S. T. Leung, “The Google file system,”

in Proceedings of the nineteenth ACM symposium on Operating
systems principles, ser. SOSP ’03. ACM, 2003, pp. 29–43.

[25] “Hadoop Streaming,” http://hadoop.apache.org/common/docs/r0.15.2/
streaming.html, 2008.

[26] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K. Elmeleegy, and
R. Sears, “MapReduce online,” in Proceedings of the 7th Symposium
on Networked Systems Design and Implementation, ser. NSDI’10.
USENIX Association, 2010, pp. 313–328.

[27] S. Pallickara, J. Ekanayake, and G. Fox, “Granules: A lightweight,
streaming runtime for cloud computing with support, for Map-
Reduce,” in Proceedings of the 2009 IEEE International Conference
on Cluster Computing. IEEE, 2009, pp. 1–10.

[28] S. Pallickara and G. Fox, “NaradaBrokering: A Distributed Mid-
dleware Framework and Architecture for Enabling Durable Peer-to-
Peer Grids,” in Proceedings of 2003 ACM/IFIP/USENIX International
Middleware Conference. Springer, 2003, pp. 41–61.

32 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

http://hadoop.apache.org/
http://nutch.apache.org/
http://sortbenchmark.org/
http://hadoop.apache.org/mapreduce/
http://hadoop.apache.org/common/docs/r0.15.2/streaming.html
http://hadoop.apache.org/common/docs/r0.15.2/streaming.html

Towards Utilizing Remote GPUs for CUDA Program Execution

Xiaonan Ji1, Spencer Davis2, Erikson Hardesty2, Xu Liang2, Sabuj Saha2, and Hai Jiang2
1Department of Computer Science, Ohio State University, Columbus, Ohio 43210, USA

2Department of Computer Science, Arkansas State University, Jonesboro, Arkansas 72467, USA

Abstract— The modern CPU has been designed to acceler-
ate serial processing as much as possible. Recently, GPUs
have been exploited to solve large parallelizable problems.
As fast as a GPU is for general purpose massively parallel
computing, some problems require an even larger scale of
parallelism and pipelining. However, it has been difficult
to scale algorithms beyond a local computer and distribute
workloads among multiple computers housing GPUs. This
paper proposes a Remote Kernel Launch (RKL) approach to
transfer the kernel parts from a local machine to remote
GPU servers. A lexical analyzer is used to identify and
extract the kernels from local programs. The extracted kernel
can then be distributed and executed on remote GPUs.
A dynamic mapping scheme is explored to balance work-
loads among nodes. This approach allows a program to
run optimally on a range of hardware configurations by
eliminating the need to program for a specific environment.
The experimental results demonstrate the effectiveness of
RKL.

Keywords: Remote Procedural Call, Graphics Processing Unit,
CUDA

1. Introduction
Even in the current technology era, many computational

intensive problems remain difficult to solve with a single
monolithic CPU. As Moore’s law gives us more and more
transistors, the strategy with CPUs is to make the workload
(one computer thread) run as fast as possible through the
use of large caches, instruction/data prefetch and speculative
execution. However, the CPU’s performance is limited by the
communication bandwidth, which lead to the consideration
of parallelism. Multiple CPU execution paths, or cores, are
being used to process threads of execution. Two to eight
cores are commercially available now, and it is predicted
that hundreds of cores will be achieved in the future.

In the meantime, another hardware approach is being used
to exploit this parallelism. A graphics processing unit or
GPU is a specialized circuit that is capable of rendering
graphics much more quickly than a central processor [4].
A single modern GPU already contains more than 500
computational cores. GPUs process blocks of data in parallel
on a much larger scale than a CPU. Because of this, GPUs
have begun making computational in roads against the CPU.
This concept turns the massive floating-point computational
power of a modern graphics accelerator’s shader pipeline

into general-purpose computing power, as opposed to being
hard wired solely to do graphical operations.

For very large problems It remains difficult to scale
execution to remote GPUs as compared to the more typical
CPU based supercomputer. This combined with the lower
level programming required to take advantage of GPUs has
slowed adoption in many areas. While benchmarks show
massive performance gains with GPUs, the limited tools
available to exploit this raw performance as compared to
CPUs has hindered its practical uses.

This paper makes the following contributions:
• The RKL scheme is deployed to utilize remote GPU

computing resources in an efficient way. A lexical
analyzer written in Flex is adopted to identify and
extract the kernel parts from local programs.

• A dynamic mapping scheme is developed to distribute
the kernel parts onto remote GPUs. The mapping
scheme maintains efficiency of solving a single task
as ensuring a balanced workload among nodes.

• The tradeoff between the overhead for the remote
call and the acceleration of computing with different
problem sizes is considered.

The remainder of this paper is organized as follows: Sec-
tion 2 gives an overview of the background of related
packages. Section 3 is the design and development of RKL.
Section 4 is about feature analysis and experiment results.
Section 5 gives the related work. Finally, our conclusion and
future work are described.

2. Background
2.1 GPU Computing

Many of today’s intensive programming problems have
become a critical part of a variety of fields, such as data
mining, machine learning, evolutionary computation, life
science, image processing, statistic, etc. For these complex
problems which require massive vector/matrix operations,
GPUs work extremely well because of their high mem-
ory bandwidth and massive parallel computation power. In
certain applications requiring massive vector/matrix opera-
tions, a GPU can yield several orders of magnitude higher
performance than a conventional CPU. In addition to raw
performance GPUs have other advantages. GPUs have much
higher performance per watt than CPUs. When scaled to
large supercomputers this performance per watt gap can
make a large difference in the cost to operate. In addition,

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 33

GPUs can be purchased for relatively small cost. Their
performance per cost far exceeds the modern CPU which
enables more practical supercomputing for businesses and
research.

With the flood of data produced by modern scientific
instruments, fast analysis or computing of very large vol-
umes of data is now of paramount importance in many
fields. These computationally intensive problems require an
even larger scale of parallelism and pipelining. Software
developers are more and more inclined to take advantage of
GPUs in order to achieve the desirable level of performance.

2.2 CUDA
The RKL system is based on the CUDA (Compute Uni-

fied Device Architecture) programming model released by
NVIDIA [5], [8]. NVIDIA’s CUDA platform is the most
widely adopted programming model for GPU computing.
CUDA enables GPU hardware to be exploited for higher
performance [9]. CUDA allows specified functions from a
normal C program to run on the GPU’s stream processors.
With CUDA, C programs are capable of taking advantage
of a GPU’s strengths, while still making use of the CPU
where appropriate. Programmers can also use CUDA to
target multiple GPUs to accelerate computation further. This
involves decomposing tasks even further to process them si-
multaneously on multiple GPUs. CUDA’s high-performance
scalable computing architecture solves complex parallel
problems hundreds of times faster than traditional CPU-
based architectures. CUDA does not provide an interface
to distribute compute kernels to remote systems. Few tools
currently exist to address this issue.

2.3 LEX/FLEX
Lex is a program generator designed for lexical processing

of character input streams. It helps write programs whose
control flow is directed by instances of regular expressions
in the input stream. It is well suited for editor-script type
transformations and for segmenting input in preparation for
a parsing routine.

Lex source is a table of regular expressions and corre-
sponding program fragments. The table is translated to a
program which reads an input stream, copying it to an output
stream and partitioning the input into strings which match
the given expressions. As each such string is recognized the
corresponding program fragment is executed. The recog-
nition of the expressions is performed by a deterministic
finite automaton generated by Lex. The program fragments
written by the user are executed in the order in which the
corresponding regular expressions occur in the input stream.

Flex is a free version of Lex distributed by GNU. The
RKL system exploits Flex to implement its lexical analyzer,
which identifies various elements of the CUDA C source
code.

cluster of GPU servers

 prog.cu...main()...
...
...

Server

 Listening...

Client Machine Server Machinebefore RKL
#pragma RKL Begin...kernel1 <<< >>>...#pragma RKL End

 System Layout

#pragma RKL Begin...kerneln <<< >>>...#pragma RKL End
GPU

Directory
Service

2 query for servers

1 register servers3 The mapping from
kernels to
remote GPU servers

ServerMachieServerMachie ServerMachie ServerMachie
CommunicationModel CommunicationModel

4 communications are constructed
 and begin to invoke
 procedures

Fig. 1: Syetem layout of RKL

3. Design and Development of RKL
3.1 System Layout

The Remote Kernel Launch, RKL system consists of three
parts: client machines, directory service [7], [3] and a cluster
of GPU servers. A client machines sends a request to the
directory service when a RKL is needed in a program.
The directory service, which is the software system that
stores, organizes and provides access to resources in a
directory, records the status of every GPU server in the
cluster and maps kernels from the client side to GPU server.
A cluster of GPU servers is composed of multiple computers
housing one or more GPUs. Each GPU server registers their
information on the directory service and notifies the service
when it acquires and completes a task. An advantage with
this system is that the client machines and programs are
abstracted from the execution hardware. The client need
not know anything about the GPU server in the cluster. All
decisions are made by the directory service [6]. The system
status before the Remote Kernel Launch is shown in Fig. 1

One critical issue to tackle in this design lies in the
measurement of kernel complexity and GPU capacity. De-
termining the kernel complexity is essential to find the
GPU server with the best compatibility. The complexity of
one kernel can be directly reflected by the number of its
threads, which can be calculated from the code segment
<<< griddim,blockdim>>>, where griddim * blokdim is the
number of threads that needs to be generated for a kernel.
To estimate the compatibility of one GPU server, we need to
derive its max thread number from its version information
which is registered and recorded in the directory service.
The max thread number is one GPU metric to determine the
best fit for a kernel. This could be extended to other metrics
to determine optimal compatibility.

For dynamic workloads, daemons can be installed on both
servers and clients. It is possible that the program running on

34 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

one client machine can posses one or multiple kernels. After
taking the tradeoff between the overhead of the remote call
and the acceleration on operation speed into consideration,
the complexity of each kernel and the capacity of local GPU
will be analyzed to determine whether the local support is
enough and whether RKL is needed. If the local GPU can
handle one kernel with efficiency, then the kernel will be
executed locally. If the local GPU is busy then RKL will be
applied. A flexible mapping scheme is explored to support
RKL in an effective way.

3.2 Lexical Analyzer
The primary task of the lexical analyzer is to identify and

extract the CUDA parts of the source program as shown in
Fig. 2 for a typical layout. First, the CUDA related code
is removed from the client program source. The remainder
of the client-side program is traditional C code which is
runnable in a local machine without CUDA-supported GPUs.
In place of the original CUDA code, a function named
“remote_kernel_launch” will be invoked as shown in Fig. 3.

The extracted CUDA code is not a complete program
and must be supplemented with additional code. This new
intermediate CUDA program is only source code and does
not contain data associated with the original client program’s
state prior to the kernel launch. Therefore, the intermediate
CUDA program has to handle the transfer of data before it
can proceed to computation tasks as shown in Fig. 4.

The RKL function in the client first creates a connection
with the directory service and requests a capable server.
Once it connects with the assigned server, it sends the now
complete intermediate CUDA program. When the program
arrives and is then invoked at the server end, an acknowl-�� �

��������	�
��	����������	����	�����	����	����������������	����	���� ����	����	�

�����������
����	�����������������������
����	������������
��������������������	�
���	����	���

�

Fig. 2: Original CUDA program

����������������

�� ��������	
�����������������	
���
������	
���

��������
��������	
����� �������������	
���

����
�������	��������������������������	��	��������������	�	���
��������������	��	��
���	�������
���
�
������	�

����������
�������������

Fig. 3: Translated client program (C code with socket)�� ��
���������	�
�������

���������������	�
��
����������	����
�������	�������������������������	�
������������������	�	
������	�

�����������������������
����������������������������	�����

Fig. 4: Translated server program (CUDA code with socket)

edgement is sent out to ask the client side program for data.
After the data has been received the computation task can
be completed. The server then transmits the results back to
the client. When the “RKL” function returns, the client side
program proceeds.

3.3 Mapping Scheme
RKL is implemented for intensive kernels that need

stronger support from remote GPU servers. The mapping
scheme of RKL intends to find the GPU server with the
highest compatibility for every kernel, that is, one GPU
server that can not only efficiently complete the task but also

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 35

minimize the possible idle waste. Assume two GPU servers
can support up to 15,000 and 30,000 threads, respectively.
Running a kernel with 13,000 threads on the GPU with
30,000 threads will lead to more idle waste than running
the kernel on the 15,000 one, especially when the GPU
with 15,000 threads can already provide sufficient support.
The situation will be worse when a second kernel with
28,000 threads comes after the first kernel, and the GPU
with 30,000 threads is occupied by the first kernel at the
same time. In this sense, the second kernel will have to
run on the GPU with 15,000 threads where its performance
will drop. This situation can be avoided if we schedule
the kernel with 13,000 threads to the GPU with 15,000
capacity, and the kernel with 28,000 threads to the GPU with
30,000 threads capacity. In the proposed mapping scheme,
kernels are assigned to several classes according to their
complexity indicated by the number of threads. Each class
will occupy a continuous region on the complexity axis
such as (10,000, 16,000), (16,000, 23,000), (23,000, 30,000).
Similarly, GPUs are assigned to several classes based on
their thread capacity and also occupy continuous regions on
the max thread number axis. Every kernel class is mapped
to one GPU class for better compatibility. Such mapping
scenario is shown in Fig. 5.

3.4 Remote Kernel Launch (RKL)
Fig. 6 illustrates the event sequence when RKL occurs.

For one program file on the local machine, a lexical an-
alyzer is applied to identify and split the intensive kernel
parts in the source code. In this approach, with the lexical
analyzer, each kernel marked by #pragma will be extracted
out and generates a new CUDA file which will be sent to
the remote GPU server mapped by the directory service.
The rest of the source code after the extraction will be
completed by adding some instructions like socket(), sent(),
receive(), which in turn control the communication with the
server while sending arguments and receiving results. After

 12,00016,50025,80019,000 10,500 15,00029,800 18,300

Class1
Class2
Class3

Thread number of kernels10,00016,00023,00030,000

Kernels from clients

Directory
Service

10,00016,00023,00030,000

Max thread number of GPUs busy30,00025,00018,00012,000busy15,00020,000

connectionMapping Scheme
gpiGPU servers

Mapping Scheme

Fig. 5: Mapping between kernel requests and GPU server
capacity

 new_prog.c
 tmp1.cu

...

 tmpn.cu

 ...main(){//pragma is gone c_kernel();}

 Server

2 fork

child process

Listening...

Client Machine Server Machine1
main(){ ...kernel1 <<< >>> ...}

GPU

1 connect

3 send tmp.cu

6 send argument1 4 complie tmp.cu
5 execuationmain(){ ...kerneln <<< >>> ...} 8 receive result

7 send argumentn
void c_kernel1(){ socket() send() send(argument1) ... send(argumentn) recv(result)}void c_kerneln(){ ... }

Directory
Service

3 The mapping from kernels to GPU servers

cluster of GPU servers

ServerMachieServerMachie ServerMachie
ServerMachie

Remote Kernel Launch

Fig. 6: Event sequence in Remote Kernel Launch

a connection is established between the client machine and
the server machine, the remote GPU server then forks a
child process to compile the CUDA file and execute the new
program made by the compilation. Within the CUDA file a
new connection should be constructed to take responsibility
of the transmission of arguments and results. The GPU
server will request for the arguments from the local client
machine, and the local client machine will send the requested
arguments and receive the final results from the remote GPU
server. In this sense, the intensive tasks can be distributed
to a cluster of GPU servers effectively and efficiently.

4. Experimental Results
In order to facilitate the communication between the client

and server machines, the original CUDA file must be parsed
and analyzed to generate the client.c and server.cu files. Fig.
7 contains an example CUDA program before it is parsed
by the lexical analyzer. Two sections in this example must
be extracted out, and placed into the server.cu file. The first
is indicated by the __global__ specifier, which identifies a
CUDA kernel function. The second section is inside the
main function, indicated by the #pragma tags. The use of
the #pragma tags allows the program to be run without
modification in an environment without RKL capabilities.
The remaining portions are used to generate the client.c file.

Fig. 8 shows the generated client.c file. This file contains
all of the non-CUDA portions of the original CUDA file, as
well as an added function that will facilitate communications
between the client, directory service, and the assigned server.
A call to this function is inserted into the main function in
place of the #pragma specified code. The generated server.cu

36 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

�� ��������	
�������	��������	
�����������	�������	����	����		���	������� 	!������ 	"������#								���	�$��%���	$&'� 	��$&	($&')��*	+												���	� ,-����#									�&$��%%����'���*����%,.//**#									���	�����0�	-	����(��0��%���*#									�&	%�-�#�
,#�11*+																	����-%���*%%��2��*&$��%*�%3�,456�718��*(9*#																	!���-%���*%%��2��*&$��%*�%3�,456�718��*(9*#	 										:																				�&%�-�#�
����#�11*			;&����%<"�=��-=�>�< � "���*#	 	 									&���&�	�#	:	

								�;&$'�$	3?/	!�'��									���	(��)@�&� (��)@�&! (��)@�&"#									���6���%%)��((*A��)@�&� 	�����0�*#									���6���%%)��((*A��)@�&! 	�����0�*#									���6���%%)��((*A��)@�&" 	�����0�*#									���$6���;�%��)@�&� 	� 	�����0� 	���$6���;�B��C4�)���*#									���$6���;�%��)@�&! 	! 	�����0� 	���$6���;�B��C4�)���*#									�(".4�	D�&���		�������	�$��(�)�����

E� F����%��)@�&� 	��)@�&! 	��)@�&"*#									���$6���;�%" 	��)@�&" 	�����0� 	���$6���;�4�)���CB��*#									���$G&��%��)@�&�*#									���$G&��%��)@�&!*#									���$G&��%��)@�&"*#								�;&$'�$	3?/	���		

55'�2$�55)��)�����%���(� 	���(! 	���("*			�(".4�	D�&���	�������(�	+																����'���	���	�	-	��&�$���H�H12��D��H�H(2��D4���H#									"���-����1!���#	 	:	

Fig. 7: The original vector addition CUDA code (vecAdd.cu)

file can be seen in Fig. 9. This file contains the extracted
CUDA portions, as well as socket programming to receive
arguments and send back results.

Experimental results using the aforementioned vector ad-
dition kernel showed reasonable overhead given a kernel of
sufficiently high computational complexity. In practice, the
time from the start of the RKL to the actual execution of
the kernel on the GPU server was approximately a second.
Larger kernels would have more overhead due to increase
compilation and transfer time. However, most GPU kernels
are relatively short in length and can be compiled very
quickly. While, the data needed to compute the kernel would
also have an effect on the RKL overhead, this data transfer
would be needed if using a traditional CPU based distributed
system as well.

5. Related Work
Recent designs and approaches have made GPUs more

programmable and useful for tasks beyond graphics, due
to GPUs’ high computing capacity. While CUDA is a
big step towards GPU programming, it requires significant
rewriting and restructuring of programs. PGI is introducing
the Accelerator Programming Model for Fortran and C with
PGI Release 9.0 [10]. The Accelerator Programming Model
uses directives and compiler analysis to compile natural
Fortran and C for the GPU, which often allows users to
maintain a single source version. This model is designed
to be forward-looking as well, in order to accommodate

�� ��������	
�������	��������	
�����������	�������	����	����		���	������� 	!������ 	"������#																		���	�$��%���	$&'� 	��$&	($&')��*	+												���	� ,-����#									�&$��%%����'���*����%,.//**#									���	�����0�	-	����(��0��%���*#									�&	%�-�#�
,#�11*+																	����-%���*%%��2��*&$��%*�%3�,456�718��*(9*#																	!���-%���*%%��2��*&$��%*�%3�,456�718��*(9*#	 										:												�&%�-�#�
����#�11*			;&����%<"�=��-=�>�< � "���*#	 	 										&���&�	�#	:	
							�(��?��	����&���	�������	�$��	(�)�����53@/%� 	! 	"*#	�

�(,�?��	����&���	�������	�&	�������$����	(�)��)�����53@/%���(� 	���(! 	���("*				+													���						�("��$��		4�&���&�	��&)���	2�	��A��	(�						���						�("�����	�	��&)�&���	�	���	$���'���	BC.	��&)�&	(�						���						�(����	A�&���	$&'������	$&&$�	�	$��	!		�	��&)�&���	(�	 						���						�(3����)�	&������		$&&$�	"	�&�	��&)�&���		(�						���						�(4��������		��A��	�������$���	?���	���	��&)�&���	(�						���	:		

Fig. 8: The generated client-side code (client.c)

other accelerators that may come in the future, preserving
the software development investment.

HMPP is a language extension for hardware accelerators
for C, Fortran, and C++ for multi-thread programming [2].
HMPP targets to be applied to CUDA for NVIDIA GPU with
its compiler directives which has no code modifications (just
comments if not recognised by the compiler) and mostly
hardware independent. HMPP can address different targets
and strategies. The difference between HMPP and RKL is
that the former focuses on local execution whereas the latter
is for remote kernel function launch.

RPC (Remote Procedure Call) has been in computer world
for a long time [1]. However, RPC deals with portable
function execution on CPUs. RKL extends CUDA programs’
working platforms from local machines to distributed sys-
tems or even Clouds.

6. Conclusion and Future Work
This paper describes the deployment of Remote Kernel

Launch to dispatch large and highly parallel computations
across networked GPU servers through the cooperation of
both a client side and a server side. A lexical analyzer is ap-
plied to identify and extract CUDA kernels. With a dynamic
mapping scheme, these kernels can be executed on the GPU
servers with high compatibility so that high overall efficiency
can be achieved. RKL enables high-efficiency computing for
intensive problems in a wide range of areas with the max-
imized utilization of available resources. The RKL method
described requires only minor changes to existing CUDA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 37

�� ��������	
�������	��������	
�����������	�������	����	����		���	������� 	!������ 	"������#								���	�$��%���	$&'� 	��$&	($&')��*	+												���	� ,-����#									���	�����.�	-	����(��.��%���*#									���									�(/����)�	0�&���	$&'�����	�	$��	!	�&�	��������	�	������	�$�����	(�									���																										�(����	&������	��	"	1$�0	�	��������	�	���	������	�$�����	(�									���									�(2��������	���	��0��	��$����	(�	 	 									&���&�	�#	3	

								���	(��)4�&� (��)4�&! (��)4�&"#									���5���%%)��((*6��)4�&� 	�����.�*#									���5���%%)��((*6��)4�&! 	�����.�*#									���5���%%)��((*6��)4�&" 	�����.�*#									���$5���7�%��)4�&� 	� 	�����.� 	���$5���7�8��92�)���*#									���$5���7�%��)4�&! 	! 	�����.� 	���$5���7�8��92�)���*#									�(":2�	0�&���		�������	�$��(�)�����

;� <����%��)4�&� 	��)4�&! 	��)4�&"*#									���$5���7�%" 	��)4�&" 	�����.� 	���$5���7�2�)���98��*#									���$=&��%��)4�&�*#									���$=&��%��)4�&!*#									���$=&��%��)4�&"*#		

>>'�1$�>>)��)�����%���(� 	���(! 	���("*			�(":2�	0�&���	�������(�	+																����'���	���	�	-	��&�$���?�?@1��0��?�?(1��02���?#									"���-����@!���#	 	3	

Fig. 9: The generated server-side code (server.cu)

programs in order to operate in a scalable heterogeneous
environment. Additionally, the changes needed to the CUDA
program are backwards compatible without modification
needed to run in a non-RKL environment. Experiments have
confirmed the feasibility of this approach demonstrating that
RKL has minimal computational overhead.

There are several opportunities for future work. The
mapping scheme could be extended to include more met-
rics in the process of deciding the GPU server with the
best fit for the particular GPU task. Other work could
include implementing the dynamic mapping scheme with
publish/subscribe and peer-to-peer style systems. Addition-
ally work could be done to implement the RKL system in
OpenCL. Eventually, RKL will be ported to Cloud comput-
ing systems.

References
[1] Andrew Birrell and Bruce Nelson. Implementing remote prcedure

calls. ACM Transactions on Computer Systems, 1984.
[2] Romain Dolbeau, Stéphane Bihan, and François Bodin. Hmpp: A

hybrid multi-core parallel programming environment. In Proceedings
of Workshop on General Purpose Proessing on Graphics Processing
Units, 2007.

[3] Steven Fitzgerald, Ian Foster, Carl Kesselman, Gregor von Laszewski,
Warren Smith, and Steven Tuecke. A directory service for con-
figuring high-performance distributed computations. In Proceedings
of The Sixth IEEE International Symposium on Hight Performance
Distributed Computing, 1997.

[4] Wen-mei Hwu. GPU Computing Gems Emerald Edition. Morgan
Kaufmann, 2011.

[5] David Kirk and Wen-mei Hwu. Programming Massively Parallel
Processors, A Hands-on Approach. Morgan Kaufmann, 2010.

[6] R. Rajkumar, M. Gagliardi, and Sha Lui. The real-time pub-
lisher/subscriber inter-process communication model for distributed
real-time systems: design and implementation. In Proceedings of Real-
time Technology and Applications Symposium, 1995.

[7] J. Reynolds and C. Weider. Executive introduction to directory
services using the x.500 protocol, rfc 1308. Technical report, 1992.

[8] Jason Sanders and Edward Kandrot. CUDA by Example: An Intro-
duction to General -Purpose GPU Programming. Addison-Wesley
Professional, 2010.

[9] Stanimire Tomov, Rajib Nath, Hatem Ltaief, and Jack Dongarra.
Dense linear algebra solvers for multicore with gpu accelerators. In
Proceedings of IEEE Internatioal Parallel & Distributed Processing
Symposium, 2010.

[10] Michael Walfe. Optimizing data movement in the pgi accelerator
programming model, February 2011.

38 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Power Saving Mechanism for Multi-cluster Resource
Manager with Dynamic Loading Prediction Scheduling

Algorithm

Chang-Hsing Wu1, Yi-Lun Pan 1
1National Center for High-Performance Computing, Hsinchu, Taiwan

e-mail： hsing@nchc.org.tw, serenapan@nchc.org.tw

Abstract – The “Green Computing,” is especially
important and timely. As computing becomes increasingly
pervasive, the energy consumption attributable to
computing is climbing, despite the clarion call to action to
reduce consumption and reverse greenhouse effects. A high
performance-computing cluster is a set of computers
gathered together and connected with the intent of merging
their processing power towards the same goal. In this paper
we developed a multi-cluster resource manager with
proposed scheduling algorithm to solve this problem. The
multi-cluster resource manager can control and balance
loading of various heterogeneous clusters more efficiently.
To echo today’s energy saving issues, we also proposed a
power saving mechanism. Furthermore, this algorithm also
considers several properties of the multi-cluster system,
including heterogeneous, dynamic adaptation and the
dependent relationship of jobs. And, the power saving
mechanism can wake up these idle machines when
computing power is requested and power down when the
job is done.

Keywords: Job Scheduling, Multi-Cluster, Meta-scheduler,
Scheduler, Power Saving

1 Introduction
 In the last few years, the trends in parallel processing
system design and deployment has moved away from single
isolated powerful supercomputer to cooperative networked
distributed systems such as commodity-based cluster
computing and distributed computing systems [1]. Cluster
computing systems can be single cluster system or
multi-cluster system [2] [3]. A single cluster system is
formed from a set of independent workstations that are
interconnected by a local area network (LAN). Multi-cluster
system is formed from a set of independent clusters
interconnected by a wide-area network (WAN) [4] in Fig. 1.

 Recently, multi-cluster system is gaining more
importance in practice and a wide variety of applications are
being hosted on such systems as well. Also, it has been
shown that parallel applications that have been written for
homogeneous single cluster systems do not run efficiently
on multi-cluster system. Hence, we will further focus on
multi-cluster system.

Fig. 1. The multi-cluster system as a group of clusters
interconnected through a wan.

In order for multi-cluster system to work efficiently,
we designed and developed a multi-cluster resource
manager (MCRM), which is a meta-scheduler for
multi-cluster system. The multi-cluster resource manager
then drives the local scheduler to enable the cluster
computing. The MCRM drives the local scheduler of
clusters of multi-cluster system via network socket and
secure shell (SSH). It has complete meta-scheduler
framework such as request manager, job manager, dispatch
manager and scheduling module…etc. The MCRM reduces
a heavy burden on clusters interconnect and complex
framework of multi-cluster system.

We also designed a dynamic loading prediction
scheduling algorithm and implemented it on scheduling
module. It is developed according to each different required
job criteria, and the scheduling algorithm uses the dynamic
loading prediction and adaptive resource allocation
functions to meet users’ requirements. The major task of the
proposed multi-cluster resource manager is to dynamically
identify and characterize the available resources, correctly
monitor the queue status of local scheduler. Finally, the
presented scheduling algorithm helps to select and allocate
the most appropriate resources for each given job. The aim
of the presented scheduling algorithm is to minimize the
total time of deliver for the individual users’ requirements
and criteria. Besides, the “Green Computing,” is especially
important and timely. As computing becomes increasingly
pervasive, the energy consumption attributable to computing
is climbing, despite the clarion call to action to reduce
consumption and reverse greenhouse effects. To echo
today’s energy saving issues, we also developed an
approach to reduce energy utilization in local cluster. We do

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 39

this work on the integration of local scheduler that aims at
reducing power consumption such that they suffice for
meeting the minimizing quality of service required by local
cluster.

 According to the above scenario, those issues
encourage the motivation of our research and development.
Specifically, the design and implementation of the proposed
MCRM includes the dynamic loading prediction and
adaptive resource selection functions. Moreover, the
scheduling algorithm takes into consideration not only the
general features of the multi-cluster resource manager but
also the "dynamic" feature, i.e. it monitors the status of each
local queue and provides resources according to users’
criteria dynamically. Therefore, the proposed MCRM can
select resource efficiently and automatically. Further, the
effective job scheduling algorithm also can improve the
performance and integrate the resources to supply remote
user efficiency in the heterogeneous and dynamic
multi-cluster system.

 The rest of the paper is organized as follows. Section 2
presents a formal definition of the multi-cluster computing
and existing resource manager and scheduling algorithm. In
Sections 3, we propose a new scheduling algorithm, power
saving mechanism and describe the architecture of MCRM
that we developed. In Section 4, the performance
comparison of algorithms is presented. The conclusion and
future directions are presented in Section 5.

2 State of the Art
2.1 Multi-Cluster System

 The using of multi-cluster system can be a cheap,
flexible and adaptable alternative to reduce applications’
execution time. Nevertheless a multi-cluster system is a
complex environment whose heterogeneity challenges the
collaborative execution of applications and their efficient
speedup. The complexity grows when scattered clusters
interconnected through Internet form a multi-cluster system.

 The work presented in this thesis targets to reduce the
execution time of several applications written for a single
cluster, using a multi-cluster system. In order to achieve this
goal, we designed and developed a middleware –
multi-cluster resource manager (MCRM) that allows a
collection of clusters to form a multi-cluster system. The
architecture of the MCRM efficiently to organize cluster’s
resources and produces a methodology to guide in the
process of achieving, using multi-cluster system, an
application speedup with a certain level of efficiency.

 This paper focuses on our designed architecture of the
MCRM and scheduling of dependent jobs, which means
have a reciprocal effect, or correlation between each other.
Because of the scheduling, it can help multi-cluster system
to increase and integrate the utilization of cluster computing

resources. Therefore, scheduling can improve the
performance in the multi-cluster system.

2.2 Existing Resource Manager for
Multi-Cluster System and Scheduling
Algorithm

 A general architecture of scheduling for the
multi-cluster resource manager (MCRM) which is defined
as the process of making scheduling decisions involving
resources over multiple administrative clusters. There are
three important features of the MCRM, which are resource
monitoring, resource selection, and job execution. As we
know, a lot of researches of resource broker or
meta-scheduler are on going to provide access of resources
for different applications, such as Condor – G, EDG
Resource Broker, AppLes, and so on [5], [6]. The above
resource brokers also can provide the capability of
computing resource monitoring and resource selection.
Nevertheless, those researches do not deal with monitoring
the information of dynamic queuing, neither to make precise
and effective scheduling policy. The dynamic job
scheduling is crucial and fundamental issue in multi-cluster
system. The purpose of job scheduling is to find the
dynamic and optimal method of resource allocation. Most
researchers are applying the traditional job scheduling
strategies to allocate computing resources statically, such as
list heuristic and the listing scheduling (LS) [7]. The above
algorithms focus on the allocation of machines statically.
However, our research focuses on dynamic job scheduling
for each job from users’ requirements and criteria.

Definition 1: The list heuristic scheduling algorithms have
three variants - First-Come-First-Serve (FCFS) - the
scheduler starts the jobs in the order of their arrival time;
Random - the next job to be scheduled is randomly selected
among all jobs. No jobs are preferred; Backfilling [8] - the
scheduling strategy is out-of-order of FCFS scheduling that
tries to prevent the unnecessary idle time. Actually, there are
two kinds of backfill. One is EASY-backfilling, and the
other is conservative-backfilling.

 Furthermore, most of the researches assume jobs are
executed independently and statically [4], [9], [10], [11]. In
fact, these assumptions are not appropriate in multi-cluster
system, since these jobs are always dependent and dynamic.
In this research, the proposed algorithm is designed for
scheduling the dependent jobs dynamically.

3 Proposed Scheduling Algorithm of
MCRM

3.1 Research Objective
 The multi-cluster system is formed from a set of
independent clusters interconnected by a wide-area network.
Each cluster of multi-cluster system has independent local

40 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

scheduler. User can submit job with local scheduler. So, the
heterogeneous and dynamic properties of cluster status are
considered when designing the algorithm of job scheduling.
Therefore, the proposed algorithm can make job scheduling
to achieve minimum makespan (defined in Definition 2),
which is to minimize the total time of delivery procedure for
the individual users’ requirements and criteria. That is the
main contribution of this work to present the developed
MCRM with job scheduling algorithm. The MCRM can
provide the faultless mechanism such that once the users
specify user’s requirement of resources. Finally, the MCRM
will allocate the most appropriate computing cluster to carry
out the execution of the application.

Definition 2: The completion time is defined as the time
from the job being assigned to one machine until the time
the job is finished. The complete time is also called
makespan time.

3.2 Model and Architecture
 To simplify multi-cluster system, each distributed
cluster computing resource can be connected by high-speed
network. There is one important component of
middleware – MCRM that plays essential role in such an
environment. The responsibilities of the MCRM are to
monitor the cluster computing resources status, store the
information, and satisfy the users’ requirements of
computing resources. Therefore, the dynamic loading
prediction job scheduling algorithm utilizes available
computational resources fairly and efficiently in
multi-cluster system.

 This proposed algorithm is designed for the MCRM of
multi-cluster system and NCHC Resource Broker of grid
computing [12]. The purpose of the proposed algorithm is to
help improve the performance of job scheduling. As a
matter of fact, the proposed scheduling algorithm can
preserve the good scheduling sequence of optimal or
near-optimal solution, which generated the best host
candidate or better host candidates. And then, the presented
scheduling module can get rid of the unfit scheduling
sequence in the searching process for the scheduling
problems.

 We used gnu gcc, wxWidgets library [13] and ssh2
library [14] to implement the MCRM for Linux cluster
system. The MCRM provided controls over batch jobs and
distributed compute clusters. It control clusters via local
scheduler such as Torque [15], OpenPBS [16], and Moab
[17]. The MCRM architecture is designed as shown in the
following Fig. 2.

Fig. 2 Multi-Cluster Resource Manager Architecture

 The users can submit jobs with using the MCRM
directly by terminal or through Multi-Cluster Portal as
shown in Fig.2. There are three layers in the system
architecture. The first, the Multi-Cluster Portal serves as an
interface to the users. It consists of three portlets. Three
portlets are Resource Monitor Portlet, Job Monitor Portlet
and Job Submit Portlet. Therefore, the jobs are submitted
via Job Submit Portlet, which in turn passes the jobs to the
MCRM to drive the backend resources. The resource as well
as job status are displayed back to the portal for users via
either Job Monitor Portlet. The Job Monitor Portlet accesses
the job information from the Multi-Cluster Master (MC
Master) which maintains the updated information about jobs.
Another feature of Job Monitor Portlet is the control over
jobs, such as modify job, delete job and resubmit job…etc.
 The Resource Monitor Portlet queries the status of
resources from the MC Master and displays the results onto
the Multi-Cluster Portal. Thus, the users’ knowledge about
the status of resources is kept up to date. The status content
of resources is the loading of clusters, such as CPU
availability, number of CPU and number of jobs …etc.

Secondly the Multi-Cluster Master (MC Master) is the core
of the system architecture. It takes the requirements from
user’s jobs, and then compares with resource information,
which is provided by the Multi-Cluster Slave (MC Slave).
Therefore, the MC Master can select the most appropriate
resources automatically to meet the requirements from jobs.
It will further move job’s requirement of files (including
input files and execution files) to cluster by sftp and submit
jobs to local schedulers for processing. The MC Master will
continue to monitor until the job is completed. Finally, the
output files of job will automatically be moved to the server,
which the MC Master is executed.

 The last layer, the MC Slave is executed on each
cluster of the multi-cluster system. It is used to pass control
command form the MC Master to local scheduler. It is also
used to collect the dynamic information of local computing
resources periodically and update the status of the resources
to MC Master. The dynamical information of local

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 41

resources, in XML format, is queried from local scheduler,
Ganglia, Network Weather Service (NWS), and so on by
Perl script. If the administrator wants to control different
local scheduler or collects more information form other
programs, he only needs to modify the Perl script.

 In order to handle the related processes of job
submitting, the MCRM adopts the Scheduling Module to
find the appropriate scheduling sequence, and then
dispatches jobs to the local schedulers by Dispatch Manager
Module. The most important part is the core of the MCRM
in Fig. 3. The major characteristic of Scheduling Module is
the presented scheduling policy, Dynamic Loading
Prediction Scheduling (DLPS) algorithm, which provides
dynamic loading prediction and adaptive resource allocation
functions. The scheduling policy will be described in later
section.

Fig. 3 Multi-Cluster Resource Manager Architecture

3.3 Multi-Cluster Resource Manager
Architecture

 We will explain the whole architecture of the MCRM,
and functions of every component, in this section. As the
Fig.3 shows, on receiving a job request via Linux socket
protocol from users, the Request Manager will manage the
job submission with proper job attributes. The Request
Manager will convert the job’s requirements into job object
and put the object into the Job Queue. On the other hand, the
user maintains the control over the jobs submitted through
the Request Manager.

 Following the Request Manager, the Job Manager
invokes the Scheduling Module to generate a resource list
based on the criteria posted by the job and the resource
status. The Resource Information Queue provides the
resource status for the Scheduling Module. The Information
Manager updates the object of cluster resource status in the
Resource Information Queue periodically. With the
suggestion from the Scheduling Module, the job is then
dispatched. The Dispatch Manager also provides the ability

to reschedule jobs and report pending status back to the
Request Manager.

The Scheduling Module architecture of general algorithm in
MCRM has only one function, which is the Job Priority
Policy. But, the architecture of Scheduling Module with
DLPS has shown in Fig. 4. There are three main functions,
namely the Job Priority Policy, the Resource Selection, and
the Dynamic Resource Selection. The Job Priority Policy is
responsible for initializing the selection process with
existing policy such as DLPS, FCFS, Round-Robin, Backfill,
Small Job First, Big Job First, and so on. The Resource
Selection provides resource recommendation based static
information such as hardware specification, specific
software, and the High-Performance Linpack Benchmark
results.

 The Dynamic Resource Selection issues suggestions
based on dynamic information such as the users’ application
requirement, network status as well as work load of
individual machines. With the combined efforts of the three
components, the Scheduling Module provides the features of
the automatic scheduling and re-scheduling mechanism. The
automatic scheduling chooses the most appropriate resource
candidate followed by the second best choice and so on,
while the re-scheduling provides the service to compensate
the miss-selection of resource by the users. Once the
Scheduling Module provides the best selection of resource,
the process is passed to the Job Manager and the Dispatch
Manager that drive MC Slave to submit, control and monitor
the resource.

Fig.4 Scheduling Module with Dynamic Loading
Prediction Scheduling Algorithm

3.4 Scheduling Policy - Dynamic Loading
Prediction Scheduling Algorithm (DLPS)

 The proposed job scheduling algorithm of scheduling
policy is called Dynamic Loading Prediction Scheduling
(DLPS) in the MCRM. The objective function of DLPS is
achieving the minimized makespan. Thus, we designed the
following equation to describe it, as in (1) :

42 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

€

M* = Min[max(dk) −min(sk)] (1)

Definition 3: The means the minimized makespan. In
order to predict precisely, the equation uses and .
is the maximum job ending time of the kth job, which means
the end time of job completed. And is the minimum job
submitting time of the kth job, which means the time stamp
when users submit the kth job.

 There are some inputs, such as job script, job template,
and the form of the Multi-Cluster Portal from users’
requirements. Therefore, the operations of DLPS are to
select, schedule, reschedule, and submit jobs to the most
appropriate resources.

 The logical flow chart of the DLPS is illustrated as in
the Fig. 5. First, the DLPS retrieves the resource information
from Information Manager, and then filters out unsuitable
resources with the adaptive resource allocation function.
After the adaptive resource allocation function, DLPS
compares free nodes with required nodes. If current free
nodes are enough, DLPS will give higher weight (defined at
Definition 4). Otherwise, the following step enters the
dynamic loading prediction function with EstBacklog and
minimum Job Expansion Factor (defined at Definition 5
and Definition 6) methods to predict which computing
resources respond and execute job quickly, and then
calculates weight. The DLPS finally ranks all available
resources and selects the most appropriate resources to
dispatch job.

Fig. 5 The Logical Flow Chart of DLPS

 Each step of DLPS algorithm is descried as the
following. Step 1: Process users’ criteria and job

requirements from job script, job template, or Portal form
specification, including the High-Performance Linpack
Benchmark, data set, execution programs, and queue type,
etc. Step 2: Make communicate with each MC Slave of
clusters to get the static and dynamic resource information.
Step 3: (1) Store the features and status of each cluster into
the Host Information Queue through the Information
Manager; (2) Filter out unsuitable resource with the adaptive
resource allocation function. Step 4: Compare these free
nodes with required nodes. If current free nodes are enough,
DLPS calls weighted function to calculate and

(defined at Definition 4).

Definition 4: When free nodes fulfill required nodes, the

designed weighted function is

€

weightk =
Rn

fn
× Mcapability .

Where means required nodes, means free nodes

and the

€

Mcapability means the capability of each computing
resources.

 Step 5: If current free nodes are not enough for
fulfilling, DLPS calls dynamic loading prediction function
with two methods to calculate (defined at
Definition 7), including EstBacklog and minimum Job
Expansion Factor methods.

Definition 5: The EstBacklog means estimated backlog of
queued work in hours. The general EstBacklog form is
shown as the following equation (2):

€

(QueuePS × CPUAccuracy
TotalJobsCompleted

) ×

€

(TotalProcHours × 3600 × AvailablePorcHours
DedicatedProcHours

)

(2)
, it means the ith EstBacklog time. QueuePS is the

idle time of queued jobs, CPUAccuracy is the actual run
time of job, the TotalJobsCompleted is the number of jobs
completed, the ToatlPorcHours is the total number of
proc-hours required to complete running jobs. The
AvailableProcHours is the total proc-hours available to the
scheduler, and the last variable, DedicatedProcHours, is the
total proc-hours made available to jobs.

 Some of above values are from the system historical
statistic values of queuing system loading and the others are
from real-time queuing situation. The output is divided into
two categories, running and completed. The Running
statistics include information about jobs that are currently
running. The completed statistics are compiled using
historical information from both running and completed jobs.
Therefore, the can forecast the backlog of each
computing site with above information.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 43

Definition 6: The job expansion factor subcomponent has
an effect similar to the queue time factor but favors shorter
jobs based on their requested wallclock run time. In its
canonical form, the job expansion factor metric is calculated
by the information from local queuing system which
described as the equation (3):

€

JEFi =
QueuedTime + RunTime

WallClockLimit
 (3)

Definition 7: After getting EstBacklog and job expansion
factor, the

€

Weightcmetric is calculated by the following
equation (4) :

€

Weightc = λ ×
JEFi

JEFi
i=1

n

∑
+ (1− λ) × EBLi

*

EBLi
*

i=1

n

∑
 (4)

Where is the system modulated parameter which can be
obtained from numerous trials. The EstBacklog can be
respected the dynamic situation of queuing system generally.
Therefore, it always uses the higher value.

 Consequently, the Step 6: Calculate the minimum time
of total deliver or response time.

3.5 Power Saving Mechanism
 We developed an approach to reduce energy utilization
in local cluster. We do this work on the integration of
resource management system and remote power
management system that aims at reducing power
consumption such that they suffice for meeting the
minimizing quality of service required by local cluster. In
particular, our approach relies on recalling services
dynamically onto appropriate amount of the machines
according to user’s job request and temporarily shutting
down the machines after finish in order to conserve energy.
As shown in Figure 6, the power saving mechanism will
wake up every minute to check job queue if there exist jobs,
and make sure the machines become available, the power
saving mechanism then will fetch the applicable jobs, parses
the requirements, and remotely powers on the correct
number of machines by Wake-on-LAN [18] protocol or
IPMI [19]. After the job completes, the power saving
mechanism powers the machines down. Our implementation
currently relies on checking the local queuing system (i.e.
Torque [14,15]) job pool and then decides to shut down
which compute nodes when no new job was submitted. By
powering off idle machines, it can significantly save more
energy than always keeping all machines running.

Fig.6 Scenario of Power Saving Mechanism

4 Performance Evaluation
4.1 Experimental Environment
 In order to test the efficiency of the developed MCRM
with DLPS scheduling algorithm, we execute a
computational fluid dynamics (CFD) program with message
passing interface (MPI) on a heterogeneous research testbed.
We adopt the NCHC testbed, including Nacona, Opteron,
and Formosa Extension two (Formosa Ext. 2) clusters.
Those main environment characteristics are summarized in
table 1. And we also measure the High-Performance
Linpack Benchmark of these clusters. The Rmax means the
maximal performance in Gflop/s for each problem run on a
machine, and the Rpeak means the theoretical peak
performance Gflop/s for the machine. Hence, users can
choose the higher Rmax value or set the criteria of computing
power when users submit jobs, according to the information,
in table 2.

Table 1 Summary of Environment Characteristics of
NCHC Resources

Resource CPU Model Memory
(GB)

CPU
Speed
(MHz)

#CPUs Nodes Job
Manager

Nacona

Intel(R)
Xeon(TM)
CPU
3.20GHz

4 3200 16 8 Torque

Opteron

AMD
Opteron(tm)
Processor
248

4 2200 16 8 Moab

Formosa
Ext. 2

Intel(R)
Xeon(TM)
CPU
3.06GHz

4 3060 22 11 Maui

Table 2 High-Performance Linpack Benchmark of
NCHC Resources

High-Performance
Linpack Benchmark

Nacona
Cluster

Opteron
Cluster

Formosa
Ext.2
Cluster

Rmax(Gflops) 46.791424 34.08 75.447
Rpeak(Gflops) 102 70 134.64
Number of CPUs 16 16 22
The Efficiency of CPU
(Gflops/CPU)

2.924 2.13 3.429

44 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

4.2 Experimental Scenario
 The preliminaries of experiment are needed to set up,
including the start time of jobs, the convergence of MPI
matrix, and the number of required computing CPUs. The
above preliminaries are generated by normal distribution.
Therefore, we generate several execution MPI programs
with 2, 4, and 8 CPUs randomly. The evaluation also has
been performed on three clusters with three experiment
models, including 4096*4096 matrix with 2 CPUs,
4096*4096 matrix with 4 CPUs, and finally the last model is
the 8192*8192 matrix with 8 CPUs.

 The performance of DLPS is compared job scheduling
algorithm with several algorithms, such as Round-Robin,
Short-Job-First (SJF), Big-Job-First (BJF), and
First-Come-First-Serve (FCFS). We submitted testing jobs,
which were generated randomly with the synthetic models
as the Fig. 7 is shown. The vertical axis is the value of min
makespan (seconds) and the horizontal axis is the number of
jobs. The makespan of MCRM with DLPS job scheduling
algorithm is notably less than other algorithms; especially
when a huge number of jobs are submitted. Therefore, the
objective function of DLPS approaches the minimized
makespan. The dynamic loading prediction characteristic of
presented MCRM is proved to be better in this experiment.

Fig. 7 Compare Makespan of DLPS with Other

Algorithms

 When a small number of jobs are submitted, the
efficiency of DLPS may be worse than other algorithms,
especially for SJF and FCFS. This situation is reasonable,
because small jobs are easy consumed by SJF and FCFS.
When the number of jobs is increasing, the developed DLPS
is absolutely better than SJF and FCFS, because the notable
drawback of SJF and FCFS happens, which the large
numbers of jobs are queued inefficiently in the local
scheduler of cluster. Comprehensively the above efficiency
figures, the best efficiency of DLPS occurs at full usage of
each cluster.

5 Conclusions Conclusion and Future
Work

 The Multi-Cluster Resource Manager (MCRM) takes a
step further in the direction of establishing large computing
sites for the multi-cluster computing system.

 In this paper, we presented the MCRM, which can
satisfy the users’ requirements, including the hardware
specification, specific software, and the High-Performance
Linpack Benchmark results. And then, the MCRM can
automatically select the most appropriate physical
computing resource. With the features of automatic
scheduling and dynamic loading prediction provided by the
Scheduling Module, the users are no longer required to
select the execution resource for the computing job.
Furthermore, the power saving mechanism we developed. It
wakes up the idle machines when computing power is
needed and then powers them down when the job is done. It
reduced power consumption successfully.

 Instead, the MCRM will provide an automatic
selection mechanism, which integrates both static
information and dynamic information of resources, to meet
the demand from the user’s jobs. According to the pervious
experiments, the dynamic loading prediction job scheduling
has better efficiency and performance than other algorithms;
especially the huge numbers of job are submitted into the
computing cluster. Finally, we obtain an important property
that the algorithm is appropriate to deal with large amount
of jobs in multi-cluster system.

6 References
[1] R. AI-Khannak, and B. Bitzer, "Load Balancing for
Distributed and Integrated Power Systems using Grid
Computing," International Conference on Clean Electrical
Power (ICCEP), 22-26 May, 2007, pp. 123-127.

[2] Hsu, C.-H.; Lo, T.-T. and Yu, K.-M. “Localized
communications of data parallel programs Qn multi-cluster
grid systems,” European Grid Conference (EGC’05),Lecture
Notes in Computer Science, vol. 3470, pp. 900-910, June
2005.

[3] Javadi, B.; Akbari, M. and Abawajy, J. “Performance
analysis of heterogeneous multicluster systems,” in
Proceedings of the International Conference on Parallel
Processing (ICPP’05), pp. 493-500, 2005.

[4] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and
R. Freund, "Dynamic Matching and Scheduling of a Class
of Independent Tasks onto Heterogeneous Computing
Systems," In the 8th IEEE Heterogeneous Computing
Workshop (HCW’99), 1999, pp. 30–44.

[5] J. Schopf, "A General Architecture for Scheduling on
the Grid, "Journal of Parallel and Distributed Computing,
special issue, April 2002, p. 17.

[6] A. Othman, P. Dew, K. Djemame and I. Gourlay,
"Toward an Interactive Grid Adaptive Resource Broker,"
Proceedings of the UK e-Science All Hands Meeting,
Nottingham, UK, September 2003, pp. 4.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 45

[7] M. Grajcar, "Strengths and Weakness of Genetic List
Scheduling for Heterogeneous Systems," Application of
Concurrency to System Design, 2001. Proceedings. 2001
International Conference, 25-29 June 2001, pp. 123-132.

[8] Barry G. Lawson, and E. Smirni, "Multiple-queue
Backfilling Scheduling with Priorities and Reservations for
Parallel Systems," ACM SIGMETRICS Performance
Evaluation Review, vol. 29, Issue 4, March 2002, pp.
40-47.

[9] N. Fujimoto, and K. Hagihara, "A Comparison among
Grid Scheduling Algorithms for Independent
Coarse-Grained Tasks," Symposium on Applications and the
Internet-Workshops, Tokyo, Japan, 26 – 30, January, 2004,
p. 674.

[10] N. Fujimoto, and K. Hagihara, "Near-optimal Dynamic
Task Scheduling of Independent Coarse-grained Tasks onto
a Computational Grid," In 32nd Annual International
Conference on Parallel Processing (ICPP-03), 2003, pp.
391–398

[11] O. H. Ibarra, and C. E. Kim, "Heuristic Algorithms for
Scheduling Independent Tasks on identical Processors,"
Journal of the ACM, vol. 24, no. 2, 1977, pp. 280–289.

[12] Yi-Lun Pan, Chang-Hsing Wu, and Weicheng Huang,
“A Grid Resource Broker with Dynamic Loading
Prediction Scheduling Algorithm in Grid Computing
Environment,” in Proceedings of The 2008 International
Conference on Grid Computing and Applications(GCA’08),
pp 28-34, 2008.

[13] http://www.wxwidgets.org

[14] http://www.openssh.org

[15] http://www.clusterresources.com/pages/products/torqu
e-resource-manager.php

[16] http://www.openpbs.org

[17] http://www.clusterresources.com/pages/products/moab
-cluster-suite.php

[18] Wake-on-LAN,

http://en.wikipedia.org/wiki/Wake-on-LAN

[19] IPMI,
http://www.intel.com/design/servers/ipmi/index.htm

46 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Developing an Intelligent Layer for Automatic Parallel
Detection Implemented on Different High Performance

Computing Platform

Mohamed Ahamed Mead1, Hesham ElDeeb2, Salwa Nassar2
1Computer Science, Mathematics Department, Faculty of Science, Cairo University, Cairo, Egypt.

2Computer & Control Department, Electronic Research Institute, Cairo, Egypt

Abstract - In this paper, an automatic parallelization tool
for C code, named Intelligent Automatic Parallel Detection
Layer (IAPDL), is presented. It generates parallelized MPI
code, and OpenMp code from the sequential code; at the
loop level, to be executed on a cluster platform and
multicore platform respectively. In addition to, a tool that
uses a new approach to choosing loop transformations,
called Intelligent Loop Transformation Selector (ILTS), is
developed. It is designed as an integrated part in IAPDL.
The selection process of appropriate loop transformation
was accomplished intelligently; a Kohonen’s Self-
Organizing Map (SOM) neural network is used to select the
appropriate loop transformation or sequence of them.

Keywords: Automatic parallelization, Cluster of
Workstations, Multicore Processor, Dependence Analysis,
Loop Transformation, Neural Networks.

1. Introduction:

Parallel computers provide high computations
power, needed by many existing applications. They are
widely used to overcome on the limitation of traditional
computers that impede solving of large problems. Cluster
systems have the same architecture as Distributed Memory
Multicomputer systems, while multicore processor has an
architecture like shared memory multiprocessors[1][2].
Cluster and multicore systems involve a tremendous
programming effort on the programmers. Automatic
parallelization process overcome on these difficulties, it
converts the old designed code and the modern code to
parallel form. Automatic parallelization of a program is
generally achieved using parallel tools and compilers that
vary in design, results, optimization techniques, and
generality.

Parallelism has been exploited at multiple levels,
Instruction level, Loop level, Procedure level and so on.
Since most of parallelism in numeric and scientific
programs is exist in loops. As well, loop level execution is
time consuming and it is easy to implement, loop level is
chosen to be our parallelism level in this paper.

Many researches in parallelizing tools and
compilers have been introduced, but their functionality,
performance, and scope is still very limited[3]. However,
recent developments in parallelizing tools and compilers are
attempted to provide full automatic parallelization[4].

This paper presents a design and an implementation
for a parallelizing tool, named IAPDL for a cluster and
multicore platforms. IAPDL get a sequential C code and
produces as output a parallelized MPI code, and OpenMp
code at the loop level, to be executed on a cluster and
multicore platforms respectively. As well, based on neural
networks techniques, IAPDL introduce the intelligent loop
transformation selection techniques as an approach to select
the appropriate loop transformations. Inserting Neural
Networks offer intelligent transformations selection to
reduce or eliminate the dependencies and maximize the
parallelization in the sequential code. Although there are
many systems that are closely related to our work, most of
them fails to provide a full automatic parallelization of
sequential code in most cases and concentrates only on
special forms of code. In addition to, it select and apply loop
transformation individually, rather than on their interplay
when combined. IAPDL consists of 4 phases; Front end,
analysis, Intelligent Transformation, parallel code
generation.

IAPDL should be able to facilitate the task of the
programmers by the following contributions:
1- Give intelligent decision about the appropriate loop
transformations that suitable for the code.
2- Give an equivalent parallel code to sequential code at the
loop level for cluster and multicore platforms.

For simplifying the problem, the accepted code by
IAPDL has some limitations. All accepted loops must be
either single or perfectly double nested. However, the
IAPDL can accept a non-perfectly multi-level nested when
dependence is simply disproved. IAPDL front end will be
introduced in the next section. The Dependence Analyzer
and the Intelligent Loop Transformation Selector are
introduced in section 3 and 4 respectively. The IAPDL
suggestion parallel code is showed in section 5. The
performance evaluation of IAPDL will be presented in
section 6. Finally, the discussion and results will be
concluded in section 7.

2. Front End: Lexer And Parser

The front end of IAPDL is implemented by using a
parser generator. A parser generator is a tool that reads a
grammar specification and converts it to a program that can
recognize matches to the grammar[5]. Many parser
generating tools exist; it can be used for parsing c code and

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 47

any other language. Since the IAPDL will be implemented
using the Java programming language then a parser
generator must producing output in java language. A variety
of parser generator that generate parser in java language are
considered. CUP [6], SableCC [7], ANTLR [8], Coco/R [9]
or JavaCC[10] are the most famous Java based parser
generator tools.

SableCC, ANTLR, and JavaCC are the most
suitable for our work. Javacc is easy to learn and easy to
use, as well it is very stable, then JavaCC and the
preprocessor JJTree tool is used in this thesis to generate the
lexer, parser, and parse tree of C language.

The IAPDL required full information about the
sequential code to generate the corresponding parallel code.
During the front end phase the IAPDL gathers information
from sequential code that will stored in a database in a form
like a control-flow graph. This information include,
variables, constants, statements, procedures, functions, and
scope. The database allows the future extension of the
IAPDL without major modification. The analysis and
subsequent phases work directly on this database system.

3. Dependence Analyzer

Dependence analysis determines the dependence
relations between different parts of the program[11].
Automatic detection of parallelism in sequential program
relies mainly on data dependence analysis
process[12][13][14][15][16][17][18]. The most important
types of data dependence relations are: flow, anti, output
dependence.

IAPDL performs the data dependence analysis in 3
Steps. Data dependence for scalars is determined in the first
step, while the other two steps are determine the data
dependence analysis for arrays. IAPDL manages the
choosing and applying dependence testing based on
classifying pairs of subscript references as in [19]. This
classification allows the IAPDL to choose the most efficient
test for a given pair of references. Since most subscripts are
ZIV and SIV, the dependence analyzer accepts only the ZIV
and SIV subscripts as a start point for unlimited dependence
analysis.

4. Intelligent Loop Transformation
Selector (ILTS):

Existence The loop carried dependence prevents
the parallelization of the loop, which leads us to loop
transformation techniques. Loop transformation techniques
is an important compiler optimization that enhance the
parallelism in program and data locality [20] [21]
[22][23][24][25]. The loop transformations change only the
execution ordering while the overall computation remains
essentially the same [24].

There are many types of loop transformations.
Some of these transformations aid to enable other loop
transformations and do not result in any optimization by
themselves. The most important loop transformation types

are, interchange, skewing, reversal, distribution, scalar
expansion, fusion, tiling, unrolling and peeling[24].

Inserting neural networks technique will facilitate
and improve the selection of Loop Transformation process.
In this paper, ILTS uses kohonen’s SOM network as a neural
network model to cluster sequential loops according to
appropriate loop transformation that may be applied on
these loops. The input/output of ILTS is showed in figure
(1).

Figure 1. Architecture of IAPDL

Now, the loop transformations that will be

manipulated by the (ILTS) will be focused. There are many
loop transformations, but with respect to dependencies in
real code, the transformation that necessary to optimize code
are few[26]. The transformations that will be chosen in
(ILTS) are dependent on effectiveness, and its interplay with
the other transformation that will be chosen. In this paper,
the loop transformations are used individually or in groups
as follows:
Individually
1- Distribution
2- Interchange
3- Scalar Expansion
Groups
4- Scalar Expansion followed by Distribution
5- Statement Reordering followed by Distribution
6- Skewing followed by Interchange

The first step in our work is to extract features

vectors from each sequential loop to be passed to the
network. Features vector that extracted from a loop must be
high information content and affecting in selecting loop
transformations. Since most loop transformation try to
eliminate the loop carried dependence relations, then it is
considered the main parameter that influences in selecting
loop transformations. Each loop carried dependence relation
and some loop attributes are transformed by the dependence
analyzer of IAPDL into a features vector that can be used as
input to the ILTS.

Type of data dependence relations, flow, anti, and
output are influence in choosing loop transformations. Also,
direction vector is considering the important dependence
information that influence in loop transformation
selection[27]. Cyclic loop-carried dependence and lexically
order of the dependence relation are important information
in applying loop distribution and statement reorder
transformations. Dependence level is considered as the
minimal abstraction for the loop reversal
transformation[22].self dependence and the number of
statements enclosed in a loop affecting in cancellation some
loop transformations. The main features that mentioned
above dependent on the type of loop transformations
manipulated in ILTS. These features can be extracted from
every loop carried dependence relation and mapped into

48 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

ILST. These features are affecting in determining the
appropriate loop transformations as illustrated in
performance evaluation process.

The above features forming a 15 components
vector that represents a loop and its carried dependence
relations. The details of ILST is illustrated in[28]

5. The suggestion parallel code:

Finally the code generator phase in IAPDL
generates the MPI and OpenMP code that will be executed
on cluster of workstations platform and multicore platform
respectively. This phase interacts with the database that is
created through the previous phases to recreate the
sequential code in parallel form. It is inserts the library
routines for MPI and compiler directives, library routines,
and environment variables for OpenMP.

5.1. OpenMP Code:

OpenMP was designed for shared memory
machines and is considered an easy method for threading
application[29][30]. The IAPDL approach to generate a
parallel code for multicore can be summarized as follows:

1- Threads creation and work scheduling over them

Generating efficient OpenMP codes for multicore
in this paper depend on loop-level parallelism; since the full
potential of OpenMP will be acquired from threading the
most time-consuming loops. Although the OpenMP 3.0 can
handle the task parallelism, this feature will be implemented
in the further version of the IAPDL.

The loops, except some cases, that has loop carried
flow dependence can not be parallelized by the IAPDL; only
the loop with independent iterations can be parallelized.

The default number of threads is currently set to the
number of available cores, and this what we will use in
IAPDL. The directive "#pragma omp parallel for"
distributes the loop iterations to all threads. There are four
types of scheduling the loop iterations construct, static,
dynamic, guided, and runtime. The scheduling process in
IAPDL are achieved statically, all the threads are allocated
iterations before they execute the loop iterations. Static
scheduling is the best choice in our work for many reasons.
In dynamic, guided, and runtime scheduling, the
performance can be adversely affected by changing the
chunk size[29]. In the contrary, in static scheduling changing
the chunk size has a little effect on the performance. In
addition, in most cases there is no variation in compute time
among loop iterations, which lead to static schedule.

2- Managing shared and private data

For program correctness, all data must be managed
to Understanding which data is shared and which is private.
Shared variables are shared among all threads, while private
variables vary independently within threads. The IAPDL
tells the compiler which pieces of memory should be shared
among the threads and which pieces should be kept private.
It is able to do this by inserting a set of clauses.

In the generating parallel code the loop index must
be private, since the loop iterations are distributed over the
threads in the team. IAPDL mark the variable to be private
in two cases:
• Loop index
• Variables that updated within a parallel region

Without passing the updated variables from the last
loop Iteration to the master threads, the behavior of the
program will be changed. The IAPDL inserts the lastprivate
clause to ensure that the master thread has the correct values
of these variables. In figure (2) the variable x must be
declared as lastprivate as illustrated in figure (3). In addition
to, the loop index may be used after the loop which leads us
into lastprivate clause rather than private clause.

Figure 2. Simple loop

Figure 3. OpenMP code for simple loop

3- Reduction Calculation

Consider the statement in figure(4); handling this
type of statement is very important because it is occurred in
most scientific code.

Figure 4. Reduction Operation

OpenMP has a specific clause; reduction clause, to

handle some forms of recurrence calculations. Only the
operations and the variables that will hold the result values
will be identifying. The variables must be scalar, and shared
in the enclosing context. When the IAPDL discover these
cases, it inserts the reduction clause as illustrated in
figure(5). Each thread has a private copy of the variable
Sum, and at the end each of them has the final summation of
the variable.

Figure 5. OpenMP code for Reduction Operation

for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
}

#pragma omp parallel for lastprivate(i,x)
for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
}

 for (i = 0; i < n; i++) {
 sum = sum + a[i];
 }

 #pragma omp parallel for reduction(+:sum)
 for (i = 0; i < n; i++) {
 sum = sum + a[i];
 }

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 49

5.2 MPI Code:
MPI is a language-independent communications

protocol, designed for distributed-memory platform
[31][32]. Each processor has access to its own memory, and
communicates information by sending and receiving data
between them. The IAPDL approach to generate a parallel
code for cluster platform can be summarized as follows:

1- Processes creation and work scheduling over them

Generating MPI code in IAPDL involves issues
such as computation distribution, data consistency among
processors. IAPDL partitions the loop iterations into parallel
tasks according to data dependence analysis. It uses the data
dependence analysis information to decide if any loop can
be parallelized or not. The number of iterations of parallel
loop is computed dynamically by subtraction the start value
from end value, which is divided by the number of
processors to get the available number of tasks. As well as
the IAPDL assign each sequential code before and after any
parallelized loop to all processors to minimize the data
communication and synchronization overhead.

2- Data Consistency between Processes

Using the work scheduling schemes of IAPDL,
after any parallelized loop the data that updated in the local
memory of one process must be needed by another. In this
case, processes need to communicate via message passing.
The fundamental issue that needs to be addressed is the
determination of the data that need to be transferred. In our
approach every updated scalar variable is Broadcasted from
the process with rank nproc-1; the last process, to all other
processes. MPI_Bcast routine is used in this case to ensure
that all processes have consistent values of scalar variables.
In addition to, by using the MPI_Allgather routine all
processes send their local arrays to all processes.

3- Reduction Calculation

Handling some forms of recurrence calculations is
very important; in MPI the routines MPI_reduce and
MPI_Allreduce perform that function. MPI_reduce
accumulates the final results in the master process, while
MPI_Allreduce accumulates the final results in all
processes. Since all processes execute the same sequential
part of the generating code, then the reduction results must
be available to all of them. The routine MPI_Allreduce
performs that function in IAPDL.

6. Performance Evaluation of IAPDL

In order to expose the effectiveness of our work the
IAPDL has been evaluated on several case studies. In this
section five study cases are considered in the evaluation
process to measure the correctness, and the performance of
IAPDL. The first case study, calculating pi, is a simple
application shows how the IAPDL manipulate the reduction
calculation. The second is the matrix multiplication included
since it is used in a variety of famous applications. While the
third case study is a simple loop extracted from[33] that
exposing the benefit of ILTS in detecting the appropriate
loop transformations intelligently. Finally, the other two case

studies require heavy and complex computations (numerical
techniques), as well as, it has an extensive parallelization
opportunity.

Two different parallel architectures are used for the
results in this paper.
1- Intel Core 2 Quad Q8300 quad-core CPU clocked at 2.5
GHz (1333 MHz front side bus) with a 4MB of L2 cache.
2- A Linux and homogeneous cluster is built in Electronic
Research Institute (ERI), it is formed of ten machines (one
master node and 9 slave nodes).

Intel’s C compiler, ICC 11 with OpenMP 3.0
support, is used to compile the OpenMP codes on the Intel
core, while GCC compiler is used to compile the MPI codes
on cluster platform.

6.1 Case Study 1: PI Calculation

Figure 6. Calculating PI (Serial)

As illustrated in figure (6), although there are a scalar loop
carried dependence relations by both variable x and sum, the
IAPDL overcome on these dependence relations by
privatization and reduction recognition analysis. The IAPDL
is used to fully automatically parallelize this loop for
Multicore and cluster platform. The loop iterations have to
be distributed to several threads for OpenMP code and
several processes for MPI code.

The recursive use of the variable sum, which is
read and modified with each loop iteration, can be
implemented by using the reduction clause for OpenMP
code and the routine MPI_Allreduce for MPI code. . In
addition to, since the variable x is modified and read then
the value of variable x at last iteration must be copied to the
original variable object in OpenMP, and broadcast to all
processes in MPI.

The benefits of the proposed IAPDL for the first
case study are shown in figure (7). The speedup of the
generated OpenMP and MPI code running on multicore and
cluster systems respectively, are plotted with respect to 108

and 109 number of iterations. It indicates that the IAPDL
code improves the execution time with respect to sequential
code on both cases.

Figure 7. Speedup Results for PI calculation with 108

and 109 iterations

 for (i=0;i< num_steps; i++){
 x = (i-0.5)*step;
 sum += 4.0/(1.0+x*x);
}

50 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

6.2 Case Study 2: Matrix Multiplication
Matrix multiplication is used in many scientific

applications like image and signal processing. Since most of
these applications have matrices with large sizes, the parallel
implementation of matrix multiplication is an efficient way
to parallelizing these applications.

The IAPDL discovers that the outer loop has no
any loop carried dependence, and then this loop can be
parallelized. Simply the OpenMP code can be generated by
inserting the compiler directive "#pragma omp parallel for"
before the outer loop and declare the variables i, j and k as
lastprivate. On the other hand MPI code is harder to
generated, the loop iterations have to be distributed to
several process. In addition to, the data must keep
consistency at all processor. According to IAPDL approach
for MPI code, all the parallel processes must have the
updated data after the parallel part. The routine
MPI_Allgather is used to handle this case.

The benefits of the proposed IAPDL for the matrix
multiplication problem are shown in figure (8). The speedup
of the generated OpenMP and MPI code running on
multicore and cluster platforms respectively, are plotted with
respect to matrix sizes 1000X1000, 2000X2000, and
3000X3000. It indicates that the IAPDL code improves the
execution time with respect to sequential code on both
cases.

Figure 8. Speedup Results for matrix multiplication

with different sizes

6.3 Case Study 3: Simple Loop Benchmark

In order to expose the effectiveness of ILTS tool,
one loop from [33] are considered in the evaluation process
to measure the correctness, and the performance of ILTS.
Although this loop is simple, it reveals the benefit and
correctness of ILTS tool. Figure (9) illustrates the sequential
code of this loop.

Figure 9. Simple Loop Benchmark

This loop is analyzed by IAPDL phases to extract
the features that will be passed to the ILTS. Two features
vectors are obtained from this analysis, one vector for each
loop carried dependence. Each vector is mapped to the ILTS

to select a neuron on the map that represent the appropriate
loop transformations.

The first vector is mapped to the neuron (4,8),
while the second mapped to the neuron (4,5). As illustrated
in[28] the appropriate loop transformation for this loop is
distribution transformation, or Reordering transformation
followed by distribution transformation or scalar expansion
followed by distribution transformation. The reordering
transformation followed by distribution transformation is the
best choice. The result of these transformations is legal for
this case as illustrated in figure (10), which reveals the
correctness of ILTS.

Figure 10. Reorder statement followed by Loop
Distribution Transformation for figure 9

6.4 Case Study 4: Solves the 2D Steady State
Heat Equation

The sequential code of this problem is analyzed and
parallelized by IAPDL, but the integrated tool; ILTS, detects
that there is a chance to apply the loop distribution
transformation. The loop distribution will be applied by user
then the optimized sequential code is passes again to the
IAPDL. Applying this loop transformation will be increase
the opportunity of parallelization. Figure (11) illustrates a
comparison between the speedup obtained using the
generated OpenMP code before and after applying loop
distribution transformation for different size 2D grid. This
comparison reveals the benefit and correctness of ILTS tool.

With respect to MPI code, there are many reduction
operations in this code that was implemented by using
MPI_Allreduce routine. Although, parallelization this part of
code will decrease the execution time, but the overall
execution time is increased. According to IAPDL approach
for cluster platform, after each parallelized loop all updated
arrays at every process are sent to all other processes by
using the MPI_Allgather routine. However, the
MPI_Allgather routine requires a higher bandwidth that may
be limit the performance of parallel programs, and in some
cases the parallel execution time may be become greater
than sequential execution time. In this problem the parallel
execution time become greater than sequential execution
time due to a bad balance between computation and
communication.

A user interaction is required to remove the data
exchange between processes from the generated MPI code
that does not required and passing only the boundary rows
between processes.

 for(i = 1; i < n-1; i++)
 {
 a[i] = b[i-1] + c[i] * d[i];
 b[i] = b[i+1] - e[i] * d[i];
 }

for(i = 1; i < n-1; i++)
 {
 b[i] = b[i+1] - e[i] * d[i];
 }
 for(i = 1; i < n-1; i++)
 {
 a[i] = b[i-1] + c[i] * d[i];
 }

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 51

Figure 11. Speedup Results for 2D Heat Equation before
and after Applying Loop Distribution Transformation

on Multicore

6.5 Case Study 5: Specific Absorption Rates
Calculation

In this case study, 3D Finite Difference Time
Domain (FDTD) is used to calculate the Specific Absorption
Rate (SAR) distribution on the human head due to radiation
from handheld wireless devices[34]. This problem involves
a very heavy computation that needs high computing power.
Parallel implementation for this problem solves the
bottleneck in running this type of application.

Many loops in this application do not have any
loop carried dependence, and then these loops can be
parallelized. IAPDL detect most of loops that can be
parallelized. The generated OpenMP code has been a
reasonable speedup, while the generated MPI code has been
a negative speedup. As stated in the previous case study, the
imbalance between communication and computation in the
generated MPI code that imposes a limit on cluster platform
performance.

Again, a user interaction is required to remove the
unrequited data exchange between processes from the
generated MPI code. Manually this problem is solved for
cluster platform in[35], its speedup is compared with the
speedup of the generated OpenMP code on multicore
platform as shown in figure (12).

Figure 12. Speedup Results for Specific Absorption

Rates Calculation

From this result we can conclude that, the

magnitude of the performance enhancement caused by 4
threads is less than that of the 2 threads. In addition to, the
cluster platform gives a better speedup when compared with
multicore platform; especially with growing the number of
processes.

7. Conclusion and future work

The goal of this work is to produce an efficient
tool; Intelligent Automatic Parallel Detection Layer
(IAPDL) to facilitate the programming on a cluster platform
and multicore platform, and introduce a significant step
toward achieving automatic and intelligent loop
transformation detection. In this paper, only the loops
without loop carried flow dependence were parallelized. A
kohonen neural network is used to categorize the sequential
loops with respect to the suitable loop transformations to
save the time of expert.

A famous scientific\engineering programs written
in c code is selected to measure the proposed work. It is vary
form simple to difficult and cover most coding structure.
The performance measurements, given in this paper, showed
that the execution time is significantly affected by using the
proposed IAPDL relative to sequential one.

In the first and second study cases, the speedup is
linear or close to linear. In addition to, the results explain
that the IAPDL has the capability of selecting the
appropriate loop transformations besides selecting the
optimum sequence of them as in the third and fourth study
case.

From the fifth study case results we can conclude that
1- The core 2 quad with 2 threads enabled optimal
performance for SAR calculation programs. Since the cores
in core 2 quad share the interface to front side bus as well as
the L2 cache the memory-intensive job may be drop the
performance by threads growing.
2- The main time consuming in our approach to generate
MPI code is the MPI_Allgather operation which is used to
produce global array in each process by gathering local
array elements from other processes. When the computation
time is large enough compared to MPI_Allgather operation
time as in study case 2, we get a very good speedup. On the
other hand, the imbalance between communication and
computation as in fourth and fifth study case limit the
performance of cluster platform. By user interaction to
modify the generated MPI code we get a suitable speedup,
compared to the speedup of OpenMp code running on
multicore platform.

The new interconnection technologies such as
Myrinet, Quadrics and Infiniband can solve the
MPI_Allgather communication bottleneck[36][37]. In the
future, IAPDL will give a full automatic MPI code with
reasonable speedup by using these technologies in the
cluster platform.

Finally we can conclude that, our approach is
successful for most applications on multicore platform, but
it is suffer from inadequate performance for cluster platform
in some cases.

Currently, the IAPDL relies on user interaction to
apply the appropriate loop transformations and then force
the IAPDL to generate the parallel code for the optimized
sequential code. In the future we try to automate this
process. As well as, we can easily add the task parallelism in
the next versions.

52 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

8. References

[1] G. Blake, R. G. Dreslinski, T. Mudge, “A survey of multicore
processors”, Signal Processing Magazine, IEEE, Vol. 26, No. 6, 23
October 2009, pp. 26-37.
[2] R. Buyya (editor): High Performance Cluster Computing:
Architectures and Systems, Volume 1, ISBN 0-13-013784-7,
Prentice Hall, NJ, USA, 1999.
[3] D. Padua, R. Eigenmann, J. Hoeflinger, P. Petersen, P. Tu, S.
Weatherford, and K. Faigin. Polaris: A New-Generation
Parallelizing Compiler for MPP's. Technical Report 1306, Univ. of
Illinois at Urbana-Champaign, Center for Supercomputing Res. &
Dev., June 1993.
[4] C. Dave, H. Bae, S. Min, S. Lee, R. Eigenmann, S. Midkiff,
"Cetus: A Source-to-Source Compiler Infrastructure for
Multicores", IEEE Computer, vol. 42, no. 12, pp 36-42, Dec. 2009.
[5] A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman,
"Compilers: Principles, Techniques and Tools", Second
Edition, Addison Wesley, 2006, ISBN-10: 0321486811.
[6] S. E. Hudson. "The CUP parser generator for Java".
(http://www.cs.princeton.edu/~appel/modern/java/CUP),2008.
[7] The Sable Research Group. SableCC.
(http://www.sablecc.org/). 2008.
[8] T. Parr, "Antlr, another tool for language recognition.",
(http://www.antlr.org/). 2008.
[9] The Compiler Generator Coco/R, User Manual,
http://ssw.jku.at/Coco/ , 2008.
[10] Javacc Home, https://javacc.dev.java.net, 2008.
[11] U. Banerjee., "Dependence analysis", Kluwer
Academic Publishers, 1997.
[12] S. S. Muchnick "Advanced Compiler Design and
Implementation" Morgan Kaufmann; 1st edition 1997,
ISBN-10: 1558603204.
[13] R. Allen, and K. Kennedy, “Automatic Translation of
Fortran Programs to Vector Form”, ACM Transaction on
Programming Language and Systems, Vol.9, No.4, p491-
542, October 1987.
[14] J. Sogno, “Analysis of Multidimensional Loops with
Non-Uniform Dependences”, Advances in Parallel and
Distributed Computing Conference, p362-369, 1997.
[15] W. Pugh, and D. Wonnacott “Constraint-Based Array
Dependence Analysis”, ACM Transactions on Programming
Languages and Systems, Vol.20,No.3, p635–678, May 1998.
[16] K. Psarris, and K, Kyriakopoulos, “An Experimental
Evaluation of Data Dependence Analysis Techniques”, IEEE
Transactions on Parallel and Distributed Systems, Vol.15,
No.3, March 2004.
[17] Y. Yang, C. Ancourt, and F. Irigoin, “Minimal Data
Dependence Abstractions for Loop Transformations”,
International Journal of Parallel Programming, Vol.23,
No.4, p359-388, August 1995.
[18] P. Boulet, A. Darte, G. Silber, and F. Vivien “Loop
Parallelization Algorithm: From Parallelism extraction to
code generation”, Journal of Parallel Computing, Vol.24,
No.3, p421-444, 1998.
[19] G. Goff, K. Kennedy, and C. W. Tseng "Practical
dependence testing". Proceedings of the ACM SIGPLAN
’91 Conference on Programming Language Design and
Implementation, Toronto, Canada, pp. 15-29 1991.
[20] P. Boulet, A. Darte, G. Silber, and F. Vivien, “Loop
Parallelization Algorithm: From Parallelism extraction to

code generation”, Journal of Parallel Computing, Vol.24,
No.3, p421-444, 1998.
[21] J. Torres, E. Ayguade, J. Labarta, and M. Valero, “Loop
Parallelization: Revisiting Framework of Unimodular
Transformations”, 4th Euromicro Workshop on Parallel and
Distributed Processing, p420-427, 1996.
[22] M. Wolf, and M. Lam, “A Loop Transformation Theory
and an Algorithm to Maximize Parallelism”, IEEE
Transactions on Parallel and Distributed Systems, Vol.2,
No.4, p452-471, October 1991.
[23] B. Chandramouli, J. Carter, W. Hsieh, and S. Mckee,
“Cost-Model Driven Integration of Restructuring
Optimizations”, International Conference on Parallel
Architectures and Compilation Techniques, September 2001.
[24] K. Shashidhar, M. Bruynooghe, F. Catthoor, and G.
Janssens, “Geometric Model Checking: An Automatic
Verification Technique for Loop and Data Reuse
Transformations”, Electronic Notes in Theoretical Computer
Science Vol.65, No.2, p71-86, 2002.
[25]- A. Lim, and M. Lam, “Maximizing Parallelism and
Minimizing Synchronization with Affine Transforms”, 24th
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, p201-214, 1997.
[26] S. Amarasinghe, J. Anderson, M. Lam, and A. Lim “An
Overview of a Compiler for Scalable Parallel Machines”,
6th International Workshop on Languages and Compilers for
Parallel, p253-272, 1994.
[27] D. Bacon, S. Graham, and O. Sharp, “Compiler
Transformations for High-Performance Computing”, ACM
Computing Surveys, Vol.26, No.4, p345-420, Dec 1994.
[28] M. Mead, H. Eldeeb, S. Nassar, "Automatic loop
transformation selection with the aid of kohonen’s self-organizing
maps for parallelizing compilers", PDPTA, p850-856 (2008).
[29] R. Chandra, L. Dagum, D. Kohr, D. Maydan, and J.
McDonald, R. Menon "Parallel Programming in OpenMP",
Morgan Kaufmann, 2000, ISBN-10: 1558606718.
[30] C. Hughes, and T. Hughes, "Professional Multicore
Programming: Design and Implementation for C++
Developers " Wiley Publishing, Inc., Indianapolis, Indiana,
2008, ISBN-10: 0470289627.
[31] S. Vetter, Y. Aoyama, J. Nakano, "RS/600 SP: Practical
MPI Programming", IBM Redbooks, 1999, ISBN-10: 0738413658.
[32] G. Em Karniadakis, and R. M. Kirby II, "Parallel
Scientific Computing in C++ and MPI: A Seamless
Approach to Parallel Algorithms and their Implementation",
Cambridge Univ. Press, 2003, ISBN-10: 0521520800.
[33] http://www.netlib.org/benchmark/, 2008.
[34] E. A. Hashish, F.M.EL-Hefnawi, and A.Z.Elsherbeni.
"A FDTD Scattered Field Formulation for Dispersive
Media". APS-2000, Salt Lake. P. 248-251.2000.
[35] H. Elsadek, H. Eldeeb, H. Abdallah, M. Desouky and
N. Bagherzadeh. "Specific Absorption Rate Calculation
using Parallel 3D Finite Difference Time Domain
Technique". WPRLDCOMP'08. Las Vegas. 2008.
[36] Y. Qian, "Design and Evaluation of Efficient Collective
Communications on Modern Interconnects and Multi-core
Clusters", Ph.D, Queen’s University Kingston, Ontario, Canada, 2010.
[37] G. Santhanaraman, T. Gangadharappa, S. Narravula, A.
Mamidala and D. K. Panda, "Design Alternatives for Implementing
Fence Synchronization in MPI-2 One-sided Communication on
InfiniBand Clusters", IEEE Cluster, p 1-9 September 2009.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 53

http://www.citeulike.org/user/belin87/author/Blake:G
http://www.citeulike.org/user/belin87/author/Dreslinski:RG
http://www.citeulike.org/user/belin87/author/Mudge:T
http://en.wikipedia.org/wiki/Special:BookSources/0130137847
http://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools
http://www.cs.princeton.edu/~appel/modern/java/CUP/
http://www.sablecc.org/
http://www.antlr.org/
https://javacc.dev.java.net/
http://www.ac.upc.es/pact01/
http://www.ac.upc.es/pact01/
http://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools
http://www.netlib.org/benchmark/

Go2ADLB: An Interface for Using ADLB Within Go

Ralph Butler, Chrisila Pettey, and Brian Manifold
Department of Computer Science

Middle Tennessee State University
Murfreesboro, Tennessee, USA

Abstract
Over the past five years extensive work has been done in
developing an asynchronous, dynamic, load balancing
library known as ADLB. This library makes it easier to
rapidly scale parallel applications that require massive
parallelism. The most notable use of ADLB to date has been
the successful nuclear theory computations for carbon-12.
These computations were done by the ASCR SciDAC
Universal Nuclear Energy Density Functional project using
over 131,000 processes. ADLB uses MPI to manage a
workload while providing a simple interface for the
application process. Until recently only C and Fortran
interfaces have existed for the ADLB library. In this paper
we present a Go interface (Go2ADLB) for the library.

Keywords: Asynchronous Dynamic Load Balancing, Go,
High Performance Computing

1. Introduction
 There are problems whose solutions require massive
parallelism in order to be solved in a reasonable amount of
time. Unfortunately it is frequently difficult to get these
applications to scale to the hundreds of thousands of
processes that are needed. One such application is the full
calculation of carbon-12. Until 2006 researchers with the
ASCR SciDAC Universal Nuclear Energy Density
Functional project [3] had not run this problem with more
than about 2000 processes. In order to do nuclear theory
computations for carbon-12, they needed to scale the
application to work with many more processes. By
developing the Asynchronous Dynamic Load Balancing
(ADLB) library, it was possible to scale the problem to over
131,000 processes in 2010 and do the full carbon-12
calculations [8].
 The ADLB library [1, 8] was created to make it
simpler to develop parallel code that would easily scale.
Until now, ADLB has only been available for C and Fortran
programs. In this paper we present a non-optimized version
of ADLB written in Go (ADLB-Go), and a Go-to-ADLB
interface (Go2ADLB) that allows programmers to write in
Go and use the optimized production version of the ADLB
library. In the next sections we briefly describe ADLB, the
Go language, ADLB-Go, and the Go2ADLB interface for
ADLB.

2. ADLB
 While the idea of ADLB originated with the
problem of how to scale a physics application, it was never
intended to be used solely for that purpose. Instead, ADLB
was developed as a model of how to dynamically balance the
workload of any parallel program in such a way as to allow it
to easily scale to whatever number of processes was needed.
Since its introduction, there have been reports of various
different applications that have used ADLB even though the
library has not been widely publicized. The resounding
success of ADLB with the physics application has earned it a
place in the 2012 congressional budget of the Department of
Energy’s Office of Advanced Computing Research [5].
 The ADLB programming model is deceptively
simple but completely scalable, and as noted previously it
has been proven to over 131,000 processes. In a nutshell,
ADLB achieves scalability by combining the two concepts of
dynamic load balancing and work stealing. More
specifically, ADLB uses MPI to create a group of server
processes whose sole responsibility is to manage a
distributed work queue. From the application process point
of view, the work queue is a single shared pool. Application

Figure 1. Interactions between ADLB server processes

and application processes [1]

processes use the pool as a shared resource where they can
put work and reserve/get work. Behind the scenes, the
ADLB servers are moving data around to balance the

54 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

workload. Figure 1 (taken from [1]) illustrates the
interaction between the ADLB server processes and the
application processes. In one large run of the previously
mentioned physics application, there were 1.75 billion
put/get operations transferring 338 terabytes of data.
 While ADLB has gained some notoriety, it only has
C and FORTRAN interfaces. These two interfaces were
critical, since the primary general purpose languages for high
performance computing are C and FORTRAN. However,
there is a relatively new programming language, Go, that
shows potential for becoming a very powerful parallel
programming language. In the Tiobe Programming
Community List which is updated monthly, Go ranked 19th
in February 2011 [9]. Since Go is gaining in popularity, we
decided to investigate developing a Go interface for ADLB.
In the next section, we give a very brief description of Go.

3. Go
 The Go programming language [4, 6] was released
by Google in November 2009 after more than two years of
design. According to the Go programming language website
[6], Go is described as:

… an open source project to make
programmers more productive. Go is
expressive, concise, clean, and efficient. Its
concurrency mechanisms make it easy to
write programs that get the most out of
multicore and networked machines, while
its novel type system enables flexible and
modular program construction. Go
compiles quickly to machine code yet has
the convenience of garbage collection and
the power of run-time reflection. It's a fast,
statically typed, compiled language that
feels like a dynamically typed, interpreted
language.

In other words, Go is a developer’s dream. Not only is it
easy to write code in Go, it is also quick to compile, and it
has the execution speed of C. Ever since the Berkeley white
paper, “The Landscape of Parallel Computing Research: A
View from Berkeley” [2], it has widely been agreed that the
future of computing must address the multi-core issue. In
addition to it’s other stellar qualities, Go makes “it easy to
write programs that get the most out of multicore” [6].
 Since Go has the potential to become widely used
among parallel programmers, we decided it was necessary to
provide a Go2ADLB interface for the ADLB library in
addition to the already existing Fortran and C interfaces.

4. ADLB-Go
 Since we had no real experience with Go, we
decided to learn by implementing a prototype of ADLB

totally in Go. We even implemented our own networking
layer using Go’s access to sockets rather than using MPI.
We did not make the prototype fully functional, nor did we
attempt to optimize it. Furthermore, we did not feel
compelled to always use fully idiomatic Go. For example,
the := operator permits one to essentially declare variables on
the fly, and we chose instead to declare almost all variables
much like in a C program.
 Figure 2 contains a sample application program for
ADLB-Go. In this simple example, each rank marshals a
complex message consisting of multiple data types and puts
the message to the work queue. Rank 0 then retrieves the
messages and unmarshals them. A few things that one might
notice about the code are that we did make the ADLB
functions a part of a separate library, and we did marshal and
unmarshal user level messages by hand via the Go-provided
json library. We also demonstrate that we passed a message
containing multiple data types.
 However, to reiterate, this prototype was merely a
learning experience, and is not intended to be a serious
implementation.

5. Go2ADLB: The Go Interface for
ADLB
 Once we felt comfortable with the Go language, we
began work on the Go wrappers for ADLB. This required us
to write wrappers for both ADLB and MPI since ADLB
relies on MPI for the networking. This proved to be a
daunting task due to the fact that documentation on writing
Go wrappers is still somewhat sparse, so one is largely
dependent on the few examples provided to figure out how it
works. Another problem that had to be overcome was that
ADLB currently only supports static linking while most
versions of MPI support dynamic linking. One point to be
made is that it was not necessary to write wrappers for all of
the MPI functions since ADLB only uses a tiny subset of the
MPI functions.
 A sample application program is listed in Figure 3.
In this program, as in the standard ADLB, a number of ranks
specified by the user of the program become servers. The
rest of the ranks each put a large message to the work queue
and retrieve a large message from the work queue. This may
or may not be the same message. This example uses the
same set of ADLB functions that you would expect to find in
any ADLB program in any language. For example, there are
Init, Finalize, and Server functions each of which is called
only once. In addition there are the functions used to put
data into and retrieve data from the shared work queue.
These are Put, Reserve, and Get_reserved. Each of these is
called as many times as necessary specific to the application.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 55

package main
import (
 "fmt"
 "os"
 "json"
 "adlb"
)
type msgTyp1 struct {
 R int
 I int // field names
 S string // must begin with
 F float64 // a capital letter
}
func main() {
 var i, rc, myRank, numRanks int
 var msgtosend, msgrecvd msgTyp1
 var marshMsg []byte
 var targetRank, workType, workPrio int
 var userTypes, reqTypes []int
 var handle adlb.AdlbHandle
 fmt.Printf("INSIDE TADLB1 home %s rank %s numRanks %s\n",
 os.Getenv("FOO"),os.Getenv("ADLB_RANK"),os.Getenv("ADLB_NUM_RANKS"));
 userTypes = make([]int,2)
 userTypes[0] = 77
 userTypes[1] = 88
 rc = adlb.ADLB_Init()
 if rc != 0 {
 panic("ADLB_Init failed\n")}
 myRank = adlb.ADLB_Rank()
 numRanks = adlb.ADLB_Num_ranks()
 fmt.Printf("rank %d of %d ranks is running\n",myRank,numRanks);
 msgtosend.R = myRank + 100
 msgtosend.I = 44
 msgtosend.S = "howdy"
 msgtosend.F = 32.5
 marshMsg, err := json.Marshal(&msgtosend)
 if err != nil {
 fmt.Printf("Marshal: %v", err)}
 targetRank = 0
 workType = 88
 workPrio = myRank + 100
 fmt.Printf("CALLING ADLB_PUT\n");
 rc = adlb.ADLB_Put(marshMsg,targetRank,myRank,workType,workPrio)
 fmt.Printf("PAST ADLB_PUT\n");
 if myRank == 0 {
 for i = 0; i < numRanks; i++ {
 reqTypes = make([]int,2)
 reqTypes[0] = -1
 reqTypes[1] = -1
 fmt.Printf("tadlb1: DOING RESERVE\n")
 rc,handle = adlb.ADLB_Reserve(reqTypes)
 fmt.Printf("tadlb1: RESERVED rc %d handle %v\n",rc,handle)
 rc,marshMsg = adlb.ADLB_Get_reserved(handle)
 fmt.Printf("tadlb1: GOT MARSH rc %d marsh %v\n",rc,marshMsg)
 err = json.Unmarshal(marshMsg,&msgrecvd)
 if err != nil {
 fmt.Printf("Unmarshal: %v", err)}
 fmt.Printf("tadlb1: GOT :%v: %d %d %s %f\n",
 msgrecvd,msgrecvd.R,msgrecvd.I,msgrecvd.S,msgrecvd.F)
 } }
 fmt.Printf("tadlb1: CALLING ADLB_FINALIZE\n");
 rc = adlb.ADLB_Finalize()
 fmt.Printf("tadlb1: PAST ADLB_FINALIZE\n");
}

Figure 2 Sample application program for ADLB-Go

56 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

package main
import "goadlb"
import "fmt"
func main() {
 var myrank, numserv, aprintf, numtype, amserver, commsize int
 var mytypes []int
 var i int
 var putbuf []int
 var req_types []int
 var numints int
 numints = 262144
 req_types = make([]int, 4)
 putbuf = make([]int, numints)
 numserv = 1
 aprintf = 1
 numtype = 15
 mytypes = make([]int, numtype)
 for i=0; i < numtype; i++ {
 mytypes[i] = (i+1)*10
 //fmt.Printf("Type = %d\n", (i+1)*10)
 }
 goadlb.GOADLB_Init(numserv, aprintf, numtype, mytypes, &amserver, &commsize, &myrank)
 if amserver != 0 {
 goadlb.GOADLB_Server(10000000.0,0.0)
 fmt.Printf("Comm Size = %d\n", commsize)
 fmt.Printf("My Rank = %d\n", myrank)
 } else {
 var rc int
 var reqworktype int
 reqworktype = 10 * ((myrank + 2) % commsize)
 if reqworktype == 0 {
 reqworktype = 10}
 for i = 0; i < numints; i++ {
 putbuf[i] = (myrank + 1)%commsize }
 rc = goadlb.GOADLB_Put(putbuf, numints*4, -1, 0, 10*((myrank+1)%commsize), 0)
 req_types[0] = reqworktype
 req_types[1] = -1
 req_types[2] = -1
 req_types[3] = -1
 fmt.Printf("RC from GOADLB_Put = %d\n", rc)
 var work_type int
 var work_prio int
 var work_handle []int
 var work_length int
 var answer_rank int
 work_handle = make([]int, 10)
 rc = goadlb.GOADLB_Reserve(req_types, &work_type, &work_prio, work_handle,
&work_length, &answer_rank)
 if rc < 0 {
 fmt.Printf("Error on GOADLB_Reserve\n")}
 var getbuf []int
 getbuf = make([]int, work_length/4)
 rc = goadlb.GOADLB_Get_reserved(getbuf, work_handle, work_length)
 if rc > 0 {
 fmt.Printf("RC from GOADLB_Get_reserved = %d\n", rc)
 fmt.Printf("getbuf[0] = %d\n", getbuf[0])
 fmt.Printf("getbuf[1] = %d\n", getbuf[1])
 fmt.Printf("getbuf[%d] = %d\n", numints-2, getbuf[numints-2])
 fmt.Printf("getbuf[%d] = %d\n", numints-1, getbuf[numints-1])
 } else {
 fmt.Printf("Error during GOADLB_Get_reserved\n")}
 }
 goadlb.GOADLB_Finalize()
}

Figure 3 Sample application program for Go2ADLB

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 57

6. Conclusions and Future Work
 We have developed both an ADLB-Go package and
a Go2ADLB interface for ADLB. With the availability of
Go2ADLB, it is now possible for programmers to access the
ADLB library from within a Go program. Both packages are
freely available. However, we do not recommend the
ADLB-Go prototype since it has not been optimized and is
not fully functional.
 The primary difficulty with this project has been the
rapidly changing nature of Go. As of the writing of this
paper, there have been more than 40 releases of Go since
December 2009 [7]. We currently have to package the
appropriate version of Go with our Go2ADLB interface
because each new release of Go can potentially require
changes in the interface. For future work, when Go
stabilizes, we plan to fix the interface one last time and then
optimize it.

7. References
[1] ADLB: Asynchronous Dynamic Load Balancing,
http://www.cs.mtsu.edu/~rbutler/adlb

[2] Asanovic, K., et. al., “The Landscape of Parallel
Computing Research: A view from Berkeley,” 2006,
Technical Report UCB/EECS-2006-183. [Online].
Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-
2006- 183.html

[3] ASCR SciDAC Universal Nuclear Energy Density
Functional project: A Closer Look at Nuclei, Building a
Universal Nuclear Energy Density Functional.
http://www.scidac.gov/physics/unedf.html

[4] Baugh, John P., Go Programming, 2010.

[5] Department of Energy Office of Advanced Scientific
Computing Research Congressional Budget 2012
www.science.energy.gov/obp/FY_12_Budget/pdf/FY_2012_
ASCR_Congressional_Budget.pdf

[6] The Go Programming Language, http://golang.org/.

[7] The Go Programming Language, Release History,
http://golang.org/doc/devel/release.html .

[8] Lusk, Ewing L., Pieper, Steven C., Butler, Ralph M.,
“More Scalability, Less Pain,” SciDAC Review 2010
http://www.scidacreview.org/1002/html/adlb.html

[9] Tiobe Programming Community Index for February 2011
http://www.tiobe.com/index.php/content/paperinfo/tpci/index
.html

58 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Evaluation iterative solver for pCDR

on GPU accelerator

Chih-Wei Hsieh, Sheng-Hsiu Kuo and Chau-Yi Chou

National Center for High-Performance Computing

No. 7, R&D Rd. VI Hsinchu Science Park, Hsinchu, Taiwan, R.O.C. 30076

{david.hsieh; a00mba00; b00cyc00}@nchc.narl.org.tw

Abstract - In the past few years, the graphics processing units

(GPU) has become trend in high performance computing

(HPC). The newest Top500 list was showed three

supercomputers contain GPU accelerator on Top10 in Nov.

2010. The role of the GPU accelerator has become more and

more important for scientific computing and computational

fluid dynamic (CFD) to obtain result quickly and efficiently.

The GPU has become the world's top driving force behind

supercomputer. It has hundreds of processor cores in parallel,

large-scale operations can be split and can simultaneously

load.

In this paper we implemented a parallel CDR (pCDR)

library of using CUDA. The pCDR provides an easily high-

level interface for GPU programming that greatly enhance

developer productivity. It was a set of code for solving a

convection diffusion reaction (CDR) scalar transport equation.

In this paper, we would evaluate the performance comparison

of general purpose processor and GPU accelerator. As a

result, the performance of pCDR-CG via CUDA C has 6 times

faster than those on a sequential code in the problem size of

800× 800.

Keywords: pCDR; Poisson Equation; GPU; Multithreading.

1 Introduction

 Many-Core system plays a key role on high performance

computing, HPC, nowadays. The semiconductor manufacturer

encounters the wall of the speed of the central processing unit,

CPU, because of the thermal management. It causes these

manufactures must increase cost to cooling and global

warming issue. Over the past years, the GPU accelerator has

become more popular. The modern GPU is not only for

display but also has many programmable cores. Such as, the

Tesla C1060 which has 240 stream processors and 933

GFlops in single precision.

The bi-annual ranking of the Top500 supercomputers

was shown the #1 Tianhe-1A in Nov. 2010 [13]. The Tianhe-

1A linpack benchmark has 4.7 PFlops of peak theoretical and

2.56 PFlops of sustained performance. The Tianhe-1A

supercomputer is comprised of 7,168 servers, each equipped

with two sockets using Intel's X5670 processors running at

2.93 GHz and one NVIDIA Tesla M2050 GPU co-processor.

The role of the GPU accelerator has become more and

more important for scientific computing and computational

fluid dynamic (CFD) to obtain result rapidly and efficiently.

There were applications using GPU implemented in CFD

problem. Kruger and Westermann [7] proposed a framework

for the implemented of direct solvers for sparse matrices, and

apply these solvers to multidimensional finite difference

equations, i.e. the 2D wave equation and the incompressible

Navier-Stokes equations. Goodnight, Woolley, Lewin,

Luebke and Humphreys [2] presented boundary value heat

and fluid flow problems using GPU. A Navier–Stokes flow

solver for structured grids using GPU was presented in [5].

Hagen, Lie, and Natvig [6] presented the implantations to

compressible fluid flows using GPU. C.C. Su and C.W Hsieh

[9] using GPU to implemented Monte Carlo method to solve

CFD problems.

The GPU is accelerator-based platforms emerge from the

issues of cost and environment. Such as, General-purpose

computing on graphics processing units (GPGPU) is as an

accelerator on high performance computing (HPC). It could

be solve many complex and large computational problems in

a more efficient than on a CPU. The Compute Unified Device

Architecture (CUDA) [12] is a general-purpose parallel

computing architecture developed by NVIDIA; it’s

implemented as the extension of ISO C99 programming

language. CUDA C is available for 32-bit and 64-bit

operating systems -- Linux, Windows, and Mac OS.

In this paper we implemented a parallel CDR (pCDR)

library of using CUDA. The pCDR provides a high-level

interface for GPU programming that greatly enhances

developer productivity. The pCDR library was a set of code

for solving a CDR scalar transport equation [10]. Previous

study [1, 3, 8], the CUDA program has efficiently results for

using red-black successive over-relaxation (Red-Black SOR)

algorithm. In this study, we developed conjugate gradient (CG)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 59

algorithm [4] in pCDR library. The CG is the most popular

iterative method for solving large systems of linear equations.

The CG arise in many important scheme, such as finite

difference and finite element methods for solving partial

differential equations, computational fluid dynamic, structural

analysis and circuit analysis.

In this study we compare performance of sequential,

multithreads using OpenMP [11] and pCDR-CG program. In

the following, Section 2 presents high accuracy CDR scheme.

In Section 3, we discuss detail of pCDR library. Section 4 and

5 presents experiment results and conclusions.

2 METHODOLOGY

 In this paper we consider the finite-difference solution of

the scalar convection-diffusion-reaction equation.

()x y xx yyu v k c f (1)

where u and v represent the velocity components along the x

and y directions, and k and c denote the diffusion coefficient

and the reaction coefficient, respectively.

Assume that f was a known value. Employ its general

solution for Eq. (1) as follow

 31 2 4

1 2 3 4,
yx x y f

x y c e c e c e c e
c

 (2)

where 1~4c are constants. Substituting Eq. (2) into Eq. (1), we

can determine 1~4 as follows

2

1,2

4

2

u u ck

k

 and

2

3,4

4

2

v v ck

k

 (3)

For the CDR model equation (1), we can discrete the equation

at an interior node i. The idea is to approximate all the

derivative terms using the center-like scheme

1, 1, ,2 2 2

, 1 , 1 ,2 2

4
2 12 2 12 6

2 12 2 12

i j i j i j

i j i j i j

u m c u m c m c

h hh h h

v m c v m c
f

h hh h

 (4)

where h is the uniform grid size. Given the above discrete

representation of Eq. (1), the prediction quality depends solely

on m in Eq. (4). By virtue of Eq. (2), we can substitute

 3 41 2

1, 1 2 3 4

j ji i y yx h x h

i j

f
c e c e c e c e

c

,

1 2

, 1 2
i ix x

i j c e c e

3 4

3 4

j jy y f
c e c e

c

 , and

 3 41 2

, 1 1 2 3 4

j ji i
y h y hx x

i j

f
c e c e c e c e

c

 into Eq.

 (4) to get high accuracy. Then we can derive

1 2 3 4

2

1 2 3 4

1 2 3 4

sinh cosh sinh cosh
2 2

 + cosh cosh cosh cosh 10
12

cosh cosh cosh cosh 2
m

uh vh

ch

(5)

where
1

2

uh

k
 ,

2 2

2
2

uh ch

k k

,

3
2

vh

k
 , and

2 2

4
2

vh ch

k k

. For time stepping scheme, we

consider 1t t

t i i dt , which yields first-order accuracy.

3 MATERIALS AND METHOD

In this paper we implemented a parallel CDR library of

using CUDA. The pCDR provides an easily high-level

interface for GPU programming that greatly enhances

developer productivity. It was a set of code for solving a

convection diffusion reaction (CDR) scalar transport equation,

input given by the convection (u, v), diffusion (k), reaction (c)

to solve the physical quantity (). This equation is practically

important because the working equations of many cases fall

into this category. For example: thermodynamics,

electromagnetic and fluid mechanics problems. We

implemented two iterative algorithms in the pCDR library.

First iterative method is red-black successive over-relaxation

(Red-Black SOR) method. Another iterative method is

conjugate gradient method (CG). The CG is an iterative

method which is suited for use with sparse matrices. It can be

applied to sparse systems that are too large to be handled by

direct methods such as the Cholesky decomposition. Such

systems often arise when numerically solving partial

differential equations. Figure 1 shows the computation

60 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

procedure for the GPU application. First, initialize the data

and boundary conditions in Host-side. Second, the

initialization CDR coefficient in GPU, then will solving

iterative method using CG or Red-Black SOR. Last, the results

will restore and release memory space.

The pCDR is implemented high-level interface for user

to easily programming and reduce development time. It was

contains host and device functions. Users just need to know

the host functions and then users can quickly develop program

for applications. The pCDR provide six main functions for

developers, next to explain these functions:

 pCDR_init(u, v, k, c, dx, dy, dt, width, height)

This function is set up CDR coefficients on

GPU device.

 pCDR_free()

Release memory on GPU device.

 pCDR_SOR_steady(FI, f, tolerance, MAX_STEP,

Relax, width, height)

This function using Red-Black SOR to solve

CDR problem to steady state.

 pCDR_SOR_time(FI, f, dt, Time_step, width,

height)

This function using Red-Black SOR to solve

CDR problem to real transient state.

 pCDR_CG_steady(FI, f, tolerance, MAX_STEP,

Relax, width, height)

This function using Conjugate Gradient to solve

CDR problem to steady state.

 pCDR_CG_time(FI, f, dt, Time_step, width,

height)

This function using Conjugate Gradient to solve

CDR problem to real transient state.

As shown in Figure 2, main program as following four

phase:

1. Data initial phase, initial the coefficients and boundary

conditions in this phase.

2. Initial CDR coefficients in GPU accelerator.

3. Solve CDR problem to real transient state or steady

state using GPU accelerator.

Release memory on GPU accelerator.

Figure 1. Flow diagram shows the library of pCDR_CG.

int main(void) {

 //allocate host memory to receive data

cudaMallocHost((void **) &FI, size);

 cudaMallocHost((void **) &f, size);

 //set up initial data

 u, v, k, c

//initial CDR coefficient

pCDR_init(u, v, k, c, dx, dy, 0.0, width,height);

//solve CG to steady state

pCDR_CG_steady

(FI, f, 1.0E-12, MAX_STEP, Relax, width, height);

//release memory

pCDR_free();

}

Figure 2. The sample code of pCDR_CG.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 61

4 Result

 In this paper, the researchers evaluate performance by

solving the Poisson equation with exact solution. The Poisson

equation is a partial differential equation of useful in

computational fluid dynamic, electrostatics and mechanical

engineering. In the experiment, our test bed is a Linux

platform consists of two sockets INTEL Xeon X5472 Quad-

Core running at 3.0 GHz, with 6 MB cache, 32 GB RAM,

PCIe Gen 2.0 and a Tesla C1060, which has 240 stream

processors and 933 GFlops in single precision. With CUDA-

Toolkit 3.1 and NVIDIA driver 256.40 is installed in this

system. As a result, we would present our study through the

pCDR library to evaluate the performance comparison of

general purpose processor and GPU accelerator.

The two-dimensional Poisson equation is:

2 2

2 2
,f x y

x y

and with the initial and bound condition

(,0) sin

(,1) sin cos1

(0,) 0

(1,) sin1cos

x x

x x

y

y y

,0 1

,0 1

,0 1

,0 1

x

x

y

y

The exact solution is

 , sin cosx y x y

In this paper we consider the finite difference solution of

the scalar convection diffusion reaction equation.

In the above, the definitions of u, v, k and c are:

0

1

u v c

k

Tables 1 and 2 show the number of convergence step of CG

and Red-Black SOR for the CUDA respectively. It shows the

CG has less convergence step than Red-Black SOR. We

compare four different grid sizes, which are 100×100,

200×200, 400×400 and 800×800, respectively. Table 3 shows

the computations and total execution time of compare

sequential, multithread and GPU accelerator. As result, we can

find tradition sequential program is better than parallelism

implement in problem size square of 100. From this result, it

present multithreads and GPU expends more execution time of

3.7 and 4.5 times, respectively. Whereas, the parallelism

performance was raised when increase problem size, as show

in Figure 3.

Figure 4 show that the speed-up of CUDA-CG method

running on a single GPU card, the CUDA code shows 6 times

speed-up at problem size 800×800. As the results, the pCDR

library has better performance in large problem size.

Table 1. The number of convergence step of Red-Black SOR.

 2000 10000 20000 40000 63000

Red-Black

SOR

6.04E-05 5.08E-06 2.70E-07 7.63E-10 8.95E-13

Table 2. The number of convergence step of CG.

 1000 2000 3000 3400 3605

CG 252.534 0.0349155 4.54E-08 8.21E-11 9.82E-13

Table 3. Computation time (seconds) for different grid size.

 CG_CPU CG_OpenMP CG_CUDA

100×100 0.052 0.191 0.235

200×200 0.540 0.449 0.577

400×400 8.389 1.407 2.579

800×800 106.595 31.997 17.415

62 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

0.000

20.000

40.000

60.000

80.000

100.000

120.000

100^2 200^2 400^2 800^2

El
ap

se
d

 t
im

e
 (s

e
c)

CG_CPU

CG_OMP

CG_CUDA

Figure 3. Computation Time (seconds) for different grid size.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

100^2 200^2 400^2 800^2

Sp
e

e
d

-u
p

CG_OMP

CG_CUDA

Figure 4. The performance speed-up for comparison OpenMP and CUDA

5 DISCUSSION AND CONCLUSIONS

In this paper, we propose easily and usefully application

interface for GPU programming that greatly enhances

developer productivity. We implement a well known iterative

algorithm of conjugate gradient method for the pCDR library.

As experimental results, the pCDR-CG has less convergence

step than the pCDR-SOR. In addition, we evaluate elapsed

time and speed-up on different grid size of 100×100, 200×200,

400×400 and 800×800, respectively. As result, the sequential

program shows better performance when grid size is smaller

than square of 100. The multithread implemented was better

performance when grid size is between 200×200 and 400×400.

The pCDR library has more efficiency performance when

increase grid size. We think this study will help researcher to

easily develop application using GPU accelerator.

6 References

[1] Chau-Yi Chou, Chih-Wei Hsieh and Fang-An Kuo, "Early

Evaluation on Graphic Processor based Linux Platform",

HPC Asia'09 International Conference, ISBN 978-986-

85228-0-0, pp. 638, Mar 2009.

[2] N. Goodnight, C. Woolley, G. Lewin, D. Luebke and G.

Humphreys, A multigrid solver for boundary value

problems using programmable graphics hardware,

Graphics Hardware, pp. 1–11, 2003.

[3] Chih-Wei Hsieh, Sheng-Hsiu Kuo, Fang-An Kuo and

Chau-Yi Chou, "Solving Parabolic Problems using

Multithread and GPU," The 2010 IEEE International

Symposium on Parallel and Distributed Processing with

Applications (ISPA10), Taipei, Taiwan, September 6-9,

2010.

[4] Kenneth Hawick, Kivanc Dincer, Guy Robinson, Geoffrey

Fox, “Conjugate Gradient Algorithm in Fortran90 and

High Performance Fortran,”, NPAC Technical Report

SCCS-691, April 1995.

[5] M.J. Harris, Fast fluid dynamics simulation on the GPU,

GPU Gems, pp. 637–665, 2004.

[6] T.R. Hagen, K.A. Lie and J.R. Natvig, Solving the Euler

equations on graphics processing units, Comput. Sci. –

ICCS 3994, pp. 220–227, 2006.

[7] J. Kruger and R. Westermann, Linear algebra operators

for GPU implementation of numerical algorithms, ACM

Trans. Graphics 22 (3), pp. 908–916, 2003.

[8] Sheng-Hsiu Kuo, Chih-Wei Hsieh, Reui-Kuo Lin and

Wen-Hann Sheu, "Solving Burgers’ Equation Using

Multithreading and GPU," The 2010 International

Workshop on High Performance Computing

Technologies and Applications (HPCTA'10), Busan,

Korea, May 21-23, 2010.

[9] C.C. Su, C.-W. Hsieh, M. R. Smith, M. C. Jermy and J.-S.

Wu, "Parallel Direct Simulation Monte Carlo

Computation Using CUDA on GPUs," The 27th

International Symposium on Rarefied Gas Dynamics

(RGD'10), Pacific Grove, California, USA, July 10-15,

2010.

[10] W. H Sheu, S. K. Wang, R. K. Lin, “An implicit scheme

for solving the convection-diffusion-reaction equation in

two dimensions”, Journal of Computational Physics, Vol.

164(1), pp. 123-142, 2000.

[11] OpenMP: Open Multi-Processing, Available:

http://www.openmp.org.

[12] The CUDA Programming Guide, Available:

http://www.nvidia.com/object/cuda_develop.html.

[13] TOP500 Lists, Available: http://www.top500.org.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 63

MOWIC: Modern Web-based Interface Toolkit for

Cluster
*

*
 This work is supported by National Science Foundation (NSF) KY EPSCoR under Grant No. 0814194

Daniel Cleland
1
, and Chi Shen

2

1
Department of Computer Science, University of Kentucky, Lexington, KY, USA

2
Department of Computer Science, Kentucky State University, Frankfort, KY, USA

Abstract - High performance computing has been developed

over the years providing researchers with the most powerful

computational machines available at a given time. Working

conveniently and efficiently in such large complex

environment for non-computer experts is one of the major

concerns for computational science. The value of bridging

cyberinfrastructure and application scientists is significant to

advance cyberinfrastructure and their research and

education. In this paper, we developed a toolkit for building

web-based user interface for clusters which integrate

applications to allow the users to create their own simple

interface. This toolkit requires only that the user has a web

browser and it can be easily used, installed with most

hardware and software. The toolkit prototypes an interface

that can tie together all computational programs and

visualization tools in research clusters.

Keywords: Science gateway, User interface, Web design,

Parallel program, Cluster.

1 Introduction

 Cyberinfrastucture is expanding and improving. The

clusters that fulfill the needs of today‟s computational

research get larger and more sophisticated. The National

Science Foundation, which directs research and development

of these resources, has outlined goals for developing

sustainable and extensible HPC systems and services [1] [2].

These goals include the developments of systems that support

individuals as well as groups to more easily use computation.

Outreach programs work to promote awareness and provide

training to increase the number of people utilizing the current

infrastructure [3]. To eliminate the hurdle for common users

in the usage of clusters, many science gateways in different

fields have been developed as a way that enable the users

associated with a common scientific discipline to use public

resources or clusters through a common interface that is

already configured for optimal use. However most of

developed science gateways on TeraGrid resources [4] are

very localized to the particular site. Moreover, the interface

for much of this power remains difficult and requires expertise

in Linux shells, parallel programming or computational

software packages. Hence developing a modern science

gateway that can incorporate features of modern web sites,

tools to view and visualize data, user authentication and

connections to run the programs needed, be accessible from

anywhere and be user friendly are our major goals.

 Mowic, a Modern Web-based Interface toolkit for

Cluster sets out to investigate the feasibility and possibility of

creating a web based user interface to a high performance

cluster. It provides the functionality needed by researchers to

improve the human computer interaction with that cluster.

This functionality includes running parallel codes, organizing

the resulting datasets and allowing visualization of those

datasets. This science gateway focuses on providing the end

user an improved experience and productivity over existing

command line interfaces.

 In next section, we will outline the steps of system

design, illustrate the major implementation process and

present some experimental examples. Some issues related to

the usage of MOWIC will be discussed in Section 3. Our

future work for the next step of MOWIC development will be

presented in Section 4.

2 Designing System

 .

2.1 System Requirements

 Hardware requirements for Mowic are designed to be

light. It requires a web server, of which Apache was used in

both CentOS as well as in Ubuntu. Due to the nature of the

web interface and Apache, there is no clearly definable

minimum hardware requirement for the server to host the

interface. It is recommended that at least a 500Mhz computer

with 128M of RAM be used as the web server. The web

server must have installed MySQL and PHP [5] [6], both of

which are freely available for download at www.mysql.com

and www.php.net respectively. It is expected that most

existing Linux servers will suffice.

64 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

 Mowic was developed and tested on a small commodity

cluster at Kentucky State University. This cluster is made up

of Dell workstation computers and can be accessed at

http://cscluster.kysu.edu/mowic. This is a Rocks cluster using

CentOS, Apache, PHP, and MySQL. Rocks is an open-source

software collection, including a Linux distribution - CentOS,

that allows for easy creation of computational clusters [7].

2.2 Structure and Design

 The main goal of MOWIC is to make the process as

simple as possible to take a working HPC code, connect it to

the interface, run the program however needed and visualize

the resulting data in a meaningful way that can quickly be

exported to a report or publication. MOWIC also intends to

include ease of installation, low cost or open source

components, and visual aesthetics. MOWIC system design is

depicted in Figure 1.

Figure 1 Interface Communications Swimlane with Ajax

Calls

 The processing is all text based and web calls are

asynchronous and may run in the background as shown in

Figure 1. The interface can run an application in the

background while it waits for notification of any applications.

HTML and CSS provide the basic visual aesthetics of the

interface. These presentation document formats are easy to

learn, develop and maintain. The W3C maintains the

standards for these, most of which can be seen at the W3

schools online learning site [8]. Javascript is used to control

the application communications to the server. This is done

with a custom library file and jQuery. PHP provides server

side control for the system. It processes requests from the

browsers and sends information on to the cluster or to the

MySQL database. Information sensitive to the system is

processed only in PHP so that it is never passed to the user.

 The server gains access to the environment through a

web user with a home directory. This user is setup as a

normal cluster account, except the account is setup as a group

member of the web server. This give the web server access to

the data files and execution privileges to the programs found

in the user directory. This will allow the site to have to make

minimal change in the way they function. As long as that user

can access MPI, batch schedulers, etc, then the web users will

be able to as well. The system will sort out what files and

programs each user has access to in that directory.

 One important feature of the interface is that all the

pages are loaded into the client browser upon visiting the site.

The site function from then out as an application, only

querying the server when the user is submitting or requesting

information not loaded already. This saves bandwidth and

server hits as the code is minimal due to the goal of keeping

the gateway simple. Code such as the Javascript, CSS,

header, footer and menu never change and should not ever be

requested twice. This is avoided using Ajax calls to make

http requests in the background. Ajax, asynchronous

javascript and xml, is a method of using server side scripts to

communicate asynchronously with a javascript based web

browser application [9]. It allows for web pages to look and

feel much like a standard computer application. Common

Ajax applications online include Facebook, GMail, and

Google Maps.

2.3 Implementation

 The main menu displayed in Figure 2 reflects the simple

nature of the system. It displays only five options which bring

up the screen required, which are all downloaded to the client

machine at the initial login of the system. A text banner is at

the top of the screen with a welcome statement where the

initial login box was upon entering the gateway. The Help

screen displays information related to the system, the My

Settings page provides the user a method to change settings

and the Home page provides basic news and information.

.

Figure 2 User Setting Screen

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 65

 A Rocks Cluster with CentOS Linux was used to

develop a prototype. Hand coded PHP was used to develope

the first prototype. Javascript and the library jQuery was used

for Ajax calls. A database was setup in MySQL to store data

for the system such as file metadata and user information.

The Apache server that comes with CentOS serves the

content.

 The Files screen in Figure 3 displays the list of files that

the user has access to. These files are listed with the filename

and description. The options to download the files or

visualize them with a tool are also populated. Selecting

"(Visualize)" results in Figure 4, a screen where the user may

select what visualization tool to use on the file. These are

based on the known file format of the selected file.

Figure 3 File Screenshot

Figure 4 Visualize with Tool Screenshot

 If a user selects to visualize a data file a screen is loaded

and populated with that file information. A bullet list is

generated of tools that can be used to visualize that type of

file. A general text view tool has access to view any file type.

As for most parts of this system, the server is not needed to

access this page, it is built into the downloaded application.

All such pages of the gateway act by only querying the server

when absolutely necessary. Visualization tools are created to

their specific task. An initial page of index.php is called in

the tool folder. The tool is passed a POST variable named

„filename‟ that holds the name of the file that the user has

requested to visualize. An „apps‟ folder in the Mowic

directory holds all the visualization tools. These tools must

have a unique name and be loaded in to the database as an

installed tool. These are the only conditions of which are then

free to implement their own functions, links, and features.

 A sample tool was developed as a sparse matrix viewer

for matrices in MTX matrix market format [10]. This tool

provides the ability to zoom in and out of the visualization.

The size of the points can be expanded or contracted with the

„emphasize‟ and „deemphasize‟ links. All of this interaction is

done in browser without querying the server. This is done

through the nature of SVG files as XML documents that can

be modified easily with jQuery Javascript. As such this relies

on the processing power of the client computer and may not

be suitable for extremely large datasets.

. Figure 5 Sparse Matrix SVG Viewer Tool

Figure 6 Emphasized Matrix in SVG Visualization tool

66 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

 In Figure 5 and Figure 6, a 1454 by 1454 sparse matrix

with 3377 non-zero entries is used as an example. The total

code needed to develop this particular tool was 15 lines of

php/html in index.php file, 57 lines of jQuery/Javascript in

scripts.js, and 52 lines of php/xml/svg in svggenerator.php.

Some library Mowic system functions were accessed by

linking to the global.inc.php file included with Mowic. This

is an example of a visualization tool that is reusable for any

matrix in that particular format that was developed in one

afternoon. This could be easily modified or adapted for

different formats. By changing roughly 25 lines of code in

svggenerator.php another tool was developed to visualize

sparse matrices in CRS format. Once the database

information is entered for the tool, and permissions are setup

for the user, the tool becomes usable.

2.4. Sample Parallel Code and Output Viewed

 Mowic is designed to allow a specialized visualization

team to be able to develop and deploy visualization software

independent of the parallel code, just as in this example. The

interface team or person may often provide feedback to the

programmers, but has many options available to connect the

interface to applications and tools. Such a tool as simply to

remove repeating space characters from a text file may be

useful and could easily be integrated. As the system gets

larger and more robust, it begins to mimic a full desktop

operating system, yet yields the computational power of the

cluster behind it. The following explains the steps needed to

run code on a cluster and view the resulting file with a visual

tool. The particular visual tool in this case is simply a plain

text viewer.

1. Open a web browser on a computer connected to the

internet

2. Navigate to http://cscluster.kysu.edu/mowic

3. Login to Mowic with username: testuser and password:

testpass

4. Click the „Applications‟ menu option to list installed

applications, for example, Click „MPI_Test‟ to chose this

simple parallel code and select any choice of number of

processors to use

Figure 7 MPI Run Application Screen

5. When you click “Run”, an output filename will be

created

6. Visualize the output file by clicking the „Files‟ menu

option, see the screenshot on below.

7. After click “Visualize”, if this is a text file, select the

„TextViewer‟ radio button

Output file

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 67

If you chose a matrix file and want to visualize this matrix,

click “bcsstk22.mtx” file at step 5. Then chose “matrixsvg”

and display it

3 HOW TO USE MOWIC

 The installation of Mowic is minimal. A Mowic user is

created and assigned to the web server group. The web folder

is copied into a web accessible directory. The SQL file

included is run in a newly created MySQL database. The

three system settings are adjusted in the MySQL database to

reflect the location of the Mowic user‟s home directory and

data directory to be used. A first administrator user must be

manually inserted into the database. The password field

should be processed through the md5 function. A config.php

file is used to code in the username and password needed to

connect to the MySQL server. This can be edited in any text

editor. These steps complete installation.

3.1 MOWIC Administration

 An administrator for Mowic should be familiar with the

web server and OS of the cluster. MySQL or general SQL

knowledge is helpful during the installation process but not

absolutely necessary. This requirement can be further

mitigated with the use of PHPMyAdmin which can easily be

installed to provide a visual look into the database if needed.

The administrator should be a web programmer capable of

working with PHP, XHTML, and Javascript. Any other

experience is useful but not critical. Custom tool

development can take advantage of talents with silverlight,

flash, java applets, jQuery, HTML5 canvas, etc.

Computational Scientists could continue to develop programs

as normal. The tool developer should have no problem

quickly connecting applications and tools to the interface.

3.2 M MOWIC Application Development

 Application development for cluster with a Mowic

interface may function as they regularly do. Output should be

directed to stdout, standard output stream, which will be

redirected to an output file. Parameters should be clearly

defined and setup in the installation of the application by the

administrator before using. The program currently must write

to one output file only. If multiple files are needed to be

written to, at the current time, a delimiter can be used and the

file split up after completion by a separate program. The

current version of Mowic does not support batch schedulers,

and is currently targeting small clusters using mpirun. This

feature is planned for the next version of the interface.

3.3 P MOWIC Visualization Tools

 Visualization tools are built as a site within a site. These

are installed in the apps directory of Mowic in their individual

folders. The folder name becomes the unique app name of the

tool. The tool will be embedded in an frame within the

interface so only requires navigation related to the tool. As

many pages and files as needed may be stored within. This

may use standard html design, Ajax [9], with any server side

programming required. It may make command line calls to

anything in the Mowic user‟s directory. This allows for batch

68 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

files to be written and integrated within them to visualize with

Matlab, gnuplot, ParaView, or other tools. Visualizations are

left to the designer‟s creativity and may include HTML5

canvas visualizations, flash, silverlight, etc. The filename to

be visualized will be passed in a POST argument named

„filename‟. The PHP relational include

„include(../system/global.inc.php);” [11] [12] is used to access

Mowic library functions which will be provided upon request.

4 FURTHER DEVELOPMENTS

 Many features are in the pipeline for further

development of Mowic. The nature of such a tool to change

cluster interactions so dramatically will require many updates

to ensure maximum usefulness and compatibility. Batch

schedulers will need to be usable with Mowic. The system

may be extended also to allow for users to access their own

directories for those with cluster accounts already.

 Many, many visualization tools will need to be

developed. An online help system including documentation

and video demonstrations should be created online to support

the interface. APIs could be created to collect data, allowing

remote sensors to feed data directly into the system via the

web. Users could have sharing tools. Chat and collaboration

tools could be implemented. A mobile version of the site

could be created allowing users to view the status of jobs,

email the results to collaborators, etc.

5 References

[1] Beniof, Marc R. and Lazowska, Edward D.

Computational Science: Ensuring America's Competitiveness.

Networking and Information Technology Research and

Development. 2005.

[2] Software Infrastructure for Sustained Innovation .

National Science Foundation. [Online] National Science

Foundation.

http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503489

&org=NSF&sel_org=XCUT&from=fund.

[3] HUBzero Platform for Scientific Collaboration.

[Online] http://www.hubzero.org.

[4] Wang, Shaowen, Wilkins-Diehr, Nancy and Martin,

Stuart. Enabling Geosciences Gateways to

Cyberinfrastructure. Computers & Geosciences. December 12,

2009, pp. 2283-2294.

[5] MySQL Homepage. MySQL. [Online]

http://www.mysql.com.

[6] PHP Manual. [Online]

http://php.net/manual/en/index.php.

[7] Rocks Clusters Documentation. Rocks Clusters.

[Online] www.rocksclsuters.org.

[8] W3Schools Online Tutorials. [Online]

http://www.w3schools.com.

[9] Holdener III, Anthony T. Ajax The Definitive Guide.

Sebastopol, CA : O'Reilly Media, Inc., 2008.

[10] Netlib Repository at UTK and ORNL. [Online]

http://www.netlib.org/.

[11] Malan, David J. Harvard E-75 Online: Building

Dynamic Website. s.l. : http://cs75.tv/2009/fall/., 2009.

[12] Williams, Hugh E. and Lane, David. Web Database

Applications with PHP and MySQL. Sebastopol. CA :

O'Reilly Media, Inc., 2004.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 69

http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503489&org=NSF&sel_org=XCUT&from=fund
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503489&org=NSF&sel_org=XCUT&from=fund
http://www.hubzero.org/
http://php.net/manual/en/index.php
http://www.rocksclsuters.org/
http://www.w3schools.com/
http://www.netlib.org/

A Hybrid Software Framework for the GPU
Acceleration of Multi-Threaded Monte Carlo

Applications

Joo Hong Lee, Mark T. Jones and Paul E. Plassmann
Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061

Abstract – Monte Carlo simulations are extensively used
in wide of application areas. Although the basic framework
of these is simple, they can be extremely computationally
intensive. In this paper we present a software framework
partitions a generic Monte Carlo simulation into two
asynchronous parts: (a) a threaded, GPU-accelerated
pseudo-random number generator (or producer), and (b) a
multi-threaded Monte Carlo application (or consumer).
The advantage of this approach is that this software
framework can be directly used in most any Monte Carlo
application without requiring application-specific
programming of the GPU. We present an analysis of the
performance of this software framework. Finally, we
compare this analysis to experimental results obtained
from our implementation of this software framework.

Keywords: Parallel Monte Carlo algorithms, GPU
acceleration, Hybrid algorithms, Scientific computing

1. Introduction
 Recently there has been a tremendous amount of interest
in using Graphics Processing Units (GPUs) to perform
computationally intensive tasks traditionally performed by
CPUs. This interest is motivated by the raw peak
performance numbers available on current GPUs⎯these
peak performance numbers can 1,000 times that of the
associated CPU. However, there are a number of problems
in achieving a high percentage of this peak performance.
These problems include the parallelization of complex
algorithms into large numbers of lightweight threads, the
overhead of copying data between CPU and GPU
memories, and the difficulties of developing GPU
programs.

 GPU programming has been done with the CUDA API
of NVIDIA [1] or Brook+ of AMD [2]. However, each
programming API is compatible with only its own
hardware. Recently, the portable API OpenCL [3] has been
developed for GPUs and as a result, the prospect for an
over-arching portable approach for a hybrid-computing
model has begun to get more attention [4]. The idea behind
the portable, hybrid approach is the use of multiple threads
to exploit the multiple cores on GPU.

 An example of where this Monte Carlo framework can
be used is PathSim2, a software environment developed to
simulate biological systems at the cellular level focused on
Germinal Center (GCs) [5]. The goal of these simulations is
to model an adaptive immune response of the human tonsil
[6-7]. As this biological system represents the motion,
interaction and aging of large number of agents, it requires
significant computing power. In particular, the efficient
usage of computing power of GPU must be coupled with
the whole simulation model to increase the performance of
the system simulation. The key to make the simulation
faster depends on how to transfer the CPU work to the
GPU side in an efficient manner. As PathSim2 requires a
parallelization strategy that can speed up the simulation
using GPUs, we use an OpenCL-based solver.

 Programmers in Biological System Simulation (BSS)
area have started to model their program working on
parallel architectures since parallel architecture have
appeared and shown good performance [8]. The current
trend is combining shared- and distributed-memory
programming models together [9-10]. The parallel-
programming techniques have evolved to take advantage of
the emergence of multi-core, distributed memory computer
architectures with GPUs [11]. The parallelization approach
developing for PathSim2 also follows parallelization
strategies in current BSS trend.

 The remainder of this paper is structured as follows. In
section 2 we present an overview of the simulation model
and our approach to parallelization. A theoretical analysis
of the performance of this proposed approach is described
in section 3. In section 4 we compare experimental results
of the performance of the simulation framework with the
theoretical model. We present our conclusion in section 5.

2. Simulation Model Overview
 PathSim2 is a software framework that simulates the
motion and interaction of biological agents within a
discretized three-dimensional spatial region. In the
discretization of the physical volume, we refer to the
discretized sub-volumes as elements and the collection of
elements that make up the physical volume as the
computational mesh. Thus, the movement of cells in a
tissue is modeled to the movement of agents between

70 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

neighboring elements in this computational mesh. A
simplified three-dimensional illustration of the elements
and agents is displayed in the top image in Figure 1. In the
top image of Figure 1, an element is indicated as Ek, the
internal work of interaction and movement of agents is
indicated as Wi

k and the summation of internal work of
each agent is Sk. In the bottom image of Figure 1, we show
a cropped, two-dimensional cross-section from a PathSim2
simulation [12]. This image shows a rendering of cells
(agents) and elements (indicated by the size of the colored
squares).

Figure 1. (Above) A simplified three-dimensional model of agents with
elements, Ek : Element, Wi

k : Internal work of interaction and movement of
agents, Sk : Summation of internal work of each agent; (Below) A close up
of a two-dimensional cross-section from a PathSim2 simulation showing
cells (agents) and elements (indicated by the colored squares [12].

 Since these element-based calculations are independent,
they can be executed in separate threads. Each separate
thread is distributed to each core on CPU then the
computational part is calculated on main memory.
However, this computational part also requires data and it
can be transferred from GPU. The required data is
generated on GPU then copied back to main memory for
computing. Above process is described in the memory
model of CPU and GPU in Figure 2.

Figure 2. A Memory Model showing the CPU and GPU Architectures.
CU: Compute Unit, LM: Local Memory.

 Many of the computationally intensive element-based
computations can be allocated to multiple threads and be
distributed to multiple CPU cores. Certain other parts of the
calculation, for example randomly generated agents, can be
accomplished on the GPU. This allocation tasks to a multi-
core system with an attached GPU is illustrated in Figure 3.

Figure 3. The assignment of element workloads to multiple cores and the
GPU.

 In Figure 3, the element sets assigned to the two cores
are indicated as Ek and Ek’. The sets of agents within the
element sets are denoted by Sk and Sk’. For the agents in
these sets, the updating of the individual states (this could,
for example, involve the solutions of ODEs) is represented
by the work W0

k, W1
k, …, Wn

k and W0
k’, W1

k’, …, Wm
k’.

These work sets must be coordinated through shared
memory. Then the individual work tasks are accomplished
in parallel on the multiple stream processors on the GPU.

 To do this, a “managing” thread can generate a new
random number block as needed. Monte Carlo threads
access memory blocks that are ready to be used, and when
a block is used up, the managing thread swaps the memory
block to another full memory blocks. Empty memory
blocks are filled again on the GPU by calls from the
managing thread. This overall process is illustrated in
Figure 4.

Figure 4. An illustration of how the random number blocks are managed
between the GPU managing thread and the Monte Carlo application
threads. The thread that manages GPU kernel fills one memory block at a
time, while multiple Monte Carlo threads have access to other memory
blocks that have been previously filled by the GPU managing thread.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 71

3. Theoretical Analysis
 In this section we develop a theoretical model to analyze
the performance of our GPU-based pseudo-random number
generation framework. For this analysis, we consider only
the thread that manages the GPU kernel that is used to
compute the blocks of pseudo-random numbers. We
assume that the computation time is not constrained by the
time required by the Monte Carlo threads that consume the
numbers generated by the GPU thread. In this case, the
time required by the framework is completely limited by
the time required to compute the pseudo-random numbers
on the GPU.

3.1. GPU Kernel Code
 To develop an analysis for the computational time
required to generate a block of pseudo-random numbers by
the GPU thread it is necessary to examine the GPU
architecture and GPU kernel code in some detail. An
overview of the key section of the GPU thread code that
calls the GPU kernel is shown in Figure 5. In Figure 6 we
give a high-level view of the OpenCL kernel code that is
executed by each thread on the GPU.

// Write the pseudo-random number state tables to the GPU memory
queue.enqueueWriteBuffer(PRN_Tab, PRN_Tab_Size, GPU_PRN_Tab);

// Set kernel arguments
Kernel_PRN.setArg(0, KernelCycles);
Kernel_PRN.setArg(1, GPU_PRN_Tab);
Kernel_PRN.setArg(2, GPU_PRNs);

// Iterate by calling the GPU kernel a number of times to compute
// an entire block of pseudo-random numbers
for(int Iter=0; Iter<NumIterations; Iter++){

 // Execute the pseudo-random number kernel on the GPU
 queue.enqueueNDRangeKernel(Kernel_PRN);

 // Read back a partial block of newly computed pseudo-random numbers
 queue.enqueueReadBuffer(&PRNs[i*offset], PRNs_Size, GPU_PRNs);

}

// Read back the pseudo-random number state tables
queue.enqueueReadBuffer(PRN_Tab, PRN_Tab_Size, GPU_PRN_Tab);

Figure 5. A simplified overview of the OpenCL calls used to compute a
block of pseudo-random numbers on the GPU. The variables PRN_Tab
and PRNs are pointers to arrays in the CPU main memory for the pseudo-
random number state tables and the buffer of pseudo-random numbers.
The variables GPU_PRN_Tab and GPU_PRNs are pointers to memory on
the GPU.

 From the OpenCL pseudo-code shown in Figure 6, one
can see that the required computation time is comprised of
the time required to complete three types of tasks. First,
data must be written from the CPU memory to the GPU
memory. This task is accomplished by calling the OpenCL
function queue.enqueueWriteBuffer. Second, the OpenCL
kernel must be run on the GPU. This task is accomplished
by the OpenCL function queue.enqueueNDRangeKernel.
Note that the kernel arguments are set by the OpenCL calls

to the function Kernel_PRN.setArg. And, third, data must
be read back from the GPU memory to the CPU memory.
This task is accomplished by the OpenCL function call
queue.enqueueReadBuffer.

__kernel void KernelPRN(global KernelCycles,
 global float *PRN_Tab,
 global float *PRNs)
{
// Number of workgroup
int gid = get_global_id(0);

// Number of workgroup size
int global_size = get_global_size(0);

// four-vector used as a return argument for the pseudo-random number
// generator
float4 randomnr = 0;

// Generate pseudo-random numbers and then copy to GPU PRN buffer
for (int i = 0; I < KernelCycles; i += 4){
 randomnr = random_generator();
 PRNs[gid + (i+0) * global_size] = randomnr.x;
 PRNs[gid + (i+1) * global_size] = randomnr.y;
 PRNs[gid + (i+2) * global_size] = randomnr.z;
 PRNs[gid + (i+3) * global_size] = randomnr.w;
}

Figure 6. A high-level view of the kernel code run on the GPU. The
arguments passed to the kernel include the number of “kernel cycles” and
pointers to the pseudo-random number generator state tables (input and
output) and to the pseudo-random number block (output). Each GPU
thread uses its workgroup number and size to write the numbers it
computes to the correct GPU memory location in the PRNs buffer.

3.2. Speedup
 We first consider the problem of modeling the time to
read and write data between the CPU memory and the GPU
memory. As has been noted elsewhere [13], a linear model
can accurately represent the time required to transfer data
between these memories as a function of the amount of data
transferred. In Figure 7, we show experimental results for
the measured transfer times for both writing from the CPU
memory to the GPU memory and reading from the GPU
memory to the CPU memory. Note that the linear
approximations differ slightly.

Figure 7. Data transferring time between the CPU and the GPU as a
function of the number of bytes transferred. Note the different transfer
rates to and from the GPU.

72 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

 We use the following expression to model the time,
TCPU→GPU(m), to write m bytes of data from the CPU to the
GPU as

 TCPU→GPU(m) = tCG m + ts , (1)

where ts is a “start up” time for the write, and tCG is the
incremental time required to write each addition byte of
data. Based on a least squares fit to experimental results
from a simple program that writes data between the CPU
and the GPU (as shown in Figure 7), values for these
constants were obtained and are presented in Table 1.

 Likewise, we can use a linear model for the time,
TGPU→CPU(m), required to read m bytes of data from the
GPU to the CPU. Thus, we use the expression

 TGPU→CPU(m) = tGC m + ts , (2)
where tGC is the incremental time required to read each
addition byte of data. Note that ts for both the write and
read are nearly equal, so we model them as the same. The
incremental times for the read and write are different
enough that we use two different constants as shown in
Table 1.
Table 1. Constants for ts, tCG and tGC as computed for the machine
architecture used for the experimental tests.

Constant Time
ts 2.9ms/copy

tCG 0.23ns/byte
tGC 0.19ns/byte

 On the first line of the program outline given in Figure
5, the data written to the GPU are the pseudo-random
number state tables. We use ntab to represent the number of
bytes comprising one of the number state tables. We
require a unique state table for each independent pseudo-
random number generator thread that we run on the GPU.
The number of GPU threads is the number of work items,
nwi. The number of work group items is the product of the
number of work groups, nwg, and the work group size, nwgs.
Thus, the time required to write the state tables to the GPU
is given by the expression

TseedUp = nwi ntab tCG + ts . (3)
 The time required to read the state tables back from the
GPU (the last line of the program segment in Figure 5) is
given by the expression

TseedDown = nwi ntab tGC + ts . (4)
In addition, to reading and writing the state tables, we also
need to read the pseudo-random numbers generated on the
GPU back to the CPU. Let nk be the number of kernel
cycles (the number of iterations in the loop in Figure 6),
then the time required to read these numbers back to the
CPU memory would be given by the expression

TnumDown = nk nwi tGC + ts . (5)
 The number of threads that can execute concurrently on
the GPU is limited by the number of available stream
processing units. However, the architecture of these stream
processing units is important to account for. The stream
processing units are organized into compute units, and the
number of threads that are assigned to each compute unit is
given by the work group size. For example, for the Radeon
HD 5750 used for these experiments, the number of stream
processing units per compute unit is 80. Thus, the work
group size used must be at least as large as the number of
stream processing units per compute unit. Overall this GPU
has 9 compute units for a total of 720 stream processing
units.

 The effect of the GPU architecture is illustrated in
Figure 8. In this figure the number of kernel cycles is fixed
at 10,000; we then measure the time it takes for the kernel
to execute (the call to queue.enqueueNDRangeKernel in
Figure 5). The measured times are shown as the green ‘+’
symbols in this graph. As we vary the size of the work
group, we can observe the effect of having a limited
number of stream processing units within a compute unit
on which to schedule threads to execute. As the work group
size increases beyond multiples of 80 (e.g., 80, 160, and
240) we observe discrete jumps in the measured times. We
denote the number of stream processing units per compute
unit as pwgs. By examining experimental results (similar to
those in Figure 7), we empirically determined that the
execution time depends on two terms, a “kernel start up
time” Ts and a “kernel execute time” which we denote by Te.
The first term can be modeled as

Ts = a nk +b , (6)
where a is an incremental rate, 200ns/kernel-cyle, and b is
fixed setup time, 0.9ms. The second term can be modeled
as

Te = tc
GPU ⎡nwgs / pwgs⎤ , (7)

where tc
GPU was measured to be 160ns. Using this model

for the execution time, we obtain the black ‘*’ points
shown in Figure 8. The total time for the kernel to execute
can then be modeled as

Tk = Te + Ts . (8)
To use the memory available on the GPU efficiently, the
program given in Figure 5 iteratively generates random
number blocks and reads these values back to the CPU as
they are generated. The random number state tables only
have to be copied to and read from the GPU outside of this
iteration loop. We denote the number of iterations for this
loop as ni. We can then combine all the terms in our model
to obtain an overall model for the time for the program
given in Figure 5 to execute as
TGPU = TseedUp + TseedDown + ni (Tk + TnumDown) . (9)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 73

Figure 8. The time measured for the kernel to execute as a function of
the work group size. For this data we fixed the number of work groups to
one. The experimentally measured data is shown as the green ‘+’ points,
the modeled times (as explained in the text) is shown as black ‘*’ points in
this graph.

We can compare the time required to generate the pseudo-
random numbers on the GPU to the time to generate these
numbers using the CPU. If we denote the pseudo-random
number generating rate on the CPU by tc

CPU, the total
required time on the CPU would be

TCPU = nk nwi ni tc
CPU . (10)

 We can compute a speedup for using the GPU relative
to using the CPU by taking the ratio of these times as

 S = TCPU / TGPU . (11)
 In the subsequent section of our paper we present
experimental results and compare these results to the above
model. One quick observation from the model is the
relatively large start up cost for reading and writing data to
the GPU. It is clear that in order to amortize this start up
cost, a relatively large block of pseudo-random numbers
must be generated at each iteration in order to have any
chance of obtaining a good speed up.

4. Experimental Results
4.1. GPU Speedup Measurement

 In measuring the performance of our model, we generate
a fixed number of 245,760,000 pseudo-random numbers
using work group sizes of 80, 160, and 240. For the GPU
we are using (a Radeon HD 5750), one compute unit consists
of 80 processing elements. Thus, we increase the work
group size in increments proportional to this number to
allow threads to be scheduled efficiently on the GPU. The
time to generate random numbers using the GPU, as
compared to the CPU, is presented as a speed up in Figure
9. The experimentally measured values for tc

CPU is
65ns/number and for tc

GPU is 160ns/number. These
experimental values are used in the theoretical model
presented in the previous section, and are shown in Figure
9. We also include the model where we limit the number

of compute units to 9 (and as a result the number of stream
processing units to 720) and this model is also shown as the
solid curves in the figure. Note that these results agree well
with the theoretical model that includes the limited number
of processing units available on the GPU. It is interesting to
note the weak dependence of the speedup with respect to
the work group size (the difference between the three
curves shown in the graph). This weak dependence is due
to the kernel “set up time” Ts.

Figure 9. Speedup plots comparing the GPU execution time to the CPU
execution time. Three different work group sizes (80, 160 and 240) are
used. The number of work groups is increased from 1 to 512 in order to
vary the number of work items.

 To observe the performance improvement for using the
GPU to generate the pseudo-random numbers in a simple
Monte Carlo application, we consider a numerical
integration scheme to estimate the value of π. The overall
software framework is illustrated in Figure 4. The
framework has a managing thread that fills empty memory
blocks with pseudo-random numbers. The threads that use
numbers for the Monte Carlo application access these full
memory blocks via a shared-memory producer/consumer
implementation. The pseudo-random numbers can be
generated either on the CPU or on the GPU. When using
the CPU, the RANLUX numbers are generated by routines
from the GNU scientific library [14]. When using the GPU,
memory blocks are filled with the method described in
Figures 5 and 6. The simulation times for the CPU and the
GPU are compared, and the resulting speedup is shown in
Figure 10. This graph shows that generating the pseudo-
random numbers using the GPU makes the Monte Carlo
application run significantly faster when compared to using
the CPU.

4.2. Randomness Check
 Before using generated random numbers, we need to
know that the random numbers are statistically
independent. The standard way to check the randomness is
as follows. First, we subdivide the samples into some

74 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

number of independent subsamples and obtain each sub-
sample mean. Then, the standard deviation of for these
subsample means should be decreasing as we increase the
number of samples (a result of Central Limit Theorem).
This approach can be used as a sanity check for the pseudo-
random numbers generated on the independent threads on
the GPU. In Figure 11, we present the measured standard
deviation of pseudo-random numbers generated using the
CPU and the GPU. As expected, the standard deviation
decreases as the square root of the number of samples with
increasing numbers of samples for both cases.

Figure 10. Speedup of a simple Monte Carlo simulation using the GPU
acceleration scheme with work group sizes of 80, 160 and 240.

Figure 11. The standard deviation of the means computed for the Monte
Carlo application as a function of the number of samples used to compute
the means. As expected from the Central Limit Theorem, these standard
deviations should decrease as the square root of the number of samples
(the dashed lines in the figure).

As a more rigorous test, we also used the empirical tests of
TestU01 to check the theoretical quality of our RANLUX
pseudo-random numbers [15]. This package contains three
sets of test batteries. The tests are SmallCrush, Crush, and
BigCrush. These tests apply a variety of statistical tests to
large sequences of random numbers. We tested the GPU
implementation of RANLUX using these three tests.

 One fine point in using these tests is that the GPU
implementation of RANLUX has only 24 bits of resolution
as it is computed in single precision. This means that when

converted to a double precision value for the tests, the
additional mantissa bits in the double have to be filled with
statistically independent values for the test. Once this was
done, then the random numbers passed the SmallCrush
battery. In the case of the Crush and BigCrush battery,
except only one battery, it passes all of the tests. The tests
included in SmallCrush, Crush and BigCrush respectively
include 15, 144, and 160 independent statistical tests.

4.3. Monte Carlo Simulation Results
 To verify the adequacy of our theoretical model, we
present the estimation of π using Monte Carlo method. The
estimated value of π is presented with error and mean in
Figure 12. The theoretical value is within the error range of
experimental result. Also with more samples, the
experimental result approximates to π. More importantly,
the convergence depends on the square root of the number
of samples as shown in Figure 11 (which agrees with what
one expects from the Central Limit Theorem).

Figure 12. Convergence of the theoretical and experimental estimation of
π by numerical integration with the Monte Carlo framework as a function
of the number of samples used.

5. Conclusions
 In this paper we have introduced a theoretical model
of the efficiency of a multi-threaded Monte Carlo
application framework using GPU acceleration.
Experimental results are obtained by measuring the
running time of the simulation framework and these
running times are well explained by the theoretical
analysis.

 Our approach demonstrates an efficient way of
mixing multi-threading with GPU acceleration. We
observe that generating as much data as possible from
the GPU at a time (through blocking) improves the
overall simulation time relative to a CPU-based scheme.
However, the time required transferring data between
the CPU and GPU memories and hardware setup times
ultimately limit the efficiencies of these algorithms.
These limits need to be considered when considering
the overall benefits possible for a GPU-accelerated
software application framework.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 75

6. ACKNOWLEDGEMENTS
 This work was supported by NSF grant CCF-0728901.

7. REFERENCES
[1] J. Nickolls, I. Buck, M. Garland, and K. Skadron,

“Scalable parallel programming with CUDA,” ACM
Queue, vol 6, pp. 40-53, 2008.

[2] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan, “Brook for GPUs:
stream computing on graphics hardware,” ACM
Transactions on Graphics, vol 23, pp 777-786, 2004.

[3] J. E. Stone, D. Gohara, and S. Guochun, “OpenCL: A
Parallel Programming Standard for Heterogeneous
Computing Systems,” Computing in Science &
Engineering, vol 12, pp 66-73, 2010.

[4] G. Jost, J. Jin, D. Mey, and F. Hatay, “Comparing the
OpenMP, MPI, and hybrid programming paradigm on
an SMP cluster,” presented at European Workshop on
OpenMP(EWOMP), Germany, 2003.

[5] “PathSim2”[online].Available:http://pathsim2.ece.vt.e
du/. [Accessed: Feb. 1, 2010].

[6] “PathSim”[online].Available:http://pathsim.vbi.vt.edu/.
[Accessed: Feb. 1, 2010].

[7] N. F. Polys, D. A. Bowman, C. North, R.
Laubenbacher, and K. Duca, “PathSim visualizer: an
Information-Rich Virtual Environment framework for
systesm biology,” International conference on 3D Web
Technology, pp. 7-14, 2004.

[8] K. Stuben, "Europort-D: commercial benefits of using
parallel technology," Parallel Computing:
Fundamentals, Applications and New Directions,
Advances in Parallel Computing, vol. 12, pp. 61-78,
1998.

[9] A. Moerschell and J. D. Owens, "Distributed Texture
Memory in a Multi-GPU Environment" Computer
Graphics Forum, vol. 27, pp. 130-151, 2008.

[10] I. Lashuk, A. Chandramowlishwaran, H. Langston, T.
Nguyen, R. Sampath, A. Shringarpure, R. Vuduc, L.
Ying, D. Zorin, and G. Biros, "A massively parallel
adaptive fast-multipole method on heterogeneous
architectures,” presented at Conference on High
Performance Computing Networking, Storage and
Analysis, SC, Portland, OR, 2009.

[11] S. Shah, and E. Gabriel, "Image computing for digital
pathology," presented at International Conference on
Pattern Recognition (ICPR) , Tampa, FL, 2008.

[12] J. H. Lee, M. T. Jones, Paul E. Plassmann: A scalable
distributed memory programming model for large-
scale biological systems simulation. International
Conference on Scientific Computing (CSC), pp. 251-
256, 2010.

[13] O. S. Lawlor: Message passing for GPGPU clusters:
cudaMPI. Cluster Computing and Workshops, pp. 1-8,
2009.

[14] “GSL – GNU Scientific Library” [online]. Available:
http://www.gnu.org/software/ [Accessed:Feb.1,2011]

[15] “TestU01”[online].Available:http://www.iro.umontreal
.ca/~simardr/testu01/tu01.html[Accessed: Mar.1, 2011]

76 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Framework Construction of Energy Efficiency System of
Data Center

Haiping Qu1, Xiuwen Wang2, Lu Xu3

1 Institute of Computing Technology, Chinese Academy of Science, Beijing 100190, China
2 National Computer network Emergency Response technical Team/Coordination Center of China, Beijing

100876, China
3 Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
National Engineering Laboratory for Disaster Backup and Recovery, Beijing 100876, China

Abstract - Currently, it is widely concerned that the energy
consumption has become a serious bottleneck in the
development of data center. For those data centers hosting
different applications, dynamic server provisioning techniques
are effectiveness in turning off unnecessary to save energy. In
this paper, the data center's energy efficiency is focused on
the research with a framework named EADC which has two
levels of energy modules (VEMS and DCMS). It builds a
Virtual Environment (VE) for each service, and inside VE,
VEMS can put down the energy usage by changing the status
of running nodes. In the data center level, DCMS tries to
satisfy the QoS of all VEs by controlling the nodes migration
among VEs at regular intervals. Evolution results show that
EADC makes data center achieve the balance between energy
consumption and performance. And it can save a significant
amount of energy consumption while meeting the QoS
requirements.

Keywords: Cluster Management; Quality of Service; Energy
Efficiency

1 Introduction
Large outsourcing data centers that host many third party

applications are receiving more and more attention in recent
years. These applications are mutually independent and
require different guarantees of QoS (Quality of Service)
performance. With more and more services operating on the
data center, power consumption of the data center has grown
rapidly in the past few years and has become a serious
bottleneck for the development of data center. Eric Schmidt,
Google CEO: “It’s not speed but power—low power, because
data centers can consume as much electricity as a small
city.[1]” According to IDC, the average energy cost of data
center increases by 20% annually, while the vast majority of
this growth originates from the server's power consumption.
Under such circumstances, the existing strategy related to data
center (with QoS guarantee for service quality serving as the
main goal) requires our rethinking. Energy efficiency was
introduced to the parameter list as an important factor, and by
considering the relationship between performance and power

consumption comprehensively, high-performance and low-
power of the data center was realized on the basis of the
balance between the two, thus achieving the objective of
“green data center”.

As we all know, one of the major causes of energy
inefficiency in data centers is the idle power wasted when
servers run at low utilization. Even at a very low load, such as
10% CPU utilization, the power consumed is over 50% of the
peak power [2]. We believe that switching the server state on
demand and closing idle servers are effective measures to
save energy. In order to achieve the balance between power
consumption and performance of the data center, we designed
and implemented resource management framework EADC
(Energy-Aware Data Center) based on energy efficiency. This
framework realizes two objectives: (1) in the service cluster
level, we get the lowest energy consumption of service by
controlling the service node status on demand; (2) in the data
center level, by controlling the switch of service nodes
between service clusters on demand, all of the service QoS on
the data center is satisfied and lowest energy consumption of
global resources is achieved.

The rest of the paper is organized as follows. Section 2
presents the details of system architecture and main function
of software modules. Section 3 discusses our studies on the
two levels of the energy module construction. Section 4
demonstrates the results of prototype experiments. Section 5
reviews the related works about energy consumption and
resource placement. Finally, concluding remarks and
discussion about the future work are given in Section 6.

2 Architecture of the EADC System
2.1 System Framework

 The basic framework of EADC system for data center
built in this study is shown in Figure 1. In Figure 1, the matrix
box in solid line denotes data center, consisted of a number of
physical machines; physical machines are heterogeneous, with
different hardware configurations. Each physical machine is
used either to build service node directly, or to build different
virtual service nodes for varying application purposes through
virtualization technology. The nodes operating for one
application purpose compose the service cluster for this

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 77

application, which is called VE (Virtual Environment), and is
denoted by the matrix box in dashed line.

Figure1. EADC system framework

EADC system mainly consists of two parts: service

cluster management system VEMS and data center
management system DCMS, which are implemented on data
center management server and service cluster controller,
respectively. Under this system framework, we are trying to
resolve the following issues:

(1) VE level (mainly focused on energy consumption):
for the real-time operational service cluster, how to effectively
complete service request and service node mapping in order
to meet the requirement on service quality (Request Mapping);
and how to obtain the lowest energy consumption of VE
through switching the node status under the condition that
good service quality is ensured (Status Switching).

(2) Data center level (mainly focused on performance):
whether the global resource allocation of the data center meet
the needs of all operating services (Energy Assessment); and
when the service quality of a certain VE falls short of the
expectation, how to conduct the fast, on-demand global
scheduling of resources to meet the demand for newly
emerging service resources (Resource Scheduling).

Figure2. Model Construction of EADC

Thus we constructed energy consumption model at the
levels of DCMS and VEMS, and the relationship among
various component modules is shown in Figure 2. It can be
seen that service deployment module is the basis of our
research and enabling platform. The realization of the rapid
construction of VE and quick switching of service nodes
among the VEs must be ensured. The service deployment
system Bladmin [3] we have developed can complete service
deployment of hundreds of nodes within 10 minutes. The
switching of deployment nodes among the services can be
achieved in seconds, which meets the research needs.

Demand and deprivation of resources is the interaction of
two-level energy consumption modules:

(1) Resource demand: when unexpected service requests
arise, and the service quality falls short of the expectation,
VEMS sends request to DCMS, asking for the service
capacity expansion;

(2) Resource deprivation: when faced with the request
for capacity expansion and scarcity of idle global resources,
DCMS sends deprivation request to one light-load VE for
resource migration

2.2 Main Function of EADC
We can achieve the following functions under EADC

framework: (1) to achieve the objective of energy saving by
changing the state of the nodes (VEMS); (2) to meet the
emergency resource demand of service by dynamic
scheduling of the nodes (DCMS).

VEMS's main objective is to achieve the lowest energy
consumption for real-time operating service cluster system on
the premise of satisfying the QoS. In fact, this is to achieve
the on-demand (when) and quantitative (who) switching of
service nodes based on the premise of satisfying the
performance. Therefore, we need to build the prediction and
performance model of service cluster with energy
consumption being taken into account, and to make decisions
on this basis.

DCMS is actually a decision maker for global resource
placement. With M VEs in the data center, it determines the
M-dimensional distribution vector of resources to re-
configure the owners of nodes, so that the lowest energy
consumption (sufficient resources) can be obtained on the
premise of satisfying QoS of all M VEs; or the minimal sum
of performance dissatisfaction of M VEs (insufficient
resources) . We adjust the mapping relationship between the
service nodes and the VE every certain time units.

Attributed to the core issues of EADC are the status
switching and owner transformation of service nodes. The
service node status can be divided into three types, active
(ready for service), standby (service configured but in sleep
status), poweroff (physical poweroff). The service node either
is in a certain VE, or belongs to one idlepool (set of
unallocated nodes).

The main function of EADC system is to reduce energy
consumption for service under light-load, and to meet the
performance for service under overload:

78 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

(1) VE under light-load: VEMS is responsible for energy
conservation (selected node: active -> standby); and DCMS is
first turned off (selected node: standby->poweroff) and then
transferred it to idlepool if needed.

(2) VE under overload: VEMS will switch the state of
selected nodes to active and if all nodes can’t satisfy the
service QoS then submit resource demand for new resources;
DCMS transfers nodes from idlepool or other light-load VE
to meet the service QoS.

3 Modeling and Utility
3.1 Problem Definition

Here we particularly focus on the online transaction class,
although it applies to various kinds of applications. Thus we
use the average response time as the performance metric for
the QoS of a VE, and use the request arrival rate to represent
the workload intensity. The parameters used throughout the
paper are summarized in Table I. Energy consumption of
service node in time t can be expressed as
Et=(Sbase+(Smax-Sbase)*load)*t [4]. And service rate of
node running constant service is defined as /c Dμ= .

TABLE I. PRAMETERS DEFINITION

Symbol Explanation
c Capacity of node
μ Service rate of node
load Utilization of node
Sbase Base energy consumption of node
Smax Max energy consumption of node
Et Energy consumption of node in time t
D Mean service demand of VE
R Mean response time of VE
Pri Running priority of VE
λ Current workload intensity of VE
R Current response time of VE
C Capacity of VE
N Number of nodes in data center
M Number of VE in data center

To simplify the judgment, we normalize the factors of

scheme selection as VE Capacity, which is shown in Table II.
The first four parameters (Cmin Ct Ccur Cmax)≤ ≤ ≤
can be obtained from the actual system operation, and Ct+1
is the forecast value which needs to be calculated from the
forecast model and performance model.

TABLE II. PARAMETERS OF VE CAPACITY

Symbol Explanation
Cmin Min capacity among active nodes (Ni in VE)

return（μi） if i active and min
Ct Current used VE capacity active (Ni in VE)

Sum (μi * load) if i active
Ccur Current total VE capacity (Ni in VE)

Sum μi if i active

Cmax Total VE capacity (Ni in VE)
sum μi

Ct+1 Needed VE capacity in next time interval

We use n-order linear prediction algorithm to construct
the forecast model (FM) for service load forecasting,

1 1(,) (,)t t ttrend FMλ λ λ+ −= . There are two outputs of the
model, trend {up/con/down} is the middle-term value, which
stands for the three load trends separately: upward, constant
and down; and 1tλ + is short-term forecast value. Let’s 1tλ +
and R is input, we get Ct+1 through performance model.

3.2 VE Performance Model

Assuming that the current VE includes c heterogeneous
service nodes, we arrange these nodes according to their unit
power consumption capacity (/ maxc S). Each request
arrived completes the mapping of request to node through
request transmission. In accordance with the principle of "the
abler person, the busier he is", the strongest node in the queue
with idle nodes is always selected to satisfy the request. If no
idle node is available, the request should be in the waiting
queue, and if the waiting time is too long, it may be discarded.
This situation is very similar to the M / M / c models in
queuing theory, except that each node capacity is
heterogeneous. The building of VE performance model is
based on this model; the state transition diagram is shown in
Figure 3 which the service rates of the c nodes are μ1…μc in
descending order and n-c is the max length of waiting queue.

Figure3. Flow diagram of performance model

Figure 3 shows that when n <c, the speed of the request

leaving the system increases inconstantly; but when n> = c, it
remains unchanged. Consequently, the differential Eq.(1) can
be obtained, where nP denotes the equilibrium probability
that there are n requests in the system. Then it can be resolved

by recursive method based on
0

1
n

i
i

P
=

=∑ with state

probability 0P obtained. Thus, the average response time Ws
can be calculated.

1
1

1
1

, 0

,

n

n n k
k

c

n n k
k

P P n c

P P n c

λ μ

λ μ

−
=

−
=

⎧
= ≤ ≤⎪⎪

⎨
⎪ = >
⎪⎩

∑

∑
 （1）

Apart from Ws serving as an output of the model, we
also need the load of each node to calculate the energy

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 79

consumption of nodes, and the load calculation of node i can
be simplified as Eq.(2).

1

0
1 (1)

i

i k
k

load P i c
−

=

= − ≤ ≤∑ (2)

In this model, the arrival rate is required to be constant
and smaller than the integrated service rate of all the servers.
However, sometimes the varying load might go beyond the
service capability of all servers, thus we do not make the
steady-state assumption for the system. So based on [5], we
modify our model by adopting a time-domain queuing model.

Let
1

c

k
k

η μ
=

=∑ , ifλ η> , all the servers will be busy serving

the incoming requests, and the queue length will keep
growing or remain constant (n) during the next interval T.
Denote 0q as the measured queue length at the beginning of
the next time interval, then q(t) is the length of the queue at
any instant t within T and q is the average queue length which
get from Eq.(3) and Eq(4). We use Little’s theorem to derive
the average response time as q cW s

η
+

= .

0() min(() ,)q t q t nλ η= + − i (3)

0

1 ()
T

q q t d t
T

= ∫ (4)

3.3 Reduction of DCMS Utility

The global resources allocation of DCMS can be actually
defined as non-linear multi-objective constrained optimization
problem: with the current N nodes and M VEs, then one
effective resource placement corresponds to a vector of M-
dimensional resource allocation: 1 2 1(, ,...), ...M MRAV n n n n n N= + + ≤ .
By building the DCMS utility, genetic algorithm is adopted
for the solution of optimal configuration.

Since our main job is to reduce energy consumption
when QoS is satisfied, and to improve the performance when
QoS is violated, the two utility functions of VE are energy
utility and performance utility respectively, shown as Eq.(5).
When the VE is under light-load, what we care about is the
lowest energy consumption of all nodes of VE. And when
under overload, the important thing is the satisfaction degree
about the performance of VE, it decreases very slowly when
rt < R, once rt > R the value will drop rapidly, especially
when rt = 0, it gets the max value of 100, in which iK
and '

iK are zooming factors. By the performance model, the
Ws of each VE and the load of each node can be obtained,
and then we can obtain the utilities of its performance and
energy consumption.

'

'

1

()*

()*

()

(,)
1

i

i

n

i j j
j

rt R K
i

i rt R K

Ue e E E

K eUp p rt R
e

=

− +

− +

= =

= =
+

∑
 (5)

For the global utility, the corresponding one is a
piecewise function, with all VE QoS being satisfied as the
judgment basis, and the process logic shown in Figure 4 is
selected as the evaluation criteria for individual fitness of
genetic algorithm.

Figure4. Global utility for individual fitness

The reconfiguration of resources placement needs some

time. Therefore the new placement should minimize
adaptation time, especially the migration cost among VEs. In
order to match the actual situation more precisely, our genetic
algorithm takes reconfiguration delay into consideration
though in an approximate way.

Assume that adding one node onto a VE from idlepool
needs aT time, while the time of removing one node from a
VE to idlepool depends on the status of the node{ poweroff:

rpT , standby: rsT , active: raT }. Then the time of a new

adding node ready for service may be { aT , a rpT +T ,

a rsT +T , a raT +T }. cT is used for the max time that all
adding nodes will be ready. We consider the delay time when
estimating the individual fitness. Compared with the current
placement, the new placement of the VE that removes some
nodes should take into action immediately. But it is different
to the VE that adds some nodes because it needs some time
for the new placement to be fulfilled. Thus, during the first

cT period in next interval, the configuration is same as the

current configuration. And after time cT , the configuration
will be changed to the new placement. We use the current
and new placement respectively as the input of performance
model and obtain the outputs time of first cT period and the
rest period. Then the energy and performance utility of the
whole interval can be derived.

4 Evaluation Experiments
4.1 Environment Construction

In order to evaluate the effectiveness of EADC
framework, we particularly simulate a prototype data center
comprised of 20 service nodes and three VEs, each running a
class of online transaction. The nodes have four different
configurations, each with 5 nodes, shown as Table III.

TABLE III. CONFUGURATIONS OF SERVICE NODES

Node N1 N2 N3 N4
Capacity c 500 400 270 150
Smax (Watt) 250 250 150 120

Define status as the number of unsatisfied VE
To all placements
if (exists min status) return this
else to the placements with min status

if (status >0) return max(sum(Up))
elsif(status==0) return min(sum(Ue))

80 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

We generate the workloads with 720 min based on EPA-
HTTP, Day20 of WorldCup98 and Day18 of WorldCup98 [6].
It can be seen from Figure 5 that the three workloads have
certain representation which shown as upward, down and
constant trends separately. The workloads use Poisson request
arrivals and exponentially distributed request sizes. Table IV
shows the parameters of each application.

0

10

20

30

40

50

5

5
0

9
5

1
4
0

1
8
5

2
3
0

2
7
5

3
2
0

3
6
5

4
1
0

4
5
5

5
0
0

5
4
5

5
9
0

6
3
5

6
8
0

Time(min)

Ar
r
iv
a
l
R
at
e
(
re
q
s/
s
)

VE1 VE2 VE3

Figure5. Variation of the workload intensity

TABLE IV. APPLICATION PARAMETERS

VE VE1 VE2 VE3
Mean service demand D 30 40 50
Mean response time R (s) 0.20 0.25 0.30
Priority Pri 0.40 0.35 0.25

4.2 Verification of Performance Model

VEMS performance model needs to be validated. In this
section, we compare performance predictions by the model
with measurements obtained in the experimental setting. We
use 4 nodes {500,400,250,150} to construct the VE, and the
arrival rate of requests (reqs/s) increase from 1 to 69. To make
a clear comparison of average response time, the tests are
conducted on the steady state and unsteady state of VE, as
shown in Figure 6 and 7.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Arrival Rate(reqs/s)

A
v
e
r
ag
e

R
e
sp
o
n
s
e
 T
i
m
e
(
s)

Observed

Model

Figure6. Variation of response time of steady-state VE

0

0.5

1

1.5

2

2.5

33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69

Arrival Rate(reqs/s)

Av
e
ra
g
e
R
es
p
on
s
e
T
im
e
(s
)

Observed

Model

Figure7. Variation of response time of unsteady-state VE

The comparison of VE load can be seen from Figure 8.
Overall, the results obtained from the analytic performance
model imply that the model tracks the measurement
reasonably well for its being used by VEMS and DCMS.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70
Arrival Rate(reqs/s)

VE

L
oa
d

Observed

Model

Figure8. Variation of VE load

4.3 Test of EADC Global Utility

Three different tests are conducted on resource allocation
strategy to assess the decision effect of global resource
placement of EADC:

(1) Static4 and Static6: 4 nodes are distributed in VE for
Static4, with one node for each configuration; Static6 has 6
nodes in VE, which is based on Static4, two nodes are added
in accordance with the priorities {VE1:500,400; VE2:500,270;
VE3:400,270}. Static4 is the minimum configuration, which
generally meets the workload needs for about half the time,
while the configuration of Static6 can basically meet three
VE's QoS requirement full-time.

(2) EADC: having the same initial configuration with
Static4. For every 5 minutes, VEMS implements the node
status switching according to the load changes; for every 30
minutes, DCMS implements re-configuration of nodes based
on utility evaluation.

Figure 9 and Figure 10 are a time variation curve of
global performance utility and global energy utility. It can be
seen that at the same time when EADC achieved the
performance consistent with Static6, its energy consumption
is roughly equivalent to that of Static4. Within a period of
720min, EADC consumes 24.857 kwh, while Static4 and
Static6 consume 23.583 kwh and 31.471 kwh, respectively.

50

55

60

65

70

75

80

85

90

95

100

5 105 205 305 405 505 605 705
Time(min)

S
a
t
i
sf

a
c
t
i
o
n

EADC

Static4

Static6

Figure9. Variation of global performance utility

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 81

100

130

160

190

220

250

0 200 400 600 800

Time(min)

En
e
r
g
y(
W
h
)

EADC Static4 Static6

Figure10. Variation of global energy utility

Specific situation of VE1 under EADC is also checked

as Figure 11 and Figure 12. Figure 11 shows the Cmax and
Ccur of VE1 during the experiment, and Figure 12 shows the
performance utility and energy utility of VE1. We can see that
the performance satisfaction degree of VE1 does not decrease
with switching of the status of nodes.

25
30
35
40
45
50
55
60
65
70
75
80

5 65 125 185 245 305 365 425 485 545 605 665

Time(min)

V
E1
 C
ap
ac
it
y

VE1_Cmax

VE1_Ccur

Figure11. Allocated capacity of VE1

0
10
20
30
40
50
60
70
80
90

100

5 55 105 155 205 255 305 355 405 455 505 555 605 655 705
Time(min)

V
E

1
S

at
is

fa
ct

io
n

0
10
20
30
40
50
60
70
80
90

V
E

1
E

ne
rg

y(
W

h)

VE1 Performance Utility VE1 Energy Utility

Figure12. Local utility of VE1

Experimental results show that the EADC achieves the
optimized trade-off between its service performance and
energy consumption, meeting the required service quality
while reducing overall energy consumption through the
optimal allocation of global resources.

5 Related Work
Hardware technology is employed in a large quantity of

schemes on energy saving of current data center. As CPU's
power consumption accounts for a larger proportion in the
whole system, DVFS (Dynamic Voltage/Frequency Scaling)
was introduced in [7], many studies [8, 9] are focused on the
problem of high energy consumption of server CPU based on
DVFS. The common approach is dynamic voltage scaling or
requesting packet handling under low-load to reduce energy
consumption. Some scholars [10, 11, 2] investigated the
resource management strategies concerning the server cluster.
Through dynamic reconfiguration (or contraction) of server
cluster, the objective of saving energy by using fewer servers
under low-load was achieved. However, these studies did not
demonstrate the trade-off relationship between power
consumption and performance from the perspective of the
data center.

Besides, the placement problem itself is out of the scope
of our work but the technique described in this paper can be
helpful to any placement algorithm. Existing dynamic
application placement proposals provide automation
mechanisms by which resource allocations may be
continuously adjusted to the changing workload. Previous
work focuses on different goals, such as maximizing resource
utilization [12] and their own service level goals [13, 5]. Our
proposal can apply to and improve any of these placement
solutions.

6 Conclusions and Future Work

Green data centers must achieve significantly lower
power requirements and higher performance/watt ratio. In this
paper， we identify new opportunities to improve the energy
efficiency of data center, reducing the energy consumption ，
without negatively impacting the performance or user
satisfaction. Our interest involves creating energy-aware
framework EADC to contribute to building energy-efficient
data centers. In the framework, we define the VE performance
model using time-domain queue theory and reduce the DCMS
utility using genetic algorithm. The obtained results show that
EADC can achieve the optimal trade-off between
performance and energy consumption.

It needs to further evolution of our EADC system both in
real-world environment and prototype system. We are already
working on the implementation of a real system that applies
the techniques described in the paper. In the near future
EADC system is to be introduced in the idea of autonomic
computing so as to take better advantage of the resource
availability.

Acknowledgements

This work is supported in part by the National High-
Tech Research and Development Plan of China under grants
No. 2009AA01A403, China Information Security Special
(NDRC) fund for Disaster Backup and Recovery Standard

82 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Architecture, and China Information Security Special fund
(NDRC) for Disaster Backup and Recovery Product
Industrialization.

References
[1] Hartenstein, Reconfigurable supercomputing: Hurdles

and chances, In Proceedings of the 2006 International
Supercomputer Conference (ISC'06 June 28--30, Dresden,
Germany) (invited article).

[2] G. Chen, W. He, et al., Energy-Aware Server
Provisioning and Load Dispatching for Connection-
Intensive Internet Services, In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI’08), 2008, pp.337-350.

[3] Haiping Qu, Xiuwen Wang, et al., Research and Design
of Deployment Framework for Blade-based Data Center,
In Proceedings of the 10th International Conference on
Algorithms and Architectures for Parallel Processing
(ICA3PP 2010)

[4] Sergiu Nedevschi , Sylvia Ratnasamy , Jitendra Padhye,
Hot data centers vs. cool peers, Proceedings of the 2008
conference on Power aware computing and systems, p.8-
8, December 07, 2008, San Diego, California.

[5] XiaoYing Wang, ZhiHui Du, YiNong Chen, et al., An
Autonomic Provisioning Framework for Outsourcing
Data Center Based on Virtual Appliances, Cluster
Computing, Volume 11, Issue 3, 229-245, September
2008.

[6] http://ita.ee.lbl.gov/
[7] M.Weiser, B.Welch, et al., Scheduling for Reduced CPU

Energy, In OSDI (1994).
[8] Kirk W. Cameron, Rong Ge, Xizhou Feng, High-

Performance, Power-Aware Distributed Computing for
Scientific Applications, IEEE Computer, Volume 38. No.
11, 2005, Pages 40-47.

[9] Rong Ge, Xizhou Feng, and Kirk W. Cameron,
Performance-constrained, Distributed DVS Scheduling
for Scientific Applications on Power-aware Clusters,
17th International ACM/IEEE Conference on High
Performance Computing and Communications (SC 2005),
November 2005. (Seattle, WA)

[10] Y. Chen, A. Das, et al., Managing Server Energy and
Operational Costs in Hosting Centers, SIGMETRICS’05,
June, Canada, pp.303-314.

[11] L. A. Barroso, U. Hölzle, The Case for Energy-
Proportional Computing, IEEE Computer, Vol.40, No.12,
Dec. 2007, pp.33-37.

[12] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M.
Steinder, M. Sviridenko, A. Tantawi, Dynamic placement
for clustered web applications， In WWW Conf.,
Scotland (2006).

[13] M. Steinder, I. Whalley, D. Carrera, I. Gaweda and
D.Chess,Server virtualization in autonomic management
of heterogeneous workloads, In 10th IFIP/IEEE
International Symposium on Integrated Management (IM
2007), May 2007.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 83

84 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

SESSION

COMMUNICATION SYSTEMS +
INTERCONNECTION NETWORKS

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 85

86 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

A Performance Metric for Message Forwarding Schemes of
Massively Multiplayer Peer-to-Peer Based Networked Virtual

Environments

James Dean Mathias1 and Daniel Watson2

1Dept. of Computer Science, Utah State University, Logan, UT 84322-4205, USA
2Dept. of Computer Science, Utah State University, Logan, UT 84322-4205, USA

Abstract— This paper introduces a performance metric
for use in characterizing message forwarding schemes of
Massively Multiplayer Peer-to-Peer (P2P) based Networked
Virtual Environments (NVE). Message forwarding, or rout-
ing, is the process by which peers send messages throughout
an overlay. Different P2P NVE designs result in different
message forwarding schemes; therefore, a metric is needed
to evaluate the impact of a design on message forwarding
performance. The metric presented in this paper was devel-
oped in the context of a project to determine the best Login
Forwarding scheme for a Voronoi-based P2P overlay. The
primary contribution of this paper is the performance metric,
with a secondary contribution being the characterization of
several Login Forwarding schemes.

Keywords: Peer-to-Peer, Distributed Systems, Massive Multi-
player Online, Massive Virtual Environments, Networked Virtual
Environments

1. Introduction
Communication between peers is a key concern in P2P-

based Networked Virtual Environments (NVE). In such
systems no peer knows about all other peers; therefore, a
message forwarding scheme that overcomes this challenge
is necessary. There are many different P2P NVE designs,
with each impacting the performance of a messaging scheme
differently. To date, the only reported evaluation technique
of these schemes is the number of hops a message takes to
arrive at its destination – an insufficient measure.

Client-server designs have a relatively simple commu-
nication scheme. A client sends a message, destined for
another client, to the server. Because the server has a direct
connection to every client, it sends the message directly
to the destination client. All client-server systems share
this same basic design, resulting in no differentiation in
communication performance.

P2P systems differ significantly from client-server sys-
tems in the formation of their network overlay, resulting in
differing messaging performance. In a client-server system,
the number of connected clients has no impact on the
number of hops between any client. P2P network overlays,
on the other hand, change with every peer, which connects

or disconnects. Additionally, some P2P network overlays
change structure as peers change position within the virtual
environment (VE). P2P systems are far more complex in
their communication structure than client-server systems,
and therefore, demand a more sophisticated evaluation basis.

To further illustrate the issue, consider a P2P design
and messaging scheme that results in a peer, or peers,
being overwhelmed with message forwarding requests. For
a content distribution network, this is a relatively minor
inconvenience for the users. On the other hand, for a
interactive Massively Multiplayer Online (MMO) system,
overwhelming the bandwidth of a peer negatively impacts a
user’s experience. This may result in that user disconnecting
from the network, with the problem moving to another peer
and cascading as the problem persists. Using the number
of hops as the only evaluation criteria, the problem remains
hidden until too late.

Section 2 provides an overview of techniques others have
used to evaluate message forwarding. The performance met-
ric is detailed in Section 3. Section 4 describes the context
in which the performance metric was originally developed.
The experimental setup is presented in Section 5. The results
from the simulation experiments are discussed in Section 6
and closing remarks in Section 7.

2. Related Work
In this section we review the message forwarding choices

of representative P2P systems, along with the reported
performance basis used in their evaluation. Put simply,
performance evaluation of message forwarding schemes has
not been properly addressed; therefore, little work exists.

Two projects under the name of Solipsis have been pub-
lished [1], [2]. Both solutions rely upon a greedy message
forwarding scheme, with neither paper presenting a basis
for evaluation. Similarly, the VON framework [3] utilizes a
greedy forwarding scheme. The authors do not individually
evaluate this scheme; instead, any performance impact is
aggregated into overall communication bandwidth perfor-
mance.

The most common P2P messaging scheme employed by
massive P2P NVE systems is Pastry [4]. Upon joining a

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 87

network, Pastry assigns a randomly selected 128-bit iden-
tifier to each peer. Based upon this identifier, other peers
are able to use a distributed hash table (DHT) algorithm
that allows peers to send messages between each other
within O(log2bN) hops, where b is a configurable parameter,
typically 4. Rowstron, et al., evaluate the performance of
Pastry exclusively through the use of the number of hops as
compared to the number of nodes.

The Peer Clustering prototype [5] uses a Pastry-based
message forwarding scheme, with the authors reporting per-
formance in terms of number of hops. Knutsson, et al., also
used a Pastry-based scheme [6], again reporting performance
in terms of the number of hops between network peers.
Another scheme proposing to use Pastry is Mediator [7].
Because the paper is a proposal, there is no presentation of
messaging performance.

Dickey, et al., present an event ordering technique using
N-Trees [8]. Event ordering relies upon messaging between
peers in order to resolve the ordering. The performance
measure used to evaluate the cost of messaging in this
scheme was number of peers in the network versus number
of messages required.

3. Performance Metric
The performance of a messaging scheme is evaluated

through the aggregation and summarization of data from
messaging throughout the network, rather than for any single
message. In other words, a messaging scheme is evaluated
by sending many (thousands) messages throughout a net-
work, with the results of those messages summarized into
several performance measures. The metric is composed of
the following measures:

1) Number of Hops Average/Median
2) Number of Hops Variance
3) Local Bandwidth Max
4) Local Bandwidth Average/Median
5) Local Bandwidth Variance
6) Global Bandwidth
7) Spatial Bandwidth Max
8) Spatial Bandwidth Variance
The number of hops a message takes is important because

it is a proxy for how long a message takes to arrive at
its destination. The average number of hops indicates the
expected time to send a message, within the measured
variance.

Local bandwidth indicates the bandwidth expectation at
a peer. The Max value is the highest bandwidth usage by a
single peer. The average, median, and variance are computed
across all peers.

The peer with the maximum bandwidth demand is neces-
sary in order to recognize the potential for demanding higher
bandwidth at a peer than its expected available resources,
potentially creating a highly negative user experience. The

average, median, and variance values indicate whether or not
the messaging scheme is appropriate for the expected band-
width resources available at a peer. The variance additionally
indicates the fairness of the scheme. A scheme with a lower
variance indicates the scheme requires similar resources
from all peers. A higher variance indicates the scheme favors
some peers over others, creating the potential for some peers
to have an advantage because their networking demands are
lower than others. The median is important because the data
from messaging schemes isn’t guaranteed to have a normal
distribution. In these cases, the median bandwidth might be
a better indicator of expected bandwidth demands.

Global bandwidth is the total number of hops taken for
all messages recorded during the evaluation period.

Spatial Max and Variance are computed by subdividing
the VE region into smaller square regions and aggregating
results within each of these smaller regions. As a message
is processed, the spatial location at which the processing oc-
curred is recorded and added to the results for the subdivided
region. The variance is computed over all the subdivided
regions. For example, divide VE region into a grid of 100 x
100 smaller regions, creating 10,000 spatial regions in which
data is collected.

The purpose of the Spatial Max and Variance is to reveal
a spatial bias of the messaging scheme, if any. Whereas
one scheme might not have a spatial bias, another may.
A high spatial variance indicates the scheme exhibits a
spatial bias. These values are computed by recording and
binning messages based upon the VE location of the peer
at the time they were logged. It isn’t possible to specify the
number of bins for any arbitrary VE; the expertise of the
developer is still required to make a proper choice. While
not specified in the metric, we additionally use a heatmap,
which enables us to visually identify the nature of the spatial
bias, if any. A messaging scheme that exhibits a spatial
bias may lead to unintended social behaviors within the
VE. As participants notice greater resource demands due
to spatial locality, they will tend to avoid those locations,
perhaps introducing additional performance problems with
the scheme.

The number of messages, assuming messages are similarly
sized, is a valid substitute for bandwidth.

4. Login Forwarding
The context of the performance metric presented in this

paper is the evaluation of login forwarding techniques for
our hybrid P2P NVE design, Audrey. Audrey is a Voronoi-
based NVE, designed to host Massively Multiplayer virtual
environments [9]. The framework includes a managed server,
which is used for peer login and validation. As a peer joins
the network overlay, it goes through several states before
becoming an active participant. One of these states is known
as login forwarding.

88 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

The login forwarding state involves a protocol through
which a peer is forwarded to the correct overlay neighbor-
hood, based upon its starting position in the VE. Login for-
warding enables the joining peer to discover those neighbors
with which it should be initially connected. The protocol
begins with the joining peer contacting the managed server
for forwarding. The server responds by sending contact
details of an active peer to contact for further forwarding.
The joining peer contacts this active peer to continue for-
warding. This process repeats until the active peer closest to
the joining peer’s destination is discovered. Fundamentally,
login forwarding is a messaging scheme.

Greedy Forwarding: A joining peer sends a forwarding
request to another peer, the receiving peer. Upon receipt
of a forwarding request, the receiving peer examines all its
known neighbors, both Area of Interest (AOI) and enclosing,
to find the one closest to the join destination, including
the receiving peer itself. If the receiving peer is closest
to the join destination, the joining peer is notified and the
forwarding is complete. Otherwise, the contact information
for the neighboring peer closest to the requested destination
is sent to the joining peer. The joining peer continues the
forwarding process by contacting the newly identified peer
closest to its join destination.

Figure 1 illustrates a greedy forwarding sequence orig-
inating at the server peer and ending with a peer in the
upper left corner of the virtual environment. The sequence
begins with the server peer’s Voronoi region highlighted,
indicating it is the next receiving peer. The next step shows
the enclosing (light grey) and AOI (dark grey) neighbors.
From these neighbors, the one closest to the join location
is selected as the next receiving peer; its Voronoi region is
highlighted in the third step. The remaining steps illustrate
the rest of the greedy forwarding sequence.

Because the purpose of Audrey is to enable massive
peer participation, an efficient login forwarding protocol is
needed. The naive approach to login forwarding is to use
pure greedy forwarding, beginning at the server. As will
be shown through our performance metric, this is also a
poor choice. We identified several candidate techniques to
improve upon pure greedy forwarding: three working set
techniques and a grid based technique. Additionally, we
included two techniques, FIFO and Random Selection, to
help validate the effectiveness of the performance metric.
The following list identifies these techniques, with the sub-
sections that follow detailing each.

1) Best Case
2) Pure Greedy
3) First In, First Out (FIFO)
4) Random Selection
5) Working Set Random Replacement
6) Working Set Recent Replacement
7) Working Set Proportional
8) Grid Recent Replacement

Fig. 1: Greedy Forwarding

For all techniques, once the initial peer is identified,
greedy forwarding is employed to complete the join opera-
tion. The differentiating feature between each is the identifi-
cation of the first peer to which the joining peer is handed off
to begin greedy forwarding. Because the framework design
is a P2P network, no single peer, including the server itself,
has global knowledge of all active peer current locations.
Therefore, the key to the best performance is to start the
greedy forwarding process with the active peer as close to
the destination as possible.

4.1 Best Case
Forwarding begins with the peer whose current location is

closest to the destination of the joining peer. This provides
the best possible selection. This is impossible in a real-
world hybrid P2P deployment, because the server does not
know the current location of all actively participating peers.
However, under simulation conditions, it is possible to have
global knowledge of the P2P overlay.

The concept is to provide a basis for evaluating how well
any other variations approach the best case.

4.2 Pure Greedy
The design of Audrey specifies a bootstrapping peer, the

server peer, located at the center of the virtual environment.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 89

This peer has no virtual environment presence; its purpose is
to provide the startup/fallback peer for the construction and
maintenance of the P2P overlay. This variation specifies the
server peer is selected, every time, as the node from which
the greedy forwarding process begins; in other words, pure
greedy forwarding.

The concept is that of a naive approach to handle login
forwarding, without regard for efficiency or fairness.

4.3 First In, First Out
A first in, first out queue of active peers is maintained at

the server. As a peer makes a forwarding request with the
server, the peer at the front of the queue is selected as the
starting peer for the greedy forwarding process. Once a peer
completes forwarding, it is added to the end of the queue.

The concept is that of fairness of resource usage. Each
peer must provide the same service it consumed for the
next peer that joins the overlay. Fairness is emphasized over
efficiency.

4.4 Random Selection
Forwarding starts by selecting a random peer from the set

of known active peers.
The concept is that of fairness of resource usage, randomly

distributing forwarding requests throughout all active peers.
Fairness is emphasized over efficiency.

4.5 Working Set Random Replacement
The server maintains a fixed size set of active peers, the

working set. The number of peers in the working set is
relatively small, proportional to the total number of active
peers. As a joining peer requests forwarding, the peer in
the working set with its last known position closest to the
joining peer’s destination is chosen as the starting peer. The
peer then selected to start the forwarding is removed from
the working set and replaced by random selection from all
known active peers. The number of peers in the working set
is fixed throughout the lifetime of the server.

The concept is that of efficiency, with a secondary con-
sideration with respect to fairness. Computational efficiency
is considered by keeping a working set that is fixed in size
and relatively smaller than all known active peers. Instead
of testing every peer, a small number of peers are evaluated,
ensuring a small, constant response time, even as the number
of active peers increases. Efficiency with respect to global
bandwidth is considered by choosing the peer with the last
known position closest to the forwarding destination, the
intention being to reduce the number of greedy forwarding
requests required to join.

4.6 Working Set Recent Replacement
The technique has the same working set concept as

described in Working Set Random Replacement, with a
differing peer replacment scheme. The replacement peer is

selected by choosing the peer that has most recently become
active. The number of peers in the working set is fixed
throughout the lifetime of the server.

The concept in choosing the most recent active peer is
that it is most likely closer to its starting location than any
peer selected at random from all active peers. By choosing
the most recent active peer, the replacement is in a similar
location to the one replaced; this peer will also have the best,
last known active location among all peers in the overlay. As
this strategy is employed, the working set will contain peers
with the most recent known active locations, distributed
throughout the overlay.

4.7 Working Set Proportional
This is a variation on the Working Set Recent Replace-

ment, differing in how the size of the working set is
determined. The fixed sized working set is replaced by
two parameters that control the size of a dynamically sized
working set: 1) A minimum number of peers in the working
set and 2) A maximum number of peers proportional to the
number of active peers. The minimum specifies the smallest
size the working set can ever be (given that number of active
peers), while the maximum size changes in proportion to the
number of active peers.

The concept is to grow and shrink the working set propor-
tionally with the number of active peers, thereby dynamically
changing the scope of the peers chosen from which to begin
the greedy forwarding process.

4.8 Grid Recent Replacement
The server subdivides the virtual environment into a

uniform grid of cells, identifying one peer for each of the
cells from which the greedy login forwarding process begins.
As a joining peer requests forwarding, the cell corresponding
to the destination is computed and the peer within that cell
is chosen as the starting peer. When a peer notifies the login
server it has become active, the cell into which it belongs is
computed and it becomes the forwarding peer for that cell
until it is eventually replaced. Initially, the grid is populated
with the server peer as the forwarding peer for each of the
grid cells. As new peers become active, they replace the
previous peer for their cell location. This creates turnover in
the cells, helping to ensure the peer with the best last known
position is represented within the grid. Therefore, the peer at
all cell locations is the peer with the best last known position
of any peer within that cell area.

Two parameters control this variation: 1) The starting size
of the grid and 2) The threshold that causes the grid to
increase in size. The grid is initialized to some size, for
example, a 2x2 grid. As the number of active peers increases,
the size of the grid also increases, thereby spreading out the
distribution of peers from which forwarding can begin. For
example, when the size of the grid is increased from 2x2
to 4x4, the peer at cell [0,0] from the 2x2 grid is replicated

90 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Table 1: Simulation Parameters

AOI AOI Range Time Steps New Peer
Fixed 1,000 units 5,000 1 @ 5 steps
Dynamic 10 peers 5,000 1 @ 5 steps

Working Set Parameters
Technique Working Set Min Size Ratio
Random 20 n/a n/a
Recent 20 n/a n/a
Proportional n/a 10 0.05

into cells [0,0], [1,0], [0,1], [1,1] in the 4x4 grid. Over time,
as new peers become active, they replace and create unique
peers in the new grid.

The concept is to ensure a uniform distribution throughout
the virtual environment of peers from which the greedy
forwarding begins.

5. Experimental Setup
Simulations were performed to collect data in order to

compare each of the techniques, using both fixed and dy-
namic AOI. Table 1 identifies the simulation parameters.
The choice of 5,000 time steps was guided by previous
work by Hu, et al. [3], where 3,000 time steps were used.
In evaluating the usefulness of longer simulations for these
techniques, some simulations were run with much longer
time steps (over 30,000), which produced no difference in
the results. Therefore, 5,000 was selected as having a proper
balance of a long enough simulation to collect valid results,
while providing short enough computation time to repeatedly
run simulations. The choice to use 1,000 VE units and 10
max peers for the fixed and dynamic AOIs was guided by
identifying parameters that show the differentiation between
fixed and dynamic AOI. Finally, the choice to have 1 peer
arrive every 5 time steps was made to ensure enough peers
(1,000) joined the simulation to simulate a large number of
active peers in the NVE.

At each time step, the simulation counts the number
of active login forwarding messages contained within each
peer’s message queue; these data are used to compute the
number of hops, local bandwidth, and global bandwidth
measures. The VE is divided into a 100 x 100 grid of bins.
At each time step, the number of login forwarding messages
for all peers within that bin is recorded. These data are used
to compute the spatial performance measures.

The number of neighbors tracked by each peer is a
parameter that significantly affects the performance of login
forwarding. This number is controlled by the AOI, of which
two approaches are utilized, fixed and dynamic. Using fixed
AOI, a peer tracks all neighbors within a fixed, circular
region. Using dynamic AOI, a peer tracks a fixed number
of peers regardless of their distance, with the circular AOI
region defined by the distance to the furthest neighbor. For
both approaches, all enclosing neighbors are tracked.

Table 2: Fixed AOI - Number of Hops

Technique Average Median Std. Dev.
Best Case 8.59 8.00 2.27
Pure Greedy 24.24 25.00 8.81
FIFO 30.54 29.00 13.84
Random 28.91 29.00 13.93
WS Random 16.22 17.00 7.22
WS Recent 13.57 13.00 5.18
WS Proportional 13.29 13.00 5.14
Grid Recent 14.87 13.00 6.55

Table 3: Dynamic AOI - Number of Hops

Technique Average Median Std. Dev.
Best Case 8.66 8.00 2.52
Pure Greedy 29.05 29.00 12.84
FIFO 36.23 22.00 18.56
Random 36.29 33.00 19.53
WS Random 18.39 17.00 9.59
WS Recent 16.58 13.00 8.25
WS Proportional 14.85 13.00 6.08
Grid Recent 18.36 17.00 10.68

The simulated virtual environment is a 10,000 by 10,000
unitless rectangular region. As a peer joins the simulation,
its joining location within the VE is determined by the server
using uniform random selection. The movement of each peer
is also randomly determined. Initially, a random direction
vector is selected, along with a randomly selected speed, and
a randomly selected length of time for which the peer will
move at that speed along the vector. Once the time period
for that movement is complete, a new direction, speed, and
length of time is selected; this is repeated for the lifetime of
a peer.

Fixed AOI is not a scalable solution in a P2P environment
due to the non-scalable number of messages required to
maintain a P2P overlay. The number of messages required to
support the overlay grows combinatorially with the number
of neighbors within a peer’s AOI. When using a fixed
AOI, this number easily becomes a problem for network
bandwidth utilization. The reason for showing fixed AOI
results is to help understand the performance of dynamic
AOI in comparison.

6. Results
Tables 2 through 6 report the performance metric mea-

sures from the simulations. Tables 2 and 3 report number of
hops for the messages. Tables 4 and 5 report local and global
utilization. Finally, Table 6 reports the spatial measures.

In addition to the simple measures of spatial maximum
and variance, we have created heatmaps based upon the VE
location of peers at the time the messages were processed.
These data are visualized in Figures 2 and 3. The shape
of the heat map corresponds to the rectangular region of the
simulated virtual environment. Each data point represents the
location of a peer at the time a message was processed. As
the number of data points within an area accumulates, it is

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 91

Table 4: Peer Messages - Fixed AOI

Technique Total Average Median Std. Dev. Max
Best Case 2,320 2.32 2 3.04 16
Pure Greedy 9,237 9.23 4 13.85 108
FIFO 13,144 13.13 8 14.17 79
Random 12,958 12.95 8 14.97 90
WS Random 6,815 6.81 5 7.19 45
WS Recent 5,506 5.5 4 5.15 32
WS Proportional 5,244 5.24 4 5.34 41
Grid Recent 6,055 6.05 4 6.8 48

Table 5: Peer Messages - Dynamic AOI

Technique Total Average Median Std. Dev. Max
Base Case 2,274 2.27 2 2.97 18
Pure Greedy 12,268 12.26 6 16.58 140
FIFO 17,174 17.16 11 16.57 92
Random 16,765 16.75 12 16.5 110
WS Random 8,271 8.26 6 7.65 47
WS Recent 6,368 6.36 5 5.52 36
WS Proportional 6,259 6.25 5 5.8 37
Grid Recent 7,325 7.32 6 7.46 65

further darkened. Lighter regions represent areas of relatively
few login forwarding messages, while darker regions rep-
resent areas with higher frequencies of messages. A visual
inspection of the message distribution and density in the heat
maps is confirmed by the data presented in the tables.

6.1 Results Discussion
Confidence in the validity of the metric is provided by

the results of the Best Case technique in comparison to
all others. In every performance measure, the Best Case
is always better. The results of the performance measures,
along with the heat maps, show differentiation among the
techniques, illustrating the ability of the metric to differen-
tiate performance among schemes.

Before running the simulations, we expected both FIFO
and Random to be similar in performance, along with
being the worst case scenarios; the metric validated this
expectation. Peer starting positions are randomly selected
throughout the VE; therefore, FIFO is essentially a random
selection technique. The performance metric correctly cap-
tured this result.

Among the working set techniques, we expected the
random replacement to be the least effective of the three; this
was shown to be true. However, we expected proportional

Table 6: Spatial Messages

Fixed AOI Dynamic AOI
Technique Std. Dev. Max Std. Dev. Max
Base Case 0.69 8 0.68 6
Pure Greedy 10.13 24 2.13 20
FIFO 2.02 94 2.21 66
Random 1.82 61 2.18 80
WS Random 1.15 8 1.23 17
WS Recent 1.00 13 1.13 16
WS Proportional 0.96 8 1.09 21
Grid Recent 1.12 27 1.23 28

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2: Fixed AOI Messages. (a) Best Case (b) Pure Greedy
(c) FIFO (d) Random (e) Working Set Random (f) Working
Set Recent (g) Working Set Proportional (h) Grid Recent

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: Dynamic AOI Messages. (a) Best Case (b) Pure
Greedy (c) FIFO, (d) Random (e) Working Set Random (f)
Working Set Recent (g) Working Set Proportional (h) Grid
Recent

replacement to perform much better than recent replacement;
the data do not show a statistically significant difference.
An important differentiation feature of the proportional re-
placement technique is its computational complexity. As the
number of active peers grows, the computational complexity
grows linearly. Given that the fixed size recent replacement
technique performs nearly as well with constant compu-
tational complexity, the choice between the two becomes
obvious. The metric doesn’t offer this insight; the expertise
and knowledge of the developer is still required.

Before the simulations were performed, there was some
debate regarding the performance of the grid replacement
technique relative to the working set techniques. The metric
shows its performance is better than the working set random
replacement, but worse than the recent and proportional
replacement techniques.

Note the high spatial variance under fixed AOI for the pure
greedy technique and the circular pattern seen in Figure 2b.

92 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

The concentric circle radii approximate multiples of the AOI
range from the server. The first circle lies along the outer
boundary of the server’s AOI, the second circle is two times
that distance, and so on. This clearly illustrates the algorithm
choosing the known neighbor closest to the destination of
the joining peer, exhibiting a spatial bias the performance
measure numbers don’t readily demonstrate. In comparing
Figures 2b and 3b, the behavior difference between the fixed
and dynamic AOI is seen. For the dynamic AOI simulations,
the number of neighbors was kept relatively low (10),
which results primarily in choosing enclosing neighbors for
handing off the login forwarding to the next peer. As all
peers are constantly in motion, no particular fixed distance
from one peer to its furthest neighbor exists, unlike fixed
AOI where it is likely for one to have AOI neighbors near
the fixed AOI distance.

7. Closing Remarks
This metric should be applied to individual message sub-

systems and to all message sub-systems combined. The com-
bined effects of messaging systems describes performance
in general, but it is important to decompose the results by
individual messaging schemes. Login forwarding, movement
updates, broadcasts, and other systems must be individually
characterized in order to correctly identify which systems
are contributing to various performance measures.

The primary contribution of this paper is a performance
metric that represents an important step forward in the
characterization of P2P-based virtual environment messag-
ing schemes. The performance measures offer a developer
deeper insight into the side effects a scheme has locally
among the peers, along with global effects such as spatial
bias. Expertise on the part of the developer is still required
to interpret the results, along with knowing what additional
measures may be required.

The secondary contribution of this paper is the character-
ization, through the application of this performance metric,
of several candidate login forwarding techniques. The results
suggest the working set approach is the most promising
direction in which to continue additional research. We an-
ticipate further application of this metric as development
continues on our hybrid P2P framework.

References
[1] J. Keller and G. Simon, “Solipsis: A massively multi-participant

virtual world,” in Parallel and Distributed Processing Techniques and
Applications. CSREA Press, 2003, pp. 262–268.

[2] D. Frey, J. Royan, R. Piegay, A. Kermarrec, E. Anceaume, and F. Fes-
sant, “Solipsis: A decentralized architecture for virtual environments,”
in Workshop on Massively Multiuser Virtual Environments, 2008.

[3] S.-Y. Hu and G.-M. Liao, “Scalable peer-to-peer networked virtual
environment,” in NetGames ’04: Proceedings of 3rd ACM SIGCOMM
workshop on Network and system support for games. New York, NY,
USA: ACM, 2004, pp. 129–133.

[4] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,” in
Middleware ’01: Proceedings of the IFIP/ACM International Confer-
ence on Distributed Systems Platforms Heidelberg. London, UK:
Springer-Verlag, 2001, pp. 329–350.

[5] A. Chen and R. R. Muntz, “Peer clustering: a hybrid approach to
distributed virtual environments,” in NetGames ’06: Proceedings of 5th
ACM SIGCOMM workshop on Network and system support for games.
New York, NY, USA: ACM, 2006, p. 11.

[6] B. Knutsson, M. M. Games, H. Lu, W. Xu, and B. Hopkins, “Peer-to-
peer support for massively multiplayer games,” 2004.

[7] L. Fan, H. Taylor, and P. Trinder, “Mediator: a design framework
for p2p mmogs,” in NetGames ’07: Proceedings of the 6th ACM
SIGCOMM workshop on Network and system support for games. New
York, NY, USA: ACM, 2007, pp. 43–48.

[8] C. GauthierDickey, V. Lo, and D. Zappala, “Using n-trees for scalable
event ordering in peer-to-peer games,” in NOSSDAV ’05: Proceedings
of the international workshop on Network and operating systems
support for digital audio and video. New York, NY, USA: ACM,
2005, pp. 87–92.

[9] F. Aurenhammer, “Voronoi diagrams—a survey of a fundamental
geometric data structure,” ACM Computing Surveys, vol. 23, no. 3,
pp. 345–405, 1991.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 93

A New Property of Interconnection Networks

Yuan-Kang Shih1, Jimmy J. M. Tan1, and Lih-Hsing Hsu2

1Department of Computer Science
National Chiao Tung University, Hsinchu, Taiwan 30010, R.O.C.

E-mail: {ykshih, jmtan}@cs.nctu.edu.tw.
2Department of Computer Science and Information Engineering

Providence University, Taichung, Taiwan 43301, R.O.C.
E-mail: lhhsu@cs.pu.edu.tw.

Abstract— A graph G is pancyclic if G includes cycles of
all lengths and G is edge-pancyclic if each edge lies on
cycles of all lengths. A bipartite graph is edge-bipancyclic
if each edge lies on cycles of every even length from 4
to |V (G)|. Two cycles with the same length m, C1 =
⟨u1, u2, · · · , um, u1⟩ and C2 = ⟨v1, v2, · · · , vm, v1⟩ passing
through an edge (x, y) are independent with respect to
the edge (x, y) if u1 = v1 = x, um = vm = y and
ui ̸= vi for 2 ≤ i ≤ m − 1. Cycles with equal length
C1, C2, · · · , Cn passing through an edge (x, y) are mutually
independent with respect to the edge (x, y) if each pair
of them are independent with respect to the edge (x, y).
We propose a new concept called mutually independent
edge-bipancyclicity. We say that a bipartite graph G is
k-mutually independent edge-bipancyclic if for each edge
(x, y) ∈ E(G) and for each even length l, 4 ≤ l ≤ |V (G)|,
there are k cycles with the same length l passing through
edge (x, y), and these k cycles are mutually independent
with respect to the edge (x, y). In this paper, we prove that
the hypercube Qn is (n − 1)-mutually independent edge-
bipancyclic for n ≥ 4.

Keywords: hypercube, bipancyclic, edge-bipancyclic, mutually
independent

1. Introduction
For the graph definitions and notations we refer the reader

to [1]. A graph is denoted by G with the vertex set V (G)
and the edge set E(G). The simulation of one architecture
by another is an important issue in interconnection networks.
The problem of simulating one network by another is also
called embedding problem. One particular problem of ring
embedding deals with finding all the possible length of
cycles in an interconnection network [2], [3], [4].

A path P = ⟨v0, v1, · · · , vm⟩ is a sequence of adjacent
vertices. We also write P = ⟨v0, · · · , vi, Q, vj , · · · , vm⟩
where Q is a path ⟨vi, · · · , vj⟩. A cycle C =
⟨v0, v1, · · · , vm, v0⟩ is a sequence of adjacent vertices. The
length of a path P is the number of edges in P . The length
of a cycle C is the number of edges in C.

A path is a hamitonian path if it contains all the vertices
of G. A graph G is hamiltonian connected if there exists a
hamiltonian path between any two different vertices of G.
A graph G = (B ∪W,E) is bipartite if V (G) is the union
of two disjoint sets B and W such that every edge joins B
with W . It is easy to see that any bipartite graph with at
least three vertices is not hamiltonian connected. A bipartite
graph G is hamiltonian laceable if there exists a hamiltonian
path joining any two vertices from different partite sets. A
graph G is pancyclic [1] if G includes cycles of all lengths.
A graph G is called edge-pancyclic if each edge lies on
cycles of all lengths. If these cycles are restricted to even
length, G is called a bipancyclic graph. A bipartite graph is
edge-bipancyclic [5] if each edge lies on cycles of every even
length from 4 to |V (G)|. A graph is panconnected if, for any
two different vertices x and y, there exists a path of length l
joining x and y, for every l, dG(x, y) ≤ l ≤ |V (G)|−1. The
concept of panconnected graphs is proposed by Alavi and
Williamson [6]. It is not hard to see that any bipartite graph
with at least 3 vertices is not panconnected. Therefore, the
concept of bipanconnected graphs is proposed. A bipartite
graph is bipanconnected if, for any two different vertices x
and y, there exists a path of length l joining x and y, for
every l, dG(x, y) ≤ l ≤ |V (G)|−1 and (l−dG(x, y)) being
even. It is proved that the hypercube is bipanconnected [7].

We now introduce a relatively new concept. Two paths
P1 = ⟨u1, u2, · · · , um⟩ and P2 = ⟨v1, v2, · · · , vm⟩ from a
to b are independent [8] if u1 = v1 = a, um = vm = b,
and ui ̸= vi for 2 ≤ i ≤ m − 1. Paths with equal length
P1, P2, · · · , Pn from a to b are mutually independent [8]
if every two different paths are independent. Two paths
P1 and P2 are fully independent [9] if ui ̸= vi for all
1 ≤ i ≤ m. Paths with equal length P1, P2, · · · , Pn, are
mutually fully independent if each pair of them are fully
independent. Two cycles C1 = ⟨u1, u2, · · · , um, u1⟩ and
C2 = ⟨v1, v2, · · · , vm, v1⟩ passing through an edge (x, y)
are independent with respect to the edge (x, y), if u1 =
v1 = x, um = vm = y and ui ̸= vi for 2 ≤ i ≤ m − 1.
Cycles with equal length C1, C2, · · · , Cn passing through
an edge (x, y) are mutually independent with respect to the
edge (x, y) if every two cycles are independent with respect

94 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

to the edge (x, y).
An n-dimensional hypercube, denoted by Qn, is a graph

with 2n vertices, and each vertex u can be distinctly labeled
by an n-bit binary string, u = un−1un−2...u1u0. There is
an edge between two vertices if and only if their binary
labels differ in exactly one bit position. Let (u, v) be an
edge in Qn. If the binary labels of u and v differ in ith
position, then the edge between them is said to be in ith
dimension and the edge (u, v) is called an ith dimension
edge. We use Q0

n to denote the subgraph of Qn induce by
{u ∈ V (Qn) | ui = 0} and Q1

n the subgraph of Qn induced
by {u ∈ V (Qn) | ui = 1}. Q0

n and Q1
n are all isomorphic to

Qn−1. Qn can be decomposed into Q0
n and Q1

n by dimension
i, and Q0

n and Q1
n are (n− 1)-dimensional subcubes of Qn

induced by the vertices with the ith bit position being 0 and
1 respectively. For each vertex u in Qin, i = 0, 1, there is
exactly one vertex in Qi−1

n , denoted by ū, such that (u, ū)
is an edge in Qn. Saad and Schultz [10] proved Qn is edge-
bipancyclic in the sense that each edge lies on cycles of every
even length from 4 to 2n. Li et al. [7] considered an injured
n-dimensional hypercube Qn where each edge lies on cycles
of every even length from 4 to 2n with n − 2 edge faults.
Tsai [11] proved that such injured hypercube Qn contains a
cycle of every even length from 4 to 2n, even if it has up to
(2n−5) edge faults with some specified conditions. Sun et al.
[12] proved that the n-dimensional hypercube Qn contains
n− 1 mutually independent hamiltonian paths between any
vertex pair {x, y}, where x and y belong to different partite
sets and n ≥ 4. Let |F | be the number of the faulty edges.
Hsieh and Weng [13] showed that when 1 ≤ |F | ≤ n − 2,
there exists n − |F | − 1 mutually independent hamiltonian
paths joining x to y in Qn − F , where x and y belong to
different partite sets.

We now introduce a new concept. We say that a bipartite
graph G is n-mutually independent edge-bipancyclic if for
each edge (x, y) ∈ E(G), and for each even length l,
4 ≤ l ≤ |V (G)|, there are n cycles with the same length l
passing through edge (x, y), and these n cycles are mutually
independent with respect to the edge (x, y). In this paper,
we show that the hypercube has a stronger property of
edge-bipancyclic property. We prove that an n-dimensional
hypercube Qn, for n ≥ 4, is (n − 1)-mutually independent
edge-bipancyclic in the sense that each edge of Qn lies on
n−1 mutually independent cycles of every even length from
4 to 2n. Our result strengthens a previous result of Saad and
Schultz [10]. Because each vertex of the hypercube Qn has
exactly n edges incident with it, we can expect at most n−1
mutually independent cycles passing through edge (x, y).
Therefore, the result “n− 1" is tight.

2. Preliminaries
In order to prove our claim, we need the following

previous results.

Lemma 1: [14] The hypercube Qn is hamiltonian lace-
able for every positive integer n.

Lemma 2: [7] The hypercube Qn is bipanconnected for
n ≥ 2.

The hypercube Qn is known to be a bipartite graph. Let
(B,W) be the vertex bipartition of Qn. Edges e1, e2, · · · , en
in a graph G are called independent edges if these edges are
pairwise disjoint.

Lemma 3: [12] Let {ei | 1 ≤ i ≤ n − 1} be any n − 1
independent edges of Qn with n ≥ 2 and ei = (bi, wi). Then
there exist n − 1 mutually fully independent hamiltonian
paths P l1, · · · , P ln−1 of Qn such that P li joins from bi to wi.

Theorem 1: [12] Let x and y be two vertices from dif-
ferent partite sets of Qn, for n ≥ 4. Then there exist n− 1
mutually independent hamiltonian paths joining x to y.

Theorem 2: [15] Let Fv be a set of faulty vertices in Qn.
There exists a path of every odd length from 3 to 2n−2|Fv|−
1 joining any two adjacent fault-free vertices in Qn−Fv even
if |Fv| ≤ n− 2, where n ≥ 3.

Lemma 4: [12] Qn −{x, y} is hamiltonian laceable, if x
and y are any two vertices from different partite sets of Qn
with n ≥ 4.

3. Main Results
To prove our main result, we need the following lemmas,

Lemma 5 to 7.

Lemma 5: Let x and y be two vertices from different
partite sets of Qn with n ≥ 4. There exists a path of every
odd length from 1 to 2n − 3 joining any two adjacent fault-
free vertices in Qn − {x, y}.

Proof: Let u, v be two adjacent fault-free vertices in
Qn−{x, y}. Because u and v are adjacent fault-free vertices,
there exists a path of length 1 joining from u to v in Qn −
{x, y}. According to Theorem 2, there exists a path of every
odd length from 3 to 2n − 2|2| − 1(= 2n − 5) joining u to
v in Qn − {x, y}. Then by Lemma 4, there exists a path of
length 2n − 3 joining u to v in Qn − {x, y}. Therefore, the
lemma holds.

Lemma 6: Let e1 and e2 be two independent edges of Q3,
ei = (bi, wi) for i = 1, 2. Then Q3 contains 2 mutually fully
independent paths P l1 and P l2 with any odd length l ≤ 23

such that P li joins from bi to wi, i = 1, 2.
Proof: By the edge-symmetric property of hy-

percubes, we may assume that e1 = (000, 100).
We then consider the following three cases, e2 =

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 95

Table 1: The proof of Lemma 6

e1 = (000, 100) l = 1 P1
1 = ⟨000, 100⟩

e2 = (011, 001) P1
2 = ⟨011, 001⟩

l = 3 P3
1 = ⟨000, 010, 110, 100⟩

P3
2 = ⟨011, 111, 101, 001⟩

l = 5 P5
1 = ⟨000, 010, 011, 111, 110, 100⟩

P5
2 = ⟨011, 111, 101, 100, 000, 001⟩

l = 7 P7
1 = ⟨000, 010, 011, 001, 101, 111, 110, 100⟩

P7
2 = ⟨011, 111, 101, 100, 110, 010, 000, 001⟩

e1 = (000, 100) l = 1 P1
1 = ⟨000, 100⟩

e2 = (011, 111) P1
2 = ⟨011, 111⟩

l = 3 P3
1 = ⟨000, 010, 110, 100⟩

P3
2 = ⟨011, 001, 101, 111⟩

l = 5 P5
1 = ⟨000, 010, 011, 111, 110, 100⟩

P5
2 = ⟨011, 001, 000, 100, 101, 111⟩

l = 7 P7
1 = ⟨000, 010, 011, 001, 101, 111, 110, 100⟩

P7
2 = ⟨011, 001, 000, 010, 110, 100, 101, 111⟩

e1 = (000, 100) l = 1 P1
1 = ⟨000, 100⟩

e2 = (101, 001) P1
2 = ⟨101, 001⟩

l = 3 P3
1 = ⟨000, 010, 110, 100⟩

P3
2 = ⟨101, 111, 011, 001⟩

l = 5 P5
1 = ⟨000, 010, 011, 111, 110, 100⟩

P5
2 = ⟨101, 111, 110, 010, 011, 001⟩

l = 7 P7
1 = ⟨000, 010, 011, 001, 101, 111, 110, 100⟩

P7
2 = ⟨101, 111, 110, 100, 000, 010, 011, 001⟩

{(011, 001), (011, 111), (101, 001)}. For each of these cases,
we construct the required paths, see Table 1.

Lemma 7: Let {ei | 1 ≤ i ≤ n−1} be n−1 independent
edges of Qn with n ≥ 2, ei = (bi, wi), i = 1 to n −
1. Then there exist n − 1 mutually fully independent paths
P l1, · · · , P ln−1 of Qn with any odd length l ≤ 2n − 1 such
that P li joins from bi to wi, i = 1 to n− 1.

Proof: It is clear that the result holds for Q2. We
prove the statement by induction on n. By Lemma 6, the
statement holds for n = 3. Suppose that the result holds
for Qn−1, for some n ≥ 4. The hypercube Qn has n
dimensions, and there are only n − 1 independent edges,
so there is at least one dimension which does not contain
any one of these n − 1 independent edges. We can choose
one of these dimensions to separate Qn into two (n − 1)-
dimensional subcubes Q0

n and Q1
n. We then prove the result

by considering the following three cases.
Case 1. For odd length l and 1 ≤ l ≤ 2n−1 − 1.
Case 1.1. Suppose that there are k independent edges in Q0

n

with 1 ≤ k ≤ n − 2 and there are n − k − 1 independent
edges in Q1

n. By induction hypothesis, the case is obvious.
Case 1.2. Without loss of generality, suppose that all the
n − 1 independent edges are in Q0

n. By induction hypoth-
esis, there exist n − 2 mutually fully independent paths
P l1, · · · , P ln−2 of Q0

n with any odd length l ≤ 2n−1 − 1
such that P li joins from bi to wi for 1 ≤ i ≤ n − 2.
By Lemma 2, there is a path Rm of Q1

n with odd length
1 ≤ m ≤ 2n−1 − 3 joining b̄n−1 to w̄n−1. Let P ln−1 =
⟨bn−1, b̄n−1, R

m, w̄n−1, wn−1⟩, then 3 ≤ l ≤ 2n−1 − 1.
Note that, bn−1 and wn−1 are adjacent vertices, so we obtain
paths P ln−1 for all odd lengths l, 1 ≤ l ≤ 2n−1 − 1.
Therefore, there are n− 1 mutually fully independent paths
P l1, · · · , P ln−1 of Qn with any odd length l ≤ 2n − 1 such

that P li joins from bi to wi, i = 1 to n− 1.
Case 2. For odd length l and 2n−1 + 1 ≤ l ≤ 2n − 3.
Case 2.1. Suppose that there are k independent edges in Q0

n

with 1 ≤ k ≤ n−2 and there are n−k−1 independent edges
in Q1

n. By induction hypothesis, there exist k mutually fully
independent paths R1, · · · , Rk of Q0

n with length 2n−1 − 1
such that Ri joins from bi to wi for 1 ≤ i ≤ k. We let Ri =
⟨bi, ui, vi, Zi, wi⟩ for 1 ≤ i ≤ k. According to induction
hypothesis, there exist k mutually fully independent paths
T l

′

1 , · · · , T l
′

k of Q1
n with any odd length l′ ≤ 2n−1− 3 such

that T l
′

i joins from ūi to v̄i for 1 ≤ i ≤ k. Therefore, P li =
⟨bi, ui, ūi, T l

′

i , v̄i, vi, Zi, wi⟩ with 2n−1 + 1 ≤ l ≤ 2n − 3
for 1 ≤ i ≤ k. Again by induction hypothesis, there exist
n−k−1 mutually fully independent paths Rk+1, · · · , Rn−1

of Q1
n with length 2n−1 − 1 such that Ri joins from bi to

wi for k + 1 ≤ i ≤ n − 1. We let Ri = ⟨bi, ui, vi, Zi, wi⟩
for k + 1 ≤ i ≤ n− 1. By induction hypothesis, there exist
n−k− 1 mutually fully independent paths T l

′

k+1, · · · , T l
′

n−1

of Q0
n with any odd length l′ ≤ 2n−1 − 3 such that T l

′

i

joins from ūi to v̄i for k + 1 ≤ i ≤ n− 1. Therefore, P li =
⟨bi, ui, ūi, T l

′

i , v̄i, vi, Zi, wi⟩ with 2n−1+1 ≤ l ≤ 2n−3 for
k + 1 ≤ i ≤ n − 1. Hence, there are n − 1 mutually fully
independent paths P l1, · · · , P ln−1 of Qn with any odd length
2n−1 + 1 ≤ l ≤ 2n − 3 such that P li joins from bi to wi.
Case 2.2. Without loss of generality, suppose that all
the n − 1 independent edges are in Q0

n. By induction
hypothesis, there exist n − 2 mutually fully independent
paths R1, · · · , Rn−2 of Q0

n with length 2n−1 − 1 such
that Ri joins from bi to wi for 1 ≤ i ≤ n − 2. We let
Ri = ⟨bi, Zi, ui, vi, zi, wi⟩. Again by induction hypothesis,
there exist n − 2 mutually fully independent paths
T l

′

1 , · · · , T l
′

n−2 of Q1
n with any odd length l′ ≤ 2n−1 − 3

such that T l
′

i joins from ūi to v̄i for 1 ≤ i ≤ n−2. Therefore,
P li = ⟨bi, Zi, ui, ūi, T l

′

i , v̄i, vi, zi, wi⟩ with any odd length
2n−1+1 ≤ l ≤ 2n−3 for 1 ≤ i ≤ n−2. By Lemma 2, there
exists a path Rn−1 of Q1

n with length 2n−1−3 joining b̄n−1

to w̄n−1. We let Rn−1 = ⟨b̄n−1, Zn−1, un−1, vn−1, w̄n−1⟩.
By Lemma 5, there exists a path T l

′

n−1 with every
odd length 1 ≤ l′ ≤ 2n−1 − 3 joining ūn−1 to
v̄n−1 in Q0

n − {bn−1, wn−1}. Therefore, P ln−1 =

⟨bn−1, b̄n−1, Zn−1, un−1, ūn−1, T
l′

n−1, v̄n−1, vn−1, w̄n−1, wn−1⟩
with 2n−1 + 1 ≤ l ≤ 2n − 3. So, there are n − 1 mutually
fully independent paths P l1, · · · , P ln−1 of Qn with any odd
length 2n−1 + 1 ≤ l ≤ 2n − 3 such that P li joins from bi to
wi.
Case 3. For odd length l and l = 2n−1. This case is proved
by Lemma 3.

By Case 1 Case 2 and Case 3, the proof is complete.

We now prove our main result by induction.

Lemma 8: The hypercube Q4 is 3-mutually independent
edge-bipancyclic.

96 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Proof: By the edge-symmetric property of hypercubes,
we may assume that the edge is (0000, 0001). We construct
the required cycles in Table 2.

Table 2: The proof of Lemma 8

4 − cycle (0000, 0100, 0101, 0001, 0000)
(0000, 0010, 0011, 0001, 0000)
(0000, 1000, 1001, 0001, 0000)

6 − cycle (0000, 0100, 0110, 0111, 0101, 0001, 0000)
(0000, 0010, 1010, 1011, 0011, 0001, 0000)
(0000, 1000, 1100, 1101, 1001, 0001, 0000)

8 − cycle (0000, 0100, 0110, 0010, 0011, 0111, 0101, 0001, 0000)
(0000, 0010, 1010, 1110, 1111, 1011, 1001, 0001, 0000)
(0000, 1000, 1001, 1011, 1010, 0010, 0011, 0001, 0000)

10 − cycle (0000, 0100, 0110, 0010, 1010, 1011, 0011, 0111, 0101, 0001, 0000)
(0000, 0010, 0011, 0111, 0110, 0100, 0101, 1101, 1001, 0001, 0000)
(0000, 1000, 1010, 1110, 1100, 1101, 1111, 1011, 0011, 0001, 0000)

12 − cycle (0000, 0100, 0110, 0010, 1010, 1110, 1111, 1011, 0011, 0111, 0101,
0001, 0000)
(0000, 0010, 0011, 0111, 0110, 0100, 0101, 1101, 1100, 1000, 1001,
0001, 0000)
(0000, 1000, 1100, 1101, 1111, 0111, 0110, 1110, 1010, 1011, 0011,
0001, 0000)

14 − cycle (0000, 0100, 0101, 0111, 0011, 1011, 1010, 1000, 1100, 1101, 1001,
1011, 0011, 0001, 0000)
(0000, 0010, 0110, 0100, 0101, 0111, 0011, 1011, 1010, 1000, 1100,
1101, 1001, 0001, 0000)
(0000, 1000, 1010, 1011, 1001, 1101, 1100, 1110, 1111, 0111, 0110,
0100, 0101, 0001, 0000)

16 − cycle (0000, 0100, 0101, 0111, 0110, 0010, 1010, 1000, 1100, 1110, 1111,
1011, 1001, 1011, 0011, 0001, 0000)
(0000, 0010, 0110, 0100, 0101, 0111, 0011, 1011, 1010, 1000, 1100,
1110, 1111, 1101, 1001, 0001, 0000)
(0000, 1000, 1010, 1011, 1001, 1101, 1100, 1110, 1111, 0111, 0011,
0010, 0110, 0100, 0101, 0001, 0000)

Theorem 3: The hypercube Qn is (n− 1)-mutually inde-
pendent edge-bipancyclic for n ≥ 4.

Proof: Let (u, v) be an edge in Qn, n ≥ 4. We prove
the statement by induction on n. By Lemma 8, the statement
holds for n = 4. Suppose that the result holds for Qn−1,
n ≥ 5. We may choose a dimension to divide the hypercube
Qn into two subcubes Q0

n and Q1
n so that the edge (u, v) is

in Q0
n. According to the length l of the cycles, we divide the

proof into the following three cases. In each case, the length
l is assumed to be an even number. We shall find n − 1
mutually independent cycles with length l passing through
edge (u, v).
Case 1. For even length l and 4 ≤ l ≤ 2n−1.
By induction hypothesis, there exist n−2 mutually indepen-
dent cycles with respect to the edge (u, v), Ck1 , · · · , Cln−2

with any even length 4 ≤ l ≤ 2n−1 in Q0
n. By Lemma 2,

there is a path P k of Q1
n with any odd length 1 ≤

k ≤ 2n−1 − 3 joining ū to v̄. Then we have Cln−1 =
⟨u, ū, P k, v̄, v, u⟩ with any even length 4 ≤ l ≤ 2n−1.
Therefore, there exist n − 1 mutually independent cycles
with respect to the edge (u, v), Cl1, · · · , Cln−1 with every
even length 4 ≤ l ≤ 2n−1.
Case 2. For even length l and 2n−1 + 2 ≤ l ≤ 2n − 2.
By induction hypothesis, there exist n−2 mutually indepen-
dent cycles with respect to the edge (u, v), R1, · · · , Rn−2

with length 2n−1 of Q0
n. We let Ri = ⟨u, xi, yi, zi, · · · , v, u⟩

for 1 ≤ i ≤ n − 2. By Lemma 7, for any given odd
length k ≤ 2n−1 − 3 there exist n − 2 mutually fully
independent paths P k1 , · · · , P kn−2 all with the same length
k, such that P ki joins from ȳi to z̄i for 1 ≤ i ≤ n − 2. We

let Cli = ⟨ui, xi, yi, ȳi, P ki , z̄i, zi, Ri, vi, ui⟩. Then Cli , i = 1
to n − 2 are with any even length l, where 2n−1 + 2 ≤
l ≤ 2n − 2. By Lemma 1, there exists a hamiltonian path
P ′ of Q1

n joining ū to v̄. Let P ′ = ⟨ū, yn−1, zn−1, T, v̄⟩.
By Lemma 5, there exists a path Uk

′
with every odd length

1 ≤ k′ ≤ 2n−1 − 3 joining ȳn−1 to z̄n−1 in Q0
n − {u, v}.

We let Cln−1 = ⟨u, ū, yn−1, ȳn−1, U
k′ , z̄n+1, zn+1, T, v̄, v⟩

with any even length l, 2n−1+2 ≤ l ≤ 2n−2. Hence, there
exist n−1 mutually independent cycles with respect to edge
(u, v), Cl1, · · · , Cln−1 with any even length 4 ≤ l ≤ 2n−1.
Case 3. For even length l and l = 2n. This case is proved
by Theorem 1.

By Case 1, Case 2 and Case 3, we complete the proof.

4. Conclusion
In [1], the author introduced a popular property called

the pancyclicity. A stronger property is edge-bipancyclicity
which was proposed by Mitchem and Schmeichel in [5].
Another interesting property is the mutually independent
paths. Sun et al. [12] proved that the n-dimensional hyper-
cube graph contains n−1 mutually independent hamiltonian
paths between any vertex pair {x, y}, where x and y
belong to different partite sets and n ≥ 4. In this paper,
we combine the two properties, edge-bipancyclicity and
mutually independent paths, into a new stronger property
called mutually independent edge-bipancyclic property, and
show that the hypercube Qn is (n−1)-mutually independent
edge-pancyclic for n ≥ 4. Our result also strengthens a
previous result of Saad and Schultz [10], in the sense that the
hypercube Qn is not only edge-bipancyclic but also mutually
independent edge-pancyclic.

Acknowledgements
This research was partially supported by the National

Science Council of the Republic of China under contract
NSC 99-2221-E-009-084-MY3 and the Aiming for the Top
University and Elite Research Center Development Plan.

References
[1] U. S. R. Murty, Graph Theory with Applications, London: Macmillan

Press, 1976.
[2] K. Day and A. Tripathi, “Embedding of Cycles in Arrangement

Graph," IEEE Transactions on Computer, vol. 42, pp. 1002–1006,
1993.

[3] A. Germa, M. C. Heydemann, and D. Sotteau, “Cycles in the
Cubeconnected Cycles Graph," Discrete Applied Mathematics, vol.
83, pp. 135–155, 1998.

[4] S. C. Hwang and G. H. Chen, “Cycle in Butterfly Graphs," Networks,
vol. 35, pp. 161–171, 2000.

[5] J. Mitchem and E. Schmeichel, “Pancyclic and Bipancyclic Graphs-a
Survey," in Proceeding. First Colorado Symposium on Graphs and
Applications, 1985, pp. 271–278.

[6] Y. Alavi and J. E. Williamson, “Panconnected Graph," Studia Scien-
tiarum Mathematicarum Hungarica, vol. 10, pp. 19–22, 1975.

[7] T.-K. Li, C.-H. Tsai, J. J. M. Tan, and L.-H. Hsu, “Bipanconnectivity
and Edge-fault-tolerant Bipancyclicity of Hypercubes," Information
Processing Letters, vol. 87, pp. 107–110, 2003.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 97

[8] C.-K. Lin, H.-M. Huang, L.-H. Hsu, and S. Bau, “Mutually Inde-
pendent Hamiltonian Paths in Star Networks," Networks, vol. 46, pp.
110–117, 2005.

[9] S.-Y. Hsieh and P.-Y. Yu, “Fault-free Mutually Independent Hamilto-
nian Cycles in Hypercubes with Faulty Edges," Journal of Combina-
torial Optimization, vol. 13, pp. 153–162, 2007.

[10] Y. Saad and M. H. Schultz, “Topological Properties of Hypercubes,"
IEEE Transactions on Computers, vol. 37, pp. 867–872, 1988.

[11] C. H. Tsai, “Linear array and ring embeddings in conditional faulty
hypercubes," Theoretical Computer Science, vol. 314, pp. 431–443,
2004.

[12] C.-M. Sun, C.-K. Lin, H.-M. Huang, and L.-H. Hsu, “Mutually
Independent Hamiltonian Paths and Cycles in Hypercubes," Journal
of Interconnection Networks, vol. 7, pp. 235–255, 2006.

[13] S.-Y. Hsieh and Y.-F. Weng, “Fault-Tolerant Embedding of Pairwise
Independent Hamiltonian Paths on a Faulty Hypercube with Edge
Faults," Theory of Computing Systems, vol 45, pp. 407–425, 2009.

[14] G. Simmons, “Almost all n-dimensional Rectangular Lattices are
Hamilton Laceable," Congressus Numerantium, vol. 21, pp. 103–108,
1978.

[15] S.-Y. Hsieh and T.-H. Shen, Edge-bipancyclicity of a Hypercube with
Faulty Vertices and Edges, Discrete Applied Mathematics, vol. 156,
pp. 1802–1808, 2008.

98 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Audrey: The Model and Implementation of A Hybrid P2P
Framework for Massive Virtual Environments

James Dean Mathias1 and Daniel Watson2

1Dept. of Computer Science, Utah State University, Logan, UT 84322-4205, USA
2Dept. of Computer Science, Utah State University, Logan, UT 84322-4205, USA

Abstract— Massively Multiplayer Online environments con-
tinue to grow in popularity, with current technical designs
based upon a well proven client-server model. This approach
has some inherent limitations, high costs to provision server
resources for peak demands and restriction of the maximum
number of concurrent participants within a virtual environ-
ment. Incorporating Peer-to-Peer (P2P) techniques provides
developers the opportunity to significantly reduce costs,
while also breaking through the barrier of the number of
concurrent participants within a single virtual environment.
We propose a hybrid P2P model incorporating a managed
server along with a Voronoi-based P2P overlay for the devel-
opment of massive virtual environments. This paper explains
the current limitations of both client-server and pure P2P
systems and presents the design and implementation of our
hybrid P2P system, which resolves some of these limitations.

Keywords: Peer-to-Peer, Distributed Systems, Massive Multi-
player Online, Massive Virtual Environments, Networked Virtual
Environments

1. Introduction
Massively Multiplayer Online (MMO) environments have

become a significant component of the computer game
industry, including titles such as Ultima Online, Everquest,
Eve Online, and World of Warcraft. These represent a few
names among a growing and popular landscape of MMOs.
World of Warcraft dominates, with Blizzard boasting an
active subscriber base of 12 million [1], while other popular
MMOs have active subscriber bases in the range of several
hundred thousand. MMOs represent a unique opportunity
for the entertainment industry; namely, the ability to create
persistent virtual worlds with participation counted in the
thousands. This is in contrast to standard multi-player games
that have no persistence and allow, at best, a few dozen
participants in the same virtual environment (VE). While
MMOs are tremendously popular, current commercial de-
ployments are constrained by various technical limitations,
affecting both the VE design and the cost to deliver and
maintain.

The technical design of MMOs like World of Warcraft
(WOW) is a client-server architecture. The VE simulation is
performed at a server, or more specifically, at a server farm.

Every participant in the VE connects through a computer,
with their computer acting as a client. The client renders
the VE from the perspective of the participant, collects
input, sends this input to the server, monitors the server
for updates, and re-renders the VE based upon updated
state information. The server continuously receives inputs
from possibly many thousands of connected clients and
uses these inputs to update the VE simulation. The server
is the authoritative source for the current state of the VE
simulation, disseminating updates to any connected clients.

At the Austin Game Developer Conference in September
of 2009, Blizzard discussed the backend requirements used
to support World of Warcraft [2]. They report 13,250 server
blades running 75,000 CPU cores, spread across an unstated
number of server farms. Estimating 200 CPU cores per
server farm, this is on the order of 375 server farms, or server
instances, as multiple server farms may be located in the
same physical location. Using this number and working from
their reported subscriber base, we can estimate a maximum
allowable number of registered users per server instance,
to be on the order of 50,000, with each instance allowing
perhaps up to 10,000 active participants. Another popular
MMO, Eve Online [3], claims to have the largest number
of simultaneous users on a single server (farm) instance of
just over 56,000 users. These numbers indicate that there
is a high cost to purchase and maintain these computing
resources, along with a limited number of concurrent users
within a single VE. There is a high cost to purchase these
computers, physically host them around the world, and pay
for network bandwidth, power, cooling, human technical
support, and other costs simply to have this level of managed
physical resources. Of course, a company with a paying
subscriber base of 12 million can afford these physical
resources, but even large companies search for reductions
in their expenses in order to maximuze their profit. Simi-
larly, smaller companies aim to reduce the upfront financial
barrier.

Fundamentally, a client-server technical design results
in a high-cost risk for any organization, in addition to
representing a barrier to entry for smaller organizations. If
an organization underestimates or overestimates demand, an
over-allocation or under-allocation of resources results. In
the case of underestimating demand, customers are frustrated
because of poor performance, or an inability to even access

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 99

the MMO. In the case of overestimating demand, money
is unnecessarily wasted in providing physical hosting re-
sources, and very likely resulting in a sparsely-populated
MMO. Both of these problems may lead to failure, due to
high maintenace costs and low rates of participation, i.e. low
revenue stream.

Another limitation imposed by the client-server architec-
ture is the design of the VEs. Current server architectures
limit the number of simultaneous users on any particular
server instance. This technical limitation leads to a VE
design requirement: The VE is designed to accommodate a
tiny fraction of the total subscriber base, leading to the de-
ployment of multiple VE instances in order to accommodate
the total subscriber base. Removing this technical limitation
frees designers to contemplate new VEs, enabling hundreds
of thousands, potentially millions, of simultaneous users.

One approach to alleviating the technical limitations im-
posed by a client-server design is to use peer-to-peer (P2P)
design elements. P2P networks enable an application to
distribute computing tasks among the participating clients.
By requiring each connected client to provide more comput-
ing resources than it consumes, the potential for a scalable
computing environment exists. Traditionally, P2P networks
have been used for content distribution. That is not their only
use, they can be utilized for computational tasks, with those
tasks originating and computed without centralized, global
coordination.

This paper presents Audrey, a hybrid P2P model and oper-
ational framework for the simulation of massive networked
virtual environments (NVE). An important distinguishing
aspect of Audrey, from other P2P models, is that it is an op-
erational, distributed framework that provides a scalable and
secure computational overlay in which peers can participate.
This is a critical step to move forward in massive P2P-NVE
research and development, transitioning from simulations to
operational systems.

The paper begins with a review of research with respect
to P2P-based massive networked virtual environment models
described in Section 2. Section 3 describes the design and
hybrid model of our approach. Section 4 discusses the
implementation of our model as an operational system.
Section 5 details the different runtime environments used for
the development and execution of our framework. Closing
remarks are offered in Section 6.

2. Related Work
The field of P2P-based NVEs is an area of active re-

search; however, with no clear winning strategy and there
are no current commercial deployments. P2P NVE systems
borrow from many fields of computing, including peer-to-
peer systems, distributed computing, simulation, security,
networking, and databases. It is the application of these fields
in a unique combination that makes P2P NVE research a

distinct activity. The work reviewed in this section is related
specifically to P2P-based NVEs.

An example of a P2P NVE design is the Mediator
framework [4]. Mediator uses a structured P2P overlay,
formed through distributed hashing, along with application
level multicasting and direct P2P communication. The VE is
decomposed into a number of rectangular zones based upon
load management needs. These zones incorporate one or
more super-peers, or Mediators, each of which may take on
different roles. They then have a responsibility to maintain
the overlay, VE simulation, and communication activities.

Solipsis [5] is a proposal for the design of a P2P-
based NVE, outlining an approach for a globally-connected
network and a login and teleportation protocol for finding
the peer closest to a desired destination. The bulk of their
study is concerned with the construction and proof of the
overlay connectivity, with a short section describing a greedy
forwarding mechanism for peer login and teleportation. In
2008, Frey, et al., presented a new architecture, under the
name of Solipsis [6], which was a pure P2P approach, based
upon an n-dimensional Voronoi overlay. Computationally
intensive tasks, such as physics and collision detection,
are distributed throughout the overlay instead of a central
server. This project is unique in that it is an actual working
framework; the architecture, unfortunately, does not consider
the primary issue of security.

Another approach to deploying NVEs over a P2P network
is to embrace the nature of P2P, as opposed to emulating a
client-server model. Hughes, et al., [7] work from the as-
sumption that P2P networks are unpredictable; in particular,
they focus on P2P networks without a central authority. Their
suggestion is to embrace this in the design of the game world
rather than force predictability over the network. Their VE
design is intimately tied to the underlying peers participating,
with each peer hosting a room. As a peer is active, the room
is available; when a peer fails to respond, that room is not
accessible. Ultimately, the game is about exploration of the
P2P environment instead of being a goal-directed game.

Knutsson, et al., present the design and results from
their P2P research experiment, SimMud [8]. The SimMud
architecture is built upon the Pastry [9] foundation, utilizing
the Scribe [10] application level multicast infrastructure. The
authors assert that their results show it is feasible to create
a P2P-based massive NVE appropriate for the type of game
designs typical MMOs employ.

The Voronoi Based Adaptive Scalable (VAST) project
is an ongoing P2P NVE research project that has already
produced many results [11], [12], [13]. Their work uses a
Voronoi diagram to construct and maintain the P2P network
overlay. They have also identified several fundamental op-
erations that peers use for communication, including Join,
Move, and Leave, along with protocols for managing game
state among the P2P overlay. The authors have shown
that these three procedures, within a Voronoi-based overlay,

100 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

provide a scalable solution as the number of peers increases.
The project maintains a continually-updated, open source
implementation of a P2P NVE library and simulation.

Two models that specify a hybrid P2P design are
FreeMMG [14] by Kienzle, et al., and Peer Clustering [15]
by Chen and Muntz. Both of these models incorporate the
use of a managed server for secure storage of data, such
as usernames, passwords, and long term object persistence.
FreeMMG divides the world into segments and defines pro-
tocols for migrating objects as they move between segments.
Peers subscribe to these segments to receive updates. The
segments are managed by the server, which also manages
each peer’s area of interest. FreeMMG imposes a lockstep
timing protocol, which precludes decentralized control or
scalability. Peer Clustering divides the virtual environment
into regions small enough for a peer to manage and it utilizes
a distributed hash table approach for dividing the region
responsibilities among active peers. Communication between
peers is handled through the use of a Pastry-based routing
scheme [9]. The conclusions and results presented by Chen
and Muntz come from a simulated system model.

3. Model
This section introduces the current design of Audrey, our

hybrid P2P system. The model specifies a managed server
within a P2P framework, placing its design into the class of
hybrid P2P systems. The server is responsible for account
registration, login, logout, bootstrapping, long-term persis-
tence, and a number of other tasks. It is very much a server
with ultimate VE responsibility, albeit significantly lighter
weight than the server in a typical client-server model. Peers
are organized into a Voronoi-based overlay network, inspired
by, but significantly expanding and detailing the procedures
introduced by the Voronoi Overlay Network (VON) [11].
The Voronoi overlay is used to determine peer connectivity
for communication and also for spatially decomposing the
VE and distributing the simulation workload among its
peers.

3.1 Server
The server’s role is to provide a managed resource for

hosting a secure NVE. The server manages all data requiring
long-term persistence, such as account information, player
characters, statistics, and persistent environment objects.
Briefly noted, the following are the major components
and services of the server: database management, account
creation and maintenance, overlay bootstrapping, peer login,
and peer logout. The server shares some services common to
standard client-server NVE designs, deviating significantly
by having the VE simulation shared among its active peers,
rather than computing it itself, it does not participate in the
VE simulation. This is the key distinction; the server is not
a computational component.

Overlay bootstrapping is the process through which peers
become connected to the network overlay. Peers initially
login to the server and upon successful validation, receive
session credentials. Following login, the peer makes a re-
quest to join the overlay, also known as forwarding. During
an active session a peer is assigned an initial VE position,
either by the server or from the peer overlay. Following
login, the server acts as the initial point of contact for
forwarding. Upon receipt of a forwarding request, the server
responds by sending the peer the contact information of an
active peer it believes is closest to the indicated starting
location. The forwarding peer then contacts the active peer
to continue the forwarding process; this repeats until the peer
closest to the starting position is found. Upon completion,
the peer initiates a neighborhood discovery protocol to reveal
its peer neighbor environment and begins active participation
in the overlay. Following initial forwarding, any time a new
and distant VE position is indicated, an active peer already
known to the forwarding peer can be used as the initial point
of contact, bypassing the server entirely.

The Audrey model requires a server in order for overlay
bootstrapping to be secure and reliable. It is not reasonable
to rely upon a pure P2P framework that makes use of
cached history of peers or a distributed hash table (DHT).
In addition to security concerns in forming an overlay, when
a peer leaves the overlay or unexpectedly fails for any
reason, it can not be expected to be available for contact or
overlay maintenance support. The Audrey model provides a
guaranteed point of initial and fallback contact for overlay
bootstrapping and peer validation.

3.2 Peer
All peers are homogeneous; there is no differentiation in

function or responsibility among any of the peers. Peers
coordinate among each other to maintain the VE simula-
tion, interacting with the server only for account creation,
login, initial forwarding, and logout. The peer process is
heavyweight in that it has a wide range of computational
responsibilities, including networking demands, simulation
workload, and rendering of the VE from the player’s per-
spective.

The Voronoi diagram is applied in two different contexts
to form and maintain a VE simulation [16]. The first
context describes the overlay connectivity among the peers
for network communication. The second context spatially
decomposes the VE into regions of responsibility among the
peers. Each peer maintains a diagram based upon all peers
with which it is interested, its neighbors. The edges shared
between the peer region and other peers indicate direct or
enclosing, with all others identified as area of interest (AOI)
neighbors. The peer utilizes the data structure to know which
other peers should receive updates on movement, new object
creation, events. Additionally, it uses the data structure to
know when to inform a neighboring peer of the arrival

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 101

of a new neighbor. The diagram is also used to identify
regions of shared responsibility for objects having short-term
persistence. In order to effectively support fault tolerance,
the simulation of all objects within the VE is replicated
and coordinated among neighboring peers. As new objects
are created, the responsibility for their shared/replicated
simulation is described by the diagram.

Peers have no need for routing of messages through
the overlay when communicating with each other, Network
communication between peers is always direct. Throughout
a peer’s active session, every peer they have ever had contact
with is recorded and kept in memory, which includes the net-
work endpoint for communication. Any time communication
between peers is necessitated, a direct connection is made.

3.3 Security
Security is a core design element, supported primarily

through the use of public/private key pairs for all peers, as
well as the server. The server is assigned a public/private
key pair; each peer is also assigned a public/private key
pair upon account creation. Peers are distributed with the
server’s public key, which is used throughout the framework
for verification without requiring that contact is made with
the server. The public/private key pair for all peers is stored
at the server and securely transmitted, through an SSL
connection, during login. These keys form the basis for
various signing and verification protocols used throughout
the framework.

During login, the server generates a unique session cer-
tificate, signed by the server’s private key. The certificate
includes the peer’s public key, networking endpoint, date the
certificate was created, and the length of time the certificate
is valid. The certificate’s expiration serves to limit the time
a rouge process can wreak havoc in the case a certificate is
compromised. Upon initial contact, peers exchange certifi-
cates, enabling them to verify the authenticity of each other
by verifying that the presented certificate’s signature is from
the server. It is this essential design element that allows peers
to validate each other without having to contact the server,
supporting the security and scalability of the framework.

4. Implementation
This section details the implementation of the Audrey

model as a distributed application, following the model
described in Section 3. The server and peer processes
share significant design and source code components. Unless
noted, the sub-sections below describe functionality common
to both components. The development environment and
tools are briefly highlighted, the spatial overlay technique is
detailed, followed by a detailed description of the process-
ing architecture, networking, security, data collection, and
visualization components.

Audrey is an actual implementation of a VE model;
it is not a simulation of one. While it is an operational

framework, it is spurious to suggest that Audrey is ready
for a commercial, real-world deployment. Further technical
hurdles remain to be overcome, along with the design and
development of a massive virtual environment that is appro-
priate for the capabilities enabled this hybrid P2P framework.

4.1 Development Environment
The server and peer processes are written in C++,

utilizing several third-party libraries, including Boost[17],
Crypto++[18], RapidXML[19], and Google’s gtest[20],
along with a custom implementation of the Voronoi diagram
data structure. Primary development is performed using Vi-
sual Studio in a Microsoft Windows environment, although
a Linux makefile is maintained, enabling the framework
to be compiled and executed on both Windows and Linux
operating systems.

Boost is used to provide cross platform threading, cross
platform data type definitions, and networking, which in-
cludes the SSL networking protocol used for the secure
transmission of username, passwords, and public/private key
pairs. The Crypto++ library provides the public/private key
generation, signing, and verification functionality, along with
other cryptographic capabilities. RapidXML provides XML
parsing and persistence, which is used for the persistence of
an XML based user account database for the server, as well
as data collection persistence. The Google gtest library is
incorporated into the project to support unit testing.

4.2 Spatial Overlay
The Audrey model specifies the use of a Voronoi diagram

to form the peer overlay. The implementation of our model is
supported through the use of a custom C++ implementation
of the Voronoi diagram. The design of the overlay code
is such that the nature of the spatial diagram is unknown
throughout the application. The overlay behavior is defined
in an abstract base class named P2POverlay, which details
what a spatial diagram must support in order to work as
an overlay. These behaviors include the ability to construct
a diagram from a set of points and then perform different
neighbor queries when given a specific point. The custom
Voronoi implementation derives from this abstract base class
and provides concrete implementations for these behaviors.
In the future, if it is desired for any reason to use a different
spatial overlay structure, there is a relatively straightforward
process for doing so. The new data structure simply derives
from the abstract P2POverlay class and the application
instantiates the new data structure instead of the Voronoi
diagram; the rest of the application code remains untouched.

4.3 Processing Architecture
The underlying processing design of the peer and server

is that of a fan-out task scheduling and processing core.
At startup, the process creates a thread pool with an initial
worker thread count matching the number of available CPU

102 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

cores. These worker threads all listen to a single, synchro-
nized work queue that signals an event upon receipt of a
new work item. The design of an event ensures that only one
inactive worker is signaled upon receipt of a new task. As it
completes its current task, a worker checks to see if the work
queue contains more work items. If it does, the worker grabs
the next item and continues processing; otherwise it enters
an efficient wait state, waiting to be signaled. This design
and implementation enables a highly scalable computational
framework for both the server and peer processes.

4.4 Networking
All network communication is over UDP, except for

account creation and login, which is TCP over an SSL
connection. Every communication that occurs between the
server and a peer or between peers is performed within
the context of a protocol. Each protocol is described as a
state machine, one for the initiator and one for the receiver.
The state machine describes the messages that are sent and
received, along with the state transitions that occur upon the
receipt of a message. The protocol also describes timeouts
and retries for each state in support of messaging failures
and/or delays. The following list identifies the different pro-
tocols supported by the current framework implementation:

1) Create Account
2) Login
3) Logout
4) Start Position
5) Alive
6) Forwarding
7) Neighborhood Discovery
8) New Neighbor
9) Move
The framework defines a base protocol class that provides

the underlying implementation of the state machine, from
which all protocols are derived. The base implementation
provides the functionality for state processing, transitions,
timeout periods, number of retries for each state, and a
callback mechanism for reporting the completion of the pro-
tocol. The protocols are designed to fit within the processing
architecture described in Section 4.3. A master table of all
protocols is maintained. Upon receipt of a message, the
protocol associated with that message is assigned to a task
and the next available worker thread processes the task and
updates the state of the protocol. When the processing of
the task is complete, the worker thread returns to the thread
pool. This design allows any protocol to be processed by
any available worker thread, rather than dedicating a single
thread for protocol’s lifetime.

4.4.1 Punch Through NAT

The networking implementation of Audrey supports punch
through NAT given the design of the server and session

certificates. Peers are distributed with the server’s public IP
address, enabling them to contact the server at startup. The
server sees the peer’s public IP address/port combination and
this becomes the networking endpoint recorded in the session
certificate. The certificate is used by peers as the source for
networking endpoints in contacting each other. Therefore, all
peers communicate with each other through their external IP
address, as seen by the server, leaving routing up to local
switches and routers.

4.4.2 Dropped Packets & Latency

Because the network the framework runs on is a best-
case scenario (a local area network without external traffic;
refer to Section 5), a small concession is made to simulate
real-world Internet conditions of packet loss and latency.
The code is designed with a receiving queue of messages,
which is parameterized with the ability to drop or delay
incoming packets according to a set of runtime parameters.
This provides the system the ability to execute the framework
under different levels of packet loss and latency throughout
the network.

4.5 Security
As described in Section 3.3, the security model relies upon

public/private key pairs, along with server signed certificates.
The server is a assigned unique public/private key, with its
public key distributed to all peers, through a configuration
file. The next few paragraphs highlight the use of key pairs
and certificates throughout the framework.

An account certificate is created when a peer requests
a new account. This certificate is composed of a unique
account ID, username, password (SHA-256 hash), first name,
last name, gameplay name, and a public/private key pair. The
Crypto++ library is used to generate a public/private key
pair and to perform an SHA-256 encoding of the password.
During the framework development, a 1024 bit key size is
used; this is a simple parameter that can be changed to suit
whatever security needs exist for a real-world deployment.
The account creation protocol is conducted using TCP over
an SSL stream, provided by the Boost library, ensuring
secure transmission of the username and password. The
certificate is persisted at the server and never transmitted
to any other entity in the framework.

Upon peer login, the server generates a session certificate.
This certificate is composed of the peer’s unique account
ID, gameplay name, public key, date/time issued, date/time
of expiration, and the peer’s networking endpoint, all signed
by the server’s private key. During login the peer sends its
username and password (SHA-256 hash), then receives its
session certificate over an SSL connection to ensure secure
transmission. This certificate is shared with other overlay
peers at initial contact, allowing the authenticity of a peer
to be validated without having to contact the server.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 103

4.6 Data Collection & Visualization
The framework includes a separate post-execution data

collection and visualization application. This capability is
achieved through three different components. During ex-
ecution, each peer maintains a detailed, in-memory, log
of events, primarily network communications. Following
execution of a VE scenario, the server contacts each peer
in sequence, requests its log, and persists the received data
into an XML file, one for each peer. The final component
is a standalone application that provides the post-execution
data visualization capabilities.

The standalone application is written in C#. It provides a
user the ability to view raw data in tabular and graphical
form. It also features the ability to replay an execution
scenario, including support for pausing or stepping through
event logs. The replay offers a global reconstruction of
the overlay, along with the ability to view replay from
the perspective of a single peer. This application also pro-
vides some data analysis features, based upon the global
reconstruction, such as comparing the neighbors a peer saw
versus the neighbors it should have seen. This ability to log
the execution events, display, replay, and summarize those
results in this application provides a significant step forward
in the development and analysis of different techniques in
the Audrey model.

5. Execution Platforms
Two different platforms are utilized to enable algorithm

development and large-scale execution exercises. The first is
a small local area network of 30 GuruPlug[21] computers,
the second is a modest Beowulf[22] cluster of 128 CPU
cores (Rex). The GuruPlug network is used as the primary
application and algorithm development platform; it is dedi-
cated solely to the Audrey research project. The Rex cluster
is used for larger scale execution exercises.

The GuruPlug computers are small form factor computing
devices. Their physical dimensions are approximately 2 x 3
x 4 inches. Each device includes a 1.2 GHz ARM based
CPU running a Debian Linux 2.6 kernel, with 512MB of
RAM, 512MB of flash storage, and a wired gigabit Ethernet
connection. The GuruPlug computers run peer processes,
with the server executing on a standard desktop computer,
running either Windows or Linux. Each computer is easily
capabile of running three peer processes, enabling an exe-
cution scenario to utilize 90 asynchronous peer processes.
When peer processes are created on this platform, they are
given a unique configuration file to load, which includes their
unique IP/port network address.

Rex is a Beowulf cluster; a small bit of custom code to
support execution on this platform. This is distinct from the
GuruPlug platform. Each node on Rex has two, quad core
CPUs, totaling eight cores per node. Each node is assigned
a unique, private NAT address. Peers created on this cluster

use the MPI API to obtain their unique process rank. Using a
rank, a peer process forms a unique IP/port network address.
This is the only use of MPI in the cluster environment, all
networking is as previously described, using the socket API.

The Audrey framework is an actual implementation, not
a simulation; all executions are performed in real-time.
Elapsed execution scenario time is the same as the length
of the execution; time is real, not simulated. The size of
the cluster or number of computers in the network affects
only the number of peer processes that can participate in
the execution, not the length of time it takes to perform the
execution.

6. Closing Remarks
This paper presents Audrey, an ongoing research project

and development framework. The purpose of the Audrey
project is the development of a comprehensive model, as
well as the demonstration of a successful implementation
of P2P techniques to enable massive P2P-based NVEs.
At this point, the primary contributions of this effort are
three-fold. The first is a model that combines a managed
server, a Voronoi-based P2P overlay, and a security model
to form a hybrid NVE design. The second is an operational
implementation of the model that executes on physically
distributed and asynchronous computing devices. The third is
a post-execution application capable of visualizing, replaying
and summarizing the real-time execution data logs.

References
[1] B. Entertainment, “World of warcraft sub-

scriber base reaches 12 million worldwide,”
Oct 2010. [Online]. Available: http://us.blizzard.com/en-
us/company/press/pressreleases.html?101007

[2] Gammasutra, “Gdc austin: An inside look at the universe of warcraft.”
[3] CCP, “Eve online,” http://www.eveonline.com. [Online]. Available:

http://www.eveonline.com
[4] L. Fan, H. Taylor, and P. Trinder, “Mediator: a design framework

for p2p mmogs,” in NetGames ’07: Proceedings of the 6th ACM
SIGCOMM workshop on Network and system support for games.
New York, NY, USA: ACM, 2007, pp. 43–48.

[5] J. Keller and G. Simon, “Solipsis: A massively multi-participant
virtual world,” in Parallel and Distributed Processing Techniques and
Applications. CSREA Press, 2003, pp. 262–268.

[6] D. Frey, J. Royan, R. Piegay, A. Kermarrec, E. Anceaume, and F. Fes-
sant, “Solipsis: A decentralized architecture for virtual environments,”
in Workshop on Massively Multiuser Virtual Environments, 2008.

[7] D. Hughes, “Exploiting p2p in the creation of game worlds,” in In
the proceedings of ACM GDTW 2005, 2005.

[8] B. Knutsson, M. M. Games, H. Lu, W. Xu, and B. Hopkins, “Peer-
to-peer support for massively multiplayer games,” 2004.

[9] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,” in
Middleware ’01: Proceedings of the IFIP/ACM International Confer-
ence on Distributed Systems Platforms Heidelberg. London, UK:
Springer-Verlag, 2001, pp. 329–350.

[10] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “Scribe:
A large-scale and decentralized application-level multicast infrastruc-
ture,” IEEE Journal on Selected Areas in Communications (JSAC,
vol. 20, p. 2002, 2002.

104 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

[11] S.-Y. Hu and G.-M. Liao, “Scalable peer-to-peer networked virtual
environment,” in NetGames ’04: Proceedings of 3rd ACM SIGCOMM
workshop on Network and system support for games. New York, NY,
USA: ACM, 2004, pp. 129–133.

[12] J.-F. Chen, W.-C. Lin, T.-H. Chen, and S.-Y. Hu, “A forwarding model
for voronoi-based overlay network,” in ICPADS ’07: Proceedings
of the 13th International Conference on Parallel and Distributed
Systems. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 1–7.

[13] J.-R. Jiang, Y.-L. Huang, and S.-Y. Hu, “Scalable aoi-cast for peer-to-
peer networked virtual environments,” in ICDCSW ’08: Proceedings
of the 2008 The 28th International Conference on Distributed Com-
puting Systems Workshops. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 447–452.

[14] F. R. Cecin, R. de Oliveira Jannone, C. F. R. Geyer, M. G. Martins,
and J. L. V. Barbosa, “Freemmg: a hybrid peer-to-peer and client-
server model for massively multiplayer games,” in NetGames ’04:
Proceedings of 3rd ACM SIGCOMM workshop on Network and
system support for games. New York, NY, USA: ACM, 2004, pp.
172–172.

[15] A. Chen and R. R. Muntz, “Peer clustering: a hybrid approach to

distributed virtual environments,” in NetGames ’06: Proceedings of
5th ACM SIGCOMM workshop on Network and system support for
games. New York, NY, USA: ACM, 2006, p. 11.

[16] F. Aurenhammer, “Voronoi diagrams—a survey of a fundamental
geometric data structure,” ACM Computing Surveys, vol. 23, no. 3,
pp. 345–405, 1991.

[17] Boost.org, “Boost c++ libraries,” http://www.boost.org. [Online].
Available: http://www.boost.org

[18] Crypto++, “Crytpo++ library,” http://www.cryptopp.com. [Online].
Available: http://www.cryptopp.com

[19] M. Kalicinski, “Rapidxml,” http://rapidxml.sourceforge.net. [Online].
Available: http://rapidxml.sourceforge.net

[20] I. Google, “googletest,” http://code.google.com/p/googletest. [Online].
Available: http://code.google.com/p/googletest

[21] Wikipedia, “Guruplug — wikipedia, the free encyclopedia,”
2011, [Online; accessed 10-February-2011]. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=GuruPlugoldid=411780301

[22] ——, “Beowulf (computing) — wikipedia, the free encyclopedia,”
2011, [Online; accessed 12-February-2011]. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Beowulf(computing)oldid =
413043434

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 105

Cycle Embedding in Folded Hypercubes

Y-Chuang Chen1 and Lieh-Yu Lin2

1,2Department of Information Management, Ming Hsin University of Science and Technology,
Hsin Feng, Hsinchu 30401, Taiwan, R.O.C.

Abstract— The cycle embedding problem in interconnection
networks is an important issue, because it is one of measure-
ments for determining whether the topology of a network
is suitable for an application in which embedding rings of
various lengths into the topology is required. Embedding
cycles of different sizes into a network are benefit to execute
parallel programs efficiently. The folded hypercube is a
popular network because of its attractive properties. Given
an n-dimensional folded hypercube FQn and let e be any
edge of FQn. In this paper, we discuss the number of simple
k-cycles in FQn, which passing through the edge e, for
k = 4, 6.

Keywords: folded hypercube, simple cycles, simple paths, cycle
embedding.

1. Introduction
For the graph definition and notation, we follow [1].

G = (V,E) is a simple graph if V is a finite set and E
is a subset of {(u, v)|(u, v) is an unordered pair of V }. We
say that V is the vertex set and E is the edge set. The
neighborhood of v, NG(v), is {x|(v, x) ∈ E(G)}. Two
vertices a and b are adjacent if (a, b) ∈ E(G). A path
P = ⟨v0, v1, ..., vm⟩ is a sequence of adjacent vertices. A
cycle C = ⟨v0, v1, ..., vm, v0⟩ is a sequence of adjacent
vertices where the first vertex is the same as the last one.
A path P (a cycle C, respectively) is a simple path (simple
cycle, respectively) if vi ̸= vj for every i ̸= j, otherwise it
is a non-simple path (non-simple cycle, respectively). In this
paper, we abbreviate a simple path and a simple cycle as a
path and a cycle, respectively. The length of a path P (a
cycle C, respectively), denoted by ℓ(P) (ℓ(C), respectively)
is the number of edges in P (in C, respectively). A simple
path (cycle, respectively) of length k, k ≥ 3, is abbreviated
as a k-path (k-cycle, respectively). The distance from vertex
u to vertex v, denoted by dist(u, v), is the minimum length
of any path from u to v.

A graph G is pancyclic if any k-cycle can be embedded
into it for 3 ≤ k ≤ |V (G)|; G is bipancyclic if any k-
cycle of even length can be embedded into it for 4 ≤ k ≤
|V (G)|. A pancyclic graph G is edge-pancyclic if every edge
of G lies on a cycle of every length; a bipancyclic graph G
is edge-bipancyclic if every edge of G lies on a cycle of
every even length. Bipancyclicity is essentially a restriction
of the concept of pancyclicity to cycles of even lengths. Saad
and Schultz [13] had proved that the hypercubes Qn are

bipancyclic and Li et al. [11] had proved that Qn are edge-
bipancyclic. There are also many literatures discussing the
pancyclic and edge-pancyclic related properties on specific
networks, such as Möbius cubes [17], balanced hypercubes
[16], folded hypercubes [15], enhanced hypercubes [9], and
exchanged hypercubes [12].

The cycle embedding problem is one of the most pop-
ular research issues in interconnection networks, because
it is an important measurement for determining whether
the topology of a network is suitable for an application in
which embedding rings of various lengths into the topology
is required [10]. Moreover, embedding cycles of different
sizes into a network are benefit to execute parallel programs
efficiently [7]. There are many literatures which discussing
cycle embedding of various lengths. In 1971, the numbers
of non-simple k-cycles for k = 3, 4 and 5 in a graph G
are counted by F. Harary et al. [8]. In 2003, H. L. Fu et
al. counted the number of non-simple 6-cycles in a graph
G [3]. Until 2007, G. G. Cash proposed a mathematically
exact method for finding the number of non-simple k-cycles
for 3 ≤ k ≤ |V (G)| in a graph G [2]. On specific networks,
there are also some literatures discussing the number of non-
simple k-cycles and k-paths, such as the low-density parity
check codes [6] and star graphs [14]. For the n-dimensional
hypercube Qn, the number of k-cycles in Qn, which passing
through any edge e ∈ E(Qn) for k = 4, 6, and 8, is
discussed in [4]. In this paper, we discuss the number of k-
cycles in the n-dimensional folded hypercube FQn, which
passing through any edge e ∈ E(FQn) for k = 4, 6.

The remainder of this paper is organized as follows. In
Section 2, we state some important properties of hypercubes
and folded hypercubes, and also give some notations. In
Section 3, the numbers of cycles of lengths 4 and 6 in
folded hypercubes are discussed. Section 4 gives concluding
remarks and future works.

2. Preliminaries
The hypercube is a popular network because of its at-

tractive properties, including regularity, symmetry, small
diameter, strong connectivity, recursive construction, par-
titionability, and relatively low link complexity [7], [11],
[13]. The folded hypercube, proposed by A. El-Amawy and
S. Latifi [5], is a variation of the hypercube. The folded
hypercube includes many good properties of the hypercube,
such as vertex-symmetry and edge-symmetry. The folded

106 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

hypercube is also superior over the hypercube in some
properties, such as shorter average distance, half diameter,
and less delay in communication then the hypercube [5],
[15].

The formal definition of an n-dimensional hypercube,
denoted by Qn, is given as follows. Each vertex v in
Qn can be distinctly labeled by an n-bit binary string,
v = vnvn−1...v1. For 1 ≤ i ≤ n, we use vi to denote
the binary string vn...v̄i...v1. The Qn consists of all n-bit
binary strings representing its vertices. Two vertices u and
v are adjacent if and only if v = ui with some i. An n-
dimensional hypercube Qn can be constructed from two
identical (n− 1)-dimensional hypercubes, Q0

n−1 and Q1
n−1,

where V (Q0
n−1) = {vnvn−1...v1|vn = 0} and V (Q1

n−1) =
{vnvn−1...v1|vn = 1}. The vertex set of Qn is V (Qn) =
V (Q0

n−1) ∪ V (Q1
n−1); and the edge set is E(Qn) =

E(Q0
n−1)∪E(Q1

n−1)∪En where En is a set of edges con-
necting the vertices of Q0

n−1 and Q1
n−1 in a one to one fash-

ion. That is, En = {(0vn−1vn−2...v1, 1vn−1vn−2...v1)|vi ∈
{0, 1} for 1 ≤ i ≤ n− 1}.

An n-dimensional folded hypercube, denoted by FQn,
is obtained from Qn by adding a specific perfect match-
ing between Q0

n−1 and Q1
n−1. An n-dimensional folded

hypercube FQn is also constructed from two identical
(n − 1)-dimensional hypercubes, Q0

n−1 and Q1
n−1, where

V (Q0
n−1) = {vnvn−1...v1|vn = 0} and V (Q1

n−1) =
{vnvn−1...v1|vn = 1}. The vertex set of FQn is V (FQn) =
V (Q0

n−1) ∪ V (Q1
n−1) = V (Qn); and the edge set is

E(FQn) = E(Qn) ∪ Xn where Xn is a perfect matching
between Q0

n−1 and Q1
n−1, such that for every vertex v =

vnvn−1...v1 ∈ V (FQn), (vnvn−1...v1, vnvn−1...v1) ∈ Xn.
In FQn, any edge belongs to Xn is called a complement
edge, otherwise it is called a hypercube edge. Fig. 1 illus-
trates FQ2 and FQ3. We need some more terms. Let v =
vnvn−1...v1 be a vertex of FQn, we use v′ to denote vertex
vnvn−1...v1 and use v to denote vertex vnvn−1...v1. That
is, (v, v′) is a hypercube edge and (v, v) is a complement
edge of FQn. We notice that folded hypercubes are vertex-
symmetric and edge-symmetric.

00

01

10

11

(a)

000

(b)

001 011

010

101 111

100 110

Fig. 1: (a) FQ2; (b) FQ3.

To show the number of k-cycles in folded hypercubes,
some definition are needed. Let Pk(G) be a k-path in graph
G, P ek (G) be a k-path with edge e (called required edge) in
graph G, and ndpek(G) be the number of k-paths P ek (G)s in
graph G. Also, let Ck(G) be a k-cycle of length k in graph
G, Cek(G) be a k-cycle with edge e (also called required
edge) in graph G, and ndcek(G) be the number of k-cycles

Cek(G)s in graph G.

3. Number of k-cycles in folded hyper-
cubes

To show the number of k-cycles with k = 4, 6 in folded
hypercubes, the following four lemmas are essential.

Lemma 1: Given an n-dimensional hypercube Qn for
n ≥ 2. For every edge (u, v) ∈ E(Qn), there exist exactly
n− 1 3-paths joining u and v.
Proof. Since the hypercube Qn is edge-symmetric and
dist(u, v) = 1, we may without loss of generality assume
that (u, v) = (anan−1...a1, anan−1...a1). Then the n − 1
3-paths joining u and v are as follows:
⟨anan−1...ai...a1, anan−1...ai...a1, anan−1...ai...a1,

anan−1...ai...a2a1⟩, 2 ≤ i ≤ n. �

Lemma 2: Let n and k be two positive integers such that
n ≥ k ≥ 1. Given an n-dimensional hypercube Qn. For
every pair of u, v ∈ V (Qn) such that dist(u, v) = k, there
exist exactly k! k-paths joining u and v.
Proof. Since dist(u, v) = k, the labels of vertices u and v
are different with exactly k bits. For every k-path joining u
and v, the labels of every two consecutive vertices of this
path are different with only one of the k bits. Hence, there
are exactly k! k-paths joining u and v and the lemma is
proved. �

Lemma 3: Given a 3-dimensional folded hypercube FQ3.
For every edge e ∈ E(FQ3), ndce4(FQ3) = 9.
Proof. Since folded hypercubes are edge-symmetric, we may
without loss of generality assume that the required edge e =
(x, y) = (000, 001). Then, the 9 4-cycles Ce4(FQ3)s are as
the following by brute force:
⟨000, 001, 011, 010, 000⟩, ⟨000, 001, 011, 100, 000⟩,
⟨000, 001, 011, 111, 000⟩, ⟨000, 001, 101, 010, 000⟩,
⟨000, 001, 101, 100, 000⟩, ⟨000, 001, 101, 111, 000⟩,
⟨000, 001, 110, 010, 000⟩, ⟨000, 001, 110, 100, 000⟩,
⟨000, 001, 110, 111, 000⟩. �

Lemma 4: [4] Given an n-dimensional hypercube Qn for
n ≥ 3. Let e be any edge in Qn, then ndce6(Qn) = 4n2 −
12n+ 8.

For the number of 4-cycles and 6-cycles with any required
edge in folded hypercubes, it is proved in Theorems 1 and
2.

Theorem 1: Given an n-dimensional folded hypercube
FQn for n ≥ 4. For every edge e ∈ E(FQn),
ndce4(FQn) = n.
Proof. Since folded hypercubes are edge-symmetric, we may
without loss of generality assume that the required edge

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 107

e = (vnvn−1...v1, vnvn−1...v1). Then, the n 4-cycles are
as follows:

(1) ⟨vnvn−1...vi...v1, vnvn−1...vi...v1, vnvn−1...vi...v1,
vnvn−1...vi...v1, vnvn−1...vi...v1⟩, 2 ≤ i ≤ n; and

(2) ⟨vnvn−1...vi...v1, vnvn−1...vi...v1, vnvn−1...vi...v1,
vnvn−1...vi...v1, vnvn−1...vi...v1⟩.

Therefore, there are totally (n − 1) + 1 = n Ce4(FQn)s
and the theorem is proved. �

Theorem 2: Give an n-dimensional folded hypercube
FQn for n ≥ 6. For every edge e ∈ E(FQn),
ndce6(FQn) = 4n2 − 4n.
Proof. Since folded hypercubes are edge-symmetric, we may
without loss of generality assume that the required edge e =
(x, y)=(0an−1...a1, 0an−1...a1). Hence, (x, y) is in Q0

n−1.
Let SP0 = Ce6(FQn)∩Q0

n−1 and SP1 = Ce6(FQn)∩Q1
n−1.

According to the number of edges of Ce6(FQn) ∩ Xn, we
divide the proof into four cases.
Case 1: |Ce6(FQn) ∩Xn| = 0. By Lemma 4, ndce6(Qn) =
4n2− 12n+8. Therefore, there are 4n2− 12n+8 6-cycles
in FQn in this case.
Case 2: |Ce6(FQn) ∩ Xn| = 1. Then, Ce6(FQn)\Xn is a
5-path. Note that each edge of this path Ce6(FQn)\Xn is a
hypercube edge and the labels of the two endpoint vertices
of this path are different with exactly n bits, which is a
contradiction for n ≥ 6. Therefore, it is impossible that
|Ce6(FQn) ∩Xn| = 1 for n ≥ 6.
Case 3: |Ce6(FQn)∩Xn| = 2. Then, |Ce6(FQn)∩En| = 0
or 2. There are totally (8n − 16) + 8 = 8n− 8 6-cycles in
Case 3 as shown in the following two subcases.
Case 3-1: |Ce6(FQn) ∩ En| = 0. Hence, SP0 and SP1

are a path of Q0
n−1 and Q1

n−1, respectively, and ℓ(SP0) +
ℓ(SP1) = 4. There are totally (3n−6)+(4n−8)+(n−2) =
8n−16 6-cycles in Case 3-1 as shown in the following three
subcases.
Case 3-1-1: ℓ(SP0) = 3 and ℓ(SP1) = 1. By Theorem
1, ndce4(Q

0
n−1) = n − 2. Let one of the Ce4(Q

0
n−1)s be

⟨x, y, a, b, x⟩. Since |Ce6(FQn) ∩ Xn| = 2, ⟨x, y, a, b, x⟩
can be extended to the three Ce6(FQn)s: ⟨x, y, a, b, b, x, x⟩,
⟨x, y, a, a, b, b, x⟩ and ⟨x, y, y, a, a, b, x⟩. Therefore, there are
totally (n− 2)× 3 = 3n− 6 Ce6(FQn)s in Case 3-1-1.
Case 3-1-2: ℓ(SP0) = 2 and ℓ(SP1) = 2. Since Q0

n−1

is (n − 1)-regular and contains no triangle, |(NQ0
n−1

(x)) ∪
(NQ0

n−1
(y)) \ {x, y}| = 2(n − 2) = 2n − 4. So there are

exactly 2n − 4 2-paths with edge (x, y) in Q0
n−1. That is,

ndpe2(FQ
0
n−1) = 2n − 4. Let one of the P e2 (FQ

0
n−1)s be

⟨a, b, c⟩. Note that (x, y) is equal to either (a, b) or (b, c).
Since ℓ(SP0) = ℓ(SP1) = 2 and FQn contains no triangle
for n ≥ 3, dist(a, c) = dist(a, c) = 2. By Lemma 2, there
are two 2-paths joining a and c in Q1

n−1, and let one of them
be ⟨a, d, c⟩. Then, ⟨a, b, c, c, d, a, a⟩ forms a Ce6(FQn). As
a result, there are totally (2n− 4)× 2 = 4n− 8 Ce6(FQn)s
in Case 3-1-2.

Case 3-1-3: ℓ(SP0) = 1 and ℓ(SP1) = 3. By Lemma 1,
there are exactly n−2 3-paths joining x and y in Q1

n−1. Let
one of the n−2 paths be ⟨x, a, b, y⟩. Then, ⟨x, y, y, b, a, x, x⟩
forms a Ce6(FQn). Consequently, there are totally n − 2
Ce6(FQn)s in Case 3-1-3.
Case 3-2: |Ce6(FQn) ∩ En| = 2. There are totally 1 + 1 +
3 + 3 = 8 6-cycles in Case 3-2 as shown in the following
four subcases.
Case 3-2-1: {(x, x′), (y, y′)} ⊂ E(Ce6(FQn)). There is only
one 6-cycle with (x, y): ⟨x, y, y′, y′, x′, x′, x⟩.
Case 3-2-2: {(x, x), (y, y)} ⊂ E(Ce6(FQn)). There is also
only one 6-cycle with (x, y): ⟨x, y, y, y′, x′, x, x⟩.
Case 3-2-3: {(x, x′), (y, y)} ⊂ E(Ce6(FQn)). There
exist three 6-cycles with (x, y): ⟨x, y, y, y′, x′, x′, x⟩,
⟨x, y, y, y′, y′, x′, x⟩, and ⟨x, y, y, x, x′, x′, x⟩. See Fig. 2.

Qn-1 Qn-1

x

y

y

x'

y
x'
'

FQn
Qn-1 Qn-1

x

y

y

FQn

x

y

y y

Qn-1 Qn-1

x

y

y

FQn

x

x
xx

Fig. 2: {(x, x′), (y, y)} ⊂ E(Ce6(FQn)).

Case 3-2-4: {(x, x), (y, y′)} ⊂ E(Ce6(FQn)). There
exist three 6-cycles with (x, y): ⟨x, y, y′, y′, x′, x, x⟩,
⟨x, y, y′, x′, x′, x, x⟩, and ⟨x, y, y′, y′, y, x, x⟩. See Fig. 3.

Qn-1 Qn-1

x

y

y'

y'

xx
'

FQn
Qn-1 Qn-1

x

y

x

FQn

y'

x

xx

Qn-1 Qn-1

x

y

y

FQn

y

x

yy

Fig. 3: {(x, x), (y, y′)} ⊂ E(Ce6(FQn)).

Case 4: |Ce6(FQn)∩Xn| ≥ 3. It is clear that it is impossible
that |Ce6(FQn) ∩Xn| ≥ 3.

With above Case 1 ∼ Case 4, ndce6(FQn) = (4n2−12n+
8)+0+(8n−8)+0 = 4n2−4n for n ≥ 6, and the theorem
is proved. �

For the numbers of 6-cycles of small dimensional folded
hypercubes FQn for n = 3, 4, 5, they can be obtained by
computer programs and the results are stated in Lemmas
5∼7.

Lemma 5: Given a 3-dimensional folded hypercube FQ3.
For every edge e ∈ E(FQ3), there exist exactly 36 6-cycles
with edge e in FQ3.

108 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Lemma 6: Given a 4-dimensional folded hypercube FQ4.
For every edge e ∈ E(FQ4), there exist exactly 48 6-cycles
with edge e in FQ4.

Lemma 7: Given a 5-dimensional folded hypercube FQ5.
For every edge e ∈ E(FQ5), there exist exactly 200 6-cycles
with edge e in FQ5.

4. Conclusions
In this paper, we investigate in discussing embedding of

distinct simple 4-cycles and 6-cycles with any required edge
into folded hypercubes. For the number of 4-cycles with
any required edge e in FQn, we show that ndce4(FQ3) = 9
and ndce4(FQn) = n for n ≥ 4. For the number of 6-
cycles with any required edge e in FQn, we show that
ndce6(FQ3) = 36, ndce6(FQ4) = 48, ndce6(FQ5) = 200,
and ndce6(FQn) = 4n2 − 4n for n ≥ 6. In the future, we
hope to obtain ndcek(FQn) for every even k ≥ 8.

Acknowledgments
This work was supported in part by the National Science

Council of the Republic of China under Contract NSC 99-
2221-E-159-014; Correspondence to: Y-Chuang Chen.

References
[1] J. A. Bondy and U. S. R. Murty, Graph theory with applications, North

Holland, New York, (1980).
[2] Gordon G. Cash, “The number of n-cycles in a graph,” Applied

Mathematics and Computation 184, pp. 1080-1083 (2007).
[3] Y. C. Chang and H. L. Fu, “The number of 6-cycles in a graph,” Bulletin

of the ICA 39, pp. 27-30 (2003).
[4] Y. C. Chen and T. F. Jhang, “Embedding of simple cycles in hy-

percubes,” accepted by the 2011 3rd International Conference on
Computer Engineering and Technology (ICCET 2011).

[5] A. El-Amawy and S. Latifi, “Properties and performance of folded
hypercubes,” IEEE Transactions on Parallel and Distributed Systems
2, pp. 31-42 (1991).

[6] J. Fan and Y. Xiao, “A method of counting the number of cycles in
LDPC codes,” International Conference of Signal Processing 3, pp.
2183-2186 (2006).

[7] F. F. Fang, “The bipancycle-connectivity of the hypercube,” Information
Sciences 178, pp. 4679-4687 (2008).

[8] F. Harary and B. Manvel, “On the number of cycles in a graph,”
Matematický časopis 21, pp. 55-63 (1971).

[9] L. Hongmei, “Cycles in enhanced hypercube networks,” International
Seminar on Future Information Technology and Management Engineer-
ing , pp. 560-563 (2008).

[10] S. Y. Hsieh and J. Y. Shiu, “Cycle embedding of augmented cubes,”
Applied Mathematics and Computation 191, pp. 314-319 (2007).

[11] T. K. Li, C. H. Tsai, Jimmy J. M. Tan, and L. H. Hsu, “Bi-
panconnectivity and edge-fault-tolerant bipancyclicity of hypercubes,”
Information Processing Letters 87, pp. 107-110 (2003).

[12] M. Ma and B. Liu, “Cycles embedding in exchanged hypercubes,”
Information Processing Letters 110, pp. 71-76 (2009).

[13] Y. Saad and M. H. Schultz, “Topological properties of hypercubes,”
IEEE Transactions on Computers 37 (7), pp. 867-872 (1988).

[14] X. Wu, M. He, F. Wang, J. Yang, and S. Latify, “Distinct paths for the
star graph,” International Conference on Communications and Mobile
Computing, pp. 322-326 (2009).

[15] J. M. Xu and M. Ma, “Cycles in folded hypercubes,” Applied
Mathematics Letters 19, pp. 140-145 (2006).

[16] M. Xu, X. D. Hu, and J. M. Xu, “Edge-pancyclicity and Hamiltonian
laceability of the balanced hypercubes,” Applied Mathematics and
Computation 189, pp. 1393-1401 (2007).

[17] M. Xu and J. M. Xu, “Edge-pancyclicity of Möbius cubes,” Informa-
tion Processing Letters 96, pp. 136-140 (2005).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 109

A Cluster-Based Quantitative Reliability Model
Eduardo Cañete, Manuel Dı́az, Luis Llopis and Bartolomé Rubio

Dpto. Lenguajes y Ciencias de la Computación
University of Málaga

(ecc,mdr,luisll,tolo)@lcc.uma.es

Abstract—It is well known that Wireless Sensor and Actor
Networks are error-prone as multi-hop communications are
carried out. Furthermore, the further the distance between two
nodes is, the less the communication reliability is. Despite the
fact that this issue has been studied in many publications, there
are new publications still appearing due to the importance of this
topic. In this paper, we present a tool to help developers to better
understand how the distance and the link qualities estimation
affect the communication reliability between two nodes. We also
present a reliability model to improve the reliability between
nodes taking into account their energy consumption. The main
feature of our proposal is that developers will be able to specify
the desired reliability level quantitatively. Finally, a set of tests
are carried out in order to study the performance of the proposed
model.

Index Terms—Wireless Sensor and Actor Networks, Reliability,
Model, Clusters

I. INTRODUCTION

Wireless Sensor and Actor Networks (WSANs) [1] are a
promising technology which allows the monitoring and control
of any kind of scenario (indoor environment, whole cities,
woods, . . .) [2]. These networks are composed of tiny devices
which are resource-constraints enough due to their small size.
They are normally characterized by their short-range wireless
communications capabilities, short battery-lifes, few memory
and limited CPU processing capabilities. In spite of these
limitations making WSAN applications difficult to develop
because there exists another problem which is even worse.
Within a WSAN, the delivery data between nodes (sensor
and/or actors) which are N hops away from each other fail
quite a lot due to the fact that WSANs are error-prone [3].
And obviously, the probability of fails increases if the distance
between the source and destination also increases. Developers
should take this into account this issue when they plan to
develop and deploy a WSAN, otherwise the network probably
does not achieve the goal for which it was thought. Thus,
we can conclude that a very important issue in WSANs is to
define efficient reliable multi-hop protocols in order to achieve
either a high packet delivery probability (PDP) or a high packet
reception ratio (PRR) [4].

In this paper, we present a tool developed to study how the
delivery data between two nodes is affected as the distance
(number of intermediate nodes) between them increases. But,
the main contribution of this paper is a reliability model
which allows the developers to numerically (0 to 100%)
set the desired reliability level between two nodes which
are N hops away from each other. Basically, the algorithm

is able to know and achieve the needed reliability of the
intermediate nodes used to send information between nodes
with a reliability previously specified by the user. This way of
defining the desired reliability allows us to establish a more
direct relationship between PRR and the application layer of
our goal application. So, if we want to develop a WSAN
application which is able to detect dangerous situations (for
example, a high level of radiation), the sensor networks have
to be capable of transmitting this kind of information with
a reliability close to 100%. Other approaches allow us to
set parameters such as high-reliability, medium-reliability, but
what exactly is the meaning of these parameters? In other
words, what exactly is the reliability reached by using the
high-reliability or medium-reliability parameter? What about
if we would like to establish a reliability lower than high-
reliability and higher than medium-reliability? We think this
way of defining the reliability levels among nodes confuses
the developers.

The rest of the paper is structured as follows. Section II
summarizes the related work. Section III describes the com-
munication model on which the proposed reliability model is
based. Section IV presents the proposed quantitative reliability
model. Section V describes the reliability tool developed. Sec-
tion VI discusses the performance evaluation of the proposed
model. Finally, section VII concludes the paper.

II. RELATED WORK

There are different kinds of approaches focused on achiev-
ing reliable mechanisms to transport the data. Many of these
approaches are designed for sensor networks where any
scheme to organize the nodes is followed. In [5] is followed
a reliability scheme based on the priority queues and work
load of the nodes which allows the nodes to estimate the fea-
sibility of delivering a packet on time. However, they impose
important restrictions in the test scenario such as each node is
assumed to know its position and only sensor-actor interaction
is studied. Other reliable approach is established in [6]. In
this work, packets are managed depending on the importance
of their content, however the authors do not provide any
algorithm to obtain the packet importance. In this approach,
the packets are transmitted through different paths in order
to increase the possibilities of data reception at destination.
However, they assume there are not collisions and that packets
are not cached in sensor nodes because of memory constraints.
This last assumption can lead to a considerable increase of
the overhead. In our approach, the reliable communication is

110 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

reduced to the clusters which make the protocol not only more
energy-efficient but also robustness. In addition, our approach
takes into account the existence of possible collisions and, on
the other hand, the packets are registered in order to avoid an
increase of the traffic overhead. It is worth pointing out, most
of the current reliable protocols are designed to find the most
reliable paths taking into account the energy consumption [7],
[8], [9]. Of course, these kinds of approaches achieve good
reliability levels and a good trade-off between reliability and
energy consumption during the data transmissions but they
are not able of quantifying the level of reliability that can
be achieved as they are normally not based on a mathematical
model. Furthermore, most of them are only designed to achieve
reliable paths from the sensor nodes to the sink, cluster-head
or base station, but not in an opposite way. In [10], authors
propose a reliability model slightly similar to our model. They
also allow developers to specify the desired reliability level
between two nodes. To achieve that, they exploit the inherent
redundancy of dense sensor networks by realizing probabilistic
multi-path forwarding. In addition, they assume that all nodes
have the same link qualities and the nodes know where are
located geographically by using GPS coordinates. In contrast,
our protocol is able to achieve the same goal without having to
assume the constraints above mention (dense sensor network,
same link qualities and geographical position).

III. COMMUNICATION MODEL

Most sensor networks are designed to transmit information
from sensor nodes to one powerful node called sink, base
station or cluster-head as the topology of the network. For
example, we could have a network organized in several
clusters within which all collected information is sent to the
cluster-head which form another cluster whose cluster-head is
the sink or the base station. The proposed reliability model
thought, is to be implemented in networks which follow the
aforementioned topology taking into account the following
assumptions:

1) The communication pattern is many-one and one-many.
There are groups of sensor nodes which transmit in-
formation to their leader node (cluster-head, sink, or
base station). Leader nodes can also send information
to the members of their groups. Although this kind
of communication is less frequent, but not any less
important.

2) Nodes are organized in levels (distance in hops to their
leader node). So, each node knows what its level is
regarding its leader node. This is known as gradient-
based routing.

3) Nodes situated in level L also know their neighbors
located in levels L − 1, L + 1 and L. Thanks to this
information sensor nodes will know what the shortest
paths are to reach their leader node as well as knowing
how many hops there are to it. On the other hand,
leader nodes have to send the information by using
broadcast as they do not know where the member nodes

are located. However, they know in which level packet
retransmission has to be interrupted.

4) Nodes know the link quality estimation between them-
selves and their neighbors.

IV. RELIABLE TRANSMISSION MODEL

As mentioned in previous section, it is assumed the nodes
within a same cluster know in which level they are located and
which are the different and shortest paths to send information
to their cluster-head. To know the node level is equivalent to
knowing the number of hops between this node and its cluster-
head. Let us suppose that we have deployed the following
lineal sensor network: 1-2-3-4-5 where 1 is the cluster-head,
5 is a sensor node and 2,3 and 4 are the intermediate nodes.
The PDP of sending a packet from node 5 to the node 1 and
viceversa comes defined by the product of the intermediates
PDP as the following expressions show:

PDP51 = PDP54 ∗ PDP43 ∗ PDP32 ∗ PDP21

PDP15 = PDP12 ∗ PDP23 ∗ PDP34 ∗ PDP45

To make the discussion easier, PGij will be the PDP
between nodes i and j when they are not neighboring and
PCij when they are. Therefore, expressions above can also
be expressed in the following way:

PG51 = PC54 ∗ PC43 ∗ PC32 ∗ PC21 (1)
PG15 = PC12 ∗ PC23 ∗ PC34 ∗ PC45 (2)

It is noteworthy that PG51 ̸= PG15 due to RSSI asym-
metry. While RF theory states that the two directions of RF
propagation have identical attenuation, in practice this is not
the case [11].

These equations 1 and 2 show that to achieve a specific
reliability (for example about 90%) during the transmission of
packets from node 5 to node 1 (PG51) it is also necessary
to know a priori what the reliability is of the intermediate
communications (PC54, PC43, PC32, PC21) which is quite
hard due to the fact that the quality of each link changes
in a dynamic and independent way over time. It implies we
have to deal with an equation of X − 1 variables, where X
is the number of nodes that participate in the communication
process. Therefore, our first goal is to achieve that the equation
used to calculate PG51 has only one variable. If all PCij were
equals, we would have just one variable and:

PGij = PCL

where L is the level of the source node i. From this equation
we can find the value of PC in the following way:

PGij = PCL

L
√
PGij =

L
√
PCL

PC = PGij
1
L (3)

Continuing with our own example, equation 3 means that if
we want to establish a reliability level of PG51, the intermedi-
ate PC54, PC43, PC32 and PC21 must be equals to PG51

1
4 .

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 111

At this point, we know what must be the needed reliability
level (PC) during the communication of the intermediate nodes
to reach a specific reliability (PGij) between two nodes (i and
j) which communication distance is L hops. Once, we know
this information, the next step is to find the way of increasing
PCij to PGij

1
L . It is obvious that if several retransmission are

carried out from node i to node j the reliability between them
will increase, but how many retransmissions are necessary
to increase this reliability level from PCij to PGij

1
L ? The

following expression gives us the solution to this question:

1− (1− PCij)Nij = PGij
1
L

−(1− PCij)Nij = (PGij
1
L)− 1

(1− PCij)Nij = 1− (PGij
1
L)

ln(1− PCij)Nij = ln(1− PGij
1
L)

Nij ∗ ln(1− PCij) = ln(1− PGij
1
L)

Nij =

⌈
ln(1− PGij

1
L)

ln(1− PCij)

⌉
(4)

In the equation, (1−PCij)Nij is the probability that node j
does not receive a packet from node i after it is sent N times.
Thus, 1 − (1 − PCij)Nij is the probability that at least one
packet sent by the node i arrives to the node j.

Basically, the communication reliable protocol is based on
equations 3 and 4. For example, let us suppose that a developer
has to create an application where nodes must send an alarm
packet to the sink when they detect a high temperature (over a
given threshold). If the furthest distance from them to the sink
is four hops and the desired reliability is around 92%, equation
3 shows us that the link reliability between intermediate nodes
must be 0.92

1
4 which is 0.979 (about a 98%). Now, let us

assume that the values of PC54, PC43, PC32, PC21 are 78%,
85%, 88% and 81% respectively. Then, according to equation
4, node 5 needs to transmit the same packet to node 4 at least

3 times which comes from
⌈

ln(1−0.98)
ln(1−0.78)

⌉
. N43, N32 and N21

would be equal to 2, 3 and 3 respectively.
This protocol depends heavily on the estimation of the

current reliability between neighboring nodes. Thus, the more
accurate the link quality estimation between neighboring nodes
is, the better the achieved reliability between nodes which are
far away from each others N hops is.

V. RELIABILITY TOOL

In order to help the developers understand what is going to
be the impact of their established reliability levels. We have
developed a tool (see figure 1) to help them analyze how
the different reliability levels affect to the sensor networks
depending on the number of levels established within a cluster
and the desired reliability level in a multi-hop communication.
The tool graphic interface can be classified in 4 parts:

1) Multi-hop communication parameters. This part is lo-
cated in the top left corner of the interface and has the
following elements:

• A numeric field which allows us to introduce the
number of levels of the cluster where a reliable
communication is going to be carried out. It also
means, the maximum number of hops needed to
send information from the sensor nodes to its
cluster-head or viceversa.

• A numeric field where the desired level of reliability
is indicated.

• A label which indicates to us the needed reliability
during the communication of the intermediate nodes
to achieve the global reliability specified.

2) Information Zone. It is located in the top middle of the
interface. It just shows us the information mentioned
above in a graphical way.

3) Single-hop communication parameters. It is located in
the top right corner of the screen and it only has two
fields:

• A numeric field which simulate the possible relia-
bility current levels between two nodes.

• A numeric field which indicates to us the needed
retransmissions number to achieve the reliability
level calculated and is showed in the top left corner
of the screen knowing that the current reliability
between two nodes is the value established in the
above field.

4) Graphic information. It is formed by four graphics
through which it is easier to analyze how the application
will perform depending on the established parameters.

a) Retransmissions Vs. Current Reliability. This
graph is obtained from equation 4. It shows us
how many retransmissions are needed to achieve
the desired global reliability depending on the
possible current reliabilities between neighboring
nodes. For example, if we want to achieve a global
reliability about 80% between two nodes which are
8 hops away from each other, equation 3 indicates
that the required reliability per link is a 98%. The
graphic shows us the number of retransmissions
each node would need to achieve a global reliabil-
ity of 80% on the basis of their current reliabilities.
If we want to study a concrete data, the graph has
a horizontal red line that shows us this kind of
information. This line can be moved by modifying
the data refereed to the single hop communication
(top right corner of screen). In our own example,
the red line shows us that if a reliability between
two nodes is about 20%, 17 retransmissions are
needed to achieve a reliability level of 98% which
is necessary to achieve the global reliability of
80%.

b) Derivative. It shows us the derivative of the previ-
ous graphic. Thanks to this graph it is possible to
analyze what is the point from which the number
of needed retransmissions goes up exponentially.
Therefore, this graphic shows developers that when

112 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 1. Reliability Tool

the estimated reliability between two nodes is less
than 20%, it is not advisable to retransmit a packet
N times since N could be so big that the energy
consumption of the nodes would be too costly.

c) R Vs. CR Zoom. It is a zoom of the “Retransmis-
sions Vs. Current Reliability” graphic. The zoom is
established on the basis of the red line mentioned
above.

d) Derivative Zoom. This graphic shows us an inter-
esting piece of information. Let us focus on the
range 60-80, we can observe two plain signals in
the subranges 60-70 and 72-80. This means that
when estimated reliability between two nodes fall
into one of these ranges, the number of required
retransmissions is equal and therefore, the energy
consumption is also the same. Developers may
think that is is more costly (in terms of energy
consumption) to achieve a reliability of 98% when
the estimated reliability is 60% than to achieve
the same when the estimated reliability is 70%.
This graph reveals the ranges where energy con-
sumption is the same independently wether the
value of the estimated reliability is higher or lower.

On the other hand, this information allows the
protocol to be more efficient at distributing the
energy consumption over the whole network.

Figure 2 shows another different way of analyzing and un-
derstanding the relation between link quality among neighbors,
the number of retransmissions to increase these link qualities
and the desired goal reliability between two nodes which are
L hops away from each other. The data represented in the
figure have been generated by using the equation 4 and taking
into account that L is equal to 9. In order to understand the
data, let us focus on the gray area of the figure. For example,
let us assume that a developer wants to achieve a reliability
about a 90%. The figure indicates that if the estimated link
qualities of the nodes are about a 89%, 77% or 67%, the
protocol will need 2, 3 or 4 retransmissions respectively to
achieve the desired reliability goal. Now, let us imagine that
the estimated link quality of two nodes is greater than 67%
and lower than 77%. In this case, the number of necessary
retransmissions will have decimals (3.3, 3.4, . . .). Thus, in
order to ensure that the reliability goal (90%) is achieved,
protocol will use the next integer. In this particular case, it
would be the number 4. It could cause the final reliability
goal is greater than 90%. We have considered that it is better

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 113

Fig. 2. Reliability analysis between two nodes which are 9 hops away from each other

Fig. 3. Evaluation Topology

to achieve a greater reliability in these kinds of situations.

VI. EVALUATION

In order to analyze and study the performance of the
reliability model presented in this work, several experiments
has been carried out. Figure 3 shows the cluster topology used
in the simulations to carry out the experiments. A square grid
topology with 99 nodes has been used, as it is quite a standard
configuration and in addition, it can also represent very well
a cluster of nodes. Basically, the experiments have consisted

in sending 100 packets (events and commands) between the
cluster-head (node 50) and a sensor node (node 91) which
are 9 hops away from each other, in order to measure how
accurate the reliability achieved by the model is.

A. Environment set-up

COOJA sensor network simulator [12] has been used to
carry out all the experiments. COOJA is a power profiling tool
that enables accurate network-scale energy measurements in a
simulated environment. COOJA simulator offers the possibility
of carrying out the simulation in different platforms. We
selected the TelosB motes since they are one of the most
used by the sensornet community. In order to carry out the
simulations, we used Contiki [13] which is an open source,
highly portable, multi-tasking operating system for memory-
efficient networked embedded systems and wireless sensor
networks.

B. Results

In order to evaluate our reliable protocol several experiments
have been carried out by using the simulator Cooja. The
goal of the experiments was to analyze the packet delivery
ratio (PDR) of the protocol after sending 100 packets in
both directions, from a sensor node to the cluster-head and
viceversa. Concretely, the protocol was configured to achieve
a reliability level of 80% between two nodes which were 9
hops away from each other. This scenario was studied by using
different link quality estimations. Table I shows the results
obtained from the simulations:

114 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Packet Delivery Ratio
Nodes Link Theoretical Reliable No Reliable Reliable No Reliable

Quality Reliability Events Events Commands Commands
84% 20% 82% 14% 94% 58%
70% 4% 84% 2% 97% 11%
60% 1% 87% 0% 92% 2%
52% 0% 66% 0% 76% 0%

TABLE I
RELIABILITY RESULTS

• Column 1 shows the four different link qualities set in
the simulator.

• Column 2 shows the the theoretical reliability between
two nodes which are 9 hops away from each other. For
example, if the link quality of the nodes is 84%, the
reliability between the two nodes mentioned above will
be 0.849 which is equal to 0.2082 = 20%.

• Columns 3 and 4 show the achieved reliability level after
sending 100 events (communication from a sensor node
to the cluster-head) by using the reliable protocol and the
basic protocol.

• Columns 5 and 6 show the achieved reliability level after
sending 100 commands (communication from the cluster-
head to a sensor node) by using the reliable protocol and
the basic protocol.

Let us analyze the results shown in table I. On the one
hand, it can be appreciated that the PDR achieved transmitting
events is about 80% despite that the theoretical reliability is
much more lower. Actually, when the events are sent without
using the reliable protocol the results obtained (column four)
are similar to the reliability level indicated by the theoretical
reliability. On the other hand, the result obtained from the
commands are quite different. When they are transmitted the
reliability level is higher than 80%. It is due to the fact that
when the packets are sent from the cluster-head to the sensor
nodes, they can take several paths. Finally, it can also be
appreciated that when link qualities of the nodes is set to the
52% the achieved reliability level is lower than 80% (in both
cases, event and commands). We believe that it could be due
to the collisions produced in the sensor networks since the
number of retransmissions is quite high.

VII. CONCLUSIONS

In this paper, we have presented a tool to study and
understand how both link quality estimations and distances
between source and destination nodes affect the communica-
tion reliability. As a novel contribution we have presented a
reliability model which allows developers to quantitatively set
the desired reliability between a sensor node and its leader
node whatever the distance between them is. Finally, a set of
experimenters have been carried out to prove the suitability
of the proposed model. The results obtained show that when
the link quality estimations are greater or equal to 60% the
performance of the reliability model is quite accurate.

ACKNOWLEDGMENT

This work was partially supported by Spanish Projects
TIN2008-03107 and TIC-03085.

REFERENCES

[1] I. Akyildiz and M. Vuran, Wireless sensor networks. LibreDigital, 2010.
[2] J. Gehrke and L. Liu, “Sensor-network applications,” IEEE Internet

Computing, vol. 10, no. 2, 2006.
[3] A. Arora, R. Ramnath, E. Ertin, P. Sinha, S. Bapat, V. Naik, V. Kulathu-

mani, H. Zhang, H. Cao, M. Sridharan et al., “Exscal: Elements of an
extreme scale wireless sensor network,” 2005.

[4] A. Willig and H. Karl, “Data transport reliability in wireless sensor
networks–a survey of issues and solutions,” Praxis der Informationsver-
arbeitung und Kommunikation, vol. 28, no. 2, pp. 86–92, 2005.

[5] E. C. H. Ngai, Y. Zhou, M. R. Lyu, and J. Liu, “Reliable reporting of
delay-sensitive events in wireless sensor-actuator networks,” in Mobile
Adhoc and Sensor Systems (MASS), 2006 IEEE International Conference
on, Oct. 2006, pp. 101–108.

[6] B. Deb, S. Bhatnagar, and B. Nath, “Reinform: reliable information
forwarding using multiple paths in sensor networks,” in Local Computer
Networks, 2003. LCN ’03. Proceedings. 28th Annual IEEE International
Conference on, Oct. 2003, pp. 406–415.

[7] K. Sharma, H. Singh, and R. Patel, “A Reliable And Energy Efficient
Transport Protocol for Wireless Sensor Networks,” Global Journal of
Computer Science and Technology, vol. 10, no. 9, 2010.

[8] H. Zhou, Y. Wu, Y. Hu, and G. Xie, “A novel stable selection and re-
liable transmission protocol for clustered heterogeneous wireless sensor
networks,” Computer Communications, 2010.

[9] J. Paek and R. Govindan, “RCRT: Rate-controlled reliable transport
protocol for wireless sensor networks,” ACM Transactions on Sensor
Networks (TOSN), vol. 7, no. 3, pp. 1–45, 2010.

[10] E. Felemban, C. Lee, and E. Ekici, “MMSPEED: Multipath multi-
SPEED protocol for QoS guarantee of reliability and timeliness in
wireless sensor networks,” IEEE Transactions on Mobile Computing,
pp. 738–754, 2006.

[11] P. Misra, N. Ahmed, D. Ostry, and S. Jha, “Characterization of Asym-
metry in Low-Power Wireless Links: An Empirical Study,” Distributed
Computing and Networking, pp. 340–351, 2011.

[12] J. Eriksson, F. Österlind, N. Finne, A. Dunkels, N. Tsiftes, and T. Voigt,
“Accurate Network-Scale Power Profiling for Sensor Network Simula-
tors,” Wireless Sensor Networks, pp. 312–326, 2009.

[13] A. Dunkels et al., “Contiki-a lightweight and flexible operating system
for tiny networked sensors,” 2004.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 115

Fault-tolerant Routing Algorithms based on

Approximate Routable Probabilities for

Hypercube Networks

Dinh Thuy Duong Keiichi Kaneko
Department of Computer and Information Sciences

Graduate School of Engineering
Tokyo University of Agriculture and Technology

Koganei-shi, Tokyo, JAPAN

Abstract Recently, research on parallel pro-

cessing systems is very active, and many

complex topologies have been proposed. One

of the most popular topologies is a hyper-

cube network. In this paper, we propose new

fault-tolerant routing algorithms for hyper-

cube networks based on approximate routable

probabilities. The probability represents abil-

ity of routing to any node at a specific dis-

tance. Each node selects one of its neigh-

bor nodes to send a message by taking the

approximate routable probabilities into con-

sideration. We also conducted a computer

experiment to verify the effectiveness of our

algorithms.

Keywords: multicomputer, interconnection net-
work, parallel processing, fault-tolerant routing,
hypercube, performance evaluation

1 Introduction

Recently, the hypercube topology is widely
used for interconnection networks for parallel
processing due to their properties of regular
and recursive structure and low diameter [7].
Figure 1 shows an example of a 4-dimensional
hypercube Q4. Nodes in a parallel processing
system communicate through message passing.
Therefore, routing messages is one of the most
important problems in parallel processing sys-
tems. In addition, the more the number of

0000 0001

0100 0101

0010 0011

0110 0111

1000 1001

1100 1101

1010 1011

1110 1111

Figure 1: An example of 4-dimensional hyper-
cube Q4.

nodes increases, the higher the possibility of
occurrence of faulty nodes becomes. Hence,
finding a fault-free and shortest path between
a source node and a destination node in a par-
allel processing system with faulty nodes is an
emerged problem. A good fault-tolerant rout-
ing algorithm must satisfy a couple of condi-
tions. First, the algorithm must find a fault-
free path. Second, because of time and space
complexities, information stored in each node
should be so small that each node cannot iden-
tify all of faulty nodes. Therefore, in this pa-
per, we assume that information store in each
node must be of polynomial time and space
complexities of n in an n-dimensional hyper-
cube Qn with faulty nodes. With this assump-
tion, we propose two fault-tolerant routing al-
gorithms that find a fault-free path between
non-faulty nodes.

116 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

The rest of this paper is structured as fol-
lows. First, we survey related works in Chap-
ter 2. Next, requisite terminology and nota-
tions are defined in Chapter 3. Then, in Chap-
ter 4, we introduce the routing probabilities,
their approximate values, and a simplified cal-
culation method for them. Furthermore, we
proposed two fault-tolerant routing algorithms
in Chapter 5, and evaluate their performance
by a computer experiment in Chapter 6. Fi-
nally, we give a conclusion and future works in
Chapter 7.

2 Related Works

For these two decades, there are many at-
tempts in research for fault-tolerant routing
in hypercube networks. Chiu and Wu have
proposed an efficient fault-tolerant routing al-
gorithm by recursively classifying non-faulty
nodes into safe, ordinary unsafe, and strongly
unsafe nodes depending on the classification of
neighbor nodes [3]. Chiu and Chen have im-
proved the algorithm by introducing the rout-
ing capabilities that are obtained by classify-
ing the safety nodes with respect to the Ham-
ming distance to the destination nodes [4].
Wu has also proposed a similar fault-tolerant
routing algorithm independently by introduc-
ing the safety vectors [6]. Moreover, Kaneko
and Ito have proposed a fault-tolerant rout-
ing algorithm based on classification of ordi-
nary and strongly unsafe nodes with respect
to the Hamming distance as well as an efficient
method to obtain classification of them [5].

All of the above attempts are based on in-
formation if a message is surely routed to the
destination node or not. On the other hand,
Al-Sadi et al. have proposed a fault-tolerant
routing algorithm that is based on probabilities
that a message is sent from the source node to
the destination node with a path of length of
Hamming distance between them [1, 2]. In the
algorithm, each non-faulty node exchanges in-
formation at most O(n2) times with its neigh-
bor nodes to calculate the probabilities with
respect to the Hamming distances to destina-

tions. However, in the worst case, one non-
faulty node has to collect information of all
faulty nodes. Hence, it is not possible to fin-
ish communication for information exchange in
practical time.

In this study, to address the drawback of the
method by Al-Sadi et al., we introduce a new
concept of approximate routable probabilities
and a simplified calculation method for them.
Then, we propose two fault-tolerant routing al-
gorithms based on them. Moreover, we carry
out a computer experiment to evaluate perfor-
mance of the algorithms.

3 Preliminaries

In this section, we define a hypercube network
and introduce requisite notations.

Definition 1 An n-dimensional hypercube
Qn is an undirected graph, which consists of
2n nodes. Each node a is an n-bit sequence
(a1, a2, . . . , an) where ai ∈ {0, 1} (1 ≤ i ≤ n),
and ai is called the bit of i-th dimension. For
two nodes a and b in Qn, there is an edge (a, b)
between them if and only if the Hamming dis-
tance between them H(a, b) is equal to 1.

In general, a path in a graph is represented
by an alternate sequence of nodes and edges
a1, (a1,a2), a2, . . ., ak−1, (ak−1,ak). The
length of the path P is the number of edges
included in the path, and it is denoted by L(P).
If Qn is fault-free, the length of the shortest
path between a and b is equal to H(a, b).

Definition 2 For a node a in Qn, a set of
nodes N(a) defined by

N(a) = {n | H(a,n) = 1}.

is called a set of neighbor nodes of a.

In a hypercube Qn with a set of faulty nodes
F , for a source node s and a destination node d
that are both non-faulty, a fault-tolerant rout-
ing algorithm finds a fault-free path between s
and d.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 117

Definition 3 In Qn, for two nodes a and
b, the set of preferred neighbor nodes of a
for b is denoted by N0(a, b), and is defined
by N0(a, b) = {n | n ∈ N(a),H(n, b) =
H(a, b) − 1}. In addition, the set of spare
neighbor nodes of a for b is denoted by
N1(a, b), and is defined by N1(a, b) = {n |
n ∈ N(a), H(n, b) = H(a, b) + 1}.

Note that, in Qn, the number of nodes that
are apart from a node a by Hamming distance
h is equal to nCh. Note also that, for two
nodes a and b in Qn, if H(a, b) = h, then
|N0(a, b)| = h holds.

4 Routable Probabilities

In this section, we give the idea of routable
probabilities. In an n-dimensional hypercube
Qn with a set of faulty nodes F , the routable
probability P ∗

h (a) of a non-faulty node a with
respect to a Hamming distance h represents the
probability that, for an arbitrary non-faulty
node b with h = H(a, b), there is a fault-free
path of length h between a and b.

Since it is difficult to calculate the routable
probabilities precisely, we use the following ap-
proximate values.

Definition 4 For a node a in an n-
dimensional hypercube Qn with a set of faulty
nodes F , approximate probabilities Ph(a) of a
with respect to Hamming distance h is defined
as follows:

Ph(a) =

1 (h = 0)
0 (1 ≤ h ≤ n,a ∈ F)∑

I⊂N(a)
|I|=h

max
n∈I
{Ph−1(n)}

/
nCh

(1 ≤ h ≤ n,a ̸∈ F)

Definition 4 for Ph(a) has the following
meaning. First, an arbitrary node including
a faulty node can send a message to itself with
probability 1. Next, if a node a is faulty, it
cannot send a message to any node other than

itself. Hence, for any positive Hamming dis-
tance h, Ph(a) = 0 holds. Otherwise, when we
take h nodes arbitrarily from the set of neigh-
bor nodes N(a) of a, the expectation value of
the maximum routable probabilities of these
nodes with respect to Hamming distance h− 1
is calculated.

The approximate routable probabilities with
respect to Hamming distance 0 is defined to
be 1 for all the nodes including faulty nodes.
Therefore, for any non-faulty node a, P1(a) =
1 holds.

To calculate the approximate routable prob-
abilities easily, we introduce the following the-
orem.

Theorem 1 In an n-dimensional hypercube
Qn with a set of faulty nodes F , for a non-
faulty node a and a natural number h (1 ≤
h ≤ n),

Ph(a) =
n∑

k=h

k−1Ch−1pk

/
nCh

where p1 ≤ p2 ≤ . . . ≤ pn are obtained
by sorting Ph−1(a ⊕ 20), Ph−1(a ⊕ 21), . . .,
Ph−1(a⊕ 2n−1).
(Proof) In Definition 4, pk =
maxn∈I{Ph−1(n)} holds if and only if
pk ∈ ∪n∈I{Ph−1(n)} and ∪n∈I{Ph−1(n)} ⊂
{p1, p2, . . . , pk} hold. Therefore, the number
of occurrences such that pk becomes the
maximum value is equal to k−1Ch−1. Hence,
the theorem holds.

From Theorem 1, we can obtain a func-
tion ARP to calculate the approximate routable
probabilities. It is shown in Figure 2.

In the rest of this paper, for a non-faulty
node a in an n-dimensional hypercube Qn, if
N(a) ⊂ F holds, then we take a as faulty.
Then, the following theorem holds.

Theorem 2 In an n-dimensional hypercube
Qn with a set of faulty nodes F , for a node
a, there is a natural number h (1 ≤ h ≤ n)
such that Ph(a) = 0 if and only if a ∈ F holds.
(Proof) If a ∈ F , then for any h such that

118 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

function ARP(a, h, F)
begin
if h = 0 then Ph(a) := 1
else if a ∈ F then Ph(a) := 0
else begin

collect {Ph−1(n) | n ∈ N(a)};
sort {Ph−1(n) | n ∈ N(a)}
to obtain p1 ≤ p2 ≤ . . . ≤ pn;

Ph(a) :=
n∑

k=1

k−1Ch−1pk

/
nCh

end;
return Ph(a)

end

Figure 2: Function to calculate approximate
values of routable probabilities

1 ≤ h ≤ n, Ph(a) = 0 holds from Definition
4. For a natural number h (1 ≤ h ≤ n), we
prove a ∈ F assuming Ph(a) = 0 by induc-
tion on h. Assume P1(a) = 0. If a ̸∈ F ,
P1(a) =

∑
n∈N(a) P0(n)/n = 1 holds from

Definition 4. Because of P1(a) = 0, a ∈ F
holds. If Ph(a) = 0 for h such that 2 ≤ h ≤ n,
then, from the definition of Ph(a), Ph−1(n) = 0
holds for an arbitrary neighbor node n of a.
From the hypothesis of induction, N(a) ⊂ F
holds. From this, a ∈ F holds.

From Theorem 2, if a node a is non-faulty,
then Ph(a) > 0 holds for an arbitrary h such
that 0 ≤ h ≤ n.

5 Fault-tolerant Routing Al-
gorithms

In this section, we show how to find a path
in a hypercube with faulty nodes by using ap-
proximate routable probabilities. The routing
strategy is based on the approximate routable
probabilities of neighbor nodes stored in each
node.

In an n-dimensional hypercube with a set of
faulty nodes F , we assume that each node a
stores the approximate routable probabilities
for all of the neighbor nodes n (∈ N(a)) with
respect to all Hamming distances h (0 ≤ h ≤

n). Then, for a non-faulty source node s and a
non-faulty destination node d, we propose two
fault-tolerant routing algorithms which estab-
lish fault-free paths between them.

5.1 Naive Algorithm DK0

First, we propose a simple fault-tolerant rout-
ing algorithm DK0. It takes the current node c
and the destination node d as its arguments.
Then, Algorithm DK0 selects the node among
the preferred neighbor nodes of the current
node for the destination node that has the
largest positive approximate routable probabil-
ity with respect to H(c,d) − 1, and send the
message to the selected neighbor node. If the
approximate routable probabilities of the pre-
ferred nodes are all zero, then the node with
the largest approximate probability with re-
spect to H(c,d)+1 is selected among the spare
neighbor nodes, and the message is sent to it.

Figure 3 shows the pseudo code for the
algorithm where exception handling for the
case h = n is omitted. From Theorem 2,
Ph−1(n∗

0) > 0 or Ph+1(n∗
1) > 0 holds. Hence,

the routing always fails by an infinite loop.

procedure DK0(c, d)
begin
h := H(c,d);
n∗

0 := arg maxn∈N0(c,d){Ph−1(n)};
n∗

1 := arg maxn∈N1(c,d){Ph+1(n)};
if h = 0 then

deliver the message to c
else if Ph−1(n∗

0) > 0 then DK0(n∗
0, d)

else DK0(n∗
1, d)

end

Figure 3: Routing algorithm DK0

5.2 Improved Algorithm DK1

Next, we propose an alternate fault-tolerant
routing algorithm DK1. It takes the previous
node p, the current node c, and the destination
node d. From the previous node, the message
is sent to the current node. Algorithm DK1 se-
lects the node among the preferred neighbor

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 119

nodes N0(c,d) of the current node for the des-
tination node that has the largest positive ap-
proximate routable probability with respect to
H(c,d) − 1, and send the message to the se-
lected neighbor node. This is same as Algo-
rithm DK0. If the approximate routable proba-
bilities of the preferred nodes are all zero, then
the node with the largest approximate prob-
ability with respect to H(c,d) + 1 is selected
among the spare neighbor nodes except for the
previous node N1(c,d) \ {p}, and the message
is sent to it. Note that Algorithm DK1 excludes
the previous node p from the candidate nodes
of the spare nodes. This exclusion avoids a
simple loop of message sending between two
nodes.

Figure 4 shows the pseudo code for the al-
gorithm where exception handling for the case
k = n is omitted. Note that Algorithm dk1
may explicitly fail to send a message.

procedure DK1(p, c, d)
begin
h := H(c,d);
n∗

0 := arg maxn∈N0(c,d){Ph−1(n)};
n∗

1 := arg maxn∈N1(c,d)\{p}{Ph+1(n)};
if h = 0 then

deliver the message to c
else if Ph−1(n∗

0) > 0 then
DK1(c, n∗

0, d)
else if Ph+1(n∗

1) > 0 then
DK1(c, n∗

1, d)
else error(’unable to deliver’)

end

Figure 4: Routing algorithm DK1

6 Performance Evaluation

In this section, we first analyze the time com-
plexity of calculation of approximate routable
probabilities, which is the first step of our al-
gorithms. Next, we compare our algorithms
and the algorithm by Al-Sadi et al. [1, 2] by a
computer experiment.

6.1 Time Complexity

Time complexity for calculation of ap-
proximate routable probabilities in each
node depends on the expression Ph(a) =∑n

k=1 k−1Ch−1pk/nCh. Combinations of
k−1Ch−1 and nCh are calculated at first, and
stored in an array. It takes O(n3) time com-
plexity. For a Hamming distance h, sorting of
pk (1 ≤ k ≤ n) takes O(n log n) time complex-
ity, and calculation of Ph(a) takes O(n) time
complexity. Therefore, for all h (1 ≤ h ≤ n),
sorting pk’s and calculation of Ph(a) require
O(n2 log n) time complexity. From the above
discussion, calculation of the table of combi-
nations is dominant, and it takes O(n3) time
complexity in total. Each node has to exchange
information n times with each of its neighbor
nodes.

6.2 Computer Experiment

In this section, we give the detail of the re-
sults of a computer experiment conducted to
compare Algorithms DK0 and DK1 we proposed,
and Algorithms ADO0 and ADO1 by Al-Sadi et
al. Algorithm ADO0 is the original algorithm
proposed by Al-Sadi et al. while Algorithm
ADO1 is obtained by restricting the spare nodes
as in Algorithm DK1 to suppress infinite loops
between two nodes.

A computer experiment was carried out for
n-dimensional hypercubes where 5 ≤ n ≤ 10
changing the ratio of faulty nodes ρ from 10%
to 80%. Concretely, first, in Qn (5 ≤ n ≤ 10),
we selected faulty nodes randomly with the ra-
tio ρ. Next, we selected the source node s and
the destination node d from non-faulty nodes.
Finally, after checking the connectivity of s and
d, we applied the four fault-tolerant routing
algorithms to measure the ratio of successful
routings. If s and d are not connected, that is,
there is no fault-free path between them, we
start over from the selection of faulty nodes.
For each pair of a dimension and a ratio of
faulty nodes, we executed at least 1,000 trials.

Figures 5, 6, 7, 8 show the results by Algo-
rithms DK0, DK1, ADO0 and ADO1, respectively.

120 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

R
at

io
 o

f
su

cc
es

sf
ul

 r
ou

tin
gs

Ratio of faulty nodes

n = 5
n = 6
n = 7
n = 8
n = 9
n = 10

Figure 5: Ratio of successful routings by Algo-
rithm DK0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

R
at

io
 o

f
su

cc
es

sf
ul

 r
ou

tin
gs

Ratio of faulty nodes

n = 5
n = 6
n = 7
n = 8
n = 9
n = 10

Figure 6: Ratio of successful routings by Algo-
rithm DK1

As a result, we can see that performance of DK0
and DK1 is almost equivalent to that of ADO0
and ADO1, respectively.

From the discussion above, we can conclude
that the proposed algorithms have equivalent
routing ability to the algorithms by Al-Sadi
with the much lower time complexity.

7 Conclusion

In this paper, we have proposed two new fault-
tolerant routing algorithms for hypercube net-
works based on approximate routable probabil-
ities, which represent ability of routing to any
node at a specific distance. Each node selects

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

R
at

io
 o

f
su

cc
es

sf
ul

 r
ou

tin
gs

Ratio of faulty nodes

n = 5
n = 6
n = 7
n = 8
n = 9
n = 10

Figure 7: Ratio of successful routings by Algo-
rithm ADO0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

R
at

io
 o

f
su

cc
es

sf
ul

 r
ou

tin
gs

Ratio of faulty nodes

n = 5
n = 6
n = 7
n = 8
n = 9
n = 10

Figure 8: Ratio of successful routings by Algo-
rithm ADO1

one of its neighbor nodes to send a message by
taking the approximate routable probabilities
into consideration.

We also conducted a computer experiment
to verify the effectiveness of our algorithms. As
a result, we proved that our algorithms have al-
most equivalent performance to the algorithms
proposed by Al-Sadi et al.

Our next step is to extend the concept of
the approximate routable probabilities to ap-
ply other topologies for parallel processing sys-
tems. The path lengths are also an important
problem. Therefore, we also intend to improve
the routing algorithm so it can solve out the
shorter fault-free paths between any fault-free

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 121

nodes in a hypercube.

Acknowledgement

This study was partly supported by a Grant-in-
Aid for Scientific Research (C) of the Japan So-
ciety for the Promotion of Science under Grant
No. 22500041.

References

[1] J. Al-Sadi, K. Day, and M. Ould-Khaoua.
Probability-based fault-tolerant routing in
hypercube. The Computer Journal, 44(5),
2001.

[2] J. Al-Sadi, K. Day, and M. Ould-Khaoua.
Fault-tolerant routing in hypercubes using
probability vectors. Parallel Computing,
27, 1381–1399, 2001.

[3] G.-M. Chiu and S.-P. Wu. A fault-tolerant
routing strategy in hypercube multicom-
puters. IEEE Transactions on Computers,
45(2):143-155, Feb 1996.

[4] G.-M. Chiu and K.-S. Chen. Use of rout-
ing capability for fault-tolerant routing in
hypercube multicomputers. IEEE Trans-
actions on Computers, 46(8), 1997.

[5] K. Kaneko and H. Ito. Fault-tolerant rout-
ing algorithms for hypercube interconnec-
tion networks. IEICE Transactions on
Information and Systems, E84-D(1):121–
128, Jan 2001.

[6] J. Wu. Adaptive fault-tolerant routing in
cube-based multicomputers using safety
vectors. IEEE Transactions on Paral-
lel and Distributed Systems, 9(4):322–334,
Apr 1998.

[7] C. L. Seitz. The cosmic cube. Communi-
cations of ACM, 28(7):22–33, Jul 1985.

122 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

The Hyper-Panconnectedness of the Crossed Cube
*

Hon-Chan Chen
1
, Tzu-Liang Kung

2
, and Lih-Hsing Hsu

3

1
Department of Information Management, National Chin-Yi University of Technology, Taichung, Taiwan

2
Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan

3
Department of Computer Science and Information Engineering, Providence University, Taichung, Taiwan

Abstract - A connected graph G is said to be panconnected

if, for any two distinct vertices x and y of G, it contains a

path P between x and y such that dP(x, y) = l for any integer

l satisfying dG(x, y) l |V(G)| – 1, where dG(x, y)

(respectively, dP(x, y)) denotes the distance between x and y

in G (respectively, P), and |V(G)| denotes the total number

of vertices of G. If such path P can be extended to form a

Hamiltonian path P of G such that P P, then G is

hyper-panconnected. In this paper, we study the property

of hyper-panconnectedness with respect to the class of

crossed cubes, which is a popular variant of the hypercube

network.

Keywords: Panconnected, Hamiltonian path, Crossed cube,

Interconnection network

1 Introduction

 Network topology is essential for parallel and

distributed computation, and it determines the performance

of a network. Among many kinds of network topologies,

the hypercube [14] is one of the most popular networks

since it has good properties such as regularity, symmetry,

small diameter, strong connectivity, recursive construction,

partitionability, relatively low link complexity, and so on.

However, the hypercube is bipartite so that it cannot make

the best use of network resources. To compensate for this

drawback, many researchers [1, 5, 6, 15] try to fashion

networks. One such network topology is the crossed cube,

which was first proposed by Efe [7]. The crossed cube is

derived from the hypercube by changing the connection of

some links. Its diameter is about half of the hypercube’s

* This work is supported in part by the National Science Council of the

 Republic of China under Contracts NSC98-2218-E-468-001-MY3 and

 NSC99-2221-E-167-025.

[4, 7]. Moreover, the crossed cube has additional
attractive properties. For example, it has more cycles

than the hypercube [9], and it can embed binary trees [12],

paths of odd and even lengths [8, 10], and many-to-many

disjoint path covers [13]. The definition of the crossed

cube will be presented in the next section.

 In terms of network analysis, the topological

structure can be modeled as a simple graph. For the graph

definition and notation, we follow the standard terminology

given by Bondy and Murty [3]. Let G be an undirected

graph with vertex set V(G) and edge set E(G). Two

vertices x and y of G are adjacent if (x, y) E(G). The

degree of a vertex u is the number of edges incident to u.

A graph G is k-regular if all its vertices have the same

degree k. A graph H is a subgraph of G, denoted by H

G, if V(H) V(G) and E(H) E(G). Moreover, H is a

spanning subgraph of G (or H spans G) if V(H) = V(G).

Let S be a nonempty subset of V(G). The subgraph of G

induced by S is a graph whose vertex set is S and whose

edge set consists of all the edges of G joining any two

vertices in S. A path P of length k, k 1, from vertex x to

vertex y in G is a sequence of distinct vertices v1, v2, . . . ,

vk+1 such that v1 = x, vk+1 = y, and (vi, vi+1) E(G) for 1 i

 k. We can write P as v1, v2, …, vi, Q, vj, …, vk+1 for

convenience if we know that Q = vi, …, vj, where i j.

The reverse of P, denoted by rev(P), is defined as rev(P) =

vk+1, vk, …, v1. A single vertex x can be considered as a

path x of length 0. The ith vertex of P is denoted by P(i);

i.e., P(i) = vi. We use l(P) to denote the length of P. The

distance between two distinct vertices x and y in G, denoted

by dG(x, y), is the length of the shortest path between x and

y. A cycle is a closed path with at least three vertices such

that the last vertex is adjacent to the first one. For clarity,

a cycle of length k is represented by Ck = v1, v2, …, vk, v1,

where k 3.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 123

 A path (respectively, cycle) is a Hamiltonian path

(respectively, Hamiltonian cycle) of G if it spans G. A

graph G is Hamiltonian if it has a Hamiltonian cycle, and a

graph G is Hamiltonian connected if it contains a

Hamiltonian path between any two distinct vertices. A

graph G is said to be panconnected [2] if, for any two

distinct vertices x and y, it has a path of length l joining x

and y for any integer l satisfying dG(x, y) l |V(G)| − 1.

From the above definitions, we know that for any two

distinct vertices x and y of a panconnected graph G, there

exists a path P of required length l joining x and y in G, but

we do not know whether such P can be extended to form a

Hamiltonian path of G when l < |V(G)| − 1. Therefore, we

define the property of hyper-panconnectedness as follows:

for any two distinct vertices x and y of G, if there exists a

Hamiltonian path P of G such that dP(x, y) = l for any

integer l satisfying dG(x, y) l |V(G)| − 1, then G is

hyper-panconnected.

 In this paper, we study the hyper-panconnectedness

for the crossed cube. The rest of this paper is organized as

follows. In Section 2, the definition and some properties

of the crossed cube are introduced. In Section 3, we

propose our main theorem and show its correctness.

Finally, some concluding remarks are given in Section 4.

2 The crossed cube

 A crossed cube of n-dimensions, denoted by CQn, has

2
n
 vertices. Each vertex of CQn is identified by a unique

n-bit binary string; e.g. vertex u = unun–1 … u2u1, where ui

{0, 1} for 1 i n. The following are the formal

definitions about the crossed cube [6].

Definition 1. Two binary strings x = x2x1 and y = y2y1 of

length two are pair related, denoted by x ~ y, if and only if

(x, y) {(00, 00), (10, 10), (01, 11), (11, 01)}.

Definition 2. The n-dimensional crossed cube CQn is

recursively constructed as follows. CQ1 is a complete

graph with two vertices 0 and 1. CQn, n 2, consists of

two identical (n – 1)-dimensional crossed cubes CQ
0

n−1 and

CQ
1

n−1, and a vertex u = 0un–1 … u2u1 V(CQ
0

n−1) is

adjacent to a vertex v = 1vn–1 … v2v1 V(CQ
1

n−1) in CQn if

and only if

(1) un−1 = vn−1 if n is even, and

(2) u2iu2i−1 ~ v2iv2i−1 for all i, 1 i 2
1n .

 From the above definition, CQ2 is just a C4, and CQn

is an n-regular graph. Figure 1 shows CQ3 and CQ4.

Figure 1: Illustration of CQ3 and CQ4.

 In [7], Efe proposed a shortest path routing algorithm

Route(x, y) for CQn. This algorithm implies the following

two lemmas.

Lemma 1. [7] Let x and y be any two distinct vertices of

CQn such that x and y are in V(CQ
i

n−1), i {0, 1}. Then,

dCQn(x, y) = dCQ
i

n−1
(x, y).

Lemma 2. [7] Let x and y be any two vertices of CQn such

that x V(CQ
0

n−1) and y V(CQ
1

n−1). Moreover, let a be

the vertex in V(CQ
1

n−1) adjacent to x, and let b be the vertex

in V(CQ
0

n−1) adjacent to y. Then, dCQ
0

n−1
(x, b) = dCQn(x, y) – 1

or dCQ
1

n−1
(a, y) = dCQn(x, y) – 1.

 Fan et al. [10] have proved that paths of various

lengths can be embedded into CQn.

Lemma 3. [10] Let x and y be any two distinct vertices of

CQn. Moreover, let l be any integer with dCQn(x, y) l

2
n
 – 1 and l dCQn(x, y) + 1. Then, there exists a path of

length l joining x and y in CQn.

 A Hamiltonian graph G is said to be f-fault-tolerant

Hamiltonian if G − F remains Hamiltonian for every F

V(G) E(G) with |F| f. A Hamiltonian connected graph

G is said to be f-fault-tolerant Hamiltonian connected if G

− F remains Hamiltonian connected for every F V(G)

E(G) with |F| f.

100 110

000 010

101 111

001 011

0100 0110

0000 0010

0101

0111

0001

0011

1110 1100

1010 1000

1111

1101

1011

1001

CQ3 CQ4

124 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Lemma 4. [11] CQn is (n − 2)-fault-tolerant Hamiltonian

and (n − 3)-fault-tolerant Hamiltonian connected for any

integer n, n 3.

 In CQn, vertex x = xnxn−1…x1 is adjacent to vertex y =

ynyn−1…y1 along the ith dimension, 1 i n, if the

following four conditions are all satisfied: (i) xi yi, (ii) xj =

yj for all j, i+1 j n, (iii) x2kx2k−1 ~ y2ky2k−1 for all k, 1 k

 2
1i , and (iv) xi−1 = yi−1 if i is even. Then, we say that

x is the i-neighbor of y, and vice versa. The i-neighbor of

vertex x is denoted by (x)
i
, and edge (x, (x)

i
) is called the

i-dimensional edge. It is easy to see that y = (x)
i
 if and

only if x = (y)
i
. According to the adjacency of vertices, we

can locate C4 and C5 in CQn as described in the following

lemmas.

Lemma 5. [9] Let (x, y) be any n-dimensional edge in CQn,

n 3. Then, the set of vertices {x, y, (x)
2
, (y)

2
} induces a

C4.

Lemma 6. [9] Let (x, y) be any n-dimensional edge in CQn,

n 3. Then, ((x)
1
)

n
 = ((y)

2
)

1
 = ((y)

1
)

2
. Moreover, (i) the

set of vertices {x, y, (x)
1
, (y)

2
, ((y)

2
)

1
} induces a C5; (ii) the

set of vertices {x, y, (x)
1
, (y)

1
, ((y)

1
)

2
} induces a C5.

 By brute force with a computer program, we have the

following lemma for CQ4.

Lemma 7. Let (x, y) be any 2-dimensional, 3-dimensional,

or 4-dimensional edge of CQ4. Then, CQ4 − {x, y} has a

Hamiltonian path between two arbitrary vertices.

 Corollary 1 is drawn from Lemmas 4 and 7.

Corollary 1. Let (x, y) be any i-dimensional edge of CQn,

where n 4 and 2 i n. Then, CQn − {x, y} has a

Hamiltonian path between two arbitrary vertices.

3 The hyper-panconnectedness of CQn

 In Section 1, we define that a graph G is

hyper-panconnected if, for any two distinct vertices x and y,

there exists a Hamiltonian path P of G such that dP(x, y) = l

for any integer l satisfying dG(x, y) l |V(G)| − 1. For

convenience, we can consider P(1) = x and P(l + 1) = y.

However, by the definition of the crossed cube, CQn has no

C3 as a subgraph; thus, there does not exist any path of

length 2 between any adjacent vertices x and y in CQn.

For this reason and by Lemma 3, we exclude the cases of

paths of length dCQn(x, y) + 1 for any two distinct vertices x

and y, and we present a loose version of the

hyper-panconnectedness for the crossed cube.

Theorem 1. Let x and y be any two distinct vertices of

CQn, n 4. Moreover, let l be any integer with dCQn(x, y)

 l 2
n
 – 1 and l dCQn(x, y) + 1. Then, there exists a

Hamiltonian path P of CQn such that P(1) = x and P(l + 1)

= y.

Proof. This theorem will be shown by induction on n.

For the induction base CQ4, the correctness can be verified

by brute force with a computer program. Suppose that this

theorem holds for any CQk, 4 k n − 1. Then, we will

show that CQn has a Hamiltonian path P such that P(1) = x

and P(l + 1) = y. Without loss of generality, assume that x

 V(CQ
0

n−1). Consider the following three cases.

Case 1. y V(CQ
0

n−1). By Lemma 1, we have dCQn(x, y)

= dCQ
0

n−1
(x, y). The following three subcases have to be

considered.

Subcase 1.1. 2
n−1

 + 1 l 2
n
 − 1. By Lemma 4, there

exists a Hamiltonian path R of CQ
0

n−1 joining x to y. We

can write path R as x, R1, a, b, R2, y, where a and b are

two adjacent vertices in CQ
0

n−1 satisfying l(R1) = l − 2
n−1

 − 1.

Notice that x = a if l = 2
n−1

 + 1 and b = y if l = 2
n
 − 1.

Also by Lemma 4, CQ
1

n−1 has a Hamiltonian path S joining

(a)
n
 to (y)

n
. Then, P = x, R1, a, (a)

n
, S, (y)

n
, y, rev(R2), b

is a Hamiltonian path of CQn with P(1) = x and P(l + 1) = y.

Subcase 1.2. l = 2
n−1

. Let a be any vertex in CQ
1

n−1

other than (x)
n
 and (y)

n
. By Lemma 4, there exists a

Hamiltonian path S of CQ
1

n−1 − {a} joining (x)
n
 to (y)

n
.

Similarly, there exists a Hamiltonian path R of CQ
0

n−1 − {x}

joining (a)
n
 and y. Then, P = x, (x)

n
, S, (y)

n
, y, R, (a)

n
, a

is a Hamiltonian path of CQn with P(1) = x and P(2
n−1

 + 1) =

y.

Subcase 1.3. dCQn(x, y) l 2
n−1

 – 1 and l dCQn(x, y) +

1. By the inductive hypothesis, there exists a Hamiltonian

path R of CQ
0

n−1 such that R(1) = x and R(l + 1) = y. We

can write path R as x, R1, y, R2, a, where a is some vertex

of CQ
0

n−1. Notice that a = y if l = 2
n−1

 − 1. By lemma 4,

there exists a Hamiltonian path S of CQ
1

n−1 joining (a)
n
 to

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 125

some vertex b of CQ
1

n−1, and P = x, R1, y, R2, a, (a)
n
, S, b is

a Hamiltonian path of CQn with P(1) = x and P(l + 1) = y.

Case 2. y V(CQ
1

n−1) and (x, y) E(CQn). The

following subcases are distinguished.

Subcase 2.1. l = 2
n
 − 1. Trivially, there exists a

Hamiltonian path P of CQn joining x to y.

Subcase 2.2. 2
n−1

 l 2
n
 − 2. Let h = l − 2

n−1
. By

Lemma 4, CQ
0

n−1 has a Hamiltonian path R joining x and

(y)
n
. We can write path R as x, R1, a, b, R2, (y)

n
, where a

and b are two adjacent vertices in CQ
0

n−1 with l(R1) = h.

Notice that a = x if l = 2
n−1

 and b = (y)
n
 if l = 2

n
 − 2. By

Lemma 4, CQ
1

n−1 has a Hamiltonian path S joining (a)
n
 to y,

and P = x, R1, a, (a)
n
, S, y, (y)

n
, rev(R2), b is a Hamiltonian

path of CQn with P(1) = x and P(l + 1) = y.

Subcase 2.3. dCQn(x, y) l 2
n−1

 – 1 and l dCQn(x, y) +

1. By Lemma 2, we have two conditions: dCQ
0

n−1
(x, (y)

n
) =

dCQn(x, y) – 1 or dCQ
1

n−1
((x)

n
, y) = dCQn(x, y) – 1. Firstly, we

assume that dCQ
0

n−1
(x, (y)

n
) = dCQn(x, y) – 1. By the inductive

hypothesis, there exists a Hamiltonian path R of CQ
0

n−1 with

R(1) = x and R(l) = (y)
n
. For clarity, path R is written as x,

R1, (y)
n
, a, R2, b, where a is a vertex of CQ

0

n−1 adjacent to

(y)
n
 and b is some vertex of CQ

0

n−1. Notice that a = b if l =

2
n−1

 − 1. By Lemma 4, there exists a Hamiltonian path S

of CQ
1

n−1 joining y to (b)
n
, and P = x, R1, (y)

n
, y, S, (b)

n
, b,

rev(R2), a is a Hamiltonian path of CQn such that P(1) = x

and P(l + 1) = y. Next, we assume that dCQ
1

n−1
((x)

n
, y) =

dCQn(x, y) – 1. By the inductive hypothesis, there exists a

Hamiltonian path S of CQ
1

n−1 with S(1) = (x)
n
 and S(l) = y.

The path S can be written as (x)
n
, S1, y, S2, a, where a is

some vertex of CQ
1

n−1 . By Lemma 4, there exists a

Hamiltonian path R of CQ
0

n−1 − {x} joining (a)
n
 to some

vertex b of CQ
0

n−1. Then, P = x, (x)
n
, S1, y, S2, a, (a)

n
, R,

b is a Hamiltonian path of CQn with P(1) = x and P(l + 1) =

y.

Case 3. y V(CQ
1

n−1) and (x, y) E(CQn). Since (x, y)

E(CQn), we have 1 l 2
n
 – 1 and l 2. Consider the

following subcases.

Subcase 3.1. 2
n−1

 + 3 l 2
n
 − 1. Let h = l − 2

n−1
,

and we have 3 h 2
n−1

 − 1. By Lemma 5, vertices x, y,

(x)
2
, and (y)

2
 induce a C4. By Lemma 4, there exists a

Hamiltonian path R of CQ
0

n−1 joining x and (x)
2
. By the

inductive hypothesis, there exists a Hamiltonian path S of

CQ
1

n−1 with S(1) = (y)
2
 and S(h + 1) = y. We can write S as

(y)
2
, S1, y, S2, a, where a is some vertex of CQ

1

n−1. Notice

that a = y if h = 2
n−1

 − 1. Then, P = x, R, (x)
2
, (y)

2
, S1, y,

S2, a is a Hamiltonian path of CQn such that P(1) = x and

P(l + 1) = y.

Subcase 3.2. l = 2
n−1

 + 2. By Lemma 6, vertices x, y,

(x)
1
, (y)

1
, and ((y)

1
)

2
 induce a C5. By Lemma 4, there

exists a Hamiltonian path R of CQ
0

n−1 joining x to (x)
1
. By

Corollary 1, there exists a Hamiltonian path S of CQ
1

n−1 −

{(y)
1
, ((y)

1
)

2
} joining y to some vertex a of CQ

1

n−1. Then, P

= x, R, (x)
1
, ((y)

1
)

2
, (y)

1
, y, S, a is a Hamiltonian path of

CQn with P(1) = x and P(2
n−1

 + 3) = y.

Subcase 3.3. l = 2
n−1

 + 1. By Lemma 5, vertices x, y,

(x)
2
, and (y)

2
 induce a C4. By Lemma 4, there exists a

Hamiltonian path R of CQ
0

n−1 joining x and (x)
2
, and there

exists a Hamiltonian path S of CQ
1

n−1 − {(y)
2
} joining y to

some vertex a of CQ
1

n−1. Then, P = x, R, (x)
2
, (y)

2
, y, S, a

is a Hamiltonian path of CQn with P(1) = x and P(2
n−1

 + 2) =

y.

Subcase 3.4. 5 l 2
n−1

. Let h = l – 2, and we have 3

 h 2
n−1

 − 2. By Lemma 5, vertices x, y, (x)
2
, and (y)

2

induce a C4. By the inductive hypothesis, there exists a

Hamiltonian path R of CQ
0

n−1 such that R(1) = x and R(h + 1)

= (x)
2
. We can write path R as x, R1, (x)

2
, a, R2, b, where

a is a vertex of CQ
0

n−1 adjacent to (x)
2
 and b is some vertex

of CQ
0

n−1. Notice that a = b if h = 2
n−1

 − 2. By Lemma 4,

there exists a Hamiltonian path S of CQ
1

n−1 − {(y)
2
} joining

y to (b)
n
. Then, P = x, R1, (x)

2
, (y)

2
, y, S, (b)

n
, b, rev(R2),

a is a Hamiltonian path of CQn with P(1) = x and P(l + 1) =

y.

Subcase 3.5. l = 4. By Lemma 6, vertices x, y, (x)
2
,

((x)
2
)

1
, and (y)

1
 induce a C5. By Corollary 1, there exists a

Hamiltonian path R of CQ
0

n−1 − {x, (x)
2
} joining ((x)

2
)

1
 to

some vertex a of CQ
0

n−1. Path R can be written as ((x)
2
)

1
,

b, R, a, where b is some vertex of CQ
0

n−1 adjacent to

((x)
2
)

1
. By Lemma 4, there exists a Hamiltonian path S of

CQ
1

n−1 − {(y)
1
} joining y to (a)

n
. Then, P = x, (x)

2
, ((x)

2
)

1
,

(y)
1
, y, S, (a)

n
, a, rev(R), b is a Hamiltonian path of CQn

with P(1) = x and P(5) = y.

126 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Subcase 3.6. l = 3. By Lemma 5, vertices x, y, (x)
2
,

and (y)
2
 induce a C4. Since CQn is (n − 2)-fault-tolerant

Hamiltonian by Lemma 4, there exists a Hamiltonian cycle

C of CQn − {x, (x)
2
, (y)

2
}. We can write C as y, R, a, y,

where a is some vertex adjacent to y. Then, P = x, (x)
2
,

(y)
2
, y, R, a is a Hamiltonian path of CQn with P(1) = x and

P(4) = y.

Subcase 3.7. l = 1. By Lemma 4, there exists a

Hamiltonian path R of CQn – {x} joining y and some vertex

a, where a x. Then, P = x, y, R, a is a Hamiltonian

path of CQn with P(1) = x and P(2) = y.

The above completes the proof.

4 Concluding remarks

 In a hyper-panconnected graph, we can find a path

joining any two distinct vertices in a required distance, and

this path can be further augmented to form a Hamiltonian

path. Since there does not exist any path of length 2

between any two adjacent vertices in the crossed cube, we

present a loose version of the hyper-panconnectedness for

the crossed cube in this paper. Let x and y be any two

distinct vertices of CQn. We show that, for any integer l

with dCQn(x, y) l 2
n
 – 1 and l dCQn(x, y) + 1, there exists

a Hamiltonian path P of CQn such that P(1) = x, P(l + 1) = y,

and therefore dP(x, y) = l.

5 References

[1] S. Abraham, K. Padmanabhan, The Twisted Cube

Topology for Multiprocessors: A Study in Network

Asymmetry, J. Parallel Distrib. Comput. 13 (1991)

104-110.

[2] Y. Alavi, J. E. Williamson, Panconnected Graphs,

Studia Scientiarum Mathematicarum Hungarica 10

(1975) 19-22.

[3] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer,

London, 2008.

[4] C. P. Chang, T. Y. Sung, L. H. Hsu, Edge Congestion

and Topological Properties of Crossed Cubes, IEEE

Trans. Parallel Distrib. Syst. 11(1) (2000) 64-80.

[5] S. A. Choudum, V. Sunitha, Augmented Cubes,

Networks 40 (2002) 71-84.

[6] K. Efe, A Variation on the Hypercube with Lower

Diameter, IEEE Trans. Comput. 40(11) (1991)

1312-1316.

[7] K. Efe, The Crossed Cube Architecture for Parallel

Computing, IEEE Trans. Parallel Distrib. Syst. 3(5)

(1992) 513-524.

[8] J. Fan, X. Lin, X. Jia, Optimal Path Embeddings in

Crossed Cubes, IEEE Trans. Parallel Distrib. Syst.

16(2) (2004) 1190-1200.

[9] J. Fan, X. Lin, X. Jia, Node-pancyclicity and

Edge-pancyclicity of Crossed Cubes, Inf. Process. Lett.

93 (2005) 133-138.

[10] J. Fan, X. Jia, X. Lin, Complete Path Embeddings in

Crossed Cubes, Inf. Sci. 176 (2006) 3332-3346.

[11] W. T. Huang, Y. C. Chuang, J. J. M. Tan, L. H. Hsu,

On the Fault-tolerant Hamiltonicity of Faulty Crossed

Cubes, IEICE Trans. Fundamentals E85-A(6) (2002)

1359-1370.

[12] P. Kulasinghe, S. Bettayeb, Embedding Binary Tree

into Crossed Cubes, IEEE Trans. Comput. 44(7) (1995)

923-929.

[13] J. H. Park, H. C. Kim, H. S. Lim, Many-to-many

Disjoint Path Covers in Hypercube-like

Interconnection Networks with Faulty Elements, IEEE

Trans. Parallel Distrib. Syst. 17(3) (2006) 227-240.

[14] Y. Saad, M. H. Shultz, Topological Properties of

Hypercubes, IEEE Trans. Comput. 37 (1988) 867-872.

[15] X. Yang, D. J. Evans, G. M. Megson, The Locally

Twisted Cubes, Int. J. Comput. Math. 82(4) (2005)

401-413.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 127

Modification and Evaluation of Software-Based
Communications Unit of a LSC on Chip

Akiko Narita, Naoya Kato, Kenji Ichijo, and Yoshio Yoshioka

Department of Electronics and Information Technology, Hirosaki University, Hirosaki, Aomori, Japan

Abstract - We have evolved several types of Loop Structured
Computers (LSCs) to build a system with small hardware
overhead to apply it system-on-chip (SoC). In recent studies,
we investigated control flow methods with software-based
approach with a general-purpose instruction set. In this paper,
we proposed two specialized instruction sets for
communications in order to reduce transmission latency. One
used similar CPU design to the previous study. The other
required support of hardware pointers and counters. We
evaluated performance of the new systems with simulations
with clock cycle level of the CPU. The former instruction set
shortened minimum packet transmission latency only a few
percent under low traffic, and improved throughput about
10 %. The latter declined minimum packet transmission
latency about 20% in number of clock cycles, and increased
throughput 30 %. Furthermore, size of communications
program was shrieked about 30 %.

Keywords: Multiprocessor system; parallel processing;
system-on-chip; uni-directional loop

1 Introduction
 Processor interconnection methods for parallel
computers such as topology, routing, flow control, etc. are
important issues. They have effect on performance and cost
of them. Huge and expensive hardware resource is allowed to
spend to achieve high performance for a high-end system. On
the other hand, in system-on-chip (SoC) of an embedded
system, each module must be constructed under restrictions.
They are size, power saving, cost, and so on.

 Small size of communications units (CUs) for
connecting processing units (PEs) are required to resolve
hardware restrictions of SoC’s design problem. In [1],
lightweight routers models for a bi-directional ring network
were proposed. We have evolved various types of Loop
Structured Computers (LSCs) [2]-[6]. The LSC is a multi-
processor system designed for data flow processing. All
processing elements in it are interconnected one another uni-
directionally with point-to-point connection. Indeed a loop of
PEs is constructed. Plane topology of the LSC releases the
CU from complicated routing. It decides only whether if it
takes or hops a packet. This simplest topology enabled to
implement dynamic load balancing algorithm with a simple

method and meet high scalability requirements [7]. This
topology also has flexibility for extending or reducing system
size. Moreover, this feature presented redundancy for
reliability [8]. Thus, LSC has preferable characteristics to
construct a multi-processor system and configure network-
on-chip [9] with limitation of hardware resources.

 At the same time, one of defects of the LSC is
transmission latency for large system. It increases
proportionally to system size for topological characteristic. In
spite of the defect, the ring topology exhibited good
transmission performance for specific traffic [10] [11]. If
execution time of a task assigned to the PE is large, it cancels
overhead of the packet transmission. The ring topology is not
popular in current SoC [12], [13] and not sufficient research
has been done about possibility of this topology.

 In early works of the LSCs, the PE emulated the CU.
Then store-and-forward method was adopted for packet flow
control in spite of large transmission latency. Advantage of
the method was small overhead of communications
procedures executed by the PE. However, it is appreciable to
reduce packet transmission latency. The shorter overhead
extends applicable service of the parallel processing system.
Therefore, we separated the CU from the PE and investigated
appropriate packet flow control methods [14] [15]. Software-
based approach was applied. Simulations with clock cycle
level of the CPU of the CU were performed for evaluation.
The simulations could provide more accurate results than
ordinary researches evaluating network performance in which
flit level simulations were carried out. We obtained results
that virtual cut-through method [16] was superior to the other
methods for packet transmission latency and throughput.
While the wormhole routing method [17] is a dominant one
in current SoCs [12] [13], its complicated control procedure
has hindered performance.

 On the other hand, the CPU utilized in [14] [15] was not
optimized for the purpose of communications. Then we tried
to propose new instruction sets, which were suitable for a
communications program in order to reduce transmission
latency. Two instruction sets were applied in this study. Both
of them included specialized instructions for flit receiving
and sending procedures. One could be implemented without
drastic modification of the previous CPU. The other required
support of hardware pointers and counters. We evaluated the
communications systems with proposed instruction sets with

128 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

clock cycle level simulations. This study exposed probability
and limitation in software-based approach that consumes
small hardware in constructing the CU of the LSC.

2 Proposed system
2.1 Overview of the LSC
 In this section, we illustrate an outline of the LSC. Fig.
1 shows basic structure of the LSC. The PEs are
interconnected with the CUs, which send a packet uni-
directionally with buffered flow control. PE0 communicates
with a host computer or other modules. On the other hand,
PEs execute application programs exchanging the packets one
another. Packet format is given by Fig. 2. Suitable data length
m of the packet was chosen for applications. Fig. 3 presents
basic structure of the CU. Its functions are implemented with
a CPU for saving hardware consumption and flexibility of
procedures. A communications program including
instructions, communications buffers, and control variables
are stored in a memory unit. A registers for transmitting data
and status in a communications interface are accessible from
the communications program with memory mapped I/O. The
communications interface transmits asynchronously with an
8-bit data lines and handshake lines of strobe (STRB) and
acknowledgement (ACK).

2.2 Modified instruction set and the CPU
 The instruction set in the previous studies [13] [14] was
designed for general purpose in order to investigate control
flow method flexibly. Number of clock cycles for
transmission was expected to decline with an optimized
instruction set for role of the CU. We proposed new
instruction sets suitable for the communications program in
order to explore probability and limitation of our approach.

We applied two instruction sets. One was set A that
could be implemented without drastic modification of the
previous CPU. Several paths were added and control unit was
modified for implementation. The other was set B that needed
hardware pointers and counters. Table I shows the instruction
sets. The first 16 instructions are original ones included also
for the previous system. The others are new instructions.
They were prepared for each counter or pointer used in the
flit transmission procedures shown in Fig. 4. Only extended
load and store instructions were added to the set A.

We focused on flit transmission procedures to customize
the new instruction sets. There were two receiving channels
and sending channels for the CU as shown in Fig. 3. Two flit
buffers were prepared for receiving. A receiving channel was
linked a target channel of sending before packet sending
started. There were several attentive points. Firstly, the
procedures in Fig. 4 were executed repeatedly. Secondly,
access to the flit buffer was accompanied with update of
counters as shown in R5 and S6 in Fig. 4. Furthermore,
counter values were changed only in these steps. Thirdly,

pointers in the step R3 and S3 in Fig. 4 were memory data in
the previous study. Namely, addressing mode of the load and
store instructions used in the steps was memory indirect.
These instructions spent about twice clock cycles of the other
instructions as shown in Table I. Lastly, the counters were
variables in the memory.

 To reduce clock cycles spent in access to the flit buffer,
we merged instructions used for steps of R3, R4 and R5 in
Fig. 4. Thereby the extended store instructions were built. In
other words, the extended store instructions were compound
of store and three times of counter increment. Likely,
instructions used for S3, S4, and S6 were combined as the
extended load instructions. They were composed of load, two
times of counter increment and decrement. The instruction set

Figure 1. Basic structure of the LSC.

Figure 2. Packet format.

Figure 3. Structure of the CU.

PEn-1

CUn-1

PEn-2

CUn-2

PEn-3

CUn-3

PE0

CU0

PE1

CU1

PE2

CU2

Host or other modules

FCC DPE SPE RSB Data

4 bytes m bytes

Function Code
Destination PE
Source PE
Reserved (Unused)

CPU

CUk

Memory

Communications
Interface 2

Communications
Interface 1

To
 CUk+1

From
CUk-1

PEk

Data,
STRB,
ACK

Data,
STRB,
ACK

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 129

A consisted of original instructions and only these extended
instructions. These new instructions restricted location of
variables. Most significant 3 bits of addresses of
reading/writing pointers and counters for the same flit buffer
must have been the same value as of the flit buffer.

The instruction set B was designed to reduce clock cycles
more aggressively than A decreasing frequency of memory
access. We put the pointers of the flit buffers on registers in
the CPU. Furthermore, counter variables were taken in
hardware counters in the CPU. Accordingly, steps for counter
check of R1, R6, S1, and S2 referred register data but not
memory data. The register transfer instructions for counters in
Table I were arranged for these steps of checking counters.
Instructions of loading 11-bit data and incrementing register
data enabled to describe communications program effectively
using the instruction set B.

Format of the instructions are shown in Fig. 5. Increase
of number of instructions imposed of the instruction formats
partially. Length of operation codes (OPs) was 5 bits in the
proposed instructions while 4 bits in the previous ones. This
extension of the length of the operation code took one bit
away from the address field. Therefore, effective size of
memory shrieked from 4096 bytes to 2048 bytes, which was
sufficient for the present CU. 8-bit address fields of format

Receiving:
R1. Check a flit buffer if it is not full referring a

counter of waiting flit,
R2. Receive a flit,
R3. Store the flit in the flit buffer referring a

pointer for writing,
R4. Increment the pointer,
R5. Increment counters of received flits and

waiting flits,
R6. Check the flit if it is DPE referring the

counter of received flits and call channel
link procedure if required.

Sending:
S1. Check a flit buffer if it is not empty

referring a counter of waiting flit,
S2. Chick a counter of sent bytes and call

initializing procedure to start sending a
packet if required,

S3. Load a flit from the flit buffer referring a
pointer for reading,

S4. Increment the pointer,
S5. send the flit
S6. Increment the counter of sent flits and

decrement that of waiting flits.

Figure 4. Common procedure for receiving/sending a
flit.

Figure 5. Format of instructions.

OP

OP data

OP address

OP data

Type
I

III’

III

II

5 3 8 8
Length [bits]

OP address1 IV

24

OP address IV’

OP address1 V

address2

data

address2

address3 address4 address4

OP address1 V’ address2

data(ff) address3 address4

TABLE I INSTRUCTION SET OF THE
COMMUNICATIONS CPU.

Instructions Type

*)
Execution time
[clocks]

No operateion I 1
Load(immidiate) II 2
Load(direct) III 3
Load(memory indirect) IV 7
Store(direct) III 3
Store(memory indirect) IV 8
Bit Test and jump IV’ 4
Compare and jump IV’ 4
Jump III 3
Increment memory data II 4
And(immidiate) II 3
Or(immidate) II 3
Add(immidate) II 3
Add(dorect) III 4
Exclusive or(direct) II 4
Rotate right I 3
Load(immidate 11bits) B III’ 2

A I 3 Load(extended)
B V’ 15
A I 3 Store(extended)
B V 13

Register data transfer B I 2
Increment register data B I 2
*) Type is shown in Fig. 6.

130 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

type IV, V, and V’ mean least significant 8 bits of 11-bit
addresses. Most significant 3 bits of addresses are common
with the former 11-bit address fields. Address operands of the
format type V are addresses of a received counter, a waiting
flit counter, a write pointer for a flit buffers, respectively. The
last two fields must have the same value. Since there is
insufficient space in the CPU to hold “address4” during
processing of the instruction, it must be given twice an
instruction. Address operands of the format type V’ are
addresses of a sent flit counter, a waiting flit counter, a read
pointer for flit buffers, respectively. Data filed is for counter
decrement. Since an ALU in the CPU did not have function
of subtraction, down count was realized by addition of value
ff.

Fig. 6 presents architecture of the CPU, which realize the
instruction set B. Gray colored counters and registers are
added devices to the previous CPU. We described the CPU

with very high-speed integrated circuit hardware description
language (VHDL). Codes of the CPU were compiled by
QuartusⅡ10.0sp1 Web Edition for the target device of a field
programmable gate array (FPGA) EPM3512AQC208-7 of
MAX3000A series of Altera. Then simulation was done and
confirmed to be correct design.

 Fig. 7 and 8 shows local effect of the proposed
instruction set for execution time and program size. The
instruction set B could drastically reduce both number of
clock cycles and size of routine in the flit transmission
procedures in Fig. 4. Effect of the instruction set A was less
than that of the set B.

3 Evaluation
3.1 Latency and throughput
 Improvement of the latency and throughput of the
system using proposed instruction sets were evaluated with
simulations. Target method of flow control applied in this
paper was virtual cut-through method since it had given the
best performance in the previous study [13] [14]. Note that
the new instruction sets did not prevent executing the other
flow control method. To evaluate proposed system, we
rewrote communications programs with the new instruction
sets. The simulator was described with C language. It traced
status of the CU by the clock cycle of the CPU. The status

Figure 6. Architecture of the proposed CPU.

Figure 7. Local decrease of number of clock cycles.

Figure 8. Local decrease of program size.

0 5 10 15 20 25 30

R3, R4 and R5

S3, S4 and S6

R1

S1

sta
tu

s
ch

an
ge

sta
tu

s
ch

ec
k

Execution time[clocks]

previous
present A
present B

0 5 10 15

R3, R4 and R5

S3, S4 and S6

R1

S1

sta
tu

s
ch

an
ge

sta
tu

s
ch

ec
k

Size[bytes]

previous
present A
present B

A Rregister

To memory
(data)

Control Unit

Result Rregister

Z flag Program Counter

Instruction Rregister

Temporary register

To memory
(address)

Control signals

[10-0]

Selector

ALU

Selector

Counter

R1 Counter

S1 Counter

E1 Counter

R2 Counter

S2 Counter

E2 Counter

RB1 Pointer

WB1 Pointer

RB2 Pointer

WB2 Pointer

[3-0]

[3-0]

[3-0]

[7-4]

[10-0]

[7-0]

[7-0]

[10-8] [2-0] [7-0]

[3-0]

[3-0]

[3-0]

High Low

[10-0]

[10-0]

[10-8]

[7-0]

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 131

consisted of data in packet or flit buffers, an instruction
executing, variables in the communication program, data and
validity of them in a communications interface, and a signal
on a handshake line. To deduce performance of the CU
independently of the performance of the PE, very short
intervals of flit transmission by the PE were assumed. In the
simulations here, data size of packet m was 8.

 Fig. 9 shows the minimum latency. If traffic is so low
that all CUs service at most one packet simultaneously, CUs
devote their capability to transmission of the packet and
minimum latency was obtained. A packet delivered to PEk
was generated in PE0 in each simulation in which PE-PE
distance equaled to k. The latency consisted of three elements.
They are latency of flit transmissions between a source PE
and a CU attached to it, among CUs, and between a
destination PE and its entrance CU, respectively. The delay of
CU-CU transmission increased by hop proportionally to k as
expectedly. This element became dominant for large k. The
CU-CU transmission was accomplished in 20% smaller
number of clock cycles with the instruction set B than with
the previous system, while only a few percent of
improvement was obtained with the set A.

 Under frequent request of packet transmission, the CU
must manage both communications with the PE and the other
CUs. Accordingly, the CU spends less time for a certain
packet in ratio of execution time of the CPU. Then packet
transfer latency for a particular packet increases with traffic
while throughput improved. To compare performance under
traffic, we simulated transmission with Poisson arrival
process of packet generation of the PE for a 64-PE system.
Distances between source and destination PEs distributed
from 1 to 63 uniformly. 32 was an average distance of them.
Simulation duration was 100 times longer than average
packet generation intervals so that each PE generated, sent,
and received about 100 packets if the traffic was enough low
to accept for the system. Packet transmission latency under
uniform traffic and throughput are shown in Fig. 10. The
throughput is defined as number of packets that arrive at

destination per clock cycle.

 Packet transmission latency per packet measured with
number of clock cycles was always the smallest with the
proposed instruction set B. The set A gave less latency than
that of the previous study. Difference between them became
larger with traffic. That is to say, the communications
program with the present study is more advantageous under
high traffic. If the traffic was low, most of execution time of
the CPU was spent for testing whether if a flit had arrived.
The proposed instruction set had no profit for this procedure.
If the traffic was high, the CU carried out flit transmission
shown in Fig. 4 frequently and contribution of reduction of
clock cycles explained in the section 2.2 appeared apparently.
In spite of little effect under the low traffic, the set A declined
packet transmission latency about 10% compared to the
previous system under the high traffic.

 When the traffic was low, both the previous and present
systems could accept offered traffic completely so that the
throughput was the same for them. However, the traffic
increased, the throughput of the previous system saturated
first. If the system cannot deliver packets as fast as rate of
packet generation continuously, buffers in CUs and PEs are
filled with the packets and the system cannot improve the
programs. Therefore, effective range of the packet generation
with the instruction set A and B were about 10 % and 30 %
wider than that of the previous system.

Figure 9. Minimum latency.

Figure 10. Latency and throughput under uniform traffic.

0.E+00

2.E-04

4.E-04

6.E-04

8.E-04

1.E-03

1.E-03

1.E-03

2.E-03

2.E-03

2.E-03

2.E-03

2.E-03

0.
0E

+0
0

2.
0E

-0
6

4.
0E

-0
6

6.
0E

-0
6

8.
0E

-0
6

1.
0E

-0
5

1.
2E

-0
5

1.
4E

-0
5

1.
6E

-0
5

1.
8E

-0
5

Packet Generation Rate[/clock/PE]

Th
ro

ug
hp

ut
[p

ac
ke

ts/
cl

oc
k]

]

-1.E+05

-8.E+04

-6.E+04

-4.E+04

-2.E+04

0.E+00

2.E+04

4.E+04

6.E+04

8.E+04

1.E+05

La
te

nc
y[

cl
oc

ks
]

previous
present A
present B

packet generation rate
of the system

0.0E+00

1.0E+04

2.0E+04

3.0E+04

4.0E+04

5.0E+04

0 10 20 30 40 50 60
Distination PE

M
in

im
um

 la
te

nc
y[

cl
oc

ks
]

previous
present A
present B

132 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

3.2 Program Size
 Some of the proposed instructions were designed by
merging the previous instructions. This composition
compressed size of the transmission procedure smaller as
shown in Fig. 8. As a result, size of communications
programs with the new instruction sets were decreased
although a few temporary variables were added to rewrite the
communications programs effectively. Sizes of the programs
are shown in Fig. 11. Using the instruction sets A and B,
amount of the communications program sizes were decreased
about 10 % and 30 % of that of previous program,
respectively. The instruction set B lessened not only
instruction area but also variable area on the memory since
the pointers and counters were moved to the CPU.

4 Conclusions
 Developing the LSC, we modified the instruction set of
the CPU in the CU in order to optimize software-based
communications. Two instruction sets of A and B were
proposed to decline number of clock cycles in execution of
flit transmission procedures. The instruction set A was built
only merging some of original instructions that were used
consecutively. The instruction set B was constructed to
reduce frequency of memory accesses with support of the
hardware pointers and counters in the CPU. We also designed
the new CPU to implement the instruction set B. Then we
rewrote communications program with virtual cut-through
method for flow control and compared the new systems to the
previous one with simulations. The simulations were
performed with clock cycle level of the CPU. The proposed
instruction set B decreased packet transmission latency under
low traffic about 20% in clock cycles, while the set A gave
little improvement. The proposed instruction sets were more
advantageous under higher traffic. Using the instruction set A
and B, maximum throughputs were about 10 % and 30 %
higher than the previous one, respectively. Furthermore, size
of communications program shrieked about 10 % and 30 %
with the set A and B, respectively.

 Consequently, it is significant to reduce memory access
with support of hardware to decline execution clock cycles of
packet transmission. On the other hand, if the LSC is used

under high traffic, it is considerable to implement merged
instructions optimized for transmission purpose even if with
simple hardware.

 In future work, advanced optimization of instruction set
must be carried out observing trade-off of hardware and
software in detail. When we compiled VHDL code of the
CPU for the instruction set B for the target device
EPM3512AQC208-7, number of required macro cells and
clock set up were about twice of the previous system. These
results were no more than an example under restriction of a
particular FPGA chip. Moreover, only the CPU was complied
so that effect of decrease of size of memory was not included.
If our system including memory and the other devices are
implemented as custom ICs, different results should be
obtained. However, these preliminary results suggest
importance of consideration for effect of hardware
complexity applying sophisticated method.

5 References

[1] John Kim and Hanjoon Kim. “Router
microarchitecture and scalability of ring topology in on-chip
networks”. Proc. 2nd International Workshop on Network on
Chip Architectures, Dec. 2009, pp. 5-10.

[2] YOSHIOKA, Y. “Constructions of the Loop
Structured Computer”; SCi. Rep. Hirosaki Univ. Vol. 41, no.
1, 157-172, Aug 1994.

[3] ISHIDA, T., NARITA, A., YOSHIOKA, Y.
“Construction of a Donut Type of Loop Structured Computer
and its Characteristics”. SCi. Rep. Hirosaki Univ., Vol. 42,
no. 1, 147-156, Aug 1995.

[4] Y. Yoshioka and A. Narita. “The data flow
processing by the LSC with broadcast mode“; The Science
Reports of the Hirosaki University, 43-2, 289-299, Dec 1996.

[5] Y. Yoshioka and D. Zhao. ”The Functional
Distributed Control System Using a Dataflow Processing
Scheme and its Traffic Characteristics”; TECHNICAL
REPORT OF IEICE, NS2002-9, 33-36, Apr 2002.

[6] A. Narita, K. Ichijo and Y. Yoshioka. “The Parallel
Computer LSC for Simulations of the Self-Reproduction
Type Model”; INFORMATION, Vol. 12, No. 3, pp.663-672,
May 2009.

[7] A. Narita, X. Zhao, S. Mizuta, and Y. Yoshioka.
“Scalability of the LSC for Simulation of Self-Reproduction
Model”; Proc. the International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA'2001), 514-520, Jun 2001.

Figure 11. Program size.

0 200 400 600 800 1000

previous

present A

present B

Size [bytes]

instructions variables buffers and queues

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 133

[8] M. Fukushi, A. Narita, S. Mizuta, Y. Yoshioka, S.
Horiguti. ” A fault tolerant method for the Loop Structured
Computer”. TECHNICAL REPORT OF IEICE, FTS99-32,
Aug 1999, pp. 7-14.

[9] L. Benini and G. De Micheli. “Networks on Chips:
A New SoC Paradigm”; Computer, vol. 35, no. 1, pp.70-78,
Jan 2002.

[10] Michael Kistler, Michael Perrone, Fabrizio Petrini.
“Cell multiprocessor communication network: built for
speed”. IEEE Micro, v.26 n.3, p.10-23, May 2006

[11] K. Lahiri, S. Dey, and A. Raghunathan. “Evaluation
of the traffic-performance characteristics of system-on-chip
communication architectures”. Proc. 14th International
Conference on VLSI Design, Jan. 2001, pp. 29-35.

[12] T. Bjerregaard and S. Mahadevan. “A survey of
research and practices of network-on-chip”. ACM
Computing Surveys, vol. 38, 2006, pp. 1.

[13] E. Salminen, A. Kulmala, and Timo D. Hamalainen.
“Survey of network-on-chip proposals”. White Paper, OCP-
IP, March 2008.

[14] Akiko Narita, Kenji Ichijo and Yoshio Yoshioka.
“Evaluation of Packet Flow Control Methods for a LSC on
Chip with Hardware Requirements and Performance”. Proc.
of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA'2010),
pp.390-396

[15] Akiko Narita, Kenji Ichijo and Yoshio Yoshioka.
“Comprehensive Evaluation of Packet Flow Control Methods
for a Ring Network of Processors on Chip”. Proc. of the 9th
IEEE/ACIS International Conference on Computer and
Information Science (ICIS 2010), pp. 75-8

[16] O. Kermani and L. Kleinrock. ”Virtual cut-through:
a new computer communication switching techniques”.
Computer Networks, vol. 3, No. 4, 1979, pp. 267-286.

[17] L. M. Ni and P. K. McKinley. “A survey of
wormhole routing technique in direct networks”. Computer,
vol. 81, No.2, Feb. 1993 pp. 62-76.

134 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

A Protocol for Realtime Switched Communication
in FPGA Clusters

Richard D. Anderson
Computer Science and Engineering, Box 9637

Mississippi State University
Mississippi State, MS 39762

rda62@msstate.edu

Yoginder S. Dandass*
Computer Science and Engineering, Box 9637

Mississippi State University
Mississippi State, MS 39762

yogi@cse.msstate.edu

Abstract - Field programmable gate array (FPGA) devices
typically have limited resources. This means that networks of
FPGAs are required for implementing large-scale
applications. Use of realtime communication channels can be
used for reducing handshaking overhead in order to create
high-performance networks. This paper describes a switched,
real-time, link-level protocol and its implementation using
Virtex-4 multigigabit transceivers. A prototype 4Gbps
implementation of the protocol shows a per-hop latency and
jitter of 310ns and 12.5ns, respectively, when endpoints run at
a clock frequency of 100MHz. The prototype is also used to
demonstrate the implementation of a jitter-free distributed
global realtime clock that can be used for scheduling
communication and computation of applications implemented
using this cluster of FPGAs.

Keywords: Cluster, FPGA, Real-time, Multi-gigabit
transceivers, communication protocol.

1 Introduction
Reconfigurable computing, using field programmable gate
arrays (FPGAs), is becoming increasingly popular in high-
performance computing applications such as in digital signal
processing (DSP) and in bioinformatics. FPGA-based
applications exploit the massive parallelism that can be
implemented in logic. However, the level of parallelism that
can be implemented is often restricted by the area (i.e.,
resources) available on the chip. Furthermore, large FPGAs
are significantly more expensive as compared to smaller
chips. Therefore, in many applications it is more cost
effective to utilize a number of smaller interconnected FPGAs
than using one (or more) large FPGAs.

We had previously introduced the design of a real-time link-
level communication protocol and a prototype point-to-point
implementation using multi-gigabit transceivers (MGTs)
found on Virtex-4 FPGAs [2]. Although this previous

implementation had good real-time characteristics, our
prototype was limited to point-to-point communication
between exactly two FPGAs. This paper extends the ideas
introduced previously by developing and characterizing a
switch that enables routing of frames in real-time between
several FPGAs. Furthermore, our enhanced design improves
the real-time performance of the protocol by reducing the
jitter of the real-time distributed clock. Reducing this jitter is
important for reducing the overheads in a real-time network.
The reminder of the paper is organized as follows: Section 2
discusses the motivation and background for this work.
Section 3 provides a summary introduction to the protocol.
Section 4 describes the experimental setup and results, and
Section 5 concludes with a discussion the results and future
work.

2 Background and Motivation
Many FPGA-based applications exhibit real-time
characteristics because their applications’ logic are controlled
by finite state machines (FSMs) having well-defined timing
properties. When designing a communication protocol for
such applications distributed over a cluster of FPGAs, the
handshaking required for flow control between devices can be
eliminated. This results in a high-performance network in
which communication is scheduled according to a globally
distributed real-time clock.

Using the protocol presented here, applications typically
utilize zero-sided communication as opposed to two-sided
communication found in most software applications. In two
sided communication, processes at both ends of the
communication channel execute communication operations in
order to transfer data. In zero-sided communication, neither
endpoint process issue explicit data transfer operations.
Instead, any data that is available in a buffer at the transmit
endpoint is delivered to a buffer at the receiving endpoint
according to a predefined schedule.

*Corresponding Author

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 135

Modern FPGAs such as Xilinx’s Virtex [3], [4] and Altera’s
Stratix [5] families of FPGAs support several multigigabit
transceivers that can be used for chip-to-chip or board-to-
board serial communication. Xilinx has designed a general-
purpose high-speed serial communication protocol, Aurora,
for enabling simplex and full-duplex link-level
communication in applications using on-chip MGTs [6].
Aurora supports both frame-oriented and streaming
communication with native and application controlled flow
control. Xilinx’s Aurora implementations are feature-rich and
robust. However, we chose to design our own protocol in
order to reduce latencies and overheads to the largest extent
possible.

A few research projects have also developed and implemented
customized point-to-point high-speed communication
channels for interconnecting FPGAs using MGTs [1], [7], [8].
The Aurora protocol is also relatively efficient but is a point-
to-point protocol. Because of the limited number of MGTs
available at each FPGA, creating large clusters requires the
use of interconnect switches. Aurora does not have switching
capability, and therefore, any frame routing capability needs
to be developed as part of the application.

3 Protocol Description
We have adapted and enhanced the implementation of the
protocol described in detail in [1], and therefore, do not repeat
all the protocol details here in order to conserve space.
However, important information on the specification of
routing and its implementation in our new version is
described in detail. Our protocol is a link-level serial protocol
that uses 8b/10b encoding [9] to exchange control and data
messages between application endpoint and switch FPGAs.
Only frame-oriented communication is supported and
endpoint FPGAs are connected to each other using switches
over point-to-point physical links. In its present form, the
protocol allows a maximum of eight intermediate switches
between any two nodes and each switch can have at most
eight connections to other endpoints and switches.

Just as in [1], our protocol uses source routing (i.e., the
application endpoint determines the routing of each frame and
includes the routing information at the beginning of each
frame). The switches use the routing information in order to
perform cut-through (or worm-hole) routing. In cut-through
routing, the switch forwards data words as soon as they are
received and the outbound channel is available. This
significantly decreases latencies as compared with traditional
store-and-forward routing.

3.1 Frame Layout and Routing
Data and control bytes are transmitted in 4-byte words.
Frames are delimited by 4-byte start-of-frame (SoF) and end-
of-frame (EoF) control words. When no data is available for
transmission, the MGT sends the idle control word. Idle
control words are continuously transmitted between frames in
order to maintain the synchronization between a pair of
communicating serial transceivers (i.e., the receiver extracts
the clock embedded in the transitions between 0 and 1 signals
in the physical data stream being sent by the transmitter).
Therefore, the receiver logic on one endpoint FPGA is
operating at the same frequency as the transmitter logic on the
switch FPGA.

It is also possible for the transmitter to run out of data to send
before the frame is completely transmitted. In this case, the
transmitter also sends idle control words within the frame;
these idle control words are discarded by the receiver. Note:
if the real-time schedule is constructed carefully, there should
be no need to transmit idle control words within a frame.
However, this feature was designed into our protocol to
provide some safety against data buffer underflows in case
there are small differences in frequencies between the
transmitter’s, receiver’s, and application’s clock domains.

The SoF word is immediately followed by a single source
routing word. Source routing information is organized into 8
nybbles (i.e., 4-bit sequences) such that each nybble
represents a single hop (i.e., an outgoing transmission from a
switch). The most significant bit of a hop specification
indicates whether the remaining three bits are valid. The
remaining three bits specify the outgoing port on the switch
that is to be used to forward the frame. Essentially, the value
in the three address bits is added to the incoming port number
to derive the outgoing port number. The complete route for a
frame is specified by the sequence of nybbles starting with the
least significant nybble in the word. When the source routing
word is received by a switch, it scans the word starting with
the least significant nybble looking for a valid hop
specification (invalid specifications are skipped). When a
switch forwards the frame, it consumes the corresponding
nybble by clearing the valid bit in the nybble (see [1] for more
details).

For data integrity checks, an optional 4-byte error-checking
word (e.g. checksum or CRC) can be inserted into the frame
immediately before the EoF. The switch can be configured to
detect this word, verify the integrity of the frame payload, and
invalidate an erroneous frame.

136 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

3.2 Implementation Issues
We have developed a prototype implementation of the link
layer logic on the Virtex-4 FX family of FPGAs. In our
implementation, each Virtex-4 MGT has different clocks for
the transmitter and the receiver. An on-board reference
oscillator is used for clocking the transmitter whereas the
receiver’s clock is derived from the received signal.
Furthermore, the application on the endpoints has its own
independent clock. The MGT can simplify implementation
clocking by performing synchronization internally such that
the link layer needs to only be aware of one clock domain.
However, internal clock synchronization requires the data and
control words to traverse through a fairly lengthy internal path
[1]. A significant portion of this path can be bypassed by
operating the MGT in a “low latency” mode with the tradeoff
that the link layer must perform synchronization by itself.

In our prototype implementation, the switch uses eight
receivers and eight transmitters. All of the eight transmitters
derive their clocks from a common 100MHz reference clock.
However, because each of the eight receivers derives its
frequency from the transmitter it is connected to, each of the
eight receivers in the switch operates in an independent
100MHz clock domain. Similarly, on the endpoints, the
application, transmitter, and receiver each operate in
independent 100MHz clock domains.

We use FIFOs with independent read and write clocks
whenever data needs to cross clock domains. Xilinx supports
efficient construction of such FIFOs using block RAMs
(BRAMs) in Virtex 4 FPGAs [3]. These FIFOs, however,

each add five to six clock cycles of latency in the data path
(the variance is caused by the phase relationship of the clocks
at FIFO’s read and write endpoints. Therefore, significant
latency can result when data traverses several clock domains.
For example, when data is transmitted from the application
block in Endpoint FPGA 0 to the application block in
Endpoint FPGA 7, it must traverse three FIFOs (Application-
to-TX at Endpoint FPGA 0, RXport 0-to-TXport 7 at the switch,
and RX-to-Application in FPGA 7.

3.3 Implementation Architecture
Figure 1 depicts the architecture of the link layer. It shows
one endpoint FPGA connected to the switch FPGA. The host
FPGA uses one MGT to connect to the switch. The switch
FPGA uses eight MGTs to connect to other switches or
endpoint FPGAs. The internal signal routing resources of the
switch FPGA are used to create a fully connected point-to-
point topology between the switch’s MGTs.

The switch does not provide buffering services greater than
the depth of the FIFOs between the ports; it is the
application’s responsibility to create frames and transmission
schedules such that it does not overflow the FIFO. We chose
a fully connected topology to simplify switching and to avoid
loss of data due to frame collisions. A collision occurs at a
switch when two (or more) overlapping frames are received
that need to be sent out on the same port simultaneously. In
the event of a collision, our switch receives frames destined
for the same port and buffers them in the separate FIFOs
connecting the receiver ports with the transmitter port. It then
uses a fixed priority scheme to select the order in which the
frames will be forwarded. Although the switch is capable of
handling a few arbitrary frame collisions, it is not designed to
handle constant simultaneous frame transmissions that are
destined for the same port. Therefore, it is also the
responsibility of the application to create schedules that avoid
collisions.

3.4 Switching and Selection Unit Architecture
Frames received by the switch are handled by two hardware
modules, the switching unit and the selection unit. There are
eight switching units and eight selection units (i.e., one pair
per MGT in the switch). Each switching unit is connected to
all eight selection units. This results in a total of 64
connections (including loopback connections). Buffering
FIFOs are placed between the switching and selection units.
All switching units and selection units are independent of
each other and can operate in parallel, therefore, it is possible

Switch FPGA

Figure 1: Implementation Architecture [1]

Endpoint FPGA 0

A
pplication

M
G

T

RX

TX

M
G

T

RX

TX

Sw
itch Fabric

M
G

T

RX

TX

Port 0

Port 7

Endpoint FPGA 7

A
pplication

M
G

T

RX

TX

Port 1
through
Port 6

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 137

for all switching units to route frames and for all selection
units to forward data concurrently.

The switching unit is responsible for decoding a received
frame’s source-routing word and then forwarding the frame to
the corresponding destination. The switching unit functions
as a one-to-many de-multiplexer, where the decoded routing
nybble acts as the selector that connects a single input line
from the receiver to one of many output lines. A secondary
function of the switching unit is to verify the integrity of the
frame data using a verification method such as the cyclic
redundancy check (CRC). After decoding the route, the
switching unit begins computing the CRC for the incoming
frame payload. The frame CRC is stored in the 4-byte word
at the end of the payload and before the EoF. Once the
switching unit sees the EoF, it will verify its computed CRC
with the frame CRC and mark the frame as invalid if there is
not a match. To ensure that the switching unit properly
detects the source-routing word and the frame CRC, the
endpoint applications must follow that rule that no idle
control words should be placed between the SoF and the
source-routing word, and between the CRC and EoF. These
word pairs must not be separated.

The switching unit supports zero-sided communication and
does not throttle incoming frames; it consumes and forwards
each 4-byte data word received by the MGT receiver every
clock cycle. However, since the routing information follows
SoF in our frame layout, the SoF is buffered in a two stage
pipeline to give the switching unit time to decode, update, and
register the routing nybble before forwarding the frame; the
pipeline is also used when verifying the CRC.

Figure 2 shows a frame being routed by the switching unit.
The data flow across the switching unit begins with the
receipt of the SoF from the receiver at clock cycle 0. At clock
cycle 1, the SoF has been registered in pipeline stage one and
the 4-byte routing information is being presented by the
receiver. At this point, SoF is assigned to be registered at
pipeline stage two and the least-significant valid routing
nybble is decoded and assigned to be registered on the next
clock cycle. The updated 4-byte routing information, where
the decoded nybble’s valid bit is set to zero, is assigned to be
registered in pipeline stage one. At clock cycle 2, the
registered SoF in pipeline stage two is written to the FIFO
input port pointed to by the registered nybble, the updated
routing information is assigned to pipeline stage two, and the
first 4-byte payload is assigned to pipeline stage one.

From this point on, each incoming 4-byte payload traverses
the pipeline and is inserted into the FIFO until the EoF is
presented by the receiver at clock cycle n, where n is the (size-
of-the-frame – 1), in words. At this point, if the switch is
configured to do error checking, the frame’s 4-byte CRC has
already been registered in pipeline stage one. Upon detecting
the EoF, the switching unit compares its computed CRC with
the frame’s CRC. If the two do not match, the switching unit
marks the frame CRC as a bad CRC and sets its value to be
registered in pipeline stage two at clock cycle n+1; if the
CRCs match, the frame CRC is just shifted to pipeline stage
two. At clock cycle n+1, EoF has been registered in pipeline
stage one and the frame CRC is written to the FIFO from
pipeline stage two. At clock cycle n+2, the EoF has been
registered in pipeline stage two and written to the FIFO. The
registered routing nybble is flagged to be reset on the next
clock cycle.

The selection unit (or selector) implements a many-to-one
connection. It receives data from eight FIFOs and forwards
their data to the transmitter by selecting a non-empty FIFO

Figure 2: Switching Unit Data Flow

Switching unit Rx

SoF

Clock 0

P1 P2

Rx Switching unit

Route

SoF

Clock 1

Decode

P1 P2

Rx Switching unit

Data0

R
oute’

SoF

route

Clock 2

P1 P2

138 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

and linking its data-out port and read enable signal to the
transmitter. The transmitter can then assert the read enable of
the FIFO when it is ready to send the contained frame.

A typical selection process begins when at least one FIFO-is-
empty indicator is deasserted (e.g. transitions from high to
low); all eight FIFO-is-empty indicators are observed in
parallel. For this implementation, we have used a simple
round-robin priority scheme to select between competing non-
empty FIFOs. The FIFO with priority is checked for data (i.e.
not empty) at this time. If it is not empty, the FIFO is selected
over all other non-empty FIFOs and will be linked to the
transmitter. The selection unit will also link the FIFO-is-
empty indicator of the selected FIFO to the transmitter to
signal that there is data available to be transmitted. The
selector then sets the next sequential FIFO as the new FIFO
with priority. For example, if FIFO3 has priority and is not
empty, the selection unit will link it to the transmitter and then
set FIFO4 as the next FIFO with priority. In the event that the
FIFO with priority is empty, the next sequential non-empty
FIFO is selected. For example, if FIFO3 is empty and the next
non-empty FIFOs are FIFO6 and FIFO7, FIFO6 will be linked
to the transmitter and FIFO7 is set as the new priority. When
the round robin reaches FIFO7, it will wrap around to FIFO0,
the next sequential FIFO.

4 Experimental Setup & Results
A number of experiments were conducted in order to
investigate the feasibility of successfully utilizing the protocol
and its implementation in a realtime cluster. We have
implemented the endpoint and switch logic on two different
Virtex-4 FX-100-FF1152 platforms. The HTG-V4-PCIE
board from HitechGlobal is used for the endpoints and the
ML423 from Xilinx is used as a switch. The HTG-V4-PCIE
boards are connected to the ML423 board via SMA
connectors. All the MGTs in the virtex-4 FX-100-FF1152 are
brought out to SMA connectors on the ML423, making it an
ideal platform for implementing the switch.

In our current implementation, the MGTs are configured to
operate at a bit rate of 4Gbps resulting in a peak data rate of
400MBps in each direction. The MGT-to-logic interface is
implemented to be 32-bit words, therefore, the receiver and
transmitter logic operate at 100MHz. The application
endpoint is also configured to operate at 100MHz. However,
the receiver, transmitter, and application all operate in
separate 100MHz clock domains.

4.1 Latency and Jitter
For the first experiment, we connected two endpoints, A and
B, to the switch and measured the latency and the jitter of our
implementation using a ping-pong test. In the ping-pong test,
endpoint A sends a frame across the switch to endpoint B.
Endpoint B sends the recieved frame back to endpoint A,
through the switch, after B finishes receiving the frame from
A. This test is repeated 40,000,000 times and the minimum,
and maximum time taken to complete one round-trip is
recorded over all of the iterations.

Table 1: Roundtrip Time (100 MHz Cycles).

Payload Size Min Max
1 122 126
2 124 128
4 128 132
8 136 140

16 152 156
32 184 188
64 248 252

128 376 380
256 632 636
512 1144 1148

Table 1 shows the results from the ping-pong test. The
payload of the frame includes the error-checking word but
excludes the source-routing word, SoF and EoF control
words. The maximum round-trip jitter is five clock cycles
and is the result of crossing clock domains. The total number
of clock cycles required to transmit an n-word payload is
given by equation (1) below:

T = 3 + n + TO, (1)

where n represents the clock cycles required to transmit n
payload words and TO is the overhead. The 3 in the equation
represents one cycle each required to transmit the source-
routing word, the SoF and EoF. Applying equation (1) to the
minimum entry in each row of Table 1 shows that the
minimum roundtrip overhead is 114 clock cycles (i.e., one-
way overhead is 57 cycles).

When there are no frame collisions, the switch has a latency
of 11 clock cycles beginning at the receipt of SoF by the
receiver and the transmission of the SoF by the transmitter.
This latency is the result of the two stage switching pipeline,
one cycle selection, delays internal to the FIFOs, and one
cycle each for writing to and reading from the FIFOs.

For the second experiment, we connected four endpoints, A,
B, C, and D to the switch and measured the latency and jitter

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 139

using a four-point-traversal test. In the traversal test, the
source-routing word is set to include the following eight hops:
hops one and two from endpoint A to endpoint B via the
switch; hops three and four from B to C; hops five and six
from C to D; and hops seven and eight from D to A,
completing the traversal. The switch decodes and updates the
source-routing word for each pair of hops. We repeated the
traversal test 40,000,000 times and recorded the minimum,
and maximum time taken to complete each round-trip over all
of the iterations.

Table 2: Roundtrip Time (100 MHz Cycles).

Payload Size Min Max
1 244 252
2 249 257
4 257 265
8 272 280

16 304 312
32 368 376
64 496 504

128 753 761
256 1264 1272
512 2291 2298

Table 2 shows the results from the four-point-traversal test.
The frame payload includes the error-checking word and
excludes the source-routing word, SoF and EoF. The
maximum round trip jitter is nine cycles (or average time ± 4
clock cycles). The results show that the minimum round trip
overhead is 228 cycles (i.e. four times the one-way overhead
of 57 cycles). This is consistent with the observations in table
1.

4.2 Clock Synchronization
For the third experiment, we conducted a clock
synchronization test between the switch and the endpoints. A
distributed global clock is maintained at the switch and at all
of the endpoints in the form of 64-bit counters that increment
every clock cycle (at a frequency of 100MHz). The switch is
responsible for synchronizing the global clock, and therefore,
broadcasts its counter value to all endpoints periodically. At
the time appointed by the schedule, each transmitter on the
switch, retrieves the global clock counter value and transmits
this value in a special frame indicted by a special SoF*
control word. This frame consists of three words, the SoF*,
and the two data words carrying the clock value (there is no
CRC and EoF associated with this frame). Upon receiving
the global clock from the switch, each receiver immediately
updates its own global clock counter (instead of incrementing

it). Note that the clock value does not traverse any FIFOs in
this process.

At the receiver, the clock is updated using the expression in
equation (2):

Ct+1 = Ct + ((R + λ – Ct) / 2), (2)

where Ct is the current counter value, R is the received
counter value, and λ is computed as follows:

λ = 3 + 19, (3)

where λ is the expected one-way latency for transferring the
synchronization frame. In (3), 3 represents the total size, in
words, of the global clock synchronization frame. The 19
represents the maximum travel time for the clock frame (from
the transmitter at the switch to the receiver at the endpoint).
The one-way latency computed by equation (3) corresponds
to a single switch network with eight connected endpoints. In
a multi-switch network, where one or more switches are
connected to the broadcasting switch or in succession with the
switch, global clock synchronization can become complex.

The additional switches and overall network design can
increase latency and introduce additional overheads.
Furthermore, our global broadcast procedure may not be the
most optimal synchronization method for a multi-switch
network. There are other global clock synchronization
methods (e.g. NTP and IEEE1588) that use multiple
synchronization packages and a three-way handshake to
update the global clock [10]-[13]. However, in a single
switch FPGA network with predictable communication and
synchronization stages due to a predefined schedule, a single
frame one-way broadcast is suitable because we can easily
compute the one-way latency using equations (1) and (3). For
multi-switch networks, additional experimentation with our
broadcast synchronization method will be required in order to
characterize λ.

Our experiment resulted in a zero jitter in the expected global
clock value computed using equation (2) at update
frequencies 1Hz, 25Hz, 50Hz, and 100Hz. This is an
improvement in the clock jitter over our previous
implementation [1] in which we achieved a global clock jitter
of 3 and 13 cycles for updates at 100Hz and 1Hz,
respectively. Our zero jitter observation is a result of having
eliminated the FIFOs in clock value update paths. At the
switch, the global clock runs in a clock domain independent
of all the transmitters. We implement a FIFO-free mechanism
using registers to cross the clock value from the global clock’s
domain to each of the transmitters’ domains (the register

140 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

essentially holds the global clock value for several cycles just
as the scheduler is indicating to the transmitters that it is time
to broadcast the global clock value – this enables the
transmitter to read a stable global clock value).

5 Conclusions
The results reported in this paper demonstrate the
improvements in performance of our implementation of the
real-time link-level communication protocol as compared
with our previous design and implementation [1]. Our
prototype and experiments now report results that include a
switch and exhibit a significant reduction in jitter of the
distributed global clock. Our implementation supports a
switch, with up to eight endpoint FPGAs.

In future work we plan to optimize our global clock
synchronization method for a multi-switch FPGA network.
We are also investigating the design and implementation of
advanced schedulers for computational and communication
activities in the network of FPGAs.

6 Acknowledgements
This work was supported in part by the following National
Science Foundation grants: EPS-0903787, EPS-1006983,
DUE-0513057.

7 References
[1] R. D. Anderson and Y. S. Dandass, “A Protocol for

Realtime Communication for FPGA Clusters using
Multigigabit Trancevers,” 22nd International
Conference on Parallel and Distributed Computing
and Communication Systems (PDCCS 2009),
Louisville, KY, USA, September 24-26, 2009

[2] Xilinx, Virtex-4 RocketIO Multi-Gigabit Transceiver
User Guide UG076 v4.1, November 2, 2008,
http://www.xilinx.com/support/documentation/user_gu
ides/ug076.pdf, accessed March 29, 2011.

[3] Xilinx, Virtex-4 FPGA User Guide UG070 v2.6,
December 1, 2008,
http://www.xilinx.com/support/documentation/user_gu
ides/ug070.pdf, accessed March 29, 2011.

[4] Xilinx, Virtex-5 FPGA User Guide UG190 v5.3, May
17, 2010,
http://www.xilinx.com/support/documentation/user_gu
ides/ug190.pdf, accessed March 29, 2011.

[5] Altera, Stratix IV Device Family Overview SIV51001-
2.4, June 2009,
http://www.altera.com/literature/hb/stratix-
iv/stx4_siv51001.pdf, accessed March 29, 2011.

[6] Xilinx, Aurora 8B/10B v3.1 for Virtex-4 FX FPGA,
DS128, April 24, 2009,
http://www.xilinx.com/support/documentation/ip_docu
mentation/virtex_4fx_aurora_8b10b_ds128.pdf,
accessed March 29, 2011.

[7] H. Kristian, O. Berge, and P. Häfliger, “High-Speed
Serial AER on FPGA,” in Proceedings of the 2007
IEEE International Symposium on Circuits and
Systems (ISCAS 2007), New Orleans, LA, USA, May
27-30, 2007.

[8] M. Liu, W. Kuehn, Z. Lu., A. Jantsch, S. Yang, T.
Perez, and Z. Liu, “Hardware/Software Co-design of a
General-Purpose Computation Platform in Particle
Physics,” in Proceedings of the 2007 International
Conference on Field-Programmable Technology
(ICFPT 2007), Kitakyushu, Kyushu, Japan, 2007.

[9] A. X. Widmer and P. A. Franaszek, “A DC-Balanced,
Partitioned-Block, 8B/10B Transmission Code,” IBM
Journal of Research and Development, 27(5), 1983.

[10] IEEE, “IEEE Standard for a Precision Clock
Synchronization Protocol for Networked Measurement
and Control Systems,” IEEE Std 1588-2008, URL:
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?pun
umber=4579757

[11] J. Wu and J. Zhang and Y. Ma and M. Xie, “A Low-
jitter Distributed Synchronous Clock Using DAC,”
16th IEEE-NPSS Real Time Conference (RT’ 09),
Beijing, China, 2009

[12] Y. Kang and J. Wu and M. Xie and Z. Yu, “A New
Design for Precision Clock Synchronization Based on
FPGA,” 16th IEEE-NPSS Real Time Conference (RT’
09), Beijing, China, 2009

[13] M. Zhang and S. Shen and Jian Shi and T. Zhang,
“Simple Clock Synchronization for Distributed Real-
Time Systems,” IEEE International Conference on
Industrial Technology (ICIT 2008), Chengdu, China,
2008

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 141

Communicator Sensitive Static Analysis of MPI Collective
Communication

Zhaofei Wang
National Laboratory for Parallel and Distributed Processing,

National University of Defense Technology,
Changsha, Hunan, P.R. China

Abstract— Collective communication is widely used in MPI
programs. However, its misuse may cause synchronization
errors. This paper first proposes an extention to an existing
static barrier analysis approach, so that it can check one
necessary condition for correct collective communication.
Since previous analyzers do not distinguish different com-
municators, they may report false alarms. This paper further
presents a communicator sensitive collective communication
analyzer. Moreover, this paper reports the results of compar-
ative experiments on several real MPI programs. Compared
with existing static analyzers, the proposed tool generates
less false alarms, can check more communication behaviour,
and is applicable to more programs.

Keywords: collective communication, communicator, static anal-
ysis, MPI, synchronization

1. Introduction
MPI(Message Passing Interface) is an important parallel

programming paradigm for high performance computing[1].
Collective communication is widely used in MPI programs
to exchange information among a group of processes. MPI
standard requires all members in each process group invoke
the same sequence of collective subroutines for that group
during whole program execution. Otherwise, some processes
in a group may be stalled forever. This paper addresses how
to detect this kind of synchronization errors.

MPI provides some communicator management subrou-
tines which support process group partition. In addition, MPI
allows textually unaligned collective subroutine invocations
which are controlled by the so-called multi-valued expres-
sions(MVEs). An MVE may evaluate differently for differ-
ent processes, and can fork concurrent execution paths if
used as a branching condition. Generally speaking, different
processes may take different execution paths, and collective
communication may involve any process group. Hence, it
is challenging to develop precise collective communication
analyzers.

Both dynamic and static tools have been developed to
check collective communication in MPI programs. The for-
mer operate at run time and may miss errors that depend
on specific program inputs[2], [3], [4], while the latter
work at compile time and can check all potential program

01: MPI_Comm app_com, server_com;
02: void sub() {
03: int am_server, num_ids, my_id, data;
04:
05: MPI_Comm_size(MPI_COMM_WORLD, &num_ids);
06: MPI_Comm_rank(MPI_COMM_WORLD, &my_id);
07:
08: if (my_id < (num_ids - 1)) {
09: am_server = 0; //application processes
10: //join subgroup app_com
11: MPI_Comm_split(MPI_COMM_WORLD,0,my_id,
12: &app_com);
13: MPI_Bcast(data,1,MPI_INT,num_ids-1,
14: MPI_COMM_WORLD);
15: }
16: else {
17: am_server = 1; //the server process
18: //join subgroup server_com
19: MPI_Comm_split(MPI_COMM_WORLD,1,0,
20: &server_com);
21: data = 22;
22: MPI_Bcast(data,1,MPI_INT,num_ids-1,
23: MPI_COMM_WORLD);
24: }
25:
26: if (!am_server)
27: //synchronize subgroup app_com
28: MPI_Barrier(app_com);
29: }

Fig. 1: MPI program example

behaviour[5], [6], [7]. This paper concentrates on static tools.
[6] presents a static barrier matching framework for MPI
programs. In order to check more collective communication,
we extend the approach in [6] to take into account other col-
lective subroutines besides MPI_Barrier(). Nevertheless, the
extended framework only checks one necessary condition for
correct collective communication. Namely, all processes of
each group invoke the same number of collective subroutines
for that group.

The barrier analysis in [6] does not distinguish dif-
ferent communicators, possibly reporting false alarms.
We use the MPI program in Figure 1 for illustration.
MPI_Comm_split() is used to derive two communicators
from MPI_COMM_WORLD, of which server_com specifies
the group containing the process with ID (num_ids−1),

142 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

and app_com the group containing all other processes.
Due to lines 9 and 17, !am_server at line 26 is multi-
valued with respect to MPI_COMM_WORLD. However,
it evaluates uniformly for the process group specified by
app_com. The barrier at line 28 synchronizes the process
group associated with app_com, which contains exactly the
processes that will encounter the barrier. Hence the program
will terminate normally. However, existing analyzers report
a synchronization error because they regard !am_server as
an MVE with respect to any communicator.

To reduce the false alarms mentioned above, it is neces-
sary to distinguish different communicators. The candidate
values of MVEs may be correlated with the invocations
to communicator management subroutines. As shown in
Figure. 1, line 9 specifies 0 as a candidate value for the
MVE am_server at line 26, while line 11 has an invocation
to MPI_Comm_split(). Each process executes either all
the two lines or none of them. Consequently, am_server
evaluates to 0 at line 26 for each process of the group
specified by app_com. By capturing this and other kinds
of correlation, this paper presents a communicator sensitive
collective communication analysis approach.

In summary, this paper makes the following contributions:
1) We propose a static collective communication analysis

approach based on an existing static barrier analysis
framework.

2) We present a communicator sensitive collective com-
munication analysis approach.

3) By comparative experiments, we show the proposed
analyzer is more precise, can check more communi-
cation behaviour and is applicable to more programs
compared with previous tools.

2. Preliminaries
Communicators in MPI. An MPI communicator specifies

a unique communication universe for a group of processes.
For example, the predefined MPI_COMM_WORLD at line
5 of Figure 1 specifies the process group containing all
processes.

Collective subroutines in MPI. MPI provides many
subroutines for collective communication, such as
MPI_Barrier() and MPI_Bcast(). The communicator
parameter of each collective subroutine specifies the process
group involved in the collective communication.

Textually unaligned collective subroutine invocations. If
multiple textually different subroutine invocations specify
the same collective communication, they are called textually
unaligned. For example, the broadcasts at lines 13 and 22 in
Figure 1 are texually unaligned.

Process identity. MPI provides
MPI_Comm_rank(MPI_Comm, int*) to obtain the unique
identities of processes. For example, after the execution
of line 6 in Figure 1, my_id will hold the identity of the

| :B2

line 28:L2 :R2

Fig. 2: Barrier tree for the program in Figure 1

calling process in the group specified by the communicator
com.

Multi-valued expression(MVE) versus Single-valued ex-
pression(SVE). Derived from process identities, an MVE is
an expression that may evaluate nonuniformly for a group
of processes. On the contrary, an SVE evaluates identically
among a group of processes. For example, in Figure 1, the
condition at line 8 is an MVE derived from the process
identity my_id, while num_ids at line 5 is an SVE which
holds the number of all processes. Process identities are
called MVE seeds.

Communicator management subroutine. MPI provides
several subroutines for creating new communicators
based on existing ones. After an invocation to
MPI_Comm_split(oldCom, color, newId, &newCom), the
calling process of the group specified by the communicator
oldCom will also belong to the new group specified by
newCom. The new group will contain all calling processes
that provide the same color. For example, app_com at line
12 is derived from MPI_COMM_WORLD in Figure 1.

3. Previous static barrier analysis
Given an MPI program, there are three stages in the static

barrier analysis of [6].
1) A set of barrier trees are built, which compactly

represents the barrier synchronization of the program.
2) Beginning with some MVE seeds, all possible MVEs

in the program are tracked based on a set of inference
rules which describe how new MVEs can be derived
from old ones via data dependence.

3) Barriers are matched on barrier trees using MVE
information. Counter examples will be generated if
sychronization errors are detected.

In stage 1), a barrier tree is built for each function that
calls MPI_Barrier() either directly or indirectly. Each barrier
tree can have leaf nodes and non-leaf nodes. A leaf node
may be labeled with an invocation to MPI_Barrier(). A
leaf node may be labeled with the name of a function too.
Such a function is called by the function associated with
the barrier tree, and may invoke barriers. It may also has
no label, denoting no barriers are involved. Each non-leaf
node may be labeled with a ·, | or *, corresponding to
sequential composition, ordinary conditional branching and
loop conditional branching respectively. Figure 2 shows the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 143

e n t r y

bb0:
MPI_Comm_size(MPI_COMM_WORLD,&num_ids)

MPI_Comm_rank(MPI_COMM_WORLD,&my_id)
i f (my_id<(num_ids-1))

b b 1 :
am_se rve r_0 = 0
MPI_Comm_split(

MPI_COMM_WORLD,
0,my_id,app_com)

MPI_Bcast(data,1,MPI_INT,
num_ids-1,MPI_COMM_WORLD)

b b 2 :
a m _ s e r v e r _ 1 = 1
MPI_Comm_split(

MPI_COMM_WORLD,
1 ,0 , se rver_com)

d a t a = 2 2
MPI_Bcast(data,1,MPI_INT,

num_ids-1,MPI_COMM_WORLD)

bb3:
am_se rve r_2 = ph i (am_se rve r_0 , am_se rve r_1)

i f (!am_server_2)

b b 4 :
MPI_Barrier(app_com)

e x i t

Fig. 3: The CFG for the Gated SSA form of the program in
Figure 1

barrier tree for the MPI program in Figure 1. Each node of
a barrier tree has a colon which separates its label on the
left and its identifier on the right.

In stage 2), MVEs are tracked on Gated SSA program
representation which facilitates data dependence analysis[8].
Figure 3 shows the control flow graph(CFG)[9] for the Gated
SSA form of the MPI program in Figure 1. φ nodes are
placed where multiple values for a variable merge. Each
dotted edge connects a φ node to its controlling predicate.

!am_server at line 26 in Figure 1 is inferred to be
an MVE as follows. The condition at line 8 is an
MVE that has direct data dependence on the MVE seed
my_id. As shown in Figure 3, the result of φ node
am_server_2=phi(am_server_0,am_server_1) depends on the
condition at line 8. Hence it is also an MVE. Since
!am_server depends on the result of this φ node, the con-
dition at line 26 is an MVE too. However, !am_server is
regarded as an MVE with respect to any communicator due
to communicator insensitive analysis.

In stage 3), each node in a barrier tree will be given a
number that indicates how many barriers will be encountered
if the subtree rooted at the node is executed. The notation
> is used to indicate any number of barriers may be
encountered. Furthermore, let * be either a natural number
or >, it holds that >+ ∗ = >.

As shown in Table 1, the numbers of barriers for the nodes
L2 and R2 are 1 and 0 respectively. Since the node B2 cor-

Table 1: Result of counting barriers in Figure 2
node # of barriers
R2 0
L2 1
B2 >

| :B1

l ine 13:L1 l ine 22:R1

|:B2

line 28:L2 :R2

.:S

Fig. 4: Collective communication tree for the program in
Figure 1

responds to a multi-valued branching condition and its two
children have different number of barriers, a synchronization
error will be reported. In fact, B2 corresponds to an MVE
only with respect to MPI_COMM_WORLD. Moreover, the
execution of the nodes L2 and R2 will both encounter no
barriers with respect to MPI_COMM_WORLD. Hence, the
program in Figure 1 can terminate normally and the reported
error is a false alarm.

4. static collective communication analy-
sis

Correct barrier usage does not amount to correct collective
communication. As an extension to barrier tree, collec-
tive communication tree is introduced to compactly repre-
sent collective communication in MPI programs. We care
for the following collective operations and their variants:
MPI_Barrier(), MPI_Bcast(), MPI_Reduce(), MPI_Scatter(),
MPI_Gather() MPI_Alltoall() and MPI_Scan(). The leaf
nodes of a collective communication tree may denote these
collective operations, while those of a barrier tree can only
denote barrier invocations. Figure 4 shows the collective
communication tree for the program in Figure 1.

As an extension to barrier matching, collective commu-
nication matching is introduced to check whether collective
subroutines are used correctly. Nevertheless, only the follow-
ing necessary condition for correct collective communication
is checked: all members of each process group should invoke
the same number of collective subroutines for that group
during whole execution.

Similar to the calculation of barrier numbers, for each
node n of a collective communication tree, we count the
number of collective subroutine invocations that may be
encountered when the subtree rooted at n is executed. If
n denotes a multi-valued branching condition, and its two
children have different numbers of collective subroutine

144 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Table 2: Comparison of two approaches to counting the
number of collective subroutine invocations

node
of collective subroutine invocations

communicator communicator
insensitive sensitive

R2 0 0

L2 1
g(L2,MPI_COMM_WORLD)=0

g(L2,app_com)=1
g(L2,server_com)=0

B2 >
g(B2,MPI_COMM_WORLD)=0

g(B2,app_com)=>
g(B2,server_com)=0

R1 1 g(R1,MPI_COMM_WORLD)=1
g(R1,app_com)=0

g(R1,server_com)=0

L1 1
g(L1,MPI_COMM_WORLD)=1

g(L1,app_com)=0
g(L1,server_com)=0

B1 1
g(B1,MPI_COMM_WORLD)=1

g(B1,app_com)=0
g(B1,server_com)=0

S >
g(S,MPI_COMM_WORLD)=1

g(S,app_com)=>
g(S,server_com)=0

invocations, then a synchronization error will be reported.
Column 2 of Table 2 shows the number of collective
subroutine invocations for each node in Figure 4.

5. Communicator sensitive collective
communication analysis

To be communicator sensitive, MVE tracking should know
whether an expression is multi-valued with respect to a
given communicator. Furthermore, collective communication
matching should calculate the number of collective subrou-
tine invocations with respect to a given communicator.

5.1 Communicator sensitive MVE analysis
Given the result of a communicator insensitive MVE

analysis, our analysis infers which MVEs may actually be
SVEs with respect to certain communicators. Let C be the
set of communicators, c∈C, E be the set of expressions, e∈E.
A partial function f is introduced to describe communicator
sensitive MVEs.

Definition 1: f: E×C ↪→ {1,0}.

f(e,c)=
{

1, e is an MV E with respect to c
0, e is an SV E with respect to c

For convenience, f(e,*)=y means ∀c (c∈C ⇒ f(e,c)=y).
There are two kinds of correlation between the invocations

to communicator management subroutines and the candidate
values of MVEs in Figure 1.

1) Each process either executes both an
MPI_Comm_split() and a definition of a candidate
value for an MVE, or executes none of them. Hence,
the MVE is actually an SVE with respect to the new
communicator. lines 9 and 11 illustrate this.

01: ! node is an MVE seed
02: if (node .ge. nc*nc) then
03: active_0 = .false.
04: color_0 = 1
05: else
06: active_1 = .true.
07: color_1 = 0
08: end if
09: active_2 = phi(active_0, active_1)
10: color_2 = phi(color_0, color_1)
11: call mpi_comm_split(MPI_COMM_WORLD,color_2,
12: node,comm_setup,error)

Fig. 5: An MPI Fortran code segment derived from BT of
NPB

2) For each multi-valued branching condition bc that
controls the execution of an MPI_Comm_split() in-
vocation, bc is actually an SVE with respect to
the new communicator. For example, the MVE
(my_id<(num_ids−1)) evaluates identically to true
with respect to app_com because line 8 controls the
execution of line 11.

Derived from BT of NPB[16], the code segment in
Figure 5 shows another kind of correlation as fol-
lows. comm_setup is a communicator derived from
MPI_COMM_WORLD. active_2 is an MVE with respect
to MPI_COMM_WORLD, active_0 and active_1 are its two
candidate values. However, active_2 evaluates identically to
one single candidate value with respect to comm_setup. The
key of communicator sensitive MVE analysis is to capture
these kinds of correlation mentioned above.

In compiler literature, control dependence graph(CDG) is
used to describe the control dependence among program
statements[9]. Figure 6 shows the CDG for the program in
Figure 1. There is a path from node a to node b if and only
if b is control dependent on a. start is a special CFG node
that branches to the nodes entry and exit. R0 is one so-called
region node that groups together the nodes having the same
control dependence. T and F indicate a branching condition
evaluates to true and false respectively.

Let c1, c2 ∈C, e1, e2 ∈E, S be the set of program
statements, s, s1, s2 ∈S, several relations are introduced as
follows.

Definition 2: CE⊆S×S.
Let s1 and s2 belong to the basic blocks bb1 and bb2
respectively. (s1,s2)∈CE ⇐⇒ (bb1 = bb2) ∨ (bb1 and
bb2 are siblings in the CDG). (s1,s2)∈CE means either s1
and s2 are both to be executed or none of them is. Here
CE stands for control flow equivalence. For example, (line
9,line 11)∈CE and (line 6,line 26)∈CE in Figure 1.

Definition 3: CV⊆E×E.
(e1,e2)∈CV means e1 is a candidate value of the MVE e2.
For example, (color_0,color_2)∈CV in Figure 5.

Definition 4: CD⊆S×E.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 145

s t a r t

R0

T

e n t r y bb0 bb3

b b 1

T

b b 2

F

b b 4

T

Fig. 6: Control dependence graph for the CFG in Figure 3

Let s and e belong to the basic blocks bbs and bbe
respectively. (s,e)∈CD ⇐⇒ (bbs is control dependent
on bbe)∧(e is a branching condition). For example, (line
28,!am_server)∈CD in Figure 1.

Definition 5: Phi⊆S.
s∈Phi means s is a φ node. For example, (line 9)∈Phi in
Figure 5.

Definition 6: LHS⊆E×S.
(e,s)∈LHS means e is the left hand side of s. For example,
(am_server,line 9)∈LHS in Figure 1.

Definition 7: USE⊆E×E.
(e1,e2)∈USE means e2 is one operand of e1. For example,
(!am_server,am_server)∈USE.

Let cms be MPI_Comm_split(old_c, color, new_id,
&new_c). Figure 7 shows the inference rules for commu-
nicator sensitive MVE analysis. In each rule, the formula
above the line specifies the premise, while that below denotes
inferred facts. Rules (1), (2) and (3) capture the three
kinds of correlation mentioned above respectively. Rule (4)
describes the propagation of communicator sensitive MVEs.
Figure 8 provides 4 instances of MVE inference using
the rules in Figure 7 respectively. The first, second and
fourth inference instances are for the program in Figure 1,
while the third one for that in Figure 5. Figure 9 shows
the intraprocedural communicator sensitive MVE analysis
algorithm. en_queue() appends an item to a queue, while
de_queue() removes the head item of a queue. Table 3 shows
the critical steps of the algorithm execution with the program
in Figure 1 as the input.

5.2 Communicator sensitive collective commu-
nication matching

The key of communicator sensitive collective commu-
nication matching is to distinguish collective subroutine
invocations with different communicator arguments. Let TN
be the set of nodes in a collective communication tree, N be

(e1, s) ∈ LHS ∧ (e1, e2) ∈ CV ∧
(s, cms) ∈ CE ∧ f(e1, new_c) = 0 ∧

f(e2, new_c) = 1
f(e2, new_c) = 0

(1)

(cms, e) ∈ CD ∧ f(e, new_c) = 1
f(e, new_c) = 0

(2)

s ∈ Phi ∧ (r, s) ∈ LHS ∧
t ∈ Phi ∧ (color, t) ∈ LHS ∧

(s, cms) ∈ CE ∧
∀v ∈ E((v, r) ∈ CV ⇒ f(v, new_c) = 0) ∧
∀v ∈ E((v, color) ∈ CV ⇒ f(v, new_c) = 0)∧

f(r, new_c) = 1 ∧ f(color, new_c) = 1
f(r, new_c) = 0 ∧ f(color, new_c) = 0

(3)

mve ∈ E ∧ f(mve, c) = 0 ∧
(e,mve) ∈ USE ∧ f(e, c) = 1

f(e, c) = 0
(4)

Fig. 7: Inference rules for communicator sensitive MVE
analysis

Table 3: Critical execution steps of the algorithm in Figure 9
with the program in Figure 1 as input

step inference rule

1 (line 11,line 8) ⇒ 2f((my_id<(num_ids-1)),app_com)=0
2 (line 9,line 11) ⇒ f(am_server_2,app_com)=0 1

3 (line 19,line 8) ⇒ 2f((my_id<(num_ids-1)),server_com)=0
4 (line 17,line 19) ⇒ f(am_server_2,server_com)=0 1
5 line 26 ⇒ f(!am_server_2,app_com)=0 4
6 line 26 ⇒ f(!am_server_2,server_com)=0 4

the set of natural numbers, n∈TN and num∈N. A function
g is introduced as follows.

Definition 8: g: TN×C → N∪{>}.
g(n,c)=num means the execution of the subtree rooted at
n will encounter num collective subroutine invocations that
specify c as the communicator argument, while g(n,c)=>
means the number of such invocations can be arbitrary.

Figure 10 shows the rules for communicator sensitive
calculation of the number of collective subroutine invo-
cations. nl and nr denote the left and right child of n
respectively. Rules (1), (2) and (6) are for leaf nodes, while
rules from (3) to (5) are for non-leaf nodes. Using the
program in Figure 1 as an example, Table 2 compares
communicator insensitive and sensitive approaches to the
counting of collective operations.

6. Implementation and evaluation
The proposed approach is implemented based on version

2.8 of LLVM compiler[10]. Combined with dragonegg[11],
GCC can produce LLVM IR(intermediate representation)

146 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

(am_server_0, am_server_0 = 0) ∈ LHS ∧
(line 9, line 11) ∈ CE ∧

f(am_server_0, app_com) = 0 ∧
(am_server_0, am_server_2) ∈ CV ∧

f(am_server_2, app_com) = 1
f(am_server_2, app_com) = 0

(1)

(line 11, (my_id < (num_ids− 1))) ∈ CD ∧
f((my_id < (num_ids− 1)), app_com) = 1
f((my_id < (num_ids− 1)), app_com) = 0

(2)

(active_2, line 9) ∈ LHS ∧
(color_2, line 10) ∈ LHS ∧

(line 9, line 11) ∈ CE∧
(active_0, active_2) ∈ CV ∧
(active_1, active_2) ∈ CV ∧

f(active_0, comm_setup) = 0 ∧
f(active_1, comm_setup) = 0 ∧

(color_0, color_2) ∈ CV ∧
(color_1, color_2) ∈ CV ∧

f(color_0, comm_setup) = 0 ∧
f(color_1, comm_setup) = 0 ∧
f(active_2, comm_setup) = 1 ∧
f(color_2, comm_setup) = 1

(f(active_2, comm_setup) = 0 ∧
f(color_2, comm_setup) = 0)

(3)

f(am_server_2, app_com) = 0 ∧
(!am_server_2, am_server_2) ∈ USE ∧

f(!am_server_2, app_com) = 1
f(!am_server_2, app_com) = 0

(4)

Fig. 8: Examples of MVE inference using the rules in
Figure 7 respectively

from MPI programs based on C and Fortran[12]. We im-
plemented the collective communication analysis as a pass
in LLVM compiler which is divided into the following four
phases.

1) collective communication tree construction.
2) communicator insensitive MVE analysis.
3) communicator sensitive MVE analysis.
4) communicator sensitive collective communication

matching.

The first and second phases are essentially the reimple-
mentation of the algorithms in [6], while the technical
contributions of this paper lie in phases 3) and 4).

We conducted a comparative evaluation of our tool against
PTP 4.0 and TASS 1.0. PTP(Parallel Tools Platform)[13] and
TASS(Toolkit for Accurate Scientific Software)[7] are two
suites of tools supporting static collective communication
analysis. Table 4 shows the information about the chosen
MPI programs. add2 and tsp are two applications using
ADLB which is a library for load balancing[14]. DC is

Require: F is a function to be analyzed ∧
f is as specified in Def. 1 ∧
∀e, c (e∈E ∧ c∈C ⇒ f(e,c) is undefined) ∧
MVE_SET is the MVEs computed by communicator
insensitive analysis

Ensure: f holds communicator sensitive MVEs in F
for all mve∈MVE_SET do

f(mve,*) := 1
end for
CMS := all invocations to MPI_Comm_split() in F
for all cms∈CMS do

while Rule (2) can be applied to cms do
apply rule (2) to cms and change f accordingly

end while
CES := {s|s∈S ∧ (s,cms)∈CE}
for all ces∈CES do

if Rules (1) or (3) can be applied to (cms,ces) then
apply the rule to (cms,ces) and change f accord-
ingly

end if
end for

end for
work_queue := {(e,c)|e∈E ∧ c∈C ∧ f(e,c)=0}
while work_queue 6= Φ do

work_item := de_queue(work_queue)
if Rule (4) can be applied to work_item then

apply rule (4) to work_item and change f accordingly
for all changes such as f(e1,c):=0 do

en_queue(work_queue,(e1,c))
end for

end if
end while

Fig. 9: Intraprocedural communicator sensitive MVE analy-
sis algorithm

the document classification program in section 9.4 of a
textbook[15]. BT and SP are from version 2.3 of NPB(NAS
Parallel Benchmarks)[16]. LU-MZ is from multi-zone ver-
sions of NPB 3.3.1[16].

Table 5 shows the evaluation results. The × means TASS
can not parse the six programs due to its weak frontend.
The ! means PTP would report a false alarm if it treats
broadcasts in the same way as barriers. The * means PTP
can not conduct barrier analysis for the programs written in
Fortran. In fact, PTP would report a false alarm even if it
could check BT due to communicator insensitive analysis.
Table 5 shows straightforward adaptation of PTP to collec-
tive communication analysis would totally results in 6 false
alarms, while our analyzer reports no spurious errors.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 147

n has no labels
∀c ∈ C(g(n, c) = 0)

(1)

n is labeled with an collective subroutine
invocation whose communicator argument is c

g(n, c) = 1
(2)

n is labeled with ·
∀c ∈ C(g(n, c) = g(nl, c) + g(nr, c))

(3)

n is labeled with |

∀c ∈ C
(
g(n, c) =

{ g(nl, c) g(nl, c) = g(nr, c)
> otherwise

) (4)

n is labeled with ∗
∀c ∈ C(g(n, c) = >)

(5)

n is labeled with the name of function f∧
f ′s collective communication tree is Tf∧

nf is the root node of Tf
∀c ∈ C(g(n, c) = g(nf , c))

(6)

Fig. 10: Rules for calculating the number of collective
subroutine invocations

Table 4: Information about the MPI programs used for
evaluation

program # of collective # of languageoperations communicators
add2 2 5 C
tsp 3 5 C
DC 2 3 C
BT 8 4 Fortran
SP 8 4 Fortran

LU-MZ 19 2 Fortran

Table 5: Results of comparative evaluation

program # of false alarms
PTP TASS ours

add2 1 × 0
tsp 1! × 0
DC 1! × 0
BT 1∗ × 0
SP 1∗ × 0

LU-MZ 1∗ × 0

7. Related work
Dynamic approaches have been proposed to check MPI

collective communication[2], [3], [4]. [2] and [3] can check
more necessary conditions for correct collective communica-
tion than our analyzer. For example, all members of a process
group should provide consistent arguments for each common
collective operation. Although practical, these methods may
miss the defects triggered by specific program inputs.

TASS combines model checking and symbolic execution

to verify MPI programs against some safety properties
including absence of deadlocks[7]. Although it can check
all possible behaviour of program models, users have to
specify such bounds as the number of processes. This not
only means some burden on users, but also implies that only
the behaviour within the specified bounds is checked.

[5] presents an inference system to statically detect barrier
synchronization errors in Split-C programs. However, users
are required to annotate the effects of procedures, and Split-
C has no concept of communicator.

8. Conclusion
This paper proposes a communicator sensitive collective

communication analysis approach based on an existing static
barrier analysis framework. Experimental evaluation shows
the presented analyzer is more precise, can check more com-
munication behaviour, and is applicable to more programs
compared with previous ones.

Acknowledgments
This work was supported by the National Natural Science

Foundation of China under grant No.60725206. Wanwei Liu
and Pei Fan helped me use Latex, and Xianjin Fu helped me
submit papers. I would like to thank them.

References
[1] Message Passing Interface Forum. MPI: A Message-Passing Inter-

face standard. International Journal of Supercomputer Applications,
8(3/4):165-414, 1994.

[2] B. Krammer, K. Bidmon, M.S. Müller and M.M. Resch. Marmot: an
MPI analysis and checking tool. In Proceedings of Parallel Computing,
pp. 493-500, 2003.

[3] C. Falzone, A. Chan, E. Lusk and W. Gropp. A portable method
for finding user errors in the usage of MPI collective operations.
International Journal of High Performance Computing Application,
21(2/4):155-165, 2007.

[4] A. Vo, S. Vakkalanka, M. Delisi, G. Gopalakrishnan, R.M. Kirby
and R. Thakur. Formal verification of practical MPI programs. In
Proceedings of ACM Symposium on Principles and Practices of Parallel
Programming, pp. 261-269, 2009.

[5] A. Aiken and D. Gay. Barrier inference. In Proceedings of ACM
Symposium on Principles of Programming Languages, pp. 342-354,
1998.

[6] Y. Zhang and E. Duesterwald. Barrier matching for programs with
textually unaligned barriers. In Proceedings of ACM Symposium on
Principles and Practices of Parallel Programming, pp. 194-204, 2007.

[7] S.F. Seigel et al. The toolkit for accurate scientific software.
http://vsl.cis.udel.edu/tass, 2010.

[8] P. Tu and D. Padua. Gated SSA-based demand-driven symbolic analysis
for parallelizing compilers. In Proceedings of International Conference
on Supercomputing, pp. 414-423, 1995.

[9] S.S. Muchnick. Advanced compiler design and implementation. Mor-
gan Kaufmann Publishers Inc.,San Francisco, California, USA, 1997.

[10] C. Lattner et al. LLVM compiler. http://llvm.org.
[11] Dragonegg plugin for GCC. http://dragonegg.llvm.org.
[12] GCC compiler. http://gcc.gnu.org.
[13] Parallel Tools Platform. http://www.eclipse.org/ptp.
[14] R. Lusk, S. Pieper, R. Butler and A. Chan. Asynchronous dynamic

load balancing. http://www.cs.mtsu.edu/rbutler/adlb.
[15] M.J. Quinn. Parallel programming in C with MPI and OpenMP.

McGraw-Hill, New York, USA, 2004.
[16] NAS Parallel Benchmarks. http://www.nas.nasa.gov/NAS/NPB.

148 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

SESSION

SIMULATION + NUMERICAL METHODS + PDE
AND MATHEMATICAL PHYSICS AND

ENGINEERING

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 149

150 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Abstract- Parabolic partial differential equations are often

used to model systems involving heat transfer, acoustics, and

electrostatics. The need for more complex models with

increasing precision drives greater computational demands

from processors. Since solving these types of equations is

inherently parallel, GPU computing offers an attractive

solution for drastically decreasing time to completion,

power usage, and increasing the computation per dollar.

However, since GPU computing involves a much different

programming paradigm than traditional processors,

techniques for optimizing solvers must still be developed.

This paper presents several optimization strategies for

accelerating solvers using CUDA to implement difference

equations and compares their performances to a standard

processor. The results demonstrate that different strategies

should be used for different GPU cards, such as the C1060

and GTX 480, resulting in up to 197 times and 257 times

single-precision and up to 133 and 163 times double-

precision speedups respectively.

Keywords: GPU programming, CUDA, parabolic partial

differential equations, convection-diffusion-reaction

equation

1 Introduction

Parabolic partial differential equations (PDEs) are useful

in several problem spaces, such as heat transfer, acoustic

modeling, and electrostatics. While numerical solution

techniques are well-known, there are significant needs that

can be addressed by solving them with GPU computing.

With well-crafted algorithms, GPUs can potentially solve

systems significantly faster, allowing decreased simulation

times and/or increased resolution in the model. GPUs can

also solve problems using an estimated one tenth to one

twentieth of the power required by traditional

supercomputing systems [1], thereby reducing costs.

This paper utilizes CUDA for GPU computing, which is

an extension to several common programming languages

that requires an NVIDIA-based video card for execution.

NVIDIA GPUs are widely deployed and thus represents a

very common computing platform. Additionally, NVIDIA’s

Tesla series specifically targets high-performance

computing. For easy scalability, NVIDIA cards are designed

around a generalized processing unit called a streaming

multiprocessor (SM). This allows the performance of CUDA

applications to scale based on the number and hardware

implementation of the SMs contained on a given card.

This paper proposes a set of optimizations for solving

parabolic PDEs target several issues that arise when porting

code to CUDA which must be deliberately addressed for

efficient use of the GPU [2, 3]. First, GPU architectures

generally mitigate memory latency by using large numbers

of threads and extremely fast context switching instead of

deep memory caches found in CPUs, although the Fermi

architecture released in 2010 did add some memory caching.

This requires optimizations to exploit enough parallelism to

make sufficient threads available and to carefully manage

the number of memory accesses required. Second, data

accesses should be formed into coalesced reads and writes.

See [2] for more details on coalesced accesses. Next, each

SM has a limited amount of shared memory, usually 8 kB to

48 kB, that can be leveraged to reduce the number of RAM

accesses. Finally, SMs are designed to execute a group of 32

threads, called a warp, concurrently. However, all threads in

the warp must be executing the same instruction. Branching

code creates divergence, which can drastically lower the

throughput as only a subset of the warp executes. Carefully

constructed code that limits divergence can minimize this

effect.

Difference equations were used to solve several model

parabolic PDEs, and optimizations were developed to

address the above issues. Previous work in GPU computing

focused on this topic include [4] which attained a 1.1 to 11

times performance improvement on two-dimensional

parabolic PDEs using double-precision floating point

arithmetic. Another effort targeted one-dimensional PDEs

for market making real time pricing, and risk management

achieved a 25 times speedup over a well-optimized CPU

implementation using a single Tesla C1060, and a 38 times

improvement using two C1060s by leveraging cyclic

reduction [5]. A mixed precision method has been presented

to solve ill-conditioned tridiagonal systems that previously

were limited to CPU solutions with a 10-fold

improvement[6].

GPU Acceleration of Solving Parabolic Partial Differential

Equations Using Difference Equations

David L. Foster

Electrical and Computer Engineering Department, Kettering University, Flint, MI, USA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 151

Using the techniques proposed in this paper on two-

dimensional parabolic PDEs, speed-ups of 197 times and

257 times were achieved using a C1020 Tesla and a GTX

480 respectively on single-precision floating point

performance compared to an Intel i7 920. Speedups up to

133 and 163 times were attained on double-precision

floating point performance.

This paper is organized as follows. Section 2 outlines the

general approach used to solve parabolic PDEs using

CUDA. Section 3 describes three optimization strategies that

were implemented. Section 4 explains the experimental

setup used. Section 5 presents the results of testing these

optimizations, and Section 6 concludes the paper.

2 General Approach to Solver

This work uses difference equations to solve 2-

dimensional parabolic PDEs of the form

ut = uxx + uyy + A(x,y)ux + B(x,y)uy + C(x,y)u +

f(x,y,t).

The boundary equations are expressed as

u(0,y,t) = g1(y,t), u(1,y,t) = h1(y,t) 0 < y < 1, t > 0

u(x,0,t) = g2(x,t), u(x,1,t) = h2(x,t) 0 < x < 1, t > 0

and the system has the starting condition

u(x,y,0) = l(x,y)

where g1, g2, h1, h2, and l are determined by the system being

modeled.

The two-dimensional grid is cast as a red-black array as

shown in Figure 1. Red points are adjacent a black point on

all four sides, and black points are adjacent to a red point of

all four sides, much like a checkerboard. The red-back array

is surrounded on all sides by a single row of points

corresponding to the boundary conditions. The advantage to

this model is that all red points may be updated in parallel

using values of neighboring black points. Then the black

points can be updated using the new values of the red points.

The method to break this array into thread blocks needed

to access memory efficiently and create enough thread

blocks to occupy the GPU’s SMs. This was accomplished by

subdividing the array into sets of rows, such as 16 rows for

example. Each block was assigned to 2N columns of a set in

which each row contained N red points and N black points.

The general algorithm is represented by the following

pseudo-code.

 if using GPU: transfer red-black array to GPU RAM

 for the required number of time steps

 update the boundary conditions

 update red points

 update black points

 if using GPU: transfer red-black array to CPU RAM

3 Performance Optimizations

This section details the three main optimizations used.

3.1 Separated Red and Black Arrays

The first optimization split the unified red-black array into

a red array and a separate black array as shown in the

example in Figure 2. The separate arrays contained the same

number of rows but had only half the number of columns as

the original array. The separation was performed on the

CPU, and the red and black arrays were passed to the CUDA

kernel.

This optimization focused on two issues based on the

following observation. When accessing N red points

(similarly for black) in the unified array, they were

interleaved with N black points. The accesses were not

coalesced since the N required points were contained in a

span of contiguous memory 2N points long. The default

method would be to read in all 2N points and discard or save

the black points for later use. With effective use of shared

memory, this method can use all data read. However, writing

the updated values of N red points back to the GPU card’s

RAM still required writing N points over a span of 2N

contiguous locations with two writes. By separating the

arrays, this write-back required only one write. Additionally,

if a thread warp read in a set of interleaved red and black

points from a unified array, the code must diverge so that the

two subsets were handled differently. Using separated arrays

avoided this divergence since the entire warp handled either

red or black points.

3.2 Per Block Work Reduction

The second optimization slightly reduces the amount of

work per thread block to reduce the number of sequential

memory accesses. It was observed that to update N points,

boundary point
Figure 1 Red-Black Array showing an arbitrary black point's

dependence on its four neighboring red points

152 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

4N+1 points must be read from memory: the N points being

updated, the N points from the row above and from the row

below,, and N+1 points from the adjacent points on the same

row. This requires one thread to make 5 sequential memory

reads while the remaining threads in the block make only 4.

To eliminate the extra latency, a block of N threads was

coded to update N-1 points. This requires 4N-3 points from

memory taking 4 sequential reads from each thread.

Using the separated arrays from Figure 2 with N=3,

suppose a block of three threads is solving for all three red

points in row 3. The block would make a request using all

threads for (3,1), (3,3), and (3,5) from the red array, a second

request for (4,1), (4,3), and (4,5) from black, a third request

for (2,1), (2,3), and (2,5) from black, a fourth request for

(3,0), (3,2), and (3,4) from black, and finally a fifth request

for only (3,6) from black. If the block is solving for N-1

points, only the following four requests are needed. The

block would make a request using all threads for (3,1), (3,3),

and (3,5) from the red array and discard (3,5), a second

request for (4,1), (4,3), and (4,5) from black discarding (4,5),

a third request for (2,1), (2,3), and (2,5) from black

discarding (2,5), a fourth request for (3,0), (3,2), and (3,4)

from black.

Note that for a thread block of 128 threads handling 256

columns, the amount of work was reduced by only 0.78%.

In many cases, this small decrease would be completely

masked by using unutilized threads. For example, an array

1000 points wide is spanned by four thread blocks handling

either 128-points or 127-points per block.

3.3 Shared Memory

The final optimization reduced redundant memory reads.

It can be easily seen that when updating a row of red points,

for example, the black points on the same row and the black

points in row below will be the upper and adjacent points

respectively for updating the red points in the row below.

Thus, these two rows of black points can be stored in the

shared memory space, which may be faster than accessing

RAM. Once the thread block loaded 4N points to update the

first row of points, it only read an additional 2N points to

calculate each additional row: N more red points and N more

black points.

Using the separated arrays in Figure 2 as an example,

suppose that a block of three threads first solved for the red

points in row 4. The block would need to read row 4 from

the red array and data from rows 3, 4, and 5 from the black

array. If the block then solved for the red points in row 3, it

would need data from row 3 of the red array and rows 2, 3,

and 4 of the black array. If black rows 3 and 4 were saved in

local shared memory, the block would only need to access

RAM for the red row and row 2 of the black array.

4 Testing

This section details the four parabolic PDE models tested,

the hardware setups, and the test parameters.

4.1 Model Equations Tested

The four models used were taken from [4] for purposes of

comparison and since they have exact solutions for

validation. All models are constrained by the conditions 0.0

≤ x ≤ 1.0, 0.0 ≤ y ≤ 1.0, and 0.0 ≤ t ≤ 1.0.

Model 1:

ut = uxx + uyy

u(0,y,t) = 0.0, u(1,y,t) = 0.0 0 < y < 1, t > 0

u(x,0,t) = 0.0, u(x,1,t) = 0.0 0 < x < 1, t > 0

u(x,y,0) = sin(πx)sin(πy) 0 < x,y < 1

This model has the exact solution

u(x,y,t) =
 sin(πx)sin(πy).

Model 2:

ut = uxx + uyy ux uy u

u(0,y,t) = e
-t+y

, u(1,y,t) = e
-t+1+y

 0 < y < 1, t > 0

u(x,0,t) = e
-t+x

, u(x,1,t) = e
-t+1+x

 0 < x < 1, t > 0

u(x,y,0) = e
x +y

 0 < x,y < 1

This model has the exact solution

u(x,y,t) = e
-t+x+y

.

4,1 4,2 4,3 4,4 4,5 4,6

3,1 3,2 3,3 3,4 3,5 3,6

4,0

3,0

2,1 2,2 2,3 2,4 2,5 2,6

1,1 1,2 1,3 1,4 1,5 1,6

2,0

1,0

0,0 0,1 0,2 0,3 0,4 0,5 0,6

Figure 2 Dividing the Red-Black Array into separate red and

black arrays. Indexes shown in the separate arrays are those

from the original unified array.

5,0 5,1 5,2 5,3 5,4 5,5 5,6

4,7

3,7

2,7

1,7

0,7

5,7

4,2 4,4 4,6

3,1 3,3 3,5

4,0

2,2 2,4 2,6

1,1 1,3 1,5

2,0

0,0 0,2 0,4 0,6

5,1 5,3 5,5

3,7

1,7

5,7

4,1 4,3 4,5

3,2 3,4 3,6 3,0

2,1 2,3 2,5

1,2 1,4 1,6 1,0

0,1 0,3 0,5

5,0 5,2 5,4 5,6

4,7

2,7

0,7

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 153

Model 3:

ut = uxx + uyy + sin(ax)cos(ay)ux - cos(ax)sin(ay)uy - u

u(0,y,t) = 0.0

u(1,y,t) = (
) () () 0 < y < 1, t > 0

u(x,0,t) = 0.0

u(x,1,t) = (
) () () 0 < x < 1, t > 0

u(x,y,0) = sin(ax)sin(ay) 0 < x,y < 1

This model has the exact solution

u(x,y,t) = (
) () ()

Model 4:

ut = uxx + uyy ux uy u + (1 + xy)cos(t)

- (1 + x)(1 + y)sin(t)

u(0,y,t) = sin(t), u(1,y,t) = (1+y)sin(t) 0 < y < 1, t > 0

u(x,0,t) = sin(t), u(x,1,t) = (1+x)sin(t) 0 < x < 1, t > 0

u(x,y,0) = sin(πx)sin(πy) 0 < x,y < 1

This model has the exact solution

u(x,y,t) = (1+xy)sin(t).

4.2 Hardware Setup

The computer used for testing had the following

specifications:

 Intel Core i7 920 at 2.67 GHz

 Asus P6T Deluxe motherboard

 6 GB of 1333 MHz DDR3 RAM

 EVGA GeForce 260 GTX video card

 750 GB 7200 RPM hard drive

 Windows 7 Professional 64-bit

 CUDA version 3.1

The two graphics cards used for GPU computing were an

NVIDIA Tesla C1060 with 4 GB of RAM and 240 cores in

30 SMs and an EVGA GeForce 480 GT with 1.5 GB of

RAM and 480 cores in 15 SMs at stock clock speeds.

4.3 Software Parameters

Thread blocks were launched using 128 threads. This was

the smallest value that allowed all 1024 thread slots

available in the GPUs’ SMs tested to be utilized. Larger

values would have left more thread slots unoccupied if

register and shared memory usage prevented 8 blocks from

being assigned per SM.

Each of the models was tested using square arrays from

500 points per side to 4000 points per side in increments of

500 points. The number of rows contained in a set, as

explained in Section II was tested at 16, 32, and 64 rows per

set.

5 Results

The four versions of the kernel tested were CPU; GPU,

which contained no optimizations; GPU-RB, which

separated the data into separate red and black arrays; and

GPU-RBS, which contained the separation of arrays, used

the per-block work reduction, and used shared memory. All

data refers to tests with 16-row pitch.

Several interesting patterns were noted in all tests. First,

the throughput of the CPU implementation declined quickly

in all tests from 500 to about 1500 points per dimension and

gradually tapered off more as the data set sizes continued to

increase. The rapid increase corresponded to the size of the

data sets exceeding the L3 cache of the CPU, indicating that

the CPU performance was likely limited by memory

bandwidth. This effect can be seen in Table 1 for the

C1060's performance on Model 2 for single-precision,

showing the throughput of the different versions in millions

of points updated per second based on the number of points

per side.

Table 1 Tesla C1060 Throughput on Model 2 with Single-

Precision Floating Point

Points

per

Side

CPU

(Mpts/s)
GPU

(Mpts/s)
GPU-RB

(Mpts/s)
GPU-RBS

(Mpts/s)

500 65.96 1078.39 1773.51 2754.44

1000 59.07 1230.28 1772.02 3182.40

1500 44.84 1266.84 1935.90 3770.77

2000 41.49 1302.58 1956.86 3854.73

2500 37.93 1170.87 1976.39 3940.19

3000 37.50 1120.09 1976.48 3958.37

3500 35.79 1149.27 2003.34 3983.28

4000 30.67 1152.60 1978.63 3989.22

 Over the same range of 500 to 1500 points per side, the

throughput of the GPU versions greatly increased. This

effect was related to the number of threads that were created

based on the dimensions of the problem. From the previous

section, a GPU block of 128 threads processed 254 columns

and either 16, 32, or 64 rows. For a 16-row block and a 500

by 500 point array, this yielded only 64 blocks. Since the

C1060 can hold 240 blocks of this size concurrently, the

smaller data sets did not fully occupy the card, and the MPs

suffered more idle time during memory accesses. Larger

data sets allowed the GPUs to mitigate this latency more

efficiently. It should also be noted that in addition to fully

occupying the card on smaller data sets, the 16-row pitch

also showed slightly better throughput by a few percent once

over 32- and 64-row pitches.

Omitting the small data sets that didn't result in full

occupancy of the GPU, Table 2 and Table 3 show the mean,

154 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

minimum, and maximum speeds for both GPUs on the

models for 1500 to 4000 points per dimension. Full test

results are not shown for space considerations. For both

cards, the separated red and black arrays yielded a

substantial speed increase over the basic GPU

implementation with a unified red-black array. As can be

seen by comparing the GPU and GPU-RB columns, this

optimization often yielded speeds of around 50%.

For the Tesla, which is based on the GT200 series GPU

that does not have memory caching, the use of shared

memory gave significant benefits. For single-precision, the

additional optimizations in GPU-RBS gave a 27.9% to 99%

increase over the GPU-RB performance. For double-

precision, it yielded almost double the performance for

Models 1 and 2, significant increases in Model 4, and made

notably little improvement in Model 3. However, since the

400-series GPUs, like that in the GTX 480, do have a

memory cache, the use of shared memory required too much

overhead to produce a benefit. Thus, the performance over

GPU-RBS compared just GPU-RB was often about 10%

slower, with around a 25% decrease for Model 2 with single

precision.

It is also noteworthy that the newer GTX 480 did not

dominate the C1060 as might be expected. The C1060 is

based on the same GPU as the 280 GTX video cards, which

were the predecessors to the GTX 480. In single-precision

performance, the C1060 was comparable to the GTX 480 on

Model 1, dominated on Model 2, was within 90% of the

performance on Model 3, and was faster on data sets 3000

points per side and smaller on Model 4. For double-

precision, the C1060 dominated the GTX 480 on Models 2

and 4, but the GTX 480 dominated on the other two.

Therefore, these results show that different optimizations are

beneficial based on the GPU architecture used, and that

older architectures may still be more advantageous for

certain problems.

6 Conclusions

This research demonstrates several advantageous

techniques for accelerating difference equation solvers for

two-dimensional parabolic PDEs. An important result is that

optimization strategies differ based on the underlying GPU

hardware, and effective GPU computing programming

practices need to account for this.

7 Acknowledgments

This research was supported by an equipment donation

from the NVIDIA Corporation as part of the Academic

Partnership Program.

Table 2 Mean, Minimum, and Maximum Speedups on 1500

by 1500 to 4000 by 4000 point data sets on single-precision

floating point numbers

 GPU GPU-RB GPU-RBS

Model 1

C1060

31.82, 28.13,

38.09

52.15, 42.75,

64.49

102.97, 82.33,

129.41

Model 1

GTX 480

63.85, 53.27,

79.47

101.23, 82.70,

129.27

92.77, 73.20,

119.47

Model 2

C1060

31.68, 28.25,

37.58

52.61, 43.17,

64.51

104.63, 84.09,

130.07

Model 2

GTX 480

53.15, 47.13,

64.41

74.88, 65.60,

89.47

56.81, 49.03,

68.61

Model 3

C1060

49.44, 46.44,

51.80

80.88, 70.29,

91.07

103.45, 90.74,

91.07

Model 3

GTX 480

83.50, 77.19,

95.07

110.37, 93.70,

124.70

102.68, 88.10,

115.54

Model 4

C1060

80.40, 74.83,

84.75

132.53, 108.24,

146.92

177.22, 148.76,

197.27

Model 4

GTX 480

126.66, 100.82,

164.79

189.86, 146.82,

257.16

154.45, 116.43,

216.70

Table 3 Mean, Minimum, and Maximum Speedups on 1500

by 1500 to 4000 by 4000 point data sets on double-precision

floating point numbers

 GPU GPU-RB GPU-RBS

Model 1

C1060

26.05, 19.33,

31.85

45.04, 32.46,

55.55

89.48, 63.72,

111.64

Model 1

GTX 480

71.06, 48.97,

90.16

132.27, 91.70,

163.52

123.37, 84.71,

158.43

Model 2

C1060

26.10, 20.09,

31.60

45.32, 33.53,

55.70

90.46, 66.36,

112.43

Model 2

GTX 480

49.41, 37.96,

61.84

75.94, 55.13,

95.96

71.41, 51.21,

90.39

Model 3

C1060

19.15, 16.60,

21.15

27.11, 25.04,

28.90

27.83, 25.58,

30.04

Model 3

GTX 480

59.54, 53.72,

64.95

68.38, 60.35,

75.55

67.16, 59.44,

74.59

Model 4

C1060

39.33, 33.70,

44.01

68.90, 60.84,

75.44

117.27, 104.70,

133.84

Model 4

GTX 480

61.13, 53.58,

74.56

87.41, 76.18,

105.32

81.16, 70.65,

98.73

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 155

References

[1] NVIDIA. (2010, Nov. 23). Tesla C2050/C2070 GPU

Computing Processor Overview.

[2] D. B. Kirk and W.-M. W. Hwu, Programming

Massively Parallel Processors: a Hands-On Approach:

Morgan Kaufmann Publishers, 2010.

[3] J. Sanders and E. Kandrot, CUDA by Example, An

Introduction to General-Purpose GPU Programming:

Addison Wesley, 2010.

[4] C.-W. Hsieh, et al., "Rapid Performance of Parabolic

Problems using Convection Diffusion Reacion on GPU

Accelerator," presented at the PDPDA'10, Las Vegas, NV,

USA, 2010.

[5] D. Egloff, "High Performance Finite Difference PDE

Solvers on GPUs," QuantAlea GmbH, Zurich,

Switzerland2010 2010.

[6] D. Göddeke and R. Strzodka, "Cyclic Reduction

Tridiagonal Solvers on GPUs Applied to Mixed Precision

Multigrid," IEEE Transactions on Parallel and Distributed

Systems vol. 22, pp. 22-32, Jan. 2011 2011.

156 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Lock-Graph: A Tree-Based Locking Method for Parallel Collision
Handling with Diverse Particle Populations

Mark Lewis1 and Cameron Swords1
1Computer Science, Trinity University, San Antonio, TX, USA

Abstract— This paper builds on earlier work that used a
spatial grid for locking to provide physically accurate paral-
lel collision handling. Instead of using a grid, this work uses
a spatial tree. The tree is better able to handle heterogeneous
particle populations. The method was specifically developed
to handle a granular flow impact simulation where one large
body impacts a population of smaller bodies. The large size
of the impactor leads to a breakdown in the grid based
locking strategy because grid cells are uniformly sized and
must be large enough to enclose the largest particle in the
population plus the relative velocity distribution multipled
by a time step. The tree allows the regions that get locked
to scale in size based on local characteristics, making it
possible to handle dramatic size differences. Unfortunately,
it also has more overhead than the grid so using it when it
is not needed can slow simulations down.

Keywords: Simulation, collisions, parallel, discrete-event

1. Introduction
Parallelizing collisions in a physically accurate way is

inherently challenging. This is because, unlike longer range
forces such as gravity, collisions are temporally sensitive.
The behavior is sensitive to the order of collisions, as
one collision can alter the path of particles to prevent
other collisions or to make them happen at different times.
Fortunately, the short-range nature of collisions means that
over a fixed period of time, one can set bounds on how far
the effect of a particular collision will travel. This range can
be though of as the speed of sound in the medium times the
length of time being considered. This logic leads to spatial
locking where collisions are processed in order, but parallel
processing of future collisions is allowed as long as those
collisions are far enough away from one another (1; 2; 3).

This dependence on temporal ordering is not uncommon
in discrete event simulations, indeed, it is the norm. Sig-
nificant effort has gone into finding ways to parallelize
such systems (4; 5; 6). A common solution to this is to
implement the ability to roll back changes (7; 8; 9). For
a general discrete event simulation that solution typically
allows greater parallelism than trying to keep things together,
but it comes at the expense of memory. For this application,
roll back is not really an option. The storage of the rollback
information would have a computational cost that would
rival what was gained from parallelism. More importantly,

these simulations are often memory constrained. Particle
counts in physical, collisional simulations can get as high
as a few times 108, and for some situations that is the limit
which constrains what can be done. In the case of planetary
rings, a simulation with 108 particles is near the minimum
required for getting decent resolution with a ring that goes all
the way around the planet. Even then it must be a narrow ring
which precludes some types of work. Adding the memory
overhead of storing older states for particles we can roll back
to would further depress the maximum simulation size for a
given cluster configuration.

In our previous work (1), locking was done using a
uniform grid. The grid cells are made large enough that
during one time step, the probability of a particle colliding
with another particle whose center is located two or more
cells away is effectively zero. This works well enough for
the majority of ring simulations. Indeed, for simulations
where the population is fairly homogeneous in size and
spatial distribution and the velocity distribution has a small
dispersion, this method is optimal. For those simulations, the
same grid can be used as the spatial data structure used for
searching potential collision pairs as well, so there is a net
benefit in sharing the data structure.

Such a grid is less ideal for finding collisions when
the particle distribution has heterogeneities. For example,
if there are a small number of significantly larger particles,
if the particles are very non-uniformly distributed in space,
or if there are spatial variations in the velocity distribution.
For these situations, a tree is better as the primary spatial
data structure for finding collisions. We also found, for one
particular simulation, that the grid approach to locking could
be untenable.

Figure 1 shows a granular particle simulation in which a
marble is dropped into a dish of silicon spheres. When this
was first attempted using the grid for locking, the simulation
bogged down to a point where it wasn’t going to finish in a
reasonable period of time. This prompted the development
of the method described here.

2. Methodology
The key goal for the new method was to be flexible

enough to handle the situation shown in fig. 1. Building off a
spatial tree was a natural approach because these simulations
use a tree instead of a grid for collision finding and we could

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 157

Fig. 1
THIS SHOWS A FRAME FROM THE SIMULATION THAT MOTIVATED THIS

WORK. AN INITIAL SIMULATION WAS DONE IN WHICH UNIFORM SMALL

PARTICLES WERE DROPPED AND ALLOWED TO SETTLE IN A DISH. THAT

CONFIGURATION WORKED FINE WITH THE GRID LOCKING. THEN A

SINGLE IMPACTOR WAS ADDED THAT WAS 20 TIMES LARGER IN RADIUS

THAN THE OTHER PARTICLES AND DROP IT INTO THEM. THIS CAUSED

THE GRID LOCKING TO FAIL, AS THE LARGE SIZE AND HIGH VELOCITY

OF THE IMPACTOR LED TO A LARGE GRID SIZE.

reap the benefits of having a mutual data structure for both
purposes. To be competitive with the grid, the method also
needed to be fast. The grid allows O(1) access to the eight
adjacent cells to check if a collision is being processed in
one of them so we can know if it is safe to process a collision
in the current cell. Solutions that run through the tree would
be O(log n), where n is the number of particles, and would
have a higher coefficient due to the overhead of moving
through the tree. The method presented here uses the tree as
the spatial data structure, but it also builds a graph through
the tree that we call the lock-graph, which retains the O(1)
access aspects of the grid and the dynamic and spatially
variable nature of the tree.

The basic idea of this method is that in the spatial tree
certain nodes are labeled as lock-nodes. Only the lock-nodes
are significant in determining if a collision can be processed
or not. The path from the root of the tree to any leaf
(where particles are contained), can contain only a single
lock-node. Each lock-node much be at least as large as the
largest particle plus a multiple of the velocity dispersion for
the particles under that node. The tree knows these values
already as they are used in the collision pair searching
algorithm. It would be simple enough to have a recursive
function that runs through the tree finding the nodes that
should be lock nodes based on the specified size criteria.
However, we also need to know about “adjacent” nodes.
For any given lock node there will be other nodes around
it that are within range and must be searched for collisions.
Simple recursion doesn’t give us that.

To make it so we can quickly find the adjacent nodes, we
need to have a graph where edges connect the lock nodes

in the tree that are adjacent for the purposes of collision
finding. This structure is what we call the lock graph. It
contains all the lock nodes with edges between any lock
nodes that contain particles that could impact one another.
This structure can be built at the same time that lock nodes
are picked using recursion over two arguments. This pseudo-
code shows how it works.

def buildLockGraph(n1:Node,n2:Node) {
if(n1==n2) {
val lock = n1.numParts>=0 ||
n1.size<SCALE*(n1.maxRad+n1.searchRadius)

if(!lock1) {
buildLockGraph(n1.firstChild,n1.firstChild)
buildLockGraph(n1.firstChild,n1.secondChild)
buildLockGraph(n1.secondChild,n1.secondChild)

}
} else {
val dx = n1.mid.x-n2.mid.x
val dy = n1.mid.y-n2.mid.y
val dz = n1.mid.z-n2.mid.z
val dist = sqrt(dx*dx+dy*dy+dz*dz)
val searchDist = n1.searchRadius+n1.maxRad+
n2.searchRadius+n2.maxRad

if(dist-0.866*(n1.size+n2.size)<=searchDist) {
val lock1 = n1.numParts>=0 ||
n1.size<SCALE*(n1.maxRad+n1.searchRadius)

val lock2 = n2.numParts>=0 ||
n2.size<SCALE*(n2.maxRad+n2.searchRadius)

if(lock1 && lock2) {
addLockEdge(n1,n2)

} else if(lock1) {
buildLockGraph(n1,n2.firstChild)
buildLockGraph(n1,n2.secondChild)

} else if(lock2) {
buildLockGraph(n2,n1.firstChild)
buildLockGraph(n2,n1.secondChild)

} else {
buildLockGraph(n1.firstChild,n2.firstChild)
buildLockGraph(n1.firstChild,n2.secondChild)
buildLockGraph(n1.secondChild,n2.firstChild)
buildLockGraph(n1.secondChild,n2.secondChild)

}
}

}
}

There are two top level cases. The two nodes could be the
same or they could be different. If they are the same, we
only decide if the node should be a lock-node. If it isn’t,
then we need to recurse three times to the different possible
combinations of the two children of the node.

If the nodes aren’t the same, the distance between their
center points is calculated and that is checked against their
sizes and the search distance of the two nodes. If they are
too far apart, the recursion terminates. Otherwise the code
determines if either one is a lock node. If both are, that edge
is added to the graph. If only one is, that one recurses against
both children of the other. If neither is, all four combination
of the children are recursed on.

This function is called using the root of the tree for both n1
and n2. When it is done, all lock nodes have been identified
and all edges have been added. This form of two argument
recursion can have many uses in spatial work when the
objective is to find pairs of entities. One other application
was presented in (10). It can also be nicely parallelized so
that it does not add to sequential overhead in the application.

At this point the lock-graph can be used in much the

158 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

same way the grid was used previously. When the processing
begins on a collision, the lock-node for each of the two
particles is set to being locked. To make this efficient, a
map from particles to nodes is made when the graph is built.
When the collision is done, the lock is released. To check if
a particular collision is safe to be processed, the code checks
that node for each of the two particles in the collision and
all the other nodes directly connected to them in the graph.

The check in the pseudocode for whether or not it is a lock
node includes a factor called SCALE. This can be adjusted to
move the lock-nodes up or down in the tree. Moving them up
leads to fewer lock nodes that have more particles in them,
but there are fewer connections between lock nodes. Moving
them down has the opposite effect. Increasing the number
of particles in a lock node can lead to over-locking if the
lock-nodes get too big. However, the fact that the check for
whether a collision is safe or not must run through all the
edges out of a node means that lower connectivity can have
a positive performance impact on one of the most common
operations in the simulation. The impact of this is explored
in the next section.

3. Analysis
The method was implemented in a collisional dynamics

simulation code in C++. This code has been used previously
for modeling of planetary rings (11; 12; 13). It was tested
on two general types of systems, the system for which it
was created shown in fig. 1 and a system using a small
cell in a planetary ring shown in Figure 2. Both simulations
included a bit under 200,000 particles and they were run
through ten time steps to get the timing results. In addition,
each system was run in two configurations called early and
late. The early was the initial conditions and the late was
after the system had evolved to an equilibrium. For the ring
simulation the early is truly uniform with a dynamically
cold particle distribution. The late was after two orbits
when particle self-gravity and collisions had altered the
distribution and particles were beginning to clump a bit. For
the silicon grain simulations, the early stage had a cube of
well spaced particles completely inside the cylinder falling
down to the surface. The late simulation is what is shown
with the particle at rest at the bottom of the cylinder.

To do the time testing we used a server with 4 Quad-
Core AMD Opetron 8350 processors, running at 2.0GHz
processor, giving a total of 16 cores. The C++ code base
was compiled using the x86 Open64 compiler from AMD.
The compile flag were “-Ofast -mso -march=auto -openmp”.
All multithreading was done using OpenMP. The “-apo”
autoparallelization flag for the compiler was not used as
the objective is to test the parallelism coded explicitly into
the simulation. It is worth noting that choice of compiler
can be significant. While the x86 Open64 compiler was
selected under the belief that it would out perform the GNU
C++ compiler, incomplete results from that compiler show

Fig. 2
THIS FIGURE SHOWS A FRAME FROM THE RING PARTICLE SIMULATION

THAT WAS USED FOR TIMING RESULTS. THIS IS WITHOUT THE MOON.
THE SIMULATIONS WITH A MOON HAD A 20-M PARTICLE PLACED AT

THE ORIGIN.

that things aren’t so clear cut. For some of the situations
presented, the GNU compiler produces slightly faster code.

The results in the tables show what was reported by the
Linux time command. Each simulation was run five times
with the mean and standard deviation being presented.

The first table shows timing results for the ring simulation
shown in fig. 2. This was the situation for which the grid was
originally developed. The particles are fairly homogeneously
spread out and the particle distribution is quite flat. The
timing data here shows that for this system, larger lock-
nodes are generally better and that a SCALE of ~6.0 is
ideal. It isn’t too surprising that even with that scale, the
grid implementation is slightly better.

Table 2 shows the times for the ring simulation when
a moonlet, 10 times larger in radius than the largest other
particles, was dropped into the middle of the simulation.
This setup was a bit artificial because the system was only
advanced 10 steps which isn’t enough time to let smaller
particles settle on the surface of the moonlet, but it does test
the graph with a heterogeneous particle size distribution. The
results for this test were very odd as the graph timing for
the initial conditions was highly variable and none of the
graph runs performed as well as the grid.

A possible explanation for this is shown in Figure 3.
The large particle forces one large lock node in the graph.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 159

Scale Graph Early (s) Graph Late (s)
1.2 44.4± 0.4 58.3± 0.9
2.0 44.6± 0.1 57.0± 1.0
4.0 42.0± 0.1 47.7± 0.2
6.0 39.9± 0.2 43.7± 0.2
8.0 39.2± 0.1 43.8± 0.1

Table 1
THIS TABLE SHOWS TIMING RESULTS FROM RING SIMULATIONS WITH A

POPULATION OF PARTICLES WHOSE SIZES WERE PULLED FROM A

DIFFERENTIAL POWER-LAW DISTRIBUTION WITH A SLOPE OF -2.8
SPANNING A FACTOR OF TEN IN RADIUS. TIMES FOR THE GRID BASED

LOCKING WITH THIS SIMULATION WERE 37.1± 0.1 EARLY AND

42.0± 0.1 LATE. FOR THE LARGER GRAPH SCALE THE GRAPH WAS

COMPARABLE IN SPEED TO THE GRID, BUT NEVER SUPERIOR.

Scale Graph Early (s) Graph Late (s)
1.2 95.2± 5.7 75.3± 0.8
2.0 136.4± 6.2 75.5± 1.2
4.0 177.8± 7.2 67.5± 0.6
6.0 112.2± 3.0 66.2± 0.7
8.0 212.7± 7.6 66.5± 1.1

Table 2
THIS TABLE SHOWS TIMING RESULTS WHEN A MOONLET, 10 TIMES

LARGER IN RADIUS THAN THE LARGEST BACKGROUND PARTICLES, WAS

ADDED TO THE SIMULATION. THE TIMING FOR THE GRID IN THIS

SITUATION WAS 93.0± 2.0 EARLY AND 57.9± 0.3 LATE.

That node has a very high connectivity. If there aren’t
enough collisions happening in nodes that aren’t adjacent
to that large node, the workload will be unbalanced and the
processing will become more sequential. It is worth further
exploration into whether having a more natural particle
configuration or a larger cell would favor the graph more.

We also have time results for the granular flow simulations
that prompted the development of the graph-lock method.
This simulation differs from the ring simulations in another
very significant way, the distribution of particles is distinctly
3-D. Planetary rings are remarkably flat. While the 3-D
aspect of the rings is very significant to the dynamics (14), all
the particles are close to the orbital plane. That is significant
for the grid, which only breaks the simulation region up in
2-D. It would be possible to make a 3-D grid, but memory
overhead quickly becomes a problem with 3-D grids that
have decent spatial resolution, and while the neighbor count
in 2-D is only eight, it goes up to 26 for 3-D, increasing the
overhead of lock checking.

The results without the marble show how different this
system is from the ring simulations. Here, increasing the
scale of the lock nodes has little impact on performance
when the particles are spread out early and slows it down
when they are densely packed after having settled to the
bottom. In addition, while the grid performs roughly the
same speed as the graph for the early system, it is slightly

Fig. 3
THIS IS A PICTORIAL REPRESENTATION OF A LOCK GRAPH WHEN THERE

IS A SINGLE LARGE PARTICLE. THE SIZE OF THE NODES ROUGHLY

REPRESENTS THE AREA IT COVERS. THE NODE WITH THE LARGE

PARTICLE HAS A MUCH HIGHER CONNECTIVITY AND IT IS POSSIBLE

THAT CHECKS FOR ITS LOCK COULD ACTUALLY SLOW THINGS DOWN IF

THERE AREN’T ENOUGH COLLISIONS HAPPENING AWAY FROM IT TO

KEEP THE LOAD BALANCED.

Scale Graph Early (s) Graph Late (s)
1.2 21.0± 0.6 860± 39
2.0 20.6± 0.3 859± 30
4.0 20.7± 0.8 913± 40
6.0 20.5± 0.7 936± 22
8.0 19.3± 0.5 968± 33

Table 3
THESE ARE TIMING RESULTS FOR THE SILICON GRAIN SIMULATIONS

WITHOUT THE DROPPING MARBLE. THE GRID BASED LOCK TIMING FOR

THESE SIMULATIONS WERE 19.5± 0.5 EARLY AND 1004± 38 LATE.

slower later on. In all cases though, the 3σ bounds overlap.
Adding the marble is where the graph should in theory

stand out. Again, the performance is fairly flat with graph
scale except for the largest size which caused it to run
significantly slower. The grid performed similarly to the
largest scale for the early time. It is interesting to note that
in this situation there isn’t much of a difference between the
early and late simulations using the graph. One result that
seems a bit unusual is that the late setup runs faster with
the marble than it did without. This implies that having the
marble located up high actually changes the morphology of

160 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Scale Graph Early (s) Graph Late (s)
1.2 647± 37 667± 50
2.0 668± 41 663± 39
4.0 686± 52 705± 24
6.0 667± 46 646± 13
8.0 2529± 1323 2780± 1185

Table 4
THESE ARE TIMING RESULTS FOR THE SILICON GRAIN SIMULATIONS

WITH THE DROPPING MARBLE. THE GRID BASED LOCK TIMING FOR

THESE SIMULATIONS WERE 2654± 1153 EARLY AND � 150, 000 LATE.

the graph as a whole in such a way that it allows greater
parallelism. Lastly, with the marble at the late time it wasn’t
possible for us to get good time bounds on the grid method.
After a few days of running it still hadn’t completed the
first time step which allows us to give the limit in the table
caption.

4. Conclusions
The lock-graph method of locking parallel threads adds

another option to the toolkit of those working in spatially ori-
ented discrete event simulations. While specifically designed
for collisional simulations, it could be used to good effect
in any discrete event application where events have a spatial
distribution and exhibit locality. Unlike rollback methods,
this does not require significant memory overhead and can
be used for simulations that are often memory constrained.
The use of two-argument recursion to built the lock-graph
means that it has a worse case performance of O(N log N),
the same was what would be required to built or maintain
the tree data structure.

As is so often the case in simulation, the lock-graph is no
silver bullet. There are trade-offs and some situations where
it is not the ideal approach. For systems that are naturally flat
and mostly homogeneous, a grid will work better. However,
the use of a kD-tree for the lock-graph means that it will
efficiently scale to higher dimensions where a grid would
become infeasible and the ability to handle 3-D systems
that exhibit significant heterogeneity makes it appropriate
for systems where the grid-based approach breaks down.

Acknowledgments
This work was supported by grants from NASA Origins

and NSF AAS.

References
[1] M. Lewis and B. L. Massingill, “Multithreaded colli-

sion detection in java,” in PDPTA, H. R. Arabnia, Ed.
CSREA Press, 2006, pp. 583–592.

[2] M. Lewis, M. Maly, and B. L. Massingill, “Hybrid
parallelization of n-body simulations involving colli-
sions and self-gravity,” in PDPTA, H. R. Arabnia, Ed.
CSREA Press, 2009, pp. 324–330.

[3] B. L. Massingill and M. Lewis, “Parallelizing a col-
lisional simulation framework with plpp (pattern lan-
guage for parallel programming),” in PDPTA, H. R.
Arabnia, Ed. CSREA Press, 2006, pp. 608–614.

[4] R. M. Fujimoto, “Parallel discrete event
simulation,” Commun. ACM, vol. 33, pp.
30–53, October 1990. [Online]. Available:
http://doi.acm.org/10.1145/84537.84545

[5] E. Mascarenhas, F. Knop, and V. Rego, “Parasol:
a multithreaded system for parallel simulation
based on mobile threads,” in Proceedings of the
27th conference on Winter simulation, ser. WSC
’95. Washington, DC, USA: IEEE Computer
Society, 1995, pp. 690–697. [Online]. Available:
http://dx.doi.org/10.1145/224401.224711

[6] S. Plimpton, “Fast parallel algorithms for short-
range molecular dynamics,” J. Comput. Phys., vol.
117, pp. 1–19, March 1995. [Online]. Available:
http://portal.acm.org/citation.cfm?id=201627.201628

[7] R. M. Fujimoto, K. S. Perumalla, A. Park, H. Wu,
M. H. Ammar, and G. F. Riley, “Large-scale network
simulation: How big? how fast?” in MASCOTS. IEEE
Computer Society, 2003, pp. 116–.

[8] R. M. Fujimoto, Parallel and Distributed Simulation.
John Wiley & Sons, Inc., 2007. [Online]. Available:
http://dx.doi.org/10.1002/9780470172445.ch12

[9] A. M. Law, Simulation Modeling and Analysis, 4th ed.
McGraw-Hill Higher Education, 2007.

[10] M. Lewis and H. Levison, “A tree-based hamiltonian
for fast symplectic integration,” in CSC, H. R. Arabnia,
Ed. CSREA Press, 2008, pp. 30–36.

[11] M. C. Lewis and G. R. Stewart, “Expectations for
Cassini observations of ring material with nearby
moons,” Icarus, vol. 178, pp. 124–143, Nov. 2005.

[12] ——, “Features around embedded moonlets in Saturn’s
rings: The role of self-gravity and particle size distri-
butions,” Icarus, vol. 199, pp. 387–412, Feb. 2009.

[13] S. J. Robbins, G. R. Stewart, M. C. Lewis, J. E.
Colwell, and M. Sremčević, “Estimating the masses of
Saturn’s A and B rings from high-optical depth N-body
simulations and stellar occultations,” Icarus, vol. 206,
pp. 431–445, Apr. 2010.

[14] H. Salo, “Numerical simulations of dense collisional
systems,” Icarus, vol. 90, pp. 254–270, Apr. 1991.

[15] H. R. Arabnia, Ed., Proceedings of the International
Conference on Parallel and Distributed Processing
Techniques and Applications & Conference on Real-
Time Computing Systems and Applications, PDPTA
2006, Las Vegas, Nevada, USA, June 26-29, 2006,
Volume 1. CSREA Press, 2006.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 161

Multi-agent System Simulation in Scala:
An Evaluation of Actors for Parallel Simulation

Aaron B. Todd1, Amara K. Keller2, Mark C. Lewis2 and Martin G. Kelly3
1Department of Computer Science, Grinnell College, Grinnell, IA, USA

2Department of Computer Science, Trinity University, San Antonio, TX, USA
3Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA

Abstract— Multi-agent system (MAS) simulation, a grow-
ing field within artificial intelligence, requires the creation
of high-performance, parallel, and user-friendly simulation
frameworks. The standard approach is to use threads and
shared memory. The drawbacks of this approach are the
common concurrency pitfalls of race conditions and perfor-
mance loss due to synchronization. Our goal was to evaluate
the feasibility of an alternate model of concurrency, actors.
An actor can be thought of as a very lightweight thread
that does not share memory with other threads, instead
communicating only through message passing. Actors seem
to be a natural fit for this task, since agents are concurrently
processed objects that communicate with each other through
message passing. We write an actor framework and an equiv-
alent threaded framework in the modern object-functional
JVM language Scala and compare their performance. We
conclude that the actor model seems like a natural fit, but
its performance is inferior to that of the threaded model.
Despite this drawback, it shows great promise due to its
elegance and simplicity. When scaling to multiple machines,
the advantages of actors will almost certainly outweigh any
performance costs.

Keywords: MAS, Scala, Parallel Simulation, Actors, AI

1. Introduction and Background
An important simulation problem is that of multi-agent

systems (MAS). A MAS “can be defined as a loosely
coupled network of problem solvers that interact to solve
problems that are beyond the individual capabilities or
knowledge of each problem solver. These problem solvers,
often called agents, are autonomous and can be heteroge-
neous in nature” [1]. Because the definition of an agent is
so broad, MAS can model many different situations, such as
economic, social, and political activity. Of course, creating
realistic simulations is not easy and requires collaboration
with economics and/or other social sciences. However, MAS
provide the technological framework to make such modeling
possible.

Implementations of MAS frameworks vary widely, but
the core parallelization model behind many of them is
that of threads and shared memory. Although this approach
can work, it suffers from the hazards of concurrent data

modification and other race conditions. These issues make
testing and debugging of the frameworks very difficult,
and solutions to these problems typically incur performance
penalties and programmer headaches.

Another approach to parallel programming is the actor
model [2]. An actor can be defined as a lightweight process
that communicates with other actors through message pass-
ing. These messages are buffered in the actors’ mailboxes
for the actor to respond to. Actors do not share any memory
with other actors, and they all process concurrently. Message
passing is asynchronous. This model avoids the numerous
shared memory pitfalls associated with the conventional
threaded model of concurrency. The best known actor imple-
mentation is in the language Erlang, a functional language
designed for efficient fault-tolerant distributed systems [3].

A MAS framework based on this actor model would
avoid many of the concurrency issues afflicting the threaded
frameworks. In such a framework, it would be natural for
each agent to be an actor. Communication between agents
would then be done by the actor’s message passing methods
and the simulation would be implicitly parallel. While it
would help eliminate many reliability issues and make
frameworks much easier to write, this approach is only
practical if the performance is comparable to that of the
threaded frameworks. Our goal is to perform a performance
evaluation of an actor model MAS framework written in the
language Scala by comparing it to a comparable threaded
framework.

Scala is a fairly new programming language that has been
in development at EPFL in Switzerland since 2003. It uses
an object-functional paradigm and compiles to the JVM,
which allows seamless calls to Java libraries and code. It
has static type checking and, as a result, takes full advantage
of HotSpot JVM implementations and typically runs at the
same speed as Java programs [4].

There has been significant work on the Scala language that
is well documented in the field of programming languages.
As a result, the language pulls in many of the best ideas
from the field [5] [6] [7] [8]. The name Scala is short
for Scalable Language, a property that makes it ideal for
generating Domain Specific Languages (DSLs). This can
be extremely beneficial in the field of simulation, where
many simulation packages have basically built up their own

162 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

DSLs over the years [9]. The design of Scala allows libraries
to be written such that they look and operate as normal
language features. These features, among many others, were
significant factors in motivating us to use the language for
these frameworks. The Scala actor library is unusually high-
performing relative to other JVM actor implementations.
Together, Scala’s extensibility and the convenience of a JVM
platform makes Scala a great language choice [10]. This
is the reason why we chose it over other actor-supporting
languages such as Erlang.

2. Related Work
To our knowledge, we are one of the first groups to

consider using Scala’s actor library for parallel simulations.
Some research has been done into the feasibility of using Er-
lang for MAS. The implementation described by Varela et al.
does map Erlang’s lightweight processes directly to agents,
but in this case, each agent is a collection of these processes.
Unfortunately, Varela’s work does not provide a performance
evaluation [11]. His group’s primary motivations for using
Erlang over Java was the much more natural fit they saw
between Erlang and the coding of agent behavior, combined
with Erlang’s excellent support for distributed computing [?].
Performance appears to have been good enough that any
weakness was compensated for by the convenience of using
a language that fits the problem well.

3. Scala
Scala, as a language very closely related to Java, bor-

rows much of its syntax; however, it omits semicolons
and eliminates the need for extensive boilerplate code. The
most noticeable difference is a type inference system for
limiting type specification when such specification would be
redundant. These tweaks make Scala much easier to read and
feel more like a scripting language even though it actually
runs on the robust JVM platform.

Listing 1: Scala Int to String class.
c l a s s Foo {

d e f b a r (a r g : I n t) : S t r i n g = a r g . t o S t r i n g
}

Listing 2: Java Int to String class.
p u b l i c c l a s s Foo {

p u b l i c S t r i n g b a r (I n t a r g) {
r e t u r n I n t e g e r . t o S t r i n g (a r g) ;

}
}

In addition to these simple variations, Scala has many
more subtle differences and features, including very natural

Messages

Actor

Mailbox

Reaction
Function Messages

Fig. 1: An actor. Mailbox buffers messages until the reaction
function processes them.

support for pattern matching. This is very useful because
the primary action of an actor is to react to a message with
an action that varies based on message content. Excellent
pattern matching syntax makes this a painless process.

Scala can represent this reaction function as a number of
case statements. These are matching functions evaluated in
sequence on the input. These can match on type or value and
can pull inner values by automatically applying extractors.
Extractors are present in all standard library collections and
can be automatically generated for a class by declaring it
with the case keyword. In the following example, the input
message is checked to see if it is an Int, the String “foo”, or
a Bar that contains 5. A default is provided, but since only
one match can occur, it does not require special syntax.

Listing 3: A simple match block.
msg match {

c a s e msg : I n t => p r i n t l n (‘ ‘ An i n t e g e r . ’ ’)
c a s e ‘ ‘ foo ’ ’ => p r i n t l n (‘ ‘ Found foo . ’ ’)
c a s e Bar (5) => p r i n t l n (‘ ‘ The b a r . ’ ’)
c a s e _ =>

}

4. Actor Framework
4.1 Scala Actors

Scala has an excellent actor library. Since Scala is a JVM
language, this library is quite complicated because the JVM
is not designed to run actors efficiently [12] [13]. The library
works around this limitation by leveraging the language’s
functional nature and by using exceptions to navigate the
call stack. Event based actors, a variant that does not
block an underlying thread while waiting for messages, are
implemented as closures waiting to be called with an input
message. Upon receiving a message, the actor’s associated
closure is then scheduled on an available executor thread.
When an actor is finished reacting to the message, it throws
a suspend actor exception, which returns the actor to its idle

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 163

state. By implementing actors in this way instead of mapping
them directly to JVM threads, they become very lightweight.
This gives them substantially better performance than many
other JVM-based actor implementations [10].

A Scala actor can be defined by extending the Actor trait.
All actor functionality is contained in the act method, which
must be defined by the subclass. A simple actor is defined
below. React is the method actors call to “react” to the next
message in their mailbox. Due to its non-returning nature, a
result of its exception-based implementation, a for or while
loop will not work, so the library provides a special loop
function. Inside react is a matching function similar to the
one above. The “!” method is used to send messages to
actors, and sender can be used to refer to the actor that sent
the message being reacted to. This actor responds to Pings
with Pongs and Pongs with Pings.

Listing 4: A Ping-Pong actor.
c l a s s PingPong e x t e n d s Ac to r {

d e f a c t () {
loop {

r e a c t {
c a s e Ping => s e n d e r ! Pong
c a s e Pong => s e n d e r ! P ing

}
}

}
}

4.2 Agents
In our framework, each agent is a subclass of actor.

This design allows the framework to inherit all of the
actor message passing functionality, and since actors process
concurrently, there are only a few agent features left to
implement. The primary task is to convert the event based
system of actors reacting to a system in which agents iterate
through time steps. We do this by creating a clock actor
that sends agents messages which trigger the processing of
steps. Once each agent finishes its step, it sends a message
back to the clock indicating that it is finished. Once the
clock receives finished messages from each agent, it sends
out new DoStep messages. The method that agents call upon
receiving a DoStep message is called doStep.

4.3 Stepping Algorithm
This results in the following step algorithm for the frame-

work. A runner object initializes the simulation and then the
clock object loops a step function of the form:

• Send DoStep message to each agent.
• Wait until every agent has replied with an EndStep

message.
• Cleanup and repeat if not finished.

Clock

Agent
“doStep”

Agent
“doStep”

Agent
“doStep” Clock

Agent
“doStep”

Agent
“doStep”

DoS
tep

DoStep

DoStep

DoStep

DoS
tep

End
Step

EndStep

EndStep

Cleanup

Fig. 2: Clock sends DoStep messages, Agents call doStep
method, Agents inform clock that they are finished. Cleanup
and repeat.

Inside the doStep call, agents perform any simulation
logic they need to with the option of placing some code
to handle messages in a dedicated handleMessage method.
This was done because many messages in the simulation
are simple information requests. Processing these requests
inside doStep creates an unnecessary hassle because they
interrupt the logical flow of the agent’s code. This external
method also allows agents to respond to information requests
once finished with their core logic without having to know
how many requests they will receive. In the case in which
receiving a message is a core part of the agent’s logic, they
can still react to it in doStep.

These methods are defined in a core Agent abstract class
that is extended by simulation writers as needed. The act
method of an agent is a simple loop reacting to messages.
The messages it receives are of two possible types. The
first is FrameworkMessage. This type of message is used
by the framework to tell the agent what it should be doing.
Examples include messages to start the simulation and
do steps. The second type is a SimulationMessage. This
message is sent between agents as part of their steps. An
example is an information request message. The react sends
each type to its appropriate handleMessage method. In the
case of a SimulationMessage, this is the handleMessage
method defined by the simulation writer.

Upon receiving a DoStep message, the agent calls the
doStep method written by the simulation writer. Inside
this method, agents are free to send messages to other
agents using the conventional agent message send method,
“!”. When reacting to messages, a special react method
specifically for agents must be used. This implementation
provides a number of benefits. Using a number of Scala
language features allows this method to return normally,
unlike the usual react. It also allows an agent to use its

164 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

handleMessage method in addition to the partial function
passed in to react to messages and does so in a way that is
transparent to the simulation writer.

Listing 5: An example agent subclass.
c l a s s AnAgent (f r i e n d : AnAgent) e x t e n d s Agent {

d e f doStep () {
f r i e n d ! G r e e t (‘ ‘ Hel lo ’ ’)
a g e n t R e a c t {

c a s e G r e e t (msg) => p r i n t l n (msg)
}

}
}

4.4 Implementation
The implementation of this react is the most complex

component of the actor framework. While it is not strictly
necessary, its inclusion makes writing simulations substan-
tially easier through the avoidance of bizarre control flow.
For that reason, the performance hit from its overhead was
deemed acceptable.

The actual implementation is as follows: When agentReact
is called, the first action taken is to use Scala’s delimited
continuations library to store all remaining computation in
the doStep method as a continuation. Then the agent reacts
to incoming messages with both the partial function given
to agentReact and the agent’s coreReact partial function.
If the supplied partial function is used to react to the
message, the continuation is then called using the actor
library method andThen, which takes a function to apply
once react has finished. If the message is handled by the
coreReact partial function, this react block is repeated, again
by calling andThen. The primary drawback to this system is
that all looping constructs with continuation-creating code
in their bodies must be implemented with an understanding
of continuations. Since Scala’s constructs are not aware, a
special agentReactWhile function is defined.

Scala’s continuations library is one of the few that is not
implemented purely as library code. It works by using a
compiler plug-in to perform a transformation of all code
contained in the delimited continuation to continuation-
passing style (CPS). The result of this transformation is that
instead of returning normally, all functions take an argument,
which is the function to apply to the result. This function can
then be saved and stored as a “continuation” instead of being
evaluated immediately. The details of this transformation are
available in [14].

One might question the use of the Scala continuations
library to achieve this behavior instead of using andThen
following react. While the latter probably has better perfor-
mance, it would result in fairly convoluted code. If an agent
had many reacts interspersed with pieces of computation,
using andThen would require a deep nesting of function

Message

Agent

def coreReact =
 case Simulation
 case DoStep

def handleMessage(msg: SimMessage)
 msg match
 case NameQuery => sender ! Name

def doStep()
 friend ! Ping
 AgentReact
 case Pong => println(“foo”)
 endStep

case Pong => println(“foo”)
 andThen endStep
orElse coreReact andThen repeat()

Ping

EndStep

Fig. 3: Agent message processing. If SimulationMessage,
send to handleMessage. If DoStep, perform agent behavior.
If agentReact called, move to modified react which forwards
message back to coreReact and then repeats agentReact by
calling the saved continuation if not the expected message.

Fig. 4: Note how a normal react results in deep nesting.

(a) Returning react.

d e f doStep () {
a g e n t R e a c t {

p a r t i a l F u n c t i o n
}
agentCode
a g e n t R e a c t {

p a r t i a l F u n c t i o n
}
agentCode

}

(b) Normal react.

d e f doStep () {
a g e n t R e a c t {

p a r t i a l F u n c t i o n
} andThen {

agentCode
a g e n t R e a c t {

p a r t i a l F u n c t i o n
} andThen {

agentCode
}

}
}

calls. When writing more complex logic, this nesting would
begin to make code unreadable. One way to think of our
use of continuations is that the compiler’s CPS transform is
simply a way to get rid of these extra brackets in order to
make the code more readable. In the original work on Scala
actors, the authors also state that the lack of a return on react
is due to the lack of first-class continuations and, had there
been a technique similar to our implementation, they would
have used it instead [12]. When continuations were added
to Scala, one of the examples used was a modification to
react that made it return, which was an implementation very
similar to ours [14].

Messages in this framework are defined very simply.
FrameworkMessage and SimulationMessage are both traits
that extend a Message trait. Framework messages with
parameters are defined as case classes, where case is a
Scala keyword that automatically generates simple construc-
tor methods and extractors for the pattern matching done

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 165

in react. If there are no parameters, singleton messages
are used to save memory. Simulation writers define their
message types by extending the SimulationMessage trait
with additional case classes.

There is also a CentralAgent class that is given informa-
tion about all agents in the simulation. This agent is useful
because it allows normal agents to perform actions such as
requesting a reference to a random agent very easily. It is
always in a react loop waiting to respond to messages from
agents. If they desire, simulation writers can easily extend
it with additional functionality.

The final component of the simulation is the system by
which agents are initially created. A simulation writer must
provide an iterator that produces agents in sequence. Any
initial setup, such as setting agent data, must be done by this
iterator. A future task is to implement a DSL that simplifies
this process.

4.5 Example Simulation
Our primary benchmark is a simulation of Communicatin-

gAgents. These agents are friends with every other agent,
and each step they send a Hello message to each friend. Once
they have received a response HelloBack message they finish
their step. When doStep is called, the agent sends Hello to
each friend and counts how many were sent. It then moves
into an agentReact loop, in which it waits for a response from
every friend. Concurrently with agentReact, handleMessage
responds to Hello messages.

Listing 6: CommunicatingAgent implementation.
c l a s s Communicat ingAgent

(v a l f r i e n d s : L i s t B u f f e r [Communicat ingAgent])
e x t e n d s Agent {

d e f doStep () {
v a r c o u n t = 0
f o r (a <− f r i e n d s) {

a ! H e l l o
c o u n t += 1

}
a g e n t R e a c t W h i l e (c o u n t > 0) {

c a s e Hel loBack => c o u n t −= 1
}
endS tep

}
d e f hand leMessage (msg : S i m u l a t i o n M e s s a g e) {

msg match {
c a s e H e l l o => s e n d e r ! Hel loBack

}
}

}

5. Threaded Framework
In order to evaluate the performance of the actor paral-

lelism approach to MAS, we also wrote simulations in a

framework using a threaded model. This framework pro-
vides an equivalent environment to write simulations such
as ours using conventional concurrency constructs and a
master-slave program structure. It was written as an initial
exploration of the merits of Scala as a MAS simulation
language. The step algorithm is as follows.

• Master calls “runStep” on slave.
• The slave iterates through its agent list.
• “doStep” is called for each agent.

– Returns a list of messages the agent has sent.
– Messages to agents placed in their mailboxes.

• Slave processes agents again
– “handleMessages” is called for each agent.

• Repeats until there are no messages.
• Slave finishes; informs master.
• Cleanup and advance time step.

Unfortunately, this framework suffers from many of the
problems associated with the threaded concurrency model.
Race conditions between threads make testing and debug-
ging difficult, and frequent synchronization of access to
shared memory slowed program execution down.

6. Experiments and Results
6.1 Testing Goals and Methods

Our primary goal in this research was to determine how
well Scala’s actor library performs relative to threads for
MAS simulation. To do this, we run a number of benchmarks
for our two frameworks that stress different framework com-
ponents. For these tests we recorded wall clock time between
simulation start and end, not counting agent creation. Our
test machines contained dual Xeon 5450 quad-core CPUs at
3.0 GHz and 16 GB of memory. All tests were run with a
maximum Java heap size of 14 GB and simulations were
run for 20 steps.

6.2 Agent Number
Our first test was to see how execution time scaled while

increasing the number of agents. To test this we wrote
an agent class where each agent performs no actions and
just immediately ends its step after starting. Here we had
some very bizarre findings. The threaded framework scaled
linearly with the addition of new agents, which is what
was expected. The actor framework did not. As Fig. 6
shows, at 100k agents, the execution times become very
random. Our plausible explanation for this behavior is the
interaction between the actor library, the JVM, and multi-
CPU machines. Since actors have special scheduling that
leverages exceptions, the clock actor is frequently suspended
and resumed. As this is happening, it could be switching
between threads, cores, or the physical CPUs. If this were
to thrash CPU cache or interfere with exception processing
in the JVM, execution would be substantially slowed down

166 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 2000000 4000000 6000000 8000000 10000000

Ti
m

e
 (

S)

Agents

Actors

Threads

Fig. 5: Execution time scaling for simple agents.

0

200

400

600

800

1000

1200

1400

0 200000 400000 600000 800000 1000000

Ti
m

e
 (

S)

Agents

Actors

Threads

SingleChipActors

Fig. 6: Note very large uncertainty for dual CPU actors, and
essentially none for single CPU actors.

by a seemingly random amount. To test this hypothesis, runs
were made on a single CPU machine up to 1 million agents
(capped due to memory limitations) and no random variation
was seen. While this is evidence in support of our hypothesis,
the problem merits additional effort to determine the exact
causes.

6.3 Computational Workload
The second test was to see how efficiently each framework

is for computationally intensive agents. This was done by
creating an agent type that computes the first 1000*scaler
squares. Our hypothesis was that as agent processor use
increases, differences in framework efficiency have less
affect on the resulting execution time. This is likely due to
the fact that regardless of which framework this agent code
is in, it still requires the same amount of CPU time. As Fig.
7 shows, this hypothesis appears to be correct.

6.4 Messaging
Our final test was of message passing performance. This

was done using the previously described communicating

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200

Ti
m

e
 (

S)

x * 1000 first squares computed per agent

Actors

Threads

Fig. 7: Execution time scaling as agent computational work-
load varies.

0

500

1000

1500

2000

2500

3000

3500

4000

0.00E+00 5.00E+07 1.00E+08

Ti
m

e
 (

S)

Messages Passed

Actors
Threads

Fig. 8: Execution time scaling as messages passed increases.

agents simulation. In it, each agent is friends with every
other agent, so messages passed scales quadratically. This
was done instead of numerous rounds of messaging for a
small constant number of agents because it seems like a
more realistic way in which a framework would be stressed.
It is also the case that the threaded framework handles many
messages in one round very differently from many rounds
of a few messages per step.

As seen in Fig. 8, both frameworks exhibit roughly similar
linear scaling with messages sent, but the actor framework
scales slightly less optimally. This difference can be ex-
plained by the fact that starting and ending steps requires
message sending in the actor framework.

6.5 Overall Scaling
The overall performance of actors for MAS simulation

in Scala was slightly inferior to that of threads. In terms
of memory usage, both frameworks were similar, but the
threaded framework had measurably better execution time
for the messaging benchmark. It also did not suffer any
unusual issues on the agent count benchmark. Since the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 167

primary way a MAS will be scaled up is by increasing
the number of agents and message volume, from a purely
performance perspective, threads are the obvious way to go.

7. Future Work
There are a number of ways in which our actor framework

could be improved. One of the main motivations for using
Scala was its extensibility, so a DSL for writing agent AI
could be implemented. This would make writing agent code
much simpler. Another task would be to use Scala’s remote
actor library to distribute this framework over multiple
machines. Remote actors allow local proxy actors to exist
for actors on other machines. These proxies can be sent mes-
sages that are forwarded to the actual actor. Other approaches
to synchronization could also be employed. The current
framework requires that all actors compute in lockstep, but
this restriction could be loosened as long as agents were
required to maintain the ability to respond to requests for
information about their past states. A final task could also be
to write a stripped down version of the actor library and tune
it for the purpose of MAS simulation. This has the potential
to eliminate the performance gap between the thread and
actor approaches.

8. Conclusion
We set out to compare the relative performance of two

approaches to parallelism when applied to the simulation of
multi-agent systems in the language Scala. Our conclusion
is that the threaded approach is superior from a strictly
performance-oriented point of view. However, with the ex-
ception of issues relating to the agent number benchmark,
actors did perform respectably. Given the ease of writing
the actor framework and the numerous ways it could be
improved, such as distribution across multiple machines,
loosening of time synchronization, or tuning the actor im-
plementation, this model shows clear promise applied to
MAS simulation. The language Scala is also an excellent
choice due to the ease with which it can be extended to
facilitate a DSL for writing agent AI. For these reasons,
we recommend that future groups attempting to implement
MAS frameworks consider using Scala actors.

References
[1] K. P. Sycara, “Multiagent systems,” AI Magazine, vol. 19, pp. 79–92,

1998.
[2] G. Agha, Actors: a model of concurrent computation in distributed

systems. Cambridge, MA, USA: MIT Press, 1986.
[3] J. Armstrong, “Erlang,” Commun. ACM, vol. 53,

pp. 68–75, September 2010. [Online]. Available:
http://doi.acm.org/10.1145/1810891.1810910

[4] “The computer language benchmark game,”
http://shootout.alioth.debian.org//, 3 2011.

[5] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K. Sujeeth,
P. Hanrahan, M. Odersky, and K. Olukotun, “Language virtualization
for heterogeneous parallel computing,” in Proceedings of the
ACM international conference on Object oriented programming
systems languages and applications, ser. OOPSLA ’10. New
York, NY, USA: ACM, 2010, pp. 835–847. [Online]. Available:
http://doi.acm.org/10.1145/1869459.1869527

[6] T. Rompf and M. Odersky, “Lightweight modular staging: a
pragmatic approach to runtime code generation and compiled dsls,”
in Proceedings of the ninth international conference on Generative
programming and component engineering, ser. GPCE ’10. New
York, NY, USA: ACM, 2010, pp. 127–136. [Online]. Available:
http://doi.acm.org/10.1145/1868294.1868314

[7] C. Hofer and K. Ostermann, “Modular domain-specific language com-
ponents in scala,” SIGPLAN Not., vol. 46, pp. 83–92, October 2010.
[Online]. Available: http://doi.acm.org/10.1145/1942788.1868307

[8] M. Odersky, “The scala experiment: can we provide better
language support for component systems?” in Conference
record of the 33rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, ser. POPL ’06. New
York, NY, USA: ACM, 2006, pp. 166–167. [Online]. Available:
http://doi.acm.org/10.1145/1111037.1111052

[9] A. Law, Simulation Modeling and Analysis with Expertfit Software.
McGraw-Hill Science/Engineering/Math, 2006.

[10] R. K. Karmani, A. Shali, and G. Agha, “Actor frameworks for the
jvm platform: a comparative analysis,” in Proceedings of the 7th
International Conference on Principles and Practice of Programming
in Java, ser. PPPJ ’09. New York, NY, USA: ACM, 2009, pp. 11–20.
[Online]. Available: http://doi.acm.org/10.1145/1596655.1596658

[11] C. Varela, C. Abalde, L. Castro, and J. Gulías, “On modelling
agent systems with erlang,” in Proceedings of the 2004 ACM
SIGPLAN workshop on Erlang, ser. ERLANG ’04. New
York, NY, USA: ACM, 2004, pp. 65–70. [Online]. Available:
http://doi.acm.org/10.1145/1022471.1022481

[12] P. Haller and M. Odersky, “Scala actors: Unifying thread-
based and event-based programming,” Theor. Comput. Sci.,
vol. 410, pp. 202–220, February 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1496391.1496422

[13] ——, “Event-Based Programming without Inversion of Control,” in
Modular Programming Languages, ser. Lecture Notes in Computer
Science, D. E. Lightfoot and C. A. Szyperski, Eds., 2006, pp. 4–22.

[14] T. Rompf, I. Maier, and M. Odersky, “Implementing first-class
polymorphic delimited continuations by a type-directed selective cps-
transform,” in Proceedings of the 14th ACM SIGPLAN international
conference on Functional programming, ser. ICFP ’09. New
York, NY, USA: ACM, 2009, pp. 317–328. [Online]. Available:
http://doi.acm.org/10.1145/1596550.1596596

168 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Asynchronous Communication for Finite-Difference Simulations
on GPU Clusters using CUDA and MPI

D. P. Playne1, and K. A. Hawick1

1Computer Science, IIMS, Massey University, Auckland, New Zealand

Abstract— Graphical processing Units (GPUs) are find-
ing widespread use as accelerators in computer clusters.
It is not yet trivial to program applications that use
multiple GPU-enabled cluster nodes efficiently. A key as-
pect of this is managing effective communication between
GPU memory on separate devices on separate nodes.
We develop a algorithmic framework for Finite-Difference
numerical simulations that would normally require highly
synchronous data-parallelism so they can effectively use
loosely coupled GPU-enabled cluster nodes. We employ
asynchronous communications and appropriate memory
overlay of computations and communications to hide la-
tency.

Keywords: GPU; asynchronous communications; clusters;
CUDA; MPI

1. Introduction
Accelerators such as Graphical Processing Units

(GPUs) have steadily been finding a role in supercomputer
systems in recent years and at the time of writing are par-
ticularly prominent in major international systems in the
Top500 list of Supercomputers [1]. The Tianhe-1A(top),
Nebulae(second) and Tsubame(fourth) all employ GPU
accelerators and seventeen major systems out of the Top
500 in November 2010 use NVIDIA GPUs to accelerate
nodes.

There is importance in understanding how GPU acceler-
ators behave when combined in a multi-processor system
for various applications. The Linpack benchmark[2] used
by the compilers of the Top 500 list tests capabilities
in dense linear algebra. This is certainly an important
application paradigm but there are others and we are
interested in simulation models on rectilinear in hyper-
dimensional systems. A good test application for this
paradigm is that of solving finite-difference field equations
in one, two, three and higher hyper-dimensional meshes.

In previous work[3] we considered dual GPU acceler-
ation of a single compute node and we have since been
able to experiment with triple and quadruple[4] GPUs-
per-node as well as a range of different GPU models
with varying numbers of cores and memory configurations.
In this present paper we study the tradeoff space that
arises from decomposing a hyper-dimensional rectilinear

Fig. 1: Ray-traced rendering of a Cahn-Hilliard system
simulated on a GPU cluster.

problems such as solving a high-order partial differential
equation (PDE) using finite-difference methods [5] on a
GPU-accelerated cluster.

Finite-difference methods are still used extensively in
computational simulations – particularly in wave-based
seismic exploration applications[6] and generally are
straightforward to parallelise using geometric stencil meth-
ods of decomposition which attain good computational
speedup[3], [7] and especially on GPUs [8], [9], [10], [11].

There are various ways to “slice and dice” the data
set – and in fact for a typical simulation problem of a
physical system one can often choose the system size
to best fit the memory configuration and layout of the
parallel system. In this paper we report on results for a
periodic mesh simulation of the Cahn-Hilliard equation
for materials science using a second-order space/second-
order-time finite-differencing approach.

There are a number of useful parallel programming
technologies that could be employed for these simulations.
In this paper we focus on the combination of the open
standard Message Passing Interface (MPI)[12], [13] to
program inter-node communications and NVIDIA’s Com-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 169

pute Unified Device Architecture (CUDA) [14], [15], [16]
programming language for programming the calculations
on the GPUs themselves.

A great deal of work has been done on data-parallelism
as it pertains to such halo problems[17]. However man-
aging the computation to communications ratio of regular
mesh problems on parallel platforms remains a challenge
particularly in the case of hybrid architectures. The trade-
off space shifts around with the coming of each new
parallel platform and we present a study of parameters
and (well-known) issues as they pertain to a hybrid sys-
tem where a multi-dimensional simulation model can be
geometrically decomposed across cluster nodes in one of
the dimensions, and across the memory and data-parallel
thread structure of the accelerating GPU in the other two
dimensions.

The use of asynchronous communications across multi-
ple GPU systems is still not yet a widely-known approach
and we build on our prior work[3] with multiple GPUs
hosted from a single GPU and show the importance of
asynchronous communications for a GPU cluster with
multiple CPUs accelerated with GPUs. We also include
some reference performance data from our example simu-
lation model on combinations of single and multiple GPUs
by way of comparison.

The application problem we use as a benchmark for
our study is a second-order-space/second-order-time par-
tial differential equation – the Cahn-Hilliard field equa-
tion [18], [19], [20], which is used for simulations of phase
separation in materials science. Figure 1 shows an example
of a simulated Cahn-Hilliard model system, ray-traced
to show the spinodally decomposing interfaces between
two phases after a long period of computational thermal
quenching.

In Section 2 we discuss challenges faced when working
with multiple GPU devices. In Section 4 we present meth-
ods of decomposing a finite-differencing simulation on
multiple GPUs on both a single host and distributed nodes.
We present and discuss performance data in Section 5 and
offer conclusions in Section 6.

2. Multi-GPU Systems
In previous work [3], [4] we have discussed how the use

of CUDA asynchronous memory copies can be used to im-
prove performance when decomposing a finite-difference
application across multiple GPUs – connected via PCIe
Express bus[21] to a single host CPU. In this present work
however we investigate how this method performs when
the GPUs are distributed across a compute cluster – when
they are hosted by different CPUs.

When GPUs are mounted on a single host, communi-
cation between them is relatively simple and very fast.
The necessary communication data must be copied from

one device into the host memory and then copied to
the appropriate device. When the GPUs are distributed
throughout a cluster, this data must be communicated via a
network. These networks have significantly higher latency
and lower bandwidth, thus we expect a drop in perfor-
mance. The main advantage of GPUs distributed over a
cluster is improved scalability which would otherwise be
strictly limited in the case of multiple GPUs contending
with one another on a single PCIe bus.

In practice, GPUs hosted on a single machine are
currently limited to hosting up to a maximum of four
GPUs due to motherboard physical constraints - and some-
time also by power-supply and cooling limitations. GPU
clusters in contrast have only those physical limitations
that arise from network infrastructure. Another advantage
of increased GPU numbers is the resulting increased upper
bound on feasible model system size.

GPUs still have very limited device memory which
restricts the maximum system size that can be simulated.
By decomposing the simulation across many GPUs, this
maximum simulated system size can be increased consid-
erably. It is an important result for GPU clusters to explore
the scalability and locate the higher limitations for a cluster
system.

GPUs come in a number of models and variations.
In this article, we have focused exclusively on NVIDIA
GPUs running the Compute Unified Device Architecture
(CUDA) software. Other software systems such as the
open compute language standard OpenCL are feasible and
promise functionality on other vendor’s platforms. Our
experience has been that CUDA still delivers considerably
more performance than OpenCL and we focus solely on
CUDA and NVIDIA devices in this paper. CUDA is not
totally trivial to port applications source code to, but
we employ a well-optimised and tested source code we
developed for solving the Cahn-Hilliard equation.

3. Cahn-Hilliard Equation
We and other authors have described this equation

in detail elsewhere[18], [19], [20], but for completeness
we give a brief summary here. The equation is usually
formulated as:

∂u

∂t
= M∇2

(
−Bu+ Uu3 − K∇2u

)
(1)

The field u(x, y) or u(x, y, z) is a multi-dimensional
scalar field taking values between ±1 which represent the
two extreme materials phases. So these might represent
different atomic species in an alloy or a two separate
sorts of fluids. The field is initialised randomly then
“numerically quenched” by stepping it forwards in time.
The parameters: M,U,K specify the detailed material
properties and for our benchmarking purposes here can

170 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

be set to unity. The model then has a single remaining
parameter B which controls the temperature of the sim-
ulated quench experiment and thus the rate at which the
field separates out into domains. The spatial calculus in
the equation employs a double Laplacian operator and
thus has a larger halo boundary – or number of neigh-
bours – than simpler common finite-difference equations
featuring in mathematics textbooks. The Laplacians are
approximated by finite-difference stencils to second-order
accuracy and the time-stepping must generally be second-
order for domain-growth without introducing artifacts
from numerical instability[22]. Figure 1 shows a three
dimensional model system that has been time-stepped for
many iterations after its random quench and exhibits a
complex pattern of interleaving spatial component clusters.
The figure was rendered as hyper-surfaces that represent
the interfaces between physical domains and are shown
rendered using ray-tracing.

4. Implementation
To split a finite-differencing simulation of a field equa-

tion like the Cahn-Hilliard system across a cluster of
GPUs, the field must be decomposed into sections that
can be stored and processed by each GPU. There are
many options in terms of field decomposition - blocks,
layers and so forth[23]. We have found that decomposing
the field into layers in the highest dimension has proved
the most efficient. The field is split into equal layers and
spread across the GPUs in each node of the GPU cluster.
This method of decomposition is shown in Figure 2.

The main challenge of decomposing an application
across a compute cluster is the relatively high latency of
communication across the network. This communication
is especially important as the GPU accelerated nodes
have a higher computational throughput. In our previous
work [3], [4] on multiple GPUs on a single host, our
update algorithm communicated the bordering information
using asynchronous memory copies to hide latency. This
algorithm can be seen in Algorithm 1.

Algorithm 1 Multi-GPU update algorithm using asyn-
chronous memory communication to hide latency.

for all steps do
Compute border cells (stream 1)
Compute remaining cells in field (stream 2)
Copy borders from GPU to host (stream 1)
Exchange borders with neighbours (CPU)
Copy new borders into GPU (stream 1)
Synchronize streams

end for

The main advantage of this algorithm for multiple GPUs
is that the communication can be performed while the

GPU is still working. The main computation time is taken
up computing the simulation for the main body of the field.
By computing the borders first and using asynchronous
memory copies, the communication can be performed
during this main computation time.

4.1 Algorithm A
This algorithm can be adapted for use with distributed

GPUs. Instead of exchanging borders with another thread
through the host memory, this data must be sent via MPI.
This algorithm still allows information to be commu-
nicated while the GPU is still computing, however the
latency of sending data across a network is much higher
than simple memory copies and we expect a drop in per-
formance. The adapted algorithm is shown in Algorithm 2.

Algorithm 2 GPU cluster update algorithm using asyn-
chronous memory communication and MPI.

for all steps do
Compute border cells (stream 1)
Compute remaining cells in field (stream 2)
Copy borders from GPU to host (stream 1)
Send data to each neighbour (MPI)
Wait for data from neighbours (MPI)
Copy new borders into GPU (stream 1)
Synchronize streams

end for

While this algorithm does work, we found that the
performance was unpredictable when the number of hosts
was increased. This performance data is presented in Sec-
tion 5. However, a simple modification to this algorithm
has provided faster and more reliable performance.

4.2 Algorithm B
This method uses a uni-directional communication

method to exchange borders between GPU nodes. Rather
than sending an receiving one border from each neighbour,
this method sends data to only one neighbour and only
receives data from the other. The amount of data sent
is remains the same (each send is twice the size of
Algorithm A) but the communication is simpler as the
nodes are not trying to send and receive data from the
same neighbour. The two methods of communication can
be seen in Figure 3. The steps of this algorithm can be
seen in Algorithm 3.

This method of uni-directional communication effec-
tively means that the field section each node is responsible
is continuously moving through the field. By shifting the
data each time-step to accommodate the incoming data, the
field is still correct and valid. This method provides more
reliable performance and better scalability as the number
of cluster nodes increases. These results are presented in
Section 5.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 171

Fig. 2: Layer decomposition of a three-dimensional field split across eight nodes in a GPU cluster.

Fig. 3: The Bi-directional border communication scheme
as used by Algorithm A.

Fig. 4: The Uni-directional border communication scheme
as used by Algorithm B.

5. Results and Discussion
To compare these different architectures and algorithms

we have measured their performance across a range of
system sizes and configurations and compared these to
single-GPU and single-host multi-GPU implementations.
First we investigate the performance on a GPU cluster
of the Bi-Directional (algorithm A) implementation. This
performance data can be seen in Figure 5.

As can be seen from the plot, this algorithm shows

Algorithm 3 GPU cluster update algorithm using asyn-
chronous memory communication and MPI.

for all steps do
Compute border cells (stream 1)
Compute remaining cells in field (stream 2)
Copy border from GPU to host (stream 1)
Send data to one neighbour (MPI)
Wait for data other neighbour (MPI)
Copy new border into GPU (stream 1)
Synchronize streams

end for

varying results and unreliable performance. The algorithm
also does not scale well and some systems actually take
longer with more nodes. However, this algorithm does
allow a larger number of nodes to be utilised (our cluster
is limited to 16) and thus allows larger systems to be
simulated. Finally we compare our uni-directional com-
munication algorithm (algorithm B) with single GPU data
(See Figure 6).

It can be clearly seen that this algorithm provides much
more reliable and scalable performance. While it does not
quite reach almost linear speed-up attained by the single-
host algorithm, it does give a consistent performance
improvement and can be scaled to many more GPUs.
Considering the increased latency due to network com-
munication, this algorithm provides an efficient method of
decomposing a finite-differencing equation across a GPU
cluster.

Another point of importance is the maximum sys-
tem size each architecture is able to support. Finite-
differencing systems have a somewhat limited maximum
system size due to the relatively small amount of device
memory available on GPUs. The most GPUs that the field
can be split between, the more device memory available
and the larger the maximum system size is. Table 1 shows

172 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 5: Comparison of single GPU data and 2, 4, 8 and 16 GTX470s on a distributed cluster using the bi-directional
update algorithm (A). Results shown on a linear scale (left) and ln-ln scale (right).

the maximum system size each test architecture is able to
compute.

Table 1: Maximum system size that can be simulated on
each machine configuration.

Architecture Max System Size
GTX470 122882

GTX480 122882

GTX470x2 163842

GTX480x2 184322

GTX470x4 245762

GTX480x4 266242

GTX470x8 327682

GTX470x16 471042

We have also investigated how these update algorithms
perform for three-dimensional systems. The single-host
algorithm provides the almost linear speedup as seen
previously in the two-dimensional version. However, the
GPU cluster algorithms are somewhat disappointing. The
bi-directional communication algorithm showed the same
unreliable results as experienced in two-dimensions but
did provide a small speedup over a single GPU.

The uni-directional algorithm close to a 2x speedup over
a single GPU with two nodes, however this performance
gain does not scale. Simulations decomposed over 4, 8
and 16 nodes showing no further performance gain (and in
some cases a slight performance loss). In three-dimensions
the communication time outweighs the computational gain
of more processing nodes.

The only real advantage decomposing a simulation over
more cluster nodes is the maximum system size that can be
computed. The single GPU (GTX480) implementation was

limited to 4483, four GPUs on a single host was capable
of simulating a system of size 8963 while 16 cluster nodes
were capable of computing up to a system size of 12803.

6. Summary and Conclusions
We have reported on geometric domain decomposition

results of a finite difference application problem (the
Cahn-Hilliard partial differential equation) on a cluster of
NVIDIA GPU-accelerated Intel CPUs. We have explored
combinations of multiple GPUs on a single node as well
as a cluster of single-GPU nodes. We have presented and
compared two algorithms for managing communication
between these nodes and compared their performance.

We have shown that the increased complexity involved
when communicating across a network interconnect can
cause unexpected and unreliable results as exhibited by
the bi-directional communication update algorithm. Even
minor changes such as the adoption of a uni-directional
communication method can have drastic impact on the
reliability and overall performance of the simulation.

The algorithm we have presented makes efficient use
of distributed GPU nodes showing good scalability and
improvements in both maximum system size and perfor-
mance for two-dimensional simulations. It also shows a
limited but tangible performance gain in three-dimensions
but more importantly allows larger simulated systems to be
computed than would be otherwise feasible in the memory
of a single CPU/GPU combination.

GP-GPU computing has already offered a new lease of
life to data-parallel computing as an accelerator for indi-
vidual CPUs. We anticipate it will now continue to offer
good means of accelerating cluster systems at the small
to medium commodity priced range using the “gamer”

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 173

Fig. 6: Comparison of single GPU data and 2, 4, 8 and 16 GTX470s on a distributed cluster using the uni-directional
update algorithm (B). Results shown on a linear scale (left) and ln-ln scale (right).

grade GPUs we have discussed here as well as blade grade
systems used in supercomputers.

Acknowledgments
Thanks to A.Leist for valuable assistance with config-

uring MPI.

References
[1] H. Meuer, E. Strohmaier, H. Simon, and J. Dongarra, “36th list

of top 500 supercomputer sites,” www.top500.org/lists/2010/11/
press-release, November 2010.

[2] J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK Bench-
mark: past, present and future,” Concurrency and Computation:
Practice and Experience, vol. 15, no. 9, pp. 803–820, 2003.

[3] D. Playne and K. Hawick, “Hierarchical and Multi-level Schemes
for Finite Difference Methods on GPUs,” in Proc. CCGrid 2010,
Melbourne, Australia, no. CSTN-099, May 2010.

[4] D. P. Playne and K. A. Hawick, “Comparison of GPU Architectures
for Asynchronous Communication with Finite-Differencing Appli-
cations,” Massey University, Tech. Rep. CSTN-111, 2010, submit-
ted to: Concurrency and Computation: Practice and Experience.

[5] A. Mitchell and D. Griffiths, The Finite Difference Method in
Partial Differential Equations. Wiley, 1980, no. ISBN 0-471-
27641-3.

[6] B. Alessandrini and V. Raganelli, “The propagation of acoustic and
elastic waves in an heterogeneous discrete medium,” Eur.J.Mech.,
A/ Solids, vol. 11, no. 4, pp. 519–538, 1992.

[7] R. F. Barrett, P. C. Roth, and S. W. Poole, “Finite difference stencils
implemented using chapel,” Oak Ridge National Laboratory, Tech.
Rep. ORNL Technical Report TM-2007/122, 2007.

[8] P. Micikevicius, “3D finite difference computation on GPUs using
CUDA,” in Proceedings of 2nd Workshop on General Purpose
Processing on Graphics Processing Units, no. ISBN:978-1-60558-
517-8, 2009.

[9] D. Egloff, “High Performance Finite Difference PDE Solvers on
GPUs,” QuantAlea Gmbh, Tech. Rep., 2010.

[10] S. E. Krakiwsky, L. E. Turner, and M. M. Okoniewski, “Accelera-
tion of Finite-Difference Time-Domain (FDTD) Using Graphics
Processor Units (GPU),” IEEE MIT-S Digest, vol. WEIF-2, pp.
1033–1036, 2004.

[11] S. Zainud-Deen, E. El-Deen, M. Ibrahim, K. Awadalla, and
A. Botros, “Electromagnetic Scattering Using GPU-Based Finite
Difference Frequency Domain Method,” Prog. in Electromagnetics
Res. B, vol. 16, pp. 351–369, 2009.

[12] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface. MIT Press,
1994, ISBN 0-262-57104-8.

[13] W. Gropp, E. Lusk, N. Doss, and A. Sjkellum, A High-Performance,
Portable Implementation of the MPI Message Passing Interface
Standard. Argonne National Laboratories, 1996.

[14] CUDA™ 3.1 Programming Guide, NVIDIA® Corporation,
2010, last accessed August 2010. [Online]. Available: http:
//www.nvidia.com/

[15] W.-M. Hwu, C. Rodrigues, S. Ryoo, and J. Stratton, “Compute
Unified Device Architecture Application Suitability,” Computing
in Science and Engineering, vol. 11, pp. 16–26, 2009.

[16] A. Leist, D. Playne, and K. Hawick, “Exploiting Graphical Process-
ing Units for Data-Parallel Scientific Applications,” Concurrency
and Computation: Practice and Experience, vol. 21, pp. 2400–
2437, December 2009, CSTN-065.

[17] K. S. Perumalla and B. G. Aaby, “Data parallel execution chal-
lenges and runtime performance of agent simulations on gpus,”
in SpringSim ’08: Proceedings of the 2008 Spring simulation
multiconference. New York, NY, USA: ACM, 2008, pp. 116–123.

[18] J. W. Cahn and J. E. Hilliard, “Free Energy of a Nonuniform
System. I. Interfacial Free Energy,” The Journal of Chemical
Physics, vol. 28, no. 2, pp. 258–267, 1958.

[19] K. A. Hawick and D. P. Playne, “Modelling and visualizing
the Cahn-Hilliard-Cook equation,” in Proceedings of 2008 Inter-
national Conference on Modeling, Simulation and Visualization
Methods (MSV’08), Las Vegas, Nevada, July 2008.

[20] D. Playne and K. Hawick, “Data Parallel Three-Dimensional Cahn-
Hilliard Field Equation Simulation on GPUs with CUDA,” in
Proc. 2009 International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’09) Las Vegas,
USA., no. CSTN-073, 13-16 July 2009.

[21] PCI-SIG, “PCIe Express Base Specification 1.1,” http://www.pcisig.
com/specifications/pciexpress/base, November 2010.

[22] K. A. Hawick, “Domain Growth in Alloys,” 1991, Edinburgh
University, Ph.D. Thesis.

[23] D. A. Reed, L. M. Adams, and M. L. Patrick, “Stencils and prob-
lem partitionings: Their influence on the performance of multiple
processor systems,” IEEE Transactions on Computers C, vol. 36,
no. 7, pp. 845–858, jul 1987.

174 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

An Efficient Computational Approach for Solving a Class of
Nonlinear Integral Equations

K. Maleknejad and P. Torabi
School of Mathematics, Iran University of Science & Technology

Narmak, Tehran 16846 13114, Iran

Abstract— Most of the methods, which used to solve nonlin-
ear integral equations, transform the equation into a system
of nonlinear equations. It is cumbersome to solve these
systems, or the solution may be unreliable. In this paper, we
propose an iterative approach based on fixed point method
and Sinc quadrature, which has exponentially rate of conver-
gence, to solve Hammerstein integral equation. Convergence
of numerical scheme is proved by some theorems and some
numerical examples are given to show applicability and
accuracy of numerical method.

Keywords: Hammerstein integral equation; Fixed point method;
Sinc quadrature.

1. Introduction
Many problems arise in the mathematical physics, engi-

neering, biology, economics and so on lead to mathematical
models described by nonlinear integral equations. (cf. [1],
[2], [3]). For instance, the Hammerstein integral equations
appear in nonlinear physical phenomenons such as electro-
magnetic fluid dynamics, reformulation of boundary value
problems with a nonlinear boundary condition (see [4]). This
equation is as following

x(t) = g(t) +
∫ b

a

k(t, τ)H(τ, x(τ)dτ, (1)

for all t ∈ I = [a, b] which is a Fredholm-type inte-
gral equation. Many different methods have been used to
approximate a solution for these integral equations. For
example we can mention the following approaches. In [5], a
variational of Nystrom’s method is introduced. The classical
method of successive approximations used in [6]. Some
collocation-type methods developed in [7], [8]. An approach
based on single-term Walsh series proposed in [9]. In
[10] Hammerstein equation was solved using Walsh-Hybrid
functions. Some methods based on interpolations, Petrov-
Galerkin, combination of spline-collocation and Lagrange
interpolation, and Dabechies wavelets introduced in [11],
[12], [13], [14].

In the methods mentioned above, the integral equation
is transformed into a system of nonlinear algebraic equa-
tions which has to be solved with iterative methods. It is
cumbersome to solve these systems, or the solution may
be unreliable. To eliminate this problem, we try to prepare

a numerical scheme to approximate a solution for integral
equation (1) based on fixed point method and some quadra-
ture rules such as Sinc quadrature where it has exponential
rate of accuracy [15], [16]. This method has two advantages
that encourages us to use it. In one hand, there is not any
system of nonlinear equations with its difficulties. On the
other hand, this method is very simple to apply and to make
an algorithm.

The organization of this paper is as follows. First we
mention some necessary concepts such as contractive op-
erators and Sinc quadrature which we will use later. Then
we introduce our numerical technique, and discuss its con-
vergence. Finally, we present some numerical examples to
show efficiency and accuracy of numerical method.

2. Preliminaries
Let us introduce some necessary concepts and tools which

help us to frame our method. They can be found in numerical
analysis books such as [15]-[18].

2.1 Contractive operator in Banach spaces
Let V be a Banach space with the norm ‖.‖V and let K

be a subset of V . Consider an operator T : K → V defined
on K.

Definition 2.1 We say an operator T : K → V is
contractive with contractivity constant α ∈ [0, 1) if

‖T (u)− T (v)‖V ≤ α‖u− v‖V , ∀u, v ∈ K.

The operator T is called non-expansive if

‖T (u)− T (v)‖V ≤ ‖u− v‖V , ∀u, v ∈ K,

and Lipschitz continuous if there exists a constant L ≥ 0
such that

‖T (u)− T (v)‖V ≤ L‖u− v‖V , ∀u, v ∈ K.

The following theorem is known as Banach fixed point
theorem and play an important role to guarantee existence
and uniqueness of the solution of nonlinear equations.

Theorem 2.2 Assume that K is a nonempty closed
set in a Banach space V , and further, that T : K → K is a

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 175

contractive mapping with contractivity constant 0 ≤ α < 1.
Then the following results hold

(1) Existence and uniqueness: There exists a unique
u ∈ K such that

u = T (u).

(2) Convergence and error estimates of the iteration:
For any u0 ∈ K, the sequence {un} ⊂ K defined
by un+1 = T (un), n = 0, 1, ..., converges to u:

‖un − u‖V → 0, as n →∞.

For the error, the following bounds are valid

‖un − u‖V ≤ αn

1− α
‖u0 − u1‖V ,

‖un − u‖V ≤ α

1− α
‖un−1 − un‖V ,

‖un − u‖V ≤ α‖un−1 − u‖V .

(2)

Proof: [17]

This theorem is called by a variety of names in the
literature, with the contractive mapping theorem another
popular choice. It is also called Picard iteration in settings
related to differential equations.

2.2 Sinc quadrature
We introduce the cardinal function and some of its quadra-

ture properties. For this result sinc(x) definition is followed
by

sinc(x) =
{

sin(πx)
πx , x 6= 0

1, x = 0,

where has the following graph

t
K10 K5 0 5 10

K0.2

0.2

0.4

0.6

0.8

Fig. 1: Graph of Function sinc(x)

Now, for h > 0 and integer k, we define k’th Sinc function
with step size h by

S(k, h)(x) =
sin(π(x− kh)/h)

π(x− kh)/h
.

Let Dd = {z ∈ C : |Im(z)| < d} and t = φ(z) denote
a conformal map which maps the simply connected domain
D with boundary ∂D onto a strip region Dd such that

φ((a, b)) = (−∞,∞),

lim
t→a

φ(t) = −∞,

lim
t→b

φ(t) = ∞.

Now, in order to have the Sinc approximation on a finite in-
terval (a, b) conformal map is employed as φ(x) = ln(x−a

b−x).
This map carries the eye-shaped complex domain

{
z = x + iy :

∣∣∣∣arg(
z − a

b− z
)
∣∣∣∣ < d ≤ π

2

}
,

onto the infinite strip Dd = {µ = α + βi : |β| < d < π
2 },

and basis function on finite interval (a, b) are given by

S(k, h) ◦ φ(x) =
sin(π(φ(x)− kh)/h)

π(φ(x)− kh)/h
.

Now, we use the following sinc quadrature [16] formulas to
discrete an integral by
∫ b

a

f(z)dz = h

N∑

k=−N

f(zk)
φ′(zk)

+O(exp(− 2πdN

log(2πdN
β)

)) (3)

where zk = a+b ekh

1+ekh for k = −N, ..., N and h =
1
N log(πdN

β). We can see in equation (3) which this quadra-
ture rule has exponentially rate of convergence.

3. The proposed approach
We consider Hammerstein integral equation (1)

x(t) = g(t) +
∫ b

a

k(t, τ)H(τ, x(τ)dτ,

and assume that g ∈ C[a, b] and k ∈ L2[a, b]2. Now we
define operator T as following

(Tx)(t) = g(t) +
∫ b

a

k(t, τ)H(τ, x(τ)dτ. (4)

Obviously, the solution of equation (1) is the fixed point of
operator T . By choosing the initial function x0(t) ∈ C[a, b]
we can introduce the fixed point iteration

xn+1(t) = (Txn)(t)

= g(t) +
∫ b

a

k(t, τ)H(τ, xn(τ)dτ,
(5)

for all t ∈ [a, b] and n ≥ 0.
In the following theorem, we show that under proper

assumptions, T is a contractive operator and then it has a
unique fixed point. Consequently, the sequence {xn(t)}∞n=0

generated by iteration (5) converges to this unique fixed
point of T .

176 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Theorem 3.1 Consider the operator T introduced by
relation (4) and assume g ∈ C[a, b], k ∈ L2[a, b]2 i.e. there
exists a constant M > 0 where

(∫ b

a

k2(t, τ)dτ

) 1
2

≤ M < ∞.

Also H(τ, x) satisfies a uniform Lipschitz condition with
respect to its second argument

‖H(τ, x)−H(τ, y)‖ ≤ h‖x− y‖, (6)

For all τ ∈ [a, b] and x, y ∈ R.
Moreover, assume

Mh(b− a)
1
2 < 1. (7)

Then T transforms C[a, b] into itself and it is a contractive
operator on C[a, b].

Proof: Suppose x, y ∈ C[a, b], then for all t ∈ [a, b]
we derive the following inequality

|(Tx)(t)− (Ty)(t)|

= |
∫ b

a

k(t, τ) (H(τ, x(τ))−H(τ, y(τ))) dτ |

≤
(∫ b

a

k2(t, τ)dτ

) 1
2

‖H(τ, x)−H(τ, y)‖(b− a)
1
2

≤ Mh(b− a)
1
2 ‖x− y‖,

(8)

where Cauchy-Schwartz inequality and Lipschitz condition
(6) used in recent relation. From the above estimate we drive
the following inequality

‖Tx− Ty‖ ≤ Mh(b− a)
1
2 ‖x− y‖

which yields the continuity of the operator T , so it trans-
forms C[a, b] into itself

T : C[a, b] → C[a, b].

Moreover, by assumption (7), recent inequality yields
operator T is contractive with contractivity constant
α = Mh(b− a)

1
2 < 1. ¤

According to the Banach fixed point theorem (2.2), the
operator T has a unique fixed point in C[a, b], and by
iteration method (5) the generated sequence {xn}∞n=0 is
converges to the fixed point x. The error bound is introduced
in theorem (2.2) i.e.

‖xn − x‖ ≤ αn

1− α
‖x0 − x1‖. (9)

Now, to start the iteration (5) we need an initial function.
Since g(t) ∈ C[a, b] we can choose it as the initial function
x0 ≡ g. In each iteration we have to calculate the integral
part of operator T . It can be cumbersome if we compute that
integral analytically, so we use a quadrature method such

as Sinc integration to evaluate integral part of operator T
numerically. By substituting Sinc quadrature (3) in equation
(5) we have

xn+1(t) = (Txn)(t)

= g(t) +
∫ b

a

k(t, τ)H(τ, xn(τ)dτ

≈ g(t) + h
N∑

k=−N

k(t, zk)H(zk, xn(zk))
φ′(zk)

,

(10)

where zk, h and φ(t) introduced in subsection (2.2).
Let x

(N)
n+1(t) be the approximation of xn+1(t) by Sinc

quadrature in (10) and x(t) be the exact fixed point of T .
Then we have the following error bound

‖x(N)
n+1 − x‖ ≤ ‖x(N)

n+1 − xn+1‖+ ‖xn+1 − x‖,
where the bound of these errors obtained in (3) and (9).

In iterative equation (10) in each iteration, xn+1 arises di-
rectly from xn without solving any large system of nonlinear
algebraic equations. It is a great advantage of the proposed
method. In the next section accuracy and efficiency of the
method have been showed by some numerical examples.

4. Experimental results
In order to test the utility of the proposed numerical

method, we give the following examples. In all examples
we choose the tolerance ε = 10−7 to stop the iterations,
i.e. fixed point iterations stop when ‖xn − xn−1‖ < ε. All
routines have been written in Fortran 90.

Example 4.1 Consider the following Hammerstein
integral equation

x(t) = et − t sin(t) +
∫ 1

0

e−2τ sin(t)x2(τ)dτ, 0 ≤ t ≤ 1.

The exact solution of this equation is xexact = et. We solve
it by our proposed method. Table (1) shows maximum error
and number of iterations for some different N . Exact and
approximation solutions based on Sinc quadrature rule with
N = 20 and N = 50 is shown in Figure (2).

Table 1: Numerical Results for Example 4.1
N ‖ e ‖∞ IT
20 7.978E − 7 25
50 4.129E − 7 25
100 1.858E − 7 25

Example 4.2 Consider the following boundary value prob-
lem

x′′(t)− ex(t) = 0, 0 ≤ t ≤ 1,

x(0) = x(1) = 0, (11)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 177

N=20 N=50 Exact Solution

t
0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Fig. 2: Approximation and Exact Solutions using Sinc
Quadrature with N = 20 and N = 50 for Hammerstein
Integral Equation Solved in Example 4.1

which is of great interest in hydrodynamics [19]. This
problem has the unique solution

xexact(t) = −ln(2) + ln(λ(t))

where
λ(t) = (

c

cos(1
2c(t− 1

2))
)2.

Here, c is the root of the equation

(
c

cos(c
4)

)2 = 2.

problem (11) can be reformulated as the integral equation

x(t) =
∫ 1

0

k(t, τ)ex(τ)dτ, 0 ≤ t ≤ 1,

where

k(t, τ) =

{
−τ(1− t), τ ≤ t,

−t(1− τ), t ≤ τ,

Table (2) shows maximum error and number of iterations for
some different N . Exact and approximation solutions based
on Sinc quadrature rule with N = 20 and N = 50 is shown
in Figure (3).

Table 2: Numerical Results for Example 4.2
N ‖ e ‖∞ IT
20 2.051E − 5 6
50 3.370E − 6 7
100 9.182E − 7 7

Example 4.3 In this example we consider the mathematical

Fig. 3: Approximation and Exact Solutions using Sinc
Quadrature with N = 20 and N = 50 for Hammerstein
Integral Equation Solved in Example 4.2

model for an adiabatic tubular chemical reactor discussed
(see [20]), which in the case of steady state solutions, can
be stated as the ordinary differential equation

x′′(t)− λx′(t) + F (λ, µ, β, x(t)) = 0, 0 ≤ t ≤ 1,

with boundary conditions

x′(0) = λx(0), x′(1) = 0,

where
F (λ, µ, β, x(t)) = λµ(β − x(t))ex(t).

The problem can be converted into a Hammerstein integral
equation of the form [20]

x(t) =
∫ 1

0

k(t, τ)H(τ, x(τ))dτ, 0 ≤ t ≤ 1, (12)

where k(t, τ) is defined by

k(t, τ) =

{
1, τ ≤ t,

eλ(t−τ), t ≤ τ,

and
H(τ, x(τ)) = µ(β − x(t))ex(t).

The existence and uniqueness of the solution for this
Hammerstein integral equation with respect to the values of
parameters λ, µ and β is given in [20]. In [19] a composite
collocation method is used to solve the integral equation
(12) for the particular values of the parameters λ = 10,
µ = 0.02, and β = 3 which guarantee the existence and
uniqueness of the solution for this integral equation. We
solved it by proposed method for N = 100 with obtained
maximum error ‖ e ‖∞= 1.118E − 8 after 4 iterations.
Table (3) shows a comparison between the numerical results
in some points of the interval [0, 1] obtained by proposed

178 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Table 3: Numerical Results for Example 4.3
t composite collocation proposed method
0.0 0.0060483739 0.0060533930
0.2 0.0181929364 0.0181980300
0.4 0.0304246702 0.0304298400
0.6 0.0426691183 0.0426743000
0.8 0.0543716533 0.0543762800
1.0 0.0614587374 0.0614589000

IT
1 2 3 4

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Fig. 4: Maximum Error Related to Each Iteration of Fixed
Point Method in Example 4.3

method and the composite collocation method in [19].

Example 4.4 The exact solution of following Hammerstein
integral equation is xexact = sin(t):

x(t) =
1
2

sin(t)− 1
4

cos(t) +
1
4

cos(t− 2)

+
∫ 1

0

cos(t− τ)x(τ)dτ, 0 ≤ t ≤ 1.

By applying the proposed method we approximate the
solution of this equation. Table (4) shows maximum error
and number of iterations for some different N . Exact and
approximation solutions based on Sinc quadrature rule with
N = 20 and N = 50 is shown in Figure (5).

Table 4: Numerical Results for Example 4.4
N ‖ e ‖∞ IT
20 2.138E-3 164
50 3.440E-4 166
100 8.640E-5 171

N=20 N=50 Exact Solution

t
0 0.2 0.4 0.6 0.8 1.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 5: Approximation and Exact Solutions using Sinc
Quadrature with N = 20 and N = 50 for Hammerstein
Integral Equation Solved in Example 4.4

5. Conclusion
We use an iterative method based on fixed point technique

and quadrature rule to find the approximate solution of Ham-
merstein integral equation. Using this method, a sequence
of functions is obtained which is proved its convergence
to the exact solution. This method has two advantages that
encourages to use it. In one hand, there is not any system
of nonlinear equations with its difficulties. On the other
hand, this method is very simple to apply and to make an
algorithm. Numerical results are verified that the method
employed in the paper is valid. It is worthy to note that
this method can be used as a very accurate algorithm for
solving linear and nonlinear integro-differential equations
and functional integral equation arising in physics and other
fields of applied mathematics.

References
[1] D. O’Regan and M. Meehan, Existence theory for nonlinear integral

and integro-differential equations, Kluwer Academic, Dordrecht, 1998.
[2] R. P. Agarwal, D. O’Regan and P. J. Y. Wong, Positive Solutions

of Differential, Difference and Integral Equations, Kluwer Academic,
Dordrecht, 1999.

[3] T. A. Burton, Volterra Integral and Differential Equations, Academic
Press, New York, 1983.

[4] K. E. Atkinson, The numetical solution of integral equations of the
second kind, Cambridge University Press, Cambridge, 1997.

[5] L. J. Lardy, “A variation of NystromŠs method for Hammerstein
equations,” J. Integral Equations, vol. 3, No. 1, pp. 43–60, 1981.

[6] F. G. Tricomi, Integral Equations, Dover Publications, New York,
1985.

[7] K. Kumar and I. H. Sloan, “A new collocation-type method for
Hammerstein integral equations,” Math. Comp., vol. 48, No. 178, pp.
585-593, 1987.

[8] H. Brunner, “Implicitly linear collocation methods for nonlinear
Volterra equations,” Appl.Numer. Math., vol. 9, No.3–5, pp. 235-247,
1992.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 179

[9] B. Sepehrian and M. Razzaghi, “Solution of nonlinear Volttera-
Hammerstein integral equations via single-term Walsh series method,”
Mathematical Problems in engineering, vol. 5, pp. 547–554, 2005.

[10] Y. Ordokhani, “Solution of Gredholm-Hammerstein integral equations
with Walsh-Hybrid functions,” International Mathematical Forum,
vol. 4, No.20, pp. 969–976, 2009.

[11] K. Maleknejad, M. Karami and N. Aghazadeh, “Numerical Solution
of Hammerstein equations via an interpolation method,” Appl. Math.
and Comp., vol. 168, pp. 141–145 2005.

[12] K. Maleknejad and M. Rabbani, “Using the Petrov-Galerkin elements
for solving Hammerstein integral equations,” Appl. Math. and Comp.,
vol. 172, pp. 831–845 2006.

[13] K. Maleknejad and H. Derili, “Numerical solution of Hammerstein
integral equations by using combination of spline-collocation method
and Lagrange interpolation,” Appl. Math. and Comp., vol. 190, pp.
1557–1562 2007.

[14] K. Maleknejad and H. Derili, “The collocation method for Ham-
merstein equations by Daubechies wavelets,” Appl. Math. and Comp.,
vol. 172, pp. 846–864, 2006.

[15] F. Stenger, Numerical methods based on sinc and analytic functions,
Springer-Verlag, New York, 1993.

[16] M. Muhammad and M. Mori, “Double exponential formulas for nu-
merical indefinite integration,” Journal of Computational and Applied
Mathematics, vol. 161, pp. 431–448, 2003.

[17] K. E. Atkinson and H. Weimin, Theoretical numerical analysis, A
Functional Analysis Framework, 2nd ed., Springer-Verlag, 2000.

[18] J. Stoer and R. Bulirsch, Introduction to numerical analysis, 3rd ed.,
New York: Springer-Verlag, 2002.

[19] H. R. Marzban, H. R. Tabrizidooz and M. Razzaghi, “A composite
collocation method for the nonlinear mixed VolterraŰFredholmŰHam-
merstein integral equations,” Commun Nonlinear Sci Numer Simulat,
vol. 16, pp. 1186–1194, 2011.

[20] N. Madbouly, “Solutions of Hammerstein integral equations arising
from chemical reactor theory,” Ph.D. thesis, University of Strathclyde,
1996.

180 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Enumerating Order 7 de Bruijn Sequences

Gregory L. Mayhew

Adjunct Professor of Electrical Engineering
Department of Electrical and Systems Engineering

Washington University St. Louis
One Brookings Drive, Urbauer 211

St. Louis, MO 63130-1127

Abstract—Order n de Bruijn sequences are the period 2n
binary sequences from n-stage feedback shift registers. The
de Bruijn sequences have randomness properties that are
useful in data link security. Many de Bruijn sequences have
nearly ideal two-level autocorrelation properties necessary
for signal acquisition. The nonlinear generators of de Bruijn
sequences produce forward error correction codes which
achieve the maximum free distance as specified by Heller-
Griesmer bound. This paper provides new results on weight
class properties of de Bruijn sequences. These properties
were investigated using numerical algorithms with parallel
processing on a 64 node Evolocity II cluster 1, 2

.

TABLE OF CONTENTS
 1. INTRODUCTION
 2. WEIGHT CLASSES
 3. INVESTIGATIVE METHODOLOGY
 4. ORDER 7 DE BRUIJN DATA
 5. CONCLUSIONS

1. INTRODUCTION
Algebraically constructed binary sequences with random-
ness properties have many applications in logic synthesis,
coding theory, cryptography, and communications. The
order n de Bruijn sequences are the period 2n binary
sequences generated recursively using nonlinear n-stage
feedback shift registers. The de Bruijn sequences exhibit
the balance, run, and span-n randomness properties [1].
Also, the de Bruijn sequences have linear spans greater than
half the sequence length [2]. The de Bruijn sequences can
be cataloged by the Hamming weight of their generating
functions [3]. This paper presents new information on the
weight class distribution of order 7 de Bruijn sequences.

2. WEIGHT CLASSES
The de Bruijn sequences have generator functions of the
form xn ⊕ g(xn-1 ... x2 x1). The weight w is the number of

1 2011 Parallel and Distributed Processing Techniques and Applications
2 PDP 2628

logical ones (Hamming weight) in the 2n-1 entries in the truth
table g(xn-1 ... x2 x1). Truth tables producing the 2 n2 1-n −n2 1-n − de
Bruijn sequences have odd weights between the minimum
weight Z(n)-1 and the maximum weight 2n-1-Z*(n)+1,
inclusive [3]. Z(n) is the number of cycles from the pure
cycling register whose truth table g(xn-1 ... x2 x1) has all-
zeros. Making Z(n)-1 changes in the PCR truth table can
merge the cycles to form a de Bruijn sequence.

∑=

dall
nd

dnd
n

nZ
:

|

/2)(1)(φ

Z*(n) is number of cycles from the complementing cycling
register whose truth table g(xn-1 ... x2 x1) has all-ones.
Making Z*(n)-1 changes in the CCR truth table can merge
the cycles to form a de Bruijn sequence.

∑=

dodd
nd

dnd
n

nZ
:

|

/2)(
2
1)(* φ

φ(d) is the Euler totient function.

In order 7, there are 144,115,188,075,855,872 de Bruijn
sequences. They are distributed among the 19 weight
classes having odd weights between 19 and 55, inclusive.

3. INVESTIGATIVE METHODOLOGY
The number of candidate truth tables in each weight class is
the number of ways to put w-2 logical ones in 2n-1-2 entries
of truth table g(xn-1 ... x2 x1). Let C(h, r) denote binomial
coefficient. States zero and 2n-1-1 of g(xn-1 ... x2 x1) are
always a logical one, so the number of candidates for a
weight class is the binomial coefficient C(2n-1-2, w-2).
Table I shows the number of cases, which will be mitigated
by considering the impact of subcycles (short cycles).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 181

Table I - Cases in Order 7 Weight Classes

Weight
Class

Candidate Truth Tables
C(62,w-2)

19 739,632,519,584,070
21 4,282,083,008,118,300
23 18,412,956,934,908,690
25 59,678,358,445,158,600
27 147,405,545,359,541,742
29 279,692,573,246,309,972
31 409,894,288,378,212,890
33 465,428,353,255,261,088
35 409,894,288,378,212,890
37 279,692,573,246,309,972
39 147,405,545,359,541,742
41 59,678,358,445,158,600
43 18,412,956,934,908,690
45 4,282,083,008,118,300
47 739,632,519,584,070
49 93,052,749,919,920
51 8,308,281,242,850
53 508,271,323,092
55 20,286,591,270

Total 2,305,741,118,628,006,748

If an odd weight truth table and starting state are picked at
random, then the length of resulting sequence is modeled as
a uniform probability between n and 2n [6]. In order 7, only
1 in 16 truth tables produce a de Bruijn sequence.

Consider an invalid truth table candidate that generates three
subcycles with lengths 3, 5, and 2n-8. In this instance, odds

favor that a state belonging to the subcycle length 2n-8 will
be picked. Iteratively applying the feedback function will
build a sequence with length 2n-8. So odds favor construct-
ing a maximum length subcycle before ascertaining that the
chosen truth table for xn ⊕ g(xn-1 ... x2 x1) will not yield a de
Bruijn sequence. A better method is to discover the shortest
subcycles first and rapidly discard any invalid functions.

These improvements are analogous to primality testing of
integers in number theory. Highly composite integers are
generally easy to discover because their primes are usually
small. Truth tables yielding factored or “composite” de
Bruijn graphs with small subcycles can be identified as
easily as small prime factors are identified in integers.

The canonical forms of the length k subcycles are the cyclic
equivalency classes (CEC) in a Bounded Synchronization
Code [1]. The number of binary CECs is

∑∑

==

kd

k

kd

dk

d
k

k
d

k
kk

||

/ 212)(1),(µµβ
.

For each length k cycle, there exists some shift register
length m that is the shortest shift register which can produce
this particular length k cycle and guarantee each state has a
unique successor. This value m is the minimum span of the
length k cycle, called an {m,k} sequence [3].

The appropriate subcycle tests for the order n truth table
candidates are {m,k} sequences with m ≤ n. Table II lists
the lexographically least member of each CEC for k ≤ 5 and
gives conditions for the existence of these subcycles in an
odd weight feedback function g(x6 ... x2 x1) in order n = 7.

Table II - Length k ≤ 5 Cycles in Order n = 7 Functions
Cycle

length k
CEC based

Subcycle
Existence Test in
g(x6 x5 x4 x3 x2 x1)

2 01 g(21)=1, g(42)=1
3 001 g(9)=1, g(18)=0, g(36)=1
 011 g(27)=1, g(45)=0, g(54)=1

4 0011 g(12)=0, g(25)=1, g(38)=1, g(51)=0
 0001 g(4)=1, g(8)=1, g(17)=0, g(34)=0
 0111 g(29)=0, g(46)=0, g(55)=1, g(59)=1

5 00011 g(6)=1, g(12)=0, g(24)=1, g(35)=1, g(49)=1
 00111 g(14)=1, g(28)=1, g(39)=1, g(51)=0, g(57)=1
 00001 g(2)=1, g(4)=0, g(8)=0, g(16)=1, g(33)=0
 00101 g(10)=1, g(18)=0, g(20)=1, g(37)=0, g(41)=0
 01011 g(22)=0, g(26)=0, g(43)=1, g(45)=0, g(53)=1
 01111 g(30)=0, g(47)=1, g(55)=0, g(59)=0, g(61)=1

182 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

For each investigation of a particular weight class w, every
weight w-2 combinatorial pattern for g(xn-1 ... x2 x1) is built.
Each pattern is progressively examined for subcycles from
length two to length five. Once a subcycle is discovered, the
pattern is discarded and the next pattern is built. If a pattern
passes subcycle testing, then this pattern is used as a
feedback function to build a sequence. Whenever a starting
state reoccurs, the sequence length is measured. Sequences
are tallied if a period 2n de Bruijn sequence was produced.

4. ORDER 7 DE BRUIJN DATA
Table III incorporates the new data for weight classes 21,
45, and 47 with existing data on the weight class distribution
for order 7 de Bruijn sequences. The number of sequences
in each weight class is expressed concisely as a coefficient
with its symmetry group [4]. Each order 7 de Bruijn weight
class contains a symmetry group of 226 sequences.

Table III - Weight Class Data for
Order 7 de Bruijn Sequences

Weight
Class

de Bruijn
Sequences

Coefficient’s Prime
Decomposition

19 91,125 * 226 36 * 53
21 1,458,000 * 226 24 * 36 * 53

23 to 43 not known
45 3,041,872 * 226 24 * 41 * 4,637
47 476,300 * 226 22 * 52 * 11 * 433
49 52,240 * 226 24 * 5 * 653
51 3,773 * 226 73 * 11
53 160 * 226 25 * 5
55 3 * 226 3

The weight class 23 investigation is 37 percent complete.
At this time, the coefficient estimate is 10,576,243.

Unlike previous orders, in order 7 the number of sequences
in every weight class is not divisible by the number of
sequences in the maximum weight class.

The order 7 investigations were performed using a 64 node
Linux Networx Evolocity II cluster. Each node contained
dual Pentium Xeon processors operating at 2.4 GHz with
512 Megabyte L2 cache, 2 Gigabyte ECC PC2100 DDR
SRAM, and Red Hat Enterprise Linux 4 operating system.
The numerical algorithms were written in C programming
language. Weight class 47 required 67,241 CPU hours over
a one year period. Weight class 21 required 394,662 CPU
hours over two years. Similarly, weight class 45 required
403,209 CPU hours over another two years.

5. CONCLUSIONS
The coefficients’ prime decompositions do not have any
apparent relationships from number theory. Rather, dividing
the number of sequences in each weight class by the total
number of de Bruijn sequences yields the order n probability
mass function for the de Bruijn sequences per weight class.
The product of a Gaussian and a Beta distribution accurately
models the order n probability mass function of de Bruijn
sequences per weight class [5, 6].

ACKNOWLEDGEMENT
My special thanks to Ulysses Okawa for his insight on
several programming techniques.

REFERENCES
[1] S. W. Golomb, Shift Register Sequences, Aegean Park
 Press, Laguna Hills, CA 2nd Ed., 1982

[2] T. Etzion and A. Lempel, “On the distribution of de
 Bruijn sequences of given complexity”, IEEE Transactions
 Information Theory 30, 1984, pp. 611-614.

[3] H. Fredricksen, “A survey of full length nonlinear shift
 register cycle algorithms”, SIAM Review 24, 1982,
 pp. 195-229.

[4] E. R. Hauge and J. Mykkeltveit, “The analysis of de
 Bruijn sequences of non-extremal weight”, Discrete
 Mathematics, Vol. 189, 1998, pp. 133-147.

[5] G. L. Mayhew, “Probability Mass Functions for de
 Bruijn Weight Classes”, Proceedings IEEE Aerospace
 Conference, March 2006, Session 11, Track 4, pp. 1-12.

[6] G. L. Mayhew, “Cumulative Distribution Function for
 Order 7 de Bruijn Weight Classes”, Proceedings IEEE
 Aerospace Conf., March 2009, Session 8, Track 9, pp. 1-9.

BIOGRAPHY
Gregory Mayhew has been continuously involved in the
design, analysis, development, and operational testing of
secure, spread spectrum communication networks on a
variety of projects at Hughes Electronics and Boeing
Phantom Works. He is currently developing communication
architectures in network centric operations using MANET.
Gregory has a bachelor's degree in electronics from the
Massachusetts Institute of Technology, a master's degree in
digital communications from the University of Southern
California, and a doctorate in information theory from the
University of Southern California. Gregory is IEEE Senior
Member, Boeing Technical Fellow, and Adjunct Professor
of Electrical Engineering at Washington University St Louis.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 183

184 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

SESSION

GRID AND CLOUD COMPUTING

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 185

186 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

FTProfiler: A New Profiling Tool for GridFTP
Servers

Huong Luu1, Rajkumar Kettimuthu2,3, Marianne Winslett1
1 Department of Computer Science, University of Illinois at Urbana-Champaign, USA

2Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, USA
3Computation Institute, University of Chicago/Argonne National Laboratory, Chicago, USA

Abstract— GridFTP is a high-performance, secure, and

reliable data transfer protocol that is being widely used in data
transmission in Grid computing. A GridFTP server needs to
achieve high throughput as it sends and receives data to and from
multiple sources, each with its own configuration. Profiling tools
can potentially help GridFTP administrators gain insight into the
system’s activities and identify configuration tradeoffs as well as
potential bottlenecks. This paper presents a new profiling tool,
called FTProfiler, which is built upon standard system profiling
tools OProfile and Sar, to provide a more complete view of the
system and simplify the profiling process for new GridFTP
servers. FTProfiler calls OProfile and Sar, analyzes their
profiling results and generates a detailed report. Through a case
study, we show how FTProfiler can help administrators
understand the effects of system parameters such as the TCP
buffer size, block size, and parallel TCP streams on server
performance and load, thus simplifying the process of detecting
bottlenecks and tuning for performance.

Keywords – Profiling GridFTP, Profiling WAN data movement,
Profiling high-speed transfers

I. INTRODUCTION
GridFTP [1] extends the standard FTP [2] protocol to

provide a high-performance, secure, reliable data transfer
protocol optimized for high-bandwidth wide-area networks.
The Globus GridFTP implementation [3] has been widely
used for data transfer in the Grid community. It provides a
modular and extensible data transfer system architecture
suitable for wide area and high-performance environments.
To get the maximum performance from the GridFTP
server, a variety of parameters need to be tuned. Profiling
tools can potentially help GridFTP administrators gain
insight into the system’s activities, identify configuration
tradeoffs, and understand their impact on server load.

Currently two good profiling tools, OProfile [21] and
Sar [23], can provide information on different aspects of
the system behavior without imposing much overhead. In
this paper we present FTProfiler, which leverages OProfile
and Sar to provide a more complete view of the GridFTP
system and simplify the profiling process on new servers.
Through our case studies, we demonstrate the use of
FTProfiler to profile system, to identify the potential
bottleneck and to understand the effects of system
parameters on server behavior, including TCP buffer size,
I/O block-size, and the number of parallel streams or
otherwise called parallelism.

In the remainder of the paper, we provide background
on GridFTP in Section 2, discuss the design of FTProfiler

in Section 3 and present the profiling case studies in
Section 4. We describe related work in Section 5 and
summarize in Section 6.

II. GRIDFTP
FTP is a widely implemented and well-understood

IETF-standard protocol. It provides a well-defined
architecture for protocol extensions and supports dynamic
discovery of the extensions supported by a particular
implementation. Many extensions for FTP have been
defined through the IETF. The FTP protocol also separates
control and data channels, enabling third-party transfers,
that is, the transfer of data between two end hosts, mediated
by a third host. The GridFTP protocol is based on FTP and
thus also benefits from the FTP protocol advantages
mentioned above. In addition, it extends the FTP protocol
to provide a high-performance, secure, and reliable data
transfer protocol optimized for high-bandwidth wide-area
networks.

The following is a summary of key GridFTP features.
Third-party control of data transfer. To manage large

datasets for distributed communities, we must provide
authenticated third-party control of data transfers between
storage servers. A third-party operation allows a user or
application at one site to initiate, monitor and control a data
transfer operation between two other sites: the source and
destination for the data transfer.

Authentication, data integrity, and data confidentiality.
GridFTP supports Generic Security Services (GSS)-API
authentication of the control channel (RFC 2228) and data
channel (GridFTP extensions), and supports user-controlled
levels of data integrity and/or confidentiality. Data channel
authentication is of particular importance in third party
transfers, since the IP address of the host connecting for the
data channel will be different than that of the host
connected on the control channel, and there must be some
way to verify that it is the intended party.

Striped data transfer. Data may be striped or interleaved
across multiple servers, as in a parallel file system or DPSS
disk cache [19]. Thus, GridFTP defines protocol extensions
that support the transfer of data partitioned among multiple
servers.

Parallel data transfer. On wide-area links, using
multiple TCP streams in parallel between a single source

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 187

and destination can improve aggregate bandwidth relative
to that achieved by a single stream [17, 20]. GridFTP
supports such parallelism via FTP command extensions and
data channel extensions. A GridFTP implementation can
use long virtual round trip times to achieve fairness when
using parallelism or striping [18]. Note that striping and
parallelism may be used in tandem, i.e., users may have
multiple TCP streams open between each of the multiple
servers participating in a striped transfer.

Partial file transfer. Some applications can benefit from
transferring portions of files rather than complete files, such
as analyses that require access to subsets of massive files.
FTP allows transfer of the remainder of a file starting at a
specified offset. GridFTP supports requests for arbitrary
file regions.

Automatic negotiation of TCP buffer/window sizes.
Using optimal settings for TCP buffer/window sizes can
dramatically improve data transfer performance. However,
manually setting TCP buffer/window sizes is an error-prone
process, particularly for non-experts, and is often simply
not done. GridFTP extends the FTP command set and data
channel protocol to support both manual setting and
automatic negotiation of TCP buffer sizes for large files
and for large sets of small files.

Support for reliable and restartable data transfer.
Reliable transfer is important for many applications that
manage data. Fault recovery methods are needed to handle
failures such as transient network and server outages. The
FTP standard includes basic features for restarting failed
transfers, but these are not widely implemented. GridFTP
exploits these features and extends them to cover its new
data channel protocol.

The Globus implementation of GridFTP provides all
these key features along and is highly extensible. Its
modular architecture enables a standard GridFTP-compliant
client to access any storage system that implements its data
storage interface [5], including the HPSS archival storage
system [6], SRB [7], the PVFS parallel file system [8], the
GPFS parallel file system [9], and POSIX [10] file systems.
Its eXtensible I/O interface [11] allows GridFTP to target
high-performance wide-area communication protocols such
as UDT [12], FAST TCP [13], and RBUDP [14]. Globus
GridFTP is optimized to handle a variety of types of
datasets, from a single, huge file to datasets comprising lots
of small files [15, 16].

III. FTPROFILER OVERVIEW
In general, GridFTP server performance profiling

needs to be done in a way that minimizes interference with
the production jobs running on the server. Thus the steps of
preparation and generating reports are usually done on a
separate machine, rather than the server itself. For this

reason, FTProfiler runs on the client machine where the
transfer is initiated for a client-server transfer or a third
party transfer between servers. During execution,
FTProfiler first remotely accesses the server to start the
underlying tools, including OProfile and Sar, then runs the
test workload on the client machine. After finishing the run,
FTProfiler again accesses the server to turn off the running
profiling tools and post-process the results, which are then
sent back to the client machine. Based on the results
received, FTProfiler generates a report that covers the
essential information. The user has the option of viewing
additional information from the profiling result files. The
working scenario of FTProfiler is shown in Figure 1.

FTProfiler uses OProfile and Sar as underlying tools
because they provide different aspects of system profiling
with low overhead. OProfile uses the hardware
performance counters of the CPU to profile the entire
system. OProfile shows how time is spent in different parts
of the system, such as the kernel, kernel modules, interrupt
handlers, shared libraries and applications. On the other
hand, Sar is capable of profiling the memory usage,
including memory and swap space utilization and other
performance metrics for each processor. FTProfiler
processes the results from both tools to provide essential
information to the user, such as CPU utilization, peak and
average load.

Figure 1: Working scenario for FTProfiler

IV. CASE STUDY
The goal of our experiments was to perform a

performance study to see the effects of different parameters
to GridFTP performance. In this process, we demonstrate
the use of FTProfiler and other tools to detect the
bottleneck of the transfers. To this end, we used five
servers in multiple locations, to model both local and
distant data transfers. For the local case, the client and
server are nodes in the Breadboard cluster at Argonne
National Laboratory, each with 4GB of main memory,

188 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

approximately 300GB of storage per node, connected by a
Myri-10G 10Gbps network with a 1Gb/s network interface
card (NIC) on each machine.

For the distant case, we used dedicated GridFTP
servers at different TeraGrid sites, namely the servers Pople
at the Pittsburgh Supercomputing Center, Abe at the
National Center for Supercomputing Applications, and
Ranger at the Texas Advanced Computing Center. These
servers can utilize the TeraGrid backbone network (10 – 30
Gb/sec) to the fullest for a better transfer rate. However,
Pople uses 1 Gb/s NIC while Abe and Ranger have 10 Gb/s
NICs.

We had the privileges to adjust server configurations
on Breadboard nodes, but not elsewhere. Our experiments
tune the most common options for performance: TCP
buffer size, parallel TCP streams, and buffer size. We
transfer 16GB of data with files of size 800MB, 1GB, and
4GB.

A. TCP buffer size
The TCP buffer size option (-tcp-bs) specifies the size

of the TCP buffer to be used by the underlying FTP data
channels. This parameter has long been believed to be
critical to achieve good performance over the WAN. The
optimal value for the TCP buffer size is believed to be the
Bandwidth * Delay Product (BDP), which depends on the
available Bandwidth and Round Trip Time (RTT) between
two destinations. However, in most modern operating
systems, TCP buffers are automatically tuned which means
the buffer size is automatically adjusted based on the
changing network conditions. This raises the question: will
manually changing the TCP buffer size hurt or help, in the
presence of auto-tuning? We investigated this question
through a performance study of the effect of TCP buffer
size parameter on GridFTP transfers.

For the case where the RTT between the client and the
server is on the order of few milliseconds or less, the TCP
buffer size does not affect the transfer rate much, hence it
will not be the source of a bottleneck. Thus we tested the
effect of this parameter in the long distance case. We
transferred data between TeraGrid sites and the server on
the Breadboard cluster. We tested with different TCP buffer
sizes: the default option of GridFTP (which uses
autotuning), a manually calculated BDP value and fixed
values of 4MB, 8MB, 16MB and 32MB. The 4MB, 8MB,
16MB and 32MB values are recommended for the optimal
transfer rate among TeraGrid servers, and are actually used
by TeraGrid for this purpose. In all tests we have
conducted, parameters other than the one being tested are
set to the default values.

To calculate BDP, we used Iperf [24] to measure
bandwidth and ping to determine the RTT between sites.
To assess GridFTP servers’ performance, we measured the
transfer rate of each configuration multiple times,
eliminated any outliers, then calculated the average value.

The transfers were performed at different times of day to
take into account the effects of loads created by other users
in a shared environment like TeraGrid. Based on our
measurements, the BDP values are approximately 500KB
(Abe and BB), 2MB (Pople and Abe, Pople and BB), 3MB
(Ranger and Abe, Ranger and Pople) and 4.5MB (Ranger
and Pople).

One disadvantage of using BDP rather than other
options is that BDP needs to be calculated for every
connection that we want to improve, while auto-tuning and
fixed buffer sizes do not require that. Manually choosing
the TCP buffer size might worsen the performance because
too-large buffers possibly overload the receiver’s TCP
window and create congestion on the server. This is a
serious problem called the “buffer bloat” problem [28, 29],
discussed by Jim Gettys, in which excessively large buffers
in the network communication system eventually lead to
network congestion, destroy congestion avoidance in the
transport protocols and cause poor performance.

On the other hand, sometimes the TCP settings are too
small, thus limiting the server’s performance and under-
utilizing the network. Hence manual tuning is generally not
recommended over auto-tuning.

As shown in Figure 2, with auto-tuning, the choice of
TCP buffer size is not as important as it was in the past.
Among Teragrid servers, the difference between the best
and the worst transfer rates is about 10% except for the
Ranger to Pople case, where the default auto-tuning gives a
46% improvement compared to the worst buffer size,
16MB. The Breadboard server worked best with the auto-
tuning option and the performance quickly dropped when
TCP buffer size increased which might indicate the
bottleneck in TCP settings. Figure 2 also shows that the
transfer rates in different directions for the Ranger server
are not the same; in fact, the rate from Abe to Ranger is
double the reverse direction. This could mean that Ranger
has different network configurations for each direction.
Ranger seems to prioritize its configuration for incoming
traffic over outgoing.

Figure 2: Transfer rates (MB/s) with different TCP buffer size values

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 189

Variable: meaning Abe Pople Ranger Breadboard
net.core.rmem_max/wmem_max: Set max size of
TCP receive/transmit window.

16MB

2MB 32MB 128KB

net.core.rmem_default/wmem_default: Set
default size of TCP receive/transmit window.

112KB 256KB 64KB 122KB

net.ipv4.tcp_rmem: Set min, default, max receive
window.

4KB/ 85KB/ 16MB 4KB/ 85KB/ 16MB 4KB/ 85KB/ 32MB 4KB/ 85KB/ 4MB

net.ipv4.tcp_wmem: Set min, default, max
transmit window.

4KB/ 64KB/ 16MB 4KB/ 16KB/ 256KB 4KB/ 12MB/ 32MB 4KB/ 16KB/ 4MB

net.ipv4.tcp_mem: Set min, default, max
allocatable TCP buffer space.

1.5MB/ 2MB/ 3MB 48KB/ 64KB/ 96KB 768KB/ 1MB/ 32MB 367KB/489KB/734KB

net.core.netdev_max_backlog: Maximum
number of packets in the receiver’s queue.

250,000 2500 400,000 1000

Table 2: Servers' TCP settings

To explain the low performance of transfers between
Breadboard and Abe/Pople in Figure 2, we used FTProfiler
to gain more insight into this problem. The profiling result
for the Breadboard server, shown in the left half of Table 1,
suggested that the current TCP settings under-utilize the
server with a very low transfer rate to the physical I/O
device (server) as well as the network transfer rate. This
indicates that network setting could potentially be the
bottleneck in this case.

To understand the impact of TCP settings, we
examined the settings on each server; the main differences
between servers’ settings are listed in Table 2. As we can
see, the TCP settings in Breadboard are quite small and
hence, the transfer rate from/to Breadboard server is low
because of this limitation. It also explains why Breadboard
server performance decreased as we increased the TCP
buffer size, as shown in Figure 2.

We adjusted the settings of the Breadboard server to
improve its performance, using the sysctl command [25].
We changed the Breadboard server auto-tuning settings to
be the values suggested in TCP tuning manuals [22]. The
suggested values are very close to Abe’s except that
netdev_max_backlog becomes 30,000 instead of 250,000.
After changing the TCP settings, the transfer rates using
different buffer sizes all improved greatly, as much as five
times faster, as shown in Figure 3. Further, once the TCP
settings were set appropriately, the effect of the buffer size
is small. The Breadboard profiling result with new settings,
shown in the right half of Table 1, also confirmed this.

In conclusion, auto-tuning does a good job in
achieving good performance without having to manually
select a value for the TCP buffer size. However, we might
need to adjust other TCP settings to make sure that we can
fully take advantage of auto-tuning.

Figure 3: Transfer rate (MB/s) for different TCP buffer sizes, after

adjusting Breadboard's other TCP settings

B. Parallelism
This parameter specifies the number of TCP streams

running in parallel to be used in the transfer. It is one of the
most commonly tuned parameters to achieve good
performance because it improves the aggregate bandwidth
and makes better use of the available bandwidth. The
default value for parallelism is 1. In these tests, we auto-
tune the TCP buffer size and use the new settings for
Breadboard’s other TCP parameters, as described in the
previous section. Other parameters are set to default.

The experiment results are presented in Figure 4. In
general, using parallel streams improves the transfer rate
quite significantly, especially when the RTT between
servers is large. For Abe and Breadboard transfers whose
RTT is only 6.5 ms, increasing the number of parallel
streams does not help. It is interesting to observe that even
though Ranger does not have a good outgoing rate using
the TCP buffer size option, we can actually improve it
significantly with the parallelism option. And the transfer
from Abe to Pople requires further investigation, but our

 With old TCP settings With new TCP settings
Peak
load

Transfers to
I/O devices
per second

Network packets
received per
second

Network packets
transmitted per
second

Peak
load

Transfers to
I/O devices
per second

Network packets
received per
second

Network packets
transmitted per
second

Default 23.7% 4.85 11675 15529 34.9% 9.43 45372 61977
BDP 20.6% 2.11 5734 7664 20.4% 10.78 38332 52539
4MB 20.5% 2.87 7271 9673 28.2% 11.63 38725 53191
8MB 20.6% 3.40 8352 11083 34.5% 12.00 39021 53618
16MB 21.4% 3.99 9524 12635 34.5% 10.51 33798 46433
32MB 20.1% 4.49 10527 13947 34.0% 10.92 34483 47385

Table 1: GridFTP server profiling result using different TCP settings

190 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

privileges only allow in-depth investigation on Breadboard.

Figure 4: Throughput (MB/s) with 1-16 parallel TCP streams

For transfers from Breadboard to Pople, increasing
parallelism (P) significantly helped to improve the transfer
rate for small P, but this trend reversed for P=8. By looking
at the profiling result shown in Table 3, we see that P=4
improves total throughput without increasing kernel load.
So for this transfer, we could recommend to use P=4 to
maximize the server performance.

 P =1 P = 2 P = 4 P = 8 P = 16
Transfer rate
(MB/s)

45.86 58.36 59.06 47.01 58.33

Peak CPU
utilization (%)

22.2 39.1 41.7 38.7 36.4

Kernel load (%) 45.22 48.60 46.73 53.94 59.26
Table 3: Server profiling for Breadboard to Pople transfer case

C. Block size:
This parameter specifies the size of the buffer that the

underlying IO system uses when posting read requests to
the disk. This parameter gives the user more control, as
each underlying IO system that GridFTP uses has its own
optimal IO buffer size value. As this parameter is only
applicable to read requests, it affects only the data sender.
We must distinguish between two cases – sending from the
client or server – to make sure we adjust the right value.

When the client sends data to the server, we specify
the block size value using the –bs option in globus-url-copy
command. In the third party transfer case, in which a client
initiates the transfer between two servers or when the server
sends data to the client, we adjust the server’s configuration
by adding the block size option when starting the server.
The default value is 256KB. Other parameters are set to
default.

As shown in Figure 5, the experiments’ result shows
that the adjustment does not significantly improve the
performance. In fact the default value for block size
(256KB) performs slightly better overall than other values.

Intuitively, as long as the block size is big enough to
keep the rest of the system fed with data, it will not be the
bottleneck. We, therefore suspect that it might become the
bottleneck if there is more load, for example with 16
parallel streams. However, the impact of increasing the
block size is still small, for 16-way parallel transfers from a
Breadboard client to the Abe server.

Figure 5: Effects of adjusting block size

D. Putting everything together: How well do we do?
In general, there are two types of GridFTP transfer:

one that involves disk activity and another one that does
not, which is memory-to-memory transfer. The latter type
is usually used to identify if the performance bottleneck lies
in the network configuration or in disk I/O. In this section,
we first perform memory-to-memory transfers between
servers and then by comparing the memory-to-memory
transfer rate to the best disk-to-disk transfer rate, we find
out how efficiently we have utilized the network for disk
related transfer.

 Abe Breadboard Pople Ranger
Abe 110.9 113.9 552.95
Breadboard 111 105.98 111.33
Pople 115.94 84.3 115.32
Ranger 434.47 NA 111.78

Table 4: Memory to memory transfers between servers, in MB/s
As shown in Table 4, memory-to-memory transfers

from or to Breadboard and Pople were able to saturate the
network and reach close to the bandwidth limit (bounded
by 1 Gb/s NIC (approximately 125 MB/s)). Abe and
Ranger servers have 10 Gb/s NIC. That’s why the transfer
rates between Abe and Ranger are 550MB/s and 434MB/s.
Obviously, we were not able to saturate the network link in
this case. The throughput is only 35-45% of the available
capacity. It could be due to network bottlenecks or because
the end systems are not powerful enough to drive a 10Gb/s
network link. The transfer rate from Pople to Breadboard

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 191

was about two thirds of the NIC limit, which might indicate
bottlenecks in network configuration.

Next, we compared the best achievable disk-to-disk
transfer rate (using all performance-improving parameter
settings discussed so far) to the memory-to-memory
transfer rate, to identify the disk I/O overhead. Our
preliminary results in Table 5 indicated that we were not
using the network efficiently. FTProfiler can help us gain
insight into where the bottleneck might be and improve the
performance optimization.

Best disk to
disk transfer
rate (MB/s)

Memory to
memory
transfer rate

Percentage
utilization

Abe to BB 40.32 110.90 36%
Abe to Pople 56.76 113.90 50%
Abe to Ranger 75.13 552.95 14%
BB to Abe 62.25 111.00 56%
BB to Pople 59.53 105.98 56%
Pople to Abe 86.82 115.94 75%
Pople to BB 45.41 84.30 54%
Pople to Ranger 82.41 115.32 71%
Ranger to Abe 99.99 434.47 23%
Ranger to Pople 37.84 111.78 34%
Table 5: Percentage of network utilization for best disk to disk transfers

We first measured the GridFTP transfer rate from
Breadboard clients to the Breadboard server. We measured
the local disk-to-disk transfer because on the Breadboard
system we have exclusive access to the nodes used in the
test, so that the transfer rate is not affected by the load
created by other clients. The memory to memory transfer
rate was 112MB/s. However, the disk-to-disk transfer rate
between Breadboard nodes is only about 60MB/s. We also
measured the memory to disk and disk to memory transfer
rates, which were 50MB/s and 80MB/s, respectively.

We expected the transfer rate to be close to the rate
measured by a standard disk benchmark such as FIO [26]
or Bonnie [27]. We used Bonnie to measure Breadboard
nodes’ disk performance, focusing on block sequential IO.
However, the rate reported by Bonnie is 100MB/s and
91MB/s for output and input respectively, which is much
higher than the GridFTP disk IO performance.

To understand where the bottleneck might be, we
profiled both source and destination server for all transfer
cases between memory and disk. The results are shown in
Table 6. In this table, /mbcache refers to the filesystem
meta information block cache. /nfs is the file system
module, /sunrpc is the protocol for making remote
procedure calls. /tcp_cubic module provides the cubic
congestion control protocol and /tg3 module is the Ethernet
NIC driver.

We discovered several interesting patterns. First, /nfs
is heavier on the destination server with disk I/O because it
has to allocate disk blocks to write data to. /mbcache is disk
I/O related only; /sunrpc runs mainly on the source server
with disk-related transfer while /tcp_cubic only appears on

the source server, and /tg3 is needed in all cases. This
observation suggests that we should focus on improving
these related modules for disk transfer cases.

Table 6: Percentage of load on server for important modules

V. RELATED WORK
The work we present in this paper is similar to that of

George Kola et al. [4], who performed a full system
profiling and comparison between GridFTP and NeST
servers, the very commonly used data servers at that time.
Based on the profiling result, they discussed the
configuration tradeoffs of parallel streams and the block-
size parameter for server performance and server load.
Their experiments were carried out with GridFTP 2.4.3.
Since then, Globus Alliance has released several other
versions of GridFTP with many improvements and new
features. Our experiments are performed with Globus
Toolkit 5.0.0 and GridFTP server 3.19, and thus provide a
more current view of GridFTP.

VI. SUMMARY AND FUTURE WORK
We have developed FTProfiler, a profiling tool for

GridFTP. This tool was motivated by the need to
understand the effects of various system parameters in
performance tuning and detecting bottlenecks. We have
demonstrated the use of this tool using a variety of
GridFTP transfers both in the LAN and WAN settings. We
have shown the effect of tuning parameters such as TCP
buffer size, parallel streams and block size on the
performance of GridFTP.

Our performance study has shown that the auto-tuning
feature in modern operating systems is doing a good job in
adjusting the TCP buffer size automatically based on the
changing network conditions. However, to be effective,
auto-tuning requires good settings for other TCP
parameters. After changing the other TCP settings of the
Breadboard server, data transfer rates with auto-tuning
were as much as five times faster. We also found that using

 /mbcache /nfs /sunrpc /tcp_
cubic

/tg3

Mem-to-mem:
Log on source

0 0 0 0.148 2.403

Mem-to-mem:
Log on destination

0 0 0 0 3.389

Mem-to-disk:
Log on source

0 0 0 0.087 2.008

Mem-to-disk:
Log on destination

0.004 2.423 0.364 0 2.615

Disk-to-mem:
Log on source

0.005 0.428 1.048 0.014 2.341

Disk-to-mem:
Log on destination

0 0 0 0 2.943

Disk-to-disk:
Log on source

0.006 0.412 1.209 0.038 2.703

Disk-to-disk:
Log on destination

0.005 2.395 0.240 0 2.387

192 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

parallel streams helps to improve the transfer rate while
block size does not show a clear effect on the performance.

Further, we have compared the performance of disk-
to-disk transfers with memory-to-memory transfers and
identified some bottlenecks in the GridFTP system, using
the detailed analysis provided by the FTProfiler tool.

In future, we plan to extend our study to profile striped
servers and analyze the impact of small file optimizations
such as pipelining, parallel transfers, and on-the-fly tarring
of files. We also intend to do a detailed study of the pros
and cons of using TCP versus UDT in WAN settings, using
FTProfiler.

This work was supported in part by NSF grant CCF
0938064 and the Google Summer of Code program.

REFERENCES

1. Allcock, W. GridFTP: Protocol Extensions to FTP for
the Grid. Global Grid Forum GRD-R-R.020, 2003.

2. Postel, J. and Reynolds, J. File Transfer Protocol.
Internet Engineering Task Force, RFC 959, 1985.

3. W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C.
Dumitrescu, I. Raicu, and I. Foster, “The Globus
Striped GridFTP Framework and Server,” SC’05,
ACM Press, 2005

4. Kola, G., Kosar, T., Livny, M., "Profiling Grid Data
Transfer Protocols and Servers", In Proceedings of
10th European Conference on Parallel Processing
(Europar 2004)

5. Kettimuthu, R., Link, M., Bresnahan, J., Allcock, W.,
“Globus Data Storage Interface (DSI) - Enabling Easy
Access to Grid Datasets,” 1st DIALOGUE Workshop:
Applications-Driven Issues in Data Grids, Aug. 2005.

6. Watson, R.W. and Coyne, R.A. The Parallel I/O
Architecture of the High-Performance Storage System
(HPSS). IEEE MSS Symposium, 1995.

7. Baru, C., Moore, R., Rajasekar, A. and Wan, M., The
SDSC Storage Resource Broker. 8th Annual IBM
Centers for Advanced Studies Conference, Toronto,
Canada, 1998.

8. Carns, H., Ligon III, W.B., Ross, R.B., and Thakur,
R., "PVFS: A Parallel File System For Linux Clusters",
Proceedings of the 4th Annual Linux Showcase and
Conference, Atlanta, GA, October 2000

9. General Parallel File System (GPFS), 2004. www-
1.ibm.com/servers/eserver/clusters/software/gpfs.html.

10. POSIX 1003.1e draft specification
"http://www.suse.de/~agruen/acl/posix/posix_1003.1e-
990310.pdf"

11. Allcock, W., Bresnahan, J., Kettimuthu, R. and Link,
J., The Globus eXtensible Input/Output System (XIO):
A Protocol-Independent I/O System for the Grid. Joint
Workshop on High-Performance Grid Computing and
High-Level Parallel Programming Models held in
conjunction with International Parallel and Distributed
Processing Symposium, 2005.

12. Gu, Y. and Grossman, R.L., UDT: An Application
Level Transport Protocol for Grid Computing. Second
International Workshop on Protocols for Fast Long-
Distance Networks, 2003.

13. Jin, C., Wei, D.X. and Low, S.H., FAST TCP:
motivation, architecture, algorithms, performance.
IEEE Infocom, 2004.

14. He, E., Leigh, J., Yu, O. and DeFanti, T.A., Reliable
Blast UDP: Predictable High Performance Bulk Data
Transfer. IEEE Cluster Computing, 2002.

15. Bresnahan, J., Link, M., Kettimuthu, R., Fraser, D., and
Foster, I., "GridFTP Pipelining," in Teragrid 2007
Conference, Madison, WI, 2007.

16. Kettimuthu, R., Sim, A., Gunter, D. Allcock, W.,
Bremer, P., Bresnahan, J., Cherry, A., Childers, L.,
Dart, E., Foster, I., Harms, K., Hick, J., Lee, J., Link,
M., Long, J., Miller, K., Natarajan, V., Pascucci, V.,
Raffenetti, N., Ressman, D., Williams, D., Wilson, L.,
Winkler, L., "Lessons learned from moving Earth
System Grid data sets over a 20 Gbps widearea
network", 19th ACM International Symposium on
High Performance Distributed Computing (HPDC),
2010

17. Hacker, T., Athey, B. and Noble, B., The end-to-end
performance effects of parallel tcp sockets on a lossy
wide-area network.16th IEEECS /ACM International
Parallel and Distributed Processing Symposium, 2002.

18. Hacker, T.J., Noble, B.D. and Athey, B.D., Improving
Throughput and Maintaining Fairness using Parallel
TCP. IEEE InfoCom, 2004.

19. Johnston, W., Greiman, W., Hoo, G., Lee, J., Tierney,
B., Tull, C. and Olson, D., High-Speed Distributed
Data Handling for On-Line Instrumentation
Systems. ACM/IEEE SC97: High Performance
Networking and Computing, 1997

20. Qiu, L., Zhang, Y. and Keshav, S., On Individual and
Aggregate TCP Performance. 7th International
Conference on Network Protocols, 1999.

21. OProfile: http://oprofile.sourceforge.net/news/
22. Linux TCP Tuning:

http://fasterdata.es.net/fasterdata/host-tuning/linux/
23. Sar manual page: http://linux.die.net/man/1/sar
24. Iperf project: http://sourceforge.net/projects/iperf/
25. Sysctl manual page: http://linux.die.net/man/8/sysctl
26. FIO benchmark: http://linux.softpedia.com/get/

System/Filesystems/fio-7881.shtml
27. Bonnie benchmark: http://www.textuality.com/bonnie/
28. Buffer bloat wiki:

http://www.bufferbloat.net/projects/bloat
29. Gettys, J., “Buffer bloat: dark buffers in the Internet”,

talk at Bell Labs. April 3, 2011.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 193

A SLA-based Framework with Support for Meta-scheduling in
Advance for Grids

Javier Conejero1, Blanca Caminero1, and Carmen Carrión1

1Albacete Research Institute of Informatics(I3A)
University of Castilla–La Mancha. Campus Universitario, 02071, Albacete. Spain

Abstract— Quality of Service (QoS) is one of the most
important and active research topics within Grid technology.
But the emerging transformation from a product oriented
economy to a service oriented economy establishes a new
scenario where actual QoS mechanisms need to be enforced
and new QoS mechanisms needed. Service Level Agreements
(SLAs) are considered the cornerstone born to fulfill those
requirements and the key concept that boosts the Grid
economic exploitation. Therefore mechanisms to negotiate
and manage SLAs become necessary.

The aim of this paper is to address QoS within Grids
by proposing an architecture capable of providing a service
level agreement negotiation service and management for the
agreed terms.

Our proposal introduces two new layers on the top of
a Grid architecture with scheduling in advance feature,
responsible of the SLAs handling and management. These
layers consider the SLA standard proposed by the Open
Grid Forum (OGF). In addition, they can also handle meta-
scheduling mechanisms for non trivial execution parameters
(e.g. economical, energetic, etc.).

Resulting as a potential improvement over QoS that SLAs
in coordination with scheduling in advance can achieve
within Grids. It is also shown the flexibility of this archi-
tecture and how it can be easily adapted to work over
different Grid middlewares improving the interoperability of
heterogeneous Grids.

Keywords: Service Level Agreement, Quality of Service, Grid
Computing, WS-Agreement, Scheduling in advance.

1. Introduction
With the emerging interest on Cloud Computing and

the new paradigm that it has introduced into Distributed
Computing, QoS and pay–per–use models, the economy is
transforming from a product oriented economy to a service
oriented economy. This trend is boosting the economic
exploitation of Distributed Computing environments like
Grid Computing and High Performance Computing [1].
Therefore, new mechanisms are needed in order to evolve
and adapt to the new needs.

Grids, Clusters and their combinations have been redis-
covered with this new trend because of the business interest

on those technologies. Enterprises are interested on exploit-
ing the resources they own in order to get benefits. This
pushes research to go on this direction and Service Level
Agreements (SLAs) and their management are intended to
fulfill these needs [2].

The exploitation of these technologies is defined by en-
terprises and it can be economic, time scheduled or related
to other terms. So an agreement is needed between the two
parts involved: user and provider. Thus, the negotiation and
enforcement to fulfill the terms defined within a SLA are
directly related with the QoS the user expects to receive.

The SLA concept within Grid environments can be de-
fined as a contract between a user and a Grid service
provider in which participants expectations and obligations
are explicitly defined [3].

So, it can be said that SLAs represent a contract between
the user and the Grid Service Provider where the QoS
expected to be received from the Grid service provider and
the legal implications are explicitly exposed.

The scope of this paper is to improve the QoS within
Grids by proposing an architecture capable of providing a
framework to support Service Level Agreements, negotiation
and management of the agreed terms included on them.

The structure of this article is as follows: general con-
cepts about SLAs are described in Section 2. The main
problems in SLAs the proposed architecture is expecting to
solve are pointed out in Section 3. Section 4 presents the
architecture objective of this paper in detail. It also contains
three subsections, the first two for the new layers proposed:
SLA-Manager (4.1) and SLA-Backend (4.1); and the last
one describing the underlying technologies, background and
middleware (4.3). Related work is presented in Section 5.
Finally, Section 6 concludes the paper and describes the
guidelines for future work.

2. SLAs general concepts
The SLAs state of the art is mainly addressed by the WS-

Agreement specification proposed by the Open Grid Forum
(OGF) [4]. Previous work on this field was done by WSLA
[5] and SLAng [6] specifications, but they are nowadays
unmaintained. Due to enterprises behind the OGF interested
on SLAs, that participate on its specification, it is defined as
the most important these days; and consequently the actual
standard.

194 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 1: SLA structure

WS-Agreement has been widely adopted by most projects
where SLAs are on their roadmap [7], [8], [9], [10], [11],
[12] but due to its limitations, alternatives have been devel-
oped causing the contrary effect of the definition of standard.
Each project attempts to implant SLAs following the WS-
Agreement specification adapting it for their private pur-
poses. This causes, in some cases, incompatibility between
them.

WS-Agreement is a Web Service protocol developed
by GRAAP-WG from the OGF. It defines explicitly the
structure of the SLA, a web service protocol for the SLA
establishment between users and service providers, and the
templates to make service provider discovery easier. More-
over, it defines the constraints, life-cycle, monitoring and
runtime states for SLAs [4].

The structure defined by WS-Agreement for SLAs (Figure
1) [4] consists of four main blocks. The Name block only
contains the name of the agreement which is optional and it
is not the agreement identifier (just for human identification).
The Context block contains all agreement details related
to the context of the agreement (e.g. client id, provider
id, etc.). These details are mandatory, but the specification
lets the service provider extend them with new ones. The
Terms block contains all terms related to assurances and
commitments between user and service provider. The Service
Terms are usually known as service descriptors, because they
reference services or service terms properties (e.g. Number
of CPUs, Amount of RAM, etc.). The Guarantee Terms
specify the value or the QoS expected for the terms specified
on the service terms (e.g. 4 (CPUs), 2 (RAM Gb), etc.).
Finally, in the Creation Constraints block, the user can get
some information from the service provider in order to know
the limitations of the Service terms field. This block only
appears on the negotiation template.

Fig. 2: WS-Agreement negotiation protocol with extension

Finally, the negotiation protocol defined by the WS-
Agreement specification and updated by the WS-Agreement
extension [13] (Figure 2) shows how users and service
providers interact in order to negotiate an agreement de-
fined by an SLA. It specifies a negotiation protocol with
renegotiation support.

3. SLAs and QoS
The main issues to be tackled in the process of integration

of SLAs on a distributed environment, in order to provide
QoS guarantees, are mainly two: a) the extraction/choice of
the QoS properties provided by the contract and b) to adjust
the behaviour of the system according to them.

One of the main problems related to the first issue that
appears when trying to integrate SLAs on a distributed
environment are the temporal restrictions (e.g. start-time,
deadline, etc. of jobs) that can be defined on an agreement.
This problem is not tackled by the WS-Agreement specifica-
tion and it is supposed to be addressed by other mechanisms.

Nowadays, some distributed systems have reservation in
advance capability. This can solve the problem of temporal
restrictions but due to the fact that reservations are not
always possible, our proposal is going to be based on meta-
scheduling in advance in Grid environments.

Meta-scheduling in advance can be defined as the first
step of a reservation in advance process. In consequence,
only job execution time periods and resources are selected,
keeping track of them besides the resources status, but
without making any physical reservation [14].

QoS in terms of temporal restrictions has been actively
researched, mainly because metrics where known in advance
(e.g. start-time) or could be evaluated from a profiling pro-
cess (e.g. duration). And, as a consequence, job scheduling

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 195

based on these metrics can be highly optimized in reservation
or scheduling in advance algorithms.

Furthermore, the integration of SLAs in Grid environ-
ments can be useful due to all the information contained
on them. This information is obviated by most meta-
schedulers (e.g. Condor [15], UNICORE [16], gLite [17],
etc.) where only temporal metrics are used, preventing Grid
environments from exploiting this information and, as a
consequence, limiting the QoS reached.

But the use of other metrics, represented as terms on an
agreement, could be used to take decisions that result in
an improvement of QoS in terms of usage (e.g. number of
CPUs needed, amount of RAM requested, etc.) or in terms
of energy saving among others. Energy saving represents a
highly active research topic within GreenIT [18]. In other
words, these metrics could be used for a smarter job meta-
scheduling system, managed by specific provider objectives.

This can not be managed by actual schedulers but it
represents a very important source of information for the
meta-scheduling process. So, the adjustment of the behaviour
of the system according to them is needed in order to
improve the QoS, as cited on the second issue.

Our proposal is presented to tackle these two problems
by using both: a) a meta-scheduling in advance layer and
b) a high level term meta-scheduling layer; such as will be
detailed in next section.

4. Proposed Architecture
The following section shows the architecture proposed to

solve the problems highlighted in Section 3.
Studying in detail the problems related with the adoption

of SLAs in Grid Computing it can be thought that the
SLA management, and by consequence all WS-Agreement
specification, should be implemented into the middleware
of the Grid. This could be a solution if the middleware has
native support for reservation in advance or scheduling in
advance as shown in Section 3. This is not the case in
most Grid middlewares, so native support for SLAs and
their management is not available on them. Therefore we
propose to exploit the advantages given by the GridWay
meta-scheduler enhanced with Scheduling in Advance Layer
(SA-Layer) over Globus Toolkit 4 (GT4), which enables the
scheduling in advance capability.

Our proposal consists of two new layers: SLA-Manager
and SLA-Backend; solution which places on top of GT4
with the GridWay meta-scheduler and the SA-Layer (Figure
3) to handle SLAs on the Grid with scheduling in advance
capability.

This solution has been designed to isolate the problems
produced by the WS-Agreement specification and evolution
(SLA-Manager), and it also isolates the problem of how
to manage time limitations terms from others if we want
them to participate on the meta-scheduling process (SLA-
Backend).

Fig. 3: Proposed Architecture

Furthermore, this solution has been designed for a not in-
vasive implantation over the actual Grids and their structure
if based on GT4. In other words, working Grids will not need
to change anything from their actual configuration in order
to extend their functionalities with WS-Agreement, just set
the new layers in top of GT4. Service providers will be
able to do a stagger transition of their services because with
this proposal WS-Agreement will be working independently
from its implantation.

To take advantage of the functionalities and libraries
provided by the middleware, the SLA-Manager and SLA-
Backend layers should be implemented as Web Services.
This will make easier the security handling and, by defining
well known interfaces, the use of this service from other web
services (Figure 4).

Although the SA-Layer is external to GT4, the SLA-
Backend must be able to interact with it and take advantage
of it. GridWay is needed just to support SA-Layer require-
ments. The two layers proposed do not need interaction with

Fig. 4: Software design

196 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 5: Basic sequence diagram

it. If in some case, another meta-scheduler is desired to
be used in place of GridWay and SA-Layer, the isolation
is guaranteed and the only modification should be on the
interfaces (if needed).

The workflow of our proposed architecture is shown in
Figure 5. The user is who starts the negotiation process
(as specified in WS-Agreement) by requesting a template.
The user interacts with the SLA-Manager and performs the
sequence diagram specified in WS-Agreement as shown in
Figure 2. During this process the SLA-Manager interacts
with the SLA-Backend in order to decide if the request
done by the user is going to be accepted or rejected. If the
request is rejected, the SLA-Backend layer communicates
the decision to the SLA-Manager layer, which sends a reject
message to the user. On the contrary, if the request is
accepted, the SLA-Backend layer delegates the execution
of the job on the SA-Layer and sends an acknowledgement
message (ACK) with the corresponding endpoint reference
(EPR).

On the next subsections, the building blocks of the pro-
posed architecture will be described in detail.

4.1 SLA-Manager
The SLA-Manager layer has the mission of interacting

with the user, offering the mechanisms to negotiate an
agreement following the WS-Agreement specification.

It is designed to be implemented as a GT4 Web Service
(Figure 4) so it can take advantage of the Web Services
functionality (e.g. discovery, interfaces, etc.) and security.
Security is essential when negotiating an agreement (e.g.
trusted user?). So deploy the SLA-Manager as a GT4 Web
Service can ensure security due to the Globus Security
Infrastructure (GSI).

For this proposal, the SLA-Manager follows the WS-
Agreement specification, but it can be easily extended for
other purposes or extensions of the specification.

4.2 SLA-Backend
The SLA-Backend layer is defined as the intermediate

layer between the SLA-Manager and the middleware infras-
tructure. Its main mission is to decide what to do with the
requests performed by users.

These decisions are intended to be taken within this
layer, so intelligence must be implemented in order to meta-
schedule the incoming jobs.

This layer isolates the traditional scheduling decisions
made by the middleware scheduler, or in our architecture,
the SA-Layer meta-scheduler, which usually use time related
parameters to take decisions.

The SLA-Backend sets a new higher level meta-scheduler
that delegates time related parameters to be used on a lower
level meta-scheduler (SA-Layer in our proposal), and it is
thought to use any other (or more than one) metric/parameter
like energy consumption, economy or any other term defined
on a SLA.

So the SLA-Backend takes higher level decisions, letting
the lower layers decide what to do with the jobs in terms
of time-scheduling. This lets the service provider to have
more control over the whole infrastructure in terms of human
understandable metrics or parameters.

This module is also designed to be a GT4 Web Service
to ensure security and to make the interconnection with the
SLA-Manager easier (Figure 4).

4.3 SA-Layer and Middleware
Scheduling in advance has been chosen as the solution

for the temporary restriction imposed by the use of SLAs
in Grid environments. The reasons for this decision are
mainly two: some kind of ’in advance’ task is needed in
order to solve the temporary restrictions (but scheduling in
advance has been chosen instead of reservation in advance
because reservations are not always possible); negotiation
and renegotiation of SLAs can be extremely useful into
scheduling and rescheduling in advance due to its not
invasive reservation of resources. So, a middleware with this
capability will represent the principal pillar in our proposal.

On a first approach, Globus Toolkit [19] middleware
was chosen due to its “de facto” consideration. But its
lack of scheduling in advance capability made us consider

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 197

another approach: use a solution that could give scheduling
in advance capability to Globus Toolkit.

For our purpose, we are going to use the architecture
presented on [14], [20] as base/middleware. On these works
a layered architecture is proposed based on the use of Globus
Toolkit 4, GridWay and the Scheduling in Advance layer
(SA-Layer) innovation. This lets the system make the most
of scheduling in advance capability.

The SA-Layer [14], [20] is the cornerstone of it. Using
GridWay [21] functionalities like resource discovery and
monitoring, work submitting and execution monitorization
among others. The SA-Layer enables the scheduling in
advance capability.

Moreover, the fact of being an architecture that respects
the actual evolution of each module, isolating the tasks and
responsibilities, makes this architecture the perfect base for
our design.

On the contrary, this solution adds complexity to our
approach, but as seen in this section, this does not mean
a disadvantage.

This stack can be replaced by another one with scheduling
in advance capability but it is necessary that it respects
the interfaces and libraries defined on GT4 and SA-Layer
interfaces for a swap without problems. Although wrappers
could be designed in order to allow and facilitate this feature.

5. Related Work
Due to the importance of the topic exposed on this article,

many efforts have been done on SLAs. For example, on their
management [22], [23], QoS implications [24], semantic and
virtualization exploitation [25] and specially on its standard-
ization. The Open Grid Forum (OGF) proposes the use of
WS-Agreement (Web Services Agreement Specification) [4],
which is nowadays the most important and widely adopted.

Not only theoretical work has been done on this topic.
Many projects have been interested on introducing SLA
negotiation and management mechanisms on real Grids.
Some of them will be analysed on the next paragraphs,
focusing on their contribution to the topic.

AssessGrid (Advanced Risk Assessment and Management
for Trustable Grids) [7] is a project that produced a free
generic, configurable, trustable and interoperable software
for the risk assessment, their management and decision
support for Grid environments. It is freely available on the
AssessGrid project web [7].

This project relies on SLAs. They are one of the most
important aspects of this project, giving great importance to
its management and negotiation. Its implementation is WS-
Agreement based and developed for Globus Toolkit 4.

The AssessGrid project introduces a new innovation on
SLAs field. The concept of a third entity into negotiation
workflow: the broker. The user interaction with this entity
is not mandatory, because if it were, they would not be
able to talk about a WS-Agreement specification based

implementation. Moreover, it introduces new improvements
to it: provider selection based on the best negotiation results,
negotiation mediator (letting the broker distribute the incom-
ing tasks specified on a SLA through the available service
provider) and as a real negotiator (letting the broker negotiate
instead of the user in order to get the best agreement) [26].

On this project, the broker service is in charge of solving
the problem of job meta-scheduling and delegation. But as
seen before, its mission is oriented to risk assessment.

It is important to mention that the negotiation protocol
incorporated on this project respects the WS-Agreement
specification, but it contains some other techniques that
let them introduce the renegotiation concept and new ne-
gotiation workflows beyond the WS-Agreement negotiation
extension [27].

Another interesting project at present is SLA4D-Grid
(Service Level Agreements for D-Grid)[28], [9]. This project
is designing and realising a SLA layer for the D-Grid
(Germany’s National Grid).

This project is based on the WS-Agreement specification.
Furthermore, it is prepared to be easily extended for specific
business purposes. It is implemented for Globus Toolkit 4 but
designed for different middlewares (UNICORE [16], Globus
[19] and gLite [17]) and services present on D-Grid.

Moreover, it has already produced a module known as Ne-
gotiation Manager which can offer WS-Agreement function-
alities for Globus Toolkit 4 [29]. As expected, this project
experienced the same problem exposed on this article. They
solved it by using the ZIBARS module from AstroGrid-
D project [30]. By this way they can handle scheduled
jobs by delegating them to Reservation in Advance software
(Maui meta-scheduler). Please note that this project does not
support desktop Grids unlike our proposal.

WSAG4J (WS-AGreement for Java) [12] is a generic
WS-Agreement specification framework developed by the
Fraunhofer Institute (SCAI). It provides a quick and easy
environment for the development of WS-Agreement based
services. Moreover, it facilitates application and service
debugging before their deployment.

It ensures that all application and services developed using
this framework can be directly deployed into other environ-
ments if these respect the WS-Agreement specification.

Unlike AssessGrid and SLA4D-Grid projects, WSAG4J
is implemented to work as an Apache Tomcat service. So,
it does not let the user interact with a real Grid environment
and it constitutes just a development framework.

Other projects like: Brein [8] and SmartLM [11] among
others propose their own implementations of the WS-
Agreement specification, but most of them modify it for
their specific purposes that do not interfere with the basic
operation. Thus possibly compromising the interoperability
between Grids.

198 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

6. Conclusions and Future Work
This article presents a five layer architecture to empower

the use of SLAs in Grid environments and solve the prob-
lems of job scheduling with advance timing requirements.

Moreover, it shows an architecture managed by a policy
where SLA terms are on a higher level than execution
parameters. So, specific schedulers can coexist in order to
improve the QoS perceived by the user. In addition, new
algorithms for these new high level term scheduler can now
be designed and evaluated.

Furthermore, this proposal goes far away by not modifying
the middleware and isolating the responsibilities in layers
that can be easily adapted for private or business purposes.

This proposal pushes Grid environments to move on
a more flexible management way where time restrictions
not related parameters are involved in the job scheduling
process. This help business exploitation of Grid resources
by terms of economy and energy among others.

Some related work is analysed and results in a lack of a
generic proposal that can handle SLAs where the scheduling
in advance capability is available.

Future work steps are: implementation of the architecture
proposed on this this article on a real Grid, and the design
of tests to get empirical results regarding performance and
usability.

Acknowledgement
This work was supported by the Spanish MEC and MICINN,

as well as European Commission FEDER funds, under Grants
“CSD2006-00046”, “TIN2009-14475-C04” and through a FPI
scholarship asociated to “TIN2009-14475-C04-03” project. It was
also partly supported by JCCM under Grant “PII1C09-0101-9476”.

References
[1] D. Armstrong and K. Djemame, “Towards Quality of Service in the

Cloud,” in Proc. of the 25th UK Performance Engineering Workshop,
Leeds, UK., 2009.

[2] V. Stantchev and C. Schröpfer, “Negotiating and Enforcing QoS and
SLAs in Grid and Cloud Computing,” in Proc. of the 4th International
Conference on Advances in Grid and Pervasive Computing (GPC),
Geneva, Switzerland, 2009.

[3] J. Padgett, K. Djemame, and P. Dew, “Grid-Based SLA Management,”
in Proc. of the European Grid Conference (EGC’2005), Amsterdam,
The Netherlands, 2005.

[4] A. A. et al, “Web Services Agreement Specification
(WS-Agreement) GFD-R-P.107,” Tech. Rep., March 2007,
https://forge.gridforum.org/projects/graap-wg/.

[5] “WSLA: Web Service Level Agreements,” [Online]. Available:
http://www.research.ibm.com/wsla/, Date of last access: 29th January,
2011.

[6] D. D. Lamanna, J. Skene, and W. Emmerich, “SLAng: A Language
for Defining Service Level Agreements,” in Proc. of the International
Workshop of Future Trends of Distributed Computing Systems, Los
Alamitos, USA, 2003.

[7] “AssessGrid,” [Online]. Available: http://www.assessgrid.eu, Date of
last access: 24th January, 2011).

[8] EU-Brein - Bussiness Objective driven REliable and Intelligen grids
for real busiNess, [Online]. Available: http://www.eu-brein.com/, Date
of last access: 24th January, 2011.

[9] “D-Grid - SLA4D-Grid - Service Level Agreement für das D-Grid,”
[Online]. Available: http://www.d-grid-ggmbh.de/index.php?id=89,
Date of last access: 27th January, 2011.

[10] “SLA at SOI,” [Online]. Available: http://sla-at-soi.eu/, Date of last
access: 28th February, 2011.

[11] “SmartLM,” [Online]. Available: http://www.smartlm.eu, Date of last
access: 25th January, 2011.

[12] “WSAG4J - WS-Agreement framework for Java,” [Online]. Available:
http://packcs-e0.scai.fraunhofer.de/wsag4j/, Date of last access: 27th
January, 2011.

[13] O. W. et al, “WS-Agreement Negotiation Version 1.0,” Tech. Rep.,
January 2011.

[14] L. T. et al, “Network-aware meta-scheduling in advance with au-
tonomous self-tuning system,” Future Generation Computer Systems,
vol. 27, no. 5, pp. 486 – 497, 2011.

[15] “Condor Project: High Throughput Computing,” [Online]. Available:
http://www.cs.wisc.edu/condor/, Date of last access: 4th February,
2011.

[16] “UNICORE: Distributed Computing and Data Resources,” [Online].
Available: http://www.research.ibm.com/wsla/, Date of last access: 4th
February, 2011.

[17] “gLite: Lightweight Middleware for Grid Computing,” [Online].
Available: http://glite.cern.ch/, Date of last access: 4th February, 2011.

[18] G. Laszewski and L. Wang, “GreenIT Service Level
Agreements,” in Grids and Service-Oriented Architectures for Service
Level Agreements, P. Wieder, R. Yahyapour, and W. Ziegler,
Eds. Springer US, 2010, pp. 77–88. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4419-7320-7_8

[19] I. T. Foster, Globus Toolkit Version 4: Software for Service-Oriented
Systems., ser. Lecture Notes in Computer Science, H. Jin, D. A. Reed,
and W. Jiang, Eds. Springer, 2005, vol. 3779.

[20] L. T. et al, “Meta-Scheduling in Advance using Red-Black Trees
in Heterogeneous Grids,” in Proc. of the High Performance Grid
Computing Workshop (HPGC), hold jointly with the International
Parallel & Distributed Processing Symposium (IPDPS), Atlanta, USA,
2010.

[21] C. V. et al, “Federation of teragrid, egee and osg infrastructures
through a metascheduler,” Future Generation Computing Systems,
vol. 26, pp. 979–985, July 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2010.04.004

[22] J. P. et al, “Predictive Adaptation for Service Level Agreements on
the Grid,” International Journal of Simulation Systems, Science and
Technology, vol. 7, no. 2, pp. 29–42, March 2006.

[23] W. Theilmann and L. Baresi, “Multi-level SLAs for Harmonized
Management in the Future Internet,” Towards the Future Internet, pp.
193–202, 2009.

[24] I. B. et al, “Advanced QoS Methods for Grid Workflows Based on
Meta-Negotiations and SLA-Mappings,” in Proc. of the 3rd Workshop
on Work ows in Support of Large-Scale Science. In conjunction with
Supercomputing, Austin, USA, 2008.

[25] J. E. et al, “Exploiting semantics and virtualization for SLA-driven
resource allocation in service providers,” Concurrency and Compu-
tation: Practice and Experience, vol. 22, no. 5, pp. 541–572, April
2010.

[26] M. P. et al, “A Comparison of SLA Use in Six of the European
Commissions FP6 Projects,” Institute on Resource Management and
Scheduling, CoreGRID - Network of Excellence, Tech. Rep. TR-0129,
April 2008.

[27] W. Ziegler, P. Wieder, and D. Battré, “Extending WS-Agreement
for dynamic negotiation of Service Level Agreements,” Institute on
Resource Management and Scheduling, CoreGRID - Network of
Excellence, Tech. Rep. TR-0172, August 2008.

[28] “SLA4D-Grid Negotiation Manager,” [Online]. Available:
http://www.sla4d-grid.de/, Date of last access: 27th January,
2011.

[29] M. Raack, “Documentation of the SLA4D-Grid Negotiation
Manager (Globus),” Tech. Rep., July 2010, http://www.sla4d-
grid.de/sites/default/files/SLA4D-Grid_Negotiation-Manager.pdf.

[30] T. Röblitz, “Deliverable 5.6 -Resource Management for Grid-Jobs,”
Tech. Rep., May 2009.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 199

CORS - A Cost Optimized Resource Reservation Scheme for Grid

Rifat Shahriyar, Md. Mostofa Akbar, M. Sohel Rahman, Md. Faizul Bari and Shampa Shahriyar
Department of Computer Science and Engineering (CSE)

Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh

Abstract— The basic objective of grid computing is to
support resource sharing among individuals and institutions
within a networked infrastructure. Managing various re-
sources in highly dynamic grid environments is a complex
and challenging problem. Some approaches apply algo-
rithms for resource management to grid but fails to provide
any generalized solutions. Most of the approaches are based
on a simple architecture considering computer as the main
resource. But the real architecture of grid computing is a
complex one especially if we consider various resources of
a computer (e.g., processor, memory etc.) during resource
management. In grids, sometimes assurance is needed for
successful completion of jobs on shared resources. Such
guarantees can only be provided by reserving resources
in advance. So resource reservation is an integral part of
resource management system for grid. Moreover the cost
for providing resource as services will play a significant
role in near future when resource sharing will be popular
and inevitable. In this paper we provide a future reservation
supported and cost optimized novel resource management
system (CORS) for grid environment considering its real
complex architecture. We further conduct a detailed perfor-
mance evaluation with comparison on real workload traces
for grid.

Keywords: Grid Computing; Resource Reservation; Segment
Tree; Parallel Workloads Archive

1. Introduction
Grid systems have emerged as promising next-generation

computing platforms that enable the building of a wide range
of collaborative problem-solving environments in industry,
science and engineering [1]. The idea of grid computing was
initially motivated by processing power and storage intensive
applications. Its basic objective is to support resource shar-
ing among individuals and institutions within a networked
infrastructure. Resources that can be shared are processing
capacity, storage, communication networks and bandwidth,
data, software and licenses etc.

Managing various resources in highly dynamic grid en-
vironments is a complex and challenging problem. There
exist works for resource management in different areas of
computer science. Some approach uses data structures [2] [3]
[4] and algorithms [5] for resource management to apply in
grid but fails to provide any generalized solutions for grid
environment. Most of the approaches are based on a simple

architecture considering computer as the main resource in
their system. But the real architecture of grid computing is
a complex one if various resources of any computer are to be
taken into account during resource management. And indeed
as the use of grid as a computing environment increases
at a higher rate, these complex but real scenario must be
taken into account. In grids sometimes assurance is needed
for successful completion of jobs on shared resources. Such
guarantees can only be provided by reserving resources in
advance [6] [7]. So resource reservation is an integral part
of resource management system for grid. Moreover grids
are used as a voluntary service now a days. But with the
recent improvements in architecture and usage, situation is
predicated not be the same. Cost for providing resource as
services will play a significant role in near future when
resource sharing will be popular and inevitable. Clearly a
complete resource management system for grid computing
is required to support all the above mentioned features.
This gives the motivation of this work where the goal is to
provide a future reservation supported and cost optimized
novel resource management system for grid environment
considering its real complex architecture.

The main contribution of this work is a distributed,
future reservation supported and cost optimized resource
management system (CORS) for grid environment. Most of
the existing approaches are based on a simple architecture
considering computer as the main resource. But the real
architecture of grid computing is a complex one especially if
we consider various resources of a computer (e.g., processor,
memory etc.) during resource management. That means
various resources of a single computer can be shared by
many participators in grid. Our system does that which is
also one the contribution of this work. We perform a detailed
performance evaluation of our prototype and compare it with
an existing system using real workload traces. Superiority
of our scheme is established from the comparative analysis
presented on the experimental results on the workload traces.
The rest of the paper is organized as follows. Section 2 il-
lustrates our proposed resource management scheme and the
data structures used by this scheme. Section 3 contains the
experimental results along with comparative study against
the state of the art system. We briefly conclude in Section
4 describing the key contributions of this work followed by
some future research directions.

200 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

2. Proposed Resource Management
Scheme of CORS

We proposed a new resource management scheme for grid
computing environment considering the complex real life
grid architecture. In this section, a detailed description of
the system architecture of our resource management scheme
is presented with an illustrative example. The proposed data
structure is also described with example. We start with the
problem statement in the next subsection.

2.1 Optimization Problem for the Resource
Management Scheme

Grid applications can be broken down into a number of
jobs. It is the responsibility of the job broker to break down
the jobs of the applications. Each job of an application
requires some grid resources to perform their operations.
The participating computing nodes of grid usually provide
the required resources of any job at a particular cost. So
each of the resources of any computing nodes will have cost
associated with it.

Let there be n applications in the grid termed as
A1, A2 · · ·Ai · · ·An. An application Ai has a total of
CAi

jobs. Assume that the jobs of application Ai are
J1, J2 · · · Jj · · · JCAi

. The participating computing nodes of
the grids are N1, N2 · · ·Nk · · ·Nl and the resources pro-
vided by them are R1, R2 · · ·Rr · · ·Rm. We assume that
all the participating nodes will provide all the grid resources
according to availability. To make the problem description
simple, let us consider that the job Jj of the application
Ai requires W amount of the resource Rr. The available
amount of the resource Rr in the nodes N1, N2 · · ·Nl are
w1, w2 · · ·wl and the corresponding costs are c1, c2 · · · cl.
It is not always possible for a single computing node to
completely serve a resource request. In most of the cases,
a number of computing nodes jointly serve a resource
request. The serving amount from the nodes are assumed as
s1, s2 · · · sl. If a particular node Nσ does not serve the job
then the serving amount sσ = 0. Now the total cost to serve
a resource request is the sum of all individual computing
nodes’ service cost for their resource. So the total cost of
the request will be

∑l
k=1 cksk. The constraints need to be

satisfied are as follows:
1)
∑l
k=1 si = W , i.e., a particular job gets exactly W

amount of resource from the grid.
2)
∑l
k=1 wk > W , i.e., there is available resource in the

grid for a job.
Now the objective is to minimize the total cost

∑l
k=1 cksk to

serve a resource request for a job of an application. Besides
the objective of minimizing the cost it is also expected
to reduce the number of participating nodes to deliver
resource for a particular job. This will reduce the bottleneck
for remote communication to the participating nodes. This
additional objective can be formulated as follows:

minimize
∑l
k=1 f(sk) where

f(sk) =

{
1 if sk > 0
0 if sk = 0

Here f(sk) is a boolean function indicating the presence of
a node in serving a job.

2.2 Resource Management Scheme
The overall system architecture of our proposed resource

management scheme (CORS) is shown in Figure 1. The
components of the system, messages and their sequences
to run the system are described by the caption of the blocks
of Figure 1. Our proposed resource management scheme
consists of the following phases:

Start Phase: The resource management will be controlled
and coordinated by a set of computing nodes (computer)
termed as Principal Resource Manager (PRM). The PRMs
will be selected according to the grid administrators decision
based on the configuration of the participating nodes. The
PRM will be given a list of resources by the administrators
that can be provided by the participating nodes of the grid
environment. Each resource will be given a unique id named
ResourceId for grid environment.

Initialization Phase: When a node wants to participate
in the grid it will send a message named msg_init to any
one of the PRMs. Each PRM has a list of participating
computing nodes that will be synchronized amongst all the
PRM . The PRM will accept the node and add it to the
list. The node will be given a unique id named NodeId
that will help to identify it in the grid environment. Each
participating node will have a list of resources to provide
service to the grid environment. This list will be a subset
of the list maintained by the PRM . The given NodeId for
any node is the same as the index of the node in the list
maintained by PRM . Thus we can find the reference of
any node through any of the PRMs in constant time. Each
resource of a node will be given a ResourceId which is also
the same as the index of the resource in the node’s resource
list. Thus we can find the reference of any resource of a given
node in constant time. Each node can be considered as its
own resource manager (RM). Any participating computing
node can be selected as PRM .

Request Phase: Any application on the grid can be
broken down into a number of jobs. An application sends a
message named msg_app to job broker so that job broker
can break it down into a number of different jobs. The
jobs usually request resources from the grid. The request
will be initiated by the job broker. Job broker will forward
the request to any one of the PRMs so that the request
processing is distributed among the PRMs. The request
mainly contains resource identifier, starting time, and ending
time. The PRM will propagate the request to the all the
participating nodes. . Any single job can issue request for
multiple resources. Then the job broker can forward request

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 201

Fig. 1
ARCHITECTURE OF OUR PROPOSED SYSTEM CORS

for each resource to different PRM . So multiple PRMs
can process request for a single job.

Search Phase: PRM will forward the request to each
participating nodes by sending messages to the nodes. The
messages sent to the nodes from PRM are generally
named as msg_query. This is a parameterized message
and based on the parameter a node replies with specific
resource information, cost associated with a specific resource
and available amount of specific resource in a given time
frame. Some of the participating nodes may not provide
the searched resource and they will be out of the search
immediately. They will ignore the message. The nodes that
provide the searched resource will receive the message. For
each resource of each computing node, there will be an
appropriate data structure to hold the information of used and
available amount of resources in specific time frames. Then
queries and corresponding updates will be carried out by the
node in its own data structures. The data structure maintained
by each participating node will not be replicated or copied
to the PRM . The PRM will have only the reference of the
nodes in the list and through that reference it can virtually
have knowledge of the nodes’ data structure. In this way
multiple PRMs can have access to the most recent state
of all of the resources without any space overhead. This
is the main computation phase of our proposed resource

management scheme.
Reply Phase: After searching, the results will be returned

to the PRM by the nodes. Each request will contain a
request_time associated with it. PRM will wait for the
result for a specified threshold amount of time from the
request_time. Job broker will also wait for the replies from
PRMs for a specified threshold amount of time from the
request_time for the job that requires multiple resources.
The result contains the notification whether the specific
request can be served by this node or not. After getting the
search result from all the nodes PRM will have a list of
candidate nodes to serve the resource request. Now PRM
needs to select the set of nodes that minimizes the total
cost to serve the request. As we will show this problem
can be mapped to well known fractional knapsack problem.
The application of fractional knapsack problem in resource
management is a novel idea for grid which we introduce here
to guarantee cost minimization. Clearly the set of selected
nodes will ultimately serve the request.

Reservation Phase: Once PRM has the list of selected
nodes, it then sends a message named msg_update to each
of the selected node to reserve required resource and update
the data structure of the node. Upon receiving the message
the node tries to update its data structure. If the update is
successful then it will send a confirmation message named

202 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

msg_confirm to the PRM in reply. But sometimes up-
dating may fail due to unavailability of resource as follows.
The PRMs work in distributed manner. In the Search phase
only available resource is searched but no update is made.
So it may happen that another job acquires this specific
resource of the node through any other PRM . That is why
a confirmation ensures successful resource reservation.

For each resource of each computing node, there must be
an appropriate data structure to hold the information of used
and available amount of resources in specific time frames.
Each element of the data structure will represent the (starting
time, ending time, available amount) information for any
resource. We know that the tree data structures are very much
efficient for searching, inserting and deleting of elements.
The segment tree structure, introduced by Bentley [8], is
a balanced binary tree data structure that is used to store
segments or intervals. We can map reservation supported
resource management problem of our system to the segment
tree with a little modification. The s and t, with s < t, of
the segment tree V (s, t) can be mapped into the starting
time and ending time of a session where starting time <
ending time. We add a field (available resource amount of a
segment) to each leaf node. So each leaf node in the segment
tree will contain starting time, ending time and amount of
specific resource available (between the starting time and
ending time). Leaves of the segment tree contain all the
segments and the available resource amount. The internal
node of the tree contains only the interval of its child node.
The space usage of segment tree is O(nlogn) where n is the
total number of nodes and searching for a specific interval
requires O(logn+k) time, where k is the number of reported
segments. It does not depend on the number of intervals.

2.3 Fractional Knapsack Problem
In the fractional knapsack problem we are given a set I of

n items having weights w1, w2, . . . wn and costs c1, c2, . . . cn
respectively. We need to select items from I , with weight
limit K, such that the resulting cost (value) is maximum.
Most of the Knapsack variants are NP-Hard problems and
the greedy solution to these problem leads to suboptimal
or approximate solution but a greedy strategy does provide
optimal solutions to the fractional knapsack problem [9]. We
map the optimization problem for the resource management
scheme to fractional knapsack problem. A resource of a node
can be considered as an item and its associated cost can be
considered as value. We need to sort the resources of the
nodes by increasing cost per unit resources as we need to
minimize the total cost.

2.4 An Illustrative Example
Consider a grid environment where two Principal Re-

source Managers (PRM) are working named PRM1

and PRM2. The provided resource list is R =
{R1, R2, R3 . . . Rn}. The participating node list is N =

Fig. 2
OVERALL SYSTEM SCENARIO OF CORS

{N1, N2, N3 . . . Nn}. Figure 2 depicts the overall scenario
of the system. Here we can see the resource provided by
a specific node N1. For each resource of N1 there is a
segment tree to maintain the available amount of resources
in a specific time frame.

Fig. 3
NODE AND ITS DATA STRUCTURE

Let us consider that Application A1 contains three jobs
termed J1, J2 and J3. Now J1 requires 25 units of resource
R1 for the time frame of (25, 45). At this point J1 will send
the request to the PRMs. Recall that PRM have a synchro-
nized list of participating nodes. It will forward the query to
the participating nodes. Figure 3 depicts the scenario of the
nodes and corresponding resource R1. Here separate time
intervals and corresponding available amount of resource is
shown with the leaf nodes. As can be seen that Node N1, N2,
N3 and N4 are providing resource R1. The corresponding
data structure is also shown in the figure. Here the query
will be (R1, 25, 45). Assume that the query is passed to each
node data structure, the reply is listed in Table 1. After the
search is completed, PRM will receive the above candidate
list to serve the request for R1. Subsequently the nodes are
selected according to the fractional knapsack solution, as

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 203

Table 1
CANDIDATE NODES AND AVAILABLE AMOUNT

Node Amount Details Cost
N1 10 minimum amount of

time frame (20, 40) 4.0
and (40, ∞)

N2 5 amount of time
frame (20, 50) 4.25

N3 15 amount of time
frame (15, ∞) 3.75

N4 20 amount of time
frame (25, 60) 3.5

Table 2
SELECTED NODES FROM THE CANDIDATE LIST

Node Amount Cost
N4 20 20 × 3.5 = 70
N3 5 5 × 3.75 = 18.75

Minimum Total Cost 88.75

shown in Table 2. So an add request will be sent to N3 and
N4 and their corresponding segment tree will be updated as
shown in Figure 4. The updated resource usages are shown
in black shades. This concludes the resource reservation for
the job. The application will then start running according to
its starting time using these reserved resources. The details of
the algorithms related to our proposed resource management
scheme CORS and their complexity is not provided here due
to page limitation. Their details can be found here [10].

Fig. 4
NODE AND ITS DATA STRUCTURE

3. Experimental Results
In this section we present the experimental results of

our proposed system.Through experiments we study the
behaviour of our approach and evaluate its performance
based on some performance metrics and also compare the
performance of our approach to an existing system. A

simulator of the system is implemented using Java. The
simulation is run using a computer having Intel Pentium-
IV Dual Core 1.60GHz processor, 2 GB of memory and
Windows XP operating system. We need to implement
a new simulator because no existing simulator considers
the complex grid architecture. In the existing simulators
computer is considered as the only resource but in our
system we need to consider various hardware and software
of a computer as resources.

Node Selection Rules: The following rules are considered
for assigning priority in selecting the next node to serve the
request.

• Max-Res: This rule prioritizes the nodes that have
maximum available resources. In this way number of
connection establishment can be reduced.

• Min-Res: This rule prioritizes the nodes that have
minimum available resources. In this way number of
connection establishment can be increased.

• Min-Cost: This rule prioritizes the nodes that leads to
the minimization of total cost.

Measurement Metrics: The metrics considered for eval-
uation are TotalConnection and TotalCost. We have also
considered total memory consumption and running time.
TotalConnection: The term TotalConnection means the num-
ber of nodes required to completely serve a request. The
requesting node needs to connect to these nodes. That is
why we termed it as TotalConnection.
TotalCost: The term TotalCost means the total cost required
to completely serve a request. This is the summation of all
the individual cost of different nodes that serves the request.

Comparison with Sulistio’s Resource Management
Scheme on Real Workloads: We compare our system CORS
with an existing system for resource management in grid
computing. The work done by Sulistio et al. [11] is the most
appropriate to compare because it is the most recent work on
resource reservation for grid. This work provides a new data
structure for reservation using the Calendar Queue. There is
no cost based framework exists for resource reservation in
grid and this is also true for Sulistio’s system. So we need to
assume a default cost model. We developed Sulistio’s system
to minimize the TotalConnection by giving priority to the
next device to be selected according to the rule Max-Res
described before. It is guaranteed that Sulistio’s system’s
TotalConnection will be minimized. On the other hand in our
system we have been successful to achieve minimum cost
solution to serve a grid request at the cost of a very small
or no increase of TotalConnection from the minimum. Here
we present results using real workload data for grid. Parallel
Workloads Archive [12] contains an archive of information
regarding the workloads on parallel machines and grids. It
contains raw workload logs from various machines around
the world. We choose three workloads, namely DAS2-fs0,
LPC-EGEE and SDSC-BLUE. Details of the workloads
are available at [12]. The main reason behind choosing

204 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 5
TOTALCONNECTION REQUIRED FOR WORKLOAD DAS2FS0 USING

SULISTIO’S SYSTEM AND OUR PROPOSED SYSTEM CORS

Fig. 6
TOTALCONNECTION REQUIRED FOR WORKLOAD LPC-EGEE USING

SULISTIO’S SYSTEM AND OUR PROPOSED SYSTEM CORS

these three is that these workloads have been considered
by Sulistio in their simulation.

Evaluation with Respect to TotalCost and TotalConnec-
tion: We simulate our proposed system CORS and Sulistio’s
system using the above mentioned three workloads consid-
ering 50 sample applications.

In Figure 5 to Figure 7 we observe that the TotalConnec-
tion of Sulistio’s system and our proposed system are equal
for most of the applications. There are differences in Total-
Connection for a few applications [3 applications in Figure
5 and 4 applications in Figure 7]. Here difference occurs
for those applications whose jobs require huge amount of
resources compared to the other applications of the same grid
environment. We observe the presence of larger connection
in Figure 7 compared to the other figures. It is also observed
that in Figure 7 there are applications with various connec-
tion requirements. This justifies the high capacity of SDSC-
BLUE and its multipurpose use by high, medium and low
profile users in terms of resource requirement. In Figure 8 to
Figure 10 we observe that the TotalCost of Sulistio’s system
is much greater than our proposed system as we expected.

Analysis of the Result: TotalCost of our system is guar-
anteed to be minimum as we use fractional knapsack to

Fig. 7
TOTALCONNECTION REQUIRED FOR WORKLOAD SDSC-BLUE USING

SULISTIO’S SYSTEM AND OUR PROPOSED SYSTEM CORS

Fig. 8
TOTALCOST REQUIRED FOR WORKLOAD DAS2FS0 USING SULISTIO’S

SYSTEM AND OUR PROPOSED SYSTEM CORS

minimize the total cost. But the interesting point is the
margin of difference with the cost of Sulistio’s system. The
TotalCost of our proposed system is much less than Sulistio’s
system for all the workloads. TotalConnection of our system
will not be minimum because we consider minimizing the
TotalCost. But we tried to maintain TotalConnection as small
as possible so that the increasing TotalConnection does not
be a bottleneck. It is observed from the presented charts that
we achieve the goal to maintain the difference as minimum
as possible. For almost all the workloads TotalConnection for
Sulistio’s system and our proposed system are the same. This
is because the nodes that provide the resources in a grid en-
vironment are mostly of same configurations and the jobs of
the applications in a grid normally requires similar amount of
resources. Grid applications are normally broken down into
similar type of jobs by the job broker so that the application
gets fair share of the resources. The details of how the job
broker works is out of the scope of this research. However to
justify the TotalConnection scenarios we briefly review it. In
the grid environments most of the applications are similar
in nature. So the job broker usually breaks down all the
applications to same types of jobs where each job requires
similar amount of resources. In such cases TotalConnection

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 205

Fig. 9
TOTALCOST REQUIRED FOR WORKLOAD LPC-EGEE USING

SULISTIO’S SYSTEM AND OUR PROPOSED SYSTEM CORS

Fig. 10
TOTALCOST REQUIRED FOR WORKLOAD SDSC-BLUE USING

SULISTIO’S SYSTEM AND OUR PROPOSED SYSTEM CORS

for Sulistio’s system and our proposed system are the same.
Sometimes there are exceptions in the workloads where a
big sized application requiring huge amount of resource is
broken down into a single job. This might happen due to
the constraint that the application cannot to broken down
into small jobs. Now consider a scenario where a particular
node with the comparatively higher cost has the highest
available resource. According to our proposed algorithm
this particular node will not be chosen for consuming all
the resources. But the Sulistio’s algorithm will consume
this resource to maintain TotalConnection minimum. That
is why we observe substantial difference in TotalConnection
in several exceptional cases. But generally it is observed
that this difference is negligible. The memory consumption
and running time of our proposed system CORS is also
better than Sulistio’s system. That means CORS memory
consumption is lower and running time is less than that
of Sulistio’s system. The main reason behind this is the
use of appropriate data structures and efficient algorithms
in our proposed system. Due to page limitation the details
of memory consumption and running time are not provided
here. The details can be found here [10].

4. Conclusion
The main contribution of this work is a cost optimized

complete resource management system with reservation sup-
port for grid computing. Resource management is not a new
research area for grid computing but still there are lot of
challenges and unsolved problems. Managing resources with
negotiation is one of the open issues in grid resource man-
agement. Sometimes effective negotiation for flexible quality
of service (QoS) can ensure more accepted jobs in grid
system with full resource utilization. We have introduced
a cost optimization model for resource management in grid
computing. Future works can be done here to incorporate
negotiation for cost between resource provider and resource
requester (applications or jobs). The computing nodes that
provide resource for grid also run local applications in their
own operating environment. Works can be done how to
optimally balance the distribution of resources for local and
grid applications so that the local applications can not be
affected by its services provided to the grid. Future works
can also be done on resource management by considering the
topology of the grid. In that case communication bandwidth
requirement and latency will affect the resource management
techniques.

References
[1] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann Publishers, San Francisco, CA,
1998.

[2] L.-O. Burchard, “Analysis of data structures for admission control of
advance reservation requests,” IEEE Transactions on Knowledge and
Data Engineering, vol. 17, no. 3, pp. 413–424, 2005.

[3] A. Brodnik and A. Nilsson, “Static data structure for discrete advance
bandwidth reservations on the internet,” Computer Research Reposi-
tory(CoRR), vol. cs.DS/0308041, 2003.

[4] Q. Xiong, C. Wu, J. Xing, L. Wu, and H. Zhang, “A linked-
list data structure for advance reservation admission control,” in
In Proceedings of 3rd International Conference on Networking and
Mobile Computing(ICCNMC), 2005, pp. 901–910.

[5] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, and
A. Roy, “A distributed resource management architecture that supports
advance reservations and co-allocation,” in In Proceedings of the
International Workshop on Quality of Service, 1999, pp. 27–36.

[6] W. Smith, I. Foster, and V. Taylor, “Scheduling with advanced
reservations,” in In Proceedings of IEEE International Parallel and
Distributed Processing Symposium(IPDPS)Š00, 2000, pp. 127–132.

[7] L. Yuan, C.-K. Tham, and A. L. Ananda, “A probing approach for
effective distributed resource reservation,” in QoS-IP 2003: Proceed-
ings of the Second International Workshop on Quality of Service in
Multiservice IP Networks. London, UK: Springer-Verlag, 2003, pp.
672–688.

[8] J. Bentley, “Solution to klee’s rectangle problems,” Techical Report,
Carnegie-Mellon University, Pittsburgh, 1975.

[9] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms.
Computer Science Press, 1978.

[10] R. Shahriyar, “http://teacher.buet.ac.bd/rifat/MSC.pdf,” A Distributed
Optimized Resource Reservation Scheme for Grid Computing, M.Sc.
Engg. Thesis, Bangladesh University of Engineering and Technology,
2010.

[11] A. Sulistio, U. Cibej, S. K. Prasad, and R. Buyya, “Garq: An efficient
scheduling data structure for advance reservations of grid resources,”
International Journal of Parallel, Emergent and Distributed Systems,
vol. 24, no. 1, pp. 1–19, 2009.

[12] P. W. Archive, “http://www.cs.huji.ac.il/labs/parallel/workload.”

206 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 1 The architecture of the Virtualized Data Center
Server-m

)(11 tQ

VM1m

VM2m

 D
a

ta
 C

en
ter

 N
etw

o
rk

 d
ss

N
e
tw

o
r
k

VM11

VM21

VMn1

)(21 tQ

)(1 tQn

1A

2A

nA

Server-1
Router

)(1 tQ m

)(2 tQ m

)(tQnm

VMnm

Dynamic and Decentralized Approaches for Optimal

Allocation of Multiple Resources in Virtualized Data Centers

Wei Chen, Samuel Hargrove, Heh Miao, Liang Hong

(wchen, skhargrove, hmiao, lhong)@tnstate.edu

College of Engineering, Technology and Computer Sciences

Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN 37209, U.S.A.

Abstract: In this paper, we propose dynamic and

decentralized approaches for optimally allocating multiple

resources in virtualized data center that has time-varying

workload and heterogeneous applications. Instead of using

predication based approaches or sensor measurement based

approaches for resource provision, in this work, we tackle the

problem with market based approaches that simplifies the

control scheme and enable real-time control decision making

based on each server's queue information. The proposed

resource allocation scheme combines local optimization and

heuristics for global optimization. In order to avoid high

complexity related to multiple resources and multiple

applications, we use a simple reinforcement learning method

to achieve unknown optimal resource utility level. The

simulation results show that our approaches can jointly

maximize the throughput of the applications and minimize the

usage of the resources. Furthermore, our approaches can

adapt to unpredictable changes in the workload and do not

require prediction or measurement of the utility level of

different resources.

Keywords: cloud computing, resource allocation,

optimization, distributed algorithms

1 Introduction
Cloud computing features a shared computing infrastructure

that hosts multiple applications. Since resource multiplexing

leads to efficiency, the shared virtualized infrastructure is a

paradigm for achieving the complex

enterprise service applications that have

time-varying demands on multiple

resources. However, it is challenging to

reduce the infrastructural and

operational costs in the data centers

while simultaneously increasing

resource utilization to meet service

requirements by taking into account

that resources are dynamically shared

and applications are unpredictable

interacted across

A growing number of studies have been

reported in the literature to improve the

efficiency of the resource utilization in

the large-scale cloud computing

environments. In [4], the resource allocation in cloud

computing is formulated via a market model and solved as a

conventional static scheduling problem. In this approach,

each service is assigned by a set of resources and a number of

contiguous timeslots. However, the resources cannot be used

for other services during the processing period. Due to the

shared structure and time-varying demands in cloud

computing, more and more research works have focused on

dynamic approaches. In [1] and [6], the bandwidth is sliced

and assigned to virtual machines at each server according to

the network topology and bandwidth demands. These

approaches require a TCP transport mechanism and traffic

predictions. On the other hand, the power management is also

one of the critical issues in enterprise data centers. Recent

studies indicate that the lifetime costs associated with the

power consumption, cooling requirements, etc. of servers are

significant [5]. As a result, there have been numerous works

on power management in the data centers (see [8] and

references therein). The traditional techniques use a closed-

loop control model where the objective is to converge to a

targeted performance level by taking control actions. It cannot

be used for utility maximization problem in power

management where the targeted optimal value is unknown. In

[2], a greedy resource allocation algorithm is proposed that

can adjust resource prices to balance the supply and demand,

and allocate resource to their most efficient use. This

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 207

approach depends on a pre-decided targeted utilization level

which cannot be easily estimated. If the targeted utilization

level is estimated too high, power will be wasted; otherwise,

the performance will be degraded. In [9], a power

management system including online admission, routing, and

resource allocation is proposed. The power allocation is based

on the queue information. However, this approach is limited

to power allocation only. In [7], power and disk are co-

allocated with the ability to automatically adapt the resources

to dynamic workload. However, the system needs sensors that

periodically collect statistics of real-time utilizations and

performance of CPU and the disk. The behavior of sensors

and actuators affect the efficiency of the resource utilization.

As the result, the paper pointed out that many actuators are

poorly designed.

In this paper, we deal with the problem of optimal multiple

resource allocation in virtualized data center with time-vary

workload and heterogeneous applications. Instead of using

predication based approaches or sensor measurement based

approaches for resource provision, we formulate the problem

by a market based approach that simplifies the control scheme

and enables real-time control decision making based on queue

information. The proposed resource allocation scheme

combines local optimization and heuristics for global

optimization. In order to avoid high complexity related to

multiple resources and multiple applications, we use a simple

reinforcement learning method to achieve unknown optimal

resource utility level. The simulation results show that our

approaches can jointly maximize the throughput of the

applications and minimize the usage of the resources.

Furthermore, our approaches can adapt to unpredictable

changes in the workload and do not require prediction or

measurement of the utility level of different resources.

2 Problem Formulation
2.1 Virtualized Data Center Model
We consider a virtualized data center with m servers that host

n types of applications, where each server hosts a subset of

the applications and provides a virtual machine (VM) for each

application hosted on it [9] (Fig. 1). An application may have

multiple instances running across different servers in the data

center. We use an indicator 0or 1ija to indicate

application i is hosted or not hosted on server j for

}.,...,2,1{ and },...,2,1{ mjni Each server has a set of

resources such as CPU, disk, memory, bandwidth, etc.

Application requests arrive for each application i according to

a random arrival process. We use iA to indicate the queue of

requests arriving for each application i. We assume a time-

slotted system. At every timeslot, the requests in iA are

admitted into each buffer ijQ at virtual machine VMij via

network router. We assume that buffer ijQ is large enough to

keep the requests that will be processed in one timeslot.

2.2 Computing resources
Virtualized data centers enable consolidation of multiple

applications sharing multiple resources. A customer can lease

a virtual machine with a specific set of resources for a

guaranteed service performance (e.g. the number of requests

proceeded per second). The demands of applications are time-

varying; therefore, more computing resources should be

allocated on demand to an application when its workload

incurs more resource demand. Among the computing

resources at a server, for some resource such as power the

total amount is adjustable, and for some resources such as

disk, memory and bandwidth the total amount is fixed when

the server is installed.

Power management is one of the critical issues in an

enterprise data center. Modern CPUs can be operated at

different speeds at runtime by using techniques such as

Dynamic Frequency Scaling (DFS) and Dynamic Voltage

Scaling (DVS). The power-frequency relationship is well-

approximated by a quadratic model)()(minmin ffPfP

[3]. In other words, based on time-varying demand, we can

adjust the power consumption by operating CPU at different

speed and runtime using DFS or DVS. When power demand

is lower than the threshold, the server can be switched to

sleep mode. For some resources, such as bandwidth, more

resource does not always achieve the better performance. For

example, assume that application i in virtual machine
ijVM at

server j needs to transfer data to the applications p in virtual

machines
pqVM at server q. If the outgoing bandwidth

assigned to application i in
ijVM is much larger than the

incoming bandwidth assigned to application p, the transfer

rate will be very low since large amount of the transmitted

data are lost at
pqVM and the lost data need to be

retransmitted from
ijVM .

2.3 Market Model and Control Objective

In the data center, a customer leases a virtual machine with a

specific set of resources for the guaranteed average

throughput (number of requests per second). We define the

profit at each timeslot t for the data center according to the

payments of customers and the costs of resources. Assume

that virtual machine
ijVM at server j hosts application i at

timeslot t. Let R be the set of resources at the data center. At

time slot t, let)(tri and)(ti indicate the requested amount

of resource Rr and average throughput (number of

requests) that the user bids for,)(tri and)(ti indicate the

real allocated amount of resource Rr and real throughput,

and)(tquei indicates the number of requests in queue ijQ at

virtual machine
ijVM . The profit in server j at timeslot t can

be formulized as follows:

208 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

))(cost)())((()(
1

n

i Rr

ii rtrtpaytprofit --------- (1)

where the payment model is defined in the following formula:

Others))((

)()'(
1

&

)()(if :case award

 (2)-----------)())((

)()(,&

))(),(min()(if :casepenalty

)())((

))((

1'

tbid

tt
T

tt

tawardtbid

trtrRr

tquett

tpenaltytbid

tpay

i

i

t

Ttt

i

ii

ii

ii

iii

ii

i

In formula (2),))((tbid i is the payment from the customer

for application i and the guaranteed average throughput)(ti .

If)(tquei
>)(ti , and)()(trtr ii and)()(tt ii , then

the customer is under provisioned and the center needs to pay

a penalty. If)()(tt ii and the real average throughput in

time period T is smaller than)(ti and the server successfully

processed more requests than the requested average (the

requests more than expected may caused by a sudden burst of

the load), the center needs to be paid by an award. We

suppose that the queues for application i admit the requests at

the beginning of each timeslot. Let)(tquei
,)(' tque i

indicate

the number of the requests in the queue for application i at the

beginning of timeslot t and at the end of timeslot t,

respectively. By measuring the size of the queue, we can get

real performance)(ti =)(')(tquetque ii . The total profit

from all servers)1(mjj for all

application)1(nii at timeslot t can be described as

follows:

))(cost)())((()(
1 1

m

j

n

i Rr

ijij rtrtpaytTprofit --- (3)

The control objective is to maximize the profit at each

schedule slot by maximizing the payment from users and

minimizing the cost of resources in the data center.

3 Decentralized Control Decisions
The control objective is to maximize Tprofit(t). The time

complexity for calculating the optimal solution is NP-hard, if

all values of)(trij in formula (3) have to be considered. In

this section, we first focus on the optimal resource allocation

at one virtual machine, and then discuss the heuristics for the

global optimization.

3.1 Localized Optimal Decisions
Consider application i that is hosted at server j with resource r.

According to formula (1), the profit at timeslot t can be

simplified as:

(4) ----)(cost)())((),,(rtrtpayritprofit ii

To derive the penalty and award, we use
)(

))((
)(

t

tbid
t

i

i
i

 to

denote the bid per request, and
)(

)(
)(

t

t
t

i

i
i

 to denote the

degree of the real performance. The real performance is better

than the required performance when 1)(ti or worse

when 1)(ti . Since the penalty depends on the difference of

the required throughput and the real throughput and on the

degree of the real performance worse than the required

performance, we define)(tpenalty i
 =

)()())()((ttttk iiii , where 1k is a constant. On the

other hand, for supporting a sudden burst of the load, the

award is given when the real throughput is larger than the

required average throughput but the real average throughput

is not larger than that of the required average throughput. In

order to avoid over using the resource, the award should not

be over encouraged. We define)(tawardi

)())()((' tttk iii , where k’>0 is a constant.

),,(ritprofit can be derived from formula (4) and (2) to the

following formula:

In (5), since)(tri
is the amount of resource r that the user

bids for average throughput)(ti and the bid for a unit of the

resource must be larger than the cost, we have

)(cost
)(

))((
r

tr

tbid

i

i

. When the performance is proportional

to the amount of the resource, we have
)(

)(

)(

)(

tr

tr
c

t

t

i

i

i

i

 , where

c is a positive constant. Since the constant k for the penalty is

larger than 1 and the constant c for the ratio of performance

otherwise :case stardard)cost(r)())((

)()'(
1

&)()(if :case award

 (5)cost
)(

))((
))()(('())((

)()(,&

))(),(min()(if :casepenalty

)()cost(
)(

))((
))()((())((

),,(

1'

trtbid

tt
T

tt

(r)(t)r
t

tbid
ttktbid

trtrRr

tquett

rtr
t

tbid
ttktbid

ritprofit

ii

i

t

Ttt

iii

i

i

ii

iii

ii

iii

i

ii

iii

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 209

increase is close to 1, we have 1
c

k . In the formula

of),,(ritprofit ,)(ti ,))((tbid i and)(cost r are constants

given i, r and t. In formula (5), we replace
)(

)(

t

t

i

i

 by
)(

)(

tr

tr
c

i

i in

the penalty case and award case. The differential of profit(t,i,r)

on)(tri
can be derived as follows:

)6(

otherwise :case standard 0)(cost

)()'(
1

&

)()(if :case award

0)(cost
)(

))((
'

)()(&

))(),(min()(if :casepenalty

0)1
)(

)(
)((cost

)(cost
)()(

)(
))((

)(cost
))((

)(
))((

))((

),,((

1'

2

r

tt
T

tt

r
tr

tbid
ck

trtr

tquett

tr

tr
r

c

k
r

trtr

tr
tbid

c

k

r
tr

tr
tbid

c

k

trd

ritprofitd

i

t

Ttt

i

ii

i

i

ii

iii

i

i

ii

i

i

i

i

i

i

Theorem 1 When the performance is proportional to the

resource, i.e.,
)(

)(

)(

)(

tr

tr
c

t

t

i

i

i

i

, the function profit(t,i,r) is

monotone increasing on)(tri
 in the penalty case and award

case, and is a monotone decreasing on)(tri
in the standard

case.

3.2 Heuristics for Global Optimization
In this section we describe the heuristics for global

optimization. First, according to Theorem 1, when the

performance is proportional to the amount of the resource,

increasing resource r can raise profit(t,i,r); otherwise, it may

not. In order to avoid wasting the resource, when the

condition does not hold, especially, increasing resource

doesn’t help to raise the performance, the amount of r should

be reduced in next timeslot so that the reduced resource can

be used for other applications in the same server, or even for

other servers. Therefore, we have the following heuristic:

If)(tri
>)1(tri

&)(ti <)1(ti , reduce resource r ------

---- (7)

As we described in Section 2.1, at the beginning of every

timeslot, the buffers of virtual machines
ijQ in server j admit

the requests of application i from queue
iA . The servers can

be heterogeneous and have different processing speed. For

any two server p and q, buffer
ipQ has fewer requests left

than buffer
iqQ indicates that server p processed more

requests from application i than server q did. Therefore,

ipQ should admit more requests than
iqQ should in the next

timeslot. On the other side, in order to save the resources the

server in sleep mode should keep sleep if possible. It derives

another heuristic:

At every timeslot, buffers
1iQ ,

2iQ , …,
imQ at the active

servers j)1(mj admit the requests from
iA fully in

increasing order of buffers' sizes; buffers
1iQ ,

2iQ , …,
imQ at

the inactive servers j admit the remaining requests in
iA if

there is any. --------- (8)

4. Resource Allocation Algorithms
We use Theorem 1 to make the control decision on when to

increase or decrease resources. Since the targeted optimal

value for utility maximization is unknown, it is difficult to

decide the amount of the resource for achieving the

optimization. We use a form of reinforcement learning to

adaptively achieve the unknown optimal utility level. For

application i, the amount of resource r,)(tri , is decided as

follows:),()1()(trtrtr iii --------- (9)

),(tri is the estimated usage of resource r which is

continuously adjusted in response to the needs of increasing

or decreasing r as follows:

 Otherwise)1,(

 decreased is resource theif

)1,()1(

 increased is resource if

)1,()1(

),(

tr

r

tr

r

tr

tr

i

i

i

i

 ----- (10)

where 1 represents the sensitivity of the WEMA filter. In

a server, the total amount of resource r has a range and we

suppose that maxmin)(rtrr i . For the cases that the total

amount of the resource does not change, maxmin rr . For the

resource such as power, we can set a threshold. If the power is

lower than the threshold, the server is switched to sleep. For

an application i, each resource r is allocated for i at each

server by formula (8). If the total amount of resource r

allocated to all applications at the server is larger than maxr ,

then the amount of resource r for application i is adjusted to

.
)(

)(
max

1

r
tr

tr
r

n

i i

i

i

 ------- (11)

210 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Now we consider the schedule for allocating multiple

resources. In the data center, some applications are CPU

contention; some are disk contention or bandwidth contention.

The proportions or resources are unknown and difficult to

predict. To solve the problem, we use round robin to allocate

the multiple resources in R. We use h=2|R| timeslots as one

scheduling round, where each resource in R is allocated twice

at two contiguous time slots. In other words, if we simply use

r to represent the rth resource in R, in each scheduling round,

resource r is allocated at thr)12(and thr)2(timeslots. For

example, if power, bandwidth, disk are three resources in R,

every scheduling round consists of 6 timeslots, and power is

allocated at timeslots 1, 2, 7, 8, 13, 14, …, bandwidth is

allocated at timeslots 3, 4, 9, 10, 15, 16, …, and bandwidth is

allocated at timeslots 5, 6, 11, 12, 17, 18, …. For allocating

resource r at time slot t, the queue and performance

information from two previous timeslots that allocated the

same resource r are required. Therefore, in the above example,

for allocating power at timeslot 8, the information from

timeslot 2, and 7 are required. The outline of the resource

allocation algorithm, called as Multi-Resource Allocation,

that allocates resource r at timeslot t can be described as

follows:

(1) Admit arriving requests: The arriving requests for each

application i (ni 1) are admitted into buffer
ijQ of server j

(mj 1) according to heuristic (8).

(2) Assuming that t’ and t’’ are the two previous contiguous

timeslots (i.e., t”, t’, and t are three contiguous timeslots for

allocating the same resource r). At each server j, for each

application i, the following step are executed:

(i) Determine if resource r should be increased or

decreased: Use)'(tri
,)'(ti ,)'(tri

,)'(ti and)'(tquei
 to

judge the penalty case, award case and standard case

according to the conditions given in formula (5). Resource r

should be increased in penalty case or award case, and should

be decreased in standard case.)"(tri
,)'(tri

,)"(ti , and

)'(ti are used to judge if the performance is proportional to

the amount of the resource r; if it is not, according to the

heuristic (7), r should be reduced. Note that t-1 and t in (7)

are t” and t’ here.

(ii) Update the value of : Use formula (10) to update

 according to whether the resource should be increased or

decreased. Notice t-1 and t in (10) are t’ and t here.

(iii) Allocate the resource r: In each server, use formulas (9)

and (11) to calculate each resource r.

(iv) Calculate the performance: Calculate)(ti , which is

the difference of)(tquei
at the beginning and end of the

timeslot.

It is clear that the above algorithm for multiple resource

allocation can be executed at each timeslot for each server in

O(n) time. Due to the space limitation, we omit the details of

the algorithms.

5. Experiment and Evaluation
We evaluated our Multi-Resource Allocation Algorithm with

three experiments through computer simulations. In the first

experiment, power is the only resource to be considered and

applications are homogeneous. Each CPU is assumed to have

a discrete set of frequency options in the interval [1.6GHz,

2.6GHz] at increments of 0.2 GHz, where the minimum

(maximum) power for operation is 120W (240W). We

consider the scenario where 10 applications are hosted on 10

servers. On average, a server running at the minimum

(maximum) speed can process 200 (400) requests/slot. If the

power is lower than 120 W, the server is set to sleep mode.

The average number of arriving requests for each application

is 100 during 1 to 300 slots, 200 during 301 to 600 slots, and

300 during 601 to 900 slots. In the experiment, is set to 0.1

and the initial value of is 0.6. In Fig. 2, the dark blue

(black if printed in black and white) and light pink (grey)

lines are used to represent if the heuristic (8) is used or not in

the algorithm. In both cases the throughput and power usage

match the number of arriving requests in each of three

durations. On average, in the first duration more than half

servers are in sleep mode, in the second duration around one

third servers are in sleep mode, and in the third period almost

all server are in active mode. Fig.2 shows the throughput and

total power consumption in the first experiment. We can see

that the algorithm with heuristic (8) uses less power. Actually,

it has a bit better throughput, too.

In the second experiment, bandwidth is the only resource to

be considered. The experiment is executed by using NS2.

There are 10 servers s1 to s10. Each has 0.375MB bandwidth.

These servers transmit data to another server s that has 2.5MB

bandwidth. In the experiment, each request transmits 1.25KB

data. In the first scenario, we consider unbalanced workloads.

There are average 100 arriving requests at each second for

servers s1 and s2, 200 arriving requests at each second for

servers from s3 to s8, and 300 arriving requests at each

second for servers s9 and s10. In Fig. 3, the top strip shows

the throughput of s9 and s10, the middle strip shows the

throughput of s3 to s8, and the lowest trip shows the

throughput of s1 and s2. It shows that the algorithm allocated

the bandwidth exactly according to the demands. In the

second scenario, we consider workload bursts. The arriving

requests at each server are scheduled as Table 1. In server s3,

the number of arriving requests is 300 during 60 to 70

seconds that is larger than the request performance (200);

however it is 200 on average because the number of requests

during 30 to 60 seconds is smaller than 200. Therefore, all the

240 requests should be performed during 70-80 seconds in s3

otherwise the real performance will be larger than the

requested performance even in average. It is easy to see that

in some periods, the total demand of bandwidth is larger than

2.5MB, the bandwidth at server s. Fig. 4 shows the

throughput at server s3 (we don’t have the space to show the

figures for all servers).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 211

Fig. 4 Throughput of s3 for workload bursts

 Time (seconds) 0-10 10-20 20-

30

30-

40

40-

50

50-

60

60-

70

70-

80

80-

90

90-

100

100-

110

110-

120
Arriving frames at Server 1&2

(Request Performance = 100)
50 50 200 200 100 100 50 100 100 100 150 400

Arriving frames at Server 3 to 8

(Request Performance = 200)
200 200 200 160 150 150 300 300 200 200 150 150

Arriving frames at Server 9&10

(Request Performance = 300)
300 300 200 400 300 300 50 180 250 250 400 450

Table 1 Schedule of Arriving Requests at Each Server in Experiment 2

Fig. 3 Throughput of s1 to s10 for unbalanced workloads

We can see that comparing with TCP, our algorithm allocate

the bandwidth much more precisely and closer to the

demands.

In the third experiment, power and bandwidth are both

considered. In this experiment, we have 5 servers hosting 4

heterogeneous applications A1 through A4 with time-varying

workloads. We adopt these applications from [7]. In A1, each

request gets 10KB files from the database and does

encryption, and it uses 0.095% of the full power (240W). In

A2, each request gets/sends 80KB files from/to the database

without doing encryption, and it uses 0.233% of the full

power. A3 and A4 are Web applications. A3 is an auction-

web tier. Each request uses 0.53 % of the full power and

10.3KB bandwidth. A4 is an auction-database tier. Each

request uses 0.2% of the full power and 5.2KB bandwidth.

Requested performance for each application is 400 requests

per second. The bandwidths for the five application host

servers, the web server and the database server are all set to

70MB. The arriving requests at the data center are scheduled

as Table 2.

Performance/Throughput

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1

3
9

7
7

1
1

5

1
5

3

1
9

1

2
2

9

2
6

7

3
0

5

3
4

3

3
8

1

4
1

9

4
5

7

4
9

5

5
3

3

5
7

1

6
0

9

6
4

7

6
8

5

7
2

3

7
6

1

7
9

9

8
3

7

8
7

5

Time Slot

N
u
m

b
e
r

o
f
re

q
u
s
ts

Fig. 2 Throughput and power consumption in the first Experiment

212 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

 1 – 50s 51 – 100 s 101 – 150 s 151 – 200s 201 – 250 s 251 – 300 s

A1 300 700 500 250 500 750

A2 300 500 700 500 300 750

A3 300 300 450 600 500 750

A4 300 500 300 500 700 750

Table 2 Schedule of Arriving Requests for Each Application in Experiment 3

Theworkload is unbalanced and bursts in the above table. Fig.

5 shows the performance of each application in all five

servers that matches the numbers of arriving requests. For

example, during 51-100 seconds, the number of arriving

requests (700) for A1 is larger than the requested performance

(400). However, since the average number of arriving

requests is not larger than 400, all 700 requests are processed.

In the last 50 second, the number of the arriving requests for

each application is too large that it is beyond the power and

bandwidth that each server can deal with. Therefore, only 675

requests on average for each application are processed instead

of 750 arriving requests. On the other hand, during the first 50

seconds, only 300 requests arrive for each application.

Therefore, two servers are at sleep mode during this period to

save power.

6. Conclusion
In this paper, we proposed dynamic and decentralized

approaches for allocating multiple resources in virtualized

data center that has time-varying workload and heterogeneous

applications. We tackled the problem with market based

approaches that simplified the control scheme and enabled

real-time control decision making. The proposed resource

allocation scheme combines local optimization and heuristics

for global optimization. The experiment results showed that

our can effectively and efficiently allocate multiple resources

in virtualized data center with time-varying workload and

heterogeneous applications. They are adaptive to

unpredictable changes in the workload and do not require

prediction or measurement of the utility level of resources.

Acknowledgment

This research is partially supported by IBM faculty award in

2010.

References
1. O. Beaumont, H. Rejeb, “On the importance of

bandwidth control mechanisms for scheduling on large

scale heterogeneous platforms,” Proceedings of IEEE

International Symposium on Parallel and Distributed

Processing, 2010.

2. J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat,

“Managing energy and server resources in hosting

centers,” Proceedings of SOSP, 2001.

3. X. Fan, W. Weber, L. Borroso, “Power provisioning for a

warehouse-sized computer,” Proceedings of ISCA, 2007.

4. I. Fujiwara, K. Aida, I. Ono, “Market-based resource

allocation for distributed computing,” Vol. No.34, IPSJ

SIG Technical Report, 2009.

5. A. Greenberg, J. Hamilton, D. A. Maltz, P. Patel, “The

cost of a cloud: research problems in data center

networks,” ACM SIGCOMM Computer Communication

Review, vol. 30, no. 1, 2009.

6. T. Lam, G. Varghese, “NetShare: virtualizing bandwidth

with the cloud,” Technical Report, the Computer Science

and Engineering Department at the University of

California at San Diego, 2009.

7. P. Padala, K-Y. Hou, K. G. Shin, “Automated control of

multiple virtualized resources,” Proceedings of EuroSys,

2009.

8. R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, X.

Zhu, “No “power” struggles: coordinated multi-level

power management for the data center,” Proceedings of

ASPLOS, 2008.

9. R. Urgaonkar, U. C. Kozat, K. Igarashi, M. J. Neely,

“Dynamic resource allocation and power management in

virtualized data centers,” Proceedings of IEEE Network

Operations and Management Symposium, 2010.

Total Power

0

200

400

600

800

1000

1200

1400

1 27 53 79 105 131 157 183 209 235 261 287

timeslot in second

w
a
tt
s

Fig. 5 Performance and power usage in the third Experiment

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 213

The Analysis for Virtualization Performance in Cluster

and Cloud Computing

Ying-Chuan Chen, Shuen-Tai Wang, Hsi-Ya Chang, Te-Ming Chen, Chin-Hung Li

Software Technology Division

National Center for High-Performance Computing, NCHC

Tainan, Taiwan

{ ycc0301, stwang, jerry, gavin, OscarLi }@nchc.narl.org.tw

Abstract - Virtualization Technology is an interesting

research topic in current cloud computing and service. Using

the Virtualization Technology in cloud or cluster computing

can obtain a lot of benefits, such as ability to deploy any

virtual platforms rapidly, easiness to manage all precious

resources, and cost reduction. In order to discover optimal

performance for virtual platforms, several well-known virtual

machines are evaluated by standard benchmark tools,

including HPC Challenge benchmark and NetPIPE program.

In our paper, we will analyze significant experiment results

that not only demonstrate the adequacy of virtual machines

for High Performance Computing, but also present different

performance characteristics for virtualization on cloud

environment.

Keywords: virtualization technology; cloud computing;

cluster computing; virtual platform; performance

1 Introduction

 Virtual platform service has been a popular issue in

cloud computing and cluster computing. The major concept of

Virtualization Technology (VT) is that users could build

many kinds of virtual operation system (OS) and Guest OS on

a physical machine, such as Windows and Linux. Besides, the

Guest OS can be built by various virtual machine tools and

correlated resources of physical system were shared, hence

the performance of virtual machine (VM) [24, 29, 30, 31]

becomes the most critical factor for virtualization mechanism.

 In figure 1 shows the principal architecture of

virtualization. Physical hardware resources were divided as

virtual resources of virtual platforms by VM’s monitors, and

those virtual resources were assigned to each VM by different

requirements. Moreover, The VM’s monitor provides each

Guest OS a set of virtual platform interfaces that constitute

VMs, acting as a bridge to connect between hardware devices

and VMs. Instructions were delivered to hardware layer from

virtual platform, which receives results from monitor of VMs.

Each virtual platform will run independently, although

physical resources were shared. By the way, VM’s monitor

has two kinds of model, Hypervisor [17, 33] and Virtual

Machine Monitor (VMM) [20]. The main distinction between

Hypervisor and VMM is that the former monitor runs above

hardware layer directly with better performance than VMM,

such as Xen and VMware’s ESX. On the other hand,

Microsoft’s Virtual PC and VMware’s Workstation adopt

VMM as monitor of virtual platforms.

Hardware

Host OS
(VMM, Hypervisor)

Guest OS

PV FV

KVMAMD-V

XEN

Intel-VT
Etc.

Figure 1. Virtualization Architecture.

 For Guest OS, it includes two main virtualization [25, 26,

34] types: para-virtualization (PV) and full-virtualization (FV),

which can be both combined with the hardware-assisted

virtualization. The Guest OS is simulated by modified Kernel

of Linux with PV, but related devices are not emulated.

Instead, all devices are accessed through light-weight virtual

drivers offering better performance and close to the physical

machine. But the drawback is that guest kernels must be

upgraded to provide new virtual system calls for the new

services and all of Guest OS must be compatible with the

Host OS.

 Furthermore, it allows the execution of unmodified

virtual OS by emulating physical system’s hardware resources

with the full-virtualization model. Many VM’s tools adopted

FV to build virtual OS. The advantage of FV is that it can

build various virtual platforms in a physical machine.

Nevertheless, FV may incur a performance penalty. The

VMM of FV have to offer the VM through an image of entire

system, including virtual memory space and devices, that also

must create and maintain data structures for virtual

components, such as a shadow memory page table, and these

214 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

data structures should be updated for every corresponding

access with the VMs.

 On the other hand, FV has an imperative cost which can

be mitigated by using the hardware-assisted virtualization in

the CPU device for providing the Guest OS with a complete

physical system interface, consequently the hardware-assisted

virtualization enables efficient FV using help from hardware

capabilities, primarily from the host processors.

 Both the Intel and AMD Corporations have supported

hardware-assisted virtualization modules for their novel

products of CPU. The Intel module, like the Intel-

Virtualization Technology (Intel-VT) [6, 21, 32], combined

with software-based virtualization solutions provides

maximum system utilization by consolidating multiple

environments into a single real machine. For AMD module,

like AMD Virtualization (AMD-V) [1, 19, 35] Technology,

allows users to better utilize related resources, which make

virtual platforms more effective.

 In contrast, PV provides better efficiency than FV for

each VM through the virtualization abstraction of hardware

that is similar but not identical to the underlying physical

hardware. As a result, the Guest OS using PV technology is

aware that allowing for near-native performance.

 In fact, the performance of VM is certainly lower than

physical machine. However, taking into consideration of a lot

of advantages for deployment, management and cost, VM is

the best solution for virtual service platforms in cloud

computing area. Thus in order to obtain best performance

with VM tools, we will analyze related VMs by benchmarks

to present significant experiment results in our paper.

2 Virtual Machine

 VT is able to apply not only to subsystems but to a

complete virtual system. To implement a virtual machine

(VM), developers design a software layer to real machines to

support the desired architecture. By providing one or more

efficient of entire virtual platforms, VMs have extended multi-

processing systems of the past decade to be multi-

environment systems as well. There are many kinds of VM in

the market, but not all VMs fit to build virtual platforms, so

we must choose a suitable VM to achieve our purpose.

Common VMs include Xen, KVM, VMware and Microsoft

Virtual PC; this section focus on these VM tools to describe

the architecture in order.

2.1 Xen

 Xen [15, 18, 27] is a famous open source virtualization

software based on x86 hardware architecture by University of

Cambridge. It provides both PV and FV mode to simulate one

or more complete virtual OS on single physical machine, and

all of VMs must run on modified kernel with Xen.

 Figure 2 illustrates the architecture of Xen, there is a

hypervisor running on the hardware directly and acting as the

interface for all hardware requests such as CPU, I/O, and disk

for the Guest OS. By separating virtual resources from the

physical hardware, the hypervisor is able to run multiple

virtual OS securely and independently. Domain U means all

of Guest OS which have deployed the above hypervisor layer,

it includes Domain0, Domain1 and Domain2. Domain0 has

many important instructs of control for Domain1 and

Domain2, consequently it was built and loaded on physical

machine firstly. The software of Xen has been adopted

directly in newer versions of Linux, the user can install Xen’s

software fast and simply, such as Fedora 8, CentOS 5, etc.

Hardware
Device

Xen
Hypervisor

Virtual CPU

Virtual Mem

Virtual NIC
Control

Interface

Domain 0

Device
Drivers

Application

CPU, Disk, Memory, NIC card, etc.

Control
Commands

Domain 2
Device Drivers

Domain 1
Device Drivers

Figure 2. Architecture of Xen.

2.2 KVM

 Kernel-based Virtual Machine (KVM) [7, 16, 22] is an

open source software with GPL, developing by Qumranet

company. KVM provide FV solution for Linux on x86

hardware containing virtualization extensions with Intel-VT

or AMD-V, and the kernel component of KVM is encased in

mainline Linux OS over version 2.6.20, hence the user can

setup the virtualization environment of KVM as well as Xen

when installing Linux OS conveniently.

 KVM consists of a loadable kernel module called

kvm.ko, that provides the core virtualization infrastructure

and a processor specific module for kvm-amd.ko or kvm-

intel.ko. KVM also requires a modified QEMU although work

is underway to get the required changes upstream.

 Using KVM, one can run multiple VMs running

unmodified Linux or Windows images. Each VM has private

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 215

virtualized hardware devices, such as network card, disk,

graphics adapter, etc. Besides, VM was like a process in

queuing system of Linux, and then manager can directly kill

any VMs by control command.

 In order to easily manage all of VMs, KVM offered a

visualization manage interface that is called virt-manager, and

showing significant status of VMs like CPU, memory, disk,

network, etc. Therefore the manager can add, delete, start,

pause, stop, and destroy any virtual platform by the virt-

manager tool.

2.3 Vmware

 VMware Company [14] offers many powerful VM

solutions, including VMware Workstation, VMware ESX,

VMware ESXi, VMware Player and VMware Server; the

latter three are free software.

 The VMware virtualization platform uses software such

as VMware ESX to transform the x86-based hardware

resources, including the CPU, disk, memory and network, to

build a fully functional VM that can run different virtual

platforms similar to a real machine. Each VM contains a

complete system, eliminating potential conflicts.

 VMware virtualization works by inserting a thin layer of

software directly on the hardware layer or on a host OS. This

contains a VMM that allocates hardware resources

dynamically. Multiple virtual OS run concurrently on a single

physical machine and share physical resources with each other.

Users can run various virtual OS safely at the same time, with

each having access to the resources it needs when it needs

them.

 Nevertheless, the drawback is the high price to deploy

the powerful VMware’s solutions.

2.4 Microsoft Virtual PC

 Virtual PC [8] is a virtualization software by well-known

Microsoft Company, provides users the capability to run

multiple virtual environments such as Linux or Windows OS

from a Windows platform. Microsoft released the Windows-

hosted version as a free product since July 2006, thus users

can download free to install virtual OS on newer Windows 7

momentarily.

 Virtual PC can simulate a standard x86 framework PC

and its associated hardware devices on a physical machine.

Unfortunately, it is only supported on host OS with Windows,

and we can’t set up virtual environments successfully base on

Linux platform.

 By comparing related capability between above different

virtualization tools, there are two appropriate VM’s software,

including Xen and KVM, suited to build virtual platforms in

consideration of cost, management, deployment, etc.

Therefore, we will focus on Xen and KVM to analyze

performance of various virtual platforms by some famous

benchmark programs in our paper.

3 Benchmark

 In this section, the paper will explain testing capability

for related popular benchmark tools, including HPC

Challenge benchmark and NetPIPE program.

3.1 HPC Challenge benchmark

 The HPC Challenge (HPCC) benchmark [4] is

maintained and managed by the Innovative Computing

Laboratory at the University of Tennessee. It is a well-known

suite of tests that includes the High-Performance Linpack,

DGEMM, STREAM, PTRANS, RandomAccess, FFT and

b_eff program has been adopted to evaluate various high-

performance computing clusters as well as multiprocessor

(SMP) architectures computers in the international website of

TOP500 [13]. The HPCC benchmark consists of basically

tests as follows:

 High-Performance Linpack (HPL) [5, 23] is a
software package freely written in C that solves a
linear system of equations in double precision
arithmetic on distributed-memory computers. It
provides three testing and timing modes, including
Linpack100, Linpack1000 and HPL, to quantify the
accuracy of the obtained solution as well as the time it
took to compute it. But the evaluation ability of
Linpack100 and Linpack1000 can’t satisfy for
calculating novel high-performance computers.
Accordingly, the HPL mode was selected in recent
years. Additionally, HPL requires the execution of the
Message Passing Interface (MPI) and a math library,
either the Basic Linear Algebra Subprograms (BLAS)
or the Vector Signal Image Processing Library
(VSIPL) is needed. The best performance achievable
on a measured system depends on a large variety of
factors, and users have to setup associated parameters
in HPL.dat with conditions of evaluated distributed
systems.

 DGEMM can used to measure the floating point rate
(in Gflops) of execution of double precision real
matrix-matrix multiplication.

 STREAM [12] is a synthetic benchmark program that
measures sustainable memory bandwidth (in GB/s)
and the corresponding computation rate for simple
vector kernel.

 PTRANS (parallel matrix transpose) [10] is a useful
test of the total communications capacity of the
network. It can exercise the communications (in GB/s)

216 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

http://en.wikipedia.org/wiki/IBM_PC_compatible

where pairs of processors communicate with each
other simultaneously.

 RandomAccess [11] can measure the rate of integer
random updates of memory. It is evaluated in GUPS
(Giga UPdates per Second) that is a measurement that
profiles the memory architecture of a system and is a
measure of performance similar to MFLOPS.

 FFT program [3] measures the floating point rate (in
Gflops) of execution of double precision complex
one-dimensional Discrete Fourier Transform (DFT).

 Communication bandwidth and latency based on the
b_eff program (effective bandwidth benchmark) [2] is
a set of tests to evaluate bandwidth (in GB/s) and
latency (in usec) of a number of simultaneous
communication patterns.

3.2 NetPIPE

 The Network Protocol Independent Performance

Evaluator (NetPIPE) [9, 28] is a free protocol independent

performance tool that visually represents the network

performance under a variety of conditions. It was

programmed in C at the Scalable Computing Laboratory

(SCL).

 The NetPIPE performs simple ping-pong tests, bouncing

messages of increasing size between two processes, whether

across a network or within an SMP system. Message sizes are

chosen at regular intervals, and with slight perturbations, to

present a complete testing result of the communication system,

such as throughput in Mega bits per second (Mbps) and

latency in seconds. Each data point involves many ping-pong

tests to show an accurate timing, and latencies are evaluated

by dividing the round trip time in half for small messages.

4 Experiment

 In this section, we perform HPCC benchmark and

NetPIPE program practically to measure related performance

of various virtualization platforms, including physical

platform, Xen kernel, Xen PV, Xen FV and KVM FV, and

important results of experiment will be shown as well.

 A physical platform was built as the real cluster system

with CentOS 5.5 OS. Xen kernel means the cluster system that

was deployed with modified kernel (Domain 0) through Xen

software, and Xen PV is the virtual environment for cluster

that was organized via para-virtualization technology of Xen.

The case using full-virtualization technology of Xen to

construct the complete virtual cluster system is indicated as

Xen FV. Furthermore, the cluster platform was simulated

based on full-virtualization mode using KVM software is

expressed as KVM FV in our paper.

 The specification information of testing platform is

showed in Table I. We adopt four HP servers as the hardware

testbed, with two Quad-Core AMD Opteron(tm) Processor

2356 CPU in each server likes. The SATA 500GB disk of

Western Digital (WD) is used to allocated 2GB size as swap

space. There are 8GB memory and 1Gb Ethernet network

interface card (NIC) in each measured environment, and the

VM software versions for Xen is 3.0 and for KVM is kvm-83.

Table I. Specifications of Testbed.

CPU Quad-Core AMD Opteron(tm) Processor 2356

Disk Western Digital(WD) 500G SATA 7200RPM

Memory 8GB

Network 1Gb Ethernet

OS CentOS 5.5 (2.6.18-194)

Swap 2GB

Xen xen-3.0

KVM kvm-83

Compiler GNU

MPI Mpich2

 Table II illustrate the testing performance by using HPL

for each evaluated platform, including Physical, Xen kernel,

Xen PV, Xen FV and KVM FV.

Table II. HPL Performance of Platforms.

Platform

Type

Rpeak

(Gflops)

Rmax

(Gflops)

Efficiency

%

Physical

294.4

173.3 58.86

Xen kernel 172.3 58.52

Xen PV 161.1 54.72

Xen FV 49.65 16.86

KVM FV 93.89 31.89

 Rpeak is the theoretical peak performance in Gflops, by

counting the number of floating-point additions and

multiplications that can be completed during a period of time.

Due to CPU clock rate of each core at 2.3 GHz can complete

4 floating point operations per cycle, and there are eight cores

in four servers respectively, thus Rpeak is 294.4GFlops that

was calculated via formula (1):

processorper of cores The numbersor of procesThe numberN

ssue rateng point iCPU floatiF

Rate (GHz)CPU Clock C

NFCRpeak

 Rmax is the maximum computing performance vaule of

a platform in Gflops achieved in typical HPL program, and

the notion of Efficiency is defined as the ratio between Rpeak

and actual Rmax of the platform, that can be calculated

through the formula (2).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 217

 %
Rpeak

Rmax
Efficiency 100 (2)

 In table II, the Rmax value of Physical cluster platform

is 173.3Gflops, and the rate of Efficiency is 58.86%. The

Rmax values of Xen kernerl and Xen PV are 172.3Gflops and

161.1Gflops, with Efficiency rate at 58.52% and 54.72%

respectively, both decrease from the physical cluster’s HPL

efficiency slightly. For performance of Xen and KVM with

FV mode, both Rmax and Efficiency values are much worse

than previous cases. And the computing performance of Xen

FV is lower than KVM FV since the ability of communication

for network is the worst.

 In Figure 3, all testing results of the NetPIPE program

for every environment are obtained via the best throughput

from ten rounds. Furthermore, the network throughput value

in Mbps measured by Ping-pong testing in internal network

channel through the 1Gb Ethernet NIC device. The NetPIPE

performance of the physical platform attains 718.45Mbps (as

NetPIPE_switch) and the performance without the Ethernet

switch device can achieve 765.40Mbps (as

NetPIPE_nonswitch) that is faster than forwarding all

packages through 1Gb switch device. For Xen kernel

environment, the maximal value of throughput using NetPIPE

program is 580.21 Mbps, and when testing without the

Ethernet switch device that can obtain 651.94Mbps

correspondingly. Generally speaking, the network

communication performance for virtual cluster platforms are

restricted at lower bandwidth than the physical system with

virtual network device for Xen PV, Xen FV and KVM FV,

which are attained 356.32Mbps (374.81), 71.66Mbps (82.76)

and 174.62Mbps (175.62) respectively. Clearly, the worst is

Xen FV among all virtual platforms.

Figure 3. The NetPIPE performance.

 Figure 4 is the Radar chart that indicates significance

experiment results of MPI mode on whole system via HPCC

benchmark including PTRANS, MPIFTT, Communication

bandwidth and latency. For PTRANS, The physical platform

can get 0.402 GBs, Xen FV shows worst that is around 0.045

GBs barely. Using FTT to measures the floating point rate

with MPI can achieve the best result 1.301 Gflops in physical

cluster platform, and the worst result is only 0.118 Gflops

likes Xen FV platform. For bandwidth and latency under

varying conditions of internal network between multiple pairs

of nodes, physical platform get 0.009 GBytes of bandwith and

56.72 usec of latency. Related network evaluation consist of

bandwith and latency for Xen PV, KVM FV, Xen FV, which

are attained following 0.008GBytes (142.08 usec),

0.003GBytes (609.90 usec) and 0.001GBytes (952.36 usec)

separately. That express the Xen PV platform has better

communication performance for all testing virtual platforms.

0.402647

0.373426

0.290972

0.0880809

0.0451477

Physical

Xen kernel

Xen PVKVM FV

Xen FV

PTRANS_GBs

1.30156

1.11794

0.747716

0.300169

0.118329

Physical

Xen kernel

Xen PVKVM FV

Xen FV

MPIFFT_Gflops

56.7227

79.8178

142.084

609.909

952.36

Physical

Xen kernel

Xen PVKVM FV

Xen FV

RandomlyOrderedRingLatency_usec

0.00904793

0.00836519

0.00804458

0.00333977

0.00169295

Physical

Xen kernel

Xen PVKVM FV

Xen FV

RandomlyOrderedRingBandwidth_GBytes

Figure 4. Significant results by HPCC benchmark.

 Formula (3) shows the based principle of overhead

between physical and virtual platforms. Rmaxp represents the

Rmax of physical platform, and Rmaxv is the Rmax of virtual

platform. Thus, the overhead value can explain the reduced

level of performance, while value close to 0 means the virtual

platform is as well as the physical platform. On the other hand,

if the value is approaching 100%, it means the performance of

the measured virtual platform is very bad.

 100%

p

vp

Rmax

RmaxRmax
Overhead (3)

 Figure 5 illustrates the map between Efficiency (as red

line) and overhead (as blue line) in each platforms, the

overhead of Xen kernel environment is approximately 0.58%,

the best performance next to the physical platform. The virtual

platform with Xen PV has a quite low overhead at 7.04%, and

KVM FV has a high overhead at 45.82%. Xen FV has

71.35% overhead that is clearly the worst virtualization

platform for correlate computing and communication

performance.

218 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Figure 5. Overhead and Efficiency.

 With related experiment results of this section, we can

rank the whole performance of testing platforms in the

following order: physical platform, Xen kernel, Xen PV,

KVM FV and Xen FV.

5 Conclusions

 In our paper, standard benchmark tools including HPCC

benchmark and NetPIPE are adopted to estimate computing

performance among physical platform, Xen kernel platform,

Xen PV platform, Xen FV platforms and KVM FV platform.

Based on significant experiment results, by comparing the

virtualization performance of Xen PV platform is better than

other virtual platforms through FV of KVM and Xen, with the

latter being the worst virtualization performance like cpu,

memory and network in all testing platforms. Hence, if virtual

cluster system or cloud platform was built using PV

technology of Xen, it could be support effective virtualization

performance in computing and communication. However,

there is a troublesome disadvantage that the PV mechanism

can’t support user to construct different virtual OS and Guest

OS on host machine. Although virtual platforms using KVM

FV technology shows the average efficiency via HPCC

benchmark tool and NetPIPE program, nonetheless it is able

to deploy on many different types of virtual platforms for

novel and popular cloud service.

6 Acknowledgment

 This work is supported by National Science Council,

R.O.C., under the contract number of NSC NSC99-2218-

E492-00.

7 References

[1] AMD-V, http://sites.amd.com/us/business/it-
solutions/virtualization/Pages/virtualization.aspx

[2] b_eff, https://fs.hlrs.de/projects/par/mpi//b_eff/

[3] FFT, http://www.ffte.jp/

[4] HPCC, http://icl.cs.utk.edu/hpcc/

[5] HPL, http://www.netlib.org/benchmark/hpl/

[6] Intel-VT, http://www.intel.com/technology/virtualization/

[7] KVM, http://www.linux-kvm.org/

[8] Microsoft Virtual PC,

http://www.microsoft.com/windows/virtual-pc/

[9] NetPIPE, http://www.scl.ameslab.gov/netpipe/

[10] PTRANS, http://www.netlib.org/parkbench/

[11] RandomAccess,
http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/

[12] STREAM, http://www.cs.virginia.edu/stream/

[13] TOP500, http://www.top500.org/

[14] VMware, http://www.vmware.com/

[15] Xen, http://www.xen.org/

[16] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin and
Anthony Liguori, “kvm: the Linux Virtual Machine
Monitor,” In Proceedings of the Linux Symposium, vol. 1,
pp. 225-230, June 2007.

[17] Carl J. Young, “Extended Architecture and Hypervisor
Performance,” Proceedings ACM SIGARCH-SIGOPS
Workshop on Virtual Computer Systems, Cambridge, MA,
1973.

[18] Danhua Guo, Guangdeng Liao and L. N. Bhuyan,
“Performance Characterization and Cache-Aware Core
Scheduling in a Virtualized Multi-Core Server under
10GbE,” Workload Characterization, 2009. IISWC 2009,
pp. 168-177, Oct. 2009.

[19] Greg Goth, “Virtualization: Old Technology Offers Huge
New Potential,” IEEE Distributed Systems Online, vol. 8,
no. 2, 2007.

[20] Gerald J. Popek and Robert P. Goldberg, “Formal
Requirements for Virtualizable Third Generation
Architectures,” Communications of the ACM, vol. 17, pp.
412-421, July 1974.

[21] G. Neiger, A. Santoni et all, “Intel Virtualization
Technology: Hardware Support for Efficient Processor
Virtualization”, Intel Computer Journal, vol. 10, issue 3,
August 2006.

[22] I. Habib, “Virtualization with KVM,” Linux Journal, Vol.
2008, Feb. 2008.

[23] J. J. Dongarra, P. Luszczek, and A. Petitet, “The
LINPACK benchmark: past, present and future,”
Concurrency and Computation: Practice and Experience,
vol. 15, no. 9, pp. 803-820, 2003.

[24] J. P. Buzen and U. O. Gagliardi, “The Evolution of
Virtual Machine Architecture,” National Computer
Conference Proceedings, AFIPS Press, vol. 42, pp. 291-
299, June 1973.

[25] L. Nussbaum, F. Anhalt, O. Mornard and J.-P. Gelas,
“Linux-based virtualization for HPC clusters,” Linux
Symposium, pp. 221-234, July 2009.

[26] M. Fenn, M. Murphy, and S. Goasguen, “A Study of a
KVM-based Cluster for Grid Computing,” 47th ACM
Southeast Conference, March 2009.

[27] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebarger, Ian Pratt and
Andrew Warfield, “Xen and the Art of Virtualization,”
Proceedings of the 2003 Symposium on Operating
Systems Principles, October 2003.

[28] Q.O. Snell, A.R. Mikler and J.L. Gustafson, “NetPIPE: A
Network Protocol Independent Performance Evaluator,”
Ames Laboratory / Scalable Computing Lab, Iowa State.,
1997.

[29] R. A. Meyer and L. H. Seawright, “A Virtual Machine
Time-Sharing System,” IBM Systems Journal, vol. 9, no.
3, 1970.

[30] R. P. Goldberg, “Architecture of Virtual Machines,”
National Computer Conference Proceedings, AFIPS
Press, vol. 42, pp. 309-318, June 1973.

[31] R. P. Goldberg, “Survey of Virtual Machine Research,”
IEEE Computer, vol. 7, no. 6, pp. 34-45, June 1974.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 219

http://sites.amd.com/us/business/it-solutions/virtualization/Pages/virtualization.aspx
http://sites.amd.com/us/business/it-solutions/virtualization/Pages/virtualization.aspx
https://fs.hlrs.de/projects/par/mpi/b_eff/
http://www.ffte.jp/
http://icl.cs.utk.edu/hpcc/
http://www.netlib.org/benchmark/hpl/
http://www.intel.com/technology/virtualization/
http://www.linux-kvm.org/page/Main_Page
http://www.microsoft.com/windows/virtual-pc/
http://www.scl.ameslab.gov/netpipe/
http://www.netlib.org/parkbench/
http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/
http://www.cs.virginia.edu/stream/
http://www.top500.org/
http://www.vmware.com/
http://www.xen.org/

[32] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni,
Fernando C.M. Martins, Andrew V. Anderson, Steven M.
Bennett, Alain Kagi, Felix H. Leung, Larry Smith, “Intel
Virtualization Technology,” IEEE Computer, vol. 38, no.
5, pp. 48-56, May 2005.

[33] Thomas C. Bressoud and Fred B. Schneider, “Hypervisor-
based Fault Tolerance,” ACM Transactions on Computer
Systems, vol. 14, pp. 80-107, 1996.

[34] Wei Chen, Hongyi Lu, Li Shen, Zhiying Wang, Nong
Xiao and Dan Chen, “A Novel Hardware Assisted Full
Virtualization Technique,” The 9th International
Conference for Young Computer Scientists, pp. 1292-
1297, Nov. 2008.

[35] Yan Wen, Jinjing Zhao, Huaimin Wang and Jiannong Cao,
“Implicit Detection of Hidden Processes with a Feather-
Weight Hardware-Assisted Virtual Machine,” ACISP '08
Proceedings of the 13th Australasian conference on
Information Security and Privacy, pp. 361-375, 2008.

220 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Market Basket Analysis Algorithm with
Map/Reduce of Cloud Computing

Jongwook Woo
Computer Information Systems Department

California State University
Los Angeles, CA

Yuhang Xu
Computer Information Systems Department

California State University
Los Angeles, CA

Abstract – Map/Reduce approach has been popular in
order to compute huge volumes of data since Google
implemented its platform on Google Distributed File
Systems (GFS) and then Amazon Web Service (AWS)
provides its services with Apache Hadoop platform.
Map/Reduce motivates to redesign and convert the existing
sequential algorithms to Map/Reduce algorithms for big
data so that the paper presents Market Basket Analysis
algorithm with Map/Reduce, one of popular data mining
algorithms. The algorithm is to sort data set and to convert
it to (key, value) pair to fit with Map/Reduce. It is executed
on Amazon EC2 Map/Reduce platform. The experimental
results show that the code with Map/Reduce increases the
performance as adding more nodes but at a certain point,
there is a bottle-neck that does not allow the performance
gain. It is believed that the operations of distributing,
aggregating, and reducing data in Map/Reduce should
cause the bottle-neck.

Keywords: Map/Reduce, Market Basket Analysis, Data
Mining, Association Rule, Hadoop, Cloud Computing

1 Introduction
Before Internet and Web did not exist, we did not have
enough data so that it was not easy to analyze people,
society, and science etc with the limited volumes of data.
Contradicting to the past, after Internet and web, it has been
more difficult to analyze data because of its huge volumes,
that is, tera- or peta-bytes of data. Google faced to the issue
as she collected big data and the existing file systems were
not sufficient to handle the data efficiently. Besides, the
legacy computing power and platforms were not useful for
the big data. Thus, she implemented Google File Systems
(GFS) and Map/Reduce parallel computing platform, which
Apache Hadoop project is motivated from.

Hadoop is the parallel programming platform built on
Hadoop Distributed File Systems (HDFS) for Map/Reduce
computation that processes data as (key, value) pairs.
Hadoop has been receiving highlights for the enterprise
computing because business world always has the big data
such as log files for web transactions. Hadoop is useful to
process such big data for business intelligence so that it has
been used in data mining for past few years. The era of

Hadoop means that the legacy algorithms for sequential
computing need to be redesigned or converted to
Map/Reduce algorithms. Therefore, in this paper, a Market
Basket Analysis algorithm in data mining with Map/Reduce
is proposed with its experimental result in Elastic Compute
Cloud (EC2) ans (Simple Storage Service) S3 of Amazon
Web Service (AWS).

People have talked about Cloud Computing that is
nothing else but the services we have used for several years:
hosting service, web email service, document sharing
service, and map API service etc. It is categorized into
Software as a Service (SaaS), Platform as a Service (PaaS),
and Infrastructure as a Service (IaaS). SaaS is to use a
service via Internet without installing or maintaining the
software, for example, web email services. PaaS is to have a
computing or storage service without purchasing hardware
or software, for example, hosting services. IaaS is to have
utility computing service that is similar to SaaS but to
purchase only the amount of time to use the service like
AWS [6, 7]. AWS provides S3, EC2, and Elastic
MapReduce services for Map/Reduce computation as IaaS
and SaaS in cloud computing.

In this paper, section 2 is related work. Section 3
describes Map/Reduce and Hadoop as well as other related
projects. Section 4 presents the proposed Map/Reduce
algorithm for Market Basket Analysis. Section 5 shows the
experimental result. Finally, section 6 is conclusion.

2 Related Work
Association Rule or Affinity Analysis is the fundamental
data mining analysis to find the co-occurrence relationships
like purchase behavior of customers. The analysis is legacy
in sequential computation and many data mining books
illustrate it.

Aster Data has SQL MapReduce framework as a
product [9]. Aster provides nPath SQL to process big data
stored in the DB. Market Basket Analysis is executed on the
framework but it is based on its SQL API with MapReduce
Database.

As far as we understand, there is not any other to
present Market Basket Analysis algorithms with
Map/Reduce. The approach in the paper is to propose the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 221

algorithm and to convert data to (key, value) pair and
execute the code on Map/Reduce platform.

3 Map/Reduce in Hadoop
Map/Reduce is an algorithm used in Artificial Intelligence
as functional programming. It has been received the
highlight since re-introduced by Google to solve the
problems to analyze huge volumes of data set in distributed
computing environment. It is composed of two functions to
specify, “Map” and “Reduce”. They are both defined to
process data structured in (key, value) pairs.

3.1 Map/Reduce in parallel computing

Map/Reduce programming platform is implemented in the
Apache Hadoop project that develops open-source software
for reliable, scalable, and distributed computing. Hadoop
can compose hundreds of nodes that process and compute
peta- or tera-bytes of data working together. Hadoop was
inspired by Google's MapReduce and GFS as Google has
had needs to process huge data set for information retrieval
and analysis [1]. It is used by a global community of
contributors such as Yahoo, Facebook, and Twitters.
Hadoop’s subprojects include Hadoop Common, HDFS,
MapReduce, Avro, Chukwa, HBase, Hive, Mahout, Pig,
and ZooKeeper etc [2].

The map and reduce functions run on distributed
nodes in parallel. Each map operation can be processed
independently on each node and all the operations can be
performed in parallel. But in practice, it is limited by the
data source and/or the number of CPUs near that data. The
reduce functions are in the similar situation because they
are from all the output of the map operations. However,
Map/Reduce can handle significantly huge data sets since

data are distributed on HDFS and operations move close to
data for better performance [5].

Hadoop is restricted or partial parallel programming
platform because it needs to collect data of (key, value)
pairs as input and parallely computes and generates the list
of (key, value) as output on map/reduce functions. In map
function, the master node parts the input into smaller sub-
problems, and distributes those to worker nodes. Those
worker nodes process smaller problems, and pass the
answers back to their master node. That is, map function
takes inputs (k1, v1) and generates <k2, v2> where < >
represents list or set. Between map and reduce, there is a
combiner that resides on map node, which takes inputs (k2,
<v2>) and generates <k2, v2>.

In reduce function, the master node takes the answers
to all the sub-problems and combines them in some way to
get the output, the answer to the problem [1, 2]. That is,
reduce function takes inputs (k2, <v2>) and generates <k3,
v3>. Figure 3.1 illustrates Map/Reduce control flow where
each valuemn is simply 1 and gets accumulated for the
occurrence of items together in the proposed Market Basket
Analysis Algorithm.

3.2 Database for Big Data

Input/Output files are processed on HDFS instead of using
HBase DB in the paper. However, as HBase is interesting
and will be integrated with the algorithm in the future, the
section briefly introduces HBase.

There are some drawbacks when we use RDBMS to
handle huge volumes of data, like impossible deleting, slow
inserting, and random failing. HBase on HDFS is
distributed database that supports structured data storage
for horizontally scalable tables. It is column oriented semi-
structured data store.

It is relatively easy to integrate with Hadoop
Map/Reduce because HBase consists of a core map that is
composed of keys and values - each key is associated with a
value. Users store data rows in labeled tables. A data row
has a sortable key and an arbitrary number of columns. The
table is stored sparsely, so that rows in the same table can
have different columns.

Using the legacy programming languages such as Java,
PHP, and Ruby, we can put data in the map as Java JDBC
does for RDBMS. The file storage of HBase can be
distributed over an array of independent nodes because it is
built on HDFS. Data is replicated across some participating
nodes. When the table is created, the table's column families
are generated at the same time. We can retrieve data from
HBase with the full column name in a certain form. And
then HBase returns the result according to the given queries
as SQL does in RDBMS [10].

3.3 The Issues of Map/Reduce

Although there are advantages of Map/Reduce, for some
researchers and educators, it is:

…

… Map1() Map2() Mapm()

Reduce1 () Reducel()

Data Aggregation/Combine

(key1, value11)
(key2, value12)
…
(keyn, value1n)

(key1, value21)
(key2, value22)
…
(keyn, value2n)

(key1, valuem1)
(key2, valuem2)
…
(keyn, valuemn)

(key1, <value11, value21, …, valuem1>)

(key2, <value12, value22, …, valuem2>)

(key1, final value1)
(key2, final value2)

(keyn, final valuen)

Figure 3.1. Map/Reduce Flows

Input Data

(keyn, <value1n, value2n, …, valuemn>)

Reduce2()

222 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

1. A giant step backward in the programming paradigm for
large-scale data intensive applications
2. Not new at all - it represents a specific implementation of
well known techniques developed tens of years ago,
especially in Artificial Intelligence
4. Data should be converted to the format of (key, value)
pair for Map/Reduce, which misses most of the features that
are routinely included in current DBMS
5. Incompatible with all of the tools or algorithms that have
been built [4].

However, the issues clearly show us not only the
problems but also the opportunity where we can implement
algorithms with Map/Reduce approach, especially for big
data set. It will give us the chance to develop new systems
and evolve IT in parallel computing environment. It started
a few years ago and many IT departments of companies
have been moving to Map/Reduce approach in the states.

4 Market Basket Analysis Algorithm
Market Basket Analysis is one of the Data Mining
approaches to analyze the association of data set. The basic
idea is to find the associated pairs of items in a store when
there are transaction data sets as in Figure 4.1.

If store owners list a pair of items that are frequently
occurred, s/he could control the stocks more intelligently, to
arrange items on shelves and to promote items together etc.
Thus, s/he should have much better opportunity to make a
profit by controlling the order of products and marketing.

For example, people have built and run Market Basket

Analysis codes – sequential codes - that compute the top 10
frequently occurred pair of transactions as in Figure 4.2. At
the store, when customers buy a cracker, they purchase a
beer as well, which happens 6,836 times and bourbon as
well in 5,299 times. Thus, the owner can refer to the data to
run the store.

4.1 Data Structure and Conversion

The data in Figure 4.1 is composed of the list of
transactions with its transaction number and the list of
products. For Map/Reduce operation, the data set should be
structured with (key, value) pairs. The simplest way used in
the paper is to pair the items as a key and the number of key
occurrences as its value in the basket, especially for all
transactions, without the transaction numbers. Thus, Figure
4.1 can be restructured as Figure 4.3 assuming collecting a
pairs of items in order 2 – two items as a key.

However, if we select the two items in a basket as a

key, there should be incorrect counting for the occurrence
of the items in the pairs. As shown in Figure 4.4,
transactions n and m have the items (cracker, icecream,
beer) and (icecream, beer, cracker), which have the same
items but in different order.

That is, for (cracker, icecream, beer), the possible pair

of items in (key, value) are ((cracker, icecream), 1),
((cracker, beer), 1), ((icecream, beer), 1). And, for
(icecream, beer, cracker), the possible pair of items are

Transaction 1: cracker, icecream, beer
Transaction 2: chicken, pizza, coke, bread
Transaction 3: baguette, soda, hering, cracker, beer
Transaction 4: bourbon, coke, turkey
Transaction 5: sardines, beer, chicken, coke
Transaction 6: apples, peppers, avocado, steak
Transaction 7: sardines, apples, peppers, avocado,
steak
…

 Figure 4.1 Transaction data at a store

Total number of Items: 322,322
Ten most frequent Items:

cracker, beer 6,836
artichok, avocado 5,624
avocado, baguette 5,337
bourbon, cracker 5,299
baguette, beer 5,003
corned, hering 4,664
beer, hering 4,566

…

Figure 4.2 Top 10 pair of items frequently
occurred at store

< (cracker, icecream), (cracker, beer) >
< (chicken, pizza), (chicken, coke), (chicken, bread) >
< (baguette, soda), (baguette, hering), (baguette,
cracker), (baguette, beer) >
< (bourbon, coke), (bourbon, turkey) >
< (sardines, beer), (sardines, chicken), (sardines, coke)
>
…
Figure 4.3 Data Set restructured for Map/Reduce

Transaction n: cracker, icecream, beer
Transaction m: icecream, beer, cracker

Figure 4.4 Data Set Restructured for the same list

Transaction n: ((cracker, icecream), 1),
((cracker, beer), 1), ((icecream, beer), 1)

Transaction m: ((icecream, beer), 1),
((icecream, cracker), 1), ((beer, cracker), 1)

Convert to (key, value): cross operation

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 223

((icecream, beer), 1), ((icecream, cracker), 1), ((beer,
cracker), 1).

Therefore, we have total SIX different pair of items
that occurs only once respectively, which should be THREE
different pairs. That is, keys (cracker, icecream) and
(icecream, cracker) are not same even though they are,
which is not correct.

We can avoid this issue if we sort the transaction in
alphabetical order before generating (key, value) as shown
in Figure 4.5. Now each transaction have the following
THREE pair of items ((beer, cracker), 1), ((beer, icecream),
1), ((cracker, icecream), 1). That is TWO different pair of
items that occurs twice respectively so that we accumulate
the value of the occurrence for these two transactions as
follows: ((beer, cracker), 2), ((beer, icecream), 2), ((cracker,
icecream), 2), which is correct to count the total number of
occurrences.

4.2 The algorithm

The Market Basket Analysis (MBA) Algorithms for Mapper
and Reducer are illustrated in Figures 4.6 and 4.7
respectively. Mapper reads the input data and creates a list
of items for each transaction. As a mapper of a node reads
each transaction on Hadoop, it assigns mappers to number
of nodes, where the assigning operation in Hadoop is
hidden to us. For each transaction, its time complexity is
O(n) where n is the number of items for a transaction.

Then, the items in the list are sorted to avoid the
duplicated keys as shown in Figures 4.4 and 4.5. Its time
complexity is O(n log n) on merge sort. Then, the sorted
items should be converted to pairs of items as keys, which is
a cross operation in order to generate cross pairs of the
items in the list as shown in Figures 4.4 and 4.5. Its time
complexity is O(n x m) where m is the number of pairs that
occurs together in the transaction. Thus, the time
complexity of each mapper is O(n + n log n + n x m).

The reducer is to accumulate the number of values per
key. Thus, its time complexity is O(v) where v is the number
of values per key.

4.3 The code

The ItemCount.java code is implemented on Hadoop 0.20.2
and 0.21.0 and executable on stand-alone and clustered
modes. The code generates the top 10 associated items that
customers purchased together as shown in Figure 4.2.
Anyone can download the files to test it, which takes the
sample input "AssociationsSP.txt” as introduced in the blog
[8]. The sample input has 1,000 transactions with data as
shown in Figure 4.1.

5 Experimental Result

We have 5 transaction files for the experiment: 400 MB
(6.7M transactions), 800MB (13M transactions), 1.6 GB
(26M transactions). Those are run on small instances of
AWS EC2 which allows to instantiate number of nodes
requested, where each node is of 1.0-1.2 GHz 2007 Opteron
or Xeon Processor, 1.7GB memory, 160GB storage on 32
bits platform. The data are executed on 2, 5, 10, 15, and 20

Transaction n: cracker, icecream, beer
Transaction m: icecream, beer, cracker

Figure 4.5 Data Set Restructured with Sort

- Transaction n: ((beer, cracker), 1),
((beer, icecream), 1), ((cracker, icecream), 1)
- Transaction m: ((beer, cracker), 1),
((beer, icecream), 1), ((cracker, icecream), 1)

Convert to (key, value): cross operation

Transaction n: beer, cracker, icecream
Transaction m: beer, cracker, icecream

Sort the items in alphabetical order

1: Read (ynl, <number of occurrences>) data from
multiple nodes

2. Add the values for ynl to have (ynl, total number of
occurrences)

Figure 4.7. MBA Algorithm for Reducer

1: Reads each transaction of input file and generates
the data set of the items:
(<V1>, <V2>, …, <Vn>) where < Vn>: (vn1, vn2,.. vnm)

2: Sort all data set <Vn> and generates sorted data set
<Un>:
(<U1>, <U2>, …, <Un>) where < Un>: (un1, un2,.. unm)

3: Loop While < Un> has the next element;
 note: each list Un is handled individually
3.1: Loop For each item from un1 to unm of < Un> with
NUM_OF_PAIRS
3.a: generate the data set <Yn>: (yn1, yn2,.. ynl);

ynl: (unx� uny) is the list of self-crossed pairs of
(un1, un2,.. unm) where unx

�
uny

3.b: increment the occurrence of ynl;
note: (key, value) = (ynl, number of occurrences)

3.2: End Loop For
4. End Loop While

5. Data set is created as input of Reducer: (key,
<value>) = (ynl, <number of occurrences>)

Figure 4.6. MBA Algorithm for Mapper

224 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

nodes respectively and its execution times are shown in
Table 5.1. For 13 and 26 Mega transactions of 2 nodes, it
took too long to measure the execution times so that we do
not execute them and its times are Not Applicable (NA) in
the Table 5.1.

 Trax

Nodes

6.7M
(400MB)

13M
(800MB)

26M
(1.6GB)

2 9,133 NA NA
5 5,544 8,717 15,963
10 2,910 5,998 8,845
15 2,792 2,917 5,898
20 2,868 2,911 5,671

The output of the computation in Table 5.2 presents

the number of items (total: 1.3G) and keys (total: 212) that
are associated pair of items in order 2, especially for data of
26M transactions in file size 1.6GB. And, the 10 most
frequently occurred items and its frequency, which is (key,
value), are shown.

Figure 5.1 based on Table 5.1 is the chart of the

experimental result with 400 MB (6.7M transactions),
800MB (13M transactions), 1.6 GB (1,600 MB 26M
transactions). The more the nodes are, the faster the
computation times are. Since the algorithm is simply to sort
the data set and then convert it to (key, value) pairs, the
linear result is expected. The performance is linearly
increased by some nodes for some transaction data sets but
it has the limitation. For 400MB file, there is not much
difference among nodes 10, 15 and 20. Similarly, for
800MB and 1.6GB files, there are not many differences
between nodes 15 and 20. There is bottleneck in EC2 small
instance, which shows that there is a trade-off between the
number of nodes and the operations of distributing

transactions data to nodes, aggregating the data, and
reducing the output data for each key so that it should not
have much performance gain even though adding mode
nodes for faster parallel computation.

0
2000
4000
6000
8000
10000
12000
14000
16000

sec

2 5 10 15 20

No of nodes

Execution time

400

800

1600

In summary, the experimental data illustrates that even
though the number of nodes are added, at a certain point,
there is a bottleneck that cannot increase the performance
because of the time to distribute, aggregate, and reduce the
data to Map/Reduce nodes.

6 Conclusion
Hadoop with Map/Reduce motivates the needs to propose
new algorithms for the existing applications that have had
algorithms for sequential computation. Besides, it is (key,
value) based restricted parallel computing so that the legacy
parallel algorithms need to be redesigned with Map/Reduce.

In the paper, the Market Basket Analysis Algorithm
on Map/Reduce is presented, which is association based
data mining analysis to find the most frequently occurred
pair of products in baskets at a store. The data set shows
that associated items can be paired with Map/Reduce
approach. Once we have the paired items, it can be used for
more studies by statically analyzing them even sequentially,
which is beyond this paper.

The algorithm has been executed on EC2 small
instances of AWS with nodes 2, 5, 10, 15, and 20. The
execution times of the experiments show that the proposed
algorithm gets better performance while running on large
number of nodes to a certain point. However, from a certain
point, Map/Reduce does not guarantee to increase the
performance even though we add more nodes because there
is a bottle-neck for distributing, aggregating, and reducing
the data set among nodes against computing powers of
additional nodes.

7 Reference
[1] “MapReduce: Simplified Data Processing on Large
Clusters", Jeffrey Dean and Sanjay Ghemawa, Google
Labs, pp. 137–150, OSDI 2004

Table 5.1. Execution time (sec) at Map Task:

Total number of keys in order 2: 212
Total number of items: 1,255,922,927

Items Paired (key) Frequency (value)
cracker, heineken 208,816,643

artichok, avocado 171,794,426

avocado, baguette 163,027,463
bourbon, cracker 161,866,763
baguette, heineken 152,824,775
corned_b, hering 142,469,636
heineken, hering 139,475,906
bourbon, heineken 126,310,383
baguette, cracker 125,699,308
artichok, heineken 125,180,072

Table 5.2. 10 most frequently associated
items on 1.6GB 26M transactions

Figure 5.1. Chart for Execution Time

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 225

[2] Apache Hadoop Project, http://hadoop.apache.org/,

[3] “Building a business on an open source distributed
computing”, Bradford Stephens , Oreilly Open Source
Convention (OSCON) 2009, July 20-24, 2009, San Jose,
CA

[4] “MapReduce Debates and Schema-Free”, Woohyun
Kim, Coord, March 3 2010

[5] “Data-Intensive Text Processing with MapReduce”,
Jimmy Lin and Chris Dyer, Tutorial at the 11th Annual
Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL HLT
2010), June 2010, Los Angeles, California

[6] “ Introduction to Cloud Computing”, Jongwook Woo,
the 10th KOCSEA 2009 Symposium, UNLV, Dec 18-19,
2009

[7] “The Technical Demand of Cloud Computing”,
Jongwook Woo, Korean Technical Report of KISTI (Korea
Institute of Science and Technical Information), Feb 2011

[8] “Market Basket Analysis Example in Hadoop,
http://dal-cloudcomputing.blogspot.com/2011/03/market-
basket-analysis-example-in.html”, Jongwook Woo, March
2011

[9] “SQL MapReduce framework ”, Aster Data,
http://www.asterdata.com/product/advanced-analytics.php

[10] Apache HBase, “http://hbase.apache.org/”

[11] “Data-Intensive Text Processing with MapReduce”,
Jimmy Lin and Chris Dyer, Morgan & Claypool Publishers,
2010.

[12] GNU Coord, http://www.coordguru.com/

[13] “Integrated Information Systems Architecture in e-
Business”, Jongwook Woo, Dong-Yon Kim, Wonhong
Cho, MinSeok Jang, The 2007 international Conference on
e-Learning, e-Business, Enterprise Information Systems, e-
Government, and Outsourcing, Las Vegas (June 26-29,
2007)

226 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

http://hadoop.apache.org/
http://www.asterdata.com/product/advanced-analytics.php
http://hbase.apache.org/

SESSION

PARALLEL ALGORITHMS AND APPLICATIONS

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 227

228 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Graph Generation on GPUs using Dynamic Memory Allocation

A. Leist and K.A. Hawick
1Computer Science, Massey University

2Albany, North Shore 102-904, Auckland, New Zealand

Abstract— Complex networks are often studied using sta-
tistical measurements over many independently generated
samples. Irregular data structures such as graphs that involve
dynamical memory management and “pointer chasing” are
an important class of application and have attracted recent
interest in the form of the Graph500 benchmark formulation.
The generation of simulated sample network graphs and
measurement of their properties can be accelerated using
Graphical Processing Units (GPUs) and we discuss some
algorithmic approaches using Compute Unified Device Ar-
chitecture (CUDA). We particularly discuss recent support
for dynamic memory allocation within CUDA GPU code
and present some performance data for Watts’ α small-world
network model.

Keywords: CUDA; GPGPU; graph generation; dynamic memory
allocation

1. Introduction
Generating synthetic graph or network data is very useful

in investigating the statistical properties of various models.
Properties such as the average path length [1], [2], clustering
coefficient [3]; circuit and loop structure [4]; between-ness
and reachability of the networks defined by various models
can all be measured quantifiably on various sample network
realisations. Scaling can be studied as the size of the gener-
ated synthetic data set is varied and for some models other
parameters can also be varied and their effect systematically
studied. This is a powerful approach as real data from
experiments, real physical systems or surveys often contain
noise or inaccuracies whereas a comparison with synthetic
data – particularly when averaged over many samples – can
make it a lot easier to identify effects and make comparisons
with theoretical predictions.

A great deal of work has been reported in the literature on
the properties of complex networks [5], [6]. These include:
classic random graphs [7], [8]; small-World graphs such as
the Watts-Strogatz β-model [9] and scale-free and preferential
attachment models such as that of Barabási and Albert
[10]. Applications include social problems like collaboration
networks [11]; clustering and community structure determi-
nation [12]; and the Internet [13] and world-wide web [14].

An interesting model that has attracted somewhat less
effort is Watts’ α-model. This sociological model presents
some challenging computational problems in generating large
synthetic sample networks. A sample network generated with
the α-model is illustrated in Figure 1.

Investigation of the properties of small-world networks
[15], [16] reveals that many of the interesting phenomena are
only revealed over size scales that vary with some power law.
Consequently it is necessary to generate networks with a large
number of nodes with potentially large numbers of edges
as well. This is computationally challenging and parallel
computing techniques become necessary just to generate
good sample sizes of large synthetic networks.

Parallel graph generation has attracted recent interest due
to the announcement of the Graph500 benchmark [17] for
supercomputer systems in 2010. Led by Murphy at the Sandia
National Laboratory, the Graph500 is an important attempt to
recognise that many of the application problems that are run
on supercomputers are not necessarily well characterised by
the linear algebra problem represented by the widely quoted
Linpack benchmark, which is used to compile the Top500
[18] list of worldwide supercomputers.

The Graph500 benchmark is still in an early stage of
uptake and adoption and consists of a two-part benchmark to
generate a scale-free graph and to perform parallel searches
upon it. The synthetic graphs can be quite large in size and
the scalability of performance with graph size is an important
aspect of this sort of performance benchmark.

We have chosen to study algorithms for generation of Watts
α-model networks on data-parallel accelerator devices such
as graphical processing units (GPUs). There has been a great
deal of interest in the performance and capabilities of GPUs
in recent years and several of the top performing supercom-
puters in the Top500 list in fact employ GPU accelerators
to attain their performance ratings with Linpack. It therefore
is of topical interest to explore the performance of GPUs in
carrying out graph generation and in particular to determine
how well some recent features of GPU programming models
and systems cope with these tasks.

We explore the performance of GPUs using NVIDIA’s
Compute Unified Device Architecture (CUDA) and in this
paper we look at a recently introduced CUDA capability –
to allocate memory dynamically within the GPU code itself.
The programming model for GPUs has until recently been
that of calling compute kernels written in CUDA to run on
the GPU as ”pseudo subroutines” from the conventional CPU
host program. Memory management had to be performed in
the CPU calling code only. The recent introduction [19] of
the malloc and free routines into CUDA offers some
new possibilities for dynamical memory ”pointer-chasing”
applications such as graph generation.

Our article is structured as follows. In Section 2 we define
the Watts α-model and summarise the generation algorithm
for synthetic networks of this type. The relevant features of
the CUDA GPU architecture are described in Section 3. In
Section 4 we expand on details of our serial and parallel
implementations of the model using single and multi-core
CPU approaches as well as a GPU implementation. We
present some scaling and performance results in Section 5
and a discussion of their implications in Section 6. We offer
some conclusions and areas for further work with multi-core
and GPU graph generation algorithms in Section 7.

2. The α-Model
Watts introduced the α-model as a way of interpolating

between the two extreme social network cases of the “cave-
man” model and “solaris” model [9]. The “cave-man” model

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 229

Fig. 1: Graph generated using the Watts α-model with n =
500 vertices, degree k = 10 and α = 2.0. Larger values of
α increase the number of random edges and therefore the
connectedness of the graph.

posits a situation where individuals (nodes in the network)
may be well connected (via a graph edge) within their local
“cave” of friends, but where there are no connections between
“caves.” The “solaris” model is the random graph case where
relationship edges are plentiful and global but random. The
α model introduces a parameter (α) that interpolates between
these situations.

Watts defines the α-model [20] for choices of number of
nodes n, connectivity k and parameter α as follows:

1) Consider in turn each vertex i. Vertices i = 1...n are
chosen in random order, but once a vertex has been
wired by choosing a new neighbour, it may not choose
again until all other vertices have taken their turn at
this step.

2) For every other vertex j 6= i, compute Ri,j according
to Equation 1, imposing the additional constraint that
Ri,j = 0 if vertices i and j are already connected.

3) Then sum the Ri,j over all j 6= i and normalise
each to obtain variables Pi,j = Ri,j/

∑
l 6=iRi,l. Now∑

j Pi,j = 1, Pi,j can be interpreted as the probability
that i will be connected to j. In addition, Pi,j can be
interpreted geometrically as dividing [0, 1) – the unit
interval – into n−1 half-open subintervals with length
Pi,j ,∀j 6= i.

4) A uniform pseudo-random variable is generated on
[0, 1). It will fall into one of the subintervals, which
we identify as corresponding to j∗.

5) We then connect i to j∗.
The five steps of this procedure are repeated until the

predetermined number of edges (M = (k ∗ n)/2) has been
constructed.

Ri,j =

1, mi,j ≥ k[mi,j

k

]α
(1− p) + p, k > mi,j > 0

p, mi,j = 0

 (1)

where:
Ri,j = a measure of vertex i’s propensity to connect
to vertex j (zero if they are already connected)
mi,j = number of vertices adjacent to both i and j
k = the average degree of the graph
p = a baseline, random probability of an edge (i, j)

existing (p�
(
n
2

)−1
)

α = a tunable parameter, 0 <= α <=∞
In the cases of α ≡ 0 we retain the cave-man clumped

model with disconnects. In the case of α → ∞ we recover
the case of the random graph model. The α model exhibits
a phase change in its properties at a particular value of the
α parameter. For example the average path-length between
all possible pairs of nodes in the graph is an interesting
metric. At low α values it starts low and rises to a peak
with increasing α, then falls away to a flat fixed value at
high α [9].

3. NVIDIA GPU Architecture
GPU architectural details have been described in detail

elsewhere [21] but for completeness we give here a brief
summary of memory and other architectural features critical
to an explanation of our graph generation algorithm.

Of the many GPGPU APIs available [19], [22], [23], [24],
NVIDIA’s CUDA stands out as the most developed and
advanced API. However, it can only be used in conjunction
with NVIDIA GPUs. Our development of GPGPU applica-
tions uses the CUDA toolkit and is thus limited to graphics
hardware from the same manufacturer. While we specifically
discuss the NVIDIA device architecture, most of the concepts
are transferable to products from other vendors.

CUDA compliant GPUs contain a scalable array of Stream-
ing Multiprocessors (SMs), which in turn are host to up
to 32 Scalar Processors (SPs) in the latest generation of
“Fermi”-architecture based devices. Each SM can perform
computation independently but the SP cores within the
same multiprocessor all execute instructions synchronously.
NVIDIA call this paradigm Single Instruction Multiple
Thread (SIMT) [19].

The GPU hardware is capable of managing thousands
of threads at a time. It performs the tasks of creating and
scheduling threads in hardware, which keeps the overhead of
managing a large number of threads very small. The GPU
is designed to support fine-grained parallelism. In order to
utilise the hardware properly, applications need to split the
work load into many threads, each of which performs a
relatively small unit of work.

GPUs contain several different types of memory. The latest
generation of Fermi devices even adds an implicit L1/L2
cache hierarchy to the mix, a feature previously not available
on GPUs. The GPU memory types explicitly accessible from
CUDA are as follows [19]: Registers are used to store local
variables belonging to each thread. When registers can not
hold all local variables, then they spill into Local Memory,
which is an area of the L1/L2 caches on Fermi devices and
a section of much slower device memory on older GPUs.
Global Memory is the largest section of memory and also
resides in device memory. It is the only memory type that
the CPU can read from and write to. It is accessible by
all threads, but has the slowest access times (400-600 clock
cycles). The total transaction time can be improved by coa-
lescing – 16 sequential threads that access 16 sequential and
word-aligned memory addresses can coalesce the read/write
into a single memory transaction. Shared Memory is a fast
on-chip read/write memory that can be used as an explicit
cache and to share data between threads in the same thread
block. Provided that threads access different memory banks
(16 for pre-Fermi devices and 32 for Fermi devices), memory
transactions are as fast as accessing registers. Texture Memory
is a cached method for reading from a section of global

230 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

memory that is bound to a texture reference. Texture memory
is optimised for spatial memory access. It performs best when
streaming data that is located spatially close in the dimensions
defined by the texture reference. Constant Memory is another
cached method for reading from global memory. A global
memory read is only required in the event of a cache miss.
If all threads read the same value from the constant cache,
the cost is the same as reading from registers.

The developer must explicitly utilise the memory types
best suited for the given task. Because bandwidth is limited,
the optimal memory access strategy can provide huge per-
formance gains, and the wrong strategy can severely hamper
performance.

A CUDA application has a number of threads organised
into thread blocks, which are all arranged into a grid. A block
of threads has up to three dimensions (x,y,z) and can contain
no more than 512 (1024 on Fermi devices) threads. A grid
has two dimensions (x,y) and has a maximum size of 65535
in each dimension. CUDA allows the user to control the
arrangement of threads into blocks and of blocks into the grid.
The developer can control how these threads are arranged in
order to make optimal use of the on-chip memory.

When a CUDA application is executed, each block is
assigned to execute on one multiprocessor. This SM will
manage and execute the threads within the block on its SPs.
While the block arrangement does not have a significant
impact on the execution of the threads on the multiproces-
sors, it strongly affects the manner in which threads access
memory and use the memory optimisations available on the
GPU. Threads should be arranged into blocks such that the
maximum amount of data can be shared between threads in
fast on-chip memory and that any unavoidable global memory
accesses be coalesced.

4. Generating Complex Networks
Complex networks arising from generator algorithms like

the α model have non-trivial topological features, like those
often found in real-world networks such as social networks
[25], [11], metabolic networks [26], [27] or neural networks
[28]. The connections between nodes in a complex network
are neither purely regular nor purely random. Many of these
networks possess the properties of high clustering and short
mean vertex-vertex path length characteristic to small-world
networks [9], which explains the interest in this category of
networks over the last decade.

As can be seen from the algorithm in Section 2 above, there
are some compute-intensive stages involved in generating α-
model synthetic networks. The O(n2k) complexity of the
algorithm arises from the need to compute a property over all
vertices for each edge of each vertex. It is therefore attractive
to find a way of accelerating or parallelising the algorithm to
allow feasible simulation of networks with large n and k.

We have implemented the α-model for and compare the
performance between: a single CPU core (Section 4.1), a
multi-core CPU utilising all available cores (Section 4.2) and
a graphics device used as compute accelerator (Section 4.3).

4.1 The Sequential CPU Implementation
The sequential CPU implementation is used as reference

to measure the scaling behaviour of the multi-threaded im-
plementation and to explain the basic steps of the algorithm.
Algorithm 1 uses pseudo-code to describe the steps that are
executed when generating a graph using the α-model.

Algorithm 1 Pseudo-code for the sequential CPU implemen-
tation of Watts’ α-model network generator.

//generate M ← kn/2 edges
for e← 1 to M do

//R is the set of vertices not yet chosen in this round
if R = {} then
R← init. remaining vertices to set of all vertices V

vi ← randomly chosen vertex from R
remove vi from R
for all vj ∈ V, j 6= i do
p← pbase× uniform random number
determine if edge ei,j exists
count the neighbours shared by vi and vj
P [j]← compute vi’s propensity to connect to vj

normalise the results in P
//select vi’s new neighbour vj
r ← uniform random number
psum ← 0.0
for all vj ∈ V, j 6= i ; psum < r do
psum ← psum + P [j]

insert vj into adjacency-list Ai of vi
insert vi into adjacency-list Aj of vj

The propensity Ri,j of vertex vi to connect to vertex vj ∈
V, j 6= i is calculated according to Equation 1. The baseline,
random probability of an edge existing is pbase =

(
n
2

)−1
. To

account for the p� pbase in the equation, the probability p
is calculated for every possible edge ei,j by multiplying the
baseline probability with a uniform random number.

All implementations of the generator described here insert
a new neighbour into an adjacency-list so that the list is sorted
in ascending order. This significantly improves performance
when counting the neighbours shared by two vertices.

4.2 The Multi-Threaded CPU Implementation
While CPU manufacturers have traditionally increased

the CPU frequencies from one generation to the next, this
trend has slowed down dramatically over the last years, as
the increasing power consumption becomes more and more
difficult to manage. Manufacturers like Intel or AMD have
instead started to incorporate more cores onto a single CPU
die.

The consequence for software developers and end users
is that sequential software does not automatically run faster
on newer CPUs. Programmers have to re-think and modify
their software to utilise multiple threads that can run con-
currently on different CPU cores. However, multi-threaded
programming is more difficult than writing a sequential
implementation. To ease the burden placed on the developers
and to increase their productivity, libraries have emerged
that attempt to abstract some of the difficulties of multi-
threaded programming away from the developer. One of these
libraries is the Threading Building Blocks (TBB) library [29]
developed by Intel. We have shown previously [30] that it
achieves comparable performance to low-level multi-threaded
implementations based on POSIX threads [31].

We have used TBB to parallelise the CPU implementation
of the α-model. To achieve good performance, the inner-loops
need to be parallelised where possible. The following loops
described in Algorithm 1 can be executed in parallel:
• The set R of vertices not yet chosen in the current round

is initialised using tbb::parallel for.
• The random numbers needed for p ← pbase× uniform

random number are generated using T instances of
tbb:tbb thread, where T is the number of logical
CPU cores available. Each thread generates n/T random
numbers using its own random number generator (RNG)
instance to ensure repeatability of the algorithm. The

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 231

Algorithm 2 Propensity computation using TBB’s
tbb::parallel reduce. This code uses the lambda
expressions introduced in the upcoming C++0x standard.
Lambda expressions let the compiler do the work of creating
the function objects needed by TBB, which makes the code
easier to read. Each task iterates over a range of values,
computing the respective propensity values.

double t o t a l P r o p e n s i t y = t b b : : p a r a l l e l r e d u c e (
t b b : : b l o c k e d r a n g e<i n t >(0 , n V e r t i c e s) , 0 . 0 ,
[=] (c o n s t t b b : : b l o c k e d r a n g e<i n t>& range ,

double i n i t)−>double {
/ / t h i s lambda f u n c t i o n computes t h e
/ / p r o p e n s i t i e s f o r a range o f v e r t i c e s
double sum = i n i t ; / / sum over g i v e n range
c o n s t i n t end = r a n g e . end () ;
f o r (i n t i = r a n g e . b e g i n () ; i < end ;++ i){

/ / compute p r o p e n s i t y [i] he re
sum += p r o p e n s i t y [i] ; / / add t o sum

}
re turn sum ;

} ,
[] (double x , double y)−>double {

/ / lambda f u n c t i o n combines two r e s u l t s
re turn x+y ;

}
) ;

random numbers are stored in an array for consumption
in the next step. Repeatability is also the reason why
the random numbers are not generated as part of the
following tbb:parallel reduce step. The TBB
scheduler assigns the tasks used during the reduction
operation dynamically to hardware threads and does
not expose this information to the developer, making
it difficult to generate the same sequence of random
numbers over multiple runs initialised with the same
seed.

• The most time consuming loop by far is the computation
of vi’s propensity to connect to all vj ∈ V . It is however
fairly straight forward to parallelise, as there are no de-
pendencies between the iterations except for the calcula-
tion of the total propensity sum, which is later on needed
to calculate the uniform propensity values. This can
be implemented using the tbb::parallel reduce
operation as shown in Algorithm 2.

The last remaining inner-loop iterates over the propensity
values, normalises these values and computes the inclusive
prefix-sum until a random number exceeds the sum, at which
point it has found the new neighbour vj and can stop
running. This loop is computationally cheap, runs for only
n/2 iterations on average, would require a parallel scan over
all n elements and another parallel operation to determine vj
and is therefore not worth parallelising on the CPU.

The two function calls needed to create the new edge by
inserting the two vertices into each others adjacency-lists
(vj into Ai and vi into Aj) can be executed in parallel
using tbb::parallel invoke. However, this decreased
performance slightly during our tests and is thus not done in
parallel.

4.3 The CUDA GPU Implementation
Graphical processing units have become popular as com-

pute accelerators for non-graphical applications in the high-
performance computing sector over the last years. NVIDIA
has helped this trend with their popular CUDA toolkit, which

Algorithm 3 Pseudo-code for the CUDA implementation of
Watts’ α-model network generator. This is the host code that
manages the CUDA execution.

allocate device memory incl. sufficient heap memory
generate seeds for the device RNGs and copy to device
do in parallel on the device using T threads: initialise device RNGs
Vdeg ← 0 //init. the vertex degree device array
create CUDPP plan for parallel scan on the device
//generate M ← kn/2 edges
for e← 1 to M do

//R is the set of vertices not yet chosen in this round
if R = {} then
R← init. remaining vertices to set of all vertices V

vi ← randomly chosen vertex from R
remove vi from R
do in parallel on the device using T threads:

generate n random numbers
do in parallel on the device using n threads:

call compute propensity kernel
do in parallel on the device using n threads:

call normalise propensity kernel
do in parallel on the device:

call cudppScan (inclusive prefix-sum)
do in parallel on the device using n threads:

call select nbr kernel
do in parallel on the device using 2 thread blocks:

call add arc kernel
destroy CUDPP plan and free device memory

introduces a few extensions to C++ that enable developers
to tap into the processing power of the GPU using well
established C programming tools and skills. The GPU code
is written in form of so called device kernels – routines
that execute on the GPU – which are managed by the CPU
running the host program. The CPU is free to perform other
tasks while the GPU is processing a kernel.

The GPU has a highly data-parallel architecture with many
processing units, making it very powerful when executing
the same instructions on large arrays of data, but making
it difficult to achieve good performance when running algo-
rithms that are more serial in nature, have many conditional
branches or are bandwidth-limited. However, we have shown
[32], [30], [33], [21] that it is often possible to achieve
good speed-ups over traditional CPUs even in such less-than-
optimal situations.

The task of generating a graph like the α-model is par-
ticularly challenging, as it is necessary to repeatedly iterate
over the neighbours structure, which puts high demands on
the memory bandwidth and does not perform many compute
instructions per data element. But the recent interest in
the Graph500 and the newly gained ability to dynamically
allocate and free memory in device code makes it an inter-
esting challenge. Algorithm 3 describes the host code that
coordinates the device kernel execution.

We use Marsaglia’s random number generator [34] to
generate both the host and device random numbers. The
CUDA implementation of the RNG is explained in [35]. For
large networks it would not be feasible to have a separate
RNG instance for every vertex, as each instance requires
400 bytes of global memory. We therefore use a specialised
RNG kernel, which is executed by T CUDA threads, to
generate the random numbers. Every thread generates x
random numbers per kernel call, where x = ceil(n/T). The
value of T depends on the graphics hardware used. It must
be large enough to keep the device busy and it should be
divisible by the number of cores available on the GPU, the
number of multiprocessors and the thread block size. We
set T = 30720 for the GTX580 used for the performance
measurements reported in this paper.

232 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Algorithm 4 The compute propensity kernel.
Input parameters: vi, pbase, alpha, k
vj ← global thread ID queried from CUDA runtime
sums ← 0.0 //init. block local propensity sum
p← pbase× (random uniform number)
ki ← load degree of vertex vi
Ai(ptr)← load the pointer to adjacency-list Ai
Ai ← load adjacency-list at Ai(ptr) into shared memory
synchronise thread block
determine if edge ei,j exists (vj ∈ Ai)
if edge does not exist then
kj ← load degree of vertex vj
Aj(ptr)← load the pointer to adjacency-list Aj
count the neighbours shared by vi and vj
p← compute vi’s propensity to connect to vj

sums[btid]← p //btid is the thread idx within the block
P [vj]← p //write propensity to global memory
synchronise thread block
sums ← perform reduction operation
//sums[0] now contains the block local sum
if btid = 0 then

atomically add the local sum sums[0] to the global sum

Algorithm 5 Device function countSharedNbrs counts
the number of neighbours shared by two vertices. It assumes
that the adjacency-lists are sorted in ascending order. The
performance of this function is critical to the overall perfor-
mance. Ai is stored in shared memory.

d e v i c e f o r c e i n l i n e
Uin t c o u n t S h a r e d N b r s (i n t v i , i n t ∗ A i ,

i n t v j , i n t ∗ A j) {
Uin t c o u n t = 0 ;
f o r (i n t i dx1 =0 , idx2 =0 , tmp ;

idx1<v i && idx2<v j ;) {
c o u n t = A i [i dx1]== A j [idx2] ? c o u n t +1 : c o u n t ;
tmp = A i [idx1]<= A j [idx2] ? idx1 +1 : idx1 ;
idx2 = A j [idx2]<= A i [idx1] ? idx2 +1 : idx2 ;
idx1 =tmp ;
}
re turn c o u n t ;
}

Algorithm 4 shows how the propensity values are com-
puted on the device. Ai can be loaded to shared memory
using coalesced memory transactions as all threads in the
block cooperate to load it from global memory. The data in
Ai is used by all threads. Aj is different for every vertex
and the global memory transactions are not coalesced, but
the automatic caching on Fermi devices helps to keep the
throughput relatively high. Algorithm 5 shows the device
function that is called to count the shared neighbours. It has to
loop over both adjacency-lists and is therefore highly critical
to the performance.

After the propensity values and propensity sum have
been computed, they need to be normalised. This is all
that normalise propensity kernel needs to do. The
array of normalised propensity values is then passed to

Algorithm 6 The select nbr kernel.
Input parameters: random number rnd
vj ← global thread ID queried from CUDA runtime
Ps[btid+ 1]← load scan results from P [vj] into shared mem.
if btid = 0 then

if vj > 0 then
Ps[0]← load last value from previous block P [vj − 1]

else
Ps[0]← 0 //first subinterval, no lower value

//determine if rnd falls into the subinterval Pi,j
if Ps[btid] ≤ rnd AND Ps[btid+ 1] > rnd then

write vj to mapped host memory

Algorithm 7 The add arc kernel.
Input parameters: vi, vj
v ← vi for block 0 and vj for block 1
nbr ← vj for block 0 and vi for block 1
kv ← load degree of vertex v
if btid = 0 AND kv > 0 then
Av old(ptr)← load the pointer to Av into shared mem.

if btid = 0 AND need to allocate new Av then
Av(ptr)← allocate memory for kv + 32 integers

else if btid = 0 then
Av(ptr)← Av old(ptr) //keep using the existing array

synchronise thread block
Av ← load adjacency-list at Av old(ptr) into shared mem.
copy elements from Av to Av(ptr), adding one to the index if the current
value is larger than nbr
if btid = 0 then

insert nbr into Av(ptr) so that Av(ptr) is sorted (asc.)
write kv + 1 to global memory
if Av(ptr) 6= Av old(ptr) then

write the pointer Av(ptr) to global memory
if kv > 0 then

free memory pointed to by Av old(ptr)

cudppScan, a function of the CUDA Data Parallel Prim-
itives Library [36] (CUDPP), which performs an inclusive
parallel prefix-sum operation on the input data.

The result of the scan operation is the array Pi,j ,∀j 6=
i of subintervals in the range [0, 1). This is passed to
select nbr kernel, along with a uniform random num-
ber. The kernel, described in Algorithm 6, then determines
for every vj if the random number falls into the respective
subinterval. To do this, each thread checks whether the
random number is larger than or equal to the upper end of
the propensity range for the previous vertex P [vj − 1] and
smaller than the upper end of the propensity range P [vj].
This is the case for exactly one vertex vj , which is selected
as the new neighbour.

Finally, the edge ei,j can be created. This is done in
Algorithm 7 add arc kernel. This kernel is only executed
by 2 thread blocks, one for each end of the new edge,
which it inserts into the respective adjacency-list. This only
utilises a fraction of the processing units on the device (16
multiprocessors with a total of 512 processing units on the
GTX580). To improve device utilisation, we use two CUDA
streams to concurrently run the add arc kernel and gen-
erate the random numbers needed for the next iteration. These
two kernels have no dependencies on each other and can
therefore safely run in parallel. The add arc kernel does
not allocate new memory every time it adds a new vertex.
Instead, it increases the allocated length by 32 elements
when needed. This is critical to performance, as the malloc
operations are expensive. The minimum increment should
be 4 for 32-bit arrays, as the pointers returned by malloc
are aligned to 16 bytes. However, 32 works nicely with the
128 byte cache line width on Fermi devices and performed
better in our experiments. The downside of allocating too
much is wasted memory.

We will refer to this CUDA implementation as CUDA 1.
We have also implemented a second version of the algorithm,
which we shall refer to as CUDA 2 respectively, that is
identical to the first implementation except for one key
criterion: It replaces the add arc kernel with a kernel
that merely determines the indices into the adjacency-lists
at which the new neighbours have to be inserted to keep
them sorted. The indices are written to mapped host memory.
The actual memory allocation, deallocation and copying is
initiated in the traditional way by the host thread with calls to
cudaMalloc, cudaFree and cudaMemcpy(Async).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 233

Fig. 2: This plot shows how the algorithms scale with the
network size n = 20 000 to 100 000. The mean degree is set
to k = 20 and α = 1.0. The standard deviations showing the
measurement error are smaller than the symbol size.

This second implementation is used to compare the perfor-
mance of the new in-kernel functions for dynamic memory
management to the library calls initiated by the host thread.

5. Performance Results
To compare the performance of the different implementa-

tions of the α-model, we measured the execution time for
each of the algorithms. We tested the scaling behaviour with
increasing network size and fixed degree and vice versa.
The parameter α is always set to 1.0 for these experiments.
Other values of α only have a very minor impact on the
performance.

The test platforms run Ubuntu Linux 10.10 with GCC 4.5
and CUDA 3.2. Both the single-threaded and multi-threaded
CPU implementations were tested on an Intel Core i7 970
with 6 cores running at 3.2 GHz. This machine has 12 Gbytes
of main memory. The CUDA algorithm was tested on an Intel
Core i7 870 with 4 cores running at 2.93 GHz, 4 Gbytes of
main memory and an NVIDIA GTX 580 GPU.

Figure 2 compares the performance with increasing net-
work size and fixed degree k = 20. For the largest measured
network size n = 100 000, the multi-core TBB implemen-
tation runs 5.42 times faster than the sequential algorithm
and thus scales well with the number of cores. The GPU
implementation CUDA 1 runs 1.75 times faster than the TBB
implementation and 9.50 times faster than the sequential CPU
code. Implementation CUDA 2 is 2.33 times and 12.64 times
faster than the sequential and TBB CPU implementations
respectively.

Figure 3 compares the performance with increasing degree
and fixed network size n = 20 000. For the largest degree
k = 100, the multi-core TBB implementation runs 7.16 times
faster than the sequential implementation. Intel’s Hyper-
Threading Technology allows each physical processor core
to appear as two logical cores and to work on two tasks at
the same time, improving the utilisation of the physical core
and increasing throughput. The speed-up value shows that
this technology can pay-off, allowing the algorithm to achieve
performance values higher than possible by the increase of
physical cores alone. At this degree, the TBB implementation
even slightly outperforms implementation CUDA 1 running
on the graphics device by 1.03 times. The small kinks in
the performance scaling of CUDA 1 are caused by the

Fig. 3: This plot shows how the algorithms scale with the
average degree k = 20 to 100. The network size is set to
n = 20 000 and α = 1.0. The standard deviations showing
the measurement error are smaller than the symbol size.

fixed increment size of 32 elements for the adjacency-list
lengths. The host library calls for memory management have
a much smaller impact on the overall performance, and
for that reason the results for CUDA 2 do not show the
same anomalies. CUDA 2 is 1.51 times faster than the TBB
implementation and 10.83 times faster than the sequential
CPU implementation.

These speed-ups are not as impressive as those seen for
more regular or compute heavy algorithms, but the results
show that the GPU can still consistently outperform the
CPU even for a graph generator problem like the one de-
scribed here. The new device code malloc() and free()
functions, while arguably more elegant, have been shown to
be significantly more expensive than the proven method of
handing device memory management tasks to the host.

6. Discussion
The addition of new features like dynamic memory allo-

cation in device code makes CUDA an increasingly pow-
erful environment that enables programmers to tap into the
parallel processing power of today’s graphics processing
units. And while GPUs have received lots of attention for
their impressive number crunching capabilities, which have
enabled GPU based supercomputers to take up the top spots
in the TOP500 benchmark, they are not always seen as the
best choice when it comes to memory bound or irregular
problems. However, such algorithms are essential for a wide
variety of applications, and the introduction of the Graph500
highlights the importance of graph based algorithms for high
performance computing.

While it is true that the speed-ups achieved for many
graph based algorithms are not as impressive as those for
compute bound algorithms, we have shown time and time
again that they can still be very respectable if the code
and data structures are optimised for the GPU hardware.
The graph generation problem discussed in this article again
proves this point. As shown in Table 1, the GPU manages
to consistently outperform a high-end six core Intel CPU of
the same vintage when managing the device memory from
the host (CUDA 2) and at least keeps up with the multi-
threaded CPU implementation when using in-kernel dynamic
memory management (CUDA 1). A high connectivity in the
α-model algorithm is particularly taxing for the graphics

234 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Table 1: Summary of the performance results. The speed-
up values are relative to the respective sequential CPU
implementation and the quoted slopes are for the least squares
linear fits to the data sets.

Compute Device Speed-up Slope
n=100,000 ; k=20 ; α=1.0

Core i7 970 (1 core) 1.00 2.02
Core i7 970 (6 cores) 5.42 1.89
GTX 580 - CUDA 1 9.50 1.84
GTX 580 - CUDA 2 12.64 1.76

n=20,000 ; k=100 ; α=1.0
Core i7 970 (1 core) 1.00 1.90
Core i7 970 (6 cores) 7.16 1.74
GTX 580 - CUDA 1 6.96 1.87
GTX 580 - CUDA 2 10.83 1.76

hardware, as it makes it necessary to repeatedly iterate over
ever growing adjacency-lists, further increasing the demands
on the memory interface.

7. Conclusions
We have shown how Watts’ α-model of small-world graphs

can be used to generate synthetic network realisations on
multi-core CPUs and with GPU accelerators. We deliberately
chose a hard “pointer-chasing” problem to see how a GPU
implementation might cope, given the memory system con-
straints of the GPU architecture model. The more commonly
studied Watts-Strogatz β-model [20] is generally easier to
compute and presents less need for a parallel generation than
the α-model.

As discussed GPUs are a highly topical and popular subject
for acceleration of calculations and we expect this trend to
continue. There is plenty of work reported in the literature –
including some by ourselves – on how GPUs can routinely
provide speed-up factors of over one hundred for regular
geometric problems. It is therefore interesting to observe
that even for highly irregular and unbalanced problems,
such as generating α-model networks, GPUs still provide
some performance utility as accelerators to the CPU. Given
the cost-performance properties of a GPU compared with a
typical CPU we judge the performance speed-ups reported
for the GPU well worthwhile.

We also note the sensitivity of choice of GPU memory
mapping used for the algorithmic work reported here. The
CUDA programming model is a powerful one, recent addi-
tions such as the in-kernel malloc capability offer additional
power but there is still scope for building up GPU memory
mapping experience for GPU/CUDA implementations of
graph problems such as we have described. As so often with
CUDA, there is a trade-off between flexibility and perfor-
mance when it comes to memory management. The flexibility
gained by the device code memory management functions
comes at a cost compared to device memory management
initated by the host thread.

There is scope for also parallelising some of the graph
network analysis algorithms such as the path-length and
clustering coefficient metrics. Implementing these to work
with data already in GPU memory offers some further speed-
up potential for statistical analysis of synthetic networks.
We also anticipate a need to investigate hybrid synthetic
networks where a large network may comprise a combination
of models such as the α- and β- small-world models and
scale-free and other structures.

References
[1] E. W. Dijkstra, “A note on two problems in connextion with graphs,”

Numerische Mathematik, vol. 1, pp. 269–271, 1959.
[2] R. W. Floyd, “Algorithm 97: Shortest Path,” Communications of the

ACM, vol. 5, no. 6, p. 345, 1962.
[3] T. Schank and D. Wagner, “Approximating clustering coeficient and

transitivity,” Journal of Graph Algs. & Apps., vol. 9, no. 2, pp. 265–
275, 2005.

[4] D. B. Johnson, “Finding all the elementary circuits of a directed graph,”
SIAM Journal on Computing, vol. 4, no. 1, pp. 77–84, March 1975.

[5] M. E. J. Newman, “The structure and function of complex networks,”
SIAM Review, vol. 45, p. 169, 2003.

[6] A.-L. Barabasi, Linked - The New Science of Networks. Perseus, 2002.
[7] P. Erdös and A. Rényi, “On random graphs,” Publicationes Mathemat-

icae, vol. 6, pp. 290–297, 1959.
[8] E. N. Gilbert, “Random Graphs,” Annals of Mathematical Statistics,

vol. 30, no. 4, pp. 1141–1144, 1959.
[9] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’

networks,” Nature, vol. 393, no. 6684, pp. 440–442, June 1998.
[10] A.-L. Barabasi and R. Albert, “Emergence of scaling in random

networks,” Science, vol. 286, no. 5439, pp. 509–512, October 1999.
[11] M. E. J. Newman, “The structure of scientific collaboration networks,”

PNAS, vol. 98, no. 2, pp. 404–409, January 2001.
[12] ——, “Finding community structure in networks using the eigenvectors

of matrices,” Phys. Rev. E, vol. 74, pp. 036 104–1–19, 2006.
[13] D. Liben-Nowell and J. Kleinberg, “Tracing information flow on a

global scale using Internet chain-letter data,” PNAS, vol. 105, no. 12,
pp. 4633–4638, March 2008.

[14] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, “Random graphs
with arbitrary degree distribution and their applications,” Phys. Rev. E,
vol. 64, no. 026118, 2001.

[15] J. Kleinberg, “The small-world phenomenon: an algorithmic perspec-
tive,” in Proc. of the 32nd annual ACM symp. on Theory of comp.,
2000.

[16] R. Albert and A. Barabasi, “Statistical mechanics of complex net-
works,” Rev. Mod. Phys., vol. 74, no. 1, pp. 47–97, January 2002.

[17] Graph500.org, “The Graph 500 List,” http://www.graph500.org/.
[18] TOP500.org, “TOP 500 Supercomputer Sites,” http://www.top500.org/.
[19] NVIDIA CUDATM C Programming Guide Version 3.2, NVIDIA R©

Corporation, 2010. [Online]. Available: http://www.nvidia.com/
[20] D. J. Watts, Small worlds: the dynamics of networks between order

and randomness. Princeton University Press, 1999.
[21] A. Leist, D. Playne, and K. Hawick, “Exploiting Graphical Processing

Units for Data-Parallel Scientific Applications,” Concurrency and Com-
putation: Practice and Experience, vol. 21, pp. 2400–2437, December
2009.

[22] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan, “Brook for GPUs: stream computing on graphics
hardware,” ACM Trans. Graph., vol. 23, no. 3, pp. 777–786, 2004.

[23] Technical Overview ATI Stream Computing, ATI, 2009.
[Online]. Available: http://developer.amd.com/gpu assets/Stream
Computing Overview.pdf

[24] M. McCool and S. D. Toit, Metaprogramming GPUs with Sh. A K
Peters, Ltd., 2004.

[25] S. Milgram, “The Small-World Problem,” Psychology Today, vol. 1,
pp. 61–67, 1967.

[26] H. Jeong, B. Tombor, R. Albert, Z. Oltvai, and A.-L. Barabsi, “The
large-scale organization of metabolic networks,” Nature, vol. 407, no.
6804, pp. 651–654, October 2000.

[27] D. A. Fell and A. Wagner, “The small world of metabolism,” Nature
Biotechnology, vol. 18, no. 11, pp. 1121–1122, November 2000.

[28] D. S. Bassett and E. Bullmore, “Small-world brain networks,” The
Neuroscientist, vol. 12, pp. 512–523, 2006.

[29] Intel(R), Threading Building Blocks Reference Manual, Intel, May
2010.

[30] K. Hawick, A.Leist, and D.P.Playne, “Mixing Multi-Core CPUs
and GPUs for Scientific Simulation Software,” Res. Lett. Inf. Math.
Sci., vol. 14, no. ISSN 1175-2777, pp. 25–77, 2010. [Online].
Available: http://www.massey.ac.nz/massey/learning/departments/iims/
research/research-letters/

[31] IEEE, IEEE Std. 1003.1c-1995 thread extensions, 1995.
[32] K. Hawick, A. Leist, and D. Playne, “Regular Lattice and Small-World

Spin Model Simulations using CUDA and GPUs,” Int. J. Parallel Prog.,
vol. 39, no. 2, pp. 183–201, 2011.

[33] K. A. Hawick, A. Leist, and D. P. Playne, “Parallel Graph Component
Labelling with GPUs and CUDA,” Parallel Computing, vol. 36, pp.
655–678, 2010. [Online]. Available: www.elsevier.com/locate/parco

[34] G. Marsaglia, A. Zaman, and W. W. Tsang, “Toward a universal
random number generator,” Statistics and Probability Letters, vol. 9,
no. 1, pp. 35–39, January 1987, florida State preprint.

[35] K. Hawick, A. Leist, D. Playne, and M. Johnson, “Speed and Porta-
bility issues for Random Number Generation on Graphical Processing
Units with CUDA and other Processing Accelerators,” in Proc. Aus-
tralasian Computer Science Conference (ACSC 2011), 2011.

[36] M. Harris, J. D. Owens, S. Sengupta, S. Tzeng, Y. Zhang, and
A. Davidson, CUDPP: CUDA Data Parallel Primitives Library, ac-
cessed Jan. 2011.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 235

Hierarchical Parallelization of Molecular Fragment Analysis

on Multicore Cluster

Liu Peng1, Bhupesh Bansal1, Ashish Sharma2,

Rajiv K. Kalia1, Aiichiro Nakano1, Priya Vashishta1

1Collaboratory for Advanced Computing and Simulations

University of Southern California, Los Angeles, CA, 90089, USA

Email: {liupeng, rkalia, anakano, priyav}@usc.edu, bbansal.usc@gmail.com
2Center for Comprehensive Informatics

Emory University, Atlanta, GA 30322, USA

Email: Ashish.Sharma@emory.edu

Abstract— Molecular fragment analysis, using connected

component identification algorithm, is of great significance

for structural and chemical analysis in computer aided

material design. However, it is a great challenge to accelerate

molecular fragment analysis due to the scale, diversity and

irregularity of molecular graphs. To address this challenge,

we propose a hierarchical parallelization approach consist-

ing of: (1) inter-node parallelization via spatial decompo-

sition and hook-and-contract algorithm; (2) inter-core par-

allelization via master-and-worker scheme; and (3) locality

optimization based on space-filling curve to improve mem-

ory accessing. Experiments show that the proposed scheme

achieves nearly linear inter-node strong scalability up to 50
million vertices molecular graph on 32 computing nodes, and

over 13-fold inter-core speedup on 16 cores. The experiments

also demonstrate the effectiveness of locality optimization on

performance enhancement.

1. Introduction
Massive data analysis on parallel computers has become

an essential part, and often a bottleneck, of scientific com-

puting. For example, large-scale molecular dynamics (MD)

simulation, which has become an integral part of computer

aided material design, often involves multimillion atoms and

computing the molecular fragments (or connected compo-

nents) is essential for the structural and chemical analysis,

such as identifying molecular products during the combustion

of fuels [1]. Challenges of molecular fragment analysis

mainly arise from three aspects: (1) complexity introduced

by scale of molecular graph–high-end MD simulations typ-

ically involve multimillion atoms [2], which amounts to

multimillion vertex-sized graph, imposing great difficulty

for molecular fragment identification, and therefore it is

important to design efficient parallel algorithm to harvest

computing power; (2) diversity introduced by molecular

graph density and connectivity–due to the wide range of MD

simulations, for example, simulation sizes can range from

Fig. 1: Snapshot of a molecular dynamics simulation to study

the percolation of OAl4 cluster during the oxidation of an

aluminum nanocluster, where color represents the size of

molecule fragments.

100, 000 atoms (10MB of data per frame) to 1 billion atoms

(100GB), the resulting molecular graph can vary from dense

to sparse, from a small number of large fragments to a large

number of small fragments. Fig. 1 illustrates the variation

in data characteristics starting from a large number of small

molecular fragments at the beginning of the simulation to a

nearly connected single fragment in the last snapshot with

the increased percolation level; (3) irregularity introduced by

MD datasets–MD datasets are inherently irregular, so are the

molecular graph generated from them, and serial access to

the molecular graph datasets often exhibits poor spatial and

temporal locality, which leads to ineffective use of memory

hierarchy [3]. Therefore, it is a great challenge to accelerate

molecular fragment analysis.

Problem Statement: Let G = (V, E) represent an undirected

236 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

molecular graph, where the vertex set V consists of atoms

and the edge set E contains bonds between pairs of atoms.

Let i and j represent two atoms; then edge (i, j) ∈ E iff

there is a bond between atom i and atom j. The problem is

to identify all connected components in the molecular graph.

We refer to vertex as an atom in the graph.

There are some special features in the molecular graph:

• Vertex degree restriction: The vertex degree has an upper

limit. For example, in the simulation of SiO2, the vertex

degree, for each silicon atom, is typically four and, for

each oxygen atom, is on average two. Due to the nature

of the chemical bonding, even outliers do not exceed the

maximum node degree, typically set around 10. And this

restricts the number of expanding vertices in the breadth

first search (BFS) algorithm.

• Boundary restriction: Due to the active interatomic

interaction cutoff Rc, scientists are usually interested

in only atoms within the cutoff distance. This restricts

the depth in the depth first search (DFS) algorithm.

The major contributions of this paper is a hierarchical

parallelization approach on a multicore cluster, combining:

• Spatial decomposition and hook-and-contract algorithm

are utilized effectively for inter-node parallelization.

• Master-and-worker scheme is used for inter-core paral-

lelization.

• Locality optimization via space-filling curve is em-

ployed to improve memory accessing.

The rest of this paper is organized as follows. After

summarizing related works in section 2, section 3 presents

the hierarchical parallelization scheme, including hierarchi-

cal decomposition, inter-node and inter-core parallelization.

And section 4 details our locality optimization via space-

filling curve. Section 5 presents the experimental results and

analysis. Finally, section 6 concludes the paper.

2. Related Work
There have been great efforts on the study of con-

nected component identification. Generally, there are three

approaches : (1) Graph traversal, such as DFS and BFS

based approach; (2) Graph adjacency matrix transitive clo-

sure based approach; (3) Hook-and-contract based approach,

where vertices are hooked together to form a large set

of vertices and then outgoing duplicate edges and internal

edges to the set are removed to contract the set to a single

super-vertex, and the process is repeated until the maximally

connected components are found. Hirschberg, Chandra, and

Sarwate [4] presented an O(log2 n) algorithm using n2/ logn
processors on the CREW PRAM model, where n is the

number of vertices. Chin [5] later reduced the processor

requirement to n2/ log2 n. Johnson and Metaxas [6] proposed

a CREW algorithm with O(log1.5 n) complexity using n+m
processors, where m is the number of edges. Chong and

Lam [7] presented an O(log n log log n) algorithm using

n + m processors for the EREW model. However, these

fine-grained parallel algorithms require impractical num-

ber of computing nodes for molecular fragment analysis

which usually involves millions of atoms. Consequently, re-

searchers have also studied coarse-grained parallel algorithms

for connected component analysis. Chin [5] designed an

O((m log n)/p + log n) algorithm for up to p = n/ logn2

processors, in PRAM model, for dense graphs. Kruskal [8]

presented faster parallel algorithms for sparse graph with

O(m/p + (n log p)/p + p1+ǫ) complexity for the EREW

model and O(m/p + (n log p)/p + p log p) for the CREW

model, where ǫ is an negligible value. All these approaches

assume shared memory, which is not the case for cluster–the

current most popular platform.

3. Hierarchical Parallelization
In this section, we present our hierarchical hook-and-

contract algorithm. In the following subsections, we detail

inter-node parallelization and inter-core parallelization, re-

spectively.

3.1 Inter-node Parallelization

In this subsection, we first describe how to decompose the

molecular graph and assign decomposed subgraphs to com-

puting nodes. Then we describe a hook-and-contract algo-

rithm for inter-node parallelization implemented via Message

Passing Interface (MPI).

• Inter-node decomposition. 3D mesh decomposition is

employed to divide the whole molecular graph into

smaller subgraphs, and each subgraph is mapped to a

processor in an array of Px×Py ×Pz computing nodes,

where Px, Py , and Pz are even positive integers. The

purpose of decomposition is to assign equal load to

each computing node, thereby achieving load balancing,

which is known to be an effective way to improve the

parallelization efficiency of irregular applications [9].

Specifically, our scheme partitions the whole molecular

graph (in terms of atoms) in a computational space,

which is related to the physical space by a curvilin-

ear coordinate transformation: The computational space

shrinks where the workload density is high and expands

where the density is low, so that the workload is

uniformly distributed. To minimize the load imbalance

and communication costs as a function of the coordi-

nate transformation, our approach employs simulated

annealing to figure out the optimal range information.

The range information of each computing node is then

propagated to its 26 neighbors in a 3D cube.

• Inter-node hook-and-contract algorithm. After the spa-

tial decomposition, each computing node is assigned

a chuck of atomic data, i.e. a list of a subset of

atoms. Then, in step 7 of Alg. 1, each node performs

independent Singlenode_Fragment_Analysis using

a graph traversal algorithm shown in Alg. 2. This

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 237

Algorithm 1: Inter-node parallel algorithm for molecular

fragment analysis. n is the number of atoms and p is the

number of computing nodes.

input : 1. an atom bond file containing adjacency lists

of atoms.

2. an atom dataset file containing atom

attributes1.

output: Fragment list

1: Each node gets a chunk of input files.

2: for node 1 to p in parallel do

3: Load balancing to distribute atoms at each node;

4: Each node gets x, y, z range information for its 26
direct neighbors;

5: end for

6: for Node 1 to p in parallel do

7: Run Singlenode_Fragment_Analysis;

8: end for

9: for i from 1 to log2 p do

10: for j from 0 to (p − 1)/2i in parallel do

11: Node pair (1 + j × 2i, 1 + j × 2i + 2i−1) hook

together: (Fragments, adjacency lists and cross-atom

lists are merged into node 1 + j × 2
i.)

12: end for

13: end for

14: Return fragments from node 1.

1 Atom dataset file is used to filter atomic dataset based on

some simulation attribute if needed

1

1

1

1

2 3

3

4 5

5

6 7

7

8

5

Fig. 2: Inter-node merge example for 8 nodes.

analysis produces three outcomes: (1) it tags each atom

with appropriate fragment identification number; (2) it

saves local fragments; and (3) it saves the list of cross-

atoms connected to each fragment, where a cross-atom

is defined as follows: For vertex i, j, if (i, j) ∈ E then

j is a cross-atom of i iff i and j belong to different

nodes. This step is done in O(n′/q + q) time where n′

and q are the number of atoms and number of cores per

computing node respectively.

Algorithm 2: Inter-core parallel algorithm for molecular

fragment analysis.

input : Atom list A. A[i].nbr is atom A[i]’s adjacency

list, A[i].threadId is initialized to -1. t is the

number of threads.

output: Local fragment list FL
Master thread:

1: Shuffle the atom list A.

2: while not all atoms in A marked do

3: Pick the first t unmarked atoms in A and store them

in root.
4: Create a new graph G′ with t vertices and no edges.

5: ∀1 ≤ i ≤ t, create fragment fragi.

6: Start t worker threads.

7: Wait for all worker threads to finish.

8: Run BFS to identify connected components in G′.

9: Merge fragments inside one connected component in

G′.

10: Append distinct fragi to FL.

11: end while

Worker thread i:

1: do a depth-limited search starting from root[i]:
2: for each atom a visited during search do

3: Put a in fragi and mark a’s fragment id as i.
4: If a’s fragment id is already marked as j, create an

edge between vertex v[i] and v[j] in G′)

5: end for

Steps 9-12 in Alg. 1 work as a hook-and-contract

mechanism, which consists of log2 p iterations. At the

ith iteration, (p − 1)/2i group of pair-wise nodes does

information merge in parallel. Specifically, nodes 1 +
j × 2i and node 1 + j × 2i + 2i−1, for j = 0 to

(p − 1)/2i, merge their fragment lists, adjacency lists

and cross-atom lists to node 1+ j× 2i +2i−1. Merging

fragment list may merge two fragments, if one frag-

ment contains any cross-atom of atoms from the other

fragment, into one fragment. After log2 p iterations, all

merges are done and we get global graph-level cross-

node fragments. Fig. 2 illustrates this hook-and-contract

scheme. Each tree node represents a computing node in

cluster. During iteration 1, group of nodes (1, 2) merge

their fragment lists, adjacency lists and cross-atom lists

to node 1. Groups (3, 4), (5, 6) and (7, 8) do the same

merge to node 3, 5, 7 respectively. After this iteration,

nodes 1, 3, 5, 7 together carry all fragments information.

During iteration 2, groups (1, 3) and (5, 7) do the same

merge again with results in node 1 and 5 respectively.

Finally during iteration 3, group (1, 5) merges to node

1, which carries the final fragment information.

238 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

worker 1 worker 2

worker 3 worker 4

Master

1
2

4

3

FL:

G'

8

7

10

Fig. 3: Master/worker inter-core example.

3.2 Inter-Core Parallelization

Alg. 2 shows the inter-core parallelization for fragment

analysis. A master/worker model is employed to accelerate

local fragment analysis: Each worker thread independently

detects a local fragment through graph traversal algorithm

and then the master thread is in charge of merging fragments

from each worker thread.

Specifically, the master thread shuffles the whole atom list

at step 1. The purpose is to make the t atoms (t is the

number of workers), to be used as DFS root by each worker

thread, selected at step 3 randomized. At step 4, the master

thread creates a new graph G′ with vertex i representing the

fragment fragi to be generated by worker thread i. Next,

t worker threads are started and they work in parallel to

detect fragi and create edges in G′. After all worker threads

are finished, the master thread runs BFS to detect connected

components in G′. At step 9, any two fragments belonging

to the same connected component in G′ are merged. Final

fragments are added to local fragment list at step 10.

Each worker thread does a depth-limited DFS based graph

traversal to take advantage of material characteristics, e.g.

interatomic interaction cutoff distance. At step 3, each thread

i keeps marking unvisited atoms as part of fragi. If it

encounters an atom already marked in fragj , then it creates

an edge between vertex i and j in G′ as described at step 4.

Fig. 3 illustrates inter-core parallel algorithm involving one

master and four workers. The left part describes the graph G′

created by the master, where each vertex fragi represents the

fragment generated by worker i and the edges are created by

workers. On the right side, each vertex represents an atom and

DFS root atoms are shaded. Each rectangle shows a worker’s

working region. Workers 1, 2, 3, 4 run depth-limited DFS, in

parallel, starting from roots 1, 9, 5, 6, respectively, keeping

expanding their working regions independently. When one

worker i expands to an atom already visited by another

worker j, then an edge is created in G′ for fragi and fragj .

For example, when worker 1 tries to expand from atom 2 to

Fig. 4: Z Curve to sort the input data.

atom 9 which is already visited by worker 2, an edge between

frag1 and frag2 is added to graph G′. After all workers

finish, the master traverses G′, merge frag1, frag2, frag3

into one fragment, denoted as frag1 + frag2 + frag3, and

append all fragments to FL. The above procedures repeat

until all atoms are visited.

4. Locality Optimization
MD datasets are irregular, and serial access to them often

exhibits poor spatial and temporal locality, which leads to

ineffective use of a memory hierarchy [3]. It has been shown

that data reordering (i.e., strategy to change data management

to increase data reuse in memory) can significantly improve

memory hierarchy utilization [3]. In MD simulations, a

space-filling curve (e.g., Morton curve or Z curve illustrated

in Fig. 4), is often used to preserve spatial locality [10]. A

space-filling curve is a mapping of a one-dimensional array

to three-dimensional grid points, which preserves the spatial

proximity of successive array elements [3]. Our optimization

strategy organizes input atomistic simulation data according

to a space-filling curve. We implemented Z curve to improve

the data locality and further to enhance the performance of

molecular fragment analysis.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 239

 1

 2

 4

 8

 16

 4 8 16 32 64

S
pe

ed
up

 o
ve

r
4

co
m

pu
tin

g
no

de
s

Number of computing nodes

Linear speedup
Dataset 2 (53.7M)
Dataset 2 (10.7M)
Dataset 2 (1.3M)

Fig. 5: Inter-node strong-scaling speedup comparison with

different sizes of RDX crystal datasets2 up to 64 computing

nodes.

 1

 4

 8

 16

 32

 64

 1 4 8 16 32 64

S
pe

ed
up

Number of computing nodes

Linear speedup
Dataset 1 (1M)
Dataset 2 (1.3M)

Fig. 6: Inter-node strong-scaling speedup comparison for 1

million-atom shocked RDX dataset1 and 1.3 million-atom

RDX crystal dataset2 up to 64 computing nodes.

 1

 2

 4

 8

 16

 1 2 4 8 16

S
pe

ed
up

Number of worker threads

Linear speedup
Dataset 1 (1M)
Dataset 2 (1.3M)

Fig. 7: Inter-core strong-scaling speedup comparison for 1

million-atom shocked RDX dataset1 and 1.3 million-atom

RDX crystal dataset2 up to 16 worker threads.

 0

 500

 1000

 1500

 2000

 1 2 5 8

E
xe

cu
tio

n
tim

e
(s

ec
)

Dataset size per node (Million)

Without Z curve
With Z curve

Fig. 8: Execution time as a function of dataset size per node

in million atoms with and without Z curve technique.

5. Performance Evaluation
To test the effectiveness of the proposed optimization

methods, we conduct three sets of experiment testing the

performance of inter-node parallelization, inter-core paral-

lelization and locality optimization.

First, we test the performance of inter-node parallelization.

Strong scalability is used as a metric for fixed-size problem.

We have conducted scalability tests with two datasets, each

of different sizes–approximately 1 million atoms, 10 million

atoms and 50 million atoms–on a Linux cluster consisting

of 133 Intel Xeon dual-processor (2.8GHz) nodes with 2GB

memory per node and connected by Myrinet interconnect.

Dataset 1 is an atomistic dataset for shock-compressed RDX

(1,3,5-trinitro-1,3,5-triazine) crystal with a large number of

long chains and highly dense molecules, whereas dataset 2

represents a normal-density RDX crystalline structure with

regular molecules having small chains of atoms and moderate

density.

Fig. 5 compares the strong-scaling speedup over 4 com-

puting nodes for different sizes–1.3, 10.7 and 53.7 million

atoms–of the RDX crystal dataset (dataset 2). The speedup

is nearly linear up to 32 computing nodes for 10.7 and

53.7 million atoms, while it decreases to less than 32 for

64 computing nodes. The reason is that as the number

of computing nodes increases, the hierarchical merge takes

more time, which degrades the performance. Fig. 6 compares

the speedup of two datasets of a similar size but different

characteristics (1 million-atom shocked RDX data, dataset

1, and 1.3 million-atom RDX crystal, dataset 2). Dataset 2

exhibits better speedup, which is probably due to the smaller

number of cross-atoms.

Next, we test the inter-core strong scalability. We use the

same datasets as the inter-node testing in Fig. 6, and we use

a 16-core SMP platform consisting of 4 core i7 quadcore

processors (Nehalem 920). Fig. 7 shows that our inter-core

parallelization exhibits excellent speedup up to 16 worker

240 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

threads with over 13 speedup for both datasets. Namely, the

speedup is material characteristic independent.

Finally, we test the effectiveness of our locality optimiza-

tion approach. Fig. 8 compares the performance with and

without Z curve based locality optimization for dataset 1

of different sizes: 1, 2, 5, 8 million atoms, respectively, on

a single core i7 processor with 12GB memory. The figure

demonstrates the effectiveness of space-filling Z curve in

increasing data locality, which improves the performance up

to 21%.

6. Conclusion
This paper studied molecular fragment analysis using hier-

archical parallelization to harvest computing power of multi-

core cluster. We have combined three approaches: (1) inter-

node parallelization via spatial decomposition and hook-and-

contract algorithm; (2) inter-core parallelization via master-

and-worker algorithm; (3) locality optimization based on

space-filling curve to improve memory accessing. Experi-

ments showed that our proposed scheme achieves almost lin-

ear inter-node strong scalability up to 50 million-atom sized

molecular graph up to 32 computing nodes, and over 13 inter-

core speedup on 16 cores. Also experiments demonstrate

the effectiveness of locality optimization on performance

enhancement. However, the inter-node performance degrades

when the number of computing nodes exceeds 64, which

suggest the need for a better inter-node merging algorithm.

7. Acknowledgement
This work was supported by NSF-PetaApps/EMT, DOE-

SciDAC/SciDAC-e/BES/EFRC, and DTRA.

References
[1] A. Strachan, A. C. T. van Duin, D. Chakraborty, S. Dasgupta, and

W. A. Goddard, “Shock waves in high-energy materials: The initial
chemical events in nitramine rdx,” Phys. Rev. Lett., vol. 91, p. 098301,
2003.

[2] A. Nakano, R. K. Kalia, K. ichi Nomura, A. Sharma, P. Vashishta,
F. Shimojo, A. C. T. van Duin, W. A. Goddard, R. Biswas, D. Sri-
vastava, and L. H. Yang, “De novo ultrascale atomistic simulations on
high-end parallel supercomputers.” Int’l J. High Performance Comput.

Appl., vol. 22, pp. 113–128, 2008.
[3] J. Mellor-Crummey, D. Whalley, and K. Kennedy, “Improving memory

hierarchy performance for irregular applications using data and com-
putation reorderings,” Int’l J. Parallel Program., vol. 29, pp. 217–247,
2001.

[4] D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate, “Computing
connected components on parallel computers,” Commun. ACM, vol. 22,
pp. 461–464, 1979.

[5] F. Y. Chin, J. Lam, and I.-N. Chen, “Efficient parallel algorithms for
some graph problems,” Commun. ACM, vol. 25, pp. 659–665, 1982.

[6] D. B. Johnson and P. Metaxas, “Connected components in o(log3/2
v)

parallel time for the crew pram (extended abstract),” in Proceedings of

the 32nd annual symposium on Foundations of computer science, ser.
SFCS ’91. Washington, DC, USA: IEEE Computer Society, 1991,
pp. 688–697.

[7] K. W. Chong and T. W. Lam, “Finding connected components in
o(log n log log n) time on the erew pram,” Journal of Algorithms,
vol. 18, pp. 378–402, 1995.

[8] C. Kruskal, L. Rudolph, and M. Snir, “A complexity theory of efficient
parallel algorithms,” in Automata, Languages and Programming, ser.
Lecture Notes in Computer Science. Springer Berlin, 1988, vol. 317,
pp. 333–346.

[9] A. Nakano, “Multiresolution load balancing in curved space: the
wavelet representation.” Concurrency: Practice and Experience,
vol. 11, pp. 343–353, 1999.

[10] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz, “Analysis
of the clustering properties of the hilbert space-filling curve,” IEEE

Transactions on Knowledge and Data Engineering, vol. 13, pp. 124–
141, 2001.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 241

Accelerating the Hough Transform with CUDA on Graphics
Processing Units

Su Chen and Hai Jiang
Department of Computer Science, Arkansas State University, Jonesboro, AR 72467, USA

Abstract— Circle detection has been widely applied in im-
age processing applications. Hough transform, the most pop-
ular method of shape detection, normally takes a long time
to achieve reasonable results, especially for large images.
Such performance makes it almost impossible to conduct
real-time image processing with sequential algorithms on
community computers. Recently, NVIDIA developed CUDA
programming paradigm to explore the tremendous computa-
tional power for operations on vectors, matrices and high-
dimensional matrices. In this paper, two Hough transform
algorithms are designed to run on both CPU and GPU
computing platforms. Experimental results indicate that the
better Hough transform on GPUs can achieve up to 400
times speedup over the version on CPU. With other efficient
image scaling algorithms, real-time circle extraction can be
achieved with GPU support.

Keywords: Hough Transform, Graphics Processing Unit, CUDA

1. Introduction
Hough transform is a popular technique for feature extrac-

tion in image processing and computer vision. This concept
was first proposed to detect straight lines [4] and was later
generalized into a robust technique to detect the positions
and directions for any shapes that are already known [2].
Such scheme was known as generalized Hough transform.
Because of its powerful nature on shape recognition, Hough
transform also plays an important role in image and object
reconstructions. However, the classical Hough transform
adopts brute-force approach, which normally takes long exe-
cution time to detect shapes with more than two parameters,
such as circles and ellipses. Many researchers have been
working on optimizations of Hough transform. So far, the
execution time of Hough transform to detect shapes with
multiple parameters is still intolerable.

Circle detection can be found in many applications in
a wide range of academic areas, such as medical image
processing [3], [7] and robot vision [10]. Since a circle in
2 − D plane has three parameters, the parameter domain
should be a 3 − D cube, which requires long execution
time and large memory capacity. To solve such kind of
problem, people try to reduce the dimension of parameter
space using specific techniques on certain problems [9].
However a generalized solution has not been accomplished
yet.

The new Fermi architecture designed by NVIDIA [5]
provides more CUDA cores than previous versions such as
G80 and GT200. Also, data cache is provided to speed up
each sequential task on GPU. New warp handling strategies
on streaming multiprocessors (SM) are designed to manage
threads better. Some new features of Fermi architecture can
be explored for performance gains.

This paper intends to accelerate Hough-transform-based
circle detection with and without parameter space using
CUDA technology on GPUs [6]. It makes the following
contributions:

• Two sequential Hough transform algorithms are devel-
oped for CPU execution.

• GPU versions of Hough transform are deployed for
NVIDIA Fermi architecture.

• Detailed experimental results and performance analyses
are provided to demonstrate the effectiveness of CUDA
acceleration.

The rest of the paper is organized as follows: Section 2
discusses the detail of circle detection using generalized
Hough transform. Section 3 introduces the sequential and
CUDA parallel algorithms. Section 4 provides performance
analyses on both CPU and GPU. Section 5 gives the related
work. Finally, our conclusion and future work are described.

2. Hough Transform and Implement on
Circle Detection
2.1 Concept and examples of Hough transform

In this paper, we only discuss shapes on 2 − D plane.
Shapes with two parameters a and b can be represented as
a function f(a, b) = 0, such as x + ay + b = 0 and x2 +
ax + b − y = 0 for lines and a special type of parabolas,
respectively. While the image domain resides in the X −
Y coordinate system, the transformed domain, or parameter
domain, should be located in the A−B coordinate system.
Fig. 1 and Fig. 2 give rough ideas about Hough transform
on lines and circles.

In 1, we can see that in the image domain, there are two
straight lines: y = x + 1 and y = −x + 3. Since we wrote
the equations of lines in slope intercept form y = kx + b,
it is better for us to choose slope k and intercept b for the
coordinate axes of the transformed domain. What we are
going to do next is to make the points: (1, 1) and (−1, 3)

242 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

stands out of all points in the parameter domain so that
we can “see” them and reconstruct our image using their
information. Hough transform on straight line excavates the
duality property of dot and line. For example, the equation
form of y = kx+ b can be rewritten as b = −xk+y, which
can be seen as the equation form of line in the K − B
domain. Given an dot (x0, y0) on y = k0x+ b0, we can get
y0 = k0x0+b0, which can be reformed to b0 = −x0k0+y0, a
regular straight line that passes (k0, b0) in the K−B domain.
Since we have a whole bunch of dots on the line y = x+1,
where k0 = 1 and b0 = 1, we will get a cluster consisted
by many lines that pass (1, 1) in the K − B domain. For
the parameter domain, we set counters for every pixel and
increase them by 1 when it was passed by some line. As it
is shown in 1, this strategy can make the point (1, 1) and
(−1, 3) outstand in the parameter domain. It is noteworthy
that when k and b approaches infinity, parameter domain
becomes infinite large, which makes the problem impossible
to deal with by computers. This problem can be solved by
using polar coordinates in the parameter domain, which uses
(ρ, θ) as parameters. Usually, we shall specify the range of ρ
since it may become very large and take too much memory
space.

Switch to detecting circles, since their equation are dif-
ferent from those of lines, the above experience cannot be
simply transferred. Actually, if we understand the spirit of
Hough transform, we would be able to find several strategies
to achieve our goals. The equation of circle can be written
as (x−a)2+(y−b)2 = c2, so we set our parameter domain
as a 3 − D cube A − B − C following the regulation we
stated before. Assuming we have a black point (x0, y0) in
the image domain, which can be seen as a point on the
circumference of circle centered at (xc, yc), we can select
all other points as this center point, then rc can be calculated
by: rc =

√
(xc − x0)2 + (yc − y0)2, hence we get a set

of coordinate (xc, yc, rc) corresponding to a point in the
parameter domain. We set counters for all points in that
3−D cube and increases them by 1 when they are “visited”
by the calculated (xc, yc, rc). It can be imagined that for
one (x0, y0), there will be a conical surface radiate from the
point (x0, y0, 0) along the line f(a, b) : {a = x0; b = y0} in
the 3−D cube. The conical surfaces here are counterparts
of the lines in the K − B domain mentioned above. If we
deduce back from the parameter domain, we can find that
for a real circle, say (x− a0)2 + (y − b0)2 = c20 , counter’s
value of the corresponding point (a0, b0, c0) in the parameter
domain must outstand among its neighbors. We can see this
phenomenon clearly in 2, where three circles shaded by
intensive noises are found in parameter domain as peaks.
Another good nature of circular Hough transform is we do
not have to worry about the infinite slope, but the range of r
should still be specified to save space and calculation time.

In real applications, we should not always follow the tra-
ditional algorithm but need to find better ways to implement

it. There are several mapping strategies between the image
domain and the parameter domain to make right points stand
out. Two strategies of circular Hough transform and their
relative merits will be discussed.

3 0

1

3

y = x+1

y = -x+3

Y

X

0

1

B

3

K

-1 1

Fig. 1: Hough transform on lines

Fig. 2: Hough transform on circles

2.2 Straightforward Mapping Strategy
The straightforward mapping strategy basically follows

the steps of the circular Hough transform that is described in
Section 2.1. It has some advantages in circle detection. First,
it can locate positions in parameter domain very quickly.
Since x and y are loop variables residing in registers, r is

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 243

the only thing needed to be calculated by the formula r =√
(x0 − x)2 + (y0 − y)2. Therefore, the time complexity in

the loop kernel will be reduced. Second, in practical ap-
plications, images are sometimes pre-processed into binary
format for Hough transform. In this case, the straightforward
strategy can simply ignore background pixels and only work
on the meaningful ones. Those background pixels might
be black or white and their value should be 0. Then, it is
unnecessary to add them up for any position in the parameter
domain. Eventually, this will reduce computing time signifi-
cantly when background dominates total image area. On the
other hand, space taken by the parameter domain grows in
O(n3) in circle detection. This becomes intolerable when n
becomes large. By confining the range of r and conducting
more rounds of calculation, the parameter domain buffer can
be reduced linearly as partitioning frequency increases. With
such a strategy, this problem can be solved to some extent.
However, in CPU, partitioning r too many times will harm
the cache coherence severely and slow down the execution.
Concrete flowchart for sequential algorithm for this mapping
strategy is given in the left portion of Fig. 3.

2.3 Inverse-checking mapping strategy
Inverse-checking mapping strategy completely solves the

space saving problem. It checks back from the parameter
domain to the image domain and see if there exists a circle
or not. If the number of accumulated pixels for a potential
center pixel indicates that there exists a circle, the parameter
will be saved to a certain array temporarily or printed out
directly. Otherwise, the calculated one will be discarded
instantly.

Although this mapping strategy is space efficient, it con-
tains some limitations and shortcomings. First, this method
needs more calculation time to find exact positions for pixels
on virtual circles. To locate the circumference for given x, y
and r, we have to use sine and cosine functions, which are
more time-consuming. Vectors might help save some time
on this operation. Second, this mapping algorithm cannot
circumvent the background points and have to calculate them
all. So the execution time of this algorithm is predictable.
This might be a good feature for parallel computing but a
disaster for binary images since it cannot take advantage of
the implied information in images. Flowchart for sequential
algorithm for this mapping strategy is given in the right
portion of Fig. 3.

3. CUDA Version Code Design
NVIDIA GPUs and CUDA provide new computing plat-

form for Hough transform. From the hardware perspective,
the Tesla C2050 or C2070 has 16 streaming multiprocessors
(SM) and each SM owns 32 CUDA cores. From the software
perspective, CUDA allows user to generate thread blocks
whose number is no larger than 65536 (block arrangement
can be 1D, 2D or 3D) and the thread number in block should

Y

θ=2π-(1/r)?

N

N

N

N

b = 1 to Width

a = 1 to Height

r = rMin to rMax

θ=0:(1/r):(2π-(1/r))

y=a+rsinθ; x=b+rcosθ

count += IM[y][x]

Y

Y

Y

r = rMax?

b = Width?

a = Height?

End

Process count, count=0

Y

Y

Y

Y

b = Width?

N

N

N

N

x = 1 to Width

y = 1 to Height

a = 1 to Height

b = 1 to Width

r = ((a-y)
2
+(b-x)

2
)
1/2

TF[a][b][r]+=IM[y][x]

a = Height?

x = Width?

y = Height?

End

Process TF

Fig. 3: Flow charts for straight-forward and inverse-checking
mapping strategies

not exceed 1024. This friendly design eases programming
since each pixel in the image domain can be mapped
onto one hardware thread in GPU. Most our test images
are only 512 × 512 and much smaller than the hardware
capacity 65536×1024. Also, since calculations in the Hough
transform are totally independent, CUDA and GPU become
the ideal platforms.

The latest version of CUDA provides asynchronous data
copy functions so that the overlapping of computation and
communication becomes possible. This design can hide file
transfer latency between host and device memory and keep
GPU busy with the actual calculations in Hough transform.

3.1 CUDA Design for Straightforward Strategy
For straightforward mapping strategy, since workloads for

different pixels in image domain are independent with each
other, they can be mapped onto different threads. From
the programming perspective, it can be simply realized by
unrolling the outmost two loops of the sequential code and
adjusting some necessary dependencies. The workflow using
CUDA is shown on the left side of Fig. 4.

Four major steps are involved. First, the original image is
transferred from host memory to device memory. Then the
GPU starts the transformation process. After the transfor-
mation is completed, GPU threads will search for intensive
points in transformed domain and output them as circles in
a new image. In the end, the new image will be transferred

244 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

 GPU

CPU

Memory

GPU

Memory

IMG

Image copy

IMG

Trans-

Domain

Transform

NEW

IMG

Extract Info &

Reconstruct

GPU

Memory

CPU

Memory

NEW

IMG

Image copy

 CPU

Inverse-Check

GPU

CPU

Memory

GPU

Memory

IMG

Image copy

IMG

NEW

IMG

If exist,

Draw it here

GPU

Memory

CPU

Memory

NEW

IMG

Image copy

CPU

GPU

Threads

Fig. 4: Straight-forward & Inverse-checking strategy on GPU

back to CPU and print out to validate the whole process.

3.2 CUDA Design for Inverse-checking Strat-
egy

For the inverse-checking mapping strategy, it is impossible
to map each set of x, y and r to separate threads since the
number is too big. Here we still map each pair of x and y
on different threads, the work load for which are expected
to be the same. A noteworthy thing is that one should be
cautious if he wants to continue partitioning the dimension of
r, since if the r-dimension is partitioned into some intervals
like [1, r2] and [r2 +1, r], the expected work load will differ.
This is because larger r will search a bigger circle and thus
incur heavier workload. The workflow of inverse-checking
strategy is given on the right of in Fig. 4.

Obvious difference on the GPU side can be observed
between two graphs in Fig. 4. The data copy procedures
between memories are the same, but the ways that the
GPU gets the new image are different. The inverse-checking
strategy shown in right side of Fig. 4 does not bother with a
3-dimension buffer. In addition, a fewer threads may be able
to detect circles and output them to the new image. Usually,
the number of circles is not proportional to that of threads.
However, the imbalanced workload brought by this can be
ignored.

4. Experimental Results and Perfor-
mance Analyses

Both straightforward and inverse-checking mapping algo-
rithms have been tested on a machine with two Intel Xeon
E5504 Quad-Core CPUs (2.00GHz, 4MB cache) and two
NVIDIA Tesla 20-Series C2050 GPUs.

4.1 Experimental Results
The relationship between the side length of an image

and its execution time on CPU and GPU with above two
aforementioned strategies are given in Fig. 5, where CPU1
and GPU1 stand for the straightforward mapping algorithm,
whereas CPU2 and GPU2 represent the inverse-checking
mapping algorithm. The corresponding speedup graph is also
shown in Fig. 6.

CPU1(512) =

3218.54

GPU1(512) = 30.01

CPU2(512) =

7083.76

GPU2(512) = 17.34

0

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 300 400 500 600

E
x
e

c
u

ti
o

n
 T

Im
e

Side Length of Image

CPU-1

GPU-1

CPU-2

GPU-2

Fig. 5: Execution time comparison between CPU and GPU
versions

Compared to straightforward mapping algorithm, the
inverse-checking mapping algorithm can benefit GPU but
hurt CPU version’s performance. Several factors are respon-
sible for this.

First, on the CPU side, the inverse-checking algorithm
incurs more computations, which fundamentally increase
the execution time. Even though the parameter domain
requires much memory space, most time CPU can handle
this situation well unless the image size is too large for
memory and cache. However, on the GPU side, large space
for parameter domain might cause performance degradation
quickly since threads are grouped into blocks and it is hard
for them to communicate with each other. Cache within a
block is local and cannot be seen by threads from other
blocks. This design of Fermi architecture does not help
Hough transform problem. However, massive threads can
still help GPU achieve performance gains by hiding the
memory access latency.

Second, for the inverse-checking algorithm, the sizes of
input and output images are not very large for current cache
in Fermi architecture. Although the total cache is partitioned
into small independent pieces when blocks are generated,
a good cache hit rate still can be achieved. The reason is
that the size of the input image is O(n2) and this is the
only space for accesses. This property improves the GPU’s
performance dramatically. However, the selection of grid
and block dimension also has a great influence on overall
performance.

GPU acceleration results have been shown in Fig. 6
illustrates how many times can be achieved by the latest GPU

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 245

Max = 155

Min = 103

Max = 428

Min = 352

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500 600

G
P

U
 S

p
e

e
d

 U
p

Side Length of Image

CPU-1/GPU-1

CPU-2/GPU-2

Fig. 6: GPU Speedups for both mapping algorithms

architecture. The straightforward algorithm of maintaining
the parameter domain buffer can achieve about 100 times
speedup, whereas the inverse-checking approach can reach
about 400 times speedup. The latter one does not have to
keep a large parameter domain. The speedup curves in Fig.
6 vary as the image size increases.

4.2 Performance Analyses
Although experimental results in Figs. 5 and 6 have

demonstrated that GPU versions can beat CPU ones for
up to 400 times. However, the internal reasons about why
GPU can accelerate Hough transform so well and why
inverse-checking algorithm can exhibit better performance
need further investigation. NVIDIA Fermi architecture plays
the critical role.

It is clear that the maximum speedup is achieved when
image size is relatively small such as 96×96. In fact, images
with 64× 64 size have been tested as well. However, GPU
version execution was too fast to catch the accurate result
for comparison. Such significant speedup in small problem
size cases are caused by data cache capacity in GPUs. It
can be observed that after size length of 96, curves go down
quickly. The main reason is that cache hit rate drops quickly
as the image size increases.

Another factor that might influence cache hit rate largely is
the selection of block dimension. Since each pixel is mapped
onto one separated thread, the choosing of block dimension
will simultaneously decide the total block number. When
more blocks are generated, the cache size assigned to each
block will decrease. Therefore, the cache hit rate within
blocks will be hurt. However, putting too many threads (1024
threads can be the limit within one block) into one block is
not a wise choice as well. All these threads will be handled
by one SM in Fermi architecture. When the limit is reached,
extra threads will put into queues. Traditionally, one SM
will handle at least one block and the maximum number of
threads it could handle concurrently is fixed. When block
size is big, the optimal thread number for one SM will be
harder to achieve. Smaller block size such as 32, 64 and 128,

are usually good selections. Figs. 7 and 8 illustrate how the
best execution times can be achieved for different settings
of block dimensions as the problem size increases.

32

64

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600

B
e

st
 G

P
U

-1
 R

u
n

n
in

g
 T

im
e

 &
 B

lo
c
k

 D
im

e
n

si
o

n

Side Length of Image

Best time for GPU-1

Best blockDim

Fig. 7: GPU version’s best execution time and block dimen-
sion selection with straightforward algorithm

64

256

128

0

50

100

150

200

250

300

0 100 200 300 400 500 600

B
e

st
 G

P
U

-2
 R

u
n

n
in

g
 T

im
e

 &
 B

lo
c
k

 D
im

e
n

si
o

n

Side Length of Image

Best time for GPU-2

Best blockDim

Fig. 8: GPU version’s best execution time and block dimen-
sion selection with inverse-checking algorithm

Figs. 9 and 10 demonstrate comprehensive results for
both algorithms on different block and input sizes. It is
clear that the straightforward algorithm’s performance is
not really stable as the image size increases, whereas the
ones for the inverse-checking algorithm maintain very good
shape and almost increase exactly by O(n4). In Fig. 9,
54.08÷ 2.73 = 19.81 and in Fig. 10, 60.19÷ 3.77 = 15.96.
Time increase from 256 to 512 should be (512256)

4 = 16,
which matches Fig. 10 very well. For Fig. 9, however,
the value 19.81 exceeds theoretical value 16 a lot. This
indicates the massive memory access in GPU will slow down
execution significantly. Another noteworthy issue is that, for
the inverse-checking algorithm, which is computationally
intensive in GPU, curves for cases with block dimensions
equal to and larger than 64 are similar to each other, i.e., they
all exhibit good performances. Therefore, in computationally
intensive cases, these dimensions for block might be better
choices. Although NVIDIA suggests 64 or its multiple

246 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

2.73

54.08

0

10

20

30

40

50

60

0 100 200 300 400 500 600

R
u

n
n

in
g

 T
im

e

Side Length of Image

blockDim = 16

blockDim = 32

blockDim = 64

blockDim = 128

Fig. 9: Execution time of straightforward algorithm with
different block dimensions

3.77

60.19

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600

R
u

n
n

in
g

 T
im

e

Side Length of Image

blockDim = 16

blockDim = 32

blockDim = 64

blockDim = 128

blockDim = 256

blockDim = 512

Fig. 10: Execution time of inverse-checking algorithm with
different block dimensions

number threads for one block, in straightforward algorithm,
a selection of 32 threads for a block is also the best choice
sometimes.

4.3 Possibility for Real-time Processing
It is clear that the inverse-checking algorithm performs

better on GPUs. This might support real-time circle detec-
tion. Although nearly every application requires faster pro-
cessing speed, the video processing is especially demanding
on this. Assume the frame rate of a video is 25 frames per
second. To detect circles in real time, the total transferring
time (ttrans) and processing (tproc) time for one frame
should not exceed 0.04 second. As we mentioned before,
ttrans can be ignored when asynchronous data transfer
technology is applied. On the other hand, tproc might include
video decompression time (tdecomp), image scaling time
(tscale) and circle detection time (though). Since real-time
compression and image scaling can be achieved, tdecomp

and tscale just exhibit as processing delays when compu-
tation/communication overlapping scheme is used. Can we
reduce Hough transform time though to 0.04 second or less?
Based on our experimental results, when the image size is
around 96 × 96, though is between 0.02 and 0.03. Thus,

if this resolution is tolerable for circle detection, real-time
processing can be achieved. In many video processing ap-
plications, just regularly sampled frames will be processed.
The proposed scheme can support larger images.

5. Related Work
Hough transform was first introduced to detect lines by

Paul Hough in 1959 [4]. After that, Richard Duda and
Peter Hart (1972) invented generalized Hough transform
[2], which became popular in computer vision field after
Dana Ballard published his paper in 1981 [1]. Since then,
this technique has played an important role in shape-based
feature extraction.

Jaroslav Borovicka (2003) wrote a paper about circle
detection using Hough transform [8]. As a popular tool in
image processing, Hough transform is included in toolboxs
of Matlab by MathWorks, but the functionality is limited to
line detection. In 2010, CUVILib from NVIDIA developed
a library for Hough transform on straight lines.

6. Conclusions and Future Work
This paper takes the advantage of NVIDIA GPU’s com-

putability and developed proper methods to parallelize
Hough transform on circle detection. Compared to sequential
C code, CUDA code can achieve up to 400 speedups with
inverse-checking approaches on Fermi architecture. With
such a high acceleration rate, real-time circle detection
using non-modified Hough transform becomes possible. As
a computationally intensive problem with relatively small
I/O, Hough transform exploited GPU’s computational power
thoroughly. In future, we plan to detect more types of shapes
using Hough transform and latest features of GPU architec-
ture and CUDA programming paradigm will be explored and
put into use.

References
[1] D.H. Ballard. Generalizing the hough transform to detect arbitrary

shapes. Pattern Recognition, 13, No.2:111–222, 1981.
[2] R. O. Duda and P. E. Hart. Use of the hough transformation to detect

lines and curves in pictures. Communications of the ACM, 15:11–15,
1972.

[3] S. Eom, R. Bise, and T. Kanade. Detection of hematopoietic stem
cells in microscopy images using a bank of ring filters. In The IEEE
International Symposium on Biomedical Imaging, 2010.

[4] Paul. V. C. Hough. Method and means for recognizing complex
patterns, 1962.

[5] Nvidia. Nvidia fermi tuning guide, 2009.
[6] Nvidia. Nvidia cuda c programming guide 3.2, 2010.
[7] M. Smereka and I. Duleba. Circular object detection using a modified

hough transform. International Journal of Applied Mathematics and
Computer Science, 18, No. 1:85–91, 2008.

[8] University of Bristol. U.K. Circle Detection using Hough Transform,
2003.

[9] Y. Xie and Q. Ji. A new efficient ellipse detection method. In
International Conference on Pattern Recognition, 2002.

[10] Y Yabuta, H Mizumoto, and S Arii. Binocular robot vision system
with shape recognition. In International Conference on Control,
Automation and Systems, 2007.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 247

Fast Dot Correlation in Optical Metrology on GPGPUs

Ralf Seidler1, Andreas Schäfer1, and Dietmar Fey1
1Computer Science 3, Chair of Computer Architecture

Friedrich-Alexander-University Erlangen-Nuremberg, Germany
{ralf.seidler, andreas.schaefer, dietmar.fey}@informatik.uni-erlangen.de

Abstract— In optical systems image defects of the used
lenses are a decisive factor and can significantly impair the
accuracy of the measurement results. To measure the defects,
the lens is placed in front of a dot mask and a CCD-sensor.
When large numbers of lenses need to be inspected, time is
a crucial factor. For those measurement systems employing
standard PCs a viable option for image processing is to make
use of the parallel computing power of GPUs by offloading
compute intensive tasks to them.

In this paper we present fast and efficient parallel al-
gorithms for finding the dots on the sensor with sub-pixel
accuracy and allocating them to their expected dot positions.
For that purpose, we propose a cellular automaton based
approach which we have evaluated on NVIDIA Fermi GPUs.
For a resolution of 16 megapixels, resulting in about 30000
dots and 120 iterations, we have achieved 25 frames per
second. Compared to previous work, we show that even
difficult benchmark instances can be solved with a speedup
of about 90.

Keywords: parallel algorithms; optical measurement; cellular
automata; GPGPU; CUDA

1. Introduction
The quality of optical systems such as cameras, spy-

glasses and telescopes depends on the accuracy and quality
of the used components. The creation of such devices has
made large steps towards mass-production and miniaturiza-
tion. Image defects impair the usefulness of these devices.
When knowing the exact degree of the image defects, the
optical distortion can be corrected resulting in images of
higher precision. For that the industry needs fast and reliable
quality control in their production processes.

Examples of non-destructive measurement of materials
are the optical 3D-metrology based on stereo-camera sys-
tems [1], whitelight interferometry [2] or the usage of x-
ray or supersonic diagnostics. In addition to these methods
another destruction-free approach can be implemented by
using an optical dissection array.

In the wide area of measurement and testing technology
huge amounts of data need to be entered into the system
while being recorded at the same time. For these applica-
tions the use of multi-core processors seems feasible. The
described metrologies are often implemented in production
processes as means of quality control. Hence the analysis of

the data has to meet real-time constraints making a parallel
computation of data necessary. In most cases the problem
space can be decomposed geometrically in smaller parts to
be worked in parallel. Accordingly, fast dot correlation in
optical metrology on GPGPUs is within the application field
of data-parallel computation.

For data-parallel applications, hardware-accelerators are
suitable. The most promising being GPUs. They can be
programmed flexibly and are currently used successfully
for a variety of jobs in high-performance computing [3],
offering a high FLOPs per dollar ratio. Previous works
show that graphics processing units can be efficiently used
to accelerate many computational tasks such as database
applications using SQLite [4], physical simulation based
on monte-carlo methods [5], cellular automata simulation
and visualization [6], high performance stencil code com-
putation [7] as well as improving the speed of the image
processing toolbox for the well known Matlab software [8].

We will examine how GPUs perform when they are used
for a real-time application for optical measurement tech-
niques. For that we introduce a cellular automaton [9] based
dot correlation algorithm designed for massively parallel
architectures. All necessary computations, including the dot
exploration, are done on the graphics hardware which serves
as a fast co-processor for the CPU. This approach minimizes
the need for communication between CPU and GPU.

2. Background and Related Work
In optical metrologies one of the most common tasks is

to measure and evaluate the quality of an optical device,
e.g. a lens, a mirror or a prism. The lenses and mirrors of
a telescope for astronomic application must be as perfect
as possible. To determine the quality and evenness of such
a large device, extensive measurements are necessary. If
this measurement process would take several seconds, the
complete scan of the device could take several hours or
even days. Contact lenses which are produced in very high
numbers also have to meet very high quality standards.
During the necessary quality control of lenses the speed
of the measurement is a crucial factor for increasing the
production throughput or to start the rework process (e.g.
polishing) earlier.

An optical phase distortion sensor initially proposed by
Hartmann (hereafter abbreviated as H-sensor, an advanced
version of such a sensor can be found in [10]) can be used

248 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Distorted

optical wave Hole-Array Sensor

Home-Area

Fig. 1
EVALUATION OF A DISTORTED LENS USING AN OPTICAL SENSOR WITH

A DISSECTION ARRAY ELEMENT

to measure a distorted lens. To generate the required dots, an
optical dissecting array element (e.g. with holes) is installed
between the lens and an image-sensor. The resulting image
shows a dot-array, where every dot has a predefined location
on the sensor given by the focus of one hole when a plane
wave is measured. This is illustrated by the dotted vertical
lines in Figure 1. It also shows that one part of the optical
wave that is to be measured, belonging to one particular
hole, is called home-area. The dots can be outside of their
respective home-area. In this case they need to be correlated
with their expected position.

In [10] a measurement technique for an H-Sensor is intro-
duced and the dot-exploration process is discussed. A sensor
of 640× 480 pixels is being used. The micro-lens array has
a dimension of 15×15 lenses. With a Pentium IV 800 MHz,
they obtained a measurement speed of approximately 22 ms.
This is achieved by partitioning the image into 15×15 parts,
corresponding to the home-areas. Over these parts a middle-
point computation algorithm is performed. The middle-point
σ of an area A ∈ NM×N of size M × N in a gray-scale
image can be described as

σx =
∑

i,j∈A i·ξi,j∑
i,j∈A ξi,j

, σy =
∑

i,j∈A j·ξi,j∑
i,j∈A ξi,j

(1)

with ξi,j being the gray-scale value of the pixel at position
(i, j) of the image.

A fast computation can be achieved, because there is no
data-dependency between the areas. This algorithm is the
state of the art for these problems and will be the basis for
our experimental comparison. Modern H-Sensors use hole-
arrays with up to 250×150 holes, based on an image-sensor
of 16 megapixels. With that the processing of one image
would take approximately one second on today’s standard
PCs.

When using H-sensors the dots induced onto the image-
sensor may leave the predefined search-location. In that case,
the proposed search-algorithm in [10] would not find all
dots, rendering the measurement useless. To avoid that a dot
correlation is needed. After having correlated the found dots
with their corresponding rays, a complex post-processing

step follows. This post-processing step is mostly harder
to compute than the correlation, but can be implemented
efficiently on graphics cards. The focus of our work is to
do the data-reduction achieved by the dot exploration and
correlation. After that, the data can be held on the graphics
card for further post-processing computations.

The described method can operate on gray-scale images.
Each pixel of such image can be 8, 16 or 32 bits in depth,
where a maximum resolution of 16 megapixels is expected.
This results in up to 64 megabytes of memory per image.
We aim for a frame rate of at least 25 fps for the complete
correlation, since this is mostly the industrial demand due to
the actual optical sensor ability of delivering at least 25 fps.

3. CUDA and the GF100-Architecture
Before introducing the architecture, it is advisable to

examine the CUDA programming model. CUDA stands for
Compute Unified Device Architecture and was introduced
in 2007 by NVIDIA [11]. It offers the ability to offload
compute intensive tasks from the CPU, called host, to the
graphics hardware, called device in CUDA context.

CUDA threads are arranged in so called thread-blocks
with up to 1024 threads each. Each thread has access to
his own registers, a memory shared among the threads of
a thread-block and global memory. The data residing in
global memory is accessible by all thread-blocks and the
host machine. This is used to transfer data between the host
and the device memory. Another important feature – the so
called atomic functions – allow an exclusive access of one
thread to a memory address in global memory.

A graphics processing unit consists of a number of multi-
processors (MPs). Each of them has a number of processing
elements (scalar processors), some internal memory and
special function units (SFUs). To execute a program, one
thread-block is mapped to a multiprocessor and executed
in SIMD-like manner. Always taking 32 threads (called a
warp) onto the execution units, each thread executes the
same operation. Nevertheless, branching is possible where
each non-active thread must be masked out. So in the worst
case, the potentially parallel code is serialized.

NVIDIA’s GF100 architecture codename "Fermi" offers
several benefits, such as cached global memory and a large
on-chip memory, used as L1-Cache or shared-memory per
multiprocessor [12]. As described in [13] the architecture
can be utilized effectively, if the program exhibits a high
L1-Cache hit-rate. Each multiprocessor has 32 processing
elements compared to 8 in older generations. One mul-
tiprocessor can now execute more than one thread-block,
resulting in a more concurrent behavior of accesses to the
register-file, shared memory and caches. As described in [14]
older programs can still be run on the new devices.

The cache for global memory and the shared memory are
physically the same. There are 64 kB of memory available
per MP. This can be dynamically adjusted per kernel to

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 249

Dot Exploration
Sub-Pixel Exact

Computation
Dot-Correlation

Image Correlated Dots

Home-Area

Middle-Points

Fig. 2
THREE-STEPS MODEL OF THE PROPOSED ALGORITHMS

either 16 kB L1-Cache/48 kB Shared Memory or 48 kB
L1/16 kB shared. It is advisable to adjust the size to
the most beneficial setting for that particular use-case. A
GPU acts like a CRCW-PRAM [15], [16] (Concurrent Read
Concurrent Write Parallel Random Access Machine). So
every thread of a program can access any global memory
address for read or write at any time. If more than one thread
want to write to the same address, it is undetermined which
thread wins, but one is guaranteed to. The communication of
several threads of one thread-block is needed to achieve a
high throughput. Nevertheless, no global barrier technique
is available. Especially in iterative algorithms, such syn-
chronization has to be done by repeatedly starting the same
kernel, inflicting several microseconds of waiting time [17].

For our tests we used a system with an Intel Core i7 920
with four cores, running at 2.66 GHz. The graphics card is an
NVIDIA Geforce GTX 480, based on the above mentioned
GF100 chipset.

4. Proposed Algorithms
The operations described here can be illustrated as a

three-step-model and are shown in Figure 2. We call one
partition of the image that surrounds an expected position of
a ray home-area. The first step is to explore where dots are
present on the image. This is followed by the sub-pixel exact
computation of the found dots. After that the found dots
are correlated to their corresponding home-area. In all three
steps, the home-area middle points (the expected positions
of the dots) are needed.

4.1 Dot Exploration
To travel through the image one line at a time and

determine if the currently analyzed pixel is a maximum point
would be a simple serial dot exploration algorithm. This
serial approach can be adapted for a parallel implementation.

Figure 3 displays the data-structure that every home-area
has. It illustrates that the middle-point and a place where
the exact dot can be stored are needed. Depending on the
distortion of the rays, more than one old dot can be present
in one home-area. These dots need to be found and stored for
further correlation. To keep track of them an index variable
is created.

middle

dots(0)

dots(1)

...

pos

Data Structure

home

dot

dots(δ)

Home-Area

Fig. 3
DOT EXPLORATION PER HOME-AREA. THE DATA-STRUCTURE homes

CONSISTS OF THE MIDDLE POINT OF THE HOME-AREA, THE FOUND dots,
A CORRELATED dot AND THE NUMBER OF FOUND DOTS pos. THE

COMPONENTS ARE ACCESSIBLE VIA homes.{middle,dots(i),dot,pos}.

Algorithm 1 shows the dot exploration phase. First the
image is partitioned into overlapping boxes – the home-
areas mentioned above – that are computed in parallel. Their
centroids would be the expected dot positions in an ideal
case. In each of these partitions, local intensity maxima need
to be found, indicating that there is one dot of a ray found.
Due to the noise present in the image, these local minima
can be present in almost every position. Because of that,
a predefined threshold value th is introduced. When the
value of the particular pixel is higher than th, its neighbors
need to be taken into account, to determine whether it is the
maximum or not. The number of found spots is called δ.

If a pixel is an area maximum, its coordinates need to
be inserted into the data structure home, so that it can
be accessed for future computations. Every pixel can be
computed independently from the others and thus in parallel.
Therefore we need to have an EREW-PRAM (Exclusive
Read Exclusive Write-PRAM) [15] shared memory. We
require a mechanism of incrementing a shared variable by
one processing unit, determining the address of the found
dot to be stored in the shared memory home. To do that we
have home.pos included that points towards the next free
cell of the data structure.

4.2 Sub-Pixel Exact Computation
After having found the correct pixel, it is time to compute

the sub-pixel exact position of the point. Every home-area
can be computed in parallel. The list of found dots of each
home-area is computed in serial. To do that a small pixel-
area around the found dot is taken into account (rad(dot)).
A common value of that radius is five pixels around a center
point. With A = {(i, j)|(i, j) ∈ rad(dot)} in (1) the exact
middle point of that dot can be computed.

4.3 Dot Correlation
Having found all dots within each home-area, we now

need to correlate them with the home-area they belong to.
The initial task is to find dots that are not shifted beyond
the borders of their assigned home-areas. Based on these

250 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Algorithm 1 Dot Exploration
1: procedure EXPLORE(img, dimx, dimy, th)
2: Share home
3: for all i ∈ dimx, j ∈ dimy pardo
4: o← img(i, j)
5: if o > th then
6: n← img(i, j − 1)
7: e← img(i+ 1, j)
8: s← img(i, j + 1)
9: w ← img(i− 1, j)

10: if o > (n, e, s, w) then
11: p← inc(home.pos)
12: home.dot(p)← (i, j)
13: end if
14: end if
15: end for
16: return home
17: end procedure

reference points, we begin to iteratively assign dots. We
introduce a set called correct, to insert all exact correlated
dots into. Since dots may be shifted to such an extent that
they reside in a neighboring home-area, or several home-
areas away, and given the rather smooth nature of the
shifting distortion, it is impossible to decide whether a dot
is correctly correlated from just a local view of the dots.
Rather, a global view is required to determine the area of
reference. We assume that some dots in the middle of the
image are not shifted out of their home-areas and insert them
into correct.

After this initial assignment, the remaining home-areas
not yet belonging to correct and their corresponding dots
have to be assigned to the set incorrect. Algorithm 2
describes the dot correlation algorithm. Every home-area
becomes one cell of a cellular automaton. Beginning with
the correct dots, all their neighboring dots become active
and evaluate their dot positions by taking the correct home-
areas in cardinal direction into account. For instance, we
assume that the home-area (i,j) is active, because their right
neighbor is correct. The two before last home-area dots are
considered in such a way that a vector is created, leading to
the approximated position papp of the next dot.

papp(i, j) = p(i+ 1, j) + (p(i+ 1, j)− p(i+ 2, j)) (2)

Figure 4 illustrates this situation. After having found the
approximated area of the dot, the next step is to find its exact
position. To do that a search area around papp is introduced.
Since we know the correct places of the found dots, we only
have to search every home-area adjacent to the found area.
The worst case scenario being that – because the radius is
always smaller than the size of the home-area – four home-
areas need to be scanned. If there is more than one dot found
within the search radius, the nearest dot to the approximated
position is chosen.

homes(i+2,j)homes(i+1,j)homes(i,j)

a
a

?

Fig. 4
ESTIMATING THE NEW DOT

Algorithm 2 Dot correlation
1: procedure CORRELATE(homes, correct, incorrect)
2: while not all dots are correct do
3: for all homes(i, j) ∈ incorrect pardo
4: if neighbor(i, j) ∈ correct then
5: n← neighbor(i, j)
6: pn ← homes(n).dot
7: pnn ← homes(neighbor(n)).dot
8: papp ← pn + (pn − pnn)
9: homes(i, j).dot← SEARCH(homes, papp)

10: delete (i, j) from incorrect
11: correct← (i, j)
12: end if
13: end for
14: end while
15: end procedure

4.4 Limitations
The described algorithms are a first step towards solving

the problems introduced with such an H-Sensor measure-
ment device. They still have some limitations regarding the
dots’ arrangement to allow a proper correlation. First of all
with the existence of noise in the camera image, the found
maxima may not be the correct dots. This can only be solved
with a proper threshold and a mechanism, to discard dots
that are too small. In the correlation phase, finding a suitable
starting point is one of the main problems. To achieve this,
we introduced a simple middle selection algorithm. If the
dots in the middle do not meet these demands the iterative
correlation can not start and thus the result would be useless.
In our current work, we focus on input images with a
relatively small noise present and at least four neighboring
dots are selectable by the algorithm. Other limitations are
crossing rays or two dots too close to each other. Then the
correlation is almost impossible. In that case, a common
technique is to mask out some of these dots and compare
the resulting image with the one previously taken. That is
not an algorithmic, but mechanical approach.

5. Implementation
5.1 Dot Exploration

Implementing the dot exploration on graphics cards can
be done in a straightforward fashion. Since we have threads
grouped in thread-blocks, this leads to a natural mapping.
Every home-area is computed with a thread-block and every

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 251

pixel of a home-area is examined by one thread. For that
purpose we need to know how large a home-area in the
cardinal directions might be. Since new graphics cards have
1024 threads available per thread-block, this leads to a
maximum of 32 × 32 threads, resp. 32 × 32 pixels. This
is enough since industrial requirements are limited to a
maximum of 25×25 pixels. Because of the limited resources
on the device, the required amount of registers per thread is
important as well.

An array with the input-image, its dimensions and the
threshold value serve as input parameters for the exploration
kernel running on the GPU. Accordingly, an array with the
home-area middle points mid and the distance between two
home-areas dist is needed. An array where the detected
dots can be stored is allocated as output. Each thread has to
determine which of the pixel-coordinates in the image it has
to process. For that the pixel id is determined with (3).

pixid = threadIdx+ (mid− dist) (3)

Every thread loads the value of its corresponding pixel.
If it is larger than the predefined threshold, the direct
neighbors are loaded. These loads are not aligned and may
result in a non-coalesced memory access. In older GPU
generations, these could be improved with textures. In the
recent generation the new caches are faster and larger than
the caches of the texture units. In devices with CUDA
compute-capability 2.0 the latter are shared among four
multiprocessors. Previously they were shared only among
two. All sub-partition data can also be stored in the L1-
Cache, so when accessing one memory-word for the first
time, it is fetched from global memory and transferred to the
L1-Cache. Every pixel (excluding the pixels at the borders
of the image) is accessed by four threads, while only one
has to wait for the data from memory.

Having discussed the load operations necessary, we will
now take a closer look at the control flow operations. They
do not perform well on GPGPUs, but are necessary for
the next step. In that the threads of the thread-block might
diverge, because there are only a few threads, that are
over the threshold. By letting all of the threads load their
neighbors, we tried to avoid branch-diversion. But since that
results in a measurably higher computation time, doing the
selection process first is a more rewarding approach. After
having found a maximum point, we need to implement the
EREW-PRAM alike memory transaction. For that, we need
a shared data structure for the home-area and one for the
array-index of the found dot. First, this index is set to zero
by thread zero and the threads are synchronized. Then the
maximum determination described above is initiated. With
NVIDIA’s chips with compute capability 1.3 and higher it
is possible to use atomicInc on shared memory. This
operation does the same an EREW-PRAM would do. So
every thread that has found a maximum does the increment
and writes its found dot to the position indicated by the old

index value. To avoid bank-conflicts, we limit the number of
dots per home-area to six. This is due to the fact that there is
one 32 bits integer as index variable, two 32 bit float values
as coordinates of the middle point and for every dot two
additional 32 bit float values and one 32 bit value for status
flags. This results in only 16 consecutive 32 bit values. So
no bank holds more than one value. Now every home-area
knows the pixel exact positions of the dots included. Thread
zero of all thread-blocks can now write the resulting home-
area data-structure to global memory. After all threads are
finished, the kernel is stopped and returns.

Due to the data locality, it is not advisable to implement
such atomic functionality on global memory. If the transac-
tions were done on global memory, the data would not be
guaranteed to be in the caches.

5.2 Sub-Pixel Exact Computation
The next step is to compute the sub-pixel exact positions

of the found dots. Since a dot can be found by different
home-areas and only one dot is the correct one, the sub-
pixel exact computation can be done after the dot correlation
phase. Doing the sub-pixel exact computation after the dot
correlation phase successfully reduces the runtime. Even
though this approach reduces the robustness (since the found
dots are only pixel exact when introducing them to the
correlation kernel), the reduced runtime – one of our main
objectives – is worth it.

In this kernel function, one thread is responsible for
one home-area. From the pixel-exact value of the dot, we
introduce a bounding box, in which all pixels are considered
to be part of the exact dot. This is done because a circle
approach does not seem feasible for a graphics card, due to
a bad access scheme. When a complete line is considered,
the values of the pixels can be cached for further use. One
of the major problems here is the non-coalesced memory
access of the input image. Every thread accesses a certain
area of the image, mostly not in the same line as the other
threads in the thread-block. This happens because the dots
can differ in their y-coordinate. For a two bytes per pixel
image, only 64 pixels can be loaded with one 128 bytes
load operation, as it is common in modern graphics cards.
Another important factor is that the x-coordinates of the dots
are mostly not aligned to 128 bytes accesses. So it is possible
that two memory transactions are needed to load every dot.
Per multiprocessor, a maximum of 48 kB of L1-Cache is
possible, resulting in about 100× 100 pixels. If all of these
pixels were part of the dots, this would result in only 10×10
threads per thread-block. This would not be enough, since
the under-employment of the multiprocessors can not hide
the memory-latency properly.

5.3 Dot Correlation
Before we can do the dot correlation, we need to imple-

ment some vector arithmetic as well as an efficient search

252 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

algorithm. The vector arithmetic is trivial. The search for
the correct dot is of more interest. To determine the possible
home-areas for the area around the approximated position,
its ID is computed with id = bpapp/dimc − 1, where
dim corresponds to the exact distance between two home-
area middle-points. Since this algorithm is iterative and
no efficient synchronization mechanism exists on graphics
cards, the kernel needs to be restarted after every iteration.
Thus, the first thing needed is the array of the home-area
data-structures of the last iteration homeold, as well as an
additional data array homenew, where the computed result
is stored. Also two new character-arrays are necessary. One
that describes the current status of each home-area statusold,
the other to hold the new status of this iteration statusnew.
These arrays are basically filled with zeros (not correlated) or
ones (correlated), describing the status of the corresponding
home-area. Other inputs are the dimension of the home-area-
arrays and the exact distance between two home-area middle
points.

The kernel begins by loading the status of its cell from
statusold and checks if it has been correlated in a previous
iteration. If that is not the case, then the status of the cardinal
neighbors is fetched. If two of them are correlated,
the computation of the new dot can be done. So it loads
the dot from its neighbor p(i + 1, j) and its next neighbor
p(i+2, j). Now the approximated dot is computed according
to Equation (2). With these coordinates the search operation
is performed: all home-areas adjacent to the approximated
point – meaning they are inside the radius of the search
operation – are loaded. All their dots are considered in terms
of distance to the approximated point. The one with the
smallest distance is chosen and becomes the correct dot of
the home-area. Now all home-areas that did an update write
a one to the status-array statusnew, as well as their resulting
data-structure to homenew to indicate their correlation. This
is repeated iteratively until all dots are correlated.

6. Results
Figure 5 shows the applied dot exploration and correlation

algorithms for an example of 12 × 8 dots. The underlying
image has a resolution of 512 pixels with a gray-scale-depth
of 16 bits. In Figure 5a the found dots of the dot exploration
algorithm are displayed. The correlated result is shown in
Figure 5c. The exact home-area middle points, the borders
without overlapping and the found dots are shown. Since the
correlation algorithm is iterative, the image 5b shows the
correlated dots (shaded) after 8 iterations. The final result
after 12 iterations is shown in 5c. For larger resolutions,
respectively more home-areas, the number of iterations has
to be higher.

If there is a dot near a border between two home-areas it is
found by all corresponding home-areas, which add it to their
list of found dots. This is indicated by a line from the middle
to the found dot. During each iteration the correlation of

those home-areas that neighbor already correctly correlated
home-areas is done.

For our test purpose we created several test images with
different resolutions and different numbers of home-areas
per image. In Table 1 the run times for these images on a
single core CPU implementation running on an Intel Core
i7 920 compared to the run times of an NVIDIA Geforce
GTX 480 are displayed. The GPU total time includes the
memory-copy time of the image to the device, as well as
the time to copy the results back. The correlation time is the
time the correlation algorithm takes.

One of the most interesting results to point out in Table 1
is that the correlation kernel takes half of the time of the
complete computation, but only a small part of the cells
is updated per iteration. This leads to the idea, to find
an efficient implementation of an update-scheme which we
call "parallel wave propagation update". If something like
that were available, it would be highly beneficial for this
algorithm and others which we found during our research,
e.g. parallel path planning algorithms described in [18].

We estimated the highest achievable number of lattice
updates per second (LUPS), computed as M ·N ·iter

time . For a
resolution of 4896 × 3280 pixels and 242 × 162 dots, we
observe 245.4 MLUPs – (242 · 162 · 121)/0.01933 ms – for
the correlation phase. This very high value is possible since
the graphics card is under-utilized with the small number of
home-areas in the other examples. Here the GPU can use
its full potential: even for the complete computation, with
memory copies this is still 120.6 MLUPs. Compared to the
run times of the CPU, this is a speed-up of almost 20.

The described algorithms are highly efficient and utilize
the graphics card very efficiently for high resolutions and
a large amount of dots. The demanded real-time capability
is also achievable. With the tool computeprof from
NVIDIA it is possible to profile a CUDA application. With
this tool it was possible to determine, that the L1-Cache
hit-rate for the dot-exploration algorithm is about 60%, that
being the reason for the high data throughput per home-area.
For the dot-correlation algorithm we achieved an L1-Cache
hit-rate of over 90%.

We approximate the dot exploration time (without correla-
tion) of [10] to take 3.5 seconds for a 16 megapixels image.
With our implementation, we can achieve a 175 times faster
dot exploration. With our dot-correlation this is still 90 times
faster.

7. Conclusion and Outlook
In this paper we described a fast dot exploration and

correlation algorithm for speeding up optical measurement
methods. We implemented an efficient new algorithm and
successfully used the new features of the GPU to speed up
the computation and to achieve the desired performance. For
a resolution of 4896 × 3286 pixels we achieved a time of
about 40 milliseconds. This is well within our goal of 25

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 253

(a) Initial allocation (b) After 8 steps (c) Resulting allocation after 12 steps

Fig. 5
DOT CORRELATION ALGORITHMS APPLIED ON AN EXAMPLE

Table 1
RUNTIMES AND SPEEDUP FOR DIFFERENT RESOLUTIONS AND DOT NUMBERS ON CPU AND GPU

Resolution Dots CPU GPU Speedup
Total (ms) Correlation (ms) Total (ms) Correlation (ms)

1388× 1038 69× 52 24.59 18.57 4.68 2.53 5.23
1600× 1200 78× 59 46.92 25.40 6.63 3.15 7.07
2048× 2048 116× 116 88.14 61.99 14.35 5.55 6.15
4896× 3280 242× 162 332.90 220.90 39.32 19.33 8.46

frames per second, even for a resolution of 16 megapixels.
Compared to the standard serial approach, we were able to
speed up the dot-exploration by a factor of 175.

The next logical step would be to focus on the post-
processing with GPGPUs. In this context, the measured
lens needs to be reconstructed. This can be done iteratively
or by using a Least-Square Fit algorithm. First simple
implementations showed a good performance on GPUs.

References
[1] M. Yamazaki and G. Xu, “3D reconstruction of glossy surfaces using

stereo cameras and projector-display,” in Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference, 2010.

[2] M. Hissmann, “Bayesian Estimation for White Light Interferometry,”
2005.

[3] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron,
“A performance study of general-purpose applications on graphics
processors using cuda,” Journal of Parallel and Distributed Com-
puting, vol. 68, no. 10, pp. 1370 – 1380, 2008, general-Purpose
Processing using Graphics Processing Units.

[4] P. Bakkum and K. Skadron, “Accelerating SQL database operations
on a GPU with CUDA,” in Proceedings of the 3rd Workshop on
General-Purpose Computation on Graphics Processing Units, ser.
GPGPU ’10. New York, NY, USA: ACM, 2010, pp. 94–103.
[Online]. Available: http://doi.acm.org/10.1145/1735688.1735706

[5] K. Karimi, N. G. Dickson, and F. Hamze, “High-Performance Physics
Simulations Using Multi-Core CPUs and GPGPUs in a Volunteer
Computing Context,” CoRR, vol. abs/1004.0023, 2010.

[6] S. Gobron, A. Çöltekin, H. Bonafos, and D. Thalmann,
“GPGPU computation and visualization of three-dimensional
cellular automata,” The Visual Computer, vol. 27, pp.
67–81, 2011, 10.1007/s00371-010-0515-1. [Online]. Available:
http://dx.doi.org/10.1007/s00371-010-0515-1

[7] A. Schäfer and D. Fey, “High Performance Stencil Code Algorithms
for GPGPUs,” in Computational Science - ICCS, ser. Procedia.
Elsevier, 2011, p. accepted for publiclation.

[8] J. Kong, M. Dimitrov, Y. Yang, J. Liyanage, L. Cao, J. Staples,
M. Mantor, and H. Zhou, “Accelerating MATLAB Image Processing
Toolbox functions on GPUs,” in Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics Processing Units,
ser. GPGPU ’10. New York, NY, USA: ACM, 2010, pp. 75–85.
[Online]. Available: http://doi.acm.org/10.1145/1735688.1735703

[9] M. Komann and D. Fey, “Realising emergent image preprocess-
ing tasks in cellular-automaton-alike massively parallel hardware,”
IJPEDS, vol. 22, no. 2, pp. 79–89, 2007.

[10] L. A. Carvalho, “A simple and effective algorithm for detection of ar-
bitrary Hartmann-Shack patterns,” Journal of Biomedical Informatics,
vol. 37, no. 1, pp. 1 – 9, 2004.

[11] D. Kirk, “NVIDIA cuda software and gpu parallel computing
architecture,” in Proceedings of the 6th international symposium
on Memory management, ser. ISMM ’07. New York,
NY, USA: ACM, 2007, pp. 103–104. [Online]. Available:
http://doi.acm.org/10.1145/1296907.1296909

[12] NVIDIA, “Fermi White Paper,” 2009.
[13] ——, “NVIDIA Fermi Tuning Guide 1.3,” 2010.
[14] ——, “NVIDIA CUDA Programming Guide 3.1,” 2010.
[15] B. Parhami, Introduction to Parallel Processing Algorithms and Ar-

chitectures. New York, USA: Kluwer Academic Publishers, 2002.
[16] F. Dehne and K. Yogaratnam, “Exploring the Limits of GPUs With

Parallel Graph Algorithms,” CoRR, vol. abs/1002.4482, 2010.
[17] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D.

Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund,
R. Singhal, and P. Dubey, “Debunking the 100X GPU vs. CPU
myth: an evaluation of throughput computing on CPU and GPU,”
SIGARCH Comput. Archit. News, vol. 38, pp. 451–460, June 2010.
[Online]. Available: http://doi.acm.org/10.1145/1816038.1816021

[18] R. Seidler, M. Schmidt, A. Schäfer, and D. Fey, “Comparison of
Selected Parallel Path Planning Algorithms on GPGPUs and Multi-
Core Processors,” in Proceeding GSTF ADPC 2010 , 2010, pp. A133–
A139.

254 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Evaluation of HPC architectures for BRAMS numerical
weather model

Eugenio Sper de Almeida1,2, Michael Bauer2, and Alvaro Luiz Fazenda3

1Center for Weather Forecast and Climate Studies, National Institute for Space Research, Cachoeira Paulista,
SP, Brazil

2Department of Computer Science, The University of Western Ontario. London, ON, Canada
3Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, SP, Brazil

Abstract - This paper investigates the performance of a
weather forecasting application (Brazilian Regional
Atmospheric Modeling System - BRAMS) on a number of
selected HPC clusters in order to understand the impact of
different architectural configurations on its performance and
scalability. We simulated atmosphere conditions over South
America for 24 hours ahead with BRAMS, using 100 cores as
a starting point (100 cores step). An extra set of executions
took place from 10 to 100 cores (10 cores step) to identify
more details about BRAMS performance. Results reveal
differences in BRAMS performance and its relationship with
interconnection (technology and topology). In conclusion,
interconnection can limit application performance even with
code improvement.

Keywords: Performance, BRAMS, Numerical Weather
Prediction (NWP) model, High Performance Computing
(HPC), parallel processing, multi-core architecture.

1 Introduction
 Increasing resolution has resulted in improved model
simulations and predictions of key atmospheric phenomena
[1]. As a result, the execution time of Numerical Weather
Prediction (NWP) models increase exponentially as the
number of grid points increase in the x, y and z directions [2].
This can lead to delays in the timely delivery of
meteorological information, resulting in the actual occurrence
of the atmospheric phenomena before it can be predicted.

The configuration of HPC resources are critical in ensuring
that sufficient computing and communication resources are
available to deliver enough performance for the timely use of
NWP models. The exponential improvement in the accuracy
of these computational models, however, represents a
challenge for many meteorological centers. Consequently,
NWP models must be tailored to get the best performance
provided by an HPC system.

Recently, Fazenda et. al. [3] identified limitations in BRAMS
(Brazilian Regional Atmospheric Modeling System)
scalability due to algorithm implementation. They identified

bottlenecks in BRAMS code and developed new solutions,
leading to a decrease of BRAMS execution time and a gain of
scalability on HPC clusters. In addition, they developed an
efficient solution for parallelism scalability, showing
performance gains up to 700 cores.

In analyzing the Weather Research and Forecasting (WRF)
Model performance, a NWP similar to BRAMS, [4] stated
that choosing the right interconnect technology was essential
for maximizing HPC system efficiency. Slow interconnects
delay data transfers between servers slowing execution of
simulations and causing inefficient utilization of
computational resources. Their results, using 24 servers each
with two AMD Quad-Core processors, identified WRF’s
communication-sensitive points and demonstrated its
dependency on high-speed networks and fast CPU to CPU
communication.

According to [5], a communication bottleneck in an HPC
cluster may lead to a significant loss of overall performance
and so network communication is another key factor that
affects application performance on HPC clusters.

Rodrigues et al [6] show the impact of applying a process
mapping approach in the BRAMS model, since the
communication link speeds on a specific cluster vary with
process selection. They developed a method to obtain close to
optimal application process placement on cluster cores.

Clusters with Intel EM64T (78.4%) and AMD x86_64
(11.4%) processors dominate the TOP500 list [7], a ranked
list of general purpose systems of common use for high end
applications. These systems use a number of different
interconnection technologies: Gigabit Ethernet (45,6%),
Infiniband (42,6%), Myrinet (0.8%) or Quadrics (0.2%). Even
though only 0.20% of the HPC systems on the TOP500 list
report that their interconnection topology is a fat tree, it is
likely that many of them build their systems with this topology
using Gigabit Ethernet, Infiniband, Myrinet or Quadrics
interconnection technology.

In a fat tree network, processors may be interconnected by a
tree structure, in which the processors are at the leaves of the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 255

tree, and the interior nodes are switches. When one moves up
the tree from leaves to the root, the links become "fatter" [8].
An advantage of a tree structure is that communication
distances are short for local communication patterns. A
drawback, however, is that the root and higher-level nodes
become bottlenecks for more global communication.

This paper investigates BRAMS performance and scalability
on a number of different clusters available within
SHARCNET (Shared Hierarchical Academic Research
Computing NETwork) [9]. BRAMS is a limited area forecast
model that runs on a broad range of computational systems:
from mono-processor desktops to clusters with many
processors. We evaluate the BRAMS performance on GigaBit
Ethernet, Infiniband, Quadrics, and Myrinet networks, as well
as in different AMD and Intel dual-core and quad-core
architectures. In Section 2 we describe BRAMS and
SHARCNET. We describe the experiments in Section 3.
Performance results from BRAMS execution on different
HPC clusters are presented in Section 4 and conclusions are
provided in Section 5.

2 BRAMS and SHARCNET overview
 The SHARCNET is a consortium of 17 academic and
research organizations in Ontario whose primary mandate is
to provide shared high performance computing facilities and
associated services to enable forefront computational
research.

 Clusters are the main SHARCNET resources and
basically serve for two categories of computing programming
models: those allowing serial (non-parallel) application to
take advantage of a clusters parallelism and those with
explicit parallelization of a program [10]. SHARCNET
clusters have different interconnection networks and types of
AMD and Intel architectures, based on dual-core and quad-
core processor chips.

The Lightweight Directory Access Protocol (LDAP) controls
account management, enabling a researcher to access to any
of the systems through a single account. On each cluster, the
Load Sharing Facility (LSF) performs job scheduling [11]. As
a user account belongs to a global storage system, codes
compiled on a user account can be executed on any
appropriate SHARCNET cluster.

BRAMS, a version of the RAMS [12][13] tailored to the
tropics, has explicit parallelization. The BRAMS/RAMS
model is a multipurpose numerical weather model designed to
simulate atmospheric circulations, well suitable for HPC
clusters. Analysis and boundary conditions from an
atmospheric global circulation model are the data input for
BRAMS simulation, which is governed by a RAMSIN
parameter definition file. It contains all parameterization
related to a specific simulation [14].

3 Experiments
 "Downscaling” refers to a technique used to achieve
detailed regional and local atmospheric data by using either
fine spatial-scale numerical atmospheric models (dynamical
downscaling), or statistical relationships (statistical
downscaling). An Atmospheric Global Circulation Model
(AGCM) run is typically the starting point for downscaling.
The downscaled high resolution data can also then be inserted
into other types of numerical simulation tools such as
hydrological, agricultural, and ecological models [15].

Many meteorological centers in Brazil use INPE/CPTEC
AGCM outputs as input for their regional area models,
consequently providing a more accurate forecast at regional
and local scale. This AGCM runs four times a day (00, 06, 12
and 18 UTC) providing numerical weather forecast outputs
for 15 days ahead with resolution T162L28 mode; T refers to
spectral truncation type (triangular) in zonal wave 62
(resolution of 100x100 km) and L refers to the number of
vertical levels (28 levels) [16].

We simulated this downscaling approach (Figure 1), with the
BRAMS model, to forecast weather 24 hours ahead in a
spatial resolution of 20x20 km over South-America (grid size
of 340 by 370 horizontal points). The analysis and boundary
conditions for the BRAMS model came from INPE/CPTEC
AGCM model outputs from October 23, 2010.

Figure 1. BRAMS downscaling.

NWP models run daily on meteorological centers on HPC
resources, at a predetermined window time as part of their
operational suite. Scientific visualization tools convert NWP
outputs to meteorological maps, meteorologists analyze those
maps to produce meteorological forecast and finally publish
on meteorological center website for the society.

In order to understand the performance of the BRAMS model,
we benchmarked BRAMS execution time starting with 100
cores and incrementing the number of cores by 100. In order
to have a closer look at the network influence over the
BRAMS performance, we perform additional executions up to
100 processors (incrementing the number of cores by 10).
This experiment took place on selected SHARCNET HPC
clusters:

256 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

• Bull (384 cores): HP Linux cluster running XC 3.1
with 96 nodes, four Opteron Mono-Core processor @
2.4 GHz (QsNet-2/Elan4), and 32 GB of memory;

• Saw (2688 cores): HP Linux cluster running XC 4.0
(RHEL 5.1) with 336 nodes, two Xeon Quad-Core
processors @ 2.83 GHz (Infiniband), and 16 GB of
memory;

• Requin (1536 cores): HP Linux cluster running XC
3.1 with 768 nodes, one Opteron Dual-Core
processor @ 2.6 GHz (QsNet-2/Elan4), and 8 GB of
memory;

• Narwhal (1068 cores): HP Linux cluster running XC
3.1 with 267 nodes, two Opteron Dual-Core
processor @ 2.2 GHz (Myrinet 2g-gm), and 8 GB of
memory;

• Whale (3072 cores): HP Linux cluster running XC
3.2.1 with 768 nodes, two Opteron Dual-Core
processor @ 2.2 GHz (GigabitEthernet), and 4 GB of
memory.

“Bull” and “Narwhal” have direct connected topology
interconnects. Fat tree topology interconnects exist on “Saw”
(three layers with 2:1 oversubscription), “Requin” (two
layers) and “Whale” (three layers) nodes. Table I presents
information about switch type, and nominal latency/bandwidth
of the selected SHARCNET HPC clusters.

Table I. Latency and bandwidth of SHARCNET clusters
interconnection.

Cluster Interconnection features
 Switch

type
latency

(µµµµs)
bandwidth

(MB/s)
Saw InfiniBand/DDR 1.3 1600

Requin QsNet2/Elan4 1.4 900

Bull QsNet2/Elan4 1.4 900

Narwhal Myrinet 2g (GM) 3.8 250

Whale GigabitEthernet 50 120

By measuring and comparing BRAMS performance, we
extend previous performance analysis from [3]. We compiled
BRAMS code using Fortran90/C compilers from Intel and
HPMPI libraries.

4 Performance results and discussions
 Message sizes, exchanged by the computing nodes of a
HPC cluster, decrease when increasing the number of cores
for BRAMS execution.

We identify differences in BRAMS execution time (Figure 2)
when increasing the number of cores and we order the HPC
clusters according to the best execution time of BRAMS:

• “Requin”, “Bull”, “Narwhal”, and “Saw” up to 60
cores;

• “Requin”, “Saw”, and “Bull” from 70 cores to 80
cores;

• “Saw”, “Requin”, “Bull”, and “Whale” from 90 cores
to 200 cores;

• “Saw”, “Bull” “Requin”, and “Whale” for more than
300 cores.

BRAMS execution time

100.0

1000.0

10000.0

100000.0

1 20 40 60 80 100 300 500 700 900 1100 1300 1500 1700 1900 2100

#cores

time (s)

saw requin bull narwhal whale

Figure 2. BRAMS model execution time 24h forecast.

BRAMS best execution time was 155.8s on “Saw” with 1200
cores, 410.0s on “Bull” with 376 cores, 416.0s on “Requin”
with 400 cores and 1713.4s on “Narwhal” with 60 cores.
“Bull” achieved the best BRAMS execution time using its
total number of cores (376).

BRAMS execution was limited to 60 cores on “Narwhal” due
to unknown problems. “Whale” was decommissioned during
our experiment, so we only have results for the 100-700 cores
range.

According to Eager [17], speedup and efficiency are the two
performance metrics of particular interest when evaluating a
parallel system. Speedup (1) is defined as the ratio of the
elapsed time when executing a program on a single processor
(Ts) to the execution time for n processors (Tp(n)):

 Speedup = Ts/Tp(n) (1)

Efficiency (2) is a metric for the utilization of the n allocated
processors. It provides information about how well the
processors are utilized in executing a parallel application:

 Efficiency = (Ts/(n*Tp(n)))*100% (2)

Figure 3 shows BRAMS speedup on the systems. The order
of the HPC clusters based on the best speedup and efficiency
of BRAMS are as follows:

• “Bull”, “Requin”, “Narwhal” and “Saw” up to 60
cores;

• “Bull”, “Requin” and “Saw” from 70 to 90 cores;

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 257

• “Bull”, “Saw”, “Requin”, and “Whale” from 100 to
200 cores;

• “Saw”, “Bull”, “Requin”, and “Whale” for more
than 300 cores

BRAMS speedup

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

1 20 40 60 80 100 300 500 700 900 1100 1300 1500 1700 1900 2100

#cores

saw requin bull narwhal whale

Figure 3. BRAMS model speedup for 24h forecast.

Some of the non-linearity in the execution times and speed-up
of BRAMS observed in Figures 2 and 3 arise from multiple
latency and bandwidth effects due to system interconnections.
Some of these effects can be seen more clearly in the BRAMS
efficiency graph (Figure 4).

BRAMS efficiency

0.0

20.0

40.0

60.0

80.0

100.0

120.0

1 20 40 60 80 100 300 500 700 900 1100 1300 1500 1700 1900 2100

#cores

%

saw requin bull narwhal whale

Figure 4. BRAMS model efficiency for 24h forecast.

Our results show that BRAMS performance is not only related
to processor performance but that, as demonstrated by [5],
switches plays an important role in HPC computing since their
latency and throughput increase as packet size grows.
Switches with low latencies tend to be more adequate for
small message sizes and switches with high bandwidth are
more adequate to big message size applications. In other
words, applications that exchange small messages take
advantage of low latency switches while applications that
exchange big messages perform better on high bandwidth
switches.

We have identified that the communication processes can
become a bottleneck for the scalability of the BRAMS model.
Network contention, specifically, is becoming an increasingly
important factor affecting overall performance.

In order to gain a deeper understanding of cluster
interconnection, we ran Single Transfer Benchmarks (STB)
using Intel MPI Benchmarks (IMB) [18] to evaluate cluster
MPI latency and bandwidth. It focuses on measuring startup
and throughput of a single message transferred between two
processes. We used Ping–Pong, where a single message is
sent between two processes. Process 1 sends a message of size
“x” to process 2 and process 2 sends “x” back to process 1.

Carrying this benchmark between the nearest nodes and
farthest nodes of each HPC cluster helped us understand how
interconnection affects BRAMS performance. The results
from Ping-Pong benchmark revealed that communication with
the furthest nodes had a higher latency and lower bandwidth
than nodes that were closer. In the worst case, the latency in
far nodes increased up to 92.5%, 22.4% and 22.4% in the
furthest nodes, respectively for “Saw”, “Requin” and
“Narwhal”. In addition, we observed more bandwidth and
latency variation between the furthest nodes than in the closest
nodes (Figure 5).

Latency (Ping-Pong)

1

2

3

4

5

6

7

8

9

10

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

1.
7E

+0
7

message size (Bytes)

la
te

n
cy

 (
µµ µµ

s)

Saw-near Saw-far Requin-near Requin-far Narw-near Narw-far

Figure 5. MPI Latency and bandwidth for cluster near and far nodes

We also observed a decrease in the effective bandwidth
(Figure 6) to the furthest nodes by 92.6% on “Saw”, 21.4% on
“Requin” and 16.8% on “Narwhal”. This was surprising,
considering that “Saw” has the interconnection highest
bandwidth of them, “Bull” and “Requin” presented a larger
effective bandwidth than “Saw” for messages size up to
21 kB.

MPI implementations usually use an eager protocol for small
messages and a rendezvous protocol for large messages. The
rendezvous protocol needs a handshake between the sender
and the receiver, thus requiring host intervention for MPI over
InfiniBand and Myrinet. In other words, the rendezvous
protocol limits their abilities for overlapping computation and

258 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

communication, so messages near critical size do not receive
optimal performance. MPI over Quadrics is able to make
communication progress asynchronously by taking advantages
of the programmable network interface card. Thus it shows
much better overlapping potential for large messages [19].

This effect is seen to a greater extent with “Saw” and to a
lesser extent with “Narwhal”. Figure 6 shows bandwidth
decreases by 33% (794-533 MB/s) on “Saw” and by 17%
(178-148 MB/s) on “Narwhal”. This happens for message
sizes between 13-21 kB for “Saw” and 16-43 kB for
“Narwhal”.

“Bull” presents the same latency and bandwidth values as
“Requin” for the closest nodes, since it has the same
interconnection technology and all nodes are directly
connected to a single switch.

Bandwidth (Ping-Pong)

0

200

400

600

800

1000

1200

1400

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

1.
7E

+0
7

message size (Bytes)

b
an

d
w

id
th

 (M
B

yt
es

/s
)

Saw-near Saw-far Requin-near Requin-far Narw-near Narw-far

Figure 6. MPI bandwith for cluster near and far nodes

Despite the nominal switch latency and bandwidth presented
in Table I, these values are message size dependent (Figure 5
and 6). So, the higher nominal bandwidth of “Saw” is not
reflected in its performance, since this nominal bandwidth is
related to a range of message sizes message sizes. In reality,
latency and bandwidth vary with the size of message
exchanged.

The bandwidth decreases by 30% for message sizes smaller
than 28K on “Saw”, 7kB on “Bull/Requin”, and 1.7kB on
“Narwhal”. The latency increases by 30% for message sizes
bigger than 84Bytes on “Saw”, 52Bytes on “Bull/Requin”,
and 212 Bytes on “Narwhal”.

We observe that the effective bandwidth for “Saw” is better
than “Bull” for message sizes larger than 16KB and for
“Requin” for message sizes larger than 21kB. In particular,
the effective bandwidth for “Saw” takes a substantial increase
for message sizes greater than these. For smaller message
sizes, “Bull” and “Requin” have better effective bandwidth

and this leads to better execution time for BRAMS on “Bull”
and “Requin” with 70 and 90 cores, respectively (Figure 2).

As can be seen in Figure 6, as the message size increases, so
does the effective bandwidth for the systems, though it does
so in a non-linear manner. This partially explains the non-
linearity of BRAMS performance as the number of cores used
grows (Figure 2).

We infer that BRAMS execution time on “Bull”, “Requin”
and “Narwhal” is better than on “Saw”, for a small number of
cores, mainly because:

• “Saw” has a three layer topology for interconnection,
with 2:1 oversubscription, which limits message
exchange between nodes;

• The sharp decrease in “Saw” bandwidth for message
sizes smaller than 21 kB.

The “Whale” cluster presented the worst performance for
BRAMS, mainly because of high latency and low latency of
GigaBit Ethernet interconnection.

“Bull” (direct connected topology) has better speedup and
efficiency than “Requin” (fat tree topology), though both have
the same interconnection (QsNet2/Elan4), because of the
interconnection topology. Sometimes on “Requin”, jobs are
submitted to nodes connected to the same switch, providing
similar performance to that of “Bull”, but at other times jobs
are submitted to nodes connected to different switches,
increasing the execution time and decreasing BRAMS
performance. This happen due to increased latency and lower
bandwidth on nodes not connected to the same switch.

BRAMS performance is better in a direct connect topology
than in fat tree topology. When using a small number of cores
we observe a variation in BRAMS execution due to the effects
of the latency introduced by the fat tree connectivity. Despite
being the less expensive way to interconnect clusters, it can be
difficult to get application performance when compared with
direct connect topology [19].

The job submission system allocates cluster nodes according
to its scheduling policy and does not consider the
interconnection topology. As a result, a job that requires a
number of switch ports that match a single switch may require
more than one switch in a fat tree topology. For example, we
noticed that even with the same interconnection technology,
the performance variation is greater in “Requin” than in
“Bull”. The fat tree topology of “Requin” requires that a
message pass in a certain number of hops for a
communication between two cores.

Following the suggestion of Rodrigues et al [6], in this case a
process mapping approach could be utilized in order to
optimize the overheads between process communications,
especially if a fat-tree topology is used. The algorithm used in
that paper could be easily adapted to consider a tree structure

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 259

representing the different connections linking cores,
processor, nodes and switches.

According to [20], choosing a network topology really
depends upon the performance you desire, the price you are
willing to pay, and perhaps secondarily, the simplicity of the
topology and the ability to upgrade the system. In addition, he
states that to save costs, typically links are oversubscribed and
hence, in practice, we do not see “true" fat tree networks

5 Conclusions
 In this paper, we have presented an analysis of BRAMS
model performance and scalability over different HPC
clusters architectures and configurations of SHARCNET.

As seen from the results obtained from this experiment, even
with application code improvement, performance and
scalability depends on cluster interconnection technology and
topology.

HPC clusters using Infiniband presented the best performance
and scalability results for BRAMS, followed by clusters with
QsNet, Myrinet and Gigabit Ethernet. However, this order
changes with the number of cores involved in BRAMS
computation. Clusters with QsNet/Elan4 and Myrinet/2G
present better performance for a small number of cores.

We identified how the eager and rendezvous protocols in MPI
implementations interfere with interconnection bandwidth
performance, especially on HPC clusters with Infiniband, but
also with Myrinet, thus affecting application performance.

The results also present the benefits of a direct connect
topology over fat tree topology. Even though being a popular
topology, a fat interconnection tree represents a challenge in
achieving application performance and scalability. Since
switch port selection is not part of ordinary job submission
system policies, the best performance of an application may
not be achieved in a fat tree topology.

6 Acknowledgment
This work was made possible by FAPESP (process:
2010/05823-7) financial support and the facilities of the
Shared Hierarchical Academic Research Computing Network
(SHARCNET:www.sharcnet.ca) and Compute/Calcul Canada.
We would like to thank Baolai Ge, from SHARCNET, and
Luiz Flávio Rodrigues, from INPE/CPTEC, for their support.
The author Alvaro L. Fazenda was partially supported by
FAPESP (São Paulo Research Foundation) and CNPq-Brazil
(National Council for Scientific and Technological
Development).

7 References
[1] P. J. Roebber, D. M. Schultz, B. A. Colle, and D. J.
Stensrud, “Toward improved prediction: High-resolution and
ensemble modeling systems in operations”, Weather and
Forecasting, 19, 936–949, 2004. doi: 10.1175/1520-
0434(2004)019<0936:TIPHAE>2.0.CO;2

[2] G. Cats, “24 More Years of Numerical Weather
Prediction: A Model Performance model”, KNMI Scientific
report WR 2008-1, 2008.

[3] A. L. Fazenda, J. Panetta, P. Navaux, L. F. Rodrigues,
D. M. Katsurayama, and L. F. Motta, “Challenges and
solutions to improve the scalability of an operational regional
meteorological forecasting model”, Paper accepted to apper in
Int. J. High Performance Systems Architecture, 2011.

[4] G. Shainer, T. Liu, J. Michalakes and J. Liberman,
“Weather Research and Forecast (WRF) Model Performance
and Profiling Analysis on Advanced Multi-core HPC
Clusters”, The 10th LCI InternationalConference on High-
Performance Clustered Computing. Boulder, CO, 2009.

[5] B. Huang, M. Bauer and M. Katchabaw, “Hpcbench – a
Linux-based network benchmark for high performance
networks”, 19th International Symposium on High
Performance Computing Systems ans Applications
(HPCS’05). 2005.

[6] E. R. Rodrigues, F. L. Madruga, P.O.A. Navaux, J.
Panetta, “Multi-core Aware Process Mapping and its Impact
on Communication Overhead of Parallel Applications”,
Proceedings of the 14th IEEE Symposium on Computers and
Communications (ISCC 2009), July 2009,
doi:10.1109/ISCC.2009.5202271.

[7] “Top 500 Supercomputer Sites”, March 2011. [Online].
Available: http://www.top500.org/.

[8] C. E. Leiserson, “Fat-trees: Universal Networks for
Hardware-Efficient Supercomputing, IEEE Transactions on
Computers, 34(10), October 1985.

[9] “SHARCNET homepage”, March 2011. [Online].
Available: http://www.sharcnet.ca.

[10] C. S. Yeo, R. Buyya, H. Pourreza, R. Eskicioglu, P.
Graham and F. Sommers, “Cluster Computing: High-
Performance, High-Availability, and High-Throughput
Processing on a Network of Computers”, Handbook of
Innovative Computing, Albert Zomaya (editor), Springer
Verlag, 2005.

[11] M. A. Bauer, “High performance computing: the
software challenges”, PASCO ’07: Proceedings of the 2007

260 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

international workshop on Parallel symbolic computation.
New York, NY, USA: ACM, 2007, pp. 11–12.

[12] “Brazilian Regional Atmospheric Modeling System
(BRAMS)”, March 2011. [Online]. Available in
http://www.cptec.inpe.br/brams.

[13] R. Pielke, W. Cotton, R. Walko, C. Tremback, W.
Lyons, L. Grasso, M. Nicholls, M. Moran, D. Wesley, T. Lee,
and J. Copeland, “A comprehensive meteorological modeling
system – RAMS”, Meteorology and Atmospheric Physics,
49(1-4):69–91, 1992.

[14] A. L. Fazenda, D. S. Moreira, E. H. Enari, J. Panetta and
L. F. Rodrigues, “First time user's guide (BRAMS version
3.2)”, Cachoeira Paulista. 24p, 2006.

[15] C. L. Castro, R. A. Pielke and G. Leoncini, “Dynamical
downscaling: Assessment of value retained and added suing
the regional atmospheric modeling system (RAMS)”, J.
Geophys. Res., 110 , D05108, doi:10.1029/2004JD004721.

[16] J. P. Bonatti, “Modelo de circulação geral atmosférico
do CPTEC”, Climanálise Especial (10 anos Edição Especial),
5 pp., 1996, Centro de Previsão de Tempo e Estudos
Climáticos (CPTEC), Cachoeira Paulista, Brazil. March 2011.
[Online]. Available:
www6.cptec.inpe.br/products/climanalise/cliesp10a/bonatti.ht
ml.

[17] D. L. Eager, J. Zahorjan, E.D. Lazowska, "Speedup
versus efficiency in parallel systems", Computers, IEEE
Transactions on , vol.38, no.3, pp.408-423, Mar 1989 doi:
10.1109/12.21127

[18] “Intel MPI Benchmarks 3.2.2”, March 2011 [Online].
Available: http://software.intel.com/en-us/articles/intel-mpi-
benchmarks/

[19] J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini, W.
Yu, D. Buntinas, P. Wyckoff, D.K. Panda, "Performance
Comparison of MPI Implementations over InfiniBand,
Myrinet and Quadrics", Supercomputing, 2003 ACM/IEEE
Conference , p. 58, Nov. 2003, doi: 10.1109/SC.2003.10007.

[20] A. Bhatele, “Automating Topology Aware Mapping for
Supercomputers”, PhD Thesis, Department of Computer
Science, University of Illinois, 2010,
http://hdl.handle.net/2142/16578.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 261

An Updated Self-stabilizing Algorithm to Maximal 2-packing and A
Linear Variation under Synchronous Daemon

Zhengnan Shi

Department of Mathematics and Computer Science, University of Wisconsin, Whitewater, WI, 53190, US
{shiz@uww.edu}

Abstract— In this paper, we first propose an ID-based,
constant space, self-stabilizing algorithm that stabilizes
to a maximal2-packing in an arbitrary graph. Using a
graphG = (V,E) to represent the network, a subsetS ⊆ V
is a 2-packing if∀i ∈ V : |N [i] ∩ S| ≤ 1. Self-stabilization
is a paradigm such that each node has a local view of
the system, in a finite amount of time the system converges
to a global setup with desired property. We argue that the
algorithm stabilizes inO(mn) moves under any scheduler
(such as a distributed daemon). Secondly, we show that the
algorithm stabilizes inO(n2) rounds under a synchronous
daemon where every privileged node moves at each round.
Thirdly, we propose a variation of the algorithm incorpo-
rating a local clock counter on each node. We show that it
stabilizes inO(n) rounds under a synchronous daemon.

Keywords: self-stabilization,2-packing, distributed computing,
fault tolerance, graph algorithms

1. Introduction
We define a distributed network as a connected, undirected

graphG with node setV and edge setE ⊆ V × V . Let
n = |V | and m = |E|. Two nodes joined by an edge
are said to beneighbors. We useN(i) to denote the set
of neighbors of nodei—its (open)neighborhood.N [i], the
closed neighborhoodof i, is defined asN [i] = N(i) ∪ {i}.
The distancedist(i, j) between two nodesi and j is the
number of edge(s) in a shortesti-j path.

A subsetS of nodes in a graphG = (V,E) is called a
2-packing [1] if ∀i ∈ V : |N [i] ∩ S| ≤ 1. A 2-packing is
maximal if no proper superset ofS is a 2-packing.

The 2-packings are subsets of nodes with some inherent
non-locality, in that no two nodes in the2-packing set can
have overlapping neighborhoods. This prevents a node in a
2-packing from having direct knowledge of any other node in
the set. A self-stabilizing algorithm for maximal independent
sets (1-packing) was produced by Hedetniemi et al. in [2].
Because of the non-locality of2-packings, our algorithm is
more complex both in design, correctness and complexity
proofs. The facts below follow directly from the definition
of 2-packing.

1) Every2-packingS is an independent set.
2) If S is a 2-packing, then∀i, j ∈ S : dist(i, j) ≥ 3.

3) If S is maximal2-packing, then∀i ∈ V \ S∃j ∈ S :
dist(i, j) ≤ 2.

The problem of finding a maximum2-packing (a maximal
2-packing of largest cardinality) is shown to be NP-hard by
Hochbuam and Schmoys in [3], finding a maximal one is
easily done in linear time with the standard RAM model.

2. Related Work
Several graph problems arise naturally in distributed

systems. For example, distributed algorithms for finding
matchings, independent sets, dominating sets and colorings
have been studied [4], [5], [2], [6], [7], [8]. Synchronous
algorithms have been considered in [9], [10], [11] inter
alia. A self-stabilizing algorithm for maximal2-packing of
exponential time is proposed in [12]. Finite complexityk-
packing algorithms are proposed in [13]. In [14], using
distance-k information, a 2-packing algorithm ofO(n4)
moves can be derived under a serial model.

Notably, Gairing et al. [15] presented a self-stabilizing al-
gorithm for maximal2-packing that requiresO(mn) moves
using aCentral Daemon. Using the transformer of Gradi-
nariu et al. [16], it gives a self-stabilizing algorithm for the
problem that requiresO(∆mn) moves using aDistributed
Daemon, where∆ denotes the maximum degree of the
networkG.

In this paper, we first propose an ID-based, constant space,
self-stabilizing algorithm that stabilizes to a maximal2-
packing in an arbitrary graph. An early version of our algo-
rithm was published [17]. Our algorithm has been changed
and its complexity has been significantly improved.

We show that the algorithm stabilizes inO(mn) moves
under any scheduler (such as a distributed daemon). The
result is an improvement over previous best solution. Sec-
ondly, we show that the algorithm stabilizes inO(n2) rounds
under a synchronous daemon where every privileged node
moves at each round. Thirdly, we propose a variation of
the algorithm incorporating a local clock counter on each
node. We show that it stabilizes inO(n) rounds under a
synchronous daemon.

3. Our Self-stabilizing Model
Self-stabilization is a strong and desirable fault-tolerance

property. The self-stabilizing approach is introduced by

262 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Dijkstra [18]. The contents of a node’s local variables are
definedas its local state. The system’sglobal stateis the
union of all local states. If you take an arbitrary distributed
algorithm and start it in a state where its variables have
been set to a random value from its domain, the behavior
is usually not predictable. However, starting fromany initial
configuration and ineveryexecution, self-stabilizing systems
are required to recover to a set of legal states.

A self-stabilizing algorithm is presented as a set of rules,
each with a boolean predicate and an action. The rules of
our algorithms are of the formp → M , wherep is a Boolean
predicate, andM is amovewhich changes local variable(s).
A node is said to beprivileged if the predicatep is true. If a
node becomes privileged, it may execute the corresponding
moveM .

We assume that there exists adaemon, an adversarial
oracle as introduced in [18], [6], which at each time-step
selects one or more of the privileged nodes to move. In the
serial, also known as thecentral daemonmodel, no two
nodes move at the same time. In thedistributed daemon
model, the daemon can choose any subset of privileged
nodes to move simultaneously. A special case of this is the
synchronous daemonwhere every privileged node moves at
each time-step.

Self-stabilizing algorithms can be designed for networks
that are eitherID-basedor for the networks that areanony-
mous. In an ID-based network, each node has a unique ID.
In an anonymous network, the nodes lack unique IDs, so
there is not a priori way of distinguishing them. It is known
that, given IDs, any algorithm for the central daemon can
be transformed into one for the distributed daemon (see for
example [19]). However, the resulting protocols are not as
fast. For a complete discussion of self-stabilization, see the
books by Dolev [20] or Tel [21].

When no further state change is possible, we say that
the system is in astable configuration. A self-stabilizing
algorithm must satisfy:

1) From any initial illegitimate state it reaches a legiti-
mate state after a finite number of moves; and

2) For any legitimate state and for any move allowed by
that state, the next state is a legitimate state.

The complexity of a self-stabilizing algorithm is mea-
sured by the upper bound of the number of moves and/or
rounds [20], [22]. A round, also called atime-step, is the
minimum period of time where every node that is continually
privileged moves at least once. In general, the number of
moves is an upper bound on the number of rounds under
any daemon.

Our self-stabilizing algorithm uses the shared-variable
version of self-stabilizing model. Every node executes the
same set of self-stabilizing rules, and maintains and changes
its own set of local variables based on the current values
of its variables and those of itsneighbors. Our approach
is designed under composite atomicity of communication:

a node is able to read the actual state of its neighbors and
update its own state in one atomic step. We assume each
node in the network has a unique ID.

4. A Self-stabilizing Algorithm for Max-
imal 2-packing

We now formally introduce a self-stabilizing algorithm
which finds a maximal2-packing. It is referred to as
Algorithm Maximal 2-Packing. When we say nodei,
variablei holds the ID of the node. Local variables of Algo-
rithm Maximal 2-Packing are listed next. The algorithm
has been changed and optimized from Algorithm1 in [17].

Algorithm 1: Maximal 2-Packing

c-Decrease

if ci = 2 ∧ cmin-p = 0

then ci = 1 ∧ ri = min-p

Leave

if ci = 0 ∧ r-p 6= null

then ci = cmin-p + 1 ∧ ri = rt(min-p)

Join

if min-p = null ∧ ci 6= 0

then ci = 0 ∧ ri = i

c-Orphan

if min-p 6= null ∧ ci = 1 ∧ (ri 6= rt(min-p) ∨ cri
6= 0)

then ci = cmin-p + 1 ∧ ri = rt(min-p)

1) Variablec is an enumerate type of3 possible values:
0, 1 or 2. Variable c is used to record the shortest
distance to a node in the2-packing setS. If c = 0,
the node is in the setS. If c = 1, then the node is
adjacent to a node ofc = 0. If c = 2, then the node is
adjacent to a node ofc = 1, and possibly other nodes
of c = 1 or c = 2; but it is not adjacent to any node
of c = 0. Through neighbors’ variablec’s, a node can
extract information on whether it is within distance2
from a node in the2-packing setS. Subscription is
used to denote the ID of the hosting node of a variable.
As part of algorithmic design, letcnull = 2 6= 0.

2) Variablesr (root) points to neighbors or its own ID.
It is a positive integer designed to hold the ID’s of
nodes. For nodes ofc = 1, the variable is actively
maintained. For nodes ofc = 0 or c = 2, r is not
always maintained depending on the need of Algo-
rithm Maximal 2-Packing. Subscription is used to
denote the ID of the hosting node of a variable. Note,
that variabler may hold a value that is not an ID of
any node.

Note that variablesc and r do not allow null value.
Different from Algorithm 1 of [17], we no longer use
variablep. The following notations are used to abridge the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 263

presentation of AlgorithmMaximal 2-Packing. Let i be
a node in the network.

1) Notationrt is a function which takes the ID of a node
as a parameter.rt(i) returns a positive integer. Ifci =
0, rt(i) returnsi, the ID. If ci ≥ 1, rt(i) returnsri.
Note thatrt does not allownull value.

2) Notationr-p denotes a node of minimumc in set{j ∈
N(i), rt(j) > i ∧ cj < 2}. If there are more than one
nodes,r-p is the one with the maximumrt. If there
are more than one nodes with the maximumrt, r-p
is the one with the maximum ID. If there is no such
node, we letr-p be null.

3) Notation min-p denotes a node of minimumc in
set {j ∈ N(i), cj < 2}. If there are more than one
nodes,min-p is the one with the maximumrt. If there
are more than one nodes with the maximumrt, min-p
is the one with the maximum ID. If there is no such
node, we letmin-p be null.

Assume the algorithm runs on nodei. The rules of our
self-stabilizing algorithm are represented by a list of if-then
statements. The rules are tried in the listed order. Upon
stabilization, the maximal2-packing set is the setS of nodes
of c = 0.

4.1 the Design of Rules
In this section, we describe the reasons behind the design

of the rules of AlgorithmMaximal 2-Packing.
The c-Decrease Rule applies to a node ofc = 2. If a nodei

sees a neighbor,min-p with cmin-p = 0, theni decreases its
variableci from 2 to 1. The rootri is also adjusted to the
ID of the nodemin-p. After the move, variableci reflects
the shortest distance fromi to a node in setS.

The Leave Rule uses ID’s to resolve conflicts when the
distance between two nodes in the setS is less than3. If
a nodei of ci = 0 is adjacent to a noder-p of cr-p < 2
and i < rt(r-p), then i changes itsc to a nonzero value.
The Leave Rule ensures that the distance between any pair
of nodes inS is at least3. For the Leave Rule to function
properly, any nodej of cj = 1 must satisfy thatrj equals the
largest ID of a neighboring node in the setS. This is guar-
anteed by the last rule of AlgorithmMaximal 2-Packing,
the c-Orphan Rule.

If node i is surrounded by node(s) ofc = 2, i considers
itself to be of distance2 from any node in the2-packing
set S. Thus i can move by the Join Rule to join setS.
Its root variable is set to the ID of itself. Ifmin-p 6=
null, the node cannot update its variableri. Nevertheless,
the variable on a node ofc = 0 is not used by Algo-
rithm Maximal 2-Packing.

A nodei of ci = 1 must be adjacent to a node withc = 0.
The c-Orphan Rule is designed to ensure this property. By
definition, notationmin-p denotes a node of minimumc
in set {j ∈ N(i), cj < 2}. If there are more than one
node,min-p is the one with the maximumrt. Hence, the

 (0) (1)

 (2) (3)

ID:1
c:0
r:168

ID:5 ID:4
c:0 c:2
r:200 r:32

ID:2
c:1
r:127

ID:3
c:2
r:89

ID:6
c:1
r:111

ID:1
c:1
r:5

ID:5 ID:4
c:1 c:1
r:1 r:1

ID:2
c:0
r:2

ID:3
c:2
r:89

ID:6
c:1
r:5

ID:2
c:0
r:2

ID:1
c:2
r:1

ID:5 ID:4
c:2 c:1
r:5 r:2

ID:3
c:1
r:2

ID:6
c:2
r:1

ID:1
c:2
r:1

ID:5 ID:4
c:0 c:1
r:5 r:2

ID:2
c:0
r:2

ID:3
c:1
r:2

ID:6
c:2
r:1

ID:1
c:1
r:5

ID:5 ID:4
c:0 c:1
r:5 r:2

ID:2
c:0
r:2

ID:3
c:1
r:2

ID:6
c:1
r:5

 (4)

Fig. 1: Network Topology Diagrams of a Sample Execution
underSynchronous Daemon

c-Orphan Rule also updates variableri to the largest ID
possible (without increasing c). This ensures that the Leave
Rule functions properly.

5. Sample Executions
In this section, we use examples to demonstrate how

Algorithm Maximal 2-Packing moves and converges. The
adversarial Central Daemon and the Distributed Daemon are
nondeterministic. We construct a sample execution of Algo-
rithm Maximal 2-Packing under a Synchronous Daemon
in Figures 1 and 2. To achieve a longer execution, we
introduce a transient error on node5 which should remain in
the setS for the entire execution. However, node5 misread
the ID of node1 as 7 and it left the set in the first round.
The network is a cycle of6 nodes with ID’s1 through6.

6. Correctness, Convergence and Com-
plexity Analysis

Despite changes in our algorithm, Lemma1 of [17] shows
the correctness of AlgorithmMaximal 2-Packing.

264 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

N
od

e
ID

1

2

3

4

5

6

L
oc

al
 V

ar
ia

bl
es

c
r

c
r

c
r

c
r

c
r

c
r

Tim
e-

st
ep

 0
Tim

e-
st
ep

 1
Tim

e-
st
ep

 2
Tim

e-
st
ep

 3
Tim

e-
st
ep

 4

0
168

1
5

2
1

2
1

1
5

1
127

0 0 0 0
2 2 2 2

2
89

2
89

1 1 1
2 2 2

2
32

1
1

1 1 1
2 2 2

0
200

1
111

1
1

2
5

0
5

0
5

1
5

2
1

2
1

1
5

Fig. 2: Data Table of a Sample Execution under Synchronous
Daemon

Lemma 1:Upon stabilization, Algo-
rithm Maximal 2-Packing produces a maximal2-packing
setS in which every node hasc = 0.

We continue to use the concept of adirty node [17]. The
complexity of our algorithm is bounded next.

Lemma 2:Sequence the unique ID’s of all the nodes in
graphG from ID1 to IDn. ID1 is the smallest andIDn

is the largest. LetS1 be a set of ID’s initially empty. We
move the nodes in and out ofS1, but respect a rule. For a
nodei ∈ S1 to leaveS1, another nodej > i, must joinS1

beforei leaves.

Under this construction, a nodei of IDk can joinS1 no
more thann − k + 1 times; it can leave the set no more
thann − k + 1 times,1 ≤ k ≤ n.

Proof: Based on the rule, each time that nodei of IDk

joins setS1 grantees to increase the cardinality of setS1

by 1. Node i must leave the set before it can join again.
After the first join, each timei leaves setS1 grantees to
increase the number of nodes inS1 with ID’s larger thani.
Since the total number of nodes whose ID’s are larger thani
is n−k, i can joinS1 no more thann−k+1 times. Hencei
can leave no more than the same number of times.

Note that nodeIDn can enter setS1 once and it can-
not leave the set. Next analysis looks at the number of
moves which is an upper bound of the complexity of
Algorithm Maximal 2-Packing under any scheduler(such
as a distributed daemon). Lemma 3 bounds the number of
moves by the Join and Leave Rules.

Lemma 3:A node can move by the Join Rule or Leave
Rule O(n) times.

c=2

c=1

c=0

c-Orphan

Leave

Join

Leave

Join

c-
O
rp
h
an

c-
D
ec
re
as
e

Fig. 3: State Transition Diagram

Proof: Let nodei be of IDk, 1 ≤ k ≤ n of Lemma 2.
By the Join Rule,i may apply it only if itsmin-p = null.
By the definition ofmin-p, all neighbors ofi havec = 2.
When i later applies the Leave Rule,r-p 6= null. By the
definition of r-p, there are two cases.

If cr-p = 0, then rt(r-p) is the ID of noder-p. Be-
causert(r-p) > i, the total number of such moves by the
Join Rule is no more thann − k + 1 by Lemma 2.

For the casecr-p = 1: if the node of currentr-p was dirty
when i moved by the Join Rule, the number of such cases
is bounded by the number of dirty nodesO(n). Otherwise,
a neighbor ofr-p, call it j, has moved by the Join Rule. We
havej = rt(r-p) > i, hence the total number of such move
by the Join Rule is no more thann − k + 1 by Lemma 2.

If i /∈ S, one move by the Join Rule allows at most one
move by the Leave Rule. Hence the moves by the Join and
Leave Rules are of the same order.

Next we look at the number of moves by the c-
OrphanRule.

Lemma 4:Let nodei have degreeδi. i can move by the
c-Orphan Rule no more thanO(δin) times.

Proof: Except for the first time, any move by the c-
Orphan Rule requires a neighboring node ofi to move by
the Join or Leave Rule. By Lemma 3, each neighbor can
move by the Join Rule or Leave RuleO(n) times. Since
nodei hasδi neighbors, it can move by the c-Orphan Rule
no more thanO(δin) times.

Theorem 1:Algorithm Maximal 2-Packing stabilizes
in a maximal 2-packing set inO(mn) moves under any
daemon(scheduler).

Proof: Figure 3 is the state transition diagram with re-
gard to variablec at a node. A move by the c-Decrease Rule,
the Join Rule or the Leave Rule changes the value ofc. A
move by the c-Orphan Rule may result in the same value
of c. By Lemma 3, the number of moves by the Join Rule

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 265

and leave Rule is ofO(n). By Lemma 4, the total number of
moves by the c-Orphan Rule is no more thanO(δin). These
restrictions bound the total number of moves on all the arcs
in the diagram to be ofO(δin). Hence, the total number
of moves of nodei by Algorithm Maximal 2-Packing
is O(δin). Using the notation from Lemma 2, the total
number of moves of all the nodes in graphG is:

IDn∑

i=ID1

O(δin) = O(mn)

By Lemma 1, AlgorithmMaximal 2-Packing produces
a maximal2-packing upon stabilization.

We next show AlgorithmMaximal 2-Packing con-
verges under a synchronous daemon. With a synchronous
daemon, every privileged node moves at eachround. We
use round to measure complexity for this case. Around,
also calledtime-step, is the minimum period of time where
every node that is continually privileged moves at least once.
We cite Lemma7 of [17] as Lemma 5 follows.

Lemma 5:Under a synchronous daemon,
Algorithm Maximal 2-Packing can move a constant
number of time-steps without any move by the Join Rule
before it stabilizes.

Theorem 2:Algorithm Maximal 2-Packing stabilizes
at a maximal2-packing inO(n2) time-steps under a syn-
chronous daemon.

Proof: By Lemma 5, AlgorithmMaximal 2-Packing
can move a constant number of time-steps without any
move by the Join Rule. Hence, the time complexity of
the algorithm is the same as the number of moves by the
Join Rule. Lemma 3 shows that the number of moves by the
Join Rule on each node is ofO(n). Hence the total number
of moves of all the nodes by the Join Rule is ofO(n2).
By Lemma 1, AlgorithmMaximal 2-Packing produces a
maximal2-packing upon stabilization.

7. A Variation of the Algorithm with
Analysis and Discussion

We propose a variation of the first algo-
rithm Maximal 2-Packing for synchronous
daemon. Our algorithm incorporates a clock counter
algorithm Synchronous Clock to manage the execution.
Each node in the network has access to a clock ticking
variablect.

We use a natural numbert to identify a round. For
example, if t = 1, time-stept means round1. We use
subscription to denote the2-packing setS at the end of a
round. For example,S1 is the set at the end of the first round
(time-step1). We useS0 to denote the set of all the nodes
of c = 0 before the algorithm starts. At each round, there
are nodes joining and leaving the setS. We useJt to denote
the set of nodes joining the setS in round t. Similarly, we

useLt to denote the set of nodes leaving the setS in roundt.
For notation, we letJ0 = S0 andL0 = ∅. We use a natural
numbert to identify a round. For example, ift = 1, roundt
means round1. We use subscription to denote the2-packing
set S at the end of a round. For example,S1 is the set at
the end of the first round (time-step1). Let the first round
as time-step1.

We introduce algorithmSynchronous Clock. It exe-
cutes round by round together with the second algo-
rithm SynchronousMaximal 2-Packing.

1) Let variablect be an unsigned integer. Variablect is
used as a clock ticking counter. On a nodei, notation
min-ct denotes the smallest value ofct in i’s closed
neighborhoodN [i], {∃k ∈ N [i],∀j ∈ N [i], ctk =
min-ct ∧ min-ct ≤ ctj}.

Algorithm 2 part 1:Synchronous Clock

Synchronize Clock

if cti 6= min-ct + 1

then cti = min-ct + 1

The second algorithmSynchronousMaximal 2-Packing
differs from the first algorithm by the Join Rule, which
uses the variablect in its predicate. A node may join setS
whenct is an even number.

Algorithm 2 part 2:SynchronousMaximal 2-Packing

c-Decrease

if ci = 2 ∧ cmin-p = 0

then ci = 1 ∧ ri = min-p

Leave

if ci = 0 ∧ r-p 6= null

then ci = cmin-p + 1 ∧ ri = rt(min-p)

Join

if min-p = null ∧ ci 6= 0 ∧ cti is even

then ci = 0 ∧ ri = i

c-Orphan

if min-p 6= null ∧ ci = 1 ∧ (ri 6= rt(min-p) ∨ cri
6= 0)

then ci = cmin-p + 1 ∧ ri = rt(min-p)

Lemma 1 is still valid for the correctness of Algorithm 2.
We show Algorithm 2 stabilizes in linear time under this
setup.

The desired global state of algo-
rithm Synchronous Clock is one that each node has
the samect in the entire network and thisct increments
by 1 each round.

Lemma 6:Algorithm Synchronous Clock stabilizes to
its desired global state ind(G) rounds, whered(G) is the
diameter of the graphG.

Proof: Let i be a node of minimumcti in networkG.
After the first round, all the node inN [i] have the same

266 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

counter valuecti + 1. After d(G) rounds, every node has
the samect in the entire network and thisct increments
by 1 each round.

Since a distributed daemon is more general than a syn-
chronousdaemon, Lemma 5 stands for Algorithm 2.

Theorem 3:In Algorithm
2, SynchronousMaximal 2-Packing stabilizes at a
maximal 2-packing in linear rounds under a synchronous
daemo.

Proof: By Lemma 5, Algo-
rithm SynchronousMaximal 2-Packing can move
a constant number of time-steps without any move by the
Join Rule. Hence, the time complexity of the algorithm is
the same as the number of moves by the Join Rule.

Let t be an even nonnegative integer andJt 6= ∅. Any
node in St−1 are from Jt−2 or a J set before it. At the
end of time-stept− 1, every node inSt−1 is surrounded by
neighbors ofc = 1. By the Join Rule, every node inJt is of
distance at least3 from any node inSt−1. Apply the same
argument forJt+2, we have every node inJt+2 is of distance
at least3 from any node inSt. Hence, the node of the largest
ID in Jt is guaranteed to stay in setS. In Algorithm 2, the
Join Rule requiresct is even. Every move by the Join Rule
increases the cardinality of setS which has at mostn nodes.
Hence, the algorithm stabilizes in linear time-steps.

The Join Rule relies on algorithmSynchronous Clock
which stabilizes in linear time by Lemma 6.

By Lemma 1, AlgorithmSynchronousMaximal 2-Packing
produces a maximal2-packing upon stabilization.

8. Concluding Remarks
The problem of2-packing has inherent non-local proper-

ties. However, it is possible to design a reasonably fast self-
stabilizing algorithm for it. We first propose an ID-based,
constant space, self-stabilizing algorithm that stabilizes to a
maximal2-packing in an arbitrary graph. We show that the
algorithm stabilizes inO(mn) moves under any scheduler
(such as a distributed daemon). The result is an improvement
over previous best solution. Secondly, we show that the
algorithm stabilizes inO(n2) rounds under a synchronous
daemon where every privileged node moves at each round.
Thirdly, we propose a variation of the algorithm incorpo-
rating a local clock counter on each node. We show that it
stabilizes inO(n) rounds under a synchronous daemon.

References
[1] A. Meir and J. W. Moon, “Relations between packing and covering

numbers of a tree,”Pacific Journal of Mathematics, vol. 61, no. 1,
pp. 225–233, 1975.

[2] S. M. Hedetniemi, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani,
“Self-stabilizing algorithms for minimal dominating sets and maximal
independent sets,”Comput. Math. Appl., vol. 46, no. 5-6, pp. 805–811,
2003.

[3] D. S. Hochbaum and D. B. Schmoys, “A best possible heuristic for
the k-center problem,”Mathematics of Operations Research, vol. 10,
no. 2, pp. 180–184, 1985.

[4] Z. Shi, W. Goddard, and S. T. Hedetniemi, “An anonymous self-
stabilizing algorithm for 1-maximal independent set in trees,”Infor-
mation Processing Letters, vol. 91, no. 2, pp. 77–83, 2004.

[5] Z. Shi, “A new self-stabilizing algorithm for maximal 2-packing,” in
Proceedings of the International Conference on Computer, Electrical,
and Systems Science, and Engineering, (ICCESSE’10), vol. 63, March
2010, pp. 327–330.

[6] S.-C. Hsu and S.-T. Huang, “A self-stabilizing algorithm for maximal
matching,” Inform. Process. Lett., vol. 43, pp. 77–81, 1992.

[7] A. Panconesi and A. Srinivasan, “The local nature ofδ-coloring and
its algorithmic applications,”Combinatorica, vol. 15, pp. 225–280,
1995.

[8] S. Rajagopalan and V. Vazirani, “Primal-dual RNC approximation
algorithms for set cover and covering integer programs,”SIAM J.
Comput., vol. 28, pp. 525–540, 1998.

[9] S. Shukla, D. Rosenkrantz, and S. Ravi, “Observa-
tions on self-stabilizing graph algorithms for anonymous
networks,” in Proceedings of the Second Workshop on Self-
Stabilizing Systems, 1995, pp. 7.1–7.15. [Online]. Available:
citeseer.ist.psu.edu/shukla95observations.html

[10] Y. Afek and S. Dolev, “Local stabilizer,”J. Parallel Distrib. Comput.,
vol. 62, no. 5, pp. 745–765, 2002.

[11] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani,
“Self-stabilizing algorithms for orderings and colorings,”International
Journal of Foundations of Computer Science, vol. 16, pp. 19–36, 2005.

[12] M. Gairing, R. M. Geist, S. T. Hedetniemi, and P. Kristiansen, “A self-
stabilizing algorithm for maximal 2-packing,”Nordic J. of Computing,
vol. 11, no. 1, pp. 1–11, 2004.

[13] F. Manne and M. Mjelde, “A memory efficient self-stabilizing al-
gorithm for maximal k-packing,” inSSS’06: Proceedings of the
8th international conference on Stabilization, safety, and security of
distributed systems. Berlin, Heidelberg: Springer-Verlag, 2006, pp.
428–439.

[14] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and V. Trevisan,
“Distance- k knowledge in self-stabilizing algorithms,”Theor. Com-
put. Sci., vol. 399, no. 1-2, pp. 118–127, 2008.

[15] M. Gairing, W. Goddard, S. T. Hedetniemi, P. Kristiansen, and A. A.
McRae, “Distance-two information in self-stabilizing algorithms.”
Parallel Processing Letters, pp. 387–398, 2004.

[16] M. Gradinariu and S. Tixeuil, “Conflict managers for self-stabilization
without fairness assumption,” inProceedings of the 27th International
Conference on Distributed Computing Systems, ser. ICDCS ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 46–.
[Online]. Available: http://dx.doi.org/10.1109/ICDCS.2007.95

[17] Z. Shi, “A linear self-stabilizing algorithm for maximal 2-packing
under synchronous daemon with restriction,” inProceedings of the
2010 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’10), vol. 2, July 2010, pp. 487–
493.

[18] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed con-
trol,” Comm. ACM, vol. 17, no. 11, pp. 643–644, Jan. 1974.

[19] J. Beauquier, A. K. Datta, M. Gradinariu, and F. Magniette, “Self-
stabilizing local mutual exclusion and daemon refinement,” inInterna-
tional Symposium on Distributed Computing, 2000, pp. 223–237. [On-
line]. Available: citeseer.ist.psu.edu/beauquier02selfstabilizing.html

[20] S. Dolev,Self-Stabilization. MIT Press, 2000.
[21] G. Tel., Introduction to Distributed Algorithms, Second Edition.

Cambridge UK: Cambridge University Press, 2000.
[22] S. Dolev, A. Israeli, and S. Moran, “Uniform dynamic self-stabilizing

leader election,”IEEE Trans. on Parallel and Distributed Systems,
vol. 8, no. 4, 1995.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 267

Using OpenCL for Implementing
Simple Parallel Graph Algorithms

Michael J. Dinneen, Masoud Khosravani and Andrew Probert
Department of Computer Science, University of Auckland, Auckland, New Zealand

Email: {mjd, masoud}@cs.auckland.ac.nz, apro002@aucklanduni.ac.nz

Abstract—For the typical graph algorithms encountered
most frequently in practice (such as those introduced
in typical entry-level algorithms courses: graph search-
ing/traversals, shortest paths problems, strongly connected
components and minimum spanning trees) we want to
consider practical non-sequential platforms such as the
emergence of cost effective General-Purpose computation
on Graphics Processing Units (GPGPU). In this paper we
provide two simple design techniques that allow a non-
specialist computer scientist to harness the power of their
GPUs as parallel compute devices. These two natural ideas
are (a) using a host CPU script to synchronize a distributed
view of a graph algorithm where each node of the input
graph is associated with a unique processing thread ID
and (b) using GPU atomic operations to synchronize a
single kernel launch where a set of threads, upper-bounded
by at most the number of streaming processing units
available, continuously stay active and time-slice the total
workload until the algorithm completes. We give concrete
comparative implementations of both of these approaches
for the simple problem of exploring a graph using breadth-
first search. Finally we conclude that OpenCL, in addition
to CUDA, is a natural tool for modern graph algorithm
designers, especially those who are not experts of GPU
hardware architecture, to develop real-world usable graph
applications.

Keywords: parallel graph algorithms, GPGPU, OpenCL,
CUDA
Contact Author: M.J. Dinneen
Conference: PDPTA’11

I. INTRODUCTION

Parallel programming is a generic concept describing
a range of technologies and approaches. However in
general it describes a system whereby threads of in-
struction are executed truly in parallel over a shared or
partitioned data source. As part of parallel computing,
General Purpose computation on Graphics Processing

Units (GPGPU) is a new and active field. The main
goal in GPGPU is to find parallel algorithms capable
of processing concurrently huge amounts of data over
a number of Graphic Processing Units (GPU). GPGPU
involves using the advanced parallel Graphics Processing
Unit devices now readily available for general purpose
parallel programming. Within GPGPU research, imple-
menting graph algorithms is an important sub-field and
is the focus of this paper.

Recently, GPUs have found their places among gen-
eral computing devices. They are affordable and easily
accessible for those enterprises looking for relatively
low cost devices to process their massive data. In some
applications the size of the input data is so large that
even a low-order polynomial-time algorithm surpasses
the time limit. Here one may scale down the running
time by using more processors to accomplish the com-
putational task concurrently. But then the main challenge
is to find a parallel GPU algorithm that accelerates
computation with a significant speed up over a well
designed sequential one.

CUDA [11] is the GPGPU platform provided by
Nvidia Corporation that enables software developers to
access the low level instructions and memory of the
Nvidia GPUs. With respect to the current architecture
of GPUs, CUDA follows the Single Instruction with
Multiple Threads approach to parallel processing. While
CUDA is restricted to the Nvidia GPUs, OpenCL [8] is a
generic overlay with the purpose of providing a common
interface for heterogeneous and parallel processing for
both CPU and GPU based systems on different devices,
such as AMD Radeon graphics cards.

Each GPGPU OpenCL application consists of a host
program or script that runs on the CPU and which
launches the kernels or kernel programs which are
compiled and run on the OpenCL devices. We believe
OpenCL makes programming on GPUs easier and safer
because it limits access to the kernel (e.g. sandboxing).

268 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Designing parallel algorithms for graph problems has
been studied for many years [1], [12], [13]. Implement-
ing these algorithms efficiently on GPUs is a challenging
task. In [2], Dehne and Yogaratnam show that one may
need to make non-trivial changes to import a PRAM
graph algorithm efficiently on GPUs. They mentioned
the irregularities among graphs as one of the main chal-
lenges. Graph irregularities, as an obstacle in designing
fast parallel GPU algorithms for graph problems, is also
addressed in [5], [7], and [14].

The Harish and Narayanan paper [6] on parallel GPU
algorithms for graphs is widely cited. Another notable
result is due to Luo, Wong and Hwu [10]. Both pro-
pose parallel implementations of basic graph algorithms
which are implemented directly on the Nvidia CUDA
platform. As far as we know, the latter paper provides
the fastest known breadth-first search graph algorithm
for GPUs.

In principle we agree with the authors of [10] that
the complexity of a GPGPU algorithm should be the
same as the best known sequential one. However, from
a practical point of view, simple (possibly non-optimal)
correct algorithms are also of value. For instance, when
it is known that the expected input cases are relatively
small, the extra time and overhead of implementing an
optimal algorithm may not be justifiable.

II. TWO DIFFERENT GPGPU DESIGN APPROACHES

We now explain two simple ways that may be used to
synchronize graph (and other types of) GPGPU compu-
tations where we have a set of well-defined stages that
need to be completed. For example, in doing a breadth-
first search (BFS) in a graph, the stages correspond to
the times when the set of nodes at a given depth/level is
determined.

A. Host-based synchronization design

The first natural approach is to use a host CPU
program (or script) to synchronize stages of a graph
algorithm where each part (usually nodes) of the input
graph is associated with a unique processing thread. This
is a standard way of synchronizing processing threads.
Here a global variable, shared by all threads, is set to
false by the host and set to true by any thread inside
the kernel that requires another stage.

For example we have the PyOpenCL [9] snippet,
shown in Figure 1, from our breadth-first search imple-
mentation using host-based synchronization, where n is
the number of threads.

Note that we use the PyOpenCL method call
enqueue_write_buffer to send data from the host
to the GPU, while enqueue_read_buffer will re-
trieve data from the GPU to the host. Each of the kernel
threads will set the global variable continue_flag if
the algorithm needs another synchronization stage. Note
that GPUs operate asynchronously from the host. Thus
there is a requirement to use an explicit wait method
call to wait for all kernel tasks to finish before going on
to the next stage.

Comment: In its original form the BFS algorithm of
[6] uses kernel relaunch to provide a global inter-block
barrier between search frontiers. Indeed their program
launches two kernels for each iteration—one to check
the neighbors for each visited node and another to update
the next frontier. In addition to our other changes we
have developed an algorithm (see DKP-Host Sync form
Section III) that runs in only one kernel launch per
stage by using a method for synchronizing threads plus
efficiently allocating data among the threads available.

B. Kernel synchronization using atomic operations

The second natural approach is to use GPU atomic
operations to synchronize a single kernel launch. In this
case a set of threads continuously stays active and time-
slices the total workload until the algorithm completes.
An important requirement for this approach is having an
efficient way to partition an algorithm’s workload.

Suppose we have n tasks to complete and we only
have a fixed number m = MAX THREADS of parallel
processing threads. Thus, after evenly distributing, each
thread should perform c = dn/me tasks. This can be
done in a number of ways depending on the stride
through the tasks t1, t2, . . . , tn. If data is stored in
memory we usually want to partition and stride through
as [t1, . . . , tc], [tc+1, . . . , t2c], . . . , [t(m−1)c+1, . . . , tn]
or as [t1, t1+m, t1+2m, . . . , t1+(c−1)m], [t2, t2+m, . . . ,
t2+(c−1)m], . . . , [tm, tm+m, . . . , tn].

The listing of kernel code given in Figure 2 illustrates
the distribution of these tasks to processing threads,
where tid represents one of the active threads operating
in parallel. By our convention the thread with tid=0
does the synchronization management for the algorithm.

In this kernel listing, we use current_stage to
represent a global clock and each thread keeps a local
clock and only executes its set of tasks when they match.
Note the use of atomic operations to ensure correctness
of shared data.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 269

while continue_flag[0]:
continue_flag[0] = 0
cl.enqueue_write_buffer(queue, continue_flag_buf, continue_flag)
cl.enqueue_write_buffer(queue, current_stage_buf, current_stage)
cl.enqueue_nd_range_kernel(queue, kernel, (n, 1), None)
cl.enqueue_read_buffer(queue, continue_flag_buf, continue_flag).wait()
current_stage[0] += 1

Fig. 1. Host-based synchronization using PyOpenCL.

while (1) // spin lock
{

// using current_stage as global clock
if (*current_stage == local_clock[tid])
{

// Is everything done?
if (continue_flag[*current_stage] == 0) return;

// process n/MAX_THREADS work at this sync time stage
// ...
// if needed, we set next continue_flag[*curent_stage+1]=1

atom_inc(finish_count); // this work thread is done
local_clock[tid] += 1;

}

if (tid==0) // thread 0 detects if everybody is done with stage
{

while (atom_cmpxchg(finish_count, MAX_THREADS, 0) != 0) {}
atom_inc(current_stage);

}
} // end kernel’s algorithm loop

Fig. 2. Thread-based synchronization in OpenCL kernel.

The finish_count value is used by this kernel
to synchronize the threads or processors involved in
between stages. For example our Nvidia C2050 device
has MAX THREADS=1024 and we used the second
stride technique, described above, in our program DKP-
Kernel Sync, which is discussed in Section III.

Comment: Initially we experimented with a lock based
inter-block barrier as described in the paper of Xiao and
Feng [15]. This has worked reliably for small graphs and
for very dense graphs. Unfortunately, Nvidia Corporation
do not officially support this inter-block barrier technique
and its use can lead to unpredictable results when run
on the current family of Nvidia GPGPU offerings. We

eventually came up with our own single-block synchro-
nization technique (presented above) that makes use
of atomic operations without the disadvantages of the
approach of [15].

III. EXPERIMENTAL RESULTS

As an illustrative example we develop two BFS al-
gorithms similar to the ideas first presented as CUDA
implementations by Harish and Narayanan [6]. We have
recompiled it to run on our platform (see below) to get
comparable running times. Partly due to the available
precession of timing GPU computations, all our result
times are given in milliseconds elapsed. Calculation
times are the kernel run-time from launch until after
the host program’s final wait call. As with common

270 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

0 3

1 2

4

Graph Adjacency Lists

0: 3 1
1: 0 2 3
2: 1 3
3: 2 1 0 4
4: 3

Linear Array Representation

5 0 2 5 7 11 12 3 1 0 2 3 1 3 2 1 0 4 3 · · ·
Sub-Index: 0 1 2 3 4 5 6 7 8 9 10 11 12

n l0 l1 l2 l3 l4 l5=n

Fig. 3. An effective way to represent sparse graphs in an array.

practice we do not include disk I/O time and host to
device copy times. We argue that often an application
will copy a graph to memory or GPU and run many
algorithms upon that copy (often set ’read-only’). So the
real issue is how fast, assuming the graph data structure
is available, does the actual algorithm take.

For graph algorithms (on sparse graphs) one often
prefers adjacency lists over adjacency matrices since
it is easier to iterate through the neighbors of a node
in time proportional to the node’s out-degree [3]. For
a GPU representation one usually linearizes this two
dimensional adjacency lists to a one dimensional array
such that no loss of efficiency occurs. We represent a
“flattened adjacency list” representation of a graph of
n nodes and m edges as a vector of length O(n + m)
consisting of [n,l0,. . . ,ln, v0,v1,. . . ,vm−1]. Here n is the
order, li is the index in this vector of the first neighbor
of node i (i.e., points to some vj index, 0 ≤ j < m).
Figure 3 illustrates this array representation. In particular,
ln (plus the sub-index offset n + 2) is an index one past
the end of the vector and the degree of node i is li+1−li.

The expected performance of all three tested algo-
rithms, mentioned in Table I, is O(nx+m), for a graph
of order n, eccentricity x (distance of a farthest node
from the starting node) and size m. We note that for
sparse graphs the value of x is much less than log n,
based on the known average height of a random rooted
tree. So the dominant term is m in the complexity of
these algorithms for most graphs—thus, those chosen as
our tests cases are exceptions.

There are a number of variants of the BFS algo-
rithm. One can gather information about predecessors
or parents, about BFS “tree” levels and about the list of
children. In addition one can gather all the BFS trees for

each of the possible starting nodes, which approaches the
task of computing the distance matrix.

A. Test cases and benchmarking environment

As a selection of somewhat “tough” test cases as
suggested by Luo, Wong and Hwu’s paper [10], we
picked sparse graphs from the 9th DIMACS Imple-
mentation Challenge [4]. We took each of the 51 state
road [di]graphs and made them connected so a BFS
from starting node 0 would span and process the entire
graph. We removed loops and connected the graphs
by adding k − 1 arcs to connect those with k > 1
components; e.g. for each lowest node index i not in
the first component, we added arc (i−1, i) to the graph.
The orders (number of nodes), sizes (number of arcs),
and eccentricity of node 0 (distance of farthest node from
node 0) are listed in the first few columns of Table I.

The system used by the authors in implementing
the BFS graph algorithm, using the above two design
approaches, consists of a rack-mountable server with
2 quad core 2.5GHerz Intel CPUs and 2 Nvidia Tesla
C2050 series (Fermi class) cards. The Tesla C2050 is
classified as having Nvidia compute capability 2.0 which
defines a range of attributes. In particular, the C2050 has
14 multiple processors (MPs) each with with 32 cores
and 3Gb cache (global memory). Each of the 448 cores
operate at a frequency of 1.15 GHz. The Tesla C2050
supports blocksizes of up to 1024, which can be viewed
as the MAX THREAD value discussed earlier.

B. Observations from our experiments

All programs produced the same (correct) expected
BFS depths for each node as a standard CPU-based
BFS program. In addition to computing depths from
the source node that the original Harish-Narayanan algo-
rithm computes, we also record in our DKP programs, a
BFS parent and (later) performed a sequential BFS dag
search to verify correctness by ensuring that each parent
is, in fact, adjacent and has depth one less than the child.

We conclude that both the OpenCl and CUDA ap-
proaches have very little difference in overall perfor-
mance. Here, in addition to what is reported, we actually
converted our OpenCL DKP-Kernel Sync implementa-
tion to a pure CUDA implementation and measured the
running times on these same test cases. The times, in all
cases, were roughly ±2% of those times that are listed
in the last column of Table I.

There are a couple of extreme cases (MI and MO) in
our experiment that we do not fully understand why the
times are so high relatively to the other two programs

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 271

TABLE I
GPU BFS ALGORITHM RUNNING TIMES (IN MILLISECONDS) ON USA STATE ROAD GRAPHS (ORIGINATING FROM NODE 0).

State Graph Nodes Arcs Eccentricity Harish–Narayanan DKP-Host Sync DKP-Kernel Sync
AK 69082 156628 1065 491 445 60
AL 566843 1312639 860 469 335 346
AR 483175 1114762 918 496 422 316
AZ 545111 1328587 868 479 394 336
CA 1613325 3959363 1398 949 749 1475
CO 448253 1069293 1081 582 512 340
CT 153011 371483 475 220 206 56
DC 9559 29713 135 63 46 8
DE 49109 119906 293 145 219 19
FL 1048506 2636287 1121 688 544 789
GA 738879 1722510 1234 716 571 615
HI 64892 153136 858 425 431 49
IA 390002 984733 661 356 291 193
ID 271450 634031 1207 560 535 237
IL 793336 1997423 901 529 433 495
IN 497458 1239720 822 447 407 292
KS 474015 1188739 841 462 603 285
KY 467967 1045059 1028 556 467 339
LA 413574 992297 891 475 422 266
MA 308401 764479 785 366 362 181
MD 265912 630270 1335 615 597 254
ME 194505 428316 708 327 362 106
MI 673534 1667305 1338 764 4020 604
MN 547028 1322010 829 457 403 322
MO 675407 1597920 1223 692 6358 559
MS 413250 956059 1021 598 473 299
MT 317905 722443 1286 600 479 290
NC 887630 2008217 1692 1011 800 986
ND 210801 514730 737 340 296 121
NE 308157 768295 594 285 264 144
NH 116920 264862 535 268 194 50
NJ 330386 864564 698 369 497 175

NM 467529 1127802 615 335 339 218
NV 261155 621605 904 419 417 177
NY 716215 1782170 1253 716 1879 605
OH 676058 1667574 898 512 537 423
OK 540981 1310114 1102 614 538 413
OR 536236 1249590 1053 578 1580 392
PA 874843 2165156 971 581 464 582
RI 53658 137695 375 171 141 24
SC 463652 1095125 979 531 466 321
SD 212313 510817 750 348 327 125
TN 583484 1340810 1410 780 690 556
TX 2073870 5143333 1609 1181 973 2158
UT 248730 590269 817 377 381 156
VA 630639 1419559 2172 1222 1347 897
VT 97975 214489 536 248 290 44
WA 575860 1344980 1187 664 797 468
WI 519157 1253811 595 327 358 230
WV 300146 657399 954 442 396 212
WY 253077 607651 747 385 372 146

Total 26232 35457 18753
Average 514 695 368

272 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

(we reran each program a few times to double check the
reliability of our times). Recall the Harish-Narayanan
also uses host synchronization but the program is purely
in C, not PyOpenCL—but we do not believe that differ-
ence is the cause.

It turns out that for large graphs such as the USA road
graph with 24 million nodes, DKP-Host Sync (about 20
seconds GPU time) is about 3–5 times faster than DKP-
Kernel Sync. It appears that at about one million nodes
(on sparse graphs) the DKP-Host Sync runs faster than
DKP-Kernel Sync (e.g. see the big states such as CA,
FL and TX). However for these very rare extreme cases,
it might be better to use a more optimal algorithm such
as the one given in [10]. For small (or dense) graphs one
should probably prefer the DKP-Kernel Sync program.

Finally we want to mention that the common “best
practices” of ensuring memory coalescence should not
necessarily be taken as absolute advice. Our DKP-Kernel
Sync program actually performs better with memory
strides of increments of MAX THREADS compared to
a version that does memory strides of distance one. We
suggest the user try several equivalent variations of their
program and take the best performer targeted for their
expected input cases.

IV. CONCLUSIONS AND OPEN PROBLEMS

In this paper we introduced and compared two simple
techniques for synchronizing processes in parallel graph
algorithms. We first considered the scenario where the
host CPU is responsible for the synchronization of kernel
launches. For example, in DKP-Host Sync, each node of
the graph is uniquely associated with a multiprocessor
thread. For our second approach we consider the case
where the input is partitioned into at most the number
of possible parallel threads. For example, in DKP-Kernel
Sync, we use only one block (work group) of paral-
lel threads to avoid inter-block synchronization issues.
Here the multiprocessor thread use atomic operations for
synchronizing the computation. Our experiments showed
that both these approaches work well for specific cate-
gories of graphs. DKP-Kernel Sync is better for small
and dense graphs, while DKP-Host Sync is more efficient
on sparse graphs of over a million nodes.

We also compared the running times among the differ-
ent implementations of the same algorithm via OpenCL
and CUDA. We noticed that there is no remarkable
difference in computation time between them. Hence
OpenCL seems to be as mature and usable as CUDA,
with at least one additional advantage of being portable
onto more devices (CPUs and GPUs).

There are many problems left to be investigated in
this area. For example, we are interested in testing other
graph algorithms via these synchronization techniques.
Also finding a way to reliably implement an inter-block
barrier on the GPU platforms would be extremely valu-
able. In addition, further work could include developing
a OpenCL library of efficient parallel graph algorithms
for GPUs.

ACKNOWLEDGMENTS

The authors would like to thank both P.J. Narayanan
and Wen-mei Hwu for providing samples of their BFS
GPU code for comparison and Radu Nicolescu for dis-
cussions and encouragement in designing GPGPU graph
algorithms.

REFERENCES

[1] F. Y. Chin, J. Lam John and I. Chen, Efficient parallel algorithms
for some graph problems, Communication of ACM, 25(9) 1982,
659–665.

[2] F. Dehne and K. Yogaratnam, Exploring the Limits of GPUs With
Parallel Graph Algorithms,http://arxiv.org/abs/1002.4482, 2010.

[3] M. J. Dinneen, G. Gimel’farb, and M. C. Wilson. Introduction to
Algorithms, Data Structures and Formal Languages, 2nd Edition.
Pearson (Education New Zealand), 2009. ISBN 978-1-4425-
1206-1.

[4] D. Schultes. 9th DIMACS Implementation Challenge, http://
www.dis.uniroma1.it/∼challenge9; USA state road graphs, http:
//www.dis.uniroma1.it/∼challenge9/data/tiger/, October 2005.

[5] Y. Frishman and A. Tal, Multi-Level Graph Layout on the GPU,
IEEE Transactions on Visualization and Computer Graphics, 13,
2007, 1310-1319.

[6] P. Harish and P. J. Narayanan, Accelerating large graph al-
gorithms on the GPU using CUD in IEEE High Performance
Computing, 2007, LNCS 4873, pp 197–208.

[7] K.A. Hawick, A. Leist and D.P. Playne, Parallel graph component
labelling with GPUs and CUDA, Parallel Computing, 36(12),
2010, 655–678.

[8] Khronos Group. Open Standards for Media Authoring and Ac-
celeration, http://www.khronos.org/opencl, 2011.

[9] A. Klöckner. PyCUDA and PyOpenCL: Even Simpler GPU
Programming with Python. Nvidia GPU Technology Conference,
(see http://mathema.tician.de/software/pyopencl), 2010

[10] L. Luo, M. Wong, W-M. Hwu, An Effective GPU Implementa-
tion of Breadth-First Search in Proceedings of the 47th Design
Automation Conference (Anaheim, California, NY, 52–55.

[11] Nvidia, CUDA. http://www.nvidia.com/cuda/
[12] M. J. Quinn and N. Deo, Parallel Graph Algorithms, ACM

Computing Survey, 16(3) 1984, 319–348.
[13] V. Rao and V. Kumar, Parallel depth first search. Part I.

Implementation, International Journal of Parallel Programming,
16(6) 1984, 479–499.

[14] J. Soman, K. Kishore, P. J. Narayanan, A fast GPU algorithm for
graph connectivity. IEEE International Symposium on Parallel
Distributed Processing, 2010, 1–8.

[15] S. Xiao and W. Feng, Inter-block GPU communication via fast
barrier synchronization, Technical Report TR-09-19, Dept. of
Computer Science, Virginia Tech., 2009

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 273

Design of a Mutual Situation Awareness Control Protocol
between Smart Homes by Using Location Transition

Model

Mengqiao Zhang1, Junbo Wang2, Zixue Cheng2, Yongping Chen1, and Lei Jing2
1 Graduate School of Computer Science and Engineering, University of Aizu, Aizuwakamatsu, Fukushima, Japan

2 School of Computer Science and Engineering, University of Aizu, Aizuwakamatsu, Fukushima, Japan

Abstract – Internet of Things (IoT) is becoming one of the
hottest research topics. Smart home, traditionally providing
comfortable living conditions or warning services to users,
can also be combined with each other to provide mutual
situation-awareness service which can enhance interactions
between remote families. As many closely related people are
separated by distance, we propose a mutual situation-
awareness protocol between smart homes by using a location-
oriented transition model. Based on this model, the system can
detect user’s location behaviors, including indoor location
transition, room-stay duration, and room-entrance frequency,
and finally let remote family be aware of such information.
When the user’s behaviors don’t look normal, warning
message will be sent to remote family. We focus on the
protocol format and use Event-Condition-Action (ECA) rules
to define message sending rules. A prototype system has been
built and it can detect user’s location behaviors correctly, and
control sending messages for awareness properly.

Keywords: Internet of Things (IoT); Protocol of IoT;
Application of IoT; Smart homes; Mutual situation awareness

1 Introduction
Internet of Things (IoT) is becoming a hot topic and

research field recently. IoT began with the proposal of Auto-
ID-Center MIT in 1999 [1], and then was developed by
various institutions and organizations in variety of Countries,
e.g. ITU Internet reports 2005 by international
telecommunication union [2], A Smarter Planet proposed by
IBM [3] Roadmap for the future – Internet of Things in 2020
[4], i-Japan Strategy 2015 toward digital inclusion &
innovation [5], the concept of Sensing China [6], and NIT
(Network Information Technology) [7] in a report to the USA
president and congress.

There are many applications using IoT technologies [8],
e.g. smart home/office, smart grid, smart city etc. Smart home,
as an important application field of IoT, should not only
provide comfortable living condition to users in a single
house, but also should be combined as a network platform to
provide mutual communication for users.

Nowadays, due to work and study reasons, a large
number of closely related people, such as lovers, elderly and
their grandchildren are living separately by distance. They

are warring about each other’s life situations. Though there
are various communication methods such as cell phone, email,
and web-chatting, people need to initiate a conversation with
contact intention. And these intentional communications still
cannot fully fulfill close people’s desire to keep strong
connection with each other. For example, the elderly often
want to know their children’s and grandchildren’s daily life
situations, but perhaps because of busy schedule, their
children cannot contact them every day. If there are too many
calls, it might cause bothering to everyone. Thus, it’s
necessary to build a mutual unintended connection way based
on the situations of users to enhance interaction for closely
related people.

On this topic, there are several researches focusing on
the communication between remote family members or close
people. In [9] [10] Hitomi Tsujita et al. built some daily
appliances with synchronize functions to connect objects of
remote close people. In [11], Yoshihiro Ito et.al also
developed a system as a daily appliance to keep family
relationships for apart living people.

However, above researches mainly focused on the
synchronizing objects in different homes, i.e. built some daily
appliances embedded with sensors for some special
communication functions. About the awareness control
protocol, there are few researches about it. To realize the
mutual communication, not only the methods for
synchronizing the objects are necessary, but also an
awareness control protocol is required. We should have a
mechanism to decide what kinds of data should be sent, when
is appropriate to send the data, and how to display the
received data at right time and right way. Hence, a proper
awareness control protocol should be built to solve the three
problems.

In our previous work [12], a physical spatial mutual
situation-aware model has been proposed between smart
homes to let users contact with remote family members in an
unintended way. We built a system to implement a simple
mutual situation awareness case: automatically informing
remote family member based on the entrance and exit
behaviors of a user, e.g. when the user goes outdoors or
comes back indoors. Besides, the movements of indoor
location also can be sent to the remote family member.

However, previous system, are only based on location-
driven the entrance and exit behaviors, which means location
transition information will be sent automatically at once when

274 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

user’s location changes from one room to another room.
Though a case study is given in the previous work, there is a
lack of a formal representation of the model and an awareness
control mechanism to control message by sending timing and
filter unnecessary information. Thus there might be various
meaningless massages overabundant since users sometimes
may change their indoor location very often for some reasons
and the remote family members may be bored, annoyed, or
become neglectful to be aware of every behavior of the user.

To this end, we propose a mutual situation-awareness
control protocol between smart homes, aiming at enhancing
interaction between remote families. And based on our
previous work, we also propose a location transition model, to
represent indoor location transition. In addition, we record
user’s staying duration and frequency of entering the rooms, to
send the messages based on conditions on those records. By
using the model, we can get user’s daily indoor location
information, transfer the information to remote smart home,
and finally let the remote family be aware of the user’s location
situation.

The rest of the paper is organized as follows. Section 2
gives the model of the proposal. Section 3 presents the design
of the method in detail and Section 4 gives an overview of
system implements and the experiment. Finally, the paper is
concluded in Section 5.

2 Model
 For improving the previous system, in this paper, we

focus on an awareness control protocol to select meaningful
data and send the data at right time. We will not only detect
the location transition, but also detect user’s room-stay
duration and room-entrance frequency, which are more
meaningful to users. For instance, if a user stays in a
bathroom for very long time or goes to lavatory too many
times a day, these behaviors may be abnormal. Letting remote
family be aware of these possible abnormal behaviors might
be more meaningful. me neglectful to be aware of every
behavior of the user.

In Figure 1 we use an example of smart homes to show
an image of the system. For simplifying the discussion, we
assume that there are only two smart homes, Smart Home A
and Smart Home B, in the model. Every smart home has
several rooms, e.g. living room, kitchen, bathroom, and so on.
The curved lines on the ground are used to represent users’
routes of changing the location. Every smart home has a
server agent for controlling the communication, LED lights
and buzzers for displaying the status of the remote home, and
U-tiles sensor network (a sensor network embedded with
RFID antenna reader and pressure sensors, to capture the
user’s location transition behaviors. See [13][14] [15] for
detail) on the ground for detecting location and its change of
users. We assume that every home has one user in this paper.

Figure 1. Example of smart homes

We use a directed graph to represent the location
transition/change in a smart home. For example, in Figure 2,
left side shows a layout of a smart home, and the right side
shows a location transition graph which means the user in the
home changes location of rooms. In Figure 2, L, Ktn, Bth,
and Brm represent Living room, Kitchen, Bathroom, and
Bedroom respectively. Regarding the graph, we give some
definitions as follows:

Figure 2. Directed graph for describing location transition

 Node ir means that the user is in the room ir . Note that in

Figure 2, ir is presented as L, Ktn, Bth, and Brm.
 Node Out means that the user is out of home
 An arrow from node ir to node jr means the user can move

from room ir into jr . Note that the user can move in

both directions

 What deserves attention is that in this directed graph, we
can see node “L” has high in-degree and out-degree, which
means Living room (L) is a main passing room into other
rooms. We should fully consider that in this space situation,
user might walk through it too many times a day without
staying. We cannot take this walk-passing behavior as
abnormal, if it is reasonable.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 275

3 Design of the system
3.1 The objectives of the awareness control
 In the communication part, awareness control protocol
needs to solve two problems: sending timing of messages for
awareness and the format of the messages. That is, the
messages are sent based on not only the entrance behavior but
also staying duration and entering frequency, which may
reflect the abnormal behaviors. The control is described by
Event-Condition-Action (ECA) rules meaning that when a
behavior of the user triggers the system, with some conditions
being met, some actions will be taken to send the message to
the remote home. For the format, we will focus on how to
organize the duration and frequency data. Protocol details
will be discussed in Section 3.

3.2 Predefined Normal Behaviors and
Detected Behaviors

Secondly, for every single room in the smart home, we
predefine some ranges or maximum values of normal
behaviors including normal room-stay duration and room-
entrance frequency. The values are different depending on
different room types. Details are shown in the Table 1

3.2.1 Predefined Normal Behaviors (PNB)

 maxmax ,, iii ntrPNB (1)
 where
 ir is the ID of a room, where i is an integer to distinguish

different rooms.
 max

it is the maximum duration time in room ir (from the

user enters room ir to s/he leaves). The unit of duration
time is hour.

 max
in is the maximum times that user enters room ir per
day

TABLE I. PREDEFINED NORMAL BEHAVIORS

Room Type Room
ID

ir

Maximum
Duration(hour)
Per time

max
it

Maximum Frequency
(time)
Per day

max
in

Living room 1r
max

1t (e.g. 5 h)
max

1n (e.g. 5 times)

Kitchen 2r
max

2t (e.g. 3 h)
max

2n (e.g. 4 times)

Bathroom 3r max
3t (e.g. 0.5 h)

max
3n (e.g. 8 times)

Bedroom 4r
max

4t (e.g. 10 h)
max

4n (e.g. 10 times)

We will decide appropriate values for these parameters

firstly, and we will set a bit larger number of frequency if the
room is a main passing place. Actually, every user can set the
above parameters according to their own life situation.

3.2.2 Detected Behaviors (DB)
In addition to Predefined Normal Behaviors (PNB),

user’s actual behaviors are needed to be detected and
compared to the PNB.

 ij
in

i
now

ii nttrDB ,, (2)

 where
 in

it is the timestamp when user enters room ir .

 now
it is the current timestamp when user stays in room ir

 ijn is the frequency number that user’s jth time to enter

room ir in a day

TABLE II. DETECTED BEHAVIORS

Room
Type

Room
ID

ir

Detected
Duration(hour) Per

time
in

i
now

ii ttt

Detected Frequency
(time)

Per day

1)1(jiij nn
Living
room 1r

innow ttt 111 1)1(11 jj nn

Kitchen 2r
innow ttt 222 1)1(22 jj nn

Bathroom 3r innow ttt 333 1)1(33 jj nn

Bedroom 4r
innow ttt 444 1)1(44 jj nn

3.2.3 Detecting Rules
 The Table 2 shows how to record user’s behaviors.
When user enters a room, the system will record the entrance
time by plus 1 to the current value of entrance time,
supposing the value will be reset once per day. Then we
calculate the duration time, if it’s longer than normal duration
time. The messages will be sent based on those values and
conditions on those values, which will be represented by
ECA rules discussed in details in 3.4.

3.3 Format of the messages
 We define a format to organize the detected data into a
message. Table 3 shows the detail fields and lengths of the
format of the messages

3.3.1 Fields Definition

• Room-ID: Every single room has an ID ir , e.g. 1r

means a room with ID 1r .

• Time: The time when the message is sent. e.g.
201103082350 means 11:50pm on March 8th, 2011

• In/Out: User’s status that user is in the room ir or not.
We define that 1 means in; while 0 means out.

276 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

TABLE III. PROTOCOL FORMAT

Fields Room-ID Time In/Out Duration
(D)

Frequency
(F) Short Message

Length 16bits 36bits 1 bit 2 bits 2 bits Optional

• Duration: These two bits is to indicate whether and how
much the detected duration (in

i
now

ii ttt) is higher

than max
it . In these 2 bits, the first bit is high-flag, and

the second bit is degree-Flag.
High-flag = 0 means it is less than max

it
High-flag = 1 and Degree-flag= 0 means it is larger than

1max it times

High-flag = 1 and Degree-flag= 1 means it is larger than

5.1max it times

• Frequency: These two bits are to indicate whether and
how much the detected frequency ijn is higher than max

in .

In these 2 bits, the first bit is high-flag, and the second bit
is degree-flag.
High-flag = 0 means ijn is less than max

in
High-flag = 1 and Degree-flag= 0 means ijn is larger

than 1max in times

High-flag = 1 and Degree-flag= 1 means ijn is larger

than 5.1max in times

• Short Message: Some words to describe the situation.

3.3.2 Data Organization Rules
 We mainly discuss the fields from In/Out to Short-
Message in details, since they are core parts of the message.
Table 4 shows logical rules of value assignment of these
fields. It shows valid ways as we mentioned in the fields
definition. For example, Duration can only be set to 10, 11,
or 00. Frequency can be in a similar way.

TABLE IV. VALUE ASSIGNMENT

Fields In/Out Short Message
1 I’m in XXX Value 0 --

Fields Duration Short Message
10 Duration exceeds the normal value.
11 Duration exceeds the normal value too much Value
00 --

Fields Frequency Short Message
10 Frequency exceeds the normal value.
11 Frequency exceeds the normal value too muchValue
00 --

 And we take the Short Message field as an optional
field, i.e. it can be blank, or can be combined with other short

messages according to different values, e.g. if we set the
values as in Table 5, we will get the short message showed in
the table.

TABLE V. DATA ORGANIZING CASE

In/Out Duration (D) Frequency(F) Short Message
1 10 11 I’m in XXX. Duration

exceeds the normal value.
Frequency exceeds the
normal value too much

3.4 Message Sending Rules
We use Event-Condition-Action (ECA) method to

describe and define the message sending rules in order to
control the degree of awareness messages.
Event-condition-action (ECA) rules take the following form:

ON event
IF condition
DO actions
So we can describe the sending rules as follows:

1. Rule 1 (for entering a room)

ON: User enters room ir
IF: Unconditional
DO: Send message as in/out=1

2. Rule 2 (For the times of enterinng a room)

ON: User enters room ir

IF: maxmax 5.1 iiji nnn

DO: Send message as in/out=1 , F=10

3. Rule 3 (For the times of enterinng a room)

ON: User enters room ir

IF: iji nn max5.1

DO: Send message as in/out=1, F=11

4. Rule 4(for the duration staying in a room)

ON: it changes

IF: maxmax 5.1 iii ttt
DO: Send message as in/out=1, D=010

5. Rule 5 (for the duration staying in a room)

ON: it changes

IF: ii tt max5.1

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 277

DO: Send message as in/out=1, D=011

6. Rule 6 (for existing a room)

ON: User exits room ir
IF: Unconditional
DO: Send message as in/out=0

3.5 Notification Rules
In order to let remote family be aware of user’s location

behaviors, we choose to use LED lights and buzzers for
display. Firstly, every single room has 2 LED lights, one is for
showing remote user’s location, and another is for displaying
remote user’s room-entrance frequency. And we use a buzzer
in every single room to notify remote user the duration
information. Because when a user stays in a room for an
abnormal-long time, a buzzer is a better way to warn remote
family than LED light. Especially for the elderly people,
remote family should pay more attention to the elderly
people’s room-stay duration. For instance, if an elderly stays
in bathroom for a long time, buzzer warning can attract
remote family’s attention more easily.

TABLE VI. NOTIFICATION RULES

LED lights

Values

In/Out
LED Duration Buzzer Frequency LED

In/Out =1 On -- --
In/Out =0 Off -- --

D =10 -- Buzz one time --
D = 11 -- Buzz 2 times/sec --
D = 00 -- Off --
F =10 -- -- On
F = 11 -- -- Flick 2 times/sec
F = 00 -- -- Off

In remote smart home, we define the LED lights and

buzzer notification rules when remote family receives the data.
According to different values of the fields in a received
message, the LED lights and buzzer will work in different
ways. Details are showed in Table 6.

4 Implementation and Experiment
4.1 Software Implementation

The system is implemented as shown in Figure 3. In
every smart home, U-tiles sensor network was connected to a
server agent and the LED lights and buzzer are connected by
a Cute-Box [16] which is an embedded board.

For simplifying discussion, we give the implementation
architecture in one-way direction from Smart Home A to
Smart Home B in Figure 3. Firstly, in Smart Home A, U-tiles
sensor network gets location information of the user and send
to Server Agent A through UDP socket. In sever agent, there
are 3 main Java threads to receive UDP packets, deal with the
data, and send the data to remote family. And when a user
enters a room, a timer thread will be started to calculate the
duration. Then the formatted data will be sent to Server Agent

B in Smart Home B through UDP sockets. In Smart Home B,
there are two main threads for receiving UDP packets and
sending interpreted data to Cute-Box through serial port.
Cute-Box then controls LEDs and buzzer according to the
Notification Rules. Thus the location information is sent to
another remote smart home in the following way: U-tiles ->
Server Agent -> Internet -> Remote Server Agent -> Cute-
Box -> LED lights and the buzzer.

Figure 3. Overview of the system implementation

4.2 Experiment
In Figure 4, two persons were participating the

experiment. One was in Smart Home A and another was in
Smart Home B. Person A was changing his indoor location on
U-tiles sensor network and person B was sitting in another
room near the LED lights and the buzzer to confirm the
changing of them. For simplifying the discussion, we took
kitchen as an instance. We set 0.5h as maximum staying
duration time of kitchen and 4 times a day as the maximum
frequency. When person A entered the kitchen, the
corresponding LED in Smart Home B was turned on. When
person A stayed in it for longer than 0.5h, the buzzer buzzed
once. And when he continued staying in the kitchen for longer
than 0.75h (1.5*0.5h), the buzzer buzzed 2 times per second.
When person A entered kitchen for more than 4 times, the
frequency LED was turned on. And when person A entered
kitchen for more than 6 times (1.5*4 times), the LED flashed
2 times per second. It was confirmed that during the
experiment, the LEDs and the buzzer in smart home B
correctly reflected the location information of the person A in
smart home A.

278 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Figure 4. Experiment of the system

5 Conclution
In this paper, we proposed a mutual situation-awareness

protocol between smart homes by using a location-oriented
transition model. Based on this model, we can detect user’s
location transition behaviors including current location, room-
stay duration, and room-entrance frequency. We send the
location behaviors information to remote family through the
protocol, which defines the data organizing format and
sending rules by using EAC method. And in remote family
smart home, we define displaying rules for interpreting the
received data and use LED lights and buzzers to notify user’s
location behaviors.

We implemented a prototype system and through a basic
experiment, we have evaluated the system and it can reflect
user’s location behaviors correctly. In the future, we will do
more detail experiments to evaluate the protocol and the
proposed model. And in order to fully realize the mutual
situation-awareness service, we plan to improve our protocol
design to deal with more complex situations. And more easy-
to-use interfaces/devices will be designed to notify users, e.g.
wearable devices, smart terminal devices and etc.

6 References
[1] S. Sarma, D.L. Brock, and K. Ashton, “The Networked
Physical World, Proposals for Engineering the Next
Generation of Computing, Commerce & Automatic-
Identification”, Auto-ID Center White Paper, October 2000

[2] ITU internet report 2005. http://www.itu.int/pub/S-
POL-IR.IT-2005/e

[3] “Smart
planet”. http://www.ibm.com/smarterplanet/us/en/

[4] Internet of Things in 2020, roadmap for the
future. http://www.iot-visitthefuture.eu/index.php?id=30

[5] i-Japan. http://www.kantei.go.jp/foreign/policy/it/i-
JapanStrategy2015_full.pdf

[6] “Sensing
China”. http://www.ciiot.com/en/Html/index.asp

[7] “Report to the president and congress
USA”. http://www.whitehouse.gov/sites/default/files/micro
sites/ostp/pcast-nitrd-report-2010.pdf

[8] Luigi Atzori, Antonio Iera, Giacomo Morabito, “The
Internet of Things: A survey”, The International Journal of
Computer and Telecommunications Networking, Volume 54
Issue 15, pp. 2787-2805, Oct 2010.

[9] Hitomi Tsujita, Koji Tsukada, Itiro Siio, “SyncDecor:
Communication Appliances for Couples Separated by
Distance”, ubicomm, pp.279-286, 2008 The Second
International Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies, 2008

[10] Hitomi Tsujita, Gregory D. Abowd,
“SocialMedicineBox: A Communication System for the
Elderly using Medicine Box”, In Proceedings of the 12th
ACM international Conference Adjunct Papers on Ubiquitous
Computing (Ubicomp2010), pp.437–438, Copenhagen,
Denmark, September 26 – 29, 2010

[11] Yoshihiro Itoh, Asami Miyajima, Takumi Watanabe,
“’TSUNAGARI’ Communication: Fostering a Feeling of
Connection between Family Member”, Proc. of CHI '02
extended abstracts on Human factors in computing systems,
New York, USA, 2002

[12] Mengqiao Zhang, Junbo Wang, Zixue Cheng, Lei Jing,
Yongping Chen, et al. “A Remote Mutual Situation-aware
Model By Detecting Entrance and Exit Behaviors in Smart
Home ” Proc. of CICC-ITOE 2011, Vol. 2, pp.65-68, 2011

[13] J. Wang, M. Kansen, Z. Cheng, T. Ichizawa and T.
Ikeda, “Designing an Indoor Situation-Aware Ubiquitous
Platform Using Rule-Based Reasoning Method”, Proc. of
2008 International Computer Symposium, Taiwan, November
13-15, 2008

[14] Z. Cheng and T. Huang, “A Situation-aware Support
Model and Its Implementation”, Proc. of the Japan-China
Joint Workshop on Frontier of Computer Science and
Technology, pp. 172-177, 2006

[15] T. Ichizawa, M. Tosa, M. Kansen, A. Yishiyama, Z.
Cheng, “The Attribute and Position based Ubiquitous
Development Environment Using Antennas with an
Automatically Switch”, IPSJ SIG Technical Reports,
Vol.2006, No.14, ISSN 0919-6072, pp.109-114

[16] CuteBox wiki: http://cutebox.wikispaces.com

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 279

A Massively Parallel Algorithm for Polyline

Simplification Using an Associative Computing Model

Huy Tran

Department of Computing Sciences

Texas A&M University Corpus Christi

Email: htran1@islander.tamucc.edu

Michael Scherger

Department of Computing Sciences

Texas A&M University Corpus Christi

Email: michael.scherger@tamucc.edu

Abstract - Line simplification is a process of

reducing the number of line segments to represent a

polyline. This reduction in the number of line

segments and vertices can improve the performance

of spatial analysis applications. The classic Douglas-

Peucker algorithm developed in 1973 has a

complexity of O(mn), where n denotes the number of

vertices and m the number of line segments. Its

enhanced version proposed in 1992 has a complexity

of O(nlogn). In this paper, we present a parallel line

simplification algorithm using a parallel Multiple-

instruction-stream Associative Computing model

(MASC). Using one instruction stream of the MASC

model, our algorithm has a parallel complexity of

O(n) in the worst case using n processing elements.

Keywords: Parallel algorithms, associative

computing, SIMD algorithms, line simplification,

vertex elimination, level curve

1. Introduction

2D planar level curves are the polylines

where mathematical functions take on constant values.

In applications such as AutoCAD or MATLAB, these

planar level curves are represented as collections of

line segments. An example of a level curve in

AutoCAD is shown in Figure 1. The number of

digitized line segments collected is far more than

necessary [2]. Due to the complexity of the geospatial

functions, the number of line segments to represent the

planar level curve can be very large, which may cause

inefficiencies in visual performance. Therefore, the

polyline needs to be represented with fewer segments

and vertices. It is necessary to perform a polyline

simplification algorithm on a 2D planar level curve.

If the line segments were acquired in a

stream order, then the end vertex of one line segment

is the beginning vertex of the next line segment in the

file. It would be straightforward to apply a polyline

simplification algorithm. However, in this problem,

the line segments of polylines are digitized in a raster

scan order. The raster scan ordering of the line

segments requires intensive searching on the

remaining set of line segments to reconstruct the

polyline (O(n
2
) searches).

Figure 1: An example of a level curve.

The Douglas-Peucker line simplification

algorithm is considered an effective line

simplification algorithm [2, 13]. The algorithm uses

the closeness of a vertex to a segment as a rejection

condition. Its worst-case complexity is O(mn), where

n denotes the number of vertices and m the number of

segments. Furthermore, in 1992 Hershberger and

Snoeyink introduced an improvement for Douglas-

Peucker algorithm to gain an enhanced O(nlogn) time

complexity [4]. The speeding up is achieved by

applying binary searches to maintain the path hulls of

subchains. Different approaches to this issue have

also been discussed in [5, 10, and 12]. However, even

the worst-case complexities O(mn) and O(nlogn) are

considered computationally expensive when it comes

to work with significantly big visualizations.

In this paper, we present a polyline

simplification algorithm using the Multiple-

instruction-stream Associative Computing model

(MASC) [6, 8] to reduce the number of vertices

required to represent polylines. MASC is an

enhanced SIMD model with associative properties.

280 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

mailto:htran1@islander.tamucc.edu
file:///C:/Documents%20and%20Settings/camsadm/Desktop/michael.scherger@tamucc.edu%0c

By using the constant global operations of the MASC

model, our algorithm has a parallel complexity of

linear time O(n) in the worst case.

This paper is organized as follows. Section 2

will discuss the polyline simplification in more

details and provide a sequential algorithm which our

parallel algorithm is based upon. Section 3 will

introduce the MASC model of computation and its

properties. Section 4 will describe our massively

parallel line simplification algorithm using the

MASC model. Finally, section 5 will provide the

discussions on future work and conclusion.

2. Polyline Simplification and a Sequential

Algorithm

Consider the line segments shown in Figure

2. Two connected segments, for example AB and

CD, can have one of the four following

arrangements:

 A is coincident or near-coincident to C.

 A is coincident or near-coincident to D.

 B is coincident or near-coincident to C.

 B is coincident or near-coincident to D.

The coincidence or collinearity of vertices is

determined by investigating their coordinates (x, y).

Two near-coincident vertices are considered

coincident if their distance is less than or equal to an

accepted tolerance α.

Figure 2: An example of how two connected

segments are not in a stream order

2.1. A specific problem

In order to perform the polyline

simplification, the digitized line segments in the file

need to be re-arranged. The random nature of the

digitized line segments necessitates a massive

number of search operations to determine coincident

points. This is illustrated by the following sequential

algorithm to re-arrange these line segments into a

stream where line segments having coincident

vertices are moved closed to each other. For example,

as shown in Figure 3, five line segments have been

digitized. After rearrangement, the stream order

would be: B2 A2 A1 B1 B3 A3 A4 B4 A5 B5. Then,

each vertex will be checked with its next vertex for

coincidence and eliminated accordingly. In this

example, points A1, B1, A3, B4 will be eliminated

due to coincidence, and points A4, B3 will be deleted

due to collinearity.

Figure 3: An example of five segments with

integer coordinates

2.2. A sequential algorithm

An algorithm to simplify line segments is

constructing polylines from coincident and collinear

vertices. This can be obtained by eliminating vertices

whose distances to the prior initial vertex are less

than a maximum accepted tolerance α. The vertices

having further distance to the initial vertex (> α)

could be considered as part of a different polyline.

However, finding the coincident and collinear

vertices is expensive in this problem.

We call segArray the array of line segments.

The sequential algorithm is the following:

Begin

1. Set pointer current to the first segment in

segArray (current=0)

2. While current does not reach the end of

segArray

2.1. Set pointer next to the next segment of

current segment (next=current+1)

Digitized order: A B … C D

(D is not next to B in the record file)

Actual representation with point B ≈ D

α

(α: accepted tolerance)

A1(0, 3) B1(-1, 3)

A2(0, 3) B2(1, 2)

A3(-3, 3) B3(-1, 3)

A4(-3, 3) B4(-4,3)

A5(-4, 3) B5(-5, 2)

Segments_Example

1 3 4

5 2

A1 B1

A2
B2

B3 A3

A4

A5
B5

B4

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 281

2.2. While next does not reach the end of

segArray

a. Check if the segment in next has

coincident vertices with current segment

(the four arrangements discussed in

section 2.1)

b. If yes, invert next segment if needed (in

case of the second and forth

arrangements in section 2.1)

c. Move the next segment closed to the

current segment in the array

d. Move pointer current to the next

segment (current+=1)

e. Repeat step 2.2

2.3. Move pointer current to the next segment

of current segment (current+=1)

2.4. Repeat step 2

End

The sequential algorithm above is to re-

arrange line segments into a stream order. The

mechanism is similar to the selection sort. The

algorithm requires searching all line segments for

every investigated line segment to look for the line

segment having coincident vertex and move it to the

right place. This ineffective searching and sorting

can be noticed by the usage of two while loops in

step 2 and 2.2. Consequently, the complexity of this

algorithm is O(n
2
), where n is the number of

vertices.

3. The MASC model

The following is a description of the Multiple

Associative Computing (MASC) model of parallel

computation. As shown in Figure 4, the MASC model

consists of an array of processor-memory pairs called

cells and an array of instruction streams.

Figure 4: Conceptual view of MASC

A MASC machine with n cells and j

instruction streams is denoted as MASC(n, j). It is

expected that the number of instruction stream

processors be much less than the number of cells.

The model also includes three virtual networks:

1. A cell network used for cell-to-cell

communication. This network is used for the

parallel movement of data between cells. This

network could be a linear array, mesh, hypercube,

or a dynamic interconnection network.

2. A broadcast/reduction network used for

communication between an instruction stream

and a set of cells. This network is also capable

of performing common reduction operations.

3. An instruction stream network used for inter-

instruction stream communication.

Cells can receive their next set of

instructions to execute from the instruction stream

broadcast network. Cells can be instructed from their

current instruction stream to send and receive

messages to other cells in the same partition using

some communication pattern via the cell network.

Each instruction stream processor is also connected

to two interconnection networks. An instruction

stream processor broadcasts instructions to the cells

using the instruction stream broadcast network. The

instruction streams also may need to communicate

and may do so using the instruction stream network.

Any of these networks may be virtual and be

simulated by whatever network is present.

MASC provides one or more instruction

streams. Each active instruction stream is assigned to

a unique dynamic partition of cells. This allows a

task that is being executed in a data parallel fashion

to be partitioned into two or more data parallel tasks

using control parallelism. The multiple IS‟s

supported by the MASC model allows for greater

efficiency, flexibility, and re-configurability than is

possible with only one instruction stream. While

SIMD architectures can execute data parallel

programs very efficiently and normally can obtain

near linear speedup, data parallel programs in many

applications are not completely data parallel and

contain several non-trivial regions where significant

branching occurs [3]. In these parallel programming

regions, only a subset of traditional SIMD processors

can be active at the same time. With MASC, control

parallelism can be used to execute these different

branches simultaneously. Other MASC properties

include:

 The cells of the MASC model consist of a

processing element (PE) and local memory. The

accumulated memory of the MASC model

consists of an array of cells. There is no shared

memory between cells.

Instruction

Stream

Instruction

Stream

Instruction

Stream

C
e

ll
 I

n
te

rc
o

n
n

e
c
ti
o

n
 N

e
tw

o
rk

In
s
tru

c
tio

n
 S

tre
a

m
 In

te
rc

o
n

n
e

c
tio

n
 N

e
tw

o
rk

B
ro

a
d

c
a

s
t / R

e
d

u
c
tio

n
 N

e
tw

o
rk

. . .

PEMemory

PEMemory

PEMemory

PEMemory

PEMemory

PEMemory

. . .

T_local

T_route

T_I/O T_bcast

T_reduce T_sync

282 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

 Each instruction stream is a processor with a bus

or broadcast/reduction network to all cells. Each

cell listens to only one instruction stream and

initially, all cells listen to the same instruction

stream. The cells can switch to another

instruction stream in response to commands from

the current instruction stream.

 An active cell executes the commands it receives

from its instruction stream, while an inactive cell

listens to but does not execute the command

from its instruction stream. Each instruction

stream has the ability to unconditionally activate

all cells listening to it.

 Cells without further work are called idle cells

and are assigned to a specified instruction

stream, which among other tasks manages the

idle cells.

 The average time for a cell to send a message

through the cell network to another cell is

characterized by the parameter troute. Each cell

also can read or write a word to an I/O channel.

The maximum time for a cell to execute a

command is given by the parameter tlocal. The

time to perform a broadcast of either data or

instructions is given by the predictability parameter

tbcast. The time to perform a reduction operation is

given by the predictability parameter treduce. The

time for a cell to perform this I/O transfer is

characterized by the parameter ti/o. The time to

perform instruction stream synchronization is

characterized by the parameter tsynch.

 An instruction stream can instruct its active cells

to perform an associative search in time tbcast +

tlocal + treduce. Successful cells are called

responders, while unsuccessful cells are called

non-responders.

 The instruction stream can activate either the set

of responders or the set of non-responders. It

can also restore the previous set of active cells in

tbcast + tlocal time.

 Each instruction stream has the ability to select

an arbitrary responder from the set of active cells

in tbcast + tlocal time.

 An active instruction stream can compute the

OR, AND, Greatest Lower Bound, or Least

Upper Bound of a set of values in all active cells

in treduce time.

 An idle cell can be dynamically allocated to an

instruction stream in tsynch + tbcast time.

These predictability parameters were

identified using an object oriented description of the

MASC model in [11]. They were developed to

identify the performance costs using different

architecture classes of parallel computing equipment.

When the MASC model is implemented using a

traditional SIMD computer, it is highly deterministic

and the predictability costs can often be calculated

and are often “best possible” [7]. Many of the

predictability parameters for MASC operations

become fixed or operate in one step [7].

4. A MASC Line Simplification Algorithm

Realizing the inefficiency of searching and

sorting when coping with the problem as discussed

in section 2, we adopt global constant time

operations of the MASC model to avoid such

inefficiency.

Consider the simple example with five

segments having integer-coordinate vertices as shown

in Figure 3. In the example, coincident vertices have

the same value of coordinates, and three vertices are

called collinear if the triangle composed by them has

an area value of zero. This can be adjusted in the

functions to check coincidence and collinearity by

adding an accepted tolerance α.

The input data are described as in Figure 3 as

well. Every line of the input file is a line segment

consisting of two vertices. Each vertex has an x-

coordinate and a y-coordinate. Therefore, at the first

state we can determine the vertex‟s left or right

neighbor, which is the other point in the same segment.

We use a tabular organization similar to the

one illustrated in Figure 5 as the data structure in our

algorithm. That is, the information about left and

right neighbors (left$ and right$) of the currently

investigated vertex and its coincident vertex (coin$ -

if any) are stored in each PE. Vertex A is called on

the left of vertex B if A‟s x-coordinate is less than

B‟s or if A‟s y-coordinate is less than B‟s when A

and B have the same x value. Vertex A is called on

the right of vertex B if A‟s x-coordinate is greater

than B‟s or if A‟s y-coordinate is greater than B‟s

when A and B have the same x value. In addition to

those location variables, two more variables are

defined: visited$ for tracking if the vertex has been

visited and delete$ for showing if the vertex should

be eliminated or not. Furthermore, every vertex is

assigned to one PE in the MASC model, which

results in a massive number of processing elements.

MASC_LINE_SIMPLIFICATION Algorithm

Begin

1. Set all PEs to active

2. Set del$ = „No‟, visited$ = „No‟

3. Set left$/right$ to the other vertex of the segment

4. For all PEs, repeat until no visited$ = „No‟

4.1. Find the coincident vertex

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 283

4.2. If there is no responder (no coincident

vertex)

4.2.1. Set visited$ = „Yes‟

4.3. Get the vertex from the responder (if any)

4.4. Set empty left$/right$ of the two coincident

vertices to its coincident vertex

4.5. Check if left$/right$ of the two coincident

vertices and themselves are collinear

4.5.1. If not:

a) Set the current PE‟s del$ = „Yes‟,

del$ = „No‟

b) Update field having the deleted

vertex as neighbor to its coincident

vertex (responders)

c) Set visited$ of both vertices = „Yes‟

d) Clear coin$ of both vertices

4.5.2. Else if they are collinear:

a) Set both vertices‟ del$ to „Yes‟

b) Set the current PE‟s visited$ = „Yes‟

c) Update fields that have the deleted

vertices (responders) as neighbor

i. If the deleted vertex is in left$,

update to left$ of the deleted

vertices

ii. Else if the deleted vertex is in

right$, update right$ of the

deleted vertices

d) Clear coin$ of both vertices

End

Using the MASC model, our algorithm does

not have to re-arrange the line segments because it

takes advantage of associative searching. The

operations “Find its coincident vertex” in step 4.1 and

“Find vertices that have it as neighbor” in step 4.5.1b

and 4.5.2c return values in constant time. After the

program finishes (all visited$ are „Yes‟), there would

be vertices whose del$ is „No‟. Those remaining

vertices belong to the simplified polylines of the level

curve‟s visual representation. The directions of

remaining vertices are maintained with their left$ and

right$ neighbors.

Figure 5 illustrates the initial table

representing the original digitized vertices. During

each iteration, a vertex is used in an associative

search for its coincident vertex. Then, it checks their

neighbors if they are collinear points. Appropriate

actions are executed to guarantee that after every

round of iteration, there is no deleted vertex in the

table, and all vertices will be visited after the

program finishes. Figure 6 demonstrates the table

after one iteration. The associative searching

capabilities of the MASC model helps each round of

iteration take constant time. Figure 7 shows the final

state of the table after all vertices are visited. Figure 8

is the resultant polyline constructed by fewer

segments and vertices. The running time of the

algorithm is O(n) in the worst case when there is no

coincidence between vertices.

 vertex left$ right$ coin$ visited$ del$

PE A1 B1 No No

PE B1 A1 No No

PE A2 B2 No No

PE B2 A2 No No

PE A3 B3 No No

PE B3 A3 No No

PE A4 B4 No No

PE B4 A4 No No

PE A5 B5 No No

PE B5 A5 No No

Figure 5: The initial table

 vertex left$ right$ coin$ visited$ del$

PE A1 B1 A2 Yes Yes

PE B1 A2 No No

PE A2 A2 B2 Yes No

PE B2 A2 No No

PE A3 B3 No No

PE B3 A3 No No

PE A4 B4 No No

PE B4 A4 No No

PE A5 B5 No No

PE B5 A5 No No

Figure 6: The table after one iteration

 vertex left$ right$ coin$ visited$ del$

PE A1 B5 A2 Yes Yes

PE B1 B5 A2 Yes Yes

PE A2 A2 B2 Yes No

PE B2 A2 Yes No

PE A3 B5 A2 Yes Yes
PE B3 B5 A2 Yes Yes
PE A4 B5 A2 Yes Yes
PE B4 A5 A2 Yes Yes
PE A5 B5 A2 Yes No

PE B5 A5 Yes No

Figure 7: The tables after all nodes are visited

Figure 8: The resultant polyline

284 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

5. Conclusion and Future Work

Polyline simplification plays an important

factor in visualization applications. The reduction in

number of points can help spatial analysis programs

improve their performances. The Douglas-Peucker

algorithm developed in 1973 is considered an

effective solution with the complexity of O(mn) [2],

and its enhanced version [4] in 1992 has the

complexity of O(nlogn) (m – number of segments, n

– number of vertices).

In this paper, a massively parallel polyline

simplification algorithm has been introduced. This

algorithm has a parallel complexity of O(n) using n

processing elements. This speedup is achieved by

using a massive number of processing elements and

the associative global operations of the Multiple-

instruction-stream Associative Computing model

(MASC). This algorithm requires only one

instruction stream and n processing elements.

Therefore, the time complexity linearly depends on

the number of vertices. The result of our algorithm as

compared to other algorithms is summarized in

Figure 9.

Algorithm Worst-case

Complexity

Number of

processors

Cost

Sequential O(n2) 1 O(n2)

Douglas-

Peucker

O(mn) 1 O(mn)

Enhanced

Douglas-

Peucker

O(nlogn) 1 O(nlogn)

MASC O(n) n O(n2)

Figure 9: Sequential algorithms vs. ASC algorithm

Although this algorithm requires a massive

number of processing elements, its parallel

computational cost is the same as the Douglas-

Peucker algorithm when the number of line segments

is high. This research provides an effective solution

to this problem.

The future work for this research includes an

implementation of the MASC polyline simplification

algorithm using the Chapel parallel programming

language. Chapel is the choice of language because

of its language features in data parallelism, task

parallelism, concurrency and nested parallelism via

high-level abstractions [1] that closely matches the

MASC model. Furthermore, this algorithm will be

implemented using CUDA, which is a hardware

platform which can also support the MASC model.

The future work of this research also

includes an analysis of the average case and best case

complexities. The results then can be compared with

the enhanced Douglas-Peucker algorithm complexity

[4].

References
[1] B. L. Chamberlain, D. Callahan, H. P. Zima, “Parallel

Programmability and the Chapel Language”, Int‟l Journal

of High Performance Computing Applications, 21(3), pp.

291-312, August 2007.

[2] D. Douglas, T. Peucker, “Algorithms for the Reduction

of the Number of Points Required to Represent a Digitized

Line or Its Caricature”, Canada Cartographer, Univ. of

Toronto Press, 10(2), pp. 112-122, December 1973.

[3] G. Fox, “What Have We Learnt from Using Real

Parallel Machines to Solve Real Problems”, Proc. of the 3rd

Conf. on Hypercube Conccurrent Computers and

Applications, vol. 2, ACM Press, pp. 897-955, 1988.

[4] J.Hershberger, J. Snoeyink, “Speeding Up the Douglas-

Peucker line-simplification algorithm”, Proc. of the 5th

Symp. on Data Handlings, pp. 134-143, 1992.

[5] G.F. Jenks, “Lines, Computers and Human Frailties”,

Annuals of the Association of American Geographers, pp.

1-10, 1981.

[6] M. Jin, J. Baker, “Two Graph Algorithms On an

Associative Computing Model”, Proc. of the Int‟l Conf. on

Parallel and Distributed Processing Techniques (PDPTA),

Las Vegas, June 2007.

[7] M. Jin, J. Baker, and K. Batcher, “Timing of

Associative Operations on the MASC model”, Proc. of the

15th IPDPS (Workshop in Massively Parallel Processing),

CD-ROM, April 2011.

[8] J. Potter, “Associative Computing: A Programming

Paradigm for Massively Parallel Computers”, Plenum Press,

New York, NY, 1992.

[9] J. Potter, J. Baker, S. Scott, A. Bansal, C. Leangsuksun,

and C. Asthgiri, “ASC: An Associative-Computing

Paradigm”, Computer, 27(11), 19-25, 1994.

[10] K. Reumann, A.P.M Witkam, “Optimizing curve

segmentation in computer graphics”, Proc. of the Int‟l

Computing Symposium, pp. 467-472, 1974.

[11] M. Scherger, “On Using the UML to Describe the

MASC Model of Parallel Computation”, Proc. of the Int‟

Conf. on PDPTA, pp. 2639-2645, Las Vegas, June 2000.

[12] M. Visvalingam, J.D. Whyatt, “Line Generalization by

Repeated Elimination of Points”, Cartographic Journal,

30(1):46-52, 1993.

[13] S.T. Wu, R.G. Marquez, “A Non-self-intersection

Douglas-Peucker Algorithm”, Computer Graphics and

Image Processing, pp. 60-66, Oct 2003.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 285

ViFramework: A framework for networked video streaming
components

B. Kersten1, K. van Rens2, and R. Mak1
1Security and Embedded Networked Systems, Eindhoven University of Technology, The Netherlands

2ViNotion B.V. The Netherlands

Abstract— Real-time video content analysis applications for
surveillance become more and more demanding. The need
for load distribution, remote management and reusability
calls for a component framework specialized in networked
video streaming applications. Whereas lots of component
frameworks exist nowadays, frameworks targeted at net-
worked video streaming are scarce. Added requirements
imposed by video surveillance applications include real-time
computing and quick failover. The framework proposed in
this paper meets these demands by enabling the distributed
execution of video streaming applications in an efficient
and resource-aware fashion. In this paper, we present the
design of the proposed framework and evaluate a prototype
implementation. The results of this evaluation show that
this implementation is efficient and can successfully perform
failover handling, making it suitable for distributing surveil-
lance applications.

Keywords: Software component framework, video streaming,
video surveillance applications, distributed video analysis

1. Introduction
Developing applications using the Component-Based

Software Engineering (CBSE) paradigm [1] has many ad-
vantages such as high reusability, low time to market and
decreased development costs. Many software component
frameworks exist nowadays, but frameworks supporting
video streaming are rare, especially when network function-
ality is required.

Applications that need streaming video are Video Content
Analysis applications, such as the ones studied in the recent
ITEA2 research projects CANTATA [2] and ViCoMo [3].
These applications are becoming increasingly more demand-
ing. Applications that process video streams originating
from multiple cameras with computationally-intensive al-
gorithms like object detection and tracking are becoming
more common. Due to the high-volume nature of video data,
processing components often have high resource demands.
The need for distributed applications is motivated by the
need for geographical distribution and load distribution in
order to make the applications more scalable.

A framework for networked video streaming components
is needed, in order to enable component distribution over

hosts connected by a network. The framework must enable
components to be configured and composed remotely in or-
der to form an application. By supportingdynamic reconfig-
uration the framework must allow for run-time modifications
of the application’s component graph.

At design-time, the framework must provide component
developers with abstraction of tasks, such as setting up
network connections, video compression, timing and mul-
tithreading. To make the framework suitable for rapid pro-
totyping, the framework must be flexible and component
descriptions easy to adapt. At run-time, the framework
should provide network-transparent means to compose an
application. In order to allow applications to span both
LAN’s and WAN’s, the framework must support NAT-router
and firewall traversal.

Targeting at video surveillance applications, the frame-
work is subject to real-time requirements. In general, a
trade-off must be made between timeliness and guaranteed
delivery. By adjusting QoS parameters the framework must
be able to meet the real-time requirements of the applica-
tions. In host-failure situations the framework must be able
to perform quick failover, thus increasing robustness and
minimizing the amount of lost data.

This paper proposes a framework for networked video
streaming components aimed at surveillance applications.
An implementation of the proposed framework is presented
in [4] and is evaluated in this paper. Evaluation is done by
porting an existing surveillance application to the framework
after which overhead and failover time is measured.

In Section 2 the general architecture of the proposed
framework is presented. An application scenario is sketched
in Section 3. Section 4 elaborates on framework details.
Framework evaluation is presented in Section 5. Section 6
describes related work and Section 7 concludes the paper.

2. Framework Architecture
The proposed framework exists of a design-time and a

run-time part. The design-time part of the proposed frame-
work consists of means that help the component programmer
to create components that comply with the framework. This
includes an interface definition language, automatic code
generation and programming guidelines.

Before existing video content analysis algorithms can be
used as components in the framework, they are supple-

286 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 1: High-level ViFramework architecture. A video content analysis
application consisting of four components spanning two hosts is set up.
Each dock manager manages all docks on the host it resides on and one
distribution manager controls the whole application.

mented with platform-specific software that provides addi-
tional functionality for network usage. This is called the
instrumentation procedure and results in a so-calleddock.
The term dock is borrowed from the SOFA framework
[5] and denotes a container for multiple components that
together provide functionality to the environment. Docks in-
clude a control part which controls the included components,
handles configuration and facilitates network usage, and a
functional part which is the component code.

The run-time part of the framework consists of two active
entities that enable the distribution of a video streaming
application. Each host that takes part in the framework
runs one process that manages all docks on that host. On
each host, thisdock manageris the only process that can
instantiate docks. After instantiation the dock manager can
configure, start, stop and destroy a dock. Configuration
includes binding of the component’s interfaces in order to
connect them to other components.

All dock managers are connected to a central service
named thedistribution managerthat is used to gather
information about available hosts from their dock managers.
Since the distribution manager has control over all available
dock managers, it is capable of composing a networked
video streaming application, instantiating and connecting
available components. A user-interface to the distribution
manager enables end-users of the framework to manually
setup an application, although the distribution manager can
also be configured to automatically setup and manage pre-
defined applications. An overview of the high-level frame-
work architecture is depicted in Fig. 1.

When considering video streaming applications as done
in [6], three component types can be distinguished:

• Input: Components that capture video data from an
input source (e.g. a camera, a file or an Internet stream),
convert it to a common internal format, after which it
can be offered to an interface.

• Output: Components that accept the common internal

Fig. 2:Data flow diagram of the object detection and tracking application.
The control-data flow from the user interface to the PTZ-camera is optional
because the end-user may chose to manually control the PTZ-camera or not.

format from an interface and convert it to an output
format which can, for example, be a display or a video
file.

• Processing:Components that can be used to read video
data in the common internal format from an incoming
interface, process the video stream before forwarding it
to an outgoing interface in the same format.

Typically, processing components can reside on any host,
whereas in- and output-components need additional hard-
ware in order to fulfill their task and are therefore located
in the proximity of these devices (i.e. a camera or video
display). If not composed manually, it is the distribution
manager’s responsibility to setup a pre-defined application
taking into account what resources are available on the
connected hosts.

The distribution manager is capable of performing failover
by re-instantiating failed docks on other hosts and re-routing
the data through the re-instantiated docks. In the same
way, the distribution manager is capable of performing
load distribution. Because video streaming uses a lot of
network bandwidth the framework takes network capacity
into account when setting up and managing applications. It
does so by adjusting stream routes and choosing appropriate
Quality of Service (QoS) levels and compression techniques.
By using NAT-router and firewall traversal it is possible to
deploy applications that cross the borders of a LAN.

3. Application Scenario
As a proof of concept the proposed framework imple-

mentation is used to distribute an existing surveillance
application over multiple hosts. The application chosen for
this is an object-tracking application using a static and a Pan-
Tilt-Zoom (PTZ)-camera as depicted in Fig. 2. The video
stream from the static camera is used for object detection and
tracking. When an object is detected, the PTZ-camera is used
to zoom in on the target and to extract more object-specific
information. The video stream from the PTZ-camera could,
for example, be used for face recognition on the zoomed-in
object. The PTZ-camera is controlled automatically using the
coordinate information from the “Video Content Analyser”
component which analyses the video feed from the static
camera. Moreover, the end-user can at any time connect to

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 287

Fig. 3:A possible distribution scenario of the object detection and tracking
application spanning four hosts.

the user interface component and watch the incoming video
streams and application-generated metadata. Optionally, the
user can also take manual control of the PTZ-camera. This
application can be divided in up to four docks:

• Static-camera analysis: Object detection and tracking
algorithms generating PTZ-coordinates based on the
video stream provided by the static camera. Metadata
describing the objects and their locations is send to a
rule-based engine.

• PTZ-camera analysis: Controlling the PTZ camera
based on incoming PTZ-coordinates and using the
video stream from the PTZ-camera as input for a video
content analysis algorithm.

• User interface: Presentation / interaction component.
• Rule-based engine: Gathering metadata from both anal-

ysis components and informing the end-user on events
by forwarding them to the user interface.

A possible distribution of these docks is depicted in Fig. 3.

4. Framework Details
4.1 Location transparency

The ViFramework provides generic means that allow the
end-users to deploy and connect docks on available host
irrespective of the underlying network topology. In order
to create thislocation transparencythe framework is built
on top of the XMPP protocol [7] originally designed for
messaging purposes. Because of its modularity and ease of
extensibility it has become a communication protocol used
by all kind of applications such as a the Peer-to-Peer desktop
grid computing substrate [8]. XMPP has very attractive
features for this framework such as presence information of
clients, possibility of NAT-router and firewall traversal and
extensive security measures like TLS ans SASL. Because
of its modularity, a light-weight framework can be created
by including only the XMPP modules that are necessary.
All this makes the XMPP protocol an excellent network
substrate for an easy to extend component-framework that
satisfies the needs of demanding video content analysis
applications.

A major drawback of the XMPP protocol when used for
the ViFramework is the lack of efficient video streaming
support. XMPP does have an extension that facilitates stream

initiation (XMPP extension number XEP-0095) that is used
for our own video streaming algorithms.

The main types of data that are communicated between
components in a networked video streaming application
are video-data, metadata and control-data. The framework
supports these data types. The metadata and control data
are assumed to be event-based and are communicated using
the XMPP protocol itself. This protocol is XML-based and
can therefore be used to send any data type that can be
represented by structured text. Streaming video is done
outside the protocol. The ability to communicate these data
types is sufficient for the application example in Fig. 3.
In general, these data types are sufficient for almost any
network video streaming application.

For video streaming three types of communication are
used dependent on the relative location of the components
that are connected to each other:

• Local: For docks that are instantiated on the same host,
shared memory is used for communication. The dock
manager manages this shared memory.

• RTP: For connections between docks that reside within
the same LAN the RTP protocol is used. Using RTP
upon UDP makes it makes possible to meet real-time
requirements because the protocol will not wait for lost
packages.

• SOCKS 5: For connection between docks that reside
on distinct LAN’s (and therefore needs to traverse a
NAT-router or firewall) no RTP connection can be setup
because this protocol is IP-address based and hosts
behind a NAT-router do not have an unique IP-address.
Furthermore, firewalls could block the ports used by
the protocol. A SOCKS 5 [9] proxy is used to setup
a SOCKS 5 byte-stream between the two components.
Such a byte-stream is based on a TCP connection and
is therefore not very suitable for applications subject to
QoS.

Typically, the real-time part of video content analysis ap-
plications resides on a LAN, whereas WAN connections
are, due to their higher delays, mostly used for monitoring,
control and notifications. For the latter tasks guaranteed
delivery is more important, which makes a SOCKS 5 byte-
stream a suitable candidate for inter-LAN connections.

For metadata communication, the XMPP protocol is used,
except for intra-host communication, for which we use
method invocation. The message passing XMPP protocol
needs an XMPP server to relay messages between hosts.
End-to-End connections can be used for intra-LAN com-
munication of metadata but this requires an extension of
the XMPP protocol (XEP-0246). Because the vast majority
of the data communicated within a typical video content
analysis application is video data, there is little to gain and
therefore, this extension is not implemented.

Fig. 4 depicts a possible network structure supported by
the framework. End-to-End RTP sessions are used for intra-

288 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 4:Possible network structure supported by the ViFramework. End-to-
End RTP sessions are used for intra-LAN video streaming. For inter-LAN
video streaming the XMPP server is used as SOCKS 5 proxy. Only the
XMPP server requires a public IP-address. Metadata communication is not
depicted in this figure.

LAN video streaming whereas the XMPP server can be used
as a SOCKS 5 proxy in order to setup a SOCKS 5 byte-
stream between two hosts in different subnets. The XMPP
Server needs to be accessible from both subnets so a public
IP-address is required.

4.2 Interface definition
The typical pipe and filter architecture pattern [10] found

in video streaming applications consists of an in- and out-
put component with one or more intermediate processing
components. The need for dynamic reconfiguration calls for
a data-centric composition technique. The proposed frame-
work allows dock builders to specify what data types the
dock requires and provides. When deploying an application
the required docks are instantiated. An interface-matching
algorithm is used to calculate, given an interface, which
interfaces can be connected to it. The result of this algorithm
can be used to automatically set up an application or can aid
the user in manually setting up the application.

The demand for flexible dock definitions and the use of
the XMPP protocol makes XML an appropriate language
for dock and interface definitions and it is therefore used
as theInterface Definition Language(IDL) in the proposed
framework. At design-time, a configuration XML file is
designed for each host. At start-up, this file is read by the
dock manager which parses, amongst others, its identifier,
the XMPP server address and the available dock definitions
from this file. A dock definition contains a dock identifier, a
functionality description and a list of interfaces with their
respective QoS properties. For each dock instantiated by
the dock manager, a copy of the dock definition is made,
which can be modified by the dock manager. Changes to
these description instances can be made to, for example,
bind interfaces by adding target information to the interface
element or to set QoS properties.

Each video streaming interface can set a topic, which

<providedInterfaces>
<interface>
<videoStream topic=’PTZ’>
<qos>
<fps>
<min>5</min>
<max>15</max>
</fps>

</qos>
</videoStream>

</interface>
</providedInterfaces>

<requiredInterfaces>
<interface>
<videoStream topic=’ANY’>
<qos>
<fps>
<min>10</min>
<max>25</max>

</fps>
</qos>

</videoStream>
</interface>

</requiredInterfaces>

Fig. 5: Interface definition of two matching video streaming interfaces.
The provided interface can operate in the range specified by the required
interface. The required interface will accept streams with any topic.

can be used for stream identification and a number of
QoS parameters. Two examples of interface definitions are
listed in Fig.5. The matching algorithm checks whether the
provided interface can meet all demands of the required
interface which is the case in this figure. Metadata interfaces
are defined by the XML representation of the object they
communicate. The dock builder is able to construct any data
type for communication as long as it is representable in
XML. When, for example, the dock builder needs infor-
mation about detected cars to be communicated, interface
definitions as depicted in Fig. 6 can be specified. When
a dock with a provided interface having this specification
sends data, it fills the<carInfo> element with data and
sends it to the required interface. This representation allows
easy creation of new object types and easy extension of
existing ones.

At run-time a dock can be easily replaced by an other
dock with compatible interfaces but with potentially dif-
ferent functionality. The user receives an overview from
the framework on what connections can be made between
instantiated docks. With the proposed framework, creating
more complex component graphs is quite straightforward as
provided interfaces are able to setup connections to multiple
required interfaces. When streaming video, each of these
connections can have its own QoS properties. Moreover, this
allows run-time extension of existing applications by adding
additional processing steps, or by branching the video stream
at a certain point, in order to create a separate processing
path.

4.3 Host failure recovery
The use of the XMPP protocol as a network substrate

provides the proposed framework with information about the
presence of dock managers. The XMPP server will notify
the distribution manager when a host has gone off-line.
The distribution manager will react on such an event by
starting a recovery algorithm. This algorithm tries to re-
instantiate the docks that were running on the failing host,
on other (possibly unused) hosts, tries to reconnect them and
upon success, restarts the failed part of the application. An

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 289

<providedInterfaces>
<interface>
<metaData>
<carInfo>
<location/>
<speed/>
<direction/>

</carInfo>
</metaData>

</interface>
</providedInterfaces>

<requiredInterfaces>
<interface>
<metaData>
<carInfo>
<location/>
<speed/>
<licensePlate/>

</carInfo>
</metaData>

</interface>
</requiredInterfaces>

Fig. 6: Interface definition of two non-matching metadata interfaces.
The addition of the<direction/> element is allowed because a
provided interface might supply more data then needed. Adding the
<licensePlate/> element in the required interface will make this
interface no longer matching because the provided interface can not provide
this element.

Fig. 7: Crash recovery example. Three camera feeds are processed, each
by a dedicated host. All data gathered by the analysis algorithms are
forwarded to the server which will notify the end-user on certain events. If
Host 3 fails, the framework will try to find a host to re-instantiate the lost
analysis dock on and reroute the video stream that was processed by the
crashed host through the new one. The end-user will be notified about this
host-failure.

example situation is depicted in Fig. 7.
The framework is designed for real-time systems and

therefore no attempt will be made to resend frames that
are lost due to host-failure. Because the framework is
targeted at surveillance applications, crash recovery should
be performed in the least amount of time possible in order
accomplish minimal data-loss.

4.4 Resource Management
To enable automatic deployment of new applications,

dynamic reconfiguration of existing application and host
failure recovery the distribution manager needs information
about the available resources (e.g. CPU, memory, network
bandwidth) on each connected host. To enable load balanc-
ing, also information about the current resource usage is
required from each connected host. Resource information
is gathered by the dock managers and forwarded to the
distribution manager. This enables resource management on
two levels; at host-level and at system-level.

Ideally, the dock manager process is the only process
running on each host apart from mandatory OS processes.
Because of the low resource usage of OS processes it can
be assumed the dock manager has all the host’s resources at
its disposal. As future work, this could be forced by running

the dock manager in a virtual machine. The dock manager
will spawn a new thread for each dock it instantiates. At this
point resource reservations can be made for this new dock.
Docks are allowed to spawn new threads themselves. In the
current implementation, host-level resource management is
left to the operating system.

At system-level, the distribution manager has knowl-
edge about the available and used resources of each host.
Therefore, it can make educated decisions when deploying
new docks. For example, when the new analysis dock is
instantiated in the host failure recovery situation of Fig. 7,
the distribution manager will opt for the unused host, rather
than a host that is already doing heavy computation.

Resource requirements for video content analysis algo-
rithms are often data-dependent [11]. This requires the
framework to respond to a sudden increase in resource re-
quirements. If a host cannot meet the resource requirements
of its docks, the distribution manager needs to redistribute
the application in a more appropriate way.

So, to make its global deployment decisions, we see that
the distribution manager needs resource information that is
as accurate and recent as possible. As stated in [12], large
applications that constantly send resource information to a
central service create an extensive network usage overhead.
This makes an implementation in which the dock managers
send resource usage updates to the distribution manager at
a high fixed rate not well scalable and therefore unsuitable
for a video-streaming framework. In [12] a solution for this
problem is proposed. This solution divides resource usage in
three usage-levels and only sends on level transitions. The
ViFramework uses a similar, but more extensive solution to
solve this problem.

For each resource (e.g. CPU usage) a new value will
only be reported if it exceeds a user-defined threshold
with respect to the last reported value and only when this
situation persists for a user-definable duration. Fig. 8 shows
an example resource graph. This solutions enables a trade-
off to be made by the end-user of the framework between
network bandwidth usage and information granularity. It is
an improvement over [12] because it provides the end-user
with more detail when needed and it prevents large data
bursts when resource usage oscillates between two usage-
levels.

5. Framework Evaluation
In order to evaluate the proposed framework, the computa-

tional overhead and the time needed for host failure recovery
were measured. Because data compression and streaming,
although configurable by the framework are not dependent
on the framework, no network usage measurements for
applications deployed on multiple hosts are carried out. Fur-
thermore, after application initialization, the only framework
related network traffic is resource usage information, which
is negligible.

290 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 8: Left: Host CPU usage registered by the dock manager | Right:
Resource graph received from the dock manager at the distribution manager.

Table 1: Overhead Measurements
Cpu usage Min Avg Max

Standalone1 58% 60% 62%

Frameworked1 65% 67% 70%

Standalone2 84% 87% 89%

Frameworked2 95% 97% 99%

5.1 Evaluation method

An application was created that reads a video from file,
appliesobject detectionon the video and writes the resulting
video to a display. The video used has a resolution of
640x480 at 15 frames per second. For framework eval-
uation the application is divided into three docks (read,
process, write) which are all deployed on the same host.
The frameworked application and the standalone application
were both executed on the same host.

The test host contains a quadcore Intel® Core™ i7 870
processor at 2.93 Ghz with 2 GB of RAM. The operating
system used is Linux 2.6.36-26.

5.2 Overhead

Video content analysis algorithms are most often compu-
tationally intensive, making it important that the framework
overhead in terms of CPU usage is minimized. Furthermore,
because of real-time requirements, the processing delay the
framework introduces should also be minimal. To measure
the overhead the framework imposes, a standalone applica-
tion is compared to the same application in the proposed
framework but deployed on only one host. While the algo-
rithm was running, the CPU usage was measured for three
minutes. Two runs were made, the second run executing a
more demanding version of the object detection algorithm.

The results of the measurements are presented in Table 1.
Both runs indicate a framework overhead of about12%.
For most target applications this overhead is considered
acceptable, and can be improved as the current framework
implementation is still a rapid prototype.

Table 2: Failover Measurements
Metric: Value:

Measurements 20

Min. time 467 ms

Avg. time 584 ms

Max. time 830 ms

Avg. frame-loss 9

5.3 Failover automation
On host failure the framework tries to re-instantiate a

failing dock as quickly as possible in order to lose a minimal
amount of data. Because of real-time requirements, no data
is retransmitted, so the longer it takes to take over the
functionality of the failing host, the more data will be lost. In
this benchmark the three docks of the evaluation application
were deployed on two hosts. The reading and writing docks
are deployed on one host and the object detection dock is
deployed on the other. The dock performing object detec-
tion is deliberately interrupted by killing its dock manager
process. The time between this point and the point where
the second host has taken over the dock on the failed host
is measured in order to calculate data-loss. The results are
presented in Table 2 and show that fast recovery is possible
using the proposed framework. Losing slightly more that
half a second of data on average is acceptable for most
surveillance applications.

6. Related Work
In [5] the advanced component system SOFA 2.0 is pre-

sented which was created in order to overcome limitations of
formerly existing component-based systems. Due to the lack
of video streaming support and the service-oriented nature
of SOFA 2.0 this component system is considered unsuitable
for real-time video streaming applications. Nevertheless, this
work inspired some aspects of the proposed framework such
as docks being instrumented components and the dynamic
re-configuration of deployed applications.

In [13] the OpenDDS component framework is presented
which supports complex data flows and dynamic reconfigu-
ration. The drawbacks of OpenDDS are; the lack of video
streaming support, the absence of security algorithms and
problems with NAT router and firewall traversal. Another
problem is the inflexibility of the framework when designing
components for rapid prototyping, dynamic data types, for
instance, are not supported.

In [14] the GStreamer framework is presented that focuses
on audio and video streaming applications. The framework
aims at creating single machine multimedia applications
by composing existing components called plug-ins. The
frameworks lacks presence information which is a main
feature of the proposed framework and has no built-in means
that support dynamic reconfiguration.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 291

In [8] a network substrate for desktop grid computing
namedOrbweb is presented. This work describes the effort
that is made to extend the XMPP protocol in order to meet
the substrate needs. This substrate uses XMPP for NAT and
firewall traversal and takes advantage of the available se-
curity protocols embedded in XMPP. Orbweb is considered
unsuitable because no functionality for real-time applications
is available.

In [6], Westerink proposes a flexible framework for build-
ing multi-media streaming applications. This framework
identifies the general architectural structure of streaming
applications and using this knowledge to create an easy-to-
use framework which is used for some existing applications.
The framework proposed by Westerink is targeted at creating
single machine applications from existing components, and
therefore not suitable to be used as a networked component
framework.

7. Conclusion
In this paper the ViFramework, a framework for net-

worked video streaming components targeted at surveillance
applications, is presented. This framework provides dock
component builders with flexible means to specify docks
using XML as definition language. The end-users are pro-
vided with easy-to-use tools to create complex application
architectures from the available docks. The combination
with the XMPP protocol enables the framework to deploy
an application on a WAN by using firewall and NAT-
router traversal. This enables remote monitoring, control
and notifications. Basic resource monitoring on host-level
is performed. Gathered information is communicated to a
distribution manager in a smart and configurable manner in
order to enable application wide load balancing.

A failover algorithm enhances the robustness of the frame-
worked application. Evaluation of this algorithm shows that
failover is achieved within acceptable time. Measurements
show that framework has an acceptable computation over-
head. Overall the measurements of the presented prototype
implementation show that it is efficient and suitable for video
surveillance applications.

8. Future work
Future functionality of the proposed framework will in-

clude resource usage profiling of docks on the available hosts
as is done by Korostelev et. al in [15]. This will enable the
distribution manager to predict what resources a certain dock
will use on a host. Using this information the distribution
manager can deploy applications more efficiently. The dock
manager will also perform resource allocation instead of the
operating system which is responsible for this in the current
implementation.

The current implementation only supports end-to-end con-
nections. More interface types are to be developed to enable

other communication constructs such as publish-subscribe
and multi-cast.

For now it is assumed that all docks are pre-compiled on
the hosts used by the framework. ADock Repositorywill be
developed that allows run-time uploading of docks to hosts.
This facilitates adding “blank” hosts to the system on which,
on demand, appropriate docks can be installed.

Optimizations to the framework can be made in order to
reduce CPU usage overhead.

Acknowledgment
The research reported in this paper has been done in the

context of the first author’s master’s project. The project has
been carried out at ViNotion B.V. and the support received
from the company and its staff is gratefully acknowledged.
Furthermore, we thank Johan Lukkien and Egbert Jaspers
for their comments on an earlier version of this paper.

References
[1] G. T. Heineman and W. T. Councill,Component-Based Software Engi-

neering: Putting the Pieces Together. Addison-Wesley Professional,
June 2001.

[2] CANTATA, “Content aware networked systems towards advanced
and tailored assistance,” URL, 2011, http://www.hitech-projects.com/
euprojects/cantata/.

[3] ViCoMo, “Visual context modeling,” URL, 2011, http://www.vicomo.
org/.

[4] B. Kersten, “Instrumentation of networked video streaming compo-
nents (to appear),” Master’s thesis, Eindhoven University of Technol-
ogy, April 2011.

[5] T. Bures, P. Hnetynka, and F. Plasil, “Sofa 2.0: Balancing advanced
features in a hierarchical component model,”Software Engineering
Research, Management and Applications, ACIS International Confer-
ence on, vol. 0, pp. 40–48, 2006.

[6] P. Westerink and F. Schaffa, “A high level flexible framework for
building multi-platform multi-media streaming applications,” inWire-
less and Optical Communications Conference (WOCC), 2010 19th
Annual, May 2010, pp. 1 –5.

[7] XMPP, URL, 2011, http://www.xmpp.org/.
[8] S. Schulz, W. Blochinger, and M. Poths, “Orbweb - a network

substrate for peer-to-peer desktop grid computing based on open
standards,”J. Grid Comput., vol. 8, no. 1, pp. 77–107, 2010.

[9] “Socks protocol version 5,” URL, 2011, http://tools.ietf.org/html/
rfc1928.

[10] M. Shaw and D. Garlan,Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, Apr. 1996.

[11] I. David, B. Orlic, R. H. Mak, and J. J. Lukkien, “Towards resource-
aware runtime reconfigurable component-based systems,”Services,
IEEE Congress on, vol. 0, pp. 465–466, 2010.

[12] L. Rizvanovic and G. Fohler, “The matrix - a framework for
real-time resource management for video streaming in networks
of heterogenous devices,” inThe International Conference on
Consumer Electronics 2007, January 2007. [Online]. Available:
http://www.mrtc.mdh.se/index.php?choice=publications&id=1164

[13] OpenDDS, URL, 2010, http://www.opendds.org/.
[14] GStreamer, URL, 2011, http://gstreamer.freedesktop.org/.
[15] A. Korostelev, J. Lukkien, J. Nesvadba, and Y. Qian, “Qos

management in distributed service oriented systems,” inProceedings
of the 25th conference on Proceedings of the 25th IASTED
International Multi-Conference: parallel and distributed computing
and networks, ser. PDCN’07. Anaheim, CA, USA: ACTA Press,
2007, pp. 345–352. [Online]. Available: http://portal.acm.org/citation.
cfm?id=1295581.1295637

292 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Computing the Configuration Space

Using Arrays with Reconfigurable Optical Buses

John Jenq

Department of Computer Science, Montclair State University, Montclair, NJ 07043, USA

Abstract - Configuration space computation is a

transformation which can be adopted in robot path planning.

This process reduces a robot with dimensions to become a

single reference point by expanding each obstacle on the

image plane. This approach reduces a complex problem into

a simple one. In this paper parallel algorithms for computing

the configuration space obstacles by using arrays with

reconfigurable optical buses (AROB) is presented. The

digitized images of the obstacles and the robot are stored in

an image plane. These algorithms take O(1) cycle time and

are optimal.

Keywords: Configuration space, robotics, parallel

processing, reconfigurable networks, optical computing

1 Introduction

 Arrays with reconfigurable systems had been intensively

studied in the past. By using optical bus (or waveguide) as

communication means, parallel algorithms were developed to

solve various fundamental operations. Operations such as

matrix manipulation problems, sorting, selection, data routing

were developed [4] [9] [13] [14] [15] [17] among many

others. There are different models and variations for

reconfigurable network optical computers see for example

[3][15][18]. The array with reconfigurable pipelined bus

system (LARPBS) and arrays with reconfigurable optical

buses (AROB) had been intensively studied. In this report, we

developed algorithms for 2D arrays with reconfigurable buses

(2D AROB). Constant time algorithms for computing the

configuration space on array of reconfigurable optical buses

(AROB) was developed.

Computing the configuration space is an important problem

in path planning for robotics applications. The objective of

path planning is to find a path to move a robot A from a

position s (the initial position) to another position d (the final

position) without colliding with the obstacles already in space

R. One way to solve this problem is the configuration space

obstacle approach (for example [8][10][11]) which reduces

the robot A to a single reference point p and expands each

obstacle to include all the positions of p that cause a

collision between A and . The expansion of an obstacle

is called the configuration space obstacle of . In the new

representation, the object A (robot) becomes a single point.

The configuration space therefore reduces a complex problem

into a simple one.

Figure 1 shows a robot A and two obstacles (and).

To compute the configuration obstacle of an obstacle of ,

first invert the robot A , i.e. to rotate A about the reference

point by and then slide the reference point around the

boundary of the obstacle . The union of the area covered by

A during the sliding, and the area originally covered by

defines the configuration space obstacle of . Note here the

orientation of A does not change when we move A around

the obstacles. In Figure 1 the area enclosed by the dark lines

are the configuration space obstacles of and . S

designates the source and D designates the destination

positions.

Figure 1. Robot A and its inverted A’, dark lines form the

configuration obstacles of and .

Parallel processing approaches to solve path planning had

been developed. Tzionas, Thanailakis, and Tsalides presented

parallel algorithm for collision free path palnning of a

diamond-shaped robot and its implementation in VLSI[19].

Jenq, et. al. developed optimal RMESH algorithms[7], their

algorithm requires RMESH, Jenq and Li also

developed optimal algorithms of computing the configuration

space using hypercube computers[5][6]]. Their algorithms run

in O(logN) time for an image by using

processors and are optimal for hypercube computers. Dehne,

Hassenklover, and Sack presented a systolic algorithm for

computing the configuration space obstacles in a plane for a

rectilinear convex robot [1]. Their algorithm takes O(N) time

for an image on an mesh computer.

The digitized bitmap images of convex robots are rectilinear

convex polygons. The converse statement may not be true. A

polygon is rectilinear convex if (1) the polygon is formed by

horizontal and vertical line segments, and (2) the intersection

of the polygon with any horizontal or vertical line consists of

r

 A

S

B1

D A’

B2

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 293

at most one line segment. Figure 2 depicts a polygon which is

rectilinear convex.

Figure 2 A rectilinear polygon

In this paper, algorithms for computing the configuration

space obstacles for robots with shape of convex polygons

were presented. The algorithm can be modified and easily

applies to robot of shapes circular and rectangular. We omit

the details of these algorithms here. Basic data movement

operations related to AROB was developed. These algorithms

take constant time for an image on an AROB with N N

processors.

We organized this paper as the following. In section 2, the

basic configuration of AROB is discussed. In section 3, we

present fundamental data movement operations which are

used to develop the optimal algorithm. Section 4, the

configuration space algorithm on AROB is presented. Section

5 concludes the report.

2 Preliminaries of AROB

 One dimensional AROB is similar to one dimensional array

with pipelined buses 1D-APPB[2]. The 1D AROB allows

each processor to set its own switches (receiving and

transmitting) to connect to the bus. A switch can be set to

either cross or straight. For example, to partition a 1D AROB

into two independent 1D AROBs, processor can set both of

its switches to cross. One 1D AROB contains to and

the other from o ; where N is the size of the original

1D AROB. For 2D AROB, each processor has index of .

There are four switches for each processor. Figure 3 shows a

4x4 2D AROB. Figure 4 shows the permissible switch setting

for 2D AROB.

Figure 3 A AROB

Figure 4 Permissible switch setting for 2D AROB

3. Fundamental Data Manipulation

 Operations

In this section we define several basic data manipulation

algorithms for AROB. These operations are served as the

building blocks to construct algorithm for configuration space

obstacle computation in the next section.

Broadcast

This is the most basic operation in a reconfigurable mesh. In a

data broadcast operation, data originated in one PE are sent to

all the PEs connected to the bus. All PEs who want to fetch

the transferred data can receive and read the content of the

optical bus when the selection signal arrives. The broadcast

operation takes O(1) time [12].

Translate

Each has data in it’s variable that is to be

shifted circularly to variable of a processor that is

 away, where and are a pair of vertical and

horizontal displacements. The translate operation will move

circularly to up and left by , and positions. I.e., will

be translated to . This

operation is called Shift in [20].

Shift

Each PE has a data in it’s A variable that is to be shifted to B

variable of a processor that is s units, s > 0, to right or left in

the same row (column). A variant of shift is the operation of

circular shift, which performs shift with wrap-around. These

operations can be done in O(1) time. Note it is a special case

of Translate.

Routing

Consider 1D AROB routing problem. When O(1) packets

originate from any node and O(1) packets are destined for any

node. This problem can be resolved in O(1) cycles[16]. In

[16] it is call h-relation operation. When h is 1 it is partial

routing (1-relation).

Inversion

This operation rotates a rectilinear polygon by about a

reference point (i,j), where i and j are integers in the range of

0...N-1. Assuming that the gray values of the image of the

rectilinear polygon are the same (e.g., all are of value 1), this

operation can be done in constant time on an RAOB.

The algorithm is listed in Figure 5.

Step1 Reference point broadcasts its i and j indices to all

pixels of the robot.

Step2 Each robot PE applies two shift operations:

left and right with A=1;

Step3 that did not receive two are boundary pixels;

boundary pixels compute (newI, newJ) index after

the inversion. Boundary pixel identifies itself as

left or right boundary .

294 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Step4 Right boundary set it’s A=1, left boundary set

its A=2

Step5 Perform Routing : boundary pixels send information

of it’s A to of index (newI, newJ).

Step6 receives 1 is a left boundary pixel of the

inversion robot; receives 2 is a right boundary

pixel of the inversion robot

Step7 Setup row buses; new left brocasts A=1; that

receive 1 is part of the inversion robot

Figure 5. A constant time inversion operation of a rectilinear

polygon.

Step3 is a simple logic for robot to test if it’s a boundary

, here we assume there is no robot with diameter of N.

otherwise either extra artificial PEs need to be introduced to

enclose the image plan, or small modification of the algorithm

is required. It is easy since if a with j index of 0 or

would be in the boundary. Step5 performs the routing

operation its complexity is O(1).

PrefixSum

In [16], Pavel and Akl presented a positive integer prefix sum

operation on 1D AROB. The prefix sums of n integers

with and , can be

computed in steps. In this report we extend their

algorithm to cover the condition when there are negative

integers as well. For and

 if and if , the

prefix sums of n integers can be done in constant steps.

Step1 For PE(i) with , for perform

positive integer prefix sum operation of values

Step2 For PE(i) with , for perform

positive integer prefix sum operation of values

Step3 For PE(i) with , for perform Even-

Odd-Ranking

Step4 Even rank PE and the odd rank PE immediate

follows it form independent bus with even rank PE

as leader and odd rank PE as END, do broadcast of

it’s A(i)

Step5 All PEs read the value broadcast and set it to B(i)

except for END PE which B(i) set to it’s A(i)

Step6 Odd rank PE and the even rank PE immediate

follows it form independent bus with odd rank PE as

leader do broadcast of it’s A(i)

Step7 All PEs read the value broadcast and set it to B(i)

except for END PE which B(i) set to it’s A(i)

Step8 Repeat Step3 to Step7, replace B(i) with C(i) for

PE(i) with , for

Step9 Prefix-Sum (i) = B(i) + C(i)

Figure 6. A constant time Prefix Sum operation of 1D AROB

Odd-Even-Ranking

Each PE(i) has a flag selected(i) , which is set to true if PE(

i) is selected. A Ranking operation assigns a rank to each PE,

where the rank of PE(i), rank(i) , is the number of selected

PEs whose indices are less than i . Note it takes O(logN) time

on RMESH. The Even-Odd-Ranking is a special case of

Ranking. If the rank(i) is an odd number then assign 1 to it,

otherwise assign 0 if rank(i) is even. If we assign 1 to PE with

rank(i) even, and 0 to rank(i) odd then we call it Odd-Even-

Ranking. Note also that Ranking is a special case of positive

integer prefix sum operation in[16]. By assigning the values

() to be summed with integer value of 1, it can be easily

done. Note the result prefix sum value minus 1 is the rank of

the PE assuming rank start with 0 rather than 1. This

operation takes O(1) time on AROB.

4 Computing configuration space on

AROB

In this section, an O(1) time algorithm that computing

configuration space obstacles on AROB for a WBP is

presented. A WBP (well behavior polygon) robot is defined

as in [6]. Briefly speaking, a WBP is a polygon that can be

partitioned into at most four L-shaped polygons as shown in

Figure 12. See [6] for the detail discussion about this type of

polygons. The intersection of the two dotted lines is called the

base point. It is possible that for some cases there are might

be two base points on the WBP as an example shown in

Figure 7(b), By applying the translate operation on obstacles,

one can make it works as if we only have one base point. See

detailed description in [6].

To compute the configuration space obstacles for a robot

with the shape such as the one shown in Figure 7(a) can now

be reduced to the case as if the robot is of L-shaped. Simply

apply four iterations of the configuration space obstacle

computing algorithm for L-shaped robots, and union the

areas, one can compute the final configuration space

obstacles. Since these four procedures are similar, we present

only one type of the L-shaped polygon here. Without loss of

generality, let’s consider an L-shaped polygon as show in

Figure 7, where r is the base point.

Figure 7 (a) A WBP convex robot converts and partition

into four L-shaped rectilinear polygons

 (b) AWBP with two base points

(a) (b)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 295

We partition the growing of the obstacles into two phases.

The vertical expansion phase and horizontal expansion phase.

In the vertical expansion phase, we draw a vertical line from

any boundary pixel of obstacles. This vertical line then will

grow horizontally to its left for the L-shaped polygon in

Figure 8. Note the horizontal length exhibit dominant

property of [5]. Consider scenery as in Figure 8. Let’s define

a top PE as the PE which is on “top” of an obstacle. A bottom

PE can be defined similarly as a boundary PE with other

obstacle PE on top of it. Note a boundary PE under a top PE

did not grow a vertical line instead it only grow one

horizontal line segment during the horizontal growing phase

due to dominant property. Figure 10 outline an algorithm to

grow obstacles vertically.

Step1 Top PEs set as leader PE

Step2 Bottom PEs set as End PE

Step3 Top PEs broadcast its row index t

Step4 PEs (i,j) on the column bus receive this value and

compute SegNumber = t-i;

Step5 if SegNumber <= h then mark(I,j) = true; else mark(I,j)

= false;

Figure 10 A constant time Fill-up operation on AROB

Note after Step5, the obstacles had been expanded

vertically. Before grow the obstacles horizontally, all newly

grown PEs need to know its runLength by using its

SegNumber as an index to look up the corresponding

runLength information of the L-Shaped polygon. For a

diameter O(1) robot, this information can be broadcast from

robot boundary PEs. Assuming there are h segments. In O(h)

time, all expanded obstacles along with the original obstacle

boundary PEs can receive its runLength information.

Each expanded obstacles PEs along with all the boundary

PEs will then perform the horizontal growing phase as shown

in Figure 11.

Step1 Fill-up

Step2 Broadcast segment runLength information

Step3 For boundary obstacle PEs and expanded obstacles

PEs calculate destination PE’s j index dj = j-

RunLength and set it’s A(I,j) to be 1

Step4 Perform Routing (h-relation) operations

Step5 For PE receives runLength information add -1 to it’s

A variable.

Step6 Perform Integer Prefix Sum operation

Step7 PE with A(I,j) == 1 is the leader and A(I,j)== 0 as

the End setup row bus

Step8 Leader PEs broadcast it’s –A(-1) value and all PEs in

the subbus receive and mark it as configuration space

obstacle PE

Figure 11 Computing of configuration space for L-shaped

robot on AROB: horizontal phase

Step1 of Figure 11 starts the vertical expansion. Step2

allows all expanded obstacle PEs to receive the runLength

information. Step3 calculate the destination PE index. Step 4

perform h-relation operation to route -1 value to the other end

of the segment. Use of -1 is to preparing for the prefix sum

operation. Step 6 perform prefix sum operation. Between 1

and 0 is a segment that shall mark as newly created

configuration space of obstacles. Figure 12 shows an example

of the Routing results.

Figure 12 Horizontal Expansion of configuration space

obstacles

Figure 12 (a) shows there are four segments to be joined

together. Here we use [to indicate the left end point of a

segment. The] indicates the right end point of a segment. The

other symbols such as star were used to pair correspoding end

points together to form a segment. Let’s assign 1 for starting

(right) point of a segment and -1 the end (left) of the segment

as shown in (b). In (c) the prefix sum operation is performed.

PE with value 1 is the start of the final combined segment and

0 is the end of the final combined segment. We are suppose to

r

Figure 8 An L-Shaped polygon

Bottom PE as End

Top PE as leader

Figure 9 Vertical grow of obstacles

296 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

draw any combined segment by filling 1s between start end

point and its corresponding end point. The start segment PE is

the leader and PE with 0 is the End of independent bus. A

broadcast operation transmits the value 1 to all the PEs in the

bus. It fills all the PEs between leader and end PEs with 1

which is the horizontal configuration space obstacles. Because

the complexity of all steps in Figure 11 is O(1) therefore the

total complexity of computing the configuration space for L-

shaped robot on 2-D AROB is O(1). It implies that the total

complexity to compute the configuration space for a WBP

shape robot on 2-D AROB is also O(1).

5 Conclusion remarks

Basic data movement operations are discussed and

developed for robot path planning on AROB. Algorithm for

computing the configuration space obstacles for WBP convex

robots by using 2D-AROB was developed. This algorithm

runs in constant time and uses constant space and therefore is

asymptotically optimal.

6 References

[1] F. Dehne, A. Hassenklover, and J. Sack, "Computing

the configuration space for a robot on a mesh-of-

processors,” Proceedings 1989 ICPP. vol. 3, pp. 40-

47, 1989.

[2] Z. Guo, R. Melhem, R. Hall, D. Chiarulli, and S.

Levitan, “Pipelined communications in optically

interconnected arrays,”, Journal Parallel Distributed

Computing, vol. 12, no. 3, pp 269-282, 1991.

[3] Z. Guo, Optically Interconnected Processor Arrays

with Switching Capability. Journal of Parallel and

Distributed Computing. 23, 1994, pp 314-329.

[4] M. He, X. Wu, S. Zheng, and B. Englert, “Optimal

Sorting Algorithms for a Simplified 2D Array with

Reconfigurable Pipelined Bus System”, IEEE

Transactions on Parallel and Distributed Systems,vol.

21, no. 3, pp303-312, 2010

[5] J. Jenq and W. Li, Optimal Hypercube Algorithms for

Robot Configuration Space Computation, Proceedings

of the 1995 ACM Symposium on Applied Computing,

pp 182-186

[6] J. Jenq and W. Li, Computing the Configuration Space

for a Convex Robot on Hypercube Multiprocessors,

Proceedings of the 7th IEEE Symposium of Parallel

and Distributed Processing, pp 160-167, 1995

[7] J. Jenq, D. Wang, and W. Li, Computing the

Configuration Space on Reconfigurable Mesh

Multiprocessors, Proceedings of International

Conference on Parallel and Distributed Computing

Systems, 2000, pp 186-191

[8] L. Kavraki, "Computation of Configuration-Space

Obstacles Using the Fast Fourier Trnasform", IEEE

Transactions on Robotics and Automation, vol. 11(3),

pp 408-413, 1995

[9] K. Li , Y. Pan , S. Zheng, “Fast and Processor Efficient

Parallel Matrix Multiplication Algorithms on a Linear

Array With a Reconfigurable Pipelined Bus System”,

IEEE Transactions on Parallel and Distributed

Systems, vol. 8, no. 8, 1998, pp. 705-720.

[10] T. Lozano-Perez and M. A. Wesley, "An algorithm for

planning collision-free paths among polyhedral

obstacles," CACM, pp. 560-570, 1979.

[11] T. Lozano-Perez, "Spatial planning: A configuration

space approach," IEEE Trans. on Computers, pp. 108-

120, 1983.

[12] Y. Pan, “Order Statisticss on Optically Interconnected

Multiprocessor Systems”, First International Workshop

on Massively Parallel Processing using Optical

Interconnections, pp162-169, 1994

[13] S. Pavel and S.G. Akl, “Matrix Operations Using

Arrays with Reconfigurable Optical Buses”, Journal of

Parallel Algorithms and Applications, 8, 1996, pp 223-

242

[14] S. Pavel and S.G. Akl, “Sorting and Routing in Arrays

with Reconfigurable Optical Buses”, Proceedings of

International Conference on Parallel Processing, 1996,

vol. 2, pp 90-94.

[15] S. Pavel and S.G. Akl, “On the Power of Arrays with

Reconfigurable Optical Bus,º Proc. Int'l Conf. Parallel

and Distributed Processing Techniques and

Applications, 1996, pp. 1443-1454.

[16] S. Pavel and S.G. Akl, “Integer Sorting and Routing in

Arrays with Reconfigurable Optical Buses”,

International Journal of Foundations of Computer

Science, vol. 9, no. 1, 1998, pp 99-120.

[17] S. Rajasekaran, S. Sahni, "Sorting, Selection, and

Routing on the Array with Reconfigurable Optical

Buses", IEEE Transactions on Parallel and Distributed

Systems, vol. 8, no. 11, 1997, pp. 1123-1132

[18] S. Sahni, “Models and Algorithms for Optical and

Optoelectronic Parallel Computers,” International

Journal Foundations of Computer Science, vol. 12, no.

3, pp. 249-264, 2001.

[19] P. Tzionas, A. Thanailakis, and P. Tsalides, "Collision-

Free Path Planning for a Diamond-Shaped Robot

Using Two dimensional Cellular Automata", IEEE

Transactions on Robotics and Automation, vol.13(2),

pp 237-250, 1997

[20] C. Wu, and S. Horng, “L2 vector median filter on

arrays with reconfigurable optical buses”, IEEE

transaction on Parallel and Distributed Systems, vol.

12, no. 12, pp 1281-1292, 2001

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 297

Design and Optimization of Hybrid MD5-Blowfish Encryption on
GPUs

Zhu Wang, Josh Graham, Noura Ajam, and Hai Jiang
Department of Computer Science, Arkansas State University, Jonesboro, AR 72467, USA

Abstract— Nowadays, data has been playing an indispens-
able role in almost all industrial areas. Data integrity and
security over Internet, other types of media and applications
have become the major concerns in computer world. If con-
fidential or sensitive data is forged, juggled or wiretapped
by an attacker, capital losses might occur. Encryption is one
of the major mechanisms to prevent this from happening.
So far, there are a variety of encryption algorithms, but
none of them excels at both efficiency and high security.
This paper proposes a hybrid, efficient and parallel cryp-
tographic algorithm, MD5-Blowfish, on GPUs. This new
scheme can bring in strong cryptographic effects without
much performance degradation. Experimental results have
shown how different GPU configurations and optimizations
influence the overall performance. Based on these results, the
best system configuration can be selected. In experiments,
the new algorithm has demonstrated its effectiveness and
efficiency in data integrity and encryption process.

Keywords: Blowfish, MD5, GPU, CUDA

1. Introduction
Information security, computer security, and network se-

curity all call for encryption to protect the message and
provide data integrity as well as authenticity. With the sharp
increase of information communication volume, security
becomes a focal issue.

There are a tremendous number of different encryption
algorithms and applications. MD5 (Message-Digest algo-
rithm) is a cryptographic hash function, which is widely
used in many applications. MD5 takes an arbitrary length
of message as input and produces a 128-bit hash value as
output. The typical application of MD5 is the data integrity
checking. However, Bert den Boer and Antoon Bosselaers
found “preseudo-collisions” for the MD5 compression func-
tion in 1993[1]. It means two different initialization vectors
which produce an identical digest, i.e., MD5(M, Ni) =
MD5(M

′
, Ni). Without referring to theory, Xiaoyun Wang

found many real collisions in 2004 and on IBM P690, it took
about one hour to get such messages M and M

′
, while

in the fastest cases it took only 15 minutes [2]. Vlastimil
Klima also presented a new collision search algorithm to
find collisions on a 1Ghz desktop PC in 4 hours [3]. These
all indicate that MD5 is no longer secure.

Blowfish is a symmetric block cryptographic algorithm
designed by Bruce Schneier in 1993 to replace the Data
Encryption Standard (DES). Due to its good encryption rate
in software, no effective cryptanalysis has been found to date
[4]. However, it shares the common weakness of symmetric
algorithms. If the secret key is discovered, all message can be
decrypted. So the secret key needs to be changed on a regular
basis. However, key replacement degrades Blowfish since
the pre-processing of a new key is equivalent to encrypting
about 4K bytes of text. Moreover, S.Vaudenay in 1996
[5] found out that weak keys of Blowfish can be detected
and broken by the same attack with only certain size of
known plaintexts. So it is insufficient to use a single kind of
cryptographic algorithm in applications.

With rapid development of network technology and
growth of information around the world, not only infor-
mation security but also processing efficiency becomes im-
portant. Both symmetric and asymmetric key encryption
schemes need to speed up without employing expensive
dedicated cryptographic accelerators. In the meantime, the
computing power of graphics processing unit (GPU) has
significantly increased and has far surpassed the pace of
CPU. Especially in the high performance computing area,
applications using GPU gain manyfold benefits due to its
highly parallel structure.

This paper proposes a novel parallel cryptographic al-
gorithm, merging and modifying from MD5 and Blowfish
encryption schemes, which can enhance security. To reduce
performance loss, this encryption algorithm is designed
and developed based on NVIDIA CUDA (Compute Uni-
fied Device Architecture). This paper makes the following
contributions:

• A hybrid MD5-Blowfish cryptographic algorithm is
developed to overcome the weakness from symmetric
block cryptographic and hash function schemes.

• A CUDA-based parallelization design is deployed to
maintain high data encryption rate.

• Experimental results and performance analysis are pro-
vided to demonstrate the effectiveness and efficiency of
the hybrid MD5-Blowfish algorithm.

The remainder of this paper is organized as follows: Sec-
tion 2 gives an overview of related technology for MD5,
Blowfish and GPUs. Section 3 describes the design and
implementation of hybrid MD5-Blowfish algorithm. In Sec-

298 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

tion 4, performance analysis and experimental results are
provided. Section 5 mentions some related work. Finally,
our conclusion and future work are described in Section 6.

2. Background
2.1 MD5 (Message-Digest algorithm 5)
2.1.1 Algorithm Design

In MD5, the input message is broken up into chunks of
512-bit blocks (each with sixteen 32-bit sub-blocks). After a
series of operations, MD5 produces a 128-bit message digest
with four concatenated 32-bit blocks for the integrity of a
file.

To compute the digest of a message, padding bits are
appended first to make the message’s length congruent to
448, modulo 512, and then the length bits. A 64-bit portion
is appended to indicate the length of the actual message.
MD5 algorithm operates on a 128-bit state which is divided
into four 32-bit words (denoted as A, B, C and D) and
initialized. Each 512-bit message block is applied in turn to
modify the state. The processing of a message block consists
of four similar rounds, each of which is composed of 16
similar operations based on a non-linear function F, modular
addition, and left rotation. At last, MD5’s output is produced
by cascading A, B, C and D after the final round.

2.1.2 MD5 Collisions

Hash function is a useful cryptographic tool which should
satisfy several requirements to keep it robust and secure on
encryption. One of these requirements is collision resistance,
i.e., it is hard to compute messages m and m

′
where m 6= m

′

and yet H(m) = H(m
′
). A hash function is claimed good

if it is extremely difficult to find such existing pairs. MD5
is an encryption-based hash function and suffers a crucial
weakness of collision. Finding a collision by a brute force
attack requires at most 2128applications of MD5 and 264 by
the birthday paradox, since MD5 has 128-bit hash.

Early in 1993, Bert den Boer and Antoon Bosselaers [1]
discovered the first pseudo-collision of MD5. In 1996, H.
Dobbertin announced a collision of the compression function
of MD5 [6]. In 2004 when Xiaoyun Wang and Hongbo Yu
presented a collision for MD5 with two input blocks in less
than an hour and 5 minutes on a IBM P690 [2]. In 2006,
Vlastimil Klima published an algorithm [7] to find a collision
within one minute on a single notebook computer, using a
“tunneling” method. All these different attacks on MD5 were
constructed through multi-block collision method. Tao Xie
and Dengguo Feng announced the first single-block MD5
collision (two 64-byte messages with the same MD5 hash)
in 2010 [8].

MD5 is recommended to be replaced by some other
alternative methods such as SHA-1 and SHA-2, to keep it
safe in applications.

2.2 Blowfish algorithm
2.2.1 Algorithm Design

Blowfish is a 64-bit block cipher with a variable-length
key (from 32 to 448 bits). It consists of two procedures:
key initialization and data encryption phases. The first phase
expends a variable user key to 4168/8336-byte sub key
arrays, presented by 4-byte element size arrays or 8-byte
element size format arrays.

The process of generating subkey arrays (18-entry P and
four 256-entry S arrays) also depends on the user key.
This enhances the complexity of the user key and subkeys
relationship for higher security. Also, in later encryption
process, these updated subkeys instead of the user key are
used. The F function splits the 32-bit input into four eight-
bit quarters as the inputs to the S-boxes. The outputs are
added modular 232 and XOR-ed to produce the final 32-
bit output. Blowfish adopts Feistel network to iterate a
simple encryption function 16 times (rounds). Decryption
for Blowfish works similarly, beginning with the ciphertext
as input. The difference is that P1, P2, P3, · · ·P18 are used
in a reverse order.

2.2.2 Blowfish’s Deficiency
Blowfish was once believed to resist any attack. However,

it is still a symmetric encryption algorithm, i.e., if the secret
key is discovered, all of the message can be decrypted easily.
Blowfish also suffers the defect of the weak key problem.
It means there exists a collision of an S-box. That is, for
the key-dependant S-box of Blowfish (S1), there exist two
different bytes of a and a

′
, such that S1(a) = S1(a

′
).

F(a,b,c,d) = ((S1(a) + (S2(b))
⊕

S3(c)) + S4(d), where⊕
is the bit-wise xor and + is the addition modulo 232. The

8-bit strings a, b, c, and d are the inputs of F function for
each round.

If an attacher knows part of the private key of the
F function(or we can say four S-boxes), he/she should
be able to recover the plaintext easily with the collision.
Serge Vaudenay showed [5] that attacker can recover all the
information with 248 chosen plaintexts against a reduced
eight-round Blowfish encryption. In addition, attackers do
not even need so much some weak F functions. Such attack
only needs 232 chosen plaintexts against eight rounds, and
3× 251 chosen plaintexts against sixteen rounds. Serge also
showed that the possibility of detecting a weak key of one
S box is 2−15. Detecting weak keys can be achieved by
using 222 chosen plaintexts (on eight rounds). Therefore,
it is unsafe to encrypt critical data with single Blowfish
encryption algorithm.

2.3 Graphics Processing Unit and CUDA
Graphics Processing Unit (GPU) consists of thousands of

processing units with tremendous computational power. The
concept of graphics accelerator was proposed between the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 299

Initial Key: K

H(K)

K||H(K)

Data Object:

Message

MD5Key encryption

Module

Key Expansion

Module

Blowfish message

encryption Module

Encrypted

Message

Key to

Fig. 1: Message encryption modules in MD5-Blowfish

end of 1970’s and the beginning of 1980’s. The term of GPU
was defined and popularized by NVIDIA in 1999, who mar-
keted the GeForce 256 as “the world’s first ’GPU”’[9]. After
that, new breakthroughs in GPU technology are announced
yearly.

Recently, it was used for data parallel processing. CUDA
was developed to ease parallel programming on GPUs [9].
The latest generation of NVIDIA GPU architecture, Fermi,
represents a giant step towards bring GPUs into mainstream
computing [10]. It provides a plenty of new features, includ-
ing improved double precision performance, ECC debugging
support, true cache hierarchy, more shared memory, faster
context switching, and faster atomic operations.

3. Design of MD5-Blowfish
MD5-Blowfish encryption algorithm is designed to en-

hance the security without much performance loss. This
algorithm consists of three major components: an initial
key-encryption module, an MD5 key expansion module,
and a Blowfish data-encryption module. The initial key is
passed into the MD5 key-encryption module and then key
expansion module to get the updated encrypted key for the
data-encryption module. This process is shown in Fig. 1

3.1 Hybrid Encryption Algorithm and Modules
MD5 Key Encryption Module
The key selected by the user for the whole system is

transferred to MD5 key encryption module so that the initial
user key is encrypted by MD5. The input user’s (private)
key may have any length, but the output is fixed with 128
bits long. The reason is that MD5 has no requirement on
the input plaintext size, whereas most traditional encryption
algorithms such as AES and DES require that the key size
be multiple of block size. So it is more convenient for users
to select keys.

Key Expansion Module
The encrypted key K

′
produced by MD5 key encryption

module is passed to the key expansion module for further

Host PC

Initial Key

Key Initialization

New key

Blowfish Initialization

Sub keys: P
and S arrays

Blowfish Encryption

Intermediate data generated in CPU

User input data

 Output data

Data Object: Message

…

Input Data Blocks

Encrypted Message
 …

Output Data Blocks

Fig. 2: Implementation on CPU

complexity as shown in Fig. 1. In this module, the encrypted
key H(K) is appended to the initial user keyK. If the total
length is no more than 448 bytes, K q H(K) will be sent
to Blowfish message encryption module. Otherwise, only the
first 448 bytes will be sent over to ensure correct operations.
In addition, it also complicates the whole encryption process
for further complexity, i.e., security.

Blowfish Message Encryption Module
The algorithm is exactly same as the Blowfish algorithm

except that the key is replaced by the encrypted key from
the Key Expansion Module.

It is quite straightforward to implement the hybrid MD5-
Blowfish encryption on CPU. The flow chart is shown in
Fig. 2. As discussed above, a new key is prepared by the
key initialization step, which involves MD5 module and
key expansion module. This new key is used as the key
to Blowfish encryption in the next step to encrypt the user
input data objects. The whole procedure with MD5 key
encryption module, key expansion module, and Blowfish
message encryption module are executed on CPU. The input
plaintext data objects are made up of a number of input data
blocks whose number can be calculated as:

#inputdatablocks = input data size(bytes)
128(bytes)

Then these 128-byte input data blocks are sent into the
Blowfish encryption module, and encrypted serially on CPU.
Accordingly, the same number of 128-byte output data
blocks are generated in sequence.

3.2 Parallelized Hybrid MD5-Blowfish
In parallelized MD5-Blowfish algorithm, some technical

terms are defined as follows:
Input Data Block: 128 bits of plaintext to be encrypted

300 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Host PC GPU Device

GPU Memory

Space

Kernel Grid

Block 1

Block 2

Block M

T
h

r
e

a
d

 1

T
h

r
e

a
d

 2

T
h

r
e

a
d

 N

Initial Key

Key initialization

and extension

New Key

Blowfish

Initialization

Data
Object:

Message

Encrypted

Message

Data
Object:

Message

Encrypted

Message

Sub-key: P

and S arrays

Sub-key: P

and S arrays

Intermediate data generated on CPU

Data transfer from CPU to GPU

Data transfer from GPU to CPU

 User input data

Output data

Fig. 3: Implementation on GPU

Output Data Block: 128 bits of ciphertext
C_P boxes: 16-entry P array produced by CPU
G_P boxes: 16-entry P array resides in GPU memory

space
C_S boxes: four 256-entry S array generated by CPU
G_S boxes: four 256-entry S array resides in GPU mem-

ory space
There are four steps in parallelized hybrid MD5-Blowfish

encryption algorithm. First, key initialization and expansion
are accomplished by MD5 key encryption module and key
expansion module in Host (CPU). Thus the hashed and
expanded new key is prepared and ready for the Blow-
fish initialization procedure. Second, Blowfish initialization
procedure generates Sub-keys (C_P boxes and C_S boxes),
which is also operated by the host (CPU). Third, Blowfish’s
Sub-keys (C_P boxes and C_S boxes) and input data objects
(a number of input data blocks) are copied into GPU
Memory. G_P boxes and G_S boxes are filled with the same
value of C_P boxes and C_S boxes. Blowfish’s Encryption
Module is coded as CUDA kernel functions to encrypt the
input message and generate outputs (encrypted message) on
GPU. Finally, the encrypted message is copied back to the
host and delivered to users as shown in Fig. 3.

CUDA programming on GPU might achieve tremendous
speedup for data parallel applications. GPU threads are
grouped into blocks which in turn are organized in a grid.
Data processing in each GPU thread is shown in Fig. 4.
Assume there are M blocks in a grid, and N threads in a
block. Each thread in a thread block deals with one 128-bit
input data block which contains left and right parts, each for
64 bits of the plaintext. Therefore, totally M×N×128 bits of

T0

T1

T(N-1)

Thread Block0

Thread

ID

TN

Input Data Block_left

=plaintext[threadID*2]

Input Data Block_right

=plaintext[threadID*2+1]

…

Thread Block1

T(N+1)

T(2N)

…

…

T(MN)

Thread Block M

T(MN+1)

T(MN+N-1)

…

__global__ Blowfish_Encrypt(Input Data Block)

Output Data Block

Input Data Block_left

=plaintext[threadID*2]

Input Data Block_right

=plaintext[threadID*2+1]

__global__ Blowfish_Encrypt(Input Data Block)

Output Data Block

Input Data Block_left

=plaintext[threadID*2]

Input Data Block_right

=plaintext[threadID*2+1]

__global__ Blowfish_Encrypt(Input Data Block)

Output Data Block

Fig. 4: Data processing in each GPU thread

data is encrypted at one time. There is one finalization step in
the end since GPU threads will not finish their computations
at the same time. A CUDA synchronization call is issued
to ensure all threads have finished their work so that they
can be reused safely. At last, threads’ outputs are combined
together for the final encrypted message.

3.3 Design Issues
The first design issue is to determine the number of

blocks and the number of threads in each block. Right now,
CUDA compute capacity 2.x defines 1024 as the maximum
number of threads per block, 1024 as the maximum x or y
dimension of a block, 64 as the maximum z dimension of a
block, and 1536 as the maximum number of resident threads
per multiprocessor. To thoroughly utilize GPU resources,
more threads should be issued simultaneously. The total
thread number Nt is related to the input data block number,
Nd. User input plaintext is partitioned into numerous 64-
bit elements with two for one input data block. Then, the
following situations should be considered:

(1) Nt > Nd. If the plaintext size is smaller than the
maximum number of threads in multiprocessor, the thread
number should be the same as the input data block number.

(2) Nt < Nd, Nd%Nt = 0. As the plaintext size
increases, the input data block number may exceed the max-
imum number of threads in multiprocessor. Multiple rounds
will be required to finish the whole message encryption.

(3) Nt < Nd, Nd %N 6= 0. If the number of input
data blocks is more than that of threads but not multiple of
the thread number, the first Nd%Nt threads will participate
in (Nd/Nt + 1) rounds whereas the others take Nd/Nt

rounds. Then the synchronization at the final step becomes
more imperative and meaningful. It is easy to imagine some
threads with fewer tasks and rounds might finish earlier.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 301

The second design issue is the data storage location. G_P,
G_S boxes and input data blocks are copied from host to
GPU memory space. In CUDA, the programmer can access
multiple GPU memory units which have different access
latency, size, operation scope and cache property. Since GPU
global and texture memory units allow large data allocation
whereas constant memory is limited to 64 KB, G_P box,
G_S box and input data blocks are placed in global memory.
NVIDIA Fermi also supports L1 and L2 caches with 128-
byte cache line. As shown in Table 1, GPU devices we used
for experiment have 5,636,554,752 bytes and 5,636,292,608
bytes in global memory, respectively. Since G_P box hass
144(18 × 8) bytes and G_S box has 8192(4 × 256 × 8)
bytes, both GPUs still have 5,636,546,416 and 5,536,284,272
bytes left in global memory for the input data blocks. The
approximate maximum number of input data blocks is 43
million which is sufficient for many applications.

Finally, GPU program optimization strategies should be
considered for performance gains. Compared to CPU and
GPU memory bandwidth, the communication channel be-
tween CPU and GPU (PCIe) is the major bottleneck. An
obvious optimization scheme is to minimize data transfer
to and from GPUs. Fortunately, Fermi architecture supports
page-locked host memory to achieve this to some extent.
The C library function, malloc() allocates standard, pageable
host memory, while CUDA C supports cudaHostAlloc()
allocates a block of page-locked host memory, or called
pinned memory. An important property of page-locked host
memory is that operating systems will guarantee not to
page this memory block out to disk. When CUDA kernel
functions access the mapped memory, data transfer is im-
plicitly performed without issuing any memory allocation
and data transfer operations. Since these memory blocks can
never be swapped out to disk, applications need to consider
the amount of available physical CPU memory. To go one
step further, zero-copy host memory feature can effectively
opt out of all the nice properties of virtual memory. Zero-
copy host memory is named after the fact that no copy is
committed to and from GPU at all. In hybrid MD5-Blowfish
algorithm, both page-locked host memory and zero-copy
host memory are used to hold P-box, S-box and input data
blocks for performance comparison.

GPU can execute kernel functions and transfer data si-
multaneously by employing multiple CUDA streams. Since
input data might be large and data transfer can easily become
the performance bottleneck, in hybrid MD5-Blowfish, some
threads carry new data into GPU while other threads encrypt
the existing one in memory. Memory copy and kernel exe-
cution are overlapped to accelerate applications. Obviously
multiple GPUs can duplicate aforementioned optimization
efforts for linear speedup.

CPU model name Intel® Xeon (R) Intel® Xeon (R)

CUDA Drive Version 3.20 3.20

CUDA Runtime Version 3.20 3.20

CUDA Capability Major/Minor Version number 2.0 2.0

Total amount of global memory 5636554752 bytes 5636292608 bytes

Total amount of constant memory 65536 bytes 65536 bytes

Total amount of shared memory per block 49152 bytes 49152 bytes

Total number of registers available per block 32768 32768

Warp size 32768 32768

Maximum number of threads per block 1024×1024×64 1024×1024×64

Maximum sizes of each dimension of a block 65535×65535×1 65535×65535×1

Texture alignment 512 bytes 512 bytes

Clock rate 1.15 GHz 1.15 GHz

Table 1: Specification for GPUs in test

4. Experimental Results
Hybrid MD5-Blowfish is tested for its effectiveness in

three ways. First, with data in GPU global memory, the
number of blocks and threads are varied for performance
comparison. Second, sequential and parallel programs were
tested and compared with Intel(R) Xeon(R) X5660 (2.8
GHz,12,288 KB cache) and two CUDA-capable Fermi
GPUs, “Tesla C2070” AND “Quadro 6000” as shown in
Table 1. Third, zero-copy, multi-thread, multi-GPU, and
GPU work scheduling technologies are adopted to verify
performance gains. The total execution time includes MD5
Key initialization and extension as well as Blowfish encryp-
tion.

4.1 Kernel Function Configuration
CUDA kernel function is configured by the numbers of

blocks and threads per block. In out test, both CUDA-
capable Fermi architecture GPUs can hold up to 1024
concurrent threads in a block and 1536 (48 wraps in a
multiprocessor and 32 threads per wrap) total threads on one
multiprocessor (SM). However, allocated threads are also
limited by other SM resources such as shared memory and
register file. In total, there could be 14× 1536 threads since
each GPU has 14 SMs. The number of thread blocks in
a grid is usually calculated by the size of the data being
processed or the number of cores in the system.

Fig. 5 shows how the block number can affect perfor-
mance. While the system is configured with 1 block, 2
blocks and 8 blocks in a GPU grid, thread number per
block is always set to 1024. The input plaintext size is
changed from 32K bytes to 512K bytes. Two steps are
involved: step 1 stands for MD5 Key initialization and
expansion whereas step 2 is for Blowfish encryption. It
is clear that step 1 always takes similar time since it is
executed on CPU and also irrelevant to the input plaintext
size and block number in CUDA. The total running time
increases lineally with the size of input plaintext. When the
input plaintext is 32K bytes long, these three configurations

302 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

0

500

1000

1500

2000

2500

R
u

n
n

in
g

 T
im

e
(u

s)

Size of Input Plaintext(KB)

8 blocks-step2

8 blocks-step1

2 blocks-step2

2 blokcs-step1

1 block-step2

1 block-step1

Fig. 5: Influence of the number of blocks

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

32 64 128 256 512

E
n

c
ry

p
ti

o
n

 T
im

e
(u

s)

Size of Input Plaintext(KB)

1024 threads

256 threads

64 threads

Fig. 6: Influence of the number of thread per block

perform similarly. As the plaintext size is increased to128K
bytes, the 8-block configuration is obviously better than the
other two. According to hybrid MD5-Blowfish design, each
thread works on two input data blocks (each is 64 bit long).
When the input plaintext is not too long, a small number
of threads are sufficient to encrypt the plaintext. Too many
threads will not improve performance because most of them
may remain idle. As the size of input plaintext increases,
more threads are involved in the encryption procedure to
speed up the entire encryption process.

Fig. 6 demonstrates how the number of threads in a block
can affect performance. Only one block is used. The number
of threads in this block is changed from 64 to 1024 and the
input plaintext size is changed from 32K to 512K bytes.
Since the cost in step 1 is fixed, only the cost in step 2,
(Blowfish encryption) is considered. Once the thread number
reaches 64, the encryption cost increases dramatically. As
the size of input plaintext increases, each thread needs to
work for multiple rounds. A block with 1024 threads reaches
the peak performance since more threads can work encrypt
plaintext concurrently.

4.2 CPU vs. GPU Implementations
CPU implementation is based on the flow chart shown in

Fig. 2. However, two CPU versions are generated. One is
built by default gcc compiler whereas another one is from
the optimized gcc compiler by turning on -O3 command-
line option. GPU version is implemented according to Fig.
3. One block is used and 1024 threads are set inside. The
input plaintext size is ranged from 8KB to 512KB.

0

5000

10000

15000

20000

25000

16 24 32 48 64 80 128 256 512

R
u

n
n

in
g

 T
im

e
 (

u
s)

Size of Input Plaintext (KB)

Optimized CPU step2

Optimized CPU step1

GPU step2

GPU step1

CPU step2

CPU step1

Fig. 7: Performance comparison of CPU and GPU versions

Fig. 7 shows the running time of these three versions.
Non-optimized CPU version has the worst performance.
Both Step 1 (MD5 Key initialization and expansion) and
step 2 (Blowfish encryption) take much longer time than
the other two for the same input plaintext. For all of these
three versions, step 1 takes almost the same CPU time.
NVIDIA’s nvcc compiler is optimized automatically. So
GPU and optimized gcc compiler versions perform better
on step 1. When the input plaintext size is smaller (less
than 64K), the optimized CPU version outperforms the GPU
version. However, as the input size increases, the GPU
version becomes much better than those CPU ones.

4.3 GPU Optimizations
With latest CUDA version and Fermi architecture, several

advanced features such as multiple streams, zero-copy host
memory and multiple GPU technology can improve encryp-
tion performance. Fig. 8 demonstrates the costs of step 2
(Blowfish encryption) with four types of kernel configures
for possible speedup over the traditional GPU version using
global memory. The input plaintext size is increased from
16KB to 512KB.

In the multiple-stream version, the input plaintext is
divided into two equal sized parts for two CUDA streams.
Then a GPU can execute a kernel function while performing
a data copy between the host and GPU. Two memory copies
are queued with cudaMemcpyAsync() for overlapping of
data copy and kernel execution with certain operation orders.
When the first memory copy is finished, its data can be used
by the kernel function for encryption. At the same time,
inside the copy engine, the second part of plaintext text is
copied in. In this way, data copy is overlapped with kernel
encryption. Proper plaintext partitioning and streams number
selection can help pace the kernel execution and data transfer
well for better performance.

For multi-GPU version, two GPUs are selected to work si-
multaneously for more device resources. Each GPU encrypts
half of the input plaintext.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 303

0

200

400

600

800

1000

1200

16 32 64 128 256 512

E
n

c
ry

p
ti

o
n

 T
im

e
(u

s)

Size of Input Plaintext (KB)

two GPUs

two streams

Global

P and S zero copy

Fig. 8: Encryption time of four optimizations

0

2000

4000

6000

8000

10000

12000

14000

16 32 64 128 256 512

E
n

c
ry

p
ti

o
n

 T
im

e
(u

s)

Size of Input Plaintext(KB)

all zero copy

P and S zero copy

Fig. 9: Encryption time of two zero-copy approaches

At last, zero-copy version can avoid explicit data copies to
and from GPU. This maneuver can speed up the encryption
since every input data block encryption operation needs P
and S boxes. As shown in Fig. 8, this zero-copy version is
not always faster than traditional GPU version which needs
to transfer data from CPU to GPU. Although data access in
zero-copy version might be hidden behind kernel functions,
the communication startup overhead in frequent data access
for large data might drag down the overall performance. Fig.
9 shows the encryption costs for two zero-copy versions. The
“all zero copy” version places input data blocks as well as P
and S boxes in zero-copy memory, whereas the “P and S zero
copy” only uses zero-copy memory for P and S boxes. The
first version runs much slower than the second one. Since
the input plaintext needs to be updated after encryption,
cudaThreadSynchronize() has to be called to synchronize
CPU thread with all GPU threads to make sure zero-copy
operations are done. However, such synchronization takes
too long and degrades the overall encryption performance.

5. Related work
Tremendous enhancements in the field of cryptography

have been achieved. Analysis on security and performance
of MD5 and Blowfish has been widely discussed and studied,
especially after MD5 was turned into a hash cryptography

standard. Several software packages have been developed
MD5 and Blowfish. Krishnamurthy G.N and Dr. V. Ra-
maswamy put forward a modified Blowfish algorithm by
modifying F function of the Feistel network [11]. They
also proved that this improvement incurs security flaws
by comparing it with existing Blowfish algorithm through
avalanche effect analysis. They implemented VHDL applica-
tion to show the different encryption speeds. Their improved
algorithm reduces the number of clock cycles required for
the execution of Blowfish function by 33%. The overall
performance is improved by 14%.

6. Conclusion and future work
Hybrid MD5-Blowfish algorithm is proposed to enhance

the security strength and improve the encryption perfor-
mance over existing MD5 and Blowfish algorithms by merg-
ing them. The mixture strategy helps increase the algorithm
complexity. Both CPU and GPU versions are developed.
Performance analyses for implementations based on different
kernel configurations such as different numbers of blocks
and numbers of threads in each block as well as latest CUDA
and Fermi architecture features such as zero-copy, multi-
stream and multi-GPU. Experimental results have indicated
impressive performance gains by reducing encryption on
GPUs. The future work includes exploring GPU memory hi-
erarchy by placing intermediate data in shared memory, con-
stant memory or texture memory. Also, the fine-tuned data
partition and stream generation need further investigation for
perfect computation and communication overlapping.

References
[1] B. den Boer and A. Bosselaers, “Collisions for the compression

function of md5,” Advances in Cryptology EUROCRYPT, pp. 293–
304, 1993.

[2] X. Wang and H. Yu, “How to break md5 and other hash functions,”
Advances in Cryptology EUROCRYPT, vol. 3494, pp. 19–35, 2005.

[3] V. Klima, “Finding md5 collisions on a notebook pc using multi-
message modifications,” Cryptology ePrint Archive Report 2005,
2005.

[4] http://www.schneier.com, Std.
[5] S. Vaudenay, “On the weak keys of blowfish,” FSE1996, pp. 27–32,

1996.
[6] H. Dobbertin, “Cryptanalysis of md5 compress,” EurocrZpt 96, 1996.
[7] V. Klima, “Tunnels in hash functions: Md5 collisions within a minute,”

Cryptology ePrint Archive Report, 2006.
[8] http://eprint.iacr.org/2010/643, Std.
[9] J. Sanders and E. Kandrot, CUDA by example : An Introduction to

General-Purpose GPU Programming. Addison-Wesley Professional,
2010.

[10] D. B. Kirk and W. mei W. Hwu, Programming Massively Parallel
Processors: A Hands-on Approach. Morgan Kaufmann, 2010.

[11] K. G.N, D. V. Ramaswamy, L. G.H, and A. M.E, “Performance
enhancement of blowfish and cast-128 algorithms and security anal-
ysis of improved blowfish algorithm using avalanche effect,” IJCSNS
International Journal of Computer Science and Network Security,
vol. 8, 2008.

304 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Multi-GPU Load Balancing for In-situ Visualization

R. Hagan and Y. Cao
Department of Computer Science, Virginia Tech, Blacksburg, VA, USA

Abstract— Real-time visualization is an important tool for
immediately inspecting results for scientific simulations.
Graphics Processing Units (GPUs) as commodity computing
devices offer massive parallelism that can greatly improve
performance for data-parallel applications. However, a sin-
gle GPU provides limited support which is only suitable
for smaller scale simulations. Multi-GPU computing, on the
other hand, allows concurrent computation of simulation
and rendering carried out on separate GPUs. However, use
of multiple GPUs can introduce workload imbalance that
decreases utilization and performance. This work proposes
load balancing for in-situ visualization for multiple GPUs
on a single system. We demonstrate the effectiveness of the
load balancing method with an N-body simulation and a
ray tracing visualization by varying input size, supersam-
pling, and simulation parameters. Our results show that the
load balancing method can accurately predict the optimal
workload balance between simulation and ray tracing to
significantly improve performance.

Keywords: Multi-GPU Computing, Load Balancing, In-situ Vi-
sualization, N-body Simulation, Ray Tracing

1. Introduction
GPU computing offers massively parallel processing that

can greatly accelerate a variety of data parallel applications.
Use of multiple GPUs can lead to even greater performance
gains by overlapping computations by executing multiple
tasks on different GPUs. This provides an opportunity for
handling larger scale problems that a single GPU cannot
process in real-time. The resulting increase in runtime speeds
can allow for real-time navigation and interaction, which
can lead to a much more effective visualization experience.
By designing effective algorithms to run on multiple GPUs,
a considerable improvement in computational power can
be realized. Effective load balancing can greatly increase
utilization and performance in a multi-GPU environment by
distributing workloads equally.

These properties make multiple GPUs suitable for in-situ
visualization applications that use the GPU for concurrent
simulation and rendering for interactive visualization. N-
body simulation is one such application that involves com-
putation of the interaction among a group of bodies. The
N-body problem can be solved by computing the force of
all bodies on each other. This problem is used in many
domains, including biomolecular and physics applications.

As in the work of [1], the gravitational N-body problem can
be expressed as

Fi = Gmi

∑
1≤j≤N,j 6=i

mjrij
||rij ||3

(1)

where Fi is the computed force for body i, mi is the mass
of body i, rij is the vector from body i to j, and G is the
gravitational constant.

In a molecular simulation, an N-body simulation algo-
rithm can be used to compute the interaction of each atom
in the molecule. This application can benefit from use of
multiple GPUs to both compute new frames of simulation
and render these new frames in parallel. Computation of
simulation with rendering in real-time allows for interactive
update in visualization applications. This can result in a
smooth interaction experience with use of increased process-
ing power to accelerate computing.

While multiple GPUs can offer a large performance
gain in visualization applications, many challenges exist
in scheduling multiple tasks. Load imbalance can lead to
underutilization of available resources and reduced perfor-
mance in the visualization. Multi-GPU computing can there-
fore benefit from a method for load balancing to improve
workload distribution. Load balancing needs to account for
performance in order to maximize use of available resources.
Use of the load balancing method in an N-body simulation
accounts for workload differences between simulation and
rendering to maintain more equal workload distribution.
Visualization algorithms such as ray tracing can be com-
putationally expensive, so specific techniques to distribute
and load balance rendering workloads can offer considerable
performance gains for visualization applications. Taking
advantage of concurrent computations of visualizations with
simulation can lead to a significant performance improve-
ment to maintain interactivity in these applications.

While load balancing can improve performance when
using multiple GPUs, several factors need to be accounted
for in visualization. The cost of simulation and rendering can
depend on the chosen algorithms for each. The input data
size may differ for applications, which can have a varying
effect on simulation and rendering time. Accuracy of simula-
tion can be improved by using more accurate techniques or
by decreasing the timestep in simulation. In visualization,
image quality is important to produce a better result for
interactive viewing. Ray tracing is a rendering method that
can produce realistic results on the GPU for visualization.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 305

Supersampling can further improve image quality by using
multiple samples per pixel that can decrease aliasing. Use
of ray tracing with supersampling can greatly improve the
results in interactive visualization but significantly increases
computations that can be accelerated through use of mul-
tiple GPUs. Supersampling and improving the accuracy of
simulation can vary the cost of computations, which will
require adjusting load balancing for multi-GPU processing.
Our method addresses this issue to improve performance
with multi-GPU visualization.

Due to the significant gains possible with use of multiple
GPUs, we implement load balancing for multi-GPU visu-
alization applications. Our work provides several contribu-
tions, including:
• Acceleration of an N-body simulation and ray tracing

application using multiple GPUs
• Performance analysis of workload variation based on

multiple input parameters
• A load balancing method to predict optimal workload

distribution and significantly improve performance

2. Related Work
There have been several related areas of previous research,

including multi-GPU computing and visualization using the
GPU.

Previous work in multi-GPU visualization has included
several applications that use multiple GPUs for rendering.
Fogal et al. present a system for visualizing volume datasets
on a GPU cluster [2]. However, their work could benefit from
additional load balancing between GPU tasks that could
provide more flexible and effective workload distribution
for simulation and rendering. Monfort et al. present an
analysis of split frame and alternate frame with multiple
GPUs for a game engine [3]. They present an analysis of
load balancing for a combined rendering mode to improve
utilization of multiple GPUs. Binotto et al. present work in
load balancing in a CFD simulation application [4]. They
use both an initial static analysis followed by adaptive load
balancing based on various factors including performance
results. While these previous works present load balancing
techniques, they do not focus on load balancing for in-situ
visualization based on rendering and simulation tasks. We
present a performance model and load balancing technique
for simulation and rendering that allows improved load
balancing and accounts for the pipelining process necessary
in a multi-GPU environment.

Other work has focused on streaming for out-of-core
rendering. Gobbetti et al. present Far Voxels, a visualization
framework for out-of-core rendering of large datasets using
level-of-detail and visibility culling [5]. Crassin et al. present
GigaVoxels, an out-of-core rendering framework for volume
rendering of massive datasets using a view-dependent data
representation [6]. While our load balancing method also
uses multiple GPUs and similar pipelining to visualize

datasets, we focus specifically on load balancing for in-situ
visualization using ray tracing.

Several other frameworks have been proposed that use
multiple GPUs for general-purpose computations. Harmony
presents a framework that dynamically schedules kernels [7].
Merge provides a framework heterogeneous scheduling that
exposes a map-reduce interface [8]. DCGN is another frame-
work that allows for dynamic communication with a message
passing API [9]. However, these works focus on providing
a general framework not specific to visualization and could
benefit from additional tools for load balancing. We employ
similar techniques to improve multi-GPU performance, but
we provide improved load balancing in a visualization and
simulation application.

Other previous work has focused on GPU computing in
molecular dynamics applications, relating to the N-body
simulation and visualization used in our work. Past work
has included Amber, a molecular dynamics software package
that offers tools for molecular simulation [10]. This simula-
tion can be used to compute the change in atoms over time
due to an N-body simulation. Other research in molecular
dynamics has included work by Anandakrishnan et al. to use
an N-body simulation to compute the interaction of atoms in
a molecule [11]. Humphrey et al. present Visual Molecular
Dynamics (VMD), a software package for visualization of
molecular datasets [12]. However, VMD provides primarily
off-line rendering that does not simulate and render each
frame interactively to allow for real-time user interaction.
Stone et al. present work that computes molecular dynamics
simulations on multi-core CPUs and GPUs [13]. Further-
more, they visualize molecular orbitals in an interactive
rendering in VMD. We also apply our work to an N-body
simulation, but we focus on load balancing using multiple
GPUs for both simulation and rendering while their work
focuses on data parallel algorithms on single GPUs. Chen
et al. present work in multi-GPU load balancing applied
to molecular dynamics that uses dynamic load balancing
with a task queue [14]. Their framework focuses on fine-
grained load balancing usable within a single GPU, while
our work focuses on coarse-grained task scheduling among
GPUs for both simulation and visualization. While there
has been considerable work in visualization and multi-
GPU computing, we focus on a method for load balancing
between simulation and rendering to improve utilization in
the pipelined memory model useful for in-situ visualization.

3. Methods

Our approach addresses the issue of workload imbalance
for in-situ visualization applications. We will first describe
the problems in this application area, and then we present
our load balancing method for solving these issues.

306 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

3.1 Multi-GPU Architecture
In comparison with a single GPU, a multi-GPU imple-

mentation has several advantages. Most notably, multiple
GPUs can overlap concurrent computations on several GPUs
at once. However, unlike a single GPU, memory transfers
are required to ensure that a GPU has the required data.
Figure 1 shows the multi-GPU configuration used with our
application. It identifies how multiple GPUs can be used for
overlapping computation between simulation and rendering,
while host memory is used to transfer results among GPUs.
For in-situ visualization applications, the simulation data
must be transferred to rendering tasks to render the resulting
image. This data is first transferred to the host and then
transferred to the recipient GPU. This creates a pipelined
model of execution where multiple GPUs can process data
concurrently but must transfer data through host memory.

Fig. 1: Diagram of multi-GPU configuration: "Sim" refers
to simulation and "Vis" refers to visualization

3.2 Multi-GPU Workload Imbalance
While use of multiple GPUs can greatly increase the

available processing power and improve performance by
overlapping computation, use of multiple GPUs introduces
issues of workload distribution among processors. This
workload imbalance results from the synchronization neces-
sary through host memory. Each task either sends or receives
data through a buffer. However, use of a single buffer would
require simulation tasks to wait for rendering tasks to read
this data before writing the next frame. This can result
in significant idle times that can decrease utilization and
performance. Multiple buffers can allow one task to read
or write data to multiple buffers before having to wait for
other tasks to process the data as shown in Figure 2. Thus,
having multiple buffers can improve load balance at the cost
of additional memory.

The amount of host memory is finite, however, which
requires the tasks to eventually wait if workload imbalance is
significant. If simulation of a single frame requires less time
than rendering, host memory eventually becomes full, which
requires simulation to wait for rendering. When rendering of
a single frame takes less time than simulation, the buffers
in host memory become increasingly empty, which requires
rendering tasks to wait for simulation. Figure 3 shows
the case where performance can decrease due to improper
workload distribution. Since rendering GPUs need to read
simulation data before simulation can overwrite it, idle

Fig. 2: Memory transfers between host and GPU memory

time can be introduced if simulation time is shorter than
rendering.

Fig. 3: Simulation tasks must wait for ray tracing to read
results. "W1" refers to writing data to the first buffer in host
memory from a GPU, while "R2" refers to reading data from
the second buffer in host memory

Accounting for workload imbalance can eliminate this
idle time by distributing work equally among available
processors as shown in Figure 4. Load balance among
tasks allows tasks to send and receive data at an equal
rate and thus improve utilization. However, this requires
formulating a method for load balancing. Varying workloads
for tasks creates issues for the problem of load balancing.
For example, the type of rendering technique or number
of samples in supersampling can change the workload and
introduce additional idle time. Factors of simulation such
as accuracy or type of simulation could also affect runtime,
resulting in a different optimal workload balance as well.
These various issues demonstrate the important need for load
balancing for in-situ visualization. Given an initial set of
characteristics for rendering and simulation for a specific
visualization, finding the optimal load balance can reduce
idle time and improve performance.

3.3 Load Balancing
The use of our multi-GPU implementation allows for

load balancing techniques for in-situ visualization. Our test

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 307

Fig. 4: Use of load balancing reduces idle time

application uses a gravitational N-body simulation based
on the method of [1] to compute interactions of particles,
while ray tracing renders the results. Particle position data
is transferred through the host using multiple buffers in order
to pipeline position data between simulation and rendering.
Since simulation and rendering may have different amounts
of workload, it is important to address the possibility of
workload imbalance between the tasks.

In this application load balancing requires partitioning the
dataset in order to distribute work to GPUs. Two types of
work partitioning are possible with the application: inter-
frame and intra-frame. Inter-frame partitioning involves
distributing complete frames of data in order to achieve
load balancing. Ray tracing in this implementation uses
inter-frame partitioning to render entire frames in order
to avoid communication in combining results and improve
performance. Intra-frame partitioning distributes parts of a
single frame to GPUs for processing. The N-body simulation
utilizes intra-frame partitioning by having each GPU update
only a subset of the particles for a single frame of data. Since
each frame of simulation requires previous data, simulation
cannot be computed out of order. Thus, multiple GPUs can
only accelerate simulation by having each GPU update a
subset of the dataset. Intra-frame partitioning for simulation
is therefore necessary to apply load balancing. While this re-
quires communication to combine the results for each frame,
the computation can be distributed among multiple GPUs.
Thus, this load balancing method uses groups of GPUs
to compute frames of data for simulation while rendering
has single GPUs separately compute rendering results for
consecutive frames. The partitioning of both rendering and
simulation tasks allow for load balancing in the visualization
application. As more processors are dedicated to simulation,
fewer are dedicated to rendering consecutive frames. The
total visualization time for a frame is used to determine
the optimal load balance between rendering and simulation
among the available processors.

To address the issue of workload imbalance, we present
a load balancing method to achieve the optimal distri-
bution of work to improve performance. We present a

three-dimensional parameter matrix M that can be used
to determine the appropriate balance for the visualization
application. The input dimensions of M include the number
of samples for supersampling, the number of iterations for
simulation, and the input size, while the associated output
values are performance times for these configurations. Our
method first collects performance results for this matrix and
then computes the desired workload balance for a new set of
input parameters. Thus, we find the solution to the function:

f(i, s, p) = g (2)

where f is the function to compute optimal workload
distribution, i is the number of iterations for simulation, s is
the number of samples for supersampling, p is the number
of particles in the simulation, and g is the number of GPUs
allocated for rendering versus simulation. The predicted
optimal load balance is computed based on previous results
through trilinear interpolation. Given known optimal work-
load distributions for sets of input parameters, our model
predicts the optimal load balancing result g for a new set of
input parameters:

Lisp = L000(1− i)(1− s)(1− p) +L100i(1− s)(1− p)

+ L010(1− i)s(1− p) +L001(1− i)(1− s)p

+ L101i(1− s)p +L011(1− i)sp

+ L110is(1− p) +L111isp (3)

where L is the optimal load balance, i is the number of
simulation iterations, s is the number of samples for ray
tracing, and p is the number of particles. Here, i, s, and p
are normalized to the range [0, 1] for interpolation, and the
result g is rounded to the nearest integer. This result gives
a prediction for the optimal load balance for a given set of
input parameter values.

4. Results
The multi-GPU load balancing method was tested with an

N-body simulation and ray tracing of thousands of spheres.
All tests were done on a single computer with eight GTX
295 graphics cards.

The final result of the visualization and the differences
in supersampling can be seen in Figure 6. Aliasing artifacts
due to inadequate sampling can be seen in the image on the
left with one sample per pixel. Using sixteen samples per
pixel in a random fashion, however, significantly improves
the results.

While supersampling improves the quality of the final
image, it comes at a performance cost as shown in Table 1.
The increase in execution time for a greater number of sam-
ples for supersampling is linear. Thus, the tradeoff between
performance and image quality must be considered when

308 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 5: Comparison of single sample (left) and 16 sample
randomized supersampling (right)

Table 1: GPU execution time (ms) for ray tracing based on
number of samples for supersampling for 1000 particles

1 sample 4 samples 8 samples 12 samples 16 samples
46.082 ms 163.82 ms 316.56 ms 469.39 ms 621.60 ms

choosing an appropriate number of samples for supersam-
pling.

Table 2 shows the performance time for simulation when
performing multiple iterations with a smaller timestep. The
performance of simulation shows a linear increase in time
with an increase in number of iterations. While a smaller
timestep provides more accurate simulations, it introduces
additional computations for each frame. Thus, using a
smaller timestep but increasing the number of iterations
leads to an increase in performance. Table 3 shows the
percent difference in positions of simulation from 12000
iteration simulation, which uses the smallest timestep. Each
simulation is carried out over the same total time, with a
smaller timestep for simulations run for more iterations.
With a smaller timestep, the accuracy of the simulation is
improved due to the finer granularity used for integration in
the N-body simulation.

Table 4 shows a linear decrease in the execution time
for simulation when partitioning the dataset to simulate on
multiple GPUs. Due to slight constant overhead of launching
the kernel, etc., six GPUs gain a slightly less than six times
speedup over use of one GPU.

Ray tracing has a longer execution time than simulation
for smaller dataset sizes. Simulation takes less time for
smaller datasets, but with an increased number of simulation
iterations this cost can exceed that of ray tracing with
fewer samples. These differences in workload affect the final
optimal load balance.

Table 2: GPU execution time for simulation based on number
of iterations

20 iterations 40 iterations 60 iterations 80 iterations
31.87 ms 62.56 ms 92.70 ms 122.86 ms

Table 3: Percent difference in positions of simulation from
12000 iteration simulation

Iterations 2000 4000 6000 8000 10000 12000
Percent 58.07 35.37 26.87 21.81 14.94 0.00

Table 4: Execution time for simulation based on number of
GPUs used

1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs
31.87 ms 16.69 ms 11.52 ms 9.32 ms 7.58 ms 6.44 ms

4.1 Workload Characteristics
The multiple input parameters for this application result in

many possibilities for workloads. These varying workloads
can introduce a performance penalty if not accounted for
in distribution of work. Figure 7 shows the trends for
performance times for different workloads (number of ray
tracing tasks) with varying dataset sizes with 16 sample ray
tracing and 80 iteration simulation. The cost of simulation
increases more as dataset size increases due to the nature
of the N-body simulation, while ray tracing scales linearly
with dataset size. This causes the overall performance to be
increasingly limited by simulation time for larger datasets.

Fig. 6: Performance time for various input sizes with 16
samples, 80 iterations

Figure 8 shows performance for different input sizes with
a varying workload distribution for four sample ray tracing
and 80 iterations for simulation. This graph shows that
allocating more GPUs for simulation when the number of
samples is low can result in performance gain. The difference
in the trend from Figure 7 also demonstrates that different
input parameters can lead to significantly different optimal
workload distributions that requires load balancing.

4.2 Load Balancing
Figure 9 shows a trend of optimal load balance based on

the number of iterations for simulation. As shown, increasing
the number of iterations requires a greater number of GPUs
dedicated to simulation to achieve optimal load balance.
With the fewest iterations for simulation, the majority of
GPUs should be allocated for ray tracing due to the greater
cost of ray tracing.

Increasing the number of samples for supersampling in-
creases the cost of ray tracing and also impacts the load
balancing scheme. Figure 10 shows that increasing the
number of samples for supersampling results in need of

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 309

Fig. 7: Performance time for various input sizes with four
samples, 80 iterations

Fig. 8: Load balancing for various simulation iterations with
four samples, 3000 particles

additional ray tracing tasks to improve workload balance.
A larger dataset size requires fewer GPUs for ray tracing
due to the smaller increase in cost of ray tracing with larger
datasets.

Figure 11 shows the trend for varying dataset size and
number of samples with a constant simulation. With a larger
dataset size, simulation becomes increasingly expensive
while ray tracing cost increases at a linear rate. Therefore, it
becomes necessary to compute simulation on an increasing
number of GPUs with larger datasets to maintain workload
balance.

These results demonstrate that significant workload im-
balance can be introduced based on differing workloads
of rendering and simulation. Each configuration leads to
a different optimal load balancing configuration. A load
balancing method must be able to account for these varying
trends in order to achieve effective performance.

4.3 Performance Model
We now present a summary of the results of applying

our load balancing method. Table 5 shows the percent error

Fig. 9: Load balancing for various numbers of samples for
ray tracing with changing dataset size

Fig. 10: Load balancing for various dataset sizes with 80
simulation iterations

in our proposed prediction model when compared to the
actual optimal load balanced configuration. The performance
model was tested by computing the average percent error for
40 values for varying one dimension (simulation iterations),
20 for varying two dimensions (iterations and samples),
and 12 for varying three dimensions (iterations, samples,
and data size). These results show that the average percent
difference is below 5 percent for two and three dimensions,
and below 10 percent for all categories. Interpolation with
fewer dimensions yields a larger error due to discretization
error with selection of number of GPUs for load balancing.
Using a larger number of data points with more dimensions
in interpolation decreases this discretization error.

The performance of our load balancing method was also
compared against the worst and average case workload
distribution. Figure 12 shows the speedup of using the load

Table 5: Percent error in load balancing model for a varying
number of dimensions

1 dimension 2 dimensions 3 dimensions
9.88% 2.67% 1.67%

310 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

balancing method. These results show that by using the
model, a significant speedup can consistently be achieved
with different parameter configurations.

Fig. 11: Load balancing speedup over the average and worst
cases

5. Conclusions and Future Work

We have proposed a multi-GPU load balancing solution
for in-situ visualization. We have presented an analysis
of the workload properties and load balancing results in
an N-body simulation and ray tracing visualization. Our
results show that workloads can vary greatly for different
sets of input parameters, which demonstrates the need for
load balancing in multi-GPU computing. Our multi-GPU
implementation demonstrates the use of intra- and inter-
frame task partitioning for scheduling of GPU tasks to allow
the use of load balancing. The results of our tests show that
the load balancing method can accurately predict optimal
workload balance to significantly improve performance by
increasing utilization of available resources.

This work could be extended in multiple ways in future
work. Our load balancing approaches could be extended to
additional visualization applications, where other rendering
and simulation methods with varying workloads could also
be addressed. Different performance models may be useful
for other applications as well. The pipelining model used
in this application would also be useful for out-of-core
rendering of massive models.

6. Acknowledgements

This work is funded by Air Force Research Laboratory
Munitions Directorate, FA8651-11-1-0001, titled "Unified
High-Performance Computing and Visualization Framework
on GPU to Support MAV Airframe Research." I also thank
Dr. Eli Tilevich for support and discussion on the project.

References
[1] J. P. L. Nyland, M. Harris, “Fast n-body simulation with cuda,” GPU

Gems 3, pp. 677–695, 2007.
[2] T. Fogal, H. Childs, S. Shankar, J. Krüger, R. D. Bergeron,

and P. Hatcher, “Large data visualization on distributed memory
multi-gpu clusters,” in Proceedings of the Conference on High
Performance Graphics, ser. HPG ’10. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2010, pp. 57–66. [Online].
Available: http://portal.acm.org/citation.cfm?id=1921479.1921489

[3] J. R. Monfort and M. Grossman, “Scaling of 3d game engine
workloads on modern multi-gpu systems,” in Proceedings of the
Conference on High Performance Graphics 2009, ser. HPG ’09.
New York, NY, USA: ACM, 2009, pp. 37–46. [Online]. Available:
http://doi.acm.org/10.1145/1572769.1572776

[4] A. Binotto, C. Pereira, and D. Fellner, “Towards dynamic recon-
figurable load-balancing for hybrid desktop platforms,” in Parallel
Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010
IEEE International Symposium on, 04 2010, pp. 1 –4.

[5] E. Gobbetti and F. Marton, “Far voxels: a multiresolution framework
for interactive rendering of huge complex 3d models on commodity
graphics platforms,” in ACM SIGGRAPH 2005 Papers, ser.
SIGGRAPH ’05. New York, NY, USA: ACM, 2005, pp. 878–885.
[Online]. Available: http://doi.acm.org/10.1145/1186822.1073277

[6] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann, “Gigavoxels:
ray-guided streaming for efficient and detailed voxel rendering,” in
Proceedings of the 2009 symposium on Interactive 3D graphics and
games, ser. I3D ’09. New York, NY, USA: ACM, 2009, pp. 15–22.
[Online]. Available: http://doi.acm.org/10.1145/1507149.1507152

[7] G. F. Diamos and S. Yalamanchili, “Harmony: an execution
model and runtime for heterogeneous many core systems,”
in Proceedings of the 17th international symposium on High
performance distributed computing, ser. HPDC ’08. New York,
NY, USA: ACM, 2008, pp. 197–200. [Online]. Available:
http://doi.acm.org/10.1145/1383422.1383447

[8] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng, “Merge:
a programming model for heterogeneous multi-core systems,”
SIGPLAN Not., vol. 43, pp. 287–296, March 2008. [Online].
Available: http://doi.acm.org/10.1145/1353536.1346318

[9] J. A. Stuart and J. D. Owens, “Message passing on data-parallel
architectures,” in Proceedings of the 23rd IEEE International Parallel
and Distributed Processing Symposium, May 2009.

[10] D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross,
T. E. Cheatham, S. DeBolt, D. Ferguson, G. Seibel, and
P. Kollman, “Amber, a package of computer programs for
applying molecular mechanics, normal mode analysis, molecular
dynamics and free energy calculations to simulate the structural
and energetic properties of molecules,” Computer Physics
Communications, vol. 91, no. 1-3, pp. 1 – 41, 1995. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6TJ5-
4037S49-D/2/0df1c6e2cbc422472f7498040a749b20

[11] R. Anandakrishnan and A. V. Onufriev, “An n log n approximation
based on the natural organization of biomolecules for speeding up the
computation of long range interactions,” Journal of Computational
Chemistry, vol. 31, no. 4, pp. 691–706, 2010. [Online]. Available:
http://dx.doi.org/10.1002/jcc.21357

[12] W. Humphrey, A. Dalke, and K. Schulten, “VMD – Visual Molecular
Dynamics,” Journal of Molecular Graphics, vol. 14, pp. 33–38, 1996.

[13] J. E. Stone, J. Saam, D. J. Hardy, K. L. Vandivort, W.-m. W.
Hwu, and K. Schulten, “High performance computation and
interactive display of molecular orbitals on gpus and multi-core
cpus,” in Proceedings of 2nd Workshop on General Purpose
Processing on Graphics Processing Units, ser. GPGPU-2. New
York, NY, USA: ACM, 2009, pp. 9–18. [Online]. Available:
http://doi.acm.org/10.1145/1513895.1513897

[14] L. Chen, O. Villa, S. Krishnamoorthy, and G. Gao, “Dynamic load
balancing on single- and multi-gpu systems,” in Parallel Distributed
Processing (IPDPS), 2010 IEEE International Symposium on, 04
2010, pp. 1 –12.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 311

Designing a Parallel Collaborative SAT Solver

PascalVander-Swalmen1, Gilles Dequen2, Michaël Krajecki 3
1Université de Versailles Saint-Quentin-en-Yvelines (email address: prism.uvsq.fr)

2Université de Picardie Jules Verne (email address: u-picardie.fr)
3Université de Reims Champagne-Ardenne (email address: univ-reims.fr)

Abstract— The combinatorial optimization problems are
difficult to set up within a parallel context: a search-space is
built during the computation and is explored in an irregular
way. Moreover, the size of the search-space grows exponen-
tially according to the size of the problem. Since the current
processor industry is multiplying the number of cores in their
product instead of increasing their frequency, setting up a
parallel scheme to combinatorial problem remains needed.
In this paper we focus on theSAT problem, which is central
in theory of the Computer Science. We show different ways to
solveSAT in parallel and we explain the advantages and the
shortages of them. Then we explain how to design a parallel
SAT solver that is able to keep the very efficient sequential
techniques while parallelizing the work among the available
cores. Obviously, the key-feature for theSAT community is
to parallelize a sequentialSAT solver since last sequential
improvements are embedded in it. To answer these problems
we propose a parallelSAT solver calledMTSS (for Multi-
ThreadedSAT Solver).

Keywords: Parallelism, Combinatorial Optimization, Satisfiabil-
ity

1. Introduction
The Satisfiability Problem (short forSAT) is a well-known

NP-complete problem [9] and is a core problem in mathe-
matical logic and computing theory. The interest in studying
SAT has grown significantly over the last years because of
its conceptual simplicity and its ability to express a large set
of various problems. To date, it remains a central problem
in artificial intelligence, logic and computational complexity
theory. This leads to propose a new class of algorithms [7].
Within a more practical framework, a lot of works highlight
SAT implications in “real world” problems as diverse as
Planning [17], Model Checking [6], Cryptography [20],
VLSI design, . . .

In recent years, several improvements, dedicated to the
original backtrack-searchDLL procedure [10], about splitting
variable choice [11], [2], restart strategies [3], preprocess-
ing [18], fast unit-propagation and more generally logical
simplification techniques [1] have allowedSAT solvers to
be very efficient in solving huge problems from industrial
areas1. Basically, the sequential solvers are very efficient and

1http://www.satcompetition.org

integrate a lot of techniques which are designed and tuned to
achieve tremendous performances. Hence, the complexity of
the different pruning and speeding-up techniques implemen-
tation coupled with their practical sequential efficiency lead
the parallel design of state-of-the-art sequentialSAT solvers
to be very difficult and time consuming unless to obtain a
weak parallel efficiency. Tackling this issue is a challenging
problem.

In section 2, we explain several ways to parallelize aSAT

solver according to its characteristics. The section 2.3 gives
a non exhaustive list of some important parallelSAT solvers,
especially some of them quite recent for multi-core comput-
ers. In section 3, a description of a parallel collaborative
SAT solver that is able to keep all the sequential techniques
is given. In section 4, the solverMTSS is presented. It follows
the rules of the collaborative parallel solver and is able to
parallelize sequentialSAT solvers. Section 5 presents results
obtained when parallelizing sequentialSAT solvers on multi-
core computers (the parallelized solvers areMarch [15],
Kcnfs [11] and Minisat [22]). Some future works and
perspectives are presented as a conclusion in section 6.

2. Parallel SAT solving
2.1 SAT

Let V = {v1, v2, . . . , vn} be a set ofboolean variables.
A literal is the signed form of a boolean variable. Let
denote respectivelyv and v̄ the positive and negative lit-
erals associated to the variablev. A CNF-FormulaF is a
conjunction ofclauses, where a clause is a disjunction of
literals. An interpretation of F is an assignment of truth
values{true, false} to V. The literalv (resp.v̄) is satisfied
if the variablev has the valueTRUE (resp.FALSE). A clause
is satisfied if at least one of its literals is satisfied. Finally,
F is satisfiableif it exists an interpretation where all the
clauses are satisfied (this interpretation is then asolution).
The SAT problem is to decide if there exists a solution for
F , if not, F is unsatisfiable.

The SAT community mainly works on two types of
problems. On the one hand, the randomly generated formulas
that follow a generation model which consists in uniformly,
independently and without replacement choosingm clauses
to n variables among the2k

(
n

k

)
non-trivial clauses withk

distinct and non-tautological literals. The main studies on
this field are intended to the random 3-SAT problem (i.e.

312 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

http://www.satcompetition.org

k = 3). A phase transition phenomena correlated to the
ratio r =

m

n
has been identified in [19]. Thus, it is also

experimentally shown that for low range ofr, generated
formulas tend to beSAT whereas for high range ofr
generated formulas tend to beUNSAT. Moreover, around
specific range ofr, the probability to concludeSAT is about
0.5 and the associated solving time grows up exponentially.
To date, the most difficult formulas proposed and solved
by the SAT community are random 3-SAT formulas with
700 variables and 2975 clauses[12]. In the following, we
focus our experimental comparison on solving random 3-
SAT formulas generated withr = 4.25 which is the pick of
difficulty area. On the other hand, within a more practical
point of view SAT remains an easy way to express various
problems. This leads to have a widespread use ofSAT in
many industrial applications. Industrial formulas often have
several thousands of clauses and variables but are easier to
solve in terms of practical complexity. Due to their huge size,
lazy complete solving proposed by theCDCL [25] procedure
(“Conflict Driven Clause Learning”) is considered beeing
the most efficient. As forDLL , from which it derives,CDCL

is a complete approach and builds a binary search-tree.
It has some specific treatments due to its lazy behavior
like the use of a branching heuristic based on an analysis
of the variables occurrences in the encountered conflicts.
Analyzing a conflict allows, thanks to a clause learning, to
avoid it in the future process. Finally,CDCL-based solvers
periodically erase the search-tree and then restart keeping
learnt informations. The objective is to develop a smaller
tree. In the following, we also propose experimentations on
industrial benchmarks from theSAT competitions.

Two classes ofSAT solving techniques are commonly used
by the community.

• Completeapproaches guarantee an answer in a finite but
exponential runtime. These methods are mainly based
on the DLL [10] algorithm which consists in a sys-
tematic search in the search-space of truth assignments
thanks to a binary search-tree. The Figure 1 shows the
skeleton of this procedure with its recursive enumer-
ative feature whereF\x (resp.F\x̄) is F logically
simplified with inference rules fromx = True (resp.
x = False).

• IncompleteSAT solving (or general Constraint Satisfac-
tion Problem) methods are those that cannot guarantee
an answer in a finite runtime. The relaxation of this
guarantee leads these methods to practically behave
as polynomial algorithms. Hence, depending on their
success rate, they are able to answer more quickly than
complete techniques. In practice, most such methods
are dedicated to satisfiable formulas and are unfortu-
nately not able to prove the unsatisfiability. Moreover,
they are intended to specific classes of problems such
as randomly generated ones. Among the incomplete
approaches toSAT solving, one of the most efficient

is based onGSAT andWalksat algorithms [21] which
can be briefly describe as greedy and noisy searches
into the search-space. The reader should refer to [5]
for more details.

This work, that aims at proposing a new parallel solver
namedMTSS, focuses onSAT solving based onDLL proce-
dure and is dedicated to solve randomly generated formulas
and to a lesser extent the industrial formulas thanks to
the parallelization of several instances of a sequential and
industrial SAT solver.

DLL(F)

Simplifications:

- Pure Literal Rules

- Unit Propagation

x = splitting

choice policy

solution found conflict reached

return UNSATreturn SAT

return [DLL(F\{x}) V DLL(F\{x})]

Fig. 1: DLL procedure

2.2 SAT within a parallel context
During the last decade, several works dealt with the par-

allelization of tree-based searches. To date, two main ways
exist for parallelSAT solving : the “divide and Conquer”
and the concurrent approaches. In the following section, we
propose to enhance the divide and conquer scheme to a
new collaborative approach especially designed to shared-
memory architecture.
• The Divide-and-Conquer(short forDnC) scheme con-

sists in a master-slave model where the master, thanks
to a division policy, distributes sub-tasks among the
processors. To design a DnC approach, the paralleliza-
tion of a binary search-tree can be based on different
granularities, from a very fine-grained parallelization
on a node level to a coarse-grained algorithm on all
a sub-tree level. Unless to be able to make an equal-
partition of the amount of work into sub-tasks, the main
problem with this scheme is the workload-balancing.
Thus, computer scientist has to keep it in mind unless
it could become a bottleneck for the performances.

• The Concurrentscheme consists in distributing several
instances of the same task among the processors. Then,
each processor must have its own behavior to sequen-
tially solve the problem. Thus, this parallelism aims
at selecting the best sequential run. The key-feature
is to have several methods to solve the same instance
of a problem or to have an algorithm which is able
to behave differently according to some parameters.
In this latter case, the behavior could be related to

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 313

some randomization features. Two types of algorithms
are relevant to that characteristic forSAT solving: the
incomplete solvers and theCDCL-based algorithms. The
two main problems with this scheme are, first to find
the right parameters configuration which will reach an
efficient enough sequential runtime, and second to be
able to generate enough distinct behaviors so that it uses
all the cores.

On top of these techniques, a sharing information system
may be set up. The shared informations depend on what
can be extracted from the search processes. To date, the
most popular knowledges produced duringSAT solving is the
clause learning. Independently of the used scheme, sharing
information between the processors aims at helping each of
them so that it will speed up its own solving.

2.3 State of the art of parallel SAT solving
Numerous works improving the solving of different class

of SAT problems have been proposed and have allowedSAT

solvers to be very efficient in processing formulas from
which the size and the difficulty increase. Nevertheless, there
is to date few parallel solving approaches dedicated to the
SAT problem. Moreover, the most of them were designed
few years ago and therefore dedicated to the message
passing paradigm using a search-space partitioning to assign
work to the available processors. This often leads to use a
master-slave scheme where the most difficult part consists
in workload-balancing. Among the parallelSAT solvers we
can remarkPSATO [24] (in 1996, based on the sequential
solver SATO) that uses the message-passing paradigm and
introduces the notion ofguiding path. The guiding path
is a dynamic object associated to theDLL procedure and
represents the partial ordered interpretation of the splitting
variables from the root to the current leaf of the search-
tree during the backtrack-search process. Thus, it defines
disjoint search-spaces respectively assigned to parallel tasks.
The fig. 2 represents a sample illustration. Each CPU solves
sub-tasks rooted at different dangling nodes of the guiding
path. The following other noticeable parallelSAT solvers are
based on the guiding path://satz [16], GridSAT [8] and
ySAT [13].

More recently, the interest of theSAT community in speed-
ing up the solving exploiting shared-memory architectures
has grown. The actual trend is to propose parallelSAT solvers
dedicated to instances from industrial problems. Since de-
termining the best way to set up the solving is not known,
the concurrent paradigm is preferred. Studying the relation
between the formula and the parameters configuration of
the solver is not the topic of this paper but should be
essential and useful to speed-up futureSAT solvers. Among
multi-threadedSAT solvers from the literature,ManySat and
Plingeling are the best known.ManySat [14] is a multi-
threaded concurrent implementation of the sequential solver
MiniSat v2.02 [22] where is grafted some extensions

of conflict-analysis.Plingeling [4] is a multi-threaded
version ofLingeling. This port-folio approach shares only
the unit clauses generated during theCDCL processing.

Visited Branches

Guiding Path

Unvisited Branches

X

XConflicts

Nodes

Dangling Nodes :

Roots of the sub-trees

available for a computation

Fig. 2: Guiding Path Sample

These recent solvers must have as many different be-
haviors as available cores and the growth of cores should
continue in the future. In that context, and despite the trend
in concurrent scheme, we propose to enhance the DnC
policy to a more collaborative approach designed for the
shared-memory architecture particularly by removing the
master/slave feature.

3. A collaborative multi-threaded SAT

solver
3.1 The needs

The objective is to design an efficient (in term of par-
allelism) SAT solver for the multi-cores architectures. It is
essential to keep in mind the number of cores will increase
over the years. The idea is to preserve a speed-up factor
according to the number of cores. The concurrent approach
can’t insure that because of the difficulty to design or choose
a high enough number of distinct behaviors. Moreover, a lot
of improvements have been proposed and are grafted to ex-
isting sequential SAT solvers. Thanks to these assessments,
our choice is to deal with collaborative scheme.

It is necessary to preserve the contributions propose by
the SAT community. In that way, the solution is to have a
very fine grained application. Instead of creating a parallel
version of each local treatment, each splitting choice policy,
etc. which would be a very fine grained solution but very
hard to design and not reusable in the future, we choose
to parallelize the binary search-tree at a node level or even
smaller as the sequence of local treatments. The very fine
grained solver able to follow the current industry choices in
term of processors must divide the job by distributing the
nodes of the search-tree. The main problem is the number of
tasks: several thousands nodes per second could usually be
explored by aSAT solver. This leads to a massive concurrent
access to the job sharing structure. Moreover having a fine
grained algorithm on the search-tree gives the ability to adapt
the granularity as needed. The algorithm should be highly
flexible, adaptable and robust. The main idea behind this

314 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

flexibility is to allow the community to easily parallelize a
sequentialSAT solver since it is the most natural way to
preserve the efficiency of the currentSAT solvers.

3.2 The guiding tree approach

Parallelizations of algorithms such asDLL were previously
made using the guiding path structure. The guiding path is
the path of a particular processor. The available tasks for
other processors are the dangling sub-trees on this path. Each
path is given to a processor, it indicates the sub-tree on which
a processor should work thanks to the path from the root of
the search-tree to the root of the sub-tree. This structure
cannot support a too fine granularity since the number of
generated tasks is huge and each path as to be explicitly
given to a processor. The threads dedicated to this work will
be overloaded. Then, the most important point is the number
of available tasks extracted from this structure. Currently, the
maximal depth of a binary search-tree is linear according to
the number of variables but the size of the search-space is
exponential. That is to say the tasks are very unbalanced
and cannot be distributed on a large number of processors.
More precisely even on big formulas, the guiding path can
not offer more than 35 tasks. Hence, the work distribution
is quite unfair.

To replace the guiding path as a tasks distributing and
workload-balancing tool, we propose a new structure. With a
very fine grained application, an explicit workload-balancing
is not needed because the tasks are all balanced and non
divisible. The time needed by each task is very short: few
milliseconds. Thus, we introduce the guiding tree approach
which can be seen as a parallel-built tree that is memory
shared. The guiding tree allows to distribute tasks as small
as a local treatment at a node. While keeping a sequential
computation for each task, which is essential to preserve the
SAT engineering since more than 20 years, becomes possible
to parallelize the computation.

The main idea behind the guiding tree is to design within
a parallel context search-tree areas that are not explored.
Thus, designing this object is both solving the problem and
balancing the workload. Each thread starts its processing
by looking for an open node of the guiding tree. It then
does the associated job, puts the result down in the tree and
opens a new node and so on. The flexibility of the guiding
tree is obtained by the fact the thread chooses the size of
the job thanks to its configuration and/or according to the
informations in the chosen node.

With a huge amount of small tasks that generate a huge
number of input/output, using a specific structure to dis-
tribute the work is a bottleneck. The size of the guiding tree
structure increases with the number of available tasks: each
leaf is an available work. In that context, the idle threads can
initiate a work on its own. Thus, several threads can initiate
a work in distinct search-tree areas at the same time. Larger

is the problem, larger is the guiding tree and lower conflicts
are encountered.

The flexibility of the guiding tree allows to implement
hybridization with complete or incomplete searches, mixed
architectures, fine or coarse grained parallelism, threads can
have specific functions, . . . The most important point is that
flexibility is achieved while maintaining a good parallel
efficiency till the tasks are small enough. Indeed, a coarse
grained parallelism is possible using the guiding tree but the
workload-balancing is no longer assured since it relies on
the principle of extremely small tasks.

4. MTSS

We designed a new multi-threadedSAT solver that imple-
ments the guiding tree. The available tasks inMTSS are:

• The propagation of the truth value of a variable in the
formula and the splitting choice policy.

• The look-ahead, a classic local treatment inSAT, which
consists in checking if at least one of the truth value
related to a variable reaches a conflict. Moreover, the
look-ahead leads to open one node in the guiding tree.

• The computation of an entire sub-tree by an external
SAT solver.

MTSS is a completeSAT solver. To design a complete
algorithm using the guiding tree, one specific thread is
needed so that it draws a limit between the computed sub-
tree and the remaining search-tree. This thread is called
the rich thread (algorithm 1), the other threads are the
poor threads(algorithm 2). The rich thread corresponds to
a kind of the classicalDLL procedure. If the rich thread
finds informations computed by one or more poor threads, it
replaces its current context with the poor computed one (see
Context Swaplabel). If an information is under construction
by a poor. The rich does not wait for the end and mutates
into a poor. It previously indicates that it has been changed
its role at the current node. At this moment, there is no rich
(seeRole Swaplabel). The poor threads compute tasks on
the guiding tree without following a rule in their moves.
Figure 3 represents a guiding tree developed byMTSS.

Visited Branches

Rich Path

Guiding Tree

X

XConflicts

Nodes

Available nodes

for a computation

Fig. 3: Guiding Tree Sample inMTSS

For the use of an external solver,MTSS deploys a guiding
tree from the root to the calls of the external solver. The

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 315

Algorithm 1 MTSS RICH THREAD procedure
Require: F , a propositional formula

RICHTHREAD(F)
if F contains one monotonic literall then

Return RICHTHREAD(F\l) (Monotonic Literal)
else ifF contains one unit clause containingl then

Return RICHTHREAD(F\l) (Unit Propagation)
else ifF contains at least one empty clausethen

ReturnFALSE (Backtrack)
else ifF is emptythen

ReturnTRUE (Solution)
else
v ← one unassigned variable ofF (Split)
if RICHTHREAD(F\v) = TRUE then

ReturnTRUE

else if At least one Poor Thread has finished its local
calculus on the current nodethen

Replace current computing context by the Poor Thr-
ead’s one(Context Swap)

else if Current node is in the course of a Poor Thread
calculusthen

Indicate a Role Swap on the current node
Become a POOR THREAD (Role Swap)

else
Return RICHTHREAD(F\v̄)) (DLL Backtrack)

end if
end if

externalSAT solver must solve the entire sub-tree for each
mutation. That meansMTSS can solve a formula from a very
fine grained parallelism to a coarse grained parallelism.

Even if MTSS is originally designed for the randomly
generated formulas, it is able to parallelize different classes
of complete solvers. Hence, each complete sequentialSAT

solver thanks to an hybridization withMTSS is able to
take advantage of multi-core architecture. To increase per-
formances of theCDCL-based algorithms, it is needed to
share the informations extracted during the computation.
Thus,MTSS includes a technology receiving and sharing the
learnt clauses by the externalSAT solvers. In order to graft
this ability to a sequentialSAT solver, a library is proposed
on a dedicated website2. Let n the number of executions
of the externalSAT solver at the same time. WhenMTSS

receives the learnt clauses sent by the externalSAT solver
j ∈ {1, . . . , n}, it adds them in a shared database and then
sends the learnt clauses received by the other executions
of the external solveri ∈ {1, . . . , n}/i 6= j since the last
sent toj. The main result about this parallelization of the
sequentialSAT solver is the super-linear speed-ups observed
in some cases. Actually the search-space is sometimes
reduced thanks to the shared learnt clauses. More details

2www.parallel-sat.net

Algorithm 2 MTSS POOR THREAD procedure
Require: F , a propositional formula
Require: T, a task

POORTHREAD(F , T)
n← Root ofF-search-tree
while F has no solutiondo

if T can be applied onn then
Apply T on n
if The Rich Task Indicates a Role Swap onn then

Become the RICH THREAD (Role Swap)
end if

end if
if n is the node in computation by the RICH THREAD

then
n← Root ofF-search-tree

else
Extends theguiding sub-treerooted inn (Guiding
Tree Extension)
n← next node in theguiding path

end if
end while

about this topic and other aspects ofMTSS are given in [23].

5. Experiments

5.1 Protocol
MTSS is written in C language with PTHREADS functions

and was compiled by ICC 11.1 (an OPENMP version obtains
the same performances). The cluster of SMPs used for
benchmarks is CLOVIS3 from the University of Reims
Champagne Ardenne. 472 cores are dedicated to computa-
tion. Among others nodes, it contains 36 nodes of 12 cores
(2 * Westmere-EP) and 24 Gb of memory, we mainly used
these nodes. Two series of runs were launched to estimate
the quality of the snap-parallelization of sequential solvers.
The first one is about the randomly generated formulas
parallelizing two of the best solvers for this type of formulas.
The next one is about the industrial formulas parallelizing
the most famous sequentialSAT solver for this task. We
compare our parallelization to the current best parallelSAT

solvers using the concurrent approach and tuned to solve the
industrial formulas.

5.2 Randomly generated formulas
The randomly generated formulas solved are 3-SAT with

500 variables generated at the pick of difficulty (2125
clauses). BothSAT and UNSAT formulas (a dozen by type)
were solved but we give in figure 4 only the mean com-
putation time for theUNSAT formulas. Indeed, theUNSAT

3www.romeo2.fr

316 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

www.parallel-sat.net
www.romeo2.fr

formulas have a better interest from a comparative perspec-
tive since the solvers have to develop the entire search-
tree. The lines from 1 to 12 cores represent the sequential
solvers we used:March [15] andKcnfs [11]. They are both
excellent and competitive completeSAT solvers for randomly
generated formulas. The curves in that figure represent the
mean computation time forMTSS and March or Kcnfs

parallelized byMTSS. Each solver was run once on a formula
and the number of cores tested were: 1, 2, 4, 8 and 12 (so
many threads have been launched as many cores were used,
we used one rich thread and the remaining ones were poor
threads). Speed-up with 12 cores forMTSS is 11,5 (efficiency
of 95.85%), forMarch parallelized byMTSS, it is 7,53 (eff.
62.78%) and forKcnfs parallelized byMTSS, it is 6,78
(eff. 56.53%). It is interesting to notice these programs were
not modified and the robustness is excellent: between two
runs, the difference of computation time is very light. This
robustness is true for runs on randomly generated formulas,
indeedMTSS alone is extremely robust.

 0
 250
 500
 750

 1000
 1250
 1500
 1750
 2000
 2250
 2500
 2750
 3000
 3250
 3500

 1 2 3 4 5 6 7 8 9 10 11 12

tim
e

(s
.)

threads

mtss
march
kcnfs

mtss + march
mtss + kcnfs

Fig. 4: Mean Computation Time forUNSAT 3-SAT formulas
(500 variables)

5.3 Industrial formulas
163 formulas from theSAT competition were used for

this benchmark. Among them, 59 areSAT, 57 areUNSAT

and 47 formulas were not provedSAT nor UNSAT during this
test. We launched the sequentialSAT solverMinisat on one
core and we parallelized it byMTSS on 12 cores. We also
compare this parallelization toManysat andPlingeling.
Manysat is a concurrentSAT solver version ofMinisat
with a sharing system policy whilePlingeling has the
same principle but for the sequentialSAT solverLingeling
with an extremely light sharing policy. These three solvers
are all designed to solve the industrial formulas whereas
MTSS is not. MTSS is potentially able to parallelize every
solvers. Moreover, in the case ofMinisat, it shares the
learnt clauses between its different runs. The modification
of Minisat is quite simple and we propose a library to set
it up in any solver. A representative sample of these runs is

given in table 1. Each line represents a set of formulas or
one formula. The number of solved formulas and the mean
solving time is given for each set and for each solver. A
timeout of 1200 seconds was set up for this test in spite to
tie in with the SAT competition test conditions. The time is
given in seconds and is the best runtime among 10 runs.

On formulas calledgus-md5-*.cnfand AproVE09-*.cnf
(but 20), you can remark that the trees developed by
Minisat are smaller than those developed byPlingeling

even on 12 cores. At least one of the trees developed by
Manysat has a size in about theMinisat ones. In these
cases,MTSS has the best computation times. That means
MTSS is efficient to partition and parallelize theMinisat’s
trees. This situation happens onSAT or UNSAT formulas. It is
noticeable the cryptographic benchmarks are well managed
by MTSS. Even if it seems trivialMTSS can divide the
size of the tree developed byMTSS. It was not so simple
becauseMTSS is designed for randomly generated formulas.
It doesn’t restart its tree and hence the guiding tree part
is never erased during the process, whereas all the sub-trees
computed byMinisat are periodically erased by restarts. In
the case of the formula calledAProVE09-20.cnf,Minisat
develops a huge tree andMTSS is still able to develop a
smaller tree. At least one of the trees developed byManysat

and Plingeling for each solver is smaller any more. On
the formulas in theq_query_*.cnffamily MTSS is quite good
but the original trees fromMinisat are very large. In this
case, the concurrent approach successes to develop smaller
trees. About the formulas from the familiesSet 1andpost-
*.cnf, MTSS solves more formulas thanMinisat but the
computation time is not as good as the one of the other
families. InSet 2,Minisat develops so huge trees than even
parallelized byMTSS, the tree is not explored entirely by
1200 seconds. However the concurrent approaches success
in this task. The last interesting sample is the formulaUR-10-
5p1.cnfwhere theMTSS’s tree is larger than theMinisat’s
one. That shows sometimes the guiding tree part, only
managed byMTSS, forces Minisat into sub-trees bigger
than the one it could develop alone. That can be explained
with the MTSS splitting policy that is not adapted with the
case of industrial solving. The collaborative approach makes
sense for the industrial formulas when the sequential tree
developed is quite small. Finally, the lack of robustness
of the CDCL-based solvers is illustrated when comparing
Manysat to Plingeling. Indeed,Plingeling shares a
weak amount of learnt clauses, compared toManysat but
remains the best strategy.

Moreover, in [23], we gave some results about super-linear
speed-ups aboutSAT formulas andUNSAT formulas. Some
explanations and more details about the parallelization and
the sharing system are given in this paper.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 317

Table 1: Computation Times on Industrial Formulas

1 core 12 cores
Minisat MTSS + Minisat Manysat Plingeling

family/formula value # form. # solved time # solved time # solved time # solved time
AproVE09-*.cnf (but 20) SAT 17 17 0.99 17 0.27 17 1.21 17 3.20

AProVE09-20.cnf SAT 1 1 925.85 1 68.68 1 25.72 1 4.49
Set 1 SAT 4 1 723.30 4 668.01 4 218.66 4 67.95
Set 2 SAT 4 0 - 0 - 4 575.76 4 181.53

UR-10-5p1.cnf SAT 1 1 6.93 1 10.85 1 5.46 1 4.62
gss-*-s100.cnf SAT 11 6 332.86 8 44.81 9 164.43 11 89.58

gus-md5-*.cnf UNSAT 6 5 373.19 6 135.64 5 354.69 4 649.33
q_query_*.cnf UNSAT 11 10 597.92 11 423.50 11 151.54 11 109.70

post-*.cnf UNSAT 7 2 302.20 3 424.13 5 241.96 7 146.55

6. Conclusions and perspectives
The guiding tree approach extends the DnC principle to

permit a strong collaborative work between cores developing
a parallel search-tree. It is based on a very fine grained
parallelism. It is flexible during the computation in spite
of integrating all the very efficient techniques embedded in
the current sequentialSAT solvers, and offering an implicit
workload-balancing. Thanks to this flexibility, the guiding
tree approach is able to parallelize a sequentialSAT solver.
The solver designed on this basis is calledMTSS and is
originally designed to solve the randomly generated for-
mulas. Benchmarks on these formulas show good results
as the efficiency ofMTSS is more than 95% on 12 cores.
MTSS is also efficient parallelizing solvers dedicated to the
randomly generated formulas.MTSS can divide the search-
space of a solver dedicated to solve the industrial formulas
and shares the learnt clauses between the runs. Finally these
snap-parallelizations are quite simple to set up.

The guiding tree approach is rich of its possibilities. The
flexibility offers a lot of perspectives. Among the main
ones, it could be interesting to imagine new ways to extract
informations from the solving. The aim is to share them
among the threads to reduce the size of the guiding tree.
Since theCDCL-based solvers are not robust,MTSS could
be improved by parallelizing a solver with different presets
or finding a way to determine the right configuration of a
solver in spite of having a small tree to divide. Finally, with
a dedicated version ofMTSS for the industrial formulas, we
could reach very good performances on these formulas. The
randomly generated formulas are well managed byMTSS

even by parallelizing an external sequentialSAT solver.

References
[1] Fahiem Bacchus and Jonathan Winter. Effective preprocessing with

hyper-resolution and equality reduction.SAT, 2003.
[2] A. Bhalla, I. Lynce, J. T. Sousa, and J. Marques-Silva. Heuristic-

based backtracking relaxation for propositional satisfiability.J. Autom.
Reason., 35(1-3):3–24, 2005.

[3] A. Biere. Adaptive restart strategies for conflict driven sat solvers.
SAT 2008, pages 28–33, 2008.

[4] A. Biere. Lingeling, plingeling, picosat and precosat. Technical report,
Solver Description, SAT-Race 2010, 2010.

[5] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors.Handbook
of Satisfiability, volume 185 ofFrontiers in Artificial Intelligence and
Applications. IOS Press, 2009.

[6] Armin Biere, Keijo Heljanko, Tommi Junttila, Timo Latvala, and
Viktor Schuppan. Linear encodings of bounded LTL model checking.
Logical Methods in Computer Science, 2, 2006.

[7] Alfredo Braunstein, Marc Mézard, and Riccardo Zecchina. Survey
propagation: An algorithm for satisfiability.Random Struct. Algo-
rithms, 27(2):201–226, 2005.

[8] W. Chrabakh and R. Wolski. Gridsat: Design and implementation of a
computational grid application.J. Grid Comput., 4(2):177–193, 2006.

[9] Stephen A. Cook. The complexity of theorem-proving procedures.
In STOC ’71: Proceedings of the third annual ACM symposium on
Theory of computing, 1971.

[10] M. Davis, G. Logemann, and D. W. Loveland. A machine program
for theorem-proving.Commun. ACM, 5(7):394–397, 1962.

[11] Gilles Dequen and Olivier Dubois. An efficient approach to solving
random sat problems.J. Autom. Reasoning, 37(4):261–276, 2006.

[12] Olivier Dubois and Gilles Dequen. A backbone-search heuristic for
efficient solving of hard 3-sat formulae, 2001.

[13] Y. Feldman, N. Dershowitz, and Z. Hanna. Parallel multithreaded
satisfiability solver: Design and implementation, 2004.

[14] Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Manysat: a
parallel sat solver.Journal on Satisfiability, Boolean Modeling and
Computation, 6:245–262, 2009.

[15] Marijn Heule and Hans van Maaren. March_dl: Adding adaptive
heuristics and a new branching strategy.JSAT, 2(1-4):47–59, 2006.

[16] B. Jurkowiak, C. M. Li, and G. Utard. Parallelizing Satz Using
Dynamic Workload Balancing. InSAT 2001, 2001.

[17] H. Kautz and B. Selman. Pushing the Envelope: Planning, Proposi-
tional Logic and Stochastic Search. InProc. of 30th national AI and
8th IAAI, 1996.

[18] I. Lynce and J. Marques-Silva. Probing-based preprocessing tech-
niques for propositional satisfiability.Tools with Artificial Intelligence,
IEEE International Conference on, 2003.

[19] D. Mitchell, B. Selman, and H. J. Levesque. Hard and easy distribution
of SAT problems. InProc. 10th Nat. Conf. on Artificial Intelligence,
pages 459–465. AAAI, 1992.

[20] N. R. Potlapally, A. Raghunathan, S. Ravi, N. K. Jha, and R. B.
Lee. Aiding side-channel attacks on cryptographic software with
satisfiability-based analysis.IEEE Trans. VLSI Syst., 2007.

[21] B. Selman, H. A. Kautz, and B. Cohen. Local search strategies for
satisfiability testing. InProceedings of the Second DIMACS Challenge
on Cliques, Coloring, and Satisfiability, 1996.

[22] N. Sörensson and N. Eén. Minisat 2.1 and minisat++ 1.0. Technical
report, SAT-Race 2008: Solver Descriptions, 2008.

[23] P. Vander-Swalmen, G. Dequen, and M. Krajecki. Toward easy
parallel sat solving. In21st ICTAI, 2009.

[24] H. Zhang, M. P. Bonacina, and J. Hsiang. Psato: a distributed
propositional prover and its application to quasigroup problems.
Journal of Symbolic Computation, 1996.

[25] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient
conflict driven learning in a boolean satisfiability solver. InProceed-
ings of ICCAD, 2001.

318 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

On Using a Graphics Processing Unit to Solve The Closest Substring
Problem

Jon Calhoun1,2, Josh Graham1, and Hai Jiang1
1Dept. of Computer Science, Arkansas State University, Jonesboro, AR, US

2Dept. of Mathematics and Statistics, Arkansas State University, Jonesboro, AR, US

Abstract— Finding a string that is close to another is a
common dilemma in computational molecular biology and
many other fields. The problem comes in two varieties; closest
string (CSP), and closest substring (CSSP). The computa-
tional complexity increases exponentially as the data-set size
increases. We make use of a massively parallel algorithm and
the parallel nature of a graphics processing unit (GPU) in
order to flatten the data-set size verses time curve and enable
more applications to calculate results in reasonable time. In
this paper we focus on CSSP and show that GPU devices can
be used to reduce the time needed to find the closest substring.
We examine an exact algorithm and extract independent parts
in order to form a massively parallel interpretation of the
sequential algorithm. We contribute a fast, exact, algorithm
that can solve the CSSP much faster than sequential versions.

Keywords: closest substring problem, GPU, CUDA

1. Introduction
Closest substring problem (CSSP) is a common open prob-

lem in many applications The closest substring problem was
introduced in [3] and is a key theoretical open problem in
applications such as antisense drug design, creating diagnostic
probes, and creating universal PCR primers [1]. Many applica-
tions would benefit from a faster algorithm to find the closest
substring. Some applications can accept approximations, but
others need an exact result. We focus on using GPU devices
to speed up an exact CSSP algorithm.

The CSSP is an NP-hard problem [3], and can be defined
formally.
• Let

∑
be a fixed finite alphabet.

• Let s and s′ be finite strings over
∑

.
• Let d(s, s′) denote the Hamming Distance between s and

s′.
• Given a set S = {s1, s2, . . . , sn} of strings each of length

m. Find a center string c of length L minimizing d such
that for each si in S there is a length L substring ti of
si with d(c, ti) ≤ d.

Solving the closest substring problem is moderately
difficult, but solving it efficiently has proven very difficult.
There is a tremendous amount of computation to be done
and the process is compounded by not only being required
to find a solution within the tolerance but to find the best
solution. Solving the same problem in parallel can be taxing

on one’s logical skills. Additionally, solving the problem by
hand is extremely time consuming for all but trivially sized
data-sets. This paper shows that for applications needing an
exact solution to the CSSP in a small amount of time can use
GPUs to solve the problem, and achieve significant speedups.

This paper makes the following contributions:
• An efficient exact algorithm for computing the closest

substring on GPU. We extract parallel sections of the
computation in order to have it run efficiently.

• Logical configuration for launching the algorithm as a
CUDA kernel.

• Experiment results that demonstrate the efficiency of the
algorithm.

In Section 2, Background, we will explain the various
technologies used. Following, Section 3.1, is a description
of how the CSSP can be solved on a CPU using sequential
code. After the CPU algorithm is clearly spelled out we turn
to detail the inner workings of three parallel algorithms and
their benefits and pitfalls in Section 3.2 - 3.3. In Section
4, Experimental results, we compare our GPU algorithms
to the sequential one and discuss the performance increase.
Section 5, Relatedwork, discusses works that apply the GPU
to the CSSP and related problems. A brief summary of what
was learned from interpreting Section 4 can be found in our
Conclusion, Section 6. Finally, in Section 7, Futurework,
we discuss optimizations that could be implemented that may
increase performance.

2. Background
2.1 CSSP

The CSSP is a common problem in many areas. Particularly
in computational biology, the CSP and CSSP have found
numerous practical applications such as identifying regulatory
motifs and approximate gene clusters, and in degenerate
primer design [7]. The CSSP problem is much more elusive
than the Closest String problem [6]. Many people have studied
approximation algorithms for CSSP and there has even been
work done on an evolutionary algorithm [8]. Here, we study
an exact algorithm.

Many problems in molecular biology involve finding similar
regions common to each sequence in a given set of DNA,
RNA, or protein sequences. These problems find applications
in locating binding sites and finding conserved regions in

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 319

unaligned sequences, genetic drug target identification, de-
signing genetic probes, universal PCR primer design, and,
outside computational biology, in coding theory [6]. Such
problems may be considered to be various generalizations of
the common substring problem, allowing errors [6].

2.2 GPU
In 1999, NVIDIA created and marketed the worlds first graphics

processing unit (GPU). Since then, there have been yearly break-
throughs in GPU technology. With the need to be able to make
thousands of intense calculations per second for graphic applications.
The architecture of a GPU is composed of thousands of processing
units. In order for a algorithm to run efficiently on a GPU, the
algorithm must be massively parallel. It is no surprise then, that the
hardware and capabilities of GPUs has improved dramatically since
their inception.

Programmers have been aware of the performance gain
that could be achieved if a parallel portion of a program
was executed on the GPU, but it was not until NVIDIA
released there Compute Unified Device Architecture (CUDA)
language that the job of programming GPUs became more
intuitive. Before then to access the computational resources,
a programmer had to cast his or her problem into native
graphics operations so the computation could be launched
through OpenGL or DirectX API calls [5].

2.3 CUDA
CUDA is NVIDIA’s parallel computing language. It enables

dramatic increases in computing performance by harnessing
the power of the GPU. When NVIDIA introduced the GeForce
8800 GTX in November 2006 the CUDA architecture debuted.
This architecture included several new components designed
strictly for GPU computing and aimed to alleviate many of the
limitations that prevented previous graphics processors from
being legitimately useful for general-purpose computation [4].

CUDA is the most widely adopted programming plat-
form for GPU development. CUDA applications running on
NVIDIA graphics processors enjoy superior performance per
dollar and performance per watt than implementations built
exclusively on traditional central processing technologies [4].
In the CUDA programming model, GPUs which are called
devices, execute highly parallel portions of an application,
called kernels which are made up of many threads working
cooperatively. CUDA permits the programmer to use different
memory spaces explicitly. Examples of these different memory
spaces include: global, shared, constant, and texture memory.
Each space has its own performance advantages and penalties.

NVIDIA introduced the Fermi architecture recently. Fermi
brings in many new capabilities. In this paper we make use
of the increased maximum number of threads and blocks to
perform more cooperative computations. We also benefit from
the faster atomic actions and large memory present in Fermi
graphic cards.

3. Algorithms
In order to ease the following discussions we define some

terms.

• Let a window be any substring of length L from a given
string.

• Let a pitch be special window from the first string that
other notes are compared against.

• Let a note be the window from a string that is closest to
the pitch.

• Let a chord be a set of notes, one per string, closest to
a pitch.

• Let the chord distance be the sum of all note distances
in a chord from the pitch.

• Let the root be the average of a chord.

3.1 CPU algorithm (CPU)
The strategy for finding the closest substring on the CPU

consist of taking each pitch from the first string, comparing it
against all windows, in all other strings and finding the closest
window in each string. This window is then deemed a note
and is part of the chord based on the pitch taken from the first
string.

Given Figure 1, we want to find that something very close
to “gcc” occurs in every string.

Fig. 1
EXAMPLE INPUT.

We do so by fixing a pitch in string 1 and comparing all
others against it. Then we move to pitch 2 and so on. As
demonstrated in Figure 2.

Fig. 2
ILLUSTRATION OF EXECUTION.

From the search we get the best chord, shown in Figure 3.

Fig. 3
BEST CHORD FROM DATA SET.

320 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

In Figure 4, we average the chord to determine the closest
substring. In this example, the second character of each of the
notes is c, c, and t respectively. In the averaging process c
will be chosen because it occurs more often than any other
character.

Fig. 4
EXAMPLE OF AVERAGING A CHORD TO FIND A ROOT NOTE.

To solve the problem more formally,

• Let S = {s1, s2, ..., sn} be the set of all strings.
• Let

∑
be a fixed finite alphabet.

• Let Si = {si1 , si2 , ..., sin} be the set of all windows in
Si | ∀ sijk ∈

∑
.

• Let d be the maximum distance.
• Let L be the length of the substrings.
• Let q be the number of windows in a single string.
• Let P = {p1, p2, ..., pq} be all the pitches from s1.
• Let T = {t1, t2, ..., tq} be the set of all chords.
• Let Ti = {ti1 , ti2 , ..., tiq} be the set of notes composing

a chord.
• Let B = {b1, b2, ..., bq} be the set of all chord distances.
• Let Tij = {tij1 , tij2 , ..., tijL} be the set of characters in

a single note.
• Let C = {c1, c2, ..., cL} be the characters composing

closest substring.
• Let ϕ(op1, op2, ..., opn) denote picking the most common

element from a collection.
• Let + denote character concatenation.
• Let d(s1, s2) denote the hamming distance between s1

and s2.
• Let k ∈ N, [1, q]

if ∃ ti ∈ T | (∀tij ∈ ti ∃ sij ∈ si | d(pk, sij) ≤ d∧

d(pk, sij) ≤ d(pk, Si)) ∧ | (bi ≤ B)

then c = ϕ(ti11 , ti21 , ..., tiq1) + ϕ(ti12 , ti22 , ..., tiq2) + ...+

ϕ(ti1L , ti2L , ..., tiqL)

Applying big-O analysis to the algorithm yields, O((k −
1)n2) where k is the number of lines, and n is the number of
windows in a string. A sequential pseudocode algorithm for
the CPU can be seen if Figure 5.

Fig. 5
CPU ALGORITHM PSEUDOCODE.

3.2 Purely parallel GPU algorithm (PP-GPU)
An observation can be made about the sequential algorithm,

each window’s hamming distance to a certain pitch in the data
set is completely independent of all the others. This observa-
tion implies that the parallel nature of the CUDA language
can be exploited while calculating the hamming distance of
all the windows with respect to pitches. An illustration of this
is shown in Figure 6. If looking strictly at parallel computation
even the process of computing the hamming distance itself can
be incorporated into our CUDA algorithm (PP-GPU).

Fig. 6
PP-GPU ALGORITHM DESIGN.

3.2.1 PP-GPU

Initially our strategy was to exploit the parallel nature of
CUDA by calculating each window’s hamming distance to
every pitch concurrently, while at the same time calculating the
hamming distance in parallel. The kernel grid was aligned to
perform the error calculation in one kernel. The X direction of
the grid being the number of windows per row, x = q, signify-
ing which window in the row we are, and the Y direction being
number of rows, not including the row of pitches, multiplied
by the number of windows per row, y = numRows ∗ q. The
Y direction was aligned in such a way so that the blocks
Y coordinate modulo number of rows, not including the row
of pitches, provides the row in the data set, the window that
this block simulates, by = blockIdx.y%numRows and the
blocks Y coordinate divided by number of rows, not including
the row of pitches, yields the pitch we are to perform the
hamming distance on i = blockIdx.y/numRows. If the block
index was (0, 4) in the 3 x 7 data set listed above, in Figure
6, then the block corresponds to the following where the pitch
is on the first row and the window is on the second as shown
by Figure 7.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 321

Fig. 7
BLOCK INDEXING SAMPLE.

Threads in each block calculate the hamming distance in
parallel. A pseudo code version of the algorithm shown in
Figure 8.

Fig. 8
PP-GPU ALGORITHM PSUEDOCODE.

Although this idea provides the greatest amount of
parallelism, due to hardware limitations this algorithm proved
to be the slowest of the GPU based algorithms. The hardware
limitation was with either a large data set and/or a small
window size the number of blocks to be placed in the grid
out grew the maximum grid limit imposed by CUDA. This
required the kernel to be launched several times. With each
kernel invocation there is time wasted making the kernel call
and with a data set of 512 x 512 characters and window sizes
of 15 characters the grid in the Y direction needed 254, 976
blocks. However CUDA only supports 65, 535 blocks in
the Y direction on the grid [2], thus resulting in the kernel
needing to be called 4 times, and that number increases to 16
with a 1024 x 1024 data set with the same sized windows.

3.2.2 PP-GPU*

Discovering the hardware limitation gain we attempted to
remove multiple kernel launches in an attempt to increase
performance by shrinking the number of blocks in the Y
direction with the use of a for loop that iterates over the
windows in a row. This design came to be known as (PP-
GPU*). Incorporating this idea into the above algorithm design
we can lay out the grid as to align the Y direction with the
rows of the data set while the X is aligned on pitches we are
to find a hamming distance to. Each block is still calculating
the hamming distance in seemingly parallel. A pseudo code
algorithm is shown in Figure 9.

Fig. 9
PP-GPU* ALGORITHM PSEUDOCODE.

PP-GPU attempted to perform as many calculations as
possible in parallel after experimentation was performed in
order to optimize the kernel. An optimized version PP-GPU*
did remove the hardware limitations and increased the speedup
shown in Experimental Results, but more performance was
possible. The parallel calculation of the hamming distance
was discarded and the layout and functions of the grid, block
structure was redesigned.

3.3 Streamlined GPU algorithm (S-GPU)
Upon seeing that hardware limitations will be hit if we take

advantage of every bit of parallelism present in the problem,
we re-engineered and streamlined the algorithm. The resulting
algorithm takes the most efficient parallel ideas and discards
those that only caused increased overhead when implemented
on current hardware.

The main idea behind the streamlined algorithm is that
in order to find the closest substring, all chords must be
calculated and compared in order to determine which one has
the smallest chord distance. Each chord finding operation is
independent of each other. Looking further, within each chord
finding operation, each note finding operation is independent.
These facts point us toward a parallel algorithm in which all
chords can be found simultaneously, and within each chord
finding operation, all notes can be found concurrently.

The aforementioned description leads to an implementation
of an algorithm that essentially eliminates the outer two for
loops of the CPU algorithm, by doing them concurrently. We
chose to have each CUDA block calculate the best chord
associated with a single pitch, each CUDA thread of the
block will search one string for the closest note concurrently.
This allows us to take advantage of the CUDA programming
model that allows threads to cooperate. In CUDA, when a
kernel is called the caller must specify the number of blocks
that will execute the kernel and the number of threads that
each block should contain. Our kernel uses the number of
windows possible in a string to be the number of blocks,
specifically numBlocks = q. The number of threads is
directly proportional to the number of strings, specifically
numStrings = numThreads. The chosen configuration
allows for notes of a chord to share their distances so that
a chord distance can be calculated, CUDA threads allow this

322 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

kind of cooperation. This configuration lends itself well to the
problem and increases parallelism without adding additional
memory requirements. Figure 10 shows a simplified version
of the algorithm in pseudocode.

Fig. 10
S-GPU ALGORITHM PSEUDOCODE.

This, Streamlined GPU algorithm results in less memory
use on the device. Simply put, the memory use went from
using n2 amount of memory to store intermediate results with
PP-GPU, to using only n memory for intermediate results on
both PP-GPU* and S-GPU. Where n is the size of the data-
set. This decrease is tremendous when considering inputs for
n are typically large. It should also be pointed out that S-
GPU cuts the size of the results generated from the kernel
form n2 to n. This is good news considering that the transfer
from CPU to GPU memory has historically been a bottleneck.
The streamlined algorithm also allows for one kernel to do all
necessary calculations, rather than multiple kernels which was
required in the PP-GPU algorithm. These improvements result
in a faster algorithm.

4. Experimental results

4.1 Test hardware

All experiments were preformed on the following system:

• CPU: 2x Intel Xeon X5660 @ 2.80GHz

– 6 core 12 threads per CPU

• Memory: 24 GB
• GPU: Tesla C2070 @ 1.15 GHz

– Driver version: 260.19.26

4.2 Experiments

4.2.1 Experiment 1

Compared to another exact version (running sequentially),
we achieved a 18x speedup for an input file of size 1024 x
1024 with a length of 3 as shown in Figure 11.

Fig. 11
COMPARISON OF ALGORITHMS CPU AND S-GPU:

L = 3, d = 3

By successfully flattening the time vs. data-set size function
it is possible for some applications to get timely results
whereas before results would have been prohibitively expen-
sive. The accuracy of the algorithm is unchanged. It still can
deduce the closest substring with precise accuracy.

4.2.2 Experiment 2

Fig. 12
COMPARISON OF ALGORITHMS CPU, PP-GPU(*), AND S-GPU:

L = 16, d = 4

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 323

Fig. 13
OVERALL ALL SPEEDUP OF GPU ALGORITHMS:

L = 16, d = 4

Although PP-GPU attempted to preform the calculations of
finding the hamming distances and chord errors in parallel,
this action did not equate in much of a performance gain when
compared to S-GPU. Its design was more fine grain than S-
GPU, and thus needed more synchronization and collaboration
to preform the calculation. The original design also facilitated
the need for multiple kernel invocations which also contributed
to the degradation in performance. The hardware fixed version
PP-GPU* does provide a speed up of about 1.5x over its
predecessor (PP-GPU) which had an overall speed up of 4.5x,
and an speedup of 6.8x when compared to the CPU. S-GPU
improved on this by utilizing a less fine grained approach
to the problem allowing for the removal of key bottlenecks.
In experiments, S-GPU ran 1.9x faster than PP-GPU* and
achieved an overall speed up of 13x. It can be inferred from the
results that more threads preforming small jobs is not always
conducive to better performance, rather a smaller number
of threads preforming sightly more work produced the best
results in our experiments.

5. Related work
There has been much work done in areas closely related

to CSSP. Problems such as multiple sequence alignment have
experienced heavy research as of late.

Some have attempted to apply GPU algorithms to speedup
multiple sequence alignment [9]. Although sequence align-
ment and CSSP are related they are not the same. CSSP is
a more general problem. Perhaps ideas formed here can be
adapted and applied to multiple sequence alignment tools such
as Clustal. Perhaps ideas here can be applied to other areas in
which forms of CSSP are represented.

Related work specific to CSSP has also been done. There
have been many novel optimizations to approximation algo-
rithms [1]. These algorithms generally perform much faster
than an exact algorithm. The downside of course is that
the results obtained are not verified. Our research focused
on optimizing an exact algorithm, one who’s result can be
verified.

An approximate evolutionary algorithm for CSSP has been
studied [8]. The algorithm attempts to change itself to make
its results more accurate over time.

6. Conclusion
GPU devices can be used to efficiently solve the CSSP using

parallel algorithms and GPU technology. For applications that
require solving the CSSP or any of its relatives, efficient GPU
algorithms can be developed that will permit computations that
were previously too expensive.

Using parallel GPU algorithms and smart parallelization
strategies we were able to greatly speedup the process of cal-
culating the closest substring. The many existing applications
that use a form of the CSSP can make use of GPUs to make
their calculations faster. New applications could be built that
previously could not due to the time required to calculate the
closest string.

7. Future work
The algorithm can be expanded to work on larger data

sets. The process of locating the lowest chord distance can
be parallelized. The algorithm can be further optimized by
using parallel minimization of the chord distances. This could
result in an additional speedup for large data sets. The process
of finding the chord distances can also be optimized using a
parallel addition rather than the, sequential at worst, atomic
add function included in the CUDA toolkit.

References
[1] Bin Ma. “A Polynomial Time Approximation Scheme for the Closest

Substring Problem (2000)” In Proceedings of the 11th Annual Symposium
on Combinatorial Pattern matching, 2000, pp. 97-107

[2] ”NVIDIA CUDA C Programming Guide”. Internet:
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/
docs/CUDA_C_Programming_Guide.pdf November 9,2010 [March 21,
2011]

[3] K. Lanctot, M. Li, B. Ma, S. Wang, L. Zhang. Distinguish string search
problems, Proceedings of the Tenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 633-642, San Francisco, 1999

[4] J. Sanders, E. Kandrot, CUDA By Example: An Introduction to General-
Purpose GPU Programming. Addison-Wesley Professional, 2010

[5] D. B. Kirk, W. W. Hwu, Programming Massively Parallel Processors: A
Hands-on Approach. Morgan Kaufmann, 2010.

[6] Ming Li, Bin Ma, and Lusheng Wang. “On The Closest String and
Substring Problems” eprint ARXIV 2000.

[7] Markus Chimani, Matthias Woste, Sebastian Bocker “A Closer Look at
the Closest String and Closest Substring Problem” 2011 Workshop on
Algorithm Engineering and Experiments (ALENEX) 2011.

[8] Holger Mauch. “Closest Substring Problem - Results from an Evolution-
ary Algorithm,” in Neural Information Processing, 1st ed., vol 3316. Ed.
Nikhil Pal, Ed. Nik Kasabov, Ed. Rajani Mudi, Ed. Srimanta Pal, Ed.
Swapan Parui, 2004, pp. 205-211.

[9] Andrew Bellenir, Christian Trefftz, Greg Wolffe, "Graphics Processor
Based Implementation of Bioinformatics Codes", 2008.

324 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Achieving High Throughput Sequencing with Graphics Processing
Units

Su Chen1, Chaochao Zhang1, Feng Shen1, Ling Bai1, Hai Jiang1, and Damir Herman2

1Department of Computer Science, Arkansas State University, Jonesboro, AR 72467, USA
2Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA

Abstract— High throughput sequencing has become a pow-
erful technique for genome analysis after this concept was
raised in recent years. Currently, there is a huge demand
from patients that have genetic diseases which cannot be
satisfied due to the limitation of computation power. Though
several softwares are developed using currently most efficient
algorithm to deal with various types of sequencing problems,
the CPU seems to be too expensive to process endless data
economically because CPUs are not designed adaptive for
data parallel problem. The latest Fermi architecture released
by NVIDIA provides considerable number of streaming pro-
cessors, bigger size of register file and 1 MB cache, which
makes it very competitive for data parallel processing. This
paper tries a simple sequence alignment method on GPU
and compared the real world performance between CPU
and GPU. Experiment shows that GPU may have a good
potential with similar problems.

Keywords: High Throughput Sequencing, Graphics Processing
Unit

1. Introduction
Nowadays, people are paying more and more attention to

health care and advanced devices are designed to analyze
the samples from patients. When it comes to the molecular
level, the data amount becomes extremely large, which needs
more computational power to work on it. Recently, the
emerging High Throughput Sequencing (HTS) technology
[6], [7] shows bioinfomatists a way to deal with this problem
better and many multithreaded programs such Bowtie [3],
BWA [4] and SOAP2 [7], have been raised for practical
use. However, for sequential CPUs, sequence alignment is
somehow too easy to deal with, which makes it too expensive
to use smart chips like CPUs. As NVIDIA released its
new Fermi architecture which provide 512 cores in one
chip and gigabytes of memory, GPU seems to have great
potential in taking over this job and doing it faster and more
economically.

In this paper, a simple way is proposed to do exact match-
ing between massive DNA target fragments and mRNA
reference sequences, and performance comparisons between
its CPU and GPU version are discussed. The paper is
organized as follows: Section 2 gives our method, including
indexing and searching phases, to do sequencing. Section 3

discussed about the detailed designs considering architec-
tures. In Section 4, we will discuss on the experimental
results. Section 5 is the related work and conclusions will
be drawn in Section 6.

2. Algorithm Design
The algorithm idea used in this paper comes from

Burrows-Wheeler Transformation, which was first raised
for data compression and was later developed to make an
efficient index for sequence alignment. Fig. 1 illustrates how
the original transformation works.

acaacg$

acaacg$

caacg$a

aacg$ac

acg$aca

cg$acaa

g$acaac

$acaacg

$acaac g

aacg$a c

acaacg $

acg$ac a

caacg$ a

cg$aca a

g$acaa c

gc$aaac

Fig. 1: Burrows-Wheeler Transformation

The concept of BWT is to make an index of reference
sequence by hashing the elements within sequence to a
special order, which will benefit later searching phase and
reduce searching time complexity from O(nlg(n)) of brute-
force method to O(lg(n)). Concrete implementation of BWT
can be described as follows:

1) Put a “$” at the end of reference sequence.
2) Copy the current sequence and shift the new sequence

to right by 1 and put it below the last one for n times, given
the original sequence length is n.

3) Sort the new generated block by the order of “$”, “a”,
“c”, “g”, “t” for each column.

4) Get the last column of the sorted matrix.

2.1 A New Indexing Method for Test
Inspired by BWT, we designed another way to make the

index. Procedure of the new method is shown in Fig. 2. Next,
we will explain it in a more detailed way.

1) We still add a “$” at the end of the reference sequence.
2) Generate the same block as what BWT does. This time,

we put order numbers for “a”, “c”, “g” and “t” separately
for the first column.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 325

3) In this approach, we only sort the first column of the
matrix and make sure the small order numbers of “a”, “c”,
“g” and “t” are on the top of the larger ones.

4) We get the last column as the new index.

acaacg$

1 acaacg$

1 caacg$a

2 aacg$ac

3 acg$aca

2 cg$acaa

1 g$acaac

1 $acaacg

gc$aaac

1 $acaacg

1 caacg$a

2 aacg$ac

3 acg$aca

2 cg$acaa

1 g$acaac

1 acaacg$

1 $acaacg

1 aacg$ac

2 acg$aca

3 acaacg$

2 cg$acaa

1 g$acaac

1 caacg$a

1 $acaac g

1 aacg$a c

2 acg$ac a

3 acaacg $

2 cg$aca a

1 caacg$ a

1 g$acaa c

Fig. 2: New indexing method

2.2 Searching Algorithm

1 $-----g 1

1 a-----c 1

2 a-----a 1

3 a-----$ 1

2 c-----a 2

1 c-----a 3

1 g-----c 2

a

1 $-----g 1

1 a-----c 1

2 a-----a 1

3 a-----$ 1

2 c-----a 2

1 c-----a 3

1 g-----c 2

aa

Search for: aac

ac aac

Fig. 3: Searching with the new index

The new proposed method has a brute-force searching
nature, but by using the index well, several improvements
can be achieved. The searching procedure is given in Fig. 3,
which is very straightforward.

2.3 Making A Secondary Index
Now, we are going to talk about how to improve the

performance of our searching algorithm. We can make a
secondary index based on the first level index generated by
the method mentioned above.

For the first column, since we will refer to the beginning
and end of “a”, “c”, “g” and “t” many times, we can save
some space and just record these position numbers for the
four types of letter. This saves not only the searching time
but also a lot of space for the index file. For the last column,
since the “a”, “c”, “g” and “t” here are not clustered, we

1 $-----g 1

1 a-----c 1

2 a-----a 1

3 a-----$ 1

2 c-----a 2

1 c-----a 3

1 g-----c 2

a: [1, 3]

g: [6, 6]

a: [4, 5]

a: {2, 4, 5}

c: {1, 6}

g: {0}

t: {}

Fig. 4: Secondary index generation

can create four arrays for each of them and remember the
occurance positions in the last column for each element. This
can prevent the searching algorithm go to positions of wrong
letters, for example, if we want “a”, we just go for 2, 4 and
5 positions in the last column and skip letter of other types.

Generally, though it does not fundamentally reduces time
complexity of searching algorithm, this indexing method
saves much unnecessary time by generating a simple index
in O(n) time, which is time-saving. In the experiment part,
performances of CPU and GPU that we will be discussing
about are based on this algorithm.

3. I/O Involved Program Design
3.1 Single-threaded Code Design for CPU

Since the indexing phase of our algorithm costs less
time compared with searching phase, in which unpredictable
number of target sequences will be throughput as inputs, we
add the indexing time to total searching time in this paper.
Another important advantage of this is that we can save I/O
time and load indices from hard-disk, which cost much more
time than the indexing phase when the reference sequence
file is very large. When we do everything in memory and
never go to hard-disk, searching usually becomes faster. Fig.
5 illustrates how the data pertains our program flows between
memory and hard-disk.

1) Load reference sequence file from hard-disk.
2) Generate index for reference sequence in memory.
3) Remove original sequence file from memory, only leave

the index there.
4) Load the next target sequence file from hard-disk to

memory
5) Do searching for the current batch of target sequences

and save results.
6) Remove the first batch of target sequences.
7) Repeat 4) to 6) for all target files.

3.2 CUDA C code design for single GPU
Fig. 6 shows the procedure for a machine that has a CPU

dealing with our problem. There are altogether nine steps of

326 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

(4)

DRAM

Reference

Sequence

File

Target

Sequence

File

(1)

(1)

(6)

(7)

CPU

DRAM

Ref-Seqs Ref-Index

Target

Sequences

(2)

(3)

(5)

Target

Sequence

File

(2)

...

Target

Sequence

File

(2)

D

I

S

K

Fig. 5: Data locality control for CPU implementation

execution and data transfer for both indexing and searching
phases, which will be explained more specifically next.

CPU

Host RAM

H-Disk

Dev RAM

G

P

U

Ref-Seq

File

Tar (1)

Tar (2)

Tar (n)

...

Ref-Seq

Index

Ref-Seq

Tar (1)

Tar (2)

Tar (n)

Tar (1)

Tar (2)

Tar (n)

(1) (2)

(3)

(4)

(5)

(6) (7)

(8)

(9)

(10)

Result

Result
(12) (12) Result

(13) (13)

...

...

(11)

(11)

(11)

(11)
(11)

(11)

Fig. 6: Work and data scheduling for GPU implementation

1) Load reference sequence file from hard-disk to CPU
memory.

2) Copy reference sequences from CPU memory to GPU
memory.

3) Remove reference sequences from CPU memory.
4) Generate index for reference sequence using GPU.
5) Remove original sequence file from GPU memory, only

leave index there.
6) Load a target sequence file from hard-disk to CPU

memory.

7) Copy current batch of target sequences in CPU memory
to GPU memory.

8) Remove present target sequences in CPU memory.
Load the next batch of target sequences.

9) GPU does searching and save result in its memory.
10) Remove current batch of target sequences from GPU

memory.
11) Repeat 6) to 10) for all target files.
12) Copy back result to CPU memory and save it to disk.
13) Remove results in GPU and CPU memory.

3.3 Noteworthy Differences between CPU and
GPU implementations

1) The GPU one has an initializing time for the first
booting of the device, usually taking up to 2-3 seconds,
where CPU one does not. So for small cases that can be
run very fast on CPUs, GPUs have no advantage.

2) Data transfer time between host and device memory
should be considered since data amount in our case is usually
very large.

3) GPUs can do simple calculations very fast if programs
are designed well, so indexing and searching phase can also
be considered to do in GPUs, if the data transfer time can be
ignored. If the indexing time requires only a little, there is no
much need to do it in GPUs. Searching phases usually can
be taken well on GPUs since target sequence numbers are
always very large. Acceleration rate of dozens to hundreds
can be expected for the searching phase if GPUs are adopted.

4. Experimental Results
Sequential code was written in C and tested on a machine

with two Intel Xeon E5504 Quad-Core CPUs (2.00GHz,
4MB cache), where GPU code was written in CUDA C and
tested on the same machine with two GPUs of NVIDIA
Tesla 20-Seris C2050. In the following part, performance
comparison between these two will be given and speedup
rate for GPU will be calculated out. Also, time proportion
for each part of whole algorithm on CPUs and GPUs will
be illustrated and discussed separately.

4.1 CPU vs. GPU Searching Time
Block sorting is the most time consuming part in making

index for reference strings. Fig. 7 gives the relational curves
about time cost and combination number of reference strings
(one reference string length = 3, 000).

From Fig. 7 we can see that for the algorithm proposed
in this paper, searching time takes a big portion of total
execution time on the CPU side while on the GPU side, it
takes relatively smaller portion. This is because GPU runs
much faster on the searching part compared to CPU, so given
the I/O and data transfer time changes proportionally as the
target sequence number increases, GPU saves more absolute
time as the problem scale becomes larger and larger.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 327

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100

E
x
e

c
u

ti
o

n
 T

im
e

 (
se

c
o

n
d

)

Target Sequence Number (Length = 87) x 100000

GPU with I/O

CPU with I/O

GPU search

CPU search

Fig. 7: CPU & GPU timing with and without I/O

4.2 Speedup on GPU
Fig. 8 and Fig. 9 illustrate two speedup curves about

the pure searching time and searching time with I/O and
data transfer. We can see that for pure searching algorithm,
the GPU one can beat the CPU one for up to 14 times,
where about 5 times speedup can be achieved when I/O and
data transfer is taken into consideration. Actually, since the
algorithm is not ultimately optimized, there should still be
potential for GPUs to speed up this problem.

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

S
p

e
e

d
u

p
 R

a
te

Target Sequence Number (Length = 87) x 100000

Speedup for searching

Fig. 8: GPU speedup rate without I/O

4.3 Overhead Breakdown with CPU & GPU
Approaches

1) I/O from hard-disk
For both CPU and GPU implementations, this part should

take the same time, which is inevitable. The bandwidth
from hard-disk to memory has always been a bottleneck for
similar problems. However, if we are not using the local
hard-disk but using InfiniBand to load data from remote
database in parallel, the performance for both CPU and GPU
once can be improved, where GPU one might benefit more

0

1

2

3

4

5

6

0 20 40 60 80 100

S
p

e
e

d
u

p
 R

a
te

Target Sequence Number (Length = 87) x 100000

Speedup with I/O

Fig. 9: GPU speedup rate with I/O

because it processes data much faster than CPU one and need
more data in a given time to meet its stronger computation
power.

2) Data transfer between host and device memory
Currently, NVIDIA GPUs are using PCIe bus to transfer

data from and back between host and device memory, whose
capacity is up to 4GB/s for one way transmission and
8GB/s for two way. This speed usually can satisfy GPU’s
computation power and will not be a bottleneck for now.
A noteworthy thing about this is that asynchronous memory
copy technique should be used when target sequence is too
large to load for once by GPU memory. Asynchronous copy
between host and device memory can overlap with GPU
computation, so either copy or computing time can be hidden
by this overlapping. Which portion will be hidden depends
on their time costs.

3) Time for indexing
For the algorithm presented in this paper, indexing time

can nearly be ignored since I/O and searching time dominate.
However, in real applications, such as BWT, indices are
usually made more efficient to use. But it also takes more
time on indexing and the overhead cannot be ignored. In
that case, indexing time should also be considered as an
important portion of the whole system.

4) Time for searching
This portion of time relies on many factors including

indexing efficiency, I/O speed, choose of device and task
partitioning design. Basically, more efficient indexing can re-
duce searching time whereas higher I/O speed can positively
influence the performance. For device choosing, we can say
GPU is better than CPU from the angle of economy since
it provides more powerful tools for searching. However,
whether a partitioning design is good or not is hard to tell if
we just look at the surface of a specific problem. Calculations
should be carefully done to find out the optimum selection
for it.

328 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

5. Related Work
RNA sequencing was one of the earliest forms of nu-

cleotide sequencing. The major landmark of RNA sequenc-
ing is the sequence of the first complete gene and the
complete genome of Bacteriophage MS2, identified and
published by Walter Fiers et al. in 1972[8] and 1976[2].

In late 2000 decade, high-throughput sequencing (HPS)
emerged. Li R (2008, 2009) proposed several papers about
BWT applications on short read alignment [6], [7]. Li
H (2008, 2009) [5], [4] and Langmead (2009) [3] also
published several works about memory-efficient alignment.
In recent years, several alignment programs such as Bowtie
[3], BWA [4] and SOAP2 [7] were released.

In 2009, Sinnott-Armstrong et al. presented a paper about
accelerating epistasis analysis in human genetics with Nvidia
GeForce GTX-280 and PyCUDA programming tool [9].
Nicholas et al. (2011) made a real-world performance com-
parison of SNPrank across programming platforms such as
Python, Java and Matlab, and hardware environments: single
threaded, multiple threaded and GPU, where GPU languages
are restricted to Matlab and Python [1] and GPU brand is
Nvidia Tesla-M1060. They declared for small cases, CPU
always performs better because of the data transfer to and
from device memory.

6. Conclusions and Future Work
This paper proposes a way to implement fast sequence

alignment on the latest version of NVIDIA GPU. From
the experimental result, we can see that GPU speeds up
more on the searching phase compared with CPU but delays
a constant length of time on its necessary data transfer
phase. This feature of GPU manifested that it has a good
potential for high throughput sequencing. If the bandwidth
bottleneck of loading data from hard-disk can be improved,
the performance still has a great potential to keep growing;
where for single threaded CPU, the computation power may
not guarantee that.

In future, we will try to parallelize the most advanced
sequence alignment algorithm on GPU and keep investigat-
ing the GPU’s capability on more applications that receive
urgent concerns from medical and biological fields.

References
[1] Nicolas A. Davis, Ahwan Pandey, and B. A. McKinney. Real-world

comparison of cpu and gpu implementations of snprand: a network
analysis tool for gwas. Bioinfomatics, 27(2):284–285, 2011.

[2] W Fiers, R Contreras, and F Duerinck. Complete nucleotide sequence
of bacteriophage ms2 rna: primary and secondary structure of the
replicase gene. Nature, 260:500–507, 1976.

[3] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast
and memory-efficient alignment of short dna sequences to the human
genome. Genome Biology, 10(3), 2009.

[4] H Li and R Durbin. Fast and accurate short read alignment with
burrows-wheeler transform. Bioinfomatics, 25(14):1754–1760, 2009.

[5] H Li, J Ruan, and Durbin R. Mapping short dna sequencing reads
and calling variants using mapping quality scores. Genome Research,
18(11):1851–1858, 2008.

[6] R. Li. Soap: short oligonucleotide alignment program. Bioinfomatics,
24(5):713–714, 2008.

[7] R. Li. Soap2: an improved ultrafast toll for short read alignment.
Bioinformatics, 25(15):1966–1967, 2009.

[8] Jou W. Min, G. Haegeman, M. Ysebaert, and Fiers W. Nucleotide
sequence of the gene coding for the bacteriophage ms2 coat protein.
Nature, 237(3069654):82, 1972.

[9] Nicolas A Sinnott-Armstrong, Casey S Greene, Fabio Cancare, and
Jason H Moore. Accelerating epistasis analysis in human genetics with
consumer graphics hardware. Technical report, Dartmouth Medical
School, NH, USA Politecnico di Milano, Milano, Italia, 2009.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 329

Optimization of a single seam removal using a GPU

Rok Češnovar, Patricio Bulíc, Tomaž Dobravec
University of Ljubljana, Faculty of Computer and Information Science, Tržaška c. 25, Ljubljana, Slovenia

Abstract— In this paper we consider the problem of im-
plementing and optimizing the Seam Carving algorithm on
graphics processing units. Seam Carving is a content-aware
image resizing method proposed by Avidan and Shamir. In
order to use their proposed method in real-time application,
a pre-processing step is needed. While some other papers
propose real-time resizing by changing the original Seam
Carving method, this paper focuses on optimizing the basic
single-seam method, for use on CUDA GPUs. To our best
knowledge none has focused on optimizing this single-seam
method so that it would best fit the GPU architecture.

Keywords: Seam Carving, CUDA, shared memory, GPU

1. Introduction
The increasing number of different-sized displays has re-
sulted in the increased demand for image resizing. Tradi-
tional image resizing techniques (image scaling, cropping)
are known to have some deficiencies, the biggest being
obliviousness to the image content. Thus changing the aspect
ratio with these techniques causes significant distortions.
Avidan and Shamir [1] proposed a new, content-aware image
resizing method, called Seam Carving. This method resizes
the image by adding or removing seams. A seam is a 8-
connected path of low energy pixels crossing the image from
top to bottom, or left to right, while only one pixel in a row
or column, respectively, can be a part of the seam. In order to
determine which pixels belong to the optimal seam, dynamic
programming is used. This proposed method can be divided
in 4 steps:

1) energy analysis
2) cumulative minimum energy computation
3) backtracking for optimal seam determination
4) seam removal

In order to reduce/enlarge the image in any dimension for
k pixels, all of the above steps have to be repeatedk-times
in order to achieve the best results. Repeating all the steps
is very time consuming, thus real-time application can not
be achieved this way. In [1] the authors provided a solution
for this problem, using a slow pre-processing step. With this
step we determine the sequence in which the seams can be
removed and the information about each seam. As we can
imagine this step is very memory consuming.
A number of papers were published on the topic of real-time
content-aware image resizing. In [3] the authors proposed
an efficient improvement of the seam carving method, by

detecting local and global seams. This way multiple seams
can be removed in each step, instead of the before mentioned
repetitions of single seam removal. In [4] the authors also
propose a more efficient approach to seam based content-
aware image resizing, searching the seams through establish-
ing the matching relation between adjacent rows or columns.
In this paper, instead of focusing on changing the seam carv-
ing algorithm, we focused on and optimized implementation
of the original single seam removing method on GPUs. The
optimization is based on the properties of the GPU we used.
We present the results of this implementation and the results
of the optimization steps. The method was implemented on
graphics processing units with the CUDA architecture and
programming model.
CUDA(Compute Unified Device Architecture) is an open
parallel architecture and a programming model, developed in
2007 by the nVIDIA corporation[2]. It gives the developers
a set of abstractions that enable expressing fine-grained and
coarse-grain data and task parallelism. CUDA provides us
with the possibility to run our algorithms massively parallel,
thus shortening the execution time and reducing the CPU
load.
This paper is organized as follows. In Section2 we give
an overview of the Seam Carving method, in order to give
the reader a better understanding of our implementation. In
Section3 we provide the reader with some basic information
on the CUDA programming model and architecture in order
to give the reader a better understanding of the presented
results and conclusions. In Section4 we propose the method
for parallelizing and optimizing of single seam removal
explained in Section2. In Section5 we present the mea-
surement results of the algorithm on our testing equipment.
And finally in Section6 we outline some conclusions and
give the proposal for the future works.

2. Seam Carving
In this section we will give a brief overview of the seam-
carving method proposed in [1]. This should give the reader
a better understanding of the implementation proposed in
Section4. All of the definitions in this section are based on
[1].
The seam carving method is used for image resizing.
Content-aware resizing is done by removing unnoticeable
pixels from the image. In order to determine which pixels
are the least important in our image we us an energy
function. An energy function determines the importance of

330 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

each pixel in the image. For the purpose of this paper we
implemented 2 energy functions with their main difference
being in computational complexity. A more complex energy
analysis was done with the Sobel operator 3x3:

Gx =

−1 −2 −1
0 0 0
1 2 1

 ∗A,Gy =

−1 0 1
−2 0 2
−1 0 1

 ∗A (1)

e(i, j) =
√
G2

x
+G2

y
, (2)

wheree(i, j) is the energy of the pixel in thei− th row and
j − th column andA is a matrix representing the image.
The less complex energy analysis was done with the follow-
ing function:

e(i, j) = |I(i, j)− I(i, j + 1)|/3

+|I(i, j)− I(i + 1, j)|/3

+|I(i, j)− I(i + 1, j)|/(3
√
2)

(3)

whereI(i, j) is the value of the pixel at(i, j). Lets assume
we want to reduce the image width. In order to keep the
rectangular shape of the image we need to remove the same
number of low energy pixels in each row. If this would be
the only constraint, the resulting image could contain the
zigzag effect. This leads to the definition of a vertical seam.
Definition 1: (Vertical seam) LetI be ann × m image.
A vertical seam is, as shown below, a 8-connected path of
pixels from top to bottom of the image.

sx = {sx
i
}n
i=1

= {(x(i), i)}n
i=1

, s.t.∀i, |x(i)− x(i− 1)| ≤ 1,
(4)

wherex is a mappingx : [1, .., n] → [1, ..,m].
Reducing the image width can now be seen as removing the
optimal seam, formalized in the following definition:
Definition 2: (Optimal seam) Lete(i, i) be the energy of the
pixel in i− th row andj− th column. An optimal seam is,
as shown below:

s∗ = min
s

n∑

i=1

e(i, j) (5)

wherex is a mappingx : [1, .., n] → [1, ..,m].
This step is done with dynamical programming, which is
divided into 2 steps. First we need to compute the cumulative
minimal energyM of each pixel.
Definition 3: (Cumulative minimal energy) For pixels from
the second to the last row cumulative minimal energyM is:

M(i, j) = e(i, j) +min(M(i− 1, j − 1),M(i− 1, j)

,M(i− 1, j + 1)),
(6)

while M(1, j) = e(i, j).
The pixel with the lowestM in the last row represents the
end of the vertical seam. In the last step we backtrack from
this pixel to the top of the image, the path of the backtrack
representing the optimal seam. To reduce the image width,
we only need to remove these pixels from the image.

Fig. 1: Grid of thread blocks [2]

As mentioned before, in order to reduce the width/height for
k pixels all the steps including the energy analysis need to
be repeated.

3. CUDA programming model and ar-
chitecture
In this section we will give an overview of the CUDA
programming model and architecture. We will give the basic
principles of writing a CUDA program and the architectural
features on which our implementation and optimization was
based on. Only the most essential information is given,
but enough to understand the following implementation and
results. More information on the topic of this section is given
in [2].
A CUDA program is separated in 2 parts, CPU code and
GPU kernels. A kernel is a C function that, when executed,
is calledN times in parallel byN different CUDA threads.
These threads are organized in one, two or three-dimensional
logical blocks. Blocks are furthermore organized in 1 or 2-
dimensional grids. The organization can be seen on figure
1.
Each thread has a unique pair of ID variables(threadIdx,
blockIdx). Both of these variables are, due to the multi-
dimensional logical structure of threads, component vectors.
The organization of threads depends on the size and structure
of the data and the problem.
Each of the multiprocessors on a GPU is given a number
of thread blocks to execute. The multiprocessor partitions
these blocks inwarps. A warp is a group of 32 parallel
threads. Each warp contains threads of consecutive, increas-
ing threadIDs, and executes one common instruction at a
time for all threads in a warp.
It is important to understand that we can only synchronize
the execution of threads in the same block, while synchro-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 331

nization of threads in different blocks can only be achieved
through loading a new kernel.
While focusing on the thread organization is important for
achieving the best results, optimizing the memory access is,
as we will see in section5, the main task in optimizing any
CUDA program.
Each thread can access different types of memory. In our
implementation the threads are accessing global and shared
memory. Every thread can communicate with any other
thread using global memory, while only threads in the same
block can communicate through shared memory.
Global memory resides in the device memory, while shared
memory is on-chip. Therefore shared memory access is
faster, as long as there are no bank conflicts. When using
global memory we have to focus on maximizing the coa-
lescing of memory accesses, while bank conflicts are our
main focus when using shared memory. The importance of
coalescing of memory accesses is closely related to the type
of GPU we are using.
A global memory request for a warp is split into 2 half-
warps. Memory accesses of threads in a half-warp can be
coalesced in one memory transaction, if proper requirements
are met. The requirements for coalescing to a single transac-
tion depend on the GPU architecture. Older CUDA enabled
GPUs supported coalescing only if consecutive threads ac-
cessed consecutive addresses (k− th thread accessesk− th
address), while newer GPUs coalesces the memory accesses
even if the addresses are permuted.

4. Implementation
In this section we will propose the implementation and
optimization of the algorithm for graphics processing units
that support CUDA.
The implementation is separated in 4 parts: energy analysis,
minimal cumulative energy computation, backtracking and
seam removal. For each of the first 4 parts a separate kernel
was written. This is due to the different thread organization
needed in every part of the algorithm and due to the need
for synchronization of all threads after each step.
Before we can start the computation we need to transfer the
matrix representing our image to the GPU device memory.
Then we can start with our first step.

4.1 Energy analysis
First lets look at an unoptimized kernel for energy analysis
(Listing 1). Because images are two-dimensional structures,
we define a two-dimensional logical structure of threads.
Each block consists ofp×p threads and the size of the grid
equals to⌈m

p
⌉ × ⌈n

p
⌉, wheren is the height andm is the

width of the image. This way we can assign a thread for
each pixel of the image.
In the kernel for this step, we first need to determine the pixel
to which the thread was assigned to. This is done using the
threadIdx and blockIdx variables (lines 5-7 in Listing1.

Al l that is left, is the computation of the energy value. In this
kernel, all memory accesses are made to the global memory.
The listing shown below is a kernel for energy analysis using
the energy function shown in equation3.

__g loba l__ vo id Energy (i n t * I , f l o a t * O,
i n t width , i n t h e i g h t) {

i n t j = b lock Idx . x* blockDim . x+ t h r e a d I d x . x ;
i n t i = b lock Idx . y* blockDim . y+ t h r e a d I d x . y ;
i n t i d = i * w id th + j ;

O[id]= (abs (I [i d]− I [i d + wid th])
+abs (I [i d]− I [i d +1])+ abs (I [i d]
−I [i d + wid th + 1]) / s q r t (2 . 0)) / 3 ;

}

Listing 1: Energy analysis kernel without the use of
shared memory

Due to the large number of global memory accesses we look
at the possibility of reducing them by using shared memory.
In this approach, each thread has to transfer the value of
its assigned pixel to the shared memory, before computing
the energy. In order for each thread, to have all the values
needed for energy analysis in its shared memory, the block
size needs to be enlarged. When using the function from
equation3 the new block size is(p+1)×(p+1). When using
the Sobel 3x3 operator, the new block size is(p+2)×(p+2).
The newly padded threads are only used for data transfer.
After the transfer of data from global to shared memory,
synchronization is needed, in order to ensure all data was
transferred. After that, we can compute the energy using the
values from the shared memory. In listing2 the kernel for
energy analysis using shared memory is shown. It should be
noted that, for transparency reasons, parts of code used to
check for boundary conditions was left out.

__g loba l__ vo id EnergySH (cons t i n t * I ,
f l o a t * O, i n t width , i n t h e i g h t) {

i n t j = b lock Idx . x* blockDim . x+ t h r e a d I d x . x
−b lock Idx . x ;

i n t i = b lock Idx . y* blockDim . y+ t h r e a d I d x . y
−b lock Idx . y ;

i n t i d = i * w id th + j ;

i n t r = t h r e a d I d x . y ;/ / row number
i n t c= t h r e a d I d x . x ;/ / column number
__shared__ i n t I s [p] [p] ;

I s [r] [c o l]= I [i d] ;

_ _ s y n c t h r e a d s () ;
O[id]= (abs (I s [r] [c]− I [r +1] [c])

+abs (I s [r] [c]− I [r] [c +1])
+abs (I s [r] [c]− I [r +1] [c + 1]) / s q r t (2 . 0)) / 3 ;

}

Listing 2: Energy analysis kernel with the use of shared
memory

332 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Besides the fact that shared memory access is faster it also
allows us to remove a number branches used for checking the
boundary conditions. As stated in [2], in order to reduce the
execution time, the number of branches has to be minimized.

4.2 Minimal cumulative energy computation
The second step of the algorithm is the computation of
minimal cumulative energy. The size of the block for this
step of the algorithm isr × 1, and the number of blocks
equals to⌈m

r
⌉ × 1. Due to the fact that, for computing the

values in thek− th row, all values in the(k− 1)− th row
need to be computed beforehand, synchronization between
all the threads is needed. The only way to achieve this is
by repeatedly loading the kernel for each row. We start by
loading the kernel for the second row, and continue all the
way to the last row. In listing3 the kernel for this step is
shown.

_g loba l__ vo id cum u la t i ve (f l o a t * O,
i n t width , i n t he igh t , i n t row) {
i n t j = b lock Idx . x* blockDim . x+ t h r e a d I d x . x ;
i n t i d = i * w id th + j ;

i n t i dSou th = id + wid th ;

i n t min=O[idSou th] ;
i f (O[idSouth−1]<min) min=O[idSouth−1];
i f (O[idSou th +1] < min) min=O[idSou th + 1] ;

O[id]=O[id]+ min ;
}

Listing 3: Kernel for minimal cumulative energy com-
putation

Shared memory can also be used in this step. The imple-
mentation of shared memory resembles to the one in the
energy analysis. The block needs to be,for the same reason
as before, padded with 1 thread on each side of the block
and synchronization is also needed. The only difference is
that the structure of the shared memory is one-dimensional.

4.3 Backtracking
For this step of the algorithm a single thread is used. First
it finds the minimal value in the last row. This is the end
of our optimal seam. Then it continues to select the pixels
for the optimal seam all the way to the first row. In every
row the thread finds the minimal value of all 8-neighbours
of the pixel selected in the previous row. The pixel with the
mentioned minimal value is selected for the optimal seam.

4.4 Seam removal
In the final step of the single seam removal we define the
block size to bep × p and the number of blocks equals
⌈m

p
⌉ × ⌈n

p
⌉. Each thread is assigned a pixel. Threads not

 0

 5

 10

 15

 20

 25

 30

 35

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

E
xe

cu
tio

n
tim

e
[m

s]

Number of pixels

Execution time of energy analysis using eq. (3)

No SHM - block size 16x16
No SHM - block size 22x22

SHM - block size 16x16
SHM - block size 22x22

Fig. 2: Execution times of energy analysis using eq.3

assigned to the seam pixels transfer the pixel values to the
new matrix, representing our result. If the assigned pixel is
located right of the seam, the thread moves the pixels value
to the column left of its location in the current matrix, other
pixels are assigned to the same position in the new matrix
as in the input one.
A new, result matrix, is needed, in order to prevent this step
from dependency issues.
After the seam is removed we transfer the new matrix,
representing our result, back to the main memory of our
computer.
If we wanted to remove more seams, we would use the result
matrix as our new input. In this case no transfer to global
memory is needed between steps.

5. Results
In this section we will present the results of our execution
time measurements. We ran our parallel version of the seam
carving method on a Tesla C1030 GPU. The consecutive
version was ran on a Intel i5 CPU.
The first measurement test we ran, was to determine what is
the optimal way of computing the energy analysis. In Figure
2 execution times of the energy analysis, using the energy
function from equation3, is shown. Figure3 represents the
execution times when using the Sobel 3x3 operator, which
is a more complex energy analysis and demands a greater
number of memory accesses. Based on this measured times
we came to the following conclusions.
When doing the energy analysis with the energy function
from eq. (3) the optimal block size is16× 16 threads. This
is mostly due to the size of the half-warp being 16, thus
optimal requirements for coalescing of memory accesses are
met. Furthermore, the use of shared memory reduces the
execution time in this energy analysis for approximately 38
percent.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 333

 0

 10

 20

 30

 40

 50

 60

 70

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

E
xe

cu
tio

n
tim

e
[m

s]

Number of pixels

Execution time of energy analysis using Sobel 3x3 operator

No SHM-block size 16x16
No SHM-block size 22x22

SHM-block size 16x16
SHM-block size 22x22

Fig. 3: Execution times of energy analysis using Sobel 3x3

When using Sobel 3x3 operator with shared memory the
optimal block size is22×22, when not using shared memory
the optimal block size is16 × 16 threads. By using shared
memory we reduce the execution time by 40 percent. The
reason for the optimal block size being larger than in the
previous energy analysis, is the increased number of padded
threads per block.
By increasing the block size, we reduce the ratio between
padded threads and threads that compute the energy values.
The block size22 × 22 is the largest square-sized block of
threads (maximum number of threads is 512), thus provides
us with the smallest ratio between the before-mentioned
threads.
The next measurement tests were done to determine the opti-
mal way of computing the minimal cumulative energies. We
found that the optimal size of the block for this step is256×1
threads. If the block size is bigger, not all multiprocessors
are occupied, and if it is smaller, the streaming processors
inside a multiprocessor are not optimally occupied.
We also found that the use of shared memory is not rec-
ommended. If we compare this step to the energy analysis,
where shared memory proves to be useful, we can state
that, the number of boundary conditions and global memory
accesses in this step is smaller, thus the advantages of
reducing their number does not overcome the disadvantage
of synchronizing the threads.
Now that we found the optimal way of executing the method
on a GPU, we can compare the execution times of optimized
and unoptimized version of the parallel algorithm to the
execution times of the concurrent algorithm, run on a CPU.
In figure 4 execution times for all three types are shown.
In figure5 the speedup factor when using GPU is shown. We
can see a significant reduce of execution time when using
GPU. For example, at the image size1024 the CPU needs
56ms to remove the seam, while the optimized version of
the GPU algorithm needs11.5ms to to the same.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 500 1000 1500 2000 2500 3000 3500 4000

E
xe

cu
tio

n
tim

e
[m

s]

Image width/height [pixels]

Execution time of single-seam removal on square-sized images

GPU optimized
GPU unoptimized

CPU

Fig. 4: Execution times of Seam Carving using CPU and
GPU

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500 2000 2500 3000 3500 4000

E
xe

cu
tio

n
tim

e
[m

s]

Image width/height [pixels]

Speedup factor of execution on GPU

GPU unoptimized
GPU optimized

Fig. 5: Speedup factor when using GPU

The unoptimized GPU version of the algorithm needs12ms.
Compare this to0.9s, 81ms and 72ms which are the
execution times of CPU, unoptimized an optimized GPU
algorithms at the image size4096×4096 pixels. We can see
a 10 percent reduction of the execution time with optimizing
the algorithm for GPU use.

The speed-up factor rises up to over12.5 at the image size
of 4000 × 4000 pixels, when using the optimized version,
and up to 11, when using the unoptimized version of the
algorithm at the same image size.

Both GPU implementations are faster than the CPU one
when the image size is bigger than150× 150 pixels.

334 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

6. Conclusions
In this paper we described the optimization of single-seam
removal using GPU. We have shown that shared memory
should be used in order to reduce the execution time of the
energy analysis and that its not useful to apply it to other
steps of the algorithm. We have shown that the use of shared
memory proves to be more useful when the energy analysis
is computationaly more complex and demands more memory
accesses. Furthermore we have shown that, when writing an
algorithm for GPUs, we need to focus on the block size we
define, in order to get the best results.
Future research will consider the possibility of parallelizing
the backtracking step of the algorithm and applying the same
methods of optimization to the works shown in [3],[4] and
[5].

References
[1] Avidan S., Shamir A.Seam Carving for Content-Aware Image Resizing.

ACM Trans. Graph. Vol 26., No. 3, 2007
[2] NVIDIA Corporation. CUDA C Programming Guide Version 3.1.1.

June 2010, CUDA Toolkit
[3] Chen-Kuo C., Shu-Fan W., Yi-Ling C., Shang-Hong L.Fast JDN-Based

Video Carving with GPU Acceleration for Real-time Video Retargeting.
[4] Huang H., Fu T., Rosin P., Qi C.Real-time content-aware image

resizing. June 2010, CUDA Toolkit
[5] Rubinstein M, Shamir A,Avidan S.Improved seam carving for video

retargeting. ACM Trans Graph(SIGGRAPH), 2008, 27(3): 1-9

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 335

An Experiment in Parallelizing the Fast Fourier

Transform

Timothy W. O’Neil, Ameen B. Mirza and Dale H. Mugler

The University of Akron

Abstract - We present the parallel implementation of

two new algorithms developed for the discrete cosine

transform. These algorithms support the new

interleaved fast Fourier transform method. Our

techniques were realized using the MPI standard

library and executed on a variety of equipment for

comparison. The results indicate a promising fresh

direction in the search for efficient ways to compute

Fourier transforms.

1. Introduction

The Fourier transform remains one of the greatest

algorithmic discoveries in history. Its ability to

convert the time domain to the frequency domain has

wide-ranging applications in science and engineering,

including digital signal processing, voice recognition

and image processing. Unfortunately, its use has been

hampered by its computational expense as a rule. It is

the ongoing search for effective implementations that

motivate this work.

We have attacked the problem in two ways: refine the

traditional fast Fourier transform (FFT) algorithm,

and implement the refinement in parallel for

expedience. Parallel implementations of the classic

FFT are quite common, particularly those using the

Message Passing Interface (MPI) standard library

[1,2]. Our purpose is to investigate the parallel

implementation of a new interleaved FFT algorithm

[3,4] which heavily relies on the discrete cosine

transform (DCT). Our early results seem to indicate

improved computing performance for large data sets,

leading to the promise of more efficient PDE

solutions, compression tools and MRI scans.

In the next section, we briefly review the formal

mathematical definitions and theory behind Fourier

transforms. Then we describe the computing

equipment used, the two DCT algorithms (gg90 and

lifting) developed, our parallel FFT designs and our

testing results. Finally we conclude and point to

future work.

2. Background

The mathematical theory behind the discrete cosine

and fast Fourier transforms is common in the

literature and only briefly reviewed here for

completeness. If x(t) is a periodic time function, it

can be decomposed into a series of sinusoidal

waveforms of varying frequencies and amplitudes. In

general, where e
iu

 = cos u

+ i sin u and is the

Fourier transform of x(t), a continuous function of

frequency [1].

However, computers lend themselves to discrete

rather than continuous math, leading us to sample the

frequency at intervals and estimate this equation via

summation. Specifically, choose N large enough so

that [-N/2, N/2] contains the interval where the n
th

sample of x(t) is non-zero. Thus the n
th

 series

coefficient is

since x(t) is zero outside the range in question. As N

increases the coefficients more closely model the

Fourier transform, so that under appropriate

conditions the Fourier series of x(t) equals x(t) itself.

In other words, , a

derivation also commonly referred to as the Fourier

series. In reality it is impractical to collect an infinite

number of frequency samples, leading us to sample

x(t) at N points and derive the discrete Fourier

transform (DFT): where

 for k = 0, 1, …, N-1 [1,2].

336 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

If x(t) is defined only for t 0, we can define a new

function y(t) = x(t)·(t 0) + x(–t)·(t 0) and see that

the continuous Fourier transform becomes

0

)2cos()(2

0

22
)(

2

1

0

0
2

)(
2

)(
2

1)(

dtfttx

dt
fti

e
fti

etx

dt
fti

etxdt
fti

etxfY

and thus Y(f) is the Fourier cosine transform of x(t).

It can be faster for some applications due to its use of

only real values. Using the same kind of logic as

before, we can derive a preliminary version of the

discrete cosine transform:

[3]. Note that this is something of a primitive version

of the DCT. There are actually eight standard types

[6], with a variation on DCT-IV used in the

interleaved FFT algorithm [4].

Finally, we note that the DFT can be rewritten to

separate terms with even and odd indices:

12/

0

12/

0

12

/2

2

12/

0

12/

0

/)12(2

12

/)2(2

2

2/
2

2/
2

2/2/

1

2

1

1

N

n

N

n

n

Nik

n

N

n

N

n

Nkni

n

Nkni

nk

N
ink

N
ink

ex
N

e
ex

N

exex
N

X

which we can summarize as Xk = ½(Xeven + e
-2ik/N

Xodd). Thus the DFT reduces to the problem of

evaluating two equations each with half the degree at

the squares of the roots of unity and combining the

results. This decomposition is the basis of the classic

Cooley-Tukey fast Fourier transform algorithm,

which recursively applies this idea and permits

calculation of the DFT in O(N log N) time rather than

O(N²) time [5].

3. Methods and Implementation

The primary contribution of this work involves the

implementation of a new interleaved FFT algorithm

which is heavily reliant on the DCT, then testing it on

data sets of varying sizes for execution times.

3.1. Available Hardware and Software

Configurations

For completing our experiments, we had access to

two parallel computers. The first was the cluster in

the University of Akron (UA) Computer Science

department. It consists of 46 3 GHz Intel
®
 Pentium

®

D CPUs for compute nodes, each with access to 2 GB

local RAM. The nodes are connected by dual gigabit

networks on private switches for cluster

communication. One network is used only for

diskless operations, the other only for MPI traffic. A

single front node is used for user access.

We also conducted experiments using the IBM

Cluster 1350, named “Glenn”, at the Ohio

Supercomputer Center (OSC) in Columbus for some

experiments. At the time, Glenn was configured with

877 System x3455 compute nodes (dual socket, dual

core 2.6 GHz Opterons with 8 GB local RAM and 48

GB local disk space), 88 System x3755 compute

nodes (quad socket, dual core 2.6 GHz Opterons with

varying amounts of local RAM (16, 32 or 64 GB) and

disk space (218 GB or 1.8 TB)), and other equipment

(4 Dual Cell-based QS20 blades, a Voltaire 10 Gbps

PCI express adapter, and 4 system x3755 login nodes

(quad socket, dual core 2.6 GHz Opterons with 8 GB

local RAM)), all connected by 10 Gbps Infiniband

[6].

Our parallel programs were coded in C and utilized

the LAM implementation of the MPI standard.

Supported by the OSC and the University of Notre

Dame, it is used in our programs for message passing

and associated operations during processing.

3.2. DCT Computation using the gg90

Algorithm

The first algorithm employed in this work, denoted

gg90, is based on the modified DCT algorithm of [7].

It involves three basic steps:

1. First reorder the input data points by

reversing the values with odd indices and

interleaving them. For example, let n = 8

and assume x[0…7] is the input vector. To

create the reordered vector x′[], let x′[i] =

x[i] for i = 0, 2, 4, and 6, while x′[i] = x[8 –

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 337

i] for i = 1, 3, 5, and 7. In the end x′[] =

[x[0], x[7], x[2], x[5], x[4], x[3], x[6], x[1]].

2. Next, calculate cosine and sine values for

appropriate pairs of points and angles using

the gg90 formula illustrated in Figure 1

below.

Figure 1: The gg90 Function.

3. Finally, calculate the sum-differences of the

results, as described by Figure 2 below.

Figure 2: The sumdiff Function.

These steps are repeated more-or-less recursively

depending on the position of the data points. In the

end, when the data point size is two, there is a last

computation step to perform. In this step, a sum-

difference of the two points, followed by division by

2, is performed. This step is pictured in Figure 3

below.

Figure 3: The final step in DCT.

The complete execution for an 8-point vector

following reordering is shown in Figure 4 below. As

you can see, after the first pass of the above steps, the

problem is partitioned into top and bottom halves,

with the gg90 function not applied to the top half. At

the end, with only two data points remaining, the

modified sum-difference operation is carried out to

derive the final answer.

Figure 4: DCT-IV for eight data points.

3.3. DCT Computation via Lifting

Alternately, we can replace the calls to gg90 in

Figure 4 with the lifting step pictured in Figure 5

below. Begin by pre-computing the R-value based on

the sine and cosine. When this is known, we can

compute L1, L2 and finally the upper output value, in

that order. The idea is that one multiplication is

eliminated by completing the calculations on the

angles ahead of time.

Figure 5: Lifting step for two data points.

3.4. Comparison

In order to determine our next step, we implemented

the DCT using both gg90 and lifting, and ran the

programs on one node of the UA cluster for varying

numbers of points. Later, undergraduate students in

our parallel processing course were given the code,

instructed to modify it as they chose to improve

execution times, and asked to repeat our experiment

on a smaller data set. The results are shown in Tables

1 and 2 below. As can be seen, the lack of a

multiplication operation does not seem to compensate

for the added complexity of computation, with the

gap growing steadily as points are added to the data

set.

338 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

N gg90 Lifting L()/g()

128

256

512

1024

2048

4096

8192

16384

124

215

437

848

1658

3411

7225

15,066

151

296

649

1557

4094

12,487

41,265

148,190

1.22

1.38

1.49

1.84

2.47

3.66

5.71

9.84

Table 1: Timing (in secs) of gg90 and

lifting algorithms on one processor, initial

experiments.

N gg90 Lifting L()/g()

32

64

128

256

512

9

13

28

53

106

12

23

49

106

229

1.33

1.77

1.75

2.00

2.16

Table 2: Timing (in secs) of gg90

and lifting algorithms on one

processor, student experiments.

The only remaining question regarding lifting is if the

expense of the computation could be mitigated by the

addition of processors. To investigate this possibility,

we re-implemented the lifting code to execute in

parallel using processors linked via MPI. The results

appear in Table 3 below. As seen, the increased

communication overhead overwhelms any potential

gain in efficiency. In the end, we were forced to

conclude that lifting would not be useful in future

experiments involving our current equipment.

N

Initial experiments Student exps.

1 proc 2 procs 4 procs
1

proc

2

procs

128

256

512

1024

2048

4096

8192

158

300

679

1516

4010

12,242

40,544

2530

6643

16,555

40,897

129,486

442,862

1,436,512

3033

7090

16,740

41,399

129,200

441,023

1,439,811

70

148

383

2904

7160

17,944

Table 3: Timing (in secs) of lifting algorithm on 1, 2 and 4

processors.

3.5. Experimental Results with the

FFT

As a consequence of these first trials, we chose to

proceed focusing exclusively on DCTs incorporating

the gg90 step. We also considered previously

published results from a similar project in the

University of Akron Biomedical Engineering

program concerning MRI imaging [8] for

comparison.

Three different trials were conducted. First, FFTs

involving only real numbers were computed with a

single processor. Next, two processors were

employed. One processor received the real

components of the input data points, the other the

imaginary parts. The processors work independently

on their computations, then exchange results when

finished. One of the two processors recombines real

and imaginary data and reports the final results.

The most complicated of the experiments involved

the use of six processors. The basic workflow is

described by Figure 6 below. Two processors get real

and complex data, respectively, as before. Each of

these processors then assigns work to two other

processors, which compute the DCTs and return the

results. When all processing is complete, one master

processor sends its results to the other (in this case,

the real data is transmitted to the processor holding

the imaginary data), who then combines the two sets

of figures into the final results as before.

Figure 6: Implementation of FFT on six processors.

Our results are summarized in Table 4 below. Both

the “UA” and “Biomed” columns in the table

represent timings obtained on the University of

Akron Computer Science cluster described above,

while numbers in the “OSC” column were derived on

their cluster.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 339

N

Real FFT, 1 proc

UA OSC Biomed

128

256

512

1024

2048

4096

8192

16384

32768

113

202

431

799

1621

3472

7018

15,163

31,153

123

233

459

792

1563

3008

5961

12,846

27,781

68

204

486

1170

2800

7000

18,100

46,900

N

Complex FFT, 2 procs

UA OSC Biomed

128

256

512

1024

2048

4096

8192

16384

32768

260

415

721

1266

2401

4284

8458

17,256

35,675

151

269

519

929

1704

3472

6582

13,775

30,410

66

199

456

1040

2330

7000

17,900

47,000

N

Complex FFT, 6 procs

UA OSC

128

256

512

1024

2048

4096

8192

16384

32768

1923

2335

4066

7789

13,401

27,205

51,167

120,313

529

647

838

1097

1832

3851

6609

12,737

26,613

Table 4: Timing (in secs) of experiments on FFTs.

The results are promising but reveal how much

remains to be done. The faster hardware at the OSC

does not show an effect on the 1-processor real case

until N exceeds 1000 points. The improved

communications backbone in the Glenn cluster

makes a dramatic difference in the parallel complex

trials when compared to the corresponding

experiment on the Akron cluster, but not enough to

justify the approach yet. On the other hand, we see

that the use of the gg90 algorithm in the calculation

of FFTs leads to improved results when compared to

the Biomed experiments for large values of N.

Similarly, the improved execution times on the OSC

cluster for the 6-processor tests over the 2-processor

tests for large N indicate that there is a gain here if

the communication costs can be sufficiently offset

and that we are on the right track.

4. Conclusions and Future Work

These initial results indicate that there is hope for this

direction but a lot of work must be completed. Better

designed parallel implementations are part of the

answer. So may be computing platforms with smaller

communication penalties, such as GPU computing

(i.e. NVIDIA
®
 chips and CUDA programming).

Finally, we are far enough into the patent process

now that we can talk more publically about

Interleaved FFTs and hope to explore their

application to specific problems, like MRIs.

5. Acknowledgements

The authors thank Profs. Stu Clary, Kathy Liszka and

Wolfgang Pelz from the University of Akron faculty

for their input into this work, as well as the scientists

at the Ohio Supercomputer Center (OSC) in

Columbus. We are also grateful to the students in the

Spring 2009 section of Introduction to Parallel

Processing at the University of Akron for their help

in double-checking experimental results, particularly

Rob Lipstreu, Blake Miner, Kyle Patterson and Jing

Yu.

6. References

1. Wilkinson, Barry and Allen, Michael. Parallel

Programming: Techniques and Applications Using

Networked Workstations and Parallel Computers.

Pearson Prentice Hall, 2005.

2. Quinn, Michael J. Parallel Programming in C with

MPI and OpenMP. McGraw-Hill, 2004.

3. Mugler, Dale H. The Centered Discrete Fourier

Transform and a Parallel Implementation of the FFT.

In Proc. of the IEEE International Conference on

Acoustics, Speech and Signal Processing, to appear,

2011.

340 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

4. Mugler, Dale H. The New Interleaved Fast Fourier

Transform. WIPO Patent Application

WO/2007/100666, pending.

5. Wikipedia. Fourier transform. [Online] March

2011. http://en.wikipedia.org/wiki/Fourier_transform.

6. Rao, K.R. and Yip, P. Discrete Cosine Transform:

Algorithms, Advantages, Applications. Academic

Press, Inc., 1990.

7. Cormen, Thomas H., Leiserson, Charles E., Rivest,

Ronald L. and Stein, Clifford. Introduction to

Algorithms. The MIT Press, 2009.

8. Ohio Supercomputer Center. High Performance

Computing Systems. [Online] December 2008.

http://www.osc.edu/supercomputing/hardware/.

9. Huang, H., Rahardia, S., Yu, R. and Lin, X. Integer

MDCT with Enhanced Approximation of the DCT-

IV. IEEE Transactions on Signal Processing, 54:

1156 - 1159, 2006.

10. Misal, Nilimb. A Fast Parallel Method of

Interleaved FFT for Magnetic Resonance Imaging.

M.S. Thesis, Dept. of Biomedical Engineering, The

University of Akron, 2005.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 341

Parallel Processing of Geospatial Time-series Data

Monte Lunacek, Peter Graf, and Wesley Jones
National Renewable Energy Laboratory, Golden CO 80401

Abstract— One way of quantifying how much sunlight the
earth receives, at a particular location and time, is to com-
pute a Cloud Index from satellite images. This calculation
involves processing large files of data that are collected in a
way that makes time-series analysis extremely time consum-
ing on a single computer. There are several ways to render
this memory-intensive problem more feasible using parallel
programming. Our implementation uses the Message Passing
Interface (MPI) protocol and is an excellent balance between
implementation complexity and execution time. We believe
that this will also scale well as more complex algorithms
for computing the Cloud Index emerge. This work extends
to any domain where time-series analysis is needed on large
data sets that are collected as a function of time.

Keywords: Parallel programming, Data analysis, Memory man-
agement

1. Introduction
Collecting geographic data as a function of time is ex-

tremely common in climate and weather modeling. This
creates a storage environment where the data necessary for
time-series analysis is likely spread over many, often very
large, files. We have recently been working on an application
with this general characteristic. Our implementation esti-
mates amount of sunlight that reaches the surface of the earth
at different locations and times during a year. This provides
critical information for making informed decisions about
how well a particular region can harness solar technology.
Unfortunately, there is a component of this process that
cannot be computed in a reasonable amount of time because
it requires simultaneous access to many large files that
cannot all reside in memory.

In this paper, we use the Message Passing Interface (MPI)
[5] protocol to communicate and distribute a fraction of the
large data set to other processors such that each processor
has the computational data in memory necessary for its part
of the analysis. This allows us to perform our calculations
in parallel on a process that would be extremely impractical
to complete on a single computer. This approach does not
make any assumptions about the type of data storage or how
it can be accessed. We compare and discuss when this type
of method may be preferred to using a parallel input and
output scheme.

Our application illustrates a less common use of parallel
computing. It is an an excellent example of how parallel
computing can render a memory-intensive process, one that

might not be possible, or at the very least, require an
extremely careful and time-consuming serial implementa-
tion, feasible in a reasonable amount of time. Often High
Performance Computing (HPC) is discussed in the context
of CPU cycles; systems that are computationally intensive
can distribute work across many cores and the resulting task
will hopefully complete much faster when run in parallel.
The model we describe is not computationally intensive at
all, but limited by the amount of memory needed to ensure
that all the components necessary for the calculation are
available.

The process of more accurately modeling the amount
of sunlight that reaches earth’s surface builds on exist-
ing knowledge. Geostationary satellites, such as the Geo-
stationary Operational Environmental Satellites, or GOES
(first introduced in 1984 [4]), provide spatial and temporal
spectroscopic information that we are using to compute a
Cloud Index (CI), which measures a cloud’s impact on light.
Perez et al.[6] outline a method where this information,
derived from satellite images, is combined with the Clear
SKy Model [2], [1]—an approximation that assumes there
are no clouds—to provide an improved picture of the amount
of sunlight that reaches the surface of the earth at different
times during the day, and different locations across the
United States. This more precise model is called the All
Sky Model (ASM).

The cloud index calculation is the component of the
overall process that stands out because, unlike other stages
in the workflow, the CI calculation requires temporal data
that is sparse in memory due, in part, to the way data is
collected and organized. This creates a bottleneck in the All
Sky Model calculation because there is not enough memory
on any single computer to calculate the Cloud Index in an
efficient way.

In this paper, we describe the workflow that takes satellite
images and transforms them into an All Sky Model. We
give a detailed description of the Cloud Index calculation
in order to discuss the various ways that this part of the
process can be computed in a practical amount of time. We
use this as a means for describing and evaluating solutions to
memory-intensive computing problems. Finally we describe
the results we generated using MPI communication and
discuss why using MPI communication strikes a reasonable
balance between implementation complexity and execution
time.

342 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

2. All Sky Model
The GOES satellite is a geostationary satellite. It orbits

the earth at the same speed as the earth rotates, which keeps
its perspective on the earth the same at all times. Every day,
GOES captures 83 images of the earth taken at different
Universal Coordinated Times (UTC). The full disk image
covers a projection of the entire earth. The extended northern
hemisphere is a sub-image that is focused on North America
and the northern half of South America. Each image is stored
in the GOES Variable Format (GVAR) and contains the
spectroscopic information used to compute the cloud index.
Figure 1 shows the full image taken by the GOES satellite as
well as the sub-image that represents the extended northern
hemisphere section.

The raw images transmitted by the GOES satellite are
converted to McIDAS AREA files [7] and indexed in a
way that is tied to latitude and longitude for each pixel
in the file. During this phase, the original raw image is
condensed from a 1km resolution to a 5km resolution. For
the extended northern hemisphere, this creates a file that
has 1702 × 2002 values for each UTC time period of each
day. Future implementations will work on files that have
a different degree of resolution, including the maximum
resolution of 1km, which will increase the size of the
McIDAS AREA data structure by a factor of 25.

There is a one-to-one relationship between the indices of
the McIDAS AREA file and the latitude and longitude on
the earth. For example, Boulder, Colorado is located at index
location (495, 497) in the AREA file.

The conversion from GVAR to AREA is necessary in part
because the image values need to be corrected and normal-
ized such that their brightness is comparable at different
times during the day. At noon, the sun is at 90 degrees,
whereas just before sunset, it is low on the horizon and
has an angle close to zero degrees. A normalization of the
values makes comparing the brightness at different times
of the day possible. The pixels of the resulting normalized
images are called Digital Number (DN) values. Unlike the
GVAR and AREA files, these values are grouped by day.
Since each day contains 83 UTC slices, the DN files contain
83× 1702× 2002 floating point values. When implemented
using a 4 byte floating point number, the entire file is roughly
1.05 Giga bytes in size (4 · 83 · 1702 · 2002).

This large file is used to create the Cloud Index (CI),
which is also stored by day in the same format and di-
mensions. A Clear Sky Model is used to generate surface
irradiance when there are no clouds. This is combined with
the Cloud Index to produce the final All Sky Model index.
This metric quantifies how much sunlight hits the surface of
the earth at each point in time. Figure 2 shows a diagram of
the data process from GVAR to AREA to DN. The CI and
ASM produce files in the same format as DN.

For the remainder of the paper, the x-dimension refers to
the UTC value (time) , the y-dimension refers to the latitude,

and the z refers to the longitude. Each day for a DN, CI, or
ASM will have dimension (83, 1702, 2002).

2.1 The Cloud Index Calculation
The cloud index calculation requires DN values over a

range of days. This reliance on neighboring DN values
renders a serial solution impractical because, although a
single day of DN values could fit into memory quite easily
(≈ 1 Giga byte), most computers cannot load and access 30
to 60 days worth of DN values efficiently.

Part of the problem is data structure necessary for storing
the DN values we need. In each file containing a single day,
the current cloud index calculation only needs to access a
small fraction of the data. Specifically, only a single pixel
from each day is needed to compute the cloud index of that
pixel for a given range of days. The cloud index calculation
for a specific UTC, longitude, and latitude is completely
independent of any other value in the file. This means that
the DN values that we need to combine are very sparse
within our data.

More complex calculations of the cloud index in the
future may have a higher dependency on the information
from each file, including values that have a similar location
(e.g. latitude and longitude) and time (e.g. UTC). Yet this
information is still sparse when considering a stream of data
that contains 30 to 60 days. Furthermore, as the analysis
of the CI data becomes more sophisticated, the calculation
will necessarily become more complex and computationally
expensive, even without using information from more than a
single location and UTC. These future developments do not
constitute a significant barrier to our implementation, which
we describe below.

The current cloud index calculation is not computationally
expensive. It is a simple averaging scheme that operates over
a range of days, which we refer to as the window. The size
of the window, which we call the window-size, is simply the
number of days and represents the minimum number of DN
values required to compute the cloud index (window-size·1).
That is, we only need a single UTC, latitude, and longitude
from each day in order to compute the cloud index for a
give pixel.

This is really an instance of a more common type of
problem. Anytime a large amount of data is collected as
a function of time, it is possible that the data needed for
analysis is spread in a sparse way over many large files. This
becomes problematic when the number of files needed to
perform an analysis becomes prohibitively large. In the next
section, we discuss some ways of addressing this problem.

3. Implementation Strategies
As mentioned, it is not possible to load and access a

complete window of days into memory. This means that
regardless of how we implement the calculation, we must op-
erate on a fraction of each day. We call this sub-component

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 343

Fig. 1: The GOES satellite captures a full image of the earth (left) as well as a sub-section of the northern hemisphere.
There are 83 images taken each day.

Fig. 2: An overview of the data flow calculating the All Sky Model. The initial images are in the GVAR format (left).
These images are converted to McIDAS AREA files that link each pixel to an index that represents a longitude and latitude
value. They are 1702× 2002 in size. Finally, when creating the normalized DN values, the data is grouped in files by day,
where each day contains 83 UTC images. The remainder of the workflow operates on files grouped by day. This includes
the Cloud Index and the All Sky Model.

344 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

a slice. In our current implementation, a slice can be any
subset of DN values because the Cloud Index calculation
does not have a dependency on values within a day. However,
future implementations may require a specific contiguous
region. For example, a slice might be defined as the space
inside the range of 0, 0, 0 to 83, 100, 100, which contains all
the UTC values for the first 100 longitude and 100 latitude
values in each day.

3.1 Serial Implementation

A serial implementation would, for example, be forced
to read each file and keep only a fraction of the data such
that the window-size × slice is less than the total amount
of memory available. This would be incredibly inefficient
because all the data for each day would be read multiple
times in order to process all the slices within the day.

With some file formats, a program can read only a portion
of the stored data, which is often more efficient than reading
the entire file. This is referred to as partial IO, and if
available, would greatly improve the efficiency of the serial
implementation by allowing each Cloud Index calculation
to only read the slices that it needs. This would still require
looping over the same time periods until an entire day is
processed, but the redundancy of reading the entire file
would be eliminated. HDF5 [3], for example, supports partial
IO by allowing a program to select a subset of the file, which
they call a hyperslab. The efficiency of partial IO in this case
can vary depending on how you define the hyperslab with
respect to the data organization.

The data structure we are using for the AREA files is
certainly part of what makes a serial implementation diffi-
cult. For example, if the AREA files were not grouped into
days, the bottleneck we are facing may be less prohibitive.
However, the optimal data structure during each phase of the
process is different and it is often not possible to define one
way of storing data that is optimal for parallel processing at
every stage of the workflow.

3.2 Parallel Implementation

The memory requirements of our problem limit the type
of parallel implementations we can consider. For example,
a shared memory approach is really not feasible because of
the scale of our memory requirements.

Given the independent nature of each point in the file
and the inherent limitation on memory, this problem is
an excellent candidate for a distributed memory parallel
implementation. While there are myriad ways this could be
done, we discuss two options: 1) using parallel IO and 2)
using MPI communication. In either case, the end goal is to
have the necessary slices of data available to each processor
and perform the calculation in parallel.

3.2.1 Parallel IO

It is possible for each processor to read its own slice of
each day in parallel. Once a full window is available for
processing, each processor computes the Cloud Index and
writes the results in parallel to an output file. This strategy
does not require large amounts of data to be passed between
the processors using MPI communication, however, it does
require the information to be passed on the filesystem.

There are some disadvantages to using parallel IO. Ar-
guably, parallel IO is complex to implement and debug.
It must also be supported by the file format and the file
system. On a more subtle level, the way we access slices in
a parallel IO context strongly depends on how the data is
organized and stored, whereas in our implementation, the
organization of the information in the file is completely
decoupled from how we use that information. Therefore,
there is no performance penalty for using non-contiguous
sections of the file.

3.2.2 MPI Communication

In order to avoid the complexities and dependencies
incurred when using parallel IO, we instead implemented a
simple communication scheme where the master processor
is the only rank that reads and writes, and each file is read
only once. The master rank divides the file into slices and
sends each working processor a portion of the overall file.
When a rank has received window-size slices, it computes
the cloud index and then discards the oldest day in order to
make room for another slice. In this way, each rank contains
a moving set of slices that are necessary for each cloud index
calculation.

Figure 3 shows an example. The working processor col-
lects a slice from each day until it has window-size slices. At
this point, the working processor computes the cloud index.
Then it discards the oldest day, which is no longer needed,
and creates room for the next slice sent from the master.

The master processor only reads, writes, and communi-
cates. When a processor sends back its slice containing the
cloud index values, the master overwrites the DN values in
memory as a means of conserving space. Once all the slices
for a particular day are returned by the working processors,
the master rank writes the memory to the cloud index file for
that day. Figure 4 graphically explains the master’s role. The
master’s primary responsibility is to read the file and send
slices to each worker. Then it waits for the slices, that now
contain the Cloud Index values, to return from each worker.
This information is written to disk as the cloud index.

There are some limitations with this method. In order to
process an entire day’s data, there must be enough processors
such that each working core can hold its share of the file and
still have the full window-size in memory. If we continue to
work off the assumption that memory will hold ≈ one day,
then this method requires at least window-size+1 processors.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 345

Fig. 3: The tasks performed by each working processor. The Cloud Index is computed once there are window-size slices
in memory. Then the oldest day is discarded, making room for the next slice sent from the master.

Fig. 4: The master processor breaks each day into slices that are sent to the working processors. Each worker sends back
the CI result, which the master then writes to disk.

4. Empirical results and Discussion

The previous section discussed three possible implemen-
tations, and as mentioned, there are many other variations
possible. In this section, we take measurements of our
implementation and extrapolate these values to illustrate
that using MPI communication to slice and distribute the
data yields a large speedup when compared to a serial
implementation, and that the additional benefit of using
parallel IO is relatively small in comparison. The exact time
values are not critical for the discussion.

We computed the cloud index over a one year period with
a window size of 28 days using a total of 64 processors in
about 145 minutes. The master divided each file into 63
slices and sent these to the workers. We found that it took
approximately 4 seconds for the master processor to read and
write each file. It took an additional 4 seconds for the master
to send each worker its slice, and about the same amount
of time to receive the results. Some processors begin their
calculation while the master is still sending data. Similarly,
the master processor received data from the processors that
finish early while some workers are still processing. The
computation time for each cloud index day was about 12
seconds, with a master wait time of approximately 8 seconds.
In total, a one year calculation took 145 minutes (e.g. (4+
4 + 8 + 4 + 4) · 365/60).

A serial implementation would want to maximize its

memory usage. For the sake of argument, let’s assume
that the slice size was double. This means that a serial
implementation would need to loop over each day 32 times
instead of 64. This also doubles the amount of time the
Cloud Index calculation takes (because the slices are twice
as big). We estimate that processing each day would take
about 4 seconds to read the file, 24 seconds to process the
file, and another 4 seconds to write the file. This would need
to happen 32 times for a total of 32(4 + 24 + 4) = 1024
seconds. One year on a single computer would take about
(1024)/60 = 6,230 minutes, or ≈ 4.3 days. Our parallel
implementation has a speedup of about 40 times.

Using parallel IO on 64 processors, each day would
take about 12 seconds to compute the cloud index, but
it’s possible that the parallel read and write time would
take a fraction of what it takes to read the entire file. The
best performance of the type of implementation would be
365 · 12 = 4380 seconds, or 73 minutes. This is about half
of the time it takes using our implementation, but makes
assumptions about how the data is stored on the underlying
file system.

As mentioned earlier, we may want to include values
that have a similar location and time in the Cloud Index
calculation. Our implementation has an advantage here be-
cause the master has an entire day in memory and can,
therefore, slice the data in any way with very little impact on
performance. However, if a particular slice is desired using

346 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

parallel (or partial) IO, the performance is closely tied to
how the data is organized and stored. HDF5, for example,
calls this chunking. This limits the type of slices that can be
processed efficiently.

5. Conclusions
Using MPI communication, we are able to compute

the Cloud Index for the All Sky Model as a function
of time. This computation would be extremely impractical
without the use of parallel computing. We estimate that
our implementation is approximately 40 times faster using
64 processors than a serial implementation would be. In a
sense, using MPI communication is the middle road between
the long wait necessary in a serial run, and the complex
implementation details of using parallel IO. This trade-off
strikes the right cord for our needs, but there are other ways
we could speed up this calculation if needed.

Future work may consider both 1) arbitrary sections of a
non-contiguous data, and 2) a more complex CI calculation.
There are two important points here. First, this memory-
intensive process could also become computationally more
expensive in the future. If this happens, adding additional
processors will help our implementation scale. Second, using
MPI to slice and distribute the data will be more agile as
different sub-sections of the data (e.g. slices of arbitrary
latitude, longitude, and UTC values) are required because
there does not exist a performance dependency on how
the data is organized and stored. We conclude that our
implementation scales well in this way.

Our discussion of the different implementations has some
uncertainty. Unfortunately, there is very little discussion in
the literature that includes actual results for problems of this
type. Future work may implement different procedures in
order to shed light on solutions to problems of this type.

At a higher level, our application belongs to a class of
problems where time-series analysis must be performed on
data sets that are collected and stored in a way that may
render analysis impractical on a single computer. Continuing
to explore ways to manage this type of data, and continuing
to understand the trade-offs, can lead to more widespread
disseminations of the techniques we use to understand our
data.

Acknowledgements
This work was supported by the U.S. Department of

Energy under Contract No. DE-AC36-08-GO28308 with the
National Renewable Energy Laboratory.

References
[1] P. Ineichen and R. Perez. A new airmass independent formulation for

the linke turbidity coefficient. Solar Energy, 73, 2002.
[2] F. Kasten. Parametriesierung der globalstrahlung durch bedekungsgrad

und trubungsfaktor. Annalen der Meteorologie Neue Folge, 20, 1984.

[3] Q. Koziol and R. Matzke. HDF5 Ð a new generation of HDF: Reference
manual and user guide. National Center for Supercomputing Appli-
cations, Champaign, Illinois, USA, http://hdf.ncsa.uiuc.edu/nra/HDF5,
1998.

[4] P. Menzel and J. Purdom. Introducing GOES-I: The first of a
new generation of geostationary operational environmental satellites.
Bulletin of the American Meteorological Society, 75, 1985.

[5] P. S. Pacheco. Parallel programming with MPI. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1996.

[6] R. Perez, P. Ineichen, K. Moore, M. Kmiecik, C. Chain, R. George, and
F. Vignola. A new operational model for satellite-derived irradiances:
description and validation. Solar Energy, 2002.

[7] E. A. Smith. The McIDAS system. IEEE Transactions on Geoscience
Electronics, 1975.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 347

A Parallel GPU Version of the Traveling

Salesman Problem

Molly A. O’Neil, Dan Tamir, and Martin Burtscher

Department of Computer Science, Texas State University, San Marcos, TX

Abstract - This paper describes and evaluates an implemen-

tation of iterative hill climbing with random restart for de-

termining high-quality solutions to the traveling salesman

problem. With 100,000 restarts, this algorithm finds the

optimal solution for four out of five 100-city TSPLIB inputs

and yields a tour that is only 0.07% longer than the optimum

on the fifth input. The presented implementation is highly

parallel and optimized for GPU-based execution. Running

on a single GPU, it evaluates over 20 billion tour modifica-

tions per second. It takes 32 CPUs with 8 cores each (256

cores total) to match this performance.

Keywords: Traveling Salesman Problem, Iterative Hill

Climbing, GPGPU, Program Parallelization

1 Introduction

 The traveling salesman problem (TSP) is one of the

most commonly explored combinatorial optimization prob-

lems (COPs), often used as an early exploration ground for

new approaches to COPs [1]. Consider a complete, undi-

rected, weighted graph G(V, E, W), where V is a set of ver-

tices, E is a set of edges, and W is a set of edge weights. A

Hamiltonian tour in G is a cycle that starts from a vertex v0 ∈

V and traverses all other vertices of G exactly once [1]. The

symmetric TSP is a special case of the problem of finding a

minimal Hamiltonian tour in a complete, undirected, planar,

Euclidean, weighted graph in which the vertices represent

cities, the edge weights represent the distances between the

cities, and the distance from city vA to city vB is the same as

the distance from city vB to city vA. The optimal TSP solution

consists of the Hamiltonian tour that yields the minimum

distance traveled.

 Finding an optimal solution to TSP is NP-hard [2], so

it is frequently approached using heuristic algorithms that

find near-optimal tours. Constructive multi-start search algo-

rithms, such as iterative hill climbing (IHC), are often ap-

plied to combinatorial optimization problems like TSP.

These algorithms generate an initial solution and then at-

tempt to improve it using heuristic techniques until a locally

optimal solution, i.e., one that cannot be further improved, is

reached. In each IHC step, a set of tour modifications, called

moves, are evaluated to determine the best move [3], [4]. For

instance, the tour can be adjusted by a heuristic such as 2-

opt, which removes the edges (vA,vB) and (vC,vD) and adds

edges (vA,vC) and (vB,vD) [1]. The IHC algorithm repeatedly

chooses the best move as the next step, reducing the length

of the tour until it finds a locally optimal solution, then res-

tarts with a new initial construction. This process of local

improvements and restarts continues until the solution is

sufficiently good or a limit on computing resources is

reached [5]. IHC is used for several problems, including

finding the maximal parsimony (phylogenetics) tree (MPT),

where thousands if not millions of restarts are needed to find

a good solution with high probability, making this approach

computationally expensive. In this paper, TSP serves as a

test bed for improving IHC implementations for solving

problems such as MPT.

 The past decade has seen a rise in the use of graphics

processing units (GPUs) as general-purpose computing de-

vices that can efficiently accelerate many non-graphics pro-

grams, especially vector- and matrix-based codes exhibiting

a lot of parallelism with low synchronization requirements.

Because their hardware is primarily designed to perform

complex computations on blocks of pixels at high speed and

with wide parallelism, GPU architectures differ substantially

from conventional CPU hardware. This can make it difficult

to write efficient implementations of non-graphics algo-

rithms for GPUs.

 For example, NVIDIA GPUs require sets of 32 pro-

gram threads, called warps, to execute the same instruction

in every clock cycle or wait. When not all threads in a warp

can execute the same instruction, the warp is subdivided by

the hardware into sets of threads such that all threads in a set

execute the same instruction. These sets execute serially

until they re-converge, resulting in a loss of parallelism.

 The memory subsystem is also optimized for warp-

based processing. If a warp accesses 32 consecutive words

in memory, the hardware merges the 32 reads or writes into

one coalesced memory access that is as fast as a single non-

coalesced access, subject to alignment and word-size con-

straints. Thus, it is crucial to use coalesced memory accesses

to exploit the GPU’s high memory bandwidth.

 The 32 processing elements (PEs) within each stream-

ing multiprocessor (SM) of a GPU share a pool of threads

called a thread block, synchronization hardware, and a soft-

ware-controlled cache called shared memory. A warp can

simultaneously access up to 32 distinct words in shared

memory as long as the words reside in different memory

banks. Barrier synchronization between the threads in an SM

takes one clock cycle if all threads reach the barrier together.

 The PEs are fed with warps for execution in multi-

threading style to hide latencies. Thus, it is paramount for

348 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

good performance to have many active resident warps in

each SM. In other words, GPUs require thousands of simul-

taneously running threads, i.e., large amounts of parallelism

to achieve maximum performance.

 The SMs operate largely independently. They can only

communicate with each other through global memory

(DRAM). Thus, synchronization between SMs must be done

using atomic operations on global memory locations, mean-

ing that GPUs are most effective at accelerating codes with

low sharing requirements.

 The large amount of parallelism and wide memory

buses make GPUs well suited to speed up codes displaying

high computational intensity and little synchronization. For

such codes, GPUs have demonstrated a substantial advan-

tage over CPUs in terms of performance per dollar and per-

formance per transistor [6] as well as performance per watt

[7]. GPU implementations of these applications can be do-

zens of times faster than optimized parallel CPU implemen-

tations [8].

 This paper explains how we parallelized and optimized

the IHC algorithm for TSP so that it can reap the benefits of

GPU acceleration. Our implementation running on one GPU

chip is 62 times faster than the corresponding serial CPU

code, 7.8 times faster than an 8-core Xeon CPU chip, and

about as fast as 256 CPU cores (32 CPU chips) running an

equally optimized pthreads implementation. For symmetric,

planar, 100-city problems with 100,000 random restarts, our

code finds the optimal solution for four out of five TSPLIB

inputs and is 0.07% off on the fifth input. Our open-source

CUDA implementation is freely available for download at

http://www.cs.txstate.edu/~burtscher/research/TSP_GPU/.

2 Parallelization and optimization

 This section explains how we implemented, optimized,

and parallelized the IHC algorithm for the TSP problem. In

this discussion, we assume symmetric 100-city problems

with 100,000 random restarts.

2.1 Parallelization

 There are several ways to parallelize this algorithm.

The 100,000 climbers are independent and can be processed

in any order, including concurrently. However, load balance

is a potential problem when parallelizing the climbers as

they require different numbers of IHC steps to reach a local

optimum. Within a climber, each IHC step depends on the

previous step and therefore has to execute serially. In our

implementation, every IHC step evaluates 4851 opt-2

moves. These moves are independent and can be run in pa-

rallel, but they require a reduction operation at the end to

determine the move that yields the largest reduction in tour

length. This reduction can be performed in log2(4851) ≈ 13

steps but necessitates synchronization and data exchange,

which may be slow.

 Because modern GPUs require tens of thousands of

parallel threads that perform very similar tasks to unleash

their full performance, we decided to run the independent

climbers in parallel. This approach results not only in the

highest degree of parallelism but also in the least amount of

synchronization and data exchange. However, the climbers

perform varying numbers of IHC steps to reach a local opti-

mum. We measured between 84 and 124 steps with an aver-

age of 103.3. Since we launch 14,336 threads on the GPU,

the average thread processes only 7 climbers, which results

in load imbalance and consequently poor scaling. In con-

trast, we launch no more than 256 threads on the CPU, yield-

ing an average of 391 climbers per thread, which is enough

to average out the number of IHC steps performed by each

thread. Thus, load balance is not an issue with the CPU code

but is significant in the GPU code. Because load balancing

imposes synchronization and serialization overheads, the

pthreads code actually runs faster without load balancing

whereas the CUDA code runs faster with load balancing.

Hence, we ended up with the following implementations.

 Our pthreads code statically assigns equal (±1) num-

bers of climbers to each thread. The threads run indepen-

dently to find the best solution among their climbers and

only execute a single critical section at the end to determine

the best solution among all threads. The GPU code, in con-

trast, only assigns a single initial climber to each thread.

When a local minimum is reached, the thread checks wheth-

er this minimum is smaller than the currently best solution.

If it is, the best solution is updated using an atomic com-

pare-and-swap instruction. Then, the next climber is ob-

tained from a global worklist using an atomic increment.

Threads terminate when the worklist is empty.

2.2 Code optimization

 Our serial, pthreads, and CUDA implementations use

essentially identical code for evaluating the opt-2 moves,

which takes the vast majority of the runtime. This code sec-

tion comprises two nested for loops that iterate over the

cities to form pairs of cities between which the tour is re-

versed. The CUDA code differs from the serial and pthreads

code in that we manually moved two loop-invariant compu-

tations out of the inner loop and specified that the inner loop

be unrolled eight times. This was not necessary in the serial

and pthreads codes as the C compiler automatically performs

these optimizations.

 Because GPUs are only fast if sets of 32 threads, i.e.,

warps, perform the same work (on different data) at the same

time, our implementation always considers 4851 city pairs in

each IHC step. In particular, the outer i-loop iterates from

the 1
st
 to the 98

th
 city while the inner j-loop iterates from the

i+2
nd

 to the 100
th

 city. Note that this approach avoids dupli-

cations in city pairs due to symmetry as well as pairs of

adjacent cities that never result in a change of the tour

length. Note that we always compute the tour length for all

4851 city pairs, including the ones that did not change from

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 349

the previous IHC step, because re-computing them is faster

than recording and retrieving this information.

 We optimized the loop nest by saving values fetched

from memory in register variables so that later iterations can

quickly access them. For example, even though we need four

city IDs (the i
th

, i+1
st
, j

th
, and j+1

st
) in every iteration, the

inner loop body only fetches the j+1
st
 city ID from memory

as the remaining values have been fetched earlier and are

“cached” in variables. Similarly, each opt-2 move needs four

distance values from a two-dimensional matrix (i
th

 to i+1
st

city, j
th

 to j+1
st
 city, i

th
 to j

th
 city, and i+1

st
 to j+1

st
 city, where

the 101
st
 city is the same as the 1

st
 city). Nevertheless, the

code only fully evaluates one distance, partially evaluates

two of the distances (by accessing a vector, i.e., a predeter-

mined row of the matrix), and uses a cached value for the

fourth distance to minimize computations and memory ac-

cesses. Aside from these operations, the inner loop only

contains assignment statements that copy one scalar variable

into another and an if statement to check whether a new

optimum has been found.

 To further boost the performance, the loop nest never

actually computes the tour cost. It only calculates how much

shorter an opt-2 move makes the current tour and picks the

move that results in the greatest savings. As long as an IHC

step results in a reduction in tour cost, the corresponding

best opt-2 move is applied, i.e., the selected tour segment is

reversed, and the next IHC step is initiated. Only once a

local optimum has been reached is the tour cost finally com-

puted. If this cost is lower than the previously found shortest

tour, the new tour is written back to global memory and the

shortest tour is updated. Otherwise, the new tour is simply

discarded to avoid unnecessary memory writes.

 To make the results deterministic and to simplify veri-

fication, the random seed used for generating a tour is the

tour number (0 to 99,999). This guarantees that the length of

the shortest tour is always the same, no matter in which

order the 100,000 tours are processed. Because a cyclic

rotation of a tour does not yield a new tour, the first city,

which is also the last city, can be fixed without loss of gene-

rality. This enables simplifying and accelerating the program

by hard coding the ID of the first city. Our code contains

several other minute enhancements.

 The CUDA code further contains GPU-specific opti-

mizations that do not apply to the CPU code. For instance,

the two-dimensional distance matrix is allocated in shared

memory, a software-controlled cache, so that accesses to it

are always fast. The 1024 tours that are evaluated concur-

rently in an SM are too large to fit in shared memory. Thus,

we allocate them in global memory (DRAM). To still be

able to access them quickly, the code first copies the tours

into local memory, which is part of the global memory but

ensures that every tour access in the two nested loops is

fully coalesced. Other GPU optimizations include limiting

thread divergence to rarely executed code sections and mi-

nimizing CPU/GPU transfers to just 40 kB initially to copy

the distance matrix to the GPU and 108 bytes in the end to

copy the best tour, its cost, and its tour number back to the

CPU. Note that, other than generating the distance matrix

and printing the result, our implementation runs the entire

TSP algorithm on the GPU.

3 Related work

 Most previous GPU-based approaches to the traveling

salesman problem use the Max-Min Ant System (MMAS)

algorithm [9]. This algorithm is a variant of Ant Colony

Optimization (ACO), a metaheuristic algorithm based on the

natural ability of ants to discover, collaboratively, the short-

est path between their nest and a food source by depositing

pheromone along their traveled paths. ACO algorithms si-

mulate the behavior of individual ants, which construct tours

around a graph based on the strength of evaporating phero-

mone trails left by other ants. Dorigo and Gambardella first

presented this algorithm applied as a distributed TSP solver

[10]. ACO algorithms spend the majority of their computa-

tion time in the tour construction phase [11], and because

ants travel independently and each ant constructs a complete

solution based only on the previous iterations’ pheromone

matrix, this phase is highly parallelizable.

 Bai et al. detail a CUDA implementation of the parallel

MMAS algorithm in which multiple ant colonies are simu-

lated concurrently on the GPU, one for each thread block,

with the tours of individual ants within each colony also

parallelized [12]. This implementation achieves up to a 32x

speedup over a serial CPU version under the same workload,

though without finding the optimal solution in some cases.

Jiening et al. present a C++ and Cg implementation of the

MMAS algorithm with up to a 1.4x speedup over the CPU

implementation, which finds the optimal tour on a 30-city

input [13]. You describes a CUDA implementation of a

parallel ACO algorithm [14], with each thread on the GPU

responsible for the travel of a single ant from a unique start-

ing location, achieving up to a 20x speedup over a serial

CPU implementation. Cecilia et al. present several GPU-

based, data-parallel strategies for both the tour construction

and pheromone update stages of the ACO algorithm, achiev-

ing a 28x speedup for the tour stage and a 20x speedup for

the pheromone update stage over sequential CPU code [15].

Many of the prior works on GPU-based ant colony solvers

compare solution quality only against a serial ACO imple-

mentation and do not address how often either implementa-

tion discovers the optimum TSP solution.

 There are also heterogeneous implementations of ACO

algorithms, which implement only part of the TSP solver on

the GPU. Delévacq et al. implement a parallel approach to

the MMAS algorithm that performs tour construction on the

GPU and pheromone update on the CPU [11]. Next, they

compare their implementation against their GPU version of

the original ACO algorithm [16], achieving better solution

quality (though still suboptimal in some cases) and up to a

3.6x speedup. Fu et al. describe an MMAS implementation

in MATLAB with the tour construction performed on the

350 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

GPU and the updates performed on the CPU [17]. This im-

plementation achieves roughly a 32x speedup over sequen-

tial CPU code, but with slightly lower solution quality com-

pared to the CPU implementation.

 There also exists a recent genetic algorithm-based TSP

solver in CUDA, presented by Fujimoto and Tsutsui in 2011

[18]. This work parallelizes TSP using the genetic crossover

operator and 2-opt local search. Their CUDA implementa-

tion on a GTX-285 is up to 24.2x faster than a single-core

CPU version, allowing an error ratio over the optimal trip

cost of up to 0.5%.

 To the best of our knowledge, this paper presents the

first GPU implementation of the IHC algorithm for solving

the TSP problem. Our IHC approach may be better suited

for GPUs than previously proposed algorithms as it yields

larger speedups over both serial and parallel CPU imple-

mentations while, at the same time, achieving very high

solution quality.

4 Evaluation methodology

 We evaluated our GPU implementation of TSP on an

NVIDIA Tesla C2050 graphics card, which has CUDA

compute capability 2.0 [19]. This GPU is equipped with 14

streaming multiprocessors (SMs), each with 32 cores, for a

total of 448 cores running at 1.15 GHz and sharing 3 GB of

global memory. Each multiprocessor is configured with 48

kB of shared memory and a 16 kB L1 cache. All SMs share

a 768 kB L2 cache. Each SM has 32,768 registers that are

shared among the threads allocated to the multiprocessor.

The CUDA code was compiled with nvcc version 3.2 using

the “-O3 -arch=sm_20” flags.

 We ran the pthreads and sequential CPU implementa-

tions on the Nautilus supercomputer at NICS, which con-

tains 128 2.0 GHz 8-core Xeon X7550 CPUs sharing 4 TB

of main memory. The pthreads and sequential codes were

compiled with icc version 11.1, with the “-O3 -xW -pthread”

flags for the pthreads version and the “-O3 -xW” flags for

the sequential version.

 We instrumented the three implementations to meas-

ure the runtime of everything except the reading in of the

100 city coordinates and the generation of the distance ma-

trix from these coordinates. We tested all implementations

on five TSPLIB benchmarks containing 100 cities [20].

5 Results

 Figure 1 plots the runtimes (in milliseconds) of our

three IHC implementations on the kroE100 TSPLIB input,

with the minimum, median, and maximum runtime of three

runs plotted separately. The runtimes for other 100-city

inputs and different random restarts are very similar. The

median runtime is listed above the columns. The results

show that our GPU implementation’s median runtime, at

2.497 seconds, is slightly under that of the parallel CPU

version run with 256 threads and dramatically less than that

produced by the sequential CPU code (2.58 minutes). Unlike

the GPU version, which produces highly consistent run-

times, the pthreads runtime at higher thread counts varies

substantially between executions. In fact, in some experi-

ments, it already started varying with 16 threads, i.e., the

problem seems to appear as soon as multiple CPU chips are

used. Since we made sure that there is no false sharing and

only a minimal amount of true sharing in our pthreads im-

plementation, we assume the variability is caused by interfe-

rence from other jobs that were running at the same time on

this large shared memory machine.

 Figure 2 displays the minimum, median, and maximum

speedups of the pthreads and GPU implementations relative

to the sequential CPU implementation. Again, we see that

154684 156413

78350

39175

19591

9802

4908 4368

2724 2539 2497

1024

4096

16384

65536

262144

1 2 4 8 16 32 64 128 256

R
u

n
ti

m
e

s
(i

n
 m

s)

Number of threads (pthreads CPU)

Min
Median
Max

sequential

CUDA
GPU

seq
CPU

pthreads CUDA GPU
(median)

Figure 1. Minimum, median, and maximum runtimes (in milliseconds) of the three TSP implementations

(note that this graph is logarithmic)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 351

the GPU version produces consistent speedups whereas the

pthreads version with 128 and 256 threads demonstrates

significant performance variance. The pthreads code scales

almost perfectly to 32 cores, indicating that it does not suffer

from false sharing, load imbalance, serialization, or other

parallelization overheads. However, scaling is poor beyond

32 threads, possibly due to the increasing thread startup cost.

Additional experiments with different random restarts re-

sulted in the same scaling trends. While the maximum spee-

dup offered by the 256-thread CPU version exceeds that of

the GPU implementation, the GPU code outperforms the

pthreads code in terms of median speedup. It achieves a

consistent speedup of around 61.9 compared to the 256-

thread pthreads version’s median speedup of 60.9. This

means that the GPU is capable of slightly exceeding the

performance of 256 x86 cores or 32 CPUs with eight cores

each on the IHC TSP algorithm.

 The Nautilus supercomputer on which we tested the

pthreads implementation has 2.0 GHz CPU cores. The se-

quential and pthreads implementations would benefit from

CPUs with faster clocks. However, we found the GPU im-

plementation to still offer a 50x speedup over the sequential

implementation executed on a 2.53 GHz Intel Xeon, sug-

gesting that the GPU solution offers a large performance

advantage over the CPU implementation even for the fastest

currently available CPUs.

 Table 1 addresses the solution quality and shows the

cost and number of the shortest tour found by the GPU im-

plementation for five 100-city inputs from the TSPLIB

library when using 100,000 random restarts. The optimal

tour cost and the runtime for each input are shown as well.

Our GPU code finds the optimal tour in all but one case, on

kroE100, where the tour is 0.07% longer. Doubling the

number of climbers to 200,000 allows the GPU code to find

the optimal tour in the last case as well.

Table 1. Solution quality achieved by the GPU

implementation for five 100-city inputs from TSPLIB

6 Summary and conclusions

 This paper explains how we parallelized and optimized

the IHC algorithm for solving the TSP problem on GPUs.

The results demonstrate that our implementation not only

yields a high solution quality but also runs very quickly. It

processes over 20 billion 2-opt moves per second on a single

GPU, which is 62 times faster than an x86 core and as fast

as 32 CPUs with 8 cores running a pthreads version of the

same algorithm. Based on these results, we believe our ap-

proach may be better suited for GPU-based acceleration

than the related ant colony and genetic algorithm-based TSP

solvers that are available for GPUs.

7 Acknowledgments

 This research was supported by an allocation of

advanced computing resources provided by the National

Science Foundation. Some of the computations were

performed on Nautilus at the National Institute for

Computational Sciences [21]. We thank NVIDIA

Corporation for donating the GPU that was used to develop,

Name Optimal Cost Min. Tour Cost Min. Tour # Runtime (s)

kroA100 21,282 21,282 33,188 2.540

kroB100 22,141 22,141 5,969 2.499

kroC100 20,749 20,749 23,092 2.543

kroD100 21,294 21,294 32,142 2.497

22,084 16,941 2.499

22,068 117,583 4.952

TSPLIB Database CUDA GPU Solution Quality

kroE100 22,068

1.0 2.0 3.9
7.9

15.8

31.5
35.4

56.8
60.9 61.9

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 32 64 128 256

Sp
e

ed
u

p
 o

ve
r

Se
q

u
e

nt
ia

l C
o

d
e

Number of threads (pthreads)

Min

Median

Max

CUDA
GPU

pthreads

(median)

CUDA GPU

Figure 2. Minimum, median, and maximum speedup of the pthreads and GPU implementations relative

to the serial CPU implementation

352 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

tune, and measure the CUDA implementation of the

algorithm presented in this paper. We further thank Intel

Corporation for donating the server on which the serial and

pthreads codes were developed.

8 References

[1] Johnson, D. and McGeoch, L. “The Traveling Sales-

man Problem: A Case Study in Local Optimization.” Local

Search in Combinatorial Optimization, by E. Aarts and J.

Lenstra (Eds.), pp. 215-310. London: John Wiley and Sons,

1997.

[2] Garey, M.R. and Johnson, D.S. “Computers and Intrac-

tability: A Guide to the Theory of NP-Completeness.” San

Francisco: W.H. Freeman, 1979.

[3] Ambite, J. and Knoblock, C. “Planning by Rewriting.”

Journal of Artificial Intelligence Research, pp. 207-261.

2001.

[4] Pitsoulis, L.S. and Resende, M.G.C. “Greedy Rando-

mized Adaptive Search Procedures.” Handbook of Applied

Optimization. Oxford University Press, pp. 168-183. 2001.

[5] Rego, C. and Glover, F. “Local Search and Metaheu-

ristics.” The Traveling Salesman Problem and its Variations,

by G. Gutin and A.P. Punnen (Eds.), pp. 309-368. Dor-

drecht: Kluwer Academic Publishers, 2002.

[6] Owens, J.D., Luebke, D., Govindaraju, N., Harris, M.,

Krüger, J., Lefohn, A.E., and Purcell, T.J., “A Survey of

General-Purpose Computation on Graphics Hardware.”

Computer Graphics Forum, Vol. 26, pp. 80-113. 2007.

[7] Huang, S., Xiao, S., and Feng, W. “On the Energy

Efficiency of Graphics Processing Units for Scientific Com-

puting.” International Symposium on Parallel Distributed

Processing, pp. 1-8. 2009.

[8] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer,

J.W., and Skadron, K. “A Performance Study of General-

Purpose Applications on Graphics Processors Using

CUDA,” Journal of Parallel and Distributed Computing,

Vol. 68, No. 10, pp. 1370-1380. 2008.

[9] Stutzle, T. and Hoos, H.H. “MAX-MIN Ant System.”

Future Gen. Comput. Syst., vol. 16, no. 9, pp. 889-914. June

2000.

[10] Dorigo, M. and Gambardella, L.M. “Ant Colony Sys-

tem: A Cooperative Learning Approach to the Traveling

Salesman Problem.” IEEE Transactions on Evolutionary

Computation, Vol. 1, No. 1, pp. 53-66. April 1997.

[11] Delévacq, A., Delisle, P., and Krajecki, M. “Max-min

Ant System on Graphics Processing Units.” Third Interna-

tional Conference on Metaheuristics and Nature Inspired

Computing. October 2010.

[12] Bai, H., Yang, D.O., Li, X., He, L., and Yu, H. “MAX-

MIN Ant System on GPU with CUDA.” Fourth Internation-

al Conference on Innovative Computing, Information and

Control, pp. 801-804. December 2009.

[13] Jiening, W., Jiankang, D., and Chunfeng, Z. “Imple-

mentation of Ant Colony Algorithm Based on GPU.” Sixth

International Conference on Computer Graphics, Imaging

and Visualization, pp. 50-53. August 2009.

[14] You, Y.-S. “Parallel Ant System for Traveling Sales-

man Problem on GPUs.” Eleventh Annual Conference on

Genetic and Evolutionary Computation. July 2009.

[15] Cecilia, J.M., Garcia, J.M., Ujaldon, M., Nisbet, A.,

and Amos, M. “Parallelization Strategies for Ant Colony

Optimisation on GPUs.” 14
th

 International Workshop on

Nature Inspired Distributed Computing. May 2011.

[16] Delévacq, A., Delisle, P., Gravel, M., and Krajecki, M.

“Parallel Ant Colony Optimization on Graphics Processing

Units.” Sixteenth International Conference on Parallel and

Distributed Processing Techniques and Applications. July

2010.

[17] Fu, J., Lei, L., and Zhou, G. “A Parallel Ant Colony

Optimization Algorithm with GPU-Acceleration Based on

All-in-Roulette Selection.” Third International Workshop on

Advanced Computational Intelligence, pp. 260-264. August

2010.

[18] Fujimoto, N. and Tsutsui, S. “A Highly-Parallel TSP

Solver for a GPU Computing Platform.” Lecture Notes in

Computer Science, Vol. 6046, pp. 264-271. 2011.

[19] “NVIDIA’s Next Generation CUDA Compute Archi-

tecture: Fermi.” Whitepaper, NVIDIA Corporation. 2009.

[20] Reinelt, G. “TSPLIB—A Traveling Salesman Problem

Library.” ORSA Journal on Computing, Vol. 3, No. 4, pp.

376-384. Fall 1991.

[21] National Institute for Computational Sciences,

http://www.nics.tennessee.edu/. Last accessed March 8,

2011.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 353

Genetic algorithm based on number of children
and height task for multiprocessor task Scheduling

Marjan Abdeyazdan1,Vahid Arjmand2,Amir masoud Rahmani3, Hamid Raeis ghanavati4

1 Department of Computer Engineering, Mahshahr branch, Islamic Azad Universiy, mahshahr, Iran.
Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran.

e-mail: abdeyazdan87@yahoo.com

2Department of Computer Engineering, Mahshahr branch, Islamic Azad Universiy, mahshahr, Iran.

 e-mail: vahid.arjmand@gmail.com
3Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran.

e-mail: rahmani@sr.iau.ac.ir
4Mahshahr, Iran.

e-mail: Hamid_raeis40@yahoo.com

Abstract- Due to optimal use of processors as well as
spending less time, the task scheduling in
multiprocessor systems is of great importance. This is
one of the NP_hard problems and achieving the
optimal schedule or finding the minimum schedule
length, using the dynamic algorithm and back-tracking
programming, would be time-consuming. Therefore,
heuristic methods like genetic algorithms are suitable
methods to schedule tasks in a multiprocessor system.
In this paper, a new genetic algorithm is presented
whose priority of tasks’ execution is based on the
number of their children and then height task in per
group with number of children equal. The results show
that our developed algorithm finds the near-optimal
schedule in a reasonable computation time, compared
to other heuristics.

Keywords: Multi processor, Genetic algorithm,
Schedule, Task graph, Distribute system.

1 Introduction

A big program could not have been performed on a
single processor in a reasonable time. Therefore, it has
to be divided into several tasks and the schedule length
should be minimized applying appropriate scheduling
in a multiprocessor system.
For mathematical modeling of task scheduling
problem, Direct Acyclic Graph (DAG) is used since

each task is represented by its corresponding node in
this graph. Presence of an edge from task ti to task tj
means that while task ti is not finished, task tj can not
start execution. The objective of scheduling a task
graph onto a multiprocessor system is to allocate n
tasks to m processors, as the priority task relations are
observed and the completing time of the final task is
reduced to minimum. Simply, if two tasks are
scheduled on two different processors, the
communication cost would be zero.
Scheduling in a multiprocessor system is an NP_Hard
problem [1]. In traditional and dynamic methods,
obtaining the best schedule is too time-consuming and
often random execution of tasks needs less time. Then,
in heuristic methods the best schedule is not necessarily
obtained in a reasonable time; however the obtained
solution is close to the best one. Many heuristic
methods have been studied such as: min–min, max-
min, duplex, MCT (Minimum Completion Time), MET
(Minimum Execution Time) [2], SA (Simulated
Annealing) [3, 4], tabu search [5]. One of the best
heuristic methods on task scheduling in multiprocessor
systems is genetic algorithm [3, 6, 7, 8, 9, 11]. In this
paper, a new genetic algorithm is introduced which
executes tasks with respect to their priorities, based on
the number of their children and then besed on height
task in per group with number of children equal.
Section 3 a new
The paper is structured as followed. Section 2 presents
priority-based task scheduling. In method is explained

354 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

that suggests prioritized tasks based on the number of
their children and then besed on height task in per
group with number of children equal. Section 4
elaborates on simulation and its result and Section 5
summarizes the achievements.

2 Priority-based task scheduling

2.1 Merge tasks
When combining a node with one of its parents, p, the
start time of the siblings of may be increased. To
resolve the difficulty, the parent node, p, could be apply
condition merge. However, if there are three condition
then merge two nodes parent and child.

a. Per current node only have one parent
b. Current node is only child for that parent
c. Execute time per task for current node

between different processors less than average
communication value (edge between parent
and child) current node and that parent.
dif(ni) = max (W(ni,pj) – min (w(ni,pm)) < C

(nk,ni)

2.2 Schedule length

The goal in scheduling problem is to minimize the
schedule length. The time that the final task is
completed on a processor is called the finishing time of
that processor. The maximum finishing time between m
processors is called TFT (Total Finishing Time) of the
schedule or schedule length. TFT is calculated by
Equation (1).

Figure 1: A task graph

Table 1: Hieght of tasks in Figure1

Table 2: Execution time of tasks

2.3 Prioritizing tasks based on the number
of their children
Last our method [12] of scheduling prioritizing is to
assign tasks to each processor based on a higher
number of their children. It means a task with more
children would be scheduled earlier. In consideration of
any task graph, the Number of Children (NC) for each
task is calculated by Equation (3).

 Finally, all tasks are assigned to the processors
(completeness) and each task is allocated only once
(uniqueness). Our suggested prioritizing algorithm is
illustrated with an example with attention to the task
graph in Figure 1. The NC of each task is presented in
Table 3 and the tasks are arranged in descending order
based on their NC in Table 4. The EST for each task is
shown in Table 5. By applying the above algorithm, a
schedule would be produced.

Table 3: Relevant NC for each task of Figure 1

Table 4: Ordering tasks based on their NC

Table 5: EST for tasks

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 355

2.4 Prioritizing tasks based on the
number of their children and height task in
per group

New our method of scheduling prioritizing is to assign
tasks to each processor based on a higher number of
their children then tasks in per group whose equal
number of their children prioritizing based on height
task . It means a task with more children would be
scheduled earlier and then tasks with number equal of
children would be scheduled based on height them. In
consideration of any task graph, the Number of
Children (NC) for each task is calculated by Equation
(3) and the height of a task would be calculated as
Equation (2) [9]. A schedule producing algorithm based
on the number of task children and height task is as
follows:

1. Put tasks in a queue based on number of their
children in descending order.

2. Separate tasks with the equal NC in a single
group and perform steps 3 and 4 and 5 for all
groups in order of higher NC until every group
is empty.

3. Put tasks in select group in other queue in
ascending order according to their height.

4. Produce a random number r between 1 and m
(m = count processors).

5. Select the first task from the queue and
allocate it to rth processor and then delete it.

Finally, all tasks are assigned to the processors
(completeness) and each task is allocated only once
(uniqueness). Our suggested prioritizing algorithm is
illustrated with an example with attention to the task
graph in Figure 1. The NC of each task is presented in
Table 3 and the tasks are arranged in descending order
based on their NC in Table 4. The EST for each task is
shown in Table 5. By applying the above algorithm, a
schedule would be produced as shown in Figure 2.

Figure 2: A schedule based on tasks NC and Hieght

3 The proposed algorithm

The genetic algorithm (GA) was developed by John
Holland in 1975 [10] which is a search technique based
on the principles of genetics and natural selection to
find an optimal or sub-optimal solution. In GA, the
term chromosome typically refers to a candidate

solution to a problem. GA allows a population
composed of many chromosomes to evolve under
specified selection rules to a state that maximizes the
fitness (i.e., minimizes the cost function). GA is a
method for moving from initial population of
chromosomes to a new population by using a kind of
genetic operators like crossover and mutation. Each
chromosome consists of genes. The selection operator
chooses those chromosomes in the population that will
be allowed to reproduce new generation. Crossover
exchanges subparts of two chromosomes and mutation
randomly changes the values of some genes in the
chromosome.
The new genetic algorithm introduced in this paper has
following five phases:

3.1 The fitness value and initial
population producing

The cost function of each schedule (i.e., the fitness of
each chromosome) is selected as schedule length or
TFT based on Equation (1). By repetition of the
schedule producing algorithm based on the number of
tasks children, the initial population will be produced.

3.2 Selection

The selection phase has two steps:
1) Applying a roulette wheel to select two

chromosomes:
After ascending ordering of chromosomes based on
their fitness, a roulette wheel series is constructed
based on their fitness [1]. Hence, the chromosomes
with lower TFT (best fitness), occupy more slots in the
roulette wheel. In this way the possibility of selecting
chromosomes with best fitness is higher. Then two
chromosomes will be selected.

2) Applying a roulette wheel for selecting a task:

A roulette wheel is constructed for tasks based on their
NC. A task with more children has more chance to be
selected compared to a task with fewer ones.
The genetic operators like crossover, mutation and load
balancing will be applied on the current generation to
produce the next generation.

3.3 Crossover

A random number is produced between zero and one
and if it is larger than the crossover rate or is equal to it,
the crossover is done in the following way:

1) Two selected chromosomes in the selection
phase are duplicated and the following
operation is done on them to generate two new
chromosomes.

356 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

2) All tasks would be chosen which have NC
lower or equal to the NC of the selected task
in the selection phase. For every processor of
the first chromosome, the chosen tasks are
exchanged with the other tasks in the peer
processor in the second chromosome.

For example, the chromosomes C1 and C2 and the task
t14 with NC value of 1 have been selected. During the
crossover, the tasks which have NC lower or equal to 1
e.g. tasks {t3, t14, t7, t9, t11, t12, t13, t15} are selected in
both chromosomes and then are exchanged on their
relevant peer processors as shown in Figure 3.

Figure 3: Applying crossover on C1 and C2 and
producing two new chromosomes

3.4 Mutation

A random number between zero and one is produced
and if it is larger than the mutation rate or is equal to it,
the mutation operation is done in the following way:

1) Two selected chromosomes in the selection
phase are duplicated and then the following
operation is done separately on them.

2) For the first chromosome, the selected task in
the selected phase is exchanged with another
task on different processor which has NC
equal to it. The same operation is done on the
second selected chromosome.

For example, the chromosome C1 and the task t13 with
NC value of zero are selected for the mutation. Another
task from chromosome C1 in different processor that
has the NC equal to t3 e.g. t15 is selected and two tasks
t13 and t15 are exchanged as shown in Figure 4.

Lemma1.Since applying the mutation or crossover
operators implies the uniqueness and completeness
requirements have been met, after applying such
operators, no task is missed and no task is added to the
new chromosome. However, as all operators are based
on tasks’ NC, the tasks’ execution precedence is met
too.

Figure 4: Applying mutation on C1 and product a new

choromosome

new chromosome

3.5 Load balance

In this phase a new heuristic method called load
balance is presented to reduce the TFT of
chromosomes. The method involves following steps:

1) First, two selected chromosomes in selection
phase are reduplicated and then the following
operation is separately performed on two new
chromosomes.

2) For one of the chromosomes from m
processors, two processors which have the
maximum and the minimum finishing time are
selected (Pmax and Pmin). Then according to
Equation (4), AVG is calculated as following:

 (4) () 2/)()(minmax PTFTPTFTAVG −=

3) To balance the execution time of processors,
task ti is selected which is assigned to Pmax and
its execution time is equal or less than AVG.
If such a task is not found, step 4 or load
balance operation could not be performed.

4) Task ti is deleted from Pmax and then is added
to Pmin in a suitable place based on its NC in
descending order, as all tasks’ execution
precedence is observed.

For example, the chromosome C and the task t15 are
selected for the load balance operation. As shown in
Figure 5, applying the load balance guarantees
improvement of the fitness of chromosome C.
After load balance operation, the uniqueness and
completeness requirements are met based on Lemma 1.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 357

Figure 5: Applying load balance on C1 and producing

a new chromosome

3.6 Reproduction

After applying all operators and producing new
chromosomes, the former chromosomes along with
new ones will be ordered based on their fitness and the
next generation receives the most appropriate
chromosomes (the chromosomes with lower TFT or
best fitness) at the number of population size. Then the
phases 3-2 to 3-6 will be repeated as the number of
generations. Finally, the best suitable chromosome is
the optimal or near-optimal schedule.

4 Simulations and Results

A range of simulations is done using the Visual Basic
.Net version 2005 on a computer Pentium IV, having
AMD processor 2.8 GHz, and 512 MB memory of
RAM to evaluate our suggested algorithm.
Using our developed program - producing a random
task graph automatically - 57 task graphs are created.
Each graph could have 30, 70, or 90 tasks with task
dependency percentage between 20 and 90 and the
execution time for each task is random between 1 and
100 seconds. These graphs are scheduled on a
multiprocessor system with the number of 3, 5, or 7
processors for five heuristics: min–min, max-min,
duplex, MCT (Minimum Completion Time) and MET
(Minimum Execution Time) [2] and for three genetic-
based algorithms: Genetic Algorithm whose Priority is
based on Task Height (GAPTH) [9] and last our
proposed algorithm [12] and new our proposed
algorithm. The results are averaged over multiple runs
for each algorithm.
For three genetic-based algorithms, the crossover rate is
set to 0.7 and the mutation rate is set to 0.05. Other
parameters such as initial population size and the
number of generations are selected similarly for genetic
algorithms to perform the scheduling at the same
conditions.

Table 6 shows the schedules and TFT mean for each
eight scheduling algorithms. The results indicate that

our suggested new algorithm finds better schedule with
minimum TFT compared to the other heuristics. While

the computation time of the three above genetic
algorithms is more than the other five heuristics

obviously, and is quite similar, as only their initial
population producing step is different, the step is
calculated once. Table 7 illustrates the results of

simulations with varying task dependency percentage.
As shown here, if the number of tasks and processors,
and the range of tasks’ execution time are considered

constant, then the higher percentage of the task
dependency has better schedule for our developed new
algorithm compared with the others genetic algorithm,
named GAPTH and last our algorithm. The reason lies
in the fact that the higher the task dependency is, the

more number of children. Our scheduling new
algorithm is more efficient than the other one as it acts

based on NC.

Table 6 The schedules for eight scheduling algorithms

358 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

5 Conclusions

The task scheduling problem in multiprocessor systems
is an NP_Hard problem. Hence, using heuristic
methods instead of classic ones, the optimal or near-
optimal schedule would be achieved in an acceptable
time. Due to the higher potential of genetic algorithms
in solving the complex problems, they have been vastly
acceptable in the heuristic methods. In this paper, a
new genetic algorithm was presented for task
scheduling in a multiprocessor system. In this
algorithm, the priority of execution of tasks is based on
the number of their children and for tasks with number
of children equal in per group based on the height task ,
i.e., a task having more children will be scheduled
earlier and then tasks with number of children equal in
per group based on the height task. Our developed
algorithm was compared to the genetic algorithm
whose priority is based on number of children (last our
algorithm)[12] , and to the five well-known heuristics
and based on task height[9]. The results showed that
our suggested new algorithm improves the achievement
of the near-optimal schedule; however, the computation
time of the three discussed genetic algorithms are quite
the same.

References

1. Goldberg D. E.: Genetic Algorithms in Search,
Optimization and Machine Learning, Reading. MA:
Addison Wesley, (1989)

2. Braun T. D., Siegel H. J., Beck N. and et al.: A
Comparison of Eleven Static Heuristic for Mapping a
Class of Independent Tasks onto Heterogeneous
Distributed Computing Systems. Journal of Parallel and
Distributed Computing, vol. 61, pp. 810--837, (2001)

3. Rahmani A. M. and Resvani M.: A novel Static Task
Scheduling in Distributed Systems by Genetic Algorithm
using Simulated Annealing. 12th International CSI
Conference, Iran, p. 83, (2007)

4. Bouffard V., Ferland J. A.: Improving simulated
annealing with variable neighborhood search to solve the
resource-constrained scheduling problem. Journal of
Scheduling, Vol. 10(4), pp. 375--386, (2007)

5. Silva M. L. and Porto S. C. S.: An Object-Oriented
Approach to a Parallel Tabu Search Algorithm for the
Task Scheduling Problem. Proceedings of the 19th
International Conference of the Chilean Computer
Science Society, p. 105, (1999)

6. Shenassa M. H. and Mahmoodi M.: a novel intelligent
method for task scheduling in multiprocessor systems
using genetic algorithm. journal of Franklin institute,
Elsevier, (2006)

7. Yoo M. and Gen M.: Scheduling algorithm for real-time
tasks using multiobjective hybrid genetic algorithm in
heterogeneous multiprocessors system. Computers and
Operations Research, Vol. 34(10), P. 3084--3098, (2007)

8. Zheng S., Shu W. and Dai S.: Task Scheduling Model
Design Using Hybrid Genetic Algorithm. in Proceedings

of the First International Conference on Innovative
Computing, Information and Control, Vol. 3, pp. 316--
319, (2006)

9. Hou E. S. H., Ansari N. and Ren H.: A Genetic
Algorithm for Multiprocessor Scheduling. IEEE trans.
on parallel and distributed systems. vol. 5, no. 2, pp.
113--120, Feb. (1994)

10. Holland J. H.: Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor, MI,
(1975)

11. Zafarani Moattar E., Rahmani A.M., Feizi Derakhshi
M.R., "Job Scheduling in Multi Processor Architecture
Using Genetic Algorithm", 4th IEEE International
conference on Innovations in Information Technology,
dubai, pp. 248-251, (2007)

12. Abdeyazdan M., Rahmani A.M., " Multiprocessor Task
Scheduling using a new Prioritizing Genetic Algorithm
based on number of Task Children ", 7th International
Conference on Distributed and Parallel
Systems(DAPSYS’ 2008)7Debrecen, Hungary,
September 3 – 5, 2008.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 359

A parallel algorithm based on simulated annealing for land use
zoning plans

M. Suárez1, I. Santé1, F. F. Rivera2, R. Crecente1, M. Boullón1, J. Porta3, J Parapar3, and R. Doallo3
1Land Laboratory, University of Santiago de Compostela, Lugo, Spain

2Dept. of Electronics and Computing, University of Santiago de Compostela, Santiago de Compostela, Spain
3Computer Architecture Group, University of A Coruña, A Coruña, Spain

Abstract— There is an increasing demand for tools which
support the land use planning process and one of the most
complex tasks of this process is the design of a land use
zoning map. With this aim an algorithm based on simulated
annealing has been designed to optimize the delimitation of
land use categories according to suitability and compactness
criteria. The high number of plots involved in a land use
plan leads to high computational costs. Two parallel versions
were implemented. The first one improve the final solution
using different parameters in parallel. The second one gets
advantage of the spatial parallelism. Results on a real case
of study show that the solutions provided by our algorithms
are similar to the solution provided by experts, but much
faster and with less effort. The parallel versions of the code
present good results in terms of the quality of the solution
and speed-up.

Keywords: Land use planning, parallel simulated annealing, GIS

1. Introduction
The development of a land use plan is long and laborious,

requiring a great effort on the part of public administrations
and technical teams to achieve a good solution. As a result,
there is an increasing demand for tools which support the
planning process and one of the most complex tasks of this
process is the design of a land use zoning map. The design
of a land use zoning map can be formulated in terms of an
optimization problem in which each plot is allocated to the
best category according to certain criteria and constraints.
These criteria always include the land suitability for the land
uses of a land category (e.g., [1], [2]) and some authors
also consider spatial criteria, especially the compactness of
the regions allocated to one single category (e.g., [3], [4],
[5]). Due to the fact that the number of plots involved
in a municipal land use plan is usually large, the search
of the optimal solution using algorithms such as integer
programming is unfeasible. It is, therefore, necessary to
turn to heuristic algorithms capable of achieving near-best
solutions in a reasonable time [6] [7] [8]. In particular, good
results have been obtained using the simulated annealing
technique (e.g., [9], [10], [11], [4], [12], [13]). Most of these
algorithms operate on a regular raster grid. Land use zoning
based on a regular grid is found to be unrealistic as it may

lead to a single-land use plot allocated to several categories
or to a group of very different plots allocated to a single
category. In addition to this, the planning laws in the study
area require land use zoning based on cadastral plots.

The large number of plots involved in a municipal land
use plan leads to high computational costs in order to run
a number of iterations enough for exploring the complete
search space. The use of different parallelization strategies
has been considered in order to reduce the execution time
and to improve the results of the algorithm. Many proposals
for parallelization can be found in the literature [14], [15].

This study proposes a parallel algorithm based on simu-
lated annealing for land use zoning that uses an irregular
spatial structure based on a cadastral parcel map. This
algorithm was applied to land use zoning in the municipality
of Guitiriz, located in Galicia (N.W. of Spain) as a case of
study. The paper is structured as follows: Section 2 defines
the characteristics of the optimization problem. Section 3
describes the pre-processing stage. Section 4 describes the
design of the simulated annealing algorithm. Section 5 is
devoted to introduce the implementation of the parallel
versions of the algorithm. In section 6 experimental results
are discussed. And finally, some conclusions and ideas for
future work are given in Section 7.

2. Problem statement
Land use planning laws define a set of land use categories

and the restrictions enforced to each category. For some
categories, their spatial allocation is completely and uniquely
determined by legal restrictions. We will refer to this group
of categories as fixed categories. In the case of Galicia,
the fixed categories include the water, coast, infrastructure
and heritage protection land. The non-fixed categories cor-
respond to the agricultural, forestry, natural space and urban
land.

Consequently, two stages can be distinguished in the
design of a land use zoning map: the application of law
restrictions for the delimitation of fixed categories and the
decision making by planners for the allocation of non-fixed
categories. For the first stage a pre-processing module has
been developed in which the fixed categories are allocated
applying the planning laws by means of geometric operations
(buffers, intersections, differences...).

360 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

In the second stage planners must delimitate the non-
fixed categories using their expert knowledge. An heuristic
algorithm based on simulated annealing has been designed
to facilitate this task. At this point it is important to note that
laws and experts advise that the process of spatial allocation
should take into account the current boundaries of the
existing plots in the municipality, i. e., a plot should not be
divided in several parts with different categories. Therefore
the problem is to distribute N plots among C different non-
fixed categories addressing two objectives, based on experts’
criteria: maximization of the overall suitability of the plots
to the categories allocated to them and maximization of the
compactness (and hence minimization of the fragmentation)
of the resultant land use patches. Land use patches are
defined as the polygons resulting from the union of plots
assigned to the same category. This optimization is subject to
the constraints that the total area allocated to each non-fixed
category cannot exceed certain minimum and maximum
values set by the planner.

The relative importance of both suitability and compact-
ness criteria varies depending on the target land category.
For example, the compactness is basic for the forestry land
category, whereas in the natural space land the importance
of the compactness is low. For this reason the planner must
be able to assign different weights to each criterion in each
category.

3. Pre-processing stage
The problem requires three types of data which are read

in the pre-processing stage: characteristics of each plot,
parameters for the allocation of each category and geomet-
ric elements to define fixed categories. The characteristics
of each plot include its geometry, initial category and a
suitability score for each non-fixed category. In addition,
the parameters for the allocation of each category include
the maximum and minimum area, and the weights for the
suitability and compactness criteria for each category.

The elements that define the fixed categories correspond to
layers of geometric elements like rivers, roads, archaeologi-
cal sites. They can delimitate the fixed categories in different
ways. The first one is to allocate directly these elements to a
specific fixed category. For example, the archaeological sites
are included directly in the heritage protection land. This
procedure also allows to allocate a category to areas that,
because of their singularity, must be delimited by and expert
or a specific algorithm. The other issue is the delimitation
of a buffer over the geometric elements at a certain distance
established by the law. An example is the protection area for
roads. The result of these procedures is a map of plots in
which the fixed categories are delimited, so the plots allo-
cated to these categories are not considered in the simulated
annealing algorithm. The pre-processing stage allows that
these calculations, most of them involving computationally
expensive geometric operations (e.g. intersections), are run

just once. These operations have been implemented using
the JTS Topology Suite [16] library for spatial analysis
operations and the SEXTANTE framework [17].

Besides, in the pre-processing stage the conditioning of
the algorithm input data is carried out. The calculation of
the compactness based on land use patches requires the
knowledge of the adjacent plots to each one of them, called
neighbours and the length of the border that they share.
With the aim of speeding up this calculation, in the pre-
processing stage a spatial indexing of the plot map is used,
so the index query provides the list of plots candidates to be
neighbours, thereby reducing the number of processed plots
from several tens of thousands to a few tens. Choosing the
right data structure to store the neighbours and the length of
its borderline is an important issue since this information
is accessed often by the algorithm, so it is important to
minimize the time to access it. As the number of neighbours
of each plot can be different, two unidimensional arrays are
used to store the list of neighbours: an array of neighbours
and an index array. The i-th entry of the index array stores
the position in which the first neighbour of the i-th plot
is stored in the array of neighbours, where i = 1 . . . N .
The neighbours of each plot are stored consecutively in the
array of neighbours. Figure 1 shows an example of these
two arrays. In this example neighbours of plot P2 are P1,
P3, P6 and P7, and they are stored from position 4 of the
array of neighbours. Note that 4 is the value of the second
entry in the index array. This structure presents low latency
in its access.

Fig. 1: Arrays used to store the information about the
neighbourhood.

4. Simulated annealing algorithm
The simulated annealing algorithm [18] is a heuristic to in-

tensively optimize an objective function ruled by a parameter
called temperature T that is used to control the thoroughness
of the search for the optimum. The basic procedure is as
follows: (1) given the current configuration of the system, a
trial configuration is generated by a method that includes
some element of chance. (2) The value of the objective
function for the trial configuration, Et, is compared with the
value of the objective function for the current configuration,

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 361

Ec. If Et is better than Ec, the trial configuration becomes
the current configuration, otherwise the trial configuration
is adopted as the next current configuration according to
the Boltzmann probability distribution: e(Ec−Et)/T . (3) For
each value of temperature, the system is allowed to explore
the configuration space for a number of iterations. The value
of T is then reduced, so that better E values are favoured
and the loop starts from step 1. (4) The algorithm terminates
upon satisfaction of some appropriate stop condition.

In our case, at the beginning of the process an initial
random solution is generated that satisfies the constraints
of maximum and minimum area for each category.

4.1 The objective function
The objective function E combines two subobjectives:

maximization of land suitability and maximization of com-
pactness. These subobjectives are combined linearly:

E =Wc × compactness+Ws × suitability (1)

where Ws and Wc are defined by the planner and are
normalized so that the summation of both weights must be
1. The subobjective functions are normalized to the range
[0, 1].

Suitability is calculated as the weighted average of the
suitability for each category. Suitability for a category is
obtained from the average of the suitability of the plots
allocated to that category, weighted by the area of each plot
and normalized by the total area assigned to the category:

Suitability =
C∑
i=1

wi

(∑N
j=1 Sij × aij∑N

j=1 aij

)
(2)

where wi is the weight of the i-th category, Ni is the
number of plots allocated to the i-th category, sij is the
suitability of the j-th plot allocated to the i-th category, and
aij is the area of the j-th plot allocated to the i-th category.

Compactness can be defined in different ways. In our
proposal two different functions are considered: one based
on patches, which are groups of adjacent plots with the same
category, and the other one based on categories, where the
plots are grouped into categories. For the compactness based
on patches the function is defined as:

Compactness = 4π
C∑
i=1

wi

∑NPi

j=1
Aij

P 2
ij

NPi

 (3)

where NPi is the number of patches of the i-th category,
Aij and Pij are the area and perimeter of the j-th patch of
the i-th category, respectively. This formula is based on the
fact that, for a given area value, the so called circularity is
maximized by a circle (and the maximum is 1) [19]. The
compactness function based on categories:

Compactness = 4π
C∑
i=1

wi

(∑N
j=1 aij∑N
j=1 p

2
ij

)
(4)

where pij is the perimeter of the j-th plot allocated
to the i-th category. Note that this function has clearly a
lower computational cost than (3) because it avoids the
computation of patches.

4.2 Computational issues
Computing the objective function for a trial solution Et is

done by calculating the variation of E due to the change of
the category of the involved plot instead of calculating the
overall suitability and compactness for the whole plot map.
The new value of the suitability subobjective is calculated
by subtracting the area-weighted suitability of the changed
plot for the old category and by adding the area-weighted
suitability of the changed plot for the new category.

In the case of the compactness function based on patches,
the compactness score is computed from the area and
perimeter of each patch. In the calculation of the com-
pactness of the new category three situations can be distin-
guished; i) a new patch is generated, ii) the area of an exist-
ing patch increases, or iii) several patches are merged. In the
calculation of the compactness of the old category also other
three situations can happen; i) a patch disappears, ii) the
area of an existing patch decreases, or iii) a patch is divided
into several patches. The identification and management of
these situations is performed as follows. In the case of the
new category, if no neighbour plot has the new category, a
new patch is generated that has the area and perimeter of the
changed plot. If a neighbour plot whose category is the same
as the new one is found, the patch is reconstructed from the
changed plot using the neighbour patch ID. This case can
correspond to any of the following two situations: the area
of an existing patch simply has increased or several patches
have been merged. In the latter case other neighbour plots
with the new category and different patch ID will be found,
so this patch ID is removed since that patch has been merged
with the previous reconstructed patch. In the case of the
old category, it is considered that the patch has disappeared
unless a neighbour plot whose category coincides with the
old category is found. From this neighbour plot, a patch is
reconstructed by a recursive flooding algorithm and the plots
that constitute the reconstructed patch are identified. If other
neighbour plot that has the old category, and not included in
the reconstructed patch is found, a new patch is generated
from this neighbour plot because the old patch has been
fragmented.

The compactness function based on patches presents an
interesting issue when several patches are merged. Since the
overall compactness is the average of the compactness of
each patch, when two patches with relatively high com-
pactness are merged, the resulting patch often has lower
compactness and consequently generates lower overall com-
pactness. It is important to deal with these situations because
merging patches produces benefits at long term. Therefore
a mechanism to promote the conservation of changes that

362 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

merge patches has been introduced. This mechanism consists
on increasing the temperature of the Boltzmann test by
a certain factor when the number of patches of the new
solution is lower than the number of patches of the old
solution in order to increase the probability of acceptance
of the new solution. A multiplying factor is introduced and
tuned by the planner to control this mechanism.

In the case of the compactness function based on cate-
gories, the new value of this subobjective is calculated by
modifying the area and the perimeter of the old and new
categories. The area is modified by subtracting the area of
the changed plot from the compactness score of the old
category and by adding it to the compactness score of the
new category. The new values of perimeter for each category
are obtained by comparing the old and new categories of the
changed plot with the category of their neighbour plots.

4.3 The annealing schedule
The parameters of the annealing schedule must be defined

by the planner. In general, it is recommended that the initial
value of T ensure that about 80% of trials are successful at
this stage; this value will depend on both the way in which
the objective function varies with configuration, and the
configuration generating scheme, and must be identified by
trial and error for each problem. The heat balance condition,
that is, the number of iterations executed at each temperature,
was approximately twice the number of plots and each
reduction of T was affected by multiplying it by a constant
factor, which was 0.95 by default. The stop condition of the
algorithm is the number of temperatures established by the
planner, which was set to 200 by default.

Figure 2 shows the evolution of compactness and suit-
ability with the temperature using the compactness function
based on categories. The compactness function based on
patches has similar behaviour. In shown case the compact-
ness values and the variations of these values are very low,
so a higher weight must be assigned to the compactness
subobjective.

In Figure 3 note that the compactness function based on
patches tends to generate a greater number of patches. In
this figure each category is identified with a different grey
level.

5. Parallel simulated annealing
The computational cost of the algorithm is high due to the

large number of plots and the implicit nature of the problem.
To get a more practical algorithm, the execution time has
to be reduced, and the solution lies in its parallelization.
Two strategies to parallelize the simulated annealing are
proposed: parameter parallelization and spatial paralleliza-
tion. A third possible strategy was also considered based
on the parallelization of the computation of the objective
function. However we found out that it is not efficient,
mainly because the low computational cost of the objective

Fig. 2: Compactness and suitability evolution with the tem-
perature for compactness function based on categories or
patches.

function as, according to our proposal, only changes caused
by the changes in the category of a single plot are taken into
account.

5.1 Parameter parallelization
The identification of the optimal values of the parameters

that guide the annealing is key issue to find the best
solution. Running the algorithm in parallel with different
parameter values helps in the search of the optimal values.
These parameters are: the initial temperature, the number
of iterations for each temperature, the cooling coefficient,
the initial solution and the weights of both subobjectives.
The parallelization uses as many processes as the number of
different initial temperatures in this case of study.

5.2 Spatial parallelization
The spatial parallelization implies that each process run

the algorithm in a particular geographic zone of the study
area. The plot map is partitioned into groups of plots that
are completely surrounded by plots allocated to the fixed
categories, that is, by plots excluded from the simulation. In
this way, there are no borderline interactions among zones.
Each of these isolated groups of plots is called a cluster.
The algorithm identifies the clusters, from the plot map by a

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 363

Fig. 3: Land zoning maps obtained with both objective
functions; the first one uses the compactness function based
on categories and the second one the compactness function
based on patches.

pre-processing stage, using a flooding algorithm. In order to
balance the computational load, the clusters are distributed
among the processes so that the number of plots in each
process is as similar as possible to the others.

The execution of each process is practically independent
from the rest of them. The only common data accessed by
all the processes is the value of the total area allocated to
each category. Note that this area is constrained between
a certain minimum and a maximum. Therefore changes
of the category of a plot that results in a total area for
a category exceeding the minimum and maximum values
cannot be done. Therefore this constraint must be checked
continuously using mutual exclusion operations.

6. Case of study
As a case study, a part of a Galician municipality called

Guitiriz, was considered, it consists of 36,803 plots. After
the pre-processing stage 34,000 polygons do not have a fixed
category, so it must be taken into account in the simulated
annealing stage. The plot suitability for each category and
the total area to be allocated to each category were obtained
from previous studies [20]. All performance tests were
executed in a system with 2 processors Intel Xeon E5440
2.83GHz, 4 cores each and 16GBs of shared memory.

6.1 Parameter parallelization
Figure 4 shows compactness and suitability dependence

with the initial temperature and with different weights for
both subobjectives labelled by the values of wc and ws
respectively.

There is not a clear trend in the influence of initial
temperature on objective function values, so the evaluation
of a wide range of temperature values is important to find
the best value of this parameter. Figure 5 shows the results
obtained by running the algorithm three times with the same
parameters but with different initial solutions. Differences
between the solutions obtained with different initializations

Fig. 4: Influence of the initial temperature on compactness
and suitability by using the compactness function based on
categories and different weights for the subobjectives.

but the same parameters are similar to the differences
obtained by varying the weighting of the subobjectives.

6.2 Spatial parallelization
In figure 6 the influence of the initial temperature and

the number of processes in the algorithm are shown. The
increase in the number of processes decreases the suitability
value but does not influence the compactness value. Note
that influence on the initial temperature is very low.

Figure 7 shows the speedup for 7 different situations
that are labelled as: the kind of algorithm (by patches or
by categories), the values of wc and ws, and the initial
temperature respectively.

The highest speedups are obtained with the compactness
function based on patches and with the compactness function
based on categories when only the compactness subobjective
is optimized, because in these cases each process manages
only local data.

6.3 The influence of the compactness
The compactness based on categories provides solutions

with a number of patches quite lower than the compactness
metric based on patches. Table 1 shows the number of
patches in the final solution by using different compactness

364 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 5: Influence of the initial solution.

functions, different weights for subobjectives and different
values for the temperature multiplier. Note that an increase
on the value of the temperature multiplier factor reduces
the number of patches. Anyway this number is higher
than the number of patches generated by the compactness
based on categories. The increase of the suitability subobjec-
tive weighting when using compactness function based on
patches reduces the number of patches, because the spatial
distribution of suitability presents a certain compactness by
itself.

Table 1: Number of patches
Compactness Wc Ws T multiplier Patches number

Categories 0 1 7786
Categories 1 1 6361
Categories 5 1 5677
Categories 10 1 5496
Categories 20 1 5369
Categories 50 1 5235
Categories 1 0 4786
Patches 1 0 1 8842
Patches 1 0 100 7698
Patches 1 1 100 7193

Fig. 6: Compactness and suitability values for each number
of processes (the objective function uses the compactness
function based on categories).

6.4 Comparison with handmade planning
In order to evaluate the solutions provided by the al-

gorithm, these solutions have been compared to the land
use zoning map designed by technicians for the municipal
land use plan of Guitiriz. The overlap area was measured
as percentage of the total area of the technical solution.
For compactness based on categories the coincidence was:
agricultural 78%, forestry 68%, natural space 91% and urban
49%. For compactness based on patches the coincidence
was: agricultural 78%, forestry 67%, natural space 87% and
urban 49%. This results show a good matching for agricul-
tural, forestry and natural space categories. The causes of
the worst matching of urban category are the aesthetic and
architectural criteria used by technicians in urban planning,
which are not considered in the algorithm. However, the
global suitability for the land zoning map designed by
technicians is 0.52 and for the land zoning maps provided by
the algorithm is around 0.62, so a significant improvement
is achieved.

7. Conclusions
In this paper we deal with the problem of land use

planning. Our proposal is to solve the delimitation of land
use categories issue, that is frequently the stage of the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 365

Fig. 7: Performance of the spatial Geographical paralleliza-
tion.

whole process that is the bottleneck in practice. After a
preprocessing stage, a simulated annealing based heuristic is
used to efficiently solve the problem. An objective function
that is a linear combination of two factors: the suitability and
the compactness is introduced. The quality of the results on
real situations are comparable to those obtained by experts.
However the best parameters that rule the annealing can not
be easily established prior to the execution. We used this
feature to parallelize the algorithm by running the sequential
code in several processes using different parameters. The
benefits of this approach are mainly in the improvement on
the quality of the final result. In addition, a spatial parallel
implementation is proposed in which the geographical zone
of study is partitioned into a number of so called clusters
that can be processed in parallel. Appropriate mechanisms
to share the information among the processes have been
implemented. The efficiency of this second parallel im-
plementation was validated in a real case of study. Both
parallel proposals are orthogonal, so they can be applied
simultaneously.

As a future work, one of the most immediate improve-
ments is to study other kind of functions for the evaluation
of the compactness criteria. The optimization of other spatial
metrics such as connectivity is also interesting, especially
for the case of the natural space category in order to design
ecological networks.

8. Acknowledgment
This work is included in the project named "Geograph-

ical Information Systems for Urban Planning and Land
Management using Optimization Techniques on Multicore
Processors" with code 08SIN011291PR, and Consolidation
of Competitive Research Groups (ref. 2010/06 and 2010/28),
funded by the Galician Regional Government, Spain. And by
Ministry of Education and Science of Spain under contract
TIN 2007-67537-C03.

References
[1] J. R. Eastman, W. Jin, P. A. K. Kyem, and J. Toledano, “Raster pro-

cedures for multi-criteria/multi-objective decisions,” Photogrammetric
Engineering and Remote Sensing (PE&RS), vol. 61, no. 5, pp. 539–
547, May 1995.

[2] R. G. Cromley and D. M. Hanink, “Scale-independent land-use alloca-
tion modeling in raster gis,” Cartography and Geographic Information
Science, vol. 30, pp. 343–350(8), 1 October 2003.

[3] J. C. J. H. Aerts, E. Eisinger, G. B. M. Heuvelink, and T. J. Stewart,
“Using linear integer programming for multi-site land-use allocation,”
Geographical Analysis, vol. 35, no. 2, pp. 148–169, 2003.

[4] D. Nalle, J. Arthur, and J. Sessions, “Designing compact and con-
tiguous reserve networks with a hybrid heuristic algorithm,” Forest
Science, vol. 48, no. 1, pp. 59–68(10), February 2002.

[5] T. J. Stewart, R. Janssen, and M. van Herwijnen, “A genetic algorithm
approach to multiobjective land use planning,” Comput. Oper. Res.,
vol. 31, pp. 2293–2313, December 2004.

[6] K. B. Matthews, S. Craw, and A. R. Sibbald, “Implementation
of a spatial decision support system for rural land use planning:
integrating gis and environmental models with search and optimisation
algorithms,” Computers and Electronics in Agriculture, vol. 23, pp.
9–26, 1999.

[7] T. Cay and F. Iscan, “Fuzzy expert system for land reallocation in
land consolidation,” Expert Systems with Applications, vol. 38, no. 9,
pp. 11 055 – 11 071, 2011.

[8] J. Porta, J. Parapar, G. L. Taboada, R. Doallo, F. F. Rivera, I. Santé,
M. Suárez, M. Boullón, and R. Crecente, “A java-based parallel
genetic algorithm for the land use planning problem,” in Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO
2011, Dublin, Ireland, July 12-16, July 12-16 2011, accepted.

[9] J. C. J. H. Aerts and G. B. M. Heuvelink, “Using simulated anneal-
ing for resource allocation,” International Journal of Geographical
Information Science, vol. 16, no. 6, pp. 571 – 587, 2002.

[10] M. Boyland, J. Nelson, and F. L. Bunnell, “Creating land allocation
zones for forest management: a simulated annealing approach,” Cana-
dian Journal of Forest Research, vol. 34, no. 8, pp. 1669–1682, 2004.

[11] E. Martínez-Falero, I. Trueba, A. Cazorla, and J. L. Alier, “Opti-
mization of spatial allocation of agricultural activities,” Journal of
Agricultural Engineering Research, vol. 69, no. 1, pp. 1 – 13, 1998.

[12] I. Santé-Riveira, R. Crecente-Maseda, and D. Miranda-Barros, “Gis-
based planning support system for rural land-use allocation,” Com-
puters and Electronics in Agriculture, vol. 63, no. 2, pp. 257 – 273,
2008.

[13] S. K. Sharma and B. G. Lees, “A comparison of simulated annealing
and gis based mola for solving the problem of multi-objective land
use assessment and allocation,” in 17th International Conference on
Multiple Criteria Decision Analysis, Whistler, Canada, August 2004,
pp. 6 –11.

[14] E. Onbasoglu and L. Ozdamar, “Parallel simulated annealing al-
gorithms in global optimization,” Journal of Global Optimization,
vol. 19, pp. 27–50, 2001, 10.1023/A:1008350810199.

[15] Z. J. Czech, Parallel and Distributed Computing. InTech, January
2010, ch. A Parallel Simulated Annealing Algorithm as a Tool for
Fitness Landscapes Exploration, pp. 247–272.

[16] M. Davis and J. Aquino, “Jts topology suite technical
specifications,” Vivid Solutions, Tech. Rep., 2003. [Online]. Available:
http://www.vividsolutions.com/JTS/bin/JTS Technical Specs.pdf

[17] V. Olaya, “Sextante programming guide,” Sextante, Tech. Rep., 2011.
[Online]. Available: http://www.sextantegis.com

[18] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller,
“Equation of state calculations by fast computing machines,” Journal
of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[19] R. S. Montero and E. Bribiesca, “State of the art of compactness
and circularity measures,” International Mathematical Forum, vol. 4,
no. 27, pp. 1305–1335, 2009.

[20] I. Santé, R. Crecente, M. Boullón, and D. Miranda, Spatial Decision
Support for Urban and Environmental Planning. A Collection of Case
Studies. Malaysia: Arah Publications, 2009, ch. Optimising land use
allocation at municipal level by combining multicriteria evaluation
and linear programming, pp. 33–60.

366 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Abstract – While merge sort is well-understood in parallel
algorithms theory, relatively little is known of how to
implement parallel merge sort with mainstream parallel
programming platforms, such as OpenMP and MPI, and run
it on mainstream SMP-based systems, such as multi-core
computers and multi-core clusters. This is misfortunate
because merge sort is not only a fast and stable sort
algorithm, but it is also an easy to understand and popular
representative of the rich class of divide-and-conquer
methods; hence better understanding of merge sort
parallelization can contribute to better understanding of
divide-and-conquer parallelization in general. In this paper,
we investigate three parallel merge-sorts: shared memory
merge sort that runs on SMP systems with OpenMP;
message-passing merge sort that runs on computer clusters
with MPI; and combined hybrid merge sort, with both
OpenMP and MPI, that runs on clustered SMPs. We have
experimented with our parallel merge sorts on a dedicated
Rocks SMP cluster and on a virtual SMP luster in the
Amazon Elastic Compute Cloud. In our experiments, shared
memory merge sort with OpenMP has achieved best speedup.
We believe that we are the first ones to concurrently
experiment with - and compare – shared memory, message
passing, and hybrid merge sort. Our results can help in the
parallelization of specific practical merge sort routines and,
even more important, in the practical parallelization of other
divide-and-conquer algorithms for mainstream SMP-based
systems.

Keywords: Parallel merge sort, OpenMP, MPI, SMP, Cluster
computing, cloud computing

1 Introduction
Merge sort is an efficient divide-and-conquer sorting
algorithm. Because merge-sort is easier to understand than
other useful divide-and-conquer methods, it is often
considered to be a typical representative of such methods, and
frequently used to introduce the divide-and-conquer approach
itself [3, Ch 2].

Intuitively, merge sort operates on an array of n objects as
follows: (1) if n > 1, divide the array into two sub-arrays of
about half the size each; (2) apply merge sort on each sub-

array; (3) merge the two sorted sub-arrays from step 2 into
one sorted array. For small arrays, some implementations
switch from recursive merge sort to non-recursive methods,
such as insertion sort – an approach that is known to improve
execution time. (Fig. 1 in Section 2.1 outlines a serial merge
sort implementation in C.)

The average complexity of merge sort is O(n log n) [7], the
same as quick sort and heap sort. In addition, best-case
complexity of merge sort is only O(n), because if the array is
already sorted, the merge operation perform only O(n)
comparisons; this is better than best case complexity of both
quick sort and heap sort. The worst case complexity of merge
sort is O(n log n) [7], which is the same as heap sort and
better than quick sort. However, classical merge sort uses an
additional memory of n elements for its merge operation (the
same as quick sort), while heap sort is an in-place method
with no additional memory requirements.

The average/best/worst asymptotic complexity of merge
sort is at least as good as the corresponding
average/best/worst asymptotic complexity of heap sort and
quick sort; despite of this, merge sort is often considered to be
slower than the other two in practical implementations. On
the positive side, merge sort is a stable sort method, in
contrast to quick sort and heap sort, which fail to maintain the
relative order of equal objects. The practical performance of
merge sort is known to improve with recursion removal and
cache memory utilization [8].

The focus of this paper is not on efficiency improvements
that are specific to merge sort. Instead, we regard recursive
merge sort as a typical and well-understood representative of
the divide-and-conquer approach. We use merge sort as a test
bed to explore parallelization schemes that may possibly
apply without significant changes to other divide-and conquer
methods.

Merge sort parallelization is well-studied in theory. For
example, Cole [2] describes a O(log n) parallel merge sort
algorithm for a CRW PRAM (an abstract machine which
neglects synchronization and communication), while Cormen
et al outline another O(log n) parallel merge sort for abstract
comparison networks [3, Ch. 27].

In contrast to theory, little is known of how to implement
parallel merge sort on mainstream architectures (such as
standalone and clustered Symmetric Multiprocessing
Systems, SMPs), by means of mainstream shared memory and

Shared Memory, Message Passing, and Hybrid Merge
Sorts for Standalone and Clustered SMPs

Atanas Radenski
School of Computational Sciences, Chapman University, Orange, California, USA

radenski@chapman.edu http://www.chapman.edu/~radenski

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 367

message passing platforms (such as OpenMP [13] and MPI
[12]). Our goal in this paper is to provide a better
understanding in this direction.

We choose OpenMP to parallelize merge sort on SMPs and
MPI to parallelize it on clustered systems. We choose
OpenMP to implement shared-memory merge sort on SMPs
because (i) OpenMP is standardized and comes ready-to-use
with contemporary C/C++ compilers, including compilers that
are freely available; (ii) OpenMP is easier to use than various
thread libraries because it supports a higher level parallel
programming model; (iii) OpenMP is can work on a wider
number of shared-memory computers as opposed to other
interesting yet less available higher-level frameworks, such as
UPC [4] and Orio [9]. We choose MPI to implement
message-passing merge sort on computer clusters because (i)
MPI is implemented for a broad variety of architectures,
including implementations that are freely available; (ii) MPI
is well documented; (iii) MPI has grown much more popular
than alternative platforms, such as PVM [5]. Finally, our
preference for an implementation language is ANSI C
because (i) C is fast and available on virtually any platform;
(ii) C can be used to implement merge sort versions with both
OpenMP and MPI, including a hybrid implementation of
parallel merge sort, based on both OpenMP and MPI (see
Section 2.3).

In the rest of this paper, we describe parallel merge-sort
algorithms with OpenMP and MPI, and evaluate their
performance (Section 2); then we offer conclusions (Section
3). Section 2.1 is devoted to a shared memory OpenMP
implementation of merge sort, while Section 2.2 delivers a
message-passing merge sort with MPI. Section 2.3 is focused
on a hybrid parallel sort that combines both OpenMP and
MPI. Section 2.4 evaluates and compares the performance of
the three parallel merge sorts as measured on a dedicated
SMP cluster. In addition, Section 2.5 describes experience
with the same parallel merge sorts on AWS, the Amazon
cloud computing platform [1] and provides performance
evaluation accordingly.

2 Recursive Merge Sort Parallelization
and Evaluation
Recursive merge sort is a typical and well-understood divide-
and-conquer algorithm (Fig. 1).

void mergesort_serial(int a[], int size, int temp[]) {
 if (size < SMALL) { insertion_sort(a, size); return; }
 mergesort_serial(a, size/2, temp);
 mergesort_serial(a + size/2, size - size/2, temp);
 merge(a, size, temp);
}
Fig. 1. Serial recursive merge sort in C. It sorts an array a
using additional array temp of the same size as a

We design parallel versions of this algorithm not as much
for the sake of merge sort parallelization alone, but to also
hopefully provide insights into parallelization of divide-and-
conquer algorithms in general. This is why we do not to
employ parallelization techniques that are (i) too specific for
merge sort or (ii) founded on specific functionality of
particular parallel computers.

2.1 Shared Memory Merge Sort with OpenMP
The OpenMP API [13] supports, on a variety of platforms,
programming of shared memory multiprocessing. With
OpenMP, C/C++ and Fortran programmers use a set of
compiler directives (pragmas), library routines, and
environment variables to specify multi-threaded execution
that is implicitly managed by the OpenMP implementation.

OpenMP supports a straightforward conversion of serial
recursive merge sort (Fig. 1) into a multi-threaded recursive
merges sort (Fig. 2). A parallel sections directive calls for
enclosed independent sections of code – as defined by nested
instances of the section directive - to be divided between
automatically generated threads (Fig. 2).

By default, the additional array temp is shared by all
threads. Therefore, the second recursive call from the serial
version (Fig. 1) must be modified to provide to each thread a
unique part of the shared additional temp array (Fig. 2).

void mergesort_parallel_omp

(int a[], int size, int temp[], int threads) {
 if (threads == 1) { mergesort_serial(a, size, temp); }
 else if (threads > 1) {
 #pragma omp parallel sections
 {

 #pragma omp section
 mergesort_parallel_omp(a, size/2, temp, threads/2);
 #pragma omp section
 mergesort_parallel_omp(a + size/2, size - size/2,
 temp + size/2, threads - threads/2);
 }
 merge(a, size, temp);
 } // threads > 1
}
Fig. 2. Shared memory parallel merge sort with OpenMP
(it uses parallel sections to assign recursive calls to threads)

It is possible to further parallelize the OpenMP merge sort

by parallelizing the merge operation as well. This can be done
by a conversion into OpenMP of a platform-specific
technique originally developed for the .Net Task Parallel
Library [6]. Reportedly, this technique can make parallel
merge sort 25% faster than parallel quick sort, probably
because the merge operation is easier to parallelize than quick
sort’s partition operation.

The performance of the above shared memory (with

368 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

OpenMP) implementation has been measured on (i) on a
stand-alone multi-core computer and (ii) on an Amazon
AWS’s large multi-core instance; performance results are
reported in Sections 2.4 and 2.5 correspondingly.

2.2 Message-Passing Merge Sort with MPI
The MPI API [12] supports, on a variety of platforms,
programming of message-based communication between
processes and is typically used in distributed-memory
systems, such as computer clusters. With MPI, programmers
in a wide variety of languages use a set of library routines to
implement communication and synchronization between
processes.

Recall that OpenMP threads are dynamically assigned to
parallel sections when the execution reaches a parallel
section. This means that with OpenMP, the tree of recursive
merge sort calls is automatically mapped onto threads. In
contrast to OpenMP, all MPI processes start at once at the
very beginning of program execution, and all processes
concurrently execute the same code – the entire program.
Consequently, the MPI program must permit each process to
recognize its own place and role in the recursion tree. With
MPI, processes need to be explicitly programmed to map
themselves to nodes in the recursion tree, while with
OpenMP, it is OpenMP itself that straightforwardly maps
nodes from the recursion tree to threads. This difference
makes the task of the MPI programmer more complicated in
comparison to the task of the OpenMP programmer

As MPI processes map themselves to nodes from the
recursion tree, they form a virtual process tree. Process 0 is at
the root of the tree, with the remaining processes appearing as
nodes of the tree (Fig. 3). The root process splits the data and
sends half of it to a helper process which sorts the data and
returns it to the root process (send operations are visualized
as arrows in Fig. 3). The other half of data is retained by the
root process for further sorting by using this same procedure
(data retention within processes are visualized by dotted lines
in Fig. 3). Once sorted, the two halves of data are merged by
the root process.

Fig. 3. MPI process tree for recursive merge-sort. Arrows
visualize communications with helper processes; dotted
lines represent data retained by process for further sorting

Note that the root process can further split its retained data

and send half of it to yet another helper process. Helper
processes themselves can follow the same procedure as the
root process. Splitting and sending data continues until each
MPI process becomes a node in the virtual process tree, i.e.
until all processes are sent some amount of data to sort.

All MPI processes run the same main function (Fig. 4)
which differentiates between the root process and helper
processes. The root process prepares the array to sort and
then invokes parallel sort while each helper process: (i)
receives data from its parent process; (ii) invokes parallel
merge sort; and (iii) sends sorted data back to parent (Fig. 3).
Note that each helper process calculates the level of its top-
most appearance in the process tree and passes it to the
parallel merge sort function (see Fig. 4).

int main(…) {
// ask MPI for my_rank;
if (my_rank == 0) {

// allocate array to sort then run root to sort it:
run_root_mpi(a, size, temp, …);

} else {
run_helper_mpi(my_rank, …);

}
// array is sorted;

}
void run_root_mpi (int a[], int size, int temp[], …) {

int level = 0;
mergesort_parallel_mpi(a, size, temp, level,…);

}
void run_helper_mpi(int my_rank, …) {

// probe MPI for a message from parent process
 // and identify message size and parent_rank;
 // allocate int a[size], temp[size];
 MPI_Recv(a, size, …, parent_rank, …);
int level=my_topmost_level(my_rank);
mergesort_parallel_mpi(a, size, temp, level, …);
 // send sorted array to parent process:
 MPI_Send(a, size,… , parent_rank, …);

}
int my_topmost_level_mpi(int my_rank) {

int level = 0;
while (pow(2, level) <= my_rank) level++;
return level;

}
Figure 4. Root and helper processes in MPI merge sort

Parallel merge sort is executed by various processes at

various levels of the process tree, with the root being at level
0, its children at level 1, and so on (Fig. 3). In that, the
process’s level and the MPI process rank are used to calculate
a corresponding helper process’s rank (Fig. 5). Then, merge
sort communicates for further sorting half of the array with
that helper process. Serial merge sort is invoked when no
more MPI processes are available. The helper’s rank
calculation method is adopted from Perera’s MPI quick sort

0

0 1

2 3 1 0

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 369

algorithm [10].

void mergesort_parallel_mpi

(int a[], int size, int temp[], int level, …) {
// my_rank is used to calculate helper rank:
int helper_rank = my_rank + pow(2, level);

 if (helper_rank > max_rank) {
mergesort_serial(a, size, temp);

 } else {
 // send second half of array, asynchronous:
 MPI_Isend(a+size/2, size-size/2, …, helper_rank, …);
 // sort first half:
 mergesort_parallel_mpi(a, size/2, temp, level+1, …);
 // receive second half sorted:
 MPI_Recv(a+size/2, size-size/2, …, helper_rank, …);

// merge the two sorted sub-arrays:
 merge(a, size, temp);
 }
}
Fig. 5. Message-passing parallel merge sort with MPI. It
uses explicit mapping of recursive calls to helper processes

The performance of the above message-passing (with MPI)

implementation is evaluated in Section 2.4.

2.3 Hybrid Merge Sort with MPI and OpenMP
A hybrid parallel architecture combines distributed and
shared memory in the same computing system. Some authors
prefer the term “multi-level” parallel architecture but we
choose to use “hybrid” for its brevity. An SMP cluster of
multi-processor multi-core nodes is a typical example of a
hybrid parallel system. Besides computer clusters, NUMA
computers, such as Compaq’s Alpha EV6 and SGI Origin can
also be viewed as hybrid parallel systems.

void mergesort_parallel_mpi_and-omp

(int a[], int size, int temp[], int level, int threads, …) {
int helper_rank = my_rank + pow(2, level);

 if (helper_rank > max_rank) {
mergesort_parallel_omp(a, size, temp, threads);

 } else {
 MPI_Isend(a+size/2, size-size/2, …, helper_rank, …);
 mergesort_parallel_mpi_and_omp
 (a, size/2, temp, level+1, threads, …);
 MPI_Recv(a+size/2, size-size/2, …, helper_rank, …);
 merge(a, size, temp);
 }
}
Fig. 6. Hybrid parallel merge sort with MPI and OpenMP

Recursive merge sort can be mapped rather

straightforwardly onto a hybrid parallel architecture by means
of MPI and OpenMP. On a hybrid system, MPI can provide

coarse-grain parallelism by mapping merge sort recursive
invocations onto a process tree (Fig. 3), as already discussed
in Section 2.2. In addition, OpenMP can provide finer-grain
parallelism by introducing multiple threads within individual
MPI processes, namely those MPI processes that are
visualized as leaf nodes in the process tree (Fig. 3). A more
formal outline of this approach is shown in Fig. 6.

Note that hybrid merge sort (Fig. 6) switches to shared
memory merge sort (rather than to serial merges sort) when
no more MPI helper processes are available, thus utilizing all
available processors and cores on each cluster node.

The performance of the above MPI + OpenMP hybrid
implementation is evaluated in Section 2.4.

2.4 Performance Evaluation
We measured the performance of our shared memory,
message-passing, and hybrid parallel merge sorts on a five-
node Rocks 5.2 cluster running OpenMPI 1.3 and OpenMP 3
under GNU/Linux. Each cluster node contained two Intel
Xeon quad-core processors running under a 2.80 MHz clock.
We executed our merge sorts with randomly generated arrays
of 107 integer elements. Note that cluster node capacity
permitted experiments with arrays consisting of up to 307

integer elements. No other applications were active on the
cluster during our performance measurements.

Table 1. Performance results on a standalone Rocks cluster
(all times are in seconds)

Pr
og

ra
m

O
pe

nM
P

Th
re

ad
s

M
PI

Pr

oc
es

se
s

N
od

es
 U

se
d

Co
re

s
U

se
d

A
ve

ra
ge

Ro

ck
s

Ti
m

e

Ro
ck

s
Sp

ee
du

p

Serial

1 1 4.1 1.0

OpenMP 2 1 2 2.4 1.7

 4

1 4 1.6 2.6

 8

1 8 1.3 3.2

MPI 8 1 8 2.9 1.4

16 2 16 2.2 1.9

24 3 24 2.1 2.0

32 4 32 1.9 2.2

40 5 40 2.0 2.1

Hybrid 8 1 1 8 1.3 3.2

 8 2 2 16 1.5 2.7

 8 3 3 24 1.5 2.7

 8 4 4 32 1.9 2.2

 8 5 5 40 1.8 2.3

Shared memory merge sort (with OpenMP, Section 2.1)
was executed on 1, 2, 4, and 8 cores on the master node of the
Rocks cluster. Message-passing merge sort (with MPI,

370 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Section 2.2) was executed on 1 to 5 nodes by using all
available cores on all nodes for MPI processes. Hybrid
memory merge sort (with MPI and OpenMP, Section 2.3) was
executed on 1 to 5 nodes by using one core on each node for
distributed MPI processes and all 8 cores for shared memory
OpenMP processes. Table 1 presents average wall-clock
times and speedup for serial, shared memory, message-
passing, and hybrid merge sorts.

In our experiments, shared memory merge sort runs faster
than message-passing merge sorts. Hybrid merge sort, while
still slower than shared memory merge sort, is faster than
message-passing merge sort.

Different OpenMP sections (see Fig. 2) may – or may not -
be executed by different threads. It is up to the runtime
environment to assign threads to sections, and the OpenMP
programmer has no control over thread-to-section assignment.
Our experiments show that the runtime environment may
overuse some threads and underuse others, as illustrated by
Table 1. Despite of this inadequate load balancing, shared
memory merge sort with OpenMP still performs faster that
message-passing merge sort with MPI.

Table 2. Merge sort calls per a thread in a test execution

Thread # 0 1 2 3 4 5 6 7
Assigned calls 4 3 3 0 1 0 1 3

Our merge sorts process a single array that can be entire

held in RAM on a single node. This setup is advantageous for
single node implementations with OpenMP and
disadvantageous for multiple-node implementations with
MPI. Indeed, such a centralized setup involves multiple MPI
data transmissions that begin and end with the root node; at
the same time, OpenMP is exempt from such transmissions.
Should the setup change to permit handling of “big data” that
do not fit in a single node RAM, all implementations would
require multiple I/O operations. In a “big data” setup, MPI’s
parallel I/O functionality may possibly provide considerable
advantages in comparison to pure OpenMP implementations.

2.5 Parallel Merge Sort on the Amazon Elastic

Compute Cloud
Amazon Web Services (AWS) is the first – and currently the
largest – public cloud computing platform that provides
virtual computing resources on a metered, pay-per-use basis
[1]. A goal of the AWS development was to offer as a public
utility part of the extensive Amazon data centers by means of
service-oriented virtualization. AWS incorporates a number
of services, most notably the Elastic Compute Cloud (EC2),
and also services built on top of EC2, such as the Elastic
MapReduce.

Using AWS’s EC2, we (i) launched a single server
instance; (ii) uploaded and compiled our OpenMP-based
shared memory merge sort; (iii) ran merge sort experiments

and collected performance data; (iv) terminated the server
instance. In the process, we were charged only for the actual
time during which our server instance was running, and the
charges were covered by a grant provided by Amazon.

To launch our AWS server, we used an abstract machine
image (AIM) provided by Amazon itself, a CentOS system
with an OpenMP-enabled C-compiler readily available. We
launched this AIM as a single 64-bit cluster compute instance
with 8 physical cores from two quad-core Intel Xeon
processors, running under a 2.93 GHz clock. With hyper
threading, the server provided 16 virtual cores. We executed
our shared memory merge sort with randomly generated
arrays of 107 integer elements, much like we did on the
standalone Rocks cluster (Section 2.4). Note that AWS server
capacity permitted experiments with arrays consisting of up to
109 integer elements, much larger than the 307 limit of our
standalone Rocks cluster nodes. On AWS, we chose to
systematically experiment with arrays of 107 integer elements
for the sake of performance comparisons with the standalone
Rocks installation.

Shared memory merge sort (with OpenMP) was executed
on 1, 2, 4, 8, and 16 cores on our AWS server. Table 3
presents average wall-clock times and speedup - for serial and
shared memory merge sorts on the AWS virtual server. For
the sake of more convenient comparisons, Table 3 includes
standalone Rocks cluster performance data from Table 1
(Section 2.4).

Table 3. Performance results on an AWS virtual server

Pr
og

ra
m

O
pe

nM
P

Th
re

ad
s

Vi
rt

ua
l

Co
re

s
U

se
d

Ph
ys

ic
al

Co

re
s

U
se

d

A
ve

ra
ge

A

W
S

Ti
m

e

A
ve

ra
ge

Ro

ck
s

Ti
m

e

A
W

S
Sp

ee
du

p

Ro
ck

s
Sp

ee
du

p

Serial

1 1 2.5 4.1 1.0 1.0

OpenMP 2 2 2 1.4 2.4 1.8 1.7

 4 4 4 0.8 1.6 3.1 2.6

 8 8 8 0.5 1.3 4.7 3.2

16 16 8 0.5 4.7

Time and speedup data from Table 3 clearly indicate that

our rented AWS instance, being a physically hosted on a new
and more powerful shared memory computer, offered a clear
advantage in terms of performance as compared to our
dedicated Rocks node.

Looking at Table 3, one may conclude that hyper threading
is not particularly beneficial for our shared memory merge
sort. In fact, we found out that hyper threading becomes a
positive factor for larger arrays. Shared memory merge sort
(with OpenMP) was executed on 8 physical and 16 virtual
(with hyper threading) cores on our AWS instance. Table 4
outlines performance of serial and shared memory merge
sorts on a set of very large arrays. This table clearly indicates
a speedup gain from hyper threading for larger arrays.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 371

Table 4. Performance with hyper threading on large data

O
pe

nM
P

M
er

ge
 S

or
t

D
at

a
Si

ze

Se
ri

al
 T

im
e

8
 P

hy
si

ca
l

Co
re

s
- T

im
e

16
 V

ir
tu

al

Co
re

s
- T

im
e

8
 P

hy
si

ca
l

Co
re

s
–

Sp
ee

du
p

16
 V

ir
tu

al

Co
re

s
-

Sp
ee

du
p

107 2.5 0.5 0.5 4.7 4.7

108 29.5 5.4 4.9 5.4 6.0

5*108 161 28.8 24.4 5.6 6.6

109 334 59.5 50.1 5.6 6.7

While launching and using a single high-performance AWS

instance is straightforward, configuring a multi-node virtual
MPI cluster on AWS is not as easy. As of the time of this
writing (March 2011), we are not aware of good quality
generic AMIs that can be used to launch MPI clusters by
following well documented, sound procedures. At the absence
of pre-packaged MPI-enabled cluster nodes, users who would
like to run MPI on AWS must act as system administrators
and build MPI-enabled, cluster-capable AMIs by themselves.
Despite of the technical difficulty of the process, we managed
to configure and fire a virtual SMP cluster on the on the
Amazon EC2.

To launch our AWS cluster, we created a custom AIM, an
Ubuntu Lucid system enhanced with MPI and containing our
own merge sort programs. We used this AIM to fire an MPI
cluster of five extra-large EC2 instances. In AWS
terminology, each instance was a 64-bit platform with 4
virtual cores. Again, we executed our message-passing merge
sort with randomly generated arrays of 107 integer elements,
just like we did on the standalone Rocks cluster (Section 2.4).

Note that although our AWS cluster and the standalone
Rocks cluster consisted of the same number of nodes, the two
clusters differed in their node architectures, including the
number of cores in each node (8 physical cores on the Rock
cluster as opposed to 4 virtual cores on the AWS cluster).
This is why it is difficult to formally compare performance
results obtained on these different clusters with our message-
passing merge sort. Yet, it became clear that our message-
passing merge sort achieved higher performance on the Rocks
cluster than on the AWS cluster. More important, execution
times that we measured on the AWS cluster were unstable and
varied in a much larger range than execution times on the
Rocks cluster.

Data in Table 5 illustrate the performance instability of the
AWS virtual cluster. Table 5 includes a representative
selection of: average, minimal, and maximal wall-clock times;
corresponding standard deviations; corresponding speedup
data for message-passing merge sort on the AWS virtual
cluster and, for comparison, on the Rocks cluster.

Table 5. Performance deviations, AWS and Rocks clusters

Pl
at

fo
rm

N
od

es

To
ta

l C
or

es

A
ve

r
Ti

m
e

M
in

 T
im

e

M
ax

 T
im

e

St
an

da
rd

D

ev
ia

tio
n

Sp
ee

du
p

AWS 4 16 3.3 2.5 4.9 0.9 1.2

Rocks 4 32 1.91 1.89 1.93 0.02 2.2

AWS 5 20 13.6 3.0 40.5 11.9 0.3

Rocks cluster’s performance advantages over the AWS

cluster can be attributed to the following factors. First, our
AWS virtual nodes, being AWS EC2 instances, shared the
same hardware with other unknown AWS instances and their
applications, and load spikes in those anonymous applications
had been probably quite detrimental to the AWS virtual
cluster performance; in contrast, we had the Rocks cluster
dedicated to our experiments. Second, our Rocks cluster
nodes were physically located on the same rack while our
AWS virtual nodes were located in the same region, but quite
likely on different racks; thus slower and busier network
connections negatively affected AWS cluster performance
and stability. Last but not least, virtualization in EC2 may
induce significant penalties for scientific computing
workloads [14].

3 Conclusions
This paper introduces three parallel versions of recursive
merge sort: shared memory (with OpenMP), message-passing
(with MPI) and hybrid (with MPI and OpenMP). While
others have developed merge sort algorithms with either
multi-threading [6] or message-passing [11], this paper offers
comparable multi-threaded, message-passing, and hybrid
implementations. The paper reports performance experiments
with the three approaches and draws conclusions accordingly
(while neither [6], nor [11] report systematic performance
results of their individual algorithms). Out performance
experiments show that shared memory merge sort (with
OpenMP) is faster than message-passing merge sort (with
MPI) when applied to arrays that fit entirely in RAM; the
performance of hybrid merges sort falls between that of
shared merges sort and message passing merge sort. (These
relations, however, may not hold for very large arrays that
significantly exceed RAM capacity.) Note, however that
which programming paradigm is best widely depends on the
nature of the problem, the hardware and software in cluster
nodes, and the cluster network; for example, a fast network
can make a message-passing (with MPI) solution for some
problem faster than shared-memory (with OpenMP) and
hybrid solutions [15].

Last but not least, this paper describes cloud computing
experiments with shared memory merge sort (with OpenMP)
and with message-passing merge sort (with MPI) on AWS in
general and on the Amazon Elastic Compute Cloud in

372 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

particular. The use of OpenMP on AWS is straightforward; it
has led us to a better speedup, thanks to the readily available
high-performance instance on a pay-per-use basis. In contrast,
MPI virtual clusters are not readily available on AWS and
their configuration for AWS requires technical system
administration skills. Our experiments with a virtual AWS
cluster exhibited poor and unstable performance. A recent
EC2 benchmark performance analysis concludes that the
performance and reliability of the EC2 cloud are low [14].
Yet, the EC2 cloud “may still appeal to scientists who need
resources immediately and temporarily” [14]; our shared
memory merge sort EC2 experiments demonstrate that
specific problems and software may actually give
performance gains to the high-performance cloud user.

4 References
[1] Amazon Web Services. Retrieved on March 1, 2011 from

http://aws.amazon.com/.
[2] Cole , Richard. Parallel merge sort. SIAM Journal on Computing,

Volume 17 Issue 4, August 1988, 770-785.
[3] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein,

Clifford. Introduction to Algorithms (3rd ed.), MIT Press, 2009.
[4] El-Ghazawi, Tarek; Carlson, William; Sterling, Thomas; Yelick,

Katherine. UPC: Distributed Shared Memory Programming. Wiley,
2005.

[5] Geist, Al; Beguelin, Adam; Dongarra, Jack; Jiang, Weicheng;
Manchek, Robert; Sunderam , Vaidy. PVM: Parallel Virtual Machine.
MIT Press, 1994.

[6] Huba , Dzmitry. Parallel merge sort. Retrieved on March 1, 2011 from
http://dzmitryhuba.blogspot.com/2010/10/parallel-merge-sort.html.

[7] Katajainen, Jyrki; Träff, Jesper L. A meticulous analysis of mergesort
programs. Lecture Notes in Computer Science, 1997, Volume
1203/1997, 217-228.

[8] LaMarca, Anthony; Ladner, Richard. The influence of caches on the
performance of sorting. Proc. 8th Ann. ACM-SIAM Symposium on
Discrete Algorithms (SODA97), 370–379.

[9] Orio: An Annotation-Based Empirical Performance Tuning
Framework. Retrieved on March 1, 2011 from
http://trac.mcs.anl.gov/projects/performance/wiki/Orio.

[10] Perera, Prasad. Parallel quicksort using MPI & performance analysis.
Retrieved on March 1, 2011 from
http://www.codeproject.com/KB/threads/Parallel_Quicksort/Parallel_Q
uick_sort_without_merge.pdf.

[11] Rolfe ,Timothy J. A Specimen of parallel programming: Parallel merge
sort implementation. ACM Inroads, Volume 1, Issue 4, December
2010, 72-79.

[12] The Message Passing Interface (MPI) standard. Retrieved on March 1,
2011 from http://www.mcs.anl.gov/research/projects/mpi/.

[13] The OpenMP specification for parallel programming. Retrieved on
March 1, 2011 from http://openmp.org.

[14] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D.
Epema. A performance analysis of EC2 cloud computing services for
scientific computing. In: Cloud Computing: Lecture Notes of the
Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, Springer, 2010, Vol. 34, Book
Series Editor: O. Akan et al., pp. 115-131.

[15] G. Jost, H. Jin, D. Mey, F. Hatay. Comparing the OpenMP, MPI, and
hybrid programming paradigms on an SMP cluster. NAS Technical
Report NAS-03-019, November 2003.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 373

Abstract- The ever-increasing size of data sets and the need for

real-time processing drives the need for high speed analysis. Since

traditional CPUs are designed to execute a small number of

sequential process, they are ill-suited to keep pace with this growth

and exploit the massive parallelism inherent in these problem

spaces. In the last several years, the parallelism of GPUs has

made them a viable solution for general purpose computing.

However, effective use of GPUs requires a significantly different

programming paradigm. Towards the goal of creating a function

library that maximizes the performance improvement of GPUs in

data analysis and clustering, this paper presents an

implementation of a general n-dimensional distance calculation

commonly used in these types of algorithms. Experimental results

show up to a 390x speedup using a Tesla C1060 and up to a 538x

speedup using a GeForce GTX 480 over an Intel Core i7.

Keywords: GPU Computing, Distance Calculation, Parallel

Computing

1 Introduction

The magnitude of large data sets and input streams are

growing rapidly. Examples can be seen in the recent

digitalization of the medical database in America, the

amount of experimental data that the Large Hadron

Collector at CERN can produce, and the rising number of

sensors in vehicles, manufacturing processes, and security

systems. This flood of data heralds a critical need for data

analysis and clustering algorithms that can make large-scale

computing faster and more affordable and increase the

complexity and ability of real-time systems.

In the last several, GPU computing has become a viable

alternative for general-purpose computing. For comparable

throughput, a GPU can often be purchased at one tenth of

the cost of traditional CPU, and they can be operated at one

twentieth the electricity [1]. GPUs are also available for

mobile devices, making them an option in ubiquitous

systems. However, the full advantages of GPUs for general

purpose computing cannot be realized by merely existing

algorithms to compile and generate the correct answer.

Existing algorithms must be recast correctly to efficiently

leverage the GPU platform, and there remains a tremendous

amount of work in this area

A library of GPU-accelerated functions is being

developed to facilitate several different data analysis and

clustering research projects for both large-scale and real-

time computing. This paper focuses on a generalized

distance calculation that operates on vectors with n

dimensions of floating points numbers. As will be discussed

in Section III, this function's flexibility allows it to calculate

Manhattan distances, Euclidean distances, and other

variations. It is specifically targeted to several forms of fast

fuzzy clustering for extremely large data sets and real-time

fuzzy clustering. Several full clustering algorithms have

been implemented with reported speedups. One method of

K-means clustering focuses on data sets that exceed the

GPU memory size, with reported speedups of about 10x

over a highly optimized, 8-core CPU implementation [2].

Hierarchical clustering algorithms have achieved a 65x

speedup [3]. Other K-Means implementations have gained a

40x speedup [4]. However, there is little discussion in the

literature about the individual functions and their respective

speedups, the bottlenecks of existing algorithms, and in

many cases the specifics of the GPU implementation. This

work details a specific, flexible function with a significant

speedup that can be incorporated into various algorithms.

Also, we report the optimizations that lead to the speedup so

that the concepts may potentially be applied to other

functions.

The remainder of the paper is outlined as follows. Section

II gives a general background of GPU computing along with

the issues that much be addressed to efficiently port an

algorithm to this platform. Section III discusses the

generalized distance calculation explored in this work.

Section IV describes the optimizations applied to the GPU

version of the algorithm, and Section V relates the

experimental results. Section VI concludes the paper.

2 GPU Computing Background

There are three main GPU computing platforms currently

available: NVIDIA's CUDA (Compute Unified Device

Architecture), OpenCL, and DirectCompute. This work uses

CUDA for several reasons. It is a relatively straightforward

extension to the C language. It has significant market

penetration, reportedly used by over 60,000 researchers and

in over 400 financial institutions. Also, NVIDIA estimates

that over 250,000,000 CUDA capable video cards have been

shipped by 2010 [5].

As stated, CUDA is an set of extensions for several

programming languages, notably C. It provides services to

create data structures in the GPU memory, transfer data

between GPU memory and CPU memory, call kernel

functions on the GPU, and other utilities. CUDA capable

Scott Fisackerly, Eric Chu, David L. Foster

Electrical and Computer Engineering Department, Kettering University, Flint, MI, USA

Rapid Performance of a Generalized Distance Calculation

374 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

devices can be queried in software for their major and minor

hardware revisions, allowing programs to select more

optimal parameters for the specific GPU. However, since

the GPU processing unit is largely abstracted, significant

software development can be completed without regard to

the end hardware. More details can be found in [6, 7].

GPU computing follows a significantly different

paradigm than traditional CPU computing. With CUDA,

there are three main aspects that must be addressed for

efficient and fast execution. The first main aspect is

decomposing the problem space and mapping it into

CUDA's virtual representation so that a kernel can be

scheduled on the GPU's processing units. A processing unit

is referred to as a streaming multiprocessor (SM) and

contains an array of streaming processors (SP). Early cards

used 8 SP's, each handling four threads simultaneously, and

recent 400 series and 500 series GPUs use 32 SPs handling

one thread each. A SM operates on a group of 32 threads,

called a warp, to execute 32 threads simultaneously. One of

the primary differences between GPUs is the number of

SMs available. Smaller GPUs intended for laptops or basic

graphics may have as few as 2 SMs, while GPUs intended

for intense computing, such as that in the Tesla C1060, may

have up to 30 SMs per chip.

CUDA threads are organized into three-dimensional

blocks, with each thread having a unique x, y, and z

coordinate within the block. Blocks are in turn arranged into

a three-dimensional grid, with each block having a unique x,

y, and z coordinate. These indices can be accessed by

threads through special variables during execution. Thus,

each thread can calculate a unique thread index used for

accessing data structures. There are limitations on the range

of indices in each dimension for threads and blocks as well

as an upper limit on the total number of threads per block.

These limitations are specific to the hardware revision and

can be queried in software. As a rule of thumb, blocks

should contain a multiple of 32 threads so that it contains an

even number of warps. Common values are 128 and 256

threads per block. The GPU schedules blocks to execute on

SMs, and if an SM has sufficient resources, multiple blocks

may be scheduled on the same SM.

When mapping this virtual organization onto a data

structure, it is important to exploit enough parallelism to

generate a large number of threads. While CPUs mitigate

memory access latency with a cache structure, GPUs hide

this latency by switching warps. Current SMs have enough

registers to hold 24 or 32 warps simultaneously, and the SM

can quickly switch between them performing a context

switch without the need to save status in memory. Without a

sufficient number of threads to select from, the SMs must

idle while waiting on memory accesses. Proper block and

grid selection can also affect the following major aspect.

Coalesced memory accesses also has a major influence on

GPU performance. GPU addresses point into small blocks

of memory at a specific memory pitch, such as every 64 of

128 bytes. Memory accesses are performed by half-warps,

with 16 threads performing their reads or writes

concurrently. If these 16 reads are on contiguous RAM

addresses, the access can complete in 1 read if the access

doesn't cross an address boundary, or two accesses if a

boundary is crossed. If these accesses are spread throughout

the RAM, the half-warp will take 16 memory accesses. With

memory accesses requiring about 400 to 600 clock cycles,

careful design of the kernel, data-structures, and access

patterns can significantly reduce the memory latency.

The final main aspect of efficient CUDA kernel design is

appropriate use of the available memory types. Each thread

has access to a set number of registers, as limited by the

hardware revision. Naturally, register access is the fastest

available. Each block has access to a limited amount of

shared memory located in the SM. A SM has 8 KB to 64

KB depending on the hardware revision. All threads in a

block can share data in the block's portion of shared, but this

memory must be divided among all blocks scheduled

concurrently on the SM, and blocks cannot read each other's

shared memory. The amount of shared memory required per

block is also a limited factor on how many blocks can be

simultaneously scheduled on the SM. Shared memory is

relatively fast, on the order of 10 clock cycles, and is often

used as programmer-managed cache. The card has constant

memory and texture memory visible to all threads in the

kernel. The slowest memory is the GPU's RAM, often 400-

600 cycles. Global variables reside in RAM Of major

importance, if the number of registers is insufficient for a

thread's local variables, excess local variables are allocated

in RAM reducing the performance.

3 Function Implementation

This section describes the general function that was

implemented, summarizes the implementation itself,

describes the mapping scheme, and discusses optimization

strategies.

3.1 Functional Description

As noted previously, a common operation in many

clustering algorithms is a distance calculation that generates

a measure of dissimilarity of two vectors. The implemented

formula is shown below in Equation 1.

 () √∑ ()

 ⁄

 (1)

This formula returns the distance between two vectors, p

and q, that each have n dimensions of floating-point data.

For two common distance metrics, if s=1, this function

calculates the Manhattan distance, and if s=2, it calculates

the Euclidean distance.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 375

3.2 Implementation

The CUDA function was designed to handle large arrays

of vectors. It requires two input matrices. Matrix P is p by n

points, representing p vectors of n dimensions. Similarly,

matrix Q is q by n points representing q vectors of n points.

The kernel is also passed a pointer to matrix D, which is a p

by q matrix used to return the resulting distances in which

element (i,j) is the distance between the i
th

 vector in P and

the j
th

 vector in Q. This format is useful so that the function

can calculate the distances between p input vectors to q

established data clusters, or the same matrix can of course

be passed as both P and Q to determine the distances

between a set of vectors. The function also requires p, q, and

n as integer-valued parameters, and s as a floating-point

input. Unlike some "fast" implementations for functions in

CUDA, array bounds are checked within the kernel code,

and there are no resulting limitations on p, q, and n.

3.3 Grid and Block Mapping

To map the problem into CUDA's thread organization, the

grid size was set to a one-dimensional array of p blocks.

Each block would calculate the distance between one of the

p vectors in array P and all q vectors in the Q array. The

block size was set to a one-dimensional array of 256

threads. Each thread would calculate the distance between

the block's assigned input vector from P and 1/256 of the q

vectors from Q.

3.4 Function Optimizations

Several implementations of the GPU kernel were

developed. The first was a baseline version, GPU-Baseline,

concerned only with generating the correct results and

without any specific effort for optimization. It was noticed

when analyzing the performance of this version that, since C

stores arrays row-wise in memory, the Q array was being

accessed in a pathological access pattern with every half-

warp access being broken into 16 separate reads. To

alleviate this issue, the Q array was transposed first using

sample code from the CUDA SDK [8], and then the distance

calculation was performed, yielding coalesced memory

accesses. This version is referred to as GPU-Transpose.

The second observation was that the P matrix was being

accessed one element at a time. All threads in a block were

loading the i
th

 element from a vector in P and then accessing

all of the i
th

 elements in the vectors in Q. This required the

kernel to access the P array in RAM once for every

dimension during the kernel. This pattern was improved by

using shared memory in the SM's. The kernel uses all

threads to fetch 256 values from a vector in P and store

them in shared memory. The next 255 loop iterations would

fetch the values from shared memory instead of RAM,

drastically lowering the latency. This version is referred to

as GPU-Shared, and it should be noted that this version also

uses the transpose optimization discussed previously.

4 Testing and Results

The computers used for testing contained the following:

an Intel® Core™ i7-920 processor at 2.66 GHz with 8 MB

of L3 cache, 6GB of PC10666 RAM, an ASUS P6T Deluxe

motherboard, an EVGA 260 GTX for graphics, and either

an NVIDIA Tesla C1060 or a Fermi-based EVGA GeForce

GTX 480 for GPU computing. The operating system was

Windows 7, and the system used CUDA Toolkit 3.2. Details

of the C1060 used for GPU computing can be found in

NVIDIA’s data sheet [9].

Several sets of values were tested for n, p, and q. Figure 1

shows a subset of values used in testing. For each test,

values for input arrays P and Q were generated randomly,

and this time was not included in the measurements. The

known correct version of single-threaded CPU code,

referred to as CPU-Baseline, was executed on the input set

and the calculation time was recorded. Then, the GPU code

was executed on the same data and was compared to the

CPU results to ensure correct operation. For test cases that

had very short running times on the GPU (some had less

than a millisecond), each set of parameters was used for 100

tests, and the running times were accumulated, then divided

by 100. It should be noted that the times measured for the

GPU included data transfers to and from the card, but they

did not include the validation with the CPU results. Each of

these tests was then run completely 5 times.

 n p q

TPV1 1024 32768 1024

TPV2 512 16384 512

TPV3 256 8192 256

TPV4 256 16384 256

TPV5 256 32768 256

TPV6 256 8192 512

TPV7 256 8192 1024

Figure 1 Subset of Test Parameter Values

 The running times of the functions were expected to be

linearly proportional to n, p, and q and invariant to s, and

these relationships were confirmed by experimental results.

The GPU versions showed slightly more variation due to

memory transfer operations between the CPU and GPU and

block scheduling. Figure 2 and Figure 3 show the average

running times for a subset of results that demonstrates these

patterns. The standard deviation in running times for all

versions was extremely small, less than 0.1%. Full results

are not shown for space considerations and since the results

correlate strongly with the above patterns.

376 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

The experiments demonstrated that the transpose

optimizations and the shared memory optimization greatly

improved the performance of the GPU code on the Tesla,

and that the speedup of the best GPU version was

substantially better than the CPU code, as shown in Figure 4

and Figure 5. The transpose operation improved

performance by 1.18 to 2.27 times and 1.17 to 1.42 times

for the Tesla and GTX 480 respectively, and use of shared

memory increased performance by an additional 1.41 to

1.56 times and 1.13 to 1.42 times for the two architectures.

It is likely that the smaller amount of improvements with the

GTX 480 over the C1060 is because it employs cached

memory, and this card would typically have more efficient

memory accesses than the Tesla C1060. While the CPU

version can be improved by making it multi-threaded, this

would produce only a theoretical 8x improvement on the

Core i7, and with standard overhead, the realized speedup

would be a little less. Even with an 8x speedup in the CPU

versions, the GPU versions show significant improvement.

The main contributor to execution time was the power

function required by the equation. The functions were

modified so that s = 1 would be a special case, and the

kernels would execute without using the power functions.

They are referred to as CPU-Manhat and GPU-Manhat,

based on CPU-Baseline and GPU-Shared respectively.

Figure 6 and Figure 7 show the running times on the two

GPUs tested, resulting in a 181 to 422 times speedup and a

434 to 755 times speedup in the Tesla C1060 and GTC 480

respectively. With the small amount of computation in the

Manhattan versions, the memory latency and transpose

operations were a significant portion of the total running

time.

GPU-

Baseline

GPU-

Transpose

GPU-

Shared

TPV1 139.86 248.96 386.08

TPV2 140.01 242.97 360.55

TPV3 110.37 227.89 337.93

TPV4 112.43 236.99 335.29

TPV5 127.63 236.72 359.63

TPV6 128.44 227.03 338.64

TPV7 193.71 237.06 358.46

GPU-

Baseline

GPU-

Transpose

GPU-

Shared

TPV1 267.38 378.83 538.12

TPV2 294.11 373.55 527.37

TPV3 292.48 349.21 336.60

TPV4 291.70 357.30 409.23

TPV5 298.09 362.18 456.12

TPV6 305.87 361.24 503.91

TPV7 297.61 368.15 517.55

CPU-

Baseline

CPU-

Manhat

GPU-

Shared

GPU-

Manhat

TPV1 5466.232 1059.611 14.158 2.510

TPV2 684.012 132.566 0.951 0.417

TPV3 85.557 16.583 0.253 0.091

TPV4 171.138 33.147 0.510 0.121

TPV5 342.729 66.278 0.953 0.181

TPV6 171.227 33.157 0.505 0.152

TPV7 342.741 66.228 0.956 0.199

Figure 2 Average running times in seconds on Tesla C1060

CPU-

Baseline

GPU-

Baseline

GPU-

Transpose

GPU-

Shared

TPV1 5466.232 39.082 21.956 14.158

TPV2 684.012 4.885 2.815 0.951

TPV3 85.557 0.775 0.375 0.253

TPV4 171.138 1.522 0.722 0.510

TPV5 342.729 2.685 1.448 0.953

TPV6 171.227 1.333 0.754 0.505

TPV7 342.741 1.769 1.446 0.956

CPU-

Baseline

GPU-

Baseline

GPU-

Transpose

GPU-

Shared

TPV1 5466.232 20.444 14.429 10.158

TPV2 684.012 2.235 1.831 1.370

TPV3 85.557 0.292 0.224 0.252

TPV4 171.138 0.587 0.478 0.418

TPV5 342.729 1.150 0.946 0.751

TPV6 171.227 0.560 0.474 0.340

TPV7 342.741 1.152 0.931 0.662

Figure 3 Average running times in seconds on GTX 480

Figure 4 Speedup relative to CPU-Baseline with Tesla

C1060

Figure 5 Speedup relative to CPU-Baseline with GTX 480

Figure 6 Average running times in seconds on C1060

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 377

CPU-

Baseline

CPU-

Manhat

GPU-

Shared

GPU-

Manhat

TPV1 5466.232 1059.611 10.158 1.404

TPV2 684.012 132.566 1.370 0.201

TPV3 85.557 16.583 0.252 0.038

TPV4 171.138 33.147 0.418 0.071

TPV5 342.729 66.278 0.751 0.130

TPV6 171.227 33.157 0.340 0.065

TPV7 342.741 66.228 0.662 0.112

5 Conclusions

This paper demonstrates tremendous speedups of a

general distance calculation function that can be

incorporated into many various classification and analysis

algorithms. Additionally, it shows that preprocessing is a

useful stop to allow more advantageous memory access

patterns on the graphics card. It also shows that this

particular GPU is significantly more efficient when

calculating power functions compared to CPUs, and this

could be a determining factor when selecting the most

appropriate platform for other functions. With the

optimizations given, this work boasts up to an astonishing

538 times speed improvement versus a traditional CPU for

the discussed distance calculation. For future work, an

optional covariance matrix will be added so the

functionality can be extended to Mahalanobis calculations.

6 Acknowledgments

This research was supported by an equipment donation

from the NVIDIA Corporation as part of the Academic

Partnership Program.

References

[1] NVIDIA. (2011, Jan 27, 2011). High-Performance

Computing - Supercomputing with Tesla GPUs. Available:

http://www.nvidia.com/object/tesla_computing_solutions.ht

ml

[2] R. Wu, et al., "Clustering billions of data points using

GPUs," presented at the Proceedings of the combined

workshops on UnConventional high performance

computing workshop plus memory access workshop, Ischia,

Italy, 2009.

[3] S. A. A. Shalom, et al., "Hierarchical Agglomerative

Clustering Using Graphics Processor with Compute Unified

Device Architecture," presented at the Signal Processing

Systems, International Conference on, 2009.

[4] B. Hong-tao, et al., ""K-Means on Commodity GPUs

with CUDA," presented at the Computer Science and

Information Engineering, World Congress on, 2009

[5] NVIDIA. (2011, Jan. 30, 2011). What is CUDA?

Available:

http://www.nvidia.com/object/what_is_cuda_new.html

[6] J. Sanders and E. Kandrot, CUDA by Example, An

Introduction to General-Purpose GPU Programming:

Addison Wesley, 2010.

[7] D. B. Kirk and W.-M. W. Hwu, Programming

Massively Parallel Processors: a Hands-On Approach:

Morgan Kaufmann Publishers, 2010.

[8] G. Ruetsch and P. Micikevicius. (2009, Jun 11, 2010).

Optimizing Matrix Transpose in CUDA. Available:

http://developer.download.nvidia.com/compute/cuda/sdk/we

bsite/C/src/transposeNew/doc/MatrixTranspose.pdf

[9] NVIDIA. (2009, Jun 11, 2010). Tesla C1060

Computing Processor Board. Available:

http://www.nvidia.com/docs/IO/43395/BD-04111-

001_v05.pdf

Figure 7 Average running times in seconds on GTX-480

378 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

GPU Cluster with MATLAB
A. Guillén M. Garcı́a L. J. Herrera H. Pomares I. Rojas

Abstract—This paper presents the architecture of an hetero-
geneous cluster where each node has one or more Graphical
Unit Processors (GPUs). The motivation of the work is the fact
that this technology presents very impressive results in High
Performance Computing at a very low cost and very small energy
consumption so. Although this might not be a huge novelty, it is
the fact that it can be programmed using MATLAB (one of the
scientist’s favourite programs). As an example of application, an
implementation of the k-Nearest Neighbours will be executed on
the platform using both parallelism techniques: MPI and CUDA.

I. I NTRODUCTION

As machine learning evolves and more real world appli-
cations are faced, more computational power is needed due
to the complexity of the problems tackled and the large size
datasets. Scientist, aware of this bounds, have been doing
research on how to obtain better performance taking advantage
of the current technology. The mother nature shows us some
examples where ”the union makes the force” allowing this
union to ”divide and conquer” problems. The ”ensembling”
approach has been analyzed theoretically in models, showing
better performances [1]. Computer architecture has squeezed
this approach since its very begging ending up in the Internet
as a resource provider (the cloud). This paper presents an
easy way to use the most recent High Performance Computing
(HPC) devices, such as Graphical Processing Units (GPUs),
in combination with the classic cluster/beowulf [2] approach.

The rest of the paper is organised as follows: Section 2
will describe some technical aspects in order to understand
the architecture, which is described in Section 3. Afterwards,
Section 4 will present an example of a parallel application
running in the platform developed. Finally, conclusions will
be discussed in Section 6.

II. T ECHNICAL DESCRIPTION

A. Cluster of computers

Clusters of computers have been used since the early stages
of the computer science as a way to distribute work, data
and obtain more security and fault tolerance. In 1994, the
Beowulf project was developed using a set of desktop personal
computers and connecting them through an Enthernet local
network.

1) Programming paradigm: Message Passing Interface
(MPI): As it is defined inhttp://www-unix.mcs.anl.gov/mpi/,
MPI is:

...a library specification for message-passing,
proposed as a standard by a broadly based

1: School of Computer and Telecommunications Engineering, University
of Granada, (18071) Spain e-mail: aguillen@atc.ugr.es

committee of vendors, implementers, and users...”

Among the advantages of, MPI that have made this library
well known, are:that is freely available, was designed for
high performance on both massively parallel machines and
on workstation clusters, etc.

The Message Passing Interface was designed in order to pro-
vide a programming library for inter-process communication in
computer networks, which could be formed by heterogeneous
computers. The processes communicate among each others
by sending messages between pair of processes or between
collective communications among groups of processes.

MPI is the most used library for inter-communication in
High-performance computing (HPC) application. There are
several vendors and public implementations availables Open-
MPI 1 and MPICH2, for instance. It allows the programmers
to use several processes that can be executed in distributed
machines.

This library can be used to program all types of HPC
computers and is compatible with the Sun Grid Engine (SGE)
making the programming and experimentation very comfort-
able for the users. The library is available in many languages
such us C, C++, Java, .NET, python, Ocaml. A special effort
was made to be able to use it in MATLAB since Mathworks
doesn’t provide the full functionality of the library. Regarding
the adaptations and interfaces, there are popular ones like
MatlabMPI [3], MPITB [4][5]3 and MPImex [6].

B. Clusters of GPUs

The definition of cluster of GPU is not clear because it
might have two interpretations: a machine with several GPUs
(that could have several cores), a collection of computers, each
one of them with one GPU.

The first approach has been used by M. van Heeswijk et
al [7] using the NVidia GTX295 with 2 Graphics Processing
Units (GPUs) that provided a total of 1790 GFlops of computa-
tional power to design neural networks. In [8] this architecture
is exploited as well to improve performance.

The second interpretation of cluster of GPUs has been
implemented in more works in the literature. For example
by Fan et al [9] built a cluster with 32 computation nodes
connected by a 1 Gigabit Ethernet switch. Each node consists
of a dual-CPU HP PC with an nVIDIA GeForce FX 5800
Ultra.

Other examples that includes GPUs and CPUs for comput-
ing is for example the Lincoln [10] cluster with 192 Servers

1http://www.open-mpi.org/
2http://www-unix.mcs.anl.gov/mpi/mpich1/
3This project has been held in MATLAB and continued for Octave

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 379

nodes with 96 NVIDIA Tesla S1070 Accelerator Units de-
veloped in National Center for Supercomputing Applications
(NCSA) located at University of Illinois. Lincoln cluster is an
heterogeneous one because it uses CPU and GPU depending
on the application of the computation it executes.

1) Programming paradigm: (Compute Unified Device Ar-
chitecture) CUDA: As defined by the company NVIDIA in
[11]: ”...CUDA is NVIDIAs parallel computing architecture
that enables dramatic increases in computing performance by
harnessing the power of the GPU (graphics processing unit).
...” .

This technology has been well accepted in the research
community due to its obvious benefits and possibilities in a
wide variety of disciplines (Government & Defense, Molecu-
lar Dynamics, Computational Chemistry, Life Sciences, Bio-
informatics, Electrodynamics and electromagnetic, Medical
Imaging, Financial computing and options pricing, etc. [12]).

As GPUs were becoming more common, some individuals
efforts were done [13] in order to call CUDA routines from
MATLAB and use these devices, furthermore, some of those
products were commercialized [14]. However, all these ap-
proaches have become, in a way, obsolete since the MATLAB
2010b Release includes its own Parallel Computing ToolBox
which is able to use and manipulate several GPUs [15], [16].

III. PROPOSEDARCHITECTURE: CLUSTER OFGPUS

CLUSTERS

As describe before, there exists the possibility of setting a
cluster using MPI [17] and a cluster of several GPUs [10],
[9], furthermore, there exists the possibility of configuring
a cluster where each node has several GPUs. For example
the BALE cluster at the Ohio Supercomputer Center which
has 16 nodes with two dual-core AMD Opteron 2218 CPUs
and two Nvidia Quadro FX 5600 GPUs each (that is 2*128
cores). However, as far as we know, nobody up to the date
has configured a cluster where each node has several GPUs
which can be programmed using MATLAB. Thus, the main
contribution of this paper is the presentation of an architecture
(Figure III composed by several nodes with several GPUs
which can run a MATLAB program. The restriction is that the
application has to be deployed using the MATLAB Compiler.
Another remarkable aspect of the proposed architecture is that
it is made by heterogeneous computers and CPUs not like the
previous ones where the cores of the GPUs and the CPUs
were, respectively, homogeneous.

A. MATLAB Compiler

MATLAB software has available a tool calledCompiler
which allows MATLAB to generate executable applications
(stand-alones) that can be run independently of MATLAB,
this is, there is no need of having MATLAB installed in the
computer to run the application. The stand-alone requires a set
of libraries which can be distributed after being generated with
MATLAB, this libraries start theComponent Runtime(MCR)
that interprets the .m files as the MATLAB application would
do.

Fig. 1. GPU cluster architecture

The application is packed in an executable file that, when
it is run, extracts in a directory all the encrypted .m files that
form the deployed application after being compressed so there
is no way to access the original source code.

The process that MATLAB follows to generate a stand-alone
application is made automatically and totally transparent to the
user so he only has to specify the .m files that compose the
application to be deployed and MATLAB will perform the
following operations:� Dependence analysis between the .m files� Code generation: the C or C++ code interface is generated

in this step.� File creation: once the dependencies are solved, the .m
files are encrypted and compressed.� Compilation: the source code of the interface files is
compiled.� Link: the object code is linked with the required MAT-
LAB libraries.

B. Programming paradigm: CUDA + MPI

Using the information from the previous section, the pro-
cedure to set up a cluster of GPU clusters4 and programming
it with MATLAb is straight forward, however, it is not. The
implementation of the library MPI might affect the perfor-
mance, specially if the cluster is using a grid engine to manage
the jobs. As far as we know, MPImex [6] has been tested in
local clusters and grids configurations where the jobs are sent
straight to the nodes having a correct behaviour, therefore,
it is the one it will be used in this work. Another reason is
that it is based in the OpenMPI implementation which is an
active project that is been used in many research labs. This
toolbox requires the deployment of the application in order to
be sent to the different nodes in the grid and, unfortunately,
the Parallel Distributed Toolbox that Mathworks provides does
not work on deployed applications, therefore, the support that
MATLAB provides to use several GPUs in the same machine
cannot be used.

In order to solve this problem, a direct interface to the
CUDA routines has to be embedded in the MATLAB code in

4considering a GPU cluster as one or more computers with one or more
than one GPU interconnected through a Local Area Network

380 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

a similar way as it was done with the MPI function calls for
MPImex. The embedded routines can be isolated in a toolbox
file or written directly in the CUDA code of the soucer .cu
files. In both cases, an explicit parameter that selects the GPU
to be used must be specified. This parameter should be the
rank of a process obtained after the MPImex(’Init’) call so
each process uses its own GPU. The code to do this must be:
GPUselec = (int)mxGetScalar(prhs[N]);
where (int)mxGetScalar(prhs[N]) makes reference to the pa-
rameter number N in the MATLAB function call that should
be the process rank. After obtaining this parameter, the CUDA
function call to select the GPU is in figure III-B.

To compile the .cu file the following command should be
used:
./nvmex -f ./nvopts.sh source-code.cu

-I$CUDAROOT/include
-L$CUDAROOT/lib64 -lcudart -lcublas
-lcufft
-L/usr/lib/nvidia-current -lcuda
and defining the variable:
export MATLAB=$MATLABROOT
to indicate the directory where the MATLAB release is in-
stalled. The release has to be 2009a since the latests do not
support CUDA mex files.

IV. EXPERIMENTS

In this section we will describe an example of a concrete
architecture running a concrete code. The code to be run
is the computation of thek-Nearest Neighbours which was
implemented in CUDA by v. Garcia in [18] and is a quite
useful function since this algorithm is widely used in the
machine learning field as classificator and regression model.

A. Cluster Architecture

The Grid that was configured had the components described
below that were interconnected as Figure IV-A shows.

1) 1 Master node with 2 GPUs:
Processor:� model name: (26) Intel(R) Core(TM) i7 CPU 930

@ 2.80GHzcache size: 8192 KB
2 GPUs:� Graphics Processor:GeForce GTS 450� CUDA Cores: 192� Memory: 1024 MB - Memory Interface: 128-bit� Bus Type: PCIExpress x16 Gen1 -PCI-E Max Link

Speed: 2500
2) 2 Local network nodes with 1 GPU each:

Processor:� model name: (23) Intel(R) Core(TM)2 Quad CPU
Q9550 @ 2.83GHzcache size: 6144 KB

GPU:� Graphics Processor:GeForce 9800 GTX —CUDA
Cores: 128� Memory: 512 MB - Memory Interface: 256-bit� Bus Type: PCIExpress x16 Gen2 -PCI-E Max Link
Speed: 5000

Processor:� model name: (15) Intel(R) Core(TM)2 Quad CPU
Q6600 @ 2.40GHzcache size: 4096 KB

GPU:� Graphics Processor: GeForce 8400 GS —CUDA
Cores: 162� Memory: 512 MB - Memory Interface: 64-bit� Bus Type: PCIExpress x16 -PCI-E Max Link Speed:
not available

Fig. 5. Cluster Architecture used in the experiments

B. Example of use

In figure IV there is a fragment5 of an example code.
The code provided by V. Garcia was adapted and

compilated following the indications of the previous section
resulting in the following mex file:
knn_cuda_with_indexes.mexa64

who is invoqued from MATLAB with:[value, indx℄ =
knn_cuda_with_indexes(ref,query,k,
GPUDevice);

where ref is the reference set,query, is the set that
will be consulted,k, the number of nearest neighbours to be
computed andGPUDevice the number of GPU to be used
(starting from 0).

The processes divide the reference data set to compute
the nearest neighbours of each sub-data set. Afterwards, each
process sends its local set of closest neighbours to the root
node which performs the final computation with all the subsets
computed by the processes

V. CONCLUSIONS

As the time goes by, the Graphic Processing Units are
consolidating its position in the High Performance Computing
arena. This paper has presented a new framework in order
to take advantage of this technology and integrate it with the
classical cluster concept. The result is an heterogeneous cluster
combining nodes with several GPUs. Another contribution of

5for the complete code refer tohttp://atc.ugr.es/ aguillen/GPUcluster/sampleKNN.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 381

result = cudaSetDevice(GPUselec);
if (result)f printErrorMessage(result); cudaThreadExit(); return; g
result = cudaGetDevice(&cuDevice);
if (cuDevice!=GPUselec) printErrorMessage("Requested GPU couldn’t be selected", 0);
if (result)f printErrorMessage(result); cudaThreadExit(); return; g
if(CUDA_ SUCCESS!=cuInit(0)) printfErrorMessage("CUDA Initialization failed");

Fig. 2. CUDA code that should be run by each process to select the GPU device.

the paper is the description of the procedure in order to run
MATLAB programs on the architecture and, as an example, a
distributed computation of thek-Nearest Neighbours algorithm
has been shown.

REFERENCES

[1] A. P. Topchy, M. H. C. Law, A. K. Jain, and A. L. Fred, “Analysis
of consensus partition in cluster ensemble,” inProceedings of the
Fourth IEEE International Conference on Data Mining, ser. ICDM
’04. Washington, DC, USA: IEEE Computer Society, 2004, pp.
225–232. [Online]. Available: http://portal.acm.org/citation.cfmn?id=
1032649.1033458

[2] W. Gropp, E. Lusk, and T. Sterling,Beowulf cluster computing with
Linux. Cambridge, MA, USA: MIT Press, 2002.

[3] J. Kepner, “Matlabmpi,” J. Parallel Distrib. Comput., vol. 64, pp.
997–1005, August 2004. [Online]. Available: http://portal.acm.org/
citation.cfmn?id=1032106.1032114

[4] J. Fern?ndez, M. Anguita, E. Ros, and J. Bernier, “SCE Toolboxes for
the development of high-level parallel applications,”Lecture Notes in
Computer Science, vol. 3992, pp. 518–525, 2006.

[5] J. F. Baldomero, “Mpi toolbox for matlab,” Universidad de Granada,
Tech. Rep., 2005. [Online]. Available: ”http://atc.ugr.es/javier-bin/
mpitbn eng”

[6] A. Guillen, I. Rojas, G. Rubio, H. Pomares, L. Herrera, and J. Gonzalez,
“A new interface for mpi in matlab and its application over a genetic
algorithm,” in Proceedings of the European Symposium on Time Series
Prediction, 2008, pp. 37–46.

[7] M. van Heeswijk, Y. Miche, E. Oja, and A. Lendasse, “GPU-accelerated
and parallelized ELM ensembles for large-scale regression,”Neurocom-
puting, 2010, to appear.

[8] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone,
and J. C. Phillips, “GPU computing,”Proceedings of the IEEE,
vol. 96, no. 5, pp. 879–899, May 2008. [Online]. Available:
http://www.idav.ucdavis.edu/publications/printpub?pubid=936

[9] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, “Gpu cluster for
high performance computing,” inProceedings of the 2004 ACM/IEEE
conference on Supercomputing, ser. SC ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 47–. [Online]. Available:
http://dx.doi.org/10.1109/SC.2004.26

[10] V. Kindratenko, J. Enos, G. Shi, M. Showerman, G. Arnold, J. Stone,
J. Phillips, and W. mei Hwu, “Gpu clusters for high-performance
computing,” inCluster Computing and Workshops, 2009. CLUSTER ’09.
IEEE International Conference on, September 2009, pp. 1 –8.

[11] N. Corporation, “”http://www.nvidia.com/object/whatis cuda new.html”,”
”NVidia Corporation”, Tech. Rep., 2011.

[12] NVIDIA, “Cuda-accelerated applications,” NVIDIA Corporation, Tech.
Rep., 2005. [Online]. Available: ”http://www.nvidia.com/object/cuda
app tesla.html”

[13] T. G. you Group, “”http://gp-you.org/”.”
[14] A. Corporation, “”http://www.accelereyes.com/”,” AccelerEyes Corpo-

ration, Tech. Rep., 2010.
[15] M. Feldman, “Matlab adds gpgpu support,” Septem-

ber 2010. [Online]. Available: http://www.hpcwire.com/features/
MATLAB-Adds-GPGPU-Support-103307084.html

[16] M. Inc., “Matlab adds gpgpu support,” 2010. [Online]. Available:
http://www.mathworks.com/discovery/matlab-gpu.html

[17] J. M. Squyres, “Processes, processors, and MPI, oh my!”ClusterWorld
Magazine, MPI Mechanic Column, vol. 2, no. 1, January 2004.
[Online]. Available: ”http://cw.squyres.com/”

[18] Fast k nearest neighbor search using GPU, 2008. [Online]. Available:
http://dx.doi.org/10.1109/CVPRW.2008.4563100

Acknowledgments. This research has been supported by the
projects by the Spanish CICYT Project TIN2007-60587 and
TEC2008-04920 and Junta Andalucia Projects P07-TIC-02768, P08-
TIC-03674, P07-TIC-03044, P08-TIC-03903 and P08-TIC03928
and PYR-2010-17 of CEI BioTIC GENIL (CEB09-0010) of the
MICINN.

382 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 3. MATLAB Compiler deployment process for an MPI + CUDA application.

%only the root node has two GPUs if(myrank==0) GPUDevice=1;
else GPUDevice=0;
end
...[value, indx ℄ = knn_ cuda_ with_ indexes (ref,query,1, GPUDevice);
...
% Collect solutions
if(myrank==0)

%alloc space for all the solutions
soluProc=zeros(1,size_w);

...
%for each proccess, if it’s not myself, get the closest neighbour
for l=1:size_w-1,

soluProc(l)=MPImex(’Recv’,1,’MPI_DOUBLE’,l,202, ’MPI_COMM_WORLD’,’IGNORE’);
end
% Compute the nearest neighbours[value, indx ℄ = knn_ cuda_ with_ indexes (X(soluProc,:),query,1, GPUDevice);

...
else

MPImex(’Send’,indx, 1, ’MPI_DOUBLE’, 0, 202, ’MPI_COMM_WORLD’);
end

Fig. 4. Example of code where the computer which hosts processes 0 and 1 sets the GPUDevice parameter selecting the GPU
to be used. Afterwards, it is shown the MPImex calls to collect the results of thek-NN values computed by the other processes.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 383

A Parallel Domain Decomposition Algorithm for Solving

the Equation of Nitric Oxide Diffusion in the Nervous

System

Jianxin Wang
1
, Heng Wu

1,2
, and Yu Zhuang

2,i

1
College of Information Science & Engineering, South Central University, Changsha ,Hunan, China

2
Computer Science Department, Texas Tech University, Lubbock, Texas.

Abstract - We present a domain decomposition method for

solving the equation modeling nitric oxide diffusions. The

domain decomposition we use is one of the stabilized explicit

implicit domain decomposition (SEIDD) methods. The SEIDD

methods have a restriction that the interface boundaries have

no cross-over inside the domain. In this paper, we present a

domain-data partition strategy for SEIDD methods and the
associated parallel algorithm with parallelism higher than the

number of subdomains, overcoming a major accuracy

disadvantage of no-crossover interface boundaries for

massively parallel processing and enabling high fidelity large

scale simulations, as supported by tests with up to 1024

processors.

Keywords: Domain decomposition, parallel algorithms,

domain-data partition schemes

1 Introduction

 The signaling function of nitric oxide in cardiovascular

system is well recognized and its discovery was awarded
Nobel Prize in 1998 [11]. It is also discovered that nitric

oxide plays a signaling facilitating role in the nervous system,

complementing the dominant inter-neuron signaling process

through chemical and electrical synapses [12]. The

mechanism that nitric oxide functions inter-neuron signaling

is diffusion [12,16], which enables communication between

neurons that are not connected by synapses or gap junctions

(i.e. electrical synapses). The diffusion of nitric oxide in the

nervous system is modeled by

 (1)

where x is the vector space variable indicating as spatial

location, u is the concentration of the nitric oxide,
is the diffusion coefficient (assuming low concentration
of nitric oxide, D is hence assumed to be independent of

 but dependent only on the solution environment), P

and Q are non-negative functions indicating sources and

sinks respectively, and is the decay-rate.

In this paper, we present an algorithm for solving

equation (1) on parallel computers, which is based on an

explicit implicit domain decomposition (EIDD) method in

[23]. EIDD [1-5,8-10,13,14,17,18,20-24] are globally non-

iterative, non-overlapping domain decomposition methods for

solving parabolic equations, which are algorithmically simple,

computationally and communicationally efficient for parallel
processing. One group of EIDD methods achieves good

stability with implicit correction of the explicitly predicted

interface boundary conditions. Due to its simplicity, efficiency,

and stability, corrected EIDD methods started to receive

attention around the turn of the millennium [13,21,3]. One

author of this paer studied stabilized EIDD (SEIDD) methods

[23], a sub-class of corrected EIDD method in which the

predictor and corrector are so designed that the corrector

stabilizes the predictor of the next time step.

In parallel implementation of corrected EIDD methods,

the correction step is difficult to be parallelized when the

interior boundaries cross into each other inside the domain,
e.g. as in Figure 1(a). While for some problems [19], it causes

no trouble to partition a domain stripwisely with no

intersecting interior boundaries, in many cases corrected

EIDD methods suffer from low accuracy when partitioned

into a large number of narrow strip subdomains when a large

number of processors is used [23]. To address the interior

boundary crossover problem, Shi and Liao [14] introduced

zigzag interior (ZI) boundaries so that in the implicit

correction, spatial discretization does not result in coupling of

all grip points on the interior boundaries into one single

equation. Liao, Shi, and Sun [10] recently developed
composite interior (CI) boundaries by replacing the zigzag

interior boundaries in [14] with straight-line interior (SI)

boundaries at locations not neighboring intersection points of

interior boundaries, leading to improved programming

simplicity for the treatment of interior boundaries than the ZI

boundaries. Zhu, Yuan, and Du [17,18] used a different

technique to handle the crossover of interior boundaries. They

used special treatment for the implicit discretization at points

neighboring intersection points while maintaining

unconditional stability. The interface boundary treatment

introduced by Jun and Mai for their modified implicit
prediction (MIP) method [6,7] can also be used to solve the

384 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

intersecting interior boundary problem for corrected EIDD

methods.
In this paper, we avoid narrow and long strip

subdomains with a different approach in domain partitioning

combined with other techniques. The domain partitioning

approach was initially studied in [24] with a SEIDD method

for the heat equation. The heat equation is separable and the

time-discretized equation on each subdomain is solved by a

FFT-based parallel solver. This paper considers the nitric

oxide diffusion problem, where the equation is not separable

and hence the techniques in [24] are not applicable. In this

paper we investigate the combination of the domain-partition
approach in [24] with a different SEIDD for the nitric oxide

diffusion problem.

2 The Stabilized EIDD Method

 The SEIDD method we use was presented in [23]. For

reading convenience, mathematical description of the SEIDD

method is provided below. We first list some notations. To

numerically solve problem (1), we choose a discrete spatial

grid with mesh sizes bounded by h, and discretize

equation (1) spatially into

 (2)

where , a square matrix, is the discrete approximation of

the spatial operator on the right hand side of equation (1), and

u(t) is the solution vector at time t. Our description will be

based on this spatially discrete form of the equation. For a

subset S of the discrete grid points , i.e. , let be a

diagonal matrix with 1 on the positions corresponding to the

grid points in the subset and 0 elsewhere. For a
domain partitioned as in Figure 1 (b), let B be the set of grid

points on interface boundaries. With denoting the

numerical solution of the k-th time step, the SEIDD method

for computing the solution at the (k+1)-th time step from
the current k-th time step is given below.

The SEIDD Method

1) Compute the interface boundary condition using the

forward Euler scheme

 (3)

where is the identity matrix.

2) Using the interface boundary conditions computed at step 1

together with exterior boundary conditions, compute the

solution on the subdomains using the directionally

factorized implicit scheme

 (4)

3) Throw away the interface boundary condition computed at

step 1, and using solution data on nearby subdomain
as boundary conditions, re-compute interface boundary

condition on B with the backward Euler.

 (5)

3 The New Parallel SEIDD Algorithm

 The method in the previous section is an operator-

splitting time discretization method, where the operator

splitting is domain decomposition based. On the other hand,

data parallelism-based parallel processing involves data

partition which, for domain decomposition methods, usually

uses the domain partition of the operator- splitting for the data

partition. In domain decomposition based parallel algorithms,

while the domain partition for constructing the operator-

splitting and the domain partition for the parallel- processing-

enabling data partition are usually the same, the two
partitions, matter-of-factly, do not have to be the same.

For the SEIDD method, when using the same domain
partition for the two purposes, the domain partition
restriction will prevent parallelism reaching a high level

unless very narrow and long strip subdomains are used as in

the Figure 1 (b). Very narrow subdomains will cause larger

numerical errors as reported in [23]. Thus, to attain high
parallelism for the SEIDD methods without using narrow-

and-long subdomains, we use the approach of two different

domain partitions, which, as applied to the SEIDD method, is

detailed as follows

.

 (a) (b)

Figure 1

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 385

 . . .

 . . .

 . . .

 . . .

 . . .

 . . .

 . . .

Figure 2

Figure 3: Inter-processor communication pattern and

transfer data amount in Step1. Each processor

assigned a subdomain of size .

The domain is divided into p q subdomains of equal

size as in Figure 2. We use the partition by the vertical lines to
construct the operator splitting of the SEIDD method while

using the partition by both the vertical and horizontal lines for

the data partition for distributing data to different processors.

To be more specific, let

 for i = 1, …, p, and

denote by the vertical interface boundary between and

 for i = 1,…, p−1. We further let B=

 , and denote

by the complement of all vertical interface boundaries in

 . And these two sets B and are the same sets B and

used in the construction of the operator-splitting of the SEIDD

method presented in Section 2.
We further let denote the part of the interface

boundary between subdomains and . Then

 for each i =1, 2, …, p. Now given

processors labeled as for i = 1, 2, …, p and j=1, 2, …, q,

the data partition and distribution to processors are given as

follows:

Figure 4: Inter-processor communication

pattern and amount of transfer data in Step 2.

Figure 5: Inter-processor communication pattern

and amount of transferred data in Step 3.

 Assign subdomain to processor .

 Assign interface boundary to processor .

Step 1 is a matrix-vector multiplication involving the

solution only on vertical boundaries, and the matrix is very
sparse. Hence Step 1 can be executed by all pq processors in

parallel and efficiently.

Step 2 involves solving two sequences of 1-D equations

on each of the vertical subdomains . One

sequence of equations corresponds to
 and the

other to

 . The two discrete operators

and

 are diagonally dominant tridiagonal matrices.

On the subdomain , each tridiagonal system of the

sequence that is associated with
 represents

a difference equation on a x-direction gridline on .

Since is partitioned along y-direction into sub-

subdomains , each x-direction gridline

on lies entirely on one of the sub-subdomains, say

N/q

N/q
N/q

N/q

N/q

N/
q

N/q

N/
q

N/q N/q N/q

1 1

1 1 1 1

1 1

1 1

1 1

1 1 1 1 1 1

N/q N/q N/q

M/p-1 2(M/p-1) M/p-1
M/p-1 2(M/p-1) 2(M/p-1)

M/p-1

2(M/p-1) M/p-1

M/p-1

2(M/p-1) M/p-1

2(M/p-1) M/p-1

2(M/p-1) M/p-1

2(M/p-1) 2(M/p-1)

1 2

1 2 1 2

1 2

1 2

1 2

N/q N/q N/q

N/q N/q N/q

N/q N/q N/q

1 2 1 2 1 2

386 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

 . Hence each tridiagonal system of the sequence

associated with
 has its data entirely on one

processor, which allows tridiagonal systems of the

sequence
 on different processors be

computed completely mutually independently and

hence in parallel. Now for tridiagonal systems

corresponding to

 , due to the y-directional

partition of into q sub- subdomains, each tridiagonal

system of the sequence associated with

 has

its data distributed among the q processors

 . Since these tridiagonal matrices are

strictly diagonally dominant, they can be solved by the
Parallel Diagonal Dominant (PDD) algorithm [15] for

tridiagonal matrices.

Step 3 involves solving − tridiagonal systems, each

corresponding to an equation (5) on one of the − interface

boundaries for −1. Each of the −1 tridiagonal

systems has its data distributed to q processors, e.g. the

tridiagonal system corresponding to interface boundary

has its data distributed among the q processors .

Since equation (5) is strictly diagonal dominant, we apply the

PDD algorithm for the parallel solution of the tridiagonal

systems.

The communications in Steps 1, 2, and 3 of the parallel
algorithm are indicated in Figures 3, 4, and 5 respectively,

where an arrow indicates the direction of data-transfer

between processors and the number on an arrow indicates the

number of transferred words in the communication. In Figure

3, the exchange of a pair of words between vertical

neighboring processors and is for the explicit

computation of interface boundary condition (in Step 1) at

the lower end of and upper end of respectively.

The words sent from processor to its right neighbor

 in Figure 3 are the predicted interface boundary

condition on , which is needed in Step 2 for solving the

subdomain equation on assigned to processor . In

Figure 4, the data-transfer between two vertical neighboring
processors is caused by the PDD tridiagonal solvers, which

involves 3 words in communication for each tridiagonal

system and a total of 3(M/p−1) words between each pair of

vertical neighboring processors. In Figure 5, the N/q words

sent from processor to its left neighbor is part of

the solution of the subdomain equation on that is

needed for the implicit re-computing of on interface

boundary in Step 3; and the data-transfer between two
vertical neighboring processors in Figure 5 is caused by

the PDD tridiagonal solver of one tridiagonal system in

Step 3.
Summarizing the solution process described above, a

parallel algorithm is given below:

(1) For each − }, processor send at the

lower end of to its lower neighboring processor

for < , and send at the upper end of to its upper

neighboring processor for >0; then processor

explicitly compute the interface boundary condition (IBC)

 on using the forward Euler scheme (3); and then

processor send to its right neighboring processor

 the just computed IBC.

(2) Each processor assembles the right hand side of the
equation (4) using exterior boundary conditions and the

interface boundary conditions computed at step 1. All

processors solve tridiagonal systems of associated with

 in parallel; and then for each ,

processors combine to solve each of the

tridiagonal systems associated with

 on

using the PDD algorithm.

(3) For −1, processor send to its left

neighboring processor the solution on the gridline that

is on but immediately adjacent to ; Then

processors combine to re- compute

solution on using the backward Euler scheme (5).
The implicit re-computation is carried out by solving the

tridiagonal system obtained from the backward Euler

scheme using the PDD algorithm.

The upper bounds for computation and communication
costs for each of the three steps are given below.

(1) parallel floating point operations, and 6α +

)β communication time, where α is the start-up

time for each communication operation and β is the per-

word data transfer latency.

(2) parallel floating point operation time

and + communication time, where

19(−p of the parallel floating point operations

come from the PDD solverfor solving y-direction

tridiagonal systems, each distributed among q processors,

8(−p of the floating point operations come from

solving x-direction tridiagonal systems, and 16(−

p) of the floating point operations come from

assembling the matrix coefficients for aforementioned the

y- and x-direction tridiagonal systems.

(3) parallel floating point operation time and 6α +

 communication time, and 17N/q floating

point operations come from solving a y-direction

tridiagonal system for each interface boundary

distributed among q processors, and 13N/q from
assembling the matrix and the right hand side the

equation.

Summing up all the costs above, the total costs for each

time step are approximately parallel floating point

operations, and +(3M/p+2N/q+2)β parallel

communication time, that is floating point

operations more in computation time and more

in communication time than the existing parallel SEIDD
algorithm.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 387

4 Experimental Study

We implemented the parallel SEIDD (PSEIDD)

and tested them on an Intel Xeon cliuster at Texas Tech High

Performance Computing Center with a total of 3360 cores,
each at 2.8GHz. The testing problem for the PSEIDD

algorithm is the diffusion equation

with known solution , where

 = − and
 . The spatial domain for the testing problem is

[0, 10] [0, 10], and the simulation time interval is [0,1]. We

carried out tests as processor numbers increased from 1

through 1024.

We tested the parallel algorithm on a spatial grid of size

 with 4000 simulation time steps. In the tests,

the spatial domain is divided into equal-size square

sub-subdomains, with ranging from 1 to 1024, and each

square sub-subdomain is assigned to a different processor.

We measured the communication time (T-comm, in seconds),

the total execution time (in seconds), and the maximal error

of the numerical solution at time t = 1. These data are listed

in Table 1 together with calculated values for Speedup, and
Efficiency, where the Speedup and Efficiency are calculated

by

 ,

 .

The data in Table 1 show two major drops in parallel

efficiency when the machine size goes from 1 processor to

1024 processors, one between 1 and 4 processors and the

other between 4 and 16 processors. The two drops are due to,

in addition to communication overhead, computation

overhead of the PDD solver, as explained in Section 3, that

the PDD parallel tridiagonal solver in Step 2 of both

algorithms incurs parallel floating point

operations for solving y-direction tridiagonal systems when

q=2, which is more than the sequential, and

incurs parallel floating point operations for

 , which is more than the sequential.

Table 1 also show that when machine size goes from 16

to 1024, the efficiency remains almost the same, indicating
excellent scalability of the algorithm. This new parallel

implementation of the SEIDD algorithm is aimed at large

size problems on large size machines (actually for small

machine sizes, this new implementation is of no advantage

over the existing parallel implementation of SEIDD

algorithm as will be shown in the next paragraph), and the

testing data suggest high suitability of the new parallelization

strategy for solving large problems on large machines.

● Comparison with conventional parallelizatoion

As mentioned in the introduction section that for large

machine size, with the conventional parallelization strategy
of assigning each subdomain to a different processor will

force the entire domain to be partitioned into long and narrow

subdomains. Very narrow subdomains would decrease the

accuracy of the numerical solutions of SEIDD methods [23].

For comparison, we also solved the same problem with the

SEIDD method parallelized in the conventional way with the

domain partitioned as in Figure 1 (b). The total execution

time and the maximal error are listed in Table 2. The testing

data show that the conventionally parallelized SEIDD takes

less amount of total execution time than the new algorithm.

This is because the PSEIDD algorithm has to use PDD which

has a computation cost of flops for solving a tridiagonal

system of size while the conventionally parallelized

SEIDD algorithm, with each subdomain assigned to one

processor, can use the sequential tridiagonal solver which has

an flops. Though conventional parallelization has

advantage in execution time, but their accuracy is much

lower when the number of processors reaches 256 and

beyond, at which the PSEIDD’s is about 14 to 40 times more

accurate. And at 64 processors, the accuracies of the two are

already very different with the PSEIDD’s being about 3 to 4
times more accurate. These testing data suggests that the

proposed PSEIDD algorithms are more scalable for

massively parallel processing, since with the conventional

parallelization, when machine size goes beyond a certain

large size, further addition of hardware resources does not

contribute to increase of simulation quality.

Table 1: Testing Data of the New Parallel SEIDD Algorithm

Procs T-total T-comm Speedup Efficiency Max-err

1 4096 4096 1.09e+04 3.19e-03 1.0 100% 2.845e-05

4 2048 2048 3.34e+03 1.81e+02 3.3 82.5% 3.909e-05

16 1024 1024 9.47e+02 6.60e+01 11.5 71.9% 3.824e-05

64 512 512 2.38e+02 1.25e+01 45.8 71.6% 3.976e-05

256 256 256 5.97e+01 7.37e+00 183 71.3% 4.800e-05

1024 128 128 1.59e+01 3.80e+00 686 66.9% 6.927e-05

The domain is [0, 10] [0, 10] with h=10/4096, and the time interval is [0,1] with 1/4000.

The domain divided into subdomains, each with points, where is processor number.

The second column under indicates the subdomain grid size.

388 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Table 2: Comparison of the new parallel SEIDD and the conventionally parallelized SEIDD

New Parallel SEIDD Conventionally Parallelized SEIDD

Procs m T-total Max-err Procs m T-total Max-err

1 4096 1.09e+04 2.845e-05 1 4096 1.09e+04 2.845e-05

4 2048 2048 3.34e+03 3.909e-05 4 1024 2.93e+03 3.824e-05

16 1024 1024 9.47e+02 3.824e-05 16 256 6.77e+02 4.800e-05

64 512 512 2.38e+02 3.976e-05 64 64 1.66e+02 1.481e-04

256 256 256 5.97e+01 4.800e-05 256 16 4.04e+01 6.685e-04

1024 128 128 1.59e+01 6.927e-05 1024 4 1.24e+01 2.759e-03

The column under indicate the subdomain grid size, and the number of time steps is 4000.

5 Conclusion

Based on the SEIDD domain decomposition method, we

have proposed a new parallelization strategy with which the

data partition and distribution to processors do not follow the

boundaries of the domain partition that is used to construct the

operator splitting of the SEIDD methods. By combining

parallelism creation at the temporal level of the SEIDD

method with spatial level parallelism utilization, we have

achieved higher flexibility and parallelism than allowed by the

conventional parallelization technique for domain

decomposition methods, while also having avoided violating a

requirement of the SEIDD method. The higher data-partition
flexibility for parallel processing, as supported by
experimental results, improves the quality of large scale

simulations on massively parallel systems in capturing better

details of the problems under the simulation study.

Acknowledgment

This research used computing resources at Texas Tech
High Performance Computing Center.

References

[1] K. Black. “Polynomial collocation using a domain

decomposition solution to parabolic PDE’s via the
penalty method and explicit-implicit time marching”; J.

Sci. Com-put., No. 4, 313-338,7 (1992).

[2] H. Chen and R. Lazarov. “Domain Splitting algorithm

for mixed finite element approximations to parabolic

problems”; East-West J. Numer. Math., Vol. 4, No. 2, pp

121-135,1996.

[3] D. S. Daoud, A. Q. M. Khaliq and B. A. Wade. “ A con-

overlapping implicit predictor- corrector scheme for

parabolic equations”; International Conf. Parallel &

Distributed Processing Techniques & Applications

(PDPTA 2000), Las Vegas, NV, H.R Arabnia et al, ed.,
Vol. 1, CSREA Press, pp.15-19,2000.

[4] C. Dawson, Q. Du, and T. Dupont. “ a finite difference

domain decomposition algorithm for numerical solution

of the heat equation”; Math. Comp. 57, No. 195, pp. 63-

71,1991.

[5] M. Dryja. “Sub-structuring methods for parabolic

problems”; Forth International Symposium on Domain

Decomposition Methods for Partial Differential

Equations (Moscow, 1990), pp. 264-271, SIAM,

Philadelphia, PA, 1991.

[6] Y. Jun and T.-Z. Mai. “ADI method – domain

decomposition” ; Applied Numerical Math., Vol. 56, pp.

1092-1107.2006

[7] Y. Jun and T.-Z. Mai. “Numerical analysis of the
rectangular domain decomposition method” ;

Communications in Numerical Methods in Engineering,

Vol. 25, pp. 810–826, July 2009.

[8] Y. A. Kuznetsov. “New algorithms for approximate

realization of implicit difference schemes” ; Sov. J.

Numner. Ana. Math. Modell., pp 99-114, 3 (1988).

[9] Y. M. Laevsky.“Explicit implicit domain decomposition

method for solving parabolic equations”; Computing

methods and technology for solving problems in

mathematical physics (Russian), pp. 30-46, Ross. Akad.

Nauk Sibirsk. Otdel., Vychisl. Tsentr, Novosibirsk, 1993.

[10] H. L. Liao, H. S. Shi, and Z. Z. Sun. “Corrected explicit-

implicit domain decomposition algorithms for two-

dimensional semilinear parabolic equations”; Science in

China, Series A: Mathematics, Vol. 52, No. 11, pp.

2362-2388,2009.

[11] The Nobel Foundation, The Nobel Prize in Physiology

or Medicine 1998. Nobelprize.org,

http://nobelprize.org/nobel_prizes/medicine/laureates/19

98/illpres/.

[12] A. Philippides, P. Husbands, T. Smith, and M. O’Shea.
“ Structure-based models of NO diffusion in the nervous

system, Computational Neuroscience: a Comprehensive

approach (J. Feng ed.)”; Chapman & Hall/CRC, London,

pp. 97-130,2004.

[13] H. Qian and J. Zhu.“On an efficient parallel algorithm

for solving time dependent partial differential equations”;

Proceeding of the 11th International Conference on

Parallel and Distributed Processing Techniques and

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 389

Applications, Las Vegas, CSREA Press, Athens, GA, pp.

394-401, July 1998.

[14] H.S. Shi and H.L. Liao. “Unconditional stability of

corrected explicit-implicit domain decomposition

algorithms for parallel approximation of heat equations”;
SIAM. J. Numer. Anal., Vol. 44, pp.1584–1611,2006.

[15] X.-H. Sun, H. Zhang, and L. Ni. “ Efficient Tri-diagonal

Solvers on Multi-computer”; IEEE Trans on Computers,

Vol. 41, pp 286-296, 1992.

[16] J. Wood and J. Garthwaite. “Models of the diffusional

spread of nitric oxide: Implications for neural nitric

oxide signaling and its pharmacological properties”;

Neuropharmacology, Vol. 33, No. 11, pp. 1235-1244,

November 1994.

[17] L. Zhu, G. Yuan, and Q. Du. “An explicit-implicit

predictor-corrector domain decomposition method for

time dependent multi-dimensional convection diffusion

equations” ; Numer. Math. Theor. Meth. Appl., Vol. 2,

pp. 1-25,2009.

[18] L. Zhu, G. Yuan, and Q. Du. “An efficient

explicit/implicit domain decomposition method for

convection-diffusion equations”; Numerical Methods for

Partial Differential Equations, Vol. 26, No. 4, pp. 852–

873, July 2010.

[19] Y. Zhuang. “A parallel and efficient algorithm for multi-

compartment neuronal modeling” ; Neurocomputing, vol.

69, Issues 10-12, pp. 1035-1038, June 2006.

[20] Y. Zhuang. “An alternating explicit implicit domain

decomposition method for the parallel solution of

parabolic equations”; Journal of Computational and

Applied Mathematics, Vol. 206, no. 1, pp. 549-566,1991.

[21] Y. Zhuang and X.-H. Sun. “A domain decomposition

based parallel solver for time dependent differential

equations”; In: Proc. 9th SIAM Conf. Parallel

Processing for Scientific Computing, March 1999, San

Antonio, Texas. CD-ROM SIAM, Philadelphia, 1999.

[22] Y. Zhuang and X.-H. Sun.“Stable, globally non-iterative,

non-overlapping domain decomposition parallel solvers

for parabolic problems”;Proceeding of ACM/IEEE
Super Computing Conference, Denver, Colorado. CD-

ROM IEEE Computer Society and ACM, November

2001.

[23] Y. Zhuang and X.-H. Sun. “Stabilized explicit implicit

domain decomposition methods for the numerical

solution of parabolic equations”; SIAM J Sci. Comput.,

Vol. 24, No 1, pp. 335-358, July 2002.

[24] Y. Zhuang and X.-H. Sun. “A highly parallel algorithm

for the numerical simulation of unsteady diffusion

processes”; Proceedings of the 19th IEEE International

Parallel and Distributed Processing Symposium, Denver,
Colorado, April 2005.

390 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Accelerating the Computation and Verification of Molecular
Collision Models: A Case Study in Legacy Code Parallelization

Kurt A. O’Hearn†, Christian Trefftz†, George C. McBane‡, and Gregory Wolffe†
†School of Computing and Information Systems, Grand Valley State University, Allendale, MI, USA

‡Department of Chemistry, Grand Valley State University, Allendale, MI, USA

Abstract— This research project constituted a case study in
computational science: applying modern parallel computing
techniques to a mathematical model used to solve a scientific
problem. The problem involved a physical chemistry model
that evaluates simulations of molecular collision experi-
ments, implemented via a 15,000-line FORTRAN 77 code.
This problem was chosen for parallelization because of its
scientific importance, its computational complexity, and its
overall structure that was amenable to parallelization. Since
the original program was written, experimental designs
have changed in a way that require significant increases
in execution time for the simulation. To address this issue,
the simulation code was profiled, analyzed, and parallelized
using the OpenMP/multithreaded paradigm. Nearly linear
speedup was measured for the OpenMP version executing on
a 16-core multiprocessor. Furthermore, experimental results
suggest these speedups should scale well with an increasing
number of processors.

Keywords: Computational science, OpenMP, FORTRAN, molec-
ular dynamics, parallelization

1. Introduction
Collision experiments provide valuable information about

the forces between molecules, that is, about the potential
energy surfaces that describe their interactions. Many fields
of science depend on accurate data about molecular interac-
tions. For example, in astrophysics, a better understanding
of the collisions of the most common atoms and molecules
in space, containing carbon, nitrogen, helium, hydrogen, and
oxygen, has resulted in more accurate interpretations of the
molecular rotational spectra obtained from space telescope
observations [6].

The potential energy surface for a given pair of molecules
is not directly observable. The primary observable quantity
in several types of collision experiment is the differential
cross section (DCS), dσdω (θ), which describes the probability
distribution of the scattering angle θ for collisions producing
a particular set of products. The scattering angle is the angle
between the entering and the exiting velocity vectors of
one collider in the center-of-mass frame. The DCS can be
computed from an assumed or computed potential energy
surface, and can also be extracted from data obtained in

collision experiments. It therefore provides a primary point
of comparison between experiment and theory.

The scientific problem studied in this project was the mod-
eling and simulation of molecular collision experiments for
the purpose of extracting the DCS from experimental data.
The extraction takes the form of a fitting procedure: assume
a DCS, apply a simulation that models the characteristics of
the experimental apparatus to predict the resulting data set,
and adjust the DCS until the predicted data match the ex-
perimental results. The models were originally implemented
as a 15,000-line FORTRAN 77 simulation code. The goals
in rewriting and parallelizing this code were as follows:

• Accuracy: The original code employed approximate
interpolation methods to reduce the number of com-
putations performed. The parallelized code eliminates
these interpolations, thereby improving the accuracy of
the simulation.

• Features: Use of the interpolation method also pre-
vented the simulation from being extended to describe
a new experimental configuration. Eliminating the in-
terpolation will permit these extensions to be imple-
mented.

• Speed: However, removing the interpolations incurs
a significant increase in computational cost, as many
more models must be evaluated. Additionally, the mod-
ifications required to accommodate the new experimen-
tal design also increase computation. Without paral-
lelization, the simulation would take many hours to run.
Our primary goal in parallelizing the code was to make
the simulation radically faster.

By developing a parallelized simulation that is more
accurate and an order of magnitude faster than the original,
we hoped to broaden the applicability of this code.

In addition to describing our method and results, this paper
presents our experiences as a case study in parallelizing a
legacy scientific code. Section 2 describes the physical chem-
istry experiment modeled by the FORTRAN simulation.
Section 3 describes the development platform and the prob-
lem decomposition. Section 4 documents the parallelization
process and the challenges encountered. Section 5 presents
and discusses our results along with tips for legacy code
parallelization. The final section summarizes conclusions
drawn and discusses directions for future research.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 391

2. Problem Domain: Physical Chemistry
The collision experiments are performed by intersecting

two pulsed molecular beams and detecting evidence of
resulting collisions using laser ionization of the collision
products [5]. The simulation models a crossed molecular
beam machine with resonance enhanced multiphoton ion-
ization (REMPI) for spectroscopic detection and subsequent
velocity mapping, as depicted in Fig. 1 [1].

Fig. 1: Left side: spatial arrangement of the experiment.
The two valves producing the molecular beams (of CO and
neon in this example) are open for a time on the order of
100µs before the few-nanosecond laser pulse. The resulting
CO ions are accelerated upward out of the plane of the
figure toward an imaging detector whose active surface is
parallel to the figure plane. Each ion strikes the detector at a
point determined by its postcollision lab frame velocity and
independent of its position at ionization. Right side: Newton
diagram modeling the velocity vectors of the colliders. The
intersection point at the top of the triangle represents zero
laboratory velocity. For given speeds in the two beams,
all the product molecules in a particular internal state will
have final velocity vectors on the surface of the “Newton
sphere” shown as a circle in the figure. The differential cross
section describes the intensity distribution on that sphere
as a function of the scattering angle θ. The distribution is
cylindrically symmetric around the relative velocity vector
(the hypotenuse of the triangle) in the center of mass frame.

The result of this type of experiment, and of the simu-
lation, is an image as seen in Fig. 2. The intensity in each
pixel represents the likelihood of an ion striking the detector
at the corresponding location. If the ionization probability
was independent of the laboratory position or velocity of
the product molecule, the differential cross section could be
read directly from the image as the intensity as a function
of angular position around the circle. Instead, the laser
ionization detection is more sensitive to molecules that move
slowly in the laboratory, or along the laser direction. For
that reason the image appears asymmetric, and a careful
simulation is needed.

To extract the differential cross section from the image,
an assumed set of parameters describing the DCS and a few
hard-to-measure characteristics of the experiment are used to
simulate an image. The actual image from the experiment is
then compared with the image generated by the simulation,
and the parameters adjusted iteratively to obtain a good
match.

Fig. 2: Image generated by one simulation, as displayed by
the ImageJ program [7]. The Newton diagram is inverted
with respect to Fig. 1: the pixel corresponding to zero lab-
frame velocity is near the bottom center of the image, and
the relative velocity vector slopes slightly upward from left
to right.

In the simulation, the intensity of a particular pixel whose
center corresponds to lab frame velocity components v̄x and
v̄y is evaluated according to [5]

I(v̄x, v̄y) ∝
∫∫

dvAdvB gA(vA)gB(vB)×

g

∫∫
pixel

dvxdvyJ(v+)

 0∫
−∞

dt

∫
Vcoll

dr×

[
PI (r, v̄+)nA (r + v̄+t, t)×

nB (r + v̄+t, t)
dσ

dω
(v̄+) + PI (r, v̄−)×

nA (r + v̄−t, t)nB (r + v̄−t, t)
dσ

dω
(v̄−)

]
. (1)

The central idea behind this probability calculation is that
the number of ions whose final velocity vector lies in a small
range defined by one pixel can be obtained by integrating
backward in time, considering all the collisions that could
have produced a product molecule in the ionization volume

392 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

at the time the laser fired. vA and vB are the precollision
velocities of the colliding molecules, gA (vA) and gB (vA)
are their distributions in the molecular beams, and vx and
vy are the components of the postcollision laboratory frame
velocity of the scattered A molecule in the plane of the
detector. The initial relative speed is g = |vA − vB|, and
t is the difference between the time of the scattering event
and the firing of the probe laser. The values v̄+ and v̄−
represent the two possible laboratory frame velocities, on the
upper and lower halves of the Newton sphere, for a scattered
molecule whose vx and vy correspond to the center of the
pixel. They depend implicitly on vA and vB because those
determine the position of the Newton sphere. PI (r,v) is
the ionization probability for an A molecule at position r
with velocity v when the probe laser fires. This probability
depends on r through the spatial dependence of the laser
intensity and on v through the Doppler shift. The functions
nA (r, t) and nB (r, t) represent the densities of A and B
molecules in the molecular beams at position r and time t.
They appear with shifted position arguments in the intensity
equation, as nA (r + vt, t), because molecules scattered at
time t (which is negative) and position r + vt will arrive
at position r to be ionized at time t = 0. J (v) gives the
Jacobian for the projection of the Newton sphere onto the
planar detector; it is proportional to (|v · ez|)−1, where ez
is the unit vector perpendicular to the detector face. Finally,
dσ
dω (v̄) is the differential cross section [4].

The only term in the equation that rapidly varies within
a single pixel is the Jacobian J (v̄+), and the integral of
J over the small range of vx and vy covering a single
pixel can be done analytically. The factor enclosed in large
parentheses can therefore be treated as a known function of
vA and vB for each pixel. The functions gA, gB, PI, nA,
and nB are all known from the properties of the apparatus,
and the differential cross section dσdω takes an assumed form
at the start of each simulation. The basic computational task
is therefore the numerical evaluation of a ten-dimensional
integral: three dimensions each from the initial velocities
vA and vB and the ionization position r, and one from the
integration over time. In the original experiment for which
the program was developed, the two molecular beams had
very small angular divergences, so that the integrations over
vA and vB could be reduced to a single dimension each.
The resulting six-dimensional integration was performed by
nested quadratures, using appropriate Gaussian quadratures
for the inner four dimensions and the trapezoidal rule for the
outer two. In more recent experiments, the molecular beams
have larger divergences, and the full ten-dimensional integra-
tion is needed. This need for additional nested quadratures
motivated our work.

The molecular collision simulation contains various ex-
perimental and molecular parameters. Notable parameters
include:
• detxsize and detysize: the numbers of pixels of the ion-

ization detector in the x- and y-directions, respectively.
Their product is the number of pixels in the simulated
image.

• avpts and bvpts: the number of quadrature points in
velocity for molecules A and B, respectively. Their
product determines the number of different relative
velocity vectors that must be considered, and hence the
number of times that the inner four-dimensional integral
over r and t must be evaluated for each pixel.

3. Platforms and Parallel Design
The paradigm chosen to parallelize the original simulation

code was OpenMP/multithreading running on multicore pro-
cessors [2]. The rationale for using OpenMP was to achieve
the benefits of parallelism through multithreading without
any requirement of specialized hardware, instead exploiting
the multicore chips already found in modern systems.

3.1 Development and Testing Platforms
The OpenMP version was developed and tested on various

multicore architectures, ranging from dual-core PCs to a
16-core multiprocessor. Various flavors of Linux were used
(Fedora Core and Red Hat Enterprise), as were open source
and commercial compilers (the GNU FORTRAN compiler
gfortran and the PGI® FORTRAN compiler from The
Portland Group, Inc.). Code correctness and compatibility
were maintained across all development environments.

3.2 Design and Problem Decomposition
A multithreaded program design was chosen due to the

independent nature of the pixel intensity calculations. The
calculations for each pixel share no data dependencies,
hence individual threads can be used to safely generate
groups of unique pixels. Furthermore, the pixel intensity
calculations appear near the top level of a deep call graph;
this allowed specification of the OpenMP directives without
fear of recursive routines invoking the parallel region. The
problem decomposition among the pixel intensities resulted
in a coarse granularity: each thread was responsible for
calculating one pixel of the 150 by 150 pixel output image,
with the resulting computational complexity of each pixel
being relatively high.

4. Case Study: Parallelization Process
The parallelization process used in this project consisted

of four distinct phases:
• Satisfying the necessary prerequisites before beginning

parallelization
• Profiling the serial code to elucidate effective parallel

design options
• Implementing the parallel design options and resolving

issues inhibiting implementation
• Developing a testing procedure to verify parallel code

correctness

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 393

4.1 Prerequisites to Parallelization
Any computational science project begins with the es-

sential prerequisite of acquiring a sufficient background in
the scientific domain, necessary to understand the problem
being solved. In this case that meant becoming familiar with
the principles of scattering experiments with spectroscopic
detection, accomplished via a comprehensive review of the
literature along with regular consultation with our domain
expert.

Often, working with legacy code requires a second prereq-
uisite: understanding the intricacies of the specific program-
ming language used, especially pertaining to data structures
and memory management. If the developer is new to the
language, a high-quality language reference is an invaluable
tool. For this project, a good portion of time was devoted
to learning FORTRAN 77 using the science/engineering-
focused book by Kuperschmid [3].

A third prerequisite to parallelization is a thorough analy-
sis of the original serial program. In computational science,
it is not uncommon to find code written by a domain
expert, someone perhaps not versed in the practices of
software engineering. In this project, several problems were
uncovered that affected code maintainability and version
management.

4.2 Code Profiling and Parallel Design
The next phase of the project was to profile the serial

simulation, with specific focus on those portions of code that
required the longest execution time, and their accompanying
data structures. Profiling utilities included:
• The GNU profiler, gprof, for generating routine call

graph information and measuring the execution time
accounted for by each routine

• The GNU debugger, gdb, for runtime analysis of the
code

Fig. 3: Partial routine call graph of the code

Profiling information was used to construct and analyze
the call graph in Fig. 3. The profiling results indicated a large
amount of time was spent executing routines from the Basic

Linear Algebra Subprograms (BLAS) library, which sug-
gested parallelizing the code at a low level in the call graph.
However, these routines were invoked at multiple levels and
instances in the call graph; parallelization would involve
overhead as multiple threads would need to be continuously
spawned and destroyed. Furthermore, these routines were
already highly optimized to the machine architecture. Any
small speedup obtained through parallelization would be
likely lost to the thread management overhead.

Alternatives to BLAS parallelization were available be-
cause the majority of the BLAS calls were within a code
branch performing the pixel intensity calculations. The two
candidates within this branch were the pixel intensities
region, which was at a high level in the call graph, and
the quadrature points region, which was a few levels below
the pixel intensities. Neither option contained recursive or
divergent paths; thus, OpenMP parallel loop pragmas could
be inserted around either section without issue.

Considerations in choosing one design over the other
included memory usage, overhead, and the amount of com-
putation available to parallelization. The number of pixel in-
tensity calculations in our sample data (22500) outnumbered
the number of quadrature point calculations (as determined
by avpts and bvpts). Because they are situated at a higher
level in the call graph, parallelization of the pixel intensity
computations would require more memory. However, they
would not incur as much thread management overhead as the
repeated invocations of the quadrature points code region.
Since the simulation did not use a large amount of data,
the pixel intensity region was chosen for parallelization.
This problem decomposition resulted in a coarse granularity,
where each pixel of the 150 by 150 pixel image corresponded
to an independent parallel computation.

4.3 Parallel Implementation
The data structures within the pixel intensity branch were

analyzed for data dependencies. Two potential issues were
found: static variables and COMMON blocks. A single static
variable was discovered as part of a root-finding routine.
The variable stored the most recent result as a starting point
for the next search; this approach could cause inconsistent
results if the routine was re-entered by multiple threads
working on different parts of the image. This variable was
removed, and the root search performed from the beginning
for each call, at some cost in computational efficiency.

The other problem stemmed from the use of COMMON
blocks. Ten COMMON blocks were contained in ten sep-
arate files. Each COMMON block was given scope into
particular routines by use of an include statement. Most vari-
ables in the COMMON blocks were calculated once during
initialization routines prior to the pixel intensity calculations,
and subsequently accessed only for reads. However, one
array holding the vector velocities of the molecules in the
molecular collision experiments was written to during the

394 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

pixel intensity calculation, and thus could cause concurrency
issues if multiple threads performed concurrent writes. The
solution was to remove the velocity array from the COM-
MON block, locally declare the vector in the genimage
routine above the pixel intensity calculation branch in the
call graph, and pass the array down the call graph as an
argument for all routines that required it. This approach
ensured that each pixel computation would have a local
velocity array, hence be safe for concurrent execution.

4.4 Testing
A systematic testing approach was employed, where all

the experimental parameters were held constant between
runs while only the number of executing threads varied.
Notable values set for parameters include the number of
velocity quadrature points for each beam (20) and the
number of pixels for each direction in the image (150).

Even after ensuring identical parameters, verifying the
correctness of the image output between the serial and paral-
lel code versions was problematic because of changes in the
computations. These differences stemmed from two sources:
the reliance on interpolation methods and static variables.
The original sequential code relied on interpolation methods
to estimate the inner four-dimensional integral for many
relative velocities, while the parallel version computed the
integral directly for every relative velocity vector. Thus, no
direct numeric comparison between the interpolated serial
and non-interpolated parallel versions could be employed.
However, visual and statistical comparisons between the
output image files were performed.

Additionally, the removal of static variables fundamentally
changed the computations in the code. To verify this change
did not invalidate the results, a simple program was written
to calculate the maximum difference between corresponding
pixels in two image output files. After multiple runs, an
average difference of less than 0.5% was observed and
regarded as acceptable.

5. Results and Discussion
After verifying the correctness of the results, timing

experiments were conducted on a 16-core multiprocessor.

5.1 Performance Results
Table 1 shows the data from the test runs.

Number of Processors Execution Time (s) Speedup
1 1454.66 -
2 766.87 1.89
4 388.03 3.74
8 199.83 7.27

16 105.23 13.82

Table 1: Performance data on a 16-core multiprocessor

The execution time column is the total measured execution
time for a run using the low resolution wallclock time

utility in linux/unix systems. The run with one processor
was obtained using the original sequential version of the
simulation without interpolation, and all other runs used the
parallel version. The speedup calculation was computed as
the ratio of the sequential run time against particular parallel
run times.

Fig. 4: Performance metric: total execution time

Fig. 4 indicates that the execution time of the simulation
was reduced from approximately twenty-five minutes to less
than two minutes executing on sixteen cores; this amounts to
a nearly fourteen times speedup in total execution time. The
regression line illustrates the decrease in execution time with
the increase in the number of processors. The primary result
of performance testing: nearly linear speedup was measured
for the parallel version of the code.

Fig. 5: Performance metric: speedup

In Fig. 5, the black dotted line indicates the theoretically
optimum speedup (i.e., using n processors results in an n-
times speedup). Our parallel solution, indicated by the solid
red line, approaches this optimum. The linear nature of the
parallel solution suggests speedups should continue to scale
well with an increasing number of processors.

5.2 Tips and Insights: Legacy Parallelization
Legacy code offers many unique challenges during the

parallelization process. The following list presents some

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 395

reminders and insights for success.
1) Parallelization obstacles: Begin profiling by identify-

ing the following potential inhibitors to parallelism:
global and static variables. Also, examine the code
for deprecated language constructs that may cause
unexpected behavior parallelized.

2) Platforms and support: Be sure to upgrade to the latest
version of compilers and libraries if support for legacy
code is available. Also, be aware of libraries that are
not known to be thread-safe.

3) Utilities: Quality profiling tools can be an invaluable
tool in deciphering convoluted legacy code. Tools that
may be employed include thread checkers, memory
tracers, and visual profilers.

6. Conclusions and Future Work
An OpenMP multithreaded version of a molecular colli-

sion simulation code was created and statistically verified
for correctness. The new, parallel code drastically reduced
execution time compared to the original program, demon-
strating nearly linear speedup and good scalability.

Additionally, the parallel version improved the accuracy
of the simulation by eliminating an interpolation approxima-
tion.

As a result of replacing interpolation with direct com-
putation, the program can now be modified to work with
new experiments. We plan to further modify the program to
make use of accelerator chips such as FPGAs and GPUs,
and possibly hybrid approaches.

References
[1] A. T. J. B. Eppink and D. H. Parker, “Velocity map imaging of ions

and electrons using electrostatic lenses; application in photoelectron
and photofragment ion imaging of molecular oxygen,” Rev. Sci. Inst.,
vol. 68, pp. 3477-3484, 1997.

[2] Rohit Chandra, Ramesh Menon, Leo Dagum, David Kohr, Dror May-
dan, and Jeff McDonald, Parallel Programming in OpenMP, Morgan
Kaufman Publishers, 2001.

[3] Michael Kupferschmid, Classical Fortran: Programming for Engineer-
ing and Scientific Applications, 2nd ed., Marcel Dekker, Inc. January
14, 2009.

[4] K. T. Lorenz, D. W. Chandler, G. C. McBane, “State-to-State Differ-
ential Cross Sections by Velocity Mapping for Rotational Excitation of
CO by Ne,” J. Phys. Chem, 2002, 106 (7), 1144-1151.

[5] K. T. Lorenz, M. S. Westley, D. W. Chandler, “Rotational State-to-State
Differential Cross Sections for the HCl-Ar Collision System Using
Velocity-Mapped Ion Imaging,” J. Phys. Chem, 2000, 2, 481-494.

[6] C.-H. Yang, G. Sarma, J. J. ter Meulen, D. H. Parker, G. C. McBane, L.
Wiesenfeld, A. Faure, Y. Scribano, and N. Feautrier, “Communication:
Mapping Water Collisions for Interstellar Space Conditions”, J. Chem.
Phys., 133, 131103 (2010), DOI:10.1063/1.3475517.

[7] W. S. Rasband, ImageJ, U. S. National Institutes of Health, Bethesda,
Maryland, 1997-2011, http://imagej.nih.gov/ij/.

396 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

A Safety-strengthened Election Protocol Based on an
Unreliable Failure Detector in Distributed Systems

Yong-Hwan Cho, Seon-Hyong Lee, Yeong-Mok Kim and Sung-Hoon Park
Dept. of Computer Science, Chungbuk National University, Chung-Buk 330-800, Korea

Abstract

A Leader is a Coordinator that supports a set of

processes to cooperate a given task. This concept is
used in several domains such as distributed systems,
parallelism and cooperative support for cooperative
work. In completely asynchronous systems, there is no
solution for the election problem satisfying both of
safety and liveness properties in asynchronous
distributed systems. Therefore, to solve the election
problem in those systems, one property should be
weaker than the other property. If an election
algorithm strengthens the safety property in sacrifice of
liveness property, it would not nearly progress. But on
the contrary, an election algorithm strengthening the
liveness property in sacrifice of the safety property
would have the high probability of violating the safety
property. In this paper, we presents a safety
strengthened Leader Election protocol with an
unreliable failure detector and analyses it in terms of
safety and liveness properties in asynchronous
distributed systems.
Keywords : Distributed Computing, Leader Election,
Asynchronous Distributed Systems, Failure Detectors

1. Introduction

Distributed systems consist of groups of

processes that cooperate in order to complete
specific tasks. A Leader is a Coordinator that
supports a set of processes to cooperate a given
task. This concept is used in several domains such
as distributed systems, parallelism and
cooperative support for cooperative work.
To elect a Leader (or Coordinator) in a distributed
system, an agreement problem must be solved
among a set of participating processes. This

problem, called the Election problem, requires the
participants to agree on only one leader in the
system [1]. The problem has been widely studied
in the research community [2,3,4,5,6]. One reason
for this wide interest is that many distributed
protocols need an election protocol.
The Election problem is described as follows. At
any time, there is at most one process that
considers itself a leader and all other processes
consider it as to be their only leader. If there is no
leader, a leader is eventually elected.
The so-called FLP impossibility result, which
states that it is impossible to solve any non-trivial
agreement in an asynchronous system even with a
single crash failure, also applies to the election
problem [7]. That means that there is no solution
for the election problem satisfying both of safety
and liveness properties in completely
asynchronous distributed systems.
It must be pointed out, however, that the
impossibility result really means “not always
possible,” as opposed to “never possible.” As a
matter of fact, any algorithm that tries to solve the
Election Problem cannot always make progress
without violating safety; there exist cases in
which the algorithm violating safety, although it is
very unlikely.
Therefore, to solve the election problem in those
systems, one property should be weaker than the
other property. If an election algorithm
strengthens the safety property in sacrifice of
liveness property, it would be difficult to progress.
But on the contrary, an election algorithm
strengthening the liveness property in sacrifice of
the safety property would have the high
probability of violating the safety property. There
exists a trade-off between safety property and

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 397

liveness property.
A stable election protocol, which implies the
safety strengthened election protocol, is needed in
a practical distributed computing environment.
Consider a mission critical distributed system
such as an electronic commerce system that runs
multiple servers in which one of them roles a
master (leader) and others are slaves.
To have data consistency among the servers in the
system, this system should not violate safety
property, which means that all processes
connected the system never disagree on a leader.
In those systems the safety property is more
important property than the liveness property.
As a classic paper, there is Garcia-Molina’s
Invitation algorithm to solve election problem in
asynchronous distributed systems. The algorithm
strengthens the progress property rather than
safety and it allows more than two leaders in the
systems.
Our idea is based upon the Garcia-Molina’s
Invitation algorithm for solving the election
problem in asynchronous distributed systems [2].
He redesigns the Bully algorithm for synchronous
distributed systems into the Invitation algorithm
for asynchronous distributed systems by using a
specification that is weak enough to be solvable,
allowing the algorithm to progress even in
completely asynchronous distributed systems.
His specification uses a strong progress
requirement, allowing executions in which even a
single process suspicion of the current leader’s
crash and its attempted leader election from the
members may lead a progress to elect a new
leader from all processes.
We propose an election algorithm that requires
processes to elect a new leader only when they
agree with the current leader’s crash. This
requirement is strong because, if no set of
processes agrees on the current leader’s crash, no
progress is made. The requirement is, however,
much more stronger than the one proposed by
Garcia-Molina’s Invitation algorithm in that it
implicitly states that the leader election of any
process be allowed only on the basis of only it’s
own knowledge.
In this paper, we presents a safety strengthened

Leader Election protocol with an unreliable
failure detector and analyses it in terms of safety
and liveness properties in asynchronous
distributed systems.
Our algorithm, based on a standard three phases
commit protocol, is fully distributed. It does not
extend the asynchronous model of concurrent
computation to include global failure detectors.
Progress of the algorithm can be guaranteed only
in case of minimal violating a safety property.
The rest of the paper is organized as follows. In
Section 2, we describe our system model and
definitions. In Section 3, this paper relates the
election specification to other ways to solve the
election problem. In Section 4, this paper provides
a stable algorithm that solves the Leader Election
problem. In Section 5, we ensure the correctness
of the algorithm by proving that it satisfies the
two properties of the specification given in
Section 4. Finally, Section 6 summarizes the main
contributions of this paper and discusses related
and future works.

2. Model and Definitions

 Our model of asynchronous computation with
failure detection is the one described in [9,10]. In
the following, we only recall some informal
definitions and results that are needed in this
paper.

2.1 Processes

We consider a distributed system composed of a
finite set of processes Ω={p1,p2,..,pn} where
processes are identified by unique id's.
Communication is by message passing,
asynchronous and reliable. Processes fail by
crashing; Byzantine failures are not considered.
Every pair of processes is connected by a
communication channel. That is, every process
can send messages to and can receive messages
from any other. We assume processes are able to
probe a communication channel for incoming
messages. Communication channels are
considered to be reliable, FIFO, and to have an
infinite buffer capacity. A reliable channel ensures

398 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

that a message, sent by a process pi to a process pj,
is eventually received by pj if pi and pj are correct
(i.e. do not crash).
Asynchrony means that there is no bound on
communication delays or process relative speeds.
A process that has been infinitely slow for some
time and has been unresponsive to other processes
may become responsive again at any time.
Therefore, processes can only suspect other
processes to have crashed, using local failure
detectors.
A failure detector is a distributed oracle which
gives hints on failed processes. We consider
algorithms that use failure detectors. Local failure
detectors are assumed to be inaccurate and
incomplete. That is, local failure detectors may
erroneously suspect that other, operational
processes have crashed or that crashed processes
are operational. Since local failure detectors run
independently at each process, one local failure
detector may perceive a failure, but other
detectors may perceive it at a different time or not
at all.
The failure model allows processes to crash,
silently halting their execution. Because of the
unpredictable delays experienced by the system, it
is impossible to use time-outs to accurately detect
a process crash.
We assume that a process communicates with its
local failure detector through a special receive-
only channel on which the local failure detector
may place a new list of id's of processes not
suspected to have crashed. We call this list the
local connectivity view of the process. Each
process considers the last local connectivity view
received from its local failure detector as the
current one.

2.2 Election Specifications

The Election problem is described as follows: At
any time, as most one process considers itself the
leader, and at any time, if there is no leader, a
leader is eventually elected. More formally, the
Election Problem is specified by the following
two properties:

- Safety: All processes in the local connectivity

view of the process never disagree on a leader.
- Liveness: All processes should eventually

progress to be in a state in which all processes
connected to the system agree to the only one
leader.

3. Circumventing The Impossibility

Result

In this section, we relate the election
specification to other ways to solve the election
problem.
- In an asynchronous model augmented by global

failure detectors, processes have access to
modules that (by definition) eventually reflect
the state of the system. Therefore, progress and
safety can be guaranteed unconditionally.

- In a timed asynchronous model, processes must
react to an input, producing the corresponding
output or changing state, within a known time
bound. Under this model, progress and safety
can be guaranteed if no failures and recoveries
occur for a known time needed to communicate
in a timely manner.

- In a completely asynchronous model, progress
cannot always be guaranteed without violating
safety and failure detectors in practice
eventually reflect the system state, but they
must be considered arbitrary. Correct processes
react in practice within finite time, but this time
cannot be quantified. Therefore, in order to
guarantee a solution, we need a weaker
specification of the problem.

Our approach falls into the last category that
originated with Garcia-Molina's work [2]. Our
election algorithm, however, differs from Garcia-
Molina's in several ways.
- Processes in Garcia-Molina's model do not need

to wait to get consensus about the current
leader’s crash. If one process suspects that the
leader failed, it may attempt to elect the new
leader. Garcia-Molina's specification says that,
if one process attempts to be a new leader, it
eventually should be elected as a leader. Our
specification requires all processes in a set to
agree on the current leader crash before
changing their new leader.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 399

- Garcia-Molina's specification allows a solution
in which the attempted change of a leader
divides all processes into several sub-groups.
Our specification does not allow such a sub-
group because it states that if all processes in a
system agree on a new leader, they must
eventually accept such a leader.

In our model stability is also required for progress,
but, at variance of the above case, it is not
necessarily related to the state of the system. In
other words, eventual progress is required when
there is agreement among a set of the local failure
detectors, even if failures and recoveries continue
to occur in the system.

4. Election Algorithm

We provide a stable algorithm that solves the
Leader Election problem given in Section 2. The
algorithm is based on the three asynchronous
phases.
- A prepare phase, in which a process propose a

new leader that the other processes agree with.
- A ready phase, in which all process that agree

on the new leader acknowledge the reservation
of the potential leader.

- A commit phase, in which the new leader is
finally elected, and all process accept it their
only leader.

4.1 Solution Sketch

The main idea for the algorithm is as follows. A
process p that is informed by its local failure
detector of a leader’s crash and that has the
smallest id among processes in its new local
connectivity view sends a message to all
processes in its view proposing to change the
current leader with the new leader.
Each process received the message records this
proposal until the potential leader in its local view
is the same as the proposed new leader in its local
view. At which point, it responds by sending back
an Accept or Retry message to the process that
proposed the leader update. The Accept message
is sent if the process agrees on the proposed
leader in its local current view.

Upon sending the Accept message, the process
reserves the prospective leader, so that no other
proposal is accepted for that system. Upon
receiving a Retry message, the proposing process
returns the normal state of the algorithm, sending
a new Abort message to all processes in its view.
When the proposing process has collected Accept
messages from all processes in its view, it starts
the commit phase by sending commit messages,
ordering other processes in its view to commit the
leader update. Upon receiving a commit message,
the processes accept the reserved prospective
leader as a their new leader.

4.2 Code Description

The code is shown in Fig. 1. The first received
command in Fig. 1 shows how a process p, when
informed of a change in its local connectivity
view, set its view to be current and checks if the
current leader has crashed. If the leader has
crashed, it set the variable LeaderStatus to be
false. When LeaderStatus is false, the
StartElection procedure in Fig.1 is called and the
process p checks that it is the minimum id among
the processes in vp. If p is the minimum id, it
increases the round and proposes itself as a new
prospective leader and initializes its ack array to
zero.
The next received commands in Fig. 1 check for
incoming messages from other processes. These
may be proposals for a new leader (Propose),
rejections to propose a new leader (Rejection),
acceptances of a proposed new leader (Accept),
orders to commit a new leader (Commit) or orders
to abort a proposed new leader (Abort).
Upon receiving a proposal message from process
q, process p stores the new leader’s id proposed
by q at position q of the array NewLeader and
stores the proposed round at position q of the
array RoundIn, then sets position q of the array
Prop to true to record the receipt of the proposal
from q and sets the CurView to false to refresh the
current view of the system.

400 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Upon received vp from FD:
CurView := true;
If CurLeader ∉ vp then LeaderStatus := 0;
end-if
If p = min(vp) then Round := Round +1;

 Call start_election();
end-if

Upon received (Propose,PropLeader, k) from q:

 Prop:= true; CurView := false;
NewLeader:= PropLeader ; RoundIn := k;

 Call reply_election();

Upon received (Reject, k) from q:
 If Round = k then

Send (Abort, Round) to ∀ j ∈ vp;
 For ∀j ∈ vp, ack[j] :=0;
end-if

Upon received (Accept, k) from j:
 If Round = k then ack[j] := 1;

 If for ∀q∈ vp, ack[q] = 1 then
Send (Commit, PropLeader, Round) to

∀q∈ vp;
For ∀q ∈ vp, ack[q] :=0;

end-if end-if

Upon received (Commit, PropLeader, k) from j:

If RoundIn = k then
CurLeader := PropLeader;

 LeaderStatus := 1;
end-if

Procedure Start_election():
 PropLeader := p;

Send (Propose, PropLeader, Round) to
∀q∈ vp;

For ∀q∈ vp, ack[q] :=0;

Procedure Reply_election();

If (CurView ∧ Prop) then Prop:= false;
If (Newleader≤min(vp)∧RoundIn>Round)

then Send (Accept, PropIn) to q;
Next = RoundIn + 1;

end-if
else Send (Reject, PropIn) to q;

end-if

Fig. 1. The Algorithm.

Upon receiving a proposal message from process
q, process p stores the new leader’s id proposed
by q at position q of the array NewLeader and
stores the proposed round at position q of the
array RoundIn, then sets position q of the array
Prop to true to record the receipt of the proposal
from q and sets the CurView to false to refresh the
current view of the system.
If process p later agrees on the proposed new
leader, it sends a response to process q (see last
guarded command in Fig. 1). The response is
either an acceptance of the new leader at position
NewLeader[q] if the minimum id among the
process in vp is greater or equal than the id of
proposed NewLeader[q] and the proposed round
greater than the current round; or it is an rejection
to the proposed new leader if the minimum id
among the process in vp is less than the id of

proposed NewLeader[q] or the proposed round
less or equal than the current round.
A rejection to the proposed new leader consists of
sending back to q the proposed round. An
acceptance consists of acknowledging the
proposed new leader at position NewLeader[q].
We now examine the guarded commands of the
remaining message types. A process p that
receives a rejection to the its proposal sends all
processes in vp a message to abort the proposed
round and reinitializes the ack array to zero.
A process p that receives an acceptance regarding
its proposed new leader receives the proposed
round. If the received round is equal to the round
of the most recent proposal sent, process p sets the
element at position q in the array ack to 1 to
record the acceptance.
Then, it inspects the ack array to check if all

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 401

entries are 1. If so, p starts the commit phase by
broadcasting its previously proposed new leader
and the corresponding proposed round PropRound
to all processes in vp and reinitializes the ack array
to zero.
A process p that receives an order to commit a
new leader at position q from process q, simply
sets the current leader to the proposed new leader
and sets the current round to the proposed round.

5. Correctness

We can ensure the correctness of the algorithm
by proving that it satisfies the two properties of
the specification given in Section 4.

5.1 Safety

Theorem 1. The algorithm described in Section 4
satisfies the safety condition of the specification
(Property 1, Section 2): At any point in time, all
processes connected the system never disagree on
a leader.

Proof. Either all processes remain in the start
state or some process p receives the proposed
leader as its leader. In the start state, the safety
property holds since all processes are in the state
in which a leader has not been elected. If some
process p receives its leader by committing a
proposed leader at a given position q, it must have
received a Commit message from some process q;
therefore, q must have received Accept messages
regarding its proposal of a new leader from all
processes in vp including p. It follows from the
last guarded command in Fig. 1 that, if process p
has accepted the proposal of process q, it will not
accept any other proposal for new leader, making
it possible to commit at most single proposed
leader. Therefore, process p either commits the
process at position q as a new leader or ends up
with position q by aborting the proposed new
leader. Therefore safety property holds.

5.2 Liveness

Theorem 2. The algorithm described in Section 4
satisfies the liveness condition of the specification
(Property 2, Section 4): All processes should
eventually progress to be in a state in which all
processes connected to the system agree to the
only one leader.

Proof. By contradiction, a non-progress means
that the new leader is not elected forever even
though there is no leader; therefore, no Commit
messages must be sent. Since the number of
processes is finite, there must be at least one
process whose id is the minimum value in vp and
that process eventually sends a Propose message.
Call this process p. By the code in Fig. 1, we see
that, to have no Commit message, each time p
sends a Propose message, it should be rejected by
other process. It follows that, in order to abort
infinitely many Propose messages, other process q
must reject the proposed messages infinitely often.
Propose messages are rejected either when the
minimum id of vp is greater than the id of the
proposed leader or because of a Propose message
already has been received (see Fig. 1).
The first case is ruled out because it implies that
some process always considers that there is a
process that is alive and whose id is less that the
id of proposed new leader. But by strong
completeness of a failure detector it is
contradiction.
The second case is also ruled out, because it
implies that other process q sends infinitely many
proposals of the other leader. But by eventual
strong accuracy of a failure detector, the process q
knows that there is a process whose id is less that
its id. Therefore it is contradiction.

402 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

6. Concluding Remarks

 We have presented a stable election protocol
with a reliable failure detector in completely
asynchronous systems. We have assumed our
local failure detectors to be inaccurate and
incomplete. With this approach, the leader
election specification states explicitly that
progress without violation of safety cannot always
be guaranteed. In practice, our requirement for
progress is weaker than that stated in the original
specification of having a set of processes sharing
the same leader.
In fact, if the rate of perceived a leader failures in
the system is lower than the time it takes the
protocol to make progress and accept a new leader,
then it is possible for the algorithm to make
progress every time there is a leader failure in the
system. This depends on the actual rate of a leader
failures and on the capacity of the failure
detectors to track such failures.
In [10], Chandra and Toueg note that failure
detectors defined in terms of global system
properties cannot be implemented. This result
gives strength to the approach of relaxing the
specification and of having a stable election
protocol. In real world systems, where process
crashes actually lead a connected cluster of
processes to share the same connectivity view of
the network, convergence on a new leader can be
easily reached in practice.

References

[1] G. LeLann, “Distributed Systems–towards a

Formal Approach,” in Information Processing
77, B. Gilchrist, Ed. North–Holland, 1977.

[2] H.Garcia-Molian, “Elections in a Distributed
Computing System,” IEEE Transactions on
Computers, vol. C-31, no. 1, pp. 49-59, Jan.
1982.

[3] H. Abu-Amara and J. Lokre, “Election in
Asynchronous Complete Networks with
Intermittent Link Failures.” IEEE

Transactions on Computers, vol. 43, no. 7,
pp.778-788, 1994.

[4] H.M. Sayeed, M. Abu-Amara, and H. Abu-
Avara, “Optimal Asynchronous Agreement
and Leader Election Algorithm for Complete
Networks with Byzantine Faulty Links.,”
Distributed Computing, vol. 9, no. 3, pp.147-
156, 1995.

[5] J. Brunekreef, J.-P. Katoen, R. Koymans, and
S. Mauw, “Design and Analysis of Dynamic
Leader Election Protocols in Broadcast
Networks,” Distributed Computing, vol. 9, no.
4, pp.157-171, 1996.

[6] G. Singh, “Leader Election in the Presence of
Link Failures,” IEEE Transactions on Parallel
and Distributed Systems, vol. 7, no. 3,
pp.231-236, March 1996.

[7] M. Fischer, N. Lynch, and M. Paterson,
“Impossibility of Distributed Consensus with
One Faulty Process,” Journal of the ACM, pp.
374-382. (32) 1985.

[8] T. Chandra and S.Toueg, “Unreliable Failure
Detectors for Reliable Distributed Systems,”
Journal of ACM, Vol.43 No.2, pp. 225-267,
1996.

[9] D. Dolev and R Strong, “A Simple Model For
Agreement in Distributed Systems,” In Fault-
Tolerant Distributed Computing, pp. 42-50. B.
Simons and A. Spector ed, Springer Verlag
(LNCS 448), 1987.

[10] T. Chandra, V. Hadzilacos and S. Toueg, “The
Weakest Failure Detector for Solving
Consensus,” Journal of ACM, Vol.43 No.4, pp.
685-722, 1996.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 403

Genetic Ensemble (G-Ensemble)
for Meteorological Prediction Enhancement

Hisham Ihshaish∗, Ana Cortés, and Miquel A. Senar
Department of Computer Architecture and Operating Systems,

Universitat Autònoma de Barcelona, Barcelona, Spain
hisham@caos.uab.es, ana.cortes@uab.es, miquelangel.senar@uab.es

Abstract— The need for reliable predictions in environ-
mental modelling is long known. Particularly, the predicted
weather and meteorological information about the future
atmospheric state is crucial and necessary for almost all
other areas of environmental modelling. Additionally, right
decisions to prevent damages and save lives could be taken
depending on a reliable meteorological prediction process.
Lack and uncertainty of input data and parameters constitute
the main source of errors for most of these models. In recent
years, evolutionary optimisation methods have become pop-
ular to solve the input parameter problem of environmental
models. We propose a new prediction scheme that uses a
Genetic Algorithm for parameter estimation in Numerical
Weather Prediction Models (NWP) to enhance prediction
results. The new approach is called Genetic Ensemble (G-
Ensemble) and it has been tested using historical data of
a well known weather catastrophe: Hurricane Katrina that
occurred in 2005 in the Gulf of Mexico. Obtained results
provide significant improvements in weather prediction.

Keywords: numerical weather prediction; evolutionary comput-
ing; genetic algorithm; ensemble prediction; parameter estimation.

1. Introduction
Weather forecasting and prediction is an ongoing de-

mand since thousands of years. Agriculture, education, en-
tertainment, industry, astronomy, etc. usually benefit from
an accurate knowledge of the weather future state. Global
weather predictions are held by governments and interna-
tional scientific institutions, to provide information about
the present and time evolution of the atmospheric situation.
However, regional predictions in certain zones are done by
local organizations, governments, and scientific centers to
provide predictions on basis of fine-coarse resolutions.

Weather time evolution is represented by numerical mod-
els that are commonly solved by means of computing
facilities. Efforts initiated in the 1950s when the USA
National Weather Service (NWS) [1] began to utilize some
of the early versions of computers to make large-scale

This research has been supported by the MEC-MICINN Spain under
contract TIN2007-64974.

∗Corresponding author.
†This paper is addressed to the PDPTA conference.

weather forecasts. Since that time, computers have become
faster and more sophisticated being able to provide the
scientific community (particularly to the weather forecasting
community) with High Performance Computing platforms,
which allow the execution of highly computing demanding
weather forecast simulations. However, scientific applica-
tions continue to be more complex while research is getting
more sophisticated as a result of the natural human growth
of requirements. Higher accuracy, larger time scales, more
complex problems and less waiting time constitute some
of the new demands that should be considered from a
computational point of view.

Numerical Weather Prediction (NWP) models are consid-
ered as soft-real time applications. The importance of having
a degree of accuracy in the prediction in a certain time is
a real challenge. Thus, ongoing investigations concentrate
on methods to enhance the process of prediction, and to get
results of this process faster.

As most simulation software works with well-founded
and widely accepted models, the need for input parameter
optimisation to improve model output is a long-known and
often-tackled problem. Particularly in environments where
correct and timely input parameters cannot be provided, ef-
ficient computational parameter estimation and optimisation
strategies are required to minimise the deviation between the
predicted scenario and the real phenomenon behaviour. With
the continuously increasing availability of computing power,
evolutionary optimisation methods, especially Genetic Algo-
rithms (GA), have become more popular and practicable to
solve the parameter problem of environmental models.

This work presents a new meteorological prediction
scheme that uses evolutionary optimization methods that
enhance the quality of weather forecast by focusing on the
calibration of input parameters.

The rest of the paper is organized as follows: Section 2
gives an overview of NWP models with a brief description of
the Weather Research and Forecasting Model (WRF), which
constitutes the most commonly used model for weather
and meteorological predictions. Section 3 focuses on the
importance of accuracy in NWP models and it describes
also the most widely used methods for NWP enhancement
in practise. In section 4, the proposed prediction scheme
(G-Ensemble) is presented and described. Section 5 presents

404 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

experimental results obtained with a test case, where we
compare our proposal with other enhancement methods.
Finally, conclusions and future work are described in section
6

2. Numerical Weather Prediction Mod-
els and WRF

Numerical Weather Prediction is the process of guessing
the future state of the atmosphere based on current weather
conditions. Mathematical models are used to do the job,
which treats the atmosphere as a fluid. As such, the idea
of numerical weather prediction is to sample the state of the
fluid at a given time and use the equations of fluid dynamics
to estimate the state of the fluid at some time in the future.

Certain areas where atmosphere future conditions are to
be predicted are represented by three dimensional uniform-
gridded-rectangles referred as domains. The input data which
corresponds to the actual state of the atmosphere is called
initial conditions. Those initial conditions are assigned to
all points of the grid. The horizontal distance between
grid points is referred as the resolution of both the initial
conditions and prediction results. Regional models (also
known as limited-area models, or LAMs) allow for the use
of finer grid spacing (higher resolution) than global models
because the available computational resources are focused
on a specific area instead of being spread over the globe.
This allows regional models to resolve explicitly smaller-
scale meteorological phenomena that cannot be represented
on the coarser grid of a global model. Hence, a NWP model
will guess the new values of the initial conditions over future
time scale.

The Weather Research and Forecasting (WRF) [2] is
a widely-used numerical weather prediction model, which
is considered as a next-generation mesoscale numerical
weather prediction system designed to serve both opera-
tional forecasting and atmospheric research needs. WRF is
composed of a variety of programs to facilitate prediction
process, such as extracting global terrain data, designing
domains, facilitating for real observations to be injected
while model integration, and post-processing outputs.

In this work, we developed a new methodology for
meteorological prediction enhancement using WRF as the
Numerical Weather Prediction model. Although we have
applied our methodology to WRF, the proposed strategy
is a model-independent design, which could also be used
with other existing NWP models such as the PSU/NCAR
Mesoscale Model [3] known as (MM5).

3. Related Work
Reliable weather predictions may not prevent disasters,

but at least they help in preventing their horrible effects,
such as reducing the possibility of large property damages
and even could help in saving lives. Furthermore, accurate

predicted meteorological variables are critically needed for
other environmental modelling systems. For example, wind
direction and velocity variables are needed as precise as
possible to predict the expansion direction and velocity of a
fire propagation disaster predicted by wildfire models. It is
clear that, in such cases, accurate predictions may contribute
also to save human lives. Air pollution modelling and
the short behaviour of natural disasters like hurricanes are
other examples where reliable predictions of meteorological
variables are also necessary.

The importance of reliable weather predictions motivated
relevant improvements of NWP in the last 30 years. Efforts
have been done in the field to enhance predictions [4],
however, many sources of errors still remain. The main
ones are the availability and accuracy of input data (initial
conditions) on higher resolution basis, the possibility of data
injection of real observations during prediction process and
physical parametrization.

Physical parametrization is the representation of sub-grid-
scale physical processes, that is, some meteorological pro-
cesses are too small-scale to be explicitly included in NWP
models. Hence, parametrization enables the representation of
these processes by relating them to variables on the scales
(the points of the gridded domain) that the model resolves.
For example, an important meteorological process is the
surface flux of energy transmitted by the terrain which helps
in enhancing the prediction of other important variables like
near-surface temperature, sea surface temperature and even
near-surface wind velocity variables. This process normally
occurs in scales less than 1 kilometre, while NWP models
predicts normally on domains of grid-scales higher than
1 kilometre. Parametrization is needed in such cases to
represent this process on a certain domain scale. Other
examples are the typical cumulus cloud which has a scale
of less than 1 kilometre, the amount of solar radiation
that reaches the ground, and interactions with the surface,
including the generation of drag and waves by orography.
And so, all of these processes must be parametrized before
they can be included in the model.

Summarizing, there is an important need to get reliable
weather predictions, while it is also known that the major
sources of error that reduce prediction accuracy are input
data [5], availability of observed data, and the parametriza-
tion process. Thus, the efforts to enhance NWP are mainly
focusing in enhancing input data, enabling injection of
observed data, and estimating correctly the parameters of
sub-scale parametrization process.

The two mostly used NWP enhancement methods are
Three-Dimensional Variational Data Assimilation (3DVAR)
and Ensemble Prediction System (EPS), which are still a
center of continuous research. Actually, both methods fall
within the general approach of Data Assimilation (DA)
[6] for numerical prediction models. A Data Assimilation
system combines all available information about atmospheric

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 405

state to produce an estimate of initial conditions valid at
a prescribed analysis time. It proceeds by analysis cycles.
In each analysis cycle, observations of the current (and
possibly, past) state of the atmosphere are combined with
the results from a NWP model (the forecast) to produce
an analysis, which is considered as ”the best” estimate of
the initial conditions of the system. DA tries to balance the
uncertainty in input data and in the forecast. The model is
then advanced in time and its result becomes the forecast in
the next analysis cycle.

Next, we describe in more detail the two approaches that
are most widely used for NWP enhancement.

3.1 Three-Dimensional Variational Data As-
similation

3DVAR [7] uses information which include observations,
previous forecasts (background or first-guess), their respec-
tive errors and the laws of Physics to produce the analysis.

The basic goal of the 3DVAR system is to produce an
”optimal” estimation of the true atmospheric state at analysis
time, which is achieved by finding an iterative solution of
a prescribed cost function, described in detail in [7]. This
solution represents a minimum variance estimate of the true
atmospheric state having two sources of data: background
(previous forecast) and observations. This process includes
the implementation of certain algorithms to estimate back-
ground, and observation errors.

The main drawback of this method consists of the neces-
sity of roll-back the simulation process in order to inject the
new data in such a way that corrects the observed error in a
progressive way as simulations go on. This way of working
increases the execution time of the prediction process due
to the need of re-starting the model execution from scratch.

3.2 Ensemble Prediction System (EPS)
Stochastic or ”ensemble” forecasting is used to account

for uncertainty. It involves multiple forecasts created with
an individual forecast model by using different physical
parametrizations or varying initial conditions. The ensemble
forecast is usually evaluated in terms of an average of the
individual forecasts concerning one forecast variable, as well
as the degree of agreement between various forecasts within
the ensemble system, as represented by their overall spread
[8], [9]. In [10] they show how NWP models are sensitive to
the choice of physical parametrization and how an ensemble
could be established using these parametrizations.

A set of forecasts is then produced (each of which has
a different set of initial conditions or a different physical
parametrization) using a deterministic model to predict the
future state of the atmosphere, and by assuming that the
model is perfect without other errors, then the mean of all
of the executed simulations (forecasts) is considered to be
the true future state of the atmosphere.

The implementation of this method begins with the pro-
cess of determining how to select the set of the various
initial conditions or parametrizations as presented in [11]. As
soon as this set is established, the corresponding simulations
are executed to predict the relative evolution of atmospheric
fields in the short future time.

EPS could be considered as a parallel method as each en-
semble member is actually a stand-alone simulation, which
can be executed independently of the others. Therefore,
the main drawback of this scheme is the need of a huge
computing power to be able to run all simulations in parallel.

4. Genetic Ensemble (G-Ensemble)
In this section, the Genetic Ensemble (G-Ensemble) ap-

proach for prediction enhancement is described. Although
G-Ensemble uses the same principles of the EPS, it clearly
differs in the way of how ensemble members are obtained
and executed. The main idea of an EPS is to reflect possible
variations in the ranges of some input parameters, thus, they
simply run a variety of predictions, each of which is initiated
with a different combination of those input parameters. Then,
the average of all predictions results is considered as the
best prediction as it actually reflects a range of variations
in certain input parameters. We propose a new scheme of
prediction, shown in figure (1) where we introduce a pre-
prediction phase or stage, called Calibration Phase, which
ends at the moment where real observations are available.
Hence, the whole prediction process will be formed of two
stages: Calibration and Prediction, which we describe below.

Fig. 1: Two-phase prediction scheme; ti is time 00:00 of prediction
process, ti−1 is a time instant previous to Prediction Phase (initial
time of Calibration Phase), ti+1 is the future time to be predicted.
”OV ” is an observed meteorological variable at time ti, ”PV ” is
the predicted variable at the same time using a NWP model.

4.1 Calibration Phase
Considering that ti is the instant time from which the

meteorological variables are going to be predicted, Calibra-
tion Phase starts at a time prior to prediction time and ends
at time 00:00 of prediction period, i.e. calibration is done
within the period (ti−1, ti). Knowing that real observations
of meteorological variables are available at time ti, the
objective of this phase is to look for the combination of

406 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

the physical parameters, which produce less error compared
to these observed meteorological variables at the end of
the phase (at time ti). That is, as in EPS, we initialize a
set of simulations randomly, each of which has a different
physical parametrization combination. This initial set, which
we call initial ensemble, is run by the NWP model to
predict meteorological variables at time ti, then we use GA
functions to obtain an improved ensemble set (which has
less errors compared to observations at time ti) and the
process is repeated again many times to a certain number of
iterations. At the last iteration of the GA, Calibration Phase
exits with calibrated ensemble members that we refer as G-
Ensemble, each of which has a calibrated combination of
physical parameters, which produced less error than those of
the initial ensemble. At that point, we have two alternatives
for the Prediction Phase: 1) to apply the classical EPS
scheme using the obtained G-Ensemble set, or 2) to select
the ensemble member of the G-Ensemble with minimum
error, to be the single ensemble member of the simulation
that will conduct the Prediction Phase. We call this approach
Best Genetic Ensemble Member (BeGEM).

A relevant point to be considered in the Calibration Phase
is the error definition being one of the core elements of this
phase. In this work, we propose two different error functions
to be used, what we call Single-Variable and Multi-Variable.
Depending on the error function used, we have designed
two G-Ensemble strategies: Single-Variable G-Ensemble and
Multi-Variable G-Ensemble, which are described below.

4.1.1 Single-Variable G-Ensemble

The Calibration Phase is done with the goal of enhancing
predictions for a single meteorological variable. The error
function for the evaluation of ensemble members in our
GA is the Root Mean Square Deviation RMSD or Error
RMSE, shown below in equation(1). This error function is a
frequently-used measure for the evaluation of meteorological
predictions [12], which measures the differences between
values predicted by a model or an estimator and the values
actually observed from the variable being estimated. In
RMSD equation, xobs is an observed value of a variable x
and xpre is the predicted one for the same variable.

RMSD =

��n
i=1(xobs,i − xpre,i)2

n
(1)

Using RMSD error in the Calibration Phase limits our
G-Ensemble to be oriented to enhance predictions for one
meteorological variable at a time. For example, we can use it
to enhance predictions of Temperature or Precipitation, but
not for both at the same time. This occurs because the error
used produces a value of the variable unit that can not be
compared with other variables. In order to overcome such a

drawback, we proposed an alternative error function, which
we refer as Multi-Variable G-Ensemble.

4.1.2 Multi-Variable G-Ensemble
The calibration is done with the goal of enhancing the

prediction of multiple meteorological variables at the same
time. To bypass the limitation imposed by RMSD error, we
use the Normalized RMSD, see equation (2).

NRMSD =

��n
i=1(xobs,i−xpre,i)2

n

xobs(max) − xobs(min)
(2)

The Normalized RMSD (referred as NRMSD) is the
value of RMSD divided by the range of the observed values
of a certain variable. NRMSD indicates the error percent-
age of the predicted value of a certain variable, compared
to its observed values. In order to consider more than one
variable at a time, we evaluate NRMSD for all variables,
and then, we consider the addition of all of them as the
Multi-Variable error function. For example, the NRMSD
of a model that predicts Temperature (T) and Precipitation
(P) is the percentage obtained by the summation of two
Percentages: NRMSD(T) and NRMSD(P), as shown in
equation (3).

Error = NRMSD(var1) +NRMSD(var2) = value%
(3)

Therefore, the Calibration Phase and, particularly the GA,
considers this error function as the objective function used
to sort the intermediate individuals of the ensembles.

4.2 Prediction Phase
Once the Calibration Phase is finished, it is the turn of

the Prediction Phase. At this point, either the BeGEM or the
whole G-Ensemble set produced by the previous phase will
be run by the NWP model. It is expected that this ensemble
member will generate better predictions as it shown less error
in Calibration Phase. In contrast to the classical EPS, only
one simulation is executed here, while in EPS the whole
ensemble set is executed.

5. Experimental Test Case
To test our approach, we used historical data of hurricane

Katrina [13], see a picture in figure (2). Katrina occurred on
August 28, 2005 in the Gulf of Mexico and unfortunately
caused the death of more than 1,800 persons along with a
total property damage that was estimated at $81 billion (2005
USD).

To Predict meteorological variables, we used WRF as
the NWP model and, we used the coupled NOAH Land
Surface Model (NOAH LSM) [14] for land surface physical
parametrization. At runtime, NOAH LSM provides impor-
tant values to WRF that correspond to subgrid-scale evo-
lution of land surface variables (surface sensible heat flux,

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 407

Fig. 2: Satellite picture of hurricane Katrina on Aug. 29, 2005 at
12:15 p.m

surface latent heat flux, skin temperature, surface emissivity
and the reflected short-wave radiation). It calculates these
variables depending on a set of parameters that characterize
the land surface: Landuse and Soil parameters [15]. As
a result, predictions are enhanced when LSM is used as
more subgrid-scale meteorological variables are injected into
the model. However, these parameters fall within ranges
and small changes in their values produce non-negligible
differences in prediction results. The EPS comes at this point
to solve the problem by generating a number of predictions,
each of which has different values of Landuse and Soil
parameters, hence, the final result of the prediction will
be the average of the results of all predictions which are
supposed to cover an ”acceptable” variation in physical
parametrization (land surface parametrization).

The objective of the experiments is to predict meteo-
rological variables evolution from time: 12:00 h. of the
day 28/08/2005 to time 00:00 h. of 30/8/2005 (a period
of 36 hours in which the major effects of the hurricane
were produced). The evolution of meteorological variables
is produced every 3 hours.

To get the evolution of meteorological variables at 12:00
h. of 28/08/2005, we used initial conditions of the atmo-
spheric state in the zone three hours before, i.e. model started
prediction from time 09:00 of 28/08/2005. For our approach
(G-Ensemble), the Calibration Phase started from time 00:00
of 28/08/2005 to time 09:00 of the same day.

The variables predicted in our experiments were: Latent
Heat Flux LHF (W/m2), Surface Skin Tempreature TSK (K),
2-meter Tempreature (K), 10-meter Wind Velocity compo-
nents U10 and V10 (m/s), and the Accumulated Precipitation
RAINC (mm).

In the next two subsections, we discuss results by which
we make a comparison between classical EPS and the G-
Ensemble. Furthermore, we also analyse the computational
cost incurred by both approaches.

5.1 Ensemble Vs. G-Ensemble
In this section, a comparison of prediction results is done

between the classical EPS and our method (G-Ensemble).
Figure (3) shows an experiment result of using classical EPS
of 40 ensemble members (each of which has a different
Landuse and Soil parameters) to predict Latent Heat Flux
LHF variable. As shown in the figure, each line represents
the predicted values of LHF every 3 hours. The dotted line
represents the average of all of those predicted values of all
simulations, which will be considered as the best prediction
result according to the classical EPS.

Fig. 3: Classical Ensemble of size:40 to predict Latent Heat Flux
LHF.

We applied our method with Single-Variable G-Ensemble
in two different cases: to predict LHF (results shown in
figure 4) and to predict Acc. Precipitation (results shown
in figure 5). In both cases, with the same initial ensemble
members, we obtained a significant improvement in predic-
tion quality. The Genetic Algorithm of the Calibration Phase
was configured to iterate 20 times over an initial population
size of 40 individuals (initial ensemble size). Its three main
operators were configured as follows: Selection: (best one of
two) and (roulette), Crossover: (probability=0.7, type: two
points crossover), and Mutation: (probability= 0.2).

Fig. 4: Single-Variable G-Ensemble; RMSD error in prediction
of variable LHF.

408 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 5: Single-Variable G-Ensemble; RMSD error in prediction
of variable Acc. Precipitation.

The results of the Calibration Phase are the enhanced 40
individuals (G-Ensemble members). As shown in figures 4
and 5, the average error of G-Ensemble predictions is always
less than the average error of the classical EPS referred as
Ensemble in the figures. Furthermore, if we just run a single
prediction with BeGEM of the Calibration Phase, errors are
even reduced more.

We also used our approach to enhance predictions of a set
of meteorological variables at the same time, by applying the
Multi-Variable G-Ensemble and using the error NRMSD
(shown in equations 2 and 3) in Calibration Phase as the
fitness function of the GA. In this case, we were also able
to obtain significant improvements in the prediction of a set
of meteorological variables at the same time.

Figure 6 shows the results obtained in this case. Again,
significant reduction of the NRMSD were obtained in the
prediction of a set of meteorological variables together.

Fig. 6: Multi-Variable G-Ensemble; NRMSD in prediction of
variables: Latent Heat Flux LHF, Surface Skin Tempreature TSK,
2-meter Tempreature, 10-meter Wind Velocity components U10 and
V10, and the Accumulated Precipitation RAINC.

Additionally, we observed that a reduction of the
NRMSD of a set of variables also provides an enhancement

in the prediction of each meteorological variable alone. In
other words, all six variables were better predicted when
G-Ensemble oriented to reduce the NRMSD of those
variables together. To illustrate these results, we show in
figure (7) how the corresponding prediction error of Latent
Heat Flux LHF was reduced by the G-Ensemble oriented to
reduce the NRMSD of the six variables (the same effect
was observed in the other five variables).

Fig. 7: RMSD prediction error of Latent Heat Flux LHF(W/m2)
in prediction using BeGEM produced in iterations 10 and 20 of
the Calibration Phase of the Multi-Variable G-Ensemble.

5.2 Accuracy versus Cost
The problem of the uncertainty in NWP initial condi-

tions produces what is called ”imperfectness” in prediction
accuracy. The previous mentioned methods, among others
[16]–[18], are implemented to reduce the margin of the
”imperfectness” in prediction accuracy. However, the trade-
off between cost (execution time) and prediction accuracy is
an important factor that should be considered to select the
most suitable enhancement method.

In scenarios with a limited number of computational
resources, EPS is not an eligible method as it needs lots
of resources to execute a set of predictions. Using our ap-
proach, we obtained a significant reduction of computational
time when we executed an experiment comparing classical
ensemble with G-Ensemble. Predictions were executed in
parallel over a cluster of 80 computing nodes. Figure (8)
shows the prediction error of an experiment to enhance
prediction of 6 meteorological variables, using classical EPS
and the Multi-Variable G-Ensemble in 5 different scenarios,
which correspond to different GA settings. The execution
time of all scenarios and their settings are listed in (table 1).

In four scenarios of G-Ensemble (scenarios 2, 3, 4, and
6), we observed a significant reduction in execution time
along with its corresponding reduction of prediction error. A
classical EPS of 40 ensemble members Ensemble(40) could
be replaced by any scenario of BeGEM(40) calibrated by
(5, 10, or 15) iterations of the GA. Similarly, BeGEM(20)
with 20 initial ensemble members iterated 20 times at

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 409

Fig. 8: Multi-Variable G-Ensemble; NRMSD of prediction of
variables: Latent Heat Flux LHF, Surface Skin Tempreature TSK,
2-meter Tempreature, 10-meter Wind Velocity components U10 and
V10, and the Accumulated Precipitation RAINC.

Table 1: Execution time Vs Scenario

Number Scenario G-Ensemble # of Iterations Ex.Time
1 Ensemble(40) No - 1120 m.
2 BeGEM(40) Yes 5 369 m.
3 BeGEM(40) Yes 10 709 m.
4 BeGEM(40) Yes 15 1024 m.
5 BeGEM(40) Yes 20 1549 m.
6 BeGEM(20) Yes 20 709 m.

Calibration Phase constitutes another scenario that reduces
both prediction error and execution time. Only in one case
(scenario 5), our method incurred in an execution time
larger than classical ensemble. This is due to the number of
iterations used in the Calibration Phase by the GA, which
was 20 iterations. Fortunately, significant improvement in
prediction quality (almost similar) is gained by calibrating
with less number of iterations (as in scenarios 2, 3, and 4),
or by reducing the size of initial ensemble members (as in
scenario 6). This means that this case could be prevented
by either calibrating with less number of iterations or by
reducing the size of initial ensemble members.

In summary, G-Ensemble method provides the possibility
to select between various scenarios considering a balance
between prediction quality and prediction cost.

6. Conclusions and future work
In this work, we have briefly described Numerical Weather

Prediction models, along with a description of WRF as one
of the most widely used models in the field. We highlighted
the importance of the accuracy in NWP models, discussing
also the basic two methods used for prediction enhancement.
We analysed the penalties incurred by these methods in terms
of time execution costs and prediction accuracy.

We have introduced G-Ensemble, as a new scheme that
enhances weather predictions. It uses an evolutionary algo-
rithm to estimate best possible physical parameters that will
provide more reliable predictions.

The G-Ensemble prediction scheme showed a significant
improvement in prediction quality. Thanks to the enhance-
ment in prediction accuracy, more sophisticated schemes
might be developed in the near future by injecting ob-
served meteorological variables at run-time. These results
encourage us to continue our research efforts by adding
methods that handle real observations and deciding their
injection intervals at run-time in order to get more reliable
meteorological predictions.

References
[1] National Weather Service (NWS) homepage. [Online]. Available:

http://www.nws.noaa.gov/
[2] Weather Research and Forecasting Model homepage. [Online].

Available: http://www.wrf-model.org/index.php
[3] PSU/NCAR MM5 community model homepage. [Online]. Available:

http://www.mmm.ucar.edu/mm5/
[4] W. D. Bonner, “NMC overview: Recent progress and future plans,”

Weather and Forecasting, vol. 4, no. 3, pp. 275–285, 1989.
[5] D. J. Stensrud and J. M. Fritsch, “Mesoscale convective systems

in weakly forced large-scale environments. Part II: Generation of a
mesoscale initial condition,” Monthly Weather Review, vol. 122, no. 9,
pp. 2068–2083, 1994.

[6] B. Wang, X. Zou, and J. Zhu, “Data assimilation and its
applications,” Proceedings of the National Academy of Sciences,
vol. 97, no. 21, pp. 11 143–11 144, 2000. [Online]. Available:
http://www.pnas.org/content/97/21/11143.abstract

[7] D. M. Barker, W. Huang, Y. R. Guo, A. J. Bourgeois, and Q. N.
Xiao, “A three-dimensional variational data assimilation system for
MM5: Implementation and initial results,” Monthly Weather Review,
vol. 132, no. 4, pp. 897–914, 2004.

[8] D. J. Stensrud, H. E. Brooks, J. Du, M. S. Tracton, and E. Rogers,
“Using ensembles for short-range forecasting,” Monthly Weather
Review, vol. 127, no. 4, pp. 433–446, 1999.

[9] T.-Y. Lee and S.-Y. Hong, “Physical parameterization in next-
generation nwp models,” Bulletin of the American Meteorological
Society, vol. 86, no. 11, pp. 1615–1618, 2005. [Online]. Available:
http://journals.ametsoc.org/doi/abs/10.1175/BAMS-86-11-1615

[10] N. K. Awan, H. Truhetz, and A. Gobiet, “Parameterization induced
error-characteristics of mm5 and wrf operated in climate mode
over the alpine region: An ensemble based analysis,” Journal
of Climate, vol. 0, no. 0, p. null, 2011. [Online]. Available:
http://journals.ametsoc.org/doi/abs/10.1175/2011JCLI3674.1

[11] J. L. Anderson, “Selection of initial conditions for ensemble forecasts
in a simple perfect model framework,” Journal of the Atmospheric
Sciences, vol. 53, no. 1, pp. 22–36, 1996.

[12] C. J. Willmott and K. Matsuura, “On the use of dimensioned mea-
sures of error to evaluate the performance of spatial interpolators,”
International Journal of Geographical Information Science, vol. 20,
no. 1, pp. 89–102, January 2006.

[13] Hurricane Katrina homepage. [Online]. Available: http://www.katrina.
noaa.gov/

[14] The Community Noah Land-Surface Model homepage. [Online].
Available: http://gcmd.nasa.gov/records/NOAA NOAH.html

[15] Research Applications Laboratory (land-surface modeling) homepage.
[Online]. Available: http://www.ral.ucar.edu/research/land/technology/
lsm.php

[16] D. Zupanski, M. Zupanski, E. Rogers, D. F. Parrish, and G. J. DiMego,
“Fine-resolution 4dvar data assimilation for the great plains tornado
outbreak of 3 may 1999,” Weather and Forecasting, vol. 17, no. 3,
pp. 506–525, 2002.

[17] G. Evensen, “The ensemble kalman filter: theoretical formulation and
practical implementation,” Ocean Dynamics, vol. 53, no. 4, pp. 343–
367, 2003.

[18] P. L. Houtekamer, H. L. Mitchell, G. Pellerin, M. Buehner, M. Char-
ron, L. Spacek, and B. Hansen, “Atmospheric data assimilation with
an ensemble kalman filter: Results with real observations,” Monthly
Weather Review, vol. 133, no. 3, pp. 604–620, 2003.

410 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

 Mahmoud Abaza, Duane Cato
ATHABASCA UNIVERSITY

Abstract - Please consider these Instructions as guidelines for
preparation of Final Camera-ready Papers. The Camera-
Ready Papers would be acceptable as long as it is formatted
reasonably close to the format being suggested here. Note that
these instructions are reasonably comparable to the standard
IEEE typesetting format. Type the abstract (100 words
minimum and 150 words maximum) using Italic font with
point size 10. The abstract is an essential part of the paper.
Use short, direct, and complete sentences. It should be brief
and as concise as possible.

Keywords: Distributed databases, mobile computing, J2ME,
collaborative computing.

1 Introduction
he specific field of mobile distributed database management
continues to be a burgeoning area for research, due in large
part to the very rapid changes that have occurred in mobile

device capability over the past few years. Mobile devices now
are capable of rapid processing, high-speed communication
and support high-level programming primitives (e.g., using
Java Micro Edition - J2ME) and are thus perfect candidates
for empowering the average user with improved data
accessibility and collaboration, within a mobile context. This
can potentially provide benefits in increased usefulness,
timeliness, and availability of on-time, real-time information
to the everyday mobile user. This paper attempts to provide
additional information and context for the inevitable
discussions which will be necessary to fully utilize and
monetize solutions based upon this technology, through two
broad approaches:

• Comparison of Mobile Distributed Databases, and
• Prototype Mobile Distributed Database (MDD)

Groupware Solution
The existing MDD comparison solutions report provides

details of characteristics and metrics for a number of identified
candidate products. These dimensions include:

• feature-set,
• availability,
• operating environment/platform, and
• cost and usability .[2]

Prototype MDD Groupware Solution
The proposed groupware system focuses on distribution and

sharing of questions, answers and comments between

members of a ‘study-group’, utilizing mobile devices to handle
the tasks of posting, updating and most importantly, storing
communication between group constituents. The design is
unusual in that it includes no centralized storage database
envisaged in the architecture of this particular solution; all
persistent and session data generated and utilized in the course
of operation exists as the sum total of information within
component participating mobile database nodes [3]. Future
enhancement directions may include the possibility of
implementing some sort of offload or external backup
mechanism, in order to provide long-term persistent storage or
archival capability.
It should also be noted that, as a prototype, the primary goal of
this solution was to illustrate existing design and operational
morphologies of the specific MDD identified from the
evaluation phase of the project, as well as potentially identify
improvements and innovations in existing infrastructure and
design, that could lead to performance, reliability or functional
improvements in the MDD arena.
These factors all impact the deliverability and usability of the
solution in developing, deploying and operating solutions
based on the particular MDD technology

 An electronic copy of your full camera-ready paper
must be uploaded (in PDF format) to Publication Web site
before the announced deadline. Please follow the submission
instructions shown on the web site. The URL to the website is
included in the notification of acceptance that has been
emailed to you by Prof. Arabnia.

2 Definitions
 To satisfy the objectives of this study, it was necessary to
identify the resource costs related to the management of data
objects across the distributed nodes of the database. These
costs can be segregated into object management costs,
communications costs and I/O costs. For our purposes, the
approach outlined by Huang and Wolfson, [7]was sufficient,
particularly due to its specificity for determination of object
allocation and access costs. Their method analyzes the cost of
distributed object management algorithms in stationary and
mobile computing environments. As a precursor to the
discussion of their methodology, we include a few definitions:
• A distributed database can be defined as a database that is

not stored at any one single physical location, but rather is

Study of mobile collaborative information system
using distributed

database architecture

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 411

dispersed across a network of interconnected computers
or devices

• An execution schedule is a sequence of requests, with its
own associated execution set (reads and writes).

• A saving-read is a read operation that results in saving the
data object locally rather than to a remote node

• An allocation schedule is an execution schedule where
some of the read requests are saving-reads. At the end of
the allocation schedule the data object is stored in the
local databases of the participating nodes.

• A legal allocation schedule is one in which the execution
set for every read request contains a reference to a valid
(in the network) node or processor; i.e., a node with the
latest version of the data object in its local database.

• Allocation scheme for a request is the set of nodes (or
processors) that have the latest version of the data object
in the local database, just before execution.

• A distributed object management algorithm (DOM) is
defined as an algorithm which generates a legal allocation
schedule based on an initial allocation schedule.

3 Methodology
 This project examines the feasibility of communal
information sharing between mobile devices using a
distributed architecture for the underlying database topology.
The first objective, examination and review of available
technologies and products currently supporting distributed
mobile database functionality, was achieved through review of
public benchmark information for a number of popular mobile
distributed database (MDD) products. The second objective
was met through development of a prototype mobile database
application using a distributed database architecture to
implement information management functions implementing
one of the MDD candidates identified above, in combination
with development of any required extensions or custom
distributed data management functionality not already
provided by the chosen MDD infrastructure. The following
details the rationale behind the approach and evaluation
techniques followed in this research.

Distributed Database Infrastructure
In order to satisfy the unique needs of data management in a
distributed environment, distributed information retrieval
(DIR) techniques are more appropriate than the centralized
methods common to monolithic stand-alone databases. In a
DIR, all participating nodes in the distributed environment are
indexed, to identify those that are likely candidates for
locating the particular information desired; only those that
meet the search criteria are included in a final list of search
hosts. The assumption here is that each participating node in
the database, indexes its own subset of data, and thus can
answer the question of what information is contained therein.
Also, this mechanism presupposes the availability of all the

hosts in the database: disconnected of nodes in the database
will lead to skewed, or even incorrect search results.
The improvement of the underlying fault-tolerance of the
databases' network connectivity will lead to a concomitant
increase in the reliability and accuracy of search and data
management operations from the overall information
management system. Mechanisms for increasing the
availability and recoverability within a mobile distributed
context are limited by a variety of operational parameters
(e.g., infrastructure cost, data transmission cost, network
latency, bandwidth , underlying connection protocol artifacts).
For purposes of this analysis, we focus principally on reducing
data management and transmission costs, through the use of
enhanced data transmission protocols and node selection
schemes. Candidate methodologies for DIR node interaction
include:

i. Communication through a centralized server, which
manages the process of data synchronization between
the nodes in the mobile distributed database. Issues
related to this method include synchronization and
federation update consistency, as well as performance
bottlenecks and single-point failure concerns.

ii. Communication in an ad hoc manner as necessary for
synchronization between individual nodes in the
distributed database. This remedies the single-point
failure issues identified in (i), but only changes the
nature and cause of performance and synchronization
concerns.

iii. Communication between peers in the distributed
database, using an enhanced protocol and associated
topology to avoid failure sensitivity and performance
issues associated with options (i) and (ii) above.
Synchronization issues continue to require creative
management, particularly in light of the more
complex interaction now occurring between peers.

Validation of the approaches indicated above, requires a
quantitative determination of cost for implementation,
management and system resource utilization. Assuming that
external costs of management and implementation remain
consistent between the three options, the varying cost becomes
that required for ongoing system resource utilization. A
methodology for evaluating this cost as it applies to multiply
synchronized devices is discussed in the following section.

Device Data Synchronization
An additional factor to be considered in any approach for
managing data across a distributed system, is the identification
of data to be synchronized across participating nodes. Any
algorithm designed should support synchronization of multiple
replicas of a distributed database, ensuring consistency of data
between all copies of the database. Issues which come to fore
include:
Storage constraints on portable devices precludes working
with the full dataset on the device; i.e., participating nodes

412 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

may not necessarily posess the entire data set of the database,
but only an operationally (or geographically) relevant subset.
For disparate data platforms, data will have to be translated or
mapped between types. For our research, we have limited
ourselves to a consistent database platform across the
procured research devices, despite potential differences in
underlying hardware topology, in the interests of reducing
variability in the evaluation parameters.
[4] Zondervan and Lee, (1999), indicate a preference for using
an ID Mapping Table (IMT) to manage data translation
between desktop or server databases and mobile device
replicas. This was achieved within the context of the above
restrictions, by storing the IMT on the main server, and
referencing it for translation of data store-relevant documents
between device and server. In the multiple-mobile device
scenario we envision, using an IMT is less of an issue, as a
consistent data platform between the individual devices makes
an IMT of limited value (since there is reduced requirement
for translation of values between nodes). We can assume
therefore that the algorithm is operating as if a 1-1 imaginary
IMT mapping exists between all items in a particular device
node and any other mobile device against which we want to
replicate.
It is necessary to identify the resource costs related to the
management of data objects across the distributed nodes of the
database. These costs can be segregated into object
management costs, communications costs and I/O costs, and
calculated using any of a variety of methodologies. For our
purposes, the approach outlined by [6] Huang and Wolfson,
(1994) will suffice, particularly due to its specificity for
determination of object allocation and access costs. In their
approach, Huang and Wolfson outlined a methodology for
comparison of the competitiveness and costliness (in object
resources) of differing distributed object management
algorithms (DOMs). Here, competitiveness is a measure of the
performance of a particular algorithm, while costliness refers
to the resource usage in terms of memory and disk
requirements.
In order to comprehensively evaluate the MDD products , this
study compared both raw performance characteristics, as well
as derived metrics. Criteria for distributed database
performance evaluation included I/O, node response-time
(database ACK), and real-time node resource usage (memory,
disk).The following methodology was used to test and
evaluate the candidate set of products:
• Identified performance characteristics data and literature

for the candidate products.
• Created a distributed database instance for each product

for use with the test infrastructure.
• Implemented a test harness for the MDD product

libraries, suitable for evaluating operational and
performance characteristics of data transactions against
the MDD instances above.

• Performed a set of quantifiable updates and searches
against the databases, capturing statistics of performance,
as indicated by expressions in previous section.

• Generated cost comparison matrix for the candidate
products, using both experimentally derived and literature
data above.

4 Product Cost Calculation
 We made the following assumptions:
• For any set of read/write operations, the number of nodes

that end up with the latest data will be equivalent to the
number of nodes in our set. This will be the number of
actual devices running a MDD instance for the
application.

• It was assumed that all transactions make up the
allocation schedule, and the allocation scheme is the set
of all devices. It was further assumed that any instance is
completely updated after all operations (read & write)
have completed. This allowed the remaining assumptions
below.

• X = An allocation schedule is an execution schedule
where some of the read requests are saving-reads. At the
end of the allocation schedule the data object is stored in
the local databases of the participating nodes. Then, we
can say that X=number of transactions.

• Y = Allocation scheme for a request is the set of nodes (or
processors) that have the latest version of the data object
in the local database, just before execution. Hence,
Y=number of mobile devices.

• Knowing read time, write time from the benchmarks for
each product; the average time for any read or write
operation against the local device was calculated.
Therefore, average read/write time ≈ local operation time.

• Finally, we assume that network ping times for benchmark
test networks, taken as a fraction of the network
communication cost are a good approximation for control
message transmission time across the network.

The above assumptions allowed the assignment of values to
the specific relations identified:

Fractional control communication (tcpbluetooth) = 37.50 ms
ti/o = total time to transmit both data and control (request)
message from one device to another.
tc = time for transmitting control (request) message from one
device to another.
td = time for transmitting data message from one device to
another.
tlocal = time to store data message on local device.
This gives:
tc= tcp bluetooth
tlocal = average read-write time from benchmark values

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 413

td, = data transmission time

 = ping transmission time ·

data block size

ping block size
Since, transaction data block size = Integer (8) +
String(255)=263 bytes, and ping control message = 32 bytes,
td = (37.5000 x 263)/32
 = 308.2 ms
ti/o = tc+td = 37.5 + 308.2
 = 345.7 ms
Calculating cc and cd using the above network communication
and benchmark times:
cc = ratio of the cost of transmitting a control message to the
cost of I/O for the object to the local database on secondary
storage
cd = ratio of the cost of transmitting the object between two
processors to the I/O cost.
cc,=tc/tlocal

cd = td/ti/o

5 Data Collection
 The candidate J2ME database platforms under consideration
in this study were as follows:

i. Perst
ii. Berkeley DB Java Edition
iii. db4o
iv. J2MEMicroDB

The following table outlines the determination of the
product customization factor:

Table 1: Product customization factor determination

 Perst

Berkeley
DB Java
Edition db4o

J2ME
MicroD

B

MDD requirements

Mobile context 1 1

J2ME support 1 1

Local Autonomy 1 1 1 1

No Reliance on a Central
Site 1

Continuous Operation 1 1 1 1

Data Location
Independence 1

Data Fragmentation
Independence 1

Data Replication
Independence 1 1 1

Distributed Query
Processing 1 1

 Perst

Berkeley
DB Java
Edition db4o

J2ME
MicroD

B

MDD requirements

Distributed Transaction
Management 1 1

Hardware Independence 1 1

Operating System
Independence 1 1

Network Independence 1 1

Database Independence 1 1

Total Score 9 6 6 10

Customization factor Ɣƥ 0.69 0.31 0.46 0.77

The table below outlines the summarized results of the
performance evaluation and comparison costs of the candidate
products:

10BTable 2: Derived candidate product comparison costs.

Candidate
product

Write
time
ms

Read
time
ms

 #
transacti

ons

Avg.
read/
write
time

ms

Custom
ization
factor
Ɣƥ

COST
)ƥ(

Perst 65772 25490 10000 4.56 0.69 49731.13

Berkeley
DB Java
Edition 0 0 0.31 0

db4o 0 0 0.46 0

J2MEMicr
oDB 14320 8610 1000 11.47 0.77 2115.65

The first candidate product reviewed, db4o, although a Java-
based mobile database, does not support distributed
synchronization between mobile instances, without the use of
a number of traditional database server components (i.e.,
installations of a “big-iron” RDBMS such as Oracle or
MySQL), as well as the db4o proprietary distributed
synchronization manager, dRS.
Similarly, Berkely DB does not have a mobile Java-based
product which provides a distributed capability; as with db4o,
this suggests a high customization requirement to port the
solution to a mobile J2ME context from the available J2SE
framework. This expectation is borne out by the
customizability factors determined previously. Additionally,
the lack of verifiable public benchmark data for these two
products in a mobile context, disqualifies them from further
consideration as sufficiently viable mobile distributed
database solutions (using the criteria defined for this project).
The other candidate products examined in this part of the
project, were Perst and J2MEMicroDB, both of which are

414 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

J2ME capable, support multiple node capability and are
significantly customizable, due to their open-source licensing
regimes. However, a number of items differentiate the two
products, particularly from the standpoints of customizability
and product maturity. Perst is a well-known, mature product in
the distributed database market space, having been first
introduced in 2003, and possesses a significant installed base.
J2MEMicroDB is a newer product, and does not have the
existing uptake that is exhibited by Perst; this may be a result
of it's academic origins, as it is not heavily promoted as a
mobile database solution commercially.
Of further impact, is the large disparity in performance
between these two J2ME local databases, without including
any distributed capabilities. Perst shows an almost 2-fold
order of magnitude speed differential with J2MEMicroD in
basic mobile database read/write/update operations (see the
tables in the previous section). This is a significant factor,
particularly considering the added impact of communication
time for database transactions in a distributed context is taken
into account. Both Perst and J2MEMicroDB have significant
support mechanisms and regular maintenance updates,
indicating a vibrant development culture around both. A point
of interest is the customization approaches for these products
are significantly different, since they have quite distinct
approaches in handling database concerns in the limited-
resource, distributed environments under consideration.
Neither of the products appears to compromise in pursuing
highly customizable, developer-friendly usage patterns in the
codebases, which bodes well for the MDD development space
on a whole.
The conclusion of this evaluation portion of the research,
indicates that, of our candidate product set of mobile
distributed database solutions, Perst is the most capable MDD
solution candidate for distributed information management
solutions, as a result of it's high level of support, ease-of use,
portability, customizability and satisfaction of MDD
functional criteria. In particular, Perst, though not a distributed
database solution readily capable of multi-nodal input, showed
itself to be easily customizable for that purpose, and in fact,
was used in the secondary portion of this project, as the base
for the MDD prototype application.

6 Prototype Functional Requirements
 The prototype application presents a simplified single-page
interface, displaying a scrolling list of the most recent posts in
the group discussion session which the mobile device is
currently monitoring. User/mobile device access is
authenticated against a master list for the system; however,
there has not been a rigorous application of security protocols
in this project. As authenticated devices sign into the system,
they will receive the list of current discussion groups, from
which one may be chosen to continue communication.
Subsequent posts and messages will be maintained within this

group, until the user transfers to another available group (or
starts a new one).
It should be reiterated here, that this group discussion system
used only participating mobile devices as the backing database
store for all operations, i.e., there was no "central" database or
external persistent store.
The basic requirements can be itemized as follows:
• User authentication – users should be authenticated

against the database for security
• Database node registration – lacking a central database,

nodes are registered with each other manually. In a real-
world scenario, this would probably be handled using an
advertising service component of the application.

• Multi-node data synchronization – data must be
replicated/synchronized between all registered mobile
devices using the application.

• J2ME (Java Mobile Edition) capable – the application
should be packaged and distributed as a portable Java
midlet, to illustrate use in multiple device types and
environments.

As a prototype, a number of assumptions have been made
about the operation and context of the application, highlighted
below:
• The application does not attempt to enforce data

validation. Invalid input can crash the program, since the
application does not enforce real-world restrictions and
checks.

• The prototype currently is deployed expecting J2ME
HTTP/TCP communication. It has not been designed to
communicate over non TCP-based mobile contexts.

Lacking a centralised node tracking database, al nodes have
to manually register with each other to support
synchronization. In a real-world scenario, a simple solution to
this would involve advertising new nodes in a TCP broadcast,
or use of a centralized registry.

7 Forum High-Level Design
 As concluded in the first part of this project, Perst was
identified as suitable for development of high-performance,
solution-ready mobile distributed database solutions. This
does not suggest that Perst does not have some development
limitations. For example. during the development of this
prototype, it was identified that the master-slave approach
favoured by Perst for supporting replication and distributed
database synchronization, would not satisfactorily handle the
requirements of the prototype. The master-slave approach
enforces read-only capability on all slave nodes, while
allowing only the master node to handle updates (writes) to the
database. This of course, runs counter to the primary goal of
allowing data-entry from any node, with synchronization of all
nodes periodically, without need for a centralized server.
In order to provide our prototype with the ability to support
synchronization between the multiple nodes, the application
design uses Perst as the underlying local database on each

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 415

node, and adds the capability to “register” all participating
nodes, with periodic synchronization of updates between all
the database nodes. Thus, we have the following sequence of
actions for the operation of any instance of the prototype
application:
• Local mobile device starts MDDForum application
• Local Perst database is opened
• Register other device nodes with this instance
• Application gets names/addresses of previously registered

database nodes
• Application contacts all nodes, and updates itself with

most recent data from them
• MDDForum application synchronizes local database with

other nodes
• User authenticates against distributed database
• Application presents user authentication screen, and

subsequent UI forms.
• Perform regular database operations for forum

functionality (e.g., posts, reads, etc.). For purposes of this
research, we propose a HTTP-based protocol for
communication between database nodes.

• Periodically synchronize local updates with other
database nodes.

The prototype application has been designed to utilise TCP/IP
for network communication between database nodes, largely
because of the ubiquity of support for that protocol in the
mobile device space. In a real-world deployment,it is likely
that additional flexibility and functionality would be derived
from the use of TCP/IP, as this allows the participation of a
more diverse set of devices , each of which may operate using
differing hardware network interfaces, while participating in
the same distributed database. For example, one mobile device
may use a 802.11b (Wifi) mechanism for communication,
while another participates through the use of a 802.15.1
(Bluetooth) connection. For development and demonstration
purposes, this project utilised a wholly TCP/Bluetooth
network for node-node communication.

Figure 1: Diagram illustrating entity/table relationships in
the prototype..

 (1)

.

.

8 Conclusions
 The clearest conclusion to be drawn from the design,
development, and performance of this prototype, is that there
remains a great deal of work to be done in improving the
reliability, flexibility and consistency of distributed databases,
especially in the mobile context. Despite the use of a well-
known, well-regarded, and highly customizable product as the
base for prototype application development (Perst), there were
still a myriad of challenges and issues which mitigated against
the provision of a robust solution to even the limited scope
identified by this two-part project. Our research prototype
application performed successfully as designed, with data
input and sharing between mobile nodes occurring as
expected, within the limits of the parameters set for the
application execution, and the defined research examination
criteria.
As indicated in the previous section on the prototype design, a
number of design decisions were made to reduce the use of
certain exception handling and network management
operations which might be considered the norm in a non-
distributed, immotile environment: the relative immaturity of
the underlying technology (J2ME and Perst, turned out to be a
significant counterpoint to the achieved aims of code
portability and device independence.
Additionally, the requirement to handle the bulk of the
distributed database node replication and synchronization
logic (as opposed to making use of a database-level
capability), significantly impacted the reliability and
consistency of the prototype application. As indicated earlier,
it appears that for a well-behaved mobile distributed database
application, a fairly robust synchronization and node
management mechanism has to be developed or delivered with
the underlying database.
However, the conclusions of this portion of research on
distributed database in mobile devices, are not entirely
negative, since it was possible to evaluate multiple products
for suitability as infrastructure components in our prototype
solution. Further, it was possible to design and develop an
actual application that executed on multiple mobile devices
and shared data between them, albeit with limited consistency.
Finally, this researcher was able to develop custom database
node registration and synchronization routines that enhanced
the underlying mobile database to support multi-nodal input
and replication. It is clear however, that there are a few areas
that pose challenges to the significant uptake and usage of
mobile distributed database solutions:
• Underlying platform technology and capability must be

improved – this speaks directly to the library, connectivity
and functionality limitations of environments such as
J2ME.

• Distributed database solutions must become much more
reliable, in order to provide better capability for managing

416 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

real-world scenarios of multi-site data input and data
update consistency.

• Customizability of products must be balanced with robust
behaviour out of the box – consistency in limited-resource
or mobile distributed environments should not require
significant development to implement.

It appears likely that we are at the cusp of much more
significant development in the mobile distributed database
space; personal devices are becoming ever more powerful,
with greater connectivity options, making them highly
desirable targets for business, commercial and entertainment
applications. With this in mind, and based on the limited
success achieved with this project's simplified prototype
application, it seems highly probable that there will be
significant development and improvement in some (if not all)
of the products examined in this paper, particularly Perst and
J2MEMicroDB. Both of these products are already
production-ready, assuming significant custom development;
what remains is to reduce the barrier to entry for MDD
application developers to make use of these tools in solving
future information management problems.

9 References
[1] Andrew S. Tanenbaum, Marten Van Steen, 2002, Distributed

Systems Principles and Paradigms
[2] Tomasic, A. and Garcia-Molina, H. 1996. Performance issues in

distributed shared-nothing information-retrieval systems. Inf. Process.
Manage. 32, 6 (Nov. 1996), 647-665. DOI=
http://dx.doi.org/10.1016/S0306-4573(96)00019-2

[3] Vijay Kumar (2006), Mobile Database Systems (Wiley Series on
Parallel and Distributed Computing) (Hardcover) by Vijay Kumar
(2006). ISBN-10: 0471467928

[4] Quinton Zondervan and Alexandre Lee, 1999, Data Synchronization
of Portable Mobile Devices in a Distributed Database System,
Quinton Zondervan and Alexandre Lee, Lotus Development
Corporation, 1999
(http://domino.watson.ibm.com/cambridge/research.nsf/0/c71ebac11e
c6e54f8525661600797829/$FILE/mobile.pdf)

[5] Motzkin, D. 1991. Distributed database design—optimization vs
feasibility. Inf. Syst. 15, 6 (Jan. 1991), 615-625. DOI=
http://dx.doi.org/10.1016/0306-4379(90)90064-V

[6] Kam-yiu Lam, 2000, Transaction Processing in Mobile Distributed
Real-time Database Systems, Kam-yiu Lam, Department of Computer
Science, City University of Hong Kong, 2000
(http://ipdps.cc.gatech.edu/1998/wpdrts/kylam.pdf)

[7] Huang, Y. and Wolfson, O. 1994. Object Allocation in Distributed
Databases and Mobile Computers. In Proceedings of the Tenth
international Conference on Data Engineering (February 14 - 18,
1994). IEEE Computer Society, Washington, DC, 20-29.
(http://citeseer.ist.psu.edu/ACMLINK/http://portal.acm.org/citation.cf
m?coll=GUIDE&dl=GUIDE&id=655255)

[8] Mao, Z. and Douligeris, C. 2004. A distributed database architecture
for global roaming in next-generation mobile networks. IEEE/ACM
Trans. Netw. 12, 1 (Feb. 2004), 146-160. DOI=
http://dx.doi.org/10.1109/TNET.2003.820435

[9] Michael Cymerman, 2001, Device programming with MIDP, Part 1
The concepts behind MIDP APIs and J2ME. By Michael Cymerman,
JavaWorld.com, 01/05/01 (http://www.javaworld.com/javaworld/jw-
01-2001/jw-0105-midp.html)

[10] Qusay H. Mahmoud, 2003, Wireless Application Programming with
J2ME and Bluetooth by Qusay H. Mahmoud February 2003
(http://developers.sun.com/techtopics/mobility/midp/articles/bluetoot
h1/)

[11] Alier, M.; Casado, P.; Casany, M.J., 2007, J2MEMicroDB: a new
Open Source lightweight Database Engine for J2ME Mobile Devices
by Alier, M.; Casado, P.; Casany, M.J., Multimedia and Ubiquitous
Engineering, 2007. MUE apos;07. International Conference on
Volume , Issue , 26-28 April 2007 Page(s):247 – 252.

[12] Philipp Bolliger and Marc Langheinrich, Distributed Persistence for
Limited Devices, Philipp Bolliger and Marc Langheinrich, Inst. for
Pervasive Computing, ETH Zurich, Switzerland

[13] Hassan Artail, Manal Shihab, Haidar Safa 2008, A distributed mobile
database implementation on Pocket PC mobile devices
communicating over Bluetooth, Hassan Artail, Manal Shihab, Haidar
Safa, Department of Electrical and Computer Engineering, American
University of Beirut, P.O. Box 11-0236, Riad El-Solh 1107 2020,
Beirut, Lebanon, April 2008

[14] Eric Falsken , 2008, Enabling the Mobile Enterprise with db4o, By
Eric Falsken, db4objects Inc., 2008,
http://www.db4o.com/about/productinformation/whitepapers/db4o
Whitepaper - Enabling the Mobile Enterprise with db4o.pdf

[15] db4objects Inc., 2008, db4o: Java & .NET Object Database -
Benchmarks: Performance advantages to store complex object
structures, db4objects Inc., 2008,
http://www.db4o.com/about/productinformation/benchmarks/

[16] McObject Benchmarks Embedded Databases on Android
Smartphone, http://www.mcobject.com/march9/2009

[17] Database Options for the Mobile Application Developer by Bryan
Morgan, Jul 19, 2001,
http://www.informit.com/articles/article.aspx?p=22285&seqNum=4

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 417

http://dx.doi.org/10.1016/S0306-4573(96)00019-2
http://dx.doi.org/10.1016/0306-4379(90)90064-V
http://dx.doi.org/10.1016/0306-4379(90)90064-V
http://ipdps.cc.gatech.edu/1998/wpdrts/kylam.pdf
http://citeseer.ist.psu.edu/ACMLINK/http:/portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=655255
http://citeseer.ist.psu.edu/ACMLINK/http:/portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=655255
http://www.db4o.com/about/productinformation/benchmarks/
http://www.mcobject.com/march9/2009

418 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

SESSION

ULTRA LOW POWER DATA-DRIVEN
NETWORKING SYSTEM AND ITS REALIZATION

Chair(s)

Prof. Hiroaki Nishikawa

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 419

420 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Intermediate Achievement of Ultra-Low-Power Data-Driven
Networking System: ULP-DDNS

Hiroaki Nishikawa1, Kazuhiro Aoki2, Hiroshi Ishii3 and Makoto Iwata4
1Department of Computer Science, Graduate School of Systems and Information Engineering,

University of Tsukuba, Tsukuba, Ibaraki, Japan
2Information Infrastructure Laboratory, Inc., Tsukuba, Ibaraki, Japan

3Department of Communication and Network Engineering,
School of Information and Telecommunication Engineering,

Tokai University!Minato, Tokyo, Japan
4School of Information, Kochi University of Technology, Kami, Kochi, Japan

Abstract— Keeping essential communication under the min-
imum power is crucial in emergency environment. Power
consumption will therefore be one of the most impor-
tant issues to realize both platform and communication
environment. This paper reports current status of a re-
search project named "ultra-low-power data-driven network-
ing system(ULP-DDNS)". ULP-DDNS project is aiming at
development of data-driven networking system which can
achieve ultra-low-power consumption: 1/300 (down to hope-
fully 1/1000 for final target) less than the present system.
This paper first describes the effect of power consump-
tion reduction schemes in ad hoc networking architecture.
This paper then demonstrates data-driven implementation
of UDP/IP and its power consumption reduction schemes
on ultra-low-power data-driven chip multiprocessor(ULP-
DDCMP)�Furthermore, the authors propose data-driven
load balancing scheme to maintain the networking system
in working without over-loaded state. Then, this paper
describes an implementation of ULP-DDCMP platform sim-
ulator and demonstrates its experimental result. Finally, the
authors discuss about applying ULP-DDNS to ubiquitous
sensor network as the future works.

Keywords: ultra-low-power, data-driven principle, networking

architecture, self-timed elastic pipeline, chip multiprocessor

1. Introduction
Recently, power saving schemes is widely studied in

various field. They are especially payed attention after the
tohoku earthquake in Japan. It is also important to secure
communication environment in emergency such as the earth-
quake. So, it is important to reduce power consumption
as well as effective network processing because continuous
communication is needed in emergency [1].

Currently, so-called pervasive networking environment as
social infrastructure has been widely studied [2]. Further-
more, there are many studies about mobile ad hoc network
[3] which is an infrastructureless network and is a group of
wireless devices that organize themselves in a mesh topology
to find routes and relay packets from the hardware plat-
form through the network layer to application. Considering
the case where next generation of pervasive networking is
realized over ad hoc network suitable for emergency and
some tentative accidents, some of authors study data-driven
implementation of ad hoc communication environment [4].

Then, our research project is aiming at development of
data-driven networking system which can achieve ultra-low-
power consumption: 1/300 (down to hopefully 1/1000 for
final target) less than the present system [5]. It is important
to realize offloading scheme which means implementation
of ultra-low-power networking system without unnecessary
power consumption.

To realize the objectives, this project is motivated by a
research scenario that is ultimately utilizing passive data-
driven principle from networking architecture to a processor
platform. This paper describes intermediate achievement
of ultra-low-power data-driven networking system(ULP-
DDNS). Firstly the authors show the effect of power
consumption reduction schemes in ad hoc networking ar-
chitecture. Secondly, we explain ultra-low-power method
in data-driven implementation of UDP/IP. this paper also
shows power consumption reduction schemes of ultra-low-
power data-driven chip multiprocessor (ULP-DDCMP)�In
addition, the authors propose data-driven load balancing
scheme to keep the networking system in good working
without falling into over-loaded condition. Then, validating
power consumption is needed to study power consumption
reduction schemes in the networking scheme and chip multi-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 421

processor based on the elastic pipeline. This paper therefore
describesan implementation of the power simulator/validator
which simulates hand-shake in self-timed elastic pipeline
and shows its experimental study result. Finally, the authors
discuss about applying ULP-DDNS to ubiquitous sensor ad
hoc network as the future works.

2. Power Consumption Reduction
Schemes of Ad hoc Networking
Architecture

Fig. 1 shows phases of data transfer in ad hoc networking
architecture.As shown in Fig. 1, there are following phases
in networking architecture layer.

(1) Discovery [6]
(2) Public key management [7]
(3) Data transfer in broadcasting [8]

The authors have proposed discovery method which can
find target node with minimum the number of search by
using global positioning system(GPS). Relay node which
search target node for start node autonomously judges
whether it can be relay node by its own position which can
be get by GPS. Nodes which can be candidates of relay
node reply distance between its own node and target node
to start node. Start node ask relay node which is minimum
distance to target node to search next relay node. Target node
is discovered by repeating its search.

Fig. 2(1) shows power consumption of discovery in simple
flooding and same one of proposed discovery method. Pro-
posed discovery method reduces data transfer in comparison
with simple flooding. Power consumption is proportional to
the amount of data transfer. Therefore, power consumption
is 25% less than simple flooding as shown in Fig. 2.

When start node wants to establish secure communication
to target node, it is necessary to certificate each other. Key
management is essential in certification. The authors have
proposed power consumption reduction scheme in public key
management. Proposed scheme reduce the amount of data
in public key management by using trust relationship list.

Fig. 2(2) compares proposed method with conventional
method in power consumption. Power consumption in con-
ventional method doesn’t depend on the number of estab-
lished communication. On the other hand, power consump-
tion in proposed method is proportional to the number of
established communication. In Fig. 2(2), we assumed that the
number of established communication is 20% of all nodes
in network as a typical situation. Then, the number of nodes
in network is 100. We evaluated that proposed method is 1%

Target

: Node(1)Discovery

(2) Public Key Management

(3) Data Transfer

: Source Node

: Target Node

Fig. 1: Phases of networking architecture

power consumption less than conventional method as shown
in Fig.2(2).

Target node sends information to all nodes or certificated
node. The authors have also proposed power consumption
reduction scheme in flooding. Duplication of relay exists
in simple flooding. It causes the increase of power con-
sumption. So proposed method adjust relaying by load of
each node (LDCF). Too much load is probably occurred by
duplication of relay. Therefore, the node whose load is high
stops relaying received information.

Fig. 2(3) compares proposed method with simple flooding
in power consumption. Power consumption of proposed
method is 25% less than power consumption of simple
flooding. In addition, almost nodes in network can get
information in proposed method by reducing duplication of
relay.

This paper shows estimation of the rate of reducing power
consumption in ad hoc mode with these evaluation results.
This estimation assumed following situation:

• There is target node near start node relatively.
(Discovery method doesn’t need to use very much:
0.1% of all communication)

• It is necessary to certificate destination sufficiently.
(60% of all communication!

• Flooding is used before certificated communication.
(40% of all communication)

The authors estimate that the amount of data is 10%
less than conventional method in this situation from each
evaluation results. As the future works, we proposed battery-
aware counter-based flooding method for long life in com-
munication environment. Refer [8] and [9] about this study.

422 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

20

Simple
Flooding

P
ow

er
 C

on
su

m
pt

io
n

(*
)

Proposal
Method

40

60

80

100

0

P
ow

er
 C

on
su

m
pt

io
n

(*
)

Conventional
Method

* Normalized as simple flooding = 100

(1) Discovery

��

���

����

�

* Normalized as initial power of network = 1
** Assuming that percentage of communication

in the network = 20%

Proposal
Method (**)

(2) Public Key Management

71.0

99.9

20P
ow

er
 C

on
su

m
pt

io
n

(*
)

40

60

80

100

0
Simple

Flooding
Proposal
Method
(LDCF)

20 P
ac

ke
t R

ea
ch

ab
ili

ty
(%

)

40

60

80

100

0

(3) Data Transfer in broadcasting

* Normalized as simple flooding = 100

Fig. 2: Evaluation of power consumption reduction schemes on networking architecture

3. Data-Driven Implementation of
UDP/IP for ULP-DDCMP

The authors have studied the effectiveness of an imple-
mentation of protocol offloader using networking-oriented
data-driven processors CUE (Coordinating User’s require-
ments and Engineering constraints) designed by CUE project
[10], [11]. In ad hoc network, it is necessary to realize
connection-less protocol such as UDP/IP for flexible rout-
ing and realtime communication. We proposed data-driven
implementation of UDP/IP for ULP-DDCMP to minimize
overheads in protocol handling.

Then we studied architecture of CUE-v2/CUE-v3 for ad
hoc networking environment [12], [13]. And we evaluated
effectiveness of protocol handling offloader using CUE pro-
cessor system. It shows that data-driven protocol offloader
can keep minimum turn-around time in comparison with
conventional PC(Personal Computer) [14]. Fig. 3 shows
data-driven program structure of UDP/IP. We realize header
processing and data processing concurrently utilizing multi-
processing capability of data-driven processor without run-
time overheads.

This paper shows evaluation of UDP/IP on ULP-DDCMP
in power consumption by using power simulator/validator in
Section 4.3.

4. Data-Driven Chip Multiprocessor
4.1 Self-Timed Power-Aware Elastic
Pipeline:ULP-STP

The authors have studied self-timed elastic pipeline as
a VLSI implementation of data-driven principle. Self-timed

Route
Select

Data
Sending/
Receiving

Checksum

Header
Generation/Check
(Sending) (Receiving)

Application Layer (Sending)/ Network (Receiving)

Network (Sending)/ Application Layer (Receiving)

Fig. 3: Data-Driven implementation of UDP/IP.

elasticpipeline has overload tolerance because it is realized
by autonomous buffering mechanism. Besides, it has charac-
teristics in ultra-low-power and power control because power
consumption of its pipeline is localized in just working parts.
Therefore, one of target in this project is implementation
of ultra-low-power data-driven chip multiprocessor utilizing
self-timed elastic pipeline.

We have studied an implementation of power-gating(PG)
function which can cut leak power in waiting by utiliz-
ing localization in power consumption of self-timed elastic
pipeline[15], [16]. Fig. 4 shows circuits which communicate
between pipeline stages in self-timed elastic pipeline. Each

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 423

DL

C

DL

C

DL

C

LogicLogic

Vmin

Vss PGPG

VDDVariable

PID control for
variable VDD

VDD
�= f(VDD, Iss, QoS)

�QoS: throughput, latency

ISS

Energy-aware VDD

QoS
mode

Fig. 4: Power supply control of STP.

stagehas PG switches which cut power its logic and data
latch to cut leak power in waiting stage.

This paper also shows an implementation of dynamic
voltage scaling(DVS) control by using characteristic of
observability in power consumption which self-timed elas-
tic pipeline has[17]. Load in self-timed elastic pipeline
is proportional to its power consumption. So we can set
minimum voltage for demanded performance in suitable
interval. Setting voltage derived from proportional-integral-
derivative(PID) controller as shown in Fig. 4. The authors
named its self-timed power-aware elastic pipeline "Ultra-
Low-Power Self-Timed elastic Pipeline: ULP-STP".

The authors evaluated the effect of these implementation
by test element group(TEG) on which ULP-STP with PG
function and DVS function is realized. Fig. 5 is the graph
which shows the effect of PG and DVS functions. X axis of
the graph is throughput of the TEG, and Y axis is power con-
sumption of the TEG. The graph shows that power consump-
tion decreases in low voltage when demanded performance
is satisfied in each voltage. For example, power consumption
in 0.8V(PG-on) is 38% less than power consumption in
1.2V(PG-on). Beside, PG function achieved 93% reducing
in waiting leak power (1.23mV→ 84µV).

Minimizing power overhead in PG function is one of
crucial issue in the future works. The authors have been
studying sharing power isolator with data latch to minimize
its overhead. We also have studied optimizing unit of PG.
Because PG in each stage may too large in some situation,
we have evaluated changing unit of PG to each module in a
stage. Refer [18] about these works.

4.2 An Implementation of Ultra-Low-Power
Data-Driven Chip Multiprocessor: ULP-
DDCMP

The authors have implemented Ultra-Low-Power Data-
Driven Chip Multi Processor(ULP-DDCMP) by utilizing

�

���

���

���

���

���

��	

��

� ��� ��� ��	 ���

�

�
�
�
��
�

�

�
�
�
��
�

�

�
�
�
��
�

�

�
�
�
��
�

���������� �� �� !"�#$" %&���������� �� �� !"�#$" %&���������� �� �� !"�#$" %&���������� �� �� !"�#$" %&

'()*+ ,-./01

'()*22 ,-./01

'()*+ ,-.301

'()*22 ,-.301

'()*+ ,4.501

'()*22 ,4.501

Fig. 5: Relation between throughput and wattage in DVS

ULP-STP technology. Fig. 6 shows configuration of ULP-
DDCMP. ULP-DDCMP has 4 ULP-CUE which is data-
driven processor core. ULP-CUE is optimized circular elastic
pipeline as shown in Fig. 7. It is necessary to change data
such as UDP datagram into token which is unit to be
processed on ULP-DDCMP. Then off-loading I/F in Fig. 6
is implemented as a interface to ULP-DDCMP. Furthermore,
ULP-DDCMP is realized following power consumption re-
duction:

• Reduction of circuit area
ULP-CUE which is a processor core of ULP-DDCMP
is smaller circuit area than CUE-v2 which is conven-
tional data-driven processor [12]. Because matching
memory in firing control is implemented smaller than
CUE-v2 and circuit for control-driven is removed, the
area of ULP-CUE is 50% less than the area of CUE-
v2. So power consumption of ULP-CUE is 50% less
than that of CUE-v2 because power consumption of
processor is proportional to circuit area as shown in
Fig. 8.

• Optimized circular pipeline
As shown in Fig. 7, ULP-CUE has circular pipeline
for unary operation and circular pipeline for binary
operation to reduce power consumption which is not
necessary to execute program. Reducing power con-
sumption and execution time is expected because op-
timized circular pipeline for unary operation doesn’t
pass firing control stages and shortcuts. It is effective
to implemented its loop because unary operation in
UDP/IP program is over 80%.

• Chip multiprocessor

424 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

�������

�������

�������

�������

���	
 ���	�
����	�����	�

����	�����	�

ULP-DDCMP

���������
� ���

������

UDP datagram/token
conversion

UDP datagram token

DVS-Domain

Fig. 6: Data-Driven chip multiprocessor: ULP-DDCMP

Table1: Spec. of phases in ad hoc networking architecture

Phase Summary of traffic Data length of traffic
(approximately)

(i) Discovery Queries to discover 100 byte
nodes and responses

(ii) Key management Public key and 1k byte
public key certification

(iii) Data transfer Media streaming 500 byte
in broadcasting

ULP-DDCMP has 4 ULP-CUE in a chip. The au-
thors are aiming at the effect of power consumption
in load-distribution by multi-processor. When load in
each ULP-CUE is distributed, we think that PG and
DVS functions can be utilized. We have estimated
demanded concurrency of UDP/IP in ad hoc network
in emergency. If data length which is shown in Table
1 is assumed, maximum concurrency is 4. So we
implemented ULP-DDCMP which has 4 ULP-CUE
because each ULP-CUE is enough to handle single
thread.

The authors have studied reasonable mechanism for avoid
over-loaded state by using processor core configuration of
ULP-DDCMP and observability of ULP-STP. Conventional
schemes for avoid over-loaded state is relatively much power
consumption in each service because restriction is excess for
performance. We proposed mechanism which is combined
DVS function and I/O control for observation of load with
load-distribution by round-robin. It is effective to realize
ultra-low-power networking environment which is suitable
for demanded performance. Refer [19] and [20] about load-
distributed mechanism and DVS function. In addition, we
have developed ULP-DDNS node as shown in Fig. 9. Refer
also [19] about this node in detail.

M FC IF ID

MAB EXBB

MB

Bypass for firing control

FC: firing control
IF: instruction fetch
ID: instruction decode
EX: execution of operation
MA: data-memory access

B: branch
M: merge
MB: merge for bypass
BB: branch for bypass

Fig. 7: Data-Driven processor core: ULP-CUE

0%
20%
40%
60%
80%

100%

CUE-v2 ULP-CUE

C
ir

cu
it

 A
re

a

Out-of-Order Execution
Control-driven Execution

Matching Memory

The others

50%

Fig. 8: Comparison between CUE-v2 and ULP-CUE in
circuit area

4.3 Power Simulator/Validator for Ultra-Low-
Power Data-Driven Chip Networking System

It is necessary to validate power consumption of
ULP-DDNS in detail. So the authors proposed power
simulator/validator[21]. Then, we have implemented the
simulator/validator. This paper shows how to use of the
simulator/validator.

Fig. 10 shows pipeline structure in the simulator/validator
and validation results. Multi pipeline loop of ULP-CUE is
applied to pipeline structure of core in this validation. In first
validation(Fig. 10(b)), there is a period of time in which
much power is consumed. It is caused by configuration
of PID control. Therefore, there is no peak such as first
validation in second validation(Fig. 10(c)).

When input datagrams concretely create, it is neces-
sary to collaborate with network simulator which evaluates
networking architecture. The authors have studied how to
communicate between our simulator/validator and network
simulator. We think that data log in network simulator can
use information of data input in our simulator/validator.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 425

������������	

��	��	��
����������

�	��� ������

���������

��� �	
��	�

�	����
���������

 ����	���
� ��!

Fig. 9: ULP-DDNS node

On the other hand, specification of CMP in our simula-
tor/validator may apply to a node in network simulator.

Then, it is necessary to adjust parameters in PID control
to dynamic voltage scaling mechanism. So the authors have
been simulating UDP/IP on ULP-DDCMP architecture in
several settings of PID control by using power simula-
tor/validator.

5. Conclusion
This paper described intermediate achievement of ultra-

low-power data-driven networking system(ULP-DDNS). We
first show the effect of power consumption reduction
schemes in ad hoc networking architecture. Their schemes
reduce data amount to 1/10 of the present. Because power
consumption is proportional to data amount, they reduce
power consumption to 1/10 of the present.

Secondly, this paper explained ultra-low-power method
in data-driven implementation of UDP/IP. Because turn-
around time can be kept minimum by realizing Header
handling and data handling concurrently, it is easy to utilize
power control scheme on ULP-DDCMP. And this study
implemented UDP/IP to apply short cut path to header/data
handling.

ULP-DDCMP which is data-driven multi-processor has
not only power control scheme but also autonomous balanc-
ing mechanism�So we proposed data-driven load balancing
scheme to keep the networking system in good working
without over-loaded state.

Then, this paper described an implementation of the power
simulator/validator which simulates hand-shake in self-timed
elastic pipeline and showed its experimental study result.
We will study implementing ULP-DDNS utilizing the power
simulator/validator.

In the future works, the authors demonstrate the effec-
tiveness of ULP-DDNS using ULP-DDNS node and power

simulator/validator as final result of the project. We also
studies about applying ULP-DDNS to ubiquitous sensor
network. It is necessary to work in low power and long
life in sensor such as observing weather condition. So
we will experimental study sensor network on ULP-DDNS
utilizing ULP-DDNS nodes. In addition, we also studies
about applying ULP-DDCMP to base station. Refer [22]
about it.

Acknowledgments

Although it is impossible to give credit individually to all
those who organized and supported the CUE project and the
ULP-DDNS project, the authors would like to express their
sincere appreciation to all the colleagues in the project.

The CUE project and the ULP-DDNS project are par-
tially supported by Core Research for Evolutional Science
and Technology (CREST), Japan Science and Technology
Agency, Strategic Information and Communications R&D
Promotion Programme (SCOPE), Ministry of Internal Af-
fairs and Communications, Japan, the Grants-in-Aid for
Scientific Research of Japan Society for the Promotion of
Science and Semiconductor Technology Academic Research
Center (STARC). And, this work is supported by VLSI
Design and Education Center(VDEC), the University of
Tokyo in collaboration with Synopsys, Inc. and Cadence
Design Systems, Inc.

References

[1] A. Keshavarz-Haddad and R. Riedi, "Bounds on the benefit of network
coding: Throughput and energy saving in wireless networks," IEEE
INFOCOM 2008, Phoenix, Arizona, USA, pp. 376–384, April 2008.

[2] Debashis Saha and Amitava Mukherjee, “Pervasive Computing:A
Paradigm for the 21st Century,”IEEE Computer, Vol. 36, No. 3, pp.
25–31, Mar. 2003.

[3] Jie Wu, Ivan Stojmenovic, “Ad Hoc Networks,” IEEE Computer,
Vol.37, No.2, pp.29–31, Feb. 2004.

[4] Hiroshi Ishii, Chee Onn Chow, Masahiro Yamamoto, Hiroaki
Nishikawa, “Ad hoc and Ubiquitous Communication Environment
supported by Data-Driven Networking Processor,” IEEE TENCON
2006, Hong Kong, China, Nov. 2006

[5] Hiroaki Nishikawa, Hiroshi Ishii, and Makoto Iwata, “Collaborative
Research Project on Ultra-Low-Power Data-Driven Networking
System,” Proc. of the 2008 Int’l Conf. on Parallel and Distributed
Processing Techniques and Applications, pp. 697–703, July 2008.

[6] Keisuke Utsu, Naohide Fukushi and Hiroshi Ishii, “A Query-based
Information Discovery method using Location Coordinates and its
Contribution to Reducing Power Consumption in an Ad Hoc Net-
work,” Proc. of the 2010 Int’l Conf. on Parallel and Distributed
Processing Techniques and Applications, pp. 610–615, July 2010.

[7] Hideaki Kawabata, Hiroshi Ishii, “Evaluation of Self-Organizing Key
Management Framework Based on Trust Relationship Lists,” Proc. of
the 2009 Int’l Conf. on Parallel and Distributed Processing Techniques
and Applications, pp. 609–615, July 2009

426 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

(a) Configuration of Circular Pipeline
(b) Evaluation Result (c) Evaluation Result(on PID Control)

����� �����	
���� ����� �����	
����

(ULP-CUE’s configuration)

Fig. 10: Power of UDP/IP on ULP-DDCMP

[8] Keisuke Utsu, Hiroaki Nishikawa, and Hiroshi Ishii, “Broadcast Video
Streaming by Load-aware Flooding over Ad Hoc Networks achieving
Reduction of Traffic and Power Consumption,” Proc. of the 2011
Int’l Conf. on Parallel and Distributed Processing Techniques and
Applications, PDP5140, July 2011.

[9] Keisuke Utsu, Hiroshi Sano, Turganzhan Kassymov, Hiroaki
Nishikawa, and Hiroshi Ishii, “Proposal on Battery-aware Counter-
based Flooding over Ad Hoc Networks,” Proc. of the 2011 Int’l Conf.
on Parallel and Distributed Processing Techniques and Applications,
PDP5141, July 2011.

[10] Hiroaki Nishikawa, “Design Philosophy of a Networking-Oriented
Data-Driven Processor-CUE,” IEICE Trans. Electron., vol.E89-C,no.3,
pp.221–229, Mar. 2006

[11] Hiroaki Nishikawa, Hiroshi Ishii, Makoto Iwata, and Kazuhiro Aoki,
"An Offloading Scheme for Ultra Low Power Data-Driven Networking
System", Proc. of the 2009 Int’l Conf. on Parallel and Distributed
Processing Techniques and Applications, pp. 595–601, July 2009.

[12] Shinya Ito, Shouhei Nomoto, Hiroshi Tomiyasu and Hiroaki
Nishikawa, “The Microarchitecture of the CUE-v2 Processor: En-
abling the Simultaneous Processing of Dataflow and Control-Flow
Threads,” Proc. 2004 Int’l Conf. on Parallel and Distributed Processing
Techniques and Applications, pp. 525–531, June 2004.

[13] Hiroaki Nishikawa, Hiroshi Tomiyasu, Masanobu Okamoto,
Masayoshi Sugiyama, Hiroyuki Uchida, Osamu Mizuno, Hiroshi
Ishii, Makoto Iwata, “CUE-v3: Data-Driven Chip Multi-Processor
for Ad hoc and Ubiquitous Networking Environment,” Proc. of the
2007 Int’l Conf. on Parallel and Distributed Processing Techniques
and Applications, pp.623–629, June 2007.

[14] Kazuhiro Aoki, Hiroshi Ishii, Osamu Mizuno, Makoto Iwata and
Hiroaki Nishikawa, “Data-Driven Protocol Off-Loading for Ad Hoc
Networking Environment,” Proc. of the 2008 Int’l Conf. on Parallel
and Distributed Processing Techniques and Applications, pp. 662–668,
July 2008.

[15] Shuji Sannomiya, Kei Miyagi, Keiichi Sakai, Makoto Iwata and
Hiroaki Nishikawa, “Stage-by-Stage Power Gating Circuit for Ultra-
Low-Power Self-Timed Pipeline,” Proc. of the 2010 Int’l Conf. on
Parallel and Distributed Processing Techniques and Applications, pp.
596–602, July 2010.

[16] Shin-ichiro Mutoh, Satoshi Shigematsu, Yoshinori Gotoh, Shinsuke
Konaka, “Design Method of MTCMOS Power Switch for Low-
Voltage High-Speed LSIs,” Proc. of Asia and South Pacific Design
Automation Conference, Hong Kong, pp.113–116, Jan. 1999.

[17] Anantha P. Chandrakasan, Samuel Sheng, and Robert W. Brodersen,
“Low Power CMOS Digital Design,” IEEE Trans. on Solid-state
Circuits., vol. 27, No. 4, pp.473–483, Apr. 1992.

[18] Kei Miyagi, Shuji Sannomiya, Makoto Iwata, Hiroaki Nishikawa,
“Self-Timed Power-Aware Pipeline Chip and Its Evaluation,” Proc. of
the 2011 Int’l Conf. on Parallel and Distributed Processing Techniques
and Applications, PDP5138, July 2011.

[19] Shuji Sannomiya, Ryotaro Kuroda, Kazuhiro Aoki, Kei Miyagi,
Makoto Iwata, Hiroaki Nishikawa, “Chip Multiprocessor Platform
for Ultra-Low-Power Data-Driven Networking System: ULP-DDNS,”
Proc. of the 2011 Int’l Conf. on Parallel and Distributed Processing
Techniques and Applications, PDP5136, July 2011.

[20] Yukikuni Nishida, Shuji Sannomiya and Hiroaki Nishikawa, “Multi-
Grain Power Control Scheme in Ultra-Low-Power Data-Driven Chip
Multiprocessor: ULP-DDCMP,” Proc. of the 2011 Int’l Conf. on
Parallel and Distributed Processing Techniques and Applications,
PDP5137, July 2011.

[21] Hiroaki Nishikawa, Kazuhiro Aoki, Hiroshi Ishii, and Makoto Iwata,
“A Power Simulator/Validator for Ultra-Low-Power Data-Driven Net-
working System,” Proc. of the 2010 Int’l Conf. on Parallel and
Distributed Processing Techniques and Applications, pp. 575–581,
July 2010.

[22] Hideki Yamauchi and Hiroaki Nishikawa, “Study on Applying Ultra-
Low-Power Data-Driven Processor to Wireless Base Station,” Proc. of
the 2011 Int’l Conf. on Parallel and Distributed Processing Techniques
and Applications, PDP5139, July 2011.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 427

Chip Multipr ocessor Platform
for Ultra-Low-Power Data-Driven Networking System: ULP-DDNS

Shuji Sannomiya1, Ryotaro Kuroda2, Kazuhiro Aoki 3,
Kei Miyagi 4, Makoto Iwata5, and Hiroaki Nishikawa1

1Department of Computer Science, Graduate School of Systems and Information Engineering,
University of Tsukuba, Tsukuba, Ibaraki, Japan
2Sharp-engineering Corporation, Osaka, Japan

3Information Infrastructure Laboratory, Inc., Tsukuba, Ibaraki, Japan
4Graduate School of Engineering, Kochi University of Technology, Kami, Kochi, Japan

5School of Information, Kochi University of Technology, Kami, Kochi, Japan

Abstract— An ultra-low-power networking protocol han-
dling platform is urgently required to realize sustainable ad
hoc communication over battery-operated devices in emer-
gent situations without connectivity to the wired network
infrastructure. In this paper, the data-driven principle is
fully exploited as a basis of ultra-low power because of
its on-demand control by which circuits are activated only
for processing without any additional controls resulting in
power dissipation. Already our previous study reveals that
the networking protocol handling contains several sequential
processing parts which should be prevent from being the
processing bottleneck by efficient instruction executions. This
paper proposes an optimized circular pipeline scheme for
power-performance-efficient instruction execution especially
for the sequential parts, to realize the processor cores of the
platform. Based on a prototype LSI implementation of the
pipeline structure proposed, the power-performance estima-
tion shows that the reduced amount of power consumption is
approximately 33% at most in comparison with the existing
circular pipeline structure.

Keywords: data-driven processor, self-timed pipeline, off-load,
power gating

1. Introduction
In emergent situations in which network infrastructure

is useless, an ad hoc network is necessary to provide
communication over mobile battery-operated devices, and
lowering power dissipation in such networking devices is
urgently required to sustain the communication. With this
motivation, the authors of this paper have been studying
to realize an ultra-low-power networking platform to which
networking protocol handling is transferred or off-loaded,
in a conjunction research project, named Ultra-Low-Power
Data-Driven Networking System (ULP-DDNS) [1], [2].

To realize the networking protocol handling, processing
tasks should be executed simultaneously and independently,
i.e., the execution time of each processing task should be

kept minimum to guarantee the quality of communication,
even though the input pattern for each processing task is
changed depending on the utilization situation of network.
To realize such parallel processing in ultra-low-power, a
self-timed data-driven chip multiprocessor (DDCMP) is the
basis because of its data-driven principle. The data-driven
principle realizes parallel processing without any side-effects
on the execution time of each processing task because of the
absence of the context switching overhead even if the input
order and interval are changed. Moreover it also realizes
autonomous pipeline stage control which drives logic circuits
only in the active pipeline stages. That is, the DDCMP
consumes power only for processing but control.

In this paper, to improve the power-performance efficiency
of the DDCMP, an instruction execution pipeline is pro-
posed to shorten the processing time of networking protocol
handling, and an power gating scheme is also presented
to reduce the power dissipation due to the leakage current
which is important issue for VLSI implementation in deep
sub-micron era.

Already, in our previous study on the data-driven pro-
cessor, it is revealed that the networking protocol handling
consists of several sequential processing parts such as a
processing part to generate output data by reading an array
sequentially. To prevent such sequential processing part from
being the bottleneck of the networking protocol handling,
some of the authors has already proposed a hybrid processor
architecture in which a control-driven instruction execution
is realized by out-of-order execution scheme suitable for the
sequential processing in addition to the ordinary data-driven
instruction execution [3]. Based on this previous study, it
is revealed that the sequential processing parts should be
efficiently executed in parallel with the execution of the
other non-sequential processing parts [4]. However, from a
viewpoint of low-power processing, the previously proposed
hybrid architecture is unsuited for the ULP-DDNS, because
the control-driven execution requires additional controls to
execute instructions in contrast to the pure data-driven pro-

428 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

cessor.Therefore, the DDCMP is designed to exploit the
data-driven principle and its instruction execution pipeline
is discussed in this paper by focusing on the utilization
frequency of the instruction execution pipeline stages ac-
tivated by unary-operation instructions which are the main
constituent of the sequential processing parts.

In the DDCMP, a processor core is realized by a circu-
lar pipeline necessary for instruction execution, and each
pipeline stage is activated or driven only when a packetized
data is transferred, and thus signal gating at pipeline stage
level is naturally realized without any additional circuit. In
fact, DDCMP has no dynamic power dissipation. On the
other hand, it is important to reduce the amount of leakage
current which is the dominant cause of the increase of static
power dissipation, in order to exploit the benefits of the
scaling of transistor to the improvement of the performance
of the DDCMP. In this paper, the utilization frequency of
the instruction execution modules is focused on, and we
propose an instruction execution pipeline structure in which
infrequently used modules are bypassed and/or powered
off to shorten the instruction execution time and to reduce
static power dissipation. The effectiveness of the proposed
pipeline structure is estimated based on a prototype LSI
implementation.

2. Requirements for ultra-low-power
CMP platform

In our research project, an ad hoc networking node is
discussed and designed to realize the ULP-DDNS [5]. The
designed node is realized by using the DDCMP and its fea-
sibility will be shown based on a prototype implementation
of the node, which is explained in this paper later. Simulta-
neously, in the project, the power-performance evaluation
schemes for the ULP-DDNS are explored from both the
theoretical and experimental aspects [6], [7], and they will be
implemented into the power simulator whose frameowrk is
discussed in [5], to show the quantitative power-performance
evaluation. In this paper, the processor core of the DDCMP
is focused on and discussed.

In this section, the DDCMP is overviewed, and it is
shown that its CMP structure is realized by an instruction
execution pipeline in which dynamic power dissipation can
be eliminated with no additional circuit. According to the
instruction execution pipeline, the requirements to improve
the power-performance efficiency are revealed.

2.1 Overview of DDCMP

The DDCMP employs data-driven principle exhaustively
from processor architecture to pipeline circuit. As shown
in figure 1, the DDCMP is a chip multiprocessor in which
data-driven processors are connected with each other via
multi-stage interconnection network, and its circuit is fully

ULP-CUE

#1

ULP-CUE

#n-1

Interconnection Network

ULP-CUE

#2

ULP-CUE

#n

Interconnection Network

: Flow of data

Fig. 1: Data-driven chip multi-processor (DDCMP).

M FC IF

ID

MAB EX

Architecture-level

Circuit-level

FC: firing control

IF: instruction fetch

ID: instruction decode

EX: execution of operation

MA: data-memory access

B: branch

M: merge

Input from

other processors

Output to

other processors

Pipeline stage

DL

1

DL

2

DL

3

C1 C2 C3

FL

1

FL

2

DL: data-latch FL: function logic C: transfer control

send1

ack1

send2

ack2

send3

ack3

send4

ack4

FL

3

cp1 cp2 cp3

Fig. 2: Instruction execution pipeline of ULP-CUE.

realized by self-timed pipeline. In the DDCMP, the data-
driven processor is named ULP-CUE [5].

The ULP-CUE interprets and executes instructions in the
order of the arrival of data, i.e., an instruction become ready
to be interpreted and executed once its operands arrive.
To realize this interpretation and execution, the ULP-CUE
is realized by an circular pipeline composed of 5 stages:
instruction fetch stage (IF), instruction decode stage (ID),
execution stage (EX), data-memory access stage (MA), and
firing control stage (FC) which includes a module called
matching detection module to detect the arrival of a set of
operands. Figure 2 illustrates the block diagram of the ULP-
CUE.

In the ULP-CUE, the input data is packed into a token
with tag information such as operation code, and the to-
kens are transferred between the adjacent pipeline stages.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 429

When atoken is input, the interpretation and execution of
instruction are initiated, and the interpretation and execution
are completed after a token laps in the circular pipeline
once. The token contains its destination (the address of next
instruction) as tag and intermediate processing result in data,
i.e., it has processing context in itself, and thus no context
switching is required to execute more than one processing
tasks in parallel. That is, the processing time of each task
in parallel execution is equal to that of the task executed
alone as long as the amount of processing load is within the
pipeline capacity of the ULP-CUE.

The stages of the ULP-CUE are realized by self-timed
pipeline (STP). As shown in the figure 2, each pipeline
stage of the STP consists of a data latch for pipeline register,
function logic, and transfer control unit named C-element.
The data latch, function logic, and C-element are denoted
by DL, FL, and C, respectively. The tokens are transferred
between the pipeline stages as a result of the communication
between the C’s in the adjacent stages. The communication is
performed according to the 4-phase handshake protocol [8]
by using transfer request and acknowledge signals which are
called send signal and ack signal respectively. This stage-by-
stage transfer control realizes data-driven principle at circuit
level, i.e., each pipeline stage is driven in on-demand manner
only when a token is transferred. Therefore, signal gating [9]
is realized at pipeline stage level naturally.

With the features described above, the ULP-CUE realizes
on-demand power consumption comprehensively. That is,
the dynamic power is consumed only for processing.

2.2 Utilization of instruction execution stages
and intra-stage modules

The data-driven processors realized by self-timed pipeline,
such as ULP-CUE, are already implemented for actual
applications and their effectiveness is revealed [10]. In those
existing processors, the instruction execution stages are de-
ployed over a single circular pipeline, and every instruction
is executed on the single circular pipeline regardless of
the usage of the instruction execution stage and the intra-
stage modules. With this existing circular pipeline, circuit
modules commonly used for every instruction execution are
overlapped and thus the circuit area can be saved.

However, the usage frequency of the instruction execution
stages and intra-stage modules changes depending on the
target applications, and some stages and/or modules may be
rarely used. In fact, a program description of the UDP/IP
protocol handling shows that approximately 88% instruc-
tions are unary-operations which can be executed without the
firing control (FC) stage and also the number of execution
of the multiplication-operation or shift-operation occupies
only less than 10% of the total number of instruction exe-
cution. This fact reveals the opportunity to improve power-
performance efficiency not only by sharing only frequently

used instruction execution stages and but also by powering
off the infrequently used intra-stage modules.

Based on the discussions above, it is revealed that the
circular pipeline for instruction execution should be sophis-
ticated for networking protocol handling in order to improve
power-performance efficiency.

2.3 Power gating scheme
In the pipeline stages without a token in the ULP-CUE,

the leakage current flows through circuit. Already, power
gating schemes are proposed to reduce the leakage current
through such circuit blocks unused for processing.

The power gating scheme realizes the connection and
disconnection of the power line to a target circuit by de-
signing the target circuit with MTCMOS (multi-threshold
CMOS) structure [11]. Under the MTCMOS structure, the
target circuit is composed of fast transistors with low-
threshold voltage, meanwhile low-leakage transistors with
high-threshold voltage, which are called power switch (PS),
are placed between the power line and the target circuit.
With the MTCMOS structure, the supplied voltage to the
target circuit can be zero by switching off the PS, while the
voltage is supplied to the target circuit by switching on the
PS. Moreover, in the MTCMOS structure, an isolation cells
(ISO) are placed at the output terminals of the target circuit
to stop the propagation of the electrically unstable signals
from the target circuit powered off.

When the target circuit is powered off, the voltage be-
tween the ground-side terminal of the target circuit and
the actual ground line is charged by the leakage current
through the PS. The voltage between the ground terminal
and the ground line is called virtual ground. After the target
circuit is powered on, the voltage is discharged and a current
called rush current flows, as a result, the voltage between the
VDD line and the ground-side terminals of the target circuit
becomes equal to the supplied voltage and then the target
circuit is ready to process. The time from the power-on to
the completion of the voltage supply is called wake-up time.

Already some power gating schemes are proposed, and
they are different in the size of the target circuit. The
power gating at processor-level [12] can power-off a whole
processor core, but the size of the PS should be smaller
to suppress the large amount of rush current resulting in
the malfunction of the target circuit, and thus the wake-up
time becomes larger due to the small PS and the instruction
execution time becomes longer. On the other hand, the power
gating at logic-gate-level [13] provides the shortest wake-
up time because the size of the target circuit is small, but
approximately a half of target circuit should be powered-on
to control the PS, and thus the reduced amount of leakage
current is small. To realize the power-off of a whole target
circuit with small wake-up time, in our previous study, the
power gating at pipeline-stage-level is already proposed [14].
In our scheme, each pipeline stage can be powered off and

430 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

thus the amount of the leakage current through the idle
pipeline stages is reduced. That is, the power dissipation
in the idle stages unused for instruction execution can be
reduced.

Although the power gating at pipeline-stage-level reduces
the leakage current through idle stages, the leakage current
may flow through busy stages used for processing. For
instance, arithmetic-logic units are placed in parallel and
some of them are unused for specific instructions, i.e.,
a shifter module is unused for the execution of an add-
operation instruction. That is, the power-performance can be
improved by powering off the intra-stage modules according
to the usage of the modules.

3. Low-power data-driven instruction
execution pipeline

In the previous section, it is discussed that shortening the
instruction execution time and reducing the leakage current
can be realized by exploiting the usage frequency of the stage
and intra-stage modules of the instruction execution pipeline
of the DDCMP. To realize this idea, in this section, an
optimized circular pipeline is proposed to bypass the stages
unused for specific instructions, and then an intra-stage
power gating is also presented to power off the infrequently
used intra-stage modules.

3.1 Optimized circular pipeline
In the existing data-driven processor, the circular pipeline

for instruction execution is structured for binary-operation
instructions requiring the FC stage. Unary-operation instruc-
tions are considered to be a special case of binary-operation
instructions and they are executed on the circular pipeline.
However, undesired power and time are consumed and spent
when a token with unary-operation pass through the FC stage
and thus the power-performance efficiency degrades for
the cases where the number of unary-operation instructions
occupies most of the programs.

Unfortunately, the biggest circuit in the existing data-
driven processors is the firing control stage which occupies
approximately a half of the circuit area, and this evidence
is shown in this paper later. This is mainly because the
matching detection in the firing control stage is realized
by using CAM (content-addressable memory) whose circuit
library is often unavailable as standard circuit cell library.
In the existing data-driven processors, the behavior of the
CAM is described at RTL (register transfer level) by using
HDL (hardware description language) to make it possible to
realize the matching detection only by using standard circuit
cell libraries. Consequently, the firing control stage should
be activated only when it is required, to improve the power-
performance efficiency.

To avoid the activation of the firing control stage, signal
gating techniques can be used in the firing control stage to

M FC IF ID

MAB EX

MB: merge for bypass BB: branch for bypass

BB

MB

Bypass for firing control
Input from

other processors

Output to

other processors

Fig. 3: An optimized circular pipeline structure.

stop the propagation of the signals to the matching detection
circuit when unary-operation instruction is executed. How-
ever, some additional circuits are required to realize such
signal gating, and they not only consumes additional power
and but also increase the critical path of the circuit of the
firing control stage.

The essence of the data-driven principle is that the in-
struction execution is started by the arrival of input token.
By focusing on this essence, an optimized circular pipeline
is proposed to provide different instruction pipelines for
the different types of instructions: unary-operation instruc-
tion and binary-operation instruction. The optimized circu-
lar pipeline makes it possible to overlap only instruction
execution stages commonly used for both unary-operation
and binary-operation instructions. As shown in figure 3, the
optimized pipeline is realized by only adding merge and
branch stages to bypass the firing control stage.

With the proposed circular pipeline, the transfer time
to pass through the firing control stage can be eliminated
from the execution time of the unary-operation instructions.
Moreover, the dynamic power dissipation by activating the
firing control stage can be zero. Therefore, it can be possible
to improve the power-performance of the networking proto-
col handling whose most part consists of unary-operation
instructions.

3.2 Intra-stage power gating

The proposed circular pipeline can shorten the execution
time of the unary-operation instructions and reduce the dy-
namic power dissipation. In addition, a power gating scheme
for intra-stage modules is proposed to reduce the leakage
current through infrequently used intra-stage modules.

The circuit in the intra-stage modules leaves the sub-
threshold leakage current to flow through itself and the
power is dissipated. By focusing on the fact that some of
them are unused during the execution of an instruction, the
power gating is realized at the intra-stage module level by
placing the PS between the power line and the intra-stage
modules.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 431

DL

1

DL

2

Intra-stage

module #1

Intra-stage

module #n

ISO

ISO

C1 C2

send1

ack1

send2

ack2

send3

ack3

cp1 cp2

DEC

operation-

code

PC: power control ISO: isolation cell : PS (power switch)

DEC

O

R

: module to generate power gating signal

: power gating signal

Fig. 4: Intra-stage power gating circuit.

Figure 4 illustrates the circuit structure for the intra-stage
power gating. As shown in the figure, the PS and ISO are
placed around the target modules and they are controlled
by the power gating signal which is generated by inspecting
operation-code in the token.

The proposed circuit structure can be realized indepen-
dently from our stage-by-stage power gating scheme, and
thus the leakage current can be reduced more finely, as
the result of the synergy between the stage-by-stage power
gating and the proposed intra-stage power gating.

4. Evaluation
This section describes the estimation of the effectiveness

of the pipeline structure proposed in this paper to improve
power-performance efficiency. In our research project, a pro-
totype LSI chip employing the proposed pipeline structure
is designed. By using the circuit layout result of the LSI
chip, the power-performance ratio of the proposed structure
is estimated and compared to that of the existing structure.

4.1 Prototype LSI implementation
In our on-going research project, ULP-DDNS, a prototype

LSI chip based on the DDCMP is designed, and the LSI
chip is under fabrication process currently. The prototype
LSI chip is designed by using 65 nm CMOS process circuit
library.

The prototype LSI chip is designed to be able to examine
the unique ability of our ad hoc networking node. The unique
ability is realized by virtue of the data-driven principle, and it
is an ability to avoid the overload situation by monitoring the
processing load directly. Although the overload avoidance

ULP-CUE

#1

ULP-CUE

#3

Token Router

SC

SC

Multi-stage interconnection network

SC

SC

SC

SC

ULP-CUE

#2

ULP-CUE

#4

Token Router

M

M

B

B

SC: Switching Cell

Fig. 5: Prototype of DDCMP.

is important to guarantee the power-performance efficiency
because it makes it possible to exploit the processing ca-
pability at maximum. However, it is difficult to observe the
processing load in currently used non-data-driven processors
due to the parallel execution side-effects caused by context
switching, and thus a considerably-large headroom margin
should be designed in the networking systems based on
such non-data-driven processors. Obviously, such margin
degrades the power-performance efficiency considerably.

In contrast, the amount of the power consumption of
the ULP-STP is in proportion to the amount of processing
load by virtue of the on-demand power consumption, i.e.,
the amount of the processing load in the ULP-STP can
be observed only by monitoring the amount of the current
flowing on the power line of the ULP-STP outside the
DDCMP chip. The framework of the overload avoidance
by using this feature and the power-load characteristics are
detailed in [5], [7].

To realize the overload avoidance framework, the proto-
type chip is designed as a DDCMP which consists of 4 ho-
mogeneous ULP-CUE cores connected with each other via a
multi-stage interconnection network named token router [5].
The designed DDCMP is illustrated in figure 5, and its layout
result is shown in figure 6. The die size of the prototype LSI
chip is 4.2mm× 4.2mm.

The optimized pipeline structure proposed in this paper is
used to design the ULP-CUE. The ULP-CUE is designed as
a 32-bit data-width self-timed data-driven processor realized
by using the proposed pipeline structure. The format of the
token of the prototype LSI chip is designed as shown in fig-
ure 7. Similarly to the existing data-driven processors [10],
the token has the destination node number and generation
as tag, in addition to the 32-bit operand data. As for the
instruction set, the ULP-CUE provides instructions sufficient
to describe the UDP/IP protocol handling which is the target
of the off-load in our project. The instructions implemented
on the ULP-CUE are typical in comparison with the existing
data-driven processors, and they are categorized into 3 types:
arithmetic and logical operation type, data-memory access

432 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

: ULP-CUE

Fig. 6: Layout of prototype LSI chip.

Dest. Operand (a set of data)

Bit-position 65 32 0

Tag Data

Dest. : destination node ID (address of next instruction)

Gen. : generation number

Gen. TUR

Gen. : generation number

R : flag for the right-input of binary-operation

U : flag for the unary-operation

T : type of token (data token, program-write token, etc.)

Fig. 7: Format of token in prototype.

type, and generation-manipulation type.
Figure 8 shows the layout of the designed ULP-CUE

which has 13 stages, and it also shows that most of the
circuit is occupied by the FC and EX stages. The cell area
of the FC stage occupies approximately 42% of the total
cell area while the EX stage occupies 40%. As for the
intra-stage modules, the matching detection circuit occupies
approximately 35% of the total cell area while the multiplier
and shifter modules occupies 15% and 4% respectively.
Fortunately, these large modules are infrequently used in the
execution of the UDP/IP protocol handling, and thus those
intra-stage modules are selected as the proposed intra-stage
power gating.

4.2 Power-performance estimation
As a preliminary evaluation of the proposed pipeline

structure, the processing time and the amount of power

FC1

EX1BM

BB
MA0

MA1

MB
IF0

IF1

ID
FC stage is divided into 2 stages:

FC0 and FC1.

IF stage is divided into 2 stages:

IF0 and IF1.

FC0 EX0

IF0 and IF1.

EX stage is divided into 2 stages:

EX0 and EX1.

MA stage is divided into 2 stages:

MA0 and MA1.

Fig. 8: Layout of ULP-CUE.

consumed are estimated to figure the energy required to
execute the UDP/IP protocol handling.

First, the processing time of the UDP/IP protocol handling
is measured by using RTL simulation with a placed and
routed gate net-list annotated by using the parasitic delay
information extracted from the layout result. As a result,
approximately 12.8% of the processing time of the UDP/IP
protocol handling is reduced by using the proposed pipeline
circuits.

The simulation also shows the number of the instruction
executions, and the number of the execution of the unary-
operation instruction occupies approximately 56.3% of the
total number of the instruction executions. Moreover, it
is also revealed that the sleep periods of the matching
detection module, multiplier module, and shifter module are
approximately 14.3%, 99.9%, and 87.2%, respectively.

According to these measured values and the cell area ratio,
the consumed power is calculated. In contrast to the existing
pipeline structure, the MB and BB stages are added to bypass
the FC stage, and the cell area of the pipeline for binary-
operation instruction occupies approximately 104% of the
total cell area of the existing pipeline structure while that of
the pipeline for unary-operation instruction does 56%. Based
on this fact, the dynamic power (Pdynamic) can be roughly
estimated asPdynamic = 104%× (1−Runi)+ 56%×Runi
whereRuni denotes the instruction execution ratio of the
unary-operation instructions. Based on the simulation result
described above, theRuni is 56.3% and thus thePdynamic
is approximately 77%.

As for the static power consumption, the power consump-
tion by the leakage current increases in proportion to the cell
area. The added MB and BB stages occupy approximately
4% of the total cell area, and thus the increased static power
(Pstatic+) can be roughly estimated as 4%. On the other
hand, the leakage current through the matching detection
modules, multiplier module, and shifter module can be
zero by using the intra-stage power gating. That is, the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 433

decreased staticpower (Pstatic−) can be roughly estimated
as 14.3% × 40% + 99.9% × 15% + 87.2% × 4% = 24.4%
according to the sleep periods and the cell area described
above.

To sum up the estimated values, the ratio of the dynamic
power and static power is measured by using an LSI chip
fabricated with the same 65nm CMOS process [7], and the
dynamic power ratio and static power ratio are approxi-
mately 95.6% and 4.4%, respectively. Based on the fact,
the power consumption can be estimated asPdynamic ×
95.6%+(1−Pstatic−+Pstatic+)×4.4% = 77.1%. By using
the process time calculated above, the consumed energy
can be estimated as77.1% × (1 − 12.8%), approximately
67%. Consequently, approximately 33% energy is reduced
in comparison with the existing pipeline structure.

5. Conclusion
In this paper, a low-power data-driven instruction execu-

tion pipeline is proposed to realize the processor core of a
chip multi-processor platform for ULP-DDNS. The proposed
pipeline exploits the data-driven principle consistently from
architecture level to circuit level in order to realize on-
demand power consumption resulting in absolutely low
power.

To exploit the on-demand power consumption over deep
sub-micron VLSI technology with considerable power dis-
sipation due to leakage current through standby circuits, the
proposed pipeline provides not only intra-stage power gating
reducing the leakage current through idle circuit blocks but
also multi-path for shorten the instruction execution time of
unary operation instructions issued frequently in networking
programs. As a result the power-performance balance is
improved for networking processing, and it is estimated that
33% of the amount of power consumption is reduced in
comparison with the current instruction execution pipeline.

Already, a prototype LSI chip with the proposed pipeline
is designed and its fabrication is now in progress. Mean-
while, we are designing a prototype ad hoc node of ULP-
DDNS, and the prototype ad hoc node is realized by not
only the prototype LSI chip explained in this paper but
also the ultra-low-power schemes proposed in our project
in order to show the power-performance efficiency of the
ULP-DDNS quantitatively. Based on the measurement on the
prototype ad hoc node, we will report the quantitative power-
performance efficiency improved by the proposed pipeline
structure in another article.

Acknowledgement
Although it is impossible to give credit individually to all

those who organized and supported our project, the authors
would like to express their sincere appreciation to all the
colleagues in the project.

This research work was supported in part by Core Re-
search for Evolutional Science and Technology (CREST),

Japan Science and Technology Agency (JST). The circuit
design work was supported by VLSI Design and Education
Center (VDEC), the University of Tokyo in collaboration
with Synopsys, Inc. and Cadence Design Systems, Inc.

References
[1] H. Nishikawa, H. Ishii, and M. Iwata, “Collaborative research project

on ultra-low-power data-driven networking system,” Proc. PDPTA’08,
pp.697–703, July 2008.

[2] H. Nishikawa, H. Ishii, M. Iwata, and K. Aoki, “An offloading scheme
for ultra low power data-driven networking system,” Proc. PDPTA’09,
pp.595–601, July 2009.

[3] S. Ito, S. Nomoto, H. Tomiyasu, and H. Nishikawa, “The Microarchi-
tecture of the CUE-v2 Processor: Enabling the Simultaneous Processing
of Dataflow and Control-Flow Threads,” Proc. PDPTA’04, pp.525–531,
June 2004.

[4] H. Nishikawa, H. Tomiyasu, M. Okamoto, M. Sugiyama, H. Uchida,
O. Mizuno, H. Ishii, M. Iwata, “CUE-v3: Data-Driven Chip Multi-
Processor for Ad hoc and Ubiquitous Networking Environment,” Proc.
PDPTA’07, pp.623–629, June 2007.

[5] H. Nishikawa, K. Aoki, H. Ishii, and M. Iwata, “Intermediate Achieve-
ment of Ultra-Low-Power Data-Driven Networking System: ULP-
DDNS,” Proc. PDPTA’11, June 2011.(to be published)

[6] Y. Nishida, S. Sannomiya, and H. Nishikawa, “Multi-Grain Power
Control Scheme in Ultra-Low-Power Data-Driven Chip Multiprocessor:
ULP-DDCMP,” Proc. PDPTA’11, July 2011.(to be published)

[7] K. Miyagi, S. Sannomiya, M. Iwata, H. Nishikawa, “Self-Timed Power-
Aware Pipeline Chip and Its Evaluation,” Proc. PDPTA’11, July 2011.
(to be published)

[8] C. J. Myers, “Asynchronous circuit design,” Univ. of Utah John Wiley
& Sons, Inc., July 2001.

[9] N. Honarmand and A. Afzali-Kusha, “Low power combinational mul-
tiplier using data driven signal gating,” Proc. the IEEE Asia Pacific
Conference on Circuits and Systems, pp.1456–1459, Singapore, Dec.
2006.

[10] H. Terada, S. Miyata, and M. Iwata, “DDMP’s: self-timed super-
pipelined data-driven processors,” Proceedings of the IEEE, Vol.87,
No.2, pp.282–296, Feb. 1999.

[11] S. Mutoh, S. Shigematsu, Y. Gotoh, and S. Konaka, “Design method
of MTCMOS power switch for low-voltage high-speed LSIs,” Proc.
Asia and South Pacific Design Automation Conference, Hong Kong,
pp.113–116, Jan. 1999.

[12] T. Hattori et al., “Hierarchical Power Distribution and Power Man-
agement Scheme for a Single Chip Mobile Processor,” Proc. of Design
Automation Conference, pp.292–295, New York, USA, July 2006.

[13] L. Chen, T. Horiyama, Y. Nakamura, and S. Kimura, “Fine-Grained
Power Gating Based on the Controlling Value of Logic Elements,”
IEICE Trans. Fundamentals, vol.E91-A, No.12, pp.3531–3538, Dec.
2008.

[14] S. Sannomiya, K. Miyagi, K. Sakai, M. Iwata, and H. Nishikawa,
"Self-timed power gating for ultra-low-power pipeline circuit," Proc.
PDPTA’09, pp.575–580, July 2009.

434 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Multi-Grain Power Control Scheme in Ultra-Low-Power

Data-Driven Chip multiprocessor: ULP-DDCMP

Yukikuni Nishida, Shuji Sannomiya, and Hiroaki Nishikawa

Department of Computer Science, Graduate School of Systems and Information Engineering,

University of Tsukuba, Tsukuba, Ibaraki 305-8573 Japan

Abstract - The authors are developing multi-grain power

control scheme in ultra-low power data-driven chip

multiprocessor (ULP-DDCMP) being suitable for a

networking process in low power and a high performance.

ULP-DDCMP consists of four ultra-low power CUEs (ULP-

CUE) and a token router distributing received packets to

ULP-CUE by a round robin manner. ULP-CUE consists of an

elastic self-timed pipeline (STP) having a flexibility that

absorbs a sudden increase of a processing load. Because

power consumption of the STP is proportional to processing

load, the processing load can easily be assumed by observing

power consumption. Moreover, the ULP-CUE has a supply

voltage controller to adjust a performance of ULP-CUE to a

demanded performance by observing the power consumption.

In this paper, we propose a simulation method for developing

multi-grain power control scheme in ULP-DDCMP.

Keywords: Data-driven chip multiprocessor, Self-timed elastic

pipeline, unary operation path, Power control, Energy saving

1 Introduction

Data-driven processor (DDP) consisting of an elastic

pipeline performs a process passively and can perform real-

time multiprocessing easily by a buffering feature that the

elastic pipeline has in principle [1], [2]. Therefore, DDP is

suitable for a process demanded asynchronously like

networking process and a process with wide dynamic range of

a demanded processing performance.

Moreover, a self-timed pipeline (STP) driven by a

handshake control without a clock signal is very low power

because pipeline stages processing data only consume power.

Additionally, an optimized circular pipeline which has a

circular pipeline for unary-operation instruction bypassing a

firing control block consuming large power is proposed [3].

By using this STP, unnecessary power is reduced, and a

processing turn-around-time becomes short, and power

efficiency increases. Especially, the STP is most suitable for a

process that unary operation exceeds 80% of whole process as

like a UDP/IP packet process.

On the other hand, recently, a manufacturing process

miniaturization improves and a sub-threshold leak current

consuming power even if a device does not work becomes

issue. To solve this issue, power switches are placed at each

pipeline stage, a method controlling them by using handshake

signals used for controlling data process has been proposed.

The method reduces the sub-threshold leak power drastically

because a power is supplied only when a valid data exists in

the pipeline stage. However, an overhead becomes issue

because it controls the power switches in fine-grain.

As the optimized circular pipeline can localize a data

flow in a circular pipeline for unary-operation instruction

which is the short cut path, various power control method can

be used. For instance, power of pipeline stages in the circular

pipeline for unary-operation instruction are controlled

concurrently, because data flow in a circular pipeline for

binary-operation instruction which is outer pipeline is small,

the power of each pipeline stage is controlled per stage,

In order to improve a processing performance, a chip

multiprocessor has become mainstream processors currently.

However, an observation of each core’s processing load and a

resource distribution mechanism are needed to distribute

processes to each core. These become processing overheads

by adopting the chip multiprocessor architecture. As ULP-

CUE has a proportional-integral-derivative (PID) control

function adjusting a processing performance to demanded

performance by controlling a supply voltage according to a

demanded processing performance autonomously, it is thought

that the processing distribution can be simplified by using ULP-

CUE.

ULP-DDCMP [3] can perform multi-grain power

control like a chip level, a core level, a pipeline level, and a

pipeline stage level. In this paper, a simulation method of a

processing load distribution to study a power control scheme

of the chip level (a processing load distribution), the core

level (PID control) [1] and a STP power estimation method to

study a power control scheme of the pipeline level (the

circular pipeline for unary-operation instruction) and the

pipeline stage level (the power Gating method) are proposed

[4], [5]. The power estimation by an emulator for ULP-

DDCMP is high accuracy and high speed. Where, the

emulator is a prototype of the ULP-DDNS node explained in

[3], [6]. However, it is difficult to obtain the power

consumption when an application changed, for instance,

application change from a wireless node to a home router.

The simulator is intended to cover the condition under which

the emulator cannot estimate power consumption by an

extrapolation or an interpolation of the information gotten by

the emulator.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 435

2 Ultra-low-power data-driven chip

multiprocessor : ULP-DDCMP

Generally, a chip multiprocessor achieving a high

performance at a low clock frequency architecture is used to

avoid increase of power consumption caused by an

improvement of a clock frequency. In ULP-DDCMP, as

shown in Fig. 1, an architecture consisting of four ULP-CUEs

and a token router has been proposed. Each ULP-CUE is

connected via the token router. Moreover. low power control

scheme is studied, too. Tokens received at a token router are

sent to some one ULP-CUE and processed

ULP-CUE has a feature that power consumption is

proportional to a processing load because it is composed of

STP. Thus, STP can know own processing load by observing

an electrical current without addition of special functions. By

using this feature, optimal power controlling is performed

autonomous by measuring an electrical current for a supply

voltage and adjusting a supply voltage according to

processing load. In other words, when ULP-CUE might

become overload state, the supply voltage is increased to

avoid the overload state, and when the processing load is low,

the supply voltage is decreased and the power consumption is

decreased.

Variations of a current consumption and a supply

voltage according to a variation of a processing load have

delay characteristics. Moreover, a delay from a load variation

of ULP-CUE to a supply of an actual desired voltage is

caused by a sampling period of the PID controller. In case of

a general clocked processor, it does not accept next services

until the supply voltage rises and degradation in a quality of

service might be caused. On the other hand, as ULP-CUE has

a buffering feature in constitutively, ULP-CUE having the

tolerance for a momentary over load condition has also a

tolerance for the delay describing above.

In case of a chip multiprocessor architecture, it is

important how allocate a processing load to each ULP-CUE.

In case of thinking about UDP/IP packet processing, One

ULP-CUE have to process tokens of UDP/IP packet in each

packet, for instance, a check sum of it. Moreover, the load

processing each received packet varies because a UDP/IP

packet length varies. Because general clock-driven processor

does not flexible, as processing load distribution method, a

processing load of received UDP/IP packet is distributed to a

processor which a processing load is lowest or the processing

load is distributed to other processor when a processor

becomes high load state as a load distribution method.

However, it is necessary to observe the processing load of

each processor and calculate a predictable processing load in

using these methods. The observation and the calculation

cause increasing of the load in overload state.

On the other hand, ULP-CUE consisting by an elastic

pipeline has flexibility for the momentary overload described

above, and ULP-CUE resolves the overload condition by

increasing a processing performance autonomously.

Moreover, a round robin manner is proposed as a load

distribution method of ULP-DDCMP to avoid an increase of

a processing load of the load distributor.

2.1 Load distributor simulation

In previous section, it was described that ULP-CUE

varies an own performance corresponding to a processing

load condition by using the autonomous power control.

Moreover, it was described that a control delay exists in the

power controlling mechanism. Received packets are waited to

be processed and the packets might be discarded eventually

when a control delay exceeds the elastic performance of the

elastic pipeline. A delay time not to exceed the elastic

performance is clarified and it is necessary to modify a

threshold of the voltage control.

UDP/IP packet processes mainly consist of a header

processing to decide a forwarding destination obtained by IP

header information, a forwarding process to send the IP

datagram, and a calculation of header check sum. As the

Fig. 1 : ULP-DDCMP

Fig. 2 : Number of tokens at when UDP/IP packets are

received.

436 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

header processing is heaviest in those processes, the number

of tokens in the elastic pipeline varies according to an elapsed

time as shown in Fig. 2. When a receiving rate of UDP/IP

packets increases and UDP/IP packet gap becomes short, the

number of tokens greatly increases, and it becomes seven as

shown in Fig.2. Now, it is assumed that ULP-CUE is in an

overload state when the number of tokens is seven and a

supply voltage is increased when an electrical current value of

which the number of tokens is five is observed. In this case,

the total number of tokens of first and second packets only

have to be less than or equal four before arrival of third

packet as shown in Fig.2. Therefore, it only has to shorten a

point B to a point C.

However, it takes a time to calculate a delay time of

when the supply voltage is controlled dynamically. Therefore,

we propose a simulator shown in Fig.3 as it is necessary to

estimate a load status and a power consumption of each ULP-

CUE. This simulator consists of a UDP/IP packet length

generator simulating UDP/IP packet receiving, a packet

distributer to distribute the received packet to each ULP-CUE,

and core block simulating a behavior of ULP-CUE. The

packet length generator has a counter subtracted at an update

period of the simulator, and when the counter becomes 0, a

fixed packet length, a packet length of pattern generated

beforehand, or random packet length is generated, and the

packet distributor is called. Then, a simulator time until next

packet generation time calculated by the generated packet

length is added to the counter. The called packet distributor

simulates the roud robin behavior proposed in this time, the

number of tokens got from ULP-DDCMP platform simulator

[6] of each TAT is added to an array expressed the number of

tokens in an elastic pipeline of the core block according to the

distribution method. Thereby, the number of tokens according

to a elapsed time from called time are stored in the token

array.

The core block has a current array and a vdd array

expressing transitions of the obsereved current and supply

voltage. When the token array is updated and every observing

and controlling period of the voltage control block, a func I

and a func V are called and they update the current arry and

the vdd array, respectivelly. A transition of observed current

and a transision of the supply voltage are stored in the current

array and the vdd array, respectively.

An update period of the token arry is adjusted with a

counter similar to the packet length generator, and a TAT or a

pipe line tact according to the supply voltage of the vdd array

of index 0 is set to the period. Thereby, The load distribution

simulation corresponding to Dynamic Voltage Scaling (DVS)

becomes possible. Moreover, because the current array and

the vdd array are updated every simulation period, to estimate

a power consumption by using the current and the voltage of

the current array and the vdd array of index 0, respectively.

The structure of load distribution simulator of ULP-

DDCMP corresponding to DVS has been proposed [3]. The

transition characteristics of the observed current and the

controlled voltage is considered in the simulator, The

necessary information at the device development such as a

upper-limit of control delay time can be gotten.It is possible

to study a voltage control algorithm by using an information

so that the voltage control is needed how long before an

overload condition. Moreover, a variation of a processing

load for each ULP-CUE can be observed by observing the

number of tonkes in each core

3 Power estimation method

3.1 Optimized circular pipeline

It is necessary to know a power consumption

characteristic of ULP-CUE to estimate a power consumption

of ULP-DDCMP. An optimized circular pipeline has a

Fig. 4 : Core block simulation model

Fig. 3 : Simulation model

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 437

circular pipeline for unary-operation instruction to pass a

firing control stage of STP with a power gate. Thereby, to

estimate the power consumption, it is necessary to consider

the circular pipeline for unary-operation instruction of the

optimized circular pipeline and a circular pipeline for binary-

operation instruction including the firing control stage

separately.

As a power control method of the self-timed pipeline,

the DVS method minimizing dynamic power consumption

while satisfying a demanded performance by varying a supply

voltage and the power gating method to reduce a static power

consumption caused by a sub-threshold leakage current are

mainly proposed. The power gating method turn on or off

power switches of each pipeline stage by STP control signals

and is implemented with little additional circuit.

The power gating at each stage is possible to reduce the

static power consumption significantly because a supply

power is turn on or off finely, however, the power gating

consumes a significant switching power needed to switch

power lines. Therefore, in this paper, the method that the

power gates of the outside stages the circular pipeline for

unary-operation instruction of the optimized circular pipeline

work at each stage and whole stages of the circular pipeline

for unary-operation instruction are switched all together when

a token is in the circular pipeline for unary-operation

instruction is also examined.

Fig. 5 shows a model to estimate power consumption.

The number of stages in an circular pipeline for binary-

operation instruction is assumed , the number of stages in

an circular pipeline for unary-operation instruction is assumed

 . Turn-around-time of the circular pipeline for unary-

operation instruction and the circular pipeline for binary-

operation instruction are assumed and ,

respectively. A time necessary so that a token passes each

pipeline stage is assumed . Relations of them are expressed

in equation (1), (2).

 ∑

(1)

 ∑

(2)

3.1.1 Pipeline stage level power gating

At first, a power consumption P is modeled like

equation (3) when the power gating of each pipeline stage is

performed.

where N is the total number of tokens in the optimized

circular pipeline, s is a ration of token which is circulating in

the circular pipeline for unary-operation instruction in the

token in the optimized circular pipeline. and are power

supply period to the stages of the circular pipeline for unary-

operation instruction and outside of the pipeline, respectively.

Similarly, and are numbers of the power switching

times in the circular pipeline for unary-operation instruction

and outside of the pipeline. Because dynamic power

consumption is proportional to a square of a supply voltage,

∑

()

∑

 ∑

∑

∑

∑

(3)

Fig. 6 : Token interval pattern map

Fig. 5 : An optimized circular pipeline

438 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

and static power consumption is proportional to a supply

voltage, , , and express coefficients of a dynamic

power consumption [7], a static power consumption, a power

consumption for the power gating of the pipeline stage ,
respectively, finally expresses the supply voltage.

The supply period of the power to each pipeline stage

and the power switching times of each pipeline stage vary

depending on the number of tokens and distribution patterns

of the tokens [8]. The supplying power to each pipeline stage

depending on the power gating is started before the token

arrives to certain pipeline stage to avoid performance

degradation depending on a delay of a power rising. Thereby,

the supply period of the power is expressed by equation

(4) when certain token arrives to the pipeline stage .

()

 ()

(4)

However, and become equal to a token period because

the power switch is turned ON before the power switch is

turned OFF when the token period becomes less than .

The switching times equal to the number of tokes in the

pipeline when the token period is longer than Toni, however,

the switching times decreases because power is supplied

continuously when the token period becomes less than Toni

The distribution of the tokens in STP can have various

patterns depending on an application and some kind of

influences. For this reason, expected values of the supplying

period of a power and the switching times of the power gate

are obtained by considering all possible patterns. It is

assumed that all distribution patterns are same existence

probabilities, and a probability distribution corresponding to

the token period is obtained by considering all pattern of

tokens placed in STP of when the number of tokens is N. An

accumulated probability of exceeding Ton described above in

the obtained probability distribution is obtained.

When certain token is a head of token moving in the

STP, N tokens placed in a TAT is numbered with 0, 1, 2, …,

N-1 from the head of token. The tokens can be placed freely

in TAT of STP as long as the order does not change, and the

number of a combination becomes huge. Thereby, Fig. 6 is

referred to obtain the token period. A horizontal axis of the

figure represents the token number from the 0-th token which

is head of token, and a vertical axis of the figure represents an

elapsed time from 0-th token. A sample of the placed pattern

of tokens is shown in Fig.6. This sample shows that the first,

second, …, (N-1)-th tokens are placed at ,

respectively. The N-th token must be placed at TAT because

the token moves round in STP during the TAT and the N-th

token is necessary to be the 0-th token which is the head of

tokens in a next round. The token period is a difference of

each elapsed time, for instance, a token period between 0-th

token and first token is t1, and a token period between first

token and second token is t2-t1. Actually, there are many

paths like this path, and these paths represent the placed

pattern of tokens.

Here, a point () and point () are paid

to attention. The point and represent the elapsed times

of ()-th token and -th token, and a token period is .

There are plural path passing between points and , and

multiplying the number of patterns arriving in token of the

point A from a token of point (0, 0) by the number of patterns

arriving in a token of point (N, TAT) from the point B gives

the number of patterns passing between the point A and the

point B as shown Fig. 6. The number () of

patterns arriving in the point A is obtained by equation (5).

 () ∑ ()

(5)

where represents the minimum token period.

Specifically, it is the longest handshake period in all pipeline

stage, and it expresses (). A () can

be obtained by operating this calculation from i=1.

On the other hand, the number of patterns arriving the

point B from the point (N,TAT) can be obtained by equation

(6).

 () ∑ ()

(6)

Similarly, () can be obtained by

calculating it from to .

The number of patterns of the token whose period is K is

obtained by using these equations. Thus, the number

(()) of patterns of which the period between the -

th token and the () -th token is is expressed by

equation (7).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 439

 ()

 ∑ () ()

‘

(7)

In between each token, the number of the token period

of can be obtained by accumulating the number of the

token period of from to by equation (8).

 () ∑ ()

(8)

As described above, the power supply period becomes

 when the token period is larger than . The power

supply period becomes the token period when the token

period is less than or equal to Toni. Therefore, the power

supply period of a pipeline stage is obtained by equation

(9).

{

∑ ()

 ∑ ()

 }

∑ ()

⁄
(9)

On the other hand, the power supply period is

obtained by changing to and calculating a token

period because the number of pipeline stages is short.

Moreover a power supply period can be obtained by

changing the number of token to , similarity.

3.1.2 pipeline level power gating for a circular pipeline

for unary-operation instruction

 The power gating used to reduce a leak power

consumption charge and discharge a power line having a

large capacity. Thus, dynamic power consumption becomes

large. When a utilization of a circular pipeline for unary-

operation instruction is high, it is considered a power

consumption is reduced by controlling power gating of the

pipeline for unary-operation instruction all together than

controlling power gating of each pipeline stage because

frequency of charging and discharging the power line are

reduced. On the other hand, a power control for each stage is

performed because the number of tokens in a circular pipeline

for binary-operation instruction than in a circular pipeline for

unary-operation instruction is small. Thereby, the static power

for the pipeline for unary-operation instruction in equation

(10) is always consumed, and becomes one, and the

power switching frequency also becomes zero. The power

consumption in this power control can be estimated by

equation (10). Other parameters are obtained by the method

similar to the stage level power gating.

Coefficients of these power estimation equations are

obtained by using an experimental result of a power

consumption and TAT of a test element group (TEG) under

certain condition. These estimations are used to obtain power

consumption under the other conditions. Then, it is used to

interpolate data needed in a simulation using transition

characteristics of the power control.

3.1.3 Performance of ULP-CUE

A processing performance of STP is able to express by

the number of tokens passing certain pipeline stage, for

instance, an execution stage in a unit time. Therefore, the

performance is expressed by equation (11).

 ()

()

 (11)

STAT and TAT vary according to variations of the

supply voltage. Generally, a gate propagation delay for a

supply voltage is expressed by equation (12) [9].

()

(12)

where is a threshold voltage of a device, is a mobility

degradation. A processing period of a token in a pipeline

stage is also proportional to ()
 because logic is

composed with gates.

4 Conclusion

The power estimation method to study a multi-grain

power control scheme has been proposed. The load

distribution simulation method to study power controlling

method of the chip level (the load distribution), the core level

(PID control), the STP power estimation method to study a

power controlling method of the pipeline level (a optimized

circular pipeline), the pipeline stage level (power gating) are

proposed.

∑

()

∑

 ∑

∑

∑

(10)

440 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

The load distribution simulation method can handle the

transition characteristics of the power control corresponding

to DVS control, the delay characteristics etc. necessary for

designing a chip will be clarified. Moreover, a range in

application of very simple round robin method as the load

distribution is clarify, and the load distribution simulation

method is also used for a development of a power control

method to eliminate overhead caused by the load distribution

and not to cause overload condition. The STP power

estimation method corresponds to the optimized circular

pipeline, and it can estimate a power consumption regardless

of with or without a circular pipeline for unary-operation

instruction. Moreover, the method is able to estimate the

power consumption even if only a circular pipeline for unary-

operation instruction is controlled at the pipeline level.

Therefore, these two method will contribute a study of multi-

grain power control method.

In the future, a result of a estimation is compared with a

measurement result of actual device, and the estimation

method is evaluated for the appropriateness. A clarification of

the condition to avoid a overload, for instance, a permissible

delay time of power control function and power estimation

when a control level of a power gating is changed are

performed. We will decrease the power consumption and

increase the performance of ULP-DDCMP by using those

information

Acknowledgement

Although it is impossible to give credit individually to

all those who organized and supported the CUE project, the

authors would like to express their sincere appreciation to all

the colleagues in the project.

The CUE project is partially supported by Core

Research for Evolutional Science and Technology (CREST),

Japan Science and Technology Agency, SCOPE (Strategic

Information and Communications R&D Promotion

Programme), Ministry of Internal Affairs and

Communications, Japan, the Grants-in-Aid for Scientific

Research of Japan Society for the Promotion of Science and

Semiconductor Technology Academic Research Center

(STARC). And, this work is supported by VLSI Design and

Education Center (VDEC), the University of Tokyo in

collaboration with Synopsys, Inc. and Cadence Design

Systems, Inc.

Reference

[1] Hiroaki Nishikawa, “Design Philosophy of a

Networking-Oriented Data-Driven Processor-CUE,”

IEICE Trans. Electron., vol.E89-C,no.3, pp.221–229,

Mar. 2006

[2] Hiroaki Nishikawa, Hiroshi Ishii, Makoto Iwata, and

Kazuhiro Aoki, "An Offloading Scheme for Ultra Low

Power Data-Driven Networking System", Proc. of the

2009 Int’l Conf. on Parallel and Distributed Processing

Techniques and Applications, pp. 595–601, July 2009.

[3] Shuji Sannomiya, Ryotaro Kuroda, Kazuhiro Aoki, Kei

Miyagi, Makoto Iwata, Hiroaki Nishikawa, “Chip

Multiprocessor Platform for Ultra-Low-Power Data-

Driven Networking System: ULP-DDNS,” Proc. of the

2011 Int’l Conf. on Parallel and Distributed Processing

Techniques and Applications, PDP5136, July 2011.

[4] Shuji Sannomiya, Kei Miyagi, Keiichi Sakai, Makoto

Iwata andHiroaki Nishikawa, “Stage-by-Stage Power

Gating Circuit for Ultra-Low-Power Self-Timed

Pipeline,” Proc. of the 2010 Int’l Conf. on Parallel and

Distributed Processing Techniques and Applications,

pp.596–602, July 2010.

[5] Shin-ichiro Mutoh, Satoshi Shigematsu, Yoshinori

Gotoh, Shinsuke Konaka, “Design Method of

MTCMOS Power Switch for Low-Voltage High-Speed

LSIs,” Proc. of Asia and South Pacific Design

Automation Conference, Hong Kong, pp.113–116, Jan.

1999.

[6] Hiroaki Nishikawa, Kazuhiro Aoki, Hiroshi Ishii and

Makoto Iwata, “Intermediate Achievement of Ultra-

Low-Power Data-Driven Networking System: ULP-

DDNS,” Proc. Of the 2011 Int’l Conf. on Parallel and

Distributed Processing Technologies and Applications,

PDP5135, July 2011.

[7] Nam Sung Kim, Todd Austin, David Blaauw, Trevor

Mudge, Krisztian Flautner, Jie S. Hu, Mary Jane Irwin,

Mahmut Kandemir and Vijaykrishnan Narayanan,

“Leakage current: Moore's law meets static power,”

IEEE Computer, Vol. 36, No. 12, pp. 68-75, 2003

[8] Kei Miyagi, Shuji Sannomiya, Makoto Iwata, Hiroaki

Nishikawa, “Self-Timed Power-Aware Pipeline Chip

and Its Evaluation,” Proc. Of the 2011 Int’l Conf. on

Parallel and Distributed Processing Techniques and

Applications, PDP5138, July 2011.

[9] Kevin Nowka, Gary Carpenter, Eric Mac Donald, Hung

Ngo, Bishop Brock, Koji Ishii, Tuyet Nguyen and

Jeffrey Burns, "A 0.9V to 1.95V Dynamic Voltage-

Scalable and Frequency-Scalable 32b PowerPC

Processor," Proc. of ISSCC, pp. 340-341, Feb. 2002.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 441

Self-Timed Power-Aware Pipeline Chip and Its Evaluation

Kei MIYAGI 1, Shuji SANNOMIYA 2, Makoto IWATA 1, and Hiroaki NISHIKAWA 2

1School of Information, Kochi University of Technology, Kochi, Japan
2Department of Computer Science, Graduate School of Systems and Information Engineering,

University of Tsukuba, Tsukuba, Ibaraki, Japan

Abstract— This paper describes an experimental chip of
self-timed (clockless) power-aware pipeline incorporating
stage-by-stage power gating scheme. Its power gating circuit
cuts the voltage-supply to the idle pipeline stages in order
to reduce the static (leakage) power dissipation. To reduce
the dynamic power dissipation, self-timed pipeline (STP)
is one of the suitable circuit architectures because its on-
demand transfer control activates only the pipeline stages
operating valid data and thus unexpected signal propagation
resulting in transistor switching is gated at pipeline stage
level. Moreover, each pipeline stage can be slowed down
in parallel with processing by introducing dynamic voltage
scaling techniques and thus both the dynamic and static
power dissipations can be reduced. In this paper, power-
performance characteristics of the self-timed power-aware
pipeline (ULP-STP) are experimentally analyzed through
measuring the actual 65nm CMOS LSI chips and simulating
the optimized ULP-STP. The experimental results indicate
that autonomous power-awareness of the ULP-STP can save
about 48 % power in case of intermittent operation mode.

Keywords: self-timed pipeline, power gating, dynamic voltage
scaling, SPICE

1. Introduction
Low power dissipation techniques of LSI systems are now

crucial to realize greener devices, while extracting the full
potential of high speed transistors under deep-submicron era.
In order to facilitate such low power dissipation of the LSI
chips, both dynamic and static power dissipation should be
cut or reduced as much as possible. The main causes of
the dynamic power dissipation are the transistor-switching
unnecessary for processing and the excessive switching
frequency higher than required processing speed, while the
leakage current through inactive transistors increases the
static power dissipation mainly.

To realize ultra-low-power networking systems, a data-
driven chip multiprocessor (DDCMP) architecture has been
studied under a collaborative research project [1], [2], [3]. In
the proposed architecture, both the dynamic and static power
dissipations are minimized by distributing the processing
load over multiple processing cores which is slowed down
by using dynamic voltage scaling (DVS) technique as long
as the required processing speed is satisfied. In addition,
the voltage-supply to idle circuit blocks or cores is cut

by using fine-grained power gating (PG) technique. It is
therefore intended that the ultra-low-power DDCMP would
be implemented by self-timed power-aware elastic pipeline
named ultra-low-power self-timed pipeline (ULP-STP) [8].

Because of self-timed elastic data-transfer mechanism of
the original STP [10], it can work well under variable voltage
without adjusting clock frequency even if the altered voltage
could transiently fluctuate at individual pipeline stage. Since
the pipeline throughput can be adaptive to its processing
load only by altering supply-voltage appropriately, a power-
aware pipeline scheme can be realized naturally in terms of
dynamic power saving. For instance, proportional-integral-
differential (PID) control method can be applied to such
voltage control by monitoring consumption current of a
target power domain within the chip.

The STP is also suitable for gating power-supply to fine
grain circuits since its stage-by-stage data-transfer control
independently activates only pipeline stages with valid data.
We therefore proposed a stage-by-stage power gating scheme
adopted in the STP [7]. This scheme provides natural signal
gating [6], i.e., it stops the unnecessary signal propagation
and transistor-switching at pipeline stage level without any
global control mechanisms resulting in both power dissipa-
tion and processing speed degradation. Moreover, it makes
it possible to scale the voltage even when the stages are
activated because it can be realized without any global
oscillator such as phase-locked loop (PLL) circuit, which
forces pipeline flush ahead of the frequency and voltage
change.

In order to analyze the low-power characteristics of the
ULP-STP and to estimate power-performance of various
ULP-STP based systems, an experimental LSI chip has been
fabricated by using 65 nm CMOS process. In this fabrication,
the following design considerations have been made.

a) Timing constraints on relationship between hand-shake
signals and power gating signal,

b) Minimization of power gating overhead, e.g., isolation
elements and power switch transistors, and

c) Collection of actual parameters that circuit simulation
results of any target ULP-STP systems can be compen-
sated more precisely.

As for the remaining part of this paper, the following
section describes the ULP-STP circuit and its low-power fea-
tures. Section 3 discusses the power-performance estimation
method of various ULP-STP systems and then introduces an

442 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 1: Self-timed pipeline.

experimental ULP-STP chip indispensable for the proposed
estimation method. Section 4 shows the estimation results of
an optimized ULP-STP which can be applied to the ULP-
DDCMP and then we conclude in the final section.

2. Self-timed power-aware pipeline
The power gating techniques which cut the supply volt-

age to idle circuits by adding power switch and isolation
elements are used to reduce the amount of the leakage
current through the transistors in deep sub-micron fabrica-
tion technology. Fortunately, the stage-by-stage data transfer
controls of the STP exposes which pipeline stages are not
processing or idle, and thus the power gating can be realized
without any additional mechanisms to manage the all states
of pipeline stages. This section describes an ultra-low-power
self-timed pipeline (ULP-STP) structure with stage-by-stage
power gating and then discusses the power-performance
balance of the pipeline structure under the dynamic voltage
scaling adaptive to the effective processing load.

2.1 ULP-STP circuit
Each pipeline stage of the STP consists of a data latch

as a pipeline register, function logic, and transfer control
unit named C-element. The basic structure of the STP is
shown in figure 1. The data latch, function logic, and C-
element are denoted by DL, Logic, and C, respectively. The
data is packed with tag into packet form, and the packet
is transferred between the pipeline stages as a result of the
communication between the C’s in the adjacent stages. The
communication is performed stage-by-stage according to the
4-phase handshake protocol [9] by using transfer request
and acknowledge signals which are called send signal and
ack signal respectively. The stage-by-stage transfer control
changes the states of each pipeline stage independently, and
the states of the stages are defined below according to the
handshake protocol. Here, the C-element in thei-th stage is
denoted byCi.

• Reset state: The send and ack signals are negated after
the assertion of the reset signal.

• Idle state: TheCi waits until thesendi−1 is asserted.
• Busy state: Thesendi−1 is asserted at the beginning of

the transfer of the packet from the precedent (i− 1)-th
stage. After the assertion of thesendi−1, theCi asserts
its ack signal (acki−1). In response to the assertion, the
Ci−1 negates thesendi−1. After that, if and only when
both thesendi−1 andacki are negated, theCi asserts
the ToDLi to open theDLi and it assertssendi at
the same time. As a consequence, the packet is latched
in the i-th stage, and thei-th stage goes to idle state.
Otherwise, theCi waits until theacki is negated while
it keeps its send and ack signals.

The successive stages receiving the assertion of the send
signal go to busy state and their C’s repeat the same transfer
control sequence individually. During the handshakes, the
send signals are delayed to assure the completion of the
primitive logic function and ack signals are delayed to assure
the setup-hold timing of the DL’s.

This stage-by-stage transfer control of the STP suggests
the timing of the power controls. That is, in the idle stages,
the circuit of the DL, and combinational Logic can be
powered-off, i.e., the supply-voltage can be cut while that of
the C and sequential Logic can be powered-down, i.e., the
supply voltage can be lowered enough to keep the circuit’s
states. Moreover, in the busy stages, those circuits should
be powered-down enough to assure the switching of the
transistors, i.e., the supply-voltage can be lowered as long
as the required switching speed is achieved.

To realize such stage-by-stage power controls, we have
already proposed an ultra-low-power self-timed pipeline
(ULP-STP) structure illustrated in figure 2 [7]. In the ULP-
STP structure,VDD supplied to all circuits is scaled by using
DVS technique. In addition, to cut the power-supply to the
DL and Logic, a high threshold NMOS transistor, called
power switch (PS), is placed betweenVSS and the ground-
side terminals of the DL’s and combinational logics which
are composed of low-threshold transistors. In this case, an
isolation element (ISO) must be inserted between adjacent
stages in order to block the propagation of the electrically
unstable signals from the gated stages to the other active
stages. Moreover, a power line (Vmin) providing voltage
enough to hold circuit states is routed in addition to theVDD,
and two transistors selecting the scaledVDD andVmin are
added. These added transistors are controlled stage-by-stage
by a power control circuit (PC) which observes the send
and ack signals. The ULP-STP structure makes it possible
to power-down or power-off stage-by-stage, and thus the
essential power consumption is concentrated only to the
processing stages.

With the proposed structure, the DVS and the PG can
be enabled independently or simultaneously. In addition,
the power gating for each core is achieved without any
additional mechanism because all of the stages in an idle
core are powered down as a result of the stage-by-stage

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 443

DL1 Logic DL2

C1 C2 C3

PC

Logic DL3

Scaled VDD

Vmin

send

ack

PS

Packet

Ds1 Ds2
send3

Selected VDD

ack3Da1 Da2

PMOS

NMOS

VVSS

PS : Power Switch PC : Power Control Circuit

ISO

VSS

ToDL1

Fig. 2: Power-supply control of STP.

power gating in each stage. Furthermore, the supply voltage
to the STP can be autonomously altered without adjusting
the clock frequency since the STP itself is clockless. This
feature indicates that the STP is more robust than the clocked
pipeline, especially in the nanometer-scale processes with
more variation in transistor performance.

Although both the DVS and PG of the STP have contri-
bution to reducing the power dissipation, the amount of the
leakage current is expected to become larger with the growth
of the scaling of transistors. Therefore, in the remaining part
of this paper, the stage-by-stage power gating of the STP is
focused on.

2.2 Trade-off of stage-by-stage power gating
In the idle stages of the STP, the dynamic power dissi-

pation can be zero because of the CMOS circuit, but the
sub-threshold leakage current is carried due to the reduction
of the insulating ability of transistors. It is true that the
leakage current can be reduced by cutting power line by
power switch (PS), but the leakage current is still carried
through the PS. In addition, the power is consumed when the
PS is turned on and turned off. Also, the isolation elements
(ISO’s) consumes power when they are driven and they still
allows the leakage current through themselves. As for the
performance, the resistance of the PS’s and the gate delay of
the ISO’s degrade the processing latency of the STP. Based
on these facts, the performance and power is analyzed to take
the benefit of the stage-by-stage power gating. Statically, the
throughput[packet/sec.] depends on the occupancy rate of
the STP and it is defined as equation (1), whereTDL, TLogic,
and TISO denotes the latency time of the DL, the Logic,
and the ISO, respectively, andu means the occupancy rate
of a pipeline stage[packet/stage]. In comparison with the
original STP without power gating, theTDL andTLogic are
increased due to the on-resistance component of the PS.

Throughput =
1

TDL + TLogic + TISO
× u (1)

On the other hand, the total amount of the consumed
power (Ptotal[W]) depends on the states of the stage, i.e. the
occupancy rateu also determines thePtotal. In a busy stage
of the original STP, the power is consumed for switching
transistors composing the DL and the Logic, and it is denoted
by Psw. In contrast, the power is consumed due to the
leakage current through the DL and the Logic in any stage,
and it is denoted byPlk. ThePtotal[W] of the original STP is
defined as the equation (2), where thepl means the number
of the stages of the STP.

Ptotal = pl × (u× Psw + Plk) (2)

In the ULP-STP, two adjacent stages should be powered
during the data transfer between the stages to assure the data
transferring. To switch the PS, the power is consumed not
only for driving the PS itself but also a rush current through
the PS. After the PS is turned off, the voltage between
the ground terminals of the power-gated circuit andVSS
is charged gradually due to the leakage current through the
PS. This charged voltage is called virtualVSS (V VSS) and
its amount is increased up toVDD. TheV VSS is discharged
and turned into the rush current through the PS after the
PS is turned on. The power consumed because of the rush
current is one of the power-overheads of the power-gating.
The additional power consumed for switching the PS and the
ISO and the rush current of the PS is denoted byP ′

sw. The
PS and the ISO also consumes the power due to the leakage
current of them, and it is denoted byP ′

lk. According to these
facts, the amount of the total consumed power of the ULP-
STP,P ′

total is defined as the equation (3).

P ′
total = pl × {u× (Psw + Plk + P ′

sw + P ′
lk)

+(1− 2u)(P ′
lk)} (3)

Consequently, power dissipation of the original STP can
be reduced by the power-gating but the resistance of the
PS must drop the supply voltage to the pipeline stage,
i.e., it must lengthen the delay time of the pipeline stage.
Furthermore, the ISO increases the pipeline tact of the stage,
and PS and ISO consume additional power for themselves.
Therefore, it is required to maximize the performance-power
efficiency by tuning those additional circuits.

3. Power-performance estimation
As described in the previous section, the stage-by-stage

power gating and dynamic voltage scaling techniques in-
troduced to the original STP reduce the power dissipation,
but they bring performance and power overheads due to the
additional circuits such as the PS and the ISO. Furthermore,

444 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

PS ina pipeline stage is kept to be turned on while the stage
receives several packets contiguously. This kind of local
congestion situation might occur if the number of packets
flowing would be relatively close to the upper capacity of
the pipeline and if a certain or more pipeline stage(s) would
take longer latency time than other stages [11]. Since it
is difficult to evaluate those phenomena only by utilizing
circuit simulator such as SPICE, we decided to establish a
power-performance estimation method that can compensate
the circuit simulation results based on actual measurement
results of an experimental ULP-STP chip.

In this section, an experimental ULP-STP chip imple-
mented by using 65 nm CMOS process provided by Fujitsu
Ltd. is introduced and then a compensation method of circuit
simulation results based on the measurement results of the
fabricated ULP-STP chip.

3.1 Experimental ULP-STP chip
In order to measure the basic characteristics of the ULP-

STP, the specification of the experimental ULP-STP chip
is simply defined as long as the performance and power
overheads of the additional circuits and the influence of
the week congestion situations should be observed under
all corner conditions of the LSI, i.e., the best case (-40◦C,
1.3 V), the typical case (25◦C, 1.2 V), and the worst case
(125◦C, 1.05 V).

The implemented chip is configured as a ring-shaped
circular pipeline composed of 38 homogeneous stages, a
merge stage receiving input packets, and a branch stage
sending output packets. Each pipeline stage of the chip is
composed of a 192-bit DL and 24 8-bit Logic’s. The stage
accepts and outputs packets with Gray-code data, and each
Logic is composed of a Gray-code decoder, adder, and Gray-
code encoder. The ISO cell provided by the standard cell
library is added to each stage to observe typical overhead
of the ISO. As for the PS, the gate length of the NMOS
transistor is designed to be 80 nm because its leakage current
is minimum against its drain-source currentIds even in
the worst case. Figure 3 shows the layout image of the
implemented chip composed of a ring-shaped ULP-STP core
and a self-testing circuit for its functionality. Furthermore,
whether the ULP-STP core operates under the power gating
function (PG-on) or not (PG-off) can be selected by asserting
or negating its control signal line because it is necessary to
compare power-performance of both PG-on and PG-off. The
send, ack, and PC output signals at any pipeline stage can
be probed from off-chip interfaces.

By using those off-chip interfaces, power-performance
characteristics of the implemented ULP-STP core have been
measured under various conditions, i.e.,Vdd= {0.8V, 0.9V,
1.0V, 1.1V, 1.2V, and 1.3V} , power-gating mode = {PG-on,
PG-off}, operating temperature = {25◦C, 80◦C}. Figure 4
shows parts of those measurement results where its horizon-
tal axis denotes pipeline throughput [G packet/sec.(pps)] and

Ring-shaped ULP-STP with 40 stages

：Packet Flow

1715um

1715 um

320.4um

85.6 um

Pipeline stage
Self-test module

Input

Output

Fig. 3: Layout image of the experimental ULP-STP (65nm
CMOS 10ML process).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8

P
o

w
er

 [W
]

Throughput [G packet/sec.]

PG-on [1.3V]

PG-off [1.3V]

PG-on [1.2V]

PG-off [1.2V]

PG-on [0.8V]

PG-off [0.8V]

Fig. 4: Performance-power characteristics of the experimen-
tal ULP-STP chip under altered supply-voltages (25◦C).

its vertical axis denotes consumed power [W]. As shown in
the figure, throughput and power overheads due to power
gating circuits appears except for fully idle condition, i.e.,
when throughput is zero. The upper bound of the throughput
performance is 0.86 G pps, 0.78 G pps, and 0.33 G pps
in case of 1.3V, 1.2V, and 0.8V respectively. The dynamic
power is almost proportional to the throughput performance
and it indicates that the ULP-STP core can adaptively supply
electric power along with its processing load by virtue of its
local data-transfer control.

3.2 Compensation of the simulated results
In usual circuit simulation of practical scale LSI, it might

take several days at each operation condition. Even for the
implemented ULP-STP core, it takes at least two hours
only for a single pipeline stage with a single event set
of input data. As for whole ULP-STP core, it is therefore

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 445

important toestimate its power-performance characteristics
based on a small set of the simulation results. Moreover, the
simulation result of the ULP-STP core stage slightly involves
error in comparison to the actual measurement result of
the implemented one. There is a margin of error between
them from about 10% to 25%. That error exceeds the
typical errors due to the average variations occurred during
the chip fabrication process. That means it is necessary to
compensate the simulation results in order to evaluate them
more precisely.

In order to solve those critical issues, we adopt a simple
estimation method of power-performance characteristics for
a new ULP-STP system. In this method, the simulation
results of a part of a modified ULP-STP system are compen-
sated based on the measurement results of the experimental
ULP-STP core as the following:

1) To linearly interpolate total switching power and
throughput based on a set of simulated power and
latency time of several pipeline stages.

2) Only in case of the PG-on mode, the ULP-STP might
format a few streams of packets which is contiguously
flowing in the pipeline. In such cases, the PS and the
ISO are kept to be turned on and thus consume no
switching power related to their enable signals. The
switching power of the PS and the ISO,P ′

sw, is added
to the above interpolated switching power.

3) To minimize errors between the interpolated data and
the measured data by using the linear least-squares
method, in terms of switching power and throughput
respectively.

By applying this estimation method to the experimen-
tal ULP-STP core, its power-performance characteristics at
25◦C can be derived as shown in figure 5. To compare with
the actual measurement values, this figure also shows them
and indicates the potentiality of the proposed estimation
method. Actually, the estimation errors of total switching
power are at most 0.1 % in average and those of throughput
are at most 0.01 % in average. Although the errors in case
of Vdd=1.3V are approximately±5.0 %, it is lower than the
typical process variation. Therefore, it can be said that the
proposed estimation method is reasonable and persuadable
to analyze various ULP-STP-based systems such as the
optimized ULP-STP [8] and the ULP-DDCMP chip [12].

4. Estimation of optimized ULP-STP
As defined in equations (1) - (3), the throughput and the

power overheads of the ISO and the PS should be eliminated
or reduced to achieve better power-performance in the ULP-
STP-based systems.

As for reduction of ISO elements, it has been already
proposed that the modified DL can play a role of isolation
function [8]. The ISO elements are usually two-input gates
provided as a part of a series of standard CMOS gates, and

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8

P
o

w
e
r
[W

]
P

o
w

e
r
[W

]
P

o
w

e
r
[W

]
P

o
w

e
r
[W

]

Throughput [G Throughput [G Throughput [G Throughput [G packet/secpacket/secpacket/secpacket/sec.].].].]

PG-on (estimated)

PG-on (measured)

PG-off (estimated)

PG-off (measured)

Fig. 5: Performance-power estimation of the experimental
ULP-STP chip (1.2V, 25◦C).

Data IN Data OUT
ToDL

ISOISO

Fig. 6: 1-bit data latch circuit including isolation.

they are categorized into two types: AND-type and OR-type.
The former is similar to an AND gate and its data output
signal is kept to ’0’ when its enable input signal is ’0’, and
the latter resembles an OR gate and it outputs ’1’ when its
enable input signal is ’1’.

The logical function of the AND-type isolation gate is
the same as that of the AND gate. Moreover, the isolating
is required only when the DL is powered-on. These facts
lead to the inclusion of the isolation gates into the D-latch
circuit. Based on this idea, a DL circuit including isolation
gate is proposed and it is illustrated in figure 6. A NAND
gate of the original D-latch is replaced with one AND-
type isolation gate and NOT gate, and thus the ISO can
be removed. Although this circuit reduction maintain the
signal delay through ISO and DL, the buffer cells for control
signal distribution to the ISO can be removed, moreover, the
leakage current through isolation gates can be cut because
they are also a part of the target circuit of the power gating.

As for optimization of the power switch (PS), the re-
duction of both the PS itself and the local clock tree to
drive the distributed small PS’s is important. In this paper,
the size of the PS, NMOS transistor, is focused on for
the PS optimization, i.e., the gate length of the NMOS
transistor is discussed. The longer gate length indicates the
larger resistance and capacitance of the PS so that it would

446 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Idle Iow mid high

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8

P
o

w
e

r
[W

]
P

o
w

e
r
[W

]
P

o
w

e
r
[W

]
P

o
w

e
r
[W

]

Throughput [G Throughput [G Throughput [G Throughput [G packet/secpacket/secpacket/secpacket/sec.].].].]

PG-on [1.3V]

Normal STP [1.3V]

PG-on [1.2V]

Normal STP [1.2V]

PG-on [0.8V]

Normal STP [0.8V]

Fig. 7:Power-performance estimation of the optimized ULP-
STP (25◦C).

lengthen its wake-up time, lengthen the latency time of the
pipeline stage, and increase the additional switching power
P ′
sw, while it would decrease the additional leakage power
P ′
lk. If its length is shorten to 60 nm from 80 nm, its

capacitance will decrease to 75 %. In contrast, its leakage
power will increase, but it can be so small as to be negligible
in typical condition (25◦C, 1.2V). Furthermore, since its
Ids is proportional to (gate width L /gate length W),Ids
increase to 133 %. Therefore, the gate width can be shorten
correspondingly so that the total capacitance can be reduced
to 56 %.

Figure 7 shows the estimated power-performance char-
acteristics (25◦C) of the optimized ULP-STP which is
equipped with both the DL involving the isolation function
and the small PS (L= 60 nm). Because of the isolated
DL, the throughput at 1.2V can be improved to 105 %.
On the other hand, due to the smaller PS, the degradation
of the throughput is at most 2%∼3%. As for the power
consumption, the breakout of total power consumption is
shown in figure 8. In the figure 8(a), the inner circle
shows the switching power consumption breakouts of the
experimental ULP-STP core, and the outer circle shows
those of the optimized one. As show in the figure, the power
overhead of the ISO cell can be eliminated and the switching
power of the PS can be decreased to 4.07 mW. In consequent,
the additional switching powerP ′

sw can be reduced to 40 %.
As for the leakage power shown in the figure 8(b), 17 % of
the additional leakage powerP ′

lk can be reduced because of
the isolated DL and the small PS. However, there are still
power overheads due to the local clock buffer tree of the
PS (PS_BUF) as shown in the figures and thus the further
optimization of the PS_BUF are still remained as a future
work.

Since the ULP-STP performs a kind of natural power

88.9uW
7%

0uW 0uW

832uW
69%

77.4uW
6%

206uW
17%

6.33mW
14%

6.41mW
14%

12.9mW
29%

4.07mW
9%

0mW

0mW

19.4mW
29% Psw+P’sw

PS

PS BUF

ISO

DL & Logic

PS

PS BUF

ISO

DL & Logic

Plk+P’lk

(a) Switching power. (b) Leakage power.

Fig. 8: Power reduction analysis of the optimized ULP-
STP(1.2V, 25◦C).

supply control along with its processing load at the circuit
level, it could play an important power saving role in case
of intermittent operations that can be often seen in most of
consumer network applications. For example, let us define
the processing load of the system as illustrated in the
figure 7, i.e., each operation mode of 0.8V, 1.2V, and 1.3V is
defined aslow, medium, andhigh traffic mode respectively
and alsoidle mode is defined if all pipeline stages at 0.8V
have no packet and are gated by the PS. In this case, traffic
distribution of the ULP-STP system can be defined as the
following equation.

idle : low : high = α : (1− α)(1− β) : (1− α)β (4)

Figure 9 shows the energy saving ratio of the optimized
ULP-STP against the original STP ifalpha and beta are
altered. The figure indicates that when the idle time ratio
alpha is greater than 0.6, as smallerbeta is, as greater
the low-energy effect is. This kind situation can be easily
imagine if you use your smart phone in daily or when the
sensor ad hoc network is operated at some field.

As described in this paper, the advantage of the ultra-low-
power STP is that the voltage can be scaled even when the
stages processes data and the stage-by-stage power gating
can be enabled or disabled independently from the voltage-
scaling. That is, the trade-off between the performance and
the power can be changed truly dynamically in order to
maximize the performance-power efficiency for the target
applications’ requirements such as a QoS requirement in
which the highly prioritized processes should be executed
as fast as possible regardless of the amount of power
consumption while the processes with low priority can be
executed slowly for low-power-dissipation.

5. Conclusion
In this paper, an ultra-low-power self-timed power-aware

elastic pipeline (ULP-STP) and its power-performance esti-
mation method are proposed. By fabricating the experimen-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 447

0

20

40

60

80

100

0.6 0.7 0.8 0.9 1

E
n

er
g

y
ra

ti
o

 [
%

]

Idle time ratio (α)

β= 1
β= 0.05
β= 0

Fig. 9: Relationship between energy reduction ratio and idle
time of the optimized ULP-STP (25◦C).

tal ULP-STP chip with 65 nm CMOS process, the circuit
simulation result can be compensated more precisely based
on the actual measurement results of the chip. By utilizing
this method, one of our optimized ULP-STP circuits can
be evaluated in diverse viewpoints related to its power-
performance characteristics. As a result, it is indicated
in more quantitative analysis that an ultra-low-power STP
equipped with dynamic voltage scaling and power gating
can contribute to ultra-low-power LSI platform technologies.
That is, it is revealed that the approximately 58% of the
power consumption can be reduced with 2%∼ 3% degra-
dation on throughput when the voltage is scaled from1.3[V]
to 0.8[V]. In typical intermittent processing load, the ULP-
STP can work with only 48 % energy consumption compared
with that of the original STP.

By using the ultra-low-power STP with the proposed
circuit, we are now designing a chip multiprocessor (CMP)
which is a platform of an ultra-low-power data-driven net-
working system (ULP-DDNS) discussed in a collaborative
research project [1], [3]. The key point of the CMP de-
sign is to improve the balance of the performance under
its over-loaded region and minimum power for the QoS
requests specified network applications by distributing tasks
or packets on multiple processing cores equipped with the
stage-by-stage power gating and dynamic voltage scaling.
To realize such ultra-low-power platform, precisely quan-
titative analysis tools on power-performance characteristics
of individual components are indispensable. In this sense,
the proposed estimation method of the ULP-STP could
contribute to develop such architecture-level power analysis
tools [3].

Acknowledgement
Although it is impossible to give credit individually to all

those who organized and supported our project, the authors

would like to express their sincere appreciation to all the
colleagues in the project.

This research work was supported in part by Core Re-
search for Evolutional Science and Technology (CREST),
Japan Science and Technology Agency (JST). The circuit
design work was supported by VLSI Design and Education
Center (VDEC), the University of Tokyo in collaboration
with Synopsys, Inc. and Cadence Design Systems, Inc.

References
[1] H. Nishikawa, H. Ishii, and M. Iwata, “Collaborative research project

on ultra-low-power data-driven networking system,” Proc. PDPTA’08,
pp.697–703, July 2008.

[2] H. Nishikawa, H. Ishii, M. Iwata, and K. Aoki, “An offloading scheme
for ultra low power data-driven networking system,” Proc. PDPTA’09,
pp.595–601, July 2009.

[3] H. Nishikawa, K. Aoki, H. Ishii, and M. Iwata, “Intermediate achieve-
ment of ultra-low-power data-driven networking system: ULP-DDNS,”
Proc. PDPTA’11, PDP5135, July 2011 (to be presented).

[4] A. P. Chandrakasan, S. Sheng, and R. Brodersen, “Low power CMOS
digital design,” IEEE Trans. on Solid-state Circuits., vol. 27, No. 4,
pp.473–483, Apr. 1992.

[5] S. Mutoh, S. Shigematsu, Y. Gotoh, and S. Konaka, “Design method
of MTCMOS power switch for low-voltage high-speed LSIs,” Proc.
Asia and South Pacific Design Automation Conference, Hong Kong,
pp.113–116, Jan. 1999.

[6] N. Honarmand and A. Afzali-Kusha, “Low power combinational mul-
tiplier using data driven signal gating,” Proc. the IEEE Asia Pacific
Conference on Circuits and Systems, pp.1456–1459, Singapore, Dec.
2006.

[7] S. Sannomiya, K. Miyagi, K. Sakai, M. Iwata, and H. Nishikawa,
“Self-timed power gating for ultra-low-power pipeline circuit,” Proc.
PDPTA’09, pp.575–580, July 2009.

[8] S. Sannomiya, K. Miyagi, M. Iwata, and H. Nishikawa, “Stage-by-
stage power gating circuit for ultra-low-power self-timed pipeline,”
Proc. PDPTA’10, pp.596–602, July 2010.

[9] C. J. Myers, “Asynchronous circuit design,” Univ. of Utah John Wiley
& Sons, Inc., July 2001.

[10] H. Terada, S. Miyata, and M. Iwata, “DDMP’s: self-timed super-
pipelined data-driven processors,” Proceedings of the IEEE, Vol.87,
No.2, pp.282–296, Feb. 1999.

[11] N. Kagawa, S. Sannomiya, and M. Iwata, “Macroscopic power
simulation for self-timed pipeline,” Proc. PDPTA’10, pp.589–595, July
2010.

[12] S. Sannomiya, R. Kuroda, K. Aoki, K. Miyagi, M. Iwata, and H.
Nishikawa, “Chip Multiprocessor Platform for Ultra-Low-Power Data-
Driven Networking System: ULP-DDNS,” Proc. PDPTA’11, PDP5136,
July 2011 (to be presented).

448 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Study on Applying Ultra-Low-Power Data-Driven

Processor to Wireless Base Station

Hideki YAMAUCHI Hiroaki NISHIKAWA
Department of Computer Science,

Graduate School of Systems and Information Engineering, University of Tsukuba

Tsukuba-shi, Ibaraki, 305-8573 Japan

Abstract – Recent penetration of mobile communication

brought high density of mobile phone and need small cell size

base station. Power consumption reduction of the base station,

especially signal processing unit becomes relatively important.

Focusing on the fluctuation of the number of mobile phones in

a cell and Ultra-Low-Power Data-Driven Processor

(ULPDDP) characteristics which enables linear increase of

power consumption with increasing number of process, it is

proposed to employ ULPDDP to base station channel unit

which processes baseband signal and protocols between

mobile phone and base station. Comparing ULPDDP with the

DSP which is currently employed in the channel unit, it is

estimated that ULPDDP is able to lower 90% of power

consumption than DSP.

Keywords: ultra low power, data-driven, base station

1 Introduction

 The radio base station in mobile communication has

played an important role between radio network and fixed

network. It stands between both networks and changes

protocols and signals.

 To meet the growing penetration of mobile phones and

mobile devices, it is necessary to increase accommodation

capacity of mobile phones in an area. The maximum

accommodation of mobile phones in a cell is limited because

of resource constraints limit of radio frequency and bandwidth.

To accommodate the increasing number of terminals, it is

necessary to scale down the cell size of the base station and

increase the number of cells. Meanwhile, mobile network

operators are necessary to install a large number of base

stations, and in order to facilitate the installation, power

saving and downsizing become important subjects as well as

cost down for CAPEX and OPEX saving. In addition, a small

and low power base station is necessary in order to eliminate

the dead zone such as behind buildings and underground.

 Regarding the power consumption of compact base

station, the wireless transmission of power saving is done by

reducing the radio output with reducing the cell size, but the

control unit power is independent from cell size. Even though

the cell size shrinks, the same control performance is required

and, as the density of cells grows, control unit power issues

become relatively important to save total power consumption.

In addition, mobile technology improves from 2G, 3G to LTE

and more, and the mobile base station is requested to

simultaneously support these technologies in order to reduce

CAPEX of mobile network operator. The base station

requirement becomes severe because of complex signal

processing to cover multiple generations of mobile technology,

high speed signal processing supporting high speed and short

latency communication of LTE, and power consumption

reduction.

 To satisfy these requirements, developments of

semiconductor process technology have been employed to the

signal processing. Highly integrated circuits used in signal

processing achieve both power saving and complex function.

In addition to these efforts, introduction of new architecture

have been investigated to achieve further power saving.

 The base station is required operating normally under

maximum capacity. However, maximum number of mobile

phones is not always present there. In general, number of

mobile devices in a cell is low enough from maximum

capacity and base station has enough room in work load.

Maximum capacity is necessary only limited hours. In the

base station, required performance depends on the number of

active mobile phones. Therefore, it becomes possible to

reduce the power consumption of off-peak hours of the

number of mobile phone if the power consumption of mobile

station changes based on required performance which depends

on number of active mobile phone.

 In this paper, focusing on the characteristics of

ULPDDP which achieves power consumption increases

linearly according to processes, it is discussed in which part of

the base station ULPDDP is applied.

2 Wireless Base Station

 This section describes the current configuration of radio

base stations and characteristics of ULPDDP. Considering

these description, it is discussed in which part of the wireless

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 449

base station is suitable to apply ULPDDP. Also it is estimated

how much power saving is realized with ULPDDP.

2.1 Typical Architecture of Wireless Base

Station

 A mobile phone communication has changed from

traditional voice and text to those with photos and videos.

Also, the demand which is to access to the Internet content

from mobile phone are emerging as a penetration of smart

phone. Such change is supported through the rapid

improvement of radio access technology from 2G, 3G to

HDSPA and LTE. Wireless base stations are requested to

handle these technologies to support high speed

communications. According to the shift of communications

from voice to multi media data, mobile telecommunication

technology has changed from voice based circuit switching to

data base packet switching. In the LTE, voice is transferred by

packet with VoIP technology. High throughput packet

switching capability is required for the multimedia data. Low

latency network is also required to achieve high speed data

communication such as TCP/IP. Such data communications

need ACK response and the response delay causes low data

throughput. The wireless base station is requested high

throughput and low latency packet handling capability.

 Figure 1 shows a typical configuration of a wireless base

station. The primary function of RE is wireless transmission

and receive between mobile phone and the wireless signal is

converted to base band signal which is transferred between

REC via CPRI interface. RE and REC are not necessarily in

the same location. For example, they could be several

kilometers separated and connected through optical fiber. It is

also possible that REC is responsible for several REs. The

base band signal sent from REs is processed in facing channel

unit. The process includes higher layer processing such as

digital signal spreading/despreading, channel coding, frame

protocol termination, packet data transfer and voice transfer.

[1][2]

Figure 1. Wireless Base Station Block Diagram

 The channel unit and mobile phone send and receive not

only user data and voice, but also variety of control

information. For example, data rate selection and channel

scheduling information is handled by the channel unit to

maximize total communication performance under limited

radio wave the resources and under frequently changing the

radio communication condition between wireless base station

and mobile phone. Also, when a mobile phone enters a new

cell, mobile phone registration and handover control

information is exchanged between mobile phone and common

control unit through the channel unit. Common control unit

handles such mobility management and user communication

connection management.

 The wireless base station is connected to the fixed

network through NWIF and communicates with RNC or other

network equipment. Switch unit connects channel unit, control

unit and NWIF. In order to minimize investment of mobile

network operator, the wireless base station at initial stage start

minimum frequency channels and increment the frequency

channels to meet mobile phone increase. The wireless base

station can accommodate multiple channel units to support

such flexible capacity change. This also achieves flexible

convergence to latest mobile technology.

 The channel unit used in the LTE base station currently

supports up to 100Mb/s high speed communications and is

required high throughput packet processing capability. To

optimize radio resource usage with high speed and high

quality communications under high speed mobility, channel

unit is requested real time channel scheduling and protocol

handling. A DSP is usually employed in the channel unit to

achieve such realtime and complex control.

 A general purpose CPU is commonly used for the

control unit. Mobility management, connection management

and system maintenance requires less severe response but

more complex control than channel unit.

2.2 Wireless Base Station Power Consumption

 Figure 2 shows a breakdown of the power consumption

of wireless base stations. [3] According to this chart, high

power consumption of the wireless base station is the radio

power amplifier. In the case, the most important factor to

reduce power consumption is increasing the power efficiency

of the radio power amplifier.

 However, the factor is different when a smaller cell size

is introduced. The smaller cell is to increase the number of

cell to improve the mobile phone accommodation capacity or

to enhance the dead zone coverage with femto cell or pico cell.

Because there are resource constraints of radio frequencies,

increasing the capacity of mobile phones accommodation per

area, it is necessary to lower the radio output power of

wireless base stations to reduce the size of the cell. Smaller

cell size is able to increase the density of cells in an area.

Radio power is reduced by the square of the distance reached.

Therefore, the radio power needed to cover the cell and the

cell area is proportional. When a cell is divided into

individual n pieces of cells, the radio power to cover a piece

cell is decreased to 1/n of original radio power. Therefore, the

PA

LNA

RF Module

AD/DA

Digital

Converter

RE

CPRI

PHY

REC

Control Unit

C Plane Handling

U Plane Handling

Channel Scheduling

Encode/Decode

Mux/DeMux

Rate Matching

MAC

Switch NWIF

Channel Unit

Base Station

450 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

total radio power needed to cover the area is a constant and

independent from cell size. If the radio output efficiency of

radio amplifier power consumption remains constant, total

power consumption of radio amplifier also remain constant.

The smaller the cell size is, the lower power consumption the

radio power amplifier is. Power consumption of power supply

and air conditioning becomes lower as well.

Power
Amplifier incl.
Feeder 50-

80%
65.0%

Air
Conditioning

10-25%
17.5%

Power Supply
5-10%
7.5%

Signal
Processing

(Analog+Digita
l) 5-15%
10.0%

Figure 2. Power Consumption in Wireless Base Station

 On the other hand, power consumption of signal

processing portion is dependent on the accommodation

capacity of the mobile phones and is independent from the

cell size. When the cell size is reduced to increase total

accommodation capacity, the number of cells increases and

the number of signal processing also increases proportionally.

Total power consumption of signal processing and control

increases. Especially, smaller cell such as femto cell or pico

cell which aims to enhance indoor coverage, the power

consumption of the signal processing is a non-negligible issue.

 In Figure 2, if the cell size of the wireless base station

becomes 1/6, power consumption of radio power amplifier

also becomes 1/6, however, power consumption of signal

processing does not change. As a result, both power

consumptions would be approximately the same and power

consumption reduction of signal processing would be also an

issue. In a recent design of LTE base station, power

consumption of power amplifier and signal processing

become almost comparable. According to a sample design,

power consumption ratio of RE and REC is already 5:3.

 In addition to power consumption reduction issue of the

small cell size wireless base station described above, there is

another problem of power consumption by redundant capacity

due to traffic fluctuations. Increasing the capacity of the

mobile phone would increase power consumption. Assuming

a situation with large fluctuation of number of mobile phone

in the nighttime period and daytime, as the business area for

example, there is power wasting time zone during which it

does not require high processing power. 3GPP is under

studying power reduction and focuses on radio power saving

by the scheduled power off and overlay of large cell and small

size cell as a practical approach. The power reduction of

control system has not yet been studied. [4]

 CPUs which are employed in the wireless base station

have been developed with a variety of techniques to achieve

low power consumption. Shrinking design rule is one of the

most popular methods.

 Next is to reduce the load on the processor which is

caused by the high speed and complex signal processing

needs. Specific function hardware engines such as coding and

decoding are introduced to reduce processing load. The

problem of the method is hardware implementation may

consume more energy than software implementation.

 The other is, to introduce a hardware mechanism to

lower power consumption such as variable voltage and

variable system clock. To apply such feature to CPU needs to

detect CPU idle state. However, implementing these features

are not easy because CPU is requested to maintain response

time less than 10mS and to achieve a quick rise of processing

power to cope with situations such as a sudden increase in the

number of active mobile phones in a cell. It is still seeking

effective implementation methods. A simple idle detection

and quick response power reduction mechanism applicable to

CPU which is employed in channel unit of the wireless base

station to support the smaller cells is requested.

2.3 ULPDDP Features

 ULPDDP is based on an ultra-low-power data driven

chip multiprocessor architecture. An ULP-CUE is an ultra-

low-power data driven processor core and the ULPDDP has 4

ULP-CUE. The ULP-CUE is optimized for power reduction

to be employed as a network processor and the block diagram

of the ULP-CUE is shown in Figure 3. Different from CUE-

v2, it has bypass circuit to improve efficiency of unary

operation in UDP/IP. [5]

Figure 3. ULP-CUE Block Diagram

M FC IF ID

MA B EX BB

MB

Bypass for firing control
Input from

other processors

Output to

other processors

FC: firing control
IF: instruction fetch
ID: instruction decode
EX: execution of operation
MA: data-memory access

B: branch
M: merge
MB: merge for bypass
BB: branch for bypass

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 451

 In ULP-CUE, each stage is executed asynchronously and

connected through Self-Timed-Pipeline (STP) mechanism.

Figure 4 shows STP configuration which is employed ULP-

CUE. Each STP stage consists of data latch, logic circuit and

transfer control circuit (C). Data latch clock is comes from C

in each stage and the C is connected to neighbor stage C with

asynchronous handshake mechanism. The handshake enables

the pipeline progress next stage and also enables the pipeline

stop if there is no data to be processed. With this mechanism,

data driven and event driven mechanism is realized. The

ULP-STP has Power Gating (PG). Idle stage is detected by C

status and standby power is cut while the stage is idle. ULP-

STP also has dual voltage switching mechanism which

enables slower but lower power operation. [6]

Figure 4. Ultra Low Power Self Timed Pipeline

Figure 5 Relation between throughput and power consumption

 As shown in Figure 5, the STP mechanism realizes

approximately proportional power consumption to the

throughput. This means that under low load, ULPDDP

automatically reduces power consumption. This is a desirable

characteristic as a processor of wireless base station in a large

variation in the number of mobile phone. It is also emphasized

that the power saving mechanism is implemented as a data-

driven mechanism without complicated control mechanisms.

PG and Low-Voltage-Switching effect of power saving is also

shown in Figure 5.

2.4 ULPDDP applied wireless base station

 As it is described, the wireless base station consists of

several components. Although ULPDDP is applicable in the

various parts of the wireless base station, it is appropriate to

discuss most suitable portion in the wireless base station for

early adaptation.

 Figure 6 and Figure 7 is a protocol stack between UE

(mobile phone) and eNB (wireless base station). [7][8]

 In the typical implementation of wireless base station,

PHY is realized by hardware in RE and the Channel Unit.

MAC and RLC require highly realtime processing and are

realized in the Channel Unit. RDCP and RRC require less

frequent communication and process than MAC and RLC, so

that it is realized by Control Unit. The reason of such

demarcation is considering required processing speed of UE

communication and easy development of software.

Figure 6. User-plane protocol stack

Figure 7. Control-plane protocol stack

 Following are also additional implementation the typical

implement of each unit in wireless base station.

1. RE’s basic function is to send and receive RF signal and

conversion to base band. Main power consumption of RE is

RF circuit. Sophisticated intelligence of control is also not

required because of its simple implementation. Digital

DL

C

DL

C

DL

C

LogicLogic

Vmin

Vss PGPG

VDDVariable

PID control for

variable VDD

ISS

Energy-aware VDD

QoS

mode

DL

C

DL

C

DL

C

LogicLogic

Vmin

Vss PGPG

VDDVariable

PID control for

variable VDD

ISS

Energy-aware VDD

QoS

mode

PDCP

RLC

MAC

PHY

UE

PDCP

RLC

MAC

PHY

eNB

PDCP

RLC

MAC

PHY

UE

PDCP

RLC

MAC

PHY

eNB eNB

NAS

RRC

NAS

RRC

452 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

signal circuit in RE is also requested high speed and

hardwire logic such as ASIC are deployed.

2. Switch and NWIF are mainly hardware implementation and

usually 1 unit is installed in a wireless base station so that its

power consumption is independent from the number of

mobile phone.

3. Control Unit also installed 1 unit in a wireless base station

and its number is independent from a wireless base station

capacity. It has many functions such as wireless base station

control, call processing and mobility management. Although

some of function processes depend on number of mobile

phones, considering complexity of control processor

software, merit applying ULPDDP is not much.

4. Channel Unit handles processes which depend on number

of mobile phones such as channel assignment, modulation

selection and packet framing and also DSP is a main control

of the Channel Unit.

 Considering these points, applying ULPDDP to the

Channel Unit and replace the DSP is considered as the

simplest and the most effective employment of ULPDDP.

2.5 Power Consumption Estimation

 Figure 8 shows the comparison of X-Scale which has

Von Neumann architecture and CUE-v2 which has similar

architecture of ULP-CUE. UDP/IP is used for this

comparison and CUE-v2 achieves 61% lower power

consumption than X-Scale [9]

Figure 8 Power Consumption Comparison

 UDP/IP is a simple protocol which does not require

ACK response for data transfer. On the other hand, Channel

Unit communicating with mobile phone needs a response for

retransmission control. In the CUE series processor, such

protocol is not yet implemented and evaluated. To estimate

power consumption, authors set following assumptions.

1. Same energy ratio: Power consumption of X-Scale and

DSP is same for the UDP/IP process.

・ Although DSP and X-Scale have different

architecture and employ different design rule, the

difference is ignored for equal estimation.

2. Same Execution Steps: Both DSP and ULP-CUE need

comparable steps to execute. Specifically, same number

of ALU in DSP and EX in ULP-CUE are used for both

implementation.

・ From operational point of view, same functional

operation require

3. Enough concurrent processing: During WAIT state of

ACK, there are enough active parallel threads and DSP

and ULP-CUE

・ This is regarded as full load comparison.

・ In the partial load environment, ULP-CUE is

expected lower power consumption because of

ULP-STP.

 With these assumptions, same power ratio of Figure 8 is

able to be applied to DSP and ULP-CUE comparison.

 Power consumption of ULP-CUE is 50% less than CUE-

v2. [9] ULP-CUE power consumption is in proportion to

throughput, so that if ULP-CUE is not saturated, power

consumption of ULP-CUE and ULPDDP which has 4 ULP-

CUEs is the same.

 Considering these estimation, ULPDDP is expected 10%

of power consumption of DSP. In a Channel Unit design for

example, DSP consumes around 10W. The Channel Unit with

ULPDDP is expected to save 9W which is around 20% of the

Channel Unit power consumption.

3 Conclusions

 In this paper, it is studied applying ULPDDP to wireless

base station to lower power consumption. It is described that

ULPDDP has suitable characteristics being employed for the

wireless base station, especially channel unit which processes

signals and data between mobile phones and wireless base

station. In the Channel Unit, DSP has been employed for the

signal processing. It is estimated that ULPDDP could lower

power consumption 90% than DSP. This estimation is based

on assumptions.

 A work is needed to find appropriate power

consumption estimation. There are several assumptions in the

estimation to be discussed with and it is also necessary to

evaluate ULPDDP performance from several aspects. Non-

UDP protocol performance is one of the important areas for

mobile network application of ULPDDP.

 As it is described in the paper, in the previous study,

because of using low error rate of data transfer network and

easy implementation, re-transmission effect to data driven

networking system has not yet been evaluated. However, error

and re-transmission at radio section is regularly occurring

issue so that it plays an important role in the mobile

communications performance. Further study on this area and

detailed evaluation is required. Also further work is expected

for implementation of mobile protocols on ULPDDP with

0000

0.20.20.20.2

0.40.40.40.4

0.60.60.60.6

0.80.80.80.8

1111

1.21.21.21.2

XscaleXscaleXscaleXscale CUE-v2CUE-v2CUE-v2CUE-v2

E
n
e
rg

y
[m

W
se

c
]

E
n
e
rg

y
[m

W
se

c
]

E
n
e
rg

y
[m

W
se

c
]

E
n
e
rg

y
[m

W
se

c
]

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 453

fully utilizing mobile communication parallelism described in

this paper. After the work, an experiment is expected to

accurate power consumption comparison with DSP

implementation.

 Another further work is expansion of application of

ULPDDP in the wireless base station. FPGA and ASIC are

employed signal processing of Channel Unit to reduce DSP

load and realize high speed signal processing. These functions

such as coding /decoding and FFT are pipeline process and

have good nature applying data driven scheme. Studying to

apply STP to such function is expected as good start and is

beneficial to develop low power channel unit. It will expand

possibility of software control or software implementation of

these functions together with ULPDDP.

 Studying heterogeneous architecture such a mixture of

ULPDDP and other co-processor function of mobile signal

processing is also expected useful for future expansion of

ULPDDP application.

 Another challenge is software development for the

implementation. DSP already has development environment

and software asset. It is expected to enrich ULPDDP

environment for easy introduction and implementation

4 Acknowledgement

 Although it is impossible to give credit individually to

all those who organized and supported the CUE project and

the ULP-DDNS project, the authors would like to express

sincere appreciation to all members in the project.

5 References

[1] Hidehiko Ooyane, Daisuke Tanigawa, Naoki

Nakaminami and Yoshitaka Hiramoto, “Development of IP-

based wireless base transceiver station,” NTT DoCoMo

Technical Journal, Vol. 15, No. 1, Apr. 2007

[2] CPRI Specification V4.2, Sept. 2010

[3] Vodafone Chair Mobile Communications Systems,

“Study on Energy Efficient Radio Access Network (EERAN)

Technologies”, Project Report of TU Dresden, 2009

[4] 3GPP TR 32.826 V2.0.0, “Study on Energy Savings

Management (ESM)”, Mar. 2010

[5] Shuji Sannomiya, Ryotaro Kuroda, Kazuhiro Aoki, Kei

Miyagi, Makoto Iwata and Hiroaki Nishikawa, “Chip-Multi

Processor Platform for Ultra-Low-Power Data-Driven

Networking System;ULP-DDNS,” Proc. of the 2011 Int’l

Conf. on Parallel and Distributed Processing Techniques and

Applications, PDP5136, July 2011

[6] K. Miyagi, S. Sannomiya, K. Sakai, M. Iwata and H.

Nishikawa, “Autonomous Power-Supply Control for Ultra-

Low-Power Self-Timed Pipeline”, PDPTA’08, pp. 704-709

[7] 3GPP TS 36.300(V8.10.0) Evolved Universal

Terrestrial Radio Access (E-UTRA) and Evolved Universal

Terrestrial Radio Access Network (E-UTRAN); Overall

description; Stage 2 (Release 8), Sept. 2009

[8] 3GPP TS 25.301(V8.5.0) Radio Interface Protocol

Architecture(Release 8), Mar. 2009

[9] Hiroaki Nishikawa, Kazuhiro Aoki, Hiroshi Ishii and

Makoto Iwata, “Intermediate Achievement of Ultra-Low-

Power Data-Driven Networking System: ULP-DDNS,” Proc.

of the 2011 Int’l Conf. on Parallel and Distributed Processing

Techniques and Applications, PDP5135, July 2011

454 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Broadcast Voice Streaming by Load-aware Flooding over

Ad Hoc Networks achieving Reduction of Traffic and

Power Consumption

Keisuke Utsu
1,2

, Hiroaki Nishikawa
3
, and Hiroshi Ishii

1

1
School of Information and Telecommunication Engineering, Tokai University, Minato, Tokyo, Japan

2
Research Fellow of the Japan Society for the Promotion of Science, Japan

3
 Graduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba, Ibaraki, Japan

Abstract - When an ad hoc network is to be used in a disaster

situation, it is likely that emergency information will be

broadcast by voice streaming from a small number of nodes.

Conventionally, simple flooding (SF) has been used as a

method of broadcasting streams to the entire network.

However, if SF is applied to information flows in which

packets are generated at a high rate, as is the case with voice

streams, packet loss will occur frequently, causing

degradation in the quality of service. For the broadcast

delivery of high-load information flows such as voice streams,

we have already proposed a Load-aware Dynamic Counter-

based Flooding (LDCF). In this paper, LDCF is applied to

broadcast voice streaming, and is compared with SF using

network simulation. It is shown that LDCF results in reduced

packet loss and a lower volume of generated traffic than SF.

Keywords: Ad Hoc Network, Voice, Streaming, Flooding,

Broadcast

1 Introduction

 Ad hoc networks [1] are likely to be used in a disaster

situation because these wireless networks that do not depend

on an established radio infrastructure. In a disaster it is likely

that a limited number of specific nodes will broadcast voice

streams to the entire network. For example, evacuation

instructions or information about damage suffered may be

broadcast to the wireless mobile terminals of disaster victims.

In addition, instructions may be sent to rescue teams.

However, unicast or multicast communication based on the

conventionally studied routing protocols cannot be applied to

the above situation for the following reasons. First, as the

number of nodes increases, so does the data flow, resulting in

an increase in traffic. Second, since these techniques require

some time before new routing tables are established, they

cannot immediately deliver information. Third, their routing is

based on the knowledge of the IP addresses of other nodes, an

assumption not likely to be fulfilled in a disaster situation. For

these reasons, the only viable alternative is to broadcast

packets to the entire network, just as conventional flooding

does. However, if simple flooding (SF) in [2] is applied to

information flows in which packets are generated at a high

rate, as is the case with voice streams, packet loss will occur

frequently, and many unnecessary packets will be broadcast,

resulting in degradation in quality of service and an increase

in traffic and power consumption. There have been no

previous studies that focused on the application of broadcast

voice streaming to an ad hoc network.

 As a method of broadcast streaming, we have already

proposed a Load-aware Dynamic Counter-based Flooding

(LDCF), and showed that LDCF results in fewer unnecessary

packets being sent and less degradation in quality of service

(QoS) than SF or other methods [3]. However, we did not

evaluate QoS, the reduction effectiveness of traffic and power

consumption per node for the case in which voice streaming is

used. This paper shows that the application of LDCF to

broadcast voice streaming in an ad hoc network results in

fewer instances of packet loss than SF. Nodes used in an ad

hoc network are normally powered by a battery of finite

capacity. Therefore a reduction of the number of exchanged

packets is desirable, not only because of the reduction in

traffic load itself, but also because it results in reduced power

consumption. This paper shows that LDCF generates less

traffic and consumes less powerper node than SF.

 Section 2 describes the assumed environment and the

proposed flooding method, LDCF. Section 3 describes an

evaluation of the average packet loss rate, the volume of

traffic and the estimated power consumption per node using

network simulation. Section 4 presents the conclusions.

2 Flooding methods

2.1 Existing methods and their problems

 Simple Flooding is used to deliver packets to the whole

network as follows. A node that originates video packets

(initiator node) broadcasts them. These packets reach all the

nodes that exist within the area covered by the radio wave

transmitted by the initiator node. A node that has received one

of these packets re-broadcasts it. This process is repeated by

subsequent nodes until the packets reach all the nodes in the

network. Since packets are generated at a very high rate in a

voice streaming, SF produces many redundant re-broadcasts,

which can cause many collisions and buffer overflows,

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 455

resulting in packet loss. Thus, it is difficult to maintain an

adequate and stable level of communication quality. In

particular, if there is a dense population of nodes in the

network, communication quality can be seriously degraded.

 There have been proposals to improve SF in order to

reduce redundant re-broadcasts, thereby raising the

probability of the packets reaching many nodes [4-5].

Counter-based scheme in [4-5] is one of the most famous

improved flooding methods without using extra facility such

as GPS (Global Positioning System). The method makes the

rebroadcast decision based on the number of receiving same

packets. Basic algorithm is as follows. When a node receives

a packet the counter (counter) is initialized. When the node

receives the same packets during a random period again, the

counter is added 1. If the counter reaches the counter

threshold value (c_threshold), the rebroadcast is canceled.

Otherwise (the timer expires without reaching c_threshold),

the node rebroadcasts the packets. The c_threshold affects the

performance of this method [4]. In a sparse network, if the

c_threshold is small (such as 2), rebroadcast is restrained, but

low packet reachability is achieved. On the other hand, in a

dense network, the c_threshold does not affect the packet

reachability seriously. The author of [4] recommends that a

c_threshold of 3 or 4 is probably a reasonable choice. In

addition, when a large c_threshold (such as 6) is selected, the

behavior is close to Simple Flooding, so the redundant

rebroadcast is not restrained. To improve this method, the

Adaptive Counter-based scheme [6] has been proposed. In

this improved method, nodes transmit Hello packets

periodically and recognize the number of neighboring nodes

to decide the c_threshold dynamically. However the

periodical transmission of Hello packets is not favorable in

terms of energy consumption and wireless resources

efficiency.

 Assuming the broadcast video streaming, the above

methods have critical problems. When packets are generated

at a high rate in the network, the nodes cannot avoid traffic

congestion because these methods consider only redundancy

of the same packets. This can lead to degradation in

communication quality, and an accelerated consumption of

power by these nodes.

2.2 LDCF (Proposed method)

 As mentioned in Section 2.1, several improved flooding

methods have been proposed. However none of them are

applicable to broadcast video streaming. Since the methods in

[3-6] are not load-aware methods, to achieve broadcast video

streaming with high QoS performance achieving reduction of

traffic and power consumption, it is necessary to take into

account of load condition at each node. In addition, the

method in [6] needs the periodical transmission of Hello

packets, which is not favorable in terms of energy

consumption and wireless resource efficiency. Hence, we

have proposed a novel flooding method taking into account of

load condition at each node without the Hello packet

transmission and special equipment such as GPS. In the

following, we explain the concepts and operations of our

methods.

 This paper focuses on unidirectional live streaming, and

assumes the following. Nodes in the network are ordinary

laptop PCs not equipped with any extra facility, such as GPS,

and they communicate with each other using wireless LANs

that are based on IEEE802.11. The network uses UDP/IP,

performs no QoS control, and operates on the principle of best

effort. One video frame can be included in one packet. The

paper focuses on the evaluation of video delivery performance,

and thus does not delve into video compression methods or

the reconfiguration of video frames.

 To solve the problems of the existing methods, we have

proposed Load-aware Dynamic Counter-based Flooding

(LDCF) [3]. Our proposal has following two characteristics:

(i) The packet rebroadcast criteria can reflect the actual load

condition of each node, and (ii) No Hello packets are sent to

get/take network load condition to/from the other nodes.

Figure 1 shows the basic concepts of our proposed method. In

this scheme, a node that has received a packet learns about its

own loading condition by examining the number of packets

existing in its MAC queue, and depending on the loading

condition, dynamically changes the criterion by which it

decides whether to re-broadcast packets. The reason why our

method uses the number of packets in the queue because at

the time the packets are existing in a node’s queue, the node is

transmitting/receiving frames exceeding its link capacity. If

the node rebroadcasts a packets in this situation, frame loss

and collision due to buffer overflow are likely to happen.

Therefore, the number of packets in the queue is useful

information to recognize the load conditions without any

status informing packet transmission. A detailed operation of

this scheme is described below. Figure 2 shows its algorithm.

 The node that has received a packet from an initiator

node operates as follows:

Application

Middle Layer

MAC Layer

1.Receive 4. Rebroadcast

3. Rebroadcast decision

2. Queue information

Receiving node

Broadcasting node

Receiving node

Fig.1 Basic concept of our proposal

456 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

1. A node that has received a packet. If the packet has NOT

been already received, it sets 1 to the counter (counter).

2. It examines the number of packets existing in its MAC

queue.

2.1. If the number of packets existing in the MAC queue is

equal to or greater than the queue threshold (q_threshold),

which has been pre-set for that node, the counter threshold

(c_threshold) is set to loaded_c_threshold. The waiting time

before the decision as to whether to re-broadcast packets is

made (decision_time) is expressed as Random() * factor.

2.2. If the number of packets existing in the MAC queue is

smaller than the queue threshold (q_threshold), which has

been pre-set for that node, the counter threshold (c_threshold)

is set to default_c_threshold. The waiting time before the

decision as to whether to re-broadcast packets is made

(decision_time) is expressed as Random().

2.3. If the node re-receives the same packet before

decision_time has elapsed, it adds 1 to counter. If the counter

value reaches c_threshold, the packet is not rebroadcast. If the

counter value has not reached c_threshold, the packet is sent

to the lower layer, and it is re-broadcast.

 It is assumed that loaded_c_threshold <

default_c_threshold, and factor = 2
n
, this has been introduced

to increase the probability of avoiding the collision of data

frames in loaded nodes. (A detailed description of factor is

omitted in Fig. 1.) Here, n is assumed the integer between 0

and 5. The domain of definition is such that it allows a

sufficient delay time to ensure the delivery of a packet to the

entire network. This is because in this paper it is assumed that

the network is so small that all nodes can be reached within

around 5 hops.

3 Evaluation using simulation

 Although we have indicated that LDCF is suitable for

high-load streaming, we have not studied its use in broadcast

voice streaming. In this section, using a network simulator [7],

LDCF is applied to broadcast voice streaming, and the QoS of

this streaming communication is evaluated. LDCF is

compared with SF in terms of the packet loss rate and the

volume of traffic per node.

3.1 Simulation Conditions

 The simulation conditions were as follows. There were

100 nodes in the network, of which one to six nodes

originated voice streams (initiator nodes). All nodes moved

around based on the Random Waypoint Model at a speed

ranging from 0.00 to 8.00 m/s, which simulates the walking

speed of humans. The MAC layer of each node used

IEEE802.11b. The data bit-rate was 2 Mbps. The

transmission power was 0.005 W. The received power for

successful packet reception was -85 dBm.

 As shown in Table 1, Two simulation areas were

considered: 1000 m x 600 m (Cases A and C) and 2000 m x

1200 m (Cases B and D). Two packet sizes (L2 payload) were

used: 200 Bytes (Cases A and B), which assumed the use of

G.711 [8] for coding and decoding, and 60 Bytes (Cases C

and D), which assumed the use of G.729 [9]. Packets were

 ○ Parameter Integer: default_c_threshold
// The default threshold value of the counter.

○ Parameter Integer: loaded_c_threshold
// The threshold value of the counter for loaded-nodes.

○ Parameter Integer: q_threshold
// The threshold number of packets on the queue.

○ Parameter Integer: factor // The factor for loaded-nodes.
○ Variable Integer: c_threshold // The threshold value of the counter.
○ Variable Integer: counter
○ Variable Integer: queue
○ Variable Real: decision_time
○ Function: getQueue()

// The function to get the number of packets on the queue.

Receive a packet
 if (The same packet as that the node has already received)
 then END
 else if (TTL == 0)
 then END
 else counter 1
 queue getQueue()
 if (queue >= q_threshold)
 then decision_time Random()*factor
 c_threshold loaded_c_threshold
 else decision_time Random()
 c_threshold default_c_threshold
 end if
 end if
 while (decision_time)
 if (Receive the same packet again)
 then counter++
 if (counter == c_threshold)
 then END
 end if
 end if
 end while
 Rebroadcast the packet
 end if
END

Fig. 2 LDCF (Operation of receiving node)

Table 1 Configuration of the simulation

 Simulation area [m] Initiated packet size [byte]

Case A 1000x600 200

Case B 2000x1200 200

Case C 1000x600 60

Case D 2000x1200 60

Table 2 Parameter of LDCF

 Cx_n1 Cx_n5 Cy_n1 Cy_n5 Cz

default_c_threshold 6 6 4 4 2

loaded_c_threshold 2 2 2 2 1

n 1 5 1 5 -

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 457

generated at intervals of 20 ms. Each initiator node originated

1500 packets, i.e., a 30-second-long voice stream. Either

LDCF or SF was used to broadcast packets generated by the

initiator nodes. One of the 5 sets of parameter values shown in

Table 1 was used for LDCF. In the case of Cz,

loaded_c_threshold = 1. Therefore, packets were not re-

broadcast if queue >= q_threshold. This meant that the

number of initiator nodes, n, did not affect the operation of

LDCF. Initiator nodes did not re-broadcast packets they

received from other nodes. The play-out deadline at a

receiving node was 5 seconds. Any packets that arrived after

the play-out time were discarded.

 We conducted 20 simulation trials for each Case, for

each set of parameter values, for different location of nodes

and mobility patterns.

3.1.1 QoS Evaluation

 Specific measures used for the evaluation of the QoS of

Voice over IP (VoIP) included packet loss, packet delay, and

delay jitter [10][11]. However, since we were focusing on

unidirectional live voice streaming in the situation of a

disaster as mentioned in Section 2.1, several seconds of delay

in reproducing voice are tolerable. The problems of packet

delay and packet jitter can be solved by buffering packets.

 Therefore, only packet loss needs to be examined in our

evaluation. We examined the average packet loss rate, i.e., the

ratio of the number of successfully received packets to the

number of packets generated, as follows. In each trial, 5 nodes

were selected for observation. From among all the packets

generated by an initiator node, those that were successfully

received were counted. This was repeated for 20 simulations.

We thus obtained samples of 100 observed nodes. The

average packet loss rate, L [%] was the average for the 20

simulations.

 The evaluation results are shown in Fig. 3. In all Cases

(Cases A to D), L was smaller when LDCF was used, for all

sets of parameter values, than when SF was used. The reason

is that LDCF reduced unnecessary re-broadcasting, and as a

result, reduced the occurrence of collisions and buffer

overflows. The value of L was the smallest with parameter

values Cz. This is because the smaller default_c_threshold

and loaded_c_threshold are, the more greatly was

unnecessary re-broadcasting reduced.

 Next, we examine QoS and the scalability of LDCF.

According to Reference [10][12], when G.711 and PLC are

used, the MOS (Mean Opinion Score) is greater than 2 at a

packet loss rate of 5%, irrespective of whether packet losses

occur at random or are bursty. An MOS of 2 means Poor

while that of 3 means Fair. If broadcast voice streaming is to

be used in a disaster situation for sending evacuation

instructions or information about damage, some degradation

in QoS can be tolerated as long as listeners can understand

what is said by the speaker. Therefore, broadcast voice

streaming is considered useful if L < 5%. In Cases C and D, a

G.729 codec was used. The MOS of a G.711 codec by itself is

4.11 while that of a G.729 codec is 3.92 [11]. The difference

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6

Number of Initiators

A
v

er
ag

e
L

 [
%

] SF

Cx_n1

Cx_n5

Cy_n1

Cy_n5

Cz

better

(A) Case A (Dense, G.711)

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6

Number of Initiators

A
v

er
ag

e
L

 [
%

] SF

Cx_n1

Cx_n5

Cy_n1

Cy_n5

Cz

better

(B) Case B (Sparse, G.711)

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6

Number of Initiators

A
v

er
ag

e
L

 [
%

] SF

Cx_n1

Cx_n5

Cy_n1

Cy_n5

Cz

better

(C) Case C (Dense, G.729)

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6

Number of Initiators
A

v
er

ag
e

L
 [

%
] SF

Cx_n1

Cx_n5

Cy_n1

Cy_n5

Cz

better

(D)Case D (Sparse, G.729)

Fig.3 Simulation results for average packet loss rate, L, at candidate nodes for different sets of parameter

values

458 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

in MOS between G.729 and G.711 codecs is so small that we

assumed that broadcast voice streaming was useful even in

Cases C and D as long as L < 5%.

 For LDCF, we focused on parameter values Cz, with

which L was the smallest. When there were 4 initiator nodes,

L was 0.23% in Case A, 3.89% in Case B, 0.18% in Case C,

and 3.05% in Case D. In other words, all Cases satisfied L <

5%, suggesting that broadcast voice streaming can provide

sufficient QoS even under the assumed conditions as long as

the number of initiator nodes is no greater than 4.

3.1.2 Evaluation of the volume of traffic per node

 We examined the volume of traffic per node. The

specific items examined were (i) to (iii) below. These were

calculated for each simulation.

(i) Number of transmitted packets per node, trs

 The number of packets that were received and then re-

broadcast at each node was totaled for all the nodes in the

network, and the sum was then divided by the number of

nodes. The packets originated by initiator nodes were

excluded from the above count. Only re-broadcast packets

were counted.

(ii) Number of received packets per node, trr

The number of packets that were received at each node was

totaled for all the nodes in the network, and the sum was then

divided by the number of nodes.

(iii) Number of transmitted and received packets per node, trx

 trx is the sum of trs and trr.

 Figure 4 shows the average trx for all trials. In all Cases,

trx was smaller with LDCF for any of the sets of parameter

values than with SF. The reason is that LDCF reduced

unnecessary re-broadcasting, and as a result, reduced the

number of received packets. In the case of set Cz, which gave

the smallest L, and 4 initiator nodes, trx was reduced from that

of SF by 63.7% in Case A, 48.4% in Case B, 70.6% in Case C,

and by 55.5% in Case D.

3.1.3 Evaluation of estimated power consumption

 Based on the results obtained in Section 3.1.2, the power

consumption per node was calculated for different sets of

delivery parameters, and the results were compared.

According to a study by Freeney et al. [13], the energy

consumed when one packet is transmitted, tp[μW*sec], and

that when one packet is received, rp[μW*sec], can be

expressed as:

tp = 2.000 * frame length + 270 (1)

rp = 0.500 * frame length + 60 (2)

 Using expressions (1) and (2), the following can be

calculated.

0

20000

40000

60000

80000

100000

1 2 3 4 5 6

Number of Initiators

A
v

er
ag

e
tr

x
[p

ac
k

et
s]

SF

Cx_n1

Cx_n5

Cy_n1

Cy_n5

Cz

better

(A) Case A (Dense, G.711)

0

20000

40000

60000

80000

100000

1 2 3 4 5 6

Number of Initiators

A
v

er
ag

e
tr

x
[p

ac
k
et

s] SF

Cx_n1

Cx_n5

Cy_n1

Cy_n5

Cz

better

(B) Case B (Sparse, G.711)

0

50000

100000

150000

200000

250000

1 2 3 4 5 6

Number of Initiators

A
v

er
ag

e
tr

x
[p

ac
k
et

s]

SF

Cx_n1

Cx_n5

Cy_n1

Cy_n5

Cz

better

(C) Case C (Dense, G.729)

0

50000

100000

150000

200000

250000

1 2 3 4 5 6

Number of Initiators
A

v
er

ag
e

tr
x

[p
ac

k
et

s] SF

Cx_n1

Cx_n5

Cy_n1

Cy_n5

Cz

better

(D)Case D (Sparse, G.729)

Fig.4 Simulation result of average total traffic per node trx for different set of parameters

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 459

(iv) Power consumption of packet transmission per node, pws

[μW*sec]

tptrspws paramparam *
 (3)

(v) Power consumption of packet reception per node, pwr

[μW*sec]

rptrrpwr paramparam *
 (4)

(vi) Power consumption of packet transmission and reception

per node, pwx [μW*sec]

paramparamparam pwrpwspwx
 (5)

 Figure 5 shows the average pwx for all trials. In all

Cases, pwx was smaller with LDCF for any of the sets of

parameter values than with SF. The reason is that LDCF

reduced unnecessary re-broadcasting, and as a result, reduced

the number of received packets. In the case of set Cz, which

gave the smallest L, and 4 initiator nodes, pwx was reduced

from that of SF by 76.5% in Case A, 65.6% in Case B, 79.8%

in Case C, and by 70.0% in Case D.

4 Conclusions

 In this paper, we have studied the application of LDCF

to broadcast voice streaming in an ad hoc network, and

evaluated the effects of LDCF using network simulation.

 To evaluate QoS, we examined the average packet loss

rate. It was found that the average packet loss rate was smaller

with LCDF than with SF. In the case of parameter value set

Cz, which used the lowest counter threshold, broadcast voice

streaming provided sufficient quality as long as the number of

initiator nodes was no greater than 4. We also evaluated the

volume of traffic per and estimated power consumption. The

result showed that these values were smaller with LDCF than

with SF.

 In this paper, we used the average packet loss rate to

evaluate QoS. To evaluate QoS in more detail, we plan to use

objective testing methods, such as perceptual evaluation of

speech quality (PESQ) [14]. We also plan to study the use of

LDCF for broadcast video streaming and mixed voice and

video streaming.

5 Acknowledgments

This work was supported by JSPS KAKENHI (Grant-in-Aid

for JSPS Research Fellows) and Core Research for

Evolutional Science and Technology (CREST), Japan Science

and Technology Agency (JST).

6 References

[1] C. Siva Ram Murthy, B. S. Manoj, “Ad Hoc Wireless

Networks - Architectures and Protocols”, PRENTICE

HALL, Professional Technical Reference

[2] Jorjeta G. Jetcheva, David A. Malts, “A Simple protocol

for Multicast and Broadcast in Mobile Ad Hoc Networks“,

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6

A
v

er
ag

e
p

w
x[

W
*

se
c]

Number of Initiators

SF

Cx_n1

Cx_n5

Cy_n1

Cy_n5

Cz

better

(A) Case A (Dense, G.711)

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6

A
v

er
ag

e
p

w
x[

W
*

se
c]

Number of Initiators

SF

Cx_n1

Cx_n5

Cy_n1

Cy_n5

Cz

better

(B) Case B (Sparse, G.711)

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6

A
v

er
ag

e
p

w
x[

W
*

se
c]

Number of initiators

SF

Cx_n1

Cx_n5

Cy_n1

Cy_n5

Cz

better

(C) Case C (Dense, G.729)

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6

A
v

er
ag

e
p

w
x[

W
*

se
c]

Number of initiators

SF

Cx_n1

Cx_n5

Cy_n1

Cy_n5

Cz

better

(D)Case D (Sparse, G.729)

Fig.5 Simulation result of average total traffic per node pwx for different set of parameters

460 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

IETF MANET Working Group Internet-Draft, <draft-ietf-

manet-simple-mbcast.txt>, 2001

[3] Keisuke Utsu, Hiroshi Ishii, “Load-aware Flooding for

Streaming over Ad Hoc Networks”, IEEJ Trans. EIS,

Vol.130, No.8, 2010

[4] Yu-Chee Tseng, Sze-Yao Nis, Yuh-Shyan Chen, Jang-

Pinig Sheu, "The Broadcast Storm Problem in a Mobile

Ad Hoc Network," Wireless Networks Volume 8,

Springer, pp.153-167, Kluwer Academic Publishers, Mar.

2002

[5] Brad Williams and Tracy Camp, "Comparison of

Broadcasting Techniques for Mobile Ad Hoc Networks,"

Proceedings of the 3rd ACM International Symposium on

Mobile Ad Hoc Networking and Computing, pp.194-205,

Jun. 2002

[6] Yu-Chee Tseng, Sze-Yao Ni, En-Yu Shih, “Adaptive

Approaches to Relieving Broadcast Storm in a Wireless

Multihop Mobile Ad Hoc Network”, IEEE Transactions

on Computers, Vol. 52, No. 5, pp. 545-556, 2003

[7] The network simulator ”OPNET”, http://www.opnet.com

[8] ITU-T Recommendation G.711, “Pulse code modulation

(PCM) of voice frequencies”

[9] ITU-T Recommendation G.729, “Coding of speech at 8

kbit/s using conjugate-structure algebraic-code-excited

linear prediction (CS-ACELP)”

[10] J.H. James, Bing Chen, Laurie Garrison, “Implementing

VoIP: A Voice Transmission Performance Progress

Report”, IEEE Communications Magazine, Vol. 72, Issue.

7, pp.36-41, July 2004

[11] Stylianos Karapantazis, Fotini-Niovi Pavlidou, “VoIP: A

comprehensive survey on a promising technology”,

Computer Networks, 53, 2009, pp.2050-2059, Elsevier

[12] ITU-T Recommendation P.800, “Methods for subjective

determination of transmission quality”

[13] Feeney L.M., Nilsson M., “Investigating the Energy

Consumption of a Wireless Network Interface in an Ad

Hoc Networking Environment,” INFOCOM 2001,

Twentieth Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings,

IEEE Volume 3, April 2001, pp.1548-1557

[14] ITU-T Recommendation P.862, “An objective method for

end-to-end speech quality assessment of narrow-band

telephone networks and speech codecs”

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 461

Proposal on Battery-aware Counter-based Flooding over

Ad Hoc Networks

Keisuke Utsu
1,2

, Hiroshi Sano
1
, Turganzhan Kassymov

3
, Hiroaki Nishikawa

4
, and Hiroshi Ishii

1

1
School of Information and Telecommunication Engineering, Tokai University, Minato, Tokyo, Japan

2
Research Fellow of the Japan Society for the Promotion of Science, Japan

3
Graduate School of Engineering, Tokai University, Hiratsuka, Kanagawa, Japan

4
 Graduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba, Ibaraki, Japan

Abstract - Large-scale disasters often disable existing

communications infrastructures or render stable power supply

to communications terminals or base stations difficult. It is

therefore important to study networks that can operate with

low power consumption. Ad hoc networks are being studied as

being resilient in a disaster situation. This paper considers

cases where a specific number of nodes in an ad hoc network

broadcast video and audio streams over the entire network,

and proposes Battery-aware Counter-based Flooding (BCF),

which reduces degradation in delivery quality, and energy

consumption, and prevents nodes from being interrupted due

to the complete discharge of their batteries. It also describes

an evaluation of this flooding scheme using network

simulation, and confirms its effectiveness.

Keywords: Ad Hoc Network, Broadcast, Flooding, Battery,

Low power consumption

1 Introduction

 As happened in the recent earthquake in Japan (Northern

Japan Earthquake), a large-scale disaster can disrupt existing

communications infrastructures. As a solution to this problem,

a network configuration known as an ad hoc network is being

studied [1]. Conceived applications of an ad hoc network

during a disaster include real-time streaming delivery, from a

specific number of nodes to the entire network, of video and

audio data that show scenes of disasters or instructions on

evacuation.

 Most studies on ad hoc networks have considered

client-server-type unicast or multicast streaming delivery.

Some have focused on video streaming [2-4]. However,

communications based on existing unicast routing protocols

are not suitable for delivering data over an entire network that

consists of many nodes. They require appropriate IP addresses

to be allocated to all the nodes in the network before the

delivery of data, a condition it may be difficult to meet in a

disaster. One method of delivering data without using a

routing protocol is flooding, which broadcasts data. However,

if the existing Simple Flooding [5] is used to deliver

streaming video and audio data, which generates packets at a

high rate, redundant re-broadcasts can occur, resulting in an

increased chance of data frame collisions and buffer

overflows, and thereby considerably degrading the delivery

quality. It is necessary to study how to achieve high packet

reachability. There have been some proposals for revising

Simple Flooding to reduce redundant re-broadcasts [6-8].

 In a disaster, it is often difficult to ensure a stable supply

of power to communications terminals and base stations.

Although an ad hoc network is not dependent on control by

base stations, its terminals are dependent on a finite battery

charge. When an ad hoc network delivers video and audio

streaming data, which generates packets at a high rate, the

battery charge of nodes will dissipate rapidly. As a result,

many nodes will stop functioning and the network’s delivery

capacity will fall. It is imperative to reduce redundant

transmissions of packets in order to reduce the power

consumption of nodes. In addition, it is necessary to reduce

the chances of nodes becoming inoperative due to the

complete discharge of their batteries.

 To sum up, if we are to broadcast streaming video and

audio data in a disaster situation, it is necessary (i) to achieve

high packet reachability and reduce the degradation of

delivery quality, (ii) to reduce the energy consumption of

nodes to make effective use of their battery charge, and (iii) to

reduce the chances of nodes becoming inoperative due to the

complete discharge of their batteries. However, there have

been no studies that attempt to satisfy all these requirements

simultaneously. In the light of this, this paper, proposes

Battery-aware Counter-based Flooding (BCF), evaluates it

using network simulation, and confirms its effectiveness.

 Section 2 identifies problems with existing methods.

Section 3 describes the proposed method. Section 4 shows the

effectiveness of the proposed method using network

simulation and Section 5 gives the conclusions.

2 Existing methods and their problems

 Simple Flooding (SF) [5] is the most frequently

used broadcast-type delivery. When it is applied to the

streaming delivery of video and audio data, which generates

packets at a high rate, redundant re-broadcasts occur,

increasing the chances of collisions and buffer overflows, and

resulting in a considerable degradation in delivery quality.

462 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

2.1 Counter-based schemes

 There have been several proposals to revise Simple

Flooding in order to reduce redundant broadcasts [6-8]. A

representative one among them is as follows.

 A well-known revision of Simple Flooding that does not

depend on a special device, such as a Global Positioning

System (GPS), is a Counter-based Scheme [6-7].

 In this scheme, a node determines whether to re-

broadcast a packet on the basis of the number of times the

same packet has been received. A packet is identified by the

combination of the ID of the node that generated it and the

packet sequence. The basic operation of this scheme is as

follows. When a node receives a packet, it sets the counter for

that packet to “1”. If it receives the same packet again during

an arbitrary pre-defined time (decision_time), “1” is added to

the counter. When the counter value reaches the counter

threshold (c_threshold), re-broadcasting of that packet is

suspended. If the counter value has not reached the counter

threshold (c_threshold) after an elapse of decision_time, the

packet is re-broadcast.

 It is to be noted that the performance of this scheme

greatly depends on c_threshold [6]. In a network in which

nodes are scattered sparsely, re-broadcasts are limited when

c_threshold is small (e.g., 2), but packet reachability is

reduced. In a network in which nodes are distributed densely,

c_threshold does not affect packet reachability too much. It is

desirable to set c_thereshold to 3 or 4. It has been reported

that if c_threshold is as large as 6, this scheme behaves much

like Simple Flooding, and thus cannot reduce redundant re-

broadcasts [7].

 To solve the above problem, Adaptive Counter-

based Scheme, which sets c_ threshold dynamically, has been

proposed [8]. In this scheme, each node sends a Hello

message periodically. These messages enable a node to

determine the number of its surrounding nodes. The node

determines whether to re-broadcast a packet on the basis of

this information. A problem with this scheme is that the

periodic transmission of Hello packets consumes the battery

charge of each node and the wireless resources of the network.

 While these two schemes reduce redundant re-

broadcasts, they do not take the remaining charge of node

batteries into consideration. They make no attempt to reduce

re-broadcasts by nodes with low remaining battery charge,

thereby increasing the chance that such nodes become

inoperative due to the complete discharge of their batteries.

2.2 Existing battery-aware flooding methods

 There have been a few proposals that take the remaining

charge of node batteries into consideration [9-10]. Koide et al.

[9] proposed a flooding scheme that uses a routing protocol. It

sets a delay time that is dependent on the remaining battery

charge. If a node receives the same packet again within its

delay time, it discards the packet. Kasamatsu et al. [10]

proposed a scheme in which the delay time set for each node is

dependent on the distance from neighboring node, which is

obtained using GPS, and the remaining battery charge. A node

that has received the same packet again within its delay time,

discards the packet. This scheme operates in such a way that

nodes with a low battery charge are less likely to be selected

for the re-broadcasting of packets. The scheme presented in

[9] assumes the use of a routing protocol for the propagation

of messages, and does not assume applications that generate

packets at a high rate, such as a streaming delivery of video

and audio data. Nor has it been evaluated for such applications.

The scheme presented in [10] assumes that each node has a

GPS and thus can obtain its location and distance information.

However, in a disaster, it cannot be ensured that the correct

location information can be obtained using a GPS. Therefore,

it is unclear whether these schemes can be applied to the

situation described in Section 1.

3 Proposed method

3.1 Assumed network environment and requirements

 This paper focuses on unidirectional live streaming delivery.

The network nodes are mobile communications terminals that

are not equipped with any special device, such as a GPS, and

can communicate over an IEEE802.11-series wireless LAN.

No QoS (Quality of Service) control is considered. Packets

are sent on a best-effort basis using UDP/IP.

 We consider the application of our method to the

situation described in Section 1, and study how to meet the

following three requirements for the streaming delivery of

video and audio data, which generates packets at a high rate.

(i) The redundant transmissions of packets should be reduced

in order to reduce degradation in delivery quality due to

collisions and power consumption by terminals. (ii) Re-

broadcasts by nodes with a low remaining battery level should

be avoided in order to reduce the chance of these nodes

becoming inoperative due to complete discharge of their

batteries. (iii) Packets for checking the network state, such as

Hello message packets, should not be used, in order to reduce

the network load and power consumption by nodes.

3.2 Battery-aware counter-based flooding (BCF)

 To meet the requirements listed in Section 3.1, this

paper proposes a flooding method that is sensitive to the

remaining battery levels of nodes and uses a counter in

determining whether a packet should be re-broadcast or not.

We call this scheme Battery-aware Counter-based Flooding

(BCF). Requirement (i) is met as follows. As is used in

existing counter-based schemes, BCF determines whether to

re-broadcast packets on the basis of the number of times that

the same packet has been received, thereby reducing the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 463

transmission of redundant packets. Requirements (ii) and (iii)

are satisfied as follows. Existing counter-based schemes use a

fixed value for c_threshold, and thus cannot operate in a way

that is sensitive to the remaining battery level of each node.

BCF sets c_threshold dynamically in such a way as to reduce

re-broadcasts by nodes with a low battery level. This makes it

unnecessary for each node to send monitoring packets to its

surrounding nodes in order to learn about their remaining

battery levels. Nodes can operate autonomously.

The specific operation of BCF is as follows. For each node,

the user sets, in advance, the maximum value of the counter

threshold (max_c_threshold), and defines the range of a value

generated by Random(), a function that generates a random

value. Each node monitors its remaining battery level at

certain intervals (get_interval), and reflects the value obtained

in a variable, remain_battery. Then, c_threhold is calculated

using the following equation:

c_threshold = ceil(max_c_threshold * (remain_battery /

max_battery)) (1)

where ceil(Real x) returns the value of a real variable, x,

rounded up to the nearest integer. The value set in

max_c_threshold and the value set in c_threshold, which is

determined according to the remaining battery level.

 A node that receives a packet from a node that initiated

the packet (initiator node) operates as follows:

1. The node that has received the packet sets the packet’s

counter (counter) to “1” if it had not received the same packet

earlier.

2. The time (decision_time) for which the node waits

before it determines whether to re-broadcast the received

packet is determined as follows:

decision_time = Random() * 2(max_c_threshold –

c_threhold) (2)

3. The node waits for decision_time. If during this time it

receives the same packet again during the waiting time, it adds

“1” to counter.

4. If, at the end of decision_time, counter exceeds

c_threshold, the received packet is not re-broadcast but

discarded. If counter does not exceed c_threshold, the

received packet is sent to the lower layer and re-broadcast.

4 Evaluation using network simulation

 This section compares the performance of the proposed

BCF with those of existing schemes, using a network

simulator, OPNET [11].

4.1 Simulation conditions

 It is assumed that there are 100 nodes in the network,

and that one of them is the initiator node. Four cases are

considered. In Cases A and B, the initiator node generates

video streams, while in Cases C and D, it generates audio

steams. We evaluate BCF and compare it with other schemes

in terms of the extent to which power is saved, the extent to

which the number of nodes that have become inoperative due

to complete discharge of their batteries is reduced, and the

delivery performance. We disregard play-out control of the

video/audio stream by the receiving node, and focus on the

packet reachability at the network layer. Specific details of the

video and audio streams used are as follows.

(i) Evaluation with video streams

 The use of H. 264 codecs [12] is assumed. The initiator

node generates video streams as follows. On the “highway”

[12] that uses the Quarter Common Intermediate Format

(QCIF), 1,000 frames are encoded using jm14.2 [13]. The

frame rate is 30 frames/s (i.e., a frame is generated every 33

Variables and parameters

 ○Variable: Real remain_battery

 // The remaining battery level at the node.

○Variable: Real max_battery

 // The maximum battery level at the node.

○Variable: Integer c_threshold

 // The threshold value of the counter.

○Variable: Integer max_c_threshold

 // The maximum value of c_threshold

○Variable: Integer counter

 // The number of times that the same packet has been received.

○Parameter: Integer get_interval

 // The time interval for getting the remaining battery level.

○Function: getBattery()

 // The function to get the remaining battery level.

The method of getting data on the remaining battery level

Executed at certain intervals (get_interval)

 remain_battery getBattery()

c_thresholdceil(max_c_threshold*(remain_battery /max_battery)).

The receiving and rebroadcast procedure

Receiving a packet.

if (The same packet as one that the node has already received)

then END.

else counter 1.

 decision_timeRandom() * 2(max_c_threshold - c_threshold).

 while (decision_time)

 if (Receive the same packet again)

 then counter++.

 end if

 end while

 if (counter >= c_threshold)

 then Rebroadcast is cancelled.

 else Rebroadcast the packet.

 end if

end if

End.

Fig.1 The operation of a receiving node for BCF

464 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

ms). There are I frames and P frames and the group of

pictures (GoP) is 10. Figure 2(a) shows the packet size

distribution for 1,000 initiated packets. The initiator node

repeats the transmission of these 1,000 frames 36 times, so

generating 36,000 packets, which is equivalent to a 20-

minute-long video stream. To take account of the rate at

which packets are generated, the value generated by

Random() at each node is set to [0, 33] ms.

(ii) Evaluation with audio streams

 The use of G. 711 codecs [14] is assumed. The size of a

packet generated by the initiator node is fixed at 200 Bytes, as

shown in Figure 2(b). Packets are generated at intervals of 20

ms. The initiator node generates 36,000 packets, equivalent to

a 12-minute-long audio stream. To take account of the rate at

which packets are generated, the value generated by

Random() at each node is set to [0, 20] ms. A node that has

received a packet from the initiator node re-transmits it using

one of three delivery methods: the existing Simple Flooding

(SF), the existing Counter-based scheme using a fixed

c_threshold, and BCF. The parameters used in each method

are as shown in Table 1. Using different values of the fixed

c_threshold, three cases are considered for the Counter-based

scheme: C2, C3 and C4. Similarly, using different values of

max_c_threshod, three cases are considered for BCF: B2, B3

and B4. In BCF, the interval at which the remaining battery

level is monitored (get_interval) is 10 seconds.

 Two geographical network areas are considered for

simulation. In Cases A and C, the area is 1000 m x 600 m,

representing a network in which nodes are densely distributed.

In Cases B and D, the area is 2000 m x 1200 m, representing a

network in which nodes are sparsely distributed. The MAC

layer of the nodes is IEEE802.11b. The data rate is 2 Mbps.

The transmitted power is 0.005W. The received power

threshold above which packets can be received successfully is

-85 dBm. Nodes are initially located at random. All nodes

move at a speed of [0.00, 4.00] m/s according to the random

waypoint model. This is intended to simulate the walking of

humans.

 The remaining battery level of a node is simulated as

follows. The maximum battery level (max_battery) is 200

W*s. At the start of the simulation, the initial battery level of

the initiator node is 200W*s (i.e., 100% full), and those of

other nodes are random in the range [40, 160] W*s (i.e., 20%

to 80% full).

 Feeney et al. [15] have indicated that the transmission

power, tp [μW*sec], and the reception power, rp [μW*sec],

for a single packet are as follows:

tp = 2. 000 * frame length [byte] + 270 (3)

rp = 0. 500 * frame length [byte] + 60 (4)

 We assume that the above power is consumed by a node each

time it sends or receives a packet. Any power that may be

consumed while no packet is being sent or received is

disregarded. When the remaining battery level of a node is

zero, the node ceases to operate.

4.2 Evaluated items

 The simulator executes 10 trials for each random seed.

The average for all the trials is calculated for each of the

following evaluated items.

(a) Average energy consumed by a node till the end of the

streaming [W*s]

This is the average energy consumption per node from the

start until the end of the streaming for all the nodes in the

network. The smaller this value, the better.

(b) Average remaining battery level at the end of the

streaming [W*s]

This is the average remaining battery level at the end of the

streaming for all the nodes in the network. The larger this

value, the better.

(c) Percentage of nodes whose operation was stopped due to

complete battery discharge [%]

Table 1 Parameters for each delivery method

 c_threshold max_c_threshold

SF - -

C4 4 (fixed) -

C3 3 (fixed) -

C2 2 (fixed) -

B4 Determined by Eq.(2) 4

B3 Determined by Eq.(2) 3

B2 Determined by Eq.(2) 2

0

500

1000

1500

1 101 201 301 401 501 601 701 801 901

F
ra

m
e

si
ze

 [
B

y
te

s]

Frame number

Repeated 36 times

(a) Cases A and B (assuming a H.264 encoded video)

0

500

1000

1500

1 101 201 301 401 501 601 701 801 901

F
ra

m
e

si
ze

 [
B

y
te

s]

Frame number

Repeated 36 times

(b) Cases C and D (assuming a G.711 encoded voice)

Fig. 2 Size distribution of initiated packets

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 465

This is the percentage of the nodes that had ceased to operate

by the end of the streaming among all the nodes in the

network. The smaller this value, the better.

(d) Average packet reachability [%] and average delivery

time [s]

Packet reachability is the percentage of the nodes that have

received a packet generated by the initiator node among all

the nodes in the network. The average packet reachability is

the average for all the packets generated by the initiator node.

The larger this value, the better. The packet delivery time is

the time that elapsed from the time when the application layer

of the initiator node generated a packet to the time when the

application layer of a node successfully received that packet.

The average delivery time is the average for all the packets

generated by the initiator node. The smaller this value, the

better.

5 Evaluation results

5.1 Evaluation for video streams

(a) Average enery consumed by a node till the end of the

streaming

The evaluation result is shown in Fig. 3(a). The deviation bars

show the (average +/- standard deviation). In Case A, B2 to

B4 consumed less energy than the existing schemes. In

particular, B2 consumed the least power, 59.4% down from

SF, and 33.7% down from C2 in Case A. In Case B, B2 and

B3 consumed less power than the existing schemes. The

energy consumption in B2 is 67.2% down from SF and 38.7%

down from C2.

(b) Average remaining battery level at the end of the

streaming

The evaluation result is shown in Fig. 3(b). B2 to B4

registered higher values than any existing scheme in both

Cases A and B. In particular, B2 produced the highest value

in both Cases A and B. These results indicate that the

proposed scheme can preserve a higher battery level than the

existing schemes.

 (c) Percentage of nodes whose operation was stopped due to

complete battery discharge

The evaluation result is shown in Fig. 3(c). The deviation bars

show the (average +/- standard deviation). B2 to B4 produced

a lower percentage than any existing scheme in both Cases A

and B. These results indicate that the proposed scheme results

in fewer cases in which nodes become inoperative due to

complete discharge of their batteries than the existing schemes.

(d) Average packet reachability [%] and average delivery time

 The evaluation result is shown in Fig. 4(d). B4 produced

higher average packet reachability than any existing scheme in

both Cases A and B. In Case B, the average packet

reachability values of B2 and B3 are lower than that of C2,

which registered the highest value among the existing schemes.

This implies that the average packet reachability of the

proposed scheme can fall considerably when nodes are

sparsely distributed in the network. The average values of

packet delivery time of B2 to B4 are extremely short in both

Cases A and B.

0

20

40

60

80

100

SF C4 C3 C2 B4 B3 B2 SF C4 C3 C2 B4 B3 B2

Existing method Proposal Existing method Proposal

Case A Case B

C
o

n
su

m
ed

 e
n

er
g

y
 [

W
*

s]
 +

/-
S

D

Case / Delivery parameter

better

(a) Average energy consumed from start to end of streaming

0

10

20

30

40

50

60

70

80

SF C4 C3 C2 B4 B3 B2 SF C4 C3 C2 B4 B3 B2

Existing method Proposal Existing method Proposal

Case A Case B

R
em

ai
n
in

g
 b

at
te

ry
 [

W
*
s]

Case / Delivery parameter

better

 (b) Average remaining battery level at the end of streaming

0.0

20.0

40.0

60.0

80.0

100.0

SF C4 C3 C2 B4 B3 B2 SF C4 C3 C2 B4 B3 B2

Existing method Proposal Existing method Proposal

Case A Case B

%
 o

f
st

o
p

 n
o

d
e

[%
]

+
/-

S
D

Case / Delivery parameter

better

 (c) Percentage of nodes stopped due to complete battery discharge

0.00

0.50

1.00

1.50

2.00

2.50

3.00

40.0

60.0

80.0

100.0

SF C4 C3 C2 B4 B3 B2 SF C4 C3 C2 B4 B3 B2

Existing method Proposal Existing method Proposal

Case A Case B

P
ac

k
et

 d
el

iv
er

y
 t

im
e

[s
]

P
ac

k
et

 r
ea

ch
ab

il
it

y
 [

%
]

+
/-

S
D

Case / Delivery parameter

Packet reachability Packet delivery time
 (d) Packet reachability and delivery time

Fig.3 Simulation results for the evaluation assuming broadcast

video streaming (Cases A and B)

466 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

5.2 Evaluation for audio streams

(a) Average energy consumed by a node till the end of the

streaming

The evaluation result is shown in Fig. 4(a). The average

values of energy consumed in B2 to B4 in Case C, and in B2

and B3 in Case D, are smaller than those of the existing

schemes. In particular, B2 consumed the least power, 52.4%

down from SF and 33.7% down from C2 in Case A, and

67.2% down from SF and 64.7% down from C2 in Case B.

(b) Average remaining battery level at the end of the

streaming

The evaluation result is shown in Fig. 4(b). The average

remaining battery levels of B2 to B4 in Case C, and B2 and

B4 in Case D, are greater than those of the existing schemes.

In particular, B2 registered the highest value in both Cases C

and D. These results indicate that B2 and B3 can preserve

battery charge well.

(c) Percentage of nodes whose operation was stopped due to

complete battery discharge

The evaluation result is shown in Fig. 4(c). BCF results in a

smaller chance of nodes becoming inoperative due to

complete battery discharge than SF, C3 or C4 in both Cases C

and D. The avoidance by BCF of re-broadcasts by nodes with

a low battery level was effective in reducing power

consumption in these nodes.

(d) Average packet reachability and average delivery time

The evaluation result is shown in Fig. 4(d). In both Cases C

and D, the average packet reachability of B4 was almost the

same as that of C2, which registered the highest value among

the existing schemes. The difference was less than 1.0%. The

average values of packet reachability of B2 and B3 were

lower than that of C2 in Case D, indicating that BCF can

result in a lower packet reachability when nodes are sparsely

distributed in the network. The average values of packet

delivery time of SF, C3 and C4 were large in Case C. In

contrast, B2 to B4 registered extremely small values in both

Cases C and D.

5.3 Discussion

 The simulation results described in the above section

allow us to conclude the following.

 In comparison to existing schemes, BCF can (a) reduce

the average power consumed by nodes from the start to the

end of the streaming, (b) increase the average remaining

battery level at the end of the streaming, and (c) reduce the

percentage of nodes which became inoperative due to

complete battery discharge. These effects are due to BCF’s

mechanism of dynamically setting c_threshold according to

the remaining battery level of each node -- in particular of

avoiding cases when nodes with a low battery level re-

broadcast packets. B2 produced the best performance in all

these three respects, (a) to (c).

 The delivery quality was evaluated in terms of (d) the

average packet reachability and average delivery time. In

networks where nodes are distributed densely (Cases A and C),

0

20

40

60

80

100

SF C4 C3 C2 B4 B3 B2 SF C4 C3 C2 B4 B3 B2

Existing method Proposal Existing method Proposal

Case C Case D

C
o

n
su

m
ed

 e
n

er
g

y
 [

W
*

s]
 +

/-
S

D

Case / Delivery parameter

better

(a) Average energy consumed from start to end of streaming

0

10

20

30

40

50

60

70

80

SF C4 C3 C2 B4 B3 B2 SF C4 C3 C2 B4 B3 B2

Existing method Proposal Existing method Proposal

Case C Case D

R
em

ai
n
in

g
 b

at
te

ry
 [

W
*
s]

Case / Delivery parameter

better

(b) Average remaining battery level at the end of the streaming

0.0

20.0

40.0

60.0

80.0

100.0

SF C4 C3 C2 B4 B3 B2 SF C4 C3 C2 B4 B3 B2

Existing method Proposal Existing method Proposal

Case C Case D

%
 o

f
st

o
p

 n
o

d
e

[%
]

+
/-

S
D

Case / Delivery parameter

better

(c) Percentage of nodes stopped due to battery discharging

0.00

1.00

2.00

3.00

4.00

5.00

6.00

40.0

60.0

80.0

100.0

SF C4 C3 C2 B4 B3 B2 SF C4 C3 C2 B4 B3 B2

Existing method Proposal Existing method Proposal

Case C Case D

P
ac

k
et

 d
el

iv
er

y
 t

im
e

[s
]

P
ac

k
et

 r
ea

ch
ab

il
it

y
 [

%
]

+
/-

S
D

Case / Delivery parameter

Packet reachability Packet delivery time
 (d) Packet reachability and delivery time

Fig. 4 Simulation results for the evaluation assuming

broadcast voice streaming (Cases C, D)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 467

BCF produced higher average packet reachability than Simple

Flooding or Counter-base schemes with fixed c_threshold (C3

and C4). In networks where nodes are distributed sparsely

(Cases B and D), BCF showed higher average packet

reachability than Simple Flooding but B2 and B3 gave lower

average packet reachability than C2. This is a side effect of

the mechanism of avoiding re-broadcasts by nodes with a low

battery level. In networks where nodes are sparsely distributed

(Cases B and D), a measure that can be taken when higher

priority is given to maintaining high packet reachability than

to avoiding dissipation of remaining battery charges of nodes

is not to set too small a value to max_c_threshold. In other

words, the use of B4 is preferable. The average delivery time

of BCF was extremely small. This can be explained as follows.

BCF reduces the number of packet transmissions and

receptions, which reduces the load on the MAC layer, which

in turn reduces the length of time when nodes are busy.

6 Conclusions

 This paper has considered broadcast delivery of video

and audio streams in an ad hoc network, and studied how

paying attention to the remaining battery levels of nodes can

maintain high delivery quality, reduce the power consumed by

nodes, and reduce the chances of nodes becoming inoperative

due to complete discharge of node batteries. Specifically, we

have proposed Battery-aware Counter-based Flooding (BCF),

in which the counter threshold used to determine whether a

packet should be re-broadcast or not, c_threshold, is

dynamically set according to the remaining battery level of

each node. BCF has been evaluated using network simulation.

The evaluation results have shown that, in comparison to

existing data delivery schemes, BCF can reduce power

consumption by nodes, reduce the chances of nodes becoming

inoperative due to complete discharge of node batteries, and

avoid degradation of delivery performance, such as packet

reachability. In the evaluation of delivery performance, we

focused only on packet reachability and packet delivery time.

Looking to the practical application of the proposed scheme,

we will evaluate the QoS of played-back video and audio

streams.

7 Acknowledgments

This research has been supported by Core Research for

Evolutional Science and Technology (CREST), Japan Science

and Technology Agency (JST), and KAKENHI (Grant-in-Aid

for JSPS Research Fellows), Japan Society Promotion of

Science (JSPS).

8 References

[1] C. Siva Ram Murthy and B. S. Manoj, “Ad Hoc Wireless

Networks - Architectures and Protocols,” Prentice Hall,

Professional Technical Reference

[2] Yifeng He, Ivan Lee, and Ling Guan "Optimized Video

Multicasting Over Wireless Ad Hoc Networks Using

Distributed Algorithm", IEEE Transactions on Circuits

and Systems for Video Technology. Vol. 19, NO. 6, pp.

796- 807, Jun. 2009

[3] Wei Wei and Avideh Zakhor, "Interference Aware

Multipath Selection for Video Streaming in Wireless Ad

Hoc Networks", IEEE Transactions on Circuits and

Systems for Video Technology, Vol. 19, No. 2, pp. 165-

178, Feb. 2009

[4] Shiwen Mao, Xiaolin Cheng and Y. Thomas Hou,

"Multiple Description Video Multicast in Wireless Ad

Hoc Networks", Mobile Networks and Applications 11, pp.

63-73, Springer Science, 2006

[5] Jorjeta G. Jetcheva, David A. Malts, “A Simple protocol

for Multicast and Broadcast in Mobile Ad Hoc Networks“,

IETF MANET Working Group Internet-Draft, <draft-ietf-

manet-simple-mbcast. txt>, 2001

[6] Brad Williams, Tracy Camp, “Comparison of

Broadcasting Techniques for Mobile Ad Hoc Networks”,

Proceedings of the 3rd ACM International Symposium on

Mobile Ad Hoc Networking and Computing, pp. 194-205,

2002

[7] Yu-Chee Tseng, Sze-Yao Ni, Yuh-Shyan Chen, Jang-

Pinig-Sheu, “The Broadcast Problem in a Mobile Ad Hoc

Network”, Wireless Networks Volume 8, Springer, pp.

153-167, Kluwer Academic Publishers, 2002

[8] Yu-Chee Tseng, Sze-Yao Ni, En-Yu Shih, “Adaptive

Approaches to Relieving Broadcast Storm in a Wireless

Multihop Mobile Ad Hoc Network”, IEEE Transactions

on Computers, Vol. 52, No. 5, pp. 545-556, 2003.

[9] Toshio Koide, Hitoshi Watanabe, “A Versatile

Broadcasting Algorithm on Multi-Hop Wireless Networks:

WDD Algorithm”, IEICE Trans. Fundamentals, Vol. E87-

A, No. 6, pp. 1599-1611, Jun. 2004

[10] Daisuke Kasamatsu, Norihiko Shinomiya, and Tadashi

Ohta, “A Broadcasting Method Considering Battery

Lifetime and Distance between Nodes in MANET”, IEICE

Trans. Commun. , Vol. J91-B, No. 4m pp. 364-372, 2008

[11] The network simulator “OPNET”, http://www.opnet.com

[12] Patrick Seeling, Frank H. P. Firzek and Martin Reosslein,

“Video Traces for Network Performance Evaluation,”

Springer, 2007

[13] H. 264/AVC Reference Software (jm14. 2), http://iphome.

hhi. de/suehring/tml/download/old_jm/

[14] ITU-T Recommendation G. 711, “Pulse code modulation

(PCM) of voice frequencies”

[15] Feeney L. M., Nilsson M., “Investigating the Energy

Consumption of a Wireless Network Interface in an Ad

Hoc Networking Environment”, INFOCOM 2001,

Twentieth Annual Joint Conference of the IEEE Computer

and Communications Societies, Vol. 3, pp. 1548-1557,

IEEE, 2001

468 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

SESSION

SYSTEMS SOFTWARE + OS + THREADS +
PROGRAMMING MODELS + ARCHITECTURE

ISSUES

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 469

470 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Model Checking Task Sets with Preemption Thresholds

Mitchell L. Neilsen
Department of Computing and Information Sciences

Kansas State University
Manhattan, KS, USA

Abstract

Several models have been developed for symbolic
schedulability analysis of periodic, preemptive task sets
in real-time systems [1, 11]. However, these models
cannot be used to analyze task sets with preemption
thresholds. In this paper, we present a new model with
a two-clocks scheduler that can be used to efficiently
analyze periodic task sets with preemption thresholds.
The new model can also be used to compute an opti-
mal set of preemption thresholds for a given priority
assignment. In particular, it can be used to compute a
feasible set of preemption thresholds that are as small
as possible.

Keywords: model checking, preemption threshold, real-

time system, scheduling theory, worst-case response time

1 Introduction

In classic real-time scheduling theory, tasks are
frequently assumed to be periodic. To relax the tradi-
tional constraints on task arrival times, automata can
be used to model task arrival patterns [1]. Such mod-
els are expressive enough to model real-time tasks that
are periodic, sporadic, preemptive or non-preemptive,
and tasks with additional precedence and resource con-
straints. Typical real-time scheduling algorithms can
be easily generalized to automata. An automaton is
schedulable if there exists a scheduling strategy such
that all possible sequences of events accepted by the
automaton are schedulable. It has been shown that
the schedulability analysis problem for such models is
decidable [5].

Schedulability analysis can be performed in a
manner similar to response time analysis in classical
real-time scheduling theory. Real-valued clocks can
be used to model task execution and deadlines. The
model also includes an automaton which is used to
represent the scheduler. Then, a model checker, such
as UPPAAL [2, 3], can be used to check for missed
deadlines and calculate the worst-case response time

for each task. Similar models can be used to verify the
correctness of other distributed algorithms [9, 10].

Many existing real-time models have been ana-
lyzed using symbolic schedulability analysis [6, 7, 11].
However, if tasks in a periodic task set are allowed to
be assigned preemption thresholds – dynamic priori-
ties used to determine if a running task can be pre-
empted – then these existing models cannot be used.
Preemption threshold scheduling is important for real-
time sensor networks and real-time embedded systems
because premption thresholds can be used to enable
energy and memory efficient scheduling in real-time
embedded systems [4, 8]. In a previous paper, we de-
veloped a model that can be used to determine if a
task sets is feasible if the preemption thresholds are
previously assigned [12]. The goal of this paper is to
develop new models that can be used to both analyze
task sets with preemption thresholds and find an op-
timal set of preemption thresholds that are minimal.

The rest of the paper is organized as follows: the
next section describes the input language for the model
checker UPPAAL. Section 3 describes a simple two-
clocks model that can be used to correctly test for the
schedulability of task sets with preemption thresholds.
The model can also be used to derive an optimal set
of minimal preemption thresholds. Finally, Section 4
provides a brief summary.

2 Task Model

The focus of this paper is on periodic task sets
with preemption thresholds. Each task τi is char-
acterized by a 5-tuple of natural numbers denoted
(Ci, Ti, Di, πi, γi) with Ci ≤ Di, where Ci is the run
time of task τi and Di is its relative deadline; that is,
after task τi is released for execution, it should com-
plete within Di time units. For periodic tasks, the
period is denoted by Ti. Each task τi has a priority
of πi and a preemption threshold of γi. Consider the
example shown in Table 1. This task set is the original
example from Wang and Saksena’s paper [13].

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 471

It was used to show that some task sets can be
scheduled with preemption thresholds when no fixed
priority assignment using purely preemptive or non-
preemptive priority assignment will work. If each task
has its preemption threshold set equal to its priority
(γi = πi for all i), then purely preemptive schedul-
ing results. On the other hand, if all preemption
thresholds are set to the maximum priority, then non-
preemptive scheduling is realized. In this way, pre-
emption thresholds can be used to represent a wide
range of scheduling strategies ranging from preemp-
tive to non-preemptive.

Table 1. Periodic task set

i Ci Ti Di πi γi

0 20 70 50 3 3
1 20 80 80 2 3
2 35 200 100 1 2

The goal of this paper is to develop a symbolic
model to verify various properties and determine if the
task set can be scheduled using different preemption
thresholds. If the task set can be feasibly scheduled,
then the model can also be used to obtain a set of
minimal preemption thresholds; that is, preemption
thresholds that are as small as possible. Next, we turn
our attention to the input language used to develop
the model using UPPAAL.

The core of the model input language is timed au-
tomata extended with data variables and tasks. Each
edge of such extended automata can be labeled with
three labels:

1. a guard containing a clock constraint and/or a
predicate on data variables,

2. an action which can be an input or output action
in the form of a! or a?, and

3. a sequence of assignments in the form: x = 0 when
x is a real-valued clock or v = E when v is a data
variable and E is a mathematical expression over
data variables and constants.

A location of an extended automaton may be an-
notated with a task or a set of tasks that will be trig-
gered when the transition leading to the location is
taken. The triggered tasks will be put into a task
queue, like the ready queue in an operating system,
and scheduled to run according to a given schedul-
ing policy. The scheduler should make sure that all
task constraints are satisfied in scheduling the tasks in
the task queue. To model concurrency and synchro-
nization between automata, networks of automata are
constructed in the standard way as in UPPAAL with
the annotated sets of tasks on locations unioned [1, 7].

Four types of shared data variables can be used
for communication and resource sharing:

1. Tasks can share variables with each other, and
shared variables are protected by semaphores.

2. Tasks can read and update variables owned by the
automata.

3. Automata can read (but not update) variables
owned by the tasks.

4. Automata can share variables with each other.

In this paper, we limit the focus to periodic tasks that
are independent and do not share resources. Next, we
describe how schedulability analysis can be performed
using UPPAAL [1].

A network of timed automaton annotated with
tasks is considered as a design model. Given an ex-
tended automaton and a scheduling policy, the related
schedulability analysis problem is to check whether
there exists a reachable state of the scheduler automa-
ton where a task misses its deadline. Such states are
called non-schedulable states. An automaton is said
to be non-schedulable with the given scheduling pol-
icy if it may reach a non-schedulable (ERROR) state.
Otherwise, it is schedulable.

Consider the task set shown in Table 1. The high-
est priority task τ0 (priority π0 = 3) has a deadline of
50 and a period of 70. The lowest priority task τ2

(priority π2 = 1) has a deadline of 100 and a period of
200.

To check if a task set is schedulable, we con-
struct a pair of timed automata – one to generate jobs
to be released (called the PERIODIC TASK automa-
ton) and one to schedule the jobs released (called the
SCHEDULER automaton). Then, a model checker
is used to check the reachability of a predefined error
state in the product automaton of the pair. If the error
state is reachable, the task set is not schedulable.

In the next section, we describe a new two-clocks
SCHEDULER automaton that can be used to test for
the schedulability of task sets with preemption thresh-
olds. It can also be used compute an optimal set of
preemption thresholds if such an assignment exists.

3 Two-Clocks Model

The following two-clocks model has has fewer
transitions than previous models. Also, unlike the en-
coding of the two-clocks scheduler by Fersman, et al.
[7], there are five states in our model instead of four:

• Idlei - the ready job queue is empty,

472 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

• Busyi - jobs with priority greater than or equal
to task i have arrived for execution,

• Readyi - the job in task i to be checked for feasi-
bility has been released for execution, but has not
started executing, and

• Checki - the job in task i to be checked for feasi-
bility has started executing, and

• Errori - the checked job in task i missed its dead-
line.

The additional state, Readyi, is needed because of
the different way in which jobs may be preempted be-
fore or after being scheduled for execution when using
preemption thresholds; after a task has been scheduled
for execution, it can only be preempted by tasks with
a priority greater than the running task’s preemption
threshold.

The first automaton, called PERIODIC TASKS,
is designed to model the releases of jobs within each
task. The SCHEDULER automaton for the example
given above is shown below in Figure 2. The following
global declarations are used to specify the constraints
shown in Table 1:

chan job[3];

const int C[3] = { 20, 20, 35 };
const int T[3] = { 70, 80, 200 };
const int D[3] = { 50, 80, 100 };
const int N[3] = { 40, 35, 14 };
const int PR[3] = { 3, 2, 1 };
const int PRT[3] = { 3, 3, 2 };

With periods of 70, 80, and 200, the hyperperiod
is 2800. In one hyperperiod, there will be 40 jobs re-
leased in task τ0, 35 in τ1, and 14 in τ2. The number of
jobs over a hyperperiod are specified in N[3]. Finally,
the priorities and preemption thresholds are specified
in arrays PR[3] and PRT[3], respectively. Local dec-
larations and parameters passed to the SCHEDULER
automaton are shown below.

SCHEDULER(int P, int PT, int RT, int D, int id)
clock c, d;
int r;
int Cmax = 1;

int gt(int i, int x, int r)
{

if (PR[i]>x)
return (r+C[i]);

else

return (r);
}

int ge(int i, int x, int r)
{

if (PRT[i]>=x)
return (r+C[i]);

else
return (r);

}

Finally, the system is initialized using the follow-
ing system declarations.

SYSTEM DECLARATIONS

S0 = SCHEDULER(PR[0],PRT[0],C[0],D[0],0);
S1 = SCHEDULER(PR[1],PRT[1],C[1],D[1],1);
S2 = SCHEDULER(PR[2],PRT[2],C[2],D[2],2);

system PERIODIC TASKS,S0,S1,S2;

If we are only interested in testing for the worst
case, then all schedulers can be initialized simultane-
ously. However, if we are testing other properties, it
may be important to initialize the system with just
one scheduler S0, S1, or S2.

The global channels, job[0], job[1], and job[2], are
used by the PERIODIC TASKS automaton to tell the
SCHEDULER automaton that a new job from task τ0,
τ1, or τ2, respectively, has been released.

Figure 1. PERIODIC TASKS automaton

A local clock, x, is used to determine when the
jobs are released. Local integers, t0, t1, and t2, are
used to keep track of when the next job is to be released
in each task, relative to the local clock x. Since, x is set
back to 0 when each job is released, the release times
are also updated then as well. Finally, the number of
jobs released is recorded in njobs[i] for each task τi.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 473

Figure 2. SCHEDULER automaton

PERIODIC TASKS
clock x;
int[0,T[0]] t0;
int[0,T[1]] t1;
int[0,T[2]] t2;
int njobs[3];

The PERIODIC TASKS automaton, shown in
Figure 1, is essentially the same as the job generating
automaton used to generate periodic jobs in previous
models. The main differences are in the SCHEDULER
automaton shown in Figure 2.

The intuition is the same as that used for tradi-
tional real-time response time analysis. In this model,
the highest priority task is designated as task τ0, and
the lowest priority task is designated as task τ2. When
a message is received on channel job[i], a job has
been released in task τi. Some job in task τi is non-
deterministically selected to be checked for feasibility.
The model checker will check all possible jobs in each
task. The intuition behind the model is that if some
job will miss its deadline, then all jobs in task τi that
meet their deadlines will be processed in the BUSY
state. When the job that will miss its deadline is
released, a transition is taken to the READY state.
When the job being analyzed is scheduled for execu-
tion, the scheduler enters the CHECK state. When
the deadline is reached before the job has finished ex-
ecuting, a transition is taken to the ERROR state. If
the first job will miss its deadline, then a transition can
be taken directly from the IDLE state to the CHECK

state. We rely on the model checker to test all possible
jobs in each task, τi, to determine if there is a job that
will miss its deadline.

Using the UPPAAL Verification Tool, a user
can quickly check to see if the SCHEDULER ever
enters the ERROR state by using the property:
E<>(Si.ERROR) for i=0,1,2. If the propery is satis-
fied then, on some path, the SCHEDULER automaton
eventually enters the ERROR state indicating that the
task set is not schedulable. For the sample data given,
using a deadline monotonic priority assignment, this
property is satisfied. If some job misses its deadline,
a trace can be generated and visualized in UPPAAL
leading to the simulator output shown in Figure 3.
Note that this is the output that results when purely
preemptive scheduling is used; that is, γi = πi for all
i. Note that γi is denoted as PRT[i] in the model.

const int PR[3] = { 3, 2, 1 };
const int PRT[3] = { 3, 2, 1 };

Recall that the priorities and preemption thresh-
olds are specified in arrays PR[3] and PRT[3], respec-
tively. To see that the SCHEDULER automaton S2
enters the ERROR state eventually on some path, we
can verify that the property E<>(S2.ERROR) is sat-
isfied, as shown below in Figure 4.

When the SCHEDULER automaton S2 goes from
the CHECK state to the ERROR state, the value of
S2.c = 100, but S2.r = 115 and S2.d = 100; that is, the
first job in task τ2 has run for 100 of 115 time units

474 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Figure 3. Missed deadline

needed to complete its execution when it misses its
deadline at time 100 (D2 = D[2] = 100). Even though
it misses it’s deadline, the worst-case response time is
also shown to be 115 as shown below in Figure 4.

Figure 4. Preemptive tasks output

If we increase the preemption thresholds of the
tasks as shown in Table 1, then the task set is schedu-
lable. In this case, task τ2 the low priority task, has a
deadline of 100 and a period of 200. This can be easily
done in the model by simply changing the constants in
the global declarations; that is, changing the PRT[3]
array declaration to const int PRT[3] = { 3, 3, 2 }.

Using the UPPAAL Verification Tool, it is pos-
sible to compute the worst-case response time for
each task that meets its deadline using the property:
A[](S2.CHECK imply (S2.d<=95)) which is satisfied.
The same property with an upper bound of 94 is not
satisfied, as shown in Figure 5. Thus, the worst-case
response time of task τ2 is 95, which is less than it’s
deadline of 100.

Figure 5. Verification output

In addition to scheduling properties, it is possible
analyze other safety and liveness properties using the
model checker UPPAAL.

As noted in [6], the value used for Cmax to decre-
ment r can be any positive value. It turns out that if
Cmax is larger than the level-i busy period, then the
number of states generated and searched will be the
least possible, but the value of r may reach the length
of the level-i busy period.

The number of states searched for each value of
Cmax is shown below in Table 2. This is based on the
case when the preemption thresholds are set to 3, 3,
and 2, respectively.

Table 2. Bounds on number of states.

Cmax States Cmax States
1 150,180 50 1,793
3 20,820 100 1,635
6 8,155 250 1,617
12 3,805 500 1,617

If we remove the transitions involving Cmax, then the
number of states searched and stored is 1,617. The

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 475

Figure 6. Updated SCHEDULER automaton

number of states is directly related to the amount of
time required to evaluate the property.

Figure 7. Updated PERIODIC TASKS
automaton

Finally, if we set the preemption thresholds to be
as large as possible, then non-preemptive scheduling is
realized; e.g., set const int PRT[3] = 3,3,3. UPPAAL
queries can be used to verify that the highest priority
task misses its deadline.

The scheduler and job creation automata can be
modified to find an optimal assignment of preemption
thresholds that are minimal (preemption thresholds as
small as possible). To find an optimal assignment that
is minimal, the SCHEDULER automaton shown in
Figure 6 can be used. If the current assignment leads
to an error, then the preemption threshold is incre-
mented, and the automaton is reset by sending a mes-
sage on the again channel to try again as long as the
preemption threshold is less than the maximum prior-
ity. The SCHEDULER automaton goes from the ER-
ROR to the IDLE state, and the PERIODIC TASKS
automaton goes back to the START state, and starts
sending the same set of jobs all over again.

For the second task in our example, the threshold
must be elevated to the maximum priority 3 to ensure
that the task set is feasible. As shown in Figure 6,
if the preemption threshold of task 1 is initialized to
2, then the ERROR state is reachable, but if the pre-
emption threshold is initialized as 3, then the ERROR
state is not reachable. Similarly, the SCHEDULER

476 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

automaton could be adapted to compute the maxi-
mum feasible preemption threshold, in most cases we
are only interested in finding the smallest possible pre-
emption threshold that will work.

4 Conclusions

This paper presented a simple model that can
be used to analyze the feasibility of periodic task sets
with preemption thresholds and compute an optimal
assignment of preemption thresholds. The model con-
sists of a set of two automata: a PERIODIC TASKS
automaton to model the release of periodic jobs, and
a SCHEDULER automaton to model the scheduler.
The model generated can be used with UPPAAL 4.0
to determine if the task set is feasible, and to com-
pute the worst-case response times of tasks that meet
their deadlines. If the task set is not feasible, the
model can also be used to identify why the task set
fails to meet its deadlines. The example UPPAAL
models and queries generated are available on-line at:
http://www.cis.ksu.edu/~neilsen/PDPTA11/.

The model and queries could easily be generalized
to test the feasibility of other periodic task sets with
arbitrary start times and arbitrary deadlines. UP-
PAAL is a very powerful tool that can be used for
many types of verification for distributed and real-time
systems. An interesting next step will be to incorpo-
rate dynamic voltage scheduling into the model and
verify some of the properties specified in [8].

References

[1] T. Amnell, E. Fersman, L. Mokrushin, P. Petters-
son, and W. Yi. Times: a tool for schedulabil-
ity analysis and code generation of real-time sys-
tems. In In Proc. of FORMATS03, number 2791
in LNCS, pages 60–72. Springer-Verlag, 2003.

[2] G. Behrmann, A. David, K.G. Larsen,
J. H̊akansson, P. Pettersson, W. Yi, and
M. Hendriks. UPPAAL 4.0. In Proceedings of the
3rd International Conference on the Quantitative
Evaluation of SysTems (QEST) 2006, IEEE
Computer Society, pages 125–126, 2006.

[3] J. Bengtsson, F. Larsson, P. Pettersson, W. Yi,
P. Christensen, J. Jensen, P. Jensen, K. Larsen,
and T. Sorensen. Uppaal: a tool suite for valida-
tion and verification of real-time systems, 1996.

[4] J. Chen, A. Harji, and P. Buhr. Solution space
for fixed-priority with preemption threshold. In

11th IEEE Real Time on Embedded Technology
and Applications Symposium (RTAS 05), pages
385–394, 2005.

[5] E. Fersman, P. Pettersson, and W. Yi. Timed au-
tomata with asynchronous processes: schedulabil-
ity and decidability. In In Proceedings of TACAS
2002, pages 67–82. Springer-Verlag, 2002.

[6] Elena Fersman, Leonid Mokrushin, Paul Petters-
son, and Wang Yi. Schedulability analysis using
two clocks. In In 9th International Conference on
Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2003), pages 224–
239. Springer, 2003.

[7] Elena Fersman, Leonid Mokrushin, Paul Pet-
tersson, and Wang Yi. Schedulability analysis
of fixed-priority systems using timed automata.
Theoretical Computer Science, 354(2):301 – 317,
2006. Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2003).

[8] R. Jejurikar and R. Gupta. Integrating pre-
emption threshold scheduling and dynamic volt-
age scaling for energy efficient real-time systems.
In International Conference on Real-Time and
Embedded Computing Systems and Applications
(RTCSA 04), 2004.

[9] M.L. Neilsen. A generalized token-based mutual
exclusion algorithm for wireless networks. In Pro-
ceedings of the 20th Int’l Conference on Paral-
lel and Distributed Computing Systems (PDCS-
2007), Las Vegas, Nevada, USA, ISCA, 2007.

[10] M.L. Neilsen. Model checking token-based dis-
tributed mutual exclusion algorithms. In Proceed-
ings of the 15th International Conference on Par-
allel and Distributed Processing Techniques and
Applications, pages 10–16, 2009.

[11] M.L. Neilsen. Symbolic schedulability analy-
sis of task sets with arbitrary deadlines. In
International Conference on Parallel and Dis-
tributed Processing Techniques and Applications
(PDPTA’10), 2010.

[12] M.L. Neilsen. Symbolic schedulability analysis of
task sets with preemption thresholds. In Second
International Sensor Networks and Applications
Conference (SNA’10), 2010.

[13] Yun Wang and Manas Saksena. Scheduling fixed-
priority tasks with preemption threshold. In
RTCSA, pages 328–, 1999.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 477

Analysis of False Cache Line Sharing Effects on Multicore CPUs

Suntorn Sae-eung, M.S.
suntorn.saeeung@students.sjsu.edu

(408) 775-9883

Robert Chun, Ph.D.
Computer Science Department

San Jose State University
San Jose, CA, 95192-0249 USA

robert.chun@sjsu.edu
(408) 924-5137

ABSTRACT
False Sharing (FS) is a notorious problem occurring in
multiprocessor systems. It results in a performance degradation for
multi-threaded programs. Since the architecture of a multicore
processor is very similar to that of a multiprocessor system, the
presence of the false sharing problem is speculated. Its effects
should be measurable in terms of efficiency degradation in a
concurrent environment on multicore systems.
This article discusses the causes of the false cache line sharing
problem in dual-core CPUs, and demonstrates how it lessens the
system performance by measuring speed-ups and efficiency of the
experiments in sequential compared to parallel executions. Thus,
demonstration programs are developed to collect the execution
results of the test program with and without false sharing on the
specific system hardware. Certain techniques are implemented to
eliminate false sharing. These techniques are described, and their
effectiveness in mitigating the speed-up and efficiency lost from
false sharing is analyzed.

KEY WORDS
False Sharing, Cache Memory, Spacing, Padding

1.0 Introduction
The current trend of processor design is towards multicore CPUs.
Recently, eight-core and twelve-core CPUs have been in the
manufacturing process for both AMD and Intel [1]. Processor
manufacturers overcome the heat-wall constraint by packing more
than one computing module, so-called cores, into a package.
Sometimes the chip is simply referred to as a Chip Multiprocessor
(CMP); however, a processor can also be coined by the number of
its cores. For example, a two core processor is called as a “dual
core” CPU. Having many processing cores working together
increases complexity in hardware design and software production.
The hardware manufacturer is not the only party involved in taking
advantage of the multiple core processors. Programmers must also
understand how to make use of additional cores, and design the
application by dividing processes into several sub-tasks, and assign
them to several threads to utilize all available computing cores.

A potential problem in multiprocessor systems that can cause poor
performance by mistakenly updating data in a shared cache line is
the “false sharing” problem. Previous research on multiprocessor
systems demonstrated huge impacts of the false sharing problem
[5][6][8][9][12]. It can cause performance degradations of 20x on a
four-processor system, and 100x on an 8-processor system.
Because multiprocessor and multicore architectures are similar, we
hypothesize that FS can occur on multicore systems too. This paper
demonstrates the existence of false sharing on systems with dual
core CPUs, measures the impact of the false sharing issue, and
compares the performance drops caused by false sharing between a
dual core processor to a multiprocessor system.

1.1. Memory hierarchy and cache elements
Levels and types of memories are distinguished by their access
time, capacities and complexities. Certain types of CPUs, along
with their cache and main memory are selected as representatives to
illustrate the memory hierarchy of multiprocessor and multicore
systems. As false sharing is previously notorious in multiprocessor
systems, the memory architecture of a Symmetric Multiprocessor
(SMP) is compared with that of a Chip Multiprocessor (CMP).

1.1.1 Memory architecture in Symmetric Multiprocessor
The Symmetric Multiprocessor (SMP) is a classical configuration
for a multiprocessor system. The memory hierarchy of SMP is
categorized in two levels: cache memory and main memory. CPU
access time, or latency, on the cache is far less than that from the
main memory. Processors use the cache memory as a local
memory, and consider the main memory to be a remote memory.
CPUs need to request data through a shared network, bus, or
crossbar in order to read from and write to the main memory. A
simple diagram of a SMP system is shown in figure 1.

1.1.2 Memory architecture in Chip Multiprocessor
Chip Multiprocessor (CMP) is a way to name multicore processors.
The cache in a CMP system is divided into tiers similar to a SMP,
but a CMP’s structure adds more layers of caches, e.g. a cache level
2, interleaving the L1 cache and the main memory so as to reduce
the latency gap between the upper and the lower memory layers as
shown in figure 2.

478 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Figure 1. Memory hierarchy in SMP [4]

Figure 2. Memory hierarchy in CMP

The diagram shows three distinct layouts of caches. The Intel
processor (left) implements a shared L2 and L3 cache enabling all
cores to access shared data. AMD CPUs (middle) make use of a
special dedicated hardware and protocol, Hyper Transport
technology, to synchronize shared data between each core’s L2
cache. Recently, a more advanced CPU, such as the Intel Core i5, a
processor is composed of two levels of separate caches, and a
shared L3 cache (right).

1.1.3 Cache lines
A cache line is the smallest unit of data that can be transferred
between the main memory and the cache. The cache line size varies
by processor makers; the size can be directly obtained from the
processor’s specification sheets, or retrived by executing some
manufacturer-provided instruction sets. All processors in our test
hardware have a 64-byte cache line size.

1.2 Multiprocessor/multicore cache coherency
For a multiprocessor system, all processors typically have their own
caches, and machine vendors must ensure that data across
processors are coherent. A protocol must be used to enforce data
consistency among all the cores’ caches so that the system correctly
processes valid data; this protocol is called a “cache coherency”
protocol. The protocol manages data to be updated appropriately
using a write-back policy, resulting in decent overall performance
by reducing the number of main memory updates.

1.3 False cache line sharing
False cache line sharing or false sharing in short is a form of cache
trashing caused by a mismatch between the memory layout of write-
shared data across processors and the reference pattern to the data.
It occurs when two or more threads in parallel programs are
assigned to work with different data elements in the same cache
line. In other words, false sharing is a side effect in a
multiprocessor system due to cache coherency.

Although the multiprocessor’s system scale seems quite different
from that of a small personal computer, the internal architecture of a
multiprocessor is comparable to a multicore microprocessor chip in
terms of the number of processors and memory hierarchy. A
computer with dual-core, quad-core, or octal-core processors is now
considered as a type of multiprocessor system. Thus, it would seem
to be susceptible to a false sharing problem as well.

A multiprocessor system must maintain data coherency across
CPUs. When a processor makes a change on its cache, other
processors must be aware of the change, and determine whether its
copy of data in cache needs to be reloaded or not. The cache
coherency protocol defines rules to maintain data updates among
processor groups with a minimal number of requests to the main
memory, thereby optimizing system performance.

False sharing occurs when threads from different processors
modify variables which reside on the same cache line. In case of
Intel’s processors, when the processor invalidates a cache line with
an outdated value, it fetches an updated value from the main
memory into its cache line to maintain data validity. Figure 4 and 5
demonstrate two threads with false sharing on SMP and CMP
systems respectively. Threads 0 and 1 update variables that are
adjacent to each other located on the same cache line. Although
each thread modifies different variables, the cache line keeps being
invalidated every iteration. As a result, the number of the main
memory access increases considerably, and causes great delays due
to the high latency in data transfers between levels of the memory
hierarchy. The false sharing problem is ocassionally referred to as
“cache line ping-pong [9].”

Figure 4. False cache line sharing on SMP [5]

Figure 5. False cache line sharing on CMP [5]

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 479

2.0 Prior Work
Many researchers point out the great performance degradation
caused by the false sharing problem on multiprocessor
environments. Fewer papers performed tests on multicore CPUs
since they are a relatively new architecture. The hypothesis in this
paper is that false sharing would happen in a multicore system as it
does in a multiprocessor one because it has many common
components, yet the degree of impact may be different. More details
will be discussed in the experiment and the result section.

2.1 Concurrent Hazards: False sharing
Butler did an experiment on a multiprocessor system to measure
false sharing effects in [6]. The test system is composed of four
dual core CPUs, total 8 processing units. The best case speed-up at
the eight-threaded execution shows a 100x difference compared to
the worst case. The paper employed certain techniques to eliminate
false sharing effects.

2.2 Latency of conflict writes on Multicore Architecture

Dr. Josef discussed the latency penalty caused by FS [7]. The work
shows that the amount of latency declines when the array allocated
is between 128 Kbytes and 2Mbytes in size, which fits on cache
level two. At this threshold of the array size, the high latency that
would have been caused by the false sharing problem disappears. It
is because shared L2 cache is a “true” sharing cache, and both cores
can access data without cache invalidation, thereby eliminating
false sharing. In brief, the experiment proved that shared cache
between cores can eliminate the adverse impact stemming from
false sharing.

3.0 Experiment Design
The experiment results are obtained from the execution time of a
designated program onto three systems with different types of dual
core CPUs. There are five test cases which have the same goal of
completing an equally specified workload; however, different
running schemes are set up to reveal the existence of the false
sharing problem.

3.1 False sharing avoidance techniques

Since false sharing results from two or more cores using data in the
same cache line, one way to get rid of it is to eliminate any sharing
in the same cache line. Hence, certain techniques are proposed in
order to avoid data sharing by modifying the data arrangement in
the cache line.

3.1.1 Spacing technique
The Spacing technique is an approach used to split a contiguous
allocated space. In an array, a set of variables is typically reserved
in a chunk to take advantage of locality of reference. For instance,
when four variables are declared in an array, an allocation
consisting of four integer-sized adjoining memory blocks is made.
Using the Spacing technique splits the shared data among the
reserved array by shifting the offset between each contiguous array
element so that each element resides on a separate, different cache
line.
In figure 6a, integers D1, D2, D3 and D4 reside in the same cache
line. With the implementation of the Spacing technique, false
sharing on array data can be avoided as shown in figure 6b.

3.1.2 Padding technique
Besides the Spacing technique, Padding is another technique to
reduce false sharing effects by filling a cache line with a pad.

A variable declaration requires an extra piece of information to
manage memory space for the variable. When an array is declared,
the operating system needs to define metadata that contains the
array information. Metadata uses space just right before actual data,
and consists of pointers and header information. For example, every
array in .NET require metadata such as SZARRAY, which stores
size information of the array. Whenever a thread read from or writes
to an element, there is a read of the metadata happening before that
of the actual array. Using Spacing technique does not separate
metadata from the array; they still reside on the same cache line as
in figure 6b. Therefore, false sharing is happening between the
metadata and the first array element. To eliminate sharing on
metadata, the cache line is padded so that the first element is shifted
to the next cache line. Figure 6c illustrates the cache line structure
using Padding.

Figure 6. Cache line structure of Spacing, and Padding arrays

3.1.3. Combined Spacing and Padding technique
Using a Spacing-only or a Padding-only technique would not
overcome the false sharing problem [6]. Therefore, the combination
of both techniques is the best way to completely avoid false sharing
by isolating each elements onto a single cache line. Figure 7, for
example, shows a cache line layout of four array elements,
including metadata.

Figure 7. Cache line structure of combined Padding

and Spacing technique

480 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

3.2 Testing code
The testing code, which is adapted from [6], demonstrates existence
of the false sharing problem. The processing time of the program
with the false sharing problem is compared to the program without
the problem. The identical experiment is executed on three
hardware configurations to compare the performance loss among
different systems. The size of the Padding and Spacing variables are
defined to be 64 bytes, which is equal to a size of one cache line, to
ensure that every element is shifted off onto a separate cache line.
The data arrangement is the crucial focus in order to avoid false
sharing with five testing cases: SEQ, PAR, PAR_SPC, PAR_PAD
and PAR_SPC_PAD.

The following code fragments show how each testing case declares
the data array, sets an offset, and executes the workload.

…

…

For example, suppose that a system consists of a four core processor
working on four integer elements; each core works on an array
element. In the Parallel FS case (PAR), all four threads work on the
contiguous array elements as shown in figure 11a. The array data is
arbitrarily defined to start at the memory address 156. Generally an
integer requires four bytes of memory space; therefore, four integers
can be allocated in one cache line. Figure 8a show cache diagram of
PAR case that false sharing occurs on cache lines. Meanwhile,
figure 8b illustrates how PAR_SPC_PAD case avoids false sharing
effects by isolating each array element onto separate cache lines.

Figure 8. Cache line structures of Parallel FS (PAR) and Parallel

FS + Spacing and Padding remedies (PAR_SPC_PAD)

4.0 Hardware specifications
The experiment performs on three specified types of multicore
processors: Intel Core2 Duo T5270, AMD Turion64 X2 TL-58, and
Intel Core i5 520M.

Table 1. Processors’ specifications of testing systems

5.0 Experiment Results
The experiments results are collect and analyzed to understand how
false sharing happens, and how much performance degradation it
causes. The runtime values of five different test cases with varied
data layouts and running schemes are collected. All five cases are
assigned to complete the same amount of workload so that they can
be compared in terms of performance. The details of data
arrangement in each case are as follows.

1. Sequential (SEQ)—a sequential execution of the assigned
workload on one core.

2. Parallel FS (PAR)—an execution of the assigned workload on
all available cores in parallel. The amount of workload is
divided equally for every core. There will be data contention in
cache lines. The runtime on this case is expected to be
influenced by false sharing.

3. Parallel FS + Spacing remedy (PAR_SPC)—an execution of
the assigned workload on all available cores in parallel. The
amount of workload is divided equally for every core.
Additionally, this case applies the Spacing technique to avoid
false sharing effects on the array elements.

4. Parallel FS + Padding remedy (PAR_PAD)—an execution of
the assigned workload on all available cores in parallel. The
amount of workload is divided equally for every core. This
case implements the Padding technique to prevent false
sharing occurring on the array metadata.

5. Parallel FS + Spacing and Padding remedies
(PAR_SPC_PAD)—an execution of the assigned workload on
all available cores in parallel. The amount of workload is
divided equally for every core. Moreover, this case combines
Spacing and Padding techniques so as to completely eliminate
false sharing effects on the array elements and metadata.

5.1 Experiment results
Speed-up and efficiency are calculated from the runtime. Both
numbers are computed as relative parallel performance based upon
the sequential runtime by following equations [3].

 Speed-up(x) = sequential runtime / parallel runtime (1)
 Efficiency (%) = (speed-up / number of cores) *100 (2)

Table 2 amasses all experiment results which are speed-ups,
efficiency as well as performance degradation computed in terms of
loss efficiency. Values of each hardware configurations are
relatively compared based upon sequential execution figures.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 481

Table 2. Experiment results summary

Figure 9. Intel Core2 Duo T5270 speed-ups and efficiency

Figure 10. AMD Turion64 X2 TL-58 speed-ups and efficiency

Figure 11. Intel Core i5 520M speed-ups and efficiency

5.1.1 Intel Core2 Duo T5270
Figure 9 (left) show speed-up ratios of the four parallel cases
calculated based upon the Sequential case (SEQ) speed-up (1.0x).

The speed-up ratios demonstrate that false sharing has the most
influences on PAR case execution (0.51x), and less impacts on the
two cases with remedial techniques, PAR_SPC (0.76x) and
PAR_PAD (0.99x). The PAR_SPC_PAD case obtains a practical
value at 1.75x in speed.
Theoretically, two cores should accelerate system performance for
two times (2x). However, the speed-up ratio in practical does not
reach the theoretical value since some system resources are used to
fork working threads, and synchronize data among those threads. A
speed-up ratio range of 1.5x to 1.9x is considered practical in the
level of parallelism with two processing cores [2].
Efficiency is a fairly good indicator to measure performance per
processing unit. The Sequential case is a base value with 100%
efficiency. For two cores working in parallel, the system must run
two times faster than single core to achieve full efficiency. Figure 9
(right) shows the efficiency with a similar pattern to speed-up
ratios, PAR at 25.48%, PAR_SPC at 37.85%, PAR_PAD 49.43%,
and PAR_SPC_PAD at 87.58%. The amount of lost efficiency
results from the different degrees of false sharing impact. The more
false cache line sharing occurs, the lower performance it obtains.

5.1.2 AMD Turion64 X2 TL-58
Consider the speed-up of the PAR case, it does not scale well (0.5x)
compared to the sequential case (1.0x). When the PAR case is
employed with the Spacing technique to become the PAR_SPC, the
speed-up augments to be 0.73x. The PAR_PAD also produces a
greater speed-up (0.63x) compared to the PAR case as shown in
figure 10 (left).

False sharing turns down speed-ups of the three mentioned cases in
different degrees. However, the Parallel FS + Spacing and Padding
remedies case (PAR_SPC_PAD) gains a promising speed-up at
1.97x, which is virtually close to an ideal value at 2.0x.

Among all parallel cases, only the PAD_SPC_PAD gains high
efficiency at 98.34% as shown in figure 10 (right). The efficiency in
any other cases reflects the different performance degradation by
different degrees of false sharing effects.

5.1.3 Intel Core i5 520M
Figure 11 (left) shows speed-up ratios on the Intel Core i5 520M
test system. The Parallel FS (PAR) case represents the poor
performance execution with 0.57x in speed, or around two times
slower than the sequential case. An improvement takes place on the
PAR_SPC case (0.98x) and the PAR_PAD case (1.06x). The
PAR_SPC_PAD case gains the highest speed-up at 2.17x.

Intel Core i5’s efficiency has a similar pattern to two previous test
systems. The efficiency of the PAR_SPC_PAD is noticeable with a
“superlinear” number (108.57%), which efficiency exceeds 100%
[3]. When a program which makes use of data stored in a share
cache is repeatedly executed, its performance will substantially
boost up because of memory locality. Another factor to reach a
superlinear value is capablility of executing many concurrent
threads. Intel Core i5 520M processor comes up with Hyper-
Threading technology; each core can execute two threads at a time.
Therefore, it increases probability for threads to take advantage of
memory locality.

482 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

5.2 Performance drops caused by false sharing
From table 1, performance drops caused by false sharing is
observed by efficiency losses.

The PAR case suffers from false sharing the most. The system
performance drops by three fourth of the speculated efficiency,
which caused efficiency loss 70-75%. The PAR_SPC case and the
PAR_PAD case also have significant performance degradation
approximate 50-70%, but less deficit compared to the PAR case.
The PAR_SPC_PAD case performs efficiently, especially on the
Core i5 520M processor. The case has a small number of losses on
all three systems: Intel Core2 Duo T5270 at 12.48%, AMD Turion
64 X2 at 1.66%, and no loss for Intel Core i5 520M (8.57% in
surplus).

5.3 False sharing impacts comparison on multiprocessor and
dual core systems
The previous research points out the severity of the false sharing
impact on multiprocessor systems in two orders of magnitudes (-
100x) [6]. However, the experiment results in this paper
demonstrate the worst case of performance degradation by a factor
of four (-4x). An important observation is the degree of impact on a
multiprocessor system is far aggressive than that on a dual core
system. The suspicious factor is memory hierarchy.

Figure 12. Cache Ping-ponging on multi-level memory

in a multiprocessor system

Figure 13. Cache Ping-ponging on multi-level memory

in a dual core system

Figure 12 and 13 show multi-level memory hierarchies of a
multiprocessor system and an Intel dual core processor system.
Supposed that the program similar to the one that runs in the test
experiment is executed in a multiprocessor system, false sharing
occurs on the system. In the PAR case, the array elements in a
cache line are updated by many processors; false sharing results in
considerably numbers of cache line invalidation. When a processor
writes a new value to its array elements, the whole cache line needs
to be written back to the main memory, and reload to all processors’
caches, known as cache Ping-Pong in figure 12. The CPUs’ read
and write operations befall between their caches and the (shared)
main memory, in other words, between the cache and the main
memory hierarchy. Since the processors need to access to the main
memory through a shared bus, the system suffers from cache misses
penalty. The amount of CPU waiting time substantially increases by
the cache miss penalty as a following equation [10]:

Cache miss penalty (X bytes) = main memory access latency
+ X bytes/data receive rate (3)

Cache miss penalty is computed by adding up a delay of main
memory access and data transfer time from main memory to cache
memory. The data transfer rate depends on the shared memory bus.
Because the bus is used by all processors to access to main memory
and peripheral devices, transfer time of the bus has much higher
latency than that of an internal bus between caches and CPUs.
Therefore, the substantial amount of increasing time caused by
cache miss penalty results in significant performance reduction
stemmed from the false sharing problem.

The similar scenario of false sharing occurs on a dual core system.
Cache Ping-Ponging also happens in the system as shown in figure
13. Yet, the cache invalidation in the dual core system takes place in
between the L1 cache and the shared L2 cache, instead in between
the cache and the main memory in multiprocessor systems. The on-
die caches are local memories having low latency. Data transfers
among caches do not require bus transactions as data transfers
between cache and main memory. Thus, the severity of false
sharing on a dual core system does not cause significant
performance degradation as it does on a multiprocessor system.

6.0 Conclusion
The study of false sharing effects on dual-core CPUs demonstrates
the existence of false sharing on multicore CPUs. The issue
apparently degrades overall performance in a concurrent execution.

(1) In the test case with false sharing occurs, PAR, on dual core
processors, the efficiency degrades by approximately 70-
75%. In other words, the test program works slower than
speculated by four times; it runs at 25-30% efficiency
instead of 100% efficiency.

(2) For the partially false sharing remedial cases, PAR_SPC
and PAR_PAD, have certain runtime improvements to be
30-50% efficiency. However, the false sharing impact still
stalls the two test cases, and leads to significant efficiency
loss.

(3) On the best case, PAR_SPC_PAD, completely avoids false
sharing, and obtains performance at nearly 100% efficiency.

All three test systems, Intel Core2 Duo T5270, AMD Turion64 X2,
and Intel Core i5 520M processors, are consistently suffering from
false sharing effects resulting in performance drops at 50%-75%
efficiency.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 483

On one hand, programmers can be optimistic for improvements on
multicore CPUs since the ratio of performance drops caused by the
false sharing problem on a dual core system is not as high as that on
a multiprocessor system. The findings in this paper indicates
performance of a dual core system drops approximately by a factor
of four (-4x). Unlike the false sharing impact on a multiprocessor
system, the previous research reported the performance loss as high
numbers as one hundred times (-100x) on an eight processor
system. The different degrees of the false sharing impacts stem
from the different memory architectures between those two
systems. The shared cache implementation on Intel dual core
processors alleviates the adverse impact caused by false sharing.
For AMD processors, although each core has a separate L2 cache
which is subject to have false sharing problems, the processor
handles the data synchronization among caches on all cores by
using MOESI coherency protocol and dedicated data paths, the
synergy of the two parts are named as Hyper Transport technology.
In brief, both Intel and AMD have deliberately come up with the
intelligent designs to cope with the data sharing issue across cores.

On the other hand, the programmers must still be aware of
performance degradation caused by false sharing. For dual core
processor system, a parallel version of the program working four
times slower is considered unacceptable since it runs even slower
than sequential version running on a single core processor. The
false sharing problem, therefore, is a major potential issue in
parallel programming on multicore CPUs.
We proposed and demonstrated implementation of Spacing and
Padding techniques to avoid false sharing. These approaches
remedy, or totally eliminate, the false sharing impact. Nevertheless,
the implementation of Spacing and Padding techniques barters with
memory space. For instance, on the dual core test systems, the
amount of memory used in the PAR case is 8 bytes of the array plus
the metadata size, which can be rounded up to be 16 bytes. The
modified array size in the PAR_SPC_PAD case becomes three
cache lines, or 192 bytes, two cache lines for two elements and one
cache line for metadata. Thus, the cost to avoid false sharing is
rather expensive.

7.0 Future Work
The processors with four cores, six cores, and eight cores will be a
standard for personal computers in the foreseeable future. Also, the
internal architecture of processors keeps changing to handle inter-
core communication efficiently. For Intel Core-i7, data on each core
is synchronized through inter-core connection paths known as Intel
Quick Path technology [1]. AMD Phenom X4 Quad-core uses
Hyper Transport 3.0 technology maximizing throughput to be
51.2Gbit/second [11]. All break-through technologies are invented
to tackle data synchronization among cores. However, does the new
cutting edge technology really work on all types of applications
without the false sharing issue? If it does, that is good news for
programmers. This paper shows the existence of false sharing on
dual core CPUs, and it could imply that false sharing would still
occur on a more-than-two-core processor. In case the problem does
exist, how much is the impact on a quad core CPU? How much is
the performance loss on an eight core or a sixteen core processor?
The evaluation of the false sharing impact on such many cores
CPUs will be subject to further research in the future.

8. References
[1] AMD, Intel ready 'many core' processors. Web site: http://
news.cnet.com/8301-13924_3-10471333-64.html

[2] Pase, M. D., Eckl, M.A. 2005. A Comparison of Single-Core
and Dual-Core Opteron Processor Performance for HPC. IBM
Corporation. Web site: ftp://ftp.software.ibm.com/eserver/
benchmarks/wp_Dual_Core_072505.pdf
[3] The Code Project. Butler, N. Superlinear: an investigation into
concurrent speed-up. Web site: http://www.codeproject.com/
KB/threads/Superlinear.aspx
[4] Loshin, D., Effective Memory Programming. McGraw-Hill.

[5] Chandler, D., Reduce False Sharing in .NET. Web site: http://
software.intel.com/en-us/articles/reduce-false-sharing-in-net/

[6] The Code Project. Butler, N. Concurrent Hazards: False
Sharing. Web site: http://www.codeproject.com/KB/threads/
FalseSharing.aspx

[7] Weidendorfer, J., et al. 2007. Latencies of Conflicting Writes on
Contemporary Multicore Architectures. Springer Berlin Heidelberg,
vol. 4617, pp. 318-327.

[8] Bolosky, W. J., Scott, M. L. 1993. False sharing and its effect on
shared memory performance. In USENIX Systems on USENIX
Experiences with Distributed and Multiprocessor Systems - Volume
4 (Sedms'93), Vol. 4. USENIX Association, Berkeley, CA, USA, 3-
3.
[9] Cebix. Cache Line Ping-Pong. Web site:
http://everything2.com/title/cache+line+ping-pong
[10] Adve, S. CS433g final exam Web site: http://
www.cs.uiuc.edu/class/fa05/cs433g/assignments/Fall_2004_Final_
Solution.pdf
[11] Hyper Transport Consortium. HyperTransport 3.1
Specification. Web site: http://www.hypertransport.org/
default.cfm?page=HyperTransportSpecifications31
[12] Torrellas, J., Lam, H.S., Hennessy, J.L., False sharing and
spatial locality in multiprocessor caches. In Computers, IEEE
Transactions, vol.43, no.6, pp.651-663, Jun 1994. doi:
10.1109/12.286299

484 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

A RISC-Based Moving Tiny Threads Architecture

Vi lle Leppänenα, Jari-Matti Mäkelä α, Martti Forsell β

αDepartment of Information Technology, University of Turku, Finland,
Email:{Ville.Leppanen,jmjmak}@utu.fi

βVTT, Platform Architectures, Oulu, Finland; Email: Martti.Forsell@vtt.fi

Abstract— We describe a RISC-based architecture for
moving tiny light-weight threads instead of data in
the multicore context. We assume the architecture to
consist of homogeneous cores that are connected with
an on-chip network. A sparse 3D torus is considered
as a network delivering enough bandwidth. Besides
rather ordinary ALU capabilities, each core maintains
a rather large set of threads, and has separate memory
and instruction caches. For the data cache, we avoid
coherence problems by partitioning the memory and
assuming that a portion of the main memory can
be accessed only via one specific data cache. Con-
sequently, we need to move light-weight hardware-
supported threads between the cores in the on-chip
network.

Compared to approaches where all memory loca-
tions are accessible via each cache, we avoid coher-
ence problems and do less loads to caches. The price is
an additional network between the cores and possible
inefficiencies due to moving threads between the cores.
As the threads in each core are used to hide memory
access and thread moving latencies, we characterize
requirements for the amount of tiny threads.

1. Introduction
We describe our RISC-based multicore architectural

framework designed in our MOTH project1 for im-
plementing a PRAM-based (Parallel Random Access
Machine; [5]) approach for parallel programming. Pre-
viously this architecture has been outlined in [10]. By
this architecture, we aim to provide better programma-
bility of parallel systems, since the basis of PRAM
approach is a synchronous shared memory based exe-
cution of threads. The synchronous nature of execution
essentially means that there are plenty of points in
the program, where the programmer can relay that the

1This research has been funded by the Academy of Finland
project number 128729.

previous memory write (and read) instructions have
taken place. Consequently, the state of the program
(concerning all threads) is clear and therefore designing
a correctly functioning multithreaded program becomes
easier. The PRAM has several variations regarding
the choice of synchronization points. The most strict
interpretation is that (implicit) synchronization takes
place after executing a single step from all currently
existing threads.

Previously, PRAM implementation has been studied
in the SB-PRAM project [6] in the multicomputer
context. Recently, such such PRAM implementations
have been provided in the multicore on chip context by
Forsell [2], [1] (Eclipse architecture) and by Vishkin et
al [11] (Paraleap architecture). We have also previously
proposed non-RISC based solutions for the moving
threads architecture [3], [4]. A simulator and a com-
piler [9] also exist for this RISC-based experimental
architecture, but those are not discussed in this paper.

In Section 2 we present our architectural RISC-
based framework for implementing the moving threads
approach. We focus on the architecture of cores. The
inter-core network solution is discussed in Section 3
we where we also analyze efficiency requirements.

2. RISC-based architectural framework
2.1 Overview of multicore system

An overview of our architectural framework is
shown in Fig. 1. The system consists ofc RISC-based
cores, an inter-connectionnetwork between the cores,
and amain memorysystem. Each core maintains a set
of threads, can execute instructions from those, send
and receive threads via the network, and has a cache
memory for accessing a part of the main memory.
Each coreCi “sees” a unique fractionof the main
memory via itsdata cache– such memory locations are
calledlocal to Ci. Thus, if a thread residing at coreCi

issues a memory instruction concerning some memory

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 485

location local to coreCj , then the thread must be
moved toCj before executing the instruction. Moving
a thread basically means moving the contents of its
registers and program counter (as well as possibly next
decoded instruction). The program, being executed by
a thread to be moved, is not moved, since each core
has aninstruction cache, which contains fractions of all
program codes being executed by the threads residing
at that core. In this paper, we assume that the number of
registers is minimal considering the RISC architecture;
2–4 registers per thread.

Each memory location is local to only one core.
Thus, there are no consistency problems, since there is
no real replication of the contents of memory locations.
Each memory location can be cached. The data caches
of cores act as root access points into the main memory.
In the framework, we do not specify how the main
memory is organized – e.g. it can be partitioned into
blocks. We neither do not fix the organization of the
memory system – there can be multiple levels of
caches. The mapping of memory locations into cores
is not fixed in our architectural framework. We expect
such a mapping to be balanced, but leave it open
whether the mapping is static or dynamically set by
the executed programs.

We explain the basic function of a core next. Each
core maintains a dynamically varying set of threads
by storing their register values in aregister file and
maintaining other information regarding them in a
thread pool. A core extracts instructions from the
threads (by using their program counter value) in
its thread pool and injects such instruction into its
instruction executionpipeline. None of instruction in
the pipeline is a non-local memory instruction. The
nature of next instruction is determined at the end of
execution pipeline – thus, the need to move a thread is
determined as early as possible.

The goal is that each of the cores hasΘ(X) threads
to execute, and the threads are independent of each
other – i.e. the core can take any of them and advance
its execution. By taking an instruction cyclically from
each thread, the core can wait for memory access
taking a long time (and even tolerate the delays caused
by moving the threads). The key to hide the memory
(as well as network and other) delays is that the average
number of threadsX per core must be higher than the
expected delay of executing a single instruction from
any thread.

The network connecting the cores is for moving
threads between the cores. Thus, each core has separate
thread buffersfor sending and receiving threads. The
received threads are moved into the thread pool of
the receiving core, and respectively sending means
removing a thread from the pool of the sending core.
The network between cores is discussed in Section 3.

The execution of all threads in the whole system is
synchronous. The most strict interpretation of PRAM
execution is that all threads execute synchronously
stepwise – meaning that there is implicit synchro-
nization after each step (i.e. atomic instruction). A
less strict interpretation is that there is a separate
synchronization instruction in the instruction set, and
encountering such an instruction in the execution is
treated as a barrier synchronization point (all threads
pass over a barrier when all the threads have reached
it). The instructions of a thread between two barrier
synchronization points can be called as a superstep
(notice that the length of superstep does not need to
be static). The approach to the nature of execution
synchrony is very crucial considering the semantics
of programs and ease of programming. It is obvious
that the more strict synchrony the easier to program
but the more costly to implement. In our architectural
framework, we do not specify how often the threads
are synchronized, but we fix the architectural method
of keeping the threads in synchrony. Our method is
the synchronization wavemethod which can be seen
to have been outlined already in the Fluent machine.
The idea of synchronization wave is that a wave front
separates two consecutive (super)steps. The wave front
moves over an element (whether an interconnection
node or an element related to the execution pipeline
of a core) once it has arrived into the element via all
input "links". Moving over a node means that the wave
front is forwarded to all possible output "links" of the
node.

2.2 Architecture for a single core

The bedrock of our thread processor model is a
RISC-type pipeline architecture. The major change to
the basic 5-stage textbook model is the the adoption
of the moving threads; the address space is distributed
among all cores, and a thread move occurs when the
next instruction in the control flow refers to a non-
local memory address or performs a special thread
control instruction. This makes it necessary for an

486 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Interconnection network between the cores

C4C1 C2 C3

C1:

Main

memory

cache

instr.

data

cache

thread

send buffer

thread

receive buffer

thread

register file

pool
instruction execution

pipeline

C4C3C2C1

Figure 1: Overview of our multicore system.

efficient implementation to precalculate the address
of a reference before execution. Another difference is
the pipeline feeding technique – instead of executing
instructions in coarse-grained blocks from a same
thread at a time, fine-grained thread level parallelism is
harnessed by alternating the executable thread between
all pipeline stages. Our framework introduces a novel
reorganization of the pipeline stages to fulfill both
goals.

The core operational flow consist of five pipeline
stages:select, decode, execute & fetch next, writeback
& predecode, address calculation & data memory
access(Figure 2). The data buffering forms the sixth
stage, but it is actually an independent background task
running concurrently with the main pipeline. Each of
the pipeline stages have been balanced to execute in
one cycle.

Ideally an instruction completion through the data
path takes five cycles. In case of an instruction cache
miss, a placeholdernop operation is executed as next
instruction until the instruction becomes available. Data
memory misses are handled by the sixth stage – the
thread’s status remains unavailable until the data has
been fetched to the data buffer.

2.2.1 Instruction selection

The first state of the data path,select, is responsible
for selecting the next available thread for execution.
The threads are organized to an indexed array of rows,
the thread table. Each row consist of three fields; the
thread’s status, program counter value, and a preloaded
next instruction.

The status field has seven possible states (Figure 3);
free, ready, exec, wait, sync, moveand recv. The free

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 487

T
h
re
a
d

b
u
ff
e
ri
n
g

S
e
le
c
t

D
e
c
o
d
e

E
x
e
c
u
te
 /
 M
e
m

W
ri
te
 b
a
c
k

F
e
tc
h
 n
e
x
t

P
re
d
e
c
o
d
e

C
a
lc
u
la
te
 a
d
d
r

M
o
v
e
 d
e
c
is
io
n

A
c
c
e
s
s
 c
a
c
h
e

U
p
d
a
te
 t
h
re
a
d

D
a
ta
 b
u
ff
e
ri
n
g

Figure 2: The pipeline stages of the thread processor core

state indicates an empty slot in thread table where a
new thread can be assigned. A thread is ready for
selection and execution when its state isready, whereas
the execstate means that thread’s current instruction
is under processing. Thewait state expresses pending
memory request from the data memory. Threads with
the statesyncwait for the next synchronization point
before continuing execution. Finally, while the table
control logic is receiving or moving away the thread
in the slot, statesrecv andmoveare used respectively.

The select and table control unit searches on every
cycle the thread table for threads with the statusready.
If a thread is available, its status is updated toexec,
and the prefetched instruction, program counter, and
row index values are fed to the next pipeline stage
(Figure 4). The program counter value is increased by
four (word aligned instruction memory) before pipeline
registers. If no threads are available, anop operation
along with an illegal row id value (discarded in later
stages) is provided instead.

We assume a simplified single stage thread table
model. A more realistic implementation may face prob-
lems with the speed of lookups. Those problems could
be tackled by e.g. banking the table and/or building a
tree like selection logic for the row id values ofready
threads.

2.2.2 Instruction decoding

On every cycle the instruction decoder decomposes
the thread’s next prefetched instruction into an imme-
diate value and possible register references, and issues
respective register file fetches. A new program counter
value is precalculated for possible branching and an
immediate value for the ALU. The instruction data,
program counter, row index, and relevant register and

immediate values are fed to the next stage.
All pipeline stages assume that the operations on

the register file take exactly one cycle. Additionally,
the decoding stage requires two dedicated read ports
for ordinary instructions and four ports if instructions
MADD and MSUB are supported. In case support for
vector (SIMD) operations is desired, the total number
of register file read/write ports is dictated by the widest
vector operations. The predecode stage and thread
move mechanism require additional dedicated ports.

2.2.3 Execution and fetching next

The third stage performs three operations every
cycle: execution of the instruction, fetching of the next
instruction from the instruction cache, and fetching of
data from the data buffer. The data buffer is guaranteed
to contain the correct data in case the instruction is
a load since the execution is only triggered by a
successful load. Otherwise the result is discarded in
the following stages.

The execution of the instruction is performed by the
ALU using the precalculated register and immediate
values. The result along with the value of the second
register are fed to the next pipeline stage. The data
fetched from the read port of the data buffer and
the instruction from the instruction cache are pushed
forward to the next pipeline stage.

The data buffer is concurrently updated via two ports
connected to pipeline registers. The pipeline registers
store (data, row id) pairs coming from the data cache.
The two port approach allows updating the buffer
every cycle despite its single cycle latency. A failed
instruction cache fetch results in anop operation, and
the program counter value is decreased by four. In
other cases, the program counter and row id values are

488 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Free

Ready

spawned Recv

receiving

Exec

selected

Sync

synchronizat ion

Wait

fe tched

terminat ion

unsynchronized

executed
local ref,

instruction miss

Move

non-local ref

received

moved

Figure 3: The flowchart of the thread states.

ID

6.

4.

4.

7.

3.

3.

3.

4

2.
2.

2.

1.

4.

4.

1. SELECT &

CONTROL

TABLE

PC

ID

INSTR.

PC

INSTR.

ID

BUFFER

P
R
E
D
E
C
O
D
E

DATA

A
D
D

A
D
D

A
L
U

S
IG
N

S
H
IF
T

M
U
X

M
U
X

M
U
X

M
U
X

R
E
G
IS
T
E
R
 F
IL
E

INSTRUCTION

CACHE

E
Q

S
IG
N

ID

DATA

DATA

INTERCONNECTION NETWORK

ID

INSTR.

PC

INSTR.

ID

T
H
R
E
A
D
 O
U
T

T
H
R
E
A
D
 I
N

PC

PIPELINED &
CACHED LOCAL
DATA MEMORY

MOVE
DECISION

4.

1.

TABLE

THREAD

ADDRESS
CALCULATION

Figure 4: The datapath model of the thread processor core.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 489

simply passed through. The original instruction data is
also passed to the next pipeline stage.

2.2.4 Write back and predecoding

The fourth stage finishes the execution of the in-
struction by writing the register value back to the
register file and storing the computed data or register
value to a memory location. The original instruction
data is used to determine this operation. Both write
operations are assumed to have a latency of one cycle
– internal processing may proceed asynchronously until
the next synchronization point. Two dedicated register
file write ports are required by the 32-bit MULT and
DIV instructions, otherwise a single port is sufficient.

The rest of this stage deals with the predecoding of
the next instruction. The instruction is decomposed as
in the decode stage into the opcode and the register
references. A single register file read port is reserved
for fetching a register in case the next instruction is a
load or store and uses a register value when computing
the next address. The instruction data along with the
potential fetched register value are fed to the next
pipeline stage.

2.2.5 Calculating address and data memory access

The last stage of the pipeline checks whether the next
instruction is accessing the memory local to the core
or if there is a need to migrate the thread to another
core. The mechanism used to determine the correct
core for the memory reference can be as simple as a
hard coded pair of hash function and the core’s number.
The updated thread state is written back to the thread
table.

If the next instruction does not access memory
or accesses a local address, the computed address is
propagated to the data cache’s queue and the thread’s
status is updated tosync. In other case a thread move
is initiated by setting the thread’s status tomove. The
quadruple of row id, thread status, next instruction, and
program counter value are used to update the row in
the thread table. The update and selection in the first
stage use different rows and can be issued concurrently.

The select and table control unit initiates a possible
thread move concurrently in the background. The row
to be moved will remain untouched by the thread
selection and its status is later updated tofreewhen the
thread’s register values have been completely copied
to the transmission queue. The details of thread move

have been omitted from the Figure 4.

2.2.6 Data buffering

The data memory requests performed in stage 5 are
added to the data cache’s queue. After processing the
query, the cache stores the result in one of its two
pipeline registers along with the accompanying thread
row in the thread table. The data buffer unit reads these
values via two input ports and updates the values in a
single cycle. The data cache also signals the select and
table control unit with the thread’s row id associated
with the data. The unit then updates the status of the
row from wait to ready. The latency associated with
this operation depends on where the data is fetched
from the memory hierarchy.

3. Inter-core network and efficient exe-
cution requirements

Many kinds of sparse networks can be used as
the inter-core network [8], e.g. a sparse butterfly, a
sparse mesh, a sparse torus, etc. While the sparse
networks have different properties concerning scalabil-
ity, physical connection length and degree of nodes,
they all share a property: ac-core sparse network can
can acceptΘ(c) new messages per step and deliver
Θ(c) messages to their targets per step. The delivery
of a message involves a delay comparable with the
diameterφ of the network, andφ can be non-modest. In
traditional approaches, the messages correspond to read
or write requests and replies, whereas in the moving
threads approach, a message moves a thread consisting
of a program counter, an id number, and a small set of
registers. The messages in the moving threads approach
are a little bit longer, but respectively there is no need
for a network deliver the replies of read requests.

As we use the synchronization wave technique, we
must assume the network between the send buffers
and the receive buffers to consist of a number of
intermediate nodes whose connections form a DAG
(from the send buffers to the receive buffers). We
assume the throughput of the network to be such that
each node can send and receive a thread approximately
every δ cycles. We denote byTL the average latency
(in cycles) of moving a thread in the network from one
core to some other core. Moreover, we assume thatδ
is some small constant, independent ofc.

The sparse 3-dimensional directed torus is such a
DAG network. Its layout properties are discussed in [8]

490 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

x=0 x=1 x=2 x=3

y=0

y=1

y=2

y=3

Figure 5: A grid-noc layout of a3-dimensional sparse
mesh. All connections between the nodes are shown.
Boxes are cores and circles are intermediate nodes.

(a grid-noc layout of related 3D sparse mesh is shown
in Figure 5). Thec-core 3-dimensional sparse mesh has
c3/2 − c intermediate nodes. The connections between
cores are of constant length (two core-nodes), the node
in- and out-degrees are 3, and the diameter is3

√
c.

The network can move3c3/2 packets per step, thus
the network capacity isδ × 3/2-fold compared to the
data moving requirements. Asδ is often≈ 3 for RISC-
architectures, it can be easily concluded that the routing
capacity will not cause any congestion to influence on
TL. Thus, we consider thatTL ≈ 2

√
c, if the targets

of thread movement operations are reasonably evenly
distributed. The trick to achieve this in connection of
EREW is well known: The shared address space is
distributed with a hash function.

The remaining efficiency requirement is that the
average number of threads per coreX is higher than
the latency, that isX > 2

√
c. This is the real price of

the moving threads architecture, since each more must
physically supportρX threads (for someρ > 1) and
the programs must the task for at leastc × X parallel
threads. However, this should be possible as a work-
optimal polylogaritmic PRAM algorithm is known for
many problems with over-linear work-complexity.

One should notice that even e.g. forc = 10000 cores
this means that a core needs to support at least200
threads – supporting e.g. 1000 tiny threads with only

2–4 registers seems not an unrealistic assumption.

4. Conclusions
In this paper, we characterized a RISC-based archi-

tecture for moving tiny threads to implement the classi-
cal PRAM approach. Each executed thread is modeled
as a 2–4 registers, an execution state information, a
program counter, and a core-related unique id number.
The 3-dimensional torus network was calculated to be
suitable inter-core network for the architecture. It is
scalable, constant-degree, constant wirelength network,
whose latency hiding requires support for rather modest
amount of threads core-wise.

References
[1] M. Forsell. TOTAL ECLIPSE – An Efficient Architectural

Realization of the Parallel Random Access Machine, in Parallel
and Distributed Computing Edited by Alberto Ros, IN-TECH,
Vienna, 39–64, 2010.

[2] M. Forsell. A scalable high-performance computing solution
for network-on-chips. Micro, IEEE, 22(5):46 – 55, sep–oct
2002.

[3] M. Forsell and V. Leppänen. Supporting Concurrent Memory
Access and Multioperations in Moving Threads CMPs. In
Proceedings of PDPTA 2010, pages 377–383, 2010.

[4] M. Forsell and V. Leppänen. Moving Threads Processor
Architecture. Journal of Supercomputing, page To appear,
2011.

[5] S. Fortune and J. Willie. Parallelism in Random Access
Machines. InProceedings, 10th ACM Symposium on Theory
of Computing, pages 114–118, 1978.

[6] J. Keller, C. Kessler, and J. Träff.Practical PRAM Program-
ming. Wiley, 2001.

[7] V. Leppänen. “Balanced PRAM Simulations via Moving
Threads and Hashing.”Journal of Universal Computer Science,
4:8, 675–689, 1998.

[8] V. Leppänen, M. Penttonen, and M. Forsell. Layouts for Sparse
Networks Supporting Throughput Computing. InProceed-
ings of International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’2010), pages
443–449, 2010.

[9] J.M. Mäkelä and V. Leppänen. Towards programming on the
moving threads architecture. InCompSysTech ’10: Proceedings
of the International Conference on Computer Systems and
Technologies, pages 137–142. ACM Press, 2010.

[10] J. Paakkulainen, J.M. Mäkelä, V. Leppänen, and M. Forsell.
Outline of risc-based core for multiprocessor on chip archi-
tecture supporting moving threads. InCompSysTech ’09:
Proceedings of the International Conference on Computer
Systems and Technologies, pages 1–6. ACM Press, 2009.

[11] X. Wen, U. Vishkin. “FPGA-based prototype of a PRAM-
On-Chip processor.”Computer Frontiers 2008, May 5-7, 20

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 491

Parallel RISC Architecture.

A Functional Approach Based on Backus’s FP language

Mihaela Maliţa1 , and Gheorghe M. Ştefan2

1Saint Anselm College, Manchester, NH, (mmalita@anselm.edu)
2PUB, Bucharest, Romania, (gstefan@arh.pub.ro)

Abstract – The main consequence of building ad
hoc structured hardware for parallel computation is the
huge difficulty we have to program it. The paper dis-
cusses a new framework introducing the concept of par-
allel RISC engine, as a simple and efficient solu-
tion for executing FP like languages proposed by John
Backus [2] as an alternative to the von Neumann style
of performing computation. A first version for the hard-
ware solution is already implemented in silicon [12].

Key words: parallel architecture, parallel program-
ming, functional programming, integral parallel archi-
tecture, Backus’s FP System.

1 Introduction

No one describes better the deadlock of parallel com-
puting than David Patterson which last June wrote in
[6] the following about the stage of multi-core industry:

”... the semiconductor industry threw
the equivalent of a Hail Mary pass when
it switched from making microprocessors
run faster to putting more of them on a
chip-doing so without any clear notion of
how such devices would in general be pro-
grammed. ... The trick will be to invent
ways for programmers to write applications
that exploit the increasing number of proces-
sors found on each chip without stretching
the time needed to develop software or low-
ering its quality. Say your Hail Mary now,
because this is not going to be easy.”

Indeed, parallel computing started wrong, with ad
hoc constructs considering that more than one machine,
more or less sophisticatedly interconnected, will have
the brute force to solve the continuously increasing
hunger for computing power. The approach was, and
is, wrong for two obvious reasons:

• programmability is very low, because it was
proved that is impossible to ignore the sophisti-
cated physical details in order to write efficiently
complex programs

• portability is also very low, because code already
written for sequential algorithms is almost impos-
sible to be efficiently translated automatically for
various complex parallel engines

and one hidden, but essential reason:

• the lack of parallel architecture which is sup-
posed: (1) to hide from the programmer the phys-
ical details of the actual engine, and (2) to facili-
tate the automatic translation of the huge sequen-
tial software legacy in as much as possible efficient
parallel code.

Thus, the problem is to find the shortest path from an
appropriate computational model to the simplest possi-
ble parallel architecture and to find a validation proce-
dure. Our proposal is:

1. to start with Stephan Kleene’s computation model
of partial recursive functions, because it is a n-
based model, i.e., it assumes in the initial state-
ments the use of n variables and/or functions,
with n of any size

2. to associate, as the simplest architectural inter-
face, the Functional Program System (FP System)
proposed by John Backus [2], because of its inher-
ent parallel approach

3. to use ”The Berkeley’s View of Parallel Land-
scape” [1] as the validation environment for the
simplest generic hardware implementation: a
ConnexArrayTM based engine [9].

We presented the first step in [5], the second step is
initiated in this paper, while the last one will be only
sketched in this paper and is left to be completed for
future works. The second section describes the struc-
ture of the parallel RISC engine (pRISC), the structure

492 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

which emerged from Kleene’s computation model. The
third section proves that the FP system of Backus de-
scribes efficiently the architecture of the pRISC engine.
Preliminary evaluations of the first embodiment of a
pRISC architecture – a ConnexArrayTM based sys-
tem – are sketched in the last section.

2 The parallel RISC engine

The path from an appropriate computational model to
an integral parallel architecture (IPA) is covered in [5]
and the associated last silicon implementation – a 65
nm version of a SoC built by BrightScale, containing a
ConnexArrayTM with 1024 execution units – is de-
scribed in [12]. ConnexArrayTM is the hardware con-
sidered in our approach as the generic support for a
pRISC engine. It is represented in Figure 1, where:

�- �-
Mem

EU1

Mem

EUp−1

Mem

EU0 �-- �

?
6

?
6

?
6

IO System

C

666

?

6

?

6
Interconnection Fabric

?
6

?
�

?
6

To external memory

?

Reduction/Loop

66

?

6

Figure 1: ConnexArrayTM . The cellular array of p

execution units – EU0, . . . , EUp−1 – each with its own local

memory (Mem) is controlled by a sequential engine (C).

C is a general purpose sequential processor used as
the controller of the whole system. It issues the
sequence of instructions executed in predicated
mode in each one of the p execution units (EU).

EUi is a small & simple EU which executes, according
to its internal state, the instruction issued by C.

Mem is the local memory in each processing cell. It
is used to store data (the entire cell works as an
execution unit) or data & programs (the entire
cell works as a processing element, PE).

Reduction/Loop is a tree structured circuit which
implements: (1) vector to scalar reduction func-

tions, sending back to C the result, (2) closes a
combinational loop over the array of EUs.

IO System transfers data vectors transparently to the
processing performed in each one of the p cells

Interconnection Fabric controls the data & program
transfers between C & array and the external
memory.

The user view of ConnexArrayTM is a two-
dimension array of scalars (see Figure 2): the constant
vector index, m p-component vectors stored in the cel-
lular distributed memory (each Mem module stores m
scalars) and t p-component vectors distributed in the
EU’s register files.

s11 s12 s1p

s21 s22 s2p

sm1 sm2 smp

r11 r12 r1p

rt1 rt2 rtp

.

.

.

.

.

.....

.....

.....

.....

.....

.....

.....

.....

.....

.

.

1 2 pindex

v1

v2

vm

ru+1

ru+t

Figure 2: The user view of ConnexArrayTM . The

local memories Mem store m p-component vectors, while

the local register files store t p-component vectors. The hor-

izontal (spatial) dimension provides time consuming com-

munication, while the vertical (temporal) dimension allow

any efficient virtual interconnection network.

The user of ConnexArrayTM sees a p × m array
of scalars. The horizontal (spatial) dimension p is sup-
ported by a very simple linear interconnection network,
i.e., the distance between two elements on this dimen-
sion is in O(p). The simple & small interconnection
hardware implies low speed on this dimension. The ver-
tical (temporal) dimension m is supported by the most
flexible “interconnection network”: the random access
mechanism of the Mem modules in each EU. On this
dimension the distance between two elements is small &
constant. The vertical flexibility can and must be used
in order to deal with “big distance” connections in the
two-dimension array of variables.

The controller C has a standard organization cen-
tered on a register file of u 32-bit scalars. The instruc-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 493

tion set executed by the whole system – C & EUs – is
defined on the concatenation of two register files:

• the scalar register file of C

• the vector register file distributed in the p EUs

thus, the instruction set is defined on t+u registers, the
first u registers are the scalar registers in C, while the
next t registers are vector registers in the p EUs. For
example, let be t = u = 16. Then, the instruction

add r24 r3 r27;

adds to each component stored in the vector register 27
the value from the scalar register 3 and sends the result
in the vector register 24, while the instruction

add r24 r18 r27;

adds in r24 the vector r18 with vector r27.
The specific instruction for vector processing in

ConnexArrayTM is the predicated execution ex-
pressed as in the following example:

where (r25 == 0) add r20 r20 17 ;

elsewere xor r20 r20 r20 ;

where: in all the cells where the component of the vec-
tor stored in the register 25 is zero, the component of
the vector stored in the register 20 is incremented with
17, while elsewere (where the component of the vector
stored in the register 25 is different from zero) the com-
ponent of the vector stored in the register 20 is cleared.

Another specific function is:

where (r20 = <1,5,6>) first r22;

which provides in r22 a vector with 1 only on the first
position pointed by the sub-vector <1,5,6> in r20, and
0 in rest. For example: if
r20 = <7,4,1,5,7,1,5,6,8,1,5,6,4,2,4,5>

then the result is
r22 = <0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0>.
Those kinds of operations are supported by the combi-
national loop performed by Reduction/Loop circuit.

The full power of the pRISC engine must be proved
using a theoretical programming model and evaluated
using the broadest possible functional spectrum.

3 FP system on pRISC

The seminal paper of John Backus Can Programming
Be Liberated from the von Neumann Style? A Func-
tional Style and Its Algebra of Programs [2] offers the
best theoretical environment for proving that the pRISC

engine is a good candidate for a generic parallel com-
puter. The Functional Programming Systems (FP Sys-
tems) proposed by Backus was introduced as an alter-
native to the von Neumann style of programming – the
main paradigm of sequential computation. FP Sys-
tems can be seen as the definition of parallel sys-
tems from the programming point of view. There-
fore, we consider that the pRISC engine, defined in the
previous section, must be able to deal efficiently with
the objects, functions and functional forms introduced
by Backus in his FP Systems.

Objects. The objects defined in FP Systems, atoms
and sequences, can be found in the pRISC architecture
in the form of scalars (x, y, . . .) managed by the con-
troller C and the vectors (< x1, . . . , xp >) processed in
the linear array of EUs.

Functions. The following set of primitive functions,
almost identical with the set proposed in [2], are exam-
ined from the point of view of how they are implemented
in our pRISC engine.

Selector:
i :< x1, . . . , xp >→ xi
The value i is searched in the constant vector index

(Figure 2), the resulting Boolean vector is used to select
the component xi and to send it to the controller C
through the Reduction circuit.

Tail:
tl :< x1, . . . , xp >→< x2, . . . , xp >
The first element is searched using the index vector and
is deleted using the serial connections between EUs.

Reverse:
reverse :< x1, . . . , xp >→< xp, . . . , x1 >
This is the most difficult function for the pRISC engine,
because of the very simple interconnection network. It
is performed with the help of the IO System, which
is featured with hardware support for performing any
permutation as an out of core function.

Distribute:
distrl :< y,< x1, . . . >>→<< y, x1 >, . . . , < y, xp >>
distrr :< y,< x1, . . . >>→<< x1, y >, . . . , < xp, y >>
are solved depending on the computational context in
two ways: (1) by loading an uniform vector contain-
ing on each position the value y, or (2) by issuing a
{scalar, vector} → vector operation with the scalar y
broadcasted by C toward each EU.

Length:
length :< x1, . . . , xp >→ m
Is performed in two steps: (1) generates a Boolean vec-
tor with 1 on each position corresponding to the p com-
ponents of the vector, and (2) using the add reduction
function, the 1s are added and sent to the C controller.

494 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Transpose:
trans :<< x11, . . . , x1m >,< x21, . . . , x2m >, . . . ,
< xn1, . . . , xnm >>→
<< x11, . . . , xn1 >,< x12, . . . , xn2 >, . . . ,
< x1m, . . . , xnm >>
is solved on the temporal dimension with no computa-
tion because expanding each of the m variables of the
initial vectors on the spatial dimension (horizontally),
we obtain the n variables of the final vectors vertically,
on the temporal dimension:
< x11, . . . , x1m >
< x21, . . . , x2m >
. . .
< xn1, . . . , xnm >
where each vector is a m-variable ”column”.

Append:
apendl :< y < x1, . . . , xp >>→< y, x1, . . . , xp >
apendr :< y < x1, . . . , xp >>→< x1, . . . , xp, y >
Is solved inserting in the first position the scalar y issued
by the controller C.

Rotate:
rotl :< x1, . . . , xp >→< x2, . . . , xp, x1 >
rotr :< x1, . . . , xp >→< xp, x1, . . . , xp−1 >
The two-direction linear connection between cells allows
the rotate function in both directions. For vectors with
less components than the number of EUs the reduction
and insert function are used to perform the operations.

Search:
src :< y,< x1, . . . , xp >>→< b1, . . . , bp >
with bi = (y = xi) ? 1 : 0.
The scalar y is issued by the controller and is searched
in each EU generating a Boolean vector with 1 on each
match position.

Conditioned search:
csrc :< y,< x1, . . . , xp >,< b1, . . . , bp >>→
< c1, . . . , cp >
with ci = ((y = xi)&bi−1) ? 1 : 0.
The search is performed only in the cells preceded by a
cell when the previous search (src or csrc) provided a
match.

Example. The sequence of operations:
src d, csrc o, csrc g, csrc
identify all the occurrences of the sequence dog in the
sequence < x1, . . . , xp >. It allows to define the stream
search operation.

Stream search:
ssrc :<< y1, . . . , ys >,< x1, . . . , xp >>
returns a Boolean vector with 1s pointing all the occur-
rences of < y1, . . . , ys > in < x1, . . . , xp >.

Insert data:
ins :< x, k,< x1, . . . , xp >>→
< x1, . . . , xk−1, x, xk, . . . , xp >
The scalar k is searched in the index vector to identify
the insert position for x.

Delete:
del :< k,< x1, . . . , xp >>→
< x1, . . . , xk−1, xk+1, . . . , xp >
The scalar k is searched in the index vector to identify
the delete position.

Functional forms. A functional form depends of
functions or objects. The most common functional form
is the composition, which denotes the application of a
sequence of functions f1,f2, . . ., fq to x:

(f1 ◦ f2 ◦ . . . ◦ fq) : x ≡ ((f1 : f2 : . . . : (fq : x) . . .))

Construction:
[f1, . . . , fn] : x→< f1 : x, . . . , fn : x >
Is parallel speculation. It can be performed on the vari-
able x issued by C and processed in each EU according
to the content (data and/or program) of the local mem-
ory Mem.

Insert:
/f :< x1, . . . , xp >→ f :< x1, /f :< x2, . . . , xp >>
Is executed as a reduction function in O(log p) time.

Apply to all:
αf :< x1, . . . , xp >→< f : x1, . . . , f : xp >
Is typical data parallelism. The function f is stored in
the program memory used by C.

Condition:
(p→ f ; g) :< x1, . . . , xp >→
< (p→ f ; g) : x1, . . . , (p→ f ; g) : xp >
where:
(p→ f ; g) : x→ if ((p : x) = 1) f : x; else g : x;
Is the data parallel predicated execution.

Example. Let be the following definition:

Def ABS ≡ (/+) ◦ (α(lt→ (− ◦ reverse);−)) ◦ trans

Applying it:

ABS :<< x1, . . . , xp >,< y1, . . . , yp >>

provides the sum of absolute difference of the two vec-
tors: < x1, . . . , xp > and < y1, . . . , yp >.

The functions used by Backus to define FP Systems
are efficiently executed by the pRISC engine. The asso-
ciated architecture is expressed as a FP System. This
approach represents a theoretical backup for the speci-
fication of a functional language for pRISC like engines.

Thus, parallel computation can start based on a
solid theoretical foundation, avoiding risky ad hoc con-
structs. The pRISC engine and the associated FP
System based architecture, complemented with multi-
threaded hardware support (see [13]), is a promising
start in saving us from saying ”Hail Mary” when decid-
ing what to do to improve our computing machines.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 495

4 Programming pRISC in FP

The four forms of parallelism allowed by the pRISC ar-
chitecture – data, time, speculative and reduction par-
allelism (see [13]) – cover theoretically all aspects of the
intense computation paradigm [12]. But, the efficiency
of pRISC in performing all the aspects of intense compu-
tation remains to be proved. In this section we sketch
only the complex process of evaluating the proposed
pRISC architecture. The best plan for this process is to
consider all dwarfs (motifs) outlined in “A View from
Berkeley” [1], where is provided a comprehensive pre-
sentation of the problems to be solved by the emerging
actor on the computing market: the ubiquitous parallel
paradigm. Many decades just an academic topic, ”par-
allelism” becomes an important actor on the market af-
ter 2001 when the clock rate race stopped. This research
report presents 13 computational motifs which cover the
main aspects of parallel computing. In this section we
will make a preliminary evaluation of them in the con-
text of organization and architecture just introduced in
the previous two sections. The cellular network of PEs
or EUs has the simplest possible interconnection net-
work. This is both an advantage and a limitation. On
one hand, the area of the system is minimized, and it is
easy to hide the associated organization from the user,
with no loss in programmability or in the efficiency of
compilation. On the other hand, some limitations are
expected in certain application domains. Follows short
comments about how the proposed pRISC architecture
works for all of the 13 motifs.

Dense linear algebra. The computation in this do-
main operates mainly on N×M matrices. The main op-
erations performed are: matrix addition, scalar multi-
plication, transposition of a matrix, dot product of vec-
tors, matrix multiplication, determinants of a matrix,
Gaussian elimination, solving systems of linear equa-
tions and the inverse of a N ×M matrix. Depending
on the size of the product N ×M the internal repre-
sentation of the matrix is decided. If the product is
small enough (usually, no bigger than 128), each matrix
can be expanded as a vertical vector and associated to
one EU, resulting in p matrices represented by N ×M
p-component vectors. But, if the product N × M is
big, then q EUs are associated with each matrix, result-
ing in parallel processing of p/q matrices represented in
N ×M/q p-component vectors. For all the operations
above listed the computation is usually accelerated al-
most p times, but not under (p/(log2q) times. The most
used operation is the inner product of two vectors. It is
expressed in FP System as follows:

Def IP ≡ (/+) ◦ (α×) ◦ trans

Sparse linear algebra. There are two types of sparse
matrices: (1) randomly distributed sparse arrays (rep-
resented by few types of lists), (2) band arrays, repre-
sented by a stream of short vectors.

For small random sparse arrays, converting them in-
ternally into dense array is a good solution. For big ran-
dom sparse arrays the associated list is operated using
the efficient search operations provided by pRISC ar-
chitecture. Thus, the multiplication of a sparse N ×M
matrix with a M -component sparse vector is done in
O(u + v), where u is the number of non-zero compo-
nents in the initial vector and v is the number of non-
zero components in the resulting vector.

The band arrays are first transposed using the func-
tion trans in a number of vectors equal with the width
w of the band. Then the main operations are very easy
performed using appropriate rotl and rotr operations.
Thus, the multiplication of two band matrices is done
on pRISC in O(w).

Spectral methods. The typical examples are: FFT
or wavelet computation. Because of the “butterfly” data
movement, how the FFT computation is implemented
depends on the length of the sample. The spatial and
the temporal dimensions of the proposed architecture
help the programmer to easily adapt the data represen-
tation to result in an almost linear acceleration. In order
to reduce, almost eliminate, the slowdown caused by the
rotate operations, the stream of samples is loaded us-
ing, as much as possible, the temporal dimension of the
architecture. In [3] the FFT computation is evaluated
on the pRISC architecture (for example: if FFT is con-
sidered for 1024 floating point samples the computation
is done in 1 clock cycle per sample).

N-Body method. This method fits perfectly on the
proposed architecture, because for j = 0 to j = n − 1
the following equation must be computed:

U(xj) =
∑
i

F (xj , Xi)

Each function F (xj , Xi) is computed on a single EU,
and then the sum is a reduction operation linearly ac-
celerated by the array. Depending on the value of n,
the data is distributed in the processing array using the
spatial dimension only, or for large n, both the spatial
and the temporal dimension are used. For this motif
results an almost linear acceleration.

Structured grids. The grid is distributed on the two
dimensions of our array: the spatial dimension and the
temporal dimension. Each processor is assigned a col-
umn of nodes (on the temporal dimension). It performs

496 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

each update step locally and independently of other
lines of nodes. Each node has to communicate only
with a small number of neighboring nodes on the grid,
exchanging data at the end of each step. The system
works as a cellular automaton. The computation is ac-
celerated linearly on the proposed architecture.

Unstructured grids. Unstructured grid problems
are updates on an irregular grid, where each grid el-
ement is updated from its neighbor grid elements. Par-
allel computation is disturbed by the non-uniformity
of the data distribution. In order to solve the non-
uniformity problem a preprocessing step is required to
generate an easy manageable representation of the grid.
We expect moderate performances on pRISC.

Map reduce. The typical example of a map reduce
computation is the Monte Carlo method. This method
consists in many completely independent computations
working on randomly generated data. This type of com-
putation is highly parallel. Sometimes it requires the
add reduction function, for which the proposed archi-
tecture has special accelerating hardware. The compu-
tation is linearly accelerated.

Combinational logic. There are a lot of very differ-
ent problems falling in this class. We list here only the
most important and the most frequently used:

• block processing, exemplified by AES and DES
encryption. For example, AES works in 4× 4 ar-
rays of bytes, each array is loaded in one EU, and
the processing is completely SIMD-like with linear
acceleration on the pRISC architecture.

• recursive & non-recursive convolution encoding
are computed efficiently using (1) right pipeline
propagation in the array, (2) predicated data par-
allel processing, (3) reduction add function.

• image rotation for black & white or color bit
mapped images is performed (1) by loading the
m×m array of pixels into the processing array on
both dimensions (spatial and temporal), (2) exe-
cuting a local transformation, and third restoring
the transformed image in the appropriate place.

• route lookup, used in networking; it supposes
three data-base like operations: longest match, in-
sert, delete; for all we have functions in the pRISC
architecture (similar with: src, csrc, ins, del).

Graph traversal. The array of 1024 machines can be
used as a “speculative device”. Each EU starts with a

full graph stored in its data memory, and the computa-
tion provides the result when one EU, if any, finds the
solution. Limitations are generated by the dimension
of the data memory of each EU or by the IO System
capabilities. More investigation is needed to evaluate
the actual power of pRISC in solving this problem.

Some problems related with graphs are easily solved
if matrix computation is involved (example: computing
the distance between all the elements of a graph).

Dynamic programming. Viterbi decoding is a typ-
ical example presented in [1]. The parallel strategy is to
distribute the states among the cells. Each state has its
own distinct cell. The inter cell communication is done
in a small neighborhood. Each cell receives the stream
of data which is thus submitted to a speculative com-
putation. The work done on each processor is similar.
The last stage is performed using the functions of the
Reduction circuit. The degree of parallelism is limited
to the number of state considered by the algorithm.

Back-track and branch & bound. The basic back-
tracking SAT algorithm, for example, runs on a p-cell
engine by choosing log2 p literals, instead of one on a se-
quential machine, assigning for them all the values form
00 . . . 0 to 11 . . . 1, simplifying the formula and then re-
cursively checking if the simplified formula is satisfiable.

For parallel branch & bound we use the case of the
Quadratic Assignment Problem. The problem deals
with two N × N matrices: A = (aij), B = (bkl). The
global cost function:

C(p) =

n∑
i

n∑
j

aij × bp(i)p(j)

must be minimized finding the permutation p of the
set N = {1, 2, . . . , n}. Dense linear algebra methods
already discussed are involved here.

Graphical models. Besides the Viterbi algorithm
(already discussed) used for decode, this motif is well
represented by parallel hidden Markov models. The ar-
chitectural features reported in research papers refers to
fine-grained SIMD processor arrays connected to each
node of a coarse-grained PC-cluster. Thus, a pRISC en-
gine can be used efficiently as an accelerator for general
purpose sequential engines.

Finite state machine. The authors of [1] claim that
for this motif ”nothing helps”. But, we consider that
the array of cells with their local memory loaded with
non-deterministic FSM descriptions work very efficient
as a speculative engine for applications such as deep
packet inspection, for example.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 497

At the end of this short introductory analysis, which
must be detailed by future investigations, we claim that
for almost all the computational motifs the pRISC ar-
chitecture performs very well. Maybe for some of the
motifs additional multi-threaded computation may be
helpful (see [13]).

5 Concluding remarks

The pRISC engine is area and energy effi-
cient. The architecture described and partially eval-
uated in this paper is based on actual silicon imple-
mentations used to measure real performances for in-
tense computations. The hardware results are spectac-
ular (6.5 GOPS/mm2 and 40 GOPS/Watt [12]) and,
complemented by the architectural support provided in
this paper by a Backus’s FP System approach, positions
pRISC engine & architecture as a promising solution.

pRISC engine & its architecture are both small
& simple. The simplicity of the engine allows its hid-
ing behind an efficient architecture. No complex inter-
connection network between cells and small & simple
EUs are the main premisses for a transparent architec-
ture. “Small is Beautiful” claims [1]. (See also [8].)

Portability & programmability is high for a sim-
ple & generic architecture. High diversity and
complexity dominate the main parallel architecture tar-
geted today by the application engineers. What they
need is only one simple architecture for porting ex-
isting applications or for developing new ones. The
pRISC environment is a promising candidate.

Acknowledgments The authors got a lot of support
from the main technical contributors to the development
of the ConnexArrayTM technology, the BA1024 chip,
the associated language, and its first application: E.
Altieri, F. Ho, B. Mı̂ţu, M. Stoian, D. Thiebaut, T.
Thomson, D. Tomescu.

References

[1] K. Asanovic, et. al.: The Landscape of Parallel Com-
puting Research: A View from Berkeley, Technical
Report No. UCB/EECS-2006-183.

[2] J. Backus: “Can Programming Be Liberated from
the von Neumann Style? A Functional Style and Its
Algebra of Programs”, Communications of the ACM,
August 1978, 613-641.

[3] I. Lorentz, M. Malita, R. Andonie: “Fitting FFT
onto an Energy Efficient Massively Parallel Archi-
tecture”, The Second International Forum on Next
Generation Multicore / Manycore Technologies, June,
2010.

[4] M. Maliţa, G. Ştefan, D. Thiebaut: “Not Multi,
but Many-Core: Designing Integral Parallel Ar-
chitectures for Embedded Computation” in ACM
SIGARCH Comp. Arch. News, Vol. 35, 5, Dec. 2007.

[5] M. Maliţa, G. Ştefan: “On the Many-Processor
Paradigm”, Proceedings of the 2008 World Congress
in Computer Science, Computer Engineering and Ap-
plied Computing. vol. PDPTA’08, 2008.

[6] D. Patterson: “The Trouble with Multicore”, IEEE
Spectrum, July 2010.

[7] G. Ştefan, D. Thiebaut: “Memory Engine for the
Inspection and Manipulation of Data”, United States
Patent 6,760,821, July 6, 2004; Filed: Aug. 10, 2001.

[8] G. Ştefan, M. Maliţa: “Granularity and Com-
plexity in Parallel Systems”, Proceedings of the 15
IASTED International Conf, 2004, Marina Del Rey,
CA, pp.442-447.

[9] G. Ştefan: ”The CA1024: A Massively Parallel Pro-
cessor for Cost-Effective HDTV”, in Spring Proces-
sor Forum: Power-Efficient Design, May 15-17, San
Jose, CA 2006.

[10] G. Ştefan, et al.: “The CA1024: A Fully Program-
able System-On-Chip for Cost-Effective HDTV Me-
dia Processing”, in Hot Chips: A Symposium on High
Performance Chips, Stanford Univ., August, 2006.

[11] G. Ştefan: “The CA1024: SoC with Integral Paral-
lel Architecture for HDTV Processing”, in 4th Inter-
national System-on-Chip (SoC) Conference and Ex-
hibit, November, Newport Beach, CA, 2006.

[12] G. Ştefan: “One-Chip TeraArchitecture”, Proceed-
ings of the 8th Applications and Principles of Infor-
mation Science Conference, Okinawa, Japan on 11-12
January 2009.

[13] G. Ştefan: “Integral Parallel Architecture in
System-on-Chip Designs”. The 6th International
Workshop on Unique Chips and Systems, Atlanta,
GA, USA, December 4, 2010, 23-26.

498 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Mobile Process Resumption In Java Without Bytecode Rewriting

Matthew Sowders (sowders@unlv.nevada.edu)
Jan Bækgaard Pedersen (matt.pedersen@unlv.edu)

School of Computer Science, University of Nevada Las Vegas, Las Vegas, Nevada, United States

Abstract— In this paper we describe an implementation
of mobile processes with polymorphic interfaces in the
ProcessJ language. ProcessJ is a process oriented language
based on CSP and the π-calculus. In the paper we demon-
strate the translation of ProcessJ to Java/JCSP and illus-
trate how to implement mobile processes with polymorphic
interfaces without rewriting bytecode; this requires some
clever code generation in Java since it does not support
polymorphic interfaces.

Keywords: ProcessJ, Process-Oriented Programming, Mobile
Processes

1. Introduction
In this paper we present a technique for implementing

transparent mobile processes with polymorphic resumption
interfaces for the ProcessJ language in Java/JCSP.

As part of the ProcessJ compiler, we have developed a
code generation technique that allows a process to suspend,
and subsequently resume, in the middle of a code block.
When translating the ProcessJ code to Java/JCSP, a direct
translation is not possible because Java does not support
process suspension/resumption natively; nor does it support
polymorphic interfaces.

Unlike previous attempts at resumable processes in
Java [1] which describes a technique for implementing
mobile processes with just one interface, the techniques
described in this paper does not require any rewriting of the
compiled Java bytecode. An integral part of the technique
in [1] required the compiled bytecode to be changed to
add explicit jumps to the resumption point. The technique
described here does not need any such rewrite. Although
no goto instruction is available in Java, we achieve resump-
tion by using nested switch statements and collected state
information.

Before describing the translation approach, we provide a
brief overview of ProcessJ, mobility and resumability

1.1 ProcessJ
ProcessJ is a general purpose process-oriented program-

ming language developed at the University of Nevada Las
Vegas. The process-oriented primitives in ProcessJ are based
on Communicating Sequential Processes, CSP [2], and the
π-Calculus [3].

1: mobile proc void foo(int x, int y) {
2: int a;
3: B1

4: while (B2) {
5: int q;
6: B3

7: suspend resume with (int z);
8: int w;
9: B4

10: }
11: B5

12: }

Figure 1: Sample ProcessJ Code.

The syntax of ProcessJ is similar to that of Java. There are
no classes or objects, but the expression syntax and control
flow would be familiar to a Java programmer. Though the
syntax is similar to Java, the semantics are similar to occam-
π [4]. As a process-oriented language, ProcessJ is composed
of processes that each execute in their own context similar
to processes in occam-π [4].

Figure 1 illustrates a fairly simple ProcessJ mobile process
consisting of 2 interfaces. The original process interface, line
1, takes two integer parameters x and y. The second interface,
a resumption interface, takes one integer parameter z at line
7. Furthermore, a number of local variable declarations (lines
2, 5, and 8) along with 5 code blocks (lines 3, 4, 6, 9, and
11) are included. The first time foo is called (we refer to
that as started), it must be passed two integer values. When
the suspend statement (line 7) is encountered, the process
temporarily suspends, and control is returned to the caller.
The caller can either re-invoke the process or transmit it to
another process across a channel. When foo is invoked for
the second time, it must be with the interface defined by
the suspend resume statement (line 7), namely with just one
integer value.

It should be fairly simple to imagine a translation of this
code to Java for all the lines except the suspend resume
statement in line 7. If Java had a goto statement, the imple-
mentation could be done using gotos and a some internal
state (that is the end-result of the bytecode rewriting in [1]),
but transforming the code into nested switch statements to
achieve this as well as handling the different interfaces is
more challenging.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 499

1.2 Mobility
A classification of Mobile Code Languages is provided

in [5]. The term Strong Mobility applies to an agent or
process that is able to suspend their execution and be sent
to a separate computational environment (CE) where it is
resumed. The CE in the case of ProcessJ is either the same
Java Virtual Machine, JVM, or it could mean a separate
JVM. The resumed process is in the same execution state as
when it was suspended.

In ProcessJ, we also offer transparent strong mobility [6].
The transparency comes from the ProcessJ programmer not
needing to explicitly provide code to reestablish the state of
the process.

1.3 Resumability
Pedersen and Kauke provide a definition of resumability

in [1]. To summarize, a process is resumable if it contains
a suspend statement. The suspend statement returns control
the the caller, at some later point on the same or different
JVM the process is resumed at the statement following the
suspend. Since the publication of [1], the addition of poly-
morphic resumption interfaces, discussed later in section 3,
has added an additional statement suspend with resume that
allows the process to be resumed with different parameters.

We need not bother with the specifics of bytecode defini-
tions of resumability because our approach does not utilize
bytecode rewriting.

It should also be noted, that the techniques described in
this paper are equally well suited to mobile processes that
do not have polymorphic interfaces, that is, implementing
single interface mobile processes in Java can be achieved
by using this approach as well.

2. Serializable Processes
A mobile process in ProcessJ is implemented as a Java

class. Each mobile process class implements the Java Se-
rializable interface. Implementing the Serializable interface
allows us to transfer a process to another computational
environment for resumption.

State is saved and restored by implementing processes as
Serializable Java classes with all local variables rewritten as
fields. Saving variables as fields is an easy and convenient
way of preserving state between resumptions. The rewrite is
accomplished by prefixing local variable names with a block
id that makes them unique at the field level. The compiler
is allowed to rewrite locals as fields because ProcessJ does
not have any fields.

Storing variables as fields instead of locals is the crux
that makes state restoration so simple. Rather than storing
local state each time there is a suspend, state is stored every
time a variable is mutated. There is also no need to restore
variable values during resumption because they are already
available.

1: mobile proc void foo(int x, int y, int z) {
2: int a;
3: B1

4: while (B2) {
5: int q;
6: B3

7: suspend;
8: int w;
9: B4

10: }
11: B5

12: }

Figure 2: Sample ProcessJ code with a single interface.

3. Polymorphic Resumption Interfaces
ProcessJ supports polymorphic resumption interfaces [7].

That means, a process can be started with an interface
A, execute, suspend, and later resume with a potentially
different interface B. This is useful in combination with
resources that are only available in the current computational
environment, and when the use of ‘dummy’ parameters
would otherwise be necessary.

Polymorphic resumption interfaces allows the compiler
to do static scope checking using interfaces that would
otherwise require unused ‘dummy’ parameters by splitting a
single interface into multiple interfaces. Consider Figure 2.
If we were to use a single interface, but semantically we
only use x, and y in block B1 and only use w in block B4

then we are expecting the caller to use two separate implicit
interfaces while starting foo. It is their responsibility to know
which variables are actually necessary.

Consider another situation where a process has two inter-
faces: the first is the reading end of a channel and the second
is the reading end of a channel and the writing end of a
channel. To implement this process with a single interface,
the interface would have to be the super-set of the two
interfaces: two channel reading ends and one writing end.
There would be no clear distinction from the single interface
when each is channel end is valid for use. For instance, if
the first channel end is meant only for initialization, and
the second and third are meant to be used as the process
is passed around. In this case, you would first invoke the
process with a valid first channel and with ‘dummy’ channels
for the second and third. After the process suspends, you
would then resume the process with a ‘dummy’ first channel
end and valid second and third ends. What happens when
the two are somehow transposed? In the best case the system
becomes deadlocked and in the worst case the system is still
able to communicate but acts in an unexpected manner. It is
exactly this situation we are trying to avoid.

To implement polymorphic resumption interfaces, we use
a single variadic function called run. A client calls run
with the appropriate parameters for the current interface of

500 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

public class AbstractCSProcess implements CSProcess,
Serializable {

protected int control(int level) {...}
protected <T> T getParameter(int index) {...}
protected boolean isRunning(){...}
protected void resume(Class<?>... parameter-

Types){...}
public void run(Object... args) {...}
protected abstract void start();
protected void suspend(int... targets) {...}

}

Figure 3: Methods in AbstractCSProces

the process. When a process resumes, it checks that the
invoked interface and the current resumption interface are
compatible.

In the translated Java code we use exceptions, which do
not exist in ProcessJ, to indicate when an incorrect interface
was used. During run time, the process checks that it is in
the correct state for the current interface. The process throws
an IncorrectInterfaceException during run time if it is not
in the correct state. This exception is a RuntimeException
so it need not be checked. The benefit of throwing the
IncorrectInterfaceException during run time is it allows a
developer to know the interface expected, the interface sent,
and the caller of the process when a programming error was
made.

4. Control Flow Rewriting
The general outline for ProcessJ code with a suspend is

depicted in Figure 1 and the corresponding generated code
is depicted in Figure 4. The example is a simple while
statement that goes over the basic technique used to rewrite
from ProcessJ to Java. Later in the section, we will give
examples of how the process changes slightly with each of
the other control structures.

Starting from the top and working our way down the code
in Figure 4, we will explain each of the rewrites as they
appear. The process is first converted into a Java class that
extends AbstractCSProcess. The AbstractCSProcess is a base
class that maintains state information and helper methods
like suspend, resume, and control for navigating the control
structure. The API is displayed in Figure 3

As mentioned previously, all mobile processes are seri-
alizable. Serializable processes will allow ProcessJ to send
processes in a distributed environment when a distributed
run time is available.

The next rewrite converts local variable definitions into
fields. This removes the necessity of storing local state
at suspend time and restoring it during a resume because
everything is stored in fields. To avoid naming conflicts of
variables in different scopes a compiler generated prefix is

public class foo extends AbstractCSProcess {
int $b1$a; // original a
int $b3$q; // original q
int $b4$w; // original w
boolean $c1; // original B2

@Override
protected void start() {

// interface 0 (int x, int y)
int $i0$x, $i0$y;
// interface 1 (int z)
int $i1$z;

switch (control(0)) {
case 0:

// interface 0 (int x, int y)
resume(Integer.class, Integer.class);
$i0$x = getParameter(0);
$i0$y = getParameter(1);
B1

case 1:
if (isRunning()) {

$c1 = B2;
}
$1: while ($c1) {

switch (control(1)) {
case 0:

B3

suspend(1,1);
return;

case 1:
//interface 1 (int z)
resume(Integer.class);
$i1$z = getParameter(0);
B4

$c1 = B2;
} // end switch

} // end while
B5

} // end switch
} // end method start

} // end class foo

Figure 4: General outline for generated Java code.

generated for each variable. For example, a was defined in
block B1 so it is renamed $b1$a.

At each control structure that uses an expression, a field is
created to store the resulting value. In this case, B2 is stored
in $c1. Since an expression is only expected to be evaluated
once, it cannot be re-evaluated during resumption. To address
this, before the expression would normally be evaluated, the
evaluated value is stored in a field corresponding to that
control point.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 501

...
$c1 = B2;
continue $1;
...

Figure 5: Example of a continue statement.

The start method represents the body of the process. It
begins by declaring each of the parameter variables. Again,
to avoid naming conflicts the compiler generates prefixes
for each interface. For example, x is in interface 0 so it is
renamed $i0$x. Next is the base switch statement of the body
which splits B1 and the while statement.

Inside case 0, we resume with a list of classes defined
in interface 0. The resume method checks the provided
interface is the same as the expected interface then sets the
current state to RUNNING and resets the resume target. After
that, we need to set the value of each parameter and execute
B1.

Java allows fall-through in switch statements. We use
fall-through to split up the blocks without breaking the
natural control flow of the original program. After block
B1 executes, block B2 needs to be evaluated but only if the
process is currently running. If the process was suspended,
the expression was already evaluated and stored in $c1.

Now we have reached the second level of control structure
and B3 is executed. The suspend method is then called with a
control flow map to the next point of resumption. By ‘control
flow map’, we mean a list of integers that describe the case
statements that are selected to bring the process back to the
next resumption point.

The process stores the control flow map and saves its state
as SUSPENDED and returns control to the caller. The caller
now has a reference to an object that can be serialized and
saved, or sent over a channel, or immediately called again
with the next interface.

When the process is resumed, the control method is called.
The control method looks at the control flow map saved by
the last suspend. It then jumps to case 1 and evaluates the
previously stored value $c1 at while. The control method
then looks up the next level of control in the control flow
map and again jumps to case 1.

The resume method checks the interface for the new
interface 1 and sets the state to RUNNING. The process
then sets the value of the parameters and executes B4. The
expression B2 is then re-evaluated and stored in $c1 and the
process continues to loop.

In the subsequent subsections we describe special circum-
stances for each of the Java control flow structures. In each of
the examples you can replace the while statement of Figure 4
with the given generated code.

4.1 break
The break statement poses a small problem. In Java, break

is used to terminate the enclosing for, while, do-while loop

...
if (B2) {

B3

suspend resume with (int z);
B4

} else {
...

}
...

Figure 6: Example if statement in ProcessJ.

...
if (isRunning()) {

$c1 = B2;
}
if ($c1) {

switch(control(1)) {
case 0:

B3

suspend(1,1);
return;

case 1:
//interface 1
resume(Integer.class);
$i1$z = getParameter(0);
B4

}
} else {

...
}
...

Figure 7: Example of if statement with suspend.

or switch statement. We are using switch statements to jump
through blocks to resume points. If an unlabeled break is
used in a block it would break out of the control flow switch
instead of the original intended structure. We get around
this by adding a label to each control structure and labeling
unlabeled break statements.

4.2 continue
The continue statement skips the rest of the current

iteration in a looping construct. Since a continue will skip
updating the stored expression, the looping expression needs
to be re-evaluated before a continue is executed. A continue
is then rewritten as in Figure 5.

4.3 if else
The if statement needs almost no special treatment from

that described above. An example of an if statement rewrite
can be seen in Figure 7. The expression $c1, is stored as
a boolean. The use of $c1 ensures the expression is only
evaluated while the process is in a RUNNING state.

502 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

There is no need to specify a label for the if statement. A
break statement can be used to escape an if but it needs to
specify a label to do so.

4.4 switch
The switch statement is rewritten similar to an if statement

as seen in 9. The expression can be of type byte, short,
char, and int [8], so the stored expression needs to be of the
evaluated type.

Since switch statements allow fall-through from case to
case, we need to consider the situation where B2 evaluates
to case 0, there is no break statement in case 0 and the
control falls through to case1. In this situation, we need to
update the stored value $c1 at each case. Updating the stored
value allows the process to resume to the last case statement
the process was in.

Unlike the if statement, a switch needs a label. If an
unlabeled break is within the switch statement, the break
would inadvertently escape the generated control flow switch
statement instead of the intended switch.

4.5 do-while
Figure 11 shows a do-while statement. Like other looping

constructs and switch, do-while requires a label for break
statements. Unlike other control structures, it is not necessary
to store the result of the expression. Because the expression
is evaluated at the end of the loop, it is never evaluated in
the resumption process.

4.6 while
A while loop, was used in the main example in Figure 4.

At the end of the loop, the expression is re-evaluated and
stored. There is no need to check if the process is currently
running at the end of a while because a suspended process
will never reach this code.

The while statement also requires a label for break state-
ments.

...
$1:switch (B2) {
case 0:

B3

suspend resume with (int z);
B4

case 1:
...

default:
...

}
...

Figure 8: Example of switch statement with suspend in
ProcessJ.

4.7 for

A for statement is best broken down into a while loop as
seen in Figure 13. Before the loop, the expression and the
initial value are both set only if the process in RUNNING.
There is a label for break statements. At the end of the loop,
the update is executed and the conditional expression is re-
evaluated and stored.

Similar to the while statement, there is no need to check
if the process is running because a suspended process will
never reach this code.

4.8 Process

When a mobile process contains another mobile process,
each process maintains its own state. For instance, if you
invoke a mobile process B, from within a process A, and B
suspends execution, that will only return control to A. The
A process may decide to resume process B, or it may pass
it down a channel.

It would also be possible for A to suspend and continue
to hold a reference to process B. When A resumes it would
also be possible to resume process B from A without any
extra work other than what has already been explained in
this paper.

...
if (isRunning()) {

$c1 = B2;
}
$1:switch($c1) {
case 0:

$c1 = 0;
switch (control(1)) {
case 0:

B3

suspend(1,1);
return;

case 1:
// interface 1
resume(Integer.class);
$i1$z = getParameter(0);
B4

}
case 1:

$c1 = 1;
...

default:
$c1 = 2; // not in other cases
...

}
...

Figure 9: Example of switch statement with suspend.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 503

...
$1: do {

B3

suspend resume with (int z);
B4

} while(B2);
...

Figure 10: Example of do-while loop with suspend in
ProcessJ.

...
$1: do {

switch(control(1)) {
case 0:

B3

suspend(1,1);
return;

case 1:
//interface 1
resume(Integer.class);
$i1$z = getParameter(0);
B4

}
} while(B2);
...

Figure 11: Example of do-while loop with suspend.

...
for(init_expression; B2; update_expression) {

B3

suspend resume with (int z);
B4

} ...

Figure 12: Example of for loop with suspend in ProcessJ.

5. Related Work
Mobile processes can be seen as a form of process

continuation [9]. Unlike a traditional continuation, a process
continuation represents the rest of a sub-computation from
a given point in that sub-computation. Each process in
ProcessJ executes in its own execution context. Therefore,
a continuation of that process represents the control state of
that one process, not the system as a whole.

An implementation of non-transparent weak mobility is
available in Java through the use of jcsp.mobile [10], [11].
Though this implementation does allow process mobility, the
end programmer needs to save all state and there is no way to
save control state. One benefit to using jcsp.mobile is that
it manages the class loading while communicating across
JVMs.

Since ProcessJ already manages the state of the mobile
process, jcsp.mobile may eventually find a place in the
distributed run time. ProcessJ transparent strong mobility

...
if (isRunning()) {

init_expression;
$c1 = B2;

}
$1: while($c1) {

switch(control(1)) {
case 0:

B3

suspend(1,1);
return;

case 1:
//interface 1
resume(Integer.class);
$i1$z = getParameter(0);
B4

}
update_expression;
$c1 = B2;

}
...

Figure 13: Example of for loop with suspend.

and jcsp.mobile’s ability to manage dynamic class loading
would be a strong combination.

Stefan Fünfrocken describes in [12] how to transparently
migrate the state of a thread in Java. The approach described
uses a preprocessor to instrument the Java code so no
bytecode rewriting was necessary.

The difference between Fünfrocken’s approach and ours
is the need to migrate the entire thread stack. In ProcessJ, we
are only interested in restoring the state of a single process,
not the thread stack. Also, since we are able to convert all
locals variables to fields, we need not save any state other
than the current control state. This makes our approach much
simpler for the implementation of ProcessJ.

Pedersen and Kauke describe in [1] how to provide
transparent mobility in the JVM using a combination of code
generation and bytecode rewriting. Since this paper is in
large part an improvement on this work, lets look at how our
implementation differs in greater detail. Our implementation
is accomplished without bytecode rewriting, we use the new
concept of polymorphic resumption interfaces, and there is
no need to save local state before a suspend.

The bytecode rewriting adds an extra step to the flow.
After Java code is produced, it must be compiled, then the
bytecode rewritten before it can execute. In our approach,
we produce Java code that is ready to compile and execute
without modification.

In this approach we allow for polymorphic resumption
interfaces where as [1] implements “resumability with pa-
rameter changes”. Polymorphic resumption interfaces are a
step above this because not only are the parameters allowed

504 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

to change, but the interfaces changes as well.
One other difference lies in the points just before suspen-

sion and resumption. In [1] all state is stored in an activation
record. The activation record is implemented as an array of
objects on the process. Before a suspend, all the local state
is saved into the activation record, and on resumption all
local state is restored back to the proper local variables. Our
implementation simplifies this drastically by moving all local
variables into fields so there is no need to store values during
suspension and restore during resumption.

6. Conclusion
In this paper, we have shown how the ProcessJ compiler

can provide transparent process mobility using only code
generation. We have also shown how to implement polymor-
phic resumption interfaces and describe the rewriting steps
required to provide these features in ProcessJ.

7. Future Work
It is still necessary to perform the static scope checking

proposed in [7]. This allows developers to know exactly
where parameters are can be referenced.

All the necessary future work mentioned in [1] is still
relevant. Handling channels inside mobile processes and
other local resources still need to be resolved though the
polymorphic resumption interfaces should help. Channels
and other local resources in mobile processes could be
handled by only allowing them in parameters and not stored
as local variables. As mentioned previously, it would also
be nice to use jcsp.mobile’s dynamic class loading to load
mobile processes across JVM.

To simplify matters a little, the code demonstrated is not
yet integrated into JCSP. However, with little effort in the
base class it should be possible to execute these processes
as a CSProcess.

References
[1] J. B. Pedersen and B. Kauke, “Resumable Java Bytecode - Process

Mobility for the JVM,” in The thirty-second Communicating Process
Architectures Conference, CPA 2009, organised under the auspices of
WoTUG, Eindhoven, The Netherlands, 1-6 November 2009, 2009, pp.
159–172.

[2] C. A. R. Hoare, “Communicating sequential processes,” Commun.
ACM, vol. 21, pp. 666–677, August 1978.

[3] R. Milner, Communicating and mobile systems the pi-calculus. Cam-
bridge[England] ;;New York: Cambridge University Press, 1999.

[4] P. Welch and F. Barnes, “Communicating Mobile Processes: introduc-
ing occam-π,” in 25 Years of CSP, ser. Lecture Notes in Computer
Science, A. Abdallah, C. Jones, and J. Sanders, Eds., vol. 3525.
Springer Verlag, April 2005, pp. 175–210.

[5] G. Cugola, C. Ghezzi, G. Picco, and G. Vigna, “Analyzing mo-
bile code languages,” in Mobile Object Systems Towards the Pro-
grammable Internet, ser. Lecture Notes in Computer Science, J. Vitek
and C. Tschudin, Eds. Springer Berlin / Heidelberg, 1997, vol. 1222,
pp. 91–109.

[6] E. Truyen, B. Robben, B. Vanhaute, T. Coninx, W. Joosen, and
P. Verbaeten, “Portable support for transparent thread migration in
java,” in Agent Systems, Mobile Agents, and Applications, ser. Lecture
Notes in Computer Science, D. Kotz and F. Mattern, Eds. Springer
Berlin / Heidelberg, 2000, vol. 1882, pp. 377–426.

[7] J. B. Pedersen and M. Sowders, “Static Scoping and Name Resolution
for Mobile Processes with Varying Resumption Interfaces,” in Need
the book title, 2011.

[8] K. Arnold, J. Gosling, and D. Holmes, Java(TM) Programming
Language, The (4th Edition). Addison-Wesley Professional, 2005.

[9] R. Hieb and R. K. Dybvig, “Continuations and concurrency,” in
Proceedings of the second ACM SIGPLAN symposium on Principles
& practice of parallel programming, ser. PPOPP ’90. New York,
NY, USA: ACM, 1990, pp. 128–136. [Online]. Available: http:
//doi.acm.org/10.1145/99163.99178

[10] K. Chalmers and J. M. Kerridge, “jcsp.mobile: A Package Enabling
Mobile Processes and Channels,” in Communicating Process Archi-
tectures 2005, sep 2005.

[11] K. Chalmers, J. M. Kerridge, and I. Romdhani, “Mobility in JCSP:
New Mobile Channel and Mobile Process Models,” in Communicating
Process Architectures 2007, A. A. McEwan, W. Ifill, and P. H. Welch,
Eds., jul 2007, pp. 163–182.

[12] S. Fünfrocken, “Transparent migration of java-based mobile agents,”
in Mobile Agents, ser. Lecture Notes in Computer Science, K. Rother-
mel and F. Hohl, Eds. Springer Berlin / Heidelberg, 1998, vol. 1477,
pp. 26–37.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 505

Abstract - Shared memory emulation is a promising technique
to address programmability and performance scalability con-
cerns of chip multiprocessors (CMP) because it provides implied
synchrony in execution of machine instructions, efficient laten-
cy hiding technique, and enough effective bandwidth to route
all the memory references even with the heaviest workloads. In
our earlier research we have proposed an architectural solution
to support concurrent memory access and multioperations on
emulated shared memory CMPs with a help of active memory
units attached to memory modules. While this solution provides
faster memory access than other known solutions with minor
silicon area and power consumption overheads, the results of
multiprefixes are unfortunately not in order forcing one to use
a relatively slow logarithmic multiprefix algorithm for ordered
multiprefixes. In this paper we propose an architectural tech-
nique for supporting a limited number of concurrent ordered
multiprefix operations in emulated shared memory CMPs. The
solution is based on adding special multiprefix arrays to active
memory units. Performance, silicon area, and power consump-
tion evaluations are given.

Keywords: Parallel computing, CMP, ordered multiprefix, con-
current memory access, computer architecture

1 Introduction
Shared memory emulation [Ranade91] is a promising tech-

nique to address programmability and performance scalability
concerns of chip multiprocessors (CMP). This is because it pro-
vides implied synchrony in execution of machine instructions,
efficient latency hiding technique, and enough effective band-
width to route all the memory references even with the heaviest
random and concurrent access workloads. Synchronous execu-
tion is considered to make programming easier because a pro-
grammer does not need to synchronize threads of execution
explicitly after each global memory access but can rely on the
hardware to take care of that automatically. Latency hiding used
in shared memory emulation makes use of the high-throughput
computing scheme [Beck97], where other threads are executed
while a thread refers to the global shared memory. Since the
throughput computing scheme employs parallel slackness
extracted from available thread-level parallelism, it is considered
to provide remarkably better scalability than traditional symmet-
ric multiprocessors and non uniform memory access systems
relying on snooping or directory-based cache coherence mech-
anisms and therefore suffering from limited bandwitdh or direc-
tory access delays and heavy coherence traffic.

We have proposed an architectural solution to support con-
current memory access and multioperations on emulated shared
memory CMPs with a help of active memory units attached to

memory modules [Forsell06a]. While the solution indeed pro-
vides faster memory access than other known solutions with
minor silicon area and power consumption overheads, the
results of multiprefixes are unfortunately not in order forcing
one to use a relatively slow logarithmic multiprefix algorithm
for ordered multiprefixes. In this paper we propose an architec-
tural technique for supporting a limited number of concurrent
ordered multiprefix operations in emulated shared memory
CMPs. The solution is based on adding special multiprefix
arrays to active memory units. Performance, silicon area, and
power consumption evaluations are given.

1.1 Related work

Architectures for shared memory emulation, known also as
emulated shared memory (ESM) architectures, have been stud-
ied from the 70’s when the ideal shared memory machine, the
parallel random access machine (PRAM) [Fortune78] was
invented: Schwartz proposed ultracomputers with network
switches to combine requests destined for the same memory
location [Schwartz80]. Ranade outlined a method to emulate
PRAM-like shared memory [Ranade91]. Forsell outlined a scala-
ble on-chip computing architecture with efficient instruction-
level parallelism exploitation for general purpose parallel com-
puters employing the PRAM model [Forsell02]. The idea of par-
tial and limited concurrent memory access for synchronous
CMPs was presented in [Forsell05]. It takes, however, as many as
three steps to make a full concurrent access and provides only a
low number of memory locations for which concurrent access is
allowed. The idea was further extended to full concurrent mem-
ory access and multioperation support with the help of step
caches and scratchpads in [Forsell06], but the technique does
not preserve the ordering of multiprefixes. Vishkin introduced
the explicit multithreaded architecture including a multiprefix
computation unit for realizing PRAM-like computing but the
used synchronization scheme is more relaxed than in strict
PRAM limiting its applicability [Vishkin11].

The rest of the article is organized so that in Section 2 we
describe the emulated shared memory system, the novel archi-
tectural technique supporting ordered multiprefix operations is
proposed in Section 3, in Section 4 we evaluate the proposed
technique on our emulated shared memory CMP framework
and give rough silicon area and power consumption estima-
tions, and finally in Section 5 we give our conclusions.

2. Shared memory emulation
The main idea in shared memory emulation is to provide a

user an illusion of ideal shared memory although the underlying

Supporting Ordered Multiprefix Operations in
Emulated Shared Memory CMPs

Martti Forsell
Platform Architectures Team

VTT
Oulu, Finland

Jussi Roivainen
Digital Systems Design Team

VTT
Oulu, Finland

506 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

architecture has a physically distributed memory. The properties
of ideal shared memory are best captured by the PRAM model,
which abstract away asynchronicity in execution of threads and
non-uniformities (latency and need for partitioning) of memory
access. PRAM lets a programmer to focus on intirinsic paral-
lelism of the computational problem and parallel algorithm
design instead of being forced to orchestrate asynchronous,
possibly non-uniform and implementation-dependent low-level
issues. Unfortunately the direct implementation of an ideal,
PRAM-style shared memory has proved to be physically infeasi-
ble with current silicon technology if the number of processors
is say higher than, say 4 [Forsell94]. This is because the wiring
area (and the power dissipation) of multiport memory chip rais-
es quadratically as the number of processors increases with
respect to a single ported memory of the same capacity. In this
section, we describe the main principles and architectural tech-
niques of shared memory emulation, introduce existing solu-
tions for implementing concurrent memory access and multi-
prefix operations.

2.1 Principles

A typical scalable architecture to emulate shared memory on
a silicon platform consists of a set of processor cores connected
to a distributed shared memory via a physically scalable high-
bandwidth interconnection network (see Figure 1). The main
idea is to provide each processor core with a set of threads that
are executed efficiently in an interleaved manner and hide the
latency of the network. As a thread makes a memory reference,
the thread is changed and second thread can make its memory
request, and so on. No memory delay will occur assuming the
reply of the memory reference of the thread arrives to the
processor core before the thread is put back to execution
[Ranade91]. This requires that the bandwidth of the network is
high enough and hot spots can be avoided in pipelined memo-
ry access traffic. Synchronicity between consecutive instructions
can be guaranteed by using an elastic synchronization wave
between the steps [Leppänen96].

2.2 Implementation techniques

In order to efficiently emulate shared memory on a top of a
distributed memory system, processors need to be multithread-
ed [Valiant90, Leppänen96]. Such a multithreading can be imple-

mented as a Tp-stage, cyclic, in-order (interleaved) interthread
pipeline, which provides hazard-free execution for hiding the
latency of the memory system, maximizing overlapping of the
execution of threads, and minimizing the register access delay.
Switching between threads does not slow down operation of the
processor, because threads proceed in the pipeline only during
the forward time. If a thread tries to refer memory when the net-
work is busy, the pipeline is suspended until the network
becomes available again. After issuing a memory read, the
thread can wait the reply for at most Mw<Tp clock cycles before
the pipeline freezes until the reply arrives. A processor is com-
posed of F functional units, a hash address calculation unit, and
Tp sets of R registers. The scheduling of operations is static since
dynamic techniques might conflict with the synchronous thread
level parallel (TLP) execution. The PRAM model is linked to the
architecture so that a full cycle in the pipeline corresponds typ-
ically to a single PRAM step. During a step, each thread of each
processor of the CMP executes an instruction including at most
one shared memory reference subinstruction. Therefore a step
lasts for multiple, at least Tp, clock cycles.

There are two types of memory modules, data memory mod-
ules and instruction memory modules, that are accessed via the
data and instruction memory ports of processors, respectively
(see Figure 1). All the data is located to physically distributed but
logically shared data memory modules emulating the ideal
PRAM memory. Instruction memory modules are aimed to keep
the program code for each processor. The data and instruction
memory modules of size Ssd and Si bytes, respectively, are iso-
lated from each other to guarantee parallel high-bandwidth data
and instruction streams to processors.

The communication network connects processors to distrib-
uted memory modules so that sufficient throughput and low
enough latency can be achieved for random communication
patterns with a high probability as outlined in [Ranade91,
Leppänen96]. Suitable scalable intercommunication topologies
include sparse or under populated networks, e.g. variants of
two-dimensional meshes providing fixed degree nodes as well
as fixed length of interconnection lines independently on the
number of processors. To maximize the throughput for read-
intensive portions of code, one can use separate lines for refer-
ences going from processors to memories and for replies from
memories to processors. Memory locations are distributed
across the data modules by a randomly chosen polynomial

Figure 1. Emulated shared memory system supporting concurrent memory access, multioperations and arbitrarily ordered multiprefixes.

Common clock or independent clocks

Distributed shared data memory

High-bandwidth synchronous network

M1 M2 M3 Mp

P1 PpP3P2

Low-
overhead

multi-
threading

S1 S2 S3 Sp

I1 I2 I3 Ip

Scratchpad step cache unit

Local instruction memory module

A A A A Active memory unit

Shared data memory module

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 507

hashing function for avoiding congestion of messages and hot
spots [Ranade91, Dietzfelbinger94].

2.3 Concurrent memory access and multiprefix
operations

Concurrent reads and writes to memory locations can be
implemented using step caches. For a concurrent read, all
threads participating the access give the same results. In the case
of a concurrent write, the data of an arbitrary thread participat-
ing the write will be written to the target location. Step caches
are associative memory buffers in which data stays valid only to
the end of ongoing step of multithreaded execution [Forsell05].
The main contribution of step caches to concurrent accesses is
that they step-wisely filter out everything but the first reference
for each referenced memory location. This reduces the number
of requests per location to P allowing them to be processed
sequentially on a single ported memory module assuming Tp ≥
P. Step caches operate similarly as ordinary caches with a few
notable exceptions: Each time a multithreaded processor refers
to the shared data memory a step cache search is performed.

Scratchpads are addressable memory buffers that are used to
store memory access data to keep the associativity of step
caches limited in implementing multioperations and thread
bunches with a help of step caches, and minimal on-core and
off-core ALUs that take care of actual intra-processor and inter-
processor computation for multioperations [Forsell06] (see
Figure 1). Scratchpads are coupled with step caches into so
called scratchpad step cache units. A scratchpad step cache unit
consists of a Tp-line scratchpad, a Tp-line step cache, and a sim-
ple multioperation ALU for executing incoming concurrent ref-

erences, multioperations and arbitrary ordered multiprefixes
sequentially.

Multioperations can be implemented as two consecutive sin-
gle step operations. During the first step, a starting operation
(BMPxx for arbitrary ordered multiprefix operations) executes a
processor-wise multioperation against a step cache location
without making any reference to the external memory system
(see Figure 2). During the second step, an ending operation
(EMPxx for arbitrary ordered multiprefix operations) performs
the rest of the multioperation so that the first reference to a pre-
viously initialized memory location triggers an external memory
reference using the processor-wise multioperation result as an
operand. The external memory references that are targeted to
the same location are processed in the active memory units of
the corresponding memory module according to the type of the
multioperation. An active memory unit consists of a simple ALU
and fetcher (see Figure 3). In the case of arbitrary ordered mul-
tiprefixes the reply data is sent back to scratchpads of partici-
pating processors. The consecutive references are completed by
applying the reply data against the step cached reply data.

Processor 0:
 Thread 0
 Thread 1
 Thread 2

 Thread Tp-1

Processor 1:
 Thread Tp
 Thread Tp+1
 Thread Tp+2

 Thread TpK-1

Processor 2:
 Thread 2Tp
 Thread 2Tp+1
 Thread 2Tp+2

 Thread 3Tp-1

Processor P-1:
 Thread (P-1)Tp
 Thread (P-1)Tp+1
 Thread (P-1)Tp+2

 Thread PTp-1

1. Determine intra-processor
 multiprefixes

2. Send processorwise results to modules
 to determine inter processor multiprefixes
 (one result per processor only)

3. Spread and compute the final
 arbitrary ordered multiprefixes
 within processors

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

BMPxx instruction EMPxx instruction continued
- the processor-wise offset
 is computed to thread-wise
 results
- threads that have already
 used their execution slot
 will be updated in the end
 of the memory reply
 pipeline segment

EMPxx instruction
- first reference triggers an
 external memory reference
- ordering is lost here since
 memory references arrive
 in non-deterministic order

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Memory location
and active
memory unit

Figure 2. Multiprefix using the two-level approach that does not preserve the ordering of multiprefix operations.

Figure 3. Active memory unit.

Fast SRAM bank
(or a register file)

Reply AddressData Op

ALU

mux

508 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

3. Ordered multioperations
The fastest known implementation of concurrent memory

access and arbitrary ordered multiprefixes—called here as the
baseline solution—fails to preserve the ordering of participating
threads in multiprefixes and therefore introduces a logarithmic
slowdown for ordered multiprefixes [Forsell06a]. This is because
memory references arrive at the destination module in the order
dependent on the distance of target memory module from the
source processors, traffic situation, and relative timing of threads
compared to each others. In order to retain the high perform-
ance provided by this baseline solution in concurrent memory
access and to restore the ordering of references participating to
multiprefix operations for an arbitrary number of threads, we
propose using a three step algorithm named here as the multi-

prefix array technique, operating identically to the baseline
solution during step one, adding an array to the active memory
unit for storing and ordering references accoriding to their
source processor IDs during step two, and control logic for pro-
cessing the references in order during step three (see Figure 4).
To allow for an overlapped processing of this kind of dual
instruction solution, an additional array and storage for keeping
the target memory value are needed so that one is dedicated for
processing (processing array, cumulative data register) while
another is filled with references (loading array, data register).
Thus, the modified active memory units consist of an ALU and a
multiplexer like the baseline active memory unit but adds also
two multiplexers, control logic, another ALU, two registers, and
two multiprefix arrays (see Figure 5).

Processor 0:
 Thread 0
 Thread 1
 Thread 2

 Thread Tp-1

Processor 1:
 Thread Tp
 Thread Tp+1
 Thread Tp+2

 Thread TpK-1

Processor 2:
 Thread 2Tp
 Thread 2Tp+1
 Thread 2Tp+2

 Thread 3Tp-1

Processor P-1:
 Thread (P-1)Tp
 Thread (P-1)Tp+1
 Thread (P-1)Tp+2

 Thread PTp-1

1. Determine intra-processor
 multiprefixes.

2. Send processorwise results to modules
 where they are stored to multiprefix
 arrays for in-order processing.

3. Compute in-order inter processor multiprefixes
 (one result per processor only) on multiprefix
 arrays of active memory units and send the
 results back to scratchpad step cache units,
 from which they are spread back to threads
 and the final in-order multiprefixes are computed

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

BMPxx instruction OMPxx instruction
- the processor-wise offset is computed
 to thread-wise results
- threads that have already used their
 execution slots will be updated in the end
 of the memory reply pipeline segment

SMPxx instruction
- first reference triggers an
 external memory reference
- ordering is preserved here
 by storing in non-deterministic order
 arriving references according to
 IDs of sending processors

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Memory location
and active
memory unit

Memory location
and active
memory unit

Figure 4. Multiprefix using the proposed three-level multiprefix array technique that preserves the ordering of multiprefix operations.

Figure 5. Active memory unit for the proposed in-order multiprefix solution.

Fast memory bank

Reply AddressData Op

ALU

mux

ACTIVE MEMORY UNIT

MULTIPREFIX ARRAYS

ALU

mux

Port 2 - Array being processed
- load previously stored message
 for in-order processing

CD

mux

Ctrl

Port 1 - Array being loaded
- store incoming multiprefix mes-
 sages for in-order processing

Array 1

Array 2

MD

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 509

The modified active memory unit works like the baseline unit
for loads and stores. For multiprefixes it stores the incoming ref-
erences that arrive in a semi-random order to the loading multi-
prefix array addressed by the referencing processor ID, sets the
corresponding in-use bit of the element of the array, and fetch-
es the target memory location value to register MD (SMPxx
instructions). During the next step, the control logic first switch-
es the arrays so that current processing array becomes loading
array and vice versa, clears the in-use bits of the new loding
array in parallel, advances the memory data from register MD to
register CD, processes the now ordered references against this
data skipping the unused elements and sending the old values
of register CD back to issuing processors running OMPxx
instructions, stores the results back to register CD, and finally
stores the final result back to the memory.

The proposed multiprefix array solution allows for a single
multiprefix computation per a memory module (or processor)
per step but two overlapping multiprefixes can share the same
module—if they are targeted to the very same memory location,
the control logic stores the final value also to register MD. While
this may sound quite limited amount of concurrent prefixes, it
should be noted that the best speedups are gained in cases in
which as many threads as possible are participating in a multi-
prefix, the extreme case reducing only to single multiprefix in
which all the treads are participating.

This kind of active memory units can be used to realize the
full multiprefix concurrent read concurrent write (MCRCW)
PRAM model. A potential problem with multioperations in the
baseline solution is that active memory units in practice need to
both read and write accesses memory locations for each partic-
ipating thread. This can easily lead to limiting the number of
memory locations available for multioperations, adding fast
caches to memory modules, or doubling the speed of the mem-
ory. The proposed solution eliminates these problems for
ordered multiprefixes by reading the memory only once per
incoming reference, and storing the result only once at the end
of multiprefix cmputation. Also the arrays are single-ported
decreasing the silicon area needed for them and making the
power consumption potentially modest.

From a point of view of programming, using new fast
ordered multiprefix operations of an MCRCW-enabled ESM is
simple: A programmer needs just to apply MCRCW-aware prim-
itives to get up to a logarithmic performance boost. Figure 6

shows a logarithmic prefix algorithm for the baseline solution
and a constant time prefix employing the proposed solution for
full MCRCW. It shows the baseline and MCRCW versions of the
prefix benchmark as e-programs and the MCRCW version in our
CMP framework assembler program.

4. Evaluation
In order to evaluate the performance and estimate the silicon

area, and power consumption of the proposed multiprefix array
technique, we applied it to the ECLIPSE CMP framework being
developed at VTT [Forsell02, Forsell10].

4.1 Preliminary performance simulations

We measured the performance of the multiprefix solutions by
simulating execution of five prefix problems that can be used as
a primitive of parallel computing (see Table 1) in six CMP con-
figurations having 4 to 64 512-threaded MBTAC processor cores
(see Table 2).

The benchmark programs were compiled with the e-compil-
er, ec, with –O2 and –ilp optimizations on. The resulting pro-
grams were simulated with the IPSMSim modified for the pro-
posed solution. The results of the simulations are shown in
Figure 7.

In order to roughly compare the goodness of proposed solu-
tion to the alternative solutions, we determined the number of
steps needed for exclusive and concurrent memory accesses,
associative multioperations and both arbitrary ordered and fully
ordered multiprefixes in the baseline solution, the proposed
solution, and combining solution guaranteeing ordering but
introducing always the sorting phase (see Table 3).

4.2 Silicon area and power consumption

We estimated the silicon area, power consumption, and max-
imum clock frequency of unoptimized ESM CMPs with 4, 16 and
64 processors using the recently proposed performance-area-
power model of ESM CMPs [Forsell08] assuming high-perform-
ance 65 nm silicon technology, minimum global wiring pitch for
interconnects, 1 MB data SRAM and 8 kiloinstructions totally
uncompressed program SRAM per processor. The model fea-
tures over 100 parameters and determines the number of gates

#include "e+.h" // Baseline version, T=O(log N) in e
#define size32768
int source_[size];
int main()
{

int i;
for_ (i=1, i<_number_of_threads, i<<=1,

if (_thread_id-i>=0)
source_[_thread_id] += source_[_thread_id-i];

);
}

#include "e+.h" // Proposed version, T=O(1) in e
#define size 32768
int sum_=0;
int source_[size];
int main()
{

int p;
prefix(p,MPADD,&sum_,1);
source_[_thread_id]=p;

}

; Proposed version in MBTAC assembler
; R1 = address of _thread_id, _thread_id, _thread_id<<2
; R2 = Prefix intermediate result, prefix final result
; R3 = address of _source_

OP0 _sum_ OP1 1 BMPADD0 O1,O0 WB2 M0 ; Step 1
OP0 _sum_ SMPADD0 R2,O0 ; Step 2
OP0 _sum_ OP1 __thread_id ADD0 O1,R32 OMPADD0 R2,O0 WB1 A0 WB2 M0 ; Step 3
OP0 _source_ LD0 R1 WB3 O0 WB1 M0
OP0 2 SHL0 R1,O0 WB1 A0
ADD0 R1,R3 ST0 R2,A0

Figure 6. Ordered multiprefix add as e (for the baseline and proposed solutions) and assembler programs (for the proposed solution).

510 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

by summing the gate counts of elements together, determines
the area by multiplying the gate counts in different categories
with typical gate size in that category, assuming typical over-
head, and adding the area occupied by interconnect wiring. The
clock cycle duration is predicted based on a wire delay estimate
obtained using a parasitic capacitance model of parallel wires
and the length of interconnect wiring calculated from the
dimensions of a processor storage module. The power con-
sumption is determined in the same manner as the silicon area
by employing typical dynamical and static power consumption

per gate, taking the predicted clock cycle into account and
adding the power consumption of the interconnection network
wiring. The results given by the model are shown in Figure 8.

4.3 Discussion

As expected CMPs using the proposed multiprefix array solu-
tion executed ordered prefix programs much faster than the
baseline CMPs if the number of concurrent multiprefixes does
not exceed the number of memory modules (processors). The

Figure 7. Execution time (top left), overhead with respect to ideal machine with the same instruction set (top right), and acieved speedup

Operation Combining solution Baseline solution Multiprefix arrays
--
Definition [Ranade91] [Forsell06a] <This paper>
Exclusive load 2-3 1 1
Exclusive store 2-3 1 1
Concurrent load 2-3 1 1
Concurrent store 2-3 1 1
Multioperation (Tparticipating ≤ T0.5) 2-3 1 1
Arbitrary ordered multiprefix (Tpt ≤ T0.5) 2-3 1 1
Ordered multiprefix (Tpt ≤ T0.5) 2-3 O(log Tpt) 2 if Ncmp ≤ P, O(log Tpt) if Ncmp ≤ P
Multioperation (Tpt > T0.5) 2-3 2 2
Arbitrary ordered multiprefix (Tpt > T0.5) 2-3 2 2
Ordered multiprefix (Tpt > T0.5) 2-3 O(log Tpt) 3 if Ncmp ≤ P, O(log Tpt) if Ncmp ≤ P
--
Table 3. Execution time of memory related operations in the evaluated solutions in steps. Multioperations associative cumulative operations

like multiprefixes but no return values are sent back to processors, just the content of the target memory location is altered.
(Ncmp=number of concurrent multiprefixes, Tpt=number of participating threads)

0

20000

40000

60000

80000

100000

aprefix prefix-1 prefix-Q prefix-P E
xe

cu
tio

n
tim

e
(c

lo
ck

cy

cl
es

)

80000

100000

ck

o
(c

l

0

20000

40000

60000

(c
l

m
e

it
noit

cu
E

xe
s)

e

cy
cl

x ifrepa x-1ifrep

x-1 x-Qifrep rep

x-Pifre

0,0

10,0

20,0

30,0

40,0

aprefix prefix-1 prefix-Q prefix-P

O
ve

rh
ea

d
E4

E16

E64

C4

C16

C64

30,0

40,0

da

E4

6E1

0,0

10,0

20,0

repa

ae
rh

ve
O

x ifre x-1ifrep

x-Qifrep frep

x-Pif

6E1

4E6

C4

C16

C64

0,0
5,0

10,0
15,0
20,0
25,0
30,0
35,0

aprefix prefix-1 prefix-Q prefix-P

S
pe

ed
up

C4

C16

C64

25,0
30,0
35,0

p

0,0
5,0

10,0
15,0
20,0
25,0

repa

pudee
S

p

x ifre x-1ifrep

x-Qifrep frep

x-Pif

C4

C16

C64

--
Benchmark Tbase Pbase Wbase Tprop Pprop Wprop N Description
--
aprefix 1 N N N 1 1 T Arbitrary ordered multiprefix of a table of N integers
prefix-x log N N N log N N 1 1 T Ordered multiprefix of a table of N/x integers (x=1, 4, 16, 64

concurrent multiprefix computations)
--
Table 1. Benchmarks used in evaluation.

Configuration E4 E16 E64 C4 C16 C64
--
Multiprefix processing machinery baseline baseline baseline proposed proposed proposed
Number of processors P 4 16 64 4 16 64
Number of functional units F 4 4 4 4 4 4
Number of threads per processor Tp 512 512 512 512 512 512
Total number of threads (in tests) T 2k 8k 32k 2k 8k 32k
Number of switches S 4 16 256 4 16 256
Size of data memory (MB) Sm 4 16 64 4 16 64
--
Table 2. CMP configurations used in the evaluation.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 511

individual speedups ranged from 16.8 to 31.0 while the average
speedups were 19.0, 20.0 and 22,8 for C4, C16 and C64, respec-
tively. The results are better than those predicted by the rough
logarithmic speedups, ignoring the effect of constant factors and
that not every part of the programs is necessarily speed up, 11,
13 and 15, for C4, C16 and C64, respectively. The fact that the
overheads of multiprefixes were very small with respect to an
ideal PRAM with the similar instruction set, confirms that the
efficiency of the proposed technique is high. Finally, the silicon
area and power figures as well as maximum clock frequency of
an unoptimized design, 220 mm2, 250 W at 1.29 GHz for a 16-
core CMP, respectively, do not differ radically from those of typ-
ical commercial CMPs with similar number of registers while the
area and power overheads of the proposed MCRCW implemen-
tation with respect to the baseline are less than 1.2%.

5. Conclusions

We have described an architectural technique supporting a
limited number of concurrent ordered multiprefix operations in
councurrent memory access-aware ESM CMPs. The solution is
based on adding special multiprefix arrays to active memory
units. According to our evaluations, the technique indeed pro-
vides high speedups with respect to the baseline CMPs while
keeping the silicon area and power consumption overheads
very low. The measured average speedups ranged from 19.0 on
a 4-processor chip to 22.8 on a 64-processor chip. While the
poposed technique supports up to P ordered simultaneous mul-
tiprefix operations, the baseline solution supports P or more
simultaenous prefixes as long as the the threads participating to
a single multiprefix belong to the same processor.

Our future work includes investigating whether more than
one concurrent ordered multiprefix per a memory module could
be issued, the relatively high buffering requirements could be
decreased, and whether there exists a way to make concurrent
access even faster than in the proposed solution. Finally, we aim
to investigate memory module level caching solutions to make
all memory locations equal with respect to multioperations.

Acknowledgements

This work was supported by the REPLICA frontier research
project of VTT and grant 128733 of the Academy of Finland.

References

[Beck97] A. Beck, High Throughput Computing: An Interview with
Miron Livny, 1997. HPCWire.

[Dietzfelbinger94] M. Dietzfelbinger et. al.: Dynamic Perfect Hashing:
Upper and Lower Bounds, SIAM Journal on Computing, Vol. 23, No. 4
1994, pp. 738-761.
[Forsell94] M. Forsell, Are Multiport Memories Physically Feasible?,
Computer Architecture News 22, 4 (September 1994), 47-54.
[Forsell97] M. Forsell, MTAC—A Multithreaded VLIW Architecture for
PRAM Simulation, Journal of Universal Computer Science 3, 9 (1997),
1037-1055.
[Forsell02] M. Forsell, A Scalable High-Performance Computing
Solution for Network on Chips, IEEE Micro 22, 5 (September-October
2002), 46-55.
[Forsell05] M. Forsell, Step Caches—a Novel Approach to Concurrent
Memory Access on Shared Memory MP-SOCs, Proc. 23th IEEE
NORCHIP, November 21-22, 2005, Oulu, Finland, 74-77.
[Forsell06a] M. Forsell, Realizing Multioperations for Step Cached MP-
SOCs, Proc. SOC’06, November 14-16, 2006, Tampere, Finland.
[Forsell06b] M. Forsell, Reducing the associativity and size of step
caches in CRCW operation, In the Proceeding of 8th Workshop on
Advances in Parallel and Distributed Computational Models (in con-
junction with the 20th IEEE International Parallel and Distributed
Processing Symposium, IPDPS�06), April 25, 2006, Rhodes, Greece.
[Forsell08] M. Forsell and J. Roivainen, Performance, Area and Power
Trade-Offs in Mesh-Based Emulated Shared Memory CMP
Architectures, In the Proceedings of the 2008 International Conference
on Parallel and Distributed Processing Techniques and Applications
(PDPTA’08), July 14-17, 2008, Las Vegas, USA, 471-477.
[Forsell10] M. Forsell, TOTAL ECLIPSE—An Efficient Architectural
Realization of the Parallel Random Access Machine, In Parallel and
Distributed Computing Edited by Alberto Ros, IN-TECH, Vienna, 2010,
39-64. (ISBN 978-953-307-057-5)
[ITRS09] International Technology Roadmap for Semiconductors,
Semiconductor Industry Association, 2009; http://public.itrs.net/.
[Jaja92] J. Jaja: Introduction to Parallel Algorithms, Addison-Wesley,
Reading, 1992.
[Leppänen96] V. Leppänen, Studies on the realization of PRAM,
Dissertation 3, Turku Centre for Computer Science, University of Turku,
Turku, 1996.
[Leppänen98] V. Leppänen, Balanced PRAM Simulations via Moving
Threads and Hashing, Journal of Universal Computer Science 4, 8
(1998), 675-689.
[Pamunuwa03] D. Pamunuwa, L-R. Zheng and H. Tenhunen,
Maximizing Throughput Over Parallel Wire Structures in the Deep
Submicrometer Regime, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 11, 2 (April 2003), 224-243.
[Ranade91] A. Ranade, How to Emulate Shared Memory, Journal of
Computer and System Sciences 42, (1991), 307--326.
[Schwarz80] J. T. Schwarz, Ultracomputers, ACM Transactions on
Programming Languages and Systems 2, 4 (1980), 484-521.
[Valiant90] L. G. Valiant, A Bridging Model for Parallel Computation,
Communications of the ACM 33, 8 (1990), 103-111.
[Valiant90] L. G. Valiant, A Bridging Model for Parallel Computation,
Communications of the ACM 33, 8 (1990), 103-111.
[Vishkin11] U. Vishkin, Using Simple Abstraction to Reinvent
Computing for Parallelism, Communications of the ACM 54, 1 (January
2011), 75-85.

Figure 8. Silicon area (left), and power consumption (right) estimates for non-optimized implementations of CMPs using high-performance
65 nm silicon technology with minimum global wiring pitch for interconnects implying clock frequency of 1.29 GHz assuming 1 MB
data SRAM and 8 kiloinstructions program SRAM per processor for determining the clock frequency.

0

200

400

600

800

1000

E4 E16 E64 C4 C16 C64

S
ili

co
n

ar
ea

 (
m

m
^2

}

Com

Mem

Proc

600

800

1000
} 2

(m
m

^
a

re

m oC

0

200

400

E4

rea
n

coil
S

i

6E1 4E6

C4 C16

C64

m Me

c Pro

0

200

400

600

800

1000

1200

E4 E16 E64 C4 C16 C64

P
ow

er
 c

on
su

m
pt

io
n

(W
)

Com

Mem

Proc

600

800

1000

1200

)
(W

noit
m

p
su

m oC

0

200

400

600

E4

sun
co

r e
w

P
o

6E1 4E6

C4 C16

C64

m Me

c Pro

512 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Efficient Virtual Machine Scheduling-policy for Virtualized
Heterogeneous Multicore Systems

Ibrahim Takouna, Wesam Dawoud, and Christoph Meinel
Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

{ibrahim.takouna, wesam.dawoud, christoph.meinel}@hpi.uni-potsdam.de

Abstract— Heterogeneous multicore processors could be
the future trend of processors’ industry due to their
performance-power efficiency. In the operating systems do-
main, A heterogeneity-aware scheduler assigns a thread
or an application to an appropriate core to realize this
efficiency. Using virtualization technologies enables resource
consolidation and achieves effective utilization of resources.
Nevertheless, Hypervisors’ scheduling-policy is based on
the round robin algorithm to ensure fairness among VMs.
Emerging heterogeneous system and virtualization increases
power savings and enhances resources utilization. This com-
bination needs a new scheduler, which schedules each VM
to an appropriate core based on its characteristics. In this
paper, we present sources of delay in virtualized environment
that could degrade performance of VMs. Then, we inves-
tigate the sensitivity of a VM performance to changes in
clock frequency. A new scheduling policy was implemented
to alleviate sources of delay and to be aware of system’s
heterogeneity. We emulated our heterogeneous testing envi-
ronment using DVFS, and we compared the results to default
scheduling policy in Hypervisor’s scheduler. Nevertheless,
the results show performance improvements for VMs that run
either CPU-intensive or I/O-intensive applications. Finally,
the measured power savings of our heterogeneous testing
environment reach up to 25%.

Keywords: Virtualization, Heterogeneous, Scheduling, Hypervi-
sor, Management.

1. Introduction
Heterogeneous multicore processors could be a common

architecture of future multicore processors due to their
performance per watt compared to homogeneous processors
[1,2,3]. A single processor will contain hundreds of cores
that vary in some micro-architecture features such as clock
frequency, cache size, area, and others [4], but these cores
exploit the same instruction-set architecture. A single chip
might have several complex cores and many simple cores.
The simple cores are characterized as low-speed clock
frequency and low power consumption while fast cores are
equipped with high-performance features such as high-speed
clock frequency and high power consumption. Consequently,
their potential to achieve different levels of performance that
meet applications heterogeneity has prompted researchers in

the operating systems domain to implement heterogeneous
aware schedulers [5,6,7].

Nevertheless, current Hypervisors’ schedulers such as
Xen [8] do not support heterogeneous multicore processors,
but this issue has been recently tackled in [9]. Authors
in [9] have implemented An Asymmetry-Aware Scheduler
for Hypervisors (AASH). Using AASH scheduler achieves
a good performance improvement for CPU-intensive ap-
plications, but this improvement comes with performance
degradation for memory and I/O intensive applications. A
hypervisor scheduler is considered efficient if it assigns
a virtual CPU (vCPU) to run on the appropriate cores
based on the application characteristics in terms of CPU-
intensive, Memory-intensive, or I/O-intensive. Further, the
scheduler must have knowledge of the physical processors’
architecture and their characteristics such as cores’ clock
frequency. By this knowledge, VMs with CPU-intensive
applications should be assigned to complex fast cores to
be executed faster. Generally, scientific applications are
CPU-intensive, multithreaded, and fewer CPU stalls due to
infrequent memory accesses or I/O operations. On the other
hand, I/O-intensive could be assigned to simple slow cores
without losing significant performance and achieving the
power savings.

In this paper, we used NAS Parallel Benchmarks [10]
as CPU-intensive application and netperf benchmark [11]
as I/O-intensive application. We denoted performance sensi-
tivity to CPU clock frequency as "performance-frequency
sensitivity" and performance dependency on Domain-0
as "performance-Domain-0 dependency". Our scheduling-
policy based on these two categories: "performance-
frequency sensitivity" and "performance-Domain-0 depen-
dency" to assign a vCPU to the appropriate core. Conse-
quently, the results showed good performance improvements
for VMs with CPU-intensive applications and for VMs with
I/O-intensive applications as well. Further, in some experi-
ments, the average combined performance gain reaches up to
70%. Eliminating sources of delay is the foundation of these
improvements. Finally, our heterogeneous experimental envi-
ronment achieves 25% of power savings. The power savings
are gained from this architecture, which runs on two cores
with high frequency and other two cores with low frequency.

The key contributions are as follows:
• We present and classify sources of delay that might lead

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 513

to performance degradation of the whole system such
as inter-process commutation and scheduling delay.

• Then, we illustrate performance of NPB benchmark
performance-frequency sensitivity for both OpenMP
and SERIAL versions of NPB benchmark. Similarly,
we investigate sensitivity I/O-intensive applications to
clock frequency and their dependency on Domain-0
using netperf benchmark with TCP and UDP streams
options.

• We present our modified scheduling-policy that applied
to the default credit scheduler of Xen Hypervisor.

• Finally, we discuss the results of experiments showing
performance comparison between the default and the
modified scheduling-policy.

The rest of paper is organized as follows. The next
section discusses sources of delay in virtualized environment
and motivates our work. Section 3 presents details about
experimental platform and the benchmarks that were used.
In Section 4, we discuss sensitivity of VMs performance to
CPU clock frequency. Performance evaluation is presented
in Section 5. The related work is described in Section 6.
Finally, conclusions is presented in Section 7.

2. Background and Motivation
2.1 Background

In virtualized servers, virtual CPUs (vCPUs) of a virtual
machine (VM) usually experience scheduling delay due to
their competition on physical CPUs (pCPUs) with other vC-
PUs of the co-hosted VMs including the privileged domain
of the Hypervisor (i.e., Domain-0). We discuss sources of
delay that impede VMs to achieve the best performance.
Sources of delay effect on Network I/O was discussed
in [12], meanwhile inter-process communication delay was
experienced in [13] due to threads synchronization. We point
out these sources as follows.

a) Delay influences network I/O VMs performance:
1) The network communication between two VMs is a

type of I/O that mainly depends on Domain-0 because
a VM does not have privileges to access the physical
NIC. Nevertheless, more details could be found in
[12].

• Sending a packet from a VM to another VM
in the same host might experience delay due to
scheduling Domain-0. The delay is the time period
between a VM (a sender) copying a packet into the
Domain-0’s transmission-I/O-ring and Domain0
being scheduled next to notify another VM (a
recipient) in the same host by setting up an event
channel notification.

• Sending/Receiving a packet from a VM to another
VM into another host: The delay is the time period
between a VM (a sender) copying a packet into the

Domain-0’s transmission-I/O-ring and Domain0
being scheduled next to send it via the physical
NIC of host and the time period between receiving
a packet in the physical NIC of the server hosting
the recipient VM and Domain-0 being scheduled
next to set up an event channel notification for the
recipient VM.

2) Delay related to sender VMs scheduling which is the
waiting period of a VM to be scheduled for copying
a packet into the Domain-0’s transmission-I/O-ring.

3) Delay related to recipient VMs scheduling which is
the duration between when Domain0 sets up an event
channel notification for the recipient VM and when
the recipient being scheduled next to read the packet
from Domain-0’s transmission-I/O-ring.

b) Delay influences CPU-intensive VMs performance:
1) To achieve better I/O latency, the Xen Credit sched-

uler prioritizes vCPU I/O-intensive. When a vCPU is
blocked waiting for I/O it will not consume cred-
its; when it wakes, it enters the BOOST state and
may immediately preempt running vCPU. Generally,
vCPU (CPU-intensive) has less credit than vCPU (I/O-
intensive). The frequent preemption of vCPU degrades
performance especially for cache sensitive applications
because some pCPU cycles go for cache-warming.

2) Delay related to inter-process communication comes
from asynchronous assignment for vCPU. Xen credit
scheduler assigns vCPU asynchronously to satisfy
the fairness among vCPUs in the host. However,
asynchronous scheduling decreases performance of a
multithreaded application that needs synchronization
among its threads.

After introducing sources of delay, we give an overview of
Xen’s credit scheduler [8]. The scheduler gives each vCPU
300 credits for a 30ms accounting period. A 100 credits
is subtracted from vCPU each tick. A tick equals 10ms.
The scheduler selects the next vCPU to run on pCPU after
prioritizing vCPUs with either OVER or UNDER according
to their remaining credits. The selection is preformed when
the current running vCPU finishes its time-slice or its status
becomes idle or blocked.

2.2 Motivation
Increasing number of cores in a single chip has become

the mainstream industry to avoid vertical scaling of CPU
frequency. A single chip expected to contain hundreds of
cores that could be heterogeneous either by design or due to
variability and possibility of defects with time [14]. Never-
theless, Heterogeneous multicore promises to achieve 60%
in power saving compared to homogeneous [3]. Similarly,
using virtualization technologies realizes efficient power
savings by hosting multiple virtual machines on a single

514 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

physical server. In this paper, we combine heterogeneous
processors with virtualization technology to demonstrate the
potentials of this combination in achieving power savings
and maintaining applications performance at the acceptable
level. Current Hypervisors’ schedulers based on the round
robin scheduling algorithm ensure fairness share of physical
cores among VMs, but these schedulers were tailored for
homogeneous cores, so using them in heterogeneous en-
vironment causes large performance losses. However, the
advantages of this combination could not be achieved with-
out dynamic classification for VMs and schedulers aware of
VMs classification and processors’ heterogeneity. This paper
sheds light on some of these advantages to motivate research
in this area.

3. Testing Environment and Bench-
marks
3.1 Experimental Platform

Our experimental platform is a Dell OPTIPLEX 980
server with an Intel quad-core processor frequency range
2.79 - 1.2GHz, 8MB shared L3 Intel Smart Cache, and
VID-Voltage rang 0.6500V-1.4000V. The server is equipped
with 8GB memory. We emulated a heterogeneous processor
according to expected frequency ranges in future hetero-
geneous systems[4], so we set two cores with high clock
frequency FF = 2.79GHz and other two cores with low
clock frequency FL=1.33GHz. We considered each core
as a physical CPU (pCPU). Our experimental virtualized
environment based on Ubunutu-10-32bit-Xen 4.1. Ubuntu
operating system was used for para-virtualized unprivileged
domains. The number of VMs and vCPUs was changed
according to experiments purpose, and each experiment in
this paper was repeated at least five times and the average
of these readings was considered.

3.2 Benchmarks
The NAS Parallel Benchmarks [10] (NPB) was designed

to evaluate the performance of HPC systems. NPB consists
of a set of programs that differ in dataset size. The dataset
size increases according to the chosen class (i.e., S, W,
and A-D) during compilation. Further, NPB suite comes
in a variety of versions: SERIAL, OpenMP, MPI, and
Java. The SERIAL and OpenMP versions were used in our
experiments and compiled with class C dataset which is the
second largest dataset after class D. Authors of [15] studied
NPB characteristics and provided performance analysis for
MPI version. Generally, the NPB programs show a high
CPU utilization, and this indicates that those programs are
computation-intensive and infrequently blocked for com-
munication or I/O operation. When a program runs with
four threads, the communication patterns in these programs
are as follows. BT and SP exhibit a mesh communication
pattern, but BT includes a number of I/O operations. CG

shows a one dimensional nearest neighbor chain pattern.
LU and EP show a ring and negligible communication
pattern respectively. Finally, CG and LU are communication
intensive and their message size is large compared to the
other programs, but LU is a synchronous-sensitive among its
threads[13]. We denote OpenMP version of NPB by NPB-
OMP that encloses CPU-intensive parallel programs, and the
SERIAL version by NPB-SER that includes CPU-intensive
single thread programs. Furthermore, we refer to individual
program in NPB suite using this notion EP-OMP which
means EP program of OpenMP version, or EP-SER which
means EP program of the SERIAL version.

Netpref [11] is a network benchmark with a variety of
options. We used netperf with TCP_STREAM option to
measure TCP channel bandwidth and with UDP_STREAM
to measure UDP channel bandwidth. In this paper, we refer
to them with netperf-TCP and netperf-UDP respectively.

4. VMs SENSITIVITY ANALYSIS
In this section, we analyzed sensitivity of VMs’ perfor-

mance to changes in CPU clock frequency for VMs that
run CPU-intensive and I/O-intensive applications. Then, we
illustrated dependency of VMs’ on Domian-0 for VMs with
I/O-intensive applications.

4.1 VMs with NBP Sensitivity Analysis
To analyze VMs performance-frequency sensitivity, we

used NBP-SER and NPB-OMP benchmarks as CPU-
intensive programs. In this experiment, we pinned vCPUs
of Domain-0 to cores (0,1) and vCPUs of VMs were pinned
to the another two cores (2,3) to avoid Domain-0’s influence
on the VMs; in other words, to prevent Domain-0 from
being queued with the VMs in the same queue. First, the
experiment was run while the cores (2,3) were set to run with
high frequency FF =2.79GHz as fast cores. Then, it was run
again after changing frequency settings of the cores (2,3) to
low frequency FS=1.33GHz as slow cores. Finally, we used
the price elasticity of demand economics formula to deter-
mine program’s completion time and throughput sensitivity
of clock frequency. We considered T the completion time and
Th the throughput as the demand, and F clock frequency as
the price. The sensitivity was determined using the formula
from [18]. ET,F is the completion time sensitivity of clock
frequency, and ETh,F is throughput sensitivity of clock
frequency.

ET,F =
TF − TS

FF − FS
∗ FF + FS

TF + TS
(1)

ETh,F =
ThF − ThS

FF − FS
∗ FF + FS

ThF + ThS
(2)

Due to the inverse relationship between CPU frequency
and completion time, ET,F values are negative, so com-
pletion time increases as CPU frequency decreases and

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 515

(a) (b)

Fig. 1: Performance-frequency sensitivity for NPB-OMP
and NPB-SER versions run on a VM with two vC-
PUs. (a)sensitivity of completion time to frequency, and
(b)sensitivity of throughput to frequency.

vice versa. On the other hand, ETh,F values are positive
because of the direct relationship between CPU frequency
and throughput. Program speedup depends on program char-
acteristics, but it does not have a liner relationship with
CPU frequency. However, CPU-intensive programs might
have a semi-liner relation with frequency because of either
infrequent memory accesses or I/O operations. Figure 1
shows NPB-OMP and NPB-SER benchmarks performance-
frequency sensitivity (i.e., completion time and throughput).
In NPB benchmark, each program has a different memory
access behavior and various inter-process communication
patterns. These characteristics determine sensitivity of a
program to frequency changes. For example, the completion
time of EP-OMP and EP-SER programs had the same
and the highest sensitivity. This high sensitivity due to the
negligible inter-process communication in the multithreading
EP-OMP program, and none inter-process communication
in the single thread EP-SER program. Furthermore, EP-
OMP is seldom memory access compared with CG-OMP
and LU-OMP. Generally, NPB-SER programs sensitivity to
frequency changes was higher than NBP-OMP due to the
sequential execution of instructions in NPB-SER and inter-
process communication patterns or I/O operations in some
of NBP-OMP programs such as CG and BT respectively.
On the other hand, NBP-OMP programs with intensive inter-
process communication were less sensitive to frequency such
as CG-OMP and LU-OMP. FT, a mixed type program,
almost had the same sensitivity in NPB-SER and NPB-
OMP. Unlike LU-OMP, BT-OMP includes a number of
I/O operations that do not need synchronization among its
threads.

4.2 VMs with I/O Sensitivity Analysis

We analyzed sensitivity of VMs performance with I/O-
intensive to CPU frequency. Then, as I/O operations depend
on Domain-0, we tested VMs performance-Domain-0 depen-
dency.

4.2.1 CPU Frequency Sensitivity
In this experiment, we ran netperf with TCP-STREAM

and UDP-STRAEM options to test I/O performance-
frequency sensitivity using formula 2. The setting of this
experiment was the same setting when we tested VM with
NBP sensitivity. As shown in figure 2-(a), TCP test is more
sensitive to core frequency than UDP due to the nature of
TCP-packet; UDP does neither message fragmentation nor
reassembly. Further, the aggregate costs of non-data touching
overheads consume majority of the total software process-
ing time. The non-data touching overheads come from as
network buffer manipulation, protocol-specific processing,
operating system functions, data structure manipulations
(other than network buffers), and error checking[16]. To
validate our test, we used SCP application TCP-based to
transfer a 500MB file between two VMs and we found the
same results obtained using netperf-TCP.

4.2.2 VMs with I/O Domain-0 Dependency
In this experiment, we ran netperf benchmark with

TCP-STREAM and UDP-STRAEM options to test I/O
performance-Domain-0 dependency. For this end, we re-
versed the scenario of VM performance-frequency sensi-
tivity, so the cores (2,3) settings were not changed but
were set to high frequency FF =2.79GHz where VMs were
pinned in cores (2,3). On the other hand, The cores (0,1)
were set to high frequency FF =2.79 GHz where Domain-0
was pinned. Then, we ran it again while the frequency of
cores (0,1) is low FS=1.33GHz. Finally, we computed the
performance-Domain-0 dependency using formula (2). The
result of this experiment is shown in figure 2-(b). It illustrates
that both netperf-TCP and netperf-UDP depend on Domain-0
for commutation between to VMs, but netperf-TCP depends
on Domain-0 more than netperf-UDP.

The conclusion is that applications based on TCP protocol
are frequency sensitive and they are Domain-0 dependant as
depicted in figure 2-(a) and figure 2-(b) respectively.

(a) (b)

Fig. 2: Performance-frequency sensitivity and Domain-0
dependency for NPB-OMP and NPB-SER versions run on a
VM with two vCPUs. (a) performance-frequency sensitivity,
and (b) performance-Domain-0 dependency.

516 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

5. Performance Evaluations
In this section, we evaluated our improved scheduling-

policy with the following rules:
• The weight of VM is proportional to the number of

vCPUs.
• CPU-intensive vCPU should not be queued with I/O-

intensive vCPU. Furthermore, CPU-intensive vCPU
should be placed in the fast pCPU’s queue meanwhile
I/O-intensive vCPU in the slow pCPU’s queue.

• A virtual machine with CPU-intensive application and
a single vCPU should be placed in fast pCPU’s queue
to accelerate the sequential execution.

• The time-slice for the fast pCPU’s queue is 30ms and
time-slice for slow cores is 10ms as show in figure 3.
We chose the value 10ms for the short slice as one tick
to avoid high context switching and to keep consistent
credit accounting.

• The cores settings for the experiments were that the
fast cores (0,1) ran on frequency FF =2.79GHz and the
slow cores (2,3) ran on frequency FS=1.33GHz.

(a)

(b)

Fig. 3: Scheduling time-slice modifications.(a) time-slice =
30ms for fast cores, and (b) time-slice = 10ms for slow cores.
The accounting period of vCPU is 30ms for both fast and
slow cores.

5.1 I/O and CPU-intensive Isolation
In this experiment, we created three VMs one with two

vCPUs while each of the other two VMs has one vCPUs.
We ran netperf on the two VMs with one vCPU for testing
TCP and UDP bandwidth channels between them. The VM
with two vCPUs used to run NPB-SER and NBP-OMP
programs. We ran the three VMs with our new scheduling-
policy. First, we used EP and CG programs in NPB-SER
with netperf, then EP and CG of NPB-OMP were used. We
pinned the VMs with I/O to the slow cores (2,3) and the
VM with CPU-intensive was pinned to the fast cores (0,1).
Performance improvement for both I/O and CPU-intensive

VMs compared to the default scheduler is illustrated in figure
4. Figure 4-(c) shows that the performance gain of CG.C is
better than EP.C. Indeed, EP.C has negligible inter-process
communication compared to CG.C which has also memory
accesses. On the other hand, netperf-TCP throughput when
co-hosted with VM that ran NBP-SER is better than when
co-hosted with VM that ran NBP-OMP. As seen in figure 2-
(b), netperf depends on Domain-0 and NPB-SER is a single
thread test that gave Domain-0 chance to be scheduled in
fast cores and improve I/O operations for netperf-TCP. The
aggregate average gain is depicted in figure 4-(c). Obviously,
isolating CPU-intensive vCPUs from I/O-intensive vCPUs
was the main reason for performance improvement. Using
isolation eliminated the sources of delay that affect CPU-
intensive vCPUs performance.

(a) (b) (c)

Fig. 4: I/O and CPU-intensive Isolation Performance im-
provements; netperf-TCP run on a VM with one vCPU,and
NPB-OMP run on a VM with two vCPUs. (a) Through-
put gain for NPB-OMP and netperf-TCP benchmark, (b)
throughput gain for NPB-OMP and netperf-TCP benchmark,
and (c) the average improvement of the overall system.

5.2 VMs with sensitive Inter-process Comm.
In this experiment, we tested the performance gain for

inter-process communication intensive such as CG and
LU of NPB-OMP version. The performance of NPB-OMP
benchmark in VM is near to the performance in physical
server as long as the vCPUs are less than pCPUs, and LU-
OMP is the most sensitive program to communication delay
[13]. For testing inter-process communication intensive pro-
gram performance improvement, we created one VM with
one vCPU and another VM with four vCPU. Nevertheless,
we had five vCPUs in addition to four vCPUs for Domain-0.
The performance gain is illustrated in figure 5 where figure
5-(a) shows Throughput gain and completion time speedup
for NPB-OMP while figure 5-(b)illustrates Throughput gain
and completion time speedup for NPB-SER. Figure 5-(c)
shows the average aggregated performance gain for NPB
programs with two versions. Nevertheless, LU-OMP gained
about 70% performance improvement. This improvement

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 517

due to changing the time-slice of the slow pCPUs’ to 10ms
which increases scheduling frequency. Increasing schedul-
ing frequency gave chance for inter-process communication
and synchronization. Further, decreasing time-slice decreases
holding time when vCPU status "busy blocking" holds pCPU
[17]. A lot of "busy blocking" wastes pCPU cycles and
degrades the overall system performance.

(a) (b) (c)

Fig. 5: CPU-intensive with inter-process communication
intensive performance improvements:NPB-OMP run on a
VM with four vCPUs and NPB-SER run on a VM with one
vCPU. (a) Throughput gain and completion time speedup
for NPB-OMP,(b) throughput gain and completion time for
NPB-SER, and (c) the average improvement of the overall
system.

5.3 Estimated Power Savings
As our physical platform is homogeneous, we have used

dynamic voltage and frequency scaling (DVFS) mechanism
to emulate a Heterogeneous environment. Nevertheless, we
calculate the expected power saving in our experimental
environment using formula (3). Formula (3) shows that the
power consumption has a direct proportional to F which is
the clock frequency and the square of Voltage (V).

P = C ∗ F ∗ V 2
V ID (3)

Consequently, homogeneous architecture (HO) will consume
PHO with four cores ran on high frequency FF =2.79GHz
and VV ID=1.4V, while heterogeneous architecture (HE)
will consume PHE with two cores with high frequency
FF =2.97GHz with VV ID=1.4V and the other two ran with
low frequency FS=1.33GHz with VV ID=0.65V. The theo-
retically power savings gain is 45% calculated using (1-
PHE /PHO)*100 formula, but the measured values of power
savings reach up to 25%.

6. Related Work
Most of the works related to heterogeneous processors

have been done in operating systems domain. Our work
overlaps with two categories: (i) Heterogeneous scheduling
awareness for OS, (ii) Heterogeneous scheduling awareness
for Hypervisors. First, the algorithms for heterogeneous

awareness in operating systems field can be described as
follows. The algorithm presented in [6] assigns the best
threads (i.e., threads with high computation demands) to
run on fast cores; however, selecting the best threads via
continuous monitoring of performance based on instructions
per cycle (IPC). Furthermore, continuous monitoring for
threads before getting the best thread to the fast core might
take long time and consume more resources. This algorithm
could be modified for Hypervisors if we consider a virtual
machine as a long lived thread. By determining the archi-
tectural properties of an application, the algorithm in [16]
find the best threads to be assigned to fast cores. However,
we used the same methodology to classify virtual machines
that proposed in [16]. The algorithm proposed in [19] boost
the sequential phases of parallel applications by executing
them on fast cores. In our work, the scheduler assigns CPU-
intensive VMs with single vCPU to fast cores. In [20], the
scheduler places more threads on fast cores than slow cores,
where the core load is proportional to its frequency speed.
Unfortunately, this technique is not suitable for Hypervisors
because virtual machines will experience cache contentions
that degrade their performance [21].

Second, heterogeneous scheduling awareness for Hyper-
visors according to the recent work was presented in [9].
These were not much research done in this domain;however,
paper [9] was implemented An Asymmetry-Aware Scheduler
for Hypervisors which is a scheduler aware to heterogeneity
of multicore processor. Using AASH scheduler achieves a
good performance improvement for CPU-intensive VMs, but
this improvement came with performance degradation for
memory and I/O intensive VMs. Our idea of shortening the
time-slice for the slow cores similar to dynamic switching
frequency scheduling policy proposed in [20], but it was
proposed for homogeneous environment and for pinned
virtual machines. Authors in [20] suggested to set the time-
slice to one millisecond for some CPU-Intensive VMs, but
according to the comments in Xen’s source code [22], a 1ms
is the given delay for pCPU to build its cache for vCPU
between vCPU migrations. So, one millisecond time-slice
is very expensive for CPU-intensive VMs due to frequent
cache-warming that means more pCPU cycles losses.

7. Conclusions
In our scheduling-policy, we invested the recommen-

dations that were proposed for operation systems sched-
ulers. The policy is suitable for virtualized environments
that co-hosted heterogeneous type of VMs. We presented
scheduling-policy that aware of virtual machines and phys-
ical host heterogeneity to realize the promises of Hetero-
geneous multicore processor in virtualized environments.
Analyzing VM characteristics is the most significant stage to
place a VM at the suitable cores that keep its performance
acceptable. Furthermore, elimination of delay sources that
impede performance gaining could bring good performance

518 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

improvements. Our results proved that heterogeneous mut-
licore systems could add more advantages in terms of
power savings when combined with virtualiziation tech-
nologies. Nevertheless, the average combined performance
improvements gain for both CPU-intensive and I/O-intensive
VMs reached up to 70% in some experiments compared
with default scheduling-policy of Hypervisor’s scheduler.
Furthermore, the power savings achieved in our experimen-
tal environment almost realize the promises in [3], where
25% of power savings have been achieved compared with
homogeneous architecture.

References
[1] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, and P. Husbands, "The

Landscape of Parallel Computing Research: A View From Berkeley,"
UC Berkeley Technical Report UCB/EECS-2006-183, 2006.

[2] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and E. Ayguade,
"Performance, Power Efficiency and Scalability of Asymmetric
Cluster Chip Multiprocessors," IEEE Computer Architecture Letters
5(1):4, 2006.

[3] R. Kumar, K. I. Farkas, and N. Jouppi et al, "Single-ISA Heteroge-
neous Multi-Core Architectures: The Potential for Processor Power
Reduction," In Proc. of MICRO 36, 2003.

[4] S. Borkar, "Thousand Core Chips-A Technology Perspective," in Proc.
of the DAC, 2007.

[5] R. Kumar, Dean M. Tullsen, P. Ranganathan, N. Jouppi, and K. Farkas,
"Single-ISA Heterogeneous Multicore Architectures for Multithreaded
Workload Performance," in Proc. of the 31st Annual International
Symposium on Computer Architecture, 2004.

[6] R. Kumar, D. M. Tullsen, and P. Ranganathan et al, "Single-ISA
Heterogeneous Multi-Core Architectures for Multithreaded Workload
Performance," in Proc. of ISCA, 2004.

[7] M. Becchi and P. Crowley, "Dynamic Thread Assignment on Hetero-
geneous Multiprocessor Architectures," in Proc. of the Conference on
Computing Frontiers, 2006.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, "Xen and the Art of
Virtualization," in Proc. SOSP ’03 Proceedings of the nineteenth ACM
symposium on Operating systems principles, 2003.

[9] V. Kazempour, A Kamali, and A. Fedorova, "AASH: an asymmetry-
aware scheduler for Hypervisors,"in Proc. of the 6th ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environ-
ments, 2010.

[10] R. V. der Wijngaart, "NAS Parallel Benchmarks v. 2.4", NAS Tech-
nical Report NAS-02-007, October 2002.

[11] R Jones, "NetPerf:a Network performance benchmark,"
http://www.netperf.org.

[12] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, and A. Siva-
subramaniam, "Xen and co.: communication-aware cpu scheduling
for consolidated xen-based hosting platforms," in Proc. of the 3rd
international conference on Virtual execution environments, pp. 126-
136, 2007.

[13] C. Xu, Y. Bai, and C. Luo, "Performance Evaluation of Parallel
Programming in Virtual Machine Environment," In Proc. of Sixth
IFIP International Conference on Network and Parallel Computing,
pp. 140-147, 2009.

[14] S. Borkar, "Designing Reliable Systems from Unreliable Components:
The Challenges of Transistor Variability and Degradation," in IEEE
Micro, 5(6):10-16, 2005.

[15] J. Subhlok, S. Venkataramaiah, and A. Singh, "Characterizing NAS
benchmark performance on shared heterogeneousnetworks," in Proc.
of 11th International Heterogeneous Computing Workshop, 2002.

[16] J. Kay and J. Pasquale, "The Importance of Non-Data Touching
Processing Overheads in TCP/IP," In Proc. of ACM SIGCOMM, 1993.

[17] H. Chen, H. Jin, K. Hu, and J. Huang, "Dynamic Switching-Frequency
Scaling: Scheduling pinned Domains in Xen VMM," in Proc. of 39th
International Conference on Parallel Processing,pp. 287-296, 2010

[18] D. Shelepov and A. Fedorova, "Scheduling on Heterogeneous Multi-
core Processors Using Architectural Signatures," in Proc. of the Work-
shop on the Interaction between Operating Systems and Computer
Architecture, in conjunction with the 35th International Symposium on
Computer Architecture (Beijing, China, June 21-25, 2008). WIOSCA
’08.

[19] J. Saez, M. Prieto, A. Fedorova, and S. Blagodurov, "A Comprehen-
sive Scheduler for Asymmetric Multicore Processors," in Proc. of the
5th ACM European Conference on Computer Systems (EuroSys) 2010,
2010.

[20] T. Li, D. Baumberger, and D. A. Koufaty et al, "Efficient Operating
System Scheduling for Performance-Asymmetric Multi-Core Archi-
tectures,"In Proc. of SC ’07, pp. 1-11, 2007.

[21] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell, "Modeling Virtual Ma-
chine Performance: Challenges and Approaches," Intel Corporation,
2009.

[22] http://lxr.xensource.com/lxr/source.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 519

Prototyping a Library of Algorithmic Skeletons
with Bulk Synchronous Parallel ML

Noman Javed1, Frédéric Loulergue1, Julien Tesson1, and Wadoud Bousdira1
1LIFO, Université d’Orléans, France

Abstract— Algorithmic skeletons are a high-level approach
to parallel programming that can be combined with widely
used programming languages such as Java, C and C++. In
this paper we show that prototyping such a library with a
structured parallel functional language, namely Bulk Syn-
chronous Parallel ML, provides a parallel implementation
with which experiments can be performed and gives some
hints about the formal semantics of the library as well.

Keywords: Parallel programming, Algorithmic skeletons, Func-
tional programming, Applications

1. Introduction
The widespread of parallel machines makes the

widespread of structured parallel programming paradigms
necessary. Algorithmic skeletons [1], [2], [3] and bulk syn-
chronous parallelism [4], [5] are two such structured parallel
models. The former eases the programming: the skeletons
(higher-order functions) implement usual patterns of parallel
algorithms while corresponding to usual sequential combina-
tors. To reason about the functional semantics of the program
is quite similar to reason about the semantics of the program
where the sequential combinators are used. The latter eases
the design of parallel algorithm by providing a simple and
realistic performance model.

Orléans Skeleton Library [6] is an efficient C++ library of
parallel algorithmic skeletons that uses expression templates
for optimisation. In the design of a new version of OSL, we
aim at improving the safety of the library while preserving
its expressivity. In this paper we present the prototyping of
the new OSL library with a parallel functional programming
language that follows the BSP model: Bulk Synchronous
Parallel ML (BSML) [7], [8], [9]. Using such a language
allows to focus on the design of the algorithms behind
the skeletons without having to take into account the C++
mechanisms that can be error-prone, but still being able to
run the skeletons in parallel. Bulk Synchronous Parallel ML
being currently implemented as a library of the Objective
Caml language [10], the skeletons in BSML could be
mostly reused in formal development using the Coq proof
assistant [11], [12] and form the basis of a formal execution
model of OSL.

We first give an overview of programming with BSML
(section 2), before explaining the design and prototyping of
the library of algorithmic skeletons in BSML (section 3).

Some example applications are implemented using this
library and some experiments performed (section 4). We
conclude by related work (section 5) and future research
direction (section 6).

2. Bulk Synchronous Parallel ML
In the BSP model, the number p of memory-processor

pairs of the BSP machine is fixed during execution. p is
accessible to the programmer, it is named bsp_p. These
pairs are interconnected in such a way that point-to-point
communications are possible. A global synchronisation unit
is available in a BSP computer. The execution of a BSP
program is a sequence of super-steps, each one being com-
posed of a phase where each processor computes using only
the data it holds, a phase where processors exchange data
and a synchronisation barrier that guarantees the completion
of data exchange before the start of a new super-step. The
other BSP parameters are respectively bsp_g (network band-
width), bsp_l (synchronisation time), and bsp_r which is a
measure of the processors computing power. All parameters,
but bsp_p, can be obtained by a benchmark program.

BSML is based on a distributed datatype called parallel
vector. A parallel vector has type ’a par and embeds p values
of any type ’a at each of the p different processors in
the parallel machine. The nesting of parallel vectors is not
allowed.

The p processors are labelled with naturals from 0 to p−1.
We use the following notation for a parallel vector:

〈x0, x1, . . . , xp−1〉 : ’a par

or 〈xi〉i for short. This vector holds the value xi at processor
i, with all xi of type ’a. We distinguish this structure from
a usual “sequential” vector of size p because the different
values, that will be called local, are blind from each other.
It is only possible to access the local value xi in two cases:

1) locally, on processor i (by the use of a specific
primitive), or

2) after some communications.
These restrictions are inherent to distributed memory paral-
lelism. This makes parallelism explicit and programs more
readable. Since the BSML program deals with a whole
parallel machine and individual processors at the same time,
a distinction between the levels of execution that take place
is needed:

520 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Primitive Type Description
� e� t par if e : t 〈e, . . . , e〉
$this$ (within a local section) int i on processor i
v (within a local section) t (if v : t par) vi on processor i (if v = 〈v0, . . . , vp−1〉)
proj ’a par→ int→ ’a 〈v0, . . . , vp−1〉 7→ (fun i→ vi)
put (int→ ’a) par→ (int→ ’a) par 〈f0, . . . , fp−1〉 7→ 〈fun i→ fi0, . . . , fun i→ fi(p− 1)〉

Fig. 1: Summary of BSML Primitives

• Replicated execution is the default. Code that doesn’t
involve BSML primitives (nor, as a consequence, par-
allel vectors) is run by the parallel machine as it would
be by a single processor. Replicated code is executed
at the same time by every processor, and leads to the
same result everywhere.

• Local execution is what happens inside parallel vectors,
on each of their components: the processor uses its local
data to do computation that may be different from the
others.

• Global execution concerns the set of all processors
together, but as a whole and not as a single processor.
Typical example is the use of communication primi-
tives.

BSML programs can be compiled in byte-code, native
code or can be evaluated in an interactive fashion using
the BSML interactive loop. In this case, when one gives
an expression to the top-level, possibly a name, a type and
the value of the expression are returned. For example:

bsp_p;;
− : int = 4

is the prompt, bsp_p is the expression to evaluate, the
answer is the second line, giving the name of the value (here
no name is given to the value), the type (int) and the value
(4). In the remaining of this section, our BSP machine will
have 4 processors.

To build a parallel vector containing the same value at
all the processors, one can write � e� where e is a
usual “sequential” Objective Caml expression. If the value
of e is v then the value of � e� is the parallel vector
〈 v , . . . , v , . . . , v 〉. For example:

� "PDPTA"� ;;
− : string par = <"PDPTA", "PDPTA", "PDPTA", "PDPTA">

There also exists a predefined parallel vector, the value
named this, that contains the value i at processor i:

this;;
− : int par = <0, 1, 2, 3>

The so-called local section notation �� can be used
to access the local values of a vector. Let us consider
an expression e of type t par. Being an expression with a
parallel type, its value is a parallel vector 〈 v0 , . . . , vp−1 〉.
Inside a local section, for all processor i, the notation e
represents at processor i the local value vi. In combination
with this we have a way to build parallel vectors with
different values on the different processors:

let hello =� (string_of_int $this$)^":hello"� ;;
hello : string par = <"0:hello", "1:hello", "2:hello", "3:hello">

Objective Caml being a higher-order functional program-
ming language, it is possible to build parallel vectors of
functions:

#� (+) $this$� ;;
− : (int→ int) par = < <fun>, <fun>, <fun>, <fun> >

Here (+) is the integer addition function in prefix nota-
tion, partially applied. At processor i we have the function
fun x→ i + x.

The only way to obtain a sequential value from a parallel
expression is the use of the proj primitive. The type of this
function is ’a par→ int→ ’a. Given a parallel vector, it returns
a function such that, applied to the processor identifier of a
processor, it returns the value of the vector at this processor.
proj is often used at the end of a parallel computation to
gather the computed results. For example, if we want to
convert a parallel vector into a list, we write:

let f = proj hello in List.map f [0; 1; 2; 3];;
− : string list = ["0:hello"; "1:hello"; "2:hello"; "3:hello"]

A (almost) total exchange occurs when the proj function
is applied to its first argument. In BSML this ends the
super-step. Note that the communication and synchronisation
phases occur only when proj is applied to its first argument.
In the example further applications of f do not imply
additional communications and synchronisations.

Some values are considered to be an empty message (or
to have size 0) and are thus not communicated through the
network, even if the yielded results may suggest they were.
It is the case for example for empty lists, the value None of
the ’a option type, etc. Thus the communication schema of
proj may be not a full total exchange if some of the values
in the argument vector are values of size 0.

put is the comprehensive communication primitive: It al-
lows any local value to be transferred to any other processor.
It is synchronous, and ends the current super-step. Canonical
use of put is

let com = put� fun sendto→ e($this$, sendto, x)�

where expression e computes (or usually, selects) the data
of vector x that should be sent depending on the destination
processor sendto. The return value of put is another vector
of functions. At a processor j the function, when applied to
i, yields the value received from processor i by processor j.

For example, the following shift function shifts a parallel
vector circularly to the right:

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 521

let shift v =
let vdst =� ($this$+1) mod bsp_p�
and vsrc =� (bsp_p+($this$−1)) mod bsp_p� in
let shifted =
put� fun dst→ if dst = $vdst$ then [v] else []� in
� List.hd ($shifted$ $vsrc$)� ;;

val shift : ’a par→ ’a par = <fun>
shift hello;;
− : string par = <"3:hello", "0:hello", "1:hello", "2:hello">

A summary of BSML primitives is given in figure 1.

3. A library of algorithmic skeletons
We implemented a prototype library of a new version of

Orléans Skeleton Library in BSML. We first describe the
underlying data structure before detailing the main (but not
all) skeletons.

3.1 Distributed arrays
The data structure manipulated by the skeletons of our

prototype library are distributed arrays. In BSML such a data
structure could be implemented as a parallel vector of arrays.
However it is convenient, and more efficient, to store some
additional information rather than to compute on demand:
• the start index of each processor with respect to the

global array: each processor contains one array, but this
array is a sub-array of the distributed array considered
as a whole array; computing it from the parallel vector
of arrays would require communications,

• the global length of the distributed array: if it is not
stored then a parallel reduction is needed to compute it
from the parallel vector of arrays,

• the distribution: each processor knows the local length
of the other local arrays without having to communi-
cate; we represent the distribution as an array of integers
of size bsp_p.

The type for distributed arrays is thus defined as:

type ’a distArray = {
data : ’a array par;
startIndex: int par;
globalSize : int;
distribution : int array;

}

globalSize and distribution are not parallel vector but have
usual sequential types. This makes clear that these fields
cannot have a different value on two different processors. On
the contrary starIndex is a parallel vector: at each processor
it contains the start index of the local array in the global
array. It is also possible to choose starIndex to be the array
of the start indices of all the local arrays. However, for all
skeleton but one, it is not necessary for a processor to know
the start indices of other processors: therefore it is better to
save memory by having only one integer value per processor
for starIndex rather than having a replicated array of size p
(than in practice is p integer values on each processor).

An example of value, if we have 4 processors, is:

let da = init 11 string_of_int;;
val da : string distArray =
{data = <[|"0"; "1"; "2"|], [|"3"; "4"; "5"|],

[|"6"; "7"; "8"|], [|"9"; "10" |]>;
startIndex = <0, 3, 6, 9>;
globalSize = 11;
distribution = [|3; 3; 3; 2|]}

The set of skeletons provided to the user of the library is
given in figure 2. The three first skeletons are, if we take
an object oriented programming terminology, constructors
of distributed arrays. make creates a distributed array of
a given size with the given value everywhere, init creates
a distributed array of a given size with its elements given
by applying a function from indices to values, and atRoot
builds a distributed array from a sequential array at root
processor. The two first functions give an evenly distributed
array whereas the third one returns a distributed array with
values only at processor 0. For the two first constructors, the
startIndex, globalSize and distribution fields do not need any
communication to be computed as the distribution is known
from the global size when the array is evenly distributed
(if the size is not divided by the number of processors, the
processors with a low process identifier may have one ad-
ditional element). For the third constructor, communications
are required.

3.2 The getPartition and flatten skeletons
The getPartition and flatten skeletons are such that

flatten(getPartition da) = da. Basically getPartition makes the
distribution of the distributed array apparent, and is mostly
a change of point of view, that is inexpensive to compute:
It just, at each processor, puts the local array into an array
of one element. However we wish the flatten skeleton to
be also inexpensive to compute. Therefore we would like
to keep the information related to the global size, start
indices and distribution before the getPartition to be able
to restore them when there is a call to flatten. In order to
do that, we actually have a fifth field in the distArray type:
partitioned, a boolean. When this field is true this means
that the globalSize, startIndex and distribution fields refers
to a distribution before a call to getPartition. The actual
distribution could be computed without any communication
if we assume that it is a distribution obtained after a call to
getPartition: the global size is bsp_p, the startIndex is equal
to this and the distribution is such that there is one element
per processor.

For example:

let pda = getPartition da;;
val pda : string array distArray =
{ data = < [| [|"0"; "1"; "2"|] |], [| [|"3"; "4"; "5"|] |],

[| [|"6"; "7"; "8"|] |], [| [|"9"; "10"|] |]>;
startIndex = <0, 3, 6, 9>; globalSize = 11;
distribution = [|3; 3; 3; 2|]; partitioned = true }

522 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

make: int→ ’a→ ’a distArray
init: int→ (int→ ’a)→ ’a distArray
atRoot: (unit→ ’a array)→ ’a distArray
getPartition: ’a distArray→ ’a array distArray
flatten: ’a array distArray→ ’a distArray
map: (’a→ ’b)→ ’a distArray→ ’b distArray
mapIndex: (int→ ’a→ ’b)→ ’a distArray→ ’b distArray
zip: (’a→ ’b→ ’c)→ ’a distArray→ ’b distArray→ ’c distArray

zipIndex: (int→ ’a→ ’b→ ’c)→ ’a distArray→ ’b distArray→
’c distArray

shift: int→ (int→ ’a)→ ’a distArray→ ’a distArray
permute: (int→ int)→ ’a distArray→ ’a distArray
balance: ’a distArray→ ’a distArray
reduce: (’a→ ’a→ ’a)→ ’a→ ’a distArray→ ’a
gather: int→ ’a distArray→ ’a distArray
bcast: int→ ’a distArray→ ’a distArray

Fig. 2: Skeletons of the Prototype Library

However, if other skeletons are applied to a partitioned
distributed array, it is not always guaranteed that the distri-
butions can be updated without additional communications.
In this case the startIndex, globalSize and distribution fields
are replaced by their actual values and the field partitioned
is set to false. A call to flatten on a distributed array that
is not partitioned incurs communications: each processor
contains an array of arrays that is flattened to an array,
and the sizes of these arrays are totally exchanged. From
these sizes the various fields can be computed (without new
communications).

3.3 The map, zip and balance skeletons
The functional semantics of the map skeleton can be

written: map f [v0 , . . . , vn−1] = [f v0 , . . . , f vn−1]
where [v0 , . . . , vn−1] is the notation for the data part of
a distributed array of global size n. The map skeleton does
not change the distribution of a distributed array. However
if the distributed array is partitioned (i.e. its field partitioned
is true), the startIndex, globalSize and distribution fields still
contain the values they had before the call to getPartition.
We call this set of fields and their values “the distribution
before partitioning”. With a call to map, the distribution
before partitioning is not guaranteed to be preserved.

For example:

let da’ =
let f a = let l = Array.length a in Array.sub a 0 (l/2) in
map f (getPartition da);;

does not preserves the distribution of da. If the local sizes of
da are even, the global size of flatten da’ will be half of the
one of da. Moreover the distribution depends on the local
application of the function f, so it is not possible to update
the distribution before partitioning without communication.
Thus for an application of map we remove the distribution
information before partitioning (it requires no communica-
tion):

val da’ : string array distArray =
{ data = <[|[|"0"|]|], [|[|"3"|]|], [|[|"6"|]|], [|[|"9"|]|]>;

startIndex = <0, 1, 2, 3>; globalSize = 4;
distribution = [|1; 1; 1; 1|]; partitioned = false }

The mapIndex variant of map has the same properties.
It benefits from having the startIndex field. Its informal

functional semantics is:

mapIndex f [v0 , . . . , vn−1] = [f 0 v0 , . . . , f (n−1) vn−1]

The zip skeleton is a generalisation of the map skeleton
to two distributed arrays. Its informal functional semantics
could be written:

zip f [u0 , . . . , un−1] [v0 , . . . , vn−1]
= [f u0 v0 , . . . , f un−1 vn−1]

As the map skeleton, the distribution is preserved, but
the distribution before partitioning is not. There is also a
problem that may occur with the zip skeleton. In functional
programming, this zip function exists and can be applied to
two lists that have different sizes. The results will have the
length of the smallest input list. However in a distributed
settings, this is not so easy as even same global sizes may
correspond to unaligned distributed arrays. Therefore to have
a safe library, we check that the two distributed arrays have
the same distribution: if not, an exception, corresponding to
a programming error, is raised. This is not a limitation as
we provide a balance skeleton. This check does not imply
any communication as the distributions are stored in the field
distribution.

The balance skeleton changes the distribution of a dis-
tributed array to an even distribution: communications are
required if the distributed array is not already evenly dis-
tributed. It is to be noticed that partitioned arrays are actually
evenly distributed (there is one element per processor).
Therefore the balance skeleton preserves the distribution
before partitioning.

3.4 The shift skeleton
The shift skeleton is used for communications. It requires

an offset d, a replacement function f , and a distributed array
[v0 , . . . , vn−1]. Its informal functional semantics follows

shift d f [v0 , . . . , vn−1]
= [f(0); . . . ; f(d− 1); v0; . . . ; vn−d−1] if d > 0

shift d f [v0 , . . . , vn−1]
= [vd; . . . ; vn−1; f(n− d− 1); . . . ; f(n− 1)] if d < 0

The shift skeleton preserves distribution, but it does not
preserve distribution before partitioning: the sizes of the
values generated by the replacement function are known only
locally to the processor where they are produced.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 523

No communications are needed if d is 0 or |d| is greater
than the global size of the distributed array. In the first case
shift is identity, in the second case the application shift d f
is equivalent to mapIndex f ′ where f ′ i x = f i.

If the shift skeleton is easy to write when the distribution
is even, it is a bit more complicated when the distribution
can be any distribution, and there are “holes” in the distri-
bution. We will illustrate the different steps on the following
distributed array for a shift with 3 as offset:

val da : string distArray =
{ data = < [|"A"; "B"|], [|"C"; "D"|], [||], [|"E"; "F"; "G"|] >;

startIndex = <0, 2, −1, 4>; globalSize = 7;
distribution = [|2; 2; 0; 3|]; partitioned = false }

It proceeds has follows.
At each processor, we compute the sub-array of elements

to be communicated (shifted) to other processors, informa-
tion about distribution is necessary to do so. As at each
processor we have the starting index of the local array in
the parallel vector startIndex, we can compute locally the
global destination index of each element to be shifted to
other processors: it is the current global index plus the
offset. Then for each element of this sub-array, we should
compute the destination processor that corresponds to this
global destination index: (a) from the distribution array, we
compute the prefix sum of the distribution (the start indices)
where the processors with no elements have been filtered out,
each value being paired with its corresponding processor.
From example, if the distribution is the one of da, we obtain:
[|(0, 0); (1, 2); (3, 4)|] ; (b) then using a binary search on this
array it is possible to obtain the destination processor (first
component of the pair) for each global destination index
in time O(log2 p) ; (c) the values to be sent to the same
processor are packed together.

With the distributed array da above, we obtain the follow-
ing parallel vector:

− : (int * string array) list Bsml.par =
< [(1, [|"A"|]); (3, [|"B"|])], [(3, [|"C"; "D"|])], [], [] >

We use a variant of the BSML put primitive, that takes
as input a parallel vector of lists of pairs (destination,
message) instead of a parallel vector of functions, for the
communications. At the end of this step we obtain the
following parallel vector:

string array Bsml.par = < [||], [|"A"|], [||], [|"B"; "C"; "D"|] >

Finally we perform a local shift whose replacement func-
tion either calls the global shift replacement function or
returns elements communicated in the previous step. In
the example, the global replacement function is called on
processor 0 and 1 (for the first element), and the elements
are taken from the previous parallel vector of arrays for
processor 1 (second element), and processor 3 (for the 3
last elements):

shift 3 (fun i→ "Nothing") da;;

− : string distArray =
{ data = < [|"Nothing"; "Nothing"|], [|"Nothing"; "A"|],

[||], [|"B"; "C"; "D"|]>; ... }

3.5 The permute skeleton
The permute skeleton takes as input a bijective function

from 0 to the global size of its distributed array argument.
Its informal functional semantics could be written as:

permute f [v0 , . . . , vn−1] = [vf−1(0), . . . , vf−1(n−1)]

The permute skeleton is based on the same auxiliary
functions than the shift skeleton. For each element of the
distributed array, we compute: first its global destination
index, obtained by applying the bijection f to the global
index, then we compute the destination processor according
to this global destination index, in the same way we do for
the shift skeleton.

One concern with the permute skeleton is to check
whether the function f is bijective or not. One possibility is to
perform the check independently on each processor, applying
the function to all possible indices: this would requires
O(n) operations at each processor, compared to the O(np)
applications (if the distributed array is evenly distributed) of
f needed to compute the destination processor. This may be
quite costly if p � n. Moreover, we have written the code
in such a way that if f is not bijective, no run-time error will
occur but the global size of the obtained distributed array
will not be the same than the original size. Therefore we
can perform a total exchange of the local sizes, then compute
the global size and compare it to the initial global size to
check if the function was actually a bijection (and raise an
exception to indicate the programming error if there is one).
The additional cost of this check is O((p − 1) × g + L).
Thus we could dynamically determine, depending on the
BSP parameters of the machine, if the first version of the
check is more expensive or not than the second version of
the check, and choose accordingly the best version. In the
current prototype only the second version is performed.

Unlike shift, it is possible with the permute skeleton to
update both the actual distribution and the distribution before
partitioning without additional communications.

4. Examples and experiments
4.1 Heat Equation 1D

The diffusion of heat in a bar of metal is governed by the
following discretised equation:

h(x, t+dt) = γ
(
h(x+dx, t)+h(x−dx, t)−2h(x, t)

)
+h(x, t)

h(0, t) = l
h(1, t) = r

where h(x, t) is the temperature in the bar at position x at
time t, l and r are the temperatures outside the bar (boundary

524 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

 0

 2

 4

 6

 8

 10

 12

 14

 8 16 24 32

Ti
m

e
(s

)

Cores

10e6 elements, 10e3 iterations

Prototype
OSL

BSML

Fig. 3: Heat Diffusion Simulation

conditions), γ = κdt
dx2 where κ is the heat diffusivity in the

metal, and dx and dt are respectively the space and time
steps of the discretisation.

If the temperature in the bar is represented by a distributed
array of floating point numbers, the update of the tempera-
ture is performed by the following function:

(* step: float→ float→ float→ float→ float→
float distArray→ float distArray *)

let step kappa dt dx l r bar =
let barR = shift 1 (fun _→ l) bar
and barL = shift (−1) (fun _→ r) bar in
zip

(fun vI uI→ (kappa *. dt)/.(dx*.dx)*.(vI−.2.*.uI) +. uI)
(zip (+.) barR barL)
bar

Simulating the diffusion of heat in the bar of metal is then
an iterative application of the function step.

We have run three different versions of a one dimensional
heat diffusion simulation:
• the above version written using the proposed prototype

library,
• a version written directly using BSML primitives, with-

out using the proposed library: the programming style is
a bit lower level than the previous one and we choose
the most efficient version of the programs presented
in [8],

• a version written in C++ using the OSL library [6],
whose code uses mostly the same skeletons than the
first version.

The experiments were conducted on the SPEED parallel
machine of the university of Orléans: it is a shared-memory
machine with 4 AMD Opteron 6174 processors, each being
a 12 cores processor. We set 106 discretisation points for
the bar of metal, and run 103 time steps. The timings are
presented in figure 3.

The OSL and BSML versions perform almost the same,
the BSML version being less efficient with respect to the
OSL version as the number of processors increases. This is
due to the fact that the communication overhead is higher
with BSML. The version implemented using the prototype
BSML implementation of OSL is less efficient: this is due
to the fact that quite many intermediate arrays are created.
However the difference is less than one order of magnitude:

it is still reasonable to experiment parallel runs with this
prototype. In a real implementation of the new OSL library
these intermediate copies will be removed using the C++
expression templates optimisation technique.

4.2 Sorting
To show the expressiveness of our library, we implement

a (bulk synchronous) parallel regular sampling sort [13].
We assume that there are at least bsp_p−1 elements on
each processor, that the array is evenly distributed among
the processors, and that the elements are distinct. It is
not a limitation since elements could be made distinct by
transforming each element into a pair composed of the index
of the element in the distributed array and the initial value.
Moreover the distributed array can be evenly distributed
using the balance skeleton.

The comparison functions we use in this program are such
that applied to two values v1 and v2, the result is negative
if v1 is smaller than v2, is zero if the values are equal, and
positive otherwise.

If we assume to have the following sequential functions,
the parallel regular sampling sort can be implemented as
shown in figure 4:
• sortArray: (’a→ ’a→ int)→ ’a array→ ’a array takes a

comparison function and returns a sorted version of
the array argument,

• getSamples: ’a array→ ’a array returns bsp_p−1 sam-
ples, regularly taken from its array argument,

• mergeArrays: (’a→ ’a→ int)→ ’a array array→ ’a array
takes a comparison function, and an array of sorted
arrays, and it returns the sorted array obtained by
merging the input arrays,

• cut: (’a→ ’a→ int)→ ’a array→ ’a array→ ’a array array
cuts the first array argument into pieces according to
the samples of the second array argument: there is one
more piece than the number of samples

• compose is usual function composition.

5. Related work
Muesli [14] and SkeTo [15] are two libraries of algorith-

mic skeletons for C++. Both have skeletons on distributed
arrays but the sets of skeletons differ from the one presented
here: permute is not available in SkeTo, shift is not available
in Muesli. Our getPartition, flatten and balance skeletons,
combined with more classical skeletons offer an expressivity
that can not be attained with Muesli or SkeTo that are limited
to evenly distributed arrays. However both libraries also offer
skeletons for other data structures than distributed arrays
such as dense or sparse matrices.

[16], [17] also use BSML to implement skeletons, but with
a different set and a different encoding of distributed arrays
that do not contain a local and uniform representation of
the distribution. As Muesli and SkeTo, the set of skeletons
provided restrict the distribution of the distributed arrays that

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 525

(* sort: (’a→ ’a→ int)→ ’a distArray→ ’a distArray *)
let sort cmp da =

let partitions = map (sortArray cmp) (getPartition da) in
let fstSamples = map getSamples partitions in
let sndSamples = bcast 0 (map (compose getSamples (mergeArrays cmp))(getPartition (gather 0 fstSamples))) in
let pieces = flatten (zip (cut cmp) partitions sndSamples) in
flatten (map (mergeArrays cmp) (getPartition (permute (fun i→ (i/bsp_p)+bsp_p*(i mod bsp_p)) pieces)))

Fig. 4: Regular Sampling Sort

can be built. By contrast we allow the construction of a larger
variety of distributed arrays while preserving the safety of
the library. The parallel functional programming language
Eden [18] is also often used to implement algorithmic skele-
tons [19], [20]. Its model of parallelism is quite different
from the parallelism offered by BSML.

6. Conclusion and future work
In this paper we have presented a prototype implemen-

tation of a skeleton library written with the structured
parallel functional programming language BSML. As it is
possible to proof the correctness of BSML programs within
the Coq proof assistant, we could proof the correctness
of such a library, the code of the skeletons being almost
the same in Coq and BSML. Although implementing a
library with such a functional language makes possible
the reuse for formal semantics development, there are also
parallel implementations of BSML that allow the parallel
execution of programs written with this skeleton library.
The experiments we performed show the limits in term
of efficiency, compared to a direct implementation of the
examples in BSML, or in a C++ skeleton library.

Future work include the design of a formal execution
model and the implementation of new version of the Orléans
Skeleton Library for C++, making it safer and more efficient.
This model and implementation will both benefit from the
lessons learnt while building the prototype.

Acknowledgements
This work is supported by the Agence National de la

Recherche through the project “Parallel Programming Devel-
opment with Algorithmic Skeletons” (PaPDAS). The SPEED
machine was funded by the Conseil Général du Loiret.
Noman Javed and Julien Tesson are respectively supported
by grants from the Higher Education Commission of Pak-
istan and from the French Ministry of Research.

References
[1] M. Cole, Algorithmic Skeletons: Structured Management

of Parallel Computation. MIT Press, 1989, available at
http://homepages.inf.ed.ac.uk/mic/Pubs.

[2] S. Pelagatti, Structured Development of Parallel Programs. Taylor
& Francis, 1998.

[3] F. A. Rabhi and S. Gorlatch, Eds., Patterns and Skeletons for Parallel
and Distributed Computing. Springer, 2003.

[4] L. G. Valiant, “A bridging model for parallel computation,” Comm.
of the ACM, vol. 33, no. 8, p. 103, 1990.

[5] W. F. McColl, “Scalability, portability and predictability: The BSP
approach to parallel programming,” Future Generation Computer
Systems, vol. 12, pp. 265–272, 1996.

[6] N. Javed and F. Loulergue, “OSL: Optimized Bulk Synchronous Par-
allel Skeletons on Distributed Arrays,” in 8th international Conference
on Advanced Parallel Processing Technologies (APPT’09), ser. LNCS
5737, Y. Don, R. Gruber, and J. Joller, Eds. Springer, 2009, pp. 436–
451.

[7] F. Loulergue, F. Gava, and D. Billiet, “Bulk Synchronous Parallel ML:
Modular Implementation and Performance Prediction,” in Interna-
tional Conference on Computational Science (ICCS), ser. LNCS 3515,
V. S. Sunderam, G. D. van Albada, P. M. A. Sloot, and J. Dongarra,
Eds. Springer, 2005, pp. 1046–1054.

[8] W. Bousdira, F. Gava, L. Gesbert, F. Loulergue, and G. Petiot,
“Functional Parallel Programming with Revised Bulk Synchronous
Parallel ML,” in First International Conference on Networking and
Computing (ICNC 2010), 2nd International Workshop on Parallel
and Distributed Algorithms and Applications (PDAA), K. Nakano,
Ed. IEEE Computer Society, 2010, pp. 191–196.

[9] The BSML Development Team, “The BSML Library version 0.5,”
http://traclifo.univ-orleans.fr/BSML, august 2010.

[10] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon,
“The Objective Caml System release 3.12,” http://caml.inria.fr, 2010.

[11] The Coq Development Team, “The Coq Proof Assistant,”
http://coq.inria.fr.

[12] Y. Bertot and P. Castéran, Interactive Theorem Proving and Program
Development. Springer, 2004.

[13] H. Shi and J. Schaeffer, “Parallel sorting by regular sampling,” Journal
of Parallel and Distributed Computing, vol. 14, pp. 361–372, 1992.

[14] P. Ciechanowicz and H. Kuchen, “Enhancing Muesli’s Data Parallel
Skeletons for Multi-core Computer Architectures,” in IEEE Interna-
tional Conference on High Performance Computing and Communica-
tions (HPCC), 2010, pp. 108–113.

[15] K. Matsuzaki and K. Emoto, “Lessons from Implementing the
BiCGStab Method with SkeTo Library,” in 4th workshop on High-
Level Parallel Programming and Applications (HLPP). ACM, 2010.

[16] F. Gava and I. Garnier, “New implementation of a BSP composi-
tion primitive with application to the implementation of algorithmic
skeletons,” in 23rd IEEE International Symposium on Parallel and
Distributed Processing (IPDPS 2009), APDCM workshop. IEEE,
2009, pp. 1–8.

[17] F. Gava and S. Tan, “Implémentation et prédiction des performances
de squelettes data-parallèles en utilisant un langage BSP de haut
niveau,” in Journées Francophones des Langages Applicatifs (JFLA),
ser. Studia Informatica Universalis, S. Conchon and A. Mahboubi,
Eds. Hermann, 2011, pp. 39–65.

[18] R. Loogen, Y. Ortega-Mallen, and R. Pena-Mari, “Parallel functional
programming in eden,” Journal of Functional Programming, vol. 3,
no. 15, pp. 431–475, 2005.

[19] J. Berthold, M. Dieterle, O. Lobachev, and R. Loogen, “Parallel FFT
with Eden Skeletons,” in Parallel Computing Technologies, ser. LNCS
5698, V. Malyshkin, Ed. Springer, 2009, pp. 73–83.

[20] M. Dieterle, J. Berthold, and R. Loogen, “A Skeleton for Distributed
Work Pools in Eden,” in 10th International Symposium on Functional
and Logic Programming, ser. LNCS 6009, M. Blume, N. Kobayashi,
and G. Vidal, Eds. Springer, 2010, pp. 337–353.

526 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

A Parallel Architecture Using HDF for Storing DICOM Medical Images on
Distributed File Systems

Tiago Steinmetz Soares
Informatics and Statistic Department
Federal University of Santa Catarina

Florianpolis, Brazil
Email: steinmetz@telemedicina.inf.ufsc.br

Douglas D.J. de Macedo
Post-Graduate Program of Knowledge Engineering and Management

Federal University of Santa Catarina
Florianpolis, Brazil
macedo@inf.ufsc.br

Michael A. Bauer
Department of Computer Science

University of Western Ontario, UWO
London, Canada
bauer@uwo.ca

M.A.R Dantas
Informatics and Statistic Department
Federal University of Santa Catarina

Florianpolis, Brazil
mario@inf.ufsc.br

Abstract—The Hierarchical Data Format (HDF) is an inter-
esting approach for developing scientific applications where a
large amount of data must be stored and accessed. A tele-
medicine project underway in the State of Santa Catarina
(SC), in Brazil, has developed a server called the CyclopsDCM-
Server, which adopts the HDF for the manipulation of medical
images (DICOM). This paper proposes a new approach for
the parallel implementation of I/O operations for the medical
images stored on this server. This effort was based upon the
MPI paradigm that is supported by the version 5 of the HDF.
Early experiments indicate that the proposed approach can
achieve very good performance when compared to the standard
HDF implemented in the CyclopsDCM-Server.

Keywords-Parallel I/O; HDF5; DICOM; Telemedicine;
PVFS; MPI;

I. INTRODUCTION
The success of an interactive telemedicine prototype ex-

periment veried in the 1960s [1], between the Massachusetts
General Hospital and a medical station at Bostons Logan
International Airport, led to a dissemination of the idea
of telemedicine throughout several countries. The term
telemedicine is commonly used to refer to the remote
delivery of health care, basically providing specialized health
care, medical diagnosis and monitoring through telecom-
munications technology to people who cannot access to a
medical system directly [2]. However, the capabilities of the
equipment must be transmitted at least equal in quality to
the information transmitted in the traditional setting. Indeed,
the capabilities of the technology are expanding rapidly,
becoming faster, more efficient and cheaper, enabling lower
costs for the implementation and growth of telemedicine
systems.

Researchers from the Telemedicine Laboratory at
UFSC [3], adopting the telemedicine approach, created
a telemedicine network project called Rede Catarinense

de Telemedicina (RCTM). This project aims to provide
connections among different hospitals and different cities
within the State of Santa Catarina to provide access to
exams, electrocardiograms (EKG), and imgaes from mag-
netic resonance, computed tomography, X-ray angiography
and nuclear medicine [4]. All information acquired of a
patient is sent online as DICOM images (Digital Image
COmmunications in Medicine) to a developed PACS (Picture
Archiving and Communication Systems), the CyclopsDCM-
Server [5] and could be retrieved anytime where the system
is deployed.

CyclopsDCMServer is a DICOM medical image facility
that was conceived by the Cyclops Group [6] to provide DI-
COM image storage and wide area network (WAN) access.
The CyclopsDCMServer stores all information in a ordinary
data base PostgresSQL and can handle around 8 terabytes
[4]. Summarizing, this server provides segmentation service
for the incoming information, processing and storing the
images in a centralized database.

A new DCMServer architecture was proposed to circum-
vent some of the issues of ordinary relational databases and
it has been improve since then. This architecture has two
basic applications, PVFS and HDF5. PVFS (Parallel virtual
le system) is a distributed le systems designed to scale to
petabytes of storage and provide high access rates [7]. THe
Hierarchical Data Format 5 (HDF5) is a data model for high
volume and complex data.

This paper is organized as follows. We start by describing
DICOM images (Section 2) and some HDF5 definitions
(Section 3), followed by some background about from pre-
vious work done on the system in Section 4; this describes
several important aspects of the project. In the Section 5 we
present some related work and in Section 6 the proposed
architecture. In Section 7 we present some experimental

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 527

results, with subsections related to the environment and
experiments. Finally in the Section 8 we present the con-
clusions and future work.

II. DICOM IMAGES

The Digital Imaging and Communications in Medicine
standard is one of the most universal and fundamental
standards in digital medical imaging. The DICOM standard
was defined in 1992, and was the third version of the ACR-
NEMA Standards Publication PS3. Before this standard was
established, each manufacture created their own solution for
visualization, storage and impression of digital images. The
rst ACR-NEMA standard was conceived in 1983 by the
American College of Radiology, with main principle to make
digital medical images independent of device manufactures,
creating a unique standard for medical devices and facilitat-
ing the expansion of digital images [8].

Taking many important features from earlier and other
standards, the early versions of focused on the improvement
and correction of some issues, and where those publications
provided specifications related to hardware interfaces, it
introduced a set of data format and commands for software
packages. Completed in September 1992, the third version
came with major revision, supplying increasing variety of
digital devices and their communications protocols. This
version was called DICOM 3.0, as it followed two earlier
ACR-NEMA editions; the standard is reviewed annually and
updated with new supplements if necessary [8].

Another important subject relative to DICOM is the Pic-
ture Archiving and Communication Systems. PACS consists
in hardware and software medical systems designed to run
digital medical imaging and is supported by major medical
imaging equipment manufacturers. It embraces digital image
acquisition devices, digital image archives and workstations.

The CyclopsDCMServer is both a digital image archive
system and workstation, which was develop by the Cyclops
Group. Created to work with PACS equipment as hospitals
and radiology clinics, the purpose of the server is to store
and retrieve DICOM index les from an ordinary data base
managed by a relational DBMS, such as PostgreSQL. All
communication between the server and medical equipment
is performed through TCP/IP.

Nowdays, the server supports eight of the several DI-
COM modalities, namely: computed radiography (CR);
computed tomography (CT); magnetic resonance (MR);
nuclear medicine (NM); ultrasound (US); X-ray angiogra-
phy (XA); electrocardiograms (DICOM waveform); DICOM
structured reporting (SR) [5].

III. HIERARCHICAL DATA FORMAT (HDF)

Developed by the HDF group at the University of Illinois,
initially in the 90s, the goal of HDF is to support large
scientific data; the current version is HDF5. One of the
main feature of HDF5 is that files can contain binary data as

multi-dimensional arrays and allow direct access to parts of
the file without first parsing the entire contents [9]. HDF5
is designed for storing large scientific data, including high
performance data manipulation supporting random access,
number encoding in native format, data compression, indi-
vidual data set encryption, and storage strategies for parallel
I/O and multidimensional data structures.

There are two essential structures in HDF5 which forms
the base for the library: dataset and group. Dataset is a multi-
dimensional array of datatype; HDF stores and organize all
kinds of data from atomic to composed types, similar to the
C struct construct. Other special array operations, such as
chunks, compression and extendability, are available through
the HDF library and can be applied to a dataset. The group
is similar to UNIX directories, though cycles are allowed.
Every file is started with a root group, represented as /, and
could be followed by the name of another group or a dataset.

An important feature of HDF5 is support for standard
parallel I/O interfaces. The Parallel Hierarchical Data For-
mat 5 (Parallel HDF5) required MPI/IO interface through
MPICH ROMIO [10] or a vendors MPI-IO, but it does
not offer compatibility with shared memory programming.
Implemented to get better performance in I/O procedures,
the Parallel HDF5 uses distributed le system, such as Parallel
Virtual File System (PVFS), Lustre, GPFS and specially
configured NFS.

The idea of Parallel HDF5 is to make it easy for users to
use the library and provide compatibility with serial HDF5
file. One approach is to read and write data by hyperslab [9],
i.e., a multidimensional array that can be spread by rows,
columns, patterns and chunks, and a hyperslab selection
could be a logically contiguous collection of points, or it
can be a regular pattern of points or blocks, depending on
the type used. Other important structure is the dataspace.
Through a dataspace required components of dataset or even
a attributes are defined, as well as array ranks, sizes and
types. The difference between the types of hyperslabs is the
way that each process will access data of the datasets.

IV. BACKGROUND

One project that has been underway at the Telemedicina
Laboratory at UFSC since 2008 is to explore new architec-
tures for DICOM images using distributed file systems. The
purpose of this research is to address issues of telemedicine
environments based on ordinary database systems. These
include addressing issues such as scalability, information
distribution, ability to use high performance system tech-
niques and operational costs. Among some of the procedures
used to avoid the scalability issue, the project design was
to use high performance distributed systems, like clusters
or grids [4]. The first approach taken apart from the usual
system was to store all information hierarchically, namely,
organize and store in HDF5 data format. The second step
was to use PVFS as a distributed file system.

528 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Since the DICOM server normally supports drivers only
for standard DBMSs, it was necessary to create some-
thing similar to these drivers. The HDF5 Wrapper Library
(H5WL) was created for this purpose. As the name suggests,
this library contains a wrapper object which is used to create,
locate, collect and store information related to DICOM
images using HDF5 files. When the CyclopsDCMServer
requires a creation of new HDF5 file for H5WL, this is
created using PVFS.

Two important entities were introduced to help reading
data. The first entity consists of information related to the
image, such as name of the patient, dimension of the image
and other characteristics. The second is the image entity
which represents the binary information created by PACS
equipment (e.g., computed tomography (CT) or magnetic
resonance (MR) images.

Figure 1. Hierarchical data sctrucuted [4]

Another feature is how the hierarchical data structured is
organized. An example of the structure is shown in Figure 1,
where the data is organized around six layers: root, hospital,
patient, study, series and image.

When a client sends an image to the CyclopsDCMServer,
the image is captured and the hierarchy is created through
calls to the H5WL methods, creating groups that provide
information that is used to identify the image inside the file.
The biggest component of a DICOM file is the image, which
is the leaf of the structure. Basically, the structure image
is a compressed image (JPEG) [8] and is responsible for
representing the DICOM image.

This architecture, proposed by Macedo [1], has virtues
and weakness. Based on 25 experiences with the system, it
showed an average improvement in storage of about 16%
when compared with the usual system using DBMSs.

However, in term of retrieval operations, there was a drop
in performance, with average decrease in performance of
around 21%. This was due to mechanisms used to provide

similar behavior to that of standard DBMSs when retrieving
information. This paper addresses this problem by proposing
an extension to the architecture to take more advantage of a
parallel environment. This architecture is detailed in Section
VI.

V. RELATED WORK

There is little published work in the telemedicine field
which uses HDF5 to store images, as most medical image
servers come with drivers only for ordinary data bases. The
three works below are similar to the current work in that
they use parallel I/O as a solution for I/O bottlenecks access
for large amounts of stored data.

The research work presented in Nikhil Laghave [11], is
very similar to our work. This work is focused on the use of
a parallel I/O library for scalability issues involving fermion
dynamics for nuclear structure (MFDn). This work used the
HDF5 parallel version for parallel I/O, testing with collective
and independent models. As result, there was a gain in the
efficiency of input/output of large datasets and the cost of
using parallel I/O was less than sequential I/O for sufficiently
large datasets.

In particle-based accelerator simulation groups, it is possi-
ble to find some HDF5 work. The work of A. Adelmann [12]
focused on using parallel I/O for particle simulations which
involved vast quantities of data and dimensional arrays.
He used parallel I/O performance for MPI code as well
parallel HDF5. He compared read and write performance
in simulations between Parallel HDF5, mpi-io and one file
per process. HDF5 showed good performance in writing,
though mpi-io showed better results.

H. Yu [13] presented interesting work, though he did not
use parallel HDF as solution for his problem, but rather
a similar paradigm. His works dealt with large earthquake
simulations which require terabytes of storage space and
encountered I/O bottleneck issues. He developed his own
parallel I/O strategies through MPI I/O to address his needs
and was able to remove the I/O bottleneck and also hide
pre-processing costs.

VI. PARALLEL ARCHITECTURE

One of the great features available in HDF5 and was
not considered in Macedos approach, is the support for
MPI communication for parallel processing. As a possible
solution to the bottleneck of retrieving data, we provide
additional features using the Parallel HDF5 library. The
main propose is to get better performance using parallel
data access to HDF files stored in the PVFS distributed
file system. The Parallel HDF5 library requires a parallel
MPI/IO interface and, when working with MPI, it is neces-
sary to design it to be used in a cluster environment. Another
important requisite is the necessity to use the mpirun shell
script to run any MPI application, which attempts to hide the
differences in starting jobs for various devices from the user

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 529

[14]. For this, it is necessary to create a additional procedure
to work with the CyclopsDCMServer. This procedure should
be called every time when is required to retrieve or store
some medical information.

It is noteworthy that Parallel HDF5 has support for PVFS
through MPICH ROMIO. In this case, our first task is to
build the environment using MPICH2 [12] with ROMIO for
PVFS. With the environment built, the second task is to
create the application which it will be responsible for reading
and writing a dataset into a file.

Figure 2 illustrates how the architecture works. The func-
tionality, basically, is the same as described in the previous
section, the difference is inside of the H5WL. Instead of
having the H5WL responsible for reading and writing the
binary information created by PACS, it will be treated as
a new parallel application. The parallel application will be
initiated by H5WL calling mpirun shell script.

Independent of a read or write function, when H5WL
calls the MPI application, all communication between them
will be made by socket connections. The communication is
done by the master process (represented by MPI process
zero) and H5WL for passing function parameters like the
location that is the target of an operation (group path),
the image buffer and the number of MPI processes. The
difference between the functions is the way that the server
and MPI applications will communicate. For write functions,
the H5WL will first receive the DICOM file, create a new
hierarchy of the image based on DICOM file layers (Figure
1), get the path location for new image (JPEG image) and
then call mpirun procedure to start the MPI application.
The MPI application has functionally to read and write a
buffer, without being concerned whether the image exists
or not, as that is the responsibility of H5WL. The master
process will first communicate with H5WL to retrieve the
function to perform, get the location (group) of image in the
HDF5 structure and the arguments for the job. If it is a write
function, it will need the stream of images to be stored. In
case of a read function, the application will only need the
path group as parameters, and it will return to server all
buffers read from the HDF file.

Independent of the job, the master process has to define
the access properties, model and size for each process. The
Parallel HDF5 library has available two types of properties
(collective and independent data access) and four hyperslab
model (Contiguous Hyperslab, Regularly Spaced Data, Pat-
tern and Chunk) [9]. Then the master node has to distribute
the memory buffer (write function) or file location to each
process. Finally, once the jobs have executed, the main
process will return to the wrapper the status of reading or
writing the buffer.

VII. EXPERIMENTAL RESULTS

Our experiments are based on the Parallel HDF5 archi-
tecture, adapted to use PVFS, and sequential CyclopsD-

CMServe. The Parallel HDF5 properties used for read and
write on the MPI application is: independent data access
model and Contiguous Hyperlasb, which entail distributing
the buffer by rows as show in the Figure 3.

It is important to note that our results do not take into
consideration external factors, like computers using the same
network

Figure 3. Contiguous Hyperlasb

A. Environment

The environment used for the experiments consist of a
four node cluster, as specified in Table 1. The cluster is
non-dedicated and is used just for experiments and belongs
to Telemedicine Laboratory. The connection network is 100
Mbs Ethernet. The operating system installed on all nodes
is CentOS with kernel 2.6.18. PVFS is used on only one
metadata node. Each has a PVFS client for access to the
PVFS file system and each node is also a MPI executioner
and has an MPI application in its own file system for access
to HDF file found in Parallel Virtual File System.

Name CPU Memory HD
Node1 AMD athlon x2 2.1 GHz 2 Gb 20 Gb
Node2 AMD athlon x2 2.8 GHz 3 Gb 20 Gb
Node3 Intel PentiumR Dual 1.80 GHz 1 Gb 20 Gb
Node4 Intel Core i5 3.2 GHz 3 Gb 20 Gb

Table I
ENVIRONMENT

B. Experiments

Experiments were conducted with CyclopsDCMServer
sequential and parallel architecture. The experiments involve
only comparison of writing a new DICOM file in HDF
file; future comparisons will compare file retrieval. This
experiment measures the time spent write an image buffer
into a HDF data set and was done 25 times with different
DICOM files for each test. The selection of the files used
was random, but the same files were used for the parallel
process. The time collected is the time required to write
an image, ignoring other information, like patient name,

530 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Figure 2. The architecture proposed

hospital and etc. The reason that this measure was chosen
is because an image represents most of a DICOM file, i.e.,
could be over ninety percent and is normally nearly 50 Mb.
These images were created by CT equipment that generates
monochromatic images with 512 512 pixels with 16 bits
per pixel.

Figure 4. Contiguous Hyperlasb

Figure 4 compares the performance between serial Cy-
closDCMServer and our integrated parallel architecture.
Our architecture shows better performance than the serial
with the average writing time for parallel method being
0.0107176 seconds, while the average writing time for the
serial was 0.01539956 seconds an improvement of around
30 percent. The minimal elapsed times were 0.013812s and
0.009815s for serial and parallel respectively, while the
maximal elapsed times were 0.019435s and 0.012735s for
serial and parallel.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, was introduced an extension to the archi-
tecture for the CyclopsDCMServer that was introduced by
Macedo et al. [1]. The focus of this paper was to introduce
a new parallel architecture designed to reduce the bottleneck
I/O issues in the serial architecture. Experiments involving
writing compared the serial and parallel I/O in the same
environment and show that the parallel architecture resulted
in a thirty percent improvement.

As future work, there is a need to compare the retrieval
of a DICOM image from an HDF file using the parallel
architecture. It is not clear how this will perform since this
uses H5WL which will not perform as well as a standard
DBMS.

Another important experiment is to measure the perfor-
mance of the complete operations of receiving a DICOM
file, wrapping and storing it, and the reverse operation of
retrieving and unwrapping it. Others future work includes
analyzing the significance of the number of MPI nodes
on reading and writing and to measure the communication
between H5WL and master mpi node.

As seen in the Section 6, many researchers that have
similar issues have used parellel I/O to avoid bottleneck I/O
problems and have obtained similar results. Given this and
considering the features available in HDF, one can expect
to see gains in other future work involving the retrieval of
stored information.

REFERENCES

[1] D. de Macedo, H. Perantunes, L. Maia, E. Comunello, A. von
Wangenheim, and M. Dantas, “An interoperability approach
based on asynchronous replication among distributed internet
databases,” in Computers and Communications, 2008. ISCC
2008. IEEE Symposium on, 2008, pp. 658 –663.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 531

[2] W. Hersh, U. S. A. for Healthcare Research, Quality, and
O. H. S. U. E. based Practice Center, Telemedicine for the
Medicare population: Update. Citeseer, 2006.

[3] “Laboratorio de telemedicina,” Access:, January 2011.
[Online]. Available: http://www.telemedicina.ufsc.br

[4] D. De Macedo, A. Von Wangenheim, M. Dantas, and H. Per-
antunes, “An architecture for dicom medical images storage
and retrieval adopting distributed file systems,” International
Journal of High Performance Systems Architecture, vol. 2,
no. 2, pp. 99–106, 2009.

[5] “Cyclops project,” Available at:http://www.cyclops.ufsc.br
. Access: 2011., January 2011. [Online]. Available:
http://www.cyclops.ufsc.br

[6] “Cyclops group,” Access:, December 2011. [Online].
Available: http://cyclops.telemedicina.ufsc.br

[7] “Pvfs,” Access:, January 2011. [Online]. Available:
http://www.pvfs.org

[8] O. Pianykh, Digital Imaging and Communications in
Medicine (DICOM): A practical introduction and survival
guide. Springer Verlag, 2008.

[9] “Hdfgroup,” Available at:http://www.hdfgroup.org . Ac-
cess: 2011., January 2011. [Online]. Available:
http://www.hdfgroup.org

[10] “Romio,” Access:, March 2011. [Online]. Available:
http://www.mcs.anl.gov/research/projects/romio/

[11] N. Laghave, M. Sosonkina, P. Maris, and J. Vary, “Benefits
of parallel i/o in ab initio nuclear physics calculations,”
Computational Science–ICCS 2009, pp. 84–93, 2009.

[12] A. Adelmann, R. Ryne, J. Shalf, and C. Siegerist, “H5part: A
portable high performance parallel data interface for particle
simulations,” in Particle Accelerator Conference, 2005. PAC
2005. Proceedings of the. IEEE, 2006, pp. 4129–4131.

[13] H. Yu, K. Ma, and J. Welling, “A parallel visualization
pipeline for terascale earthquake simulations,” in Supercom-
puting, 2004. Proceedings of the ACM/IEEE SC2004 Confer-
ence. IEEE, 2005, p. 49.

[14] “Mpirun,” Access:, March 2011. [Online]. Available:
http://www.mcs.anl.gov/research/projects/mpi/www/www1/mpirun.html

532 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Dogleg Channel Routing with Parallel Mixed Integer

Linear Programming Solvers

I-Lun Tseng
1
, Yung-Wei Kao

1
, Cheng-Yuan Chang

1
, and Adam Postula

2

1
Department of Computer Science and Engineering, Yuan Ze University, Taiwan

2
School of Information Technology and Electrical Engineering, The University of Queensland, Australia

Abstract - Channel routing is a type of problems arising in

the detailed routing phase of VLSI physical design automation

as well as in the design of printed circuit boards (PCBs). It

has been known that channel routing problems can be

formulated as constraint programming (CP) problems and

thus CP solvers can be used to find solutions. In this article,

we present a mixed integer linear programming (MILP)

formulation to gridded dogleg channel routing problems. As a

result, parallel MILP solvers, which have the ability to exploit

the computational power of multi-core processors, can be

used to find solutions. Experimental results show that high

degrees of scalability can be achieved. Owing to the

properties of MILP problems, it is possible to further shorten

the execution time if a computer containing more processor

cores is available.

Keywords: Channel Routing, VLSI Physical Design

Automation, Mixed Integer Linear Programming, Parallel

Computing
1

1 Introduction

Channel routing is a type of problems arising in the

detailed routing phase of VLSI physical design automation [2]

as well as in the design of printed circuit boards (PCBs) [3].

Although channel routing has not been an active research field

in recent years, the use of mixed integer linear programming

(MILP) technologies in solving this type of problems has not

been completely investigated. Moreover, gaining full

understanding of these fundamental problems is essential to

the research and development of other routing algorithms [4].

In order to solve a channel routing problem, many routing

algorithms generate horizontal and/or vertical constraints for

the problem [5, 6]. For a channel routing problem containing

cyclic vertical constraints, doglegs are required in order to

complete the routing [6]. Since dogleg channel routing

problems are NP-complete [7], many heuristic algorithms

have been developed and proposed [6, 8, 9]. Unfortunately,

those heuristic algorithms are not guaranteed to generate

optimal solutions.

Instead of developing heuristic routing algorithms, we

transform a gridded dogleg channel routing problem into an

1
 This research was supported in part by the National Science Council

of Taiwan under grants NSC-98-2221-E-155-053 and NSC-99-2221-E-

155-088.

MILP problem. Consequently, an MILP solver can be used to

find optimal solutions of the transformed problem. As a result,

the number of tracks can be minimized. With this minimum

number of tracks, furthermore, the number of vias can also be

minimized.

A channel routing problem can be considered as a multi-

objective optimization problem, as we may need to

simultaneously optimize two or more objectives, such as

minimizing the number of tracks [8], minimizing the number

of vias [10], minimizing the crosstalk [11, 12], and

minimizing the total wire length [13]. Most heuristic routing

algorithms only consider one or two of those objectives, and

adding other objectives may result in redesign of those

algorithms. Although this article focuses on the objectives of

minimizing the number of tracks and the number of vias, our

approach can be further extended to consider other objectives

(e.g., crosstalk minimization [11]).

This paper is organized as follows. In Section 2, we

present a systematic approach which can be used to transform

a constraint programming (CP) problem into an MILP

problem. Section 3 discusses dogleg channel routing problems

and the representations of their routing results. Left and right

connection sets are presented in Section 4, followed by the

MILP-based channel routing algorithm. Section 6 shows

experimental results. Finally, conclusions are drawn in

Section 7.

2 CP to MILP Transformation

Constraint programming (CP) [14] is a type of declarative

programming paradigm since it allows users to specify a

problem in terms of variables and constraints over those

variables. After a problem has been specified, a CP solver can

be used to find the solution(s) to the problem. CP solvers have

been used in solving many difficult problems (such as

optimization problems, scheduling and resource assignment

problems [15, 16], and problems of partitioning parameterized

polygons [17]), although the time complexity for solving

those problems may not be polynomial.

Linear programming (LP) [18] also allows users to

specify a problem in terms of variables and constraints.

However, each of these constraints must be a linear equality

or a linear inequality constraint. In addition, a linear objective

function can exist and its value can be either minimized or

maximized. If a problem can be expressed in this way, it is

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 533

called an LP problem. If a problem can be expressed as an LP

problem and all of the variables are required to be integers,

then it is called an integer linear programming (ILP) problem.

Furthermore, if a problem can be expressed as an LP problem

and some of the variables are required to be integers, it is

called a mixed integer linear programming (MILP) problem.

Over the past few years, technologies of MILP solvers

have advanced. A number of commercial MILP solvers (e.g.,

CPLEX and Gurobi Optimizer) are now capable of exploiting

computational power from multi-core processors. Therefore,

by transforming a CP problem into an MILP problem, parallel

MILP solvers can be used to solve the original problem. As a

result, computational resources from multi-core processors

can be highly utilized and the execution time can be reduced.

This section describes how to transform a number of

fundamental types of linear and/or logical constraints, which

reside in a CP problem, into linear inequalities.

In this section, symbols A, B, C, and D are used; each of

them can be a constant, a variable, or a linear expression.

Also, we assume that values for all of the constants, variables,

and linear expressions are integers.

2.1 Logical-AND Constraints

Since a CP problem can have many constraints and a

solution to the CP problem must satisfy all of the constraints,

the relation between each pair of these constraints is

considered as conjunction (logical-AND). In a CP solver,

therefore, when we need to specify a set of conjunctive

constraints, usually we only need to impose these constraints

one by one. Similarly, in an MILP solver, conjunctive

constraints can be specified one by one.

2.2 Equality Constraints

For a constraint whose type is in the form of (A B), it

can be transformed into two conjunctive inequalities (A B)

and (B A); each of A and B can be a constant, a variable, or

a linear expression. As an example, the linear constraint (3*A

– 2*B 5*C + 26) can be transformed into two linear

inequalities.

2.3 Less-Than and Greater-Than Constraints

A constraint which is in the form of (A B) can be

converted into the inequality (A B – 1) if values of both A

and B are integers. Likewise, a constraint which is in the form

of (A B) can be transformed into the inequality (B A –

1).

2.4 Logical-OR Constraints

In order to convert a constraint which contains a logical-

OR operation into inequalities, an extra binary variable, whose

value is either 0 or 1, can be used; the binary variable can also

be called a 0-1 integer. For example, a constraint which is in

the form of ((A B) OR (C D)) can be transformed into

the following two conjunctive inequalities:

 A B + M1*BV

 C D + M2*(1–BV)

In the above inequalities, BV is a binary variable. Also, both

of M1 and M2 are constants whose values must be sufficiently

large so that the second inequality is redundant if BV=0 and

the first inequality is redundant if BV=1. Similarly, a

constraint which contains two or more logical-OR operations

can be converted into a number of inequalities by using two or

more binary variables, as one of the examples shown in

Section 2.6.

2.5 Not-equal Constraints

A not-equal constraint which is in the form of (A B)

can be converted into two conjunctive inequalities as the steps

shown below:

A B

 (A B) OR (B A)

 (A B – 1) OR (B A – 1) [Section 2.3]

 (A B – 1 + M1*BV) AND (B A – 1 + M2*(1–

BV)) [Section 2.4]

As described in Section 2.4, BV is a binary variable, and the

values of M1 and M2 must be sufficiently large.

2.6 If-Then-Else and If-Then Constraints

This subsection shows two examples of conditional constraints

and how they can be transformed into linear inequalities.

Other types of conditional constraints can be transformed by

using similar techniques. The first example is the following If-

Then-Else constraint:

 IF (A B) THEN (C D) ELSE (E F)

The constraint can be split into two disjunctive (logical-OR)

constraints as shown below:

 ((A B) AND (C D))

 ((A B) AND (E F))

We can then add a binary variable, BV, in order to further

transform these two disjunctive constraints. The final

transformed conjunctive inequalities are listed below:

 A B + M1*BV

 C D + M2*BV

 B A – 1 + M3*(1–BV)

 E F + M4*(1–BV)

All of M1, M2, M3, and M4 are integer constants and their

values must be sufficiently large. Therefore, (A B) and (C

 D) must hold when BV=0. Also, (A B) and (E F)

must hold when BV=1.

The second example is the following If-Then constraint,

which is more complicated than the previous example but can

also be converted into linear inequalities:

 IF (A B) THEN (C D) OR (E F AND G

 H) OR (I J AND K L)

534 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

This constraint can be divided into four disjunctive (logical-

OR) constraints as listed below:

 (A B) AND (C D)

 (A B) AND (E F) AND (G H)

 (A B) AND (I J) AND (K L)

 (A B)

We can then add two binary variables, B1 and B2, in order to

further transform these disjunctive constraints. The

transformation result, which contains ten conjunctive

inequalities, is shown in Table I.

3 Problem Formulation

In a channel routing problem, a channel is a rectangular

region bounded by two parallel rows (the top row and the

bottom row). The two parallel rows have terminals and each

terminal has a number, which represents the name of a net.

Terminals having the same number must be connected

together, except that terminals with the number zero require

no connection.

In this paper, it is assumed that a channel routing problem

has only two routing layers, one layer for horizontal wire

segments and the other for vertical wire segments. Endpoints

of wire segments must be located within the channel (the

rectangular region). For the wire segments that reside on

different layers, in addition, they can be connected by vias. In

the figures in this paper, vias are denoted by small black

squares.

Figure 1 shows an example of a channel routing problem

and one of its solutions. The problem has six columns and

each terminal lies at the intersection of a row and a column.

Moreover, horizontal wire segments, which are used for

routing purposes, must lie on the tracks. As can be seen in this

example, the routing solution uses three tracks. The columns,

rows, and tracks form an array of (virtual) grids. Therefore,

the channel routing problem shown in Figure 1 is a gridded

channel routing problem if all the endpoints of (horizontal and

vertical) wire segments are restricted to lie on the grids.

In a channel routing problem, since the width of the

channel is fixed, minimizing the routing area is equivalent to

minimizing the number of tracks (the height of the channel).

By introducing doglegs [19] in solving the problem shown in

Figure 1, it is possible to complete the routing with only two

tracks, as shown in Figure 2. The use of doglegs in solving

channel routing problems is a technique of great importance.

In the cases where cyclic vertical constraints exist [20],

doglegs must be used in order to complete the routing.

In our model of a gridded dogleg channel routing

problem, each net is composed of a number of horizontal and

vertical wire segments. In addition, these horizontal wire

segments must be placed between the net’s leftmost column

and rightmost column. For the channel routing problem given

in Figure 1, the horizontal span of each net is shown in Figure

3. Based on the horizontal spans, a number of horizontal wire

fragments (or smaller horizontal wire segments), as shown in

Figure 4, can be generated by cutting the horizontal spans into

pieces. Each of these horizontal wire fragments spans between

two adjacent columns. In addition, the union of all the

horizontal wire fragments of one net must cover the total

horizontal span of the net. The name of each horizontal wire

fragment is coded as follows (as the example shown in Figure

4):

<net name>@<left column no.>_<right column no.>

In our model of a channel routing problem, each

horizontal wire fragment is associated with a numerical value;

the value represents the track on which the wire fragment is

located. In our algorithm, moreover, vertical wire segments

are not cut into fragments; positions of vertical wire segments

can be decided easily after all the horizontal wire fragments

have been placed. For instance, the routing result shown in

Figure 2 can be represented by the following code:

[1@2_3=1, 1@3_4=2, 1@4_5=2, 1@5_6=2, 2@1_2=2,

3@4_5=1, 3@5_6=1]

4 Left and Right Connection Sets

A channel routing problem can have a left connection set

(LCS) and/or a right connection set (RCS) [4]. The left (right)

connection set refers to the set of nets which enters/exits the

channel from the left (right). To tackle these types of nets, we

Table I. Conjunctive Inequalities Transformed from the Constraint “IF (A B) THEN (C D) OR (E F AND G H) OR (I J

AND K L)”

Constraint ID Constraint Values of Binary Variables for Activating Corresponding Constraints

C-1 A B – 1 + M1*B1 + M2*B2

If (B1 = 0) and (B2 = 0), then (A B) and (C D). C-2 C D + M3*B1 + M4*B2

C-3 D C + M5*B1 + M6*B2

C-4 A B – 1 + M7*B1 + M8*(1–B2)

If (B1 = 0) and (B2 = 1), then (A B) and (E F) and (G H). C-5 E F – 1 + M9*B1 + M10*(1–B2)

C-6 G H – 1 + M11*B1 + M12*(1–B2)

C-7 A B – 1 + M13*(1–B1) + M14*B2

If (B1 = 1) and (B2 = 0), then (A B) and (I J) and (K L). C-8 I J – 1 + M15*(1–B1) + M16*B2

C-9 K L – 1 + M17*(1–B1) + M18*B2

C-10 B A + M19*(1–B1) + M20*(1–B2) If (B1 = 1) and (B2 = 1), then (A B).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 535

add a new column at the left of the channel if the LCS exists,

and add a new column at the right of the channel if the RCS

exists. Also, new horizontal fragments must be created. For

the newly created columns, their corresponding vertical

constraints [21] do not need to be generated. However,

horizontal constraints [21] for the newly created fragments are

required. Figure 5 illustrates an example of a channel routing

problem with the existence of LCS and RCS; the problem can

be transformed into the one shown in Figure 6.

5 The Algorithm

The methodology of formulating gridded dogleg channel

routing problems as CP problems has been presented in [21].

Additionally, by using the methodology presented in Section

2, horizontal and vertical constraints presented in [21] can be

transformed into conjunctive linear inequalities. As a result, a

dogleg channel routing problem formulated as a CP problem

can be transformed into an MILP problem. The final MILP-

based dogleg channel routing algorithm is shown in Figure 7.

To the best of our knowledge, our approach is the first in the

literature to model the problems of gridded dogleg channel

routing with via minimization as MILP problems. Moreover,

our approach does not require a given initial routing result as

the input.

In our MILP-based channel routing algorithm, a gridded

dogleg channel routing problem is transformed into an MILP

problem and then solved by an MILP solver. Since channel

density is the minimum number of tracks required in order to

solve a two-layer channel routing problem [9], our algorithm

uses it as the initial value for the number of available tracks.

Therefore, the domain for the position of each horizontal wire

fragment is set to [1, channel_density] initally. In the

algorithm, moreover, if the transformed MILP problem cannot

be solved by using the specified number of available tracks,

the algorithm will increase the number of available tracks by 1

and then solve the transformed problem again; it is also

possible to override the value of Max manually. The algorithm

stops when a solution has been found.

6 Experimental Results

The proposed algorithm has been implemented in Java

programming language. Also, a number of testcases have been

used to verify the correctness and to measure the performance

of our MILP-based channel routing program. Information for

some of those testcases is shown in Table II, and the

experimental results are shown in Table III. Note that Table

III shows results of executing our programs with the via

minimization function turned on. Testcases and routing results

of “Figure 2” and “Figure 9” can be seen in Figure 2 and

Figure 9, respectively. Figures 8 and 9 illustrate the same

routing problem with different routing results; one is with the

via minimization function turned off and the other turned on.

Testcases “Phillips_14” and “Phillips_16” are from [1]; the

former has 14 columns and the latter has 16 columns. The

testcase named “Deutsch” is the notable Deutsch’s difficult

example [4, 19].

To compare the efficiency of the MILP-based channel

routing program with the CP-based channel routing program

[21], we used JaCoP version 2.4.1 (released in 2009) as the

CP solver. In our MILP-based program, we could choose to

Figure 1. A (gridded) channel routing problem and one of its

solutions without using doglegs

Figure 3. Horizontal span of each net

Figure 2. A solution to the channel routing problem (shown in

Figure 1) with the use of doglegs

Figure 4. Horizontal wire fragments and their representations

536 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

use CPLEX version 10.2 (released in 2007), Gurobi version

2.0.2 (released in 2009), or CPLEX version 12.1 (released in

2009) as the MILP solver. In our experiments, all of the CP

and MILP solvers were run on a workstation which had an

Intel Q9550 CPU (2.83 GHz, Quad Core) and 8 GB of RAM,

except that CPLEX v.10.2, which was run on a server having

an Intel Xeon E5345 CPU (2.33 GHz, Quad Core) and 32 GB

of RAM. Also, we extracted some experimental results from

[1] and put them in Table III; a machine with a 12 MHz CPU

was used to generate the original results. Please note that

Phillips did not implement the via minimization function.

In [1], the Phillips_16 case with 8 tracks could not be

solved within 40 hours of execution time and no result was

generated. By using our MILP-based channel routing

algorithm with CPLEX v.12.1, we proved that the Phillips_16

case with 8 tracks was infeasible within one minute of time.

From the experimental results shown in Table III, we found

that CPLEX v.12.1 performed efficiently in identifying

infeasible problems, while Gurobi v.2.0.2 performed

relatively well in solving large and complex feasible

problems. In addition, the performance of JaCoP v.2.4.1 was

relatively unstable, but it solved some large problems rapidly.

Although our approach of using MILP solvers is capable

of finding optimal solutions, the execution time can be very

long. That is because dogleg channel routing problems are

NP-complete. However, as can be seen in the Deutsch case in

Table III, suboptimal results can be generated in exchange for

significantly reduced execution time. Moreover, as will be

shown in the next paragraph, if more processor cores are

available, the execution time can be reduced.

Table IV shows the elapsed time of running MILP-based

channel routing with different parallel MILP solvers and with

different number of threads. While we were running testcases

by using four threads, it was common to see that the CPU

utilization reached around 400% (by using Linux’s “top”

command), which meant that all of the four CPU cores had

participated in the computation. In general, as shown in Table

IV, if more CPU cores are available, the execution time can be

reduced. In the results of solving the Deutsch’s difficult

problem with 25 tracks, it was interesting to note that nearly

8x speedup had been achieved when the number of threads

was increased from one to four. That is because, while using a

parallel solver in solving an optimization problem, one thread

can pass information to other threads when a feasible solution

has been found by the thread. As a result, many unnecessary

computations can be eliminated.

7 Conclusion

In order to exploit the computational power of multi-core

processors, we proposed a systematic approach which can be

used to transform a CP problem containing linear and logical

constraints into an MILP problem. The approach is capable of

transforming a gridded dogleg channel routing problem with

via minimization, formulated as a CP problem, into an MILP

problem. Experimental results have shown that high degrees

Figure 5. A channel routing problem with the existence

of LCS and RCS

 Figure 6. A new channel routing problem transformed

from the channel routing problem shown in Figure 5

Algorithm MILP-CHANNELROUTER(TR, BR, LCS, RCS, VM)

Input. The input contains the description of a gridded dogleg

channel routing problem, which includes (1) TR, which

is the list of terminals at the top row, (2) BR, which is

the list of terminals at the bottom row, (3) LCS, and (4)

RCS. Also, a Boolean variable VM is used in order to

control the activation of the via minimization function.

Output. The output contains a permutation of horizontal wire

fragments, from which a solution to the input channel

routing problem can be constructed.

1. D ← the channel density of the input channel routing

problem

2. Max ← D

3. Do {

4. Generate variables for horizontal wire fragments; the

domain of each variable is set to [1, Max].

5. Generate horizontal constraints for each column

interval.

6. Generate vertical constraints for each column.

7. Generate constraints for the left and right connection

sets (Section 4).

8. if VM equals TRUE then

9. Generate variables and constraints for minimizing the

number of vias.

10. Specify generated variables and constraints via API

functions of an MILP solver.

11. Invoke the MILP solver to solve the specified MILP

problem. When a solution has been found, report the

solution and then exit the algorithm.

12. Max ← Max + 1

13. } while (the MILP solver has not found a solution)

Figure 7. The MILP-based dogleg channel routing algorithm

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 537

of scalability can be achieved by using parallel MILP solvers.

Our approach can be further extended to consider crosstalk

and total wire length. Although the experimental results show

that the execution time of our approach cannot compete with

many existing channel routers, optimal results can be

generated for small to medium cases. In addition, for large

cases, suboptimal results can be generated in exchange for

significantly reduced running time. We believe that the

performance of our approach can be further improved with the

advance of mixed integer linear programming technologies as

well as the advance of multi-core processors.

References

[1] Nicholas C. Phillips, “Channel Routing by Constraint

Logic,” In Proceedings of ACM Symposium on Applied

Computing, pp. 536-540, 1992.

[2] Naveed A. Sherwani, Algorithms for VLSI Physical Design

Automation, Kluwer Academic Publishers, 1999.

[3] Akihiro Hashimoto, and James Stevens, “Wire Routing by

Optimizing Channel Assignment within Large Apertures,”

In Proceedings of Design Automation Conference, pp. 155-

169, 1971.

[4] Rajat K. Pal, Multi-Layer Channel Routing: Complexity and

Algorithms, Narosa Publishing House, 2000.

[5] Jia-Shung Wang, and R. C. T. Lee, “An Efficient Channel

Routing Algorithm to Yield an Optimal Solution,” IEEE

Transactions on Computers, vol. 39, no. 7, pp. 957-962,

July, 1990.

[6] Takeshi Yoshimura, and Ernest S. Kuh, “Efficient

Algorithms for Channel Routing,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems,

vol. CAD-1, no. 1, pp. 25-35, January, 1982.

[7] Thomas G. Szymanski, “Dogleg Channel Routing is NP-

Complete,” IEEE Transactions on Computer-Aided Design,

vol. CAD-4, no. 1, pp. 31-41, 1985.

[8] James Reed, Alberto Sangiovanni-Vincentelli, and Mauro

Santomauro, “A New Symbolic Channel Router: YACR2,”

IEEE Transactions on Computer-Aided Design, vol. CAD-

4, no. 3, pp. 208-219, 1985.

[9] Uzi Yoeli, “A Robust Channel Router,” IEEE Transactions

on Computer-Aided Design, vol. 10, no. 2, pp. 212-219,

February, 1991.

[10] Chung-Kuan Cheng, and David N. Deutsch, “Improved

Channel Routing by Via Minimization and Shifting,” In

Proceedings of Design Automation Conference, pp. 677-

680, 1988.

[11] Tong Gao, and C. L. Liu, “Minimum Crosstalk Channel

Routing,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 15, no. 5, pp. 465-474,

May, 1996.

Table II. Information of Channel Routing Problems

Testcase # of nets # of columns channel density min. # of tracks

Figure 2 3 6 2 2

Figure 9 5 9 5 6

Phillips_14 10 14 4 5

Phillips_16 11 16 8 9

Deutsch 52 156 19 19

of nets: the number of nets in the testcase; # of columns: the number of columns in the testcase; channel density: the channel density of the testcase;

min. # of tracks: the minimum number of tracks required for solving the channel routing problem.

Table III. Experimental Results of CP-based and MILP-based Channel Routing

Testcase
of tracks

used
Phillips [1]

JaCoP v.2.4.1

1 thread

CPLEX v.10.2

1 thread

Gurobi v.2.0.2

4 threads

CPLEX v.12.1

4 threads

 Figure 2 2 N.A. 0.14 sec. 0.00 sec. 0.00 sec. 0.00 sec.

 Figure 9

6 N.A. 0.37 sec. 1.96 sec. 0.48 sec. 0.81 sec.

5 N.A.
154766 sec.

(infeasible)

0.24 sec.

(infeasible)

0.32 sec.

(infeasible)

0.21 sec.

(infeasible)

 Phillips_14

6 0.28 sec. 253.55 sec. 0.32 sec. 0.27 sec. 0.20 sec.

5 < 1.37 sec. 0.36 sec. 0.08 sec. 0.04 sec. 0.09 sec.

4
< 1.37 sec.

(infeasible)

0.19 sec.

(infeasible)

0.00 sec.

(infeasible)

0.00 sec.

(infeasible)

0.00 sec.

(infeasible)

 Phillips_16

10 N.A.
> 7 days

(unfinished)
8.49 sec. 0.71 sec. 0.92 sec.

9 0.39 sec.
> 7 days

(unfinished)
27.37 sec. 0.67 sec. 0.93 sec.

8
> 40 hrs.

(unfinished)

> 7 days

(unfinished)

54646.89 sec.

(infeasible)

520.23 sec.

(infeasible)

55.34 sec.

(infeasible)

 Deutsch

25 N.A. 4.18 sec.
> 3 days

(unfinished)
3451.79 sec.

> 7 days

(unfinished)

24 N.A. 5.10 sec.
> 3 days

(unfinished)
174270.72 sec.

> 7 days

(unfinished)

23 N.A.
> 7 days

(unfinished)

> 3 days

(unfinished)
136266.61 sec.

> 7 days

(unfinished)

of tracks used: the number of tracks used by our CP-based or MILP-based channel routing program for solving the problem (the value was assigned by

setting the Max manually).

538 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

[12] Kuo-Chih Hsu, Yu-Chung Lin, Po-Xun Chiu, and Tsai-

Ming Hsieh, “Minimum Crosstalk Channel Routing with

Dogleg,” In Proceedings of IEEE International Symposium

on Circuits and Systems, pp. 73-76, 2000.

[13] Pralay Mitra, Nabin Ghoshal, and Rajat K. Pal, “A Graph

Theoretic Approach to Minimize Total Wire Length in

Channel Routing,” In Proceedings of IEEE Region 10

Conference (TENCON), pp. 414-418, 2003.

[14] Kim Marriott, and Peter J. Stuckey, Programming with

Constraints: An Introduction, The MIT Press, 1998.

[15] Krzysztof Kuchcinski, “Constraints-Driven Scheduling and

Resource Assignment,” ACM Transactions on Design

Automation of Electronic Systems, vol. 8, no. 3, pp. 355-

383, 2003.

[16] Krzysztof Kuchcinski, and Christophe Wolinski, “Global

Approach to Assignment and Scheduling of Complex

Behaviors Based on HCDG and Constraint Programming,”

Journal of Systems Architecture, vol. 49, pp. 489-503, 2003.

[17] I-Lun Tseng, and Adam Postula, “Partitioning

Parameterized 45-Degree Polygons with Constraint

Programming,” ACM Transactions on Design Automation

of Electronic Systems, vol. 13, no. 3, pp. 52:1-52:29, July,

2008.

[18] Wayne L. Winston, and Munirpallam Venkataramanan,

Introduction to Mathematical Programming, Thomson

Learning, Inc., 2003.

[19] David N. Deutsch, “A 'Dogleg' Channel Router,” In

Proceedings of Design Automation Conference, pp. 425-

433, 1976.

[20] Takeshi Yoshimura, and Ernest S. Kuh, “Efficient

Algorithms for Channel Routing,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems,

vol. CAD-1, no. 1, pp. 25-35, January 1982.

[21] I-Lun Tseng, Huan-Wen Chen, Che-I Lee, and Adam

Postula, “Constraint-Based Dogleg Channel Routing with

Via Minimization,” In Proceedings of International

Conference on Artificial Intelligence (ICAI), pp. 666-672,

2010.

Figure 8. A minimum-track solution to a dogleg channel

routing problem without via minimization (total number of

vias = 17)

 Figure 9. A minimum-track solution to the dogleg channel

routing problem (shown in Figure 8) with the via minimization

function turned on (total number of vias = 15)

Table IV. Executing MILP-Based Channel Routing with Different Number of Threads

Testcase

of

tracks

used

CPLEX v.12.1 Gurobi v.2.0.2

1 thread 2 threads 4 threads 1 thread 4 threads

Phillips_16 8 209.42 sec. 127.87 sec. 55.34 sec. 1708.20 sec. 520.23 sec.

Deutsch 25
> 3 days

(unfinished)

> 3 days

(unfinished)

> 3 days

(unfinished)
27410.08 sec. 3451.79 sec.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 539

Thick Control Flows: Introduction and Prospects

Vi lle Leppänenα, Martti Forsell β, Jari-Matti Mäkelä α

αDepartment of Information Technology, University of Turku, Finland,
Email:{Ville.Leppanen,jmjmak}@utu.fi

βVTT, Platform Architectures, Oulu, Finland; Email: Martti.Forsell@vtt.fi

Abstract— Besides correctness of programing, the
technical software problem of many contemporary
approaches to multithreaded computations is how to
organize the co-operation of a huge number of parallel
threads. For the software problems, we propose parallel
thick control flowsas the solution.

When a thick control flow (in terms of the number
of threads) is executing a statement or an expression
of a program, all the threads are considered to execute
the same program element synchronously in parallel.
Considering method calls, when a control flow with
thicknesst calls a method, the method isnot called
separately by each of thet threads, but the control flow
calls it only once witht threads. A call stack is not re-
lated to each thread but to each of the parallel control
flows, since threads do not have program counters –
only control flows have program counters. The concept
of thread is only implicit. A thick thread-wise variable
is an array-like value having a thread-wise actual
value. Method signatures naturally advance types with
thickness, but non-thick types are also useful.

The concept of thick control flow makes the program-
mer to focus on co-operation of few parallel thick con-
trol flows instead of a huge number of parallel threads.
The concept computation’s state is promoted as a flow
is seen to have a state (instead of each thread). The
concept of state has been in a central role in achieving
correctness in sequential programs. The concept of
thick control flows is related to data parallelism and
stream computing. It is a natural generalization of
ordinary imperative sequential programming.

1. Introduction
Processor manufacturers provide multicore solutions

where the cores run threads. Threads as a concept have
a long history in programming languages as well as in
the operation of processor cores. We argue that perhaps
the thread as a concept should remain a concept for
the operation of processor cores but a more abstract

concept ofthick control flowshould be used instead
of thread in programming languages. Moreover, some
implementation choices for thick control flows suggest
that a concept replacing the thread concept could also
be useful for the processor cores, since ultimately
processor cores should support a very flexible number
of parallel “threads” and achieving the flexibility might
require a different concept.

Consider multithreaded programs. Each thread runs
along a control flow specified by the program in form
a method/procedure as in e.g. Java and Cilk [4]. At
hardware level it may be natural to consider there to
exist hundreds or even thousands of threads each run-
ning along a separate control flow, but when designing
a program, it is hardly feasible to consider describing
thousands of different kinds of threads. Typically the
thousands of threads of a parallel program run in
groups following a few control paths. Our concept of
thick control flows simply groups threads more tightly
into each other.

A software engineering perspective aiming at (rea-
soning about) correctness of parallel programs pro-
vides another fact supporting grouping of threads more
tightly to each other and making each group to pro-
ceed synchronously. Reasoning about correctness of
sequential programs or testing their execution has been
successful, as one has been able to see the execution
of a program as a sequence of state transitions. In
this respect, synchrony is a language-level or library-
level mechanism to define states. The more the threads
can do operations between states, the harder it will
be to reason about the correctness of state transitions.
If a huge number of threads can proceed at arbitrary
speed, the program can be in very many different
states. Such multithread programming is very difficult
in correctness sense. Having only a few thick parallel
synchronous control flows in the program makes it
much easier to reason about the correctness, since such
a mode of execution significantly reduces the amount

540 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

of possible program states.
In this paper we propose a new concept of thick

control flows for defining parallel (multithreaded) pro-
grams, and consider its influence on the semantics of
ordinary language constructions. Next, in Section 2 we
elaborate further the thick control flow idea. Section 3
discusses some example programs written along the
idea, although the idea of this paper is not to propose
any specific language syntax for the constructions dis-
cussed in Section 2, rather the presented constructions
can be seen to extend several common imperative
languages. In Section 4, we discuss related work and
consider architectural requirements supporting thick
control flows and speculate with possibilities to re-
duce the need of architectural support via compiling
techniques. In fact, it will be rather straightforward to
translate thick control flow based programs as ordinary
sequential programs. Finally in Section 5, we draw
conclusions.

2. Thick control flows
The concept of thick control flows is a straight-

forward generalization of ordinary sequential program
flows. A typical sequential program implicitly defines
a lots of different kinds of control paths “through” the
program. When a sequential program is run with a
single thread, the thread follows exactly one of the
possible control paths. From a semantical viewpoint,
one can consider that even a single-threaded program
runs through all of its possible control paths in parallel.
At each program statement involving a conditional
branching of control (if-statements, switch-statements,
loop condition checks, . . .), the control of a single-
threaded control flow can be considered to advance
to all possible branches with thickness either one or
zero threads – naturally we must require that the
incoming thickness matches with the sum of outgoing
thicknesses. Executing a control flow of zero thickness
naturally has no effect (and can be ignored in practice).

2.1 Basic idea

When a thick control flow (in terms of the number
of threads) is executing a statement or an expression
of a program, all the threads are considered to execute
the same program element in parallel. More precisely,
we consider that some of the program variables can
be replicated thread-wise – conceptually meaning that
there is a unique thread-wise instance of the variable.

An expression based on using a replicated variable is
conceptually also replicated – meaning that it needs
to be evaluated separately for each thread. Similarly,
statements can also be replicated. However, all expres-
sions or statements executed by a thick control flow
do not need to be replicated – such non-replicated
(ordinary) program elements naturally only need to be
evaluated/executed once by the thick flow, not thread-
wise. Thus, when a thick flow proceeds over a program
fragment, some of the expressions/statements translate
to single instructions whereas replicated ones translate
to sets of instructions.

Considering method calls, when a control flow with
thicknesst calls a method, the method is not called
separately with each thread, but the control flow calls
it only once witht threads. A call stack is not related
to each thread but to each of the parallel control flows.
Executing a branching statement can mean temporarily
spliting a thick control flow into several other flows.

Considering semantics, the concept of thick control
flows can be very helpful. All threads of a control flow
can be seen to synchronously march through the (com-
mon) program code. When a flow is split into separate
flows, we consider that nothing is assumed about the
advancing speed of the split flows. However, joining of
different parts involves an implicit synchronization of
the joined flows. In this respect, the concept of thick
control flow promotes the concept computation’s state,
which has a central role in achieving correctness.

2.2 Thick flow, replicated variables and stack

Originally, a program is considered to have a flow
of thickness 1, measured conceptually in number of
parallel threads. A method can be considered to have
a thickness related to the calling flow’s thickness.
For creating a thick flow, we consider having two
options: Either have a statement to dynamically set
the thickness of the flow (by increasing/decreasing it),
or have a block statement defining that the statements
of the block are executed with a given thickness. We
choose to support the latter option,thick block, as it
is more naturally related to “thick”, replicated variable
declarations as well as the common idea of program
stack.

A thick control flow of thicknesst consists oft
implicit threads. We assume them to have a unique
identity expressed as an integer. Basically, we consider
the identities to be between0 . . . t− 1, but it might be

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 541

useful to have language constructions supporting other
kind of indexing of implicit threads.

By a replicated variable, we mean a specifically
declared variable within a thick block that hasa unique
instance for each thread of the flow. The degree of
replication is dynamic, depending on the actual thick-
ness of the flow. In practice, a replicated variable can
be implemented as an array allocated from the memory.

We consider that replicated variables of any type
can be declared (depending on the base language).
Besides replicated variables, it will be useful to be
able to declarenon-replicatedordinary variables which
have only one instance per a flow executing such a
declaration.

Although a replicated variable is thread-wise repli-
cated, we do not limit its usage for the implicit thread
in question. Rather, we advance an expression (e.g. the
’@’ symbol) for implicit thread’s identity. It might be
wise to support other kind of referencing mechanisms
too, but we do not elaborate that issue in this paper.
Besides thread identity references, we also assume to
have a special expression for the (dynamic) thickness
of the flow (e.g. the ’#’ symbol).

The thick control flow concept clearly needs a stack-
like structure for handling nested calls and nested thick
blocks. However, as a flow can split into separate flows,
the stack concept expands to a uniquely rooted tree-
structure that we callstack tree. Efficient implemen-
tation of stack tree is a challenge that will not be
discussed in this paper.

Nesting thick and ordinary block statements is mean-
ingful and supported. Consider a situation where a
thick block Bout of thicknesstout contains an inner
thick block Bin of thicknesstin. A nested block is
not executed thread-wise but flow-wise, and therefore
considering the flow thickness, a flow executing the
inner thick block has thicknesstin (instead oftout ×
tin). Besides efficient stack tree implementation, the
only real problem related to nested thick blocks is the
visibility and interpretation of variables defined in an
outer block for its inner blocks. If e.g.tin > tout and
Bout has defined a replicated variablev, then in Bin

there would not be a replica ofv for each implicit
thread ofBin. There are several approaches to solve
this issue: E.g. (a) automatic replication ofv for the
tin − tout implicit threads; (b) it is a runtime error to
refer tov in Bin, if tin > tout; (c) replicated expression
referring tov only has thicknesstout; and (d) variables

of outer blocks are not visible in inner blocks. The
option (d) does not follow the standard approach taken
in case of ordinary nested block statements. The option
(c) would lead to issues dealing with operations for
replicated expressions of different thickness. As op-
tion (a) is not semantically very sensible (what initial
value to use for the newly replicated instances ofv),
we choose to follow (b). Our choice means that a
replicated expression referring tov in Bin refers only
to v{0}, v{1}, . . . , v{tin − 1}, yet we allow explicit
references also tov{tin}, . . . , v{tout − 1}.

2.3 Replicated expressions, assignments and
statements

Consider an expressione ::= e1 ⊕ e2, where ⊕
is some arithmetic-logical operator supported by the
hardware. Evaluatinge with a flow of thicknesst, a
replicated variablev as eithere1 or e2 means the ex-
pression is replicatedt times usingv{0}, . . . , v{t− 1}
asv. If v is originally declared for a thickness less than
t, a runtime error will rise. All replicated expression
within a block of thicknesst have the same thicknesst.
It is not possible to have an operator (or a function call)
to have replicated expressions of different thickness as
arguments/operands.

However, notice that ife is a function call having
replicated expressions as arguments, thene as such is
not replicated as will be explained in Section 2.5. The
result of the evaluation ofe can be a replicated value.
In this sense, the library functions and (e.g. SIMD-
style) hardware supported operators will be treated
differently.

A replicated value should be seen as an array oft
values, although it might not be implemented as an
array when the program is executed.

Operators can require some of the operands to be
non-replicated, but e.g. ordinary binary arithmetic oper-
ators have replicated operands. It is always possible to
use a non-replicated expression as a replicated operand,
such a replication takes place implicitly. Notice that
considering execution, the value of such an expression
needs to be evaluated only once. Operators supporting
replicated operands typically yield replicated values,
but non-replicated results are also possible (e.g. sum
of all replicas).

Consider an assignment statement

v := e;

542 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

The assignment has the semantics thatv{i} will receive
value e{i} for 0 ≤ i < t. There will be no additional
requirements concerning thickness of replication, since
both e and v are expressions. As usual,v can be any
replicated expression having a valid L-value.

Considering replication, ordinary statements are not
replicated. The implicit threads do not really execute
program statements as only the control flows have
program counters (PCs). The implicit PC of an implicit
thread receives its value from the PC of control flow.

2.4 Control structures

Consider a programming language constructs for
branching statements like,if-then-else, switch,
andcase. A control flow is executing each statement
or expression of a program instead of a thread. When
executing a branching statement with incoming control
flow thickness oftin and there arek possible branches
with thicknessest1out, . . . , t

k
out, we simply require that

tin = t1out + . . . + tkout. Statements also involve joining
the splitted control flows as the branches join – our
thick control flow approach assumes that there will
always be an implicit join at the end of a branching
statement.

Considering semantics, the concept of thick control
flows can be very helpful. All threads of a control
flow can be seen to synchronously march through
the (common) program code. When a flow is split
into separate flows, it is perhaps best to consider that
nothing is assumed about the advancing speed of the
split flows. However, joining of different parts involves
an implicit synchronization of the joined flows.

The implicit thread identifiers form a slight problem
when a flow is split into several subflows. The question
is should the flow’s implicit thread id’s always form a
continuous interval starting from zero. As a subflow
can call a function (where such a property is impor-
tant), here we assume that thei’th subflow always has
thread id’s between0, . . . , tiout − 1 but there will be
possibility to refer to the surrounding flow’s original
id-numbers too. Notice that such temporary numbering
can be calculated rather efficiently with multiprefix
operations and that such a calculation is not always
required (depends on the id-number references present
in the program code).

Loop statements are executed by the flow, and as
their exit condition may involve replicated variables
or references to implicit thread id-numbers, the loop

statements must also be seen as potential branching
statements. Otherwise (nested) loops work as in ordi-
nary imperative languages.

A pardo-loop of e.g. the Fork language is a block
statement, which in the beginning of the block in-
creases the thickness and at the end decreases the
thickness back to the original thickness. Thus, our
previously discussed thick block concept replaces the
need for a pardo-loop.

Naturally, it would be possible to consider other
kind of explicit and implicit ways to enhance the flow
thickness besides the thick block construct.

2.5 Function calls

Regardless of the base language, we call all func-
tion/procedure/method calls as function calls. Consider
function calls, when a control flow with thicknesst
calls a function, the function is not called separately
with each thread, but the control flow calls it only once
with t implicit threads.

A function declaration needs to declare if it is
meaningful to call a function with a thick flow (with
e.g. a keyword ’rep’ in the function signature). Recall
that within a function one can change the thickness
by using a thick block definition. The implicit flow
thickness parameter can be seen as a possibility for
the caller to define how many implicit threads should
be used inside the function. For thick functions, it is
meaningful to tie the thickness of passed values and
return value to the thickness of the calling flow. Notice
that it will still be useful to be able to define non-
replicated types in a thick function’s signature.

If the return value of a function is of replicated
type, a normal return of a thick function call can be
seen to return an array of values. It is also possible
to consider some of the implicit threads to end their
execution to an exception – then the thickness of
normally returning control flow can be seen to reduce
when some fraction of the incoming control flow has
been separated by exceptions. The normal exception
handling mechanisms (of e.g. OO languages) can be
seen to later join the separated parts of the control flow
with the original control flow.

In general, there are quite a lot of function signature
possibilities, e.g. a function could have a specification
that the return value from the call has twice the thick-
ness of function call. However, having the outgoing
thickness as twice that of the incoming thickness is not

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 543

seen among the options. We do not further elaborate
with the issue in this paper.

2.6 Object-oriented features
Due to space limitations, we do not elaborate on

issues related to applying the thick control flow concept
on OO constructions and concepts. We see straight-
forward possibilities; e.g. as the calling object can be
seen as the0’th parameter, we can easily support thick
object values as callers.

3. An example program
To get an idea, how the thick control flow concept

could be embedded to an imperative language, we dis-
cuss of an example written on a hypothetical extension
of Scala.

Matrix multiplication of Ah×n × Bn×w yields a
matrix Ch×w, where

ci,j =

n∑

k=1

ai,k × bk,j.

An obvious solution would be to compute eachci,j

in parallel with a sequential algorithm following the
definition. This would yield an algorithm running in
O(n) time with h×w implicit threads working with the
CREW PRAM memory model. By carefully timing the
references to matrix elements, the obvious algorithm
can be made to work on an EREW PRAM, too.

The example below defines two functions
related to multiplication: matrix_mul and
matrix_mul_maxthick. The latter simply
defines a thick block of thicknessh × w and makes
a thick function call. The called function does not
use replicated formal parameters, but rather the call
thickness is indirectly seen to relate to input and output
values. The thickness# is assumed to#|(h×w), and
the idea is to calculate by one implicit thread an area
of h × w/# values of the return matrixC.

Observe that the first 4 assignment statements of
matrix_mul are non-replicated where as the fifth
is replicated! Both of the while-loops are executed
synchronously with the thickness# – as the loop-
condition is not a replicated expression, no flow
branching will take place. Notice also that in the inner
while-loop, the first assignment statement is replicated
whereas the second is not.

// @ = flow idx inside control flow
// # = control flow thickness

// h x w must be a multiple of #

def rep matrix_mul[T: Numeric]
(in A: Array[Array[T]],
in B: Array[Array[T]],
out C: Array[Array[T]]) {

val h = A.length
val n = A[0].length
val w = B[0].length

val block_size = h*w / #
rep val block_idx = @ * block_size

var i = 0
while (i < block_size) {

rep val idx = block_idx + i
i += 1

rep val x = idx % w
rep val y = idx / w

var j = 0
while (j < w) {

C[y][x] = C[y][x] + A[y][j]*B[j][x]
j += 1

}
}

}

def matrix_mul_maxthick[T: Numeric]
(in A: Array[Array[T]],
in B: Array[Array[T]],
out C: Array[Array[T]]) {

val h = A.length
val w = B[0].length

replicate(h*w) {
matrix_mul(A, B, C)

}
}

// example
def main(w: Int, n: Int, h: Int) = {

def gen_matrix(w: Int, h: Int) =
Array.fill(h)(Array.fill(w)(0))

val A = gen_matrix(n, h)

544 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

val B = gen_matrix(w, n)
val C = gen_matrix(w, h)

matrix_mul_maxthick(A, B, C)
}

4. Implementation considerations and
related work

Implementation of a thick control flow at the ex-
ecuting multicore processor may happen as is usual
today: Each thread of a control flow of thicknesst is
represented as a single thread. A clear challenge is how
to efficiently implement the implicitly synchronous ex-
ecution. Without going into details, efficient implemen-
tations are possible by using so-called synchronization
wave [9], [8] and parallel slackness [10]. Such PRAM
realizations studies are done e.g. in [2], [1], [8], [6], [5].
However, such an implementation would not advance
the full potential of the thick control flow approach (not
all expressions are thick) and handling a huge number
of implicit threads would be very challenging.

In XMT / ParaLeap / ICE [12], [11], Vishkin has
cleverly solved the issue of supporting a huge number
of virtual threads. For a parallel block, the solution
extracts a set of threads from the pool of unexecuted
threads (concerning the block), spreads them for the
thread execution units (the used terminology is differ-
ent), makes them to efficiently execute those threads
to the end, and then extracts a new set of threads. If
the parallel block has a lot of statements, then there
is a risk that the statement-wisely non-synchronous
execution is not able follow a PRAM-style memory
consistency.

The idea of XMT / ParaLeap / ICE could be
applied to thick control flows but still maintaining
the statement-wise synchrony. The hardware would
need to support a small number of parallel control
flow executions, each of arbitrary thickness. Assume
that there would bez SIMD-style execution units of
some fixed widthw. Now, the hardware should just
try to extract, from the arbitrarily thick control flows,
z thick instructions of width at mostw, feed those
to instruction execution units and repeat. Although
the synchronous execution with instruction could be
guaranteed this way, the joining of flows requires a
specific solution (synchronization wave). In principle,
in multicore systems the ordinary function of cores as
thread execution units would need to be replaced with

a rather similar function of thick control flow execution
units.

Naturally, the efficiency of thick control flow based
execution is heavily dependent on the ability to ad-
vance memory hierarchy efficiently and hide memory
access latencies. Such solutions in connection of stream
computing are discussed e.g. in [7]. The whole idea
of thick control flows is very close to that of vector
and stream computing and e.g. the Brook language [3],
[7]. Many of the GPGPU computing related approaches
(BrookGPU, OpenCL, CUDA) can be seen to have a lot
in common with out thick control flows. E.g. the stream
based BrookGPU [3] in practice defines computational
functions (called kernels) that operate on multiple
streams and produce stream values. The streams can
have a multidimensional shape and that shape corre-
sponds to a set of executing threads. Executing a kernel
means synchronously executing a thick control flow
(the kernel’s body) over the stream values. At execution
level, the SIMT (Single Instruction Multiple Thread)
approach of GPU devices is of course close to our
approach. The main difference with respect to stream
computing is the dataflow/functional style versus the
imperative style of thick control flows.

We consider there to exist lots of possibilities for
implementing the thick control flow approach effi-
ciently, yet we also agree that some level of guidance
(annotations, etc) might be required from the pro-
grammer. However, at the moment we must leave the
architectural issues open as this is work-in-progress.

5. Conclusions

We have presented the idea of thick control flows.
Besides program correctness, the technical software
problem of many contemporary approaches to mul-
tithreaded computations is how to organize the co-
operation of a huge number of parallel threads. For
these software problems, we consider parallel thick
control flows as a good solution. There are reasons to
believe that efficient execution of thick control flows
would be possible, but in this work-in-progress paper,
we need to leave that issue open.

References

[1] F. Abolhassan, R. Drefenstedt, J. Keller, W.J. Paul, and
D. Scheerer. On the Physical Design of PRAMs.The
Computer Journal, 36(8):756 – 762, 1993.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 545

[2] F. Abolhassan, J. Keller, and W.J. Paul. On the Cost-
Effectiveness of PRAMs. InProceedings, 3rd IEEE Sym-
posium on Parallel and Distributed Computing, ACM Special
Interest Group on Computer Architecture, and IEEE Com-
puter Society, pages 2 – 9, 1991.

[3] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan. Brook for GPUs: Stream com-
puting on graphics hardware. InProceedings of SIGGRAPH,
2004.

[4] R.D.B̃lumofe et al. Cilk: An Efficient Multithreaded Runtime
System, 1995.

[5] M. Forsell. TOTAL ECLIPSE – An Efficient Architectural Re-
alization of the Parallel Random Access Machine booktitle=.

[6] M. Forsell. A scalable high-performance computing solution
for network-on-chips.Micro, IEEE, 22(5):46 – 55, sep–oct
2002.

[7] J. Gummaraju, M. Erez, J. Coburn, M. Rosenblum, and W.J.
Dally. Architectural Support for the Stream Execution Model
on General-Purpose Processors.

[8] V. Leppänen. Studies on the Realization of PRAM. PhD
thesis, University of Turku, TUCS, Lemminkaisenkatu 14,
FIN-20520 Turku, Finland, nov 1996. TUCS Dissertions No
3.

[9] A.G. Ranade. How to Emulate Shared Memory.Journal of
Computer and System Sciences, 42(3):307–326, 1991.

[10] L.G. Valiant. General Purpose Parallel Architectures. InAl-
gorithms and Complexity, Handbook of Theoretical Computer
Science, volume A, pages 943–971, 1990.

[11] U. Vishkin. Using Simple Abstraction to Reinvent Computing
for Parallelism. Communications of the ACM, 54(1):75–85,
2011.

[12] Uzi Vishkin, Shlomit Dascal, Efraim Berkovich, and Joseph
Nuzman. Explicit multi-threaded (xmt) bridging models for
instruction parallelism. InProc. 10th ACM Symposium on
Parallel Algorithms and Architectures (SPAA, pages 140–151,
1998.

546 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Dynamic Workflow Composition and Execution

Binh Minh Nguyen, Viet Tran, Ladislav Hluchy
Institute of Informatics, SAS, Slovakia

 Abstract- In this paper, we present a new approach for

programmable workflow composition. The workflow is

represented as sequence of tasks with explicitly defined

input/output data. Parallelism between tasks is implicitly defined

by the data dependence. Users can create a more complicated

workflow by scripts, including nested and parameterized

workflows. The workflow will be executed in distributed

workflow managers.

I. INTRODUCTION

With the advance of computational technologies, the

scientific applications running on modern distributed systems

became more and more complex. Each execution of the

applications is usually a workflow of several connected steps,

where the output of the previous steps are the input of the next

steps. Therefore, the tasks have to be executed in the correct

order and the data need to be transferred between tasks in

order to get the correct results.

At the moment, there are many existing workflow

management systems, each system has its own language for

describing the workflows. The way how the workflows are

described in current systems are rather complex and inflexible.

Some systems come also with graphical editors for creating

the workflows easier.

In this paper, we present a new approach for creating and

executing workflows for scientific applications. Also our

approach is applicable elsewhere, we primarly focus on

distributed systems, where each task is an execution of a

program (script, binary executable) on target hardware

platforms. Most of grid workflow management systems have

the same characteristics, so we will compare our approach

with these workflow managers.

II. OVERVIEW OF WORKFLOW DESCRIPTION

APPROACHES

Each workflow description consists from two parts:

description of tasks and description of dependences between

tasks. Each task may have several properties like execution

code, input/output data, command-line arguments,

requirements on hardware and so on. There are two main

approaches to describe these properties of tasks: in a plain text

form as pairs of property name and value (e.g. CPUNumber =

4), or in XML language where task properties are elements or

attributes.

Beside the task description, the dependence between tasks in

the workflows must be also described in the workflow

languages. There are two main ways to describe dependence

between tasks in workflows: using parallel/sequence

instructions and using directed acyclic graphs.

In the first approach, a workflow is consisted of (nested)

parallel or sequential blocks of tasks. Tasks that can be

executed in parallel are placed in blocks with parallel

instruction, otherwise, in a block with sequential instruction,

the tasks must be executed in the order as they are defined in

the block. An example of workflow described in this way is as

follows:

SEQ

 Task1

 PAR

 Task2

 Task3

 Task4

In this example, the workflow has four tasks named Task1,

..., Task4. The first task Task1 must finish before Task2 and

Task3 can start. Task2 and Task3 can be executed in parallel

(or in any order), and Task4 must wait until both tasks finish.

For example Karajan [3] in Cog Kit [4] uses this approach for

describing workflows.

In the second approach, the dependences between tasks are

described as by parent-child pair. Children tasks must wait

until all parent tasks finish before starting. The workflow

above can be described in this approach as follows:

PARENT Task1 CHILD Task2, Task3

PARENT Task2, Task3 CHILD Task4

Majority of scientific workflows use this approach for

describing dependence. Typical examples are JDL (Job

Description Language) [1] which are used by gLite [2],

DAGMan [5] in Condor [6], SCULF [7] in Taverna [8],

Pegasus [9]. The main advantage of this approach is that it can

describe more complex workflows than the first approach. The

dependences can be visualized as directed acyclic graphs

(DAG), where tasks are represented by nodes of the graphs

and the directed edges show the parent-child relationships.

Fig. 1 shows the graph of the workflow in the example above.

Fig.1 Workflow represented as DAG

Task1

Task2 Task3

Task4

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 547

Except for the mentioned two approaches, there are also

other ways for describing workflows, e.g. GWorkflowDL [10]

in GWES uses Petri net for workflow representation, however,

these approaches are less common.

Another thing about workflow representation is workflow

editor. Many workflow engines use XML-based languages for

describing workflows. Although XML is excellent for

machine processing, they are not suitable for human reading.

Editing a large workflow in XML by using text editors is very

challenging. Therefore, several projects e.g. Taverna, GWES,

offer graphical workflow editor for creating/editing

workflows. Although these graphical editors can help users to

visualize workflows and edit them, they have one major

drawback: they are difficult to make scripts, e.g.

parameterized workflows or repeated tasks.

III. PROGRAMABLE WORKFLOW DESCRIPTION

We use a simpler way to describe workflows as follows:

• A task in a workflow is described by triple: its code, a set

of input data and a set of output data.

• A workflow is described as a sequence of tasks.

• Dependence and parallelism among tasks are implicitly

defined by the input/output of tasks.

An example of a workflow is follows:

Myworkflow(input, output, N)

 Task(preprocess, input, local)

 for i = 1 to N

 Task(simulation, local, result[i])

 Task(postprocess, result, output)

In the code above, the parameters input and output of the

workflows are the lists of input and output data of the

workflow and N is an additional literal parameter of the

mentioned workflow. As it is shown, the workflow is

parameterized: users can define input/output data of the

workflows at the runtime, and some other literal parameters if

exist. The items in the lists of input/output data are usually the

names of files containing corresponding data. The differences

between input data and additional parameters of workflows

are that: the values of additional parameters must be known at

the moment the workflows is created and when the real values

of input/output data (i.e. the contents of files in the lists) will

be known at the moment the workflow is executed.

The first task uses code in file preprocess for processing

data from input and produces data stored in files in local. The

loop will create N tasks which run code in simulation with

local as input data and create N results indexed as result[1],

..., result[N]. Finally the last task use data from the list result,

and create output of whole workflow.

As it is shown in the example above, we only describe tasks,

not the dependences among tasks. The dependence is

implicitly defined by the input/output data of tasks. For

example, second task use data produced by first task, so it

must wait until the first task finishes.

 We use Python scripting language for implementing a

workflow composition tool for processing workflow

description in our approach. The use of Python is inspired by

Ganga job management [11] developed by CERN. In fact,

each workflow, described in examples above, is a function in

Python. With Python, we can easily write define workflows

with loops and/other control instructions.

Internally, the workflow internally consists of two lists: list

of tasks and list of data. Each task in the workflow is an object

in memory with references to its data. Fig. 2 shows the

internal memory structures of workflows: the list of tasks on

the left side, the list of data on the right side, and references

between tasks and data.

It is worth to note that the graph in Fig. 2 can be generated

with linear complexity. We don’t have to analyze every pair of

tasks to know if they have data dependence, but just read the

task description and make connection to the its data. As every

task is read only once, the complete graph can be generated

with linear complexity.

Fig. 2 Internal structure of workflow

It is interesting to see that the internal data structure of the

workflow in Fig. 2 is exactly the graphical representation of

the workflow like in Fig. 3. It means that, once the workflow

description is processed, we have already graphical

representation of the workflow in DAG form in memory.

Therefore, it is easy to export the workflow description to any

other formats compatible with DAG.

We can prove the equivalence of workflows in our approach

and workflows described by directed acyclic graphs by

following statements:

• Every workflow represented in DAG can be described in

our approach.

• Every workflow described in our approach can be

converted to DAG with linear complexity O(N).

Formatted data

Preprocess

Result[3]

Simulation

Simulation

Simulation

Result[2]

Result[1]

Postprocess
Output

Input

548 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 3 Graphical presentation of workflow

The proof of the first statement is simple: just define the data

transferred along a directed edge in the DAG as a data item

(file) and we will have whole workflow as a list of tasks with

input/output data for each task like in our approach. The proof

of second statement can be derived from graphical

representation of our approach.

By these statements we can prove the equivalence between

our representation of workflow and DAG, they can be simply

converted from one format to the other. The complexity of the

conversion is O(N), i.e. the cost of conversion per a task is

constant and independent from the size of workflow. In our

implementation, the cost is only some microseconds. In

comparison with typical execution times of tasks in grid

computing (several minutes) we can safely say that the cost is

really negligible.

IV. WORKFLOW SCHEDULING AND EXECUTION

A processing element is a hardware entity where tasks are

executed. It can be a CPU, computer node or cluster in grid

computing or a server where services are located.

A group of processing elements (PE group) is a set of PEs

where the times needed for data transfers between tasks in a

workflow is negligible in comparison with the execution times

of tasks.

We are saying about distributed computing when the times

needed for data transfers between tasks located in different PE

groups in a workflow are significant in comparison with the

execution times of tasks. If tasks in the workflow are not well

scheduled, it can cause serious performance penalties because

of data transfer. Therefore, optimization of workflow

execution is very important.

There are many scheduling algorithms that can optimize

workflows execution. In [12], a nice taxonomy with

scheduling strategies was presented. It is proved in [13] that a

good scheduling algorithm can significantly improve

performance of workflows execution.

One of the main weaknesses in design of existing scientific

workflow management systems is that there is only single

central workflow manager that handles all communications,

dispatches tasks and monitors status of their executions. Even

successive tasks are mapped on the same processing element

(PE), tasks are usually send output data to the workflow

manager and then the data are sent back to the PE for

following tasks. Such communication is very inefficient and in

distributed environment with high latency, that can cause

serious performance penalties.

V. DISTRIBUTED WORKFLOW EXECUTION

In our approach, each group of processing elements has a

local workflow manager which takes care of task execution on

the PE group and handles all data used by the tasks. Each local

manager has complete workflow with schedule.

Communication can be realized between local managers

asynchronously.

The central workflow manager is responsible for global

scheduling and starting the local managers. We adopt the

scheduling approach described in [14] for scheduling tasks in

the workflows. Once the schedule is done and the local

workflow managers running on PE have started, the central

manager sends the whole workflow with schedule to every

local manager.

The local managers will receive the workflows with

scheduling and execute tasks that have been assigned to their

own PE. Data transferred between tasks will be realized

directly between local managers. As data used and produced

by a task is explicitly declared in the workflow description, the

local workflow manager can know where to send data.

We choose Java programming language for implementation

of central and local workflow managers due to its excellent

network libraries. The local managers run as a background

process in a PE. Each local manager has two main modules:

communication module for handling communication with

central and other local managers, send and receive data, and

execution module: handling task execution.

Local manager use very little CPU, most of time they are in

waiting status (communication module waiting for data,

execution module wait for task finish), so they do not need

separate CPU for running, but share CPU for task execution.

The central manager steers the execution of workflows at

local managers via these commands:

• CANCEL: cancel workflow execution and terminate local

managers

• RECONFIG: the central manager send new schedule (for

unexecuted tasks) to local managers. It can happen when

some local managers do not respond due to fault

occurrence on PE, so tasks assigned to the PE need to

redistribute.

• STATUS: getting status of tasks on the local managers.

The central manager also uses STATUS command as

heartbeat signal to detect fault occurrence at the local

managers.

• GETDATA: getting data from local managers. By default,

the local managers do not send intermediate data to the

central managers.

Formatted data

Preprocess

Result[3]

Simulation Simulation Simulation

Result[2] Result[1]

Postprocess

Output

Input

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 549

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented our approach for flexible

workflow composition. Workflows are described as a list of

tasks with input/output data explicitly defined. This approach

supports nested workflows, loops and other control

instructions in Python scripting language, which is used in our

implementation. The workflows then can be executed by

distributed workflow management system.

ACKNOWLEDGMENT

This work is supported by projects SMART ITMS:

26240120005, SMART II ITMS: 26240120029, VEGA

2/0184/10.

REFERENCES

[1] E. Laure at al. Programming the Grid with gLite. Computational
methods in science and technology. Vol. 12, No. 1, pp. 33-45, 2006.

[2] gLite - Lightweight Middleware for Grid Computing. http://glite.cern.ch.

2011.
[3] Gregor von Laszewski, Mihael Hategan and Deepti Kodeboyina. Java

CoG Kit Workflow. Workflows for E-Science, Part III, pp. 340-356,

2007.
[4] Gregor von Laszewski, Ian Foster, Jarek Gawor, and Peter Lane. A Java

Commodity Grid Kit. Concurrency and Computation: Practice and

Experience, 13(89), pp. 643- 662, 2001.
[5] J Frey. Condor DAGMan: Handling inter-job dependencies. 2002.

[6] Condor project homepage. http://www.cs.wisc.edu/condor/. 2010.

[7] Kostas Votis at al. Workflow coordination in grid networks for
Supporting enterprise-wide business Solutions. IADIS Internacional

Conference e-Commerce, pp. 253-260, 2004.

[8] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li, and T.

Oinn, “Taverna: a tool for building and running workflows of services.,”

Nucleic Acids Research, vol. 34, iss. Web Server issue, pp. 729-732,

2006.
[9] K.Lee, N. W. Paton, R. Sakellariou, E. Deelman, A. A. A. Fernandes, G.

Mehta. Adaptive Workflow Processing and Execution in Pegasus. 3rd

International Workshop on Workflow Management and Applications in
Grid Environments pp. 99-106, 2008.

[10] Martin Alt, Andreas Hoheisel, Hans-Werner Pohl and Sergei Gorlatch.

A Grid Workflow Language Using High-Level Petri Nets. Parallel
Processing and Applied Mathematics, pp.715-722, 2006.

[11] K. Harrison, C.L. Tan, D. Liko, A. Maier, J. Mościcki, U. Egede,

R.W.L. Jones, A. Soroko, G.N. Patrick. Ganga: a Grid User Interface.
International Conference on Computing in High Energy and Nuclear

Physics, pp. 982-985, 2006.

[12] Jia Yu and Rajkumar Buyya. A Taxonomy of Scientific Workflow
Systems for Grid Computing. SIGMOD Record, Vol. 34, No. 3, pp. 44-

49, 2005.

[13] Marek Wieczorek, Radu Prodan and Thomas Fahringer. Scheduling of

Scientific Workflows in the ASKALON Grid Environment. SIGMOD

Record, Vol. 34, No. 3, pp. 56-62, 2005.
[14] Yili Gong1, Marlon E. Pierce, and Geoffrey C. Fox. Dynamic Resource-

Critical Workflow Scheduling in Heterogeneous Environments.

Workshops on Job Scheduling Strategies for Parallel Processing, pp. 1-
15, 2009.

550 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Predicting CPU Availability of a Multi-core Processor

Executing Concurrent Java Threads

Khondker Shajadul Hasan
1
, Nicolas G. Grounds

2
, John K. Antonio

1

1
School of Computer Science, University of Oklahoma, 110 W. Boyd St., Norman, OK 73019, USA

shajadul@ou.edu, antonio@ou.edu

2
MSCI, 201 David L Boren Blvd # 300, Norman, OK 73072, USA

nicolas.grounds@msci.com

Abstract - Techniques for predicting the availability of

CPU resources associated with the execution of

multiple concurrent Java threads on a multi-core

architecture are introduced. Prediction of CPU

availability is important in the context of making thread

assignment and scheduling decisions. Theoretically

derived upper and lower bound formulas for estimating

CPU availability are introduced. Input parameters to

the formulas include: number of cores; number of

threads; and the unloaded CPU usage factor for each

thread. Extensive experimental studies and statistical

analysis are performed to validate the theoretical

bounds and provide a basis for an empirical model for

predicting CPU availability. To facilitate scientific and

controlled empirical evaluation, synthetically generated

threads are employed that are parameterized by their

unloaded CPU usage factor, defined as the fraction of

time a thread spends utilizing CPU resources on an

unloaded system.

Keywords: Concurrent threads; CPU availability;

Multi-core processors; Java Virtual Machine.

1. Introduction
 Multithreading is a common technique used for

exploiting performance from multi-core processors.

When the number of threads assigned to a multi-core

processor is less than or equal to the number of CPU

cores associated with the processor, then the

performance of the CPU is predictable, and is often

nearly ideal. When the number of assigned threads is

more than the number of CPU cores, the resulting CPU

performance can be more difficult to predict. For

example, assigning two CPU-bound threads to a single

core results in CPU availability of about 50%, meaning

that roughly 50% of the CPU resource is available for

executing either thread. Alternatively, if two I/O-bound

threads are assigned to a single core, it is possible that

the resulting CPU availability is nearly 100%, provided

that the usage of the CPU resource by each thread is

fortuitously interleaved. However, if the points in time

where both I/O-bound threads do require the CPU

resource overlap (i.e., they are not interleaved), then it

is possible (although perhaps not likely) that the CPU

availability of the two I/O bond threads could be as low

as 50%. Predicting the availability of CPU resources

when the number of threads assigned to the processor

exceeds the number of cores is important in making

thread assignment and scheduling decisions. Precise

values of CPU availability are difficult to predict

because of a dependence on many factors, including

context switching overhead, CPU usage requirements

of the threads, the degree of interleaving of the timing

of the CPU requirements of the threads, and the

characteristics of the thread scheduler of the underlying

operating system (or Java Virtual Machine). Due to the

complex nature of the execution environment, an

empirical approach is employed to evaluate proposed

CPU availability prediction models and formulas.

 The success of approaches for assigning threads (or

processes) to multi-core systems relies on the existence

of reasonably accurate models for estimating CPU

availability. This is because there is a strong

relationship between a thread’s total execution time and

the availability of CPU resources used for its execution.

Therefore, predicting the CPU availability that results

when threads are assigned to a processor is a basic

problem that arises in many important contexts [1].

 In the present paper, an extensive collection of

empirical measurements taken from both single- and

multi-core processors provide a basis for validating

proposed analytical models for estimating CPU

availability. The proposed models are theoretically

derived upper and lower bound formulas for CPU

availability. Confidence interval and moving average

statistics from measured CPU availability (from

different empirical case studies) validate the utility of

these theoretical models. Case studies for a single core

machine involve spawning 2, 3 and 4 concurrent

threads with randomly selected CPU usage factors.

Each case study includes a collection of about 2,000

sample executions. For a quad core machine, similar

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 551

mailto:shajadul@ou.edu

case studies are conducted involving 8, 12 and 16

concurrent threads, again with randomly selected CPU

usage factors for the threads.

 An interesting outcome of the empirical case studies is

that the variation in measured CPU availability is very

low whenever the sum of the threads’ CPU usage factors

is either relatively low, or relatively high. Thus,

prediction of CPU availability is quite accurate when the

CPU is either lightly or heavily loaded. When the total

CPU loading (i.e., sum of all threads’ CPU usage factors)

is moderate, the realized availability of CPU resources

has more variation and thus is less predictable. However,

even the largest variation in CPU availability measured

was typically no more than 20%, with a 90% confidence.

The empirical studies also show that, as the number of

concurrent threads increases, the context switching

overhead degrades the performance of thread execution;

resulting in a slightly wider gap between the

theoretically derived upper bound and measured

availability values. In both single- and multi-core cases,

when the number of threads is above the number of CPU

cores, the performance of thread execution is predicted

reasonably well by the theoretical upper bound formula

for CPU availability.

 The rest of the paper is organized in the following

manner. Section 2 discusses relevant background

related to the execution of Java threads, and motivates

the importance of predicting CPU availability. Section

3 introduces the specific thread execution model

assumed in this paper; from this model, theoretical

derivations of upper and lower bound formulas for CPU

availability are provided. Section 4 presents the

empirical studies including benchmarking, case study

measurements for single- and multi-core CPUs, and

statistical analysis of the results. Finally, Section 5

contains concluding remarks and suggestions for future

work.

2. Execution of Concurrent Java Threads

 The primary focus of this paper is to estimate the CPU

resource availability of a Java Virtual Machine (JVM)

executing concurrent threads. The concept of a Java

monitor [2] is useful for describing how threads are

executed by a JVM. A graphical depiction of such a

monitor is shown in Figure 1, which contains three

major sections. In the center, the large circular area

represents the owner, which contains two active

threads, represented by the small shaded circles. The

number of threads the owner can contain (concurrently)

is bounded by the number of CPU cores. At the upper

left, the rectangular area represents the entry set. At the

lower right, the other rectangular area represents the

wait set. Waiting or suspended threads are illustrated as

striped circles.

 Figure 1 also shows several labeled “doors” that

threads must pass through to interact with the monitor.

In the figure, one thread is suspended in the entry set

and one thread is suspended in the wait set. These

threads will remain where they are until one of the

active threads releases its position in the monitor. An

active thread can release the monitor in either of two

ways: it can complete the monitor region it is executing

or it can execute a wait command. If it completes the

monitor region, it exits the monitor via the door labeled

E. If it executes a wait command, it releases the monitor

and passes through door labeled C, the door into the

wait set.

Figure 1: A typical Java Monitor, derived from [2].

 To illustrate issues associated with predicting CPU

availability, assume the monitor of Figure 1 is

associated with a dual-core JVM. From the figure, there

are a total of four threads assigned to the JVM; two are

currently in a waiting state and two are currently active.

If all four threads are CPU-bound, meaning that their

unloaded CPU usage factor is 100%, then it is clear that

the availability of the CPU resources (i.e., both CPU

cores) will be about 50%. If, on the other hand, some

threads are I/O-bound (e.g., having CPU usage factors

less than say 25%) then predicting CPU availability is

not as straightforward. In general, the realized CPU

availability depends upon the scheduling scheme

employed by the JVM (and/or the underlying OS) for

transitioning threads between the active and waiting

states.

 In the next section, an analytical framework is

developed for estimating CPU availability associated

with executing concurrent threads on a multi-core JVM.

The primary contribution of the section is the derivation

of upper and lower bound formulas for CPU

availability.

552 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

3. Bounds for Multi-core CPU Availability
 In this section, an analytical framework is developed

for estimating CPU availability associated with

executing concurrent threads on a multi-core processor.

The primary contribution of this section is the

derivation of upper and lower bound formulas for CPU

availability. A thread is modeled by a series of

alternating work and sleep phases. For the purposes of

this study, the work portion of a phase is CPU-bound

and requires a fixed amount of computational work

(i.e., CPU cycles). The sleep portion of a phase does not

consume CPU cycles, and its length relative to that of

the work portion is used to define the CPU load usage

factor for a thread. Figure 2 shows three work-sleep

phases of a thread.

Figure 2: Three work-sleep phases of a thread.

 In the assumed framework, a thread in the work

portion of a phase will remain in the work portion until

it has consumed enough CPU cycles to complete the

allotted work of that portion. After completing the work

portion of a phase, the thread then enters in the sleep

portion where it sleeps (does not consume CPU cycles)

for an amount of time defined by the CPU usage factor.

When multiple threads are spawned concurrently, the

JVM runs those threads employing a time sharing

technique (refer to the discussion of the Java Monitor in

Section 2). The CPU availability (and performance)

will be degraded when the work phase of all threads

overlap each other in time. Figure 3 depicts a scenario

where 3 threads with identical work-sleep phases are

executed in a single-core execution environment.

Figure 3: Three concurrent threads having identical

work-sleep phases and CPU usage factors executing

on a single-core environment.

 Each thread gets a maximum of of the available

CPU resource during the work portions of their phases,

resulting in 3-times wider work portion execution time

than would be the case for a single thread scenario.

Alternatively, if the work portions of these three threads

are staggered to where there is no overlap, then there is

no contention for the CPU resource and the CPU

availability is essentially 100%, as shown in Figure 4.

That is, all the work phases of concurrent threads are

separated in time so that each thread can get the full

usage of the CPU the moment it is first needed by each

thread. The ideal phasing illustrated in Figure 4 requires

that the work of any two threads can be accomplished

within the time of one sleep portion of a phase.

Figure 4: Three concurrent threads with identical

work-sleep phases and CPU usage factors with non-

overlapping work portions.

 In the proposed framework, each thread is

parameterized by a CPU usage factor and a total

amount of computational work to accomplish. The CPU

usage factor is defined as the time required to complete

the work portion of a work-sleep phase on an unloaded

CPU, divided by the total time of a work-sleep phase. A

thread having zero sleep length has a CPU usage factor

of 100%, which is also called a CPU-bound thread.

 For a single core machine, the following formulas

define upper and lower bounds for CPU availability.

Here, n is the number of threads assigned to the single

core machine and L is the aggregate loading factor,

defined as the sum of CPU usage factors of all n

threads. The upper bound formula for CPU availability

is:

 a =

and the lower bound formula is:

 a =

 The upper bound formula represents the best case

CPU availability, which is illustrated by the example of

Figure 4 in which none of the threads use the CPU

1, if < 1

1/ if ≥
=

(1)

(2)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 553

resource concurrently. Provided that the sum of the

usage factors of the threads is less than unity, then it is

possible that the CPU availability could be as high as

unity (i.e., 100%). When the sum of the CPU usage

factors is greater than unity, then the best possible value

for CPU availability is 1/L. The lower bound formula is

associated with a situation in which the threads' usage

of the CPU resource has maximum overlap, as depicted

in Figure 3 in which all threads always use the CPU

resource concurrently.

 For a multi-core machine with c cores, the following

formulas define upper and lower bounds for CPU

availability. The upper bound formula is:

 a =

and the lower bound is:

 1

 1+

 Note that Eqs. 3 and 4 are generalizations of Eqs. 1

and 2, i.e., for the case c = 1, Eqs. 3 and 4 are identical

to Eqs. 1 and 2.

Figure 5: Upper and lower bounds for CPU

availability prediction for c = 4 cores.

 Figure 5 shows plots of the upper and lower bound

formulas for the case c = 4. Note that the difference in

upper and lower bounds can be significant for moderate

values of aggregate loading. In the following section,

experimental studies are performed to determine actual

measured values of CPU availability in relation to these

bounds.

4. Experimental Studies
4.1 Overview
The purpose of the experimental studies is to

empirically measure CPU availability as a function of

aggregate loading for collections of threads with

randomly selected CPU usage factors. For the study,

threads are generated synthetically so that their CPU

usage factors can be set accurately. The measured CPU

availability associated with a collection of threads

executing on a processor is defined by the ratio between

the ideal time required to execute one of the threads on

an unloaded processor divided by that thread’s

execution time on a loaded processor. About 2,000

randomly selected collections of threads are generated

for each study; each randomly generated collection of

threads provides one measurement of CPU availability.

The major part of the experimental system’s flow

control is shown in Figure 6.

Figure 6: Flow chart for load distribution and

execution process of threads.

 To ensure a uniform sampling of data across the

values of possible aggregate loadings, a random value

of aggregate loading is chosen first. For example, for a

scenario having two threads, a value of aggregate

loading is chosen between a small value ε
and 2; denote this value as L. Then a random value is

chosen between max{ε, L-1} and min{1, L}, which

defines the CPU usage factor of the first thread, say T1;

the CPU usage factor of the second thread is then

a =

=
 (3)

(4)

1, if < 1

c / if c ≥

554 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

defined as T2 = L – T1. In general, for n threads, the

following algorithm is used to randomly assign the

CPU usage factors for a given value of aggregate

loading L:

For i = 1 to n – 1 do

 Pick Ti from the following range

End

 Recall that the CPU usage factor of a thread defines

the relative amount of work performed during its work

phase relative to its sleep phase. As described in the

flow chart of Figure 6, a random phase shift is also

assigned to each thread. The range of the phase shift

value is from 0 to length of the phase. This random

phase shift provides a degree of staggering of phases

among the threads. Figure 4 is an example of the best

case staggering; whereas Figure 3 is an example of

worst case staggering in terms of CPU availability.

4.2 Experimental Environment
 The system used for evaluating the single core test

cases is an Intel Xeon CPU E5540 @ 2.53GHz clock

speed, 1,333 MHz bus speed and 4 GB of RAM. The

system used for evaluating the multi-core test cases is

an Intel Core 2 Quad (quad-core processor), 2.83GHz

clock speed, 1,333MHz bus speed with 4 GB of RAM.

Due to the different configurations of the single- and

quad-core systems, benchmarking for the single-core

and quad-core machines were determined separately.

The JVM used for these experiments is JDK 1.6.

Threads deployed here are independent tasks, meaning

there are no interdependencies among threads such as

message passing. Threads are spawned concurrently

with workloads and phase shifts as described in the

previous section. When a collection of threads

completes, a report of the threads’ execution is

produced, which contains start time, work time, sleep

time, number of phases, and end time.

4.3 Benchmarking
 Benchmarking an unloaded system enables the

calculation of parameters associated with the work and

sleep portions of the phases to synthesize a particular

CPU usage factor. For setting up the benchmarks, each

thread was assigned 2 units of synthetic CPU

work. Threads need to accomplish this total work in 50

work-sleep phases. In the work component of each

phase, these threads accomplish 4 units of

work. For calculating the CPU usage factors (5%, 10%,

15%, etc.), the sleep phase length is varied using the

following equation.

According to the formula above, the sleep time

increases as the CPU usage decreases. Thus, a thread

with low CPU usage will sleep longer than other

threads having a higher CPU usage factors.

4.4 Empirical CPU Availability Case Studies
 For measuring the CPU availability of the single-core

processor, three case studies were conducted in which

multiple (2, 3, and 4) threads were spawned

concurrently. An aggregate CPU load L was selected

randomly, and distributed among the threads as

described in Section 4.1.

 Figures 7 and 8 show measured CPU availability

scatter graphs for 2 and 4 concurrent threads executing

on the single-core processor, superimposed with the

plots of the upper and lower bound formulas derived in

Section 3. In these figures, the horizontal axis

represents aggregated CPU load and the vertical axis

represents CPU availability. Each small dot in these

graphs is an independent test case measurement of CPU

availability. There are 2,000 dots in each figure

representing measured CPU availability value among

the concurrent threads. A moving average line is also

drawn through the data on the graphs for helping to

visualize the average measured performance. A window

size of 0.10 aggregate CPU load and incremental value

of 0.01 was used to calculate the moving average

values. A similar sliding window approach was

employed to calculate the 90% confidence interval

upper and lower limits.

Figure 7: CPU availability of 2 threads in a single-

core machine. Results of 2,000 independent test

cases and 90% confidence intervals.

(5)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 555

Figure 8: CPU availability of 4 threads in a single-

core machine. Results of 2,000 independent test

cases and 90% confidence intervals.

 It is apparent from Figures 7 and 8 that the variation

in CPU availability is low when the aggregate CPU

loading is either relatively low or relatively high. Thus,

CPU availability prediction is quite accurate when the

CPU is either lightly or heavily loaded. When the total

CPU loading is moderate, the measured CPU

availability has more variation and thus it is less

predictable. One of the intuitive reasons for low

variation when threads have small CPU loading factors

is their sleep phase lengths are wider, which decreases

the probability of work portion overlap among the

threads. On the other hand, when the aggregate CPU

load is large, threads have smaller sleep phase and

longer work phase lengths which almost always forces

work phase to overlap and decrease performance, but in

a predictable way.

Figure 9: CPU availability of 8 threads in a quad-

core machine. Results for 2,000 independent test

cases and 90% confidence intervals.

 For measuring the CPU availability of the quad-core

processor, three case studies were conducted in which

multiple (8, 12, and 16) threads were spawned

concurrently to relatively compare the performance

between single- and quad-core processors. A similar

approach has been employed to calculate the moving

average and 90% confidence interval values. CPU

availability graphs for 8 and 16 threads are shown in

Figure 9 and Figure 10 respectively. Figure 9 shows a

higher variation of CPU availability compared with

Figure 7, which shows CPU availability of 2 threads in

a single-core machine. During the thread execution life

cycle, depending on CPU availability, threads might be

allocated in different cores for load balancing which

decrease the probability of work phase overlap.

 The empirical results for the quad-core processor

also show that the CPU availability prediction is quite

accurate when the CPU is either lightly or heavily

loaded. When the total CPU loading is moderate, the

measured CPU availability has more variation and thus

it is less predictable.

Figure 10: CPU availability of 16 threads in a quad-

core machine. Results of 2,000 independent test

cases and 90% confidence intervals.

 The empirical results of the quad-core processor also

shows that when the numbers of concurrent threads are

exact multiples of the number of cores, it provides

much better performance than when they are not. That

measured variation can be as large as 10% of the

overall CPU availability. From the empirical results of

single- and multi-core processors, and measured CPU

availability scatter graphs, it is apparent that

theoretically derived upper and lower limits introduced

in this paper bound actual measured values of CPU

availability reasonably well.

 In further reporting the results of the studies, it is

convenient to define the normalized aggregate load,

L/n, which is the aggregate load L normalized by the

number of threads n. For sample values of normalized

aggregate load, Table 1 shows the average measured

CPU availability (Avg.), the difference in the upper and

lower bound formulas (Bnd Diff) and the difference in

the 90% confidence interval limits (CI Diff) for 2, 3 and

4 concurrent threads on the single-core processor.

556 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Table 1: Average measured CPU availability (Avg.) for

threads in a single-core machine along with differences

of bound formulas (Bnd Diff) and 90% confidence

interval limits (CI Diff).

L/n
2 Thread CPU

Availability
3 Thread

CPU Avail.
4 Thread CPU

Availability
Avg

Bnd

Diff

CI

Diff
Avg

Bnd

Diff

CI

Diff
Avg

Bnd

Diff

CI

Diff

0.05 0.985 0.048 0.019 0.973 0.094 0.023 0.971 0.133 0.050

0.10 0.980 0.091 0.033 0.946 0.167 0.051 0.935 0.232 0.042

0.20 0.953 0.167 0.076 0.873 0.287 0.087 0.828 0.375 0.104

0.30 0.892 0.231 0.121 0.790 0.376 0.149 0.685 0.306 0.117

0.40 0.862 0.286 0.168 0.707 0.277 0.128 0.575 0.170 0.070

0.50 0.796 0.333 0.175 0.610 0.167 0.059 0.484 0.099 0.027

0.60 0.739 0.208 0.112 0.524 0.101 0.034 0.412 0.059 0.020

0.70 0.662 0.126 0.067 0.461 0.059 0.024 0.353 0.035 0.017

0.80 0.600 0.069 0.042 0.403 0.032 0.021 0.311 0.018 0.011

0.90 0.543 0.029 0.033 0.363 0.013 0.014 0.275 0.008 0.007

1.00 0.495 0.000 0.004 0.331 0.000 0.05 0.249 0.000 0.008

 Table 1 shows that the difference between the upper

and lower limits formula bounds can reach as high as

0.375, for 4 threads and a normalized aggregate loading

of 0.20. However, the measured CPU availability is for

this same case is much smaller, around 0.104. The

difference of the formula-based bound is more precise

when the CPU is lightly or heavily loaded.

Table 2: Average measured CPU availability (Avg.) for

threads in a quad-core machine along with differences

of bound formulas (Bnd Diff) and 90% confidence

interval limits (CI Diff).

L/n
8 Thread CPU

Availability
12 Thread
CPU Avail.

16 Thread
CPU Avail.

Avg
Bnd

Diff

CI

Diff
Avg

Bnd

Diff

CI

Diff
Avg

Bnd

Diff

CI

Diff

0.5 0.973 0.080 0.015 0.971 0.121 0.017 0.969 0.158 0.013

0.10 0.971 0.150 0.019 0.974 0.216 0.022 0.948 0.273 0.058

0.20 0.973 0.260 0.064 0.959 0.355 0.064 0.862 0.429 0.128

0.30 0.956 0.345 0.153 0.904 0.452 0.121 0.690 0.363 0.149

0.40 0.903 0.413 0.322 0.752 0.357 0.085 0.543 0.225 0.116

0.50 0.768 0.466 0.304 0.604 0.246 0.102 0.411 0.152 0.107

0.60 0.595 0.345 0.299 0.490 0.178 0.081 0.344 0.109 0.079

0.70 0.554 0.264 0.222 0.429 0.134 0.073 0.321 0.081 0.057

0.80 0.493 0.208 0.217 0.358 0.104 0.069 0.268 0.062 0.028

0.90 0.446 0.167 0.146 0.328 0.083 0.079 0.240 0.049 0.029

1.00 0.419 0.136 0.114 0.291 0.067 0.058 0.222 0.040 0.023

 Similarly, for a quad core processor, Table 2 shows

that the difference between the upper and lower limits

formula bounds can reach as high as 0.429, for 16

threads and a normalized aggregate loading of 0.20.

However, the measured CPU availability is for this

same case is much smaller, around 0.128. The

difference of the formula-based bound is more precise

when the CPU is lightly or heavily loaded for quad-core

processor as well.

5. Conclusion and Future work
 This paper developed analytical models (and

conducted empirical studies) for predicting (and

measuring) CPU availability of JVMs supported by

single- and multi-core architectures. As would be

expected, degradation in CPU availability occurs when

total CPU loading is greater than the total capacity of

all CPU cores. In addition to total CPU loading, the

total number of concurrent threads is a factor in

predicting CPU efficiency; more threads generally incur

more context switching overhead, which results in

degraded availability. When the total load is less than

the total capacity of all cores, the relative alignment of

the working and sleeping phases of the threads can have

a significant impact on CPU availability. Specifically,

increased overlap of the work phases implies lower

availability. It was demonstrated that shifting the

relative phasing of the threads to reduce possible work

phase overlap can improve the performance (i.e., CPU

efficiency). Random aggregate load and phase shift

values for concurrent threads were assigned for each for

an extensive number of experimental measurements. A

thread availability scatter plot provides a clear

visualization of measured performance based on the

density of the dots in the plot. These empirically

measured availability values are showed to generally

fall within theoretically derived upper and lower bound

formulas. A 90% confidence interval for measured

availability is shown to provide significantly tighter

upper and lower limits than the theoretically derived

formulas for upper and lower bounds.

6. References
[1] Martha Beltrán, Antonio Guzmán and Jose Luis Bosque,

“A new CPU Availability Prediction Model for Time-

Shared Systems”, IEEE Computer, Vol 57, July 2008.

[2] Bill Venners, “Inside the Java 2 Virtual Machine”,

Thread Synchronization, URL:

http://www.artima.com/insidejvm/ed2/index.html

[3] Y. Zhang, W. Sun, and Y. Inoguchi, “Predicting running

time of grid tasks on cpu load predictions”, Proceedings

of the 7th IEEE/ACM International Conference on Grid

Computing, pp. 286–292, September 2006.

[4] “Java thread performance”, The behavior of Java threads

under Linux NPTL, Amity Solutions Pty Ltd – Version

1.5, July 2, 2003, URL: http://www.amitysolutions

.com.au/ documents/NPTL_Java_threads.pdf

[5] Ken Arnold and James Gosling, The Java Programming

Language, Fourth Edition, Addison Wesley, 2005.

[6] Vitaly Mikheev, “Switching JVMs May Help Reveal

Issues in Multi-Threaded Apps”, May 2010,

http://java.dzone.com/articles/case-study-switching-

jvms-may.

[7] Analysis of Multithreaded Architecture for Parallel

Computing, Rafael H. Saavedra, David E. Culler,

Thorsten Eicken, 2nd Annual ACM Symposium on

Parallel Algorithms and Architectures, 1990.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 557

http://www.artima.com/insidejvm/ed2/index.html
http://java.dzone.com/articles/case-study-switching-jvms-may
http://java.dzone.com/articles/case-study-switching-jvms-may

558 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

SESSION

EVALUATION METHODS AND PERFORMANCE
ANALYSIS

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 559

560 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Examining Anomalous Network Performance with Confidence

Bradley W. Settlemyer, Stephen W. Hodson, Jeffery A. Kuehn and Stephen W. Poole

Computer Science and Mathematics Division

Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

{settlemyerbw,hodsonsw,kuehn,spoole}@ornl.gov

Abstract—Variability in network performance is a major

obstacle in effectively analyzing the throughput of mod-

ern high performance computer systems. High performance

interconnection networks offer excellent best-case network

latencies; however, highly parallel applications running on

parallel machines typically require consistently high levels

of performance to adequately leverage the massive amounts

of available computing power. Performance analysts have

usually quantified network performance using traditional

summary statistics that assume the observational data is

sampled from a normal distribution. In our examinations of

network performance, we have found this method of analy-

sis often provides too little data to understand anomalous

network performance. In particular, we examine a multi-

modal performance scenario encountered with an Infiniband

interconnection network and we explore the performance

repeatability on the custom Cray SeaStar2 interconnection

network after a set of software and driver updates.

Keywords: High Performance Computing, Networking, Perfor-

mance, Benchmarks

1. Introduction
High speed interconnection networks, such as Infiniband

and Cray’s SeaStar2, offer a multitude of network transmis-

sion modes and features. Options such as zero-copy remote

direct memory access (RDMA) and congestion avoidance

routing make understanding an application’s network behav-

ior quite difficult. In particular, the performance of collective

communication primitives, such as the Message Passing

Interface’s MPI_Allreduce, is often dictated by the slowest

communicating member of the collective; however, even

for point-to-point nearest-neighbor communication patterns,

the ability to advance a time stepping solution is typi-

cally constrained by the slowest neighbors, not the fastest

neighbors. In both cases, a single member of the collective

communication that is experiencing poor performance will

often severely limit the performance of the entire scientific

application. In this paper, we use Confidence to examine

poor communication performance due to anomalous network

behavior – and in one case, we are able to reconfigure the

networking stack to improve network latency.

The Confidence toolkit [1] seeks to present information

about the performance of a benchmark or micro-benchmark

over the entire range of observed results by presenting an

empirically derived probability distribution that describes

the performance of the system under study. Note that the

resultant probability distribution only describes the system

performance at the time of the benchmark execution. Dif-

ferent systems will have different probability distributions,

and the probability distributions may change over time

depending on the degree and nature of resource sharing.

On the other hand, if the benchmark execution adequately

samples the entire network topology, we can expect that a

high degree of measurement stability (e.g. stationarity and

ergodicity) will exist.

1.1 Related Work

Previous studies have demonstrated the utility of proba-

bility distributions (rather than simple summary statistics)

to discover multi-modal performance characteristics in com-

puter networks [2], [3]. Our studies further demonstrate that

the distributions of high performance interconnect messaging

is often skewed with multiple modes present [1]. Summary

statistics assume the underlying data is sampled from a

normal distribution and typically stress the performance

mean which may not be relevant to application performance.

The rigorous evaluation of network performance in HPC

systems has been an area of interest for several years.

Petrini, et al., described the performance of the Quadrics

interconnection network using a suite of network tests [4].

In general, the analysis focused on looking at average and

best-case performance measurements on a quiesced system.

The HPC Challenge (HPCC) Benchmark Suite extended

this approach to include tests on all processing an HPC

system [5], both in a pair-wise fashion, and in process rings.

These techniques have been used to describe the network

(and overall system) performance of the Cray XT4 and

Blue Gene/P at Oak Ridge National Laboratory [6], [7], the

Blue Gene/L systems at Argonne and Lawrence Livermore

National Laboratory [8], and the Roadrunner system at Los

Alamos National Laboratory [9].

Bhatelé and Kalé examined the effects of contention in

high performance interconnection networks [10]. A bench-

mark was constructed to have all pairs of processes send

messages at the same time with the number of hops between

each sender fixed. The results were averaged and reported

for each factor of 4 message size between 4 Bytes and 1 MiB

and indicated that contention on the network could severely

degrade communication performance.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 561

2. Confidence Configuration
Confidence relies on data binning to gain insight into

the behavior of benchmarks. Data binning is a data pre-

processing technique that attempts to quantize observed

values into a discrete number of buckets that adequately

represent and emphasize the magnitude of the real observed

values. By binning millions or billions of benchmark mea-

surements, we can use the resulting frequency distribution to

approximate the continuous stochastic process that describes

the benchmark performance.

For any benchmark elapsed time measurements may differ

by nanoseconds in terms of the returned values, but the

timers used to observe those durations are not capable of

providing measurements with such high degrees of precision.

Confidence includes a measurement abstraction layer called

the Oak Ridge Benchmarking Timer, or ORBTimer, that both

selects an appropriate timer for the underlying hardware (e.g.

the Pentium/x86 cycle counter) and calibrates the timer in

a manner consistent with the behavior of the actual timed

kernel.

Once the fidelity of the timer has been determined, it

is straightforward to determine an appropriate number of

data bins and a bin width for the benchmark under study.

Confidence provides both fixed width data bins and loga-

rithmically scaled bin sizes. The fixed bin width, f w, is

determined by dividing the maximum histogram time, T ,

by the number of requested bins, C:

f wi = T/C (0≤ i <C). (1)

Logarithmically scaled data bins are useful when the timing

data varies by several orders of magnitude or the amount of

system memory for storing measurements is constrained. To

use logarithmically scaled bins, the user must specify a bin

size, S that is greater than 0. The logarithmic data bin width,

lw, is described by the following function:

lw0 = S (2)

lwi = eS∗i−1 (0 < i <C).

2.0.1 Latency Benchmark

For these tests we used CommTest3, a network bench-

mark included with Confidence. For each trial, CommTest3

performed a pairwise MPI_Sendrecv between every MPI

process running as part of the benchmark. MPI_Sendrecv

was selected as the benchmarking kernel operation because

it was well supported on all platforms and does not subdivide

the communication over several user space calls (such as

MPI_Wait), which would make it difficult to measure the

constituent communication portions.

Figure 1 illustrates the simple micro-benchmarking kernel

used in these experiments. All of the processes cycled

through each of their possible peers and performed a pair-

wise MPI_Sendrecv operation of 1 byte of data. The results

of these operations were reported in three different ways:

Fig. 1: Pair-wise communication pattern

the latency of the one-sided communication on node1, the

latency of the one-sided communication on node2, and the

pair-wise communication latency, which is the average of

the two one-sided latencies.

2.0.2 Data Analysis

By binning many millions of timing samples, Confidence

is able to construct an empirical approximation of the

probability distribution of the timing data. The originating

random process that generates the values is continuous but

the individual measurements are discrete, so we must use a

large number of discrete measurements to approximate the

continuous probability distribution of the timing data. The

resulting frequency distribution is used to mathematically

construct the empirical PDFs, and empirical CDFs. Recall

that a PDF, f , defines the probability for a random variable,

X , to take a value in some range [a : b], as:

P[a≤ X ≤ b] =
Z b

a
f (x)dx. (3)

Additionally, Confidence extracts the minimum obser-

vation for each pairwise cycle, and bins that data and

constructs distribution information and summary statistics

for the observed minimums. Although the sample size of

the observed minimums is small (1 observation per cycle

per host), the measurements are useful as a proxy for the

performance of the underlying hardware. In order to increase

the accuracy of our minimums distribution we increased the

number of benchmarking cycles to 100.

3. Diagnosing an Infiniband Perfor-

mance Anomaly

We encountered the surprising multi-modal performance

shown in figure 2 while examining the latency of pairwise

562 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 3e-06 4e-06 5e-06 6e-06 7e-06 8e-06 9e-06 1e-05 1.1e-05 1.2e-05

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Time (s)

Smoky 32 nodes 1ppn PW PDF
Smoky 32 nodes 1ppn PW Min PDF

Fig. 2: All pairwise communications and minimum pairwise

communications PDF for 32 nodes of Smoky with 1 process

communicating per node.

MPI-based communication on the Smoky Commodity Clus-

ter, an Infiniband-based cluster at Oak Ridge. Smoky was

an 80 node Linux test and development cluster available

at Oak Ridge National Laboratory’s National Center for

Computational Science (NCCS). Each node contained four

2.0 GHz AMD Opteron processors, 32 GiB of main memory,

an Intel Gigabit Ethernet NIC, and a Mellanox Infinihost

III Lx DDR HCA. The Infiniband network was switched

with a single Voltaire DDR Infiniband Grid Director 2012

using four sLB-2024 24-port Infiniband Line cards. The

switch provided 11.52 Tbps of bisection bandwidth with a

reported port-to-port latency of 420 nanoseconds. The nodes

ran Scientific Linux SL release 5.0, a full Linux operating

system based on the popular Red Hat Linux distribution. The

benchmark was built using the Portland Group International

compiler version 10.3.0 and OpenMPI version 1.2.6.

The pairwise message send latency PDF indicates the

presence of three performance modes when 32 Smoky nodes

are communicating simultaneously with only 1 communi-

cating process per node. The pairwise minimum distribution

shown on the same graph indicates that two of the perfor-

mance modes are present in hardware-only measurements.

The third, much smaller, performance mode may be due to

overhead in the network software stack, or it may simply

be due to OS-based interrupts. The first performance mode

is centered at 4.6 µs, the second mode is centered at 5.7 µs,
and the third mode is centered at 7.5 µs. With the aid of

Confidence, our goal was to identify if any hardware issues

contributed to the performance modes.

3.1 Ensuring Measurement Validity

Figure 3 shows a histogram of the observed timer over-

heads during our benchmarking run. Although the full ver-

sion of Linux in use on Smoky results in somewhat noisy

timing data, 99.8% of the timing overheads fall into the first

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 0 5e-06 1e-05 1.5e-05 2e-05 2.5e-05 3e-05

C
o

u
n

t

Delay (s)

Smoky Timer Timings

Fig. 3: Histogram of binned x86 timer values on Smoky.

histogram bucket, which spans 0 - 50 nanoseconds, indi-

cating that the timer overhead was most often a negligible

component of our measurements.

3.2 Examining Hardware Performance

Confidence decomposes benchmark execution iterations

into cycles. For each benchmarking cycle, 200,000 messages

are passed between each node-pair. In addition to record-

ing the latencies for the 200,000 messages sent between

each host pair, confidence also separately bins the absolute

minimum observation for each host pair during a cycle.

This best case minimum can be thought of as the actual

hardware induced networking latency. We use the pairwise

minimums rather than the one-sided minimums, because the

one-sided minimum observation is typically only the time it

takes to retrieve data from local memory after a successful

RDMA put operation. Although the pairwise minimum is

likely larger than the actual network hardware overheads,

we believe that the pairwise timing acts as an accurate

proxy for the actual hardware costs, and is closely correlated

with the hardware costs. In order to increase the accuracy

of our minimums distribution we increased the number of

benchmarking cycles from 10, to 100.

3.3 Analyzing Switching behavior

The switch documentation indicated that within a sin-

gle line card, each application specific integrated circuit

(ASIC) could communicate with every port within the ASIC

without an additional network hop. However, there was no

communication between the two ASICs that populated each

line card. Figure 4 confirms that within the same ASIC,

minimum pairwise latencies tended about 3.9 µs, whereas
ASIC spanning communications required 4.1 µs on average.

We hypothesized that hopping across the switch backplane

from one ASIC to the next within the switch may not require

as many switch hops as crossing between both switch line

cards and ASICs. Figure 5 shows the resulting latency PDF

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 563

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 3.6e-06 3.8e-06 4e-06 4.2e-06 4.4e-06

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Time (s)

Smoky 8n 1C1A PW Min PDF
Smoky 8n 1C2A PW Min PDF

Fig. 4: Pairwise communication minimums for 8 nodes. The

first plot engages only a single ASIC; the second plot spans

both line card ASICS.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 3.6e-06 3.8e-06 4e-06 4.2e-06 4.4e-06

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Time (s)

Smoky 8n 1C2A PW Min PDF
Smoky 8n 2C1A PW Min PDF
Smoky 8n 2C2A PW Min PDF
Smoky 8n 4C1A PW Min PDF
Smoky 8n 4C2A PW Min PDF

Fig. 5: Communication minimums for 8 nodes distributed

in each balanced configuration across line cards and ASICs.

The key indicates the number of line cards and ASICs per

line card in use for each plotted PDF.

for our Confidence jobs that allocated 8 total nodes in each

of the following configurations: on a single line card to a

single ASIC, one line card using both ASICS, two line cards

using a single ASIC per card, two line cards with both ASICs

in use, four line cards with a single ASIC in use on each,

and four line cards with two ASICs in use per line card. The

two resulting performance modes indicated that the switch

backplane does not introduce any additional latency, and that

the reduced performance detected in our original tests was

not likely due to any anomalous switching behavior.

Figure 6 demonstrates the resulting performance as we

added nodes to our tests while balancing the results across

each switch line card and ASIC. Each line in the plot is

the result of adding a single node for each ASIC, and then

running the confidence benchmark with that configuration.

Here we see the performance modes were not due to switch

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 3.5e-06 4e-06 4.5e-06 5e-06 5.5e-06 6e-06

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Time (s)

Smoky 8n 4C2A PW Min PDF
Smoky 16n 4C2A PW Min PDF
Smoky 24n 4C2A PW Min PDF
Smoky 32n 4C2A PW Min PDF
Smoky 40n 4C2A PW Min PDF
Smoky 48n 4C2A PW Min PDF

Fig. 6: Communication minimums for nodes distributed

evenly across all of the switch resources (line cards and

ASICs). Each plotted PDF shows the addition of exactly

one node to each ASIC in the switch.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 3.5e-06 4e-06 4.5e-06 5e-06 5.5e-06 6e-06

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Time (s)

Smoky 8n 4C2A PW Min PDF
Smoky 16n 4C2A PW Min PDF
Smoky 24n 4C2A PW Min PDF
Smoky 32n 4C2A PW Min PDF
Smoky 40n 4C2A PW Min PDF
Smoky 48n 4C2A PW Min PDF

Fig. 7: Communication minimums for nodes distributed

evenly across all of the switch resources (line cards and

ASICs) with RDMA eager mode enabled for 80 hosts.

hop counts, but instead due to an anomaly that appears at

any time more than 16 switch ports were in use.

Further investigation of the issue indicated that the Infini-

band driver compiled into OpenMPI used different message

send protocols depending on the number of hosts configured

in the system. The first 16 hosts an MPI process commu-

nicates with use an RDMA eager protocol; however, due to

a conservative implementation decision (i.e. concerns about

excessive polling costs) all subsequent MPI Sends resort to

an eager send protocol that uses an operating system buffer

(requiring context switches). Within OpenMPI we were able

to adjust the eager RDMA limit to 80 hosts, with figure 7

showing the resultant performance PDFs.

Figure 8 shows the resulting CDF when scheduling 32

processes on Smoky with forced eager RDMA communi-

cations versus the default configuration. In addition to the

564 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 3e-06 4e-06 5e-06 6e-06 7e-06 8e-06 9e-06 1e-05 1.1e-05 1.2e-05

P
ro

b
a
b
ili

ty

Time (s)

Smoky 32 nodes 1ppn PW CDF
Smoky 32 nodes 1ppn PW Eager CDF

Fig. 8: Before and after pairwise communication costs

improved performance , the removal of the operating system

assisted send possibly impacted the smaller performance

mode. This may be due to the reduced likelihood of com-

putational noise due to the smaller amount of time spent

performing communications per benchmarking run.

4. Assessing the Impacts of Network Up-

grades
In our earlier study of the Jaguar network [1], we noted

that network latencies were severely impacted by the num-

ber of node processes simultaneously sending. While re-

performing a series of experiments, we learned that our

benchmark results varied greatly from our earlier observa-

tions. We noted that the compilers and MPI platform had

experienced revisions since our earlier tests, but were skep-

tical that the software stack had caused the large degree of

change we observed in our Confidence-based benchmarking.

Jaguar [11], a Cray XT5, was composed of 18,688 dual

socket compute nodes running Compute Node Linux, a

lightweight Linux-based operating system. Each socket con-

tained a hex-core AMD Opteron 2435 processor at 2.6 GHz

for a total core count of 224,256, and each node included

16GiB of DDR2-800 main memory for a total system

memory of 299 TiB. Each node in Jaguar was connected

using a SeaStar2 router capable of transmitting 76.8 Gbps

in each direction on the 3-dimensional torus network.

Our original benchmark code was built using the Cray

XT5 compiler wrapper and MPI libraries, based on the

Portland Group International compiler version 9.0.4 and

XT Message Passing Toolkit 3.5.1. The more recent con-

figuration relied on Portland Group International compiler

version 10.3 and the XT Message Passing Toolkit 4.0.0.

All benchmark runs were performed on 64 node allocations

randomly selected by the scheduler. The allocations included

no more than one shelf from each of 5 separate cabinets,

ensuring the allocation spanned all 3 dimensions of the torus

network.

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 0 5e-06 1e-05 1.5e-05 2e-05 2.5e-05 3e-05

C
o

u
n

t

Delay (s)

Jaguar Timer Timings

Fig. 9: Histogram of binned x86 timer values on Jaguar

 0

 500000

 1e+06

 1.5e+06

 2e+06

 6e-06 8e-06 1e-05 1.2e-05 1.4e-05 1.6e-05 1.8e-05 2e-05

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Time (s)

JagPF 64N 1PPN ORIG Pair-wise PDF
JagPF 64N 1PPN OLD Pair-wise PDF
JagPF 64N 1PPN NEW Pair-wise PDF

Fig. 10: Pairwise communication latency PDF for 64 Jaguar

nodes with 1 communicating process per node. The first line

is the original data, the second line uses the old software

stack running after system updates, and the third line uses

the new software stack running after system updates.

4.1 Validating the Timer

In figure 9 we see a histogram of the system timer

measurements for Jaguar. The observed timer skews appear

very similar to the OS noise described for the platform [12],

and does not appear normally distributed. Over 99.99% of

the timer observations fell into the first data bin, which spans

0 - 50 nanoseconds (the total number of timer observations

was 8.064×109). Recall that these initial timer values (and

all of the other gathered values) are reduced by exactly the

amount of the minimum timer delay observed during the

timer calibration phase.

4.2 System Upgrade Measurements

Figures 10 and 11 show the empirical PDF and CDF for

a single communicating process per node using all three

of our test configurations. The lines labeled “ORIG” are

the original observations from four months ago, the lines

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 565

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 6e-06 8e-06 1e-05 1.2e-05 1.4e-05 1.6e-05 1.8e-05 2e-05

P
ro

b
a
b
ili

ty

Time (s)

JagPF 64N 1PPN ORIG Pair-wise CDF
JagPF 64N 1PPN OLD Pair-wise CDF
JagPF 64N 1PPN NEW Pair-wise CDF

Fig. 11: Pairwise communication latency CDF for 64 Jaguar

nodes with 1 communicating process per node.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 6e-06 8e-06 1e-05 1.2e-05 1.4e-05 1.6e-05 1.8e-05 2e-05

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Time (s)

JagPF 64N 2PPN ORIG Pair-wise PDF
JagPF 64N 2PPN OLD Pair-wise PDF
JagPF 64N 2PPN NEW Pair-wise PDF

Fig. 12: Pairwise communication latency PDF for 64 Jaguar

nodes with 2 communicating processes per node.

labeled “OLD” use the same compiler and parallel tool

platforms as the original observations but were observed

more recently, and the lines labeled “NEW” were recently

observed and used the updated compiler and parallel tool

platforms. Both the PDF and CDF clearly show that all

of the performance changes are not due to incrementing

the compiler and network middleware. Although it appears

that some performance changes are due to the change

in software configuration, the fundamental changes in the

network latency originate outside of the software stack. In

collaboration with the Jaguar system administration team we

learned that a network driver upgrade had occurred in the

intervening period, and that was likely the source of our

observed performance differences.

Our original study of the Jaguar network focused on

determining the optimal number of independent message

originating processes (e.g. MPI tasks) to use in pairing with

the Cray XT hardware. In figures 12 and 13 we present the

updated PDFs for two and four communicating processes

 0

 500000

 1e+06

 1.5e+06

 2e+06

 6e-06 8e-06 1e-05 1.2e-05 1.4e-05 1.6e-05 1.8e-05 2e-05

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Time (s)

JagPF 64N 4PPN ORIG Pair-wise PDF
JagPF 64N 4PPN OLD Pair-wise PDF
JagPF 64N 4PPN NEW Pair-wise PDF

Fig. 13: Pairwise communication latency PDF for 64 Jaguar

nodes with 4 communicating processes per node.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 1e-05 2e-05 3e-05 4e-05 5e-05 6e-05

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Time (s)

JagPF 64N 12PPN ORIG Pair-wise PDF
JagPF 64N 12PPN OLD Pair-wise PDF
JagPF 64N 12PPN NEW Pair-wise PDF

Fig. 14: Pairwise communication latency PDF for 64 Jaguar

nodes with 12 communicating processes per node.

per node, respectively. We again note that network latency

sensitive applications may be well served to use a single

MPI task for remote communications and employ a threading

approach, such as OpenMP, to leverage the large number

of processing cores with a Jaguar compute node. However,

it does appear that the network driver update results in a

more reproducible (i.e. “peakier”) message latency, even if

the performance is slightly degraded from the results of our

original measurements.

Figures 14 and 15 show the empirical PDF and CDF

for network latency with twelve communicating processes

per node. With all node processes sending and receiving

network messages it is apparent that the driver update has

dramatically altered the measured network latency perfor-

mance without significantly modifying the mean or median

network latency. The CDF clearly demonstrates that in all

configurations, observations will be evenly distributed about

38 microseconds. However, after the driver update observed

network latencies are much more uniformly distributed over

566 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1e-05 2e-05 3e-05 4e-05 5e-05 6e-05

P
ro

b
a
b
ili

ty

Time (s)

JagPF 64N 12PPN ORIG Pair-wise CDF
JagPF 64N 12PPN OLD Pair-wise CDF
JagPF 64N 12PPN NEW Pair-wise CDF

Fig. 15: Pairwise communication latency CDF for 64 Jaguar

nodes with 12 communicating processes per node.

the sample space. The original network configuration ap-

pears to provide much more predictable network perfor-

mance (i.e. greater peakiness) with basically identical aver-

age case performance. In particular, we expect that collective

communication patterns that are performance limited by the

slowest participating process will be negatively impacted by

the updated performance distribution.

Although the SeaStar driver update clearly impacts the

network message latency, it is less clear how the update

will affect existing applications. A single communicating

process per node will now likely achieve higher latencies

and incur greater variability in its measured send-receive

latency (though perhaps with less chance of encountering a

system halting deadlock). It appears the Cray engineers have

endeavored to improve the consistency of network operations

when 2 or 4 processes are communicating per node at the

cost of increasing the observed network latency. In the case

of 12 simultaneously communicating processes, updating the

network driver has degraded the send-receive latencies, and

has likely decreased the repeatability of network injections.

5. Conclusion

The empirical probability distributions generated by Con-

fidence can aid in measuring performance, locating areas of

degraded performance, and evaluating how system compo-

nent performance changes over time. In this paper we used

Confidence to examine anomalous network performance on

two separate HPC platforms. In the future we are inter-

ested in non-central moments of probability distributions.

In HPC systems mean and median performance are not the

desired performance levels, thus calculating the distribution

moments about the observed minimums may provide a

higher quality performance summary than the typical central

moments (mean, variance, skew, kurtosis).

Acknowledgments
This work was supported by the Department of Defense

(DoD) and used resources at the Extreme Scale Systems

Center, located at Oak Ridge National Laboratory (ORNL)

and supported by DoD. This research also used resources at

the National Center for Computational Sciences at ORNL,

which is supported by the U.S. Department of Energy Office

of Science under Contract No. DE-AC05-00OR22725. Spe-

cial thanks to Pawel Shamis for explaining various details

related to the OpenMPI BTL OpenIB driver.

References
[1] B. W. Settlemyer, S. W. Hodson, J. A. Kuehn, and S. W. Poole,

“Confidence: Analyzing performance with empirical probabilities,” in
Proceedings of 2010 Workshop on Application/Architecture Co-design

for Extreme-scale Computing (AACEC), September 2010.
[2] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the

characteristics and origins of internet flow rates,” in Proceedings of

the 2002 conference on Applications, technologies, architectures, and

protocols for computer communications, ser. SIGCOMM ’02. New
York, NY, USA: ACM, 2002, pp. 309–322. [Online]. Available:
http://doi.acm.org/10.1145/633025.633055

[3] S. Katti, D. Katabi, C. Blake, E. Kohler, and J. Strauss, “Multiq:
automated detection of multiple bottleneck capacities along a path,”
in Proceedings of the 4th ACM SIGCOMM conference on Internet

measurement, ser. IMC ’04. New York, NY, USA: ACM, 2004, pp.
245–250. [Online]. Available: http://doi.acm.org/10.1145/1028788.
1028820

[4] F. Petrini, E. Frachtenberg, A. Hoisie, and S. Coll, “Performance eval-
uation of the quadrics interconnection network,” Cluster Computing,
vol. 6, no. 2, pp. 125–142, 2003.

[5] P. Luszczek, J. J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas,
J. Kepner, J. Mccalpin, D. Bailey, and D. Takahashi, “Introduction to
the hpc challenge benchmark suite,” Tech. Rep., 2005.

[6] S. R. Alam, J. A. Kuehn, R. F. Barrett, J. M. Larkin, M. R. Fahey,
R. Sankaran, and P. H. Worley, “Cray XT4: an early evaluation for
petascale scientific simulation,” nov. 2007, pp. 1 –12.

[7] S. R. Alam, R. F. Barrett, M. Bast, M. R. Fahey, J. A. Kuehn,
C. McCurdy, J. Rogers, P. C. Roth, R. Sankaran, J. S. Vetter, P. H.
Worley, and W. Yu, “Early evaluation of IBM BlueGene/P,” in SC ’08:

Proceedings of the 2008 ACM/IEEE conference on Supercomputing.
Piscataway, NJ, USA: IEEE Press, 2008, pp. 1–12.

[8] K. Davis, A. Hoisie, G. Johnson, D. J. Kerbyson, M. Lang, S. Pakin,
and F. Petrini, “A performance and scalability analysis of the Blue-
Gene/L architecture,” in SC ’04: Proceedings of the 2004 ACM/IEEE

conference on Supercomputing. Washington, DC, USA: IEEE
Computer Society, 2004, p. 41.

[9] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin,
and J. C. Sancho, “Entering the petaflop era: the architecture and
performance of Roadrunner,” in SC ’08: Proceedings of the 2008

ACM/IEEE conference on Supercomputing. Piscataway, NJ, USA:
IEEE Press, 2008, pp. 1–11.

[10] A. Bhatele and L. V. Kale, “An evaluative study on the effect of
contention on message latencies in large supercomputers,” in IPDPS

’09: Proceedings of the 2009 IEEE International Symposium on

Parallel&Distributed Processing. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 1–8.

[11] H. W. Meuer, E. Strohmaier, H. D. Simon, and J. J. Dongarra,
“TOP500 Supercomputer Sites, 34th edition,” in The International

Conference for High Performance Computing, Networking, Storage,

and Analysis (SC ’09), 2009.
[12] S. Oral, F. Wang, D. A. Dillow, R. Miller, G. M. Shipman, and

D. Maxwell, “Reducing application runtime variability on Jaguar
XT5,” in CUG-2010. Edinburgh, UK: Cray User’s Group, 2010.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 567

Methodology to predict the performance behavior
of shared-memory parallel applications

on multicore systems
John Corredor, Juan Carlos Moure, Dolores Rexachs, Daniel Franco and Emilio Luque

Computer Architecture and Operating Systems Department,
University Autonoma of Barcelona, Barcelona, Spain

john.corredor@caos.uab.es
{juancarlos.moure, dolores.rexachs, daniel.franco, emilio.luque}@uab.es

Abstract—With the advent of multicore architectures, there
arises a need for comparative evaluations of the performance
of well-understood parallel programs. It is necessary to gain an
insight into the potential advantages of the available computing
node configurations in order to select the appropriate computing
node for a particular shared-memory parallel application.
This paper presents a methodology to resolve this issue, by
constructing a database with behavior information for various
representative shared-memory programming structures, and
then estimating the application behavior as a combination of
these data. These structures are represented by small specific
chunks of code called microbenchmarks (µB) based on the
study of memory access patterns of shared-memory parallel
applications. µBs set is run on each candidate node, and all
execution performance profiles are stored in a database for
future comparisons. Then, applications are executed on a base
node to identify different execution phases and their weights,
and to collect performance and functional data for each phase.
Information to compare behavior is always obtained on the
same node (Base Node (BN)). The best matching performance
profile (from performance profile database) for each phase,
is then searched. Finally, the candidates nodes performance
profiles identify in the match process are used to project
performance behavior in order to select the appropriate node
for running the application. Resource centers own different
machine configurations. This methodology helps the users or
systems administrator of data centers to schedule the jobs
efficiently. 1

Index Terms—Performance Evaluation, Memory Access Pat-
tern, Behavioral Profile Application, Multicore Systems.

I. INTRODUCTION

A multicore architecture for processors has emerged as a
dominant trend in the chip making industry. It has become
widespread, as it provides higher performance at lower cost
and more efficient use of energy [1]. A multicore, multi-
threaded processor demands higher on- and off-chip memory
bandwidth and suffers longer average memory access delays
despite an increasing on-chip cache size. Tremendous pres-
sures are put on memory hierarchy systems to supply the
needed instructions and data in a timely fashion [2].

1Supported by the MEC-Spain under contract TIN2007-64974

Different configurations of computing nodes, produce sig-
nificant differences in the performance of an application. The
task of finding the best configuration is very complex, due
to the large number of alternatives for setting the individual
components. The ascendancy of multicore in general comput-
ing further increased this variety, ergo the difficulty of this
selection has been increased.

Finding a suitable configuration is a computer engineering
problem that has been addressed using different perfor-
mance evaluation approaches. Analytical approaches have
limitations, for example, in terms of their ability to take
into account application characteristics or interaction among
multiple processors. Cycle accurate simulation is one of the
most commonly used approaches for performance evaluation,
but it is very time consuming [3].

Generally, current resource center own several machines
of different configurations. The proposed approach helps the
users or system administrators to schedule the jobs efficiently.

In this paper, we present a methodology to predict the
performance behavior of HPC applications at the node level,
for different node configurations. The main advantage of
this methodology is that the application does not need to be
executed in all available configurations. Further, our method
does not involve any simulations, which are often very time-
consuming.

Our research aims to design a methodology in order to
obtain a behavior prediction of a shared-memory parallel ap-
plication. The methodology associated profile information of
computing nodes with information from the application. The
profile information is obtained by running microbenchmarks
(µBs) or synthetic test programs in all computing nodes.
Instead, application in just executed in one computing node.

This work is organized as follows. Section II refers to
related works on this field: the state of the art of performance
estimation. Section III gives an overview of the Methodology.
Section IV presents experimental validation. Section V closes
the paper, showing some conclusions and future work.

568 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

II. RELATED WORK

A large set of benchmarks have been proposed to represent
the overall performance of HPC applications. Among others,
NAS Parallel [4] and SPEC [5]. The work of Gustafson and
Todi [6] is to find the correlation between HINT and the
other benchmarks, indicating that HINT is a superset of these
benchmarks and then using it in prediction. McCalpin [7]
makes a more complete study of the relationship between
benchmarks and application performance, but those ideas are
not extended to parallel applications.

In [9], authors compare inherent characteristics of the
application of interest against the same characteristics for
all programs in the standardized benchmark suite. They
use the correlation between the set of benchmarks and the
entire application. Instead, our approach seek to be much
more precise because we divide the application in significant
phases and seek behavior performance similarity in each of
the performance profiles obtained from µBs for each phase,
as will be shown later.

Marin and Mellor [11] show a complex system for the
combination and weighting of attributes of applications with
the results obtained from single probes, similar to the work
that we propose, however they do not use multicore systems
nor parallel applications.

Tikir et al. in [12] use a genetic algorithms approach
to model the performance of memory-bound computations.
They propose a scheme for predicting the performance of
HPC applications based on the results of MultiMAPS bench-
marks. MultiMAPS is a memory benchmark that accesses
a data array repeatedly, but the access pattern is varied in
two dimensions: 1) stride and 2) size of the array. Their
approach differs from what we propose in this paper in
many aspects. The authors require simulating different cache
sizes.Our approach doesn‘t require simulation.

In [13], Yang makes predictions based on observations of
steady performance (parallel codes behave in a predictable
way after initial short period). Partial sections of the code
running on a reference platform are used to predict the total
time of execution of the application on a target platform. Our
approach considers representative phases of the application,
and in order to obtain the performance profile of the target
nodes, we select µBs with similar behavior to the phases of
the application.

In [14], Sameh et al. present a method for projecting
performance of HPC applications on computing nodes, using
published data from SPEC CPF2006 and hardware counters
of the base machine. This scheme uses a genetic algorithm as
a tool to generate a model of Application Performance HPC
benchmarks as a function of substitutes or surrogates. The
problem here is that SPEC CPF2006 is not enough bench-
marks that represent the similarities of all shared memory
scientific applications.

III. METHODOLOGY: PERFORMANCE ESTIMATION

Figure 1 illustrates the general outline of our proposed
methodology. Our work uses OpenMP shared-memory par-
allel programming model [15]. We consider a parallel appli-
cation, several target nodes or candidates nodes, and a base
node or reference node where we run the application.

Figure 1: General outline of the methodology

The methodology takes into account a collection of single
programs which we call microbenchmarks (µBs). The Node
Performance Profiling are a collection of characteristics as
well as performance numbers on all computing nodes (base
and target nodes) given by µBs. The performance numbers
are obtained from real hardware execution on all computing
nodes. These characteristics along with the performance
numbers are then used to build a Node Performance Profile
Data Base (NPPDB).

The application of interest for which we want to predict
performance, is executed only on the base node. We obtain
the same set of characteristics that we used to build µB for
each significative phase and its weight.

Matching process consist of identifying similar perfor-
mance profiles between the base node and the information
from the application.

Having identified a certain number of performance profiles
in the base node using the matching process, the estimation
process consist of finding the corresponding performance
profiles of the candidate nodes in the database. Then, the
estimation process is made to estimate the behavior of the
application by combining the performance profiles.

The methodology is described in greater detail below.

A. Node Performance Profiling

Benchmarking is the process of running a specific program
or workload on a specific machine or system and measuring
the resulting performance. This technique clearly provides
an accurate evaluation of the performance of that machine
for that workload [8]. Microbenchmarks, i.e. very small
computational kernels, have used for quantitative measures
of node performance in clusters [16].

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 569

The node performance profiling are obtained by stressing
the computing node with synthetic test programs (kernels
representative of scientific applications) which are called
microbenchmarks “µB", and whose execution time is short
[17]. The goal is to characterize the performance of com-
puting nodes against common structures found in different
applications. Each executed µB gives node performance
profiles information of the computing node. In Figure 2
shown the scheme to obtain the Node Performance Profiling.

Figure 2: Obtaining the Node Performance Profiling

1) µBs set (1a): First, we implement a set of microbench-
marks (µB) that are synthetic test programs, developed in
C and OpenMP. Each µB has a set of parameters which
characterize the machine and spotlight its strong and weak
points. We collect characteristics such as: memory pattern
and memory access area (shared or private memory). µBs
are designed according to patterns and behaviors previously
studied from a set of parallel applications. Table I shows
a description of some of the µBs we have used. Input
parameters: working size, stride and number of threads.

µB ID ... Mbw1(k,s,Th) Mbw3S(k,s,Th) Mbw2R(k,s,Th) ...
Characteristic a:stride-1 a:stride-S

Memory Access a:stride-S sequential sequential
Pattern sequential b:stride-S b:stride-r

sequential random
Data Type Double Double Double

Data Density Dense Dense NoDense
Characteristic

Access Private/ a(Private)
Private a(Shared) a,b(Shared) b(Shared)

Characteristic
Basic

Pk
i=0 ai

Pk
i=0 ai x bi

Pk
i=0 ai x bi

Operation
Working Set

Size k k k
Stride s s s, r

Parallelism
Level Th Th Th

Table I: Description of some µBs (will be used in Experi-
mental Validation)

In Table I, Mbw1(k,s,Th) performs one basic operation
composed of one read and one accumulation. The data is

read from a vector, with k elements, accessed as a stride-s
sequential stream. All threads performs the same operations
with the same vector. Mbw3S(k,s,Th) has two basic opera-
tions: multiply and accumulation, over a and b vectors. Data
is read from both vectors, each one with k elements, accessed
sequential streams as a stride-1 and stride-s, for stream a and
b respectively. Mbw2R(k,s,Th) is similar to Mbw3S(k,s,Th),
but (b) vector has stride-random access. a vector is private
for each thread, while b vector is shared.

Different executions for different k values and s values is
done, in order to be compared with the input parameters of
the Application Characterization. Th parameter is adjusted to
the number of cores of the processor (one thread for core).

We start with a reduced set of reference parallel appli-
cations to implement the µB; but the idea is, to identify
new behaviors that are not similar to those found in the
NPPDB, then we analyze new patterns, and thus implement
appropriate new µBs. With each new µB we obtain a new
profile and increase knowledge in the NPPDB.

2) Performance Behavior (1b): In order to obtain ex-
ecution time, µBs are executed on all computing nodes
(target and base nodes) for different working set sizes. To
get accurate measurements, we run each µB several times.

Figure 3: µB: Mbw1S Performance Behavior on Base Node
for different stride and working size.

Figure 3 µB: Mbw1S Performance behavior on Base
Node for different stride and working size, is shown. X-
axis represents working set size (KB) and y-axis represents
execution time (ms). The performance behavior of MBw1S
µB on base node varies with the working set and stride.
Lower working size and lower strides, time is better (spatial
and temporal locality). These performance behavioral are also
found in applications. In the bottom of Figure 3, an example

570 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

about information extracted as a performance profile to the
desired point.

3) Node Performance Profile Data Base (NPPDB):
The information about memory access patterns, performance
behavior and the behavior profile is stored in Performance
Profile Data Base.

In order to normalize the results, we calculate the Behav-
ioral_ Profile: the execution time of µB divide by TotalCount
(frequency of stride).

To incorporate new and unknown µB we must extract
the characteristics of Table I, in order to obtain the new
performance profiles of the computing nodes. Then, we must
instrumented and get the performance characteristics (Figure
2 (1c) and (1d)) seen in Table I. The new performance profiles
will be inserted into the NPPDB.

B. Application Characterization
The behavior of a program is not random. Researches have

shown that it is possible to accurately identify and predict
these phases in program execution [18]. Figure 4, depicts the
Application Characterization scheme.

Figure 4: Application Characterization scheme

1) Identify representative phases (2a): We need to obtain
representative phases of the application, the runtime of each
representative phase and the total runtime. To identify each
representative phase, we look for OpenMP structures (forks
and Join) in the code. Then, analysis is done separately
for each phase. We consider as representative phases, those
phases whose execution times are meaningful with respect
to total running time, for a given input data size. For each
representative phase, we need to gather a trace of memory
accesses for further analysis.

2) Performance Behavior (2a): In order to obtain exe-
cution time for each representative phase, the application is
executed on the BN for a given data input size and their
weights.

3) Instrumentation (2c): The probes is placed at each
identified load/store (identify by streams) to precisely capture
the data references issued by each representative phase of

application. The data stream (load/store) is characterized with
respect to local data strides [18]. A local stride is defined
as the difference in the data memory addresses between
temporally adjacent memory accesses come from a single
instruction — this is done by tracking memory addresses for
each memory operation.

4) Memory access tracing (2d): For each memory-access
instruction we assign its most frequently used stride along
with its stream length. A load or store instruction is modeled
as a memory operation that accesses a circular and bounded
stream of references, i.e., each memory access walks through
an array using its dominant stride value and then restarts from
the beginning of the array. To compute total count stride,
an arithmetic instruction in each basic block is assigned to
increment the stride value for the memory walk. The stride
value itself is stored in a register.

The tracing process utilizes data structures for fast stor-
age and retrieval. For each stream different parameters are
obtained: total count access, stream ID, stride, stride count,
lower and higher memory address. We detect whether the
vectors are shared, if the data region to which access is the
same (memory area) for all threads, otherwise are private.

5) Phase characterized: The information of memory ac-
cess patterns, performance behavior and the behavior profile
is placed on phase characterized. This process help to find
the match with Node Performance Profile information from
NPPDB. Additionally, in order to normalize the results, we
calculate the Behavioral_Profile: the execution time of phase
divide by TotalCount (frequency of stride).

C. Matching Process

It consists of finding the best match between the node
performance profile in NPPDB and Phase characterized
information. Match start into identify similar memory access
patterns between phase application and the node performance
profile. The idea is to find those node performance profile
that can represent the behavioral profile applications, or be-
havioral profile for each representative phase of application.
Figure 5 depicts Matching Process and Estimation Process.

Figure 5: Matching Process and Estimation Process scheme

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 571

The performance applications will be a composition of
the Node Performance Profiles, given by µBs, to estimate
performance on the BN (where we have also executed the
application). The matching process starts to compare the list
of characteristics Table I and in priority order. First, we
search matching of Memory Access Patterns and so on.

We consider three possibilities for matching:
• In case of similarity between one phase (of the applica-

tion) and the node performance profile on the BN (BN:
Base Node), it may be necessary to adjust the input
parameters (stride, working size and number of threads).
In order to validate the behavior prediction we compare
the values predicted by the methodology and the real
ones. The idea is to obtain the best µB match with
input parameters tuning (Parameter for Adjustment).
This guides the selection of node performance profile.

• In case of finding multiples but similar node perfor-
mance profiles with the phase of application, we selected
which have the smallest difference error of Behavioral_
Profile(s) between Node Performance Profile and phase
application characterization.

• In case of not finding similar node performance profile
on the NPPDB with phase characterization, it will be
necessary to implement new µBs in order to update the
µBs set.

D. Estimation Process
Here, we estimate the performance behavior on the target

computing node. Up to now, we have divided the program
in representative phases, and each phase has obtained a
characterization. For each phase, we find the performance
profile match from µB in NPPDB (See III-C). We locate
those performance profile information from the target nodes
(from NPPDB, µBs identified previously).

We calculate the behavioral performance of the entire
application in (1), sum all the performance profiles (of each
phase) from the target nodes by their weights.

TotalBehavior =
n�

i=1

Profileixweighti (1)

This information (Total Behavior) allows us to compare the
performance behavior of the application in different compute
nodes and to select the appropriate node.

IV. EXPERIMENTAL VALIDATION

A. Systems: Base Node and Target Nodes
In order to experimentally validate the methodology we

used the compute node configurations shown in Table II.
BN, TN1 and TN2 are systems with Intel processors, with

a L2 cache shared to each of two cores and a 64-bit Linux
O.S. with (x86_64). The target node systems include a dual-
socket, and we executed the algorithm and the µBs in all
cases on just 4 cores in each node. TN3 is a system with

BN TN1 TN2 TN3
Quad-core Dual-core Quad-core Quad-core

Processor Q9400 Intel 5160 Intel E5430 Intel 2352 AMD
(x2) (x2) (x2)

Cores 4 4 8 8
On-chip
Private 32KB (L1) 32KB (L1) 32KB (L1) 512KB (L2)
On-chip 3MB (x2) 4MB (x2) 6MB (x2) 2MB
Shared (L2) (L2) (L2) (L3)

4x2 GB
Memory 4 GB 12GB 12GB NUMA

GHz 1,99 1,99 2,66 2,11
x86_64 x86_64 x86_64 x86_64

O.S. GNU/Linux GNU/Linux GNU/Linux GNU/Linux
Kernel 2.6.26-2 2.6.16.46 2.6.18-8 2.6.32-19

Compiler gcc-4.3 gcc-4.3 gcc-4.3 gcc-4.4

Table II: System configurations: Base and Target Nodes

AMD processor with L2 cache private for each core and L3
cache shared in both die, and O.S. with 64bits (x86_64).

Previously, all the µBs are executed on all computing
nodes in order to obtain the Node Performance Profiles and
stored in NPPDB.

B. Application Characterization

We used the NPB OpenMP-C benchmark Block-
Tridiagonal (BT Class A and B) [4] and N-body simulator,
as an example to show our methodology. BT is a simulated
CFD application that uses an implicit algorithm to solve 3-
dimensional (3-D) compressible Navier-Stokes equations. We
have identified a recurring phase which appears 3 times. In
Table III, the weights and execution time for each phase, is
shown. The phases represent around 35% of overall execution
time of the application. Once identified, we instrumented this
phases in order to obtain the characterization.

Table III: Phase BT (A and B Classes): Weights and execu-
tion time of each of the phases and BT total running time.

In Table IV, BT phase characterization is shown. We use
average execution time in order to obtain the performance
behavior and the behavioral profile metrics.

For N-Body shared-memory parallel application, the total
particles is defined by: 640000, 1280000. Total steps and time
increment are fixed in 100 times for all cases. We identify a
single phase characterized in Table V.

572 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Table IV: Phase characterized for class A and B. (*We use
average executing time of the three representative phases in order to obtain
the behavioral profile metrics (See Table III).

Table V: N-Body characterized for 640000 and 1280000
particles.

C. Matching Process
After executing the applications on the BN, we start to

compare characteristics between each phase of applications
(see section IV-B) with each node performance profiles on
NPPDB.

In phase of BT, we look for a performance profile from
a µBs with stream sequential 600-stride, private memory
access, working set 4,7 MB and 18,8 MB respectively. In
phase of N-Body algorithm, we look for a performance
profile from NPPDB with stream sequential 32-stride, shared
memory access, working set 390KB and 781KB respectively.
Table VII shows performance profiles selected to match VI-a
and VI-b with BT phase and N-Body phase respectively.

In Table VII, match and error between phases and perfor-
mance profiles is shown. Once, we select the performance
profile of µB MB-1U and MB-1S, but executed on all can-
didates nodes, in order to obtain the Behavioral Performance
Estimation for both applications.

D. Estimation Process
Once we have the matching performance profile on BN

(µBs) we look for the values of these performance profile of
the candidate nodes or TN(i) from the Performance Profile
Data Base, and we obtain the behavioral profile estimation
of the algorithms on the Target Nodes.

Figures 6-a and 6-b show the Estimation of Performance
Behavior given by µBs: MB-1U and MB-1S, to predict
performance behavior of phases BT and N-Body applications
on all nodes.

To validate the Estimation Performance Behavior obtained
previously (Figure 6-a and 6-b), Figures 7-a and Figure 7-
b show the real behavior values of the BT and N-Body.

(-a) Performance Profile of µB MB-1U

(-b) Performance Profile of µB MB-1S

Table VI: Node Performance Profiles given by µBs a) MB-
1U and b) MB-1S on BN

(-a) Match between BT phase and MB-1U performance profile

(-b) Match between N-Body phase and MB-1S performance profile

Table VII: Match and error between phases and performance
profiles

In Figure 7, the real behavior of both applications is very
similar to the estimation behavior given by the methodology.
The time to obtain the estimation performance behavior is
very significant respect to the time it takes to executing the
application on all compute nodes.

V. CONCLUSION

We have presented a methodology for selecting a suitable
multicore system for shared-memory parallel applications by
characterizing the behavior of various computing node archi-
tectures using µBs based of kernels which are representative
of parallel application constructs. In this work we focus in
µBs based only on memory access patterns, which are often
critical for performance on multicore system. The execution
times for all µBs stressing the memory system of four
computing nodes, show that they are useful in identifying
meaningful performance differences.

We have outlined a method for application characteriza-
tion, and have applied the idea on two scientific algorithms,
for different input data sizes. The algorithm matches very
well with proposed µBs, and thus enables the rapid selection
of an appropriate computing node.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 573

(-a) Estimation Performance Behavior BT by µB MB-1U

(-b) Estimation Performance Behavior N-Body by µB MB1-S

Figure 6: Performance Estimation BT and N-Body applica-
tions given by µB MB-1U and MB-1S on All computing
nodes

The methodology allow us detected the application behav-
ior on all computing nodes, performance behavioral differ-
ences between the computing nodes (to the application) and
selecting the suitable computing node for run the application.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann, 2007.

[2] J. Corredor, J. C. Moure, D. Rexachs, D. Franco, and E. Luque, “Active
learning processes to study memory hierarchy on multicore systems,”
Procedia Computer Science, vol. 1, no. 1, pp. 921 – 930, 2010, iCCS
2010.

[3] C. P. Joshi, A. Kumar, and M. Balakrishnan, “A new performance
evaluation approach for system level design space exploration,” in
ISSS ’02: Proceedings of the 15th international symposium on System
Synthesis. New York, NY, USA: ACM, 2002, pp. 180–185.

[4] D. Bailey, E. Barszcz, D. Browning, R. Carter, L. Dagun, R. Fatoohi,
P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakr-
ishnan, and S. Weeratunga, “The NAS parallel benchmarks,” in Pro-
ceedings of the 1991 ACM/IEEE Conference on Supercomputing 1991.
New York, NY, USA: ACM, 1991.

[5] http://www.spec.org/cpu2006/, “Spec cpu2006.”
[6] J. L. Gustafson and R. Todi, “Conventional benchmarks as a sample

of the performance spectrum,” J. Supercomput., vol. 13, no. 3, pp.
321–342, 1999.

[7] J. McCalpin, “Memory bandwidth and machine balance in current
high performance computers,” IEEE Technical Committee on Computer
Architecture Newsletter, 1995.

[8] R. H. Saavedra and A. J. Smith, “Analysis of benchmark characteristics
and benchmark performance prediction,” ACM Trans. Comput. Syst.,
vol. 14, pp. 344–384, November 1996.

[9] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and
K. De Bosschere, “Performance prediction based on inherent program
similarity,” in Proceedings of the 15th international conference on
Parallel architectures and compilation techniques, ser. PACT ’06.
New York, NY, USA: ACM, 2006, pp. 114–122.

(-a) Real Performance Behavior BT Application

(-b) Real Performance Behavior N-Body Application

Figure 7: Real Performance Behavior BT and N-Body appli-
cation on All computing nodes

[10] U. Krishnaswamy and I. D. Scherson, “A framework for computer
performance evaluation using benchmark sets,” IEEE Trans. Comput.,
vol. 49, pp. 1325–1338, December 2000.

[11] G. Marin and J. Mellor-Crummey, “Cross-architecture performance
predictions for scientific applications using parameterized models,” in
SIGMETRICS ’04/Performance ’04: Proceedings of the joint interna-
tional conference on Measurement and modeling of computer systems.
New York, NY, USA: ACM, 2004, pp. 2–13.

[12] M. Tikir, L. Carrington, E. Strohmaier, and A. Snavely, “A genetic
algorithms approach to modeling the performance of memory-bound
computations,” in SC ’07: Proceedings of the 2007 ACM/IEEE con-
ference on Supercomputing. New York, NY, USA: ACM, 2007, pp.
1–12.

[13] L. Yang, X. Ma, and F. Mueller, “Cross-platform performance pre-
diction of parallel applications using partial execution,” in SC ’05:
Proceedings of the 2005 ACM/IEEE conference on Supercomputing.
Washington, DC, USA: IEEE Computer Society, 2005, p. 40.

[14] S. Sharkawi, D. DeSota, R. Panda, R. Indukuru, S. Stevens, V. Taylor,
and X. Wu, “Performance projection of hpc applications using spec
cfp2006 benchmarks,” in IPDPS ’09: Proceedings of the 2009 IEEE
International Symposium on Parallel&Distributed Processing. Wash-
ington, DC, USA: IEEE Computer Society, 2009, pp. 1–12.

[15] OpenMP, “Openmp application program interface.” [Online].
Available: http://www.openmp.org

[16] M. Sottile and R. Minnich, “Analysis of microbenchmarks for perfor-
mance tuning of clusters,” in Proceedings of the 2004 IEEE Interna-
tional Conference on Cluster Computing. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 371–377.

[17] J. Corredor, J. C. Moure, D. Rexachs, D. Franco, and E. Luque,
“Selecting a suitable multicore system for shared-memory parallel
application on multicore systems,” in PDPTA 2010: Proceedings of the
2010 International Conference on Parallel and Distributed Processing
Techniques and Applications, CSRA Press, Las Vegas, Nevada, USA,
2010, pp. 228–234.

[18] J. Lau, S. Schoemackers, and B. Calder, “Structures for phase classifi-
cation,” in Performance Analysis of Systems and Software, 2004 IEEE
International Symposium on - ISPASS, 2004, pp. 57 – 67.

574 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Effects of GPU and CPU Loads on
Performance of CUDA Applications

M. Bobrov1, R. Melton1, S. Radziszowski2, and M. Łukowiak1

1Department of Computer Engineering, Rochester Institute of Technology, Rochester, New York, USA
2Department of Computer Science, Rochester Institute of Technology, Rochester, New York, USA

Abstract — General purpose computing on GPUs provides a
way for certain applications to benefit from a commonly
available massively parallel architecture. As such deployment
becomes more widespread, multiple GPU applications will
have to execute on the same hardware in systems that have
only one GPU. The aggregate loads of the GPU and CPU
impact the performance of each application. This work
investigates the effects of CPU and GPU loads on the
performance of two CUDA GPU applications with
significantly different CPU-GPU interaction profiles:
implementations of the AES encryption and Keccak hashing
algorithms. The percentage degradation in performance of
these applications from CPU and GPU loads indicates
dependence on the total execution time of the application, with
the greatest degradation for the shortest execution times.
Performance degradations as high as 22% and 36% were
observed for CPU and GPU loads, respectively.

Keywords: CUDA; GPGPU; GPU; load; performance

1 Introduction
 The advent of NVIDIA’s Compute Unified Device
Architecture (CUDA) and ATI's FireStream Technology has
shifted Graphics Processing Units (GPUs) from primarily
graphics enabling devices to general purpose stream
processing systems. These GPU architectures are a cost
effective alternative to traditional parallel processing
machines, (e.g., clusters), with comparable performance for
certain applications [1]. This change ushers in a new era in
computing, which allows any modern personal computer to
take advantage of parallel processing capabilities previously
available only in specialized systems.

 For such applications, processing may occur primarily
on the GPU or may be partitioned between the GPU and CPU.
The first configuration will efficiently support only a certain
class of applications whose computations fit the single
program, multiple data (SPMD) paradigm with a sufficient
ratio of computations to memory accesses. On the other hand,
the second configuration with the workload partitioned
between GPU and CPU provides the opportunity for a wider
range of applications to benefit from GPU computing by

offloading only the part of the computation that can best
benefit from the GPU architecture.

 If a CPU/GPU system is not dedicated to execution of an
application, performance of that application will be affected
by the other applications targeting the same GPU. In other
words, there is the potential for additional CPU and/or
additional GPU loads. As offloading tasks from the CPU to
the GPU on standard desktop configurations becomes more
common, the likelihood of having multiple loads from
different applications increases. Such is the case for a general
desktop user who will not have a dedicated GPU for non-
graphics related tasks. Thus, performance in a typical system
will be affected by other applications run by the user.

 This research investigates the effects of additional CPU
and GPU loads on CUDA performance. The Advanced
Encryption Standard (AES) and Keccak hashing algorithms
were selected as the test cases. CPU and GPU loads were
simulated using various applications, and the performance of
the encryption and hashing algorithms was recorded. These
values were then used to determine the effects of CPU and
GPU loads on performance.

2 CUDA
 CUDA is a highly parallel computing architecture of
recent NVIDIA GPUs [2]. Unlike traditional GPUs, CUDA
GPUs are designed with greater focus on data processing as
opposed to flow control and caching. They are capable of
executing thousands of lightweight threads simultaneously
with many more queued. This high degree of parallelism
leads to an immense increase in potential performance such
that current generation GPUs can vastly outperform
contemporary CPUs in certain applications [3]. However, not
all applications can realize these benefits. CUDA is based on
the stream processing model, which is an extension of the
SIMD (single instruction, multiple data) paradigm. This
design paradigm makes CUDA optimal for performing a
single program instruction many times on different data
elements. The rest of this section briefly describes CUDA
stream processing, and it follows the presentation in [2–4].

 The CUDA architecture consists of two main
components: the memory and the processing cores, which

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 575

work in conjunction. Their interaction must be considered
carefully when designing a CUDA application. Memory is
divided into five categories: global, constant, textured,
shared, and local. Each type of memory has distinct features
with regard to location, caching, and access. The overall
architecture is shown in Fig. 1.

Host

Local

Global

Constant

Texture

Memory

Registers

Shared Memory

Constant Cache

Texture Cache

Multiprocessor
Multiprocessor

Multiprocessor

GPU
CUDA Device

Figure 1. CUDA hardware architecture [4]

 The most basic unit of execution in the CUDA
architecture is the thread, and threads are organized in a
hierarchy, as depicted in Fig. 2. Each thread is allocated a
segment of local memory for local variables. Threads may be
grouped into 1-dimensional, 2-dimensional, or 3-dimensional
blocks, which consist of up to 512 threads per block. Each
block has a unique section of shared memory allotted to it,
which can be accessed by all threads belonging to that block.
All blocks execute independently, but all threads within a
block execute simultaneously. There is a mechanism to
synchronize threads within a block. At the top level of the
thread hierarchy, blocks are grouped into 1-dimensional or 2-

Grid

Block (0,0) Block (1,0) Block (2,0)

Block (0,1) Block (1,1) Block (2,1)

Block (0,2) Block (1,2) Block (2,2)

Block (1,2)

Thread (0,0) Thread (1,0) Thread (2,0)

Thread (0,1) Thread (1,1) Thread (2,1)

Figure 2. CUDA thread hierarchy [2]

dimensional grids. All grids have access to global memory,
constant memory, and texture memory.

 To facilitate software design, CUDA implements
numerous extensions to ANSI C. Applications are divided
into two categories: code designed to execute on the host
CPU and code designed to execute on the GPU. The code
that is to execute on the GPU is called the kernel.
Communication between the CPU and GPU is achieved
through memory reads and writes.

 CUDA processing consists of four steps, as indicated in
Fig. 3: 1) data transfer to GPU memory, 2) CPU invocation
of kernel, 3) GPU kernel execution, and 4) data transfer from
GPU memory. The first step before executing a kernel is a
transfer of data for GPU processing to memory on the GPU.
Next, the CPU initiates kernel execution on the GPU. Once
execution is complete, the CPU retrieves the processed data
from the GPU. Since communication between a CPU and its
peripherals is relatively slow, the process of copying data
back and forth can often be a major bottleneck. Therefore, an
important aspect of an efficient CUDA implementation is the
ability to overlap GPU communication from/to the CPU or
from/to PC memory with GPU computation.

CPU

Memory

Host CUDA Device

Memory

GPU
Cores

1

2 3

4

Figure 3. CUDA process flow

3 Test applications
 Given the roles of both computation and communication
in GPU performance, two general types of algorithms were
identified for evaluation of the performance effects of other
CPU and GPU loads: communication intensive and
computation intensive. A GPU application that is
communication intensive requires a significant amount of data
transfer from/to the CPU or from/to PC memory, to the extent
that execution time is dominated by this communication. In
contrast, GPU computation time dominates the execution time
of a GPU application that is computation intensive.

 Analyzing the performance effects of additional loads on
each type of application required suitable candidates. The
performance results of GPU implementations of basic
cryptographic algorithms [5] provided insight for selecting a
test algorithm to represent each type of GPU application.
AES was selected as an algorithm whose execution time is
dominated more by CPU-GPU communication, and Keccak

576 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

was selected as an algorithm whose execution time is
dominated more by GPU processing.

3.1 AES
 Advanced Encryption Standard (AES) is based on the
principles of substitution-permutation networks (SP networks)
[6]. To begin, the plaintext to be encrypted is divided into
fixed-length blocks of data. These blocks are then converted
into a 4×4 array of bytes, known as the state, as illustrated in
Fig. 5, where the shading signifies grouping of bytes in
columns (words).

Figure 5. AES state array [6]

 Multiple rounds of substitutions, permutations, and key-
based operations are performed on the input data to obtain the
encrypted ciphertext. The substitution portion of the cipher is
a simple replacement of each byte in the array with its entry in
a fixed 8-bit Rijndael substitution box (S-box). Next, the
permutation portion of the cipher consists of two steps: shift
and mix. Shift consists of a row permutation in the form of a
left-circular shift, starting with a zero shift for the top row and
increasing the shift stride by one for each consecutive row.
Mix is then a linear transformation of bytes forming columns
of the state matrix. Finally, the round key is determined using
Rijndael’s key schedule, and the key is then added to the state
via a bitwise exclusive or (XOR).

 To increase the security and usability of block ciphers
like AES, numerous modes of operation have been developed
[7]. These modes extend the algorithm in order to ensure that
identical message blocks encrypted at different positions in
the plaintext with identical keys will not produce equal values.

 The tested implementation of AES uses counter (CTR)
mode, which performs the AES encryption on a counter value
and XORs the result with the corresponding message block to
obtain the encrypted output. CTR mode has two
characteristics that are favorable for an efficient CUDA
implementation. First, it preserves block-level parallelism,
which represents the bulk of parallelism available in AES.
Second, its encryption of a counter value instead of the
plaintext provides the potential for reducing data transfers
between the CPU and GPU; the final XOR can be performed
either on the GPU or on the CPU.

3.2 Keccak
 Keccak is a hash function based on sponge construction
[8], and it is one of five finalists in the National Institute of

Standards and Technology (NIST) Cryptographic Hash
Algorithm Competition to select SHA-3 [9]. The sponge
construction, depicted in Fig. 6, consists of two steps:
absorbing and squeezing. It operates on a state, which is
arranged in a 5×5 array of 64-bit lanes as shown in Fig. 7.

Figure 6. Sponge construction [8]

Row
Figure 7. Keccak state [10]

 Multiple rounds of squeezing and absorbing are
performed on the input data to obtain the final hash. The
absorption phase absorbs one r-bit block of the input message
at a time by XORing the block with the state and then
scrambling the result using a function f. Absorption continues
until all blocks of the message have been absorbed. Likewise,
the squeezing phase uses the function f to scramble the data
further.

 The function f used by Keccak is a permutation, which
incorporates innovative security improvements [8]. The
permutation performed by Keccak can be considered either as
an SP network with five-bit wide S-boxes or as a combination
of linear transforms followed by a very simple nonlinear
transform [11]. The tested implementation of Keccak consists
of 24 rounds, which is the recommendation for SHA-3 [8].

4 Test methodology
 The test system utilized consists of a dual-core AMD
Athlon 5600+ CPU and an NVIDIA GeForce GTX 285 GPU.
The GTX 285 contains 240 processing cores and 1 GB of
memory. Although this particular model is a midrange GPU,
it is generally representative of CUDA enabled GPUs.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 577

 For each application, the total execution time (tTotal) and
the GPU execution time (tGPU) were measured. The total
execution time is the time required to encrypt or hash a
dataset, including time to transfer data between the CPU and
the GPU. The GPU time consists only of the time required to
compute the encryption or hashing on the GPU. For each
dataset size and application variant, (e.g., AES-128, AES-192,
AES-256, Keccak-224, Keccek-256, Keccak-384, and
Keccak-512), these timings were measured 1000 times. The
average time for each was then calculated.

 To measure the effects of CPU and GPU loads
additional to the encryption algorithms, CPU and GPU loads
were simulated using custom applications. The CPU load
application was a simple infinite loop with varying sleep times
to achieve the desired 20%, 40%, and 60% loads. The GPU
load application consisted of rotating a number of displayed
images. Varying the number of images adjusted the GPU
load to 25%, 50%, or 75%.

 The loads of these applications were determined using
Microsoft Perfmon for the CPU and TechPowerUp GPU-Z
version 4.4 [12] for the GPU, (shown in Fig. 8). These
industry proven tools provide an estimate of the average load
over a given period of time. Both applications were run in
parallel with the test code. They produced files containing
measured CPU loads and GPU loads, respectively. These
loads were recorded every second; the average load over the

Figure 8. GPU load application

execution period for each test was calculated based on the
values found in these files. Throughput measurements were
made for loads ranging between 0% and 60% on the CPU and
0% to 75% on the GPU. The throughputs calculated under
each load were then compared to the unloaded values.

5 Results
 To determine the effects of GPU offloading for the
applications without any additional system workload, the
effective CPU time (tCPU) of each GPU implementation was
calculated by subtracting the measured GPU execution time
(tGPU) from the measured total execution time (tTotal):
tCPU = tTotal − tGPU. To determine the percentage of CPU time
saved by offloading computation to the GPU (tSaved), this
effective CPU time (tCPU) was then compared to the time
required for the application to compute solely on the CPU
without any GPU offloading of computations (tNoGPU).

 tSaved =
tNoGPU − tCPU

tNoGPU
100% (1)

 Figs. 9 and 10 show the percentage of CPU time saved
versus dataset size from offloading AES and Keccak,
(respectively). A performance benefit from GPU offloading
of these cryptographic applications was observed for datasets
of 256 KB and larger. The best improvement was in AES-
256, for which GPU offloading reduced CPU time by 60%.
All implementations realized a time savings of at least 20%
for datasets of 256 KB and larger, and the time savings
increased with dataset size.

 The remainder of this section describes performance
results for the test applications running in a system with
additional workloads. First the results of additional CPU
loads are given. Next the effects of additional GPU loads are
presented.

10
4

10
5

10
6

10
7

10
8

-250

-200

-150

-100

-50

0

50

100

Data Size (bytes)

%
 T

im
e

S
av

ed

AES-128
AES-192
AES-256

Figure 9. Offloading effects for AES

578 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

0 2 4 6 8 10 12

x 10
5

-40

-20

0

20

40

Data Size (bytes)

%
 T

im
e

S
av

ed

Keccak-256

Figure 10. Offloading effects for Keccak

5.1 CPU load effects
 Fig. 11 shows the effects of CPU load for AES-256.
AES-128 and AES-192 performed similarly. CPU loading
effects for Keccak-512 are illustrated in Fig. 12. For dataset
sizes over 1 KB, the total computation time for Keccak is
significantly longer than for AES.

 For AES with its much lower total time, a CPU load may
have a significant negative effect. With a 20% load, datasets
larger than 1 MB experienced an average performance
degradation of 4%. Average degradations of 12% and 22%
are experienced with 40% and 60% loads, respectively, for
datasets larger than 1 MB. The precise effects on datasets
smaller than 1 MB are difficult to measure as they are
generally encrypted quite fast and are prone to experience
large percentage increases and decreases with small variations
in performance. However, the effects on smaller datasets are
generally minimal in terms of time. Thus, the effects of CPU
loads are expected to increase as total time of the algorithm
decreases.

 In contrast, for the higher total time of Keccak, a CPU
load has a negligible impact because the majority of the total
time is from GPU processing. CPU loading effects for
Keccak-512 are illustrated in Fig. 12. The bottom graph
shows results for datasets larger than 128 KB, which are not
distinguishable in the top graph. No degradation in execution
time greater than 1.5% was measured for files larger than 32
KB. Again, the effects on datasets smaller than 32KB are
difficult to measure but are minimal in terms of time.

5.2 GPU load effects
 Like the CPU load, the effects of introducing a GPU
load are highly dependent on the execution time of the
algorithm. However, the GPU load effects are quite different
in nature from the CPU load effects. A GPU load consumes
some portion of the resources available on the GPU and
therefore makes those resources unavailable for a test
application. Furthermore, a typical application producing the
GPU load would also be expected to transfer data between the

0 0.5 1 1.5 2 2.5 3 3.5

x 10
7

-10

0

10

20

30

Data Size (bytes)

%
 In

cr
ea

se
 in

 T
im

e

20% CPU Load
40% CPU Load
60% CPU Load

Figure 11. AES-256 CPU load effects

0 2 4 6 8 10 12

x 10
5

-5

0

5

10

15

Data Size (bytes)

%
 In

cr
ea

se
 in

 T
im

e

20% CPU Load
40% CPU Load
60% CPU Load

2 3 4 5 6 7 8 9 10 11

x 10
5

-0.05

0

0.05

0.1

0.15

0.2

Data Size (bytes)

%
 In

cr
ea

se
 in

 T
im

e

20% CPU Load
40% CPU Load
60% CPU Load

Figure 12. Keccak-512 CPU load effects

CPU and GPU. This additional data transfer requirement
increases the load on the already slow PCI Express bus.

 The primary effect of GPU utilization is on total time,
which is shown in Fig. 13 for AES-256. The corresponding
graph for Keccak-512 is not included here since the wide
variation in magnitude among the data points causes them to
appear compressed along the axes when plotted on the same
scale. Instead, the top graph in Fig. 14 plots dataset sizes
smaller than 8 KB, and the bottom graph shows 8 KB and
larger sizes. Since GPU utilization affects both the GPU and
CPU, it produces a greater increase in total execution time
than does a purely CPU load. The overall trend, however, is
similar to that of CPU load effects.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 579

0 0.5 1 1.5 2 2.5 3 3.5

x 10
7

0

50

100

150

200

250

300

350

400

Data Size (bytes)

%
 In

cr
ea

se
 in

 T
im

e

25% GPU Load
50% GPU Load
75% GPU Load

Figure 13. AES-256 GPU load effects on total time

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

500

1000

1500

2000

Data Size (bytes)

%
 In

cr
ea

se
 in

 T
im

e

25% GPU Load
50% GPU Load
75% GPU Load

1 2 3 4 5 6 7 8 9 10 11

x 10
5

0

2

4

6

8

10

Data Size (bytes)

%
 In

cr
ea

se
 in

 T
im

e

25% GPU Load
50% GPU Load
75% GPU Load

Figure 14. Keccak-512 GPU load effects on total time

 As observed with CPU loading, the GPU loading results
are highly dependent on total time of the algorithm. With
slower algorithms such as Keccak-512, as the dataset size
increases, the increase in time approaches 2%. These results
likely indicate that the GPU resources were underutilized by
the Keccak implementation and thus are available to support
additional computation. On the other hand, for faster
algorithms like AES, as the dataset size increases, the increase
in time is much larger. In the case of AES-256, the increase

in time approaches 25%, 27%, and 36% for loads of 25%,
50%, and 75%, respectively. Smaller datasets are not capable
of masking the effects of the load well and thus are more
affected with greatly increased execution times up to 2000%.

 The effects of GPU utilization on GPU time are less
noticeable than those on total time, as seen in Fig. 15 for
Keccak-512 on datasets smaller than 8 KB. (Again, a single
graph of all data points is not included because the data points
appear compressed along the axes. The general trend is
similar to Fig. 14, and the percent increase in time is less than
0.2% for datasets of 8KB and larger.) Smaller datasets are
affected more since they are hashed in very short times, which
do not mask the overhead as well as larger datasets. They
experience an increase in GPU time of 6–11% for Keccak-
512. As the size of the dataset increases, the overhead is
better masked, decreasing the percentage to 0–1% beyond 1
MB for AES-256 and beyond 32 KB for Keccak-512.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2

4

6

8

10

Data Size (bytes)

%
 In

cr
ea

se
 in

 T
im

e

25% GPU Load
50% GPU Load
75% GPU Load

Figure 15. Keccak-512 GPU load effects on GPU time

6 Conclusions
 To simulate a typical system environment, various CPU
and GPU loads were introduced, and their effects on
encryption and hashing performance using GPU co-
processing were measured. CPU loads were found to have no
effect on GPU time, but they did increase the total execution
time. AES-256 experienced the largest increase by as much
as 22% total execution time, but Keccak-512 saw minimal
increases in total time because the CPU load effect was
masked by the GPU execution time. GPU loads had similar
effects on total time, although to a greater degree than CPU
loads. The total time of AES-128 increased as much as 36%,
whereas Keccak experienced minimal increases in total time.

 For GPU processing, the effects of additional CPU loads
are highly dependent on the total time of the algorithm. For
such applications, the primary requirements of the CPU are
for transferring data and initializing the kernel. Consequently,
adding a CPU load has no effect on GPU processing time.
However, total time can be adversely affected.

580 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

 Similarly to CPU loads, the effects of introducing
additional GPU loads are highly dependent on the total
execution time of the algorithm; however, the effects are quite
different in nature. A GPU load consumes some portion of
the resources available on the GPU, which become
unavailable for the GPU application. In addition to GPU
computation, a typical GPU load also requires data transfer
between the CPU and GPU. This extra data transfer
requirement increases the load on the PCI Express bus, which
increases total execution time.

 As GPU processing for non-graphics applications
becomes more common, such applications will certainly be
deployed on platforms, such a general desktop computer, that
have CPU and/or GPU loads in addition to the application.
This investigation is a first step toward characterizing the
effects of additional CPU and GPU loads on the performance
of a GPU application. In this work, the effects of these
additional types of loads have been considered independently
of each other. Further investigation should evaluate both
types of additional loads present simultaneously, as one would
expect on a typical desktop system. Also, these effects have
been evaluated only relative to the performance of two GPU
encryption algorithms. Testing with other GPU applications
is needed to see if they experience the same effects observed
in this investigation. Also, performance effects on a variety of
GPU applications with varying communication versus
computation profiles need to be evaluated.

7 Acknowledgements
 The authors wish to thank their colleagues at the
Rochester Institute of Technology who contributed to this
work: Dr. Andreas Savakis for equipment support from the
Computer Engineering Real-time Vision and Image
Processing Lab, and Dr. Muhammad Shaaban for helpful
comments on drafts of this paper.

8 References
[1] David B. Kirk and Wen-mei W. Hwu, Programming
Massively Parallel Processors: A Hands-on Approach,
Burlington, MA: Morgan Kaufmann Publishers, 2010.

[2] NVIDIA Corporation, “NVIDIA CUDA Programming
Guide, Version 2.3.1,” August 29, 2009,
http://developer.download.nvidia.com/compute/c
uda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_G
uide_2.3.pdf.

[3] NVIDIA Corporation, “CUDA Zone,” [July 2010]
http://www.nvidia.com/cuda.

[4] NVIDIA Corporation, “NVIDIA CUDA C Programming
Best Practices Guide, CUDA Toolkit 2.3," July 2009,
http://developer.download.nvidia.com/compute/c
uda/2_3/toolkit/docs/NVIDIA_CUDA_BestPractices
Guide_2.3.pdf.

[5] Max Bobrov, “Cryptographic Algorithm Acceleration
Using CUDA Enabled GPUs in Typical System
Configurations,” master’s thesis, Department of Computer
Engineering, Rochester Institute of Technology, Rochester,
NY, August 2010.

[6] National Institute of Standards and Technology,
“Advanced Encryption Standard (FIPS-197),” 2001.

[7] Morris Dworkin, “Recommendation for Block Cipher
Modes of Operation,” NIST, Gaithersburg, MD, Special
Publication 800-38A, 2001.

[8] Guido Bertoni, Joan Daemen, Michael Peeters, and
Gilles Van Assche, “Keccak Sponge Function Family Main
Document, Version 2.1,” June 19, 2010,
http://keccak.noekeon.org/Keccak-main-2.1.pdf.

[9] National Institute of Standards and Technology,
“Cryptographic Hash Algorithm Competition,” December 13,
2010, http://csrc.nist.gov/groups/ST/hash/sha-
3/index.html.

[10] Guido Bertoni, Joan Daemen, Michael Peeters, and
Gilles Van Assche, “Keccak Specifications, Version 2,”
September 10, 2009, http://keccak.noekeon.org/
Keccak-specifications-2.pdf.

[11] Meltem Sönmez Turan, Ray Perlner, Lawrence E.
Bassham, William Burr, Donghoon Chang, Shu-jen Chang,
Morris J. Dworkin, John M. Kelsey, Souradyuti Paul, and
Rene Peralta, “Status Report on the Second Round of the
SHA-3 Cryptographic Hash Algorithmic Competition,” NIST,
Gaithersburg, MD, Interagency Report 7764, February 2011.

[12] techPowerUp. “GPU-Z,” July 2010,
http://www.techpowerup.com/gpuz/.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 581

Implementation and Evaluation of Program Development
Middleware for Cell Broadband Engine Clusters

Toshiaki Kamata1, Masahiro Yamada1, Akihiro Shitara1,
Yuri Nishikawa1, Masato Yoshimi2 and Hideharu Amano1

1Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi Kouhoku-ku
Yokohama, Kanagawa 223-8522, Japan

2Faculty of Science and Engineering, Doshisha University, Tatara Miyakodani
Kyotanabe, Kyoto 610-0394, Japan

Email: cell@am.ics.keio.ac.jp

Abstract— Although PC clusters with multi-core accelera-
tors have become popular, it is still difficult to write efficient
parallel programs because two types of programming tech-
niques of are required: multi-thread programming and inter-
node programming. The former requires special techniques
and training dedicated to the accelerator, while the latter
urges programmers to be skilled in using communication
libraries such as mpich or OpenMPI. In order to reduce such
programming cost, in this report, we propose a program de-
velopment middleware which targets a PC cluster consisting
of multiple nodes with Cell Broadband Engine (Cell/B.E.).
This middleware supports inter-node and inter-core thread
control. so it lets developers to focus on tuning a program
to elicit computational power of each core in Cell/B.E pro-
cessors. As a result of evaluating middleware by executing
two types of benchmark programs, it could reduce 40% of
code quantity compared to OpenMPI implementation, and
provided approximately the same execution performance.

Keywords: Cell Broadband Engine, Virtualization, Parallel Com-
puting

1. Introduction
PC clusters with multi-core accelerators such as Cell

Broadband Engine (Cell/B.E.), Graphic Processing Unit
(GPU), ClearSpeed, and Field Programmable Gate Ar-
ray (FPGA) have become popular especially for high
performance scientific computing[1][2][3][4]. Especially, a
Cell/B.E. cluster consisting multiple PlayStation3 nodes is
considered as flexible and cost-effective computing environ-
ment because the processor MIMD-based, and unit price
of PlayStation3 is affordable despite its high computation
power. Examples of PlayStation3 clusters can be found in
[5] and [6].

However, writing effecient program on Cell/B.E. clus-
ter is yet a difficult task. In the first place, stand-alone
Cell/B.E., programming requires acquirement of dedicated
programming language and tuning techniques. In concrete,
(1) programmers have to write two seperate programs that
run on controlling core and computation cores by using

libspe2 and pthread libraries, and (2) data transfers between
memories and multiple cores need to be explicitly specified
using DMA transfer instructions. In addition to this, for
using multiple Cell/B.E. processors in a cluster environment,
inter-node communication should be described in order to
control multiple nodes using communication libraries such
as OpenMPI or mpich[7]. This difficulty of the programming
forms the main reason why Cell/B.E. clusters are not pop-
ularly used by end-users, in spite of Cell/B.E.’s distinctive
potential in terms of flexiblity and cost-performance.

In this paper, we propose a middleware which mitigates
such difficulty on program development of Cell/B.E. clus-
ters. Using this middleware, a programmer can focus only
on SPE programming and tuning without writing PPE and
inter-node communication program codes. The programming
environment with the proposed middleware is now available
on a PC cluster consisting of an Intel Xeon node and
several SONY BCU-100 nodes. The evaluation results using
two applications: Monte-carlo method and matrix product
appeared that the overhead of the middleware is acceptable
considering its benefit in programming.

The rest of this report is organized as follows: Section
2 describes Cell/B.E. and parallel processing using multiple
Cell/B.E. in cluster environment. Section 3 is for related
work. Section 4 shows the design, and Section 5 shows
the implementation of this middleware. Section 6 shows the
evaluation. Finally, we state the conclusion and future work
in Section 7.

2. Cell Broadband Engine
Cell Broadband Engine (Cell/B.E.) is a multi-core proces-

sor jointly developed by SONY, Toshiba and IBM known as
STI as core of PlayStation3. Figure 1 shows the structure of
Cell/B.E..

Cell/B.E. and other processors based on Cell Broadband
Engine Architecture (CBEA) are classified in a hetero-
geneous processor with a general purpose 64-bit proces-
sor based on PowerPC called PowerPC Processor Element
(PPE), and eight SIMD processors called Synergistic Proces-
sor Element (SPE). Each processor is connected by a ring

582 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

PPE
L1

L2

I/O

EIB

S
P
E

SPE

LS

S
P
E

S
P
E

S
P
E

S
P
E

S
P
E

S
P
E

Memory

BICMIC

Fig. 1: The architecture of Cell/B.E.

based interconnect called Element Interconnect Bus (EIB).
Eight SPEs run in parallel, (six in case of a Cell/B.E. used
in PlayStation3), and total performance is 204.8GFlops for
single precision floating point calculations[8].

PPE is a general purpose processor which runs the op-
erating system, and also controls SPEs, main memory and
other external devices. It consists of a PowerPC Processing
Unit (PPU) connected to 32KB L1 cache and 512KB L2
cache. PPU has VMX, a 128-bit SIMD unit, which is based
on PowerPC instruction set archtecture.

SPE is a 128-bit SIMD processor consisting of a Syn-
ergistic Processor Unit (SPU), Local Store (LS) and Mem-
ory Flow Controller (MFC). It is suitable for multimedia
processing such as image processing, and MPEG stream
encoding/decoding. A programmer can control eight SPEs
from PPE using high level programming language such as
C/C++ with libspe2 libraries. The 128-bit register can store
four single precision floating point numbers. The rounding
of SPE’s floating point number does not follow IEEE754
standard. It has a 256KB exclusive memory called Local
Store (LS), and accessed by 128-bit per cycle.

EIB has a ring structure consisting of four buses each
of which can transfer 16-Byte in a cycle. Thus, the total
performance of EIB is 96-Byte/cycle. It is used for data
transfer among PPE, SPEs, Memory Interface Controller
(MIC) and Bus Interface Controller (BIC). These transac-
tions occur simultaneously within the same ring.

When a common program without any consideration runs
on Cell/B.E., only PPE will be used. In order to use SPEs,
the programmer has to write two different programs running
on PPE and SPE, and declares “context” (object to control
SPE in software level) in PPE source code to control each
SPE. Generally, threads are created according to the number
of utilized SPEs, and they are controlled by the PPE. Since

SPE can only access data stored in its LS, the target data
to be processed must be transferred from the main memory
using DMA transfer. The DMA transfer has some limitation
on memory alignment and data size, thus, the program must
take care of such limitations[9].

3. Related Work
In this section, we introduce related works which aims

efficient use of computational resources of multi-core pro-
cessor in cluster environments.

As examples of Cell/B.E. cluster programming environ-
ments or frameworks, there is a proposal of programming
framework by Kunzman which provides programmers a
technical guideline to efficiently load-balance tasks among
multiple Cell/B.E. nodes[10]. They suggest automatic of-
floading methodology of PPE’s tasks to SPEs, and manage-
ment technique of the tasks by adopting job queues. They
evaluated performance by using homogeneous PlayStation3
cluster. Also there is a proposal of a communication API
by Pakin called Cell Messaging Layer (CML), which is
implemented by MPI[11]. The performance of the CML
is analyzed with homogeneous cluster of multiple IBM’s
Bladecenter QS21, which is a blade server that equips two
Cell/B.E.s Yamada proposed Thread Virtualization Envi-
ronment (TVE), a middleware which shows an image to
programmers as if SPEs in multiple Cell/B.E.s connected
a network are integrated on a single processor, and one
PPE on a host machine can use all the SPEs[12]. By using
TVE, programmers can write a parallel distributed program
without use of communication libraries.

As examples of multi-core cluster middleware, Ninf
project is a representative programming middleware
for efficient use of computational resources in grid
environments[13]. It can offload heavy tasks to remote
cluster environments with larger computational capacity. It is
suitable for developing flexible and fault-tolerant grid system
whose node size may change frequently. This can not be
realized by MPI programming which requires deterministic
assignment of nodes that the program run on.

Also, XcalableMP released in November 2010, can auto-
matically generate parallel program codes which can be ap-
plied in cluster environment by inserting #pragma directives
in to non-parallelized program codes. XcalableMP provides
Java-based libraries for general-purpose processor such as
Intel X86, which can hide MPI communications.

Compared to the related works presented above, the
middleware that we propose in this paper has following
characteristics:

• It assumes a cluster environment with x86 servers
and multiple Cell/B.E. nodes with different number of
SPEs,

• provides libraries for automatic inter-node communica-
tion tuning and intra-node control, and

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 583

PlayStation3
(Cell/B.E.)
PPE + 6SPE

PlayStation3

SONY BCU-100 PlayStation3

PlayStation3

x16

x16

x16

x16

PlayStation3

x8

Private Network

Global Network

Intel Xeon (x86)
or
Cell/B.E.

Host Machine

SONY BCU-100
(Cell/B.E.)
PPE + 8SPE

SONY BCU-100

SONY BCU-100

Fig. 2: Example of PC cluster environment with multiple
Cell/B.E.

• provides high flexibility to the modification of the
system structure.

In the next section, we describe the design of this middle-
ware.

4. Design of Program Development Mid-
dleware

In this section, we explain the design of middleware for
PC cluster environment with multiple Cell/B.E. processors.

Generally, in order to run a parallel program in such
an environment requires communication program codes be-
tween host and client machines, and program codes for a
PPE to control its subordinate SPEs by using libspe2 and
pthread libraries. This urges a programmer to learn two types
of programming techniques, and also results in large code
quantity. In order to mitigate such a programming burden,
we propose a Virtual SPE programming environment.

This mechanism allows programmers to focus on tuning
SPE codes, and brings out an SPE’s computing power by
releasing them to describe communication part by using
socket connection with thread control functions.

4.1 Target Environment
We assume and environment shown in Figure 2.

• Multiple client Cell/B.E. nodes are connected by a
network such as Ethernet.

• Multiple client Cell/B.E. nodes with different number
of SPEs are connected.

• A host machine (Intel x86 processor or Cell/B.E.)
offloads its tasks to client Cell/B.E nodes.

Node 1

Node 2

SPE (ID 0-7)

SPE (ID 8-15)

Node N

Host Machine

Virtual SPE
0 - (8N -1)

Send

Receive

Socket Connection

Fig. 3: Outline of Virtual SPE environment

Host
Machine
(x86 or Cell/B.E.)

Cell/B.E. SPEs

SPEs

Host
Machine
(x86 or Cell/B.E.)

Fig. 4: Virtualization by middleware

Here, PlayStation3 (PS3) and SONY BCU-100 are examples
of machine with Cell/B.E.. PS3 have 7 SPEs, and BCU-
100 have 8 SPEs. Each Cell/B.E. are connected with host
machine.

4.2 Required Feature

Figure 3 shows the outline of Virtual SPE environment.
When a programmer issues operation to a Virtual SPE on
the host machine, physical SPE of each node corresponding
to the Virtual SPE executes it. Although programmers must
know the number of physical SPEs in the system and declare
it, they can be treated as if they were connected with the host
directly as shown in Figure 4. Thus, they are called "Virtual
SPE". Required feature of this middleware are following:

• Communication between host and node machines.

• Middleware can send or receive arbitrarily sized data
between host machine and specified SPE.

• Connection and data transfer between other nodes with-
out host machine.

584 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Table 1: List of communication functions

Function Name Feature
API_Initialize Connects to a server program.

This function is called automatically
at the beginning of a program.

API_Finalize Closes all connections.
This function is called automatically
at the end of a program.

Barrier_All Waits until all SPE’s executions are
terminated.

Generally, in order to use Cell/B.E. requires two program
files running PPE and SPE, and control part of SPE context
and pthread function is the most. In contrast, using this
middleware, PPE program is eliminated and programmer can
focus optimizing of SPE program.

In next section, we explain about implementation of this
middleware.

5. Implementation
Here, the implementation of the following mechanisms

supported by the middleware is shown.

1) Server program for transferring data between a host
and client machines, and between the PPE and SPEs.

2) A “Virtual SPE” in order to use SPEs beyond the
network.

We also show an example program code which uses the
Virtual SPE. Table 1 shows the list of communication
functions between a host and client machines. Virtual SPEs
can be used only by including an original header file.
Then, functionsAPI_Initialize and API_Finalizeare called
automatically at the beginning and the end of the program
execution.

5.1 Server program on PPE
In general, data cannot be directly transferred between

a host machine and SPEs. Thus, we implemented a server
program which supports data transfer among a host and node
machines. It runs on a PPE in each client machine, and
receives commands from the Virtual SPE in the host machine
in order to control the corresponding physical SPEs. A server
program has the following functions:

• It receives data from host machine using socket con-
nection,

• manages threads according to the number of SPEs, and

• sends data to a specified SPE by the DMA transfer
when it receives data from a host machine. The transfers
are repeated when data size exceeds 16 KB, a maximum
data size that can be sent at once.

• Then it sends data to a host machine from data buffers
in subordinate SPEs.

Node 1

SPE (ID 0-7)
Host Machine

#include "vcell_runtime.h"
int main()
{
 Virtual SPE vspe;
 int value;

 Vspe.Send(&value, sizeof(int));
 Vspe.Run();

 return 0;
}

Value
Virtual

SPE

SPE 1

Fig. 5: Example using Virtual SPE environment

Table 2: List of Virtual SPE functions

Function Name Feature
Vspe.Send Send data to target SPE
Vspe.Recv Recv data to target SPE
Vspe.Run Start SPE execution
Vspe.Wait Wait until the end of execution

As server program provides above functions, a program-
mer can only focus on the distribution and tuning of SPE
programs.

Double- or multi-buffering is a popular tuning technique.
An SPE prepares multiple buffers to hold blocks of data, and
initiates DMA transfer for data used in the next step (e.g.
next loop), while processing computation. In other words,
this technique can hide memory latency by overlapping with
computation. In our middleware, it can be applied to SPE
program unless multiple buffer sizes exceed that of LS.

5.2 Virtual SPE
Here, the outline of a Virtual SPE shown in Figure 5 is

introduced. It is an C++ class object, and corresponds to a
physical SPE one by one.

Table 2 shows functions to control Virtual SPEs. A
programmer can control data transfer or initialize of program
execution for remote SPEs by using Virtual SPE functions
listed above.

Details of functions are as follows:

• Vspe.{Send, Recv}
These functions support sending or receiving data be-
tween a host machine and target SPEs. Arguments of
this function are memory address of data, data size,
and target SPE number. Data transfer between clients
and host machines, and DMA transfer between PPE
and SPEs are initialized by the PPE server program
automatically. According to Cell/B.E.’s specification,
the DMA transfer can send 16KB of data block in
maximum. When data size exceeds this, the PPE server

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 585

Table 3: The environment of evaluation

Host machine Node machine
Hardware Intel Xeon SONY BCU-100

CPU Intel Xeon 2GHz Cell/B.E. 3.2GHz
Memory 2GB 1GB

OS CentOS 5.4 Yellow Dog Linux 6.0
Compiler g++-4.1.2 {ppu, spu}-g++ 4.1.1

divides them into multiple blocks and repetitively trans-
fers data

• Vspe.Run This function starts the execution of target
SPE’s. It only issues an execution (run) command to
a specified SPE, and does not wait for acknowledg-
ment of its initialize nor termination. If a programmer
wants to synchronize with other SPE, they need to use
“Vspe.Wait” function.

• Vspe.Wait This function is used when a programmer
wishes to wait until specified SPE’s execution is done.

Programmers first must declare several Virtual SPE ob-
jects according to the number of SPE to be used, and control
them by using the above functions. After Virtual SPEs are
declared, ID numbers are given to each node and SPE
automatically by the middleware.

6. Evaluation
In this section, we evaluate the availability of Virtual SPE

environment with the following two applications:
• Calculation of circular constant by using Monte-Carlo

integration

• Matrix-Matrix product
Performance is evaluated with the environment shown in
Table 3.

Virtual SPE environment lets programmers to use as many
SPEs as connected to the same network segment with a host
machine. The total number of SPE available is equal to the
number of BCU-100× 8 plus the number of PlayStation3
× 7. Host machine in this evaluation equips Intel Xeon
processor, and four SONY BCU-100 servers as client nodes.

First, we confirm acceleration effect by parallel process-
ing in this environment by using Monte-Carlo integration
program which requires small amount of data transfer. As
this is an embarrassingly parallel algorithm, computational
load of each thread or process is uniform, andN , the total
count of plots, is simply divided by the number of SPEs.
Thus, linear speedup according to the number of used SPEs
is expected.

Figure 6 shows the relationships between execution time
and number of SPEs for the case of using the middleware
and OpenMPI implementation. The figure shows that the
middleware can achieve approximately the same parallel ef-
fect with OpenMPI implementation, and performance would
further approach as plot count increases. The overhead of

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30 35

S
pe

ed
up

 R
at

io

Number of SPEs

OpenMPI

Virtual SPE

Fig. 6: Relation between execution time and number of SPEs
(plotting countN = 1010)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 5 10 15 20 25 30 35

S
pe

ed
up

 R
at

io

Number of SPEs

OpenMPI

Virtual SPE

Fig. 7: Relation between execution time and number of SPEs
(Dimension size of MatrixN = 4096)

the middleware is caused when connections to all nodes are
estabilshed, but its impact becomes smaller as the algorithm
becomes more computation bound.

Second, we evaluate performance using matrix-matrix
product benchmark. Figure 7 and Figure 8 show the re-
lationship between execution time and dimension size of
the matrix. As shown in Figure 8, performance of our
middleware is about 80% of OpenMPI implementation. It is
noted that the performance is degraded when the matrix size
is large, due to increase of communication overhead, which
derives from both socket communication and frequent DMA
transfers.

Third, we evaluate programmability of this middleware
in terms of code quantity. Table 4 shows the code size
of computation portion of the program in case of using
OpenMPI, libspe2 and our middleware. The table indicates
that our middleware can reduce approximately 40% of code
quantity.

586 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 5 10 15 20 25 30 35

S
pe

ed
up

 R
at

io

Number of SPEs

OpenMPI

Virtual SPE

Fig. 8: Relation between execution time and number of SPEs
(Dimension size of MatrixN = 8192)

Table 4: Program steps of benchmark application

Virtual SPE OpenMPI + libspe2
Monte-Carlo 150 (Node + SPE) 250 (PPE + SPE)

Matrix-Product 200 (Node + SPE) 340 (PPE + SPE)

The evaluation results of Monte-Carlo integration, Matrix-
matrix product and code quantity suggest that the overhead
of the middleware is acceptable considering its benefit in
programming.

We didn’t evaluate node-to-node communication. It can
apply to some applications which required data transfer
without host machine. In addition, The future works are
following:

1) Evaluation with 10 Gigabit Ethernet and Infiniband
network environment

2) Examination of another selection method of each SPE.

3) Visualize utilization of each SPE.

To evaluate with network environment listed above will
cancel the overhead of data transfer, and It can achieve more
closer performance compared with OpenMPI.

In this implementation, Virtual SPE correspond to physi-
cal SPE one-to-one. the alternative method of this is using
Virtual SPE depends on distance of physical network. We
considered this mechanism in evaluation, however, differ-
ence between communication of intra-node (same Cell/B.E.)
and inter-node makes complexity. Finally, In this middle-
ware, there is no method to observe activity of each SPE.
therefore, programmer doesn’t know each SPE’s load.

7. Conclusion
In this paper, we proposed and evaluated Virtual SPE

environment, and compared with traditional OpenMPI im-
plementation.

The evaluation results reveal following:

• Highly parallel application such as Monte-carlo method
or Matrix product, the Virtual SPE environment
achieved same performance of OpenMPI execution in
maximum

• Middleware can reduce 40% of these program steps

Here, the evaluation was done using a cluster with Intel
Xeon and SONY BCU-100 connected by Ethernet. Thus,
the network easily forms a bottleneck and the type of
applications which can be efficiently executed are limited.
Evaluation with various types of application on the other
platform is our future work.

References
[1] K.J.Barker, K.Davis, A.Hoisie, D.J.Kerbyson, M.Lang, S.Pakin, and

J.C.Sancho, “Entering the Petaflop Era: The Architecture and Perfor-
mance of Roadrunner,” inSC’08: Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, 2008, pp. 1 – 11.

[2] S. Matsuoka, “The TSUBAME Cluster Experience a Year Later,
and onto Petascale TSUBAME 2.0,” inRecent Advances in Parallel
Virtual Machine and Message Passing Interface, ser. Lecture Notes
in Computer Science, F. Cappello, T. Herault, and J. Dongarra, Eds.
Springer Berlin / Heidelberg, 2007, vol. 4757, pp. 8–9, 10.1007/978-
3-540-75416-9_5.

[3] K. Tsoi and W.Luk, “Axel: A Heterogeneous Cluster with FPGAs
and GPUs,” inIn Proceedings of International Symposium of Field
Programmable Gate Array (FPGA), 2010.

[4] M. Kistler, J. Gunnels, D. Brokenshire, and B. Benton, “Programming
the Linpack benchmark for the IBM PowerXCell 8i processor,”
Scientific Programming, vol. 17, no. 1-2, pp. 43–57, 2009.

[5] J. Kurzak, A. Buttari, P. Luszczek, and J. Dongarra, “The playstation
3 for high performance scientific computing,” 2008.

[6] A. Buttari, J. Dongarra, and J. Kurzak, “Limitations of the PlaySta-
tion3 for high performance cluster computing,” Tech. Rep., 2007.

[7] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance
portable implementation of the mpi message passing interface stan-
dard,” Parallel Computing, vol. 22, no. 6, pp. 789–828, Sept. 1996.

[8] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata, “Cell Broadband
Engine Architecture and its first implementation: A performance
view,” IBM Journal of Research and Development, vol. 51, no. 5,
pp. 559 –572, 2007.

[9] I. Corp, “"Cell/B.E. Programming Handbook Version 1.1",”
"http://www.ibm.com/developerworks/power/cell/".

[10] D. M. Kunzman and L. V. Kale, “Towards a framework for abstracting
accelerators in parallel applicatoins: Experience with cell,” inSC’09:
Proceedings of the 2009 ACM/IEEE conference on Supercomputig,
2009, pp. 1– 2.

[11] S. Pakin, “Receiver-initiated message passing over rdma networks,”
in In Proceedings of the 22nd IEEE International Parallel and
Distributed Processing Symposium, 2008, pp. 1– 2.

[12] M. Yamada, Y. Nishikawa, M. Yoshimi, and H. Amano, “A Proposal
of Thread Virtualizaton Environment for Cell Broadband Engine,” in
In Processings of Parallel and Distributed Computing and Systems
(PDCS), no. 724-027, 2010.

[13] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka,
“Ninf-G: A Reference Implementation of RPC-based Programming
Middleware for Grid Computing,”Journal of Grid Computing, vol. 1,
no. 1, pp. 41–51, 2003.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 587

This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National

Laboratory, 2009 and 2010 HPC Summer School

Performance Analysis and Evaluation of LANL’s PaScalBB I/O nodes using

Quad-Data-Rate Infiniband and Multiple 10-Gigabit Ethernets Bonding

Hsing-bugn Chen, Alfred Torrez, Parks Fields

HPC-5, Los Alamos National Lab

Los Alamos, New Mexico 87111, USA

{hbchen, atorrez, parks}@lanl.gov

Juan C. Franco, Daniel Illescas, Rocio Perez-Medina,

Jharrod LaFon, Ben Haynes, John Herrera

INST-OFF, HPC Summer School

 Los Alamos National Lab

Abstract - In the LANL’s PaScalBB network I/O nodes carry

data traffic between backend compute nodes and global

scratch based file systems. An I/O node is normally equipped

with one Infiniband Nic for backend traffic and one or more

10-Gigabit Ethernet Nics for parallel file system data traffic.

With the growing deployment of multiple, multi-core

processors in server and storage systems, overall platform

efficiency and CPU and memory utilization depends

increasingly on interconnect bandwidth and latency. PCI-

Express (PCIe) generation 2.0 has recently become available

and has doubled the transfer rates available. This additional

I/O bandwidth balances the system and makes higher data

rates for external interconnects such as Infiniband feasible. As

a result, Infiniband Quad-Data Rate (QDR) mode has become

available on the Infiniband Host Channel Adapter (HCA) with

a 40 Gb/sec signaling rate. Combining HCA QDR data rates

with multiple 10-Gigabit Ethernet links and using it in an IO

node has created the potential to solve some of the I/O traffic

bottlenecks that currently exist. We have setup a small-scale

PaScalBB testbed and conduct a sequence of I/O node

performance tests. The goal of this I/O node performance

testing is to figure out an enhanced network configuration that

we can apply to the LANL’s Cielo machine and future LANL

HPC machines using PaScalBB architecture.

Keywords- Server I/O networking, High Performance Networking,

Infiniband, 10 Gigabit Ethernet, Link aggregation, Load balancing

1. INTRODUCTION

 Commercial off the shelf based cluster computing

Systems have delivered reasonable performance to technical

and commercial areas for years. High speed computing,

global storage, and networking (IPC and I/O) are the three

most critical elements to build a large scale HPC cluster

system. Without these three elements being well balanced, we

cannot fully utilize a HPC cluster. High data bandwidth I/O

networking provides a data super-highway to meet the needs

of constantly increasing computation power and storage

capacity.

LANL’s PaScalBB server I/O architecture is designed to

support data-intensive scientific applications running on very

large-scale clusters. The main goal of PaScalBB is to provide

high performance, efficient, reliable, parallel, and scalable I/O

capabilities for data-intensive scientific applications running

on very large-scale clusters. Data-intensive scientific

simulation-based analysis normally requires efficient transfer

of a huge volume of complex data among simulation,

visualization, and data manipulation functions. To date

PaScalBB has been implemented on most of HPC production

machines at LANL; Roadrunner (1
st
 Petaflops machine),

RedTail, LOBO, Turing, TLCC, etc.

I/O nodes are used in the LANL’s PaScalBB network to

carry data traffic between backend compute nodes and global

scratch based file systems. An I/O node is normally equipped

with one Infiniband NIC for backend IPC traffic and one or

more 10-Gigabit Ethernet NICs for parallel file system data

traffic. With the growing deployment of multiple, multi-core

processors in server and storage systems, overall platform

efficiency and CPU and memory utilization depends

increasingly on interconnect bandwidth and latency. PCI-

Express (PCIe) generation 2.0 has recently become available

and has doubled the transfer rates available. This additional

I/O bandwidth balances the system and makes higher data

rates for external interconnects such as Infiniband feasible. As

a result, Infiniband Quad-Data Rate (QDR) mode has become

available on the Infiniband Host Channel Adapter (HCA) with

a 40 Gb/sec signaling rate. Combining HCA QDR rates with

multiple 10-Gigabit IPC Ethernet links has the potential to

solve some of the I/O traffic bottlenecks that currently exist.

We have setup a small-scale PaScalBB test bed and conduct a

sequence of I/O node performance tests. The goal of this I/O

node performance testing is to figure out an enhanced network

configuration that we can apply to the LANL’s Cielo machine

and future LANL HPC machines using PaScalBB architecture.

The rest of this paper is organized as follows. In section

two we describe LANL’s PaScalBB server I/O infrastructure.

Section three introduces Infiniband/QDR and 10Gigabit

Ethernet technologies. We then illustrate our experimental

setup and discuss testing results and performance data in

section four. Finally, we present our conclusion and future

works in section five.

2. PASCALBB SERVER I/O BACKBONE ARCHITECTURE

LANL’s PaScalBB [10] adopts several hardware and

software components to provide a unique and scalable server

588 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National

Laboratory, 2009 and 2010 HPC Summer School

I/O networking architecture. Figure-1 illustrates the system

components used in PaScalBB.

2.1 Hardware Components used in PaScalBB

2.1.1 Level-1 High Speed Interconnection Network

The Level-1 interconnect uses (a) high speed interconnect

systems such as Quadrics, Myrinet, or Infiniband for fulfilling

requirements of low latency, high speed, high bandwidth

cluster IPC communication and (b) aggregating I/O-Aware

multi-Path routes for load-balancing and failover.

2.1.2 Level–2 IP based Interconnection Network

The Level-2 interconnect uses multiple Gigabit Ethernet

switches/routers with layer-3 network routing support to

provide latency-tolerant I/O communication and global IP

based storage systems. Without using the “Federated network”

solution, we can linearly expand the Level-2 IP based network

by employing a global host domain multicasting feature in

metadata servers of a global file system. With this support we

can maintain a “single name space” global storage system and

provide a linear cost growing path for I/O networking.

2.1.3 Compute node

A Compute node is equipped with at least one high-speed

interface card connected to a high-speed interconnect fabric in

Level-1. The node is setup with Linux multi-path equalized

routing to multiple available I/O nodes for load balancing and

failover (high availability). A Compute node is used for

computing only and is not involved with any routing activities.

2.1.4 I/O node

I/O node: An I/O routing node has two network

interfaces. One high-speed interface card is connected to the

Level-1 network for communication with Compute nodes. One

or more Gigabit Ethernet interface cards (bondable) are

connected to the Level-2 linear scaling Gigabit switches. I/O

nodes serve as the routing gateways between Level-1 and

Level-2 network. Every I/O has the same networking

capability.

2.2 System Software Components used in PaScalBB

2.2.1 Equal Cost Multi-path routing for load balancing

Multi-path routing is used to provide balanced outbound

traffic to the multiple I/O gateways. It also supports failover

and dead-gateway detection capability for choosing good

routes from active I/O gateways. Linux Multi-Path routing is a

destination address-based load-balancing algorithm. Multi-

path routing should improve system performance through load

balancing and reduce end-to-end delay. Multi-path routing

overcomes the capacity constraint of “single-path routing” and

routes through less congested paths.

Each Compute node is setup with N-ways multi-path

routes thru “N” I/O nodes. Multi-path routing also balances

the bandwidth gap between the Level-1 and the Level-2

interconnects. We use the Equal Cost Multi-path (ECMP)

routing strategy on compute nodes so compute nodes can

evenly distribute traffic workloads on all I/O nodes.

With this bi-directional multi-path routing, we can sustain

parallel data paths for both write (outbound) and read

(inbound) data transfer. This is especially useful when applied

to concurrent socket I/O sessions on IP based storage systems.

PaScalBB can evenly allocate socket I/O sessions to routing

available I/O routing nodes.

I/O nodes are used heavily in the LANL’s PaScalBB

network to carry data traffic between backend compute nodes

and global scratch based file systems. An I/O node is

normally equipped with one Infiniband NIC for backend IPC

traffic and one or more 10-Gigabit Ethernet NICs for parallel

file system data traffic [6][7][8].

3. INFINIBAND AND 10 GIGABIT ETHERNET

Infiniband [3] is a standard switched fabric

communication link used in high performance computing and

enterprise data centers. The InfiniBand Architecture (IBA) is

designed to provide high bandwidth, low-latency computing;

the scalability to support thousands of nodes and multiple

processor cores per server; and efficient utilization of compute

processing resources. The TOP-500 list published in

November 2010 shows that more than 42% of the computing

systems use Infiniband as their primary high-speed

interconnecting network. The growth rate of Infiniband in the

TOP-500 systems is about 30%. This is an indication of a

strong momentum in adoption of Infiniband technology in

HPC and Enterprise communities.

Ethernet has long been the dominant LAN technology.

Now the availability of 10-Gigabit Ethernet has enabled new

applications in the data center and IP based storage systems.

Because 10-Gigabit Ethernet is based on the core Ethernet

technology, it takes advantage of the wealth of improvement

that has been developed over the years and simplifies the

migration to this higher-speed technology.

With the growing deployment of multiple, multi-core

processors in server and storage systems, overall platform

efficiency and CPU and memory utilization depends

increasingly on interconnect bandwidth and latency. PCI-

Express (PCIe) generation 2.0 has recently become available

and has doubled the transfer rates available. This additional

I/O bandwidth balances the system and makes higher data

rates for external interconnects such as Infiniband feasible. As

a result, Infiniband Quad-Data Rate (QDR) mode has become

available on the Infiniband Host Channel Adapter (HCA) with

a 40 Gb/sec signaling rate. Combining Infiniband HCA QDR

data rates with multiple 10-Gigabit Ethernet links and using it

in IO node nodes has created the potential to solve some of the

I/O traffic bottlenecks that currently exist in HPC machines.

4. EXPERIMENTAL TESTING SETUP AND PERFORMANCE

EVALUATION

We setup a small-scale PaScalBB test bed and conduct a
sequence of I/O node performance tests.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 589

This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National

Laboratory, 2009 and 2010 HPC Summer School

4.1 Testing setup and configuration

Hardware equipment includes

(a) Twelve Linux server machine–Intel Nehalem 5600
DualQuad-core with 16GB DDR3 memory: seven
Compute nodes with one Mellanox ConnectX Infiniband
QDR on each compute node, one I/O node with
Mellanox ConnectX Infiniband QDR [10] and multiple
Mellanox ConnectX 10-Gigabit Ethernet Nics, and four
data nodes with one 10-Gigabit Ethernet connection on
each node,

(b) One Mellanox 36-port Infiniband QDR switch, and

(c) One Arista 24-port 10-Gigabit Ethernet Switch [11].

Software components include

(a) Fedora 12/Linux64-bit OS,

(b) OFED (OpenFabrics Enterprise Distribution) [9]
Infiniband/10Gigabit Ethernet system software,

(c) Linux Ethernet bonding driver, and

(d) netperf [12] - a network performance benchmark
software.

4.2 Performance testing and evaluation

4.2.1 Infiniband SDR/DDR/QDR performance testing

Figure-2 shows the one-way communications from
IB/SDR(single data rate), IB/DDR(double data rate) and
IB/QDR(quad data rate). This figure illustrates the
improvement of 75% of bi-directional bandwidth when moving
from DDR to QDR. Figure-3 shows the latency testing results
from IB/SDR. IB/DDR, and IB/QDR. This result demonstrates
the advantage of using QDR in terms of lower latency. Figure-
4 shows that MPI I/O testing using various message packet
sizes from 1MB to 200MB. This result shows that IB/QDR can
persistently provide consistent bandwidth when various
message sizes are applied in MPI applications. Figure-5
shows the results of (a) QDR/UC (unreliable connection) one
way communication bandwidth. (b) QDR/RC (reliable
connection) one way communicaiton bandwidth, and (c)
QDR/SRQ(shared receiving queue) bi-direction
communication bandwidth. We can see that IB/QDR can reach
a peak of 5600MB+/sec bi-directional bandwidth from multiple
streams of netperf testing.

4.2.2 10-Gigabit Ethernet performance testing

Figure-6 shows the performance results for back-to-back
connection using one single 10-Gigabit Ethernet link between
two server nodes. We can reach 95% bandwidth of a physical
10-Gigable link. Figure-7 shows the performance result from
triple 10-Gigabit Ethernet bounding back-to-back connection.
This figure illustrates that we can reach a peak 2300MB/sec
bandwidth from three-10GiGE link bounding. Figure-8 shows
the performance result from quad 10-Gigabit Ethernet
bounding back-to-back connection. It only improve 5% -10%
bandwidth compared it with the three-10-Gigabit Ethernet
bounding. It may be due to the Ethernet chip-set processing
capability or the Linux TCP/IP software stack.

4.2.3 I/O node performance testing and justification

Figure-9 shows the results of using four compute nodes and

sending concurrent multiple streams of netperf data traffic

through one I/O node and arriving at four different data nodes.

Data includes four individual links, data bandwidth, and the

accumulated data bandwidth. It can reach about 2950MB/sec.

Figure-10 shows the result of using seven compute nodes. We

can push the bandwidth to 4100MB/sec. Figure-9 and Figure-

10 prove that we can gain more bandwidth when more

compute nodes are involved in sending networking traffics.

This also demonstrates the scaling capability of using the

LANL’s PaScalBB server I/O infrastructure.

In Figure-11, we verify the advantage of using Linux

Ethernet bonding capability. We try two Ethernet bonding

algorithm implemented in Linux Kernel: mode-0 and mode-5.

Linux Ethernet bonding algorithm “mode-0”, named balance-

rr or Round-robin policy. It transmits data packets in

sequential order from the first available slave through the last.

This mode provides load balancing and fault tolerance. Linux

Ethernet bonding algorithm mode-5, named balance-tlb or

Adaptive transmits load balancing. It supports channel/port

bonding that does not require any special switch support. The

outgoing data traffic is well distributed according to the

current load on each slave link. In-coming data traffic is

received by the current slave link. If the receiving slave fails,

another slave takes over the MAC address of the failed

receiving slave. The purpose of this testing is to figure out a

better traffic load balancing algorithm that can accommodate

the advantage of parallel file systems used in HPC machines.

Our results show that mode-5 (Adaptive transmit load

balancing) can obtain 10%-15% more bandwidth compared

with mode-0 (a simple Round-robin policy).

From the above results, we can conclude that there is
definitely an advantage of using multiple 10-gigabits Ethernet
bonding in an I/O node when transferring data through an
IB/QDR link. We also learn how to tune 10-Gigabit Ethernet
bonding algorithms to come out with the best fit for HPC
parallel file system such as the Paransas Panfs ActiverScale
Parallel File storage system .

5 CONCLUSIONS AND FUTURE WORKS

We evaluate the bandwidth performance of using
IB/SDR/, IN/QDR, and IB/QDR. We also evaluate of various
bonding algorithms of using multiple 10-Gigabie Ethernet
links. We verify the capability of an I/O node equipped with
one IB/QDR and multiple 10-Gigabit Ethernet links. We study
the Linux Ethernet bonding algorithms. We observe the scaling
capability of an I/O when it handling more network traffics.
We figure out a better way of network setup and configuration
for LANL’s PaScalBB network. We have applied our testing
results to LANL’s production machines.

As part of the future works, we intend to conduct
evaluations on larger test beds, possibly using some available
production HPC machines, and studying the impact of new
PaScalBB network setups and configuration. We also intend to
carry more in-depth studies of applying different network

590 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National

Laboratory, 2009 and 2010 HPC Summer School

benchmarking testing, MPI-IO testing, and parallel file system
testing.

REFERENCES

[1] Hari Subramoni, Matthew Koop and Dhabaleswar K.

Panda, “Designing Next generation Clusters: Evaluation

of Infiniband DDR/QDR on Intel Computing Platforms,

HOTI’09 - 17
th

 IEEE Annual Symposium on High-

Performance Interconnects

[2] Matthew J. Koop, Wei Huang, Karthik Gopalakrishanan,

Dhabaleswar K. Panda, “Performance Analysis and

Evaluation of PCIe 2.0 Quad-Data Rate Infiniband”,

HOTI’09 -16
th
 IEEE Annual Symposium on High-

Performance Interconnects

[3] Infiniband Road map, Infiniband Trace Association,

http://www.infinibandta.org/

[4] HPC Advisory Coucil – Network of Expertise,

“Interconnect Analysis: 10GigE and infiniband in High

Performance Computing, 2009

[5] Munira Hussain, Gilad Shalner, Tong Liu, Onur

Celebioglu, “Comparing DDR and QDR Infiniband 11
th

-

generation Dell Poweredge Clusters”, DELL Power

Solution, 2010 Issue 1

[6] Gary Grider, Hsing-bung Chen, James Nunez, Steve

Poole, Rosie Wacha, Parks Fields, Robert Martinez, Paul

Martinez, Satsangat Khalsa, “PaScal – A New Parallel

and Scalable Server IO Networking Infrastructure for

Supporting Global Storage/File Systems in Large-size

Linux Clusters”, Proceedings of the 25th IEEE

International Performance, Computing, and

Communications Conference, 2006 (IPCCC 2006). April

2006.

[7] Hsing-bung Chen, Gary Grider, Parks Fields, “A Cost-

Effective, High Bandwidth Server I/O network

Architecture for Cluster Systems”, 2007 IEEE IPDPS

Conference

[8] Hsing-bung Chen, parks Fields, Alfred Torrez, “An

Intelligent Parallel and Scalable Server I/O Networking

Environment for High Performance Cluster Computing

Systems”, PAPTA 2008 Conference

[9] OFED – OpenFabrics, http://www.openfabrics.org

[10] Mellanox – http://www.mellanox.com/

[11] Arista network - http://www.aristanetworks.com/

[12] Netperf - http://www.netperf.org/netperf/

Figure 1: System diagram LANL’s PaScalBB Server I/O architecture

.

.

.

.

Switch - Inbound M-way multiple

streams Equal Cost Multi-path

routing - switch Comp nodes - Outbound N-way
load balancing Multi-path

routing

I/O nodes/VLAN use OSPF to route inbound

and outbound traffics for Level-1 and Level-

2 networks

.

.

.

.

Level-1
Interconnect

network

Comp Node

Comp Node

Comp Node

I/O Node

I/O Node

I/O Node

Level-2

Interconnect

network

Global

File

System

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 591

http://www.infinibandta.org/
http://www.aristanetworks.com/

This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National

Laboratory, 2009 and 2010 HPC Summer School

Figure-2:IB/SDR, IB/DDR, and IB/QDR performance testing Figure-3: IB/SDR, IB/DDR, and IB/QDR latency testing

Figure-4: Multithread MPI testing using IB/QDR Figure-5: IB/QDR bi-directional bandwidth testing

592 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National

Laboratory, 2009 and 2010 HPC Summer School

Figure-6: back-to-back one single 10-Gigabie Ethernet testing Figure-7: Three 10Gigabit Ethernet bonding performance testing

 Figure 8: Four 10Gigabit Ethernet bonding performance testing Figure 9: Using four compute nodes – scaling testing

Figure 10: Using seven compute nodes – scaling testing Figure 11: Linux bonding – mode-0 vs. mode-5 testing

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 593

A Set of Microbenchmarks for Measuring
OpenMP Task Overheads

James LaGrone1, Ayodunni Aribuki1, and Barbara Chapman1

1Department of Computer Science, University of Houston, Houston, Texas, USA

Abstract—
Asynchronous tasks make it easy to express the paral-

lelism in a broad variety of computations and are espe-
cially useful for writing parallel applications with irregu-
lar and/or dynamic workloads. Their introduction into the
OpenMP specification has greatly extended the scope of
this API. Yet the body of benchmarks using OpenMP tasks
remains minimal. The EPCC OpenMP Microbenchmarks
provide measurements of overheads incurred by OpenMP
constructs in version 2.0-compliant implementations. These
microbenchmarks are widely used to explore the behavior
of OpenMP constructs on a given platform. To thoroughly
test an OpenMP 3.0 implementation, we have extended these
microbenchmarks by twenty-one new microbenchmarks that
measure overheads incurred by various common uses of
OpenMP tasks, including task synchronization. We include
evaluations of both commercial and open source implemen-
tations of OpenMP tasks on various multicore platforms.

Keywords: OpenMP; asynchronous tasks; benchmarks; runtime

1. Introduction
Asynchronous tasks make it easy to express the paral-

lelism in a broad variety of computations and are especially
useful for writing parallel applications with irregular and/or
dynamic workloads. Their introduction into the OpenMP [1]
specification has greatly extended the scope of this API from
a loop-centric model to one that can express the irregular par-
allelism present in recursive and pointer chasing algorithms.
OpenMP is widely used for programming on shared memory
systems and in conjunction with MPI on distributed systems.

While there are many benchmarks and applications using
OpenMP, MPI, or mixed-mode MPI/OpenMP, only the EPCC
OpenMP Microbenchmarks [2], [3] provide measurements
of overheads incurred by OpenMP 2.5 constructs. These
microbenchmarks are widely used to explore the behavior of
OpenMP constructs for an implementation on a given system.
We have extended these microbenchmarks with twenty-one
new microbenchmarks that measure overheads incurred by
various common uses of OpenMP tasks, including task syn-
chronization. We evaluate two implementations of OpenMP
tasks, Intel C compiler 11.1 and GNU C compiler 4.6,
on various multicore platforms. This will enable a more
thorough evaluation of OpenMP 3.0 task implementations.

The remainder of this paper is organized as follows.
Following some discussion on related work in Section 2,
Section 3 presents an overview of tasks as defined in the
OpenMP 3.0 Application Program Interface (API) and some
basic concerns regarding its implementation. Sections 4–5
present the details of the microbenchmarks and their results.
We conclude and discuss future work in Section 6.

2. Related Work
We have surveyed several benchmarks that use OpenMP

for parallel programming on shared memory systems (SMPs),
including the hybrid MPI-OpenMP model on SMP clusters.
While various OpenMP constructs are included in these
benchmarks, the majority rely primarily on the use of parallel
loop constructs. Though OpenMP originally targeted loop-
centric parallelism, it has since evolved to include task
parallelism in version 3.0.

While there are many benchmarks using OpenMP [4]–[10],
we are only aware of one set of benchmarks that includes
OpenMP tasks [11] written specifically to evaluate OpenMP
task implementations via a set of applications that feature
regular, irregular, and recursive task parallelism. However,
these are not intended to measure implementation overheads.

We present two microbenchmarks for OpenMP derived
from the EPCC microbenchmarks [2], [3] and extensions [12]
that measure the overhead incurred by implementations of
OpenMP prior to version 3.0. One analysis of an implementa-
tion of OpenMP tasks [13] used synthetic microbenchmarks,
without synchronization, to examine the possibilities of the
OpenMP tasking model under various conditions such as
task granularity, time between task creation, and common
clauses. At the time of this writing, we are unaware of any
set of microbenchmarks available for measuring the overhead
incurred by use of OpenMP tasking constructs.

3. OpenMP and Tasks
OpenMP [1] is a high-level, explicit programming model

for shared memory platforms. It is supported by most com-
mercial and open source compilers and enjoys widespread
use in many scientific programming domains. Its latest
specification (3.0) moved OpenMP from a purely thread-
centric execution model to a more task-centric model. While
continuing to use the fork-join parallel execution model, the
master thread is now not only responsible for creating a

594 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

thread team, but also for generating the set of tasks to be
executed by the team. An OpenMP program begins with a
single thread of execution which executes the initial (implicit)
task in a sequential manner. When any thread encounters an
omp parallel directive, it creates a team of threads and a
set of implicit tasks is created and assigned one per thread
in the team.

3.1 Tasking Model
Two task-specific constructs, omp task and omp

taskwait, allow the creation and synchronization of
tasks. A thread encountering an task directive generates an
explicit, asynchronous task. The taskwait or omp barrier

directives can be used to synchronize tasks. The taskwait

requires the current task to wait for the completion of all
tasks it has generated up to that point in the code. The
barrier construct defined in previous specifications has
been extended to accommodate tasks. Threads encountering
a barrier must wait until all threads in the current thread
team enter the barrier and all tasks created in the parallel
region prior to the barrier must complete before any threads
may continue. Proper synchronization of tasks is necessary
to guarantee the completion of all tasks.

An OpenMP task is defined to be a specific instance of
executable code and its data environment. The execution of
an explicit task may be immediate or deferred, and the task
does not have to be executed by the same thread that created
it. The execution of a task may be suspended and resumed
later. Unless the task is marked untied, it must be executed
by only one thread and is not subject to possible worksteal-
ing. An optional if clause, when evaluating to false, causes
the encountering task to be suspended and the execution of
the new task must begin immediately. Data-sharing attributes
are defined using private, firstprivate, and shared

clauses similar to parallel and worksharing constructs.
Unless otherwise specified by such a clause or implied
by context, the default data-sharing attribute for a task

is firstprivate, meaning the value of the specified data is
initialized at the point the task directive is encountered and
kept private to the task.

3.2 Task Implementation Concerns
Applications with irregular parallelism, like those that are

highly recursive or use pointer-chasing algorithms, benefit
greatly from asynchronous tasking features in a language.
The dynamic nature of tasking makes its implementation
much more difficult than the static constructs and avoid-
able overheads may be introduced by poor implementations,
which may limit its scalability. Tasking in OpenMP is a
relatively new feature and extensions to the tasking model
are likely in the near future. It is possible for the compiler
to provide information that could be used to base a runtime
solely on tasks [14]. It is therefore critical for the basis of a
tasking runtime to be efficient before being extended.

The role of the runtime in a tasking implementation
includes creating and scheduling tasks as well as enforcing
dependencies between them. Therefore, the efficiency of
the runtime implementation has a heavy impact on the
performance of task-based applications. Ideally, tasks will
be scheduled for execution in a manner that maximizes
concurrency while accounting for locality, load imbalance,
synchronization, and memory footprint to facilitate better
performance. To address these concerns, an implementation
should carefully consider how tasks are created, stored, and
scheduled for execution, and synchronized.

3.2.1 Queue Organization

Task schedulers are often built using a set of queues for
holding tasks that are ready for execution. Possible organiza-
tions of queues include a single, centralized queue shared
among all threads, queues distributed among the threads,
and a hierarchy of queues structured in a tree [15]–[17].
The choice of organization may reflect the desire to target
some concerns over others, including ease of implementation,
load balancing, contention for queue access, locality of work
and data, work stealing, and architectural layout. There are
obvious tradeoffs that must be made and integration of
the tasking model into an existing OpenMP runtime may
preclude some of the more desirable choices.

3.2.2 Task Scheduling

The OpenMP specification does not specify how tasks
should be scheduled, but leaves it to the implementation to
decide when to execute a task and by which thread. The
design of a scheduler should carefully consider the locality
of data and load balancing. Tasks using the same data should
be scheduled on the same thread, especially on architectures
exhibiting non-uniform memory access (NUMA) patterns.
The scheduler should also ensure that all threads do close
to the same amount of work by dynamically balancing
the workload among them. Task scheduling policies can be
broadly categorized as work-first or breadth-first [18]. The
choice of scheduling policy will likely reflect the choice
of queue organization. Because the OpenMP specification
allows for workstealing, particular attention may be needed
in choosing a thread library to facilitate it.

3.2.3 Task Synchronization

OpenMP specifies the taskwait and barrier constructs
for the synchronization of tasks. Implementations of omp

barrier must be extended to include unfinished tasks. The
omp taskwait construct applies only to the children of
the parent task, so the implementation must keep track of
this parent-child relationship for each task to ensure the
proper synchronization and completion of the tasks involved.
Implementations employing workstealing may also need to
allow for this in the barrier and taskwait constructs.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 595

4. Methodology
A microbenchmark suite for measuring overheads in

OpenMP implementations introduced about a decade ago
is often referred to as the EPCC OpenMP Microbench-
marks [19]. This suite of tests provides a framework for
evaluating overhead costs incurred by OpenMP implemen-
tations by providing a straight-forward method for mea-
suring runtime costs associated with synchronization and
loop constructs [20], [21]. The straight-forward measure-
ments it provides have even facilitated implementation im-
provements [22] by clearly revealing performance problems.
Since its introduction it has been updated [2], [3] and
other microbenchmarks have followed its lead for measur-
ing overheads in nested parallelism [12] and for evaluating
communications in mixed-mode, or hybrid, OpenMP/MPI
programming [23]. However, since tasks were introduced in
the OpenMP 3.0 specification, these microbenchmarks have
not been updated to include them.

The overhead of an OpenMP construct is the difference
of the time it takes for a given piece of code to execute
sequentially (without using OpenMP) and the composite time
for a set of processors to execute the code in parallel with
OpenMP [12], [19]. Let Ts represent the sequential execution
time of the code block, which is the time it takes to do
the actual work of the code block. Letting Tp represent
the parallel execution time and n represent the number of
processors (or OpenMP threads), nTp, the composite time
of the parallel execution, includes the time spent doing the
work of the code block plus the time spent constructing
and deconstructing the parallel execution environment (i.e.,
OpenMP overhead, or the execution time NOT spent in the
given code block). Algebraically, the total overhead is

Tovrhd = nTp − Ts (1)

and the per thread overhead is

To = Tp − Ts/n. (2)

We use a similar framework for the task microbenchmarks
that is used in the EPCC Microbenchmarks for OpenMP
2.0 [3]. A reference time, Ts, is calculated by taking the time
for the execution of a specific code block used to represent a
kernel of actual work. The time Tp for parallel execution is
found by timing the execution of the same code block with
OpenMP constructs inserted. The overhead, Tovrhd, incurred
by the parallel execution is then calculated according to
Equation 1. A significant sample of timings is accrued and
the mean, standard deviation, and minimum and maximum
values are reported.

OpenMP task constructs can be placed anywhere a legal
language statement may appear. However, they are typically
placed in master, single, or for constructs in order for
each task to be created by one thread. We have constructed
tests for each of these methods of task generation as well

as parallel. The test using omp parallel provides a
measure of pure task overhead and the others show the impact
of the other typical methods of generating tasks. OpenMP
timing routines are used for all tests. The tests in the suite
are categorized into tests that involved either task, task
firstprivate(data), or taskwait directives. We have
both C and Fortran versions of the microbenchmarks. Code
snippets and results herein come from the C versions.

4.1 Measuring Task Overhead
To measure overhead incurred by the task, a reference

time is found by timing the execution of

for (j = 0; j < reps; j++)
delay(delaylength);

enough times to get an adequate sample. This time is divided
by reps to obtain an average execution time for the construct.
The value of reps represents the number of times a given
construct will be called in the loop of the OpenMP versions
of the loop. We have used 30 samples and 10,000 reps in
our experiments.

The overhead of task generation by the parallel con-
struct is measured by timing the execution of the code

#pragma omp parallel private(j)
{

#pragma omp [master|single|for] [untied]
for (j = 0; j < reps[*ntasks]; j++){

#pragma omp task
delay(delaylength);

}
} /* end parallel */

without using a [master|single|for] construct for j ∈
[0, reps). The value of reps is chosen to be large enough for
the overhead of the enclosing parallel region to be negligible.
In this case all threads in the team will execute the for (j. . .)
loop. Because all threads will participate in executing the
work, the amount of work is equivalent to nTp. An additional
test uses the untied clause in the task directive.

Timings of master, single, and for are similar with the
respective constructs placed right before the for (j. . .) loop
using j ∈ [0, reps × nthreads) more iterations to produce
an equivalent amount of work per thread. Again, the work in
the parallel region should be equivalent to the work done in
the serial reference test multiplied by the number of threads.
A separate test for each uses the untied clause.

4.2 Measuring Overhead of Tasks with First-
private Data

Since the use of firstprivate data in tasks is not only
common but is the default data scope, we felt measuring
the overhead of capturing the values of these data could be
helpful. These tests are similar those in the arraybench set of
EPCC microbenchmarks for OpenMP 2.0 [2]. Our tests use
small, medium, and large arrays as firstprivate data for each
of the task generating constructs master, single, and for.

596 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Using parallel is not common in this case and is omitted.
The timings are calculated in a similar fashion to the task

tests in Section 4.1.

4.3 Measuring Task Synchronization Overhead
The measuring of the taskwait is problematic. In order

to get accurate results, the number of taskwait constructs
encountered needs to be correctly established and the con-
struct only has an affect if there are several generations of
tasks created. Therefore, the delay function used for these
measurements is recursive and uses arguments for the length
of delay and the depth of recursive calls and an additional
value to set the branching factor of the tree generated by the
recursive calls. The same delay function is used for reference
time without any OpenMP directives.

void delay(int depth, int delaylength){
...
if (depth > 1)

for (j = 0; j < BRANCHING; j++){
#pragma omp task firstprivate\

(depth, delaylength)
{

delay(depth - 1, delaylength);
}
#pragma omp taskwait

}
/* simulate work */
for (i=0; i < delaylength; i++) a+=i;
/* prevent optimization of function */
if (a < 0) printf("%f \n",a);
return;

}

To achieve the maximum number of taskwait directives,
each task generated has a taskwait associated with it.

For a depth of D and a branching factor of B, the number
of tasks, N , generated is

N =
D∑

i=1

B(i−1) (3)

This formula is used to calculate the number of taskwait
directives encountered by the thread team. The number of
tasks is used in place of the reps to calculate the timings.

A drawback to this methodology is the resulting one-to-
one correspondence of task to taskwait constructs. This is
unavoidable due to the OpenMP specification of taskwait.
While this leads to task overhead in addition to taskwait

overhead, this would represent a worst case scenario which
is unlikely in practice due to the artificial nature of these
microbenchmarks.

5. Results
We ran our microbenchmarks on various systems to eval-

uate several OpenMP implementations. Due to space lim-
itations, we show only results of evaluations on a shared
memory multicore system that has dual 2.27 GHz 8-core Intel
Xeon Nehalem E5520 processors and 32 GB RAM. Pairs

Threads

Construct 1 2 4 8 16
gcc 4.6

parallel 0.459 1.678 2.348 3.111 3.960
for 0.335 0.552 0.678 1.338 1.187
single 0.334 0.522 0.416 0.792 0.868

icc 11.1
parallel 0.219 1.443 1.667 2.685 3.797
for 0.015 0.495 0.795 1.156 1.646
single 0.013 0.552 0.805 1.302 1.825

Table 1: Overheads (µsec) as measured in syncbench of the
EPCC Microbenchmarks for OpenMP 2.5 on the 16-core
Nehalem.

of cores share 32KB L1 and 256KB L2 caches with each
processor sharing 8MB L3 cache. The system was running
CentOS 5.5 (final) with a Redhat 2.6.18 series kernel. In
our testing we explored the OpenMP implementations in the
GNU C compiler 4.6 (gcc) and the Intel C compiler 11.1
(icc). We present results of our task microbenchmarks for
icc and gcc.

Each timing is an average of three runs, each taking
25 samples, of a given test using different thread team
sizes of powers of 2. Minimal activity was observed on the
systems before and after each run. The delaylength values
used were 2000 for the task tests and 500 for omp task

firstprivate(a) and taskwait.

5.1 EPCC Results
To obtain a point of reference for the implementation of

the constructs used to generate tasks in our tests, we ran
the EPCC Microbenchmark [3] tests for parallel, single,
and for as found in the synchronization tests known as
syncbench (there is no test for master). We ran the tests
with an sample size of 20 for each run with a delaylength
of 500. The averages for 3 runs for the 16-core Nehalem are
shown in Table 1. Results from the Opteron were similar and
are not shown for space limitations.

We also note that negative overheads may be reported,
especially when using one OpenMP thread. Many of these
are small enough to be equivalent only a few cycles and can
be explained by additional load on the system not measured
during the reference time. Some, however, occur consistently
over several timings and may reflect optimization employed
for OpenMP but not in the sequential portions.

5.2 Task Overhead
We ran tests generating 10,000 tasks to measure task

overheads. This corresponds to the value of reps in the loop
creating the tasks and should be adequate to allow the tasking
overhead to dominate that of the enclosing parallel region.
For both icc and gcc, we see that using the parallel and
for constructs to generate tasks generally incurs less over-
head that using master and single constructs (Figure 1).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 597

The difference increases with the number of threads for
both compilers. Note that the scales on the two graphs are
different.

We observed no significant differences in results for tests
using master and single, likely because there is little
difference in the implementation of the two. The master

construct requires the master thread to execute the master
region but has no implicit barrier at its conclusion. The region
enclosed by a single construct will likely be executed by the
first encountering thread but it does have an implicit barrier
at the end. We also observed negligible difference between
tied and untied tasks. The reason for this could be that the
balanced nature of the workload produced in the tests does
not lend itself to workstealing. It is also possible that the
implementations we considered do not employ workstealing.

In the cases of master and single, only one thread is
generating tasks while the remaining threads in the team
initially must wait for something to do. Depending on the
task granularity, a single thread may not generate work
quickly enough to keep all the threads busy. In contrast,
with parallel and for, the entire thread team is involved
in creating tasks. Therefore these results are not entirely
surprising. It is interesting to note that in the EPCC results
in Table 1, it is the single construct in gcc that incurs the
least overhead. In contrast, the overhead values we obtained
for the task construct in the gcc implementation using the
parallel and for constructs rarely exceeded 2 µsec while
the single construct approached 140 µsec of overhead. We
speculate that when a single thread is generating tasks, as
with single and master constructs, the rest of the thread
team must wait for enough work to be generated to occupy all
the threads in executing tasks. The larger the thread team, the
longer it will take to generate a workload of this sufficiency.
With the entire thread team involved in creating tasks (as
with parallel or for), the threads are more likely to have
sufficient tasks to execute.

5.3 Firstprivate Overhead
We measure the overheads of the task directive with the

firstprivate clause on both compilers. Our experiments
use dimensional arrays with sizes of 100 bytes for the small
test, 2,187 bytes for the medium, and 59,049 for the large
test. Because it is so easy to overload the systems, only 500
tasks were generated instead of 10,000 as in Section 5.2.
Figure 2 shows the results when a single thread is used to
generate tasks that use small, medium, and large arrays as
firstprivate data. Higher overheads are observed when the
numbers are compared with those from experiments without
the firstprivate clause (Figure 1), but the overheads scale
the same way with increasing thread numbers.

We also ran experiments with tasks using the large arrays
are generated by the master thread, a single thread (with the
single directive), and by all the threads using a for direc-
tive. The results are shown in Figure 3. For both compilers,

we observed that using the master thread to generate the
tasks incurs less overhead than the using the single and
for directives. Since we generate 500 tasks with just one of
these constructs, the overheads from these constructs can be
ignored. We also note that in all other experiments except this
one, using the single and master constructs for generating
tasks always showed similar overheads.

5.4 Taskwait Overhead
In the sequential execution of the recursive delay function,

the parent-child relationships of the recursive calls can be
represented by a tree. This is synonymous with a task
tree when omp task is present. To examine the effects
of taskwait with our recursive test, we explored various
configurations. Using a branching factor of 100 and a depth
of 3 generates a total of 10,101 tasks, very close to the
number of tasks generated for tests measuring the overhead
of omp task in Section 5.2. These values can be altered to
provide a deep and narrow tree or a shallow and broad task
tree. However, to see the effect the task tree shape may have
on the overhead from taskwait, we chose one set of tests
using parameters that yield approximately the same number
of tasks and one set of tests using the same branching factor
with varying depths.

In Figure 4, we show results from three tests of the for

construct using a branching factor of 20 with depths of 3, 4,
and 5 yielding 421, 8,421, and 168,421 tasks, respectively.
The gcc implementation shows nearly the same tree for
each, while icc does not. For icc, the task tree with depth 3
had overhead that measured approximately 10µsec, depth 4
measured approximately 15µsec, and depth 5 approximately
17µsec. This indicates to us that icc may be performing
optimizations based on the task tree size.

Figure 5 shows results from three tests using different
tree structures with similar task counts. The task tree with
a depth of 4 and a branching factor of 21 contains 9,724
tasks, the tree with a depth of 6 and a branching factor of 6
has 9,331 tasks and the tree with a depth of 9 and a branching
factor of 3 has 9,841 tasks (in accordance with Equation 3).
While gcc produces similar results regardless of task shape,
icc again seems to take the task tree into account during
execution. The task tree with the most tasks (depth of 9),
the deepest and narrowest of the three, measures the lowest
overhead. A task scheduling policy may also exploit a task
tree generated in recursive algorithms differently than the task
structure generated in a loop (as in Section 5.2).

6. Conclusions and Future Work
While it is easy to make comparisons with these data,

it should be noted that low overhead of a single con-
struct is not necessarily indicative of the performance of
an entire OpenMP implementation. These microbenchmarks
are designed to identify possible inefficiencies of individual
constructs. In a realistic application, the manner in which

598 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

parallel mstr single for

0

16

32

48

64

80

1 2 4 8 16

GNU C Compiler 4.6

O
ve

rh
ea

d
(!

se
c)

Threads

0

5

10

15

20

25

1 2 4 8 16

Intel C Compiler 11.1

O
ve

rh
ea

d
(!

se
c)

Threads

Fig. 1: Comparison of overheads incurred by task generation using parallel, single and for on the 16-core Nehalem
machine.

single large single med single small

0

4400

8800

13200

17600

22000

1 2 4 8 16

GNU C Compiler 4.6

O
ve

rh
ea

d
(!

se
c)

Threads

0

2600

5200

7800

10400

13000

1 2 4 8 16

Intel C Compiler 11.1

O
ve

rh
ea

d
(!

se
c)

Threads

Fig. 2: Comparison of overhead incurred by using single with small, medium, and large arrays for data in a firstprivate
clause using the 16-core Nehalem.

master large single large for large

0

4400

8800

13200

17600

22000

1 2 4 8 16

GNU C Compiler - large

O
ve

rh
ea

d
(!

se
c)

Threads

0

2600

5200

7800

10400

13000

1 2 4 8 16

Intel C Compiler - large

O
ve

rh
ea

d
(!

se
c)

Threads

Fig. 3: Comparison of using large arrays in the firstprivate tests on the 16-core Nehalem.

3 4 5

0

100

200

300

400

500

1 2 4 8 16

GNU C Compiler 4.6

O
ve

rh
ea

d
(!

se
c)

Threads

0

4

8

12

16

20

1 2 4 8 16

Intel C Compiler 11.1

O
ve

rh
ea

d
(!

se
c)

Threads

Fig. 4: Overheads for taskwait using a branching factor of 20 while varying task graph depths with 3, 4, and 5. These
depths yield 421, 8,421, and 168,421 tasks, respectively.

depth=4, branch=21 depth=6, branch=6 depth=9, branch=3

0

100

200

300

400

500

1 2 4 8 16

GNU C Compiler 4.6

O
ve

rh
ea

d
(!

se
c)

Threads

0

4

8

12

16

20

1 2 4 8 16

Intel C Compiler 11.1

O
ve

rh
ea

d
(!

se
c)

Threads

Fig. 5: Overheads for taskwait using a branching factor of 20 while varying task tree configurations with similar numbers
of tasks.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 599

various constructs work together is much more indicative of
the overall efficiency of the implementation as a whole than
its performance on these microbenchmarks.

However, it could be inferred that when choosing a task
generating construct, for should be the first choice. Having
the entire thread team (rather than a single or master

region) share in the work of task generation appears to yield
less latency in execution. The use of parallel seems unlikely
in practice and is included merely for evaluation purposes.
While we did not test the granularity of the work in tasks,
the use of large amounts of firstprivate data should be
avoided, if possible.

We also found that these tests are very sensitive to system
load. Minor fluctuations can be seen at times in the values
obtain. It is therefore prudent to run the microbenchmarks
multiple times to obtain reliable results. With this in mind,
these test should provide a good starting point for evaluating
an OpenMP tasking implementations as a means of its
improvement.

These microbenchmarks reveal some possible limitations
in current implementations. Our next step is to use these
microbenchmarks to analyze the OpenMP runtime we have
under development to assess any possible improvements that
can be made. Both C and Fortran versions will be made
available at http://www.cs.uh.edu/~hpctools.

In the very near future a new version OpenMP API is likely
to be ratified which will include some enhancements to the
tasking model. At that time the gap will widen once again
between the available and needed benchmarks for evaluation
of OpenMP implementations. However, the inclusion of
OpenMP tasks in many of the existing benchmarks is difficult
or impossible with the current tasking model which makes
no accommodations for data dependencies between among
tasks. We intend to look into developing new benchmarks or
updating existing ones to use OpenMP tasks. We will also
look into designing extensions to the OpenMP programming
model to facilitate the use of tasks in current codes.

Acknowledgment
This material is based upon work supported by the Na-

tional Science Foundation under Grant No. CCF-0833201
and Grant No. CCF-0917285, and the Texas Space Grant
Consortium. As always, we are indebted to the HPCTools
research group at the University of Houston for their help
and collaboration.

References
[1] OpenMP Application Program Interface Version 3.0, May 2008.
[2] J. M. Bull and D. O’Neill, “A microbenchmark suite for OpenMP 2.0,”

SIGARCH Comput. Archit. News, vol. 29, no. 5, pp. 41–48, 2001.
[3] F. Reid and J. Bull, “OpenMP microbenchmarks version 2.0,” EWOMP

2004, p. 63, 2004.

[4] “NAS Parallel Benchmarks,” [Online]. Available: http://www.nas.nasa.
gov/Resources/Software/npb.html.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, October 2008.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in Workload Characterization, 2009. IISWC 2009. IEEE Interna-
tional Symposium on, 4-6 2009, pp. 44 –54.

[7] “The Sphinx Parallel Microbenchmark Suite,” [Online]. Available: https:
//computation.llnl.gov/casc/sphinx/.

[8] “ASC Sequoia Benchmark Codes,” [Online]. Available: https://asc.llnl.
gov/sequoia/benchmarks/.

[9] “HPC Challenge Benchmark,” [Online]. Available: http://icl.cs.utk.edu/
hpcc/.

[10] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. Jones, and
B. Parady, “SPEComp: A new benchmark suite for measuring parallel
computer performance,” OpenMP Shared Memory Parallel Program-
ming, pp. 1–10, 2001.

[11] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguadé,
“Barcelona OpenMP Tasks Suite: A Set of Benchmarks Targeting the
Exploitation of Task Parallelism in OpenMP,” in 38th International
Conference on Parallel Processing (ICPP ’09), IEEE Computer Society.
Vienna, Austria: IEEE Computer Society, September 2009, p. 124–131.

[12] V. Dimakopoulos, P. Hadjidoukas, and G. Philos, “A microbenchmark
study of OpenMP overheads under nested parallelism,” in IWOMP ’08:
OpenMP in a New Era of Parallelism, ser. Lecture Notes in Computer
Science, R. Eigenmann and B. de Supinski, Eds. Springer Berlin /
Heidelberg, 2008, vol. 5004, pp. 1–12.

[13] X. Teruel, C. Barton, A. Duran, X. Martorell, E. Ayguadé, P. Un-
nikrishnan, G. Zhang, and R. Silvera, “Openmp tasking analysis for
programmers,” in Proceedings of the 2009 Conference of the Center for
Advanced Studies on Collaborative Research. ACM, 2009, pp. 32–42.

[14] T.-H. Weng and B. Chapman, “Implementing OpenMP using dataflow
execution model for data locality and efficient parallel execution,” in
Proceedings of the 7th workshop on High-Level Parallel Programming
Models and Supportive Environments (HIPS-7). IEEE Press, 2002.

[15] X. Teruel, X. Martorell, A. Duran, R. Ferrer, and E. Ayguadé, “Support
for OpenMP tasks in Nanos v4,” in Proceedings of the 2007 conference
of the center for advanced studies on Collaborative research. ACM,
2007, pp. 256–259.

[16] M. Korch and T. Rauber, “A comparison of task pools for dynamic
load balancing of irregular algorithms,” Concurrency and Computation:
Practice and Experience, vol. 16, no. 1, pp. 1–47, 2004.

[17] C. Addison, J. LaGrone, L. Huang, and B. Chapman, “OpenMP
3.0 tasking implementation in OpenUH,” in Open64 Workshop in
conjunction with the International Symposium on Code Generation and
Optimization, 2009.

[18] A. Duran, J. Corbalán, and E. Ayguadé, “Evaluation of OpenMP task
scheduling strategies,” in Proceedings of the 4th IWOMP, R. Eigenmann
and B. R. de Supinski, Eds., vol. 5004/2010, May 2008, pp. 100–110.

[19] J. M. Bull, “Measuring synchronisation and scheduling overheads in
OpenMP,” in Proceedings of First European Workshop on OpenMP,
1999, pp. 99–105.

[20] V. Dimakopoulos, E. Leontiadis, and G. Tzoumas, “A portable C
compiler for OpenMP V. 2.0,” in Proc. of the European Workshop on
OpenMP (EWOMP’03), Aachen, Germany, 2003.

[21] C. Liao, O. Hernandez, B. Chapman, W. Chen, and W. Zheng,
“OpenUH: an optimizing, portable OpenMP compiler: Research arti-
cles,” Concurr. Comput.: Pract. Exper., vol. 19, no. 18, pp. 2317–2332,
2007.

[22] R. Nanjegowda, O. Hernandez, B. Chapman, and H. Jin, “Scalability
evaluation of barrier algorithms for OpenMP,” Evolving OpenMP in an
Age of Extreme Parallelism, pp. 42–52, 2009.

[23] J. Bull, J. Enright, and N. Ameer, “A Microbenchmark Suite for
Mixed-Mode OpenMP/MPI,” Evolving OpenMP in an Age of Extreme
Parallelism, pp. 118–131, 2009.

600 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

http://www.cs.uh.edu/~hpctools
http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.nas.nasa.gov/Resources/Software/npb.html
https://computation.llnl.gov/casc/sphinx/
https://computation.llnl.gov/casc/sphinx/
https://asc.llnl.gov/sequoia/benchmarks/
https://asc.llnl.gov/sequoia/benchmarks/
http://icl.cs.utk.edu/hpcc/
http://icl.cs.utk.edu/hpcc/

SESSION

FAULT-TOLERANT SYSTEMS + FAULT
DETECTION METHODS AND TOOLS

Chair(s)

TBA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 601

602 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Relentless Computing: Enabling fault-tolerant, numerically
intensive computation in distributed environments

Lucas A. Wilson and John A. Lockman III
Texas Advanced Computing Center, The University of Texas at Austin, Austin, Texas, U.S.A.

Abstract— This paper suggests a novel computational
paradigm for solving numerically intensive problems on a
distributed infrastructure. We detail the basic functionality
of this new paradigm, its ability to recover from host loss
without requiring a complete restart of the code, and how it
could allow for many heterogeneous participants to solve
a single, large-scale computational problem. We provide
results from a small demonstration run as well as provide
avenues for future research.

Keywords: Volunteer Computing, Distributed Computing, Fault
Tolerance, Distributed Hash Tables

1. Introduction
Computer-based simulation and modeling is becoming

critical for driving scientific breakthrough and discovery.
As the sensitivity and scale of simulations increase, the
computational requirements and time-to-solution also rises.
Unfortunately modern hardware – although much improved
over technologies of several years ago – does not provide
researchers with a stable execution platform for simulations
requiring weeks or months of computation to complete,
and is extremely expensive to deploy in large-scale, tightly-
coupled environments. As a result, computer-based simula-
tion for scientific discovery has remained limited to those
researchers who have access to high-performance systems
at Universities and National Laboratories.

Fully-distributed volunteer computing models, such as
the Berkeley Open Infrastructure for Network Computing
(BOINC)[1], have provided a means of performing massive-
scale computation on a limited subset of problems involv-
ing limited-to-no data sharing among participants. While
BOINC and similar volunteer computing models have suc-
cessfully computed millions of hours of user code, the types
of problems that can be executed in such an environment are
limited and cannot fully enable new scientific breakthroughs.

Distributed Hash Table (DHT) implementations, such as
Chord[2], Pastry[3], Kademlia[4], and others[5][6][7][8],
provide mechanisms for storing key/value pairs in a de-
centralized fashion, preventing the failure of any single
participant from killing the entire hash table. DHTs are com-
monly used in distributed file systems[9][10], peer-to-peer
file sharing systems[11], and domain name services[12][13].

Volunteer computing models can harness the untapped
computing potential of millions of part-time citizen scien-

tists. We propose a system that would couple this potential
with the innately fault-tolerant nature of DHTs, allowing
for the execution of programs for extremely long periods
of time, with built-in failure recovery in the event any
set of participants was unable or unwilling to continue
contributing. Additionally, proper data partitioning would
allow for problems requiring more onerous data sharing
among participants to be executed, increasing the potential
for more scientific discoveries.

This work describes a new computational paradigm: Re-
lentless computing. With Relentless Computing, traditionally
tightly-coupled, numerically-intensive parallel computations
can be performed in a decentralized, distributed environment
with high fault-tolerance. So long as any single participant
and the initial data are present to the system, computation
will continue. We will provide a basic description of Relent-
less Computing, how code is generated and managed, and
how global shared memory is implemented through DHTs.
We will also provide results from a test case solving a partial
differential equation (PDE) using finite differences, as well
as outline avenues for future research.

2. Related Work
While existing distributed computing systems, such as

BOINC[1], have been extremely useful for executing com-
pletely data-parallel computations, such as Monte Carlo
and parametric sweeps, they are ill-suited for handling
single, large-scale computations that require data sharing
among participants. On the other side of the spectrum,
Adaptive-MPI (AMPI)[14], which is based on the Charm++
framework[15], allows for the creation of medium-grained
virtualized processes which can be overloaded on a single
physical processor in order to overlap computation and com-
munication. AMPI does provide many facilities similar to
Relentless Computing, including the ability to shrink/expand
the number of computational participants and checkpointing
of virtual processors to disk. However, AMPI is not designed
to handle code written in different languages, to recover from
near-catastrophic node failure without the use of a restart file,
or to allow very fine-grained parallelism that enables con-
tributions from low-power participants (e.g. ”smart” phones,
tablets, netbooks, portable computers) without these devices
adversely effecting the overall performance of the system.

GRID-GUM[16] implements Glasgow Parallel
Haskell[17] on top of the Globus Toolkit[18], making

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 603

use of MPICH-G2[19] for handling the underlying process
communications. While this method helps to abstract the
parallel computation away from the programmer, the use
of MPICH-G2 makes participant shrink/expand nearly
impossible, and does not allow for fault-tolerance in the
event of near-catastrophic node failure.

The Partitioned Global Address Space (PGAS) model,
on top of which languages such as X10[20], Chapel[21]
UPC[22] and others[23][24][25] are built, provides a method
of abstracting a virtual shared memory platform on top
of distributed memory architectures. Currently, PGAS lan-
guages running on distributed memory clusters rely on
existing message-passing methods, such as MPI[26], to han-
dle the cross-node communication that synchronizes virtual
global memory and migrates process threads. Because of
this, the fault-tolerance and dynamic capabilities of PGAS
languages are limited to the capabilities of the underlying
communications framework, of which little currently exists.

Global Arrays[27] provide yet another way of abstracting
shared memory on top of a distributed memory archi-
tecture. However, memory synchronization is once again
dependent on an existing communication framework, either
MPI or ARMCI[28], which provide little-to-no capability to
shrink/expand the participant pool dynamically at runtime,
seamlessly recover from near-catastrophic host failure, or
efficiently function over high-latency, low-bandwidth net-
works.

TStreams (also called Concurrent Collections (CnC)[29])
provide a model of describing computation in terms of serial
execution components and data-flow specifications[30], in
much the same way that Relentless Computing does. While
TStreams provides facilities for creating static checkpoints,
we are not aware of any particular implementation of this
model that provides fault tolerance that enables continuing
execution in the face of hardware failures, or that is designed
with high-latency, low-bandwidth interconnects in mind.
TStreams is also not specifically designed to incorporate
low power consumer devices into the participant pool, or to
enable execution on fickle participants that may only allow
for the use of a fraction of total cycles to be consumed, for
limited amounts of time.

The Linda coordination language allows for the separation
of coordinate and computation by placing information into
an external tuple-space data store, allowing computation
from multiple languages to interact[31]. Fault tolerance
mechanisms have also been proposed for Linda[32]. Much of
the published work found by the authors on Linda is over a
decade old, and many of the principles in Linda are incorpo-
rated into Relentless Computing. Relentless computing has
been designed from the start to work on highly distributed,
Internet-connected devices of varying computation capability
with the ability to shrink/expand the participant pool at will,
as well as recover from near-catastrophic failures.

3. The Relentless Computing Model
The Relentless Computing model seeks to leverage the

untapped computing potential of various hardware resources,
all connected to the Internet by some mechanism (hardwire,
wireless, cellular). The use of high-latency, low-bandwidth
network connections requires that computation remain lim-
ited to highly partitioned, small pieces of data to allow for
reasonable read/write from/to the DHT. Programs are written
as codelets (self-contained pieces of code) chained together
by data dependency. When a hardware resource volunteers to
participate in the solving of a particular problem, the solution
is sought in a bottom-up fashion, with the participant seeking
to complete the result first. If a participant is unable to build
the result, it steps up the dependency chain until a data part
that can successfully be computed is found. Code written
for this environment are built in two pieces: (1) A set of
multi-language codelets, which can interact with each other
through global shared memory implemented in the DHT,
and (2) a descriptive framework that determines the order in
which these codelets are to run, and the data dependencies
that chain them together.

3.1 Codelets
Each codelet is a self-contained piece of code that per-

forms a set of sequential load/compute/store operations.
Because there is no direct interaction between codelets (i.e.
each codelet is independent of each other, with interaction
performed through data sharing), codelets can be constructed
in different languages. This allows for development teams
to be able to work in the languages that members are most
comfortable with, without worrying about the issues involved
in coupling different languages together in traditional soft-
ware development. Additionally, reducing the codelet size
and it’s associated data dependencies allows for out of order
execution of codelets to occur, provided the input data is
available.

Codelets can be precompiled in a compilable language,
so long as they are capable of executing on the partic-
ipant hardware. Scripting languages can also be utilized,
assuming a mechanism exists to execute the script code
from the compute daemon. Runtime environments for some
scripting languages (e.g. JavaScript via SpiderMonkey[33],
Python[34], Lua[35], LISP via ECL[36], etc.) could be
embedded directly into the compute daemon to allow the
daemon to compute results directly.

3.2 Memory Management
Relentless computing environments (RCEs) create a

global shared memory space from which codelets can read
data and to which codelets can write data. This global shared
memory space is implemented as key/value tuples to the
DHT, with the key replacing the variable name/address,
and the value representing the stored data. This is simi-
lar to the tuple-space data storage methods employed in

604 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

the coordination language Linda[31]. In order to eliminate
possible side-effects associated with uncoordinated writes to
memory each codelet must be deterministic, with one set of
inputs guaranteed to produce the same output. This allows
for the possibility of multiple resources executing the same
codelet instance (perhaps because both attempted to solve
it simultaneously, or knowledge that a particular data point
had already been computed was temporarily lost). In order
to reduce memory bloat, entries in the DHT will be given
a lifetime (e.g. 24 or 48 hours). During the lifetime of the
data, codelets can use that information as input for other
computation. After that time the data will be deleted, and
any participant requiring that particular key/value pair will
be required to recompute it.

3.3 Problem Description Framework
In order to chain together multiple codelets and have them

interact with the DHT-implemented global shared memory
space, a problem description framework must exist that
allows Relentless Computing daemons to determine which
codelets to run and with which data to run them. This
framework must provide the ability to easily define inputs
and outputs, as well as specify the particular codelet to
execute for each input/output set. Additionally, a result
component must be specified so that participants know which
data elements are considered final, providing a starting point
from which execution can begin. One choice for this is to
create an extensible framework language with the Extensible
Markup Language (XML)[37]. Not only does XML provide
the extensibility to add new features and constructs easily,
it is well accepted and understood by the community and
is easily compressible, allowing for faster transmission be-
tween compute daemons.

A potential problem description for solving the 1-
dimensional heat equation using the Forward in Time, Cen-
tral in Space (FTCS) method may look like Figure 1. In
this case, we have assumed that the compute daemon can
natively interpret JavaScript code and that the boundary
values have already been inserted into the system. Each
time the codelet is executed, it requires three inputs (denoted
by the depends-on tags): the (l)eft, (m)iddle, and (r)ight
values from the previous timestep and outputs a single
value u[x][t]. Function parameters are linked to values in
the depends-on tags in order from top to bottom, so
parameter l is associated with u[x−1][t−1], m is associated
with u[x][t− 1], and r is associated with u[x+ 1][t− 1].

When a user submits a job containing a problem de-
scription and codelets to an RCE, that problem description
will then spread across the network to various participants
using a gossip protocol [38]. Once other participants are
made aware of the new problem, they can begin solving
it as well. Each participant – responsible for both starting
codelets as well as participating in the DHT – has no advance
knowledge about the current state of the problem. In order to

<problem name=heat_transfer>
<codelet name=’finite_diff’>
<result/>
<source lang=’javascript’>
<![CDATA[
function finDiff(l, m, r) {
return m + 0.25*(l - 2*m + r);

}
]]>

<parameter name=’x’ range=’0..99’/>
<parameter name=’t’ range=’1..99’/>
<depends-on name=’u[x-1][t-1]’/>
<depends-on name=’u[x][t-1]’/>
<depends-on name=’u[x+1][t-1]’/>
<output name=’u[x][t]’/>

</codelet>
</problem>

Fig. 1: Potential Problem Description

Fig. 2: Process Diagram for RCE daemon

determine which codelet to run while avoiding duplication
of effort, the computing daemon parses the work-flow in
a bottom-up fashion, beginning with the result codelet and
working its way back up the dependency chain until a codelet
that is capable of being executed (but that has yet to be
executed) is discovered. Once a codelet has been executed
and the resulting data stored in the DHT, the compute
daemon begins again with the result codelet, working back
up the dependency chain in order to take advantage of other
more recent dependencies that may have been computed in
parallel. The process diagram of an RCE daemon is shown
in Figure 2.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 605

(a) Participants

(b) Distributed Hash Table

Fig. 3: Active Compute Collective

3.4 Managing Node Failure
In any large-scale distributed environment, node

failure is a constant risk that cannot be ignored. In
most high-performance machines and with typical
multi-thread/process computing paradigms (Pthreads,
OpenMP[39], MPI[26], Parallel Virtual Machine (PVM)[40],
PGAS languages[20][21][22][23][24][25]), the loss of a
host or process results in the simultaneous aborting of all
processes associated with a problem. This error handling
method may be sufficient in environments with relatively
high uptime guarantees. However, distributed volunteer
computing environments provide no such guarantee. As a
result, more effective fault-tolerance mechanisms must be
employed.

DHTs are by their nature relatively fault-tolerant. So long
as any single host remains, part of the DHT still exists. The
loss of any single participant does not destroy the entire
table. The compute daemons of the proposed system would
also be the DHT participants, each locally storing part of the
hash table in addition to volunteering computational cycles.

Figure 3 shows an example of a volunteer collective
working on a particular problem, for example a finite dif-
ference problem with a 3-point central difference in the

(a) Participants

(b) Distributed Hash Table

Fig. 4: Compute Collective After Node Failures

space dimension (vertical axis) and a forward difference
in the time dimension (horizontal axis). In this example,
many participants (Figure 3(a)) are working on various
parts of the problem (represented by the logical matrix in
Figure 3(b)). The leftmost column values are the initial
data, the densely striped values are already computed pieces,
and the sparsely striped values are those pieces that can
currently be computed with the data that already exists. The
boundary values are not shown in this illustration, but can
be considered initial data if the boundaries are constant.

If, before the next step can be computed, several of the
participants fall offline (Figure 4(a)), some of the data stored
in the DHT would be lost (Figure 4(b), gray values). In
this case, participants would be unable to compute all of
the values that were previously possible due to loss of input
data. Instead, they would continue on as though those values
never existed, in some cases needing to return to the input
data in order to compute the necessary intermediate values.

4. Experiment Setup
In order to test the viability of the proposed paradigm

in solving a traditional numerically intensive problem, a
prototype RCE daemon was written in Python using the En-
tangled [41] library to perform the base DHT operations. The

606 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Table 1: Breakdown of participant contributions
Participant Contributions Percentage

0 2841 27.3
1 2629 25.3
2 2462 23.7
3 2468 23.7

Total 10400 100

prototype daemon was written to solve the one-dimensional
heat equation using the FTCS method:

ut+1
x = ut

x + r(ut
x−1 − 2ut

x + ut
x+1, r =

α∆t
∆x2

In this case, each element at time t + 1 is computed
by looking at the corresponding values of itself and its
neighbors at time t, meaning each element computed needs
three inputs from the previous time-step.

For this test, a constant heat source was placed in the
leading boundary (x = −1), while the trailing boundary was
set to 0. The initial (t = 0) temperature of the system is set
to 0. Experiments were run for a 100x100 case (100 spatial
units for 100 time-steps). For this experiment, 4 participants
(2 nodes with 2 participants each) were used. In order to
test the ability of the system to handle new participants
joining mid-computation, participant 0 was initially alone,
with participant 1 added next, followed by participants 2
and 3. A communication error (host disconnected from
then reconnected to the Internet) was introduced several
minutes into the simulation to test the RCE’s failure recovery
capability.

5. Results
Data collected from a 4 participant run were graphed

based on times at which data was stored in the DHT, with
both solution values and contributing participant recorded.
In Figure 5, the left panels show the solution values to the
heat problem, while the right panels show which participant
contributed that particular element to the solution. As can
be seen, the overall problem was solved in non-linear order,
with some sections of the solution growing faster than others.
Additionally, the right panels show that work was well
distributed, with participant 0 naturally performing more op-
erations than the others, and participants 2 and 3 nearly equal
(they joined the computation at the same time) (see Table
1). Table 1 also shows total contributions of 10,400, while
the total number of cells in the 100x100 system is 10,000.
This means that 400 elements, or 4%, were recomputed for
various reasons including simultaneous attempts to calculate
a specific element, and the test communication failure that
prevented participants from querying the full DHT.

Of the 400 elements that were recomputed, 356 were
recomputed only once, while 22 were recomputed twice.
Times between recomputations varied widely, with a max-
imum time between first element computation and final

(a) 25 percent completed

(b) 50 percent completed

(c) 75 percent completed

(d) 100 percent completed

Fig. 5: RCE computing solution to 1-D heat equation

recomputation of 683.62 seconds (see Table 2 and Figure
6). The average recomputation time was 104 seconds, with
a standard deviation of 119 seconds.

6. Conclusions
We have proposed a novel computational paradigm called

Relentless Computing. This new paradigm allows users to
develop codes that solve numerically intensive problems
on more disparate and distributed resources, as well as
provide the ability for dynamic expanding and shrinking of
the participant pool. This model of computation provides
fault tolerance, in that the code will continue to execute

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 607

Table 2: Time Between Recomputations
Metric Time (secs.)

Max 683.62
Average 104.78
Std. Dev. 119.12
Median 56.82

Fig. 6: Times Between Initial and Final Recomputation for
Each Element

so long as the initial data and a single participant remain
online. Early experimental results have shown that this
paradigm provides a relatively simple way for computing
numerically intensive problems in a distributed, decentral-
ized, dynamic, and fault-tolerant fashion without requiring
excessive work from the programmer. Future work could
include development of a standardized problem description
framework language, porting of traditional scientific codes
to this paradigm, further optimization of the RCE daemon to
be more computationally efficient, and inclusion of multiple
language runtime environments into the daemon to allow
for codelets written in script and interpreted languages to be
executed directly by said daemon.

References
[1] D. P. Anderson, “BOINC: A System for Public-Resource Computing

and Storage,” in Proceedings of the 5th IEEE/ACM International
Workshop on Grid Computing, ser. GRID ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 4–10. [Online]. Available:
http://dx.doi.org/10.1109/GRID.2004.14

[2] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan, “Chord: A scalable peer-to-peer lookup
service for internet applications,” in Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols
for computer communications, ser. SIGCOMM ’01. New York,
NY, USA: ACM, 2001, pp. 149–160. [Online]. Available:
http://doi.acm.org/10.1145/383059.383071

[3] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems,” in MID-
DLEWARE 2001, ser. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2001, vol. 2218/2001, pp. 329–350.

[4] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric,” in Revised Papers
from the First International Workshop on Peer-to-Peer Systems, ser.
IPTPS ’01. London, UK: Springer-Verlag, 2002, pp. 53–65. [Online].
Available: http://portal.acm.org/citation.cfm?id=646334.687801

[5] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt, “P-Grid: a self-organizing structured
P2P system,” SIGMOD Rec., vol. 32, pp. 29–33, September 2003.

[6] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatow-
icz, “Tapestry: a resilient global-scale overlay for service deployment,”
Selected Areas in Communications, IEEE Journal on, vol. 22, no. 1,
pp. 41 – 53, January 2004.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” SIGCOMM Comput. Commun.
Rev., vol. 31, pp. 161–172, August 2001.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” SIGOPS Oper. Syst. Rev.,
vol. 41, pp. 205–220, October 2007.

[9] P. Druschel and A. Rowstron, “PAST: A Large-Scale, Persistent Peer-
to-Peer Storage Utility,” Hot Topics in Operating Systems, Workshop
on, vol. 0, p. 0075, 2001.

[10] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-
area cooperative storage with CFS,” in Proceedings of the eighteenth
ACM symposium on Operating systems principles, ser. SOSP ’01.
New York, NY, USA: ACM, 2001, pp. 202–215.

[11] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The Bittorrent
P2P File-Sharing System: Measurements and Analysis,” in Peer-to-
Peer Systems IV, ser. Lecture Notes in Computer Science, M. Castro
and R. van Renesse, Eds. Springer Berlin / Heidelberg, 2005, vol.
3640, pp. 205–216.

[12] V. Ramasubramanian and E. G. Sirer, “The design and implementation
of a next generation name service for the internet,” in Proceedings of
the 2004 conference on Applications, technologies, architectures, and
protocols for computer communications, ser. SIGCOMM ’04. New
York, NY, USA: ACM, 2004, pp. 331–342. [Online]. Available:
http://doi.acm.org/10.1145/1015467.1015504

[13] Y. Doi, “DNS Meets DHT: Treating Massive ID Resolution Using
DNS Over DHT,” Applications and the Internet, IEEE/IPSJ Interna-
tional Symposium on, vol. 0, pp. 9–15, 2005.

[14] C. Huang, O. Lawlor, and L. V. KalÃl’, “Adaptive MPI,” in Languages
and Compilers for Parallel Computing, ser. Lecture Notes in Com-
puter Science, L. Rauchwerger, Ed. Springer Berlin / Heidelberg,
2004, vol. 2958, pp. 306–322.

[15] L. V. Kale and S. Krishnan, “CHARM++: a portable concurrent object
oriented system based on C++,” in Proceedings of the eighth annual
conference on Object-oriented programming systems, languages, and
applications, ser. OOPSLA ’93. New York, NY, USA: ACM, 1993,
pp. 91–108.

[16] G. M. A. D. Al Zain, P.W. Trinder and H.-W. Loidl, “Managing
heterogeneity in a grid parallel haskell,” Scalable Computing: Practice
and Experience, vol. 7, pp. 9–25, September 2006.

[17] J. G. Hall, C. Baker-Finch, P. Trinder, and D. J. King, “Towards an
operational semantics for a parallel non-strict functional language,” in
Proceedings of the International Workshop on the Implementation of
Functional Languages (IFL’98), September 1998. [Online]. Available:
http://mcs.open.ac.uk/djk26/apset/transitionsystem.ps

[18] I. Foster and C. Kesselman, “Globus: A metacomputing infrastruc-
ture toolkit,” International Jounral of High Performance Computing
Applications, vol. 11, pp. 115–128, 1997.

[19] N. T. Karonis, B. Toonen, and I. Foster, “MPICH-G2: A Grid-
enabled implementation of the Message Passing Interface,” Journal
of Parallel and Distributed Computing, vol. 63, no. 5, pp. 551
– 563, 2003, special Issue on Computational Grids. [Online].
Available: http://www.sciencedirect.com/science/article/B6WKJ-
48BKT9V-1/2/6462834e0f7d0175d57043bbf3df8a80

[20] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an object-oriented
approach to non-uniform cluster computing,” in Proceedings of the
20th annual ACM SIGPLAN conference on Object-oriented program-

608 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

ming, systems, languages, and applications, ser. OOPSLA ’05. New
York, NY, USA: ACM, 2005, pp. 519–538.

[21] B. Chamberlain, D. Callahan, and H. Zima, “Parallel Programmability
and the Chapel Language,” Int. J. High Perform. Comput. Appl.,
vol. 21, pp. 291–312, August 2007. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1286120.1286123

[22] T. El-Ghazawi and L. Smith, “UPC: unified parallel C,” in Proceedings
of the 2006 ACM/IEEE conference on Supercomputing, ser. SC ’06.
New York, NY, USA: ACM, 2006.

[23] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krish-
namurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken,
“Titanium: a high-performance java dialect,” Concurrency: Practice
and Experience, vol. 10, no. 11-13, pp. 825–836, 1998.

[24] E. Allen, D. Chase, J. Hallett, V. Luchango, J.-W.
Maessen, S. Ryu, G. S. Jr., and S. Tobin-Hochstadt, “The
Fortress Language Specification,” 2008. [Online]. Available:
http://labs.oracle.com/projects/plrg/Publications/fortress.1.0.pdf

[25] R. W. Numrich and J. Reid, “Co-array Fortran for parallel program-
ming,” SIGPLAN Fortran Forum, vol. 17, pp. 1–31, August 1998.

[26] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel
programming with the message-passing interface. Cambridge, MA,
USA: MIT Press, 1994.

[27] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global arrays: a
portable "shared-memory" programming model for distributed mem-
ory computers,” in Proceedings of the 1994 ACM/IEEE conference
on Supercomputing, ser. Supercomputing ’94. New York, NY, USA:
ACM, 1994, pp. 340–349.

[28] J. Nieplocha and B. Carpenter, “ARMCI: A Portable Remote Memory
Copy Libray for Ditributed Array Libraries and Compiler Run-
Time Systems,” in Proceedings of the 11 IPPS/SPDP’99 Workshops
Held in Conjunction with the 13th International Parallel Processing
Symposium and 10th Symposium on Parallel and Distributed Process-
ing. London, UK: Springer-Verlag, 1999, pp. 533–546. [Online].
Available: http://portal.acm.org/citation.cfm?id=645611.662053

[29] K. Knobe, “Ease of use with concurrent collections
(CnC),” in Proceedings of the First USENIX conference on Hot
topics in parallelism, ser. HotPar’09. Berkeley, CA, USA:

USENIX Association, 2009, pp. 17–17. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1855591.1855608

[30] K. Knobe and C. D. Offner, “TStreams: How to Write a Parallel
Program, Tech. Rep. HPL-2004-193,2004. [Online]. Available:
http://www.hpl.hp.com/techreports/2004/HPL-2004-193.pdf

[31] N. Carriero and D. Gelernter, “Linda in context,” Commun.
ACM, vol. 32, pp. 444–458, April 1989. [Online]. Available:
http://doi.acm.org/10.1145/63334.63337

[32] D. E. Bakken and R. D. Schlichting, “Supporting fault-tolerant
parallel programming in linda,” IEEE Trans. Parallel Distrib.
Syst., vol. 6, pp. 287–302, March 1995. [Online]. Available:
http://portal.acm.org/citation.cfm?id=203121.203132

[33] Mozilla.org, “SpikerMonkey (JavaScript-C) Engine,”
http://www.mozilla.org/js/spidermonkey/. [Online].
Available: http://www.mozilla.org/js/spidermonkey/

[34] Python.org, “Python Programming Language - Official Website,”
http://python.org/. [Online]. Available: http://python.org/

[35] Lua.org, “The Programming Language Lua,”
http://www.lua.org/. [Online]. Available: http://www.lua.org/

[36] ECL, “ECL - A Common-Lisp Implementation,”
http://ecls.sourceforge.net/. [Online]. Available:
http://ecls.sourceforge.net/

[37] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau,
“Extensible markup language (XML) 1.0,” W3C recommendation,
vol. 6, 2000.

[38] B. Pittel, “On spreading a rumor,” SIAM J. Appl. Math.,
vol. 47, pp. 213–223, March 1987. [Online]. Available:
http://portal.acm.org/citation.cfm?id=37387.37400

[39] L. Dagum and R. Menon, “OpenMP: an industry standard API for
shared-memory programming,” Computational Science Engineering,
IEEE, vol. 5, no. 1, pp. 46 –55, Jan.–Mar. 1998.

[40] V. S. Sunderam, “PVM: A framework for parallel distributed com-
puting,” Concurrency: Practice and Experience, vol. 2, no. 4, pp.
315–339, 1990.

[41] “Entangled: DHT and tuple space based on Kademlia.” [Online].
Available: http://entangled.sourceforge.net/

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 609

On the Calculation of the Checkpoint Interval
in Run-Time for Parallel Applications

Leonardo Fialho∗, Dolores Rexachs and Emilio Luque
Department of Computer Architecture and Operating System, University Autonoma of Barcelona, Spain

leonardo.fialho@caos.uab.es, dolores.rexachs@uab.es, emilio.luque@uab.es

Abstract— The growth in the number of components that
compose parallel computers increases their fault frequency.
Currently, in such systems faults are no longer a rare event
but a common problem, thus some sort of fault tolerance
should be provided. In general, fault tolerance protocols rely
on checkpoints. A common question surrounding checkpoint-
ing is the definition of the checkpoint interval. Checkpoint
interval models define variables which depends on applica-
tion characteristics, e.g. the time need to take a checkpoint.
The use of average values and/or statistical data to define
these variables reduces the model’s accuracy. In this paper
we propose a methodology to define in run-time the variables
value needed to calculate the checkpoint interval. While
using uncoordinated checkpoint this interval can be defined
individually for each process of the parallel application. The
variables definition relies on the measuring of the time spent
on fault tolerance tasks in run-time. Experimental evaluation
shows that the use of our methodology reduces in more than
3% the overhead introduced by fault tolerance while tested
applications are running in a faulty environment.

Keywords: MPI; fault tolerance configuration; checkpoint inter-
val; uncoordinated checkpoint.

1. Introduction
The growth in the number of components that compose

parallel computers increases is notorious for increasing their
fault frequency [1]. Currently, in such systems faults are no
longer rare events but a common problem. Some systems
such as the BlueGene/L the Mean Time Between Failures
(MTBF) is counted in days. However, the commodity clus-
ters exhibit a usual MTBF of tens of hours [2]. The natural
answer for this problem is to provide some sort of fault
tolerance for applications running on these systems. This
permits applications to finish successfully despite faults.

To write applications with native support for faults seems
to be a good option. There are many techniques that help
developers to codify fault tolerant parallel applications [3].
Many of these techniques are suitable to be used in con-
junction with MPI: a widely used message passing library

This research has been supported by the MEC-MICINN Spain under
contract TIN2007-64974.
∗Contact author to whom correspondence should be addressed.
†This paper is addressed to the PDPTA conference.

for parallel programming. However, this approach requires
the rewriting of legacy applications. Another solution is to
provide fault tolerance at the communication library level
and on the parallel environment. The combination of a
resilient parallel environment and a fault recovery technique
had been useful in MPI implementations like MPICH [4]
and Open MPI [5][6].

To save the application state and to resume its execu-
tion in case of faults is commonly known as rollback-
recovery. There are different rollback-recovery protocols
that can be useful to assure application completion [7][8].
These protocols ultimately rely on checkpoints as the main
state-saving technique or to save storage space while using
combined with message logging i.e. reducing the space
needed to store message log. The matter in question which
surrounds checkpointing is the definition of the frequency
in which checkpoints should be taken, better know as the
checkpoint interval. If the checkpoint interval is smaller o
bigger than the optimal the overhead added by the fault tol-
erance increases [9]. Because checkpointing is a widely used
technique, there have been studies regarding the definition
of its interval since the 70’s [10] until today [11].

However, these studies are far from being the ultimate
solution to the checkpoint interval. The major root cause of
this resides in the definition of the variables value used by
these models. The use of average values as input parameters
for models reduces their accuracy. During the execution,
some application characteristics may change over the time.
Thus, models will experience a loss of accuracy because the
checkpoint interval does not change to reflect such changes.
Models variables depend on the application characteristics
such as the memory footprint and the communication pat-
tern, besides the system load such as the storage and the
communication network.

In this paper we propose a methodology to define in run-
time the checkpoint interval for parallel applications. The dy-
namic definition relies on the measuring of the time spent on
fault tolerance tasks to obtain values for the checkpoint in-
terval model variables. It turns the checkpoint interval model
versatile enough to accommodate changes in the application
characteristics throughout its execution.Experimental evalua-
tion shows that the use of our methodology reduces in more
than 3% the overhead introduced by fault tolerance while
tested applications are running in a faulty environment.

610 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

The content of this paper is organised as follows. The
related work is introduced in section 2. In section 3 a
description of the model used and some improvements
made on it is presented. Results are shown in section 4.
Conclusions are stated in section 5 besides future work.

2. Related Work
In the last years many fault tolerance MPI implementa-

tions has been designed. In general, those implementations
rely on a rollback-recovery protocol. Such protocols are
based on checkpointing, message logging, or both combined
[7]. The era in which parallel applications are unable to finish
due to faults in the parallel machine has gone.

However, due to the overhead introduced by fault toler-
ance tasks, especially by the recovery phase, researchers start
to work on adaptive fault tolerance [12][13][14]. Adaptive
fault tolerance requires information such as status and error
reports about the machine in which applications are running.
Indeed, a framework has been designed [15] to provide
such information to fault tolerance libraries. This permits the
creation of runtime strategies to dynamically reconfigure the
parallel environment to avoid application being affected by
faults [16].

Furthermore, there is a lack of studies regarding the
configuration of the fault tolerant strategy according to spe-
cific applications characteristics. Working on this direction,
Chen and Ren have published a study about the impact of
the checkpoint interval on soft real-time applications [14].
Moreover, recently Jones et al. have published a work about
the impact of a misconfigured checkpoint interval on the
application efficient [9]. Despite of this, there are too few
studies about the dynamic definition of the fault tolerance
configuration according to specific application requirements.

3. The Methodology to Define the Check-
point Interval in Run-Time

Our propose to define the checkpoint interval in run-
time rests on two foundations: first on a checkpoint interval
model and second on the measurement of the time needed to
perform fault tolerant tasks. The second provides the values
for the variables used by the first.

To help familiarise the reader with the checkpoint interval
model used in this paper, the following list provides useful
definitions:
α as the mean time to interrupt (MTTI) for a given

system, which is the inverse of the fault probability.
σ as the checkpoint interval used to run the applica-

tion.
tc as the time spent on a checkpoint operation includ-

ing the storage time.
tl as the time needed to load a checkpoint from

storage, not the rework time.

∆lp as the time added to message delivery due to the
logging procedure.

∆lr as the time spent on processing the message log
after a fault.

φ as the factor which represents the inter-process
dependency [17].

To define the value of these variables, we propose a
monitoring mechanism of the fault tolerant tasks performed
during application execution. The diagram shown in figure
1 depicts such a mechanism.

The time needed to perform a checkpoint operation (tc) is
measured by the timer depicted in events 1 and 2 of the di-
agram. The inter-process dependency factor is calculated by
analysing sources and destinations of messages exchanged
with other processes and is depicted in the diagram by event

START

start checkpoint
delay timer

checkpoint

stop checkpoint
delay timer

compute

time to checkpoint?

all work done?

need to communicate?

start logging
delay timer

communicate
and log

stop logging
delay timer

END

no

no

yes

yes

no

yes

1

2

3

4

5

Fig. 1: Diagram of the methodology used to define model
variables values in run-time.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 611

4. The message logging overhead depends on the logging
protocol used [7].

In this paper we will analyse the overhead introduced by a
pessimistic receiver-based message logging. The time added
to message delivery due to the logging procedure (∆lp) is
measured by the timer depicted in events 3 and 4. When
the message logging operation is performed on the receiver
process, as shown in figure 2, in case of faults, only the faulty
process is involved in recovery. Since messages do not need
to be replayed, the time needed to process the message log
(∆lr) tends to be unappreciable. Thus, the value of the ∆lr

variable can be considered as zero [19].
The time needed to load a checkpoint (tl) cannot be mea-

sured using our methodology if no fault occurs. However,
as a first approximation we consider this time equal to the
time needed to perform a checkpoint. It does not reduces the
checkpoint interval model accuracy because variables related
to the recovery phase, with the exception of the rework time,
tend to be inappreciable [10].

After all variables values needed by the checkpoint inter-
val model had been already defined in run-time it is possible
to use the following checkpoint interval model to calculate
the checkpoint interval.

For a system with a known MTTI, the following
equation[1] estimates the wall-clock time Test required to run
an application (which originally takes Tp time to conclude)
in a faulty environment with fault tolerance:

Test = Tp

[
1 +

φσ2 + σ(2φtl + φtc + 2φ∆lr − tc + 2∆lp)

α(2σ + 2tc)

+
2tc(φtl + φ∆lr + α− tl − ∆lr + ∆lp)

α(2σ + 2tc)

]
(1)

1The definition of the checkpoint interval model used in this paper
can be found in http://caos.uab.es/˜lfialho/ic/parallel_
model.pdf.

t=0!
P1!

t=0!
P2!

t=0!
P3!

m2.1!

m2.1!

m3.1!

C1.1!

C2.1!

C3.1!

F!

32 – 33… !

34 – 35… !

35 – 36… !

checkpoint+m3.1!

Fault-free!
Log Overhead!

Recovery!
Log Overhead!

m3.1!

41… ! 41… !35… !

!lp! !lp! !lr!

Fig. 2: Overhead introduced by a pessimistic receiver-based
message logging protocol during a fault-free execution (∆lp)
and during the recovery phase (∆lr).

In the equation above, the fault detection latency has
been omitted. This variable can be safely omitted because
it depends on the fault detection mechanism implemented
by the fault tolerance architecture. If we suppose the use of
a heartbeat/watchdog system, then the higher the heartbeat
frequency, the smaller the detection time. Moreover, the
heartbeat communication does not impose a considerable
overhead on the system. In addition, there is always the pos-
sibility of using the application communication as another
fault detection mechanism [18].

The checkpoint interval that minimises the fault tolerance
overhead of the aforementioned model is:

σ =

√
φtc(tc + 2α− 2tl − 2∆lr)

φ
− tc (2)

and the inter-process dependency factor is defined by the
following equation:

φglobal =

∑N
1 P (n)

N2
(3)

where P (n) is the function which defines the number of
processes that depend on the process n including itself. N
is the total number of processes in the parallel application.

There is an issue with the whole model presented related
to the definition of the inter-process dependency factor.
Equation 3 reflects this inter-process dependency factor for
the entire application. This factor should be redefined to
represent the dependency of an individual process in relation
to other processes. Below we present our propose to the
redefinition of this factor:

φ =
P (n)

N
(4)

and finally, the value for this factor is defined in run-
time based on the application monitoring. As in previous
equation, P (n) is the function which defines the number
of processes that have sent to or received messages from
process n, including itself. N is the total number of processes
in the parallel application.

Our methodology is based on measurements taken during
the most recently checkpoint cycle. When the application
changes its behaviour, i.e. the communication pattern, or its
memory footprint, after one checkpoint cycle the checkpoint
interval will already be adapted to the new application
characteristics. Moreover, except during the start-up and fi-
nalisation it is expected that applications do not change their
behaviour or memory footprint too frequently in comparison
to the checkpoint interval [20].

4. Experimental Evaluation
To evaluate our proposal, three experiments were de-

signed. In the first experiment we depict the adaptation of
the checkpoint interval to changes in the process size and we

612 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

also demonstrate the influence of the communication pattern
on the inter-process dependency factor (φ). The second
experiment depicts the reduction in the overhead introduced
by fault tolerance while using our methodology to define the
checkpoint interval in run-time. Finally, the third experiment
shows the accuracy of the inter-process dependency factor
defined in run-time.

Experiments run in an 8-node cluster. Each node was
equipped with two Dual-Core Intel Xeon processors running
at 2.66GHz, 12 GBytes of main memory, and a 160 GBytes
SATA disk for local storage. Nodes were interconnected
via two Gigabit Ethernet interfaces. One of these networks
was used for storage while the other was used for process
communication. RADIC/OMPI [6] was used as a fault
tolerant MPI library.

To create a fault scenario processes are killed during the
application execution. The fault moment is defined by the
MTTI (α) and its distribution along the MTTI is defined
using the MT19937 PRNG algorithm [22]. The processes
to be killed is selected using the same algorithm. After the
fault has been injected the node is available to be reused by
a recovered process.

4.1 Checkpoint Interval Adaptation
Model variables such as tc and tl depends on the amount

of memory used by application processes. And processes
on the same application may present different memory foot-
prints. This occurs because processes compute different data
or processes play different roles in the parallel application.

To depict the adaptation of the checkpoint interval to the
process memory footprint we have used the NAMD molec-
ular dynamics application [21]. NAMD is implemented over
a Master/Worker paradigm where workers also communicate
between themselves; the master process requires more mem-
ory in comparison to the workers. The experiment has been
executed using with a fault frequency (α) of 3600 seconds
and the heartbeat frequency (td) was set to 1 second. Values
for tc, tl, ∆lp, and ∆lr were measured during the execution.
For this application we have manually calculated the inter-
process dependency factor (φ) and its value is 1.

Dashed lines in figures 3 depict the checkpoint interval
used throughout the application execution. Figure 3(a) refers
to the master process, while figure 3(b) refers to a worker
process. Figure 3 depicts only one worker processes, how-
ever others present a similar behaviour.

As the figures depict, processes use a small amount of
memory in the startup phase. As a consequence of this
the model calculates a short checkpoint interval initially.
However, after the startup phase the application increases its
memory footprint. After the second checkpoint the check-
point interval changes to reflect the changes on the process
memory footprint. Tables in figure 3(a) and 3(b) summarise
the checkpoint instances and sizes for the master and a
worker process, respectively.

To depict the adaptation of the checkpoint to the inter-
process dependency factor we have used a dynamic ma-
trix multiplication application built under a Master/Worker
paradigm where workers only communicate with the master

0!
100!
200!
300!
400!
500!
600!
700!
800!
900!
1000!

0!
150!
300!
450!
600!
750!
900!
1050!
1200!
1350!
1500!

0! 600! 1200! 1800! 2400! 3000!

C
he

ck
po

in
t I

nt
er

va
l (

se
co

nd
s)
!

Pr
oc

es
s S

iz
e

(M
By

te
s)
!

Execution Time (seconds)!

0!
100!
200!
300!
400!
500!
600!
700!
800!
900!
1000!

0!
150!
300!
450!
600!
750!
900!
1050!
1200!
1350!
1500!

0! 600! 1200! 1800! 2400! 3000!

C
he

ck
po

in
t I

nt
er

va
l (

se
co

nd
s)
!

Pr
oc

es
s S

iz
e

(M
By

te
s)
!

Execution Time (seconds)!

Execution Instant Process Size Checkpoint Interval
0.31 seconds 339.96 MB 340.56 seconds

358.45 seconds 1261.75 MB 775.93 seconds
1245.35 seconds 1270.05 MB 779.04 seconds
2132.25 seconds 1272.37 MB 779.41 seconds

(a)

Execution Instant Process Size Checkpoint Interval
0.19 seconds 70.57 MB 157.35 seconds

160.95 seconds 1026.79 MB 689.77 seconds
934.97 seconds 1056.99 MB 693.29 seconds

1708.81 seconds 1060.23 MB 693.87 seconds
(b)

Fig. 3: The continuous line shows the memory footprint of the NAMD (a) master and (b) worker processes running the
“stmv” workload; values are shown on the left axes. The dashed line represents the checkpoint interval used; values are
shown on the right axes. The rhombus points depict checkpoint instances. Tables depict first four values of the checkpoint
size and the calculated next checkpoint interval for each type of process according to the execution instant.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 613

0!

500!

1000!

1500!

2000!

2500!

3000!

3500!

0.0!
0.1!
0.2!
0.3!
0.4!
0.5!
0.6!
0.7!
0.8!
0.9!
1.0!

0! 2000! 4000! 6000! 8000! 10000!

C
he

ck
po

in
t I

nt
er

va
l (

se
co

nd
s)
!

In
te

r-
Pr

oc
es

s D
ep

en
de

nc
y

Fa
ct

or
 ("

)!

Execution Time (seconds)!

0!
50!
100!
150!
200!
250!
300!
350!
400!

0.0!
0.1!
0.2!
0.3!
0.4!
0.5!
0.6!
0.7!
0.8!
0.9!
1.0!

0! 100! 200! 300! 400! 500! 600! 700! 800!

C
he

ck
po

in
t I

nt
er

va
l (

se
co

nd
s)
!

In
te

r-
Pr

oc
es

s D
ep

en
de

nc
y

Fa
ct

or
 ("

)!

Execution Time (seconds)!

Execution Instant Process φ Checkpoint Interval
0.84 seconds 0.34375 2,949.62 seconds

3,658.74 seconds 1.00000 1,436.16 seconds
5,823.01 seconds 1.00000 1,433.98 seconds
7,928.74 seconds 1.00000 1,439.21 seconds

10,054.94 seconds 1.00000 1,433.73 seconds
(a)

Execution Instant Process φ Checkpoint Interval
0.31 seconds 0.34375 286.52 seconds

286.84 seconds 0.25000 336.68 seconds
623.52 seconds 0.25000 334.99 seconds
960.20 seconds 0.25000 337.09 seconds

1,296.88 seconds 0.25000 336.96 seconds
(b)

Fig. 4: The continuous line shows the value of φ for the matrix multiplication (a) master and (b) process; values are shown
on the left axes. The dashed line represents the checkpoint interval used; values are shown on the right axes. The rhombus
points depict checkpoint instances. Tables depict first five values of φ and the calculated next checkpoint interval for each
type of process of the matrix multiplication execution according to the execution instance.

process. This parallel application was executed using 8
nodes.

Considering the equation 3, the initial value for the φ
variable is 0.34375. This value represents a global view of
the relationship established between all processes on this
parallel application. The fault frequency (α) has been defined
as 3600 seconds and the heartbeat frequency (td) has been set
to 1 second. Values for tc, tl, ∆lp, ∆lr, and φ are measured
during the execution. Equation 4 has been used to define in
run-time the value of φ for each process.

Continuous lines in figure 4 depict the calculated values
for the φ in run-time for the master 4(a) and for a worker
4(b) process, respectively. In addition, the dashed line on
these figures depict the values of the checkpoint interval
during the application execution as well as the checkpoints
instances.

As shown in figure 4(a), the initial value of 0.34375 was
redefined to 1. This occurs because between the first and the
second checkpoint the master process communicated with all
7 workers. As a consequence of this increase in the value of
φ, the model has changed the checkpoint interval. Similarly,
in figure 4(b) the decrease in the value of φ increases the
time between checkpoints for a worker process.

Figure 4 depicts only one worker process, however, other
worker processes present similar behaviour. The huge dif-
ference between the checkpoint interval calculated for the
master and for the worker process is caused by the difference
in the memory footprint of these processes.

4.2 Reduction in the Overhead
The next experiments depict the performance gain in

using our methodology to define the checkpoint interval
in run-time. This experiment compare the performance of
our proposal with a static configuration in a faulty and
fault-free scenario. The comparison was made using the
aforementioned NAMD and dynamic matrix multiplication
applications. In this experiment only one fault was injected
in each execution. The moment of the fault differs from
one execution to other. The fault is distributed along the
application execution according to the MT19937 PRNG
algorithm. Each experiment has been executed at least in
16 times and values are the average of all data that fall in a
95% confidence interval.

As shown in figure 5(a) the use of the fault tolerance pro-
vided by the RADIC/OMPI library introduces an overhead
of about 25% in a fault-free execution and about 34% in a
faulty scenario.

As shown in table in figure 5 there is a modest reduction
in the overhead while the checkpoint interval is calculated
in run-time. This occurs because there is no significative
change in the NAMD processes characteristics, except for
the memory footprint in the start-up phase. However, as
shown in figure 5(b) the matrix multiplication application
presents different results.

In the fault-free environment the execution using statically
configured checkpoint interval presents a smaller overhead
than the execution running with in run-time configuration.

614 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

0%

10%

20%

30%

40%

50%
Ex

ec
ut

io
n

Ti
m

e
O

ve
rh

ea
d

Fault-free and static configured FT
Fault-free and in run-time configured FT
Faulty and static configured FT
Faulty and in run-time configured FT

0%

10%

20%

30%

40%

50%

Ex
ec

ut
io

n
Ti

m
e

O
ve

rh
ea

d
(a)

0%

10%

20%

30%

40%

50%
Ex

ec
ut

io
n

Ti
m

e
O

ve
rh

ea
d

Fault-free and static configured FT
Fault-free and in run-time configured FT
Faulty and static configured FT
Faulty and in run-time configured FT

0%

10%

20%

30%

40%

50%

Ex
ec

ut
io

n
Ti

m
e

O
ve

rh
ea

d
(b)0%

10%

20%

30%

40%

50%

Ex
ec

ut
io

n
Ti

m
e

O
ve

rh
ea

d

Fault-free and statically configured FT
Fault-free and in run-time configured FT
Faulty and statically configured FT
Faulty and in run-time configured FT

0%

10%

20%

30%

40%

50%

Ex
ec

ut
io

n
Ti

m
e

O
ve

rh
ea

d

App Statically Configured Configured in Run-Time
Fault-free Faulty Fault-free Faulty

NAMD 25.4% 25.1% 34.5% 33.6%
MM 18.1% 24.6% 35.4% 31.1%

Fig. 5: Comparison of the (a) NAMD and (b) a matrix
multiplication execution time using different fault tolerance
configuration strategies on different environments.

This is because the initial global value of φ increases the
checkpoint interval for the master process. This reduces
the number of checkpoints performed. In this situation, the
overhead introduced by a fault increases. This can be verified
when we compare the total wall time clock in a faulty
environment for the configurations made statically and in
run-time.

4.3 The Accuracy of the Inter-Process Depen-
dency Factor Defined in Run-Time

To verify the accuracy of our model we executed the NAS
[23] LU class B with 8 processes modified to iterate 300,000
times. This modified version of the LU has been executed
using different global values for the φ, from 0.9 to 0.2. Table
1 shows the correct value of this factor individually and
globally for this application.

Analysing the curve in figure 6 and the data present in the
table it is possible to guess that the optimum value for the φ
for this execution should be a value between 0.45 and 0.60.
Despite of the small difference between the global and the
individualised values for the φ, to use of a precise value for
this factor reduces in more than 3% the overhead introduced

Table 1: Values for the inter-process dependency factor for
the entire LU application and for each process individually.

Process Rank (Global Value) P (n) φ

Running with 8 processes 0.56250
0, 3, 4, 7 4 0.50000
1, 2, 5, 6 5 0.62500

65000
70000
75000
80000
85000
90000
95000

100000
105000
110000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Inter-Process Dependency Factor (!)
Defined in run-time Fixed global value
No Fault Tolerance

0.5625

Overhead Using Overhead Using
φ Fixed a Defined in Difference

Global Value Run-Time Value
0.2 36.2% 32.8% 3.38%
0.3 35.8% 32.6% 3.27%
0.4 35.5% 32.4% 3.16%
0.5 35.2% 32.1% 3.11%
0.6 35.4% 32.2% 3.17%
0.7 35.7% 32.4% 3.28%
0.8 36.1% 32.7% 3.39%
0.9 36.5% 33.0% 3.43%

Fig. 6: Comparison between static and in run-time config-
ured values of the inter-process dependency factor.

by the fault tolerance tasks for this application.

5. Conclusions
Checkpoint interval models used to rely on input vari-

ables based on average values. This reasoning is valid for
applications running for a long time on systems that present
a high fault frequency. However, this is not the common
environment faced by parallel application users. This paper
has presented a methodology to dynamically define the input
variables used by models based on measurements performed
during the application execution.

We propose the monitoring of processes that compose the
parallel application to achieve the values for the variables
used by checkpoint interval model. We monitor the time
needed to perform fault tolerant tasks as well as the number
of peers each process communicates with.

This instrumentation allow the definition of the check-
point interval in run-time with a high degree of precision,
process by process. The use of this methodology reduces in
about 3% the overhead introduced in the execution time for
applications running in faulty environments.

5.1 Future Work
The overhead added to the application execution by the

monitoring mechanism tends to be unappreciable. However,

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 615

it is necessary to quantify this overhead.
The use of uncoordinated checkpointing is the only solu-

tion that allows the use of different checkpoint intervals for
each application process. However, the use of uncoordinated
checkpointing assisted by message logging may not be the
solution that presents the lowest overhead. There is the
need to analyse if a sender-based message logging or a
coordinated checkpointing solution present better results.

References

[1] F. Cappello, “Fault Tolerance in Petascale/Exascale Systems:
Current Knowledge, Challenges and Research Opportunities,”
International Journal of High Performance Computing Applications,
pp. 212—226, 2009. [Online]. Available: http://dx.doi.org/10.1177/
1094342009106189

[2] A. Bouteiller, G. Bosilca, and J. Dongarra, “Redesigning the
Message Logging Model for High Performance,” Concurrency and
Computation: Practice and Experience, vol. 22, no. 16, pp. 2196—
2211, 2010. [Online]. Available: http://dx.doi.org/10.1002/cpe.1589

[3] W. Gropp and E. Lusk, “Fault Tolerance in Message Passing Interface
Programs,” International Journal of High Performance Computing
Applications, vol. 18, no. 3, pp. 363—372, 2004. [Online]. Available:
http://dx.doi.org/10.1177/1094342004046045

[4] A. Bouteiller, F. Cappello, T. Herault, G. Krawezik, P. Lemarinier, and
F. Magniette, “MPICH-V2: a Fault Tolerant MPI for Volatile Nodes
based on Pessimistic Sender Based Message Logging,” Proceedings
of the 2003 ACM/IEEE conference on Supercomputing, p. 25, 2003.
[Online]. Available: http://dx.doi.org/10.1109/SC.2003.10027

[5] J. Hursey, J. Squyres, T. Mattox, and A. Lumsdaine, “The Design
and Implementation of Checkpoint/Restart Process Fault Tolerance
for Open MPI,” Proceedings of the 2007 IEEE International Parallel
and Distributed Processing Symposium, 2007. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2007.370605

[6] L. Fialho, G. Santos, A. Duarte, D. Rexachs, and E. Luque,
“Challenges and Issues of the Integration of RADIC into Open
MPI,” Proceedings of the 16th European PVM/MPI Users’
Group Meeting, pp. 73—83, 2009. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=1612227

[7] E. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson, “A Survey of
Rollback-Recovery Protocols in Message-Passing Systems,” ACM
Computing Surveys, vol. 34, no. 3, pp. 375—408, 2002. [Online].
Available: http://dx.doi.org/10.1145/568522.568525

[8] S. Kalaiselvi and V. Rajaraman, “A survey of checkpointing
algorithms for parallel and distributed computers,” Sadhana,
vol. 25, no. 5, pp. 489—510, 2000. [Online]. Available: http:
//dx.doi.org/10.1007/BF02703630

[9] W. Jones, J. Daly, and N. DeBardeleben, “Impact of Sub-optimal
Checkpoint Intervals on Application Efficiency in Computational
Clusters,” Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing, pp. 276—279, 2010.
[Online]. Available: http://dx.doi.org/10.1145/1851476.1851509

[10] J. Young, “A First Order Approximation to the Optimum Checkpoint
Interval,” Communications of the ACM, vol. 17, no. 9, pp. 530—531,
1974. [Online]. Available: http://dx.doi.org/10.1145/361147.361115

[11] J. Daly, “A higher order estimate of the optimum checkpoint
interval for restart dumps,” Future Generation Computer Systems,
vol. 22, no. 3, pp. 303—312, 2006. [Online]. Available: http:
//dx.doi.org/10.1016/j.future.2004.11.016

[12] Y. Li and Z. Lan, “Exploit Failure Prediction for Adaptive
Fault-Tolerance in Cluster Computing,” Proceedings of the 6th
IEEE International Symposium on Cluster Computing and the Grid,
pp. 531—538, 2006. [Online]. Available: http://dx.doi.org/10.1109/
CCGRID.2006.45

[13] Z. Lan, Y. Li, Z. Zheng, and P. Gujrati, “Enhancing Application
Robustness through Adaptive Fault Tolerance,” Proceedings of the
22nd IEEE International Symposium on Parallel and Distributed
Processing, 2008. [Online]. Available: http://dx.doi.org/10.1109/
IPDPS.2008.4536383

[14] N. Chen and S. Ren, “Adaptive Optimal Checkpoint Interval
and Its Impact on System’s Overall Quality in Soft Real-time
Applications,” Proceedings of the 2009 ACM symposium on
Applied Computing, pp. 1015—1020, 2009. [Online]. Available:
http://dx.doi.org/10.1145/1529282.1529506

[15] R. Gupta, P. Beckman, B. Park, E. Lusk, P. Hargrove, A. Geist, D. K.
Panda, A. Lumsdaine, and J. Dongarra, “CIFTS: A Coordinated
Infrastructure for Fault-Tolerant Systems,” Proceedings of the 2009
International Conference on Parallel Processing, pp. 237—245,
2009. [Online]. Available: http://dx.doi.org/10.1109/ICPP.2009.20

[16] Y. Li, Z. Lan, P. Gujrati, and X. Sun, “Fault-Aware Runtime
Strategies for High Performance Computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 20, no. 4, pp. 460—473, 2009.
[Online]. Available: http://dx.doi.org/10.1109/TPDS.2008.128

[17] L. Fialho, D. Rexachs, and E. Luque, “What Is Missing in Current
Checkpoint Interval Models?” To appear in the Proceedings of the
31th International Conference on Distributed Computing Systems,
2011.

[18] A. Duarte, D. Rexachs, and E. Luque, “Increasing the cluster
availability using RADIC,” Proceedings of the 2006 IEEE
International Conference on Cluster Computing, 2006. [Online].
Available: http://dx.doi.org/10.1109/CLUSTR.2006.311872

[19] S. Rao, L. Alvisi, and H. Vin, “The Cost of Recovery in Message
Logging Protocols,” IEEE Transactions on Knowledge and Data
Engineering, vol. 12, no. 2, pp. 160—173, 2000. [Online]. Available:
http://dx.doi.org/10.1109/69.842260

[20] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
Characterizing Large Scale Program Behavior,” Proceedings of
the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 45—57, 2002.
[Online]. Available: http://dx.doi.org/10.1145/605397.605403

[21] J. C. Philips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid,
E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, “Scalable
Molecular Dynamics with NAMD,” Journal of Computational
Chemistry, vol. 26, no. 16, pp. 1781—1802, 2005. [Online].
Available: http://dx.doi.org/10.1002/jcc.20289

[22] M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-
Dimensionally Equidistributed Uniform Pseudo-Random Number
Generator,” ACM Transactions on Modeling and Computer
Simulation, vol. 8, no. 1, pp. 3—30, 1998. [Online]. Available:
http://dx.doi.org/10.1145/272991.272995

[23] W. Saphir, R. Wijngaart, A. Woo, and M. Yarrow, “New
Implementations and Results for the NAS Parallel Benchmarks 2,”
Proceedings of the 8th SIAM Conference on Parallel Processing for
Scientific Computing, 1997. [Online]. Available: http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.43.3199

616 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Defining the Checkpoint Interval
for Uncoordinated Checkpointing Protocols

Leonardo Fialho∗, Dolores Rexachs and Emilio Luque
Department of Computer Architecture and Operating System, University Autonoma of Barcelona, Spain

leonardo.fialho@caos.uab.es, dolores.rexachs@uab.es, emilio.luque@uab.es

Abstract— Parallel applications running on large comput-
ers suffer from the absence of a reliable environment. Fault
tolerance proposals, in general, rely on rollback-recovery
strategies supported by checkpoint and/or message logging.
There are well-defined models that address the optimum
checkpoint interval for coordinated checkpointing. Neverthe-
less, there is a lack of models concerning uncoordinated
checkpointing combined with message logging. First we
present a model designed for serial applications or coordi-
nated checkpointing-based solutions. Our contribution is the
extension of this model to a scenario based on uncoordinated
checkpointing combined with message logging. We introduce
two key points to minimise the fault tolerance overhead for
parallel applications. The first is the use of a factor to
represent the dependency relation between processes. The
second is the use a specific checkpoint intervals for each
process. Experiments show that our model performs as well
as previous studies for serial applications or coordinated
checkpointing. While running parallel applications using
uncoordinated checkpointing combined with message log-
ging, our checkpoint interval model effectively minimises the
overhead introduced by the fault tolerance tasks. Moreover,
the overhead prediction error is smaller than 5% for all
applications tested.

Keywords: MPI; fault tolerance; checkpoint interval; model;
uncoordinated checkpoint.

1. Introduction
Fault tolerance has become an important issue for par-

allel applications in the last few years. The growth of the
number of components, which form parallel machines, are
the major root causes of the failures increasingly seen on
these machines. In order to achieve the execution end,
parallel applications should use some fault tolerance strategy.
Strategies can be the use of redundant hardware or the
incorporation of the redundancy by software. Actually, the
second is cheaper than the first even though it represents an
overhead on the application run time.

This research has been supported by the MEC-MICINN Spain under
contract TIN2007-64974.
∗Contact author to whom correspondence should be addressed.
†This paper is addressed to the PDPTA conference.

Checkpointing is an established rollback-recovery tech-
nique used to achieve fault tolerance on applications. There
are well-defined models [1], [2] to calculate the checkpoint
interval to minimise the overhead introduced by fault toler-
ance and maximise the application efficiency, i.e., “the ratio
of time the job spends making forward progress compared to
the entire wall-clock time” [3]. Nevertheless, these models
have been designed based on serial applications. The use
of models based on serial applications is acceptable for
parallel applications when they are protected by coordinated
checkpointing. However, for uncoordinated checkpointing-
based strategies these models would not be useful.

Fault tolerance architectures designed for parallel ma-
chines such as MPICH-V [4] and RADIC [5] are based on
uncoordinated checkpointing combined with message log-
ging. Ergo, these architectures suffer from the lack of models
to calculate the checkpoint interval as well as to predict the
overhead introduced by the fault tolerance architecture on
the application run time.

In this study we will propose a novel model to calculate a
checkpoint interval to minimise the overhead introduced by
fault tolerance architectures based on uncoordinated check-
pointing combined with message logging in parallel applica-
tions. For the sake of deducing the parallel application fault
tolerance model, a model based on serial applications will
be introduced first. The model to calculate the checkpoint
interval for parallel application incorporates the message
logging influence on the overhead and a factor to measure
the dependency relationship between processes. We present
two key points to minimise the fault tolerance overhead
in parallel applications. The first is the use of a factor
to represent the dependency relationship between parallel
application processes. The second is the use of different
checkpoint intervals for each parallel application process
based on its own characteristics.

Experiments show that our model performs as well as pre-
vious studies while running serial applications. For parallel
applications the overhead prediction error is less than 5%
while running with uncoordinated checkpointing combined
with message logging.

The content of this paper is organised as follows. The
related work is presented in section 2. Section 3 introduces
the checkpoint interval models. The experimental evaluation
comes in section 4. The conclusions are stated in section 5.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 617

2. Related Work
The use of analytical models to define the optimum

checkpoint interval for serial applications has been studied
from the 70’s until today. In 1974, Young [6] introduced the
first order approximation, an analytical model to determine
the optimum checkpoint interval. Using Young’s model it is
possible to calculate the optimum checkpoint interval once
the user knows the time needed to perform a checkpointing
operation and the system fault probability. In order to predict
the overall running time while performing checkpoints,
Young’s model requires the original application run time as
well as the time needed to recover a failed process. More
recently, Lin et al. [7] and Gropp and Lusk [1] presented a
model achieving the same result for the optimum checkpoint
interval. Nevertheless, they use different approaches that lead
to different overhead prediction equations.

Many years after Young, Daly presented a deeply ana-
lytical study [2] to determine the higher order estimation
of the optimum checkpoint interval. Daly analyses different
scenarios such as multiple failures between checkpoints,
fractional rework (the amount of work completed after a
checkpoint and prior to a failure), failures during restarts, et
cetera.

Despite Gelenbe et al. [8] and Ken and Mark’s [9], whom
were analysing models for distributed computing, there is
a lack of knowledge surrounding the optimum checkpoint
interval for parallel applications. Currently, many studies
about fault tolerance for parallel applications are limited to
presenting the approach used to achieve protection. Most of
these studies discuss differences between coordinated and
uncoordinated checkpointing, logging strategies, implemen-
tation details, architecture design, et cetera. In these studies
in general, authors have omitted the method used to calculate
the checkpoint interval used in experiments. A rare exception
is Bouteiller et al. [10] who describe the model employed
to calculate the checkpoint interval used to run experiments
to depict the impact of fault frequency on the application
run time. Nevertheless, this model is not useful to define the
checkpoint interval to minimise the fault tolerance overhead.

Models designed to be used on serial applications can also
be used on parallel applications under certain circumstances
(e.g. if the application is protected by coordinated check-
pointing). However, after a fault the system restores the last
checkpoint and work done after the checkpoint and before
the fault is lost.

To understand the impact of faults on parallel applications
let us suppose a parallel application running with a rollback-
recovery fault tolerance assisted by coordinated checkpoint-
ing. Checkpointing and recovery are collective operations
that involve all processes in the parallel application. Thus,
all processes are checkpointed at the same time and after a
fault all processes should roll back and resume their oper-
ations from the last checkpoint. In the case of coordinated
checkpointing models designed for serial applications can

also be used.
However, parallel applications running with a fault tol-

erance system which implements an uncoordinated check-
pointing protocol cannot use existing models to calculate
the optimum checkpoint interval. In this scenario, after the
fault occurrence only the faulty process needs to be rolled
back. In this case just the work done by the faulty process
is lost. Other processes continue to compute.

As far as we know, there is no model to calculate the
checkpoint interval to minimise the overhead introduced
by fault tolerance in this case. Also, there is no model to
predict the overhead introduced by fault tolerance on parallel
applications running with uncoordinated checkpointing.

3. Developing the Checkpoint Interval
Models

In order to better understand the deduction of the check-
point interval models let us consider figure 1 and the
following naming system:
tc as the time spent on a checkpoint operation in-

cluding the storage time. In other words, it is the
application interruption time necessary to take a
checkpoint.

td as the time needed to detect a fault, also known as
fault detection latency.

tl as the time needed to load a checkpoint from
storage.

tr as the amount of time needed to recover a failed
process and achieve the computation point just
before fault. It is the reworking of the previous
lost computation, also known as fractional rework.

Q as the quantity of checkpoints that should be per-
formed between two faults.

Tc as the total protection time represented by the sum
of all tc between two faults. This value can be
obtained multiplying tc by Q. If there is some
overhead introduced by the logging procedure this
time need to be take in account.

Tr as the total recovery time per fault represented by
the sum of td, tl, and tr.

α as the mean time to interrupt (MTTI) for a given
system, which is the inverse of the fault probability.

σ as the checkpoint interval used to run the applica-
tion. It can also be considered as the useful time
for the application to compute.

∆lp as the time added to message delivery due to the
logging procedure, if it exists.

∆lr as the time spent no processing the message log
after a fault. The majority of this is the replaying
time, if it exists.

As shown in figure 1, the recovery task occurs at the
beginning of the period between faults Fx and Fy . Recovery
takes Tr time (segment BE) to conclude and after this

618 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

t=0!

Fx!

"!
Tr! tc! #! tc! #! tc!

td! tl! tr!

A B C D E F G H I J K!

Fy!

Fig. 1: Between faults Fx and Fy there is a recovery time
Tr and 3 checkpoints tc among computational periods σ.

comes one or more computational segments followed by
checkpoints. Each checkpoint requires tc time (segments
EF , GH , and IJ) to be taken. Checkpoints are separated
by an application computational period represented by σ
(segments FG and HI). Ergo, σ is the interval between
checkpoints, ipso facto the checkpoint interval. Segment JK
will be lost due to fault Fy . This work will be redone
after the next recovery phase (not depicted in figure 1). As
aforementioned, Tc is the sum of all tc, it represents the
sum of segments EF , GH , and IJ in figure 1. Time spent
on protection and recovery tasks is not useful application
time, thus these tasks are considered to be overhead. This
assumption leads us to the following equation:

Overhead = Tr + Tc (1)

3.1 The Model for Serial Applications
As mentioned previously, Tr is the sum of the fault

detection latency (td), checkpoint loading from storage (tl)
and the fractional rework (tr). It can also be seen in figure
1. As proved by Daly [2], it is accepted to assume interrupts
occur halfway through the checkpoint interval. Thus, we
consider the fractional rework (tr) as half of the checkpoint
interval (σ), which leads us to the following equation:

Tr = td + tl + σ/2 (2)

The same demonstration can be used in relation to the fault
detection latency. However, there are many fault detection
mechanisms that can be used. Because it is a user-defined
variable we will leave this variable untouched.

To calculate Tc the number of checkpoints (Q) should be
defined. Q represents the number of segments composed of
checkpoint (tc) and compute time (σ) that fits the period be-
tween faults (α), excluding the recovery time. It is reflected
in the equation below:

Tc = Q ∗ tc (3)

Q = (α− Tr)/(σ + tc) (4)

Using equations 1, 2, 3, and 4 and applying some algebraic
operations the following overhead equation is obtained:

Overhead = (σ2 + 2(σtd + σtl + αtc))/(2(σ + tc)) (5)

We can find the value of σopt that minimises the fault
tolerance overhead by deriving the overhead equation 5 with
respect to σ and setting the result to zero [1]. Considering the
positive solution, this operation brings us to the following
optimum checkpoint interval:

σopt =
√
t2c − 2tctd − 2tctl + 2αtc − tc (6)

3.2 The Model for Parallel Applications
The message logging disturbance depends on the logging

protocol used [11]. For the development of our model a
pessimistic receiver-based message logging has been used.
To better understand the deduction of the new model let us
consider figure 2. This figure depicts the disturbances added
by message logging operations and how failures impact on
different application processes.

In general, receiver based logging doubles the time needed
for message delivery because the data storage cannot be
overlapped with message delivery as shown in figure 2.
Modifying equations 2 and 3 to reflect the message logging
overhead, leads us to the following equations for process n:

Trn = td + tl + σ/2 + ∆lr (7)

Tcn = (Q ∗ tc) + ∆lp (8)

In case of faults, only the faulty process needs to rollback
and during its recovering phase there is no interaction with
non-faulty processes [11]. However, once a process fails
other processes that depend on the first could continue wait-
ing for data from the first before continuing their execution.
It means that processes have an intrinsic inter-dependent
relationship. In this paper this relationship will be named
inter-processes dependency factor. This factor affects the Tr
lowering its weight on the overhead equation. Rewriting the

t=0!
P1!

t=0!
P2!

t=0!
P3!

m2.1!

m2.1!

m3.1!

C1.1!

C2.1!

C3.1!

F!

32 – 33… !

34 – 35… !

35 – 36… !

checkpoint+m3.1!

Fault-free!
Log Overhead!

Recovery!
Log Overhead!

m3.1!

41… ! 41… !35… !

!lp! !lp! !lr!

Fig. 2: Disturbances introduced by the receiver-based mes-
sage logging protocol for protection ∆lp and recovery ∆lr.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 619

overhead equation 1 to consider this assertion, the following
equation is produced:

Overhead = φ(Tr) + Tc (9)

where φ represents the inter-process dependency factor.
Regarding this factor, small values represent less dependency
between processes while the higher value (1) means that
when one process fails all other processes continue waiting
for it. Replacing equations 7 and 8 in equation 9 and after
applying some algebraic operations, the following equation
is obtained:

Overhead = [φσ2 + σ(2φtd + 2φtl + φtc + 2φ∆lr − tc+

2∆lp) + 2tc(φtd + φtl + φ∆lr + α− td − tl − ∆lr + ∆lp)]

/(2σ + 2tc) (10)

We can find the value of σopt that minimises the fault
tolerance overhead for parallel applications by deriving equa-
tion 10 with respect to σ, and setting the result to zero[1].
Considering the positive solution, this operation brings us to
the following optimum checkpoint interval:

σopt =
√
φtc(tc + 2α− 2td − 2tl − 2∆lr)/φ− tc (11)

3.3 The Inter-Process Dependency Factor
All processes in the parallel application can fail. How-

ever, each process failure may impact other processes in
a distinct way. This means that if process n fails, one or
more processes can hang waiting for the recovery of n to
be completed (e.g. considering a master/worker application,
if the master process fails, all workers may wait for the
recovery of the master). The following equation shows how
to define the dependency factor using such analysis:

φ =

∑N
1 P (n)

N2
(12)

where P (n) is the function that defines the number of
processes that depend on the process n including itself, and
N is the total number of processes in the parallel application.

Based on the example above, let us assume an application
running with 8 processes and written under a master/worker
paradigm in which workers do not communicate among
themselves and supposing a function P (n) which considers
the existence of communication as the only dependency
between processes. If the master process fails all workers
should wait for its recovery, then P (master) is 8. If any
worker fails just the master may wait for it, then P (worker)
is 2 for all 7 workers. In compliance with this assumption
the dependency factor for this application is 0.34375.

Besides message logging modelling, the introduction of
the inter-process dependency factor is a key difference
between the previous models and ours. The introduction of

this factor is crucial to the accuracy of the predicted check-
point interval that minimises the fault tolerance overhead in
parallel applications.

4. Experimental Evaluation
Hereunder, a comparison between models will be pre-

sented. The comparison was made using simulation and
running real applications. The fault distribution is defined
by the MTTI, and faults are displaced in time with a 100%
of deviation calculated using the MT19937 PRNG algorithm
[12]. Moreover, in this section we evaluate the checkpoint
interval model for uncoordinated checkpointing.

To run experiments a 32 node cluster has been used. Each
node is equipped with two Dual-Core Intel Xeon processors
running at 2.66GHz, 12 GBytes of main memory and a 160
GBytes SATA disk for local storage. Nodes are intercon-
nected via two Gigabit Ethernet interfaces. RADIC/OMPI
[13] has been used as a fault tolerant MPI library.

To inject faults a program has been designed. This pro-
gram runs on a machine external to the cluster. According
to the fault distribution, the program connects to the target
node and kills the application process. The target machine
is selected in a round-robin fashion. The killed process is
recovered from the last checkpoint by the daemon used to
launch the application process.

4.1 Models for Serial Applications
To compare models we have used a simple matrix multi-

plication algorithm. This experiment tries to verify the ac-
curacy of the calculated checkpoint interval to minimise the
overhead introduced by fault tolerance. For that, the matrix
multiplication has been executed with different checkpoint
intervals. The application overhead is compared with the
predicted overhead of the models. The fault detection latency
is virtually zero and the MTTI (α) has been defined to be
100 seconds. Each experiment has been executed at least 16
times and values are the average of all data that fall in a
95% confidence interval.

Figure 3 depicts a comparison between overhead predic-
tion of the models and a real execution. All models have
calculated an optimum checkpoint interval between 9.75 and
10.3 seconds. All models have presented an overhead relative
error smaller than 3%. Close to the optimum checkpoint
interval the relative error is smaller than 2% for all models.

To evaluate the influence of the fault frequency a discrete
event simulator has been used. Table 1 shows variables used
to simulate a 500 days application as well as the values of
the optimum checkpoint interval calculated by models for
each scenario. The detection latency has been set to zero.

Figure 4(a) compares the simulated run time with the four
models using a 24 hour MTTI. The results of the models are
very close to the simulation. With regard to the predicted
overhead, our model presents a relative error of 0.64% on
values close to the calculated checkpoint interval (114.89

620 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Table 1: Variables used to simulate the influence of MTTI
on model accuracy and the optimum checkpoint interval.

MTTI tc tl Fialho Daly Gropp Young
hours minutes minutes minutes minutes minutes minutes

24 5 5 114.89 115.00 120.00 120.00
6 5 5 54.79 55.00 60.00 60.00

minutes). Daly’s model presented an error smaller than 0.2%
for all checkpoint intervals simulated.

Figure 4(b) demonstrates that Young’s model cannot pre-
dict the overhead with less than 15% error when the MTTI
is smaller than 6 hours and the time needed to take or load a
checkpoint is 5 minutes. However, its calculated checkpoint
interval is still close to the optimum. The smaller simulated
run time is for a 55 minute checkpoint interval. At this point
our model, Gropp’s, and Daly’s present a relative error of
2.54%, 1.23%, and 0.67%, respectively.

4.2 Analysing the Results of the Checkpoint
Interval Model for Parallel Applications

To evaluate the results of the checkpoint interval model
for parallel application two sets of experiments have been
designed: 1) one analyses the effectiveness of the inter-
process dependency factor, and 2) verifies the correctness
of the message logging modelling. To show that the using

68000

68750

69500

70250

71000

71750

72500

7 8 9 10 11 12 13

R
un

 T
im

e
(s

ec
on

ds
)

Checkpoint Interval (seconds)
Fialho Daly Gropp Young Real Execution
Interval Fialho Daly Young Gropp

7 2.6% 1.2% 1.5% 1.8%
8 2.1% 0.8% 1.2% 1.5%
9 1.8% 0.6% 1.0% 1.3%

10 1.8% 0.6% 1.0% 1.3%
11 1.7% 0.5% 0.9% 1.2%
12 1.9% 0.7% 1.0% 1.5%
13 2.1% 0.8% 1.2% 1.7%

Calculated 9.752s 9.766s 10.300s 10.300s

Fig. 3: Comparison of real execution and overhead prediction
of the models for α = 100, tc = 0.530, tl = 0.505, td =
0, values in average. Application runs in 62,830 seconds
without fault tolerance and in absence of faults. The table
shows the relative error of predicted overhead of the models
for each checkpoint interval used. The last line presents the
optimum checkpoint interval estimation of the models.

of current models is inappropriate in this scenario, the values
achieved with other models will be included on the following
experiments1.

To run experiments presented in this section the MTTI (α)
has been set to 100 seconds. The RADIC/OMPI library has
been configured to send a heartbeat every 1 second. Thus,
the fault detection latency (td) is 0.5 seconds. As this library
performs receiver-base message logging during the recovery
phase messages are already available in the log. Thus, the
time needed to process the message log (∆lr) tends to be
unappreciable because there is no message replaying [14].

4.2.1 Inter-Process Dependency Factor Effectiveness
To assure that the inter-process dependency factor is the

only variable which changes between executions a synthetic
application has been designed. The message logging inter-
ference and the time needed to take and load a checkpoint
are quite similar for the same number of process per node.

1Other models had been designed to be used with serial applications. To
compare these models with ours may be unfair while running applications
protected by uncoordinated checkpoint combined with message logging.
However, it is important to show de benefits of using models specifically
designed for uncoordinated checkpointing.

500

525

550

575

600

625

650

30 60 90 120 150 180 210 240 270 300 330

R
un

 T
im

e
(d

ay
s)

Checkpoint Interval (minutes)
Fialho Daly Gropp Young Simulation(a)

500
525
550
575
600
625
650
675
700

0 20 40 60 80 100 120 140 160 180 200

R
un

 T
im

e
(d

ay
s)

Checkpoint Interval (minutes)
Fialho Daly Gropp Young Simulation

(b)

Fig. 4: Comparison of simulation results for values depicted
in table 1 using a 24 hours (a) and 6 hours (b) MTTI.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 621

Table 2: Relevant characteristics of the synthetic application used to verify the effectiveness of the inter-process dependency
factor. For each model, the first column shows the optimum checkpoint interval calculated and the second column shows
the predicted overhead error. α = 100 and td = 0.5. Values are expressed in seconds.

of Fialho Daly Gropp Young
Processes φ tc tl ∆lp ∆lr σ Error σ Error σ Error σ Error

4 1.0000 1.630 1.643 2.771 0.000 16.30 3.67% 16.42 2.8% 18.05 4.7% 18.05 3.4%
9 0.5556 1.622 1.596 2.763 0.000 22.39 3.15% 16.39 1.3% 18.01 0.6% 18.01 0.0%

16 0.3125 1.691 1.610 2.765 0.000 31.00 2.21% 16.70 5.3% 18.39 3.3% 18.39 3.3%
25 0.2000 1.650 1.634 2.779 0.000 38.70 2.11% 16.52 7.0% 18.17 5.1% 18.17 4.8%

16 (4×4) 0.3125 4.954 5.131 4.188 0.000 50.46 3.08% 26.52 12.1% 31.48 7.0% 31.48 6.4%
36 (4×9) 0.1389 5.032 5.199 4.160 0.000 78.73 2.65% 26.69 17.4% 31.72 12.2% 31.72 10.4%
64 (4×16) 0.0781 4.981 5.287 4.399 0.000 106.06 1.88% 26.58 20.4% 31.56 15.3% 31.56 12.7%

100 (4×25) 0.0500 5.284 5.330 4.328 0.000 137.76 1.63% 27.22 22.9% 32.51 17.6% 32.51 14.6%

The synthetic application has been programmed using
the SPMD paradigm. A computing and a communication
phase compose each process. The computing phase is repre-
sented by a 2000×2000 matrix multiplication and during the
communication phase processes communicate to the right
and lower neighbours. These phases are repeated until a
defined amount of work has been done. The computing and
communication load are the same for all executions. Thus,
the interference caused by the message logging is the same in
all experiments regardless of the number of processes used.
However, the value of the inter-process dependency factor
changes accordingly to the number of processes.

Besides other variables, table 2 depicts the value of φ for
all executions. Values of message logging operation (∆lp

and ∆lr), checkpoint taking (tc), and checkpoint loading
(tl) are averages of all measurements done during application
execution. The value of the checkpoint interval has been pre-
viously calculated based on the applications characteristics
and is used to configure the RADIC/OMPI library.

As shown in figure 5, as the number of processes increases
(or the value of φ decreases) so does the accuracy of our
model. On the execution with 4 processes the value of φ is
1. In this case all models perform similarly. However, as the
number of processes increases other models depicts a loss of
accuracy. Analysing figure 5(b) it is easy to conclude that
previous models cannot be used with parallel applications
protected by uncoordinated checkpoints combined with mes-
sage logging. Especially with a high number of processes.

4.2.2 Correctness of the Message Logging Modelling
These experiments use the LU application from the NAS

Parallel Benchmarks [15] running with 8 processes, one
per node. LU has been executed using class B and C.
Table 3 depicts relevant characteristics of LU. ∆ values
reflect the average measurements done during application
execution. The number of iterations of LU class B and C
has been modified to 300,000 and 37,500 respectively. The
LU application presents a φ value equal to 0.5625 for 8
processes.

As shown in figure 6 our model performs better than any

other. Because other models do not consider the message
logging time they present an overhead prediction relative
error greater than 20% for LU class B. It means that these
models are not useful to predict the overhead for parallel ap-
plications using uncoordinated checkpointing combined with
pessimist receiver-based message logging. Nevertheless, our
model presents a modest overhead prediction error for both
class B and C of the NAS LU. Notice that from figure

0%
1%
2%
3%
4%
5%
6%
7%
8%

4 9 16 25

O
ve

rh
ea

d
Pr

ed
ic

ct
io

n
Er

ro
r

Number of Processes
Fialho Daly Gropp Young(a)

0%

5%

10%

15%

20%

25%

16 36 64 100

O
ve

rh
ea

d
Pr

ed
ic

ct
io

n
Er

ro
r

Number of Processes
Fialho Daly Gropp Young

(b)

Fig. 5: Overhead prediction error for a synthetic application
running with (a) 4, 9, 16, and 25 processes, 1 per node, and
(b) 16, 36, 64, and 100 processes, 4 per node. Values of
variables are depicted in table 2, α = 100, and td = 0.5.

622 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Table 3: Characteristics of the NAS LU class B and C. For each model, the first column shows the optimum checkpoint
interval and the second the predicted overhead error. α = 100, td = 0.5, φ = 0.5625. Values are expressed in seconds.

LU Fialho Daly Gropp Young
Class tc tl ∆lp ∆lr σ Error σ Error σ Error σ Error

B 0.605 0.559 38.257 0.005 10.353 3.0% 10.395 25.1% 11.000 25.9% 11.000 22.0%
C 2.057 2.102 13.961 0.007 18.065 0.5% 18.065 5.6% 20.283 8.0% 20.283 5.8%

6(a) to figure 6(b) other models presented a decrease in
the overhead prediction error while the opposite occurs with
our model. This occurs because the ratio between compute
and communication changes reducing the interference of
message logging.

5. Conclusions
This paper has presented a novel model to calculate the

checkpoint interval to minimise the overhead introduced by
fault tolerance on parallel applications.

We have shown that our serial model presents a differ-
ence of less than 1.2% from other models on average and
the execution time prediction error is smaller than 3% in
comparison with a real application execution. With regard to
our parallel model, it presents an overhead prediction error
smaller than 5% for the applications tested. Furthermore, we
have demonstrated that our models perform better when the
number of processes increases and there is less dependency
between processes.

5.1 Model Utilisation and Future Work
To reduce the number of variables in the checkpoint in-

terval model that minimises the fault tolerance overhead, an
analysis of variable sensitivity can be conducted. However,
we consider our model short enough to be incorporated into
any fault tolerant MPI library. This permits the dynamic
definition of the checkpoint interval based on measurements
of the time needed to perform fault tolerance procedures.
Using this approach, users can achieve better results because
the checkpoint interval value reflects the application charac-
teristics at a given moment.

0%

5%

10%

15%

20%

25%

30%

Fi
alh

o
Da

ly
Gr

op
p

Yo
un

g

O
ve

rh
ea

d
Pr

ed
ic

tio
n

Er
ro

r

(a) LU class B

0%

5%

10%

15%

Fi
alh

o
Da

ly
Gr

op
p

Yo
un

g

O
ve

rh
ea

d
Pr

ed
ic

tio
n

Er
ro

r

(b) LU class C

Fig. 6: Model overhead prediction relative error for LU class
B and C. Values of variables are depicted in table 3.

Another important issue is to prove that the parallel model
is suitable for libraries that implement uncoordinated check-
pointing combined with sender-based message logging.

References
[1] W. Gropp and E. Lusk, “Fault Tolerance in Message Passing Interface

Programs,” International Journal of High Performance Computing
Applications, vol. 18, no. 3, pp. 363—372, 2004.

[2] J. Daly, “A higher order estimate of the optimum checkpoint interval
for restart dumps,” Future Generation Computer Systems, vol. 22,
no. 3, pp. 303—312, 2006.

[3] W. Jones, J. Daly, and N. DeBardeleben, “Impact of Sub-optimal
Checkpoint Intervals on Application Efficiency in Computational
Clusters,” Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, pp. 276—279, 2010.

[4] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Ger-
main, T. Herault, P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri,
and A. Selikhov, “MPICH-V: Toward a Scalable Fault Tolerant MPI
for Volatile Nodes,” Proceedings of the 2002 ACM/IEEE Conference
on Supercomputing, pp. 1—18, 2002.

[5] A. Duarte, D. Rexachs, and E. Luque, “Increasing the cluster avail-
ability using RADIC,” Proceedings of the 2006 IEEE International
Conference on Cluster Computing, 2006.

[6] J. Young, “A First Order Approximation to the Optimum Checkpoint
Interval,” Communications of the ACM, vol. 17, no. 9, pp. 530—531,
1974.

[7] Y. Lin, B. Preiss, W. M. Loucks, and E. D. Lazawska, “Selecting
the Checkpoint Interval in Time Warp Simulation,” Proceedings of
the 7th Workshop on Parallel and Distributed Simulation, pp. 3—10,
1993.

[8] E. Gelenbe, D. Finkel, and S. Tripathi, “Availability of a distributed
computer system with failures,” Acta Informatica, vol. 23, no. 6, pp.
643—655, 1986.

[9] K. Wong and M. Franklin, “Distributed Computing Systems and
Checkpointing,” Proceedings of the 2nd International Symposium on
High Performance Distributed Computing, pp. 224—233, 1993.

[10] A. Bouteiller, P. Lemarinier, K. Krawezik, and F. Capello, “Co-
ordinated checkpoint versus message log for fault tolerant MPI,”
Proceedings of the 2003 IEEE International Conference on Cluster
Computing, pp. 242—250, 2003.

[11] E. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson, “A Survey of
Rollback-Recovery Protocols in Message-Passing Systems,” ACM
Computing Surveys, vol. 34, no. 3, pp. 375—408, 2002.

[12] M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-
Dimensionally Equidistributed Uniform Pseudo-Random Number
Generator,” ACM Transactions on Modeling and Computer Simula-
tion, vol. 8, no. 1, pp. 3—30, 1998.

[13] L. Fialho, G. Santos, A. Duarte, D. Rexachs, and E. Luque, “Chal-
lenges and Issues of the Integration of RADIC into Open MPI,”
Proceedings of the 16th European PVM/MPI Users’ Group Meeting,
pp. 73—83, 2009.

[14] S. Rao, L. Alvisi, and H. Vin, “The Cost of Recovery in Message
Logging Protocols,” IEEE Transactions on Knowledge and Data
Engineering, vol. 12, no. 2, pp. 160—173, 2000.

[15] W. Saphir, R. Wijngaart, A. Woo, and M. Yarrow, “New Implemen-
tations and Results for the NAS Parallel Benchmarks 2,” Proceedings
of the 8th SIAM Conference on Parallel Processing for Scientific
Computing, 1997.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 623

Byzantine-Tolerant Grouping Fault Detection Protocol

under High Churn Networks

Huawei Lu
1
, B. Shuyu Chen

2
, Xiaoqin Zhang

1
 and Guanghui Chang

1

1
 College of Computer Science, Chongqing University, Chongqing, China

2
School of Software Engineering, Chongqing University, Chongqing, China

Abstract - To implement fault detection under large-scale,

high churn, strong reliability required network environments,

the paper presents a Byzantine-Tolerant Grouping Fault

Detection Protocol (Bt-GFDP), which overcomes the

problems like network congestion and latency instability in

traditional message dissemination systems. Meanwhile it

generates self-stabilizing groups which could withstand high

churn without affecting the ability of other members to

disseminate their messages. The members are robust against

Byzantine faults by making use of signatures and random

numbers as era. Bt-GFDP was proven to be correct and

effective by experiments.

Keywords: High churn networks; Fault detection; Byzantine-

tolerant; Grouping; Detection mode

1 Introduction

 The traditional studies on network infrastructure mainly

focused on the subjects of the efficiency of information

transmission, the integrity of functions and the scalability and

extendibility of network structure, while less study interests

were put on the dependability of the network. Nowadays a key

task of network computing services is to provide trustworthy

service results to end users under the threats of intrusions,

attacks, and failures in modern network environments. In [1]

Professor David Patterson has pointed out, the construction of

today’s computer system is to provide high-reliable network

services. However, the faults on networks themselves and the

nodes running on them make networks not dependable.
Highly reliable application systems which support fault

detection based on fast developing overlay networks such as

Grid, P2P, and Wireless Sensor Networks systems have been

brought out
 [2-4]

. But traditional fault detection methods could

not meet the requirements for modern networks. So several

fault detection algorithms were brought out to satisfy these

requirements such as large-scale, high churn and transmission-

uncertainty [5~7]. And most of these algorithms are based on

static heart-beat detection, but which could not quite meet the

requirement of dynamics. A dynamic heart-beat fault detection

based on grey model which efficiently reduces the observed

sample size is presented in [8], but it does not consider the

problem of heart-beat message transmission, which could lead

to the effect degradation when network overhead grows. Fault

interval t prediction using linear regression probability was

described in [9~11]. It solved the problem of dynamics in

distributed systems, but it needs a large sample size, and with

the problem of large network overhead.

Renesse proposed a Gossip-style fault detection protocol

to solve the problem of probably network congestion during

messages dissemination using the fault detection based on

time prediction [12]. This protocol takes the advantage of the

high reliability of message dissemination in the network while

avoids the problem of network congestion. But too many

redundant messages would be generated in the system, which

would reduce the extendibility of the system. To reduce the

system overhead, a parasitic fault detection algorithm was

presented in [13]. It does not produce additional detection

message and effectively reduces the overhead of the system.

But this introduces tightly coupling between the detection

module and the application system, which means that this is

not a universal method.

Three trends make Byzantine Tolerant fault detection

increasingly attractive for practical deployment. First, the

growing value of data and the falling costs of hardware make

it advantageous for service providers to trade increasingly

inexpensive hardware for the peace of mind potentially

provided by BFT replications. Second, mounting evidence of

non-fail-stop behavior in real systems suggest that BFT may

yeild significant benefits even without resorting to n-version

programming. Third, improvements to the state of the art in

BFT replication techniques make BFT replication incresingly

practical by narrowing the gap between BFT replication costs

and costs already being paid for non-BFT replication.

A significant challenge of overcoming churn and facing

Byzantine faults is to find ways to limit the ability of faulty

members to take advantage of high churn to destroy the

system’s structure. A random dissemination fault detection

protocol which tolerates nodes’ Byzantine faults based on

flexible grouping is presented in this paper. This work is

based on the previous work GFDP
[13]

 . It takes the advantage

of the reliability of Gossip-style dissemination, and reduces

the network overhead and time consumption as every group is

comparatively autonomous. This protocol possesses the

characteristics of high extendibility, low consumption, nodes’

Byzantine-tolerance and etc. In section 2 the system model is

introduced, and the protocol is discussed in section 3, and

experimental results are presented in section 4, and a

discussion is given at the end.

624 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

2 Definitions

2.1 System model

 A network system consists of a limited set of multiple

members:

 1 2, , , im m m , for 2i and Ni

im in here is an abstract presentation of a module or a

process, or even a node in the dependable network system.

And members may be active or passive.

The set of fault detectors in the network system is defined

as:

 1 2, , , jd d d , for 2j and j N

Elements
im and jd in up two sets:

im , jd , for i j

jd is called a fault detector attached to im . An active

member means its detector participates in the protocol; while a

passive one means its detector may be crashed or detached. In

the following description, we use “member” and its attached

“detector” as the same meaning.

Some of the active members may be Byzantine. We assume

that the members may dynamically fail; failed members may

recover and need to be re-integrated in to the system.

We assume the existence of a public key cryptography

scheme that allows each detector to verify the signature of

each other detector. We further assume that non-Byzantine

members never reveal their private keys, such that faulty

detectors can’t forge signatures.

A detector is attached to a specified member in the network

system, and all the detectors form a detection set, for

im , id , i N . Every detector has an

identifier id id , which is assigned by a central authority

(CA). As high churn (members coming and going) in the

system and uncertainty about the states of other detectors,

each detector maintains temporary lists, as described in

section 3.1.

A correct member has an internal timer that runs at a

bounded drift from real time, which enables its detector to

measure periods of time with relative precision. A global

clock is not required to be synchronized.

Definition 1. An active member is correct if its attached

detector is active and following its protocol, processes

messages in no more than real-time units and has a

bounded drift of the member’s internal timer. An active

member that is not non-faulty is considered Byzantine.

A member or its detector will be called faulty or Byzantine,

interchangeably.

A member that faces transient failure may find itself in an

arbitrary state. Therefore it may take some time to integrate

itself into the system.

Definition 2. A communication network is non-faulty if

messages arrive at their destination within real-time, and

the content of the messages as well as the identity of the

sender are not tampered with.

Once the detection system is coherent, a message between

any two correct members is sent, received, and processed

within real-time units, where includes , and drifts

of local times.

2.2 Byzantine fault types

 In general, a truly decentralized Byzantine fault tolerant

(BFT) system should meet the requirements of the cost of BFT

replication for 1f failures with 4 agreement nodes and 3

execution nodes [3]. But in our work, we fully take the

advantage of using CA, which could reduce the difficulty of

identifying Byzantine members. We defined two kinds of

Byzantine faults in our system.

A message-denying fault issued by an individual member is

defined as a Black Hole fault. In addition, two or more faulty

members may collude together to form a larger “Black Hole”.

These two faults are called as Black Hole Class (BHC) faults.

The BHC fault means the members become dumb as either

their detectors crashed or being attacked by malicious users.

BHC faults become more serious if faulty members participate

in message propagation at early gossip rounds, or a large

number of faulty members collude together. Under such

conditions, BHC faults largely reduce the message number,

and thus seriously slow or even cease message propagation.

Moreover, a Message-Faking (MF) fault is more harmful

than a BHC fault. Unlike BHC faulty members that only deny

messages, an MF fault directly propagates incorrect

information, misleading other members to make a wrong

decision. As we make use of digital signatures, the tampered

messages would be recognized by correct members. But since

members may fail and recover, Byzantine members can replay

old signed messages, as the MF faults in our work. In a self-

stabilizing environment it is challenging to identify replayed

messages.

3 Protocol specification

3.1 The member views

Every detector in the network system would disseminate its

Heart Beat message to some members in its healthy members

list or suspicious members list initiatively and randomly in

every time interval . A member’s Beat Counter would add

one during every dissemination round. After received this

message, every other detector would record received time

stamp Last time, set suspicious time interval 2 , and wait for

the next coming message. If no new message came from the

member being detected in time Last time + 2 , or the

message itself was not Beat Counter + 1, or the message was

not certificated, it indicates that the detected member may be

faulty.

Bt-GFDP detectors gossip in the group on the dissemination

structure, which is discussed below, and the connectivity of

the group is determined so with high probability all detectors

learn of new gossip within time units.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 625

Every detector would maintain a list id Heal , which

generally includes all correct members in its group. And if a

group member is suspected as failed or faulty, it will be add

into the list of recently suspected members
id Susp , and if

it does not recover in 2 time units, it would be add into the

list of recently removed members id Remd , or it would be

back into id Heal . The member in id Remd is still

considered as potentially connected if it rejoins the system

correctly in and it would be moved into id Susp , or it

would be removed permanently. Any new joiner will be in the

list of recently accepted members id Join for time units,

giving the rest of the active group members a chance to

identify the new addition, and then will be integrated into

id Heal . And all above 4 lists constitute the view of id .

All the lists could be customized by a structure. The list

keeps a Beat Counter and group member IDs. An ID is a

unique member identification with assigned by CA, generally

includes address information, and Beat Counter has the

meaning as a normal detector counter.

Lemma 1. A crashed or BHC member will be removed from

the view of every correct and active member within 3 time

units.

It does not reach agreement on views in Bt-GFDP, therefore

the views can always differ. At steady state the difference

among the views

3.2 Group initialization

With the growth of the network size, the amount of fault

detection messages would grow drastically and the latency

would be unbearable, and the inaccuracy of the system would

be accumulated, which would lead to detection method fails

partially. To solve this, a grouping mechanism is used in this

paper, by which all members are divided into flexible

autonomy groups. And the growth of the network size would

not effect upon problems.

If one node I cannot be integrated into any group, it would

trigger a group initialization process as an initial member. For

different practical achievement, the number of groups denoted

as can be determined by the time consumption based on

the actual network environment and accuracy requirement.

And the optimal number of members in a single group is

denoted as , and we have N

, here N is the

total number of ungrouped system members. And in some high

churn situations, the group size would be smaller than
2

,

then the group would be dismissed, and the remaining active

members in that group would be integrated into other groups

whose members are less than the maximum size 2 , or even

the group initialization process would be triggered to form

another detection system, this is the group separation process,

which would be discussed in section 3.3.

The procedure of the group construction is as follow.

Algorithm 1:

Step 1: As the initial member, I firstly request the CA for

the N ungrouped members and send out

(1) 1N r broadcast detection messages to

ungrouped members. Here r is the broadcast round. And we

can get clearly that the number of broadcast messages is

1N at round 1.

Step 2: Every healthy ungrouped member responds to this

broadcast message, and initial member I sort the responses

based on time, choose 1 members as a group whose

center is the initial member I. Then I is chosen as an agent

member.

Step 3: Choose the member whose response is the latest

from the remaining members which exclude the 1

members in the former step as next initial member. Add 1 to

r then return to step 1 and 2.

Step 4: When total number of remaining nodes is no more

than , then the last agent member would multicast to them

that they could join group freely.

In this algorithm every time the initial node is chosen, then

a new group’s agent member is decided. Whenever there’s any

living message passing, it will be through agent members

between the groups.

Lemma 2. When any healthy member in the system

executes Algorithm 1, the system would be divided into

several groups which cover all healthy members in the system

in finite steps, and the group size would be less than 2 .

3.3 Group separation

The group size cannot be aggregated without limitations.

When the group size grows up to 2 , the process of group

separation would be trigger by the agent member.

The process of group separation is described as follow.

Algorithm 2:

Step 1: As a group whose size is up to the threshold of 2 ,

its agent member I firstly broadcasts a query message to all of

its neighbors. Here we get clearly that the number of broadcast

messages is 2 1 ,

Step 2: Every healthy in-grouped member responds to this

broadcast message, and the original agent member I sort the

responses based on time, choose the first 1 members as a

group whose center is the original agent member I.

Step 3: Choose the member whose response is the latest

from the remaining healthy members which exclude the 1

members in the last step as next agent member. Then gossip

the separation information to them. The separation

information includes the changed agent member and a list of

remaining ungrouped members.

Step 4: When a member gets the separation information, it

would disseminate the message to its old neighbors and then

compare the members list in the separation information with it

local view. If it is in the list, which means it’s not grouped in

626 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Step 3, it would change its agent member and keep the list as

its new. If it is not in the list, it would keep its agent member

and generate a new view by deleting all the members in that

list from its local view.

3.4 The era list

The assumed existence of digital signatures reduces the

ability of Byzantine members to mislead correct members. But

since members may fail and recover, Byzantine members can

replay old signed messages. In a self-stabilizing environment it

is challenging to identify replayed messages.

In order to reduce the ability of Byzantine members to

perform a convincing replay attack, a member needs a

mechanism that produces some randomization to its new

identity when it recovers. To achieve that, a member chooses

periodically a new symbolic number. A new era is the signed

pair (pre_sym, new_sym), where pre_sym is its previous

symbolic number and new_sym is its new symbolic number.

The values of symbolic numbers are random numbers from a a

large enough space, which is much larger than the memory

space of the faulty members, so that the probability that a

member repeats the pair (pre_sym, new_sym) is theoretical

negligible, and the ability of a faulty member to replay such a

pair is even smaller. And such error could be ignored in the

system.

The introduction of a random era is similar to choosing a

random id. Therefore, in our protocols, whenever a member

sends out a signed message it should include its current era.

We assume that members disseminate signed messages, and

members ignore any message that is not signed properly or

does not carry the matching era.

Each member maintains as part of its view the latest era of

each member in the view which described in Section 3.1. A

receiver of a signed message will consider the message current

only if the era matches the last era the receiver knows of. If the

recent era was received less than ago, it can still accept

signed messages containing the previous era value. The

message is current also when the member did not receive the

new era yet, but its latest copy of the era matches the pre_sym

part of the era of the received message. When a member id

updates its era, it will send a special message containing the

new era; this message is disseminated the same as other

messages in the system. If a member jd receives such a

message and jd ’s current era is equal to id ’s pre_sym then

jd updates its view of id ’s era.

4 Experiments

The experimental environment is composed of three

resource sites in China Education and Research Network

(CERNET), including 20 nodes at National Linux Technology

Center (LinuxCenter) and 10 nodes at Network and

Distributed Computing Lab (NetmobiLab) in the School of

Software at Chongqing University (CQU), and 8 PCs (running

Linux 2.6 Kernel) at Modern Service Computing Lab in the

School of Computer Science University of Electronic Science

and Technology of China (UESTC). Every node at

LinuxCenter and NetmobiLab is configured with P4 2.4G

CPU and 512 MB RAM, and the OS running on is Ubuntu 9

with 2.6.20 kernel. Each node at these three sites is

interconnected by 100 Mb Ethernet.

The module was implemented in our development toolkit

and tested in WAN to simulate the random dissemination fault

detection. UDP is used by message dissemination inside the

group and TCP is used between the groups.

First we set a node in NetmobiLab as CA server, and the

CA server never malfunction in our experiments. Then based

on the differences of hardware platforms, we were running 2-

16 independent processes on each node to simulate an

individual entity in the network. And finally an overlay

network with a configurable entities number from 2 to 500

was constructed.

4.1 Experiments on coverage of Bt-GFDP

To testify the availability of Bt-GFDP under different

group size, we created three networks with different sizes.

And we configured all nodes in one network to be in just one

group. The fan-out number was set to 1 and the infected nodes

disseminated messages in every round. The coverage of

infected group members under different configurations was

illustrated in Fig 1. And the group size was denoted in the

figure as 64, 128 and 256 respectively.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

C
o
v
e
r
ag
e
 P
e
r
c
e
nt
a
ge
 (
%
)

Gossip Rounds (R)

N=64

N=128

N=256

Fig 1 Bt-GFDP coverage under different group sizes

From the experimental data, we could see that the

coverage of Bt-GFDP was eventually complete when the

Gossip rounds were large enough, and the coverage ratio

increased dramatically in the midway, but time consummation

increased greatly with the expansion of the system size, as the

gossip process is probabilistic. The result thus reveals that the

larger the network size is, the more time consumption is. And

the correct configuration of group size and fan-out number is

crucial to the coverage ratio and dissemination rounds.

4.2 Experiments on availability of Bt-GFDP

We simulated the Bt-GFDP in a 100-node system, and all

these nodes are in the same group and every node is reachable

to others. In this stage we screened the function of group

separation.

We considered a scenario where BHC attacks resulted in

message loss during propagation. Figure 2 shows the nodes’

stable states during the process of group initialization under

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 627

different scenarios. The fan-out number was 2 and the number

of gossip rounds was 30.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35

Black Hole Nodes Ratio (%)

S
ta

b
le

 N
o

d
es

 R
at

io
 (

%
)

Fig 2 The curve of stable nodes ratio

Fig 2 shows the Stable Nodes Ratio (SNR, which

demonstrate the ratio of nodes who can distinguish BF nodes

from other nodes, means the percentage of nodes that are in a

stale group) along with the Black Hole Nodes Ratio (BHNR,

which also can be directly considered as BF nodes ratio in the

network). We observe that almost all the BF nodes could be

recognized by healthy nodes and the healthy nodes could be in

a stable group when BHNR is less than 10%. And it’s logical

that SNR decrease when BHNR increases. But when BHNR

reaches 35%, only about 20% of nodes could remain stable,

this means that other 45% nodes are not in a stable group

though they are healthy. As too many faulty nodes would

break the balance of group maintenance, groups would easily

be crashed and triggered separation process. And it got almost

the same result during the Bt-GFDP running process other

than initialization process.

This demonstrates that Bt-GFDP function well when BHNR is

less than 15%, only less than 10% healthy nodes are in

unstable state. Moreover, the performance drops dramatically

when BHNR grows larger. So this is another improvement we

should consider in our future work.

4.3 Comparison with other works

In this part we configured a network with 192 members,

and for Bt-GFDP we set 64 . So for Bt-GFDP we could

get 3 group topologies. A message counter iC was set in

every member, whenever the member received a message, the

counter is triggered. When the system reached the coverage

threshold, we could calculate the total system overhead:
192

1

i

i

C C

Moreover, we set the BHNR to 15%, and the faulty

members were randomly generated and they could recover

with certain probability. As actual network would work

differently at different time period of a day, we did 3 separated

experiments under same conditions at different times.

In actual calculation, we firstly calculated the overhead in

a single group and then the total overhead. The comparison of

the experiments is as follows：

Tab 1 Comparison of 3 Algorithms

 D

P

Day1 Day2 Day3 Nig1 Nig2 Nig3 C e

Bt-GFDP

GFDP

Renesse

Flood

1032

820

1228

182

1120

856

1356

168

1074

923

1303

171

996

792

1084

183

984

813

1101

179

964

756

1205

182

1208

826

1212

177

0.04

0.17

0.33

0.48

In the Tab 1, D means different experiment dates, C is

average overhead, e is the false alarm rate. We can see from

the table that the network overhead of Bt-GFDP is 30% higher

than GFDP’s and keeps almost the same as Renesse’s, but the

false alarm rate is dramatically lower than the others.

Comparing with GFDP, the reason for the higher network

overhead is the group information between the members, and

lower false alarm rate is due to its mechanism of Byzantine

tolerance, and that’s important to time prediction in fault

detection. Therefore, the false alarm rate is comparably low in

the daytime. Though the Flood method takes advantage of

message amount, it is not as effective as those two methods

above, especially at some busy hours, the network congestion

and package dropping brought out by this method, it turns out

to be not available. And the reasons why our Bt-GFDP did

comparably well on network traffic controlling are not only

the redundancy avoidance policy but also the effect of group

division.

5 Conclusions

To meet the requirements of large-scale, high-churn,

nodes’ Byzantine faults, and uncertainty latency of message

dissemination, Bt-GFDP is proposed in this paper. The

simulation experiments show that: Bt-GFDP could effectively

control the redundant network messages, and it is better at

time consumption, and it can offer more precise false alarm. In

our future research, we would like to construct more

configurable detection group and compatible malicious

members which fakes messages. And the role of CA should be

weaken and the detection should be accomplished by the

cooperation of healthy members. Moreover, the mechanism of

fan-out number and group size configuration should be further

studied in the future.

6 References

[1] D. Patterson. “Recovery oriented computing”, Presented

at Princeton University.

http://roc.cs.berkeley.edu/talks/UIUC.ppt, 2002

628 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

http://roc.cs.berkeley.edu/talks/UIUC.ppt

[2] T. D. Chandra, S. Toueg. Unreliable failure detectors for

reliable distributed systems. Journal of the ACM, 43(2) :

225-267, March 1996

[3] J. Yin, J. P. Martin, A. Venkataramani, L. Alvisi, and M.

Dahlin. Separating agreement from execution for

byzantine fault tolerant services. In Proc. SOSP, October

2003

[4] M Yamanouchi, S Matsuura, H Sunahara. “A fault

detection system for large scale sensor networks

considering reliability of sensor data”, Proc of the Ninth

Annual International Symposium on Applications and

Internet (SAINT’09), 255-258, 2009

[5] H M Lee, D S Park, M Hong, et al. “A Resource

Management System for Fault Tolerance in Grid

Computing”, Proc of International Conference on

Computational Science and Engineering (CSE’09), 609-

614, Feb. 2009.

[6] M Chtepen, F Claeys, B Dhoedt, et al. “Adaptive Task

Checkpointing and Replication: Toward Efficient Fault-

Tolerant Grids”, IEEE Transactions on Parallel and

Distributed Systems., Vol.20, Issue No.2, 180-190, 2009

[7] P Stelling, I Foster, et al. “A fault detection service for

wide area distributed computations”, Proc of The Seventh

International Symposium on High Performance

Distributed Computing, 268-278, Jul. 1998

[8] A Jain, R K Shyamasundar. “Failure detection and

membership in grid environments”, Proc of the 5th

IEEE/ACM Int’l Workshop on Grid Computing

(GRID’04). Los Alamitos, CA: IEEE Computer Society

Press, 44-52, 2004.

[9] S Hwang, C Kesselmanl . “A flexible framework for fault

tolerance in the grid”, Journal of Grid Computing, Vol.1,

Issue No.3, 251-272, 2003

[10] Dong Tian, Shuyu Chen, Feng Chen. “A Dynamic Fault

Detection Algorithm under Grid Environments”, Journal

of Computer Research and Development, Vol.43, Issue

NO.11, 1870-1875, 2006 (in Chinese).

[11] T D Chandra, S Toueg. “Unreliable failure detectors for

reliable distributed systems”, Journal of ACM, Vol.43,

Issue2, 225-267, 1996

[12] W Chen, S Toueg, M K Aguilera1. “On the quality of

service of failure detectors”, IEEE Trans on Computers,

Vol.51, Issue No.2, 13-32. 2002.

[13] Guanghui Chang, Huawei Lu, Shuyu Chen, Ishiang Shih.

“Grouping Fault Detection Protocol under Dynamic

Network Environments”, PDPTA (2010)

[14] N Hayashibara, X Défago, R Yared, et al. “The

accrual failure detector”, Proc of the 23rd IEEE Int’l

Symp on Reliable Distributed Systems (SRDS’04). Los

Alamitos, CA:IEEE Computer Society Press. 66-78, 2004.

[15] R Renesse, Y Minsky, M Hayden. “A gossip-style failure

detection service”, Proc of International Conference of

Distributed Systems Platforms and Open Distributed

Processing (IFIP), 2000.

[16] Chaoshu Zuo, Xinsong Liu, Yuanjie Qiu, et al. “A Node

Fault Detection Algorithm in Distributed Parallel Server”, Journal

of University of Electronic Science and Technology of

China, Vol.36, Issue No.1, 119-122, 2007 (in Chinese).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 629

630 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

SESSION

PARALLEL COMPUTING IN CLUSTERS:
OPTIMIZATION AND PARALLELIZATION OF

SEQUENTIAL APPLICATIONS

Chair(s)

Prof. Fernando G. Tinetti

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 631

632 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Scalability Analysis of a Parallel Dynamic Data Driven Genetic
Algorithm for Forest Fire Spread Prediction∗

Mónica Denham1, Ana Cortés2, Tomás Margalef2
1Universidad Nacional de Río Negro, Sede Andina, Ingeniería Electrónica.

San Carlos de Bariloche, Río Negro, Argentina.
2Departament d’Arquitectura de Computadors i Sistemes Operatius, Universitat Autònoma de Barcelona,

08193 - Bellaterra (Barcelona) Spain

Abstract— This work presents a performance study of a
Parallel Dynamic Data Driven Genetic Algorithm (Parallel
DDDGA) for Forest Fire Prediction. The main objective is
to obtain a trade off between prediction quality and the
time incurred in that prediction. For this purpose, High
Performance Computing is applied to exploit the parallel
features of the proposed parallel DDDGA. A framework was
developed, including a data driven method where suitable
data is injected and Genetic Algorithm convergence is ac-
celerated. Through this work, application time reduction and
application scalability is studied.

Keywords: Parallel programming, Efficiency evaluation, High
Performance Computing, Workload balance, Forest Fire Prediction

1. Introduction
Several times, forest fire predictions are not precise as we

would like, due to many uncertainly sources: fire behavior
models, landscape representation, hardware and software
restrictions, imprecise input parameter values, etc, [1] [2]
[3] [4].

Not only wildland fire environment (topography, weather
conditions, fuel features) influences fire spread, but also the
fire itself resulting in a very complex fire behavior pattern.

Nowadays, simulation techniques are used to predict forest
fire behavior. A classical prediction schemes uses a given
forest fire behavior simulator feeding it with the “available”
input parameter values generating a forest fire spread evolu-
tion.

The main problem when applying this classical prediction
method is the low quality of the prediction results. Some
reasons of such a misleading results are the inaccurate
use of the underlying simulators, a poorly interpretation
of the results, incomplete or inexpert simulator operation,
etc. Furthermore, applications for forest fire simulation are
themselves no exempt of inaccuracy (they are implementing
a complex phenomenon, resulting in complex mathematical
and physical formulation, and finally, a complex computer
code). In addition, geographical information complexity,

*This research has been supported by the MICINN-Spain under contract
TIN2007-64974

which is modeled by maps, those which are considered as
“true information”, can also include some limitations [3].

Simulator input data is another uncertainty source ([1]).
There are certain parameters that cannot be measured di-
rectly, so, they are estimated from indirect measurement
techniques. Other parameters can be measured in certain
particular points but the value of such parameters must then
be interpolated to the whole terrain. Additionally, maps used
for describing topography, fuel, moistures, etc. are divided
in cells and values into a cell are constant (usually they are
the predominant value for the characteristic, in other cases,
it is the averaged value). Furthermore, this maps are updated
in certain time recurrence, so it is easy to use neither space
nor time actual values.

Another important error source is the nature of input pa-
rameter values. Some parameter values are constant through
fire life, such as terrain features, but another parameter
values are dynamic and their values change through time
(wind direction and velocity, fuel moisture, etc.). So it is
very difficult to have the actual value for these parameters
through space and time [4].

Identifying main forest fire prediction uncertaintly
sources, a new method is proposed, where input parameter
values are pre-searched and improved, obtaining more accu-
racy simulations. A Parallel Data Driven Genetic Algorithm
is proposed and developed.

Furthermore, response time is crucial through current
work field: a fire progress prediction is really useful when
it is available in a very short period of time. Thus, response
time requirements forces us to obtain a high performance
method to predict forest fire behavior.

Predictions quality improvement when proposed method
is applied is study through [5] and [6]. In this work, parallel
method main characteristics are introduced, and then, a
method scalability study is reported.

2. Parallel Data Driven Genetic Algo-
rithm

The proposed framework consists on two stages: Calibra-
tion Stage and Prediction Stage (depicted in figure 1). Three
instants of time are required for obtaining the final predic-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 633

tion: Calibration Stage performs simulations from instant ti
to ti+1 and then, prediction is executed from instant ti+1 to
ti+2.

During Calibration Stage, all possible combination of
forest fire simulator inputs are considered (simulator fireLib
was used as simulation engine [7] [8] [9]). Input parameter
combinations are selected by a Genetic Algorithm [1] [10],
which selects the best combinations for simulator input
parameters through its iterative generations. Then, a feed-
back process is executed, where simulations are compared
against real fire progress. This comparison allows Genetic
Algorithm to evaluate input parameter fitness and improve
its characteristics (by genetic operators: selection, elitism,
crossover and mutation).

Forest fire simulator fireLib uses a cellular automaton
model in order to represent fire progress over the land. Real
fire line is available and represented by a map of cells (this
real fire line holds fire state for time ti+1, necessary for
this two stages prediction method). Our Genetic Algorithm
fitness function (called error function) is based on a cell by
cell comparison of simulated map cells and real fire line map
cells. Thus, error function determines differences between
real fire line and simulated fire line. Genetic Algorithm
intents to minimize this error function.

Once Calibration Stage is performed, the best individual
(input parameter combination) obtained is used through
Prediction Stage, in order to produce the final predicted
propagation.

Figure 1 shows the proposed methodology, where RF and
SF mean Real Fire and Simulated Fire respectively.

Figure 1: Two stages method for forest fire propagation
prediction.

Due to proposed method requirements, real fire progress
is available for instant ti+1. Then, this real fire map is
analyzed in order to obtain useful fire progress information,
which is used for steering Genetic Algorithm execution.
Thus, fire line is analyzed and main fire line characteristics
are obtained: fire velocity, fire spread main direction and
distance covered by fire progress.

Slope inclination and aspect are non dynamic input pa-
rameters. Neither of them alter its characteristics through
wild fire life. Moreover, current massively geographical

information availability allow us to consider slope and aspect
as fixed and known input parameters values through our
application.

Then, real fire line direction and velocity are known, as
well as slope main characteristics.

In wild fires field it is well known that wind and slope
features combination determines fire progress, which is
mainly characterized by fire spread direction and maximum
spread velocity.

Then, having fire and slope main characteristics our
Dynamic Data Driven Algorithm calculates wind features
to achieve fire progress similar to studied one. It means, the
method finds the specific wind necessary to achieve real fire
progress in a known slope and aspect conditions. Then, ideal
wind direction and speed are obtained, and these wind values
are injected during Genetic Algorithm execution.

Thus, taking into account the calculated wind values, two
steering methods were proposed: Computational Method and
Analytical Method. Analysis and tests of their efficiency are
out of the scope of this paper and are widely studied in [5]
[6]. The goodness of these methods in terms of prediction
quality compared to the classical prediction scheme has been
also demonstrated.

The goal of this work is to expose performance and
scalability analysis of the application. Next section will
depict parallel method main features. Then, execution time
and application scalability will be analyzed too.

3. Parallel Dynamic Data Driven Genetic
Algorithm

As it is well known, Genetic Algorithms works in an
iterative way over a population of individuals. As we had
mentioned, through our application each individual consists
of a combination of simulator input parameter values.

The initial population (typically generated in a random
way) is evolved: Genetic Algorithm applies selection,
elitism, crossover and mutation operators to provide a new
population that minimizes/maximizes a fitness function.
This process is repeated a certain number of times or until
the optimum solutions have been reached.

For the case of forest fire spread prediction, the search
space of a Genetic Algorithm consists of all possible
combinations of the set of input parameters of the
underlying simulator. In our particular case of forest
fire spread simulation, the elements of the search space
(individuals) are all independents, it means, there does not
exist relationships or dependences between them. Then,
neither time nor order in which simulations are performed
are relevant.

Different application task times were evaluated using the
monitoring tool MPE Open Graphics ([11]). This study
shows us that fire spread simulations are the processes with
most CPU time requirements from the whole prediction

634 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

scheme.
Figure 2 is one of the MPE graphic obtained, focused on

a specific interest zone: fire progress simulation, simulated
map analysis and fitness calculation. During this execution,
just one process performs all these tasks. As figure legends
depict, smooth gray zones are fire progress simulation,
while simulated map analysis and fitness (error function)
calculation are vertical dark lines. Map analysis and fitness
operation are short enough to appear just as a vertical line
through application execution pattern. Then, it is straight
forward that fire spread simulation is the task with most
execution time requirements. Moreover, during Genetic
Algorithm progress several simulations are executed.

Figure 2: Application time requirements.

Taking into account these characteristics (response time
limits, non simulation dependences and simulation time re-
quirements) master/worker programming paradigm was used
for parallelized purposes. In the proposed master/worker
scheme, the master process performs Genetic Algorithm op-
erations and distributes population individuals among worker
processes. Each time a worker process receives an individual,
it performs the fire progress simulation and calculates the
error function for the individual. Figure 3 illustrates the
implemented parallel master/worker application.

Figure 3: Master and worker processes.

Due to master/worker communication pattern, all individ-
ual transmissions have as either source or destination the
master process, therefore, the master process communication
service can become an application bottleneck.

In order to avoid this potential problem, individuals are
distributed by groups (chunks) instead of individual trans-
missions. When a worker finalizes the evaluation of a spe-
cific chunk, this worker process returns the evaluated chunk
to the master process. Then, master process sends another
non evaluated chunk to it until all chunks are evaluated.

As we had mentioned, due to our application character-
istics, workload is performed by the distribution of chunks
of individuals. In this way, worker processes perform the
fire spread simulation over all cells of the terrain. Moreover,
worker processes have real map at instant time ti+1 in order
to perform error function by the maps comparison.

Next section will show experimental results. Several tests
were executed, and the evaluation of different method fea-
tures was obtained. Next sections will show a group of
representative tests and a brief analysis of each one will
be given.

4. Experimental Results
The experimentation conducted in this section has been

oriented to study two aspects of the parallel DDDGA: the
convergence of the method and its scalability.

4.1 Convergence Analysis
The convergence analysis of the Genetic Algorithm has

been performed by comparing the plain Genetic Algorithm
strategy where no steering strategy is applied against the
guided Genetic Algorithm where the above mentioned steer-
ing strategies (Computational and Analytical) are applied.

This case was performed using a synthetic map, which
lasts 14 minutes, divided in 6 time steps of 2 minutes each
of them. Map dimensions are 110 x 110m2, divided by 1m2

cells. 400 individuals populations were used. Figure 4 shows
different method convergences when Genetic Algorithm
evolves 10 times the population.

Figure 4 depicts Computational Method convergence. It
is straight to see that Computational Method achieves good
individual values through its first iterations. More iterations
are needed for other Genetic Algorithm configurations in or-
der to achieve high quality simulations. Then, when Genetic
Algorithm denotes a faster convergence, less iterations are
necessary to achieve good results. In this way, all method
response time is reduced, while good quality simulation
remains kept.

Several cases had shown the same behavior, so this char-
acteristic can give us the idea of “stability” when Genetic
Algorithm is guided toward correct results.

Next figure (figure 5) shows response time analysis.
Population sizes and genetic algorithm iterations were fixed
while number of processor were varied: 1, 2 and 4 processors
were used for current experiment (next subsection will depict
more detailed test, where a large cluster was used).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 635

Figure 4: Steering Method convergences through 10 genetic
algorithm evolutions.

Figure 5: Application scalability for 1, 2 and 4 processors.

As figure 5 shows, execution time decreases when number
of computational resources increases. Different proposed
methods show similar behavior, then, application scalability
is suitable when few processors are used; certainly, this test
may correspond to a real use of our application: final user
can be a fire department or some governmental department,
where computational resources can be few interconnected
nodes.

For all tests, used cluster has a queue system that guar-
antee that when a task is assigned to be executed, this task
obtains needed cluster resources in an exclusive form. Thus,
a correct time analysis is possible.

4.2 Scalability Study
In this test a real case of a prescribed burning was used.

Fire line grows in a wide line, and it lasts 14 minutes.
Populations with 512 individuals were used for each test
(excepting the last test, where population of 527 individual

were used). Genetic Algorithm was 5 times evolved in
each case. In order to increase execution requirements, time
step lasts from minute 2 to minute 10, provoking larger
simulations.

Execution time is analyzed when 1, 2, 4, 8, 16, and
31 workers were used (32 nodes’s cluster). Computational
Method times and non guiding times are compared. Number
of workers is varied in horizontal axis and execution time is
presented through vertical axis of figure 6. Last test uses 31
workers in order to avoid concurrent processes at the same
node (that means the master and a worker running at the
same node).

Figure 6 shows master and workers execution and commu-
nication times. Worker times are the average of the different
worker times (except when just 1 worker is used).

Execution times had demonstrated that the application
is scalable when the number of processors increases. In
addition, Computational and non guiding methods had very
similar behavior, then we conclude that proposed steering
method does not add extra execution time. Computational
Method time requirements are not significant.

Furthermore, communication time is very low for all
cases, the use of a big number of worker processes does
not increase communication time. Then, application perfor-
mance was not penalized by communication. In addition,
having low communication times implies that load balance
is achieved, workers do not spend time waiting for receiving
new chunks (group of population individuals).

5. Conclusions
A Parallel Dynamic Data Driven Genetic Algorithm was

developed and aspects as communications, load balance,
scalability, etc, were carefully studied.

The master/worker programming paradigm has been used
to implement the parallel DDDGA for forest fire spread
prediction. The application tasks time requirements were
studied, concluding that the specific Genetic Algorithm
operators like selection, crossover and mutation have not
significant time impact in the whole prediction process.

Forest fire simulations have arisen as the most significant
task in terms of time requirements. Furthermore, taking into
account that the genetic algorithm runs a considerable num-
ber of simulations, to reduce the time incurred in executing
all these simulations is one of the main objectives to tackle.
For this reason, fire progress simulation and evaluation were
chosen as the set of tasks to be distributed through all
available worker processes.

Due to master/worker communication pattern, genetic
individual transmissions could became an application bot-
tleneck. In order to avoid communication bottleneck perfor-
mance penalties, Genetic Algorithm individuals were divided
into chunks and these chunks were dealt through worker
processes.

Taking in mind that each simulation has its own time

636 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Figure 6: Application scalability for 1, 2, 4, 16 and 31 processors.

requirements (it depends on fire progress, distance and
velocity), chunks were distributed on demand, that means:
when a worker ends the evaluation of a chunk, master
process sends a non evaluated chunk to this worker (until
all chunks are evaluated).

The analysis of worker process times and total application
response time, allow us conclude that correct load balance
was achieved.

On the other hand, Computational and Analytical Methods
accelerate Genetic Algorithm convergence. Using real fire
progress knowledge, Genetic Algorithm is guided forward
good individuals. Then, few Genetic Algorithm iterations
are enough to achieve good results. In this way, iterations
can be reduced in order to accelerate prediction process
(decreasing application response time). Finally, the parallel
DDDGA scalability was tested providing satisfactory results.

References
[1] B. Abdalhaq, A. Cortés, T. Margalef, and E. Luque, “Enhancing

wildland fire prediction on cluster systems applying evolutionary
optimization techniques,” Future Gener. Comput. Syst., vol. 21, no. 1,
pp. 61–67, 2005.

[2] B. Abdalhaq, “A methodology to enhance the prediction of forest fire
propagation,” Ph.D. dissertation, Universitat Autònoma de Barcelona,
June 2004.

[3] D. Caballero, “Taxicab geometry: some problems and solutions
for square grid-based fire spread simulation,” in V International
Conference on Forest Fire Research, D. Viegas, Ed., 2006. [Online].
Available: http://www.gnomusy.com/Presentations/Taxicabhtm

[4] G. Bianchini, “Wildland fire prediction based on statistical analysis
of multple solutions,” Ph.D. dissertation, Universitat Autònoma de
Barcelona, July 2006.

[5] M. Denham, A. Cortés, T. Margalef, and E. Luque, “Applying a
dynamic data driven genetic algorithm to improve forest fire spread
prediction,” in International Conference in Computational Science
ICCS 2008, ser. Lecture Notes in Computer Science, M. Bubak, G. van
Albada, J. Dongarra, and P. Sloot, Eds. Springer Berlin Heidelberg,
2008, vol. 5103, pp. 36–45.

[6] M. Denham, A. Cortés, and T. Margalef, “Computational steering
strategy to calibrate input variables in a dynamic data driven genetic
algorithm for forest fire spread prediction,” in International Confer-
ence in Computational Science ICCS 2009, ser. Lecture Notes in
Computer Science, G. Allen, J. Nabrzyski, E. Seidel, G. van Albada,
J. Dongarra, and P. Sloot, Eds. Springer Berlin Heidelberg, 2009,
vol. 5545, pp. 479–488.

[7] C. D. Bevins, FireLib User Manual and Tech-
nical Reference, October 1996. [Online]. Available:
http://www.fire.org/downloads/fireLib/1.0.4/doc.html

[8] Systems for environmental management. public domain software for
the wildland fire community. [Online]. Available: http://www.fire.org

[9] R. C. Rothermel, “How to predict the spread and intensity of forest
and range,” Ogden, Utah, Dpto. de Agricultura de Estados Unidos,
Servicio Forestal, Intermountain Forest and Range Experiment Sta-
tion., Tech. Rep. INT-143, 1983.

[10] J. R. Koza, Genetic Programming. On the programming of computers
by means of natural selection. The MIT Press, 1992, massachusetts
Institute of Technology. Cambridge, Massachusetts 02142.

[11] Mpe open graphics. [Online]. Available: http://www-
unix.mcs.anl.gov/mpi/www/www4/MPE_Open_graphics.html

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 637

Combining Scalability and Efficiency for SPMD Applications on
Multicore Clusters*

Ronal Muresano, Dolores Rexachs and Emilio Luque
Computer Architecture and Operating System Department (CAOS)

Universitat Autònoma de Barcelona, Barcelona, SPAIN
rmuresano@caos.uab.es, dolores.rexachs@uab.es, emilio.luque@uab.es

Abstract— A huge challenge that parallel computing wants
to overcome is to improve the performance of many MPI
applications. However, some of these applications do not
scale when the problem size is fixed and the number of core
is increased. This scalability problem is increased when is
used a hierarchical communications architecture how is in-
cluded on multicore clusters. Therefore, this work presents a
novel method developed for SPMD (Single Program Multiple
Data) applications, which is based on finding the maximum
strong scalability point while the efficiency is maintained
over a defined threshold. This method integrates four phases:
a characterization, a tiles distribution model, a mapping
strategy, and a scheduling policy. Also, this method is
focused on SPMD applications designed to use MPI libraries
with high communication volumes. Our methodology has
been tested with different SPMD scientific applications and
we observed that the maximum speedup and scalability were
located close to the values calculated with our model.

Keywords: multicore, SPMD, Performance, Scalability

1. Introduction
Nowadays, the scientific applications are developed with

more complexity and accuracy and these precisions need
high computational resources to be executed faster and
efficiently. Also, the current trend in high performance
computing (HPC) is to find clusters composed of multicore
nodes as can be evidenced in the top500 list (rank of
the parallel machines used for HPC). The integration of
these nodes in HPC has allowed the inclusion of more
parallelism within nodes. However, this parallelism must
deal with some problems such as: number of cores per
chip, shared cache, bus interconnection, memory bandwidth,
etc.[1]. These issues are becoming more important in order
to manage the application scalability and efficiency.

Also, the hierarchical communication architecture inte-
grated on multicore clusters creates an heterogeneous en-
vironment, which affects some performance metrics such
as efficiency, speedup and applications’ scalability due to

* This research has been supported by the MEC-MICINN Spain under
contract TIN2007-64974

*Contact Autor: R. Muresano, rmuresano@caos.uab.es
†This paper is addressed to the PDPTA conference.

the different speeds and bandwidths of each communication
paths(Fig. 1), which may cause degradations in the applica-
tion performance [2].

Despite of these communication issues and in order to
benefit from such computational multicore cluster capacities,
we focused on improving the performance application in
these environments. This work is focused on calculating
the maximum number of cores that maintain the strong
application scalability while the efficiency is over a defined
threshold. The objective of strong scalability is to maintain
the problem size constant while the number of processors
increases [3].

To obtain this goal, we have to consider the parallel
programming paradigm, which the application has been
designed, e.g., a master/worker, pipeline, SPMD, etc. Each
of these paradigms has different communication patterns,
which can affect the applications performance. In this sense,
we consider the parallel applications designed using message
passing interface (MPI) for communication and SPMD as a
parallel paradigm. The SPMD paradigm was selected due
to its behavior which is to execute the same program in
all processes but with a different set of tiles. These tiles
have to exchange their information in each iteration and
these can become in a huge issue when we use a multicore
environment.

The figure 1 shows an SPMD application execution over
a multicore cluster. The tiles are computed in a similar
time due to the homogeneity of the core. However, the
communications are performed by different links with the
objective of maintaining the communication pattern and each
pathscan include up to one and a half order of magnitude
of difference in latency for the same communication vol-
ume. These differences are translated into inefficiency that
decreases the performance and do not allow us to obtain a
linear strong scalability.

To solve these inefficiencies, we have developed a method
that manages the communication latencies using some char-
acteristics of each SPMD application (e.g. computation and
communication tile ratio) and allows us to determine a
relationship between scalability and efficiency. To achieve
this performance relationship, our methodology is organized
in four phases: characterization, tiles distribution model,
mapping strategy, and scheduling policy, which allow us to

638 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 1: Issues of SPMD applications on a multicore cluster.

distribute the tile inside the environment.
In this sense, this methodology classifies the SPMD tiles

in groups, called Supertile (ST), assigning each one of them
to one core. The tiles of these ST belong to one of two types:
internal tiles which their communications are made in the
same core and edge tiles, where their communications are
performed with tiles allocated in other cores. This division
allows us to apply an overlapping method, which permits us
to execute the internal tiles while the edge communications
are communicating. This division allows our method to find
the ideal number of core that permits us to achieve the
maximum strong scalability with a defined efficiency.

This paper is structured as follows: the related works are
described in section 2. Section 3 exposes the issues of SPMD
applications on a multicore architecture. A description of the
methodology is presented in section 4. Section 5 describes
the efficiency and scalability for SPMD application. Next,
section 6 illustrates the performance evaluation. Finally,
conclusions are given in section 7.

2. Related Works
There are different works developing methodologies

which are focused on improving some performance metrics
on multicore enviroments. Mercier et al [4] have designed
a method to efficiently place MPI processes on multicore
machines where establish an adequate placement policy to
improve applications efficiency. However, this work does not
include the combination of scalability that is very important
when we wish to execute faster and efficiently.

On the other hand, Liebrock [5] defines a methodology
for deriving a performance model for SPMD hybrid parallel
applications. This work was focused on improving three
specifics performance: adaptability, scalability and fidelity
using mapping, scheduling and synchronization overhead
strategies designed for hybrid message passing and distribute

memory applications. On the contrary, our work evaluates
pure MPI applications and similarly, we develop a method-
ology centered on mapping and scheduling strategies, and
also, we include an efficient execution.

Moreover, there are works centered on studing and im-
proving the efficiency [6] or enhancing the speedup on
multicore clusters [7] separately. In contrast, we developed
a methodology centering on mapping and scheduling strate-
gies, and we search an improvement in both speedup and
efficiency performance metrics on these clusters [8]. In this
previous work, we have developed the methodology phases
using the characterization, mapping and scheduling strate-
gyes. However, these phase only permit us to find the number
of tiles that let us to obtain the maximum speedup of the
SPMD aplication defining a desired efficiency. However, this
current work searches for a combination of strong scalability
and efficiency, in which we can predict the number of core
that maintain the relationship between both metrics.

We are focused on using mapping and scheduling strate-
gies top achieve our objective, In this sense, some works
have developed mapping strategy for SPMD applications,
which are centered on improving the application efficiency
[7]. Another technique was designed by Brehm et al [9],
in which the main objective was to map the application
using the characteristics of the applications. Similarly, our
proposed mapping maintains the efficiency using the char-
acteristics of the machine and the application, but we add
an affinity process that allows us to minimize the commu-
nication effect of the multicore environment.

Also, there are some scheduling strategies for SPMD
applications [10] [11] that are based on finding the minimum
execution time, which is part of our objective. Nevertheless,
we analyzed and evaluated the model defined by Panshen-
skov et al [12] and we chose some characteristics such as:
tiles are divided into blocks, asynchronous communications,
computation and communication overlapping, with the aim
of minimizing the communications overhead and improving
the efficiency of the SPMD application.

3. SPMD applications on multicore
In this study, the SPMD applications used have to ac-

complish the following characteristics: static, where parallel
application defines the communication process and is main-
tained during all the execution, local, where applications do
not have collective communications, 2D grid applications,
and regular, because communications are repeated for several
iterations. In this sense, there are some benchmark that use
these characteristic: one of them is NAS parallel benchmarks
in the CG, BT algorithms [13] and also there are real appli-
cations such as: heat transfer simulation, Laplace equation,
applications focus on fluid dynamics field like mpbl suite
[14], application of finite differences etc.

Also, the communication pattern can vary according to the
objective of the SPMD application. However,these patterns

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 639

Fig. 2: SPMD application on multicore cluster.

are defined in the beginning of the application and are kept
until the application end. The figure 2 shows an example
of SPMD applications and multicore clusters, in which is
illustrated the idle time generated by slower communication
links, (e.g. cores 5-8 communicating from node 1 with core
1-4 of node 2 through the inter-node link). These Internode
communications have the bigger delay that can generate
huge influences in the efficiency and scalability.

However, these idle times allows us to establish strategies
in order to organize how SPMD tiles could be distributed on
multicore cluster with the aim of managing these communi-
cations inefficiency. These communication links can vary the
communication time in an one and a half order of magnitude
according to the path which perform the communication.
These variations are a limiting factor to improve application
performance, due to the latency of the slower link, which
determines when an iteration has been completed (Fig. 2).
These inefficiencies have to managed if we wish to executed
the SPMD application faster, efficient and scalable.

To manage this communication issues, we use the problem
size of the SPMD applications that is composed by a number
of tiles and we create the SuperTile (ST). The problem of
finding the optimal ST size is formulated as an analytical
problem, in which the ratio between computation and com-
munication of the tile has to be founded with the objective
of searching the relationship between strong scalability and
efficiency. The ST is calculated maintaining the focus of

Fig. 3: SuperTile (ST) creation for improving the efficiency.

Fig. 4: Phases for efficient execution of SPMD appl.

obtaining the maximum strong scalability point while the
efficiency is maintained over a defined threshold.

The figure 3 shows an example of the overlapping process
and the ST creation. This ST is a group of tiles of the
global problem size which is defined by MxM . In this
sense, this ST is integrated of a set of KxK Tiles, where
K is the square root of the number of tiles, which have to
be assigned to each core with the aim of maintaining an
ideal relationship between efficiency, strong scalability and
speedup. As mentioned before, the ST is composed by two
type of tile internal and edge tile. This is done with the
objective of creating an overlapping strategy that minimize
the communication effects in the parallel execution time.

4. Methodology definition
This methodology is focused on managing the different

communication latencies and bandwiths presents on multi-
core clusters with the objective of improving both efficiency
and application scalability. This process is realized through
four phases: a characterization, a tile distribution model, a
mapping strategy and a scheduling policy (Fig. 4). These
phase allow us to handle the latencies and the imbalances
created due to the different communication paths.

Thus, our methodology realizes an application and envi-
ronment analysis in the characterization phase with the aim
of obtaining the application parameters and the computation
and communication ratio which will be used to calculate the
number of tile of the ST and the ideal number of cores.
The next step is to calculate the tiles distribution which
determines the number of tiles that have to be assigned
to each core in order to achieve our objective, and also
we calculate the number of core necessary to maintain
both strong scalability and efficiency conditions. Next, the
mapping phase allocates the set of tiles (ST) among the
cores which are calculated with the model defined in the
tile distribution phase. Finally, the scheduling phase has two
functions, one of them is to assign tile priorities and the other
is to control the overlapping process. Once the methodology
is applied, we evaluate the performance results obtained.

4.1 Characterization phase
The objective of this phase is to gather the necessary

parameters of SPMD applications and environment. This
characterization parameters are classified in three groups: the
application parameters, parallel environment characteristics
and the defined efficiency. All these parameters give us the
nearest relationship between the machine and the applica-
tion.

640 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

The application parameters offer the information neces-
sary of the application characteristics such as: problem size,
number of tile, iteration number, communication volume and
computation time of a tile, etc. Also, these parameters allow
us to determine the communication pattern of a tile and
determine the distribution schemes of the SPMD application.

The parallel environment parameters enable us to deter-
mine the communication and computational time of a tile
inside the hierarchical communication architecture. These
values of a tile obtained allow us to calculate a ratio
between them. This ratio will be defined as λ(p)(w), where
p determine the pathswhere a tile has to communicate with
neighboring tile, e.g. through A, B, or C link (Fig. 1). The
variable w describes the direction of the communication e.g.
up, right, left or down in a four communications pattern.
This ratio is calculated with equation 1, where Comt(p)(w)

determines the time of communicating a tile for a p pathsand
the Cpt is the computing time of a tile.

λ(p)(w) = Comt(p)(w)/Cpt (1)

Finally, once all parameters are found through the char-
acterization phase, we include the efficiency value in the
model and evaluate the execution time. The efficiency value
is defined by the variable effic and this will be included in
the model.

4.2 Tile distribution model phase
The main objective of this model is to determine the

number of cores Ncores that allow us to maintain the
relationship between the maximum strong scalability and
the desired efficiency. In this sense, equation 2 calculates
the number of core. This equation depends on the problem
size which is represented by the M2 divided by the optimal
number of tile K2 (Equ. 2).

Ncores = M2/K2 (2)

Knowing the value of K, we can estimate the execution
time of the SPMD application. For example, the equation
3 represents the behavior of SPMD application using the
overlapping strategy, where first is calculated the edge tile
computation (EdgeCompi) and then is added with the max-
imum value between internal tile computation (IntCompi)
and edge tile communication (Edgecommi). This process
will be repeated for a set of iterations (iter) where n deter-
mine the number of an iteration. This process is carried out
for the communication exchanging of the SPMD application
and can be possible to calculate due to the deterministic
behavior of these applications.

Texi =
∑iter
n=1(EdgComp(i) +Max

{
IntComp(i)

Edgcomm(i)
(3)

EdgeComp(i) = 4 ∗ (K − 1) ∗ Cpt (4)

IntComp(i) = (K − 2)2 ∗ Cpt (5)

Edgecomm(i) = K ∗Max(Comt(p)(w)) (6)

The edge communication (Equ.6) has to be for the worst
communication case. This means that we use the slowest
communication time to estimate the number of tiles neces-
sary for maintaining the efficiency. To do this, we have to
calculate the λ(p)(w) ratio (Equ 1) explained before.

Then, the first step is to determine the ideal value of K.
We start from the overlapping strategy, where internal tile
computation (IntComp(i)) and the edge tile communication
(Edgecomm(i)) are overlapped. The equation 7 represents
the ideal overlapping that allow us to obtain the maximum
speedup while the efficiency effic is maintained over a
defined threshold. Therefore, we start from an initial con-
dition where the edge communication time is bigger than
the internal computation time divided by the efficiency. This
division represents the maximum inefficiency allowed.

K ∗Max(Commt(p)(w)) >= ((K − 2)2 ∗ Cpt)/effic
(7)

However, this equation 7 has to consider a constraint
defined in equation 8 where Edgecomm(i) can be bigger
than IntComp(i) over the defined efficiency (Equ. 7), but
the Edgcomm(i) have to be slower than the IntComp(i)

without any efficiency definition.
To calculate the optimal value of K, we determine the

λ(p)(w) (Equ. 1) value and we solve the Commt value,
which can be calculated with respect to λ(p)(w) multiplied by
computational time Cpt of a tile. This process is performed
to equalize both internal computation and edge communica-
tion equations in function of Cpt. This value is replaced in
equation 7 and we obtain the equation 9.

K ∗Max(Commt(p)(w)) <= ((K − 2)2 ∗ Cpt) (8)

To find the value of K, we equal the equation 9 to zero
and we obtain a quadratic equation (Equ. 10). These two
solutions obtained have to be replaced in equations 7 and
8, with the aim of validating if the k value accomplish the
constraint defined.

effic ∗K ∗ Cpt ∗Max(λ(p)(w)) = (K − 2)2 ∗ Cpt
(9)

K2 − (4 + effic ∗max(λ(p)(w)) ∗K + 4 = 0 (10)

The next step is to calculate the number ideal of core
(Equ. 2), which are needs to find the strong scalability with
the desired efficiency. To do this, we start of the initial
consideration that establish that one ST will be assigned to
each core and we use the equation 2, that calculate the ideal
number of core that allow us to obtain the objective stated.
This number of core determines the inflection point until the
application has a strong scalability. Finally, we can determine

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 641

the theoretical behavior of the SPMD application for a lower
number of cores that the optimal calculated and predict its
behavior. Equation 11 calculates the new values of K for a
number of core given with the objective of determining the
execution time with equation 3.

K =
√
M2/Ncores (11)

4.3 Mapping strategy phase
A set of difficulties arise when we allocate SPMD tile into

distinct cores and these cores have to communicate through
different links. Under this focus, the main objective of this
phase is to design a strategy of allocating the ST into each
core with the aim of minimizing the communication effects.
The ST assignations are made applying a core affinity which
allows us to allocate the set of tiles according to the policy
of minimizing the communications latencies [4]. This core
affinity permits us to identify where the processes have to
be allocated and how the ST can be assigned to each core.

The next step in this phase is to create a logical processes
distribution that allows the application to identify the neigh-
bor communications. This is done using a cartesian topology
of the processes that give to each process two coordinate
in the grid distribution. These two coordinates identify the
cores, in which the processes have to be allocated. Also, we
can coordinate the communication order with the objective
of minimizing the saturation of the links. The last step is to
create the ST with the values obtained with the model.

4.4 Scheduling policy phase
The scheduling phase is divided into two main parts:

the first one is to develop an execution priority which
determines how the tiles have to be executed inside the
core and the second part of the scheduling phase which
is focused on applying an overlapping strategy between
internal computation and edge communication tiles.

The execution priority assignments are assigned by each
tile and the highest priorities are established for tiles which
have communications through slower paths. These assign-
ments have the following policies: tiles with external com-
munications are selected with priority 1. These edge tiles
are saved in buffers with the aim of executing these tiles
first. These buffers are updated all iterations. The second
assignation is made for internal tiles which are overlapped

Fig. 5: Scheduling policy.

with the edge communications, which are assigned with
the priority 2. The overlapping process uses two threads,
one of them is to perform the internal computation and
the other is to manage the asynchronous communications.
These communications enable us to perform the internal
computation and the edge communication together (Fig. 5).

5. Combining scalability and efficiency

Our methodology attempts to find the number of core
that achieves the maximum strong scalability with a defined
efficiency. However, there are two distinct definition of
scalability in HPC. One definition is the weak scalability
that is considered when the problem size and the number
of processing elements are expanded. The main goal of this
scalability is to achieve constant time-to-solution for larger
problems and the computational load per processor stays
constant [3]. The second definition is the strong scalability in
which the problem size is fixed and the number of processing
elements is increased. The goal in this scalability is to
minimize the time solution. Hence, the scalability means that
speedup is roughly proportional to the number of processing
elements.

Under these two scalability definition, our methodology
searches a combination between strong scalability and effi-
ciency. This combination means that our analytical model
has to determine the number of cores that allow us to obtain
the ideal relationship between speedup and the defined
efficiency. This number of cores can be calculated using the
model and this number determines the maximum systems
capacity growth. Also, we can determine the theoretical
behavior of the application (Equ.2. This equation allows us
to find the K value size that have to be assigned to each core.
The model only finds one ideal value to maintain the ideal
overlapping. However, we can calculate values for another
number of cores with the aim of evaluating the performance.

Cores K Edge Cp Int Cp Edge Comm Exec T
16 396 1580 155236 39600 156816
32 280 1176 77284 28000 78400
64 198 788 38416 19800 39204
128 140 556 19044 14000 19600

(256) 99 392 9409 9900 10292
512 70 276 4624 7000 7276

Fig. 6: Combining scalability and efficiency of SPMD appl.

642 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

5.1 A theoretical Example
This numerical example illustrates how we can combine

the efficiency and the strong scalability concept. Suppose
the following application characteristics: a defined problem
size of M=1585, a defined efficiency (Effic) of 95%, a
four communication pattern, three different communication
links (e.g. cache, main memory and network) and a set of
node of doble quad core architecture. Then, we have to
determine the λ(p)(w) using equation 1 and we have to use
the maximum value obtained. We assume that the Cpt = 1
time unit and the maximum communication time for the
slowest communication paths Commt = 100 time units.

Afterward, we apply our analytical model, where we use
the equation 10 to determine the ideal ST and the equation 2
to calculate the ideal number of cores, which represents the
maximum combining strong scalability and efficiency. The
ideal value of K obtained is around 99 and the ideal number
of core is equal to 256 for this example (Eq. 2). Once the
K and Ncores are calculated, we have to determined the
efficiency and speedup for this ideal number of core. In this
sense, we have to calculate the serial execution time using
the global problem size multiplied by one computational tile
time Cpt. This example is for one iteration and it has a serial
time of 2.512.225 time units for this specific problem size.

The figure 6 shows the result for a different distribution of
cores with the aim of visualizing the efficiency and speedup
curve for this example. Also, it illustrates the performance
behavior for different number of cores, in which the ideal
number calculated have the efficiency around the optimal
value defined and the speedup until this point has a roughly
linear growth. This point is the maximum strong application
scalability under a desired efficiency. After this ideal point,
we can observe that speedup increases but no proportionally
to the number of core and the efficiency begins to decrease
considerably due to the communication bound behavior. On
the contrary, before the ideal point the efficiency and speedup
are around the maximum values (Fig. 6).

6. Performance Evaluation
The experiments to test our methodology has been con-

ducted on two multicore clusters, one of them is a DELL
cluster with 8 nodes with 2 Quadcore Intel Xeon E5430 of
2.66 Ghz, 6 MB of cache L2 shared by each two core and 12
GB of RAM memory. The second is an IBM with 32 nodes
with 2 processors Dual-Core Intel(R) Xeon(R) CPU 5150, 4
MB shared cache memory by 2 cores, 12 GB of RAM and
gigaethernet network. Both clusters have Openmpi 1.4.1. To
validate the result of this article, we chose two applications:
heat transfer and one application of fluid dynamics (LL-2D-
STD-MPI) integrated in the MP-Labs suite.

6.1 Efficiency and scalability evaluation
The main objective of this evaluation is to demonstrate

the improvement of applying our methodology. The table 1

Fig. 7: Efficiency of Heat Trasnfer App. on Dell Cluster

shows the characterization values of computation (Cpt) and
Commt(p)(w) of slowest communication of a tile, problem
size, desired efficiency and also illustrates the theoretical
values of number of cores, edge and internal computation,
the edge communication and the number of tiles.

To develop our performance analysis, we executed SPMD
applications but making a comparison between the theoreti-
cal value, the application without using and the application
using our methodology. In this sense, the figure 7 shows
the efficiency behavior of heat transfer application executed
with 100 iterations. This figure 7 illustrates a considerable
improvement in efficiency of around 42% when we execute
with the number of cores determined by our model. Also,
we can observe how the application using our methodology
behaves similarly to the analytical model where the error
rate is around 5% when the number of core is below to the
maximum obtained of our model (Fig. 7).

The figure 8 shows how the speedup increases when we
add more core, but this speedup do not scale linearly after the
maximum number of core determined with our model. The
ideal point calculated meets the maximum strong scalability
while the efficiency is over a defined threshold.

On the other hand, the LL-2D-STD-MPI application is
integrated by 3 main parts: prestep, poststep, and the main
module where the communication and the computation is
performed. In this order, we apply our methodology and
the tile characterization process to the last module, because
the other two only compute and they do not have any
communication and this application has been tested with
100 iterations. The figure 9 shows the improvement in the
efficiency between the original version and when we applied
our methodology with an error rate of 4% of precision

Fig. 8: Speedup of Heat Trasnfer App on Dell Cluster

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 643

Table 1: Tile distribution model evaluation examples
App. Cpt Comtpw M effic K IntComp EdgeComp EdgeComm Ncore Cluster

Heat Tran 0.021µsec 58, 8µsec 9500x9500 85% 2384 1,18E-01Sec 1,99E-04Sec 1,40E-01Sec 16 DELL
LL-2D-STD 0.24µsec 60, 7µsec 2000x2000 95% 249 1,458E-02Sec 2,34E-04Sec 1,48E-02Sec 64 IBM

Fig. 9: Efficiency of LL-2D-STD-MPI app on IBM Cluster

Fig. 10: Speedup of LL-2D-STD-MPI app on IBM Cluster

with the analytical model. Similarly to the heat transfer
application, the model gives us the ideal ST and number or
core that maintain the relationship between efficiency and
scalability (Table 1).

Finally, we observe the behavior of speedup and the strong
scalability in this application in figure 10, where we can
observe the linear speedup until the number of cores is below
to the theoretical value. This allows us to conclude that our
methodology can determine the maximum strong scalability
combining the maximum speedup and the efficiency over a
defined threshold. The objective to test the application in two
clusters is due to check the functionality of our method in
different multicore architectures. These two examples show
an approximation of our method and how the maximum
speedup is reached with the efficiency defined in the model.

7. Conclusion and Future Work
This works addresses how we can combine the efficiency

and the strong scalability in parallel applications. Also,
it was presented a novel methodology based on charac-
terization, a tile distribution model, a mapping strategy
and a scheduling policy. These phases allowed us to find
through an analytical model the optimal size of the Supertile
and the number of core needs to accomplish the objective
stated. This model is focused on managing the hierarchical
communication architecture presents on multicore clusters.

The experimentations have demonstrated that this optimal
size can achieve the conditions of maximum speedup and

efficiency over a defined threshold. To achieve this, we have
proposed an appropriate manner to manage the inefficiencies
generated by communications links presented on multicore
clusters, as was described. In addition, with our method
we can observe how the SPMD applications with some
specific characteristics can behave with a specific problem
size while is incremented the number of cores. This is the
main purpose of finding the maximum point that allows the
SPMD application to scale linearly. Future works are focused
on working with heterogeneous computation on multicore
environment with the aim of executing the SPMD appli-
cations efficiently in an communication and computation
heterogeneus environments.

References
[1] I. M. Nielsen and C. L. Janssen, “Multicore challenges and benefits

for high performance scientific computing,” Scientific Programming,
vol. 16, pp. 277–285, 2008.

[2] M. Mccool, “Scalable programming models for massively multicore
processors,” Proc. of the IEEE, vol. 96, no. 5, pp. 816–831, 2008.

[3] L. Peng, M. Kunaseth, H. Dursun, K. ichi Nomura, W. Wang,
R. K. Kalia, A. Nakano, and P. Vashisht, “A scalable hierarchical
parallelization framework for molecular dynamics simulation on mul-
ticore clusters,” Proc. of the Int. Conf. on Parallel and Distributed
Processing Techniques and Applications, USA, pp. 97–103, 2009.

[4] G. Mercier and J. Clet-Ortega, “Towards an efficient process place-
ment policy for mpi applications in multicore environments,” Eu-
roPVM/MPI 2009, pp. 104–115, 2009.

[5] L. M. Liebrock and S. P. Goudy, “Methodology for modelling
spmd hybrid parallel computation,” Concurr. Comput. : Pract. Exper.,
vol. 20, no. 8, pp. 903–940, 2008.

[6] G. Cong and D. A. Bader, “Techniques for designing efficient parallel
graph algorithms for smps and multicore processors,” The Fifth
International Symposium on Parallel and Distributed Processing and
Applications (ISPA07), pp. 137–147, 2007.

[7] K. Vikram and V. Vasudevan, “Mapping data-parallel tasks onto
partially reconfigurable hybrid processor architectures,” IEEE Trans-
actions on Very Large Scale Integration Systems, vol. 14, no. 9, p.
1010, 2006.

[8] R. Muresano, D. Rexachs, and E. Luque., “Methodology for effi-
cient execution of spmd applications on multicore clusters,” 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (CCGRID), IEEE Computer Society, pp. 185–195, (2010).

[9] J. Brehm, P. H. Worley, and M. Madhukar, “Performance modeling
for spmd message-passing programs,” Concurrency - Practice and
Experience, vol. 10, no. 5, pp. 333–357, 1998.

[10] O. Beaumont, A. Legrand, and Y. Robert, “Optimal algorithms for
scheduling divisible workloads on heterogeneous systems,” 17th In-
ternational Parallel and Distributed Processing Symposium (IPDPS
2003), p. 98, 2003.

[11] J. B. Weissman and X. Zhao, “Scheduling parallel applications in
distributed networks,” Cluster Computing, vol. 1, pp. 109–118, 1998.

[12] M. Panshenskov and A. Vakhitov, “Adaptive scheduling of parallel
computations for spmd tasks,” ICCSA 2007, pp. 38–50, 2007.

[13] V. der Wijngaart and H. Jin, “Nas parallel benchmarks, multi-zone
versions,” NASA Advanced Supercomputing Division Ames Research
Center, USA, 94035-1000, Tech. Rep., 2003.

[14] T. Lee and C.-L. Lin, “A stable discretization of the lattice boltzmann
equation for simulation of incompressible two-phase flows at high
density ratio,” J. Comput. Phys., vol. 206, pp. 16–47, June 2005.

644 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

A Methodology to Calculate a Program’s Robustness

against Transient Faults

Joao Gramacho, Dolores Rexachs, Emilio Luque
Computer Architecture and Operating Systems Department

Universitat Autònoma de Barcelona

Bellaterra (Barcelona), Spain

Abstract - Computer chips implementation technologies are

evolving to obtain more performance. The side effect of such a

scenario is that processors are less robust than ever against

transient faults. As on-chip solutions are expensive or tend to

degrade processor performance, the efforts to deal with these

transient faults in higher levels are increasing. Software based

fault tolerance approaches against transient faults often use

fault injection experiments to evaluate the behavior of

applications with and without their fault detection or fault

tolerance proposals. Those fault injection experiments

consumes lots of CPU time by running or simulating the

application being evaluated as many times as necessary to

obtain a reasonable valid statistical approximation. This

paper proposes the concept of a program's robustness against

transient faults and presents a methodology for exhaustively

calculate this robustness based on program's execution trace

over an architecture and on information about the used

architecture. The presented approach, besides calculating a

precise robustness, accomplishes its work faster than using

fault injection experiments with ±2% of confidence interval.

Keywords: transient faults, robustness, reliability, swifi.

1 Introduction

 The ever growing die density of computer processors is

one of the great factors of the astonishing improvements in

processing power of the last decades. Computer chips are

using smaller components, having more transistors, using

those transistors with higher density and also operating at

lower voltage. The side effect of such a scenario is that

processors are less robust than ever against transient faults

[1].

 Transient faults are those faults that might occur only

once in a system lifetime and never happen again the same

way. Transient faults in computer systems may occur in

processors, memory, internal buses and devices, often

resulting in an inversion of a bit state (i.e. single bit flip) on

the faulty location [2]. Cosmic radiation, high operating

temperature and variations in the power supply subsystem are

the most common cause of transient faults in computer

systems.

 A transient fault may cause an application to misbehave

(e.g. write into an invalid memory position; attempt to

execute an invalid instruction). Such misbehaved applications

will then be abruptly interrupted by the operating system fail-

stop mechanism. Nevertheless, an undetected data corruption

is the biggest risk for applications. It happens when the

flipped bit produced by the transient fault generates an

incorrect final program result that might not be ever noticed.

Errors that can be noticed as effects of transient faults are

called soft errors.

 In order to test a program behavior in presence of

transient faults, it is common to put the program to be tested

in an environment designed to allow transient like fault

injections. In this way, it is possible to evaluate if the program

misbehaved in presence of a transient fault or if the program

was robust and could finish properly or could detect the

injected fault and stopped its execution avoiding the error

propagation. These fault injections are made often by flipping

a bit of a processor register in a given point during program

execution.

 In this work we propose the concept of robustness

against transient faults as the ability of a program, once in

presence of a transient fault, to keep running and give a

correct result when finish or to stop the execution when a soft

error is detected and inform about it.

 We consider that a program running over an determined

architecture will have a robustness against transient faults

represented as a number that can vary from zero (0%) to one

(100%), where zero implies no robustness at all (the program

fail on every possible cases) and one implies the best

robustness possible (the program gave the correct result or

has detected the transient fault on every possible cases).

 Execute a program with fault injections to evaluate its

behavior can be a time consuming task. This is because of the

need to execute the program in the fault injection

environment as many times as needed to have a result with

significant statistical approximation, as we will show in

section 2.

 Our objective in this work is to propose a methodology

to calculate a program’s robustness against transient faults

without any fault injection execution.

 To do so, in section 3 we present how to calculate the

robustness of a program running over a given architecture

based on a trace of the program execution over the

architecture and also on information about how the

architecture instructions deal with processor registers. Our This research has been supported by the MICINN Spain, under contract TIN2007-64974.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 645

methodology obtains a precisely calculated robustness

avoiding the time consuming task of doing hundreds (or

thousands) of program executions in transient fault injection

environments.

 In section 4 we present an experimental evaluation of

the proposed methodology comparing the result of a set of

fault injection campaigns with the result obtained using

methodology and in section 5 we present our conclusion and

explain about the next steps of our work.

2 Evaluation Using Fault Injection

 Experimental methods of injecting transient faults into a

program during its execution were proposed to test purposed

protection mechanisms against transient faults. On those

methods, the program being evaluated is executed in an

environment able to inject a fault in a form of a bit flip on a

program architectural state (usually a bit in a processor

register). At the end of the program execution, its result is

evaluated to check the effect caused by the fault into the

execution.

 When the program finished correctly and presented the

same result of a fault free execution the program architectural

bit changed by the fault injection is classified as unACE

(unnecessary for an Architecturally Correct Execution). On

the other hand, when the program didn’t finished correctly, or

presented a result different of the fault free execution, the

program architectural bit changed by the fault injection is

classified as ACE (necessary for an Architecturally Correct

Execution).

 If the program being evaluated has some kind of fault

detection mechanism against transient faults the program

architectural bits changed may trigger the fault detection

mechanism and lead the program to a fail stop avoiding the

propagation of the fault effect in the program execution. On

those cases, instead of being classified as ACE, as the

execution finished doing a fail stop and noticed that a fault

happened the program architectural bit changed is classified

as DUE (Detected Unrecoverable Error).

 As changes in the ACE program architectural bits lead

to an abnormal program behavior and also could lead to a

result different of the obtained by a fault-free execution, it is

common to classify those bits as SDC (Silent Data

Corruption).

 �����	��	
���	��	
����	��	

�����		��		�
	��	��	
 = 1 (1)

 To evaluate how reliable a program is in presence of

transient faults with a sufficient large amount of executions

with fault injection, we can divide the amount of executions

that didn’t failed (those in which the program architectural bit

changed was classified as unACE or DUE) by total amount of

executions with fault injection performed. Also, it is

important to have a good distribution in which program

architectural bit is changed on each execution, since it is

randomly chosen.

 The authors of [3] propose a soft error detection

mechanism based on source code transformation rules. The

new program (compiled with the source code transformed

with the fault detection mechanism) has the same

functionality as the original program but is able to detect bit-

flips in memory and processor registers during an execution.

 Evaluating programs with and without their fault

detection mechanism, the authors of [3] performed a set of

fault injection experiments where on each execution a bit was

flipped in processor registers, program code memory region

or program data memory region. A total of 52,728 executions

with fault injection were performed to evaluate two programs

(the original one and the changed to detect soft errors), 26,364

executions per program on average.

 In Error Detection by Duplicated Instructions (EDDI)

[4], the authors reduced the amount of SDC cases of

programs by, during program’s compilation, copying

instructions but using different processor registers and adding

verification for errors by comparing the value of the original

processor register used by the program with the value of the

processor register used in the new generated instruction.

 Executing a total of four evaluations (the original

program, the program with EDDI and the program with three

source code based fault detection mechanisms) per each of

the eight benchmarks evaluated and executing 500

simulations with fault injection per evaluation, the authors of

[4] have made a total of 16,000 simulations to accomplish

their work.

 On Software-Controlled Fault Tolerance [5], the authors

presented a set of transient fault detection techniques based

on software and also hybrid (based on software and

hardware). Each of the proposed techniques has a different

cost/benefit relation by improving reliability or performance.

 The first technique presented by [5] is SWIFT (Software

Implemented Fault Tolerance) which reduces an application’s

amount of SDC cases by changing the program during

compilation time. The other techniques presented are all

hybrid. The set of those hybrid techniques is called CRAFT

(Compiler-Assisted Fault Tolerance). In general, reduces the

amount of SDC cases even more than SWIFT and also

improve the performance of the program in comparison with

software-only fault tolerance techniques.

 To evaluate the amount of SDC cases of an application

with and without the proposed fault tolerance mechanisms,

the authors of [5] executed fault injection experiments in a

simulator executing all programs to the end using a functional

simulator and choosing when and where to inject the fault

randomly. The authors classified the fault injection simulation

result as unACE if the flipped bit wasn’t necessary to the

correct architectural execution, as DUE if the flipped bit

triggered a fault detection mechanism, or as SDC it the

flipped bit generated a silence data corruption.

 The authors of [5] used a benchmark to evaluate how

many fault injections should be necessary to have a

significant statistical approximation of results. They executed

5,000 fault injection simulations with the benchmark and

observed that the confidence interval of the average of the

646 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

SDC cases was ±2.0% after 946 simulations, ±1.5% after

1,650 simulations and ±1.0% after 3,875 simulations.

 In a total of 10 sets of experiments, the authors of [5]

evaluated the robustness of a set of benchmarks by simulating

5,000 executions with fault injection (except for two SWIFT

variations that used 1,000 simulations). In each of 504,000

simulated executions with fault injection a randomly chosen

bit of one of 127 integer processor registers of IA64 processor

architecture was flipped.

 Because of the use of a simulator to execute de program

with a fault injection, the authors of [5] could save some

simulation time on the executions where the bit flipped was

classified as unACE. On those cases, the simulation could be

interrupted when the simulator observed that the flipped bit

was re-written with results from processor logical unit or with

a write operation before having it content used.

 Continuing their research in fault tolerance for transient

faults, the same authors of [5] propose Spot [6], a technique

to dynamically insert redundant instructions to detect errors

generated by transient faults. This dynamically insertion was

made in runtime using instrumentation.

 Besides using a different architecture from previous

work (in [6] they used IA32 and protected only the eight

general purpose 32 bit registers of the architecture), the

authors didn’t use simulators. All the analysis and fault

injections were made using an instrumentation tool. The

authors of [6] evaluated 16 benchmarks and executed a total

of 1.03 million fault injections to obtain their results (keeping

5,000 executions with fault injection per benchmark and

configuration evaluated).

 In all related work studied, the execution of a program

in a transient fault injection environment could be classified

in terms of basically three labels: unACE, DUE and SDC.

 To compute a program’s robustness against transient

faults using fault injection we only need to divide the amount

of unACE cases, plus the amount of DUE cases, by the

amount of executions made in the experiment.

 ���������� = �����	��	
���	��	

�����		��		�
	��	��	
 = 1 −	 ���	��	

�����		��		�
	��	��	
 (2)

 If all executions are classified as SDC, the robustness

will be zero (the minimal robustness allowed). On the other

hand, if all executions are classified as unACE or DUE, the

robustness will be one (the maximum robustness allowed).

 The robustness evaluation method using program

executions with fault injection need a sufficient large amount

of executions varying the fault conditions (time, register and

bit) to have a representative statistical approximation of the

results.

 One aspect that must be took into account when using

fault injection to evaluate a program’s robustness is that this

method is data dependent. Faults injected in specific bits of

floating point registers can lead to almost no change in its

value depending on its original value. Also, as general

purpose registers are often used as pointers to vectors or

matrices of data, if this data is homogenous (e.g. a vector

filled with ones) there are many changes that can be done in

registers that will make them point to a different memory

position but with the same data, masking the fault injection

result as unACE.

 Also, it is known that by using a fault injection based

evaluation of robustness, the amount of executions to evaluate

a program will affect the precision of robustness obtained [5].

 Finally, using simulators or dynamically instrumentation

to inject fault on every program execution will increase time

needed on each execution in comparison with a time spent by

the program running directly in the architecture without

instrumentation.

3 The Proposed Methodology

 The objective of this paper is to present a methodology

of exhaustively calculate the amount of bits that we can

classify as unACE or DUE of a program execution (and, so,

its robustness against transient faults) without using

executions with fault injection.

 In this step of our methodology we are only classifying

the unACE bits of a program state. So, the robustness that we

will calculate using the presented methodology will be

relative only to those architectural state bits that for sure don’t

affect the program final result.

 As the programs used in our experimental evaluation

don’t have any type of added protection against transient

faults we will assume that the amount of bits that could be

classified as DUE are zero and that the program’s robustness

rely only in the evaluation of the unACE bits.

 ���������� = �����	��	

�����		��		�
	��	��	
 (3)

 The robustness that we are going to calculate using our

methodology is relative to a program prog running over a

determined architecture A.

 ���������� !�"×� = �����	��	

�����		��		�
	��	��	
 (4)

 We will need two things in order to know how many

architectural state bits are in an evaluation (the amount of

tested bits), one from the architecture and other from the

program. From the architecture we will need the amount of

bits that could be changed by a fault during each processor

instruction executed by the program. From the program, we

will need the amount of instructions it executes to produce its

results.

 $%����	�&	�����'	�(�� = �����'	�(��)��	(���� × $%����	�&	(���� (5)

 As our methodology is based on Software Implemented

Fault Injection (SWIFI) methods, the amount of bits that can

be changed by a fault during each processor instruction

executed by the program can be easily calculated by summing

all processor register’s size. We now define a set named

ProcRegA with all processor registers that we will consider in

our evaluation and a non-numerical finite sequence RegSizeA

representing the size in bits of each processor register in

ProcRegA. The relation between ProcRegA set and RegSizeA

sequence is defined by the function fRegSize.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 647

 *��+,�-� = .��-/, ��-1, … , ��-�!�"3�45 (6)

 &6�"��7�: *��+,�-� ↦ ℕ

 ,�-;(<�� = =��-�(<�!�"> , ��-�(<�!�"? , … , ��-�(<�!�"@ABC3D4E

 �����'	�(��)��	(���� = ∑ &6�"��7�3�4�!�"3�4
!G/

 In order to calculate the amount of instructions executed

by the program we will need an execution trace of the

program running over the defined architecture. This trace will

represented as a non-numerical finite sequence Traceprog×A

defined by the function fprog. The fprog function returns the

processor instruction executed by the program in a given

point of its execution. The instruction must be a member of

the ProcInsA set (that contains all possible processor

instructions).

 *��+H��� = .(��/, (��1, … , (�����
3�45 (7)

 & !�": ℕ ↦ *��+H���

 I�$+� !�"×� = =(��/, (��1, … , (�����
JK!�L�MANC×DOE

 $%����	�&	(���� = 	�(��JI�$+� !�"×�O

 At this point we have defined the first part of our

formula to calculate program’s robustness against transient

faults when running over a given architecture.

 ���������� !�"×� = �����	��	

���
JK!�L�MANC×DO×∑ �PBCQRSB3!4@ABC3D4

AT>
 (8)

3.1 Robust state

 Let’s consider now robust state as a property of a

processor register in a given point of a program execution.

This register property will be represented by a vector of

logical states (true or false) with as many states as the amount

of bits of the processor register, and it will be defined by the

frstate function that we will explain better later.

 &!
	�	�: *��+,�-� × ℕ ↦ U (9)

 An element of a register robust state vector being true

implies that the register bit represented by the element is

classified as unACE in the given execution point of the

program. In this way we know that any change in this register

bit in this given execution point of the program won’t be

propagated to the final program result.

 Similarly, an element of a register robust state vector

being false implies that the register bit represented by the

element is classified as ACE (we don’t know yet if DUE or

SDC) in the given execution point of the program. In this way

we know that any change in this register bit in this given

execution point of the program can be propagated to the final

program result.

 In order to know how many robust state vector elements

are true (to know how many bits of a register robust state are

classified as unACE in a given point of program execution)

we will need the fabits function. This function needs a logical

states vector as input parameter and will return the amount of

logical states of the vector that have its value as true.

 &���	
: U ↦ ℕ (10)

 With the two previously presented functions we are able

to complete our general robustness formula.

 ���������� !�"×� =
∑ ∑ �VWRXYJ�AYXVXB3A,@4O@ABC3D4

ATZ
@R@Y=[AV\BMANC×DE
@T>
���
JK!�L�MANC×DO×∑ �PBCQRSB3!4@ABC3D4

ATZ
 (11)

 A program’s robustness against transient faults when

running over a determined architecture will be the sum of the

amount of bits classified as unACE of each processor register

r of the given architecture A in every point n of the program

prog execution present on trace Traceprog×A, divided by the

sum of the amount of bits of each processor register

multiplied by the amount of instructions present in the trace

Traceprog×A.

 To define our frstate function we will use the method

presented by [5] to save simulation time on those cases where

the fault injection was applied in a processor register that had

its value overwritten by a new one before any read of the

content changed by the fault injection.

 In the example presented in Figure 1 with a basic block

sample of one of the programs used in our experimental

evaluation, it is possible to notice that we can evaluate if a

processor register’s bits are important in a given point by only

observing program’s instruction sequence.

 For example, as the at instruction in address 0x401a68

load the r9 processor register with a given value, any change

done in r9 before the execution of this instruction will be

discarded. So, if a fault injection mechanism injects a fault on

any of r9 bits between the executions of the instructions at

address 0x401a40 and 0x401a68 the program result will not

be affected and the bit changed by the fault injection will be

classified as unACE.

 On the other hand, after r9 be loaded by the instruction

at address 0x401a40, as the loaded value will be used by the

instruction at address 0x401a84, the r9 integrity must be kept

in the interval between the load (write operation on register)

and the use of the loaded value (read operation on register).

 As the presented basic block represent a loop, while the

program execution stay in the loop, the next instruction that

will manipulate r9 after the execution of the instruction in

address 0x401a84 will be one that will change its value (a

write operation on r9, exactly the instruction at address

0x401a68) and, so, the integrity of the register value in this

interval is no longer needed anymore.

 By the previously analyzed situation we can assume

that, once knowing that a register will have its value replaced

by a new one (after a write operation on the register) the

registers bits can be classified as unACE on every instruction

executed before the one with the write operation, until an

instruction that read the content of the register be found.

Figure 1 – A sample basic block code.

Address Instruction Register Use unACE

0x401a40 mov r13, 0x3ff0000000000000 write on r13 r13, r12, r11, r10, r9

0x401a4a mov r12, 0x3ff0000000000000 write on r12 r12, r11, r10, r9

0x401a54 mov r11, 0x3ff0000000000000 write on r11 r11, r10, r9

0x401a5e mov r10, 0x3ff0000000000000 write on r10 r10, r9

0x401a68 mov r9, 0x3ff0000000000000 write on r9 r9

0x401a72 add ecx, 0x1 read and write on ecx

0x401a75 mov qword ptr [rdx], r13 read on rdx and r13

0x401a78 mov qword ptr [rdx+0x8], r12 read on rdx and r12 r13

0x401a7c mov qword ptr [rdx+0x10], r11 read on rdx and r11 r13, r12

0x401a80 mov qword ptr [rdx+0x18], r10 read on rdx and r10 r13, r12, r11

0x401a84 mov qword ptr [rdx+0x20], r9 read on rdx and r9 r13, r12, r11, r10

0x401a88 add rdx, 0x28 read and write on rdx r13, r12, r11, r10, r9

0x401a8c cmp ecx, ebx read on ecx and ebx r13, r12, r11, r10, r9

0x401a8e jnz 0x401a40 r13, r12, r11, r10, r9

648 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

 The easiest way to analyze the execution of a program in

search of those relations between uses of processor registers

in read or write operations is by looking the program

execution trace Traceprog×A in reverse order, beginning by the

last executed program instruction and following the trace until

the first program instruction executed.

 In this way, every time we find an instruction that write

content to a processor register we can turn the logical states of

the register’s robust state vector elements to true (classify as

unACE) until find an instruction that read the register content.

 On the other hand, every time we find an instruction that

read content from a processor register we can turn the logical

states of the register’s robust state vector elements to false

(classify as ACE) until find an instruction that write content

on the register.

 If a given processor instruction operates a register for

both read and write (e.g. as an increment operation), as our

analysis is done in program trace instructions backwards, we

first evaluate the write operation and then the read operation.

 In our methodology we also need to know how each

processor instruction deals with processor register bits for

read and write. So, we will use a set named ProcInsRegA,

which contains all ordered pairs of a processor instruction

combined with a processor register.

 *��+H��,�-� = .3(��/, ��-/4,… , J(�����
3�4, ��-�!�"3�4O5 (12)

 For each pair in ProcInsRegA set we must have an

element in two non-numerical sequences: WrittenBits, defined

by the fwbits function and ReadBits, defined by the frbits

function.

 The fwbits function returns a vector of logical states with

all states that represent processor register bits written by the

instruction with true as value.

 &]��	
: *��+H��� × *��+,�-� ↦ U (13)

 The frbits function returns a vector of logical states with

all states that represent processor register bits read by the

instruction with true as value.

 &!��	
: *��+H��� × *��+,�-� ↦ U (14)

 Knowing how a processor instruction operated a given

processor register for read and write, and also because our

analysis is done by evaluating a program trace backwards, by

the truth table presented in Table I we deduced a formula to

the frstate of a given processor register in a given point of

program trace.

Table I – Truth table of the frstate function.

 For every processor register and for every program

instruction except the last one, the robust state of a given

register reg in a given point n of a program execution trace

Traceprog×A will be the result of the robust state of the next

point in program execution trace (the previously analyzed

instruction) operated with a logical OR with the bits written

by the analyzed instruction and then operated with a local

AND with the negation of the bits read by the analyzed

instruction.

 1 ≤ � < �(��JI�$+� !�"×�O; (= & !�"3�4 (15)

 &!
	�	�3��-, �4 = a&!
	�	�3��-, � + 14 ∨ &]��	
3(, ��-4d ∧∼ &!��	
3(, ��-4

 When the program finishes its execution we can assume

that a change in any of processor registers won’t affect the

program result anymore. So, we define a function named

fendstate that returns a vector with a robust state of a given

register with all logical states as true (all register bits

classified as unACE).

 &���
	�	�: *��+,�-� ↦ U (16)

 The frstate function for each program executed instruction

will need the robust state of the next executed program

instruction (the previously analyzed program execution trace

instruction). In the particular case of the last instruction

executed by the program, the frstate will need the fendstate.

 � = �(��JI�$+� !�"×�O; (= & !�"3�4 (17)

 &!
	�	�3��-, �4 = a&���
	�	�3��-4 ∨ &]��	
3(, ��-4d ∧∼ &!��	
3(, ��-4

 With all the presented functions in this section it is

possible to calculate a program’s robustness against transient

faults when executed over a determined architecture by

calculating the precise amount of unACE bits of the program

execution trace. This calculation, by the presented

methodology, can be done in a single loop evaluating every

program trace instruction backwards.

4 Experimental Evaluation

 In order to realize our experimental evaluation we

designed a set of experiments to calculate the robustness

against transient faults of five programs both using fault

injection executions and using the presented methodology.

 The selected programs are part of the NAS Parallel

Benchmark in its version 3.3. Because of the amount of

executions needed to realize this experimental work we

choose to evaluate the serial (non parallel) versions of BT,

CG, FT, LU and SP benchmarks with their smallest class (S).

 All five benchmark programs used in this experimental

work were compiled using GNU C and Fortran in their

version 4.4.1, with static linkage of libraries used by the

programs and with maximum code optimization during

compilation (O3).

 The computing nodes used in the experiments have

Linux Ubuntu Server operating system in version 9.10 with

64 bits kernel in version 2.6.31. The hardware of all

computing nodes used have one 2 GHz AMD Athlon 64 X2

processor with 2 gigabytes of memory.

4.1 Results using fault injection

 The fault injection environment used in this part f the

experimental evaluation uses a tool based on Intel PIN [7] to

Previous

Robust State fwbits f rbits

New

Robust State Description

TRUE TRUE TRUE FALSE Wasn't important, write on it, read from it, change to being important

TRUE TRUE FALSE TRUE Wasn't important, write on it, keep don't being important

TRUE FALSE TRUE FALSE Wasn't important, read from it, change to being important

TRUE FALSE FALSE TRUE Wasn't important, didn't operate, keep don't being important

FALSE TRUE TRUE FALSE Was important, write on it, read from it, keep being important

FALSE TRUE FALSE TRUE Was important, write on it, change to not important

FALSE FALSE TRUE FALSE Was important, read from it, keep being important

FALSE FALSE FALSE FALSE Was important, didn't operate, keep being important

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 649

flip a single randomly chosen bit of a randomly chosen

processor register in an also randomly chosen point of a

program execution.

 For each one of the evaluated programs we made 8,000

executions with fault injection. The amount of executions was

defined with the objective of achieve at least ±2% of

confidence interval of the average cases classified as unACE.

 In Table II we present the execution time of each

benchmark program.

Table II – Benchmark programs execution data.

 Also, we present in TABLE II the amount of

instructions executed by each program and the amount of

states to evaluate in order to exhaustively cover all possible

bit flips in processor registers (amount of instructions

executed multiplied by the sum of the amount of bits of all

processor registers took into account during the evaluation, in

this particular case equal to 3,072).

 The Figure 2 presents the robustness calculated with the

results of the fault injection executions of the selected

programs.

 Only one of the evaluated programs, the BT benchmark,

didn’t achieve 1.5% of standard deviation with 8,000

executions with fault injection.

 The CPU time needed to calculate the robustness against

transient fault using fault injection executions depends on the

fault injection environment used to inject the faults.

 The best theoretical amount of time needed can be

calculated by multiplying the amount of executions the

experiment intends to do (8,000 in our case) by the amount of

time needed to execute de program being evaluated once.

 Perhaps, the environment we used in our

experimentation using fault injections uses dynamic

instruction instrumentation during the program execution and

adds some overhead to the program execution.

 In Table III we present the amount of time we spent to

realize all executions with fault injection in our fault injection

environment and also how many executions we needed to

achieve 2% of standard deviation in robustness.

Table III – Benchmark programs fault injection data.

 The amount of time needed to realize a program set of

executions using our fault injection environment was

calculated assuming that the program executes, on average,

half of its instructions with the dynamic instrumentation

overhead and the other half without any overhead. This is

because, once the fault is injected, the environment let the

program run until the end without any interference.

4.2 Result using the proposed methodology

 In order to calculate the selected benchmarks program’s

robustness against transient faults using the methodology

proposed in this work we used a tool based on Intel PIN [7] to

store in a trace file the data collected during a program

execution.

 In the stored data are the amount and the order of

execution of every executed program’s basic block, and also

all processor instructions that compose all stored basic blocks.

 We also developed a program to read the stored program

trace and, based on information about how processor

instructions deal with registers, calculate the program’s

robustness of each processor register by analyzing the

program trace backwards, as suggests the presented

methodology.

 In the Table IV we present the time we spent generating

the traces and the time to analyze those traces and calculate

the robustness with the program that implements the proposed

methodology. Also, the table presents the calculated

robustness and the total time needed to calculate a program’s

robustness (time to generate the trace plus time to analyze the

trace).

Table IV – Benchmark programs data using our methodology.

 The time spent on generating a program trace depends

on the program being analyzed algorithm. On the other hand,

the time spent on the analysis of the program trace is

Benchmark
Execution Time

(in Seconds)

Binary Code

Instructions

Fault Injection

Representation

(per Binary Code

Instructions)

Instructions

Executed

Amount of

States to Evaluate

Fault Injection

Representation

(per Amount of

States)

bt 0,19 25.337 31,57% 521.847.689 1.603.116.100.608 0,000000499%

cg 0,16 11.376 70,32% 357.952.094 1.099.628.832.768 0,000000728%

ft 0,28 11.137 71,83% 666.494.276 2.047.470.415.872 0,000000391%

lu 0,08 28.452 28,12% 187.912.097 577.265.961.984 0,000001386%

sp 0,08 21.138 37,85% 212.261.609 652.067.662.848 0,000001227%

Benchmark
Execution Time

(in Seconds)

Execution Time

Using Dynamic

Instrumentation

(in Seconds)

Fault Injection Time

Using Dynamic

Instrumentation

(in Seconds)

Robustness

(Amount of

unACE

Cases)

Stantard

Deviation

after 8,000

Executions

Executions

to 2% of

Standard

Deviation

bt 0,19 21,73 87.661 55,41% 2,23% 6.346

cg 0,16 11,28 45.749 56,05% 1,31% 3.301

ft 0,28 12,12 49.602 62,34% 1,13% 2.456

lu 0,08 21,31 85.548 39,14% 1,31% 2.019

sp 0,08 16,68 67.043 44,94% 1,68% 3.350

Benchmark
Instructions

Executed

Trace

Generation Time

(in Seconds)

Robustness

Analysis Time

(in Seconds)

Robustness
Total Time

(in Seconds)

bt 521.847.387 6,69 413,96 29,88% 420,65

cg 357.952.072 13,27 237,84 57,35% 251,11

ft 666.494.164 6,18 442,65 49,71% 448,83

lu 187.910.412 4,12 139,26 28,93% 143,38

sp 212.261.551 6,01 151,93 39,18% 157,94

Figure 2 – Evaluated benchmarks program’s robustness.

650 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

proportional to the amount of instructions executed by the

analyzed program.

 As we already predicted, in Figure 3 we present that the

calculated robustness using our methodology is always lower

than the calculated using fault injection executions or it can

be higher (but almost the same) depending on the amount of

executions done to calculate de robustness using fault

injection and the random number generator and seed used.

Our methodology will score a lower robustness because the

approach of using fault injection is more data dependent than

our proposal and can mask possible DUE and SDC as unACE

as explained previously in section II.

 On the analysis of the CPU time spent during the

robustness calculation using the proposed methodology in

Figure 4, we used on average almost 60% of the time needed

to run enough experiments using the best theoretical fault

injection method and achieve 2% of standard deviation in the

statistical approximation. Also, comparing the CPU time

spent during the robustness calculation using the proposed

methodology with the real fault injection environment used

based on dynamic instrumentation to inject the faults, we

needed on average only 1.22% of the time needed to achieve

2% of standard deviation in the fault injection statistical

approximation.

 All the times collected in our experimental evaluation

took in account the use of only one CPU core to all activities

without any kind of parallelism. We know that the executions

with fault injection are independent and could exploit many

cores in processor nodes to minimize the total time needed to

calculate a program’s robustness against transient faults.

 Fortunately, the calculations of each processor register’s

robustness in the proposed methodology are independent. In

this way, we can also take benefit of parallelism to speed up

our robustness against transient fault analysis (we could

parallelize the analysis of this experimental evaluation in 32

independent threads as we evaluated the robustness of 32 of

the processor registers of the experimented architecture).

Figure 3 – Our methodology vs. fault injection robustness’s.

Figure 4 – Time spent on calculating robustness’s.

5 Conclusion and Future Work

 Evaluate a program’s robustness against transient faults

by using software based fault injection environments and

executing the evaluated program for hundreds or even

thousands of times can be a expensive task by the amount of

CPU time needed to obtain a statistical approximation of the

desired result, even using any type of parallelism.

 In this paper we proposed a methodology to calculate a

program’s robustness against transient faults based on

information about the architecture used and on an execution

trace of the program running over the architecture.

 The proposed methodology calculates the precise

amount of unACE bits by analyzing the execution trace. We

were able to calculate the robustness almost 41% faster on

average than running the programs evaluated with the fastest

theoretical fault injection mechanism enough times to score

2% of standard deviation of the unACE cases.

 The next step of this work is to improve our

methodology program speed by saving time taking into

account the repetition of program basic blocks during its

execution over a given architecture and exploiting

parallelism.

 Also, as in this step of our methodology we only classify

a program unACE bits, in a next step of our work we will

divide the ACE bits in two classifications: DUE and SDC. By

knowing precisely the amount of DUE bits of a program will

improve even more our robustness evaluation.

6 References

[1] N. J. Wang, J. Quek, T. M. Rafacz, S. J. Patel, “Characterizing

the Effects of Transient Faults on a High-Performance Processor

Pipeline,” in Proceedings of the 2004 International Conference on

Dependable Systems and Networks, pp. 61—70.

[2] R. Baumann, “Soft errors in advanced computer systems,” in

Design & Test of Computers, 2005, vol. 22, pp. 258—266.

[3] B. Nicolescu, R. Velazco, “Detecting soft errors by a purely

software approach: method, tools and experimental results,” in

Design, Automation and Test in Europe Conference and Exhibition,

2003, pp. 57—62.

[4] N. Oh, P. Shirvani, E. McCluskey, “Error detection by

duplicated instructions in super-scalar processors,” in IEEE

Transactions on Reliability, 2002, vol. 51, pp. 63—75.

[5] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I.

August, S. S. Mukherjee, “Software-controlled fault tolerance,” in

ACM Transactions on Architecture and Code Optimization, 2005,

vol. 2, pp. 366—396.

[6] G. A. Reis, J. Chang, D. I. August, R. Cohn, S. S. Mukherjee,

“Configurable Transient Fault Detection via Dynamic Binary

Translation,” in Proceedings of the 2nd Workshop on Architectural

Reliability (2006).

[7] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.

Wallace, V. J. Reddi, K. Hazelwood. “Pin: building customized

program analysis tools with dynamic instrumentation” in

Proceedings of the 2005 ACM SIGPLAN conference on

Programming language design and implementation, pp. 190—200.

2
9

,8
8

%

5
7
,3

5
%

4
9
,7

1
%

2
8
,9

3
%

3
9

,1
8

%

5
5

,4
1
%

5
6

,0
5
%

6
2
,3

4
%

3
9
,1

4
%

4
4
,9

4
%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

BT CG FT LU SP

R
o

b
u

s
tn

e
s
s

Our Methodology Fault Injection

4
2

0
,6

5

2
5
1

,1
1

4
4

8
,8

3

1
4

3
,3

8

1
5

7
,9

4

1
.2

0
5

,7
4

5
2

8
,1

6

6
8

7
,6

8

1
6

1
,5

2

2
6

8
,0

0

 6
9

.5
3

7
,4

1

1
8
.8

7
7

,2
0

1
5

.2
2

7
,9

6

2
1

.5
9

0
,2

5

2
8

.0
7
4

,1
9

1

10

100

1.000

10.000

100.000

BT CG FT LU SP

T
im

e
 (

in
 s

e
c
o

n
d

s
)

Our Methodology

Fault Injection theorical best time to achive 2% of standard deviation

Fault Injection using instrumentation to achive 2% of standard deviation

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 651

Update and Restructure Legacy Code for (or Before)
Parallel Processing

F. G. Tinetti1,4, M. Méndez1, M. A. Lopez2, J. C. Labraga2, P. G. Cajaraville3

1III-LIDI, Fac. de Informática, UNLP, La Plata, Argentina
2Centro Nacional Patagónico, CONICET, Puerto Madryn, Argentina

3Fac. Ingeniería, UNPSJB, Sede Pto. Madryn, Puerto Madryn, Argentina
4 Comisión de Investigaciones Científicas de la Prov. de Bs. As., La Plata, Argentina

Abstract— Transformation of an old large sequential ap-
plications into a parallel version is still a big challenge in
the field of parallel computing. This paper presents a set of
transformations to be applied on a medium/large numerical
legacy code program having in mind the final objective of
parallel computing. The steps are oriented to improve source
code while preserving the software external behavior. Each
of these transformations has been selected at least to turn
old Fortran source code more readable and understandable
in order to upgrade it and make it easier to be parallelized.

Keywords: Legacy Code, Parallelization, Fortran Code Upgrade,
Numerical Simulation

1. Introduction
Legacy software have has become an issue in many

organizations, involving a number of problems and char-
acteristics [26] [8] [6]. The numerical processing field is
strongly related to legacy software since
• There is a large number of applications currently in

production, being used in a number of organizations
and areas such as aerospace, meteorology, etc. [22].

• Mathematical models and computer simulation are be-
ing applied since many decades ago.

Furthermore, single CPU (Central Processing Unit) process-
ing (e.g. in terms of Mflop/s or millions of floating point
operations per second) is not expected to follow the so-
called Moore’s Law [21] [12]. There will be almost no
improvement in CPU clock rates, instead, it is expected
that the number or CPUs or cores will raise at least in the
years coming [23] [24]. Multi- and many-core computers are
now commonplace, and combinations of multiple multicore
processors are now included in medium to large desktop and
server computers. This is directly related to legacy code,
since it is not longer valid to expect reducing runtime by
getting the latest computer [23] [24]. There will be no run-
time reduction unless the code is parallelized in some way.
Unfortunately, numerical legacy code is amongst the most
reactive to change software, and this paper is focused on
how to approach these applications in order to be upgraded
and parallelized.

Numerical legacy applications are programmed mostly in
Fortran for several reasons. Fortran has been and still is one
of the most appropriate languages for numerical processing,
mostly because numerical processing was about the only one
application field by the time Fortran was created [4] [5].
Fortran is one of the first high level programming languages,
it is in use and being updated from decades ago [20] [?],
unlike most of the current programming languages, including
the most popular ones. Fortran has been the first standardized
language and, also, it has several standards reflecting its
evolution [1] [2] [3] [15] [16] [17].

Legacy software/applications and the environments in
which they are used have several features that make it
difficult to change/update:

• Either the software documentation is lost, or is out-
dated, or did not exist at all.

• Today standard software development methodologies
and/or tools have not been used for reaching the current
version of the software or even the initial version.

• The current version is in fact the result of several
not always well documented maintenance/adaptation
changes.

• Several developers have been involved, some of them
at the initial stages of the development process and
others as time and environment progressed. Also, each
developer used its own coding style.

Numerical applications have several disadvantages which are
combined with the previous ones on legacy code:

• Physical/mathematical models are usually coded in
large and hard to read programs, due in part to the
combination of the low level programming language
abstractions and numerical method/s properties. Most
of the numerical problems/properties involved are, in
turn, a combination of discrete number representation
and numerical method used to compute a solution [18].

• The software developers usually have not been trained
in software development tools/processes. Thus, the ini-
tial software version contains structures and/or coding
specifically oriented towards using a specific computer
or computing facility instead of solving a numerical
problem. Also, hardware dependent code sections are

652 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

undocumented and difficult to identify in the whole
application.

This paper proposes a general methodology as well as
presents a proof of concept on a specific legacy code, a
global climate model (GCM). This program can be used
as representative of a medium/large numerical application,
since it has
• About About 300 files containing a total of about 58000

lines of FORTRAN 77 source code.
• Approximately 10% of the files are used for defining

FORTRAN Common Blocks (global data).
• About 80% of the source code lines containing com-

ments just identify programmer and/or minor code
modifications.

• Most of the FORTRAN routines access global data and,
also, define aliased data via “equivalence” declarations.

The parallelization process is hard to start in legacy
applications, and an incremental process is presented in this
paper. Almost every change/update in the legacy code aims
to apply parallel processing, either directly or indirectly:
• Enhancing readability allows understanding the code

and, thus, makes simpler and less error prone every
other code change. Even when enhancing readability
does not imply parallel processing per se, it is neces-
sary for every further software modification needed for
parallel processing.

• Some software sections are almost directly approached
for parallel processing, being loops the most clear
ones. Loops are the first candidates for parallelization
using OpenMP directives [10]. Also, loops are where
most calculations are carried out, so they have to be
understood in order to transform that processing in
shared/distributed memory parallel computers.

2. The General Approach
The general methodology is similar to that in almost every

software maintenance process apply a single change plus
the necessary software testing with two objectives. Unlike
almost every software maintenance, software testing after
a change in this context is focused on assuring that the
software did not change its behavior. Standard software
maintenance tasks are usually focused in the opposite di-
rection: changing the software behavior (for correcting or
adding/deleting/changing software functionality) [25] [9] [7].
There is one point in common, though: some standard main-
tenance tasks are oriented towards enhancing performance,
which is almost exclusively the focus of the work in this
paper, including software parallelization. There are several
distinguishing characteristics of updating and restructuring
legacy code for (or previously to) parallel processing:
• There are well known update definitions, specifically

in Fortran legacy code. Those updates can be applied
even without knowledge of source code, and applying

those changes may produce better knowledge of the
software. For example: FORTRAN 77 code is on the
so called fixed format, where every line has to begin in
a predefined column. In this context, the change from
fixed to free format can be applied directly to the whole
software, automatically including some code indenting
style. It is not necessary to know anything about the
software, unlike a traditional maintenance task where
something about the software should be known in order
to be changed/deleted/etc.

• The process can be reduced to those routines or
software sections which have the highest processing
requirements of the application. It is possible to take
advantage of profiling in order to identify routines
or code sections with most of the elapsed runtime.
However, this will not be used in this paper, since the
change process will be applied to all of the application,
disregarding those with greater/minor processing re-
quirements. There are mainly two reasons for applying
changes to the whole legacy code:

– Avoiding further mixture of coding styles, since
applying changes to only a section or set of rou-
tines will result in partially changed software: some
sections/routines in old or legacy style and some
others with new features/better style.

– Distributed memory parallel programming usually
implies some coding for adding at least the calls
to send()-recv() communication routines. Includ-
ing code in a partially updated/changed legacy
software can be worse than doing the same task
directly on legacy code without change.

• Some software sections will have much more effort than
others. More specifically, loops will be analysed and
updated so that they will be easily handled in further
parallelization steps.

Specifically, every software change/update will be made
in a series of steps:

1) Identify and save (e.g. in a software version man-
ager) the current legacy software application/program,
which will be taken as the reference. Every change
will be accepted/rejected according to its relationship
to the reference program.

2) Select and apply a specific change/update to be applied
to the reference program. A new program version will
be produced.

3) Check/verify the new program version by comparison
with the previous one. Define and apply software
testing comparison criterion/criteria in order to accept
or reject the new program version. This may/should
include a set of test cases if necessary.

4) Accept/reject the change according to the previous
comparison. An accepted program version will be the
candidate as the current version for the next change.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 653

A rejected program version would be:
• Discarded in order to avoid investing more time/-

effort in a possible useless change.
• Reviewed in order to find out the problem/s and

possible solution/s.
5) Document the accepted/rejected change. In case of

an accepted change, documentation should include at
least a general description of the change plus several
(if not all) specific/actual changes. Specific changes
are highly prone to be produced automatically (e.g.
by a software version manager).

And the complete legacy software update process can be
described as an iteration on these steps, each iteration for
a different specific change, as shown in Fig 1, which has
several points in common with [11] [13] [14]. The first and

Fig. 1: Software Update Process

last steps can be considered almost automatically made by
some well-known tools. The Change step on Fortran legacy
code has some issues directly related to the language (e.g.
old and deprecated Fortran features), others related to the
original software development tools/methodology (or lack
of), and current software version, and others related to the
environment for which the updated software is expected to
run (i.e. parallel computing hardware). The Change step is
almost about implementation details of the specific change
and the tool selected for implementation. The Check step is
one of the most interesting steps, entailing software testing.
Some software testing is directly related to the application,
specifically about analysing and comparing program output.
However, given that some changes are about readability (i.e.
mostly syntax) it is also expected a priori that the change

on itself can be verified without knowledge of the applica-
tion/output. The Accept/Reject involves a difficult decision
in numerical applications: whether something changes in the
output it is safe to accept the new version or not. This is
particularly difficult because numerical code is frequently
used for simulating a system, and numerical models do not
necessarily have a unique (correct) output. Specific decisions
and implementations of these steps on the CGM described
above are shown in the next section.

3. Defining and Verifying Changes
There are several issues/decisions involved in the legacy

software update process as described in the previous section.
At the highest level of abstraction, some decisions are related
to the software feature which needs improvement. At the
lowest level of abstraction, there are also several choices
such as the tool/s used in the process. This section is focused
in the most time and effort consuming updating process
steps: Change, Check, and Accept/Reject.

3.1 Possible Changes: Update/Restructure
The first changes applied to the legacy CGM described

above have a dual purpose: enhance readability and high-
light issues relevant to the parallelization process. Many
of the parallelization issues are related to data involved in
each calculation, whether it is local to a routine or used
from global memory (Fortran Common blocks). Beyond
the classical side effect problems, global memory usually
makes harder the parallelization process. More global mem-
ory accessed in more routines necessarily implies more
data traffic (communications) in distributed memory parallel
computers such as clusters. Furthermore, more data traffic
in general also implies performance penalizations since the
multi-core caches become insufficient and/or dirty more
often at runtime. Also, some changes are related to old
and/or bad coding practices, sometimes accepted by Fortran
compilers as language extensions. Surprisingly, most of those
bad coding practices are not accepted in almost any of the
standards, but just as language extensions and mostly non-
portable features.

1) Remove Tabs: The tab character is not a legal char-
acter in any Fortran standard source code. The GCM
as well as other legacy code include such characters
and are accepted by compilers via the so called For-
tran compiler or language extensions. Also, the tab
character is handled rather freely by editors and IDEs
(Integrated Development Environments), so it is far
from enhancing readability.

2) Change Fixed Form to Free Form: Fixed form
source code format was removed as mandatory from
the Fortran standard since Fortran 90 [3]. This old
language feature makes difficult the process of reading
and understanding source code. Furthermore, fixed
format source code is prone to errors since blanks

654 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

(white spaces), for example, are not meaningful and
can be used (or not used) almost freely in the code. It
is worth noting that fixed source form is fully standard
compliant [17].

3) Replace Old Style DO Loops: FORTRAN 66 and
FORTRAN 77 do not have an end loop statement,
it was introduced in the Fortran 90 standard [1] [2]
[3]. As a consequence, DO loops use continue state-
ment as an ending point or use a labeled statement
in the worst-case scenario. Furthermore, shared DO
loop termination becomes a coding style that hinders
program readability. Loops are necessarily analyzed
and must be well known, since most of the numerical
processing is made in loops. Loops are at the initial
focus for using OpenMP, for example, in the context
of shared memory parallel computing. In distributed
memory parallel computing it is necessary to know
every data involved in every loop in order to find out
the amount of local and non local data and, thus, the
communication needs at each processing step.

4) Replace Obsolete Operators: Old FORTRAN logical
operators (.lt., .eq., etc.) were replaced with those
commonly used in modern programming languages:
<=, ==, etc. This specific update enhances readability,
since those old forms for the logical operators are
directly related to low level assembly language (or
even machine code).

5) Standardize Input/Output Format: Formatted I/O
using labels with format specifications has been tra-
ditionally made in Fortran and is currently found in
most of the Fortran legacy code. Labels encourage
some level of abstraction and uniform handling for
I/O but, also, it is possible to spread format labels
across several program sections. When a formatted
I/O statement is found in the program, it is necessary
to locate the corresponding label defining the specific
format. The proposal of standardizing I/O format is
focused on settling:
• Every format is defined as a constant (Parameter,

in Fortran terms) character data (string).
• As a character data, every format is declared in

the proper program section, the specification part
of a Fortran program unit or subprogram.

Thus, labels will not be associated to format strings
and when reading a formatted I/O line in the program
it will be clear where to look for the format definition:
the corresponding specification part.

6) Remove Unreferenced Labels: updating old style DO
loops as well as standardizing I/O formats usually
leads to avoid labels. In fact, avoiding labels generally
enhances legibility, since the code is contained in
structured constructs and, thus, easier to follow (with
exceptions, of course). Other restructuring tasks such
as replacing GOTOs, and remove branch to END IF

statements may also lead to useless labels and, thus,
in some way it becomes important to remove unrefer-
enced labels just to clean up the code. Also, in a large
legacy code it is also possible that some labels had
become unreferenced due to previous modifications
and/or software maintenance tasks.

Some of these specific updates have already been proposed
as so called Fortran refactorings [19] and/or directly imple-
mented in tools such as [27].

3.2 Checking a New Version
The new program version generated from a change such

as those explained above have several ways for checking,
besides the classical verification through a software test-
ing process. The main consideration when updating legacy
software is ensuring that behavior does not change at all.
However, numerical processing implies carrying out large
amount of arithmetic operations on numeric floating point
representations, and this also implies a large number of
involved errors. There are several stages at which a new
program version can be verified:

1) Equivalent source program: some analysis can be made
in order to verify that the new program version has
exactly the same semantics as the previous one.

2) Identical binary program: for those updates that are
directly and exclusively related to syntax, it is a priori
expected that the binary generated by the compiler is
exactly the same.

3) Identical program output: this is the most common
kind of verification/analysis, and it is specially useful

4) Analysis of different program output: many numerical
legacy applications include or directly are numerical
models (such as the GCM described in this paper), so
there is not a unique/exact/correct numerical output.
Thus, some different outputs are equally acceptable.

With the exception of the last item above, verification can
be made almost automatically or at least aided by tools.
The analysis of different program output, though, necessarily
implies the task of an expert who decide if the new results
are acceptable or better/worse than the previous ones. There
are, also, differences among those alternative verifications at
the implementation level. Analyzing equivalence of source
programs is not easy even in this case, where changes can
be considered minimal. At least, the parse trees should be
analyzed and equivalence definition/s should be defined. In-
stead, the analysis of binary code can be made just by simple
tools like the diff command. This tool (o similar one/s)
can be used also for identical program output checking, at
the binary level. The identical analysis (of either program
binary or program output) can be characterized as the most
strict and automatic verification possible, so it is chosen for
the work in this paper.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 655

3.3 Accept or Reject a New Version
Even when the identical analysis has been chosen in this

paper, the (subsequent) parallelization process cannot left
aside. Parallel processing usually (if not always) involves
changing the order in which arithmetic operations are car-
ried out, and this leads to numerical differences due to,
for example, rounding. Thus, parallel processing highlights
almost immediately floating point representation arithmetic
errors/differences and the identical analysis verification be-
comes almost useless in the update process. There are several
alternatives for the correctness verification of a new program
version:
• Low level/internal checking: identify and check numeri-

cal operations (e.g. matrix multiplication and/or method
results (e.g. LU factorization) for specific allowed errors
(e.g. absolute error less than 10−5).

• Whole output/external checking: the numerical error is
verified/computed directly on program output.

Both alternatives require an application expert in order to ac-
curately define every accept/reject decision. Numerical errors
are objective measures, but the impact on the application is
not necessarily directly related to magnitude and/or relative
numerical error value/s.

4. Implementing and Applying Changes
There is a major decision to be taken about the way/tool/

methodology chosen for change/update/restructure legacy
code implementation. As mentioned above, there are some
available tools such as [27] and those referred to in [14].
Instead, this work is focused in open source tools and, also,
working at the AST (Abstract Syntax Tree) level, for several
reasons:
• Open source tools can benefit from previous advance

done in the area. Also, open source software is prone to
be enhanced/completed by a large community for also
a large number of specific updates than those presented
in this paper. Restructuring legacy code is a long-term
project in general, and the work presented in this paper
is just an initial approach.

• Program syntax constructions are better handled at the
AST than at the source code level. Program variables,
for example, are almost immediately identified at the
AST. At the source code level it is necessary to define
several ad hoc rules in order to differentiate a word
inside a comment or belonging to a control structure
from a variable.

• Even when a Fortran parser is not necessarily easy to
develop, there are some Fortran parsers available (one
of them used in this work) and it is not impossible
to develop a new one, since Fortran is a well-known
language.

Several minor decisions are involved as well, related mostly
to specific changes and implementation details.

Photran [28], which is based in the Eclipse CDT (C/C++
Development Tooling) plugin [29], was selected as the so
called refactoring tool. Furthermore, the current Photran
version has already implemented two of the aforemen-
tioned update/restructure changes: Remove Tabs and Replace
Obsolete Operators. One of the most interesting Photran
characteristics is the simple inclusion of new application
restructure changes. Photran is under development and has
several minor failures: fixed form refactoring is unsupported,
the Fortran Include lines are not handled in fixed form
yet, and so forth. Given that the GCM had several Fortran
Include lines, it was decided to replace those lines by the
corresponding #include compiler preprocessing lines. Thus,
the first change applied to the CGM did not have any
relationship with a Fortran deprecated feature and could no
be done in Photran, since Photran is not fully functional
for our work (something possible when working with open
source software). However, the process described above (as
shown in Fig. 1) still applies, it is independent of the tool/s
used for making a specific change. Fortran Include lines
were replaced using a combination of sed (stream editor) and
gfortran (Fortran compiler) options. Fortran Include lines are
rather easily replaced, and the code is strongly changed:
• About 40% of the source code files had Include lines.
• About About 25% of the files became removed/useless.

Also, every change described in section 3.1 was applied
via Photran, and two of them were already implemented
in that tool. The changes specifically implemented and/and
reported in this paper are Change Fixed Form to Free Form,
Replace Old Style DO Loops, Replace Obsolete Operators,
Standardize Input/Output Format, and Remove Unreferenced
Labels

4.1 The Effect of Restructuring
About 10% of the source code files was changed by the

Remove Tab update, and all the source code (100%) was
changed from (FORTRAN 77) Fixed Format to (Fortran 90)
Free Format. Old Style DO Loops were replaced in about
40% of the source code files, and about 15% of the files
were affected by the standardization of I/O format. As a
result of the previous two restructuring changes, Remove
Unreferenced Labels was applied in about 50% of the source
code files. Finally, obsolete operators were replaced in about
50% of the source code files. Fig. 2 shows an example
of legacy code in 2-a) and the corresponding code after
applying some of the implemented updates in 2-b).

As a part of the research on working with legacy code,
some metrics were collected on the GCM shown in Table 1.
The first column, Measure, shows the selected indexes to
be counted on source code, the second column, Before,
shows the resulting number in the legacy code and the third
column, After shows the results in the legacy code after
the restructuring/updating changes have been applied. Some
metrics values show a strong change, such as New Style DO

656 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

i f (cond) t h e n
do 100 l =1 , l a t
do 100 n =1 ,2
do 200 k =10 ,14
do 200 m=1 , l o n
proc_num (m, k , l , n) = 0 . 0

200 c o n t i n u e
100 c o n t i n u e

e n d i f a) Legacy

——————————————

i f (cond) t h e n
do l =1 , l a t

do n =1 ,2
do k =10 ,14

do m=1 , l o n
proc_num (m, k , l , n) = 0 . 0

end do ! u p d a t e d
end do ! u p d a t e d

end do ! u p d a t e d
end do ! u p d a t e d

e n d i f b) R e s t r u c t u r e d

Fig. 2: Free Form and New Style DO Loop Examples.

loops, from 338 to 2648, Old Style DO loops, from 2338 to
0, and Shared DO loops (termination), from 1049 to 0. Some
other legacy code undesirable characteristics remain, such
as GOTO, ENTRY, and COMMON. Among those old non-

Table 1: Source Code Metrics
Measure Before After
GOTO 257 257
ARITHMETIC IF 56 56
DATA 206 206
ENTRY 4 4
COMMON 1388 1388
LABELS 2173 385
FORMAT 240 0
CONTINUE 1008 132
OBSOLETE Oper. 1202 0
END DO 338 2648
DO 2648 2648
New Style DO loops 338 2648
Old Style DO loops 2338 0
Shared DO loops 1049 0

updated features, the most important ones for parallelization
sould be approached, such as COMMON, which is strongly
related to data distribution necessary in distributed memory
parallel platforms (such as clusters).

4.2 Checking
After applying each transformation a verification stage

was carried out, as depicted in Fig. 1. Two different types
of checks/comparisons were performed:
• An initial comparison of programs in binary form.

Basically, if the executable program is the same, the
results (output data) are going to be the same for the

same input data. Each binary program is compared to
the previous version in order to check for changes.
Different binary programs do not necessarily lead to
different results, so another verification is defined in
case of the executable program of the new version
differs from the previous one.

• A final comparison of program output for a set of input
data. No changes are allowed, so output data has to
be exactly the same as that for the original (legacy)
program.

Table 2 shows the way in which every change applied to
the legacy CGM was verified, including the non-planned
change of Fortran Include lines replacement. For every
comparison, the diff and cmp tools were used (i.e. no ad
hoc tool/program was necessary). Column B-Prg stands for

Table 2: Restructuring Verification
Restructuring B-Prg B-Out A/R
(1) Include lines replacement F S A
(2) Remove Tabs S N/A A
(3) Change Fixed Form to Free Form F S A
(4) Replace Old Style DO Loops F S A
(5) Replace Obsolete Operators F S A
(6) Standardize Input/Output Format S N/A A
(7) Remove Unreferenced Labels F S A

“Binary Program Comparison”, where an F indicates that
binary program/executable is different from the previous
one, so the test failed, and an S indicates otherwise, the
binary produced by the compiler after the source code
restructuring is exactly the same as the previous version,
so the test succeeded. Column B-Out stands for “Binary
Data Output” and results were not necessary in case of the
previous test succeeded or were successful otherwise. Finally
column A/R stands for “Accept/Reject” change, and every
change was accepted, i.e. the new program has not changed
behavior/results.

5. Conclusions and Further Work
For this work, seven restructuring software changes have

been applied on a legacy CGM, five of which where
proposed and implemented. One of the most significant
implemented change is the so called “Change Fixed Form
to Free Form”, which has been requested by many Pho-
tran users. It can be considered as a contribution to the
Photran refactoring menu. The complete process has been
proposed and successfully applied to every change, even
when a large proportion of the source code files have been
affected, as described above. The resulting source code has
been highly enhanced in terms of readability and control
structures (processing) identification, so that further changes
are encouraged, specifically those related to parallelization.

Most of the legacy code transformation has been applied
using Photran, which has been proven to be a useful tool
in order to handle Fortran source code. However, neither

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 657

specific changes nor the entire legacy source code restruc-
turing depends on Photran. It is likely that most of the
parallelization process would imply using some different
tool, but the legacy code enhancement is considered to be
strongly necessary step prior to the parallelization task.

The performance of the GCM has not been changed, the
transformations in the source code did not have any effect at
all in the program’s external behavior. The changes made in
the CGM have improved the internal structure by upgrading,
making more readable, and more comprehensible the CGM.
There are more changes that can be performed in the GCM
source code in order to obtain a source code more likely to
be parallelized.

References
[1] American National Standards Institute, X3. 9-1966, American National

Standards Institute Incorporated, New York, 1966.
[2] American National Standards Institute, X3. 9-1978, American National

Standards Institute, New York, 1978.
[3] American National Standards Institute, American National Standard for

programming language, FORTRAN - extended: ANSI X3.198-1992:
ISO/IEC 1539: 1991, American National Standards Institute, 1992.

[4] J. Backus, “The IBM 701 Speedcoding System,” Journal of the ACM,
Vol. 1, No. 1, Jan. 1954.

[5] J. Backus, “The History of Fortran I, II, and III,” ACM SIGPLAN
Notices, Vol. 13, No. 8, Aug. 1978.

[6] K. Bennett, Legacy systems: Coping with success, IEEE Software,
IEEE Computer Society Press, Vol. 12, No. 1, 1995.

[7] K. H. Bennett, V. T. Rajlich, “Software maintenance and evolution: a
roadmap”, Proceedings of the conference on The future of Software
Engineering, Limerick, Ireland, June 2000.

[8] M. L. Brodie, M. Stonebraker, Migrating legacy systems, Morgan
Kaufmann Publishers, 1995.

[9] N. Chapin, J. E. Hale, K. M. Khan, J. F. Ramil, W. G. Tan, “Types
of software evolution and software maintenance”, Journal of software
maintenance and evolution: Research and Practice, Vol. 13, No. 1, 2001,
John Wiley & Sons.

[10] B. Chapman, G. Jost, R. van der Pas, Using OpenMP: Portable
Shared Memory Parallel Programming (Scientific and Engineering
Computation, The MIT Press, 2007.

[11] L. S. Chin, D. J. Worth, C. Greenough, Code Coverage Analysis
for Fortran RAL-TR-2009-019, Aug. 2009, http://www.softeng.rl.ac.uk/
media/uploads/publications/2010/06/RAL_TR_2009_019.pdf

[12] E. P. DeBenedictis, “Will Moore’s Law Be Sufficient?,” SC ’04
Proceedings of the 2004 ACM/IEEE conference on Supercomputing,
IEEE Computer Society Washington, DC, USA 2004.

[13] C. Greenough, Software transformation from Fortran 77 to Fortran 95
of the SHOCK code, SEG Note, SEG-N-007-2010, March 2010, http://
www.softeng.rl.ac.uk/media/uploads/publications/2010/03/mmu.pdf

[14] C. Greenough, D. Worth. The Transformation of Legacy Software:
Some Tools and a Process, RAL Technical Report TR-2003 012, 2004.

[15] ISO, ANSI/ISO/IEC 1539-1:1997: Information technology - Program-
ming languages - Fortran - Part 1: Base language, American National
Standards Institute, 1997.

[16] ISO, ANSI/ISO/IEC 1539-1:2004, Information technology - Pro-
gramming languages - Fortran Part 1: Base Language, International
Organization for Standardization, 2004.

[17] ISO, ISO/IEC JTC 1/SC 22/WG 5/N1830, INTERNATIONAL STAN-
DARD ISO/IEC DIS 1539-1, Information technology - Programming
languages - Fortran - Part 1: Base language, Third edition, 2010.

[18] E. Loh, “The Ideal HPC Programming Language. Maybe it’s Fortran.
Or maybe it just doesn’t matter.,” Queue, Vol. 8, Issue 6, June 2010.

[19] M. Méndez, J. Overbey, A. Garrido, F. G. Tinetti, R. Johnson, A
Catalog and Two Possible Classifications of Fortran Refactorings,
Technical Report, Facultad de Informática, UNLP, Department of
Computer Science, University of Illinois at Urbana-Champaign, Aug.
2010, https://www.ideals.illinois.edu/handle/2142/16950

[20] M. Metcalf, “The Seven Ages of Fortran”, Journal of Computer
Science & Technology (ISSN 1666-6038), Vol. 11, No. 1, April
2011, pp. 1-8. Available at http://journal.info.unlp.edu.ar/journal/jour-
nal30/papers.html

[21] G. E. Moore, “Cramming more components onto integrated circuits”,
Readings in computer architecture, Mark D. Hill, Norman P. Jouppi,
Gurindar S. Sohi (Eds.), Morgan Kaufmann Publishers Inc., 2000,
ISBN 1-55860-539-8.

[22] NASA, Goddard Institute for Space Studies, http://www.giss.nasa.gov/
tools/

[23] H. Sutter “The free lunch is over: a fundamental turn toward con-
currency in software”, Dr. Dobb’s Journal, Vol. 30, No. 3, 2005,
http://www.gotw.ca/publications/concurrency-ddj.htm.

[24] H. Sutter, J. Larus, “Software and the Concurrency Revolution,”
Queue, Vol. 3, No. 7, September 2005.

[25] E. B. Swanson, “The Dimensions of Maintenance”, Proceeding Sec-
ond International Conference on Software Engineering, October 1976.

[26] S. R. Tilley, D. B. Smith, Perspectives on Legacy Systems Reengi-
neering (Draft), Reengineering Center, Software Engineering Institute,
Carnegie Mellon University, 1995.

[27] http://www.fortran.com/tools.html, f2f90.
[28] Photran - An Integrated Development Environment and Refactoring

Tool for Fortran, http://www.eclipse.org/photran/
[29] Eclipse - The Eclipse Foundation open source community website, ,

http://www.eclipse.org/

658 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Broadcast and Partial Computing Algorithms for Cholesky
Factorization on a Cluster of Multicore Computers

Fernando G. Tinetti1, Gustavo Wolfmann2

1III-LIDI, Facultad de Informática, UNLP, La Plata, Argentina
Comisión de Investigaciones Científicas Prov. de Bs. As., La Plata, Argentina

2Lab. de Computación - Universidad Nacional de Córdoba
Av. Velez Sarsfield 1611, Córdoba, Argentina

Abstract— Data dependences are one of the main linear
algebra/numerical methods characteristics preventing paral-
lel computing. Partial Computing is presented in this paper
focused on identifying such dependences and looking for
alternatives in order to compute in otherwise idle/waiting
time. Cholesky factorization is used as a test bed, since it
defines what can be referred to as a classical dependency
pattern in linear algebra methods. The factorization has
a series of steps, some of which enforce the execution in
only one processing node and the result should be then
propagated to other nodes to be used in the next steps.
Identifying and avoiding such sequential computing in a
parallel algorithm usually implies enhancing performance.
Partial computing aims to make progress in the processing
identifying partial results for the future. The data partition
and task distribution considered originally can/should be
reformulated to allow such partial computing.

Keywords: Parallel Computing, Cluster Computing, Parallel Per-
formance, Cholesky Factorization, Partial Computing

1. Introduction
Matrix factorization algorithms are used in the resolu-

tion of linear equations system because of their reliability
as well as well-known performance [7]. There are many
factorizations methods, depending on the properties of the
system. Among them, some of the most well-known ones
are LU, QR, and Cholesky factorization methods. These
methods can be considered also as algorithms, since they
provide a sequence of well defined computational steps for
finding out the corresponding factorization. Also, the tiled
implementation of the algorithms are generally made up
of a series of iterations, and each iteration can be divided
into block factorization and block update tasks [6]. Block
factorization usually obtain the block final value, while
update tasks compute some parts of the remaining data using
the last computed block. Thus, there is a strong dependency
among data computed in previous stages (blocks) and data
pending for computation.

Overcoming data dependences for matrix factorizations
is not a trivial task, since the same final result has to be
obtained. Partial computing is proposed in order to identify

and effectively compute partial results, i.e., results or data
blocks for which some processing can be made in advance,
before every necessary data is available/computed. Thus, the
final value is obtained as a sequence of partial computations;
some of them defined by the method and some others
defined for using otherwise idle/waiting time. In this context,
partial computing borrows some ideas from from data flow
computing [8], but maintaining a direct relationship with
matrix factorization methods and high level specification and
programming.

From a different point of view, the parallelization process
has two main tasks: data distribution and task division
as reflected by the so called parallel patterns [12] [13].
Even when factorizations have many tasks to be potentially
solved in parallel, data dependency impose waiting and,
frequently, there is only one processor effectively computing
while all the others are just waiting. As explained above,
in tiled implementations of factorizations methods, block
factorization has to be completed before block updates, thus,
every processor has to wait for the block factorization to
be completed and, then, update its data with the resulting
factorized block.

Most of the problem lies at data distribution and data
availability for partial computing combined with idle/busy
processors. Partial computing focuses on taking advantage
of idle processing on which at least some of the needed
data are available (or can be available via communication/s
made in background). This is why partial computing is hard
to model in general, and this paper introduces the main ideas
behind a successful approach. The Cholesky factorization
has been selected due to its processing (dependency) pattern
as well as usage on linear algebra applications. There are
many parallelization alternatives to be taken into account,
which are analysed with test results running on different
clusters of multicore computers. Alternative parallelization
algorithms are also presented for comparison.

2. Related Work
ScaLAPACK (Scalable Linear Algebra package) is the ref-

erence library for distributed memory parallel linear algebra
routines [3], as a parallel version of the traditional LAPACK

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 659

library [2]. ScaLAPACK is designed using the message-
passing programming model, arranging the processors on a
2-D rectangular grid. Data is partitioned into square blocks
with a block-cyclic distribution for balanced workload, scal-
ability, and maximum data (re)utilization [5]. Thus, having
np processors or computing nodes the number of rows and
columns, r and c of the processors grid have to be defined
such that np = r ∗ c. Also, the ScaLAPACK users have to
define the optimum data block size for data reuse in the
memory hierarchy of each node as well as for comput-
ing/communication ratio. Furthermore, ScaLAPACKis not
designed a priori to run on an hybrid parallel model, though
it is not difficult to implement some explicit adaptations.

The look ahead technique [16] is an option to overcome
the strong data dependency by overlapping factorization
tasks with update tasks available from previous steps. This
technique is based on a non-blocking broadcast message
implemented in the multicomputer where it was originally
tested. Even though good results were reported for this
technique, it is not completely clear how to balance the
workload among different tasks. Also, non-blocking broad-
cast is not available in the most popular MPI (Message
Passing Interface) implementations, it is only a suggested
feature to be incorporated in future implementations of
MPI [9]. More recently, the look ahead technique has been
applied on multicore computers [10], where the order of
operations in the factorization can be either statically or
dynamically modified.

The PLASMA project [11] is specifically focused on
multi/many-core architectures on which a pipeline of pro-
cessing tasks is defined. High performance is expected to be
obtained on tiling algorithms, which provide processing fine
granularity. The whole processing is presented as a directed
acyclic graph of tasks, in which the edges of the graph
represent dependencies among them [1]. Tasks and data are
assigned to each execution thread in a master/worker style
[13] with dynamic scheduling for balanced workload. As
data is located in shared memory, there is no problem of
data communication. This point of view is very interesting
but suitable only for shared memory. Under distributed
memory, the master/worker synchronization imposes a high
performance penalty for fine grained processing.

A parallel algorithm on distributed memory platforms
such as clusters, traditionally uses MPI with either collec-
tive (basically broadcast) or point-to-point communications.
Message passing algorithms are shown in [16] [17] (and
references therein) including discussions on data distribution
and balanced workload.

3. Parallel Cholesky Factorization
In this section, the Cholesky factorization and the exper-

imentation hardware are described and, later, the different
parallel algorithms are presented along with a discussion
on their performance. Parallel algorithms include the one

provided in the ScaLAPACK library [3], a broadcast imple-
mentation and two alternatives of partial computing.

3.1 Cholesky Factorization
The Cholesky factorization is a classical problem/method

in linear algebra, where a square symmetric positive-defined
matrix A ∈ IRn×n is factorized as:

A = L ∗ LT (1)

where L is a lower triangular matrix, and the elements of
matrix L are computed as:

lij =

(
aij −

j−1∑

k=1

lik ∗ ljk

)
/ ljj 1 ≤ j < i ≤ n (2)

lii =

√√√√aii −
i−1∑

k=1

l2ik 1 ≤ i ≤ n (3)

Clearly, there are specific data dependencies for computing
the elements, which a priori imply a sequence of compu-
tation from the top left to the bottom right matrix corners.
However, specific calculations may be carried out in several
different sequences, given that they fulfil the data dependen-
cies defined in Eq. (2) and Eq. (3) above.

3.2 Experimentation Environment
Three clusters were for running the performance experi-

ments:
• Cluster 1, with six interconnected computers (nodes),

two of them are dual quad-core Intel Xeon 5420 pro-
cessors and 8 GB RAM. The remaining four computers
have two dual-core AMD Opteron 2200 processors and
4 GB RAM. Every node has two NIC (Network Inter-
face Cards): Ethernet Gb/s and (Flextronics) Infiniband
4x interfaces, with a nominal bandwidth of 20 Gb/s.
Every node have Centos 5.3 operating system. The MPI
implementation available is OpenMPI 1.3.4. Compiler
used is Sun studio 12.1, including the Sun Sunperf
library which, in turn, includes a BLAS and LAPACK
implementation.

• Cluster 2, with seven identical nodes. Each node has
two quad-core Intel Xeon 5420 processors, 8 GB RAM,
Ethernet 100 Mb/s, and Infiniband 20 Gb/s intercon-
nection networks. The installed OS is also Centos 5.3,
the MPI implementation is MVAPICH 1.1, and the
compiler is Intel ifort 11.0, with Intel MKL, which also
includes a BLAS and LAPACK implementation.

• Cluster 3, with 8 identical nodes. Each node has two
quad-core Intel Xeon 5420 processors, 16 GB RAM,
Ethernet 100 Mb/s, and Infiniband 20 Gb/s interconnec-
tion networks. The installed OS is also Centos 5.3, the
MPI implementation is OpenMPI 1.4.1, and compiler
Intel ifort 11.0, with Intel MKL, (including BLAS and
LAPACK).

660 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

The so called hybrid parallelism (for shared and distributed
memory parallel processing) has been set as a requirement
for every parallel algorithm [14] [15]. Basically, every paral-
lel algorithm has been implemented as a combination of MPI
for distributed memory and threads for shared memory (via
the pthreads library or the OpenMP [4] implementation made
by the compilers). Local processing is made calling BLAS
and/or LAPACK routines such as sgemm(), spotrf(), ssyrk()
and strsm() routines which are also used by ScaLAPACK
and PLASMA algorithms. Previous work [18] has shown
that
• Calling optimized library routines for node local pro-

cessing provides near optimum speed up.
• The focus must be inter-node parallel processing instead

of intra-node parallel processing.
Also, using the same libraries for local processing at each
node defines a fair baseline for parallel algorithms compar-
ison.

3.3 ScaLAPACK Performance
The specific ScaLAPACK routine for Cholesky factoriza-

tion is pspotrf() and the corresponding experiment results in
Cluster 1 are shown in Table 1. The best results are obtained
for data block size nb = 64, and the results for nb = 256
are also shown in Table 1. Basically, the cluster is used as

Matrix Size Scalapack nb=64 Scalapack nb=256
12000 13.47 16.69
18000 40.52 64.05
24000 92.40 161.64

Table 1
SCALAPACK RUNTIME (SECS.) IN CLUSTER 1 USING INFINIBAND, 32

MPI PROCESSES.

a homogeneous distributed memory parallel computer with
32 processors.

3.4 Broadcast Based Parallel Algorithm
Parallelizing an algorithm implies defining a data dis-

tribution and a task partitioning amongst processors. For
numerical problems/methods, the data dependences have to
be taken into account. From Eq. (3) it is easy to see that
the element in the main diagonal only needs the values
previously computed in the corresponding row, then the
row block data partitioning seems to be a natural choice.
According to Eq. (2) elements lij below the main diagonal
require elements from two rows, i and j (not the complete
rows, though). Thus, if the row block data partition is
maintained, row j (or the row block containing row j) should
be transmitted to the process containing row i.

In terms of sequential computing steps, computing the
elements of matrix L from the initial elements of matrix A
can be roughly described as in Table 2, which also provides

Step Processing
1 Compute the value in the main diagonal l11
2 Use l11 for computing lj1, 1 > j ≥ n
3 Compute the value in the main diagonal l22
4 Use li2 for computing lj2, 2 > j ≥ n
5 Compute the value in the main diagonal l33
6 Use li3 for computing lj3, 3 > j ≥ n
... ...

Table 2
SEQUENTIAL COMPUTING STEPS

a natural basis for a broadcast based parallel algorithm.
Also, note that lij can be used as single elements as well
as square submatrices/blocks. Clearly, elements in the main
diagonal are used to compute the elements in the same
column and in subsequent rows: when row i is computed,
all the values for column i in the remaining rows can be
computed. The algorithm can be specified as an iteration in
each process as shown in Fig. 1 with a C-like pseudocode.
As an example, Fig. 2 shows the steps of iteration 3, where

for i = 1 to n {
if (row i is local) {

Compute lii
Send row i to other processes

} else {
Receive row i
Compute local values at column i

}
}

Fig. 1
BROADCAST BASED ALGORITHM: ITERATIONS IN EACH PROCESS.

dark gray indicates computed values before the iteration
begins, which are the values at columns 1 and 2. Fig. 2-a)
shows the first computing step, in which l33 is computed,
and Fig. 2-b) shows the second and third steps: broadcast and
computing the values at column 3 in every process. Table 3
shows the obtained results in the Cluster 1 with the broadcast
algorithm. The best ScaLAPACK results in Cluster 1 are
also shown in Table 3 (copied from Table 1) for an easier
comparison. It is worth noting that the broadcast algorithm

Matrix Size Scalapack nb=64 Broadcast
12000 13.47 13.53
18000 40.52 38.08
24000 92.40 82.75

Table 3
RUNTIME (SECS.) OF THE BEST SCALAPACK AND BROADCAST

ALGORITHMS IN CLUSTER 1.

was implemented by using the corresponding MPI_Bcast

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 661

a)

b)

Fig. 2
BROADCAST ALGORITHM AT ITERATION 3.

and the interconnection network used by the MPI library
is the same. Performance results for the Brodcast based
algorithm are slightly better than those obtainted by ScaLA-
PACK. ScaLAPACK and broadcast algorithms have similar
performance, but it does not mean that this is an acceptable
or good performance. Tracing and profiling tools become
highly useful in order to analyze and optimize parallel
algorithms, since those tools allow to identify “hot spots”,
bottlenecks, synchronization penalties, etc. Sun Performance
Analyzer is a free tool included in the Sun compiler suite,
which allows to obtain a graphical runtime profile and it was
used for this specific algorithm. Fig. 3 shows the runtime
behavior of the broadcast based algorithm in Cluster 1
for a matrix of size n = 18000: vertical lines represent
synchronization points/broadcast messages, light gray areas
represent computing and light blue (darker gray in black and
white printing) represent the time during which processors
are idle. Clearly, there is a large amount of time with idle
processors, being the end of iteration n− 2 one of the most
extreme cases:
• The processor containing the last block must wait for

the n − 1 iteration to be completed in order to use
the corresponding values to compute local columns of
related to block n− 1.

Fig. 3
BROADCAST BASED ALGORITHM PROFILE, n = 18000.

• Most of the data available for computing local columns
of the last row block related to block n− 1 are already
computed, but in the process containing row block n−1.

• Most of the imbalanced workload of the last iteration
are due to computation which can be made in previous
iterations.

3.5 Partial Computing Underlying Ideas
Partial computing follows the terminology of PLASMA,

which is focused on identifying computing tasks. In this
context, a computing task is just a unit of work, and my
involve one or many scalar or submatrix operations. Partial
computing divide the whole processing in terms of tasks that
compute a partial result and hold these results until the final
value is computed when all the needed data are available.
The tasks are defined so that partial results become available
for other partial results in an otherwise idle processor. For
a matrix with n = 8, and taking into account Eq. (2), l8,7 is
obtained as

l8,7 =
(
a8,7 − l8,1 ∗ l7,1 − l8,2 ∗ l7,2 − . . .

−l8,5 ∗ l7,5 − l8,6 ∗ l7,6

)
/l7,7

At the end of the second iteration, for example, l8,1, l7,1, l8,2,
and l7,2 are completely computed, thus the partial involving
those elements can be carried out. In general, at the end of
iteration h, 1 ≤ h ≤ j − 1, all the values of the columns
up to h are computed, and the final value for lij can be
unfolded as:

lij =

(
aij −

h∑

k=1

lik ∗ ljk −
j−1∑

k=h+1

lik ∗ ljk

)
/ljj (4)

1 ≤ h ≤ j − 1

where the first subtraction can be computed, which involves
values in columns 1 to h. Thus, every idle processor is able
to compute a partial result on local lij provided it receives

662 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

the corresponding values of row j. Elements in the main
diagonal are computed according to Eq. (3), and partial
computing can also be applied for those calculations. Data
dependences are simpler for elements at the main diagonal,
since the required data elements belong to the same row,
so no communication is involved for a row block data
distribution. Partial computing can be identified as in the
previous case, for elements below the main diagonal, by
identifying idle processors at each iteration. At the end of
iteration h, processors with elements at rows h + 2, . . . , n
could make in advance some partial calculations for their
elements at the diagonal but, instead, they wait for the whole
elements of the corresponding rows to be fully computed.

Partial computing on the main diagonal values will be im-
plemented and experimented with in a first stage, given that
its implementation is straightforward, i.e. the implementation
does no involve any communication. Later, partial computing
will be applied in order to compute other element/s of matrix
L.

3.6 Partial Computing on the Main Diagonal
At the end of iteration h it is possible to use some the

computed values in row i so that the additions in Eq. (3)
can be unfolded as

i−1∑

k=1

l2ik =
h∑

k=1

l2ik +
i−1∑

k=h+1

l2ik (5)

where the elements lik, 1 ≤ k ≤ h are already computed
and the elements lik, h + 1 ≤ k ≤ n are not yet computed.
Thus, partial computing with elements lik, 1 ≤ k ≤ h can be
immediately made on each processor without any additional
data communication.

Partial computing on the elements in the main diagonal
is included in the broadcast based parallel algorithm al-
most straightforward. Table 4 includes the results obtained
in Cluster 2 for different combinations of algorithms and

Matrix Size Bcast-E PCompD-E Bcast-I PCompD-I
12000 10.99 9.41 7.29 5.82
18000 30.53 25.73 22.42 17.56
24000 62.95 52.03 48.48 37.50

Table 4
ALGORITHMS RUNTIMES (SECS.) USING ETHERNET AND INFINIBAND

IN CLUSTER 2.

available interconnection networks:
• Bcast-E: broadcast based algorithm using Ethernet Gb/s

interconnection network.
• PCompD-E: broadcast based algorithm with diagonal

values partial computing using Ethernet Gb/s intercon-
nection network.

• Bcast-I: broadcast based algorithm using Ethernet In-
finiband interconnection network.

• PCompD-I: broadcast based algorithm with diagonal
values partial computing using Infiniband interconnec-
tion network.

Table 5 shows the runtimes for the algorithms in Cluster 1
and Cluster 3 using Infiniband for every data communication,
where
• Bcast-i is the broadcast based algorithm in Cluster 1

and Cluster 3.
• PCompD-i is the broadcast based algorithm with partial

computing in the diagonal values in Cluster 1 and
Cluster 3.

Matrix Size Bcast-1 PCompD-1 Bcast-3 PCompD-3
12000 16.95 12.90 4.77 4.34
18000 47.31 37.43 13.19 10.61
24000 105.17 83.86 27.20 21.83

Table 5
ALGORITHMS RUNTIMES (SECS.) USING INFINIBAND IN CLUSTER 1

AND CLUSTER 3.

Results in Table 4 clearly confirm that using Infiniband
reduces the runtime, since Infiniband is faster than Gb/s Eth-
ernet. Also, partial computing reduces runtimes in varying
amounts: between 14.38% and 17.35% using Ethernet and
between 9.01% and 23.89% using Infiniband.

Partial computing on the elements belonging to the main
diagonal enhances performance, but there are some more
performance issues. as indicated by Fig. 4. More specifically,

Fig. 4
RUNTIME PROFILE OF THE ALGORITHM WITH PARTIAL COMPUTING IN

THE MAIN DIAGONAL, N=18000.

partial computing reduces the last computing period of time
(at the bottom right corner in Fig. 4), which is carried out
at the node with the last element/s of the main diagonal.
However, there is still idle time in which other partial
computing can be carried out, as explained in the next
section.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 663

3.7 More Partial Computing
The extreme cases of idle and overloaded processors can

be easily identified in Fig. 4:
• Processor with the first row block is idle most of the

runtime.
• Processor with the last row block is processing most of

the runtime.
And this implies a strong unbalanced workload with its
corresponding proportional performance penalization. Partial
computing is proposed for solving this unbalanced workload.

Most of the work in the processor with the last row block
is related to the elements at the main diagonal computing
and, the values immediately below the main diagonal. Partial
computing is already being done on the elements at the
main diagonal, with performance gains. Thus, partial com-
puting on the elements below the main diagonal in the last
processor seems a natural idea for enhancing performance.
Furthermore, the element below the main diagonal requiring
most of the arithmetic operations is ln,n−1, and taking into
account Eq. (4), ln,n−1 can be partially computed at the end
of iteration h as

ln,n−1 =

(
an,n−1 −

h∑

k=1

lnk ∗ ln−1,k

−
n−1∑

k=h+1

lnk ∗ ln−1,k

)
/ln−1,n−1 (6)

1 ≤ h ≤ n− 1

and, more specifically, partial computing can be made with
all the data available at the end of iteration h, i.e. on

h∑

k=1

lnk ∗ ln−1k

Partial computing on ln,n−1 should not be made in the node
with the last row (it will be called node n), which is already
overloaded. Node 1 (the node with row block 1) is the node
with less workload (shown at the top of Fig. 4) so it is
chosen as the node on which the partial computing will be
carried out. Having decided that partial computing will be
carried out for element ln,n−1 and on node 1, the values
involved in the calculations have to be transferred from the
proper nodes to node 1. Thus, each iteration will have two
more communications among nodes with row blocks n− 1
and n (i.e. node n − 1 and n respectively) and node 1. At
this point, the algorithm with partial computing in diagonal
elements and element ln,n−1 is completely defined, and the
implementation is relatively straightforward.

The algorithm from previous section was modified such
that nodes n and n− 1 send blocks lnh and ln−1,h to node
1 at the end of each iteration h. Results in Cluster 2 using
Ethernet and Infiniband interconnection networks are shown
in table 6, where
• PCompD-E: partial computing made only on diagonal

values, using Ethernet network for communications.

• PComp2-E: partial computing made on diagonal values
and ln,n−1 values, using Ethernet network for commu-
nications.

• PCompD-I: partial computing made only on diagonal
values only, using Infiniband network for communica-
tions.

• PComp2-I: partial computing made on diagonal values
and ln,n−1 values, using Infiniband network for com-
munications.

Note that the algorithm runtimes for partial computing
on diagonal values are the same as in Table 4. Table 6

M. Size PCompD-E PComp2-E PCompD-I PComp2-I
12000 9.41 8.91 5.82 5.21
18000 25.73 23.74 17.56 15.77
24000 52.03 47.84 37.50 33.87

Table 6
PARTIAL COMPUTING ALGORITHMS RUNTIMES (SECS.) USING

ETHERNET AND INFINIBAND, IN CLUSTER 2.

again shows that Infiniband network runtimes are better
than Ethernet network runtimes, as expected. Also, adding
more partial computing also enhances performance between
5.31% and 10,48%. Table 7 show similar results in Cluster
1 and Cluster 3, where
• PCompD-1: partial computing made only on diagonal

values only in Cluster 1.
• PComp2-1: partial computing on diagonal values and

ln,n−1 values in Cluster 1.
• PCompD-3: partial computing made only on diagonal

values only in Cluster 3.
• PComp2-3: partial computing on diagonal values and

ln,n−1 values in Cluster 3.

M. Size PCompD-1 PComp2-1 PCompD-3 PComp2-3
12000 12.90 11.31 4.34 3.43
18000 37.43 32.79 10.61 8.55
24000 83.86 73.88 21.83 17.65

Table 7
PARTIAL COMPUTING ALGORITHMS RUNTIMES (SECS.) USING

INFINIBAND IN CLUSTER 1 AND CLUSTER 3.

Fig. 5 shows the runtime profile for the new algorithm (i. e.
with partial computing on ln,n−1), which is clearly different
in several details from that shown in Fig. 4. Node 1 is
involved in computing at each iteration and, also, there are
more communications, indicated by lines to/from node n
and n−1 from/to node 1. There is another interesting detail
in Fig. 5: node 1 is assigned more workload, and idle time
in node 2 becomes more important from the point of view
of unbalanced workload and performance penalty. This may
lead to further apply partial computation to other elements
of L. The objective is always the same: reduce overloaded

664 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

processors calculations by assigning those calculations to
idle processors.

Fig. 5
RUNTIME PROFILE OF THE ALGORITHM WITH PARTIAL COMPUTING IN

THE MAIN DIAGONAL AND ELEMENT ln,n−1 , N=18000.

4. Conclusions and Further Work
Partial computing results in performance enhancement for

parallel algorithms with specific data dependency. Also, it
can be applied iteratively/incrementally according to runtime
profile, as shown in the previous section. Basically, available
data for partial computing has to be identified, and the nec-
essary communications have to be included in the algorithm
in order to carry out in advance several operations. Partial
computing results can be used on existing parallel algorithms
where operations have to be delayed for data availability, as
shown for the Cholesky matrix factorization.

Partial computing successfulness depends on the math-
ematical formulas of the algorithm, data distribution, and
configuration of the cluster used for parallel computing.
Partial computing may lead to a a reformulation of the
original data and processing distribution.

The immediate next task in this research involves finding
the optimum partial computing usage for the Cholesky
matrix factorization from the point of view of performance.
Next, other matrix factorizations such as LU and QR should
be taken into account. Beyond the algorithm-by-algorithm
study, it is expected to define a general model at least for
linear algebra operations/methods.

References
[1] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,

H. Ltaief, P. Luszczek, S. Tomov, “Numerical linear algebra on
emerging architectures: The PLASMA and MAGMA projects”, Journal
of Physics: Conference Series, Vol. 180, No. 1, 2009.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz,
A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen, “LA-
PACK: A Portable Linear Algebra Library for High-Performance
Computers”, Proceedings of Supercomputing ’90, pages 1-10, IEEE
Press, 1990.

[3] L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley,
D. Walker, R. Whaley, ScaLAPACK Users’ Guide, SIAM, Philadelphia,
1997.

[4] B. Chapman, G. Jost, R. van der Pas, Using OpenMP: Portable
Shared Memory Parallel Programming (Scientific and Engineering
Computation, The MIT Press, 2007.

[5] Jaeyoung Choi, Jack Dongarra, Roldan Pozo, David W. Walker, LA-
PACK Working Note 55: ScaLAPACK: A Scalable Linear Algebra Li-
brary for Distributed Memory Concurrent Computers, 1992, University
of Tennessee, Knoxville, TN, USA.

[6] J. Dongarra, D. Walker, “Libraries for Linear Algebra”, in High
Performance Computing: Problem Solving with Parallel and Vector
Architectures, G. W. Sabot, Ed., Addison-Wesley Publishing Company,
Inc., pp. 93-134, 1995.

[7] G. H. Golub, C. F. Van Loan, Matrix Computation, 2nd ed., The John
Hopkins University Press, Baltimore, Maryland, 1989.

[8] J. Herath, T. Yuba, N. Saito, “Dataflow computing,” in Parallel
Algorithms and Architectures, Lecture Notes in Computer Science,
A. Albrecht, H. Jung, K. Mehlhorn, Eds., 1987.

[9] T. Hoefler, A. Lumsdaine, W. Rehm, “Implementation and performance
analysis of non-blocking collective operations for MPI”, SC ’07:
Proceedings of the 2007 ACM/IEEE conference on Supercomputing,
Reno, Nevada, 2007,

[10] J. Kurzak, J. Dongarra, “Implementing Linear Algebra Routines on
Multi-core Processors with Pipelining and a Look Ahead”, Applied
Parallel Computing. State of the Art in Scientific Computing, 8th
International Workshop, PARA 2006, Umeå, Sweden, Revised Selected
Papers, 2006.

[11] J. Kurzak, H. Ltaief, J. Dongarra, R. Badia, “Scheduling Dense
Linear Algebra Operations on Multicore Processors,” Concurrency and
Computation: Practice and Experience, Vol. 22, no. 1, pp. 15-44,
January, 2010.

[12] B. L. Massingill, T. G. Mattson, B. A. Sanders, “Reengineering
for Parallelism: An Entry Point for PLPP (Pattern Language for
Parallel Programming) for Legacy Applications,” in Proceedings of the
Twelfth Pattern Languages of Programs Workshop (PLoP 2005), 2005.
http://www.cise.ufl.edu/research/ParallelPatterns/plop2005.pdf

[13] T. G. Mattson, B. A. Sanders, B. L. Massingill, Patterns for parallel
programming, Addison-Wesley Professional, ISBN 0321228111, 2004.

[14] L. A. Smith, Mixed Mode MPI / OpenMP Programming,
Edimburgh Parallel Computing Centre, Edimburgh, 2000,
http://www.cslab.ntua.gr/courses/pps/files/Mixed_Mode_MPI-
OpenMP_Programming-Tutorial.pdf

[15] Lorna Smith, Mark Bull, “Development of mixed mode MPI /
OpenMP applications”, Scientific Programming, Vol. 9, Issue 2, Aug.
2001.

[16] P. E. Strazdins, “A Comparison of Lookahead and Algorithmic
Blocking Techniques for Parallel Matrix Factorization”, International
Journal of Parallel and Distributed Systems and Networks, 4(1), Jun
2001, ACTA Press Calgary, pages 26-35.

[17] Fernando G. Tinetti, Fernando Romero, “Factorización de Matrices
Cholesky: Paralelización y Balance de Carga”, XI Congreso Argentino
de Ciencias de la Computación (CACIC), Concordia, Entre Ríos, Oct.
2005, http://ftinetti.webs.com/reptec2005-2008/

[18] Fernando G. Tinetti, Gustavo Wolfmann, “Parallelization Analysis on
Clusters of Multicore Nodes using Shared and Distributed Memory
Parallel Computing Models”, Proc. 2009 World Congress on Computer
Science and Information Engineering, IEEE Computer Society, Los
Angeles/Anaheim, USA, April 2009, ISBN 978-0-7695-3507-4/08.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 665

Parallel Smith-Waterman Algorithm for DNA sequences

Comparison on different cluster architectures

Rucci Enzo, De Giusti Armando E., Chichizola Franco.

Instituto de Investigación en Informática LIDI (III-LIDI) – Facultad de Informática – Universidad Nacional

de La Plata. Argentina

{erucci, degiusti, francoch}@lidi.info.unlp.edu.ar

Abstract –DNA sequence alignment is one of the most

important operations of bioinformatics. In 1981, Smith and

Waterman developed a method for sequences local alignment.

However, in practice, various heuristics are used due to the

processing and memory requirements of Smith and

Waterman's algorithm.

Even though they are faster, heuristics do not ensure that the

optimal alignment is found. For this reason, it is interesting to

study how to apply the computer power of different parallel

platforms to speed up the sequence alignment process without

losing result accuracy.

In this paper, a parallelization of Smith-Waterman algorithm

is presented using a pipeline scheme due to the data

dependencies inherent to the problem. Also, a comparative

analysis is carried out regarding the behavior of this

algorithm on different multiprocessor architectures:

heterogeneous cluster and multicore cluster.

Finally, the results obtained with the different tests performed

are presented, as well as future research lines.

Keywords: Bioinformatics, Sequence Alignment, Parallel

Algorithms, Clusters, Multicores, Heterogeneity.

1 Introduction

 The study of distributed and parallel systems is one of

the most active research lines in Computer Science nowadays

[1][2]. In particular, the use of multiprocessor architectures

configured in clusters, multiclusters, grids and clouds,

supported by networks with various characteristics and

topologies, has become general, not only for the development

of parallel algorithms but also for the execution of processes

that require intensive computation and the provision of

concurrent Web services [3][4][5][6].

One of the areas of greatest interest and growth in the

last few years within the field of parallel processing

applications is that of the treatment of large volumes of data

such as DNA sequences. The extensive comparison

processing required to analyze genetic patterns demands a

significant effort in the development of efficient parallel

algorithms [7].

Up to some years ago, the idea of a direct application of

computer methods in natural sciences was odd and not very

convincing. However, it is now evident that any serious

advance in our knowledge and understanding of, for instance,

the complex mechanisms of the cells, would be impossible

without the help of powerful algorithms and fast computers.

DNA is the biological element that differentiates species,

or the so-called “types”. Therefore, DNA sequence profiling

is carried out as a worldwide effort. With the development of

techniques that allow unraveling the information contained in

DNA, conditions were favorable for the emergence of

bioinformatics, which is a branch that seeks not only to

acquire, store and organize the biological information

contained in DNA molecules, but also to analyze and interpret

these data. It involves the resolution of complex problems

using tools provided by computational systems. The diagnosis

and treatment of medical conditions, the production of

genetically enhanced foods, or the identification of living

beings focusing on traceability or paternity systems are,

among others, major applications in the area. The more

complete the genetic information used for the analysis is, the

higher the certainty of the analysis will be.

The center for all bioinformatic operations and analyses

is partly held by Sequence Alignment, both for pattern

searching among amino acid and nucleotide sequences, and

for the search of phylogenetic relationships among organisms.

The Smith-Waterman algorithm for local alignment is one of

these methods; it focuses on similar regions only in part of the

sequences, which means that the purpose of the algorithm is

finding small, locally similar regions. This method has been

used as the basis for many subsequent algorithms and is

oftentimes used as basic pattern to compare different

alignment techniques. If the length of the sequences involved

are N and M, the complexity of the algorithm is O(NxM).

Thus, the problem is escalated as the square of sequence size

[8].

 Taking into account that sequences can have up to 10
9

nucleotides each, the time and memory required to solve this

problem in a sequential manner is impracticable. This leads to

the parallelization of the algorithm over powerful parallel

architectures.

666 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

1.1 Distributed Parallel Architectures

 The term cluster is applied to sets of computers built

with standard hardware components that act as if they were an

only computer [9]. Nowadays they play an important role for

the solution of problems from the science, engineering, and

modern commerce fields [10]. Cluster technology has evolved

to support activities that go from supercomputing applications

and mission-critical software, web servers and e-commerce, to

high-performance databases, among other uses.

 Clusters computing is the result of the convergence of

several current trends, including the availability of cheap

high-performance processors and high-speed networks, the

development of software tools for high-performance

distributed computation, and the growing need for computer

power for the applications that require it [11].

 Building cluster nodes is relatively easy and economic

due to their flexibility: they can all have the same hardware

configuration and operating system (homogeneous cluster), or

they may have different hardware and/or operating system

(heterogeneous cluster). This feature is an important factor

when analyzing the performance that a cluster can offer as a

parallel machine [12].

 The technological change caused by energy consumption

and heat generation problems that appear when escalating

processor speed has caused the appearance of multicores. This

type of processors is formed by the integration of two or more

computer cores within the same chip, and increases

application performance by dividing computing work among

all available cores [13] [14].

 The incorporation of this type of processors to

conventional clusters gives birth to an architecture that

combines shared and distributed memory, known as multi-

core cluster [15][16].

1.2 DNA Sequence Comparison on a Multi-

core Cluster and a Heterogeneous Cluster

 In this paper, the parallelization of Smith-Waterman

algorithm is analyzed for the alignment of DNA to determine

the similarity degree between two large chains. The behavior

of the parallel solution on two distributed architectures is

considered: multi-core clusters and heterogeneous cluster.

 In this context, it is important to study algorithm

parallelization so that they are efficient in the different cluster-

type distributed architectures: partially or totally distributed

memory [17][18].

 In particular, the approach of the application to study is

attractive due to its complexity and the possibility of breaking

down parallel algorithm concurrency into “blocks” of

different dimensions, which allows an optimal adaptation of

the application to the support architecture.

 In Section 2, the Smith-Waterman algorithm is

explained, together with the sequential and the parallel

solutions used in this paper. In Section 3, the experimental

work carried out is described, whereas in Section 4, the results

obtained are presented and analyzed. Section 5 presents the

conclusions and future lines of work in relation to this paper.

2 Smith-Waterman Algorithm

Definition

 This method allows aligning two DNA sequences by

inserting gaps (if necessary) that are used to detect locally

similar regions that may indicate the presence of a relation

between both sequences, which is done by assigning a

similarity score. If gaps are inserted, that is, certain elements

of the sequences are not aligned to achieve a better overall

alignment, a penalization is applied.

 The algorithm calculates a similarity score between two

sequences and then, if necessary, employs a backwards

alignment process for an optimal result [7].

 The following paragraphs explain the operation of the

algorithm to find a similarity score between two DNA

sequences.

 Given two sequences: A = a1a2a3…aM and B =

b1b2b3…bN, a matrix H of (N+1)x(M+1) is built, in such a way

that the nucleotide bases that form sequence A label the rows

(starting with 1), and those from sequence B label the columns

(starting with 1). The following steps are applied to calculate

the values of H that will yield the similarity score between A

and B:

a. Start row 0 and column 0 of H with 0, as indicated in

Equation 1.

MjNiHH ji 0and0for000
 (1)

b. Calculate the value of Hij, i [1,..,N] and j [1,..,M]

by means of Equation 2. This value indicates the

maximum similarity between two segments ending in ai

and bj, respectively.

ji

ji

jiji

ji

F

C

baVH
H

),(

0

max
1,1

 (2)

 V(ai, bj) is the matching function that indicates the

score obtained for matching ai with bj. It is based on a

table of values called substitution matrix that

describes the probability of a nucleotide base from

sequence A at position i to occur in sequence B at

position j. The most common matrix is the one that

rewards with positive value when ai and bj are

identical, and punishes with a negative value

otherwise.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 667

 Cij is the score in column j considering a gap, and is

calculated with Equation 3.

)}({max ,1 kgHC jkiikji (3)

 Fij is the score in row i considering a gap, and is

calculated with Equation 4.

)}({max ,1 lgHF ljijlji (4)

 g(x) is the penalization function for a gap of length x,

and is obtained with Equation 5, q being the

penalization applied for opening a gap and r the

penalization for prolonging it.

)0;0()(rqxrqxg (5)

c. The similarity score is obtained as shown in Equation 6.

}{max)0)(0(jiMjNi HG (6)

d. Based on the position in matrix H where the value G was

found (representing the end of the highest-scoring

alignment between both sequences), a backwards process

is performed to obtain the pair of segments with

maximum similarity, until a position whose value is 0 is

reached, this being the starting point of the segment.

2.1 Sequential Solution of Smith-Waterman

Algorithm

 In this section, the sequential solution of Smith-

Waterman algorithm is analyzed with the purpose of

determining the similarity score between two DNA sequences.

This means that the backwards process is not taken into

account when obtaining the segment that represents the

optimal alignment (step d of the algorithm explained in the

previous section is not performed).

 Sequence A

S
eq

u
en

ce
 B

C
ij

 (
g
a

p
)

 Hd

Fij (gap) Hij

Fig. 1. Data dependency scheme.

 Figure 1 shows the data dependency that exists for

calculating matrix values. To obtain Hi,j, the result of Hi-1,j-1

(Hd in Figure 1) is required, and the score must be known

when considering a gap in row i and another one in column j.

This restriction allows calculating H values from top to bottom

and left to right (H11, H12, H13, …H21, H22, H23, …..).

 Taking into account that step d of the algorithm is not

carried out, matrix H does not have to be stored in full, all that

is needed is:

 A vector h of length M+1 that at each position keeps

the value obtained in the last processed row over that

column. Equation 7 shows the values for h

corresponding to the example shown in Figure 1.

 1

1

,1

,

jkH

jkH
h

ki

ki

k (7)

 An element e to temporarily store the last value

calculated in the row that is being processed. In

Figure 1, e = Hi,j-1.

 A vector c of length M+1 that at each position keeps

the maximum score considering a gap in that column.

Equation 8 shows the values for c corresponding to

the example shown in Figure 1.

 jkC

jkC
c

ki

ik

k

,1

 (8)

 An element f that keeps the maximum score

considering a gap in the row that is being processed.

In the example shown in Figure 1, f = Fi, j-1.

2.2 General Parallel Solution of Smith-

Waterman Algorithm

 The data dependency mentioned in the previous section

causes the problem to be solved following a pipeline scheme

where S stages perform the same work over various

consecutive nucleotide subsets of the first sequence (A in

Figure 1). In each cycle, stage si (for i [1, S-1]) receives a

data block from si-1, solves part of its work, and then sends

these results to si+1 (except for the last stage which does not

need to send its results to any other stage). The first stage (s0)

only performs its work by sending partial results

(corresponding to a block) to its successor.

 An important aspect of this solution is selecting the

number of elements (BS) from sequence B that form the data

blocks that are sent from one process to another, taking into

account that:

 Pipeline parallelism is exploited to its maximum

capacity only after S-1 cycles have been processed.

That is, when all stages have received work to do. The

larger the BS, the longer the time required to fill the

pipe, and therefore, the lower its exploitation. From

this point of view, BS should tend to 1.

 If the size of BS is very small, the stages spend more

time communicating partial results than actually

processing information. From this point of view, BS

should tend to N.

 A suitable block size should be found, so that data

communication and data processing can be done

simultaneously. The optimal size does not only depend on the

668 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

architecture used, but also on the communication model

implemented.

 In previous works, a procedure for calculating the

optimal value of BS based on architecture characteristics and

sequence size has been established [19].

2.2.1 Message Passing as Communication Model

 In this case, each pipeline stage is carried out by a

different process pi (for i [0, S-1]), and partial results are

communicated by sending messages between consecutive

processes. The first sequence (A in Figure 1) is distributed by

p0 among the S processes that form the pipeline.

2.2.2 DNA Sequence Distribution

For the parallel solution to be efficient, work load should

be balanced, that is, all processes should work for the same

time.

If the architecture being used is homogeneous, all that is

needed is distributing the first sequence (A in Figure 1)

equally among the various processes that form the parallel

application to achieve a balanced solution.

If an heterogeneous architecture is being used, balancing

the work load is more complex because it depends on the

power of each processing unit (PU). To do this, two concepts

that characterize the architecture being used are applied: the

relative computer power (rcp) and the total computer power

(tcp).

Each processing unit i is characterized by its relative

computer power (rcpi) with respect to the most powerful PU,

and is calculated as shown in Equation 9.

)(PUPower

)(PUPower

i
rcp

best

i (9)

On the other hand, total computer power (tcp) reflects

the power of the architecture as a whole with respect to the

most powerful processing unit, and is calculated as shown in

Equation 10 (assuming an architecture with P processing

units).

1

0

P

i

ircptcp (10)

Based on these characteristics, a generic solution can be

obtained both for homogeneous and heterogeneous

architectures. The distribution of sequences (A and B in Figure

1) is done as follows:

 Process p0 distributes the elements of the first

sequence (A in Figure 1), assigning mi consecutive

nucleotides to pi, for i = 0..S-1. Where mi is

determined based on the relative computer power of

the processing unit where pi is located (rcp). This is

shown in Equation 11.

tcp

rcpM
m i

i

 (11)

 Process p0 sends the entire second sequence (B in

Figure 1) to processes pi, for i = 1..S-1.

3 Experimental Work

The language used for implementations is C with the

MPI library (OpenMPI) to manage communications between

processes.

3.1 Architectures Used

To analyze the behavior of the algorithm, tests were

carried out on two different architectures:

 A standard cluster with three types of monoprocessor

machines (26 in total) communicated through a 100

Mbits Ethernet network. The characteristics of each

computer type are:

- Type 1: Pentium IV 2.4 Ghz, 1 Gb RAM memory.

- Type 2: Celeron 2 Ghz, 128 Mb RAM memory.

- Type 3: Pentium III 700 Mhz, 256 Mb RAM

memory.

 A multi-core cluster: Blade with 8 blades, each with

2 quad core Intel Xeon e5405 2.0 GHz processors.

Each blade has 2 Gb RAM memory (shared between

both processors) and 2 x 6Mb L2 cache for each pair

of cores [20][21].

3.2 Tests carried out with the standard cluster

To carry out these tests, first the relative computer power

of each type of processor must be determined for this type

particular of application. This value is obtained by running the

sequential algorithm (with relatively small sequences, N=M <

2500) on each type of computer. Table 1 shows the computer

power of each type of computer relative to the most powerful

PU (type 1).

Table 1. Relative computer power of each type of processor.

Tests were carried out on subsets of the 26 computers

mentioned in Section 3.1 to obtain the different total computer

powers: 3.2, 5.8, 12.2, 17, 21. Using 4, 8, 16, 24 and 26

processors, respectively.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 669

DNA sequences of various lengths (20000; 40000;

80000; 320000; 640000) were also taken. Table 2 shows the

optimal block size (BS) used in each test in accordance with

the function described in previous works [19].

Table 2. Block size BS used in each test run on the heterogeneous

cluster.

3.3 Tests carried out with the multicore cluster

 Tests were carried out using different numbers of

processing units (cores): 4, 8, 16, 32 and 64. Sequence sizes

were the same as those used for the tests mentioned in 3.2

[22].

 All cluster cores being equal, the total computer power

of the architecture is given by the number of cores used, since

rcpi = 1 for all processing units.

 Table 3 shows the optimal block size (BS) used in each

test in accordance with the function described in previous

works [19].

Table 3. Block size BS used in each test run on the multicore cluster.

4 Results

To assess the behavior of the algorithms developed when

escalating the problem and/or the architecture, the speedup

and efficiency of the tests carried out are analyzed

[1][3][11][23].

The speedup metrics is used to analyze the algorithm

performance in the parallel architecture as indicated in

Equation (12).

meParallelTi

TimeSequential
Speedup (12)

In heterogeneous architectures, the “Sequential Time” is

given by the time of the best sequential algorithm executed in

the machine with the greatest calculation power. “Parallel

Time” is the end time for the entire system.

To assess how good the speedup obtained is, efficiency is

calculated. To this aim, the speedup obtained is compared

with the total computing power (tcp) of the architecture upon

which work is being carried out (which determines the

theoretical speedup), as indicated in Equation (13).

tcp

Speedup
Efficiency (13)

Table 4 shows the efficiency achieved by the algorithm

on the heterogeneous cluster for the different sequence sizes

and processor subsets. Figure 2 is a chart representation of

those same values.

From the results shown in the chart, it can be seen that

the algorithm obtains a good efficiency, especially considering

the interaction model used (pipeline). This efficiency remains

within the range [0.9...0.97], except when using small

sequence sizes in large architectures. This is because the ratio

between the time during which the pipeline is not working in

all its stages and the time the pipeline is full is greater, since

there are many stages and less data to be processed.

As it is to be expected, when problem size increases,

efficiency also increases, whereas when the total computer

power of the architecture (tcp) increases due to a larger

number of processors being used, efficiency decreases.

Table 4. Efficiency achieved during the tests run on the

heterogeneous cluster.

Fig. 2. Efficiency achieved during the tests run on the heterogeneous

cluster.

Table 5 shows the efficiency achieved by the algorithm

on the multicore cluster for the different sequence sizes and

core subsets. Figure 3 is a chart representation of those same

values.

This chart shows that the multicore cluster offers a

greater increase in efficiency when sequence size increases,

and similarly, there is a greater decrease in efficiency when the

number of cores in the architecture increases.

670 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

If we compare the behavior of the algorithm in both

architectures, the multicore cluster offers a better performance

than the heterogeneous cluster. This is partly due to the fact

that communication speed is higher in the multi-core cluster,

which allows working with smaller block sizes BS. By

reducing block size BS, the pipeline is full during more cycles,

which results in a better exploitation of the parallelism.

Table 5. Efficiency achieved during the tests run on the multi-

core cluster.

Fig. 3. Efficiency achieved during the tests run on the multicore

cluster.

5 Conclusions

 In this paper, Smith-Waterman algorithm is parallelized

for the alignment of DNA sequences by means of a pipeline

scheme due to the dependency of data that is inherent to the

problem. A multicore cluster (8 blades with 8 cores each) and

a heterogeneous cluster of monoprocessor computers (26 in

total, 3 different types) are used as experimental architectures.

 The behavior of this algorithm running on these

architectures was analyzed, and it was observed that both

cluster types yield high efficiency levels. The multicore

cluster is slightly superior because its faster communication

speed between processes reduces the overhead.

 On the other hand, the lack of load balance caused by

the lack of accuracy when calculating the relative computer

power of each type of processor of the heterogeneous cluster

causes the yield obtained with this type of architecture to

slightly drop.

 Future lines of work focus on three aspects:

 Solution scalability studies (in relation to sequence

size and number of processors in the cluster).

 Analysis of the impact of heterogeneity when

escalating the problem.

6 References

[1] Grama A., Gupta A., Karypis G., Kumar V., "An

Introduction to Parallel Computing. Design and Analysis of

Algorithms. 2nd Edition". Pearson Addison Wesley. 2003.

[2] Ben-Ari, M. "Principles of Concurrent and Distributed

Programming, 2/E". Addison-Wesley, 2006.

[3] Dongarra J., Foster I., Fox G., Gropp W., Kennedy K.,

Torczon L., White A., "The Sourcebook of Parallel

Computing". Morgan Kauffman Publishers. Elsevier Science.

2003.

[4] Juhasz Z. (Editor), Kacsuk P. (Editor), Kranzlmuller D.

(Editor), "Distributed and Parallel Systems: Cluster and Grid

Computing". Springer; First Edition. 2004.

[5] Di Stefano M., "Distributed data management for Grid

Computing". John Wiley & Sons Inc. 2005.

[6] Miller M., "Cloud Computing: Web-Based applications

that change the way you work and collaborate online". QUE

Publishing. 2008.

[7] Attwood T. K., Parry-Smith D. J., "Introducción a la

Bioinformática". Pearson Education S.A. 2002.

[8] Zhang F., Qiao X., Liu Z., "A Parallel Smith-Waterman

Algorithm Based on Divide and Conquer". Proceeding of the

Fifth International Conference on Algorithms and

Architecture for Parallel Processing. 2002.

[9] Grid Computing and Distributed Systems (GRIDS)

Laboratory - Department of Computer Science and Software

Engineering (University of Melbourne), "Cluster and Grid

Computing". 2007. http://www.cs.mu.oz.au/678/.

[10] Zoltan J., Kacsuk P., Kranzlmuller D., “Distributed and

Parallel Systems: Cluster and Grid Computing”. The

International Series in Engineering and Computer Science.

Springer; 1st edition, 2004.

[11] Wilkinson B, Allen M, “Parallel Programming.

Techniques and Applications Using Networked Workstations

and Parallel Computers”, 2da Edición, Pearson Prentice Hall,

2005.

[12] Al-Jaroodi J, Mohamed N, Jiang H, Swanson D.

“Modeling parallel applications performance on

heterogeneous system”. IEEE Computer Society, 2003.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 671

[13] AMD, "Evolución de la tecnología de múltiple núcleo".

2009. http://multicore. amd.com/es-ES/AMD-Multi-

Core/resources/Technology-Evolution.

[14] Burger T. W., "Intel Multi-Core Processors: Quick

Reference Guide".

/cachewww.intel.com/cd/00/00/23/19/231912_231912.pdf

[15] Mc Cool M., "Programming models for scalable

multicore programming". 2007.

http://www.hpcwire.com/features/17902939.html

[16] Chai L., Gao Q., Panda D. K., "Understanding the

impact of multi-core architecture in cluster computing: A case

study with Intel Dual-Core System". IEEE International

Symposium on Cluster Computing and the Grid 2007

(CCGRID 2007), pp. 471-478. 2007.

[17] De Giusti L., Chichizola F., Naiouf M., De Giusti A.,

Luque E., "Automatic Mapping Tasks to Cores - Evaluating

AMTHA Algorithm in Multicore Architectures". IJCSI

International Journal of Computer Science Issues, Vol. 7,

Issue 2, No 1. 2010.

[18] Bertogna M., Grosclaude E., Naiouf M., De Giusti A.,

Luque E., "Dynamic on Demand Virtual Clusters in Grids".

3rd Workshop on Virtualization in High-Performance Cluster

and Grid Computing (VHPC 08). Spain. 2008.

[19] Chichizola Franco, "Estudio analítico de TB óptimo en

base a caracteristicas del cluster". Technical report III-LIDI.

2011.

[20] HP, "HP BladeSystem".

http://h18004.www1.hp.com/products/blades/components/c-

class.html.

[21] HP, "HP BladeSystem c-Class architecture".

http://h20000.www2.hp.com/bc/docs/support/SupportManual/

c00810839/c00810839.pdf.

[22] Rucci E., "Comparación de modelos de sincronización

en programación paralela sobre cluster de multicores ", Tesina

de grado, Universidad Nacional de La Plata, 2011.

[23] Leopold C., "Parallel and Distributed Computing. A

survey of Models, Paradigms, and Approaches". Wiley, New

York. 2001.

672 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Parallel Optimal and Suboptimal Heuristic Search on

multicore clusters. Performance Analysis

Sanz Victoria, Naiouf Marcelo, De Giusti Armando

III-LIDI, Facultad de Informática, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.

Abstract - Discrete optimization problems are interesting due

to their complexity and applications, particularly in robotics.

In this paper, a parallel algorithm that allows finding

solutions to these problems, is presented. Then, the

modifications that can be applied to it to obtain a second

parallel algorithm that finds suboptimal solutions, reducing

computation time, are studied.

The algorithms proposed are based on two variations of the

heuristic search algorithm Best First Search, and are called

A* and Weighted A*, respectively. The parallel solutions were

implemented using MPI to be run on a multi-core cluster,

taking the N
2
-1 Puzzle as study case.

The experimental work focuses on analyzing the speedup and

efficiency achieved for various initial instances, varying

architecture configuration.

Finally, the quality of the solutions found by the optimal and

suboptimal algorithms are compared and performance

variation is analyzed.

Keywords: Discrete optimization, Heuristic search, Parallel

algorithms, Optimal and suboptimal solutions.

1 Introduction

One of the areas of interest in parallel computing in recent

years has been search processing in graphs. Discrete

optimization problems comprise a large number of areas [1]

and are often solved with heuristic search algorithms,

variations of Best First Search, that browse the graph that

represents the state space of the problem starting from an

initial state to reach a “solution” state in such a way that a

target function is minimized. The heuristic function is used to

assess the cost of the states in order to process first those that

look more promising [2].

In general, these search techniques are very expensive,

both as regards computer time and memory use, because state

spaces grow in a factorial or exponential manner. This drives

the development of parallel algorithms for optimization

problems to achieve efficient solutions [3].

The natural parallelization of the technique on a

multiprocessor architecture consists in starting the evolution

from different graph nodes on the different processors.

Processes need to be communicated to be able to report the

partial results achieved as the algorithm progresses so as to

enable search termination detection or discard graph branches

that, based on the selected metrics, will not improve the

partial solution found so far [4].

Some of the aspects observed when using parallel

architectures for the resolution of discrete optimization

problems [5] are of interest:

▪ Parallelization granularity (ratio between independent

processing time and communication) is critical for

performance, since it will affect the improvement of

solution time as well as communications overhead.

▪ Load balancing has to be dynamic, since the state space is

implicit and generated during the search. This requires

communication, since exploratory work is variable and

very hard to predict a priori [6].

Two of the main aspects of performance analysis are the

Speedup factor (Sp) [7] [8] and the Efficiency (E) that relates

the Speedup with the number of processors (N) used [9] [10].

Scalability is a third, very significant factor in parallel

applications: problems usually “scale”, i.e., the volume of

work to be done increases, and the multiprocessor

architectures used can also “scale” by increasing the number

of processors used. The effect of scaling workload and/or

processors on the performance of parallel algorithms,

considering Sp and E [11], is of interest.

The maximum theoretical speedup can in some cases be

improved, which is known as superlinearity (Su). The reasons

why Sp can be greater than N, in particular for the resolution

of discrete optimization problems, is an issue of interest.

The exploration of the state space can be reduced by

distributing the workload between N processes so as to “cut

down” or “finish” the global search when reaching the

expected result in any of these processes [12] [13]. That is, in

theory, the cluster architecture will allow superlinearity

depending on workload balancing, processor heterogeneity,

and the processing time/communication time ratio of the

algorithm used [14].

Even though single-core cluster architectures have become

common platforms in parallel computing, there is nowadays a

growing trend towards using multicores and multi-core

clusters.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 673

In general, many of the existing parallel applications that

run on a single-core cluster use the MPI standard. To adapt to

new architectures, the major implementations of the standard,

such as Open MPI, have been optimized to take advantage of

those communications that can be done through shared

memory. [15].

As a consequence, it would be interesting to study the

variations in the performance of parallel application that

communicate through message passing and are run on multi-

core clusters when processes are located on: a) cores of the

same chip, so that messages are exchanged through L2 cache;

b) different processors in the same node, so that messages are

exchanged through shared memory; and c) different cluster

computers, so that communication is done through a network.

Depending on the initial state, the search for an optimal

solution can require excessive computing time even applying

parallelism. In some cases, a suboptimal solution that can be

reached faster might be acceptable or even preferable.

Heuristic algorithms that search for optimal solutions can be

adapted to reduce complexity in time, processing a smaller

number of nodes at the risk of reducing the quality of the

solution obtained. [16].

2 Contribution

In this paper, a sequential algorithm and a parallel

algorithm, based on the A* algorithm, to find optimal

solutions to the N
2
-1 Puzzle problem are presented. The

contributions are:

▪ Carrying out experimental work based on these algorithms

with 4x4 boards and using various multi-core cluster

configurations, analyzing the performance obtained in each

case.

▪ Presenting a sequential algorithm and a parallel algorithm,

based on the Weighted A* algorithm, that can find

suboptimal solutions.

▪ Analyzing the quality of the solutions obtained by the

suboptimal search algorithms, as well as performance

variations in contrast with the performance achieved by

algorithms that search for optimal solutions for the same

instances.

3 Characterization of the N
2
-1 Puzzle

The N
2
-1 Puzzle problem consists in N

2
-1 pieces numbered

from 1 to N
2
-1 placed on an N

2
-sized board [17]. Each square

of the board contains one piece, so there is only one empty

square. Figure 1a shows an N
2
-1 puzzle with N = 4.

▪ A legal movement implies moving the empty square to an

adjacent position, either horizontally or vertically, by

moving the piece that was in the newly emptied square to

the previous position of the empty square.

▪ The objective of the puzzle is applying legal movements

until the initial board becomes the selected final board

(Figure 1.b). The solution to the problem should be the one

that minimizes the number of movements required to

achieve the final configuration from the initial given

configuration.

Fig. 1. Puzzle 15 boards (N=4) a. Initial board. b. Final board.

3.1 Heuristics

Heuristic search algorithms use information about the

problem to guide the search process, so they value the nodes

based on the application of a heuristic function. Thus, they

process first the node that looks more promising. The

heuristic value of a node is an estimate and indicates how

close it is to the solution node.

A more polished heuristic will carry out estimates that are

closer to the real cost; therefore, the algorithms that use it will

need to process less nodes [2].

The heuristic used by the algorithms presented for the

resolution of the Puzzle problem is a variation of the sum of

the Manhattan distance of the pieces with the addition of

linear conflict detection among pieces, the detection of the

last movements applied, and an analysis of corner pieces. The

definition can be found in [18].

4 Sequential algorithm for the search of

optimal solutions

A* is a variation of the Best First Search technique [19],

where each node n is valuated in accordance to the cost of

reaching it from the root of the search tree (g(n)) and a

heuristic that estimates the cost to go from n to a solution

node (h(n)). Thus, the cost function will be f(n) = g(n) + h(n).

If the heuristic is admissible (i.e., it never overestimates the

real cost), the algorithm A* will always find an optimal

solution.

The algorithm keeps a list of unexplored nodes (open list1)

ordered by the value of function f, and a second list of already

1 The open list was implemented by means of a priority queue whose

contents are indexed by a hash table that allows efficient searches

of a particular state.

674 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

explored nodes (closed list2) used to avoid loops in the search

graph. Initially, the open list contains only one element, the

initial node, and the closed list is empty.

After each step, the node with the lowest f value (the most

promising node) is removed from the open list and examined.

If the node is the solution, the algorithm ends. Otherwise, the

node is expanded (generating the children nodes by applying

legal movements) and added to the closed list. Each successor

node is added to the open list if it does not appear on either

list, or if it does but its cost value improves that of the

previous node.

Since there may be many nodes on the open list that have

the same cost, a tie-breaking policy was applied in favor of

nodes with a lower h value. It has been proven that A*

achieves a better performance using this technique.

Once the node that represents the final state has been

found, the sequence of nodes on the optimal path can be

obtained by following the sequence of pointers to each parent.

5 Parallel algorithm for the search of

optimal solutions

The parallelization strategy consists in keeping local open and

closed lists on each process or worker. At the beginning, only

one of these will work with the initial node, and it will also be

in charge of detecting the end of the search. As other nodes

are generated, processes will receive them and start working.

All workers search locally, building their own closed list –

to avoid locally repeated work – as well as their open list.

Also, the values of the solutions found are communicated

among them, in order to minimize unnecessary searches.

Since the graph for the problem is implicit and generated

during the execution, a dynamic load balancing technique has

to be adopted. These strategies are based on the idle processor

selecting a work donor process. If the latter has work, it sends

part of its load to the requesting process. Otherwise, it sends a

rejection message, and the idle process looks for another

donor. The technique used in the algorithm is the

Asynchronous Round Robin [7]. The quality of the nodes sent

has to be considered as well, since, if the nodes sent are

known not to lead to a better solution, then the receiver will

quickly become idle.

To detect the end of the search in a distributed

environment with a dynamic load balancing technique, the

modified Dijkstra’s Termination Algorithm [20] was used,

whose purpose is detecting the state in which processes are

idle and there are no messages circulating through the

network. For this goal, processes are connected in a ring

structure and pass a message called token between them.

2 The closed list was implemented by means of a hash table that

allows efficient searches of a particular state.

A global pruning algorithm was used where each of the p

worker processes has a value that indicates the cost of the best

solution found so far (BSC), which is used to limit the search

process. Thus, the nodes to process will be only those whose

cost is lower than BSC.

A process that has some work pending on its open list will

process at the most a fixed amount of nodes for each iteration

(LW), or it will process nodes until it finds a solution or until

its open list is empty. Then, the worker receives the costs of

the “best solutions” – if there are any – found so far by the

other workers and updates its BSC variable as needed.

If the process still has some work pending on its open list,

it checks if there are any work requests from other processes,

and if there are, it sends the first and last nodes of its open list

to the requesting process. It then continues working with its

nodes.

If the process does not have any pending work, it will be

idle, so it will send a work request to its donor following the

ARR algorithm. If the process had found a new solution, it

sends the corresponding cost to the other processes. It then

waits for the types of messages listed below, which will be

processed with no particular order of priority:

▪ Work request: an idle worker selected this process as its

donor.

▪ Work: the donor sends the requested work. The process is

active again.

▪ Rejection of work request: the selected donor does not have

any work. The process must send a work request message

to the next donor.

▪ Token: reception of the token for termination detection. If

necessary, the token is updated, and it is passed to the next

process. Process 0, upon receiving the token, checks if it

has to end the search process and, if that is the case, it

sends a message to the other processes to inform the end of

the computation.

▪ New solution found: if necessary, the BSC variable is

updated.

Larger messages are those that transfer graph nodes due to

load balancing. The number of nodes to communicate

depends on the size of the open list of the donor process and

the cost of its nodes, but it cannot be over a fixed maximum.

The solution was implemented in C using MPI for process

communication.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 675

6 Sequential algorithm for the search of

suboptimal solutions

The complexity in time of the previous algorithms can be

reduced by sacrificing the quality of the solution obtained.

Weighted A* (WA*) is a generalization of A* [21]. It is

based on using a cost function f(n)= wgg(n) + wh*h(n),

weighting the value of g and h with a constant weight wg and

wh, respectively. If w = wh/wg, an equivalent function f(n) =

g(n) + w*h(n) is obtained. If w is greater than 1, the search is

directed towards the most promising direction, since the

nodes that are close to the solution (with a lower value of h)

are favored. Even if h is admissible, the cost function

becomes inadmissible when adding the weight, so the

solutions found may not be optimal. On the other hand, if an

admissible heuristic h is used, the cost of the solution found

by that algorithm will be smaller or equal to w*sopt, sopt being

the cost of the optimal solution for the instance. [16]

As the value of w increases, the solution will be found

faster (processing a smaller number of nodes) at the expense

of worsening the quality of the solution obtained. [22]

In the tests carried out, the tie-breaking policy was not

applied to the open list because the weight added to the cost

function performs that task.

7 Parallel algorithm for the search of

suboptimal solutions

The parallel algorithm proposed for finding suboptimal

solutions modifies the parallel algorithm presented in Section

5 so as to include the weight when the cost function is

assessed. Additionally, this algorithm ends when the first

solution is found (since it is not looking for the optimal

solution), so the modified version of Dijkstra’s Termination

Algorithm is not required.

The cost of the solution found can be better, worse, or

equal to that of the solution found by the sequential algorithm

WA*, due to the way in which nodes are dynamically

distributed among processes, with no great variations

observed in the practice.

8 Experimental results

For the tests, a multi-core cluster of 12 machines

connected by a 1Gbit Ethernet network was used. Each

machine has 2 quad core Xeon 5400-series “Harpertown”

E5405 processors and 2GB of RAM. Within the quad core,

L2 cache is shared between pairs of cores with a capacity of

6MB; this series in particular does not have L3 cache. The

implementation of MPI used is Open MPI.

With the purpose of studying the performance of the

optimal solution search parallel algorithm, tests were carried

out with various initial configurations of the 15 Puzzle3, with

4 machines, assigning one process to each machine and

varying the LW parameter (100-1000, every 50 units, and

1000-2000, every 500 units). The average speedup achieved

was 2.97, and the average efficiency was 0.74. In two of the

tests, a superlinear speedup was obtained.

One cause for superlinearity occurs when, during parallel

execution, a solution node is reached after examining a lower

number of nodes than the sequential algorithm. In BFS

algorithms, this anomaly is caused by nodes that have the

exact same cost as the solution. Another possible cause is the

reduction of data structure size in each process. By

distributing work among processors, the depth of each open

list is reduced, so insertions and removals are faster.

a.

b.

Fig. 2. a) Speedup achieved when escalating the number of

processors for various initial configurations b) Search overhead

percentages as processors are scaled for the various initial

configurations.

3 The initial configurations used are a subset of those presented in

article [23]. Only those whose sequential resolution took longer

were selected, the final total being 26. The final board used is

shown in Figure 1.b.

676 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

To observe how this algorithm scales when increasing the

number of processors (P = 4, 6, 8, 12), it was run assigning

one process to each machine and taking into account those

instances with the most significant execution times in the test

with 4 machines (8 in total). Results are shown in Figure 2.a.,

where it can be seen that, as P increases for a specific

instance, the speedup also increases but the acceleration is not

such that it allows keeping a constant efficiency.

The cause of the drop in efficiency was confirmed as the

increase in search overhead as the number of processors

increases. This factor measures the additional percentage of

nodes that the parallel algorithm processes when compared

with the sequential algorithm due to speculative expansion

(related with the LW parameter). If NP is the number of nodes

processed by the parallel algorithm, and NS is the number of

nodes processed by the sequential algorithm, the search

overhead percentage is calculated as OB=100*(NP/NS -1).

Figure 2.b. shows this percentage for the different initial

configurations as the number of processors is scaled.

To confirm if the fact that two processes share L2 cache

and/or RAM memory would improve performance because

messages (in particular, work messages) avoid travelling

through the network, tests were carried out with 4 processes

and 2 machines, with 2 processes assigned to each machine so

that:

1. they are in cores that share L2 cache; or

2. they are in two different quad core processors.

The resulting speedup for both tests is shown in Figure 3

a), and the search overhead is shown in Figure 3 b). As it can

be seen, there was no improvement in the performance, with

the exception of configuration 15. It should be noted that the

size and number of the messages sent by load balance varies

because this balance is dynamic. Also, the dynamic load

balance can result in finding different optimal solutions for

the same instance in two independent runs of the algorithm.

A probable cause for test 1) not to improve its performance

may be found in the bottleneck that is produced when

accessing the frontside bus of the quad core. On the other

hand, both processes mapped to the same machine in test 2)

are located in different quad cores and do not compete for the

frontside bus, but they do compete for memory controller hub

access.

Sequential algorithm WA* was run with a weight of 1.2,

that is, wh=6 and wg=5, for the 8 initial configurations

mentioned above and two additional ones for which the

execution of the sequential algorithm A* run out of available

memory. An optimal solution was found in all 8 cases. In the

two additional cases (configurations 17 and 53), the solution

is 6% and 3%, respectively, more expensive than the optimal

solution. The reduced computation time in comparison with

the execution of A* is between 81%-97% depending on the

initial configuration.

a.

b.

Fig. 3. a) Speedup achieved with 4 processes for test 1 and test 2 b)

Search overhead percentage for these tests.

The parallel algorithm that searches for suboptimal

solutions was run on 4 machines, with one process assigned

to each machine and varying the LW parameter. Considering

all testing configurations whose LW reduced times, it was

observed that in 8 of them, the cost of the solution found was

equal to the cost of the optimal solution.

Initial
configuration

Initial
disarray

Solution

(sequential

WA*)

Solution

(parallel

WA*)

Speedup

3 43 59 59 13.98

15 46 62 64 (+2) 12.31

17 46 70 (+4) 70 17.42

32 45 59 59 10.17

49 39 59 59 9.78

53 52 66 (+2) 64 15

56 35 55 55 10.77

60 50 66 66 43.33

66 47 61 61 20.81

88 45 65 65 12.75

Table 1. Solutions found by the sequential algorithm WA* and the

parallel algorithm that searches for suboptimal solutions, together

with the speedup obtained.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 677

In particular, an optimal solution was found for instance

53. This may be due to the dynamic distribution of nodes, so

that one process found first that solution and caused the

search to end. For configuration 15, the parallel algorithm

found a solution that is 3% worse than the solution found by

the sequential WA*. This information can be seen in Table 1.

The speedup obtained was superlinear in all cases. This is

because the parallel algorithm processes a smaller number of

nodes than the sequential algorithm.

8 Conclusions and future lines of work

An analysis of the parallel solution to the N
2
-1 Puzzle

problem that uses message passing as communication

mechanism has been presented, and the speedup, efficiency

and superlinearity for various multi-core cluster

configurations and initial instances have been studied. The

modifications to be applied to the previous parallel algorithm

to search for suboptimal solutions and thus reduce search time

have been presented; optimal or very close to optimal

solutions were found in the practice.

Currently, we are studying the migration of the algorithm

to use hybrid programming. A possible strategy would be to

take into account those workers that reside within the same

cluster node and have only one shared open list and one

shared closed list, implementing these data structures to allow

concurrent access.

Finally, scalability studies are being carried out, to increase

work volume (N) and the number of processors, on the multi-

core cluster to compare the results obtained with those

obtained with a cluster of conventional PCs.

9 References

[1] Sergienko I., Shylo V. Problems of discrete

optimization: Challenges and main approaches to solve them.

New York: Springer; 2006; 42(4):465-482.

[2] Russel, S., Norvig, P. Artificial Intelligence, A modern

Aproach. Pearson Prentice Hall; 2003.

[3] Ferreira A., Pardalos P. Solving Combinatorial

Optimization Problems in Parallel: Methods and Techniques.

New York: Springer; 1996.

[4] Grama A., Kumar V. State of the art in parallel search

techniques for discrete optimization problems. IEEE Trans. on

Knowledge and Data Engineering, 1999.

[5] Anderson T., Culler D., Patterson D. A Case for NOW

(Networks of Workstations). IEEE Micro 1995; 15(1): pp. 54-

64.

[6] Bohn C., Lamont G. Load Balancing for Heterogeneous

Clusters of PCs. Future Generation Computer Systems, 2002;

18(3): 389-400.

[7] Grama A., Gupta A., Karypis G., Kumar V. An

Introduction to Parallel Computing. Design and Analysis of

Algorithms. Pearson Addison Wesley; 2003.

[8] Leopold C. Parallel and distributed computing. A survey

of models, paradigms, and approaches. New York: Wiley;

2001.

[9] Quiin M. J. Parallel Computing: Theory and Practice.

McGraw-Hill Companies; 1993.

[10] Buyya R. High Performance Cluster Computing:

Architectures and Systems. Prentice-Hall; 1999.

[11] Hwang K. Advanced Computer Architecture.

Parallelism, Scalability, Programmability. McGraw Hill;

1993.

[12] Helmbold D., McDowell C. Modeling speedup(n)

greater than n. IEEE Trans. on Parallel and Distributed

Systems, 1990; 1(2): 250-256.

[13] Manquinho V., Marques-Silva J. Search Pruning

Techniques in SAT-Branch-and-Bound Algorithms for Binate

Covering Problem. IEEE Trans. on Computer-Aided Design

of Integrated Circuits and Systems, 2002; 21(5): 505-516.

[14] Sanz V, De Giusti A, Naiouf M. 4-(N2-1) Puzzle:

Parallelization and performance on clusters. Journal of

Computer Science and Technology. Vol. 10 Nro 2, pp. 86-90.

2010.

[15] Open MPI: Open Source High Performance Computing

http://www.open-mpi.org/

[16] Ebendt, R., and Drechsler, R. Weighted A* search –

unifying view and application. Artificial Intelligence

173:1310–1342. 2009.

[17] Ratner D. and Warmuth W. Finding a shortest solution

for the NxN extension of the 15-puzzle is intractable. AAAI-

86, 168-172

[18] Korf R. E., Taylor R. Finding Optimal Solutions to the

Twenty-Four Puzzle. In: Proc. of the Thirteenth National

Conference on Artificial Intelligence (AAAI-96) 1996

[19] Hart, P., Nilsson, N., and Raphael, B., A Formal Basis

for the Heuristic Determination of Minimum Cost Paths, IEEE

Trans. Syst. Science and Cybernetics, SSC-4(2):100-107,

1968.

678 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

http://www.open-mpi.org/
http://ai.stanford.edu/~nilsson/OnlinePubs-Nils/PublishedPapers/astar.pdf
http://ai.stanford.edu/~nilsson/OnlinePubs-Nils/PublishedPapers/astar.pdf

[20] Dijkstra E., Scholten C. Termination detection for

diffusing computations. Information Processing Letters 1980;

11(1):1-4.

[21] Pohl, I. Heuristic search viewed as path finding in a

graph, Artificial Intelligence 1 (1971) 193–204.

[22] Felner A, Kraus S, Korf R. KBFS: K-Best-First Search.

Annals of Mathematics and Artificial Intelligence 39: 19–39,

2003.

[23] Korf, R Depth-first iterative-deepening: An optimal

admissible tree search. Artificial Intelligence, Vol. 27, No. 1,

pp. 97-109, 1985.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 679

Parallel Algorithms on Clusters of Multicores:

Comparing Message Passing vs Hybrid Programming

Fabiana Leibovich, Laura De Giusti, and Marcelo Naiouf
Instituto de Investigación en Informática LIDI (III-LIDI), Facultad de Informática, Universidad Nacional de

La Plata, 50 y 120 2do piso, La Plata, Argentina.

{fleibovich, ldgiusti, mnaiouf}@lidi.info.unlp.edu.ar

Abstract - Given the technological progress of current

processors and the appearance of the multi-core cluster

architecture, the assessment of different parallel programming

techniques that allow exploiting the new memory hierarchy

provided by the architecture becomes important.

The purpose of this paper is to carry out a comparative

analysis of two parallel programming paradigms- message

passing and hybrid programming (where message passing and

shared memory are combined).

The testing architecture used for the experimental analysis is a

multi-core cluster formed by 16 nodes (blades), each blade

with 2 quad core processors (128 cores total). The study case

chosen was square matrix multiplication, analyzing scalability

by increasing the size of the problem and the number of

processing cores used.

Keywords: hybrid programming, cluster, multi-core, message

passing, shared memory, parallel architectures.

1 Introduction

 Parallel architectures have evolved to offer better

response times for applications. As part of this evolution,

clusters, then multi-cores, and currently multi-core cluster

architectures, can be mentioned. The latter are basically a

collection of multi-core processors interconnected through a

network.

Multicore clusters allow combining the most distinctive

features of clusters (use of message passing in distributed

memory) and multicores (use of shared memory). Also, they

introduce modifications in memory hierarchy and further

increase computer system capacity and power.

Taking into account the popularity of this architecture, it is

important to study new parallel algorithms programming

techniques that efficiently exploit its power, considering the

hybrid systems in which shared memory and distributed

memory are combined [1].

As previously mentioned, a multi-core cluster is a set of multi-

core processors that are interconnected through a network,

where they work cooperatively as an only computational

resource. That is, it is similar to a traditional cluster but each

node has a processor with several cores instead of a mono-

processor.

When it comes to implementing a parallel algorithm, it is very

important to consider the memory hierarchy available, since

this will directly affect algorithm performance.

Memory hierarchy performance is determined by two

hardware parameters: memory latency (time elapsed from the

moment a piece of data is required and the moment it

becomes available) and memory bandwidth (the speed with

which data are sent from the memory to the processor). Figure

1 shows a representation of the memory hierarchy in the

different architectures.

Figure (1). Memory hierarchy

In the case of traditional clusters (both homogeneous and

heterogeneous), there are memory levels in each processor

(processor register and cache levels L1 and L2), but a new

level is also included: network-distributed memory.

680 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

When considering a multi-core architecture, there are, in

addition to register and L1 levels corresponding to each core,

two memory levels: cache memory shared by pairs of cores

(L2) and memory shared among the cores of the multi-core

processor [2].

In particular, multi-core clusters introduce one additional

level to the traditional memory hierarchy. In addition to the

cache memory shared between pairs of cores and the memory

shared among all cores within the same physical processor,

there is the distributed memory that is accessed through the

network.

There is a large number of parallel applications in different

areas. One of the most traditional and widely studied of these

areas in parallel computing, and used in this paper, is matrix

multiplication. The reason for using this application (widely

tested and assessed) is that it allows using and exploiting data

parallelism, as well as analyzing algorithm scalability by

increasing matrix size [3]. Thus, the solutions using message

passing can be compared with those using shared memory and

message passing (hybrid).

This paper is organized as follows: In Section 2, the

contribution of this paper is detailed, whereas in Section 3, the

features of hybrid programming are described. In Section 4,

the study case is detailed, and in Section 5, the solutions

implemented and the architecture used to generate the results

shown in Section 6 are analyzed. Finally, in Section 7, the

conclusions and future lines of work are presented.

2 Contribution

The main contribution of this paper is carrying out a

comparative analysis of the performance that can be achieved

with hybrid programming in a multi-core cluster architecture

versus a traditional parallel programming model (distributed

memory).

The analysis is carried out based on running time and

efficiency of the hybrid solution as the size of the problem

and the number of cores used increase, and the results are

compared with solutions that use only message passing.

3 Hybrid Programming

Traditionally, parallel processing has been divided in two

large models - shared memory and message passing [1][4].

Shared memory: the data accessed by the application are in a

global memory that is accessible to parallel processors. This

means that processors can look for and store data from any

memory position independently from each other. It is

characterized by the need of synchronization in order to

preserve the integrity of shared data structures.

Message passing: data are seen as being associated to a

specific processor. Thus, message communication among

processors is required to access remote data. In this model,

sending and receiving primitives are responsible for handling

synchronization.

With the appearance of multi-core cluster architectures, a new

hybrid programming model comes to existence, which

combines both strategies. Communication among processes

belonging to the same physical processor can be done by

using shared memory (micro level), whereas communication

among physical processors (macro level) can be done by

message passing.

The purpose of using the hybrid model is exploiting and

applying all of the advantages of each strategy, based on the

needs of the application. This is a current interest research

area; among the libraries used for hybrid programming are

Pthreads for shared memory and MPI for message passing.

Pthreads is a library that implements the POSIX (Portable

Operating System Interface) standard defined by IEEE, and is

composed by a set of types and calls to procedures in

programming language C that includes a header file and a

thread library that is part, for example, of the libc library,

among others. It is used for programming parallel applications

that use shared memory [5].

On the other hand, MPI is a message passing interface created

to provide portability. It is a library that can be used to

develop programs that use message passing (distributed

memory) and uses the programming languages C or Fortran.

The MPI standard defines both the syntax and the semantics

of the set of routines that can be used in the implementation of

programs that use message passing [6].

4 Study Case

Given two square matrixes A and B, matrix multiplication

consists in obtaining matrix C, as indicated in equation 1.

 BAC (1)

If matrix A has m * p elements, and matrix B has p * n

elements, matrix C will have m * n elements.

Each position of matrix C is calculated by applying equation

2.

 jk

p

k

kiji BAC ,

1

,,

 (2)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 681

5 Implemented Solutions and

Architecture Used

Experimental tests were carried out based on the

implementation of the classical matrix multiplication

algorithm, both sequentially and using different parallel

programming models: message passing and hybrid

(combination of message passing and shared memory).

All three solutions, sequential and parallel, were developed in

language C. The parallel solution that uses message passing as

process communication mechanism uses the OpenMPI library

[6]. The hybrid solution uses the Pthreads library [5] for

shared memory and OpenMPI for message passing.

This initial phase of the investigation consists in carrying out

an experimental analysis of the behavior of a hybrid

application in a multi-core cluster architecture from the point

of view of programming models [7][8][9].

The results shown are focused in analyzing the hybrid solution

in two aspects:

1. Analyzing behavior when the size of the problem and the

number of cores increase (scalability) [7][8]. In this

case, square matrixes of 1024, 2048, 4096 and 8192

rows and columns were processed.

2. Comparing running times and efficiency with those

obtained with the message passing solution.

The hardware used to carry out the tests was a Blade with 16

servers (blades). Each blade has 2 quad core Intel Xeon e5405

2.0 GHz processors; 2 Gb of RAM memory (shared between

both processors); 2 X 6Mb L2 cache shared between each pair

of cores by processor. The operating system used is Fedora

12, 64 bits [10][11].

In the following paragraphs, the solutions implemented are

described. In all cases, matrix multiplication is carried out by

storing matrix A by rows and matrix B by columns in order to

use local cache memory for data access and take advantage of

the architecture on which algorithms were run.

5.1 Sequential Solution

Each position of C is calculated as established in equation 1.

5.2 Message Passing Solution

In this case, processing is divided in blocks of rows, which are

assigned equally to each process. If p is the number of

processes and n * n is the dimension of matrixes A and B, the

number of rows of matrix C calculated by each process is n/p.

The algorithm uses a hierarchical master/worker structure.

There is a general master that divides all rows that will be

processed in each blade, and sends the corresponding rows to

the master in each blade. It then behaves as the second level

of workers described below. Finally, it receives the results

obtained by all application workers.

On the other hand, there is one master in each blade (second-

level masters), responsible for receiving the rows that will be

solved by the processes in its blade and distributing them

among its workers to then process its own share, also acting as

a worker.

It should be noted that each process must store the rows from

matrix A to be processed, all of matrix B and the rows from

matrix C that it generates as a result.

5.3 Hybrid Solution

In this solution, there is one process per blade that internally

uses 7 threads to carry out processing activities, and the

processing activities from the process itself that acts as a

worker (one thread per core). A master/worker structure is

used, with one of the processes acting as master, dividing the

rows equally among all processes. Once this is done, it

generates the corresponding processing threads (acting as

worker). The other worker processes act in a similar way and

send their results to the process master.

The algorithm can be summarized as follows:

Master process:

1. It divides the matrix into blocks of n rows/number

of blades used for processing

2. It communicates the corresponding rows from

matrix A and all of matrix B to worker processes.

3. It generates the threads and processes its own

block

4. It receives results from worker processes.

Worker processes

1. They receive the corresponding rows from matrix

A and all of matrix B.

2. They generate the threads to process the data.

3. They communicate the results to the master

process.

6 Results obtained

In the following paragraphs, the results obtained in the

experimental tests carried out are presented.

Table 1 shows running times for the sequential solution

(Seq.), the message passing solution using 16, 32, and 64

cores (MP 16, MP 32 and MP 64) and the hybrid solution

with 16, 32, and 64 cores (H16, H32 and H64). For the tests,

both the dimension of the matrix and the number of cores are

escalated. Figure 2 shows the speedups obtained for these

tests.

It can be seen that the running times obtained by the hybrid

solution are always lower than those obtained by the message

passing solution. Also, as problem size increases, the time

difference between both solutions also increases in favor of

the hybrid solution.

682 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Size Seq. MP 16 H 16
MP

32
H 32

MP

64
H 64

1024 12.47 0.88 0.86 0.52 0.50 0.73 0.39

2048 101.21 6.72 6.63 3.66 3.58 2.51 2.36

4096 808.57 52.54 51.89 27.42 26.91 17.51 16.06

8192 6479.43 1059.52 410.36 638.87 209.36 752.07 124.89

Table (1)

Figure (2). Speedup

6.1 Comparison of Results

Table 2 shows the efficiency achieved by the different testing

alternatives; whereas in Figure 3, a comparative chart showing

that information is presented.

Based on the results obtained, two observations can be made -

the efficiency achieved by the hybrid solution is in all cases

higher than the one achieved by the message passing solution,

and, as problem size increases (for the same number of

processing units), efficiency also increases. However, as it is

to be expected, when the number of processing units

increases, efficiency decreases due to the increased volume of

communications and synchronization among processes.

It should also be mentioned that the efficiency achieved by the

message passing solution for 8192 * 8192 elements is

significantly degraded in comparison with the other sizes.

This is due to limitations in the main memory that is available

in each blade, which, for large sizes, generates a swapping of

the necessary data structures.

Size MP 16 H 16
MP

32
H 32

MP

64
H 64

1024 0.87 0.90 0.73 0.77 0.26 0.49

2048 0.94 0.95 0.86 0.88 0.62 0.66

4096 0.96 0.97 0.92 0.93 0.72 0.78

8192 0.38 0.98 0.31 0.96 0.13 0.81

Table (2)

Figure (3). Efficiency

7 Conclusions and future work

As regards scalability, the results obtained show that the

hybrid solution is scalable and that an increase in problem

size also increases the efficiency achieved by the algorithm.

On the other hand, when comparing the message passing

solution versus the hybrid solution, it can be seen that the

latter offers better running times.

In this regard, there is improvement introduced by the hybrid

solution, which takes advantage of the characteristics of the

problem and the architecture used. The possibility of using

shared memory makes it unnecessary to replicate data in each

blade. In the case of the problem that was chosen as study

case, matrix B does not have to be replicated in each of the

workers. This does not happen with the message passing

solution, since each worker handles its own memory space

and therefore requires a copy of matrix B. This is shown in

the running times obtained in the tests using matrixes of 8192

* 8192 elements. In the message passing solution, running

time and efficiency are significantly degraded, since, due to

the replication mentioned above, the memory that is available

in the testing architecture becomes insufficient, swapping the

required structures to disc and thus significantly degrading

algorithm performance.

In the future, the behavior with even larger matrix sizes will

be studied, together with other parallelization strategies that

mainly avoid data replication.

8 References

[1] Dongarra J. , Foster I., Fox G., Gropp W., Kennedy K.,

Torzcon L., White A. “Sourcebook of Parallel computing”.

Morgan Kaufmann Publishers 2002. ISBN 1558608710

(Chapter 3).

[2] Burger T. “Intel Multi-Core Processors: Quick

Reference Guide

”http://cachewww.intel.com/cd/00/00/23/19/231912_231912.

pdf. (2010).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 683

[3] Andrews G. “Foundations of Multithreaded, Parallel and

Distributed Programming”. Addison Wesley Higher

Education 2000. ISBN-13: 9780201357523 .

[4] Grama A., Gupta A., Karpyis G., Kumar V.

“Introduction to Parallel Computing”. Pearson – Addison

Wesley 2003. ISBN: 0201648652. Second Edition (Chapter

3).

[5] https://computing.llnl.gov/tutorials/pthreads (2010)

[6] http://www.open-mpi.org (2010)

[7] Kumar V., Gupta A., “Analyzing Scalability of Parallel

Algorithms and Architectures”. Journal of Parallel and

Distributed Computing. Vol 22, No.1.pp 60-79. 1994.

[8] Leopold C., “Parallel and Distributed Computing. A

Survey of Models, Paradigms and Approaches”. Wiley, 2001.

ISBN: 0471358312 (Chapters 1, 2 and 3).

[9] Chapman B., “The Multicore Programming Challenge,

Advanced Parallel Processing Technologies”; 7th

International Symposium, (7th APPT'07), Lecture Notes in

Computer Science (LNCS), Vol. 4847, p. 3, Springer-Verlag

(New York), November 2007.

[10] HP, "HP BladeSystem".

http://h18004.www1.hp.com/products/blades/components/c-

class.html. (2011).

[11] HP, "HP BladeSystem c-Class architecture".

http://h20000.www2.hp.com/bc/docs/support/SupportManual/

c00810839/c00810839.pdf. (2011).

684 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Distributed Search on Large NoSQL Databases

Fernando G. Tinetti1, Francisco Paez, Luis I. Aita, Demian Barry
III-LIDI, Facultad de Informática, UNLP, La Plata, Argentina

Fac. de Ingeniería, UNPSJB, Sede Pto. Madryn, Puerto Madryn, Argentina
1Investigador Comisión de Investigaciones Científicas de la Prov. de Bs. As.

Abstract - This work focuses on performance and scalability
of different policies for solving queries on large noSQL
databases with clusters. Distribution of data and queries are
amongst the main problems, given the distributed nature of
clusters: basically a set of networked computers. The basic
centralized model (for both, data and processing) is used as a
departure point and different distributed configurations are
experimented with, in order to determine several guidelines
for performance improvement. Apache Solr has been used for
database management and search server. The current
contents of the Wikipedia in Spanish (with about 4.5 GB) have
been used as an example of a NoSQL database for
experimentation.

Keywords: Parallel and Distributed Computing, Distributed
Search, Data Sharding, Mapreduce, Apache Solr.

1 Introduction
Currently, there are large amount of websites with large
amount of data available, which is necessary to handle in an
efficient way. Several reasons for the information volume
growth have been [1] [11] [13] [7]:
• The popularity of content management systems (CMS,

Content Management Systems) as portals general and as
platforms for collaboration in particular.

• The so called Web 2.0, roughly defined as the current set
of applications with high levels of interaction and access
to multimedia data.

• The data generated within organizations, either as output
or intermediate process of production systems or by
digitizing existing documents.

In summary, there has been an exponential growth in
volumes of information produced which, in turn, implies
handling terabytes and petabytes of information instead of
gigabytes. This scenario has led to the challenge of improving
the so called information retrieval search tools using
different/new techniques.
 Scalability, availability, and performance in handling
large volumes of information are now mandatory for most
applications in this context, usually requiring techniques of
distributed systems. Some of the techniques presented in this
work include: load balancing, replication, and horizontal
distribution (sharding) of information [1] [8]. The White
House has used a combination of Drupal and Apache Solr in

its portal of document access/contents [15] [12]. In general,
solutions to this problem must include strategies for
scalability, availability, and performance.

1.1 Information Retrieval in Large Volumes of
Data

Sequential search has to be discarded, given its lack of
scalability. Some auxiliary data structures are necessary, that
allow quick searches. Indexing provides data structures that
facilitate information searching and retrieval quickly and
accurately. Some indexing examples are: inverted index [4], a
citation index, a matrix or a tree [9] [6] [2].
 The indexing process usually requires analysis and
processing of documents to include in the index: stemming,
tokenization, phonetic analysis, etc. These steps introduce
important issues and challenges for processing [4] [8], which
are beyond the scope of this work. Instead, this work is
focused on alternatives for distributing the indexes and
queries in a heterogeneous and scalable environment. A set of
desirable properties of a feasible solution should are related to
[1]: performance and heterogeneous data, fault tolerance, and
heterogeneous hardware platforms.
 Performance and Heterogeneous Data: traditional
databases (usually called relational or SQL databases) have a
lot of effort on the issue of performance where most
techniques take advantage of parallelization and partitioning
of information, relying on structured data stored in
(relational) tables. The problem is different with
heterogeneous information, not just the information stored in
the database but also all the surrounding information such as
documents, pictures, videos, sound, mail, etc. Heterogeneous
information causes an increase in the volume of stored data
which requires restructuring and rethinking the forms of
storage. Also, heterogeneous information fundamentally
requires some at least some restructuring of the way in which
information must be retrieved. It is worth noting that
information retrieval usually requires knowledge of meaning
and understanding of the data to retrieve.
 Fault Tolerance: one of the effects of distributing
information in order to increase performance in information
retrieval is that the distributed system must consider fault
tolerance. The retrieved information must be consistent, even
when one some of the nodes become unavailable. Even when
handling failures is beyond the scope of this paper,
transactions of a database should have the so-called ACID

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 685

(Atomicity, Consistency, Isolation, Durability) property or
properties. This paper focuses exclusively on the consistency
and handling of distributed information indexing and
recovery.
 Heterogeneous Hardware Platforms: in order to
guarantee good performance in information retrieval it should
be possible to increase the number of participating nodes in a
search. Traditional databases parallelization are usually
focused on homogenous hardware, this limiting the growth in
number of nodes. Moreover, noSQL solutions for managing
large volumes of information are usually based on a set of
heterogeneous computing nodes. There are various
techniques for configuring heterogeneous environments
which at least will be discussed in this paper.

2 Techniques on NoSQL Databases
Several common techniques are applied in current NoSQL
databases: indexing on “shards”, shared nothing data
distribution, data replication for load balancing, scatter and
gather on distributed data, and map/reduce processing. These
techniques are briefly explained below.
 Indexing on Shards: basically, sharding is a process
similar to that of horizontal partitioning of data in a standard
(structured) SQL database [5]. Sharding provides multiple
capabilities for scaling, allowing to divide data and indexes
on multiple servers which are known as shards. Indexing
shards is the process of producing a data structure that
facilitates searching and retrieving some kind of information
from data in its original form [4]. Common generated data
structures are inverted index, index of pointers, matrix, or
tree. The indexing process usually requires analysis and
processing of documents to include in the index: stemming,
tokenization, phonetic analysis, etc. These steps introduce
important issues and challenges at processing [4], which are
beyond the scope of this work. Every query has to be
processed in every shard, and finally a single response is built
as an aggregate result of individual shard results. This
technique specially suited on large volume of data. Database
sharding is directly related to the shared nothing data
distribution.
 Shared Nothing Data Distribution: shared nothing
focuses independence of nodes, distribution of information
and processing. A shard is a shared nothing node which
handles a set of documents indexed by any criteria. Also, a
shard has its own mechanisms for ranking, sorting, and
retrieval of information, depending on information or
application needs. Possible data distributions can be thematic,
ontological, segmented according to preferences, or even
combinations of them. In all cases, techniques can be
combined with traditional databases, such as replication and
parallelization on shared disk (a traditional cluster with a
storage area network) [10]. In general, the concept of Shared
Nothing ensures some information consistency, but it is not
necessarily ACID compliant. Also, these distributions make
easier using independent heterogeneous nodes with their own
memory unit, disk storage and processing. Nodes are

necessarily interconnected by a network and, clearly, the
architecture requires extra effort in coordination and
synchronization. Data replication for load balancing, scatter
and gather on distributed data, and map/reduce processing are
some techniques used for coordinating the shared nothing
nodes.
 Data Replication for Load Balancing: the architecture
must guarantee a set of nodes with consistently replicated
information across all nodes. The search engine has a pool of
data nodes in which the information is searched. Queries are
not parallelized, but distributed between nodes, which are
independent and capable of solving queries on local data.
Data recovery is done in the nodes, and distribution is done at
the load balancer. This strategy neither solves the space
problem nor parallelizes search [14].
 Scatter and Gather on Distributed Data: this method
is used when data are not replicated, where the query is
broadcasted from a coordinator to every node known to have
data. Then, each node processes and sends a reply with to the
information locally found. All replies are processed in the
coordinator which, in turn, consolidates into one consistent
reply to the request source. An additional advantage of the
method is that data nodes may additionally distribute the data
into other new nodes. A hierarchical distribution is then
constructed, which is not visible to the “overall” coordinator.
In general, the information is partitioned among nodes and
queries are effectively parallelized. However, there are also
disadvantages: distribution overhead specifically with logical
segmentation and some query overhead in the coordinator,
which has to generate the query result from gathered data.
Some logical segmentation/s, such as the ontological requires
knowledge and information about the contents (data) to be
stored. In some cases this knowledge is relatively complex to
obtain, especially with the implementation of ontological
rules [14]. Map/reduce is an effectively used technique in this
context.
 Map/Reduce Processing: traditional databases (usually
called relational or SQL databases) have included a lot of
effort on the issue of performance where most techniques
take advantage of parallelization and partitioning of
information, relying on structure. Usually, NoSQL databases
start from text and/or heterogeneous and not necessarily
structured data. Map /reduce is a good technique for
processing a large volume of data in parallel. The model
provides a mechanism for data partitioning that can make a
“smart” distribute according to predefined rules on self-
contained different nodes. An additional advantage lies in
saving space in the result of shared keys by reducing them
within a document [3].

3 Experimentation Guidelines
The work in paper is focused on verifying the effectiveness of
a NoSQL database manager as a model for scalability and
efficiency in information retrieval. The specific chosen
manager is the Apache Solr implementation of Apache

686 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Lucene. Apache Solr has several advantages for this analysis,
since:
• Apache Solr is freely available.
• Apache Solr allows testing heterogeneous document

indexing.
• Allows future tests and other analyses with similar

platforms of the same family.
There are several performance indices which can be measured
by experimentation: CPU load, average response time to
queries, memory and swap usage, disk accesses, and network
bandwidth involved, among others. The two most important
indices have shown to be CPU load and average response
time, since in some way include (are more or less directly
related to) the other indices. Performance and state is
measured in both server/s and clients, thus obtaining an
approximation of the distributed client/server system state as
well as the state of individual computers and processes. At a
higher level, the analysis is focused on performance scaling
as well as quality of service/individual query response time.
 The full backup of the current Wikipedia articles in
Spanish has been used as a real environment of documents to
be indexed and searched, with approximately 1800000 items
(4 GB of data on disk). Several tests were designed in order
to measure the performance of different server
configurations. Every test involves the simulation of several
concurrent user processes and multiple specific queries with
the following characteristics:
• The whole set of words in the dictionary of the Spanish

Royal Academy of approximately 86,000 words was
used.

• Each query was generated by random grouping from 2 to
4 words. This ensures randomness and heterogeneity of
queries.

• Queries are issued from several concurrent client
processes (simulated by runtime threads). The numbers
of threads used were 64, 128, 256, 384, 512, 768 and
1024, thus allowing a progressive analysis of workload/
requirements.

• Every test is repeated 10 times in order to obtain the
corresponding average of each index measurements.

The open source tool Siege [16] was used for generating and
measuring the concurrent client’s environment of each
experiment, and awk was used for constructing each specific
query.
It is worth noting that database update is not taken into
account in these experiments, since only the number of query
(recovering information) requests is being considered from
concurrent clients. There are not delete/change requests
which would change database content/s.
 The experiments were also carried out with three server
configurations: a centralized server, a server with two shards
and a replicated server. Fig. 1 shows the centralized server
configuration, which is standard, and used in this work for
comparison, in order to have a reference point. Fig. 2 shows
the server configured with two shards (both shards have the
same number of documents). The server front-end has a
minimum workload: query replication to both shard servers

and aggregation of results from both shard servers in order to
send a unique result to each query. Fig. 3 shows the specific
configuration defined for a replicated server with two
replicas. The Master Server originally indexes the documents
and manages replicas. Every replica independently handles its
own queries, and the server front-end has a low workload:
balances queries (round-robin) and sends results to the proper
client. Even when the Master Server has to deal with new
documents and their indexing, most of the problem is still
found at the query problem and the workload generated by
multiple concurrent client processes.

Figure 1: Centralized Server.

Figure 2: Two Shards Server.

Storage

Indexing

Centralized Server

Query/Result

Query/Result

Storage

Indexing

Storage

Server Front-End

Query/Result

Two Shards Server

Aggregate Result

Server Back-End

Storage

Indexing

Master
Server

New documents

Storage

Storage

Query

Result

Front-End
(Balancer)

Replicas

Replicated Server

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 687

Figure 3: Replicated Server with Two Replicas.

The sar tool is used in every server configuration to monitor
and account the selected performance indices. Experiments
are triggered at the server side, synchronized with the sar
command at the server side. Each performance index sample
is taken every two seconds at experiment runtime and stored
for later processing. In case of several servers, indices are
aggregated and processed after running the experiments.

4 Results
Several combinations of hardware and software were used in
order to test the server configurations and client requests. The
main characteristics of the computer from which the script
that collects all the client-side information and performs all
the requests to Solr server/s are:
• AMD Athlon(tm) 64 X2 Dual Core Processor 5200+
• 1 GB DDR2 RAM
• 100 Mb/s Ethernet NIC
• Fedora Core 11 64 bits
Two different computers were used for the server side, so that
heterogeneous hardware can be measured and evaluated. The
most powerful computer/hardware is used for the stand alone/
centralized server (Fig. 1 above) as well as one of the shard
and one of the replica servers (Fig. 2 and Fig. 3 above). The
main characteristics of this computer (the most powerful at
the server side) are:
• Intel i3 CPU 540 @ 3.07GHz
• 8 GB DDR3 RAM
• 1000 Mb/s Ethernet NIC
• Ubuntu Server 10.04 LTS 64 bits
The less powerful computer used at the server side has the
following characteristics:
• Intel Core 2 Duo CPU E7400 @ 2.80GHz
• 2 Gb DDR2 RAM
• 1000 Mb/s Ethernet NIC
• Ubuntu Server 10.04 LTS 64 bits
Apache Tomcat is used in every server configuration with the
default installation; the only changed value is the number of
threads, raised to 1024. The JVM (Java Virtual Machine)
running Apache Tomcat was specifically configured so that
the server is monitored by enabling JMX (Java Management
eXtensions). Apache Solr is used almost with the default
configuration and installation from binaries, specifically
defining the Wikipedia in Spanish documents to be indexed
and searched for specific data.
 Fig. 4 shows the performance in seconds for different
number of clients triggering queries for the three defined
server configurations. Even when all the configurations have
a performance degradation starting at the 512 clients, the
shards configuration has a near linear increase in the time
which, in turn, suggests a better scalability at least in terms of
number of requests. As expected, the stand-alone server
configuration (shown as “1 Server” results) has performance
degradation for lower number of concurrent clients: between
256 and 384 and, also, degradation is far from being linear

starting at 512 clients. As shown on Fig. 4, the replicated
server has an intermediate behavior in performance between
that of the stand-alone server and the sharded server. Perhaps
the worst replicated server behavior characteristic is that
shown starting at 512 clients, since performance degradation
is far from being linear, even worse than that for the stand-
alone server. This, in turn, shows that replication servers
should be very carefully designed, configured and monitored
in order to avoid hot spots and/or high performance
degradations under requests stress.

64 128 196 256 384 512 768 1024

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

5,5

TR (Server) TR (Shards) TR (Réplicas)

Clients (threads)

S
e

c
o

n
d

s

Figure 4: Response Time Performance.

 In Fig. 5 the CPU usage is shown for the experiments
already shown in Fig. 4. The stand-alone server configuration

64 128 196 256 384 512 768 1024

30

35

40

45

50

55

60

65

70

75

80

85

90

95

Proc (S-Aalone) Proc (Shard) Proc (Réplica)

Clients (threads)

%
 C

P
U

Figure 4: Average Server CPU Usage.

1 Server 2 Shards 2 Replicas

1 Server 2 Shards 2 Replicas

688 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

is almost overloaded starting at 85 concurrent clients, with
more than 85% CPU usage. Sharded and replicated server
configurations are not necessarily lightly loaded (both are
above 65% CPU usage starting at 256 concurrent clients), but
do not get overloaded, the servers are always below 80%
CPU usage. The CPU usage explains almost directly the
reason for the performance obtained with each server
configuration, since results are almost directly proportional.
The direct relationship Response Time - CPU usage allows to
exclude the analysis on other important factors such as
network load, disk accesses, RAM usage/footprint, etc.
 Since heterogeneous computers are used at the server
side, further analysis would be useful in order to explain
results as well as define better balancing and scaling load
strategies. Fig. 5 shows the CPU usage per each computer at
the server side. Clearly, the stand-alone server CPU usage
(shown as “1 Server”) is the same as that shown in Fig. 4.
Results shown as “S1” correspond to the sharded server
configuration on the best computer and those shown as “S2”
to the sharded server on the worst computer. Clearly, the
worst computer is almost always overloaded starting at 196
concurrent clients. The best computer used at the server side
is almost always lightly loaded. There is a huge unbalanced
workload for heterogeneous servers, and it seems to be a clear
index for workload balance: CPU usage.

64 128 196 256 384 512 768 1024

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Proc (S-
Aalone)

Proc
(Shard1)

Proc
(Shard2)

Proc (Ré-
plica1)

Proc (Ré-
plica2)

%
 C

P
U

Clients (threads)

Figure 5: CPU Usage per Server Computer.

Results shown in Fig. 5 for the replicated servers (R1 and R2,
respectively) are analogous to those explained for the sharded
servers.
 In general, analyzing data shown in Fig. 3, Fig. 4, and
Fig. 5, several interesting remarks can be done
• The sharded server configuration almost always provides

the best performance.
• Distributing data and/or queries at the server side almost

always improves performance.

• There is still work to be done for enhancing workload
balance, which could further improve performance,
specifically with heterogeneous hardware.

• Even when some of the distributed server computer/s are
overloaded, the average CPU usage is directly related to
performance, i.e. overloading does not necessarily imply
too high performance penalties provided there are not
overloaded server computers which are able to handle
incoming requests.

5 Conclusions and Further Work
This paper has shown several configuration guidelines and
obtained results for NoSQL databases. Experiments with
heterogeneous hardware are also included, basically as a
proof of concept and, also, for further analysis of specific
results. Working with heterogeneous data can be considered
as granted on NoSQL databases by its own nature.
Infrastructure software such as Apache Solr has proven to be
successful not only for starting a (server side) content
management system, but also to experiment and measure
runtime tests. Specific experimentation and measurement on a
distributed system imply using tools and methodologies on
the client side, and a combination of Siege and awk has been
used for generating representative requests load on different
server configurations.
Several tests have shown that a completely distributed data
and information recovery configuration by defining shards
provides the best runtime results.
 There are several immediate tests and hardware
and software configurations to experiment with:
• Using more servers for shards as well as for replicas,

also with more heterogeneity.
• Fine-tuning of data and workload on each heterogeneous

server.
• Combinations of sharding and replication, since those

options do not exclude each other.
Other research lines are not so immediate, since require more
analysis and experimentation, among other tasks. A possible
step forward is the heterogeneous distribution of indexes
according to different criteria, such as server heterogeneity
and type of query (e.g. combination of words).

6 References
[1] Azza Abouzeid, Kamil BajdaPawlikowski, Daniel
Abadi1, Avi Silberschatz, Alexander Rasin, “HadoopDB: An
Architectural Hybrid of MapReduce and DBMS
Technologies for Analytical Workloads”, Proceedings of the
VLDB Endowment (2009), Vol. 2, Issue: 1, pp. 922–933.

[2] J. Chris Anderson, Jan Lehnardt, Noah Slater,
CouchDB: The Definitive Guide, O'Reilly Media, Jan. 2010,
ISBN 1449379680.

[3] Jeffrey Dean, Sanjay Ghemawat, “MapReduce:
Simplied Data Processing on Large Clusters,” Communica-

1 Server

S1

R1

S2

R2

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 689

tions of the ACM - 50th anniversary issue: 1958 - 2008, Vol.
51, Issue 1, Jan. 2008.

[4] Erik Hatcher, Otis Gospodnetić, Lucene in Action, 2nd.
ed, Manning Publications Co., 2004.

[5] Cal Henderson, “Building Scalable Web Sites”, O'Reilly
Media, 2006.

[6] Eben Hewitt, Cassandra: The Definitive Guide, O'Reilly
Media, Nov. 2010, ISBN 1449390412.

[7] Curt Monash. The 1-petabyte barrier is crumbling,
Networkworld, Aug. 2008 http://www.networkworld.com/
community/ node/ 31439.

[8] Ken North, “The NoSQL Alternative, Low-cost, high-
performance database options make gains,” Information
Week, May 2010.

[9] Eelco Plugge, Tim Hawkins, Peter Membrey, The
Definitive Guide to MongoDB: The NoSQL Database for
Cloud and Desktop Computing, Apress, October 2010, ISBN
1430230517.

[10] Michael Stonebraker, “The Case for Shared Nothing”,
Database Engineering, Vol. 9, No. 1, 1986, http://db.cs.
berkeley. edu/papers/hpts85- nothing.pdf

[11] Carl W. Olofson, Worldwide RDBMS 2005 vendor
shares, Technical Report 201692, IDC, May 2006.

[12] Thoughts on the Whitehouse.gov switch to Drupal,
http://radar.oreilly.com/2009/10/whitehouse-switch-drupal-
opensource.html

[13] Dan Vesset, Wrldwide data warehousing tools 2005
vendor shares, Technical Report 203229, IDC, August 2006.

[14] Zhou Wei, Guillaume Pierre, Chi-Hung Chiy:
CloudTPS: Scalable Transactions for Web Applications in the
Cloud. Technical report IR-CS-53, Vrije Universiteit,
February 2010.

[15] WhiteHouse.gov Goes Drupal, http://personal.
democracy.com/node/15131

[16] Joe Dog Software, Siege, http://www.joedog.org/index/
siege-home

690 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

SESSION

WORKSHOP ON MATHEMATICAL MODELING
AND PROBLEM SOLVING, MPS

Chair(s)

Prof. Minoru Ito

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 691

692 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

An Attrib ute Graph Grammar for UML Package Diagrams and its
Applications

Takaaki Goto1, Tetsuro Nishino2, and Kensei Tsuchida3
1Center for Industrial and Governmental Relations, The University of Electro-Communications, Chofu, Tokyo, Japan
2Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, Japan

3Faculty of Information Science and Arts, Toyo University, Kawagoe, Saitama, Japan

Abstract— Graphical representations are often used in soft-
ware design and development because of their expressive-
ness. Unified Modeling Language (UML) for modeling in
software development was proposed recently, and in 2005 it
was standardized as the ISO/IEC 19501 standard.

In order to automate processing of these graphical repre-
sentations using computers, a syntax for program diagrams
must first be defined. We propose a framework for specifying
these diagrams using a graph grammar, and for processing
these diagrams automatically.

Keywords: graph grammar, UML, package diagram, SVG

1. Introduction
Graphical representations are often used in software de-

sign and development because of their expressiveness. Var-
ious graphical program description languages have been re-
ported, including Hierarchical flowchart language (Hichart),
Problem Analysis Diagrams (PAD), Hierarchical and Com-
pact description charts (HCP), and Structured Programming
Diagrams (SPD), and many Computer Aided Software En-
gineering (CASE) tools have been developed based on these
languages [1], [2], [3].

On the other hand, the Unified Modeling Language
(UML) for modeling in software development was proposed
recently compared with above graphical program description
languages, and in 2005 it was standardized as the ISO/IEC
19501 standard. UML has already been used in the analysis,
design and implementation of many systems. It makes use
of various types of diagrams, such as class and sequence
diagrams, for designing processes in system development,
from upstream process to downstream process. In order
to automate processing of these graphical representations
using computers, a syntax for program diagrams must first
be defined. Then, in order to analyze the syntax of two-
dimensional objects such as program diagrams, the relation-
ships between each of the elements must also be described.
Graph grammars are one possible effective means for imple-
menting these methods. Graph grammars provide a formal
method that enables rigorous definition of mechanisms for
generating and analyzing graphs.

Research on graph grammars has been done by Rozen-
berg [4] and others. Research has also been done on UML [5]
and graph grammars and graph transformations with respect
to UML [6], [7], [8].

However these researches do not deal with syntax formal-
ization for visual representation. And also graph grammars
for package diagram are not proposed yet in previous re-
searches. Therefore we provide a graph grammar for package
diagram of UML to propose theoretical fundamentals of
UML.

With regard to Web documents, XML and SVG have
been proposed as standard document and graphical formats
for the Web. Scalable Vector Graphics (SVG) [9] is a
W3C Recommendation and a language for describing two-
dimensional graphics and graphical applications in XML.
SVG can display graphical objects on any readily available
Web browser. With these formats, users can share document
including graphical objects on the Web. We reported on
automatic generation of SVG files and incorporated the
generation method into a graphical editor for Hichart by
using attribute graph grammars.

The goal of this research is to generate UML package di-
agrams based on a graph grammar. We propose a framework
for specifying these diagrams using a graph grammar, and
for processing these diagrams automatically.

2. Preliminary
2.1 Graph Grammars
Definition 1. ([4]) An edNCE graph grammaris a six-tuple
GG = (Σ,∆,Γ,Ω, P, S), whereΣ is the alphabet of node
labels,∆ ⊆ Σ is the alphabet of terminal node labels,Γ is
the alphabet of edge labels,Ω ⊆ Γ is the alphabet of final
edge labels,P is the finite set ofproductions, andS ∈ Σ−∆
is the initial nonterminal. A production is of the formX →
(D,C) whereX is a nonterminal node label,D is a graph
over Σ andΓ, andC ⊆ Σ× Γ× Γ× VD × {in, out} is the
connection relation which is a set of connection instructions.
A pair (D,C) is a graph with embedding overΣ andΓ. 2

An example of a production is shown in Figure 1. In the
Figure, a box is a nonterminal node and a filled circle is
a terminal node.X, Y , and b mean node labels andv0,

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 693

v1, andv2 meannode IDs. Nodes with same node label can
appear in a graph, while nodes with same node ID will never
appeared in a graph. The production of Figure 1 indicates
that after the removal of a nonterminal node with label
X, embed the graph consists of terminal node with label
b and the nonterminal node with labelY . Each production
has connection instructions. The connection instruction of
this production is(a, α/β, v1, in), however this connection
instruction is not described in the notation of Figure 1.

In Figure 2, the production of Figure 1 and its connection
instruction are drawn simultaneously. The large box of
Figure 2 indicates the left-hand side, and two nodes with
labelb andY are right-hand side of the production of Figure
1.

X

v0

Y
b γ

v1
v2

Fig. 1: An example of a production

X

Y
bβ γα

a

v0

v1
v2

Fig. 2: An example of a production with the connection
relation

An example of application of the production is shown in
Figure 3. In Figure 3H = (VH , EH , λH) is a graph with
VH = {n1, n2}, EH = {(n1, α, n2)}, λH(n1) = a, and
λH(n2) = X. The production copyp′ of p is as follows:p′ :
X → (D′, C ′) whereX = λH(n2), D′ = (VD′ , ED′ , λD′)
such thatVD′ = {n3, n4}, ED′ = {(n3, γ, n4)}, λD′(n3) =
b, λD′(n4) = Y andC ′ = {(a, α/β, n3, in)}.

a a b
Y

α β γ
X

H H'

n1
n2

n1 n3
n4

n2, p'

Fig. 3: An example of applying a production rule

In Figure 3, H indicates the host graph andH ′ is the
resulting graph. At first, we remove the nodeX and edges
that connect with nodeX from host graphH. Next we
embed the daughter graph, including node b and node Y.
Then we establish edges between the nodes of daughter
graph and the nodes that were connected to the node X using

the connection instructions on the productionp′. Therefore
the edge labelα is rewritten toβ by the productionp′.

Definition 2. ([10], [11]) An Attribute edNCE Graph
Grammar is a six-tupleAGG = ⟨GG,Att, F ⟩, where

1.GG = (Σ,∆,Γ,Ω, P, S) is called anunderlying graph
grammar of AGG. Each productionp in P is denoted by
X → (D,C).

2. Each node symbolY ∈ Σ of GG has two disjoint
finite setsInh(Y) andSyn(Y) of inheritedandsynthesized
attributes, respectively. The set of all attributes of symbol
X is defined asAtt(X) = Inh(X) ∪ Syn(X). Att =∪

X∈ΣAtt(X) is called theset of attributesof AGG. We
assume thatInh(S) = ∅. An attributea of X is denoted
by a(X), and the set of possible values ofa is denoted by
V (a).

3. Associated with each productionp = X0 → (D,C) ∈
P is a setFp of semantic ruleswhich define all the attributes
in Syn(X0)

∪
X∈Lab(D) Inh(X). A semantic rule defining

an attributea0(Xi0) has the forma0(Xi0) := f(a1(Xi1), · ·
·, am(Xim)). Heref is a mapping fromV (a1(Xi1))×· · ·×
V (am(Xim)) into V (a0(Xi0)). In this situation, we say that
a0(Xi0) depends onaj(Xij) for j, 0 ≤ j ≤ m in p. The set
F =

∪
p∈P Fp is called theset of semantic rulesof G. 2

Attribute values are calculated by evaluating attributes
according to semantic rules on the derivation tree.

2.2 UML
Unified Modeling Language (UML) is a notation for mod-

eling object oriented system development using diagrams.
UML can be divided into structural diagrams and behav-
ioral diagrams. Structural diagrams are used to describe the
structure of what is being modeled and include class, object,
and package diagrams, and so on. Behavioral diagrams are
used to describe the behavior of what is being modeled
and include such as use-case, activity, and state-machine
diagrams.

Structure diagrams include class diagrams, which de-
scribe the static relationships between classes, and package
diagrams, which group classes and describe relationships
between packages and package nesting relationships.

Figure 4 shows an example of a package diagram. The
box with rectangle at the upper left indicates a package.
The box with three compartments is a class. Each of three
parts indicates its class name, its attribute, and its methods
from top to the bottom. A plus with circle is used to represent
which components the package contains. Package 1 contains
Package 2 and Package3, and Package 3 contains Class2 and
Class 3.

3. Graph Grammar for UML Package
Diagrams

In this section we describe our Graph Grammar for
Package Diagrams (GGPD), for UML package diagrams.

694 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

+

Package1

+

+

Package2 Package3

Class1 Class2 Class3

Fig. 4: An example of a package diagram

3.1 Grammar Overview
Definition 3. 　The Graph Grammar for Package Diagrams
(GGPD), for UML package diagrams, is a six-tupleGGPD
= (ΣPD, ∆PD, ΓPD, ΩPD, PPD, SPD). Here,ΣPD = { S,
A, T, L, R, M, rop, sp, lep, rip, mip, lec, mic, ric } is a finite
set of node labels,∆PD = { rop, sp, lep, rip, mip, lec, mic,
ric } is a finite set of terminal node labels,ΓPD = { ∗ }, ΩPD

= { ∗ }, PPD = { P1, ..., P17 } is a finite set of production
rules, andSPD = { S }, is the initial non-terminal. 2

The GGPD generates package hierarchy diagrams. It is a
context-free grammar and there are 17 production rules. An
example of GGPD production rule is shown in Figure 5.

T

lep

L

0

1

2

Fig. 5: An Example of a production rule of GGPD

In the figure, the production rule can be applied to a
node labeledL, which is a non-terminal node, to generate
a terminal node with the label lep, representing a package,
and a non-terminal node labeledT .

A node with capitalized label indicates a nonterminal
node, and a node with uncapitalized label indicates a termi-

nal node. Our grammar generates directed graphs. However
obtained graphs are drawn without arrows by assumption
that the direction of each edge from top down.

3.2 Example of Derivation

Figure 6 shows an example of a GGPD derivation. In this
example,G0 is a graph with the node labeledS. The node
ID is 1 (lower right of the node).

Then the production ruleP1 is applied to a non-terminal
node labeledS with node ID 1, which is the initial non-
terminal node. That is, remove a mother node with labelS
and node ID 1, then embed a daughter graph in theP1. In
this case the daughter graph is the node with labelA. This
produces the non-terminal node labeledA with node ID 2,
to which theP3 production rule is applied. That is, graph
G1 consists of node with node ID 2 is obtained.

After application of the productionP3, the terminal node
labeledrop and a non-terminal node labeledT are generated.
We apply productions to obtain a graph that correspond to
UML package diagrams.

We can obtain a derivation tree from derivation sequence
of production. Figure 7 shows the derivation tree correspond-
ing to Figure 6. In the Figure 7, the labels show the name
of production rules.

Another example of a package diagram resulting from
applying the production rules is shown in Figure 8.

3.3 Generation of SVG document for package
diagrams

We introduce attributeSSV G which contains SVG source
codes, as its value and representation corresponding to the
package diagram. We have a plan to generate diagrams with
animation. SVG can display on browser such as IE with
SVG plugin.

SVG source codes are generated by evaluatingSSV G.
Evaluation of attributes is performed in the bottom-up man-
ner on derivation trees. Figure 9 illustrates the flow of
generating SVG files.

Figure 10 gives examples of semantic rules with the
attributeSSV G.

3.4 Folding / UnFolding

When drawing package diagrams for large-scale systems,
the scale of diagrams can become large, and this can make
diagrams difficult to comprehend visually. This makes it
necessary to process diagrams to summarize and hide infor-
mation. Thus, we perform information-hiding by expressing
diagrams in sentential form.

Figure 11 shows an example of a package diagram and
its derivation tree before folding, and Figure 12 shows the
package diagram and derivation tree after folding.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 695

⇒

⇒

G1:

G2:

G3:

G0:

G4:

⇒

S

1

P1

S

A

A

2

P3

A

T

+

rop

T

+

rop

3

4

P6

T

L R

+

rop

3

5

L R

6

P8
rop

L

+

rop

3

7

6

lep
R

G5:

⇒
P12

rip

R

8

+

rop

3

7

lep rip

1, P1'

2, P3'

4, P6'

5, P8'

6, P12'

Fig. 6: An example of a GGPD derivation

P1

P3

P6

P8 P12

Fig. 7: A derivation tree corresponding to the tree in Figure
6

rop

lep rip

ric

+

lecsc

+ +

Fig. 8: An example of package diagram resulting from
derivation

attribute evaluation

derivation tree

with SVG

derivation tree

attributes

for SVG

output: SVG
file

Fig. 9: Flow of generating SVG files

Fig. 10: An examples of semantic rules with the attribute
SSV G

4. UML Package Diagram Editor
In this section, we explain our prototype UML package

diagram editor based on the grammar described in Section
3. The editor is a syntax-directed editor and was developed
in Java. Figure 13 shows a screenshot of the editor.

On the editor, when a non-terminal node displayed on the

696 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

P14 P10

rop

lep

sc

rip

lec ric

P1

P3

P6

P9

P7 P13

P6

P14

mip

lec ric

P10

P11

P16

+

+ ++

P6

Fig. 11: A package diagram and its derivation tree before
folding

rop

lep

sc

rip

lec ric

+

++

P14 P10

P1

P3

P6

P9

P7 P13

P6

P10

P11

P16

P6

M

Fig. 12: A package diagram and its derivation tree after
folding

Fig. 13: A screenshot of the package diagram editor

editor screen is selected , a screen displaying the production
rules that can be applied to the non-terminal node is dis-
played. Figure 14, 15, and 16 show a screen shot when the
non-terminal node with node ID of 2 and labeled A in the
package diagram editor screen is clicked (Figure 14), and the
applicable production rules are displayed (Figure 15). After
choosing a production rule, the production rule is applied to
the non-terminal node (Figure 16).

The applied production rules can also be displayed as a
derivation tree, as shown in Figure 17.

Fig. 14: A nonterminal node on the editor

Fig. 15: The production rule display screen of the package
diagram editor

Fig. 16: An example of applying production rule on the
editor

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 697

Fig. 17: The derivation tree display screen of the package
diagram editor

When users execute an editor command, SVG files can be
automatically generated by evaluating SVG attributes. The
evaluation is executed by traversing on the derivation tree.
Figure 18 is an example of the display of a package diagram
in SVG.

Fig. 18:An example of the display of a package diagram in
SVG

5. Conclusion
In this paper, we have defined a graph grammar for gen-

erating the hierarchical structure of UML package diagrams.
We have also created a syntax-directed diagram editor for the
defined grammar. A future issue for study is to implement

syntactic analysis. The editor developed here is able to
generate diagrams according to the grammar and complying
with the syntax through human intervention, but it is not
able to determine, from an arbitrary input, whether a diagram
conforms or not. By implementing syntactic analysis, auto-
matic processing of arbitrary input diagrams will be possible.
Application of this technology to automatic generation of
software documentation is an another possibility.

References
[1] K. Harada,Structure Editor. Kyoritsu Shuppan, 1987, (in Japanese).
[2] Yoshihiro Adachi, Youzou Miyadera, Kimio Sugita, Kensei Tsuchida,

and Takeo Yaku, “A Visual Programming Environment Based on
Graph Grammars and Tidy Graph Drawing,” inProceedings of The
20th International Conference on Software Engineering (ICSE ’98),
vol. 2, 1998, pp. 74–79.

[3] Takaaki Goto, Kenji Ruise and Takeo Yaku and Kensei Tsuchida, “Vi-
sual Software Development Environment Based on Graph Grammars,”
IEICE Transactions on Information and Systems, vol. 92, no. 3, pp.
401–412, 2009.

[4] G. Rozenberg,Handbook of Graph Grammar and Computing by
Graph Transformation Volume 1. World Scientific Publishing, 1997.

[5] L. Kotulski and D. Dymek, “On the Modeling Timing Behavior of the
System with UML(VR),” in Computational Science ICCS 2008, ser.
Lecture Notes in Computer Science, vol. 5101, 2008, pp. 386–395.

[6] F. Hermann, H. Ehrig, and G. Taentzer, “A Typed Attributed Graph
Grammar with Inheritance for the Abstract Syntax of UML Class and
Sequence Diagrams,”Electron. Notes Theor. Comput. Sci., vol. 211,
pp. 261–269, April 2008.

[7] Kong, Jun and Zhang, Kang and Dong, Jing and Xu, Dianxiang,
“Specifying behavioral semantics of UML diagrams through graph
transformations,”J. Syst. Softw., vol. 82, pp. 292–306, 2009.

[8] D. Petriu and H. Shen, “Applying the UML Performance Profile:
Graph Grammar-Based Derivation of LQN Models from UML Spec-
ifications,” in Computer Performance Evaluation: Modelling Tech-
niques and Tools, ser. Lecture Notes in Computer Science, vol. 2324,
2002, pp. 183–204.

[9] W3C Web Site. Scalable Vector Graphics (SVG),
http://www.w3.org/TR/SVG/.

[10] T. Nishino, “Attribute Graph Grammars with Applications to Hichart
Program Chart Editors,” inAdvances in Software Science and Tech-
nology, vol. 1, 1989, pp. 89–104.

[11] T. Arita, K. Sugita, K. Tsuchida, and T. Yaku, “Syntactic Tabular
Form Processing by Precedence Attribute Graph Grammars,” inProc.
IASTED Applied Informatics 2001, 2001, pp. 637–642.

698 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Classification of Idiopathic Interstitial Pneumonia CT Images using
Convolutional-net with Sparse Feature Extractors

Taiju INAGAKI1, Hayaru SHOUNO1, Shoji KIDO2

1 Graduate School of Informatics and Engineering,
University of Electro-Communications,

Chofugaoka 1-5-1, Chofu, Tokyo JAPAN 2 Applied Medical Engineering Science,
Graduate School of Medicine, Yamaguchi University,

Tokiwadai 2-16-1, Ube, Yamaguchi JAPAN

Abstract— We propose a computer aided diagnosis (CAD)
system for classification of idiopathic interstitial pneumo-
nias (IIPs). High resolution computed tomography (HRCT)
images are considered as effective for diagnosis of IIPs.
Our proposed CAD system is based on the convolutional-
net that is bio-plausible neural network model inspired from
the visual system such like human. The convolutional-net
extract local features and integrate them in the process
of hierarchical neural network system. For natural image
recognition by convolutional-net, Gabor feature extraction
is known to give a good performance , however, the HRCT
images may have different properties from those of natural
images. Thus, we introduce a learning type feature extrac-
tion called “sparse coding” into the convolutional-net, and
evaluate performance for classification of IIPs.

Keywords: Computer Aided Diagnosis, Idiopathic Interstitial
Pneumonia classification, Convolutional-net, Sparse coding

1. Introduction
In the field of medical image diagnosis using high reso-

lution computed tomography (HRCT) is effective for clas-
sifying of idiopathic interstitial pneumonias (IIPs). Using
the HRCT image, we may observe the site of IIPs is
diffused in the lung, however, determining the border of
the disease site is difficult work, and the IIPs on HRCT
images shows a lot of varieties in patterns. Thus, the quality
of diagnosis is influenced by the ability of diagnostician,
and improving the quality is desired for proper treatment.
The second opinion system, which means plural diagnos-
ticians opinions are taken into consideration for diagnosis,
is an answer for the problem. However, this system makes
the diagnosticians diagnose over twice patients, that is the
second opinion system might be burden for diagnosticians.
Moreover, because of the large number of variations in image

pattern of IIPs, a lot of cost may require to educate for a
skilled diagnostician. Hence, the diagnosis aid system using
computer is desired for objective diagnosis in these decades.
The computer aimed diagnosis (CAD) system is designed
to provide a second opinion using computer analysis from
the obtained images, and we can consider many types of
CAD systems. In this study, we try to construct a computer
diagnosis aid using convolutional-net, which is a kind of
artificial neural network inspired from the visual system
of human [1][2][3][4]. Roughly speaking, the mechanism
of the convolutional-net consists of two components: one
is the local feature extraction, and the other is integration
of the extracted features with non-linear modulation. The
feature extractor components called S-cells, which comes
from simple cell in the visual area of brain, respond to the
similarity between the input and the preferred feature of
the cell. The integration components called C-cells, which
comes from complex cell in the brain, integrate the extracted
feature by spatial pooling of the S-cell outputs. We assume
each type cell arranged in the 2-dimensional lattice called
cell-plane and cell in the identical cell-plane have same
properties. By this assumption, cell in an identical plane
could share the weight of the connection. The mathematical
notation of the weight sum sharing for the input can be
described as a convolution, so that this type of network
is called “convolutional-net”. To determine the preferred
feature of S-cells, we introduce a learning rule called “sparse
coding” [5]. The sparse-coding assumes any input as a
weighted sum of linear bases, and the bases are determined
to satisfy that as much as the weights for bases should take
0 value for whole input data with compensation for the
overcomplete bases. Olshausen & Field show that applying
the sparse coding to the small part called image patch of
natural scene, they obtained Gabor feature like preferred
bases, which is usually used to denote the property of the
simple cell [5]. We apply the sparse-coding bases into the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 699

(a) (b) (c) (d) (e) (f) (g)

IIPs
Image DB

ROI
Consolida on GGO Honeycomb Crazy-paving Emphysema Nodular Normal

Figure 1: Typical CT images of diffuse lung diseases: The top row shows each overview, and bottom shows magnified
part (ROI) of each lesion. From (a) to (g) represents “Consolidation”, “GGO”, “Honeycomb”, “Crazy-Paving”, “Nodular”
“Emphysema”, and “Normal” image respectively.

feature extractor weight of the convolutional-net.
For IIPs classification, several approach are proposed, and,

in recent years, a “texton” base system are focused in clas-
sification of lung diseases[6]. A texton means the clustered
features from the collection of small patch of images, and
texton base system use the collection of similarities between
an input and each texton as a feature vector. Thus, our
approach can be regarded as an extension of this texton base
approach.

In this study, we developed a prototype CAD system
for classifying IIPs. Our CAD system take a segmented
image which is taken from the HRCT image of lungs, and
classify the input image into following named classes, that
is, consolidation, ground-grass opacity (GGO), honeycomb,
crazy-paving, nodular, emphysema and normal classes. The
lesion of this disease is spread in lung, and has a lot of
image patterns even in the same class. Fig.1 shows a typical
image example of each disease HRCT image. The left shows
an overview of the axial HRCT images of lungs including
lesion, and the right shows segmented images of typical
examples of lesion from the left image collections. The
consolidation and GGO patterns are often appeared with
the cryptogenic organizing pneumonia diseases (COPD).
The GGO pattern is also often appeared in the non-specific
interstitial pneumonia (NSIP). The crazy-paving pattern have
reticular pattern with partial GGO patterns, which appeared
in also NSIP. The honeycomb pattern has more rough mesh
structure rather than that of the crazy-paving, and it appeared
in idiopathic pulmonary fibrosis (IPF) or usual interstitial
pneumonia (UIP).

2. Method
In this section, we explain about more detailed

convolutional-net formulation and learning method of sparse

coding using in our CAD system.

2.1 Structure of Convolutional- net

The convolutional-net mainly consists of two types of
cells. One is called “S-cell” which is used for feature extrac-
tor. The S-cell have local connection window called receptive
field, and the local connection weight dictate preference of
the S-cell, so that the local connection weight is sometimes
called preferred vector. When an input is appeared to the
receptive field, the S-cell calculates a similarity between the
input and the preferred vector for responding. The other type
of cell is called “C-cell” which is used for reduction of local
input pattern deformation, such that shift, rotation, and so on.
The C-cell calculates spatial pooling of the S-cell that have
same preferred vector in the local area. This spatial pooling
calculation is sometimes called “blurring” or “sub-sampling”
[1][3]. These calculation manners are originally proposed by
Hubel & Wiesel [7].

We treat each type of cell as arranged in 2-dimensional
lattice called “cell plane”. The cell in a cell plane has
same preferred vector except the receptive field position,
which is just differ as the position of the cell in the cell
plane. Introducing the cell plane structure, we can treat the
connection between the cell planes as the convolution. Thus,
we call this type of network as “convolutional-net”. In the
center part of the Fig.2 shows a schematic diagram of the
convolutional-net. Each rectangle in the part shows cell plane
that includes same type of cells, and whole cells have only
local connections.

As in mathematical form, we denote the response of the
S-cell at the location x in the k-th cell plane as us(x, k),

700 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Input 32x32

Us: L x L x 450
Output

Uc: 1 x 1 x 450

Subsampling

Sphered
ROI DB Convolu onal-net

SVM
Classifier

Convolu on by
φ
k

Figure 2: Schematic diagram of our CAD system using convolutional-net. In the convolutional-net part, each rectangle shows
cell plane which includes same type of cells arranged in the 2D array.

and denote it as a convolution form:

us(x, k) = ϕ

[∑
ν φk(ν)I(x + ν)√∑

ν φk(ν)2
√∑

ν I(x + ν)2
− θk

]
,

(1)

where ϕ[·] means the half-wave rectified function:

ϕ[s] =
{
s if s > 0
0 else

, (2)

θk means threshold value for the cell in the k-th cell plane,
and φk(ν) means the connection weight for the relative
location to x. Introducing a vector notation for index of
receptive field ν, that is φk as φk(ν), Ix as I(x + ν), we
can denote eq.(1) as:

us(x, k) = ϕ

[
φk · Ix

‖φk‖ ‖Ix‖
− θ

]
(3)

where dot operator in the numerator means the inner product
of vectors, so that the first term in the function ϕ[·] means
the similarity in the meaning of direction cosine. Thus, we
can interpret the eq.(1) as two step calculation, that is the
first step is calculation of similarity between local input Ix

and the preferred vector φk, and the second is modulate the
similarity by the threshold and half-wave rectification.

The C-cell function also denote as a convolution for the
spatial pooling in the S-cell plane:

uc(x, k) = ψ

∑
ξ

ρ(ξ)us(x + ξ, k)

 , (4)

where ξ indicates the connection location relative to the
x, ρ(ξ) means the connection weight, and ψ[·] means the
modulation function. In this study, to keep the network
structure simple, we adopt following conditions. We assume
connection between uc(x, k) have whole spatial pooling for
us(x, k) which means uc(x, k) denote as a single unit uc(k)
and it have full connection to the whole units in the previous

plane us(x, k). Moreover, we also assume whole connection
weight as homogeneous, that is ρ(ξ) = 1, and modulation
function ψ[·] as linear modulation function ψ[u] = u. Hence,
we can denote the C-cell for the k-th feature described in
eq.(4) as:

uc(k) =
∑

ξ

us(ξ, k). (5)

Now, we can consider the output of the convolutional-
net uc(k) for the input I(x) as a kind of the conversion
from the input to a feature vector, so that we should
classify the feature vector into the class category. In order
to classify uc(k), we introduce a support vector machine
(SVM), which is developed in the field of machine learning,
for classification in the next stage [8].

2.2 Learning of Preferred Feature by Sparse
Coding

For applying a convolutional-net into the natural image
understanding, Gabor filters is usually adopted in the feature
extractor connection φk. The Gabor filter is suitable for
extraction of line or edge segment in the image, and those
feature components are considered important in the field of
natural scene understanding [3] [1]. However, it is doubtful
that line or edge components in the segmented image of
the IIPs is effective to the classification. Thus, we introduce
learning base algorithm called sparse coding to determine
the feature extraction vector set {φk}. The sparse coding
is proposed by Olshausen & Field to explain the property
of the simple cell in the brain[9]. Denoting part of input
image patch pattern set as {Ip}, which have same size to
the feature extraction vector φk, for training the feature
extraction vectors where p is the pattern index. The idea of
the sparse coding stands on the following points. One is the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 701

image patch Ip should be expressed by a linear combination
of the feature extraction vector {φk}:

Ip ∼
∑

k

ap
kφk. (6)

And the other point is the almost all the coefficients ap
k

should be zero, that is only few feature extraction vectors
support the image patch Ip, and we call under this condition
as “sparse” state.

Then, we can introduce an objective function for the
sparse coding as following:

J [{φk}, {a
p
k}] =

∑
p

‖Ip −
∑

k

ap
kφk‖2 + λS({ap

k}), (7)

S({ap
k}) =

∑
p,k

log(1 + (ap
k)2). (8)

In the eq.(7), the first term means a data fitting term and the
second means a constraint for sparseness, and the parameter
λ controls the balance between these two terms. Minimizing
the objective function for the {φk} and {ap

k}, we can obtain
the feature extracting vector set {φk} in the eq.(1).

3. Experiment
3.1 Materials

In order to evaluate our CAD system, we prepare 360 im-
ages, in which the number of each class are following: Con-
solidation:38, GGO:76, Honeycomb:49, Crazy-paving:37,
Emphysema:54, Nodular:48, and Normal:58 cases. In usual,
the HRCT image consists of 512×512 pixels. However, the
whole image includes not only interest anatomy lung, but
also another anatomies. Hence, in our system, we assume
an input image is a part of HRCT image called “region of
interest (ROI)” , which is segmented by a diagnostician. The
size of ROI is configured as 32 × 32 pixels. Each ROI is
segmented under the direction of a physician, and diagnosed
by 3 physicians.

The acquisition parameters of those HRCT images are as
follows: Toshiba “Aquilion 16” is used for imaging device,
each slice image consists of 512 x 512 pixels, and pixel size
corresponds to 0.546 ∼ 0.826 mm, slice thickness are 1 mm.
The number of patients is 69 males and 42 females with age
66.3 ± 13.4. The number of normal donor is 4 males and
2 females with age 44.3 ± 10.3. The origin of these image
data is provided Tokushima University Hospital.

On the consolidation image, we cannot recognize the
vessels since lesion have too much high CT values such
like water. GGO represents the light distributed lesion, and
we can recognize vessels in contrast. Honeycomb appears
geometrical patterns caused by the partial destruction of

alveoli. Crazy-paving represents mixture state GGO and
honeycomb. These 4 cases are IIPs class. Emphysema
represents distributed low CT values area caused by the
destruction of alveoli. Nodular represents small (< 5mm)
nodule patterns. These 2 cases are not IIPs class, but another
lung disease class. Normal class represents images collection
from healthy donor.

3.2 Pre-processing for Input
Before carrying out the sparse coding, we adopt “spher-

ing”, which is sometimes called pre-whitening, by principal
component analysis (PCA). The purpose of the sphering is
to normalize the signal represented by each pixel, and to
eliminate the effect of cross correlation to other pixels. When
we denote the {Y p} as the data set of raw pixel data of ROIs,
the sphering process can be denoted as following:

Λ =
〈
Y Y T〉

p
, (9)

Ip = Λ− 1
2 Y p, (10)

where 〈·〉p means the average over patterns indexed by p,
and Λ− 1

2 can be obtained by eigenvalue decomposing using
PCA. As the result of sphering, the cross-correlation matrix
of pre-processed input, which denote as

〈
IIT〉

p
, becomes a

unit matrix, that is any pair of Ip have no cross correlation.

3.3 Evaluation method
In order to evaluate the ability of our CAD sys-

tem, we apply leave one out cross-validation (LOOCV)
method[10][11]. Applying this method, we left an input
pattern for evaluation, and use another patterns to train the
CAD system. Alternating the evaluation pattern, we evaluate
the CAD system classification result on each occasion.

We fixed the number of feature vectors {φk} as 450
to satisfy overcomplete condition, and evaluated the effect
of the vector length as {12 × 12, 16 × 16, 20 × 20}. The
balance parameter λ in eq.(7) is set as 1.0 that is decided
experimentally. For Minimization of the cost function (7),
we apply a method proposed by Olshausen & Field, that
is a kind of gradient decent along the parameters {ap

k} and
{φk} alternately[5]. Following equations are update rules:

φ new
k ← φk + η

∂J

∂φk

(11)

ap new
k ← ap

k + η
∂J

∂ap
k

(12)

where η is learning rate, that is fixed 0.0001 in this study.
Eqs.(11) and (12) are applied alternately in the simulation.

702 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Table 1: Classification ability by SCN with 20× 20 feature extraction: Total correct ratio is 78.6%
Classification result with SCN

Cons. GGO Honey. Crazy. Emphy. Nodul. Norm. ratio

Consolidation 36 2 0 0 0 0 0 94.7%
GGO 0 59 2 2 0 13 0 77.6%

Honeycomb 0 3 44 2 0 0 0 89.8%
Crazy-Paving 0 3 0 28 1 5 0 75.7%
Emphysema 0 3 0 0 44 7 0 81.5%

Nodular 0 9 0 0 20 15 4 31.3%
Normal 0 0 0 0 1 0 57 98.3%

Table 2: Classification ability by GCN method with feature vector size 12× 12: Total correct ratio is 58.1%
Classification result with GCN

Cons. GGO Honey. Crazy. Emphy. Nodul. Norm. ratio

Consolidation 36 2 0 0 0 0 0 94.7%
GGO 0 57 5 3 6 1 4 75.0%

Honeycomb 1 5 36 3 1 3 0 73.5%
Crazy-Paving 1 13 7 16 0 0 0 43.2%
Emphysema 0 22 2 0 12 4 14 22.2%

Nodular 0 13 6 4 11 10 4 20.8%
Normal 0 4 0 0 10 2 42 72.4%

Table 3: Classification ability by SCN method with feature vector size 12× 12: Total correct ratio is 74.2%
Classification result with SCN

Cons. GGO Honey. Crazy. Emphy. Nodul. Norm. ratio

Consolidation 37 1 0 0 0 0 0 97.4%
GGO 0 56 1 6 6 7 0 73.7%

Honeycomb 0 2 44 3 0 0 0 89.8%
Crazy-Paving 0 10 10 16 0 0 1 43.2%
Emphysema 0 2 0 0 40 6 6 74.1%

Nodular 0 14 0 0 14 19 1 39.6%
Normal 0 0 0 0 3 0 55 94.8%

After training the feature extract vector set {φk}, we
can apply convolutional-net calculation shown in eqs.(3)
and (5) where threshold parameter θk = 0.0 for any k.
As the result of convolutional-net calculation, we obtain a
vector description, whose element is composed by uc(k),
for each pattern Ip. Hence, we classify the vector to the
IIPs’ category, and we use the SVM as the classifier that is
provided by OpenCV with default parameters[12].

Moreover, in order to compare the ability of our CAD with
the conventional convolutional-net, we prepare Gabor func-
tion based system, that is {φk} as Gabor based system.In

the following, we abbreviate sparse coding convolutional-net
as SCN, and Gabor filter base convolutional-net as GCN.

4. Results

Figure 3 shows the several examples of feature extract
vectors of φk. Since the HRCT ROI images are not sort
of natural images, the obtained bases φk are not similar
to the Gabor filters that can be obtained by the sparse
coding with natural scene processing[5]. This difference
makes classification performance as following.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 703

Table 1 shows the detail classification result by a con-
fusion matrix. The Table 1 is a result of a SCN in which
the length of feature vector φk is 20× 20 network. This is
the best result in our evaluation. Each row shows the input
class, and each column shows the classification class. Thus
diagonal line shown in bold numbers represents the number
of correct classifications. For example, in the consolidation
patterns, 37 cases are classified as consolidation correctly, 1
case is classified as GGO. The total correct ratio is shown in
the last column. From the Table 1, we can see the correction
ratio of all the classes except nodular class are over 75%.
Especially, seeing the normal class column of the Table
1, a type II error called false negative, that is the failure
probability of finding diseases, is nothing except nodular
class. The nodular class is not category of IIPs, and its
HRCT image does not have specific texture feature, but have
only local sphere like patterns. Hence, the whitening pre-
process, which is for normalization and elimination of cross
correlation, may reduce this local feature, so that whitening
may makes low classification ratio as the result. Anyway,
improving of nodular class performance is a future work.

Table2 shows the result of classification performance by
the GCN which is a modified model proposed by Kuwa-
hara et al.[13]. Kuwahara et al. have applied Gabor filter
for feature extraction, and AdaBoost for classification. We
substitute this AdaBoost part for a SVM in order to compare
with SCN. The scale of feature extractor φk is 12 × 12
that is the best one in the examined Gabor feature scales.
Table 3 shows the GCN result of the same feature extractor
scale. Comparing the Table 2 with the Table3, we can see the

Figure 3: Several examples of feature extract vector φk

obtained by sparse coding.

classification performance of the GCN have similar tendency
to the SCN, however, total performance of the SCN is
clearly improved from the GCN. Especially, we can see
the performance for the emphysema and the crazy-paving
classes are dominantly improved. Roughly speaking, the
crazy-paving class is a intermediate image between GGO
and Honeycomb, and we can estimate that Gabor based
filters, which is used in the GCN for line or edge component
extraction, are not sufficient for feature extraction.

Comparing Tables 1 and 2, which are different scale of
φk, the performance of the large size φk is improved for
the crazy-paving class. This result comes from the reducing
of the miss classification to the honeycomb class, so that
we can estimate large size φk is suitable for the extracting
honeycomb structure.

5. Conclusion

In this study, we evaluated the sparse coding base
convolutional-net for the multi-class IIP classification. Com-
paring the correction performance with the simple GCN
that is a modified of the previous model, we can obtain an
improvement result. Especially, type II error frequency of
GCN is larger than that of the SCN. From the clinical point
of view, we can conclude the several training method for
the feature-extracting vector set {φk} is effective. Gangeh
et al. also pointed out the similar tendency in their “texton”
based model[6]. We consider the total performance of the
classification rate is not so much bad, however, we should
improve the performance of our SCN for the practical CAD
system.

In the future works, in order to improve our SCN perfor-
mance, we should find a tuning method or principle. In this
work, we show the preliminary result for the feature extractor
size effect. We can estimate the larger one is suitable for
finding the structure such like crazy-paving and honeycomb,
so that we should find optimal size of the feature extractor
φk. One solution is that multi-scale feature extractor such
like Lowe model may be effective for this problem[14].

Acknowledgement

We thank Professor Junji Ueno, Tokushima University. He
provided us several advices for this study as well as a set
of high resolution CT image of IIPs. This work is supported
by Grant-in-Aids for Scientific Research (C) 21500214, and
Innovative Areas 21103008, MEXT, Japan.

704 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

References
[1] K. Fukushima, “Neocognitron: A self-organizing neural network

model for a mechanism of pattern recognition unaffected by shift in
position,” Biological Cybernetics, vol. 36, no. 4, pp. 193–202, 1980.

[2] H. Shouno, “Recent studies around the neocognitron,” in Neural
Information Processing, 14th International Conference, ICONIP 2007,
Kitakyushu, Japan, November 13-16, 2007, Revised Selected Papers,
Part I, ser. Lecture Notes in Computer Science, M. Ishikawa, K. Doya,
H. Miyamoto, and T. Yamakawa, Eds., vol. 4984. Springer, 2007,
pp. 1061–1070.

[3] F. J. Huang and Y. LeCun, “Large-scale learning with svm and convo-
lutional netw for generic object recognition.” in 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition.
IEEE Computer Society CVPR’06, 2006.

[4] M. Riesenhuber and T. Poggio, “Hierachical modesl of object recog-
nition in cortex,” Nature Neuroscience, vol. 2, pp. 1019–1025, Nov.
1999.

[5] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete
basis set: A strategy employed by v1?” Vision Research, vol. 37,
no. 23, pp. 3311–3325, Dec. 1997.

[6] M. J. Gangeh, L. Sorensen, S. B. Shaker, M. S. Kamel, M. de Bruijne,
and M. Loog, “A texton-based approach for the classification of
lung parenchyma in ct images,” in MICCAI, ser. LNCS 6363, no. 3.
Springer-Verlag Berlin Heidelberg, 2010, pp. 595–602.

[7] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional
architecture of monkey striate cortex,” J. Physiol., vol. 195, no. 1,
pp. 215–243, 1968.

[8] B. Shölkopf, K.-K. Sung, C. Burges, F. Girosi, P. Niyogi, T. Poggio,
and V. Vapnik, “Comparing suport vector machines with gaussian
kernels to radial basis function classifiers,” IEEE Trans. on Signal
Processing, vol. 45, no. 11, pp. 2758–2765, Nov. 1997.

[9] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images.”
Nature, vol. 381, pp. 607–609, Jun. 1996. [Online]. Available:
http://www.nature.com/nature/journal/v381/n6583/abs/381607a0.html

[10] M. Stone, “Cross-validation: A review.” Math.Operations.Stat.Ser.Stat,
vol. 9, no. 1, pp. 127–139, 1978.

[11] C. M. Bishop, Pattern Recogition and Machine Learning. Springer,
2006.

[12] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[13] M. Kuwahara, S. Kido, and H. Shouno, “Classification of patterns for
diffuse lung diseases in thoracic ct images by adaboost algorithm,” in
Proceedings of SPIE, vol. 7260, February 2009.

[14] J. Mutch and D. Lowe, “Object class recognition
and localization using sparse features with limited
receptive fields,” International Journal of Computer Vision,
vol. 80, no. 1, pp. 45–57, 2008. [Online]. Available:
http://www.springerlink.com/content/a608575053237603/fulltext.pdf

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 705

Efficient and Approximate Simulation Algorithm of
Kinetic Folding of an RNA Molecule

Takumi Tanigawa and Satoshi Kobayashi
Department of Computer Scinece

University of Electro-Communications
1-5-1, Chofugaoka, Chofu, Tokyo 182-8585, Japan

Abstract— Recently it is recognized as a very important
research topic to simulate kinetic folding of an RNA molecule
in order to understand its functionality in vivo. In this paper,
we will propose a new approach to simulating kinetic folding
of an RNA molecule based on a new idea of “enumerating
secondary structures by a graph.” Although most of the pre-
vious works try to reduce the conformation space of a given
RNA molecule in order to escape from the combinatorial ex-
plosion problem, the present paper gives us an efficient and
approximate simulation methodology for hairpin formation
with keeping the conformation space completely. As far as
the authors’ knowledge, this is the first polynomial update
time simulation algorithm for kinetic folding analysis of an
RNA molecule which has a nice theoretical property that the
convergence point of its simulation always exactly coincides
with the equilibrium distribution of secondary structures of
the RNA molecule. We evaluated the time efficiency and
the accuracy of the proposed method against the exhaustive
method which numerically simulates the master equation by
completely generating all secondary structures. The results
show that the proposed method is much faster than the
exhaustive method and that the proposed method gives us
well approximated simulation results.

Keywords: Kinetic Folding, Simulation, RNA, Equilibrium Com-
putation

1. Introduction
RNA secondary structure plays important role in the

biological function of many RNAs. Thus, the prediction of
RNA structure is an important research topic in bioinfor-
matics. One of the most effective method for such pre-
diction is to use dynamic programming (DP) to obtain
a minimum free energy (MFE, for short) structure ([15]
[28] [21]). DP method is extendedly applied also to the
calculation of equilibrium structure ensembles of RNA
secondary structures([11]). These algorithms, however, can
deal with only thermodynamical equilibrium, and not with
kinetic effects on secondary structures (for instance, during
the synthesis of RNA molecules). Furthermore, although
stacking free energy of 5 base pairs is around 10 kcal/mol
at 300 K, thermal energy kT is only 0.6 kcal/mol at 300
K, which implies that a native RNA may easily be trapped

into a suboptimal structure. Thus, the analysis of kinetic
folding process of RNA molecules is very important for
understanding their biological functions([13]).

A kinetical approach to RNA secondary structure predic-
tion was introduced by Martinez ([10]), where folding kinet-
ics is modeled by a Monte Carlo construction of secondary
structures based on rate constants for iterative addition of
complete helical regions, called helices, to some already
existing structure. Modeling structure change by addition or
deletion of helices is effective in reducing the conformation
space of the RNA, thus, there are many works on RNA
folding kinetics based on this formulation ([12], [1], [5],
[13], [4], [7], [25]). However, the physical relevance of
such moves seems debatable, because they cause large struc-
tural change per time step([3]). Furthermore, for a longer
RNA sequence, we can not escape from the combinatorial
explosion of conformation space even if we use helix based
formulation.

Schmitz and Steger proposed a simulation method for ki-
netic folding of RNA secondary structures by using a Monte
Carlo method based on rate constants for adding or removing
a single base pair to some already existing structure([16]).
The proposed move set is much more accurate than the
helix based move set and was supported by many researchers
([3], [26], [18], [23], [14]), but, the combinatorial explosion
problem of conformation space is more severe than the helix
based approach.

In this paper, we will give a novel approach to simulating
kinetic folding of an RNA molecule based on an elegant
new idea of “enumerating secondary structures by a graph.”
Although most of the previous works try to reduce the
conformation space of a given RNA molecule in order to es-
cape from the combinatorial explosion problem, the present
paper will provide us with an efficient and approximate
simulation methodology for hairpin formation with keeping
the conformation space completely.

As far as the authors’ knowledge, this is the first poly-
nomial update time approximate simulation algorithm for
kinetic folding of an RNA molecule which has a nice theo-
retical property that the convergence point of its simulation
always exactly coincides with the equilibrium distribution
of secondary structures of the RNA molecule. Although we
focus on secondary structures which are pseudoknot-free and

706 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

multiloop-free, the developed system is of great importance
since the folding of complex RNA tertiary structures often
involves the conformational change of hairpin structures ([2]
[20] [24] [19] [17] [22]) and the detailed kinetical analysis
of hairpin formation still have many research topics to be
studied([27]).

2. Problem Definition
2.1 Secondary Structures

Let X = x1x2 · · ·xn be an RNA sequence with each
letter xi being an element of Σ = {A,C,G,U}, ordered
from 5′ to 3′ direction. It is known that every pair of bases
in WC = {(A,U), (U,A), (C,G), (G,C), (G,U), (U,G)}
may form a hydrogen bond, resulting in a stable structure,
called secondary structure. A secondary structure of X is a
finite set S of pairs (i, j) of integers such that 1 ≤ i < j ≤ n
and (xi, xj) ∈ WC hold and for any bp1 = (i1, j1)
and bp2 = (i2, j2) in S either i1 = i2 or j1 = j2
implies bp1 = bp2. A secondary structure S is said to be
pseudoknotted if there exist base pairs (i, j) and (k, l) such
that i < k < j < l (Figure 1 (a)). A secondary structure
S is said to be pseudoknot-free if it is not pseudoknotted.
Although there are some experimental reports on structural
roles of pseudoknotted structures in biological functions,
the computational analysis of secondary structures including
them is time consuming ([21]) and thus it is often the case
that we focus on pseudoknot-free structures. Furthermore,
from the view point of RNA folding kinetics theory, the
detailed study and analysis on the hairpin formation is still
of great importance([26], [27]). Thus, in this paper, we
will focus on the class of secondary structures which are
pseudoknot-free and multiloop-free, where a structure is said
to contain a multiloop if there exist base pairs (i, j), (i1, j1)
and (i2, j2) such that i < i1 < j1 < i2 < j2 < j (Figure 1
(b)). A typical example of pseudoknot-free and multiloop-
free structures are given in Figure 1 (c). As is shown in
Figure 1 (c), such a structure can be explained as a sequence
of linear structures concatenated in parallel, where by a
linear structure, we mean a secondary structure consisting
of a sequence of base pairs (i1, j1), ..., (ik, jk) such that
ip < ip+1 < jp+1 < jp holds for every p = 1, ..., k − 1.

2.2 Move Set
Let C(X) = {S1, ..., Sm} be the set of all secondary

structures of X , i.e., a conformation space of X . As a first
step of a novel efficient simulation methodology of kinetic
folding of an RNA molecule, we do restrict our attention
to multiloop-free and pseudoknot-free structures. Structures
of C(X) are related by a relation, called a “move”, which
defines a transition path of kinetic folding of the RNA
sequence X . Two kinds of moves, Add and Delete are
considered in this paper. The former modifies a secondary

GCUAAAAGGGGGCGGUGGCGGGCCCCCCCCGC
5’

3’(a) (b)
CCGCGGGGCGGU

GGC
GGG C
C
C

C5’ 3’

GCC
CGGG CC

GUGG
CGGG C

C
C

C5’ 3’
GCCCGG (c)

C CA GUUG
GAGA C

C
U

C
CUCCG CCAC ACAC UAAG

GAAC AU
C

UCCAC GC A

linear structure linear structure linear structure

GCUAAAAGGGGGCGGUGGCGGGCCCCCCCCGC
5’

3’(a) (b)
CCGCGGGGCGGU

GGC
GGG C
C
C

C5’ 3’

GCC
CGGG CC

GUGG
CGGG C

C
C

C5’ 3’
GCCCGG (c)

C CA GUUG
GAGA C

C
U

C
CUCCG CCAC ACAC UAAG

GAAC AU
C

UCCAC GC A

linear structure linear structure linear structure

Fig. 1: Secondary Structures

structure by adding a new base pair in compliance with no-
multiple-loop and no-pseudoknot restrictions(Figure 2 (a)),
and the latter removes a base pair in the structure (Figure
2 (b)). At every moment, a structure Si ∈ C(X) will
change its structure to another one by choosing a move
according to some probability distribution from a pool of
acceptable moves. Successive choices of such elementary
moves generates a folding process(Figure 2 (c)). For a
structure Si, by Nbr(Si), we denote the set of structures
which can be obtained by applying an elementary move,
Add or Delete, to Si.

(b) Delete (a) Add
G G C G A A

C C A UU A
A

G G C G A A
C C A UU A
A

G G C G A A
C C A UU A
A

G G C G A A
C C A UU A
A Add Delete Delete

(c) Folding Process (b) Delete (a) Add
G G C G A A

C C A UU A
A

G G C G A A
C C A UU A
A

G G C G A A
C C A UU A
A

G G C G A A
C C A UU A
A Add Delete Delete

(c) Folding Process
Fig. 2: Elementary Moves

2.3 Folding Kinetics
By G0

i , we denote the Gibbs free energy change when the
sequence folds into the structure Si from its random chain
structure. Then, the rate constant ki,j of the transition from
Si to Sj is given by the following Metropolis rule:

ki,j =

e−

G0
j−G0

i
RT if G0

j −G0
i > 0 and Sj ∈ Nbr(Si)

1 if G0
j −G0

i ≤ 0 and Sj ∈ Nbr(Si)
0 if Sj 6∈ Nbr(Si).

Let Pi(t) be the fraction (or probability) of the structure
Si at time t. Then, the population dynamics of the folding
process of an RNA sequence follows the master equation:

dPi(t)

dt
= kcal

m∑
j=1

(Pj(t)kj,i − Pi(t)ki,j), (1)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 707

where kcal is a calibration constant for adjusting simulation
results with experimental results. We use the value kcal =
3.34× 106, which was used in [16].

Most of the previous works have tried to reduce the
conformation space in order to escape from its combinatorial
explosion problem. In this work, however, we completely
keep the space C(X) and try to numerically simulate
the master equation efficiently and approximately with the
theoretical guarantee that the results will always reach to
the exact equilibria. In order to achieve this goal, we will
apply our previous theoretical work on the equilibrium
analysis of chemical reaction systems in which molecules
are interacting in various ways to generate tremendously
many structures([8], [9]). Although the present paper deals
with unimolecular reaction, the theory applies since the
unimolecular reaction can be treated as a special case of the
framework. In the next section, we will review the theory
specialized to unimolecular reaction systems.

3. Enumeration Approach to Equilibria
Analysis

Let X be a molecule and C(X) be the conformation
space, i.e., the set of structures, of X . Free energy of a
conformation S of X is given by F (S).

Assume that we have a directed graph G = (V,Eg) with a
finite set V of vertices and a finite set Eg of directed edges.
For a vertex v ∈ V , by vin and vout, we denote the set
of edges coming into v and going out from v, respectively.
A vertex v with vin = ∅ (with vout = ∅, respectively) is
called an initial vertex (a final vertex, respectively). By V0
and Vf , we denote the set of initial and final vertices of G,
respectively. A simple path of G is a path with each vertex
appearing at most once. By PT (G), we denote the set of
simple paths starting from some vertex in V0 and reaching
to some vertex in Vf .

The essential part of the theory depends on the exis-
tence of a special one-to-one mapping ψ from PT (G)
to C(X) satisfying the conditions explained bellow. After
constructing such a mapping, the theory reduces the problem
of computing equilibrium state to a convex optimization
problem with respect to a set unknown variables whose
size is |Eg|. Note that the cardinality of PT (G) could be
exponential with respect to |Eg|. Thus, the theory enables
us to escape from the combinatorial explosion problem of
the conformation space C(X).

The requirement for the mapping ψ is very simple as
follows. We ask the existence of a weight function ε on
the edge set Eg such that for every path γ ∈ PT (G),
F (ψ(γ)) =

∑
e∈Eg s.t. e∈γ ε(e) holds. This condition means

that for every γ ∈ PT (G), the sum of weight of edges
appearing in γ equals to the free energy of the corresponding
structure ψ(γ) of the path γ. Intuitively speaking, every
edge in the graph G corresponds to some local structure

of conformation space, and its weight is just the free energy
of the corresponding local structure. In case of equilibrium
analysis of an RNA molecule at the secondary structure
level, it would be expected that we can construct a graph
whose edge would correspond to local structures, such as
hairpin loops, bulge loops, internal loops, etc. An example
of such enumeration graphs will be given in the next section
4.

4. Enumerating Secondary Structures of
an RNA

We will give an example of graphs by which we can enu-
merate all linear secondary structures of an RNA sequence.

Let X = x1 · · ·xn be an RNA sequence. Then, we prepare
a set of vertices corresponding to base pairs which may
form in the sequence X . Moreover, we use two additional
special vertices: an initial vertex s and a final vertex f . The
construction of edge set is as follows. We draw an edge
from a base pair (i, j) to a base pair (k, l) if and only if
i < k < l < j holds. Furthermore, for every base pair
bp, we put an edge from s to bp and an edge from bp to
f . Formally, we can define a graph G = (V,Eg) for the
sequence X:

BP = {(i, j) | 1 ≤ i < j ≤ n, (xi, xj) ∈WC },
V = {s, f} ∪BP,
Eg = {(s, bp) | bp ∈ BP } ∪ {(bp, f) | bp ∈ BP } ∪

{((i, j), (k, l)) | (i, j), (k, l) ∈ BP, i < k < l < j }.

A path in PT (G) for G defined above naturally corresponds
to a linear secondary structure consisting of base pairs
contained in it. An example of graphs for enumerating
secondary structures of the sequence X = GGAAACUU
is given in Figure 3.

G G A A A C U UG G A A A C U UG G A A A C U UG G A A A C U U1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
(1,8) (2,8) (3,8) (4,8) (1,7) (2,7) (3,7)
(1,6) (2,6)

s

f

G G G G G G G G A A A A A A A A A A A A C C C C U U U U U U U U
1 2 3 4

5 6 7 8 +0.4 -2.1 +5.7
(a) Base Pairs

(c) Enumeration Graph (b) Structures
G G G G G G G G A A A A A A A A A A A A C C C C U U U U U U U U
1 2 3 4

5 6 7 8 +0.5 +2.5 +6.2

G G A A A C U UG G A A A C U UG G A A A C U UG G A A A C U U1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
(1,8) (2,8) (3,8) (4,8) (1,7) (2,7) (3,7)
(1,6) (2,6)

s

f

G G G G G G G G A A A A A A A A A A A A C C C C U U U U U U U U
1 2 3 4

5 6 7 8 +0.4 -2.1 +5.7
(a) Base Pairs

(c) Enumeration Graph (b) Structures
G G G G G G G G A A A A A A A A A A A A C C C C U U U U U U U U
1 2 3 4

5 6 7 8 +0.5 +2.5 +6.2
Fig. 3: An Example of Enumeration Graphs

Figure 3 (a) illustrates all possible base pairs of the
sequence X . Figure 3 (c) shows an enumeration graph for the
sequence X . A path s → (1, 7) → (2, 6) → f corresponds
to the upper secondary structure in Figure 3 (b). A path s→

708 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

(1, 8) → (3, 7) → f corresponds to the lower secondary
structure in Figure 3 (b). In this way, we can enumerate all
linear secondary structures of X . The mapping from a path
to its corresponding secondary structure is denoted by ψ.

As is clear from the above example, an edge between the
base pairs (i, j) and (k, l) in the graph corresponds to a
local loop structure (either of stacked base pairs, a bulge, or
an internal loop) surrounded by (i, j) and (k, l). An edge
between s (f) and a base pair (i, j) corresponds to a free
end loop outside (a hairpin loop closed by) the base pair
(i, j). Thus, the weight ε(e) of an edge e is defined as the
free energy of the corresponding local secondary structure
of e. For instance, the free energy values of local secondary
structures are given as real values in Figure 3 (c). Thus, the
weight of edges s → (1, 7), (1, 7) → (2, 6), (2, 6) → f ,
s → (1, 8), (1, 8) → (3, 7), (3, 7) → f are given by +0.4,
−2.1, +5, 7, +0.5, +2.5, +6.2, respectively.

5. Efficiently Computing Equilibria by
Convex Programming

Let X be a molecule and C(X) be a conformation space
of X . An equilibrium distribution of C(X) is a probability
distribution [] over C(X) such that for any conformations S1

and S2 in C(X), the following equilibrium equation holds:

[S2]

[S1]
= e−

F (S2)−F (S1)
RT .

When we succeed in constructing an enumeration graph G
for a conformation space C(X) of a molecule X satisfying
the conditions explained in section 3, following a general
theory developed by the second author of this paper([8], [9]),
we can efficiently compute an equilibrium distribution by
solving a minimization problem explained bellow.

First, we will introduce an unknown variable we for
each edge e of the graph G. The variable we takes a real
value between 0 and 1, and represents a probability of the
local substructure corresponding to e existing in the current
probability distribution over C(X).

For convenience, for every v ∈ V − V0 − Vf , we define
wv =

∑
e∈vout

we. Consider the following minimization
problem:

Minimization Problem P1
minimize :

FE((we | e ∈ Eg))
def
≡

∑
e∈Eg

ε(e)

RT
· we +∑

e∈Eg
we(logwe − 1)−

∑
v∈V−V0−Vf

wv(logwv − 1)

subject to :∑
v∈V0

∑
e∈vout

we = 1,∑
e∈vin

we =
∑
e∈vout

we, (∀v ∈ V − V0 − Vf})

we ≥ 0, (∀e ∈ Eg)

where unknown variables are we’s (e ∈ Eg) and recall that
wv’s are sums of variables we’s.

Then, the following theorem was proved in [8]:
Theorem 1: Consider a minimizer (we | e ∈ Eg) of

the above minimization problem P1. Then, an equilibrium
distribution is given by: for any S ∈ C(X),

[S] =

∏
e∈Eg s.t. e∈ψ−1(S)

we∏
v∈V−V0−Vf s.t. v∈ψ−1(S)

wv
, (2)

In order to obtain an equilibrium distribution of an RNA
molecule at the secondary structure level, we should first
obtain a minimizer of the optimization problem P1 based on
the graph G given in section 4. This is achieved efficiently
since the objective function of the problem P1 is convex as
shown in [8], and thus, we can apply a convex programming
method to obtain a minimizer. Equilibrium distribution is
then obtained by the expression (2).

6. The Objective of This Work
In this way, we will be able to efficiently compute an

equilibrium distribution of an RNA molecule. This is not,
however, the main purpose of this paper. In this work, we aim
at efficiently simulating kinetic folding process specified by
the master equation (1). Thus, applying convex programming
method might not lead us to the goal of this paper. We need
to carefully choose a decending direction of the objective
function of the optimization problem P1. Such a careful
choice of the direction will be proposed in section 7, and the
validity of the choice will be shown theoretically in section
8. This theoretical argument guarantees that the proposed
simulation algorithm will always converge to an equilibrium
distribution. Our method is distinguished from the others in
the convergence property to equilibria.

7. Algorithm
In this sectin, we will give an algorithm for efficiently

and approximately simulating the kinetic folding process
of an RNA molecule at the secondary structure level. The
algorithm is presented with intuitive explanation of the
reason why we will obtain the algorithm. The key idea
behind the algorithm is to locally interpret in the graph
representation the kinetic moves of Add and Delete.

We first explain how to interpret the move Add in view
of enumeration graph (Figure 4). The move Add inserts a

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 709

i
j

k
li

j
k
l

5’ 3’5’3’
5’3’ 5’3’ (i , j)

(p , q)
(k , l)p

q e1
e2 e3 kadd(e1,e2,e3)rate constant

v1 v2
v3i

j
k
li

j
k
l

5’ 3’5’3’
5’3’ 5’3’ (i , j)

(p , q)
(k , l)p

q e1
e2 e3 kadd(e1,e2,e3)rate constant

v1 v2
v3

Fig. 4: Local Interpretation of Add Move

new base pair to the current conformation. Consider an Add
move which inserts a base pair (p, q) between two base pairs
(i, j) and (k, l). Note that i < p < k < l < q < j
holds. This move can be interpreted in the enumeration
graph representation as a move from a path containing the
edge (i, j) → (k, l) to another path containing the edges
(i, j) → (p, q) and (p, q) → (k, l) keeping the probabilities
of the other edges unchanged (See Figure 4). Based on this
observation, it is very natural to interpret the Add operation
locally as the change of probabilities of the three edges,
(i, j) → (k, l), (i, j) → (p, q), and (p, q) → (k, l), as
follows:

∆we1 = −kadd(e1, e2, e3) · we1∆t, (3)
∆we2 = kadd(e1, e2, e3) · we1∆t, (4)
∆we3 = kadd(e1, e2, e3) · we1∆t, (5)

where kadd(e1, e2, e3) is a rate constant for this local reac-
tion which causes the change of probabilities of the edges
e1, e2 and e3, which is defined by:

kadd(e1, e2, e3) ={
e−

ε(e2)+ε(e3)−ε(e1)
RT if ε(e2) + ε(e3)− ε(e1) ≥ 0

1 otherwise

i
j

p
q

k
li

j
k
l

5’ 3’5’3’
5’3’ 5’3’ (i , j)

(p , q)
(k , l)e1

e2 e3 kdel(e1,e2,e3)rate constant
v1 v2

v3i
j

p
q

k
li

j
k
l

5’ 3’5’3’
5’3’ 5’3’ (i , j)

(p , q)
(k , l)e1

e2 e3 kdel(e1,e2,e3)rate constant
v1 v2

v3

Fig. 5: Local Interpretation of Delete Move

Next we consider the case of the move Delete. The move
Delete removes a base pair from the current conformation.
Consider a Delete move which removes a base pair (p, q)
from between two base pairs (i, j) and (k, l). Note that i <
p < k < l < q < j holds also in this case. This move can
be interpreted in the enumeration graph representation as a

move from a path containing the edges (i, j) → (p, q) and
(p, q)→ (k, l) to another path containing the edge (i, j)→
(k, l) keeping the probabilities of the other edges unchanged
(See Figure 5). Thus, it is natural to interpret the Delete
operation locally as the change of probabilities of the three
edges, (i, j)→ (k, l), (i, j)→ (p, q), and (p, q)→ (k, l), as
follows:

∆we1 = kdel(e1, e2, e3) · w(e2, e3)∆t, (6)
∆we2 = −kdel(e1, e2, e3) · w(e2, e3)∆t, (7)
∆we3 = −kdel(e1, e2, e3) · w(e2, e3)∆t, (8)

where w(e2, e3) is the probability of the paths passing
through both of the edges e2 and e3, and kdel(e1, e2, e3)
is a rate constant for this local reaction which causes the
change of probabilities of the edges e1, e2 and e3, which is
defined by:

kdel(e1, e2, e3) ={
e−

ε(e1)−ε(e2)−ε(e3)
RT if ε(e1)− ε(e2)− ε(e3) ≥ 0

1 otherwise

Note that we still have difficulty in this local interpretation
of the move Delete, because we do not have any information
about the probability w(e2, e3). We only know about proba-
bilities of edges e2 and e3 as we2 and we3 , respectively. So,
we should approximately guess the probability w(e2, e3) of
paths passing through both of edges e2 and e3. We will
propose to use the following estimate:

w(e2, e3) =

{
we2 ·we3

wv3
, if wv3 > 0

0 otherwise

where v3 is the vertex corresponding to the base pair (p, q).
This expression intuitively means that every path coming
to the vertex v3 is splitted into all directions from v3
proportionally to the probability distribution of edges going
out from v3. This estimate theoretically guarantees that
the proposed method will always reach to an equilibrium
distribution at the convergence point, as will be shown in
the next section 8.

The proposed method will apply the above rule of local
probability change to every triple of edges located in a
triangular form as illustrated in Figure 4 and Figure 5. It is
clear that the time complexity of the update of probabilities
of all we’s (e ∈ Eg) is bounded by a polynomial function
with respect to the length of the sequence X .

8. Theoretical Analysis of the Algorithm
Theorem 2: The direction specified by the expressions

(3)-(8) is a decending direction of the optimization prob-
lem P1. Proof: For every triangle consisting of edges
e1, e2, e3 and vertices v1, v2, v3 as illustrated in Figure 4 and

710 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

5, we have:

∂FE((we | e ∈ Eg))
∂we1

=
ε(e1)

RT
+ logwe1 − logwv1 ,

∂FE((we | e ∈ Eg))
∂we2

=
ε(e2)

RT
+ logwe2 − logwv1 ,

∂FE((we | e ∈ Eg))
∂we3

=
ε(e3)

RT
+ logwe3 − logwv3 ,

and the sum of the moves Add and Delete, denoted by
(d1, d2, d3), is given by:

d1 = −kadd(e1, e2, e3)we1 + kdel(e1, e2, e3)
we2we3
wv1

,

d2 = kadd(e1, e2, e3)we1 − kdel(e1, e2, e3)
we2we3
wv1

,

d3 = kadd(e1, e2, e3)we1 − kdel(e1, e2, e3)
we2we3
wv1

.

Then, we have:
3∑
i=1

∂FE((we | e ∈ Eg))
∂wei

· di =

kadd(e1, e2, e3)we1(1−
kdel(e1, e2, e3)we2we3
kadd(e1, e2, e3)we1wv3

)×

(log
we2we3
we1wv3

e
ε(e2)+ε(e3)−ε(e1)

RT) =

kadd(e1, e2, e3)we1(1−
we2we3
we1wv3

e
ε(e2)+ε(e3)−ε(e1)

RT)×

(log
we2we3
we1wv3

e
ε(e2)+ε(e3)−ε(e1)

RT) ≤ 0,

where we use:
kdel(e1, e2, e3)

kadd(e1, e2, e3)
= e

ε(e2)+ε(e3)−ε(e1)
RT ,

completing the proof.
Since the objective function of P1 is convex, by Theorem

2, we can conclude that the simulation by the proposed
method will reach to an equilibrium distribution.

9. Simulation Results
We have done two kinds of computational experiments.

The first one is for evaluating the time efficiency of the
proposed method against the exhaustive method, in which
for an input sequence X , we generated all the secondary
structures in C(X), and simulated the folding kinetics of
X based on the master equation (1). Simulations of both
methods start from a random chain structure.

The other experiment is for showing that the proposed
method gives us a well approximated simulation result for
structures which are dominant at equilibrium.

In this section, we will give some computational experi-
mental results which will show that the proposed method is
very time efficient compared to the exhaustive method and
it gives us a fairly well approximated kinetic folding pahts.
The tested sequences are listed in Table 1.

No. length Sequence
1 10 AGCCGUUUCC
2 12 AACCCUACCCUU
3 14 GGGCGAAACGCCCU
4 16 GCCGCGAAACGCGGCC
5 18 CGGGCCGAAAUGGGCCCU
6 20 CGGGCGCGAAAUUCGCGCCC

Table 1: RNA Sequences

No. Nstr TE TP

1 15 0.27s 0.09s
2 14 0.27s 0.08s
3 200 7.34s 0.84s
4 322 12.99s 1.13s
5 832 38.57s 2.98s
6 3293 2m58.29s 9.40s

Table 2: Time Efficiency Result

For a given sequence X , we did kinetic simulations start-
ing from a random chain structure by using the exhaustive
method and the proposed method up to 1, 000 time steps,
where we use ∆t = 1.0× 10−8 sec. The time for executing
1, 000 step simulation is given in Table 2, where TE is for
the exhaustive method and TP for the proposed method. The
number of structures in C(X) is given in the column Nstr.

In Fig.6 and Fig.7, we simulated dominant structures of
the sequence ACGUGCACAAAAGUGCACGU of length
20. The optimal strcuture is ((((((((....)))))))) (-12.0
kcal/mol) and its simulation result is shown in Fig.6.
Suboptimal structures are St1= (((((((......))))))) (-10.0
kcal/mol) and St2= ..((((((....)))))).. (-9.9 kcal/mol), and
their simulation results are shown in Fig.7. In both of
the figures, the lines specified by “E” and “P” represent
the simulation results by the Exhaustive and the Proposed
methods, respectively. Simulations by the proposed method
give us well approximated results compared to the exhaustive
(i.e., exact) simulations.

Concerning rare structures, the time step ∆t should be
carefully chosen as small values enough, since concentra-
tions of rare structures are very sensitive to large ∆t, which
result in incorrect simulations in both of the exhaustive and
the proposed methods. The topic on the choice of appropriate
∆t would be a future research topic.

10. Conclusion
We proposed a novel method for efficiently and ap-

proximately numerically simulating kinetic folding process
of an RNA molecule based on the idea of “enumerating
conformations by a graph.” The proposed method has a
very nice theoretical property that the convergence point
of simulation results exactly coincides with the equilibrium.
Time efficiency, the accuracy and the effectiveness of the
method were shown by computational experiments.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 711

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.005 0.01 0.015 0.02

pr
ob

ai
lit

y

time (sec)

E
P

Fig. 6: Simulations of Optimal Structure

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.005 0.01 0.015 0.02

pr
ob

ai
lit

y

time (sec)

E(St1)
P(St2)
E(St2)
P(St2)

Fig. 7: Simulations of Suboptimal Structures

The current implementation is restricted only to the class
of linear secondary structures, i.e. structures which do not
contain branches. But, the proposed method can be extended
to a more broader class of secondary structures if we prepare
an appropriate enumeration graph for the extended structure
class. Thus, it is an important future research topic to find
such an enumeration scheme for a broader class of secondary
structures.

In this paper, we evaluated the accuracy of the proposed
simulation method only by computational experiments. The-
oretical analysis of the accuracy of the method is also an
important open problem. Furthermore, based on this kind of
theoretical analysis, it might be interesting to improve the
method in order to achieve a better accuracy.

Acknowledgement
The second author is supported in part by Grant-in-Aid

for Scientific Research (C) No.22500010, Japan Society for
the Promotion of Science.

References
[1] Abrahams, J.P., van den Berg, M., van Batenburg, E., and Pleij, C.

(1990), Prediction of RNA secondary structure, including pseudoknot-
ting, by computer simulation, Nucleic Acids Research, 18, 3035-3044.

[2] Bartley, L.E., Zhuang, X., Das, R., Chu, S., and Herschlag, D. (2003),
Exploration of the transition state for tertiary structure formation be-
tween an RNA helix and a large structure RNA, J. Mol. Biol., 328,
1011-1026.

[3] Flamm, C., Fontana, W., and Hofacker, I.L. (2000), RNA folding at
elementary step resolution, RNA, 6, 325-338.

[4] Galzitskaya, O.V., and Finkelstein, A.V. (1996), Computer simulation
of secondary structure folding of random and “edited” RNA chains, J.
Chem. Phys., 105, 319-325.

[5] Gultyaev, A.P., van Batenburg, F.H.D., and Pleij, C. (1995), The Com-
puter Simulation of RNA Folding Pathways Using a Genetic Algorithm,
J. Mol. Biol., 250, 37-51.

[6] Hofacker, I.L., Fontana, W, Stadler, P.F., Bonhoeffer, L.S., Tacker, M.,
Schuster, P. (1994), Fast folding and comparison of RNA secondary
structures (the Vienna RNA package), Monatshefte für Chemie, 125,
167-188.

[7] Isambert, H., and Siggia, E.D. (2000), Modeling RNA folding paths
with pseudoknots: Application to hepatitis delta virus ribozyme, PNAS,
97, 6515-6520.

[8] Kobayashi, S. (2007), A new approach to computing equilibrium state
of combinatorial hybridization reaction systems, in Proc. of Computing
and Communications from Biological Systems: Theory and Applications,
Budapest, Hungary, CD-ROM, paper2376. (Extended full version is
available at http://comp.cs.uec.ac.jp/˜ satoshi/TR_CS0801rev.pdf)

[9] Kobayashi, S. (2008), A software tool for analyzing combinatorial
hybridization reaction systems, in Proc. of 14th International Meeting
on DNA Based Computer, Track B, oral presentation.

[10] Martinez, H.M. (1984), An RNA folding rule, Nucleic Acids Research,
12, 323-334.

[11] McCaskill, J.S. (1990), The equilibrium partition function and base
pair binding probabilities for RNA secondary structure, Biopolymers, 29,
1105-1119.

[12] Mirnov, A.A., Dyakonova, L.P., and Kister, A.E. (1985), A kinetic
approach to the prediction of RNA secondary structures, Journal of
Biomolecular Structure and Dynamics, 2, 953-962.

[13] Morgan, S.R., and Higgs, P.G. (1996), Evidence for kinetic effects in
the folding of large RNA molecules, J. Chem. Phys., 105, 7152-7157.

[14] Ndifon, W. (2005), A complex adaptive systems approach to the
kinetic folding of RNA, BioSystems, 82, 257-265.

[15] Nussinov, R., Pieczenik, G., Griggs, J.R., and Kleitman, D.J. (1978),
Algorithms for Loop Matchings, SIAM J. Appl. Math., 35, 68-82.

[16] Schmitz, M., and Steger, G. (1996), Description of RNA folding by
“Simulated Annealing”, J. Mol. Biol., 255, 254-266.

[17] Sosnick, T.R., and Pan, T. (2003), RNA folding:models and perspec-
tives, Curr. Opin. Struct. Biol., 13, 309-316.

[18] Tang, X., Kirkpatrick, B., Thomas, S., Song, G., and Amato, N.M.
(2004), Using motion planning to study RNA folding kinetics, in Proc.
of 8th Annual International Conference on Research in Computational
Molecular Biology (RECOMB’04), 252-261.

[19] Thirumalai, D., Lee, N., Woodson, S.A., Klimov, D.K. (2001), Early
events in RNA folding, Annu. Rev. Phys. Chem., 52, 751-762.

[20] Treiber, D.K., and Williamson, J.R. (2001), Beyond kinetic traps in
RNA folding, Curr. Opin. Struct. Biol., 11, 309-314.

[21] Uemura, Y., Hasegawa, A., Kobayashi, S., and Yokomori, T. (1999),
Tree Adjoining Grammars for RNA Structure Prediction, Theoretical
Computer Science, 210, 277-303.

[22] Uhlenbeck, O.C. (1990), Nucleic-acid structure — tetraloops and
RNA folding, Nature, 346, 613-614.

[23] Wolfinger, M.T., Svrek-Seiler, W.A., Flamm, C., Hofacker, I.L., and
Stadler, P.F. (2004), Efficient computation of RNA folding dynamics, J.
Phys. A: Math. Gen., 37, 4731-4741.

[24] Woodson, S.A. (2000), Recent insights on RNA folding mechanisms
from catalytic RNA, Cell. Mol. Life Sci., 57, 796-808.

[25] Xayaphoummine, A., Bucher, T., and Isambert, H. (2005), Kinefold
web server for RNA/DNA folding path and structure prediction including
pseudoknots and knots, Nucleic Acids Research, 33, Web Serve issue,
W605-W610.

[26] Zhang, W., and Chen, S.-J. (2002), RNA hairpin-folding kinetics,
PNAS, 99, 1931-1936.

[27] Zhang, W., and Chen, S.-J. (2006), Exploring the complex folding ki-
netics of RNA hairpins: I.: General folding kinetics analysis, Biophysical
Journal, 90, 765-777.

[28] Zuker, M., and Steigler, P. (1981), Optimal Computer Folding of Large
RNA Sequences using Thermodynamics and Auxiliary Information,
Nucleic Acids Research, 9, 133-148.

712 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

DNA Logic Circuits with
a DNA Polymerase and a Nicking Enzyme

Ryo Hirose1, Satoshi Kobayashi1, Ken Komiya2
1Department of Communication Engineering and Informatics

Graduate School of Informatics and Engineering
University of Electro-Communications, Tokyo, Japan

2Department of Computational Intelligence and Systems Science
Interdisciplinary Graduate School of Science and Engineering

Tokyo Institute of Technology, Yokohama, Japan

Abstract— The current most popular and established ap-
proach to DNA logic circuits is the implementation by DNA
strands reaction networks where toehold-mediated strand
displacement invokes and performs the evaluation of each
DNA logic gate. Strand displacement approach requires,
however, a large amount of time, for instance, approximately
30 minutes, to execute a logic operation ([18]). Furthermore,
the concentration of an output molecule released from a gate
can not exceed that of the gate molecule. Therefore, it is often
the case that large quantities of input and gate molecules
are required when the gate is of large out-degree. In order
to overcome these problems, it is indispensable to devise
a DNA logic gate which runs quickly and can amplify the
quantity of the output molecule. We will propose a DNA
implementation of logic gates with such good properties
using DNA polymerase and nicking enzyme.

Keywords: DNA Computing, Logic Circuit, DNA Polymerase,
Nicking Enzyme

1. Introduction
In 1994, Adleman initiated the paradigm of DNA comput-

ing by devising and demonstrating a biological experimental
protocol to solve Directed Hamiltonian Path Problem([1]).
It has achieved important progress of the technologies
in making DNAs work as computing devices([4][3][2],
etc.). They also produce some new and important key
technologies([14][10], etc.) in the field of DNA nanotech-
nology, where it is aimed to construct intended nano-scale
shapes or structures by self-assembly of DNA molecules.
In these fields, it is currently emerging the movement for
establishing the methodology to construct automatic molec-
ular robots performing intended tasks in some specified en-
vironment ([8][5],etc.). A molecular robot should, however,
contain at least three important components, a sensor, a
circuit, and an actuator, in itself. The current technology
([8][5]) does not satisfy these three requirements, and it is
still at a premature stage. So, it is very challenging to explore
a possible framework of the methodology to construct a
molecular robot with a sensor, a circuit, and an actuator.

Molecular circuits equipped in molecular robots should
serve as logic circuits, memory devices, and control devices,
etc ([12]). In this paper, we will focus on a molecular circuit
as a computing device performing logic operations. There
are many works which have proposed DNA implementations
of logic circuits. One of the most popular and established
approach to DNA logic circuits is the implementation by
DNA strands reaction networks where toehold-mediated
strand displacement ([16]), strand displacement for short,
invokes and performs the evaluation of each DNA logic
gate([17][15][18]). Strand displacement approach requires,
however, a large amount of time, for instance, approximately
30 minutes, to execute a logic operation([18]). Furthermore,
the concentration of an output molecule released from a
gate can not exceed that of the gate molecule. Therefore,
it is often the case that large quantities of input and gate
molecules are required when the gate is of large out-degree.
In order to overcome these problems, it is indispensable to
devise a DNA logic gate which runs quickly and can amplify
the quantity of the output molecule. We will propose a DNA
implementation of logic gates with such good properties
using a DNA polymerase and a nicking enzyme.

2. Preliminaries
DNA is a molecule consisting of simple units, called

nucleotides, with backbones made of sugars and phosphate
groups joined by phosphodiester bonds. Each nucleotide
contains one of four types of atomic groups, called bases,
each being either of adenine (abbreviated A), cytosine (C),
guanine (G) and thymine (T). These long polymers are more
commonly called strands, and short polymers are called
oligonucleotides , or simply oligos. Note that every DNA
strand has two distinct ends, one with a free 5’ phosphate
group and the other with a free 3’ hydroxyl group, referred
to as the 5’ and 3’ ends, respectively. Thus, we can regard a
sequence of nutleotides as having a natural orientation from
its 5’ to 3’ ends, and it is often written as a sequence of
letters (bases) A, C, G, T oriented from 5’ to 3’ direction.

Under some appropriate chemical conditions, two strands
will pair up and twist around each other to form a fa-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 713

mous double helix structure discovered by Watson and
Crick. The pairing happens between A’s and T’s and be-
tween G’s and C’s, which is called Watson-Crick base
pairing. This pairing occur only if the two strands runs
in an antiparallel fashion. For instance, the strands 5’-
GCATCAG-3’ and 5’-CTGATGC-3’will form a hybridized
object 5′ −GCATCAG− 3′

3′ − CGTAGTC− 5′ . These kinds of completely
hybridized DNA strands are called double strands. A strand
with no base pairing with other strands is called a single
strand.

For any DNA single strand X (where X is a sequence of
bases), by X∗ we denote the complementary DNA strand of
X, i.e. the sequence obtained from X by replacing each A
by T, each T by A, each C by G, and each G by C, and
reversing the order. For instance, for X =5’-GCATCAG-3’,
we have X∗ =5’-CTGATGC-3’. For any single strand X ,
X and X∗ will form a double strand, which we will denote
by 5′ −X − 3′

3′ −X ∗ − 5′ .
DNA polymerase is an enzyme, or molecular machine,

which reads a single strand X in the 3’ to 5’ direction,
and builds the complementary strand X∗ in the 5’ to 3’
direction, one nucleotide at a time, where the strand X is
called a template. The activation of DNA polymerase to
work as a (complementary) copy machine requires a short
portion of double stranded part in the template. That is, we
need a short piece of single strand, called primer, which is
complementary to some part of the template. It is onto the
3’ end of this primer that DNA polymerase will add new
nucleotides. So, in order to make the copy X∗ of X , we
need a primer which is complementary to the last 3’ end
portion of the strand X .

Restriction endonucleases recognize specific nucleotide
sequences in the double-stranded form and generally cleave
both strands. Some sequence-specific endonucleases, how-
ever, cleave only one of the strands. These endonucleases
are called nicking endonucleases, or nicking enzymes. For
instance, a nicking enzyme Nt.BsmAI recognizes the double
stranded sequence 5′ −GTCTCN/N− 3′

3′ − CAGAGN N− 5′ , and cleaves the
upper strand at the position indicated by the symbol /, where
N can be either of the four bases.

3. Related Work
The current most promising approach to the construction

of DNA logic gates is the DNA implementation of logic
operation by the use of strand displacement. Its basic mecha-
nism is illustrated in Figure 1. Consider a complex consisting
of strands 5′ −A− B− 3′ and 5′ − C∗ − B∗ − 3′ with B
and B∗ hybridized, where A,B,C are sequences of bases.
If another strand 5′ − B− C− 3′ exists in a solution, then
5′ − B− C− 3′ hybridizes to the complex with C and C∗

hybridized. The strand 5′ − B− C− 3′ gradually extends
its pairing with 5′ − C∗ − B∗ − 3′ by replacing the strand

5′ −A− B− 3′ in a random walk fashion. This process is
called “branch migration”.

Fig. 1: Toehold-mediated Strand Displacement

There have been many research works to propose bio-
lab methods to implement some computational tasks by the
use of strand displacement ([11][17][15][18],etc.), and it is
considered as one of the most promising bio-lab techniques
in DNA computing. The computational capability of strand
displacement is also an interesting research topic from the
viewpoint of computation theory([12][9],etc.).

Strand displacement is, however, a slow reaction if we
want to use it as an essential bio-lab operation to implement
DNA logic circuits of molecular robots. Furthermore, in
these approaches, the concentration of an output molecule
released from a gate can not exceed that of the gate molecule.
In this sense, the construction of large circuits based only
on strand displacement is not feasible.

In the next section, we will propose a new bio-lab method
for constructing logic circuits with DNA molecules, where
we use the amplification system based on nicking enzyme
and DNA polymerase. Waker first applied this reaction to
the construction of isothermal amplification system of DNA
([13]). The idea of using nicking enzyme to computational
molecular devices was also accomplished by Matsuda and
Yamamura ([6]), where they used a DNA polymerase and a
nicking enzyme in order to cascade molecular state transi-
tion systems based on Whiplash PCR([3]). Very recently,
Montagne, et al., proposed to use a DNA polymerase
and a nicking enzyme to construct a programmed DNA
oscillator([7]). In this paper, we will apply a similar reaction
system to the construction of DNA logic circuits, and we will
show by computational simulations that the proposed system
is more efficient than the strand displacement approaches.

714 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Furthermore, in the proposed system, the output of each
DNA logic gate can be amplified by the use of a DNA
polymerase and a nicking enzyme.

4. Construction of Combinatorial Cir-
cuit

In this section, we will propose a method to construct
combinatorial circuits by using DNA polymerase and nick-
ing enzyme. As in other related works about DNA logic
gates, we will prepare for each boolean variable x, a DNA
strand X . The existence of X in the solution implies the
evaluation of the boolean variable x as 1. On the other hand,
how can we encode the evaluation x = 0 into the solution?
For this purpose, we will also prepare another DNA strand
NX , and we regard the existence of NX in the solution as
the evaluation of the variable x as 0. Thus, the strand X and
NX can not exist at the same time in the solution. Although
most of the other works encode the evaluation x = 0 as the
nonexistence of X in the solution, we will use the negation
strand NX in order to implement NOT gate simply.

In order to implement DNA logic circuits, we will use the
following three basic abstract-level chemical reactions:

1. AND reaction: A∧B→ C — the strand C is produced
if and only if both of the strands A and B exist in the
solution.

2. OR reaction — A | B → C — the strand C is
produced if and only if either of the strands A or B
exists in the solution.

3. PROPAGATE (PROP) reaction : A→ B — the strand
B is produced if and only if the strand A exists in the
solution.

When we want to construct a chemical reaction system
which utilizes any given boolean function, it suffices to
devise chemical implementation of logic gates, AND, OR,
and NOT. Then, it is easy to construct AND, OR, and NOT
gates using the three basic reactions above.

1. AND gate construction — Consider an AND gate with
input variables a and b and with an output variable
c. Then, we will prepare the strands A, NA for the
variable a, B, NB for the variable b, C, NC for
the variable c. It is easy to see that the AND and
OR reactions, A ∧ B → C and NA | NB → NC,
implement the AND gate.

2. OR gate construction — Consider an OR gate with
input variables a and b and with an output variable
c. Then, we will prepare the strands A, NA for the
variable a, B, NB for the variable b, C, NC for
the variable c. It is easy to see that the AND and
OR reactions, A | B → C and NA ∧ NB → NC,
implement the OR gate.

3. NOT gate construction — Consider a NOT gate with
an input variable a and with an output variable b. Then,
we will prepare the strands A, NA for the variable a,

B, NB for the variable b. It is easy to see that the
PROP reactions, A → NB and NA → B, implement
the NOT gate.

In the rest of this section, we will propose a method
to implement AND, OR and PROP reactions with the use
of DNA polymerase and nicking enzyme. We assume that
we will use a nicking enzyme which recognizes a double
stranded DNA sequences 5′ − R − 3′

3′ − R∗ − 5′ , and cleave the 3’
end of the lower strand R∗ only.

4.1 AND reaction: A ∧ B→ C

We will explain the construction of AND reaction which,
with the existence of sufficient amounts of input DNA
single strands A and B in a solution, outputs a single
stranded DNA sequence C. Principal molecule of this re-

Fig. 2: AND Reaction

action, called AND complex, consists of two DNA strands
5′ − C∗ − R− B∗ − 3′ and 5′ − B− R∗ −A∗ − 3′ with B
and B∗ hybridized at its initial state (Fig.2(1)). Let us
consider the situation where sufficient amounts of DNA
strands A and B exist in a solution. At first, A hybridizes to
A∗ of the AND complex (Fig.2(2)). Then, DNA polymerase
bind to this double stranded part (consisting of A and A∗)
and elongates the sequence A until it reaches to the 5’-end of
the sequence 5′ − B− R∗ −A∗ − 3′ (Fig.2(3)). This makes
the double stranded part (consisting of B and B∗) detached
from the AND complex and we will have DNA strand
5′ − C∗ − R− B∗ − 3′ in the solution (Fig.2(4)). Then,
the strand B hybridizes to B∗ of 5′ − C∗ − R− B∗ − 3′

(Fig.2(5)), and DNA polymerase binds to this double
stranded part (consisting of B and B∗) and elongates the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 715

sequence B until it reaches to the 5’-end of the sequence
5′ − C∗ − R− B∗ − 3′ (Fig.2(6)). This complex is recog-
nized by a nicking enzyme at the site R and R∗, and
it cleaves the strand R∗ (Fig.2(8)) . DNA polymerase,
while pushing the strand C away, elongates the strand
5′ − B− R∗ − 3′ again until it reaches to the 5’-end of the
sequence 5′ − C∗ − R− B∗ − 3′ and the output strand C is
released. Repeating the process (8), (9) and (10), the output
strand C is amplified and released.

4.2 OR reaction — A | B→ C

We will explain the construction of OR reaction which,
with the existence of sufficient amounts of input DNA
single strands A or B in a solution, outputs a single
stranded DNA sequence C. Principal molecule of this re-

Fig. 3: OR Reaction

action, called OR complex, consists of single DNA strand
5′ − C∗ − R− B∗ −A∗ − 3′ at its initial state (Fig.3(1)).
Let us consider the situation where sufficient amounts of
DNA strands A or B exist in a solution. At first, A or
B hybridizes to A∗ or B∗ of the OR complex (Fig.3(2)).
Fig.3 describes the case of A hybridizing to A∗. Then,
DNA polymerase binds to this double stranded part and
elongates the sequence A until it reaches to the 5’-end
of the sequence 5′ − C∗ − R− B∗ −A∗ − 3′ (Fig.3(3),(4)).
Next, a nicking enzyme recognizes R and R∗ and cleaves
the strand R∗ (Fig.3(5)) . DNA polymerase, while pushing
the strand C away, elongates the strand 5′A− B− R∗ − 3′

again until it reaches to the 5’-end of the sequence
5′ − C∗ − R− B∗ −A∗ − 3′ and the output strand C is
released. Repeating the process (5), (6) and (7), the output
strand C is amplified and released.

4.3 PROP reaction : A→ B

In this subsection, we will explain the construction of
PROP reaction which, with the existence of sufficient

amounts of input DNA single strands A in a solution, outputs
a single stranded DNA sequence B.

Fig. 4: PROP Reaction

Principal molecule of PROP reaction, called PROP com-
plex, consists of single DNA strand 5′ − B∗ − R−A∗ − 3′

at its initial state (Fig.4(1)). Let us consider the situation
where sufficient amounts of DNA strands A exist in a
solution.At first, A hybridizes to A∗ of the PROP complex
(Fig.4(2)). Then, DNA polymerase binds to this double
stranded part and elongates the sequence A until it reaches
to the 5’-end of the sequence 5′ − B∗ − R−A∗ − 3′

(Fig.4(3),(4)). Next, a nicking enzyme recognizes R and
R∗ and cleaves the strand R∗(Fig.4(5)). DNA polymerase,
while pushing the strand B away, elongates the strand
5′ −A− R∗ − 3′ again until it reaches to the 5’-end of the
sequence 5′ − B∗ − R−A∗ − 3′ and the output strand B is
released. Repeating the process (5), (6) and (7), the output
strand B is amplified and released.

5. Mathematical Model of Chemical Re-
action Networks

In this section, we will explain the mathematical model of
chemical reaction networks for the proposed combinatorial
DNA circuits. We only give the explanation for the case of
AND reaction, since the models of other basic operations,
OR and PROP, are almost similar to that of AND reaction
and can be obtained easily.

5.1 Chemical Reaction Network of AND Reac-
tion

For any rate constant k, by k′ we denote the rate constant
of the reverse reaction of the reaction corresponding to
k. Parameters kApoly , kBpoly and kCpoly are rate constants
of polymerase reaction elongating the strands, A, B, and

716 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

C,respectively. The parameter knick is the rate constant for
nicking enzyme to cleave strands.

G+A
kA
�
k′A

G ·A

G ·A
kApoly→ G1 +G2 ·A

G1 +B
kB
�
k′B

G1 · B

G1 · B
kBpoly→ G1 · BC

G1 · BC
knick→ G1 · B · C

G1 · B · C
kCpoly→ G1 · BC+ C

Fig. 5: Full Reaction Network of AND Gate

Chemical reaction network of an abstract-level AND
reaction is described in Figure 5, where AND complex, its
upper strand, and its lower strand are represented as G, G1,
and G2, respectively.

5.2 Differential Equations of AND Reaction
Differential equation system to mathematically model and

simulate the AND reaction is given in Figure 6.

6. Simulation Results
We used the following kinetic parameters for the simula-

tion, which are determined by referring to the data reported
in [7].

kA = kB = 2.4× 107 (M−1min−1)
k′A = k′B = 1.2× 10−3 (M−1min−1)
kBPoly = 2.4× 101 (min−1)

kAPoly = kCPoly = 2.4× 101 × 0.8 (min−1)

knick = 6.0× 100 (min−1)

6.1 Simple Amplification Network
We first constructed a simple amplification network in

Figure 7, whose experimental data were reported in [7], and
simulated its behavior. The result is given in Figure 8, where
we plot the concentration of the hybridized compound of
the input strand A and the PROP complex molecule. The
obtained simulation curve approximately coincides with the
experimentally obtained fluorecense curve reported in [7],
and the saturation time is approximately 4 - 6 minutes in
both of the simulation and the experimental data. So, we
can conclude that the mathematical model and its parameters
given above work well corresponding to the experimental
data.

d[A]

dt
=−kA[G][A] + k′

A[G ·A]

d[B]

dt
=−kB[G1][B] + k′

B[G1 · B]

d[C]

dt
=kC

poly[G1 · B · C]

d[G]

dt
=−kA[G][A] + k′

A[G ·A]

d[G ·A]

dt
=kA[G][A]− k′

A[G ·A]− kA
poly[G ·A]

d[G1]

dt
=kA

poly[G ·A]− kB[G1][B] + k′
B[G1 · B]

d[G2 ·A]

dt
=kA

poly[G ·A]

d[G1 · B]
dt

=kB[G1][B]− k′
B[G1 · B]−kB

poly[G1 · B]

d[G1 · BC]
dt

=kB
poly[G1 · B]− knick[G1 · BC]+

+kC
poly[G1 · B · C]− k′C

poly[G1 · BC][C]
d[G1 · B · C]

dt
=knick[G1 · BC]− kC

poly[G1 · B · C]

Fig. 6: Full system of differential equations for AND reac-
tion

6.2 Majority Vote Circuit
We applied the proposed method to the construction of

a majority vote circuit. The circuit outputs 1 if the number
of input variables assigned to 1 is greater than that of input
variables assigned to 0. We applied the method to 3-variable
case. The circuit is given in Figure 9. For each variable, x, y,
z, a, b, c, d, e, we will prepare the DNA strands X , Y , Z, A,
B, C, D, E, for representing the evaluation of each variable
to 1. Furthermore, the DNA strands NX , NY , NZ, NA,
NB, NC, ND, NE are used for representing the evaluation
of each variable to 0.

We set the concentration of each input strand X , Y , Z,
NX , NY , NZ, to 1.0× 10−10 (M) if it should exist in the
solution, to 0 (M) otherwise. Furthermore, the concentration
of the AND-complex and OR-complex at the 1st, 2nd, and
3rd layers are set to 1.0 × 10−9 (M), 1.0 × 10−7 (M), and
5.0×10−8 (M), respectively.

Figure 10 gives the simulation result for the case of inputs
x = y = z = 1. That is, we put 1.0×10−10 (M) of X , Y , Z,
and 0 (M) of NX , NY , NZ, in the solution. As expected,
the concentration of the output strand E grows rapidly, and
NE stays at 0 for all the time of the simulation, which
correctly simulates the behavior of the majority vote circuit.

For the case of inputs x = y = z = 0. That is, we put
1.0×10−10 (M) of NX , NY , NZ, and 0 (M) of X , Y , Z,
in the solution. As expected, the concentration of the output
strand NE grows rapidly, and E stays at 0 for all the time

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 717

Fig. 7: Simple Amplification Network

Fig. 8: Simulation of Simple Amplification Network

of the simulation, which correctly simulates the behavior of
the majority vote circuit (Fig.11). Note that in Fig. 11, the
concentrations of NA and NC are very small, so they almost
stay at 0 in the graph.

Figure 12 gives the global view of the simulation result
for the case of inputs x = y = z = 1. We can verify that
the growth of the 3rd layer output is very rapid (at most 10
minutes are enough for 3 steps of logic operation).

On the other hand, the output strands behavior largely
depends on the initial concentrations of principal complex
of each gate and each input strand. For instance, if we put
1.0 × 10−10 (M) of the input strands, 1.0 × 10−11 (M) of
AND-complex and OR-complex in the solution, then, for
the inputs x = y = z = 1, the output strand E grows very
slowly (See Figure 13). So, design of these concentration
parameters are important problem in the future.

7. Conclusions
We proposed a new bio-lab method for constructing logic

circuits with DNA molecules, where we use the amplification

Fig. 9: Majority Vote Circuit

 0

 1e-14

 2e-14

 3e-14

 4e-14

 5e-14

 6e-14

 7e-14

 8e-14

 9e-14

 1e-13

 0 10 20 30 40 50 60

co
nc

en
tr

at
io

n(
M

)

Time(sec)

A B C D E

Fig. 10: Simulation of Majority Vote Circuit (1)

system based on a nicking enzyme and a DNA polymerase
similar to [13], [6], and [7]. The proposed method has
some good properties as computational devices that it is
more time-efficient than the strand displacement approaches
([17][15][18], etc.) and that the output of each DNA logic
gate can be amplified, and so, the scalability and the fea-
sibility of the proposed system is better than the previous
methods.

However, in order to increase the amount of the output
molecule, the concentration of each gate complex should
be carefully designed as is discussed in section 6.2. Fur-
thermore, the proposed method has a problem that the
amplification of the output strands continues until DNA
polymerase uses up substrates. So, we need a bio-lab method
for stopping or inhibiting the amplification process in this
framework. An idea is to use inhibitor strands and exonu-
clease as in [7]. All of these issues are our future research
topics.

Acknowledgement
The second author is supported in part by Grant-in-Aid

for Scientific Research (C) No.22500010, Japan Society for
the Promotion of Science.

718 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

 0

 5e-09

 1e-08

 1.5e-08

 2e-08

 2.5e-08

 0 100 200 300 400 500 600

C
on

ce
nt

ra
tio

n(
M

)

Time(sec)

NA NB NC ND NE

Fig. 11: Simulation of Majority Vote Circuit (2)

 0

 2e-09

 4e-09

 6e-09

 8e-09

 1e-08

 1.2e-08

 1.4e-08

 1.6e-08

 1.8e-08

 0 100 200 300 400 500 600

co
nc

en
tr

at
io

n(
M

)

Time(sec)

A B C D E

Fig. 12: Simulation of Majority Vote Circuit (3)

References
[1] L. Adleman, Molecular Computation of Solutions to Combinatorial

Problems. Science 266, pp.1021-1024, 1994.
[2] Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh,

E. Shapiro, Programmable and autonomous computingmachine made of
biomolecules, Nature 414, pp.430-434, 2001.

[3] M. Hagiya, M. Arita, D. Kiga, K. Sakamoto, S. Yokoyama, Towards
parallel evaluation of Boolean µ-formulas with molecules, In DNA Based
Computers III(American Mathematical Society), pp.57-72, 1999.

[4] R. Lipton, DNA solution of hard computational problem, Science 268,
pp.542-545, 1995.

[5] D. Zhang, E. Winfree, K. Lund, A. Manzo, N. Dabby, N. Michelotti,
A. Johnson-Buck, J. Nangreave, S. Taylor, R. Pei, M. Stojanovic,
N. Walter, E. Winfree, H. Yan, Molecular robots guided by prescriptive
landscapes, Nature, 465, pp.206-210, 2010.

[6] D. Matsuda, M. Yamamura, Cascading Whiplash PCR with a Nicking
Enzyme, DNA Computing — Proc. of International Workshop on DNA-
Based Computers, DNA8 (2002), Lecture Notes in Computer Science,
pp.38-46, 2003.

[7] K. Montagne, R. Plasson, Y. Sakai, T. Fujii, Y. Rondelez, Programming
an in vitro RNA oscillator using a molecular networking strategy,
Molecular Systems Biology, 7, Article Number 466, 2011.

[8] T. Omabegho, R. Sha, N. Seeman, A Bipedal DNA Brownian Motor
with Coordinated Legs, Science 324, pp.67-71, 2009.

 0

 2e-13

 4e-13

 6e-13

 8e-13

 1e-12

 1.2e-12

 0 100 200 300 400 500 600

co
nc

en
tr

at
io

n(
M

)

Time(sec)

A B C D E

Fig. 13: Simulation of Majority Vote Circuit (4)

[9] L. Qian, D. Soloveichik, E. Winfree, Efficient Turing-universal com-
putation with DNA polymers, Lecture Notes in Computer Science 6518,
pp.123-140, 2011.

[10] P. Rothemund, Folding DNA to create nanoscale shapes and patterns,
Nature 440, pp.297-302, 2006.

[11] G. Seelig, D. Soloveichik, D. Zhang, E. Winfree, Enzyme-free nucleic
acid logic circuits, Science, 314, pp.1585-1588, 2006.

[12] D. Soloveichik, G. Seelig, E. Winfree, DNA as a Universal Substrate
for Chemical Kinetics, Proc. Natl. Acad. Sci. USA, 107, pp.5393-5398,
2010.

[13] G. Walker, M. Little, J. Nadeau, D. Shank, Isothermal in vitro
amplification of DNA by a restriction enzyme/DNA polymerase system,
Proc. Natl. Acad. Sci. USA, 89, pp.392-396, 1992.

[14] E. Winfree, F. Liu, L. Wenzler, N. Seeman, Design and self-assembly
of two-dimensional DNA crystals, Nature 394, pp.539-544, 1998.

[15] P. Yin, H. Choi, C. Calvert, N. Pierce, Programming biomolecular
self-assembly pathways, Nature, 451, pp.318-322, 2008.

[16] B. Yurke, A.J. Turberfield, A.P. Mills, F.C. Simmel, J. Neumann, A
DNA-fuelled molecular machine made of DNA. Nature 406, pp.605-608,
2000.

[17] D. Zhang, A. Turberfield, B. Yurke, E. Winfree, Engineering Entropy-
Driven Reactions and Networks Catalyzed by DNA, Science, 318,
pp.1121-1125, 2007.

[18] D. Zhang, E. Winfree, Control of DNA Strand Displacement Kinet-
ics Using Toehold Exchange, J. of American Chemical Society, 131,
pp.17303-17314, 2009.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 719

An Impr oved Shift Strategy for the Modified Discrete
Lotka-Volterra with Shift Algorithm

Masami Takata1, Takumi Yamashita2, Akira Ajisaka 2, Kinji Kimura 2 and Yoshimasa Nakamura2
1Graduate School of Humanities and Sciences, Nara Women’s University, Nara, Nara, JAPAN

2Graduate School of Informatics, Kyoto University, Kyoto, Kyoto, JAPAN

Abstract— We propose a new mathematical shift strategy
for the modified discrete Lotka-Volterra with shift (mdLVs)
algorithm. The mdLVs algorithm computes the singular
values of bidiagonal matrices. It is known that the con-
vergence of the mdLVs algorithm is accelerated when the
shift is close to and less than the square of the smallest
singular value of the input matrix. In the original mdLVs
algorithm, the Johnson bound is adopted. Our improved
mdLVs algorithm combines the Gerschgorin-type bound, the
Kato-Temple bound, the Laguerre shift, and the generalized
Newton shift. For different combinations, we discuss the
computational time and number of iterations.

Keywords: singular value decomposition, Gerschgorin-type
bound, Kato-Temple bound, Laguerre shift, Newton shift, mdLVs

1. Introduction
Singular value decomposition (SVD) is one of the most

important matrix operations in numerical algebra, and it
plays an important role in fields such as data search sys-
tems [5] and image processing [13].

Several SVD algorithms are composed by computing
singular values and singular vectors. The modified discrete
Lotka-Volterra with shift (mdLVs) algorithm [3], [4], [14],
[15] computes singular values; its speed and relative accu-
racy are excellent.

The mdLVs iteration involves the computation of shifts.
It is known that the convergence of the mdLVs algorithm
is accelerated when the shift is close to and less than the
square of the smallest singular value of the input matrix. The
Integrable-SVD [3], [14], [15], [16], for which a library has
been developed [2], includes the original mdLVs algorithm.
It uses the Johnson bound [6] as shift strategy. This bound
can compute a sharper bound among various shift strategies.
However, since2M − 1 square roots must be found, the
Johnson bound has a large computational time. Here,M is
the dimension size of the input matrix. Therefore, a fast and
mathematically rigorous shift strategy is needed.

In this paper, we improve the shift strategy for the mdLVs
algorithm. First, we compute a lower bound of the smallest
singular value from the Gerschgorin theorem [1]. Let us
call this bound the Gerschgorin-type bound. Since this is
always weaker than the Johnson bound after enough number
of iterations, we then consider the Kato-Temple bound [7].

We compare the two bounds to determine a shift for the
mdLVs algorithm. In some cases, the Laguerre shift [11]
or the generalized Newton shift [9], [10] instead of the
Gerschgorin-type bound is adopted. The improved shift can
be computed withM square-root operations.

In Section 2, we explain the mdLVs algorithm. In Section
3, we introduce the Johnson bound. In Section 4, we describe
the improved shift strategy for the mdLVs algorithm. In
Section 5, we present numerical experiments and confirm
that the mdLVs algorithm with the new strategy is faster
than the original algorithm.

2. Modified discrete Lotka-Volterra with
shift algorithm

In Section 2.1, we give a summary of the singular value
computation based on the discrete Lotka-Volterra (dLV)
system. In Section 2.2, we outline the mdLVs algorithm.
In Section 2.3, we briefly describe the implementation of
the mdLVs algorithm.

2.1 Singular value computation based on the
discrete Lotka-Volterra system

In mathematical biology, the Lotka-Volterra (LV) system
is known as a fundamental prey-predator model. In some
cases, the LV system is a completely integrable dynamical
system with explicit solutions and sufficiently many conser-
vation laws. A time discretization

u
(n+1)
k =

1 + δ(n)u
(n)
k+1

1 + δ(n+1)u
(n+1)
k−1

u
(n)
k (1)

of the LV system is known (cf. [3]). This system also has
an explicit solution and many conservation laws. Therefore,
it is called the integrable dLV system. Here,k (k =
1, 2, · · · , 2M−1) indicates thekth species, the discrete time
n (n = 0, 1, 2, · · ·) corresponds to the iteration number of
the algorithm,u(n)

k is the value ofuk at n, and the arbitrary
nonzero numberδ(n) is a discrete step-size. Let the initial
value u

(0)
k be positive. In the case whereδ(n) > 0, any

subtraction and division by zero do not occur in Eq.(1)
andu

(n)
k is always positive. Consequently, cancellation and

numerical instability do not occur. Note that we do not need
to treat negative numbers in singular value computations.

720 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Theboundarycondition and the initial condition are given
by

u
(n)
0 ≡ 0, u

(n)
2M ≡ 0, (2)

u
(0)
k =

(bk)2

1 + δ(0)u
(0)
k−1

. (3)

respectively. Here, b2i−1 (> 0) and b2i (> 0) (i: 1 ≤
i ≤ M) are the diagonal and upper-subdiagonal elements,
respectively, of theM ×M bidiagonal matrixB.

B =

b1 b2

b3 b4

. ..
.. .

b2(M−1)−1 b2(M−1)

b2M−1

. (4)

When n → ∞, u
(n)
2i−1 and u

(n)
2i converge to the square

of the ith singular valueσi and 0, respectively. Thus the
dLV system gives rise to a stable scheme for computing the
singular values [3].

2.2 Improved speed via a shifted discrete
Lotka-Volterra scheme

The mdLVs algorithm, the integrable dLV system with a
shift, can compute the singular values more quickly. The
mdLVs algorithm is as follows [4].

Let us introduce new elementsw(n)
k andv

(n)
k by

w
(n)
k = u

(n)
k (1 + δ(n)u

(n)
k−1), (5)

v
(n)
k = u

(n)
k (1 + δ(n)u

(n)
k+1). (6)

By Eq.(3), the initialw(0)
k is just b2

k. The shifted integrable
dLV system is defined by adding to Eq.(1) a shiftΘ at the
nth iteration defined as0 ≤ Θ < σ2

min whereσmin is the
smallest singular value ofB. This gives

w
(n+1)
2i−1 = v

(n)
2i−1 + v

(n)
2i−2 − w

(n+1)
2i−2 −Θ,

w
(n+1)
2i = v

(n)
2i−1v

(n)
2i /w

(n+1)
2i−1 . (7)

In general, the convergence is accelerated by increasing
Θ. However, since the positivity ofu(n)

k may be destroyed
by a largerΘ at thenth iteration, this causes a numerical
instability. It is proved in [4] thatu(n)

k > 0 if and only if
0 ≤ Θ < σ2

min. Hence, we can determine the shiftΘ for
estimatingσmin.

2.3 Algorithm for singular value computation
based on the Lotka-Volterra system

Each iteration in the mdLVs algorithm is as follows.

1) Calculateu(n)
k from w

(n)
k via Eq.(5).

2) Calculatev(n)
k from u

(n)
k via Eq.(6).

3) Calculate the shiftΘ at thenth iteration.
4) CheckΘ and calculatew(n+1)

k accordingly.

• If Θ is valid, calculatew
(n+1)
k from v

(n)
k via

Eq.(7).
• Otherwise,w(n+1)

k = v
(n)
k .

5) If w
(n+1)
2i is much smaller thanw(n+1)

2i−1 , perform
SPLIT or a deflation of the dimension as described
in [12].

SPLIT, which divides the matrix into two parts, and the
deflation are defined.

The arrays of the algorithm are calculated as follows. In
Step 1), the arrayU = (u(n)

1 , u
(n)
2 , · · · , u

(n)
2M−1) is calculated

from the arrayW = (w(n)
1 , w

(n)
2 , · · · , w

(n)
2M−1). Since we do

not keep the data for eachn, each array is a one-dimensional
array corresponding to the subscript. In Step 2), the array
V = (v(n)

1 , v
(n)
2 , · · · , v

(n)
2M−1) is calculated fromU . In Step

3), the shift Θ at the nth iteration is calculated fromV .
Using the validΘ, we overwriteW with V in Step 4).

In the loops of Steps 1) and 2),U andV are updated in
ascending order ofk. To updateu(n)

k , we usew(n)
k andu

(n)
k−1

in Step 1). To updatev(n)
k , we needu(n)

k andu
(n)
k+1 in Step

2). To calculate the shift, we useV instead ofB in Step
3), since the upper bidiagonal matrix at thenth iteration is
expressed usingV . For the updatew(n+1)

k from v
(n)
k in Step

4), W is updated in ascending order ofk.

3. Johnson bound

The theorem for the Johnson bound is a corollary of the

Gerschgorin circle theorem for
(B> + B)

2
.

B> + B

2
=

b1
b2

2
b2

2
b3

b4

2
. . .

.. .
. . .

b2(M−1)−1

b2(M−1)

2
b2(M−1)

2
b2M−1

.

(8)

Sincethesingular values inB are equal to those inB>, the
Johnson bound for the smallest singular value of an upper
bidiagonal matrixB is given as the following inequality:

σmin ≥ min
1≤i≤M

[
b2i−1 − 1

2
(b2i + b2i−2)

]
, (9)

whereb0 = b2M = 0.

In the mdLVs algorithm,bk becomes
√

v
(n)
k at the nth

iteration, and the shiftΘ is defined as0 ≤ Θ < σ2
min.

Therefore, the Johnson shiftΘJ is computed using the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 721

Algorithm 1 Implementationof the Johnson boundΘJ

1: R ←
√

v
(n)
2

2: S ← 2
√

v
(n)
1 −R

3: if S ≤ 0 then
4: return 0
5: end if
6: for i = 2 to M − 1 by +1 do

7: T ← 2
√

v
(n)
2i−1 −R

8: R ←
√

v
(n)
2i

9: T ← T −R
10: if T ≤ 0 then
11: return 0
12: end if
13: S ← min(S, T)
14: end for
15: T ← 2

√
v
(n)
2M−1 −R

16: if T ≤ 0 then
17: return 0
18: end if
19: S ← 1

2 min(S, T)
20: return S2

Johnsonboundas follows:

ΘJ =
(

1
2

(
min

1≤i≤M

[
2
√

v
(n)
2i−1

−
(√

v
(n)
2i +

√
v
(n)
2i−2

)]))2

.

(10)

SinceB is a positive definite matrix, we adopt a zero shift
when the bound is less than zero.

The number of square-root operations is2M − 1, since√
v
(n)
2i canbe reused in the(i + 1)th computation.

An implementation of the shiftΘJ based on the Johnson
bound is given in Algorithm 1.

4. Improved shift strategy
The Johnson bound, which is used in the original mdLVs

algorithm, needs2M − 1 square-root operations. When
numerical algorithms are computed using microprocessors,
square-root operations take longer than addition and mul-
tiplication operations. Therefore, a new high-accuracy shift
with fewer square-root operations is needed. Consequently,
we improve the shift strategy for the computation of the
singular values. The improved strategy consists of the
Gerschgorin-type bound, the Kato-Temple bound, the La-
guerre shift, and the generalized Newton shift.

In Section 4.1, we describe Gerschgorin’s theorem for the
smallest eigenvalue. In Section 4.2, we explain the Kato-
Temple inequality and the Kato-Temple bound. In Section

4.3, we discuss the Laguerre shift, and in Section 4.4, we
introduce the generalized Newton shift. In Section 4.5, we
discuss the improved shift strategy and its implementation
in the mdLVs algorithm.

4.1 Gerschgorin-type bound
Let A be anM ×M complex matrix.

A =

a1,1 a1,2

a2,1 a2,2 a2,3

. . .
.. .

. . .
aM−1,M−2 aM−1,M−1 aM−1,M

aM,M−1 aM,M

.

(11)

For i = 1, · · · , M , the Gerschgorin diskDi is defined as

Di =

z : |z − ai,i| ≤

M∑

j=1,j 6=i

|ai,j |

 . (12)

From the Gerschgorin theorem, the each eigenvalue ofA
exists in at least one of the disksDi (i: i = 1, · · · ,M). Since
the eigenvalues of the real symmetric tridiagonal matrix
BB> are equal to the square of the singular values ofB,
we can get the Gerschgorin-type bound for(σmin)2, the
square of the smallest singular value ofB, by applying the
Gerschgorin theorem toBB>.

BB> =

b2
1 + b2

2 b3b2

b3b2 b2
3 + b2

4 b5b4

. . .
. . .

.. .
b2M−1b2(M−1) b2

2M−1

 .

(13)

Then, the Gerschgorin-type shiftΘG is obtained using the
Gerschgorin-type bound as the follows:

ΘG = min
1≤i≤M

[(b2
2i−1 + b2

2i)

− (b2i−1b2(i−1) + b2(i+1)−1b2i)],
(14)

where b0 = b2M = 0. Eq.(14) may give a negative value.
However, sinceBB> is a symmetric positive definite matrix,
we use zero shift in such cases.

In the mdLVs algorithm, Eq.(14) can be written as

ΘG = min
1≤i≤M

[
(v(n)

2i−1 + v
(n)
2i)

−
(√

v
(n)
2i−1v

(n)
2(i−1) +

√
v
(n)
2(i+1)−1v

(n)
2i

)]
,

(15)

wherev
(n)
0 = v

(n)
2M = 0. From symmetry ofBB>, Eq.(15)

requires onlyM − 1 times of square-root operations.

722 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

4.2 Kato-Temple bound

Let A be a real symmetric matrix andx be a real vector.
Let ρ = x>Ax be its Rayleigh quotient withx>x = 1. For
a given eigenvalueλ of A, we introduce the Kato-Temple
inequality.

Let us assume that the open interval(λ, λ̄) includesan
eigenvalue λ of A as well as the Rayleigh quotientρ and
that it does not include any other eigenvalues. Then, we have
an inequality given by the following theorem:

ρ− ε2

λ̄− ρ
≤ λ ≤ ρ +

ε2

ρ− λ
, (16)

whereε2 =‖ Ax− ρx ‖22.
In the following discussion, we consider an application of

the Kato-Temple inequality for the smallest eigenvalueλmin

of the symmetric positive definite tridiagonal matrix of the
form A = BB>, exceptM ≤ 2. The eigenvaluesλi of A
satisfy 0 < λM < λM−1 < · · · < λ1. Let A(i) be a i × i
submatrix ofA such that|A(i)| is the ith principal minor
determinant ofA. Let {λ(i)

j }j=1,...,i be a set of eigenvalues

of A(i). Note that A = A(M) and λj = λ
(M)
j . The

separation theorem (interlacing property) [8] for eigenvalues
of symmetric tridiagonal matrices isλ(i)

i < λ
(i−1)
i−1 < λ

(i)
i−1 <

λ
(i−1)
i−2 < · · · < λ

(i)
1 for i = 1, . . . , M .

Define a sequence{ti} by t1 = b2
1+b2

2, ti+1 = b2
2(i+1)−1+

b2
2(i+1) − b2i−1b2(i−1)/ti for i = 1, 2, . . . , M − 2, tM =

b2
2M−1 − b2M−1b2(M−1)/tM−1. Since|A(i)| = t1t2 · · · ti >

0, we see thatti > 0. By definition, we have

b2
2M−1 > tM =

|A(M)|
|A(M−1)|

=
λ

(M)
1 · · ·λ(M)

M

λ
(M−1)
1 · · ·λ(M−1)

M−1

=
λ

(M)
1

λ
(M−1)
1

· · · λ
(M)
M−1

λ
(M−1)
M−1

λ
(M)
M

> λ
(M)
M = λM . (17)

Now we have a candidate for the Rayleigh quotientρ such
that λM < ρ. Let us choose the unit vectorx for

x = (0, . . . , 0, 1)>. (18)

The Rayleigh quotient is then given by

ρ = x>Ax = b2
2M−1 (> λM). (19)

Finally, we consider how to choose the right endpointλ̄ of
the open interval(λ, λ̄) includingλm, andnot including any
other eigenvalues. The separation theorem says that a good

bound of the smallest eigenvalueλ(m−1)
m−1 of the submatrix

A(M−1) =

b2
1 + b2

2 b3b2

b3b2 b2
3 + b2

4 b5b4

. ..
.. .

.. .
b2M−3b2M−4 b2

2M−3 + b2
2M−2

 .

(20)

may give λ̄ such that the assumptionλM < ρ < λ̄ is
satisfied. In this case, we obtain the Kato-Temple boundΘK

of the smallest eigenvalueλM of A from the Kato-Temple
inequality. The Kato-Temple boundΘK is given as follows:

ΘK = ρ− ε2

λ̄− ρ

= b2
2M−1 −

‖ Ax− ρx ‖22
λ̄− b2

2M−1

= b2
2M−1 −

b2
2M−1b

2
2(M−1)

λ̄− b2
2M−1

(21)

≤ λM .

The boundΘ(M−1) of λ
(M−1)
M−1 should be computed using

the original bound, for example, the Gerschgorin-type bound
and the generalized Newton bound. We call such a bound an
auxiliary bound. If the assumptionΘ(M−1) > b2

2M−1 (= ρ)
is satisfied, we obtain the Kato-Temple bound by Eq.(21)
whereλ̄ = Θ(M−1).

4.3 Laguerre shift
Let us set J

(−)
1 = trace(BB>)−1 and J

(−)
2 =

trace((BB>)2)−1. The Laguerre shiftΘL is defined as
follows [11] :

ΘL =
1

J
(−)
1

· M

1 +

√√√√(M − 1)

(
M

J
(−)
2

(J (−)
1)2

− 1

) > 0. (22)

Theoretically,

(
M

J
(−)
2

(J
(−)
1)2

− 1
)

is positive, however com-

putationally, the value is occasionally negative.
When the iteration numbern is small, the Gerschgorin-

type bound may be non-positive. On the other hand, in
almost cases, the Laguerre shiftΘL becomes positive, since(

M
J

(−)
2

(J
(−)
1)2

− 1
)

is non-negative. However, computation-

ally, if ai,i−(ai,i−1+ai,i+1) ≤ 0 for somei (i: (1−κ)M ≤
i ≤ M), then the Laguerre shift is not so close to the
smallest singular value when the iteration number is small.
Hereκ ∈ (0, 1) is a constant. Therefore, if all the expressions
ai,i− (ai,i−1 + ai,i+1) are positive for(1− κ)M ≤ i ≤ M ,
we calculate the Laguerre shiftΘL instead of returning
zero derived from the Gerschgorin theorem. Experimentally,
κ = 0.02 is the best choice.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 723

4.4 Generalized Newton shift
The generalized Newton bound of the smallest singular

valueσmin of B is given as follows [8]:

Θ(M)
p = (trace(B>B)−p)−

1
2p (23)

=
1

(
1

σ2p
1

+ · · ·+ 1
σ2p

M

) 1
2p

> 0,

wherep is an arbitrary positive integer. These bounds have
the properties listed in [9] [10].

Θ(M)
1 < Θ(M)

2 < · · · < σM , (24)

lim
p→∞

Θ(M)
p = σM . (25)

Then, (Θ(M)
p)2 (p = 1, 2, . . .) can be used. Let us call

(Θ(M)
p)2 the generalized Newton shift of orderp.
The generalized Newton shift(Θ(M)

p)2 can be computed
within O(Mp2) flops using a recurrence-relation formula.
This proof for the computational cost should be discussed
in another paper, on which T. Yamashita, K. Kimura, and Y.
Nakamura are working.

4.5 New shift strategy and its implementation
In this section, we improve the shift strategy from that

using the Johnson bound.
In most microprocessors, a square-root operation takes

longer time than addition and multiplication operations.
Therefore, the number of square-root operations should be
reduced.

The Johnson bound requires2M − 1 times of square-
root operations. On the other hand, the Gerschgorin-type
bound needs justM − 1 times of square-root operations.
Consequently, the Gerschgorin-type bound is expected as
a measure to improve the shift strategy with the Johnson
bound. However, we have to consider the following possibil-
ities. The Gerschgorin-type boundΘG may be smaller than
the Johnson boundΘJ . Especially, after enough number of
iterations, since it holds

ΘJ =
(√

v
(n)
2M−1 −

1
2

√
v
(n)
2(M−1)

)2

, (26)

ΘG = v
(n)
2M−1 −

√
v
(n)
2M−1v

(n)
2(M−1), (27)

in the mdLVs algorithm, we haveΘJ > ΘG.
Furthermore, the Gerschgorin-type bound may give a

non-positive value. Then, we devise computation of shift
as follows. If the Gerschgorin-type bound gives a positive
value, we compute the Kato-Temple bound and adopt the
square of larger bound between these two bounds as the shift.
If the Gerschgorin-type bound gives a non-positive value, we
compute the Laguerre shift or take shift zero according to the
condition described in the Section 4.3. If the Laguerre shift

Gerschgorin-type bound

zero shift ?

If

a
i,i

-(a
i,i-1

+a
i,i+1

)>0

()

Laguerre shift

Complex number?

Newton shift

Kato-Temple bound

If

Gerschgorin-type bound

> Kato-Temple bound

Yes

Yes

Yes

No

Kato-Temple

Gerschgorin

-type

Laguerre

Newton

0

Yes

No

No

No

MiMi ≤≤−
∀

)1(: κ

Fig. 1: A flowchart of an improvement of shift strategy.

numerically gives a complex number since

(
M

J
(−)
2

(J
(−)
1)2

− 1
)

is occasionallynegative, then we compute the generalized
Newton shift.

Figure 1 shows a flowchart of the improved shift strategy.
An implementation of the strategy is given in Algorithms 2
and 3.

5. Numerical experiments
To confirm the performance of the improved shift strategy,

the computational time and number of iterations for the
mdLVs algorithm in [2] with four shift strategies. The shifts
are as follows:

• SHIFT(J): Johnson bound
• SHIFT(G): Gerschgorin-type bound
• SHIFT(GK): SHIFT(G) and Kato-Temple bound
• SHIFT(GKL): SHIFT(GK), Laguerre and generalized

Newton shifts.

We use a computer with an Intel(R) Xeon(R)
X5570@2.93GHz CPU and32GB of memory. Fedora
13 is installed on this computer. The input matricesB are
bidiagonal and the diagonal and subdiagonal elements of
B are set randomly in an interval[0, 1]. The dimension is
30000, We setκ = 0.02 andδ(n) = 1, respectively.

Table 1 gives the average computational time and number
of iterations for100 matrices.

724 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Algorithm 2 Implementationof the recommended shift
strategy (first half)

1: T1 ←
√

v
(n)
2M−1 ∗ v

(n)
2(M−1)

2: S0 ← v
(n)
2M−1 − T1

3: if S0 ≤ 0 then
4: return 0
5: end if
6: T2 ← v

(n)
2(M−1)−1 + v

(n)
2(M−1)

7: T3 ←
√

v
(n)
2(M−1)−1 ∗ v

(n)
2(M−2)

8: S ← T2 − T3

9: S1 ← S − T1

10: if S1 ≤ 0 then
11: if M − 1 ≥ (1− κ)M then
12: return 0
13: else
14: goto Algo.3
15: end if
16: end if
17: for i = M − 2 to 2 by −1 do
18: T2 ← v

(n)
2i−1 + v

(n)
2i − T3

19: T3 ←
√

v
(n)
2i−1 ∗ v

(n)
2(i−1)

20: T2 ← T2 − T3

21: if T2 ≤ 0 then
22: if i ≥ (1− κ)M then
23: return 0
24: else
25: goto Algo.3
26: end if
27: end if
28: S ← min(S, T2)
29: end for
30: T2 ← v

(n)
1 + v

(n)
2 − T3

31: if T2 ≤ 0 then
32: goto Algo.3
33: end if
34: S ← min(S, T2)
35: T3 ← S − v

(n)
2M−1

36: S ← min(S, S0, S1)
37: if T3 > 0 then
38: S ← max(S, v

(n)
2M−1 ∗ (1.0− v

(n)
2(M−1)/T3))

39: end if
40: return S

Algorithm 3 Implementationof the recommended shift
strategy (latter half)

1: J [M] ← 1.0/v
(n)
2M−1

2: D[M] ← J [M]
3: for i = M − 1 to 1 by −1 do
4: J [i] ← 1.0/v

(n)
2i−1

5: D[i] ← J [i] ∗ (v(n)
2i ∗D[i + 1] + 1.0)

6: end for
7: R ← J [1]
8: W ← R ∗D[1]
9: S ← R

10: T ← W
11: for i = 2 to M do
12: E ← J [i] ∗ v

(n)
2(i−1)

13: H ← E ∗R
14: R ← H + J [i]
15: S ← S + R
16: W ← E ∗W + (R + H) ∗D[i]
17: T ← T + W
18: end for
19: W ← M : M is cast into double precision number
20: R ← W ∗ T/(S ∗ S)− 1.0
21: if R ≥ 0 then
22: W ← W/(S ∗ (1.0+

√
(W − 1.0) ∗R)) : compute

the Laguerre shiftΘL

23: else
24: W ←

√
1.0/T : computethe generalized Newton

shift (Θ(M)
2)2

25: end if
26: return W

Table1: Computation time and iteration number in each shift
computationtime[sec.] iteration number

SHIFT(J) 27.61 315021
SHIFT(G) 23.06 368773
SHIFT(GK) 23.09 362114
SHIFT(GKL) 20.78 206941

SHIFT(G) and SHIFT(GK) require more iterations than
SHIFT(J) does. This implies thatΘJ tends to be stronger
than ΘG and ΘK . Thus, the Gerschgorin-type bound itself
nor the combination of the Gerschgorin-type bound and
the Kato-Temple bound lead to a suitable shift. In spite
of much the number of iterations, the computational time
of SHIFT(G) and SHIFT(GK) are shorter than that of
SHIFT(J). This is because of the numbers of square-root
operations in SHIFT(G) and SHIFT(GK) are smaller than
that in SHIFT(J). A square-root operation requires relatively
large computational time.

On the other hand, SHIFT(GKL) gives better results in
both the computational time and the number of iterations
than SHIFT(J). In SHIFT(GKL), when the Gerschgorin-
type bound returns non-positive value, the Laguerre shift

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 725

is computedunder the condition shown in Figure 1. We
suppose such result attained from utilization of the Laguerre
shift. Therefore, we recommend SHIFT(GKL) as a shift
strategy for the mdLVs algorithm.

6. Conclusions
In this paper, we have improved the shift strategy for

the mdLVs algorithm with the Johnson bound. The im-
proved strategy utilizes the Gerschgorin-type bound, the
Kato-Temple bound, the Laguerre shift, and the generalized
Newton shift. This improvement takes advantage of less
times of square-root operations of the Gerschgorin-type
bound than the Johnson bound. There are possibilities that
the Gerschgorin-type bound gives a smaller value than the
Johnson bound or a non-positive value. Then, we consider
the Kato-Temple bound, the Laguerre shift, and the gen-
eralized Newton shift. To validate the performance of the
improved strategy, we explored the computational time and
the number of iterations. The result shows that the improved
strategy is efficient.

In future work, we plan to study the relative errors of the
computed singular values in the improved shift strategy.

Acknowledgment
This work is partially supported by JSPS Grant-in-Aid for
Scientific Research (A) Japan, No.20246027.

References
[1] S. Gerschgorin, “Über die Abgrenzung der Eigenwerteeiner Matrix,”

Izv. Akad.Nauk. USSR Otd. Fiz.-Mat. Nauk, Vol. 7, pp. 749–754, 1931.
[2] (2010) I-SVD library. [Online]. Available: http://www-is.amp.i.kyoto-

u.ac.jp/lab/isvd/download/
[3] M. Iwasaki and Y. Nakamura, “On the convergence of a solution of the

discrete Lotka-Volterra system,”Inverse Problems, Vol. 18, pp. 1569–
1578, 2002.

[4] M. Iwasaki and Y. Nakamura, “Accurate computation of singular values
in terms of shifted integrable schemes,”Japan Journal of Industrial and
Applied Mathematics, Vol. 23, pp. 239–259, 2006.

[5] F. Jiang, R. Kannon, M. L. Littman, and S. Vemphala, “Efficient
Singular Value Decomposition via Improved Document Sampling,”
Department of Computer Science, Duke University, Durham, NC, Tech.
Rep. CS-99-5, 1999.

[6] C. R. Johnson, “A Gersgorin-type lower bound for the smallest singular
value,” Lin. Alg. Appl., Vol. 112, pp. 1–7, 1989.

[7] T. Kato, “Upper and Lower Bounds of Eigenvalues,”Physical Review,
Vol. 77, pp. 413, 1949.

[8] K. Kimura, M. Takata, M. Iwasaki, and Y. Nakamura, “Application
of the Kato-Temple inequality for eigenvalues of symmetric matrices
to numerical algorithms with shift for singular values,” inProc.
ICKS2008, 2008, pp. 113–118.

[9] K. Kimura, T. Yamashita, and Y. Nakamura, “OnO(N) formula
for the diagonal elements of inverse powers of symmetric positive
definite tridiagonal matrices,” Department of Applied Mathematices
and Physics, Kyoto University, Kyoto, Kyoto, Tech. Rep. 2008-010,
2008.

[10] K. Kimura, T. Yamashita, and Y. Nakamura, “Conserved quantities
of the discrete finite Toda equation and lower bounds of the minimal
singular value of upper bidiagonal matrices,” Department of Applied
Mathematices and Physics, Kyoto University, Kyoto, Kyoto, Tech. Rep.
2011-003, 2011.

[11] U. von Matt, “The orthogonal qd-algorithm,”SIAM J. Sci. Comput.,
Vol. 18, pp. 1163–1186, 1997.

[12] B. N. Parlett and O. A. Marques, “An Implementation of the dqds
Algorithm (Positive Case),”Lin. Alg. Appl, Vol. 309, No. 1-3, pp. 217–
259, 2000.

[13] W. K. Pratt, Digital image processing, New York, USA: Wiley-
Interscience Publishing, 1978.

[14] M. Takata, K. Kimura, M. Iwasaki, and Y. Nakamura, “An Evaluation
of Singular Value Computation by the Discrete Lotka-Volterra System,”
in Proc. PDPTA2005, 2005, Vol. II, pp. 410–416.

[15] M. Takata, K. Kimura, M. Iwasaki, and Y. Nakamura, “Performance
of a New Singular Value Decomposition Scheme for Large Scale
matrices,” inProc. PDCN2006, 2006, pp. 304–309.

[16] M. Takata, T. Konda, K. Kimura, and Y. Nakamura, “Verification
of dLVv Transformation for Singular Vector Computation with High
Accuracy,” in Proc. PDPTA2006, 2006, Vol. II, pp. 881–887.

726 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Evaluation of the SVM based Multi-Fonts Kanji
Character Recognition Method for Early-Modern

Japanese Printed Books
Manami Fukuo1, Yurie Enomoto1†, Naoko Yoshii1,

Masami Takata1, Tsukasa Kimesawa2, and Kazuki Joe 1,
1 Dept. of Advanced Information & Computer Sciences, Nara Women’s University, Nara, Japan

2 Digital Library Division, National Diet Library, Kyoto, Japan

Abstract - The national diet library in Japan provides a web
based digital archive for early-modern printed books by
image. To make better use of the digital archive, the book
images should be converted to text data. In this paper, we
evaluate the SVM based multi-fonts Kanji character
recognition method for early-modern Japanese printed books.
Using several sets of Kanji characters clipped from different
publishers’ books, we obtain the recognition rate of more than
92% for 256 kinds of Kanji characters. It proves our
recognition method, which uses the PDC (Peripheral
Direction Contributivity) feature of given Kanji character
images for learning and recognizing with an SVM, is effective
for the recognition of multi-fonts Kanji character for early-
modern Japanese printed books.

Keywords: character recognition; SVM; digital archiving

1 Introduction
 The national diet library (NDL) [1] in Japan keeps about
390,000 books dating from the Meiji and Taisyo era (1868-
1926). The books cover a broad range including philosophies,
literatures, histories, technologies, natural sciences, etc. Most
of them are out of print and valuable materials in scholarly.

Generally, books in libraries read in hand have too many risks
of aging or wearing, and loss by man-made source to open to
the public. To solve the problem, the NDL started a project
called “The Digital Library from the Meiji Era” [2,3]. In the
project, early-modern printed books are recorded on
microfiches page by page. The microfiches are converted into
digital images and opened at the project Web site. Converting
the books into digital images enabled the contents of the
valuable books to be opened to the public while the original
books are preserved in good condition. The NDL provides
about 148,000 volumes with 101,000 titles in the digital
library from their collection. Users can see the digital images
of books whenever or wherever with the Internet connection.

The information including titles and author names of the
books in the digital library is given as text data while main
body is image data. There are no functions for generating text
data from image data. Thus full-text search is not supported
yet. To make early-modern printed and valuable books data
more accessible, their main body should be given as text data,
too. As described above, the number of the target books is so
large that auto conversion is required.

If the conversion targets were general text images, they would
have been converted into text data easily with some software
of optical character recognition (OCR). However, most of
early-modern printed books contain old Japanese characters
that are not used now. Moreover, the fonts used in the early-
modern printed books vary by publisher and year of
publication. Existing OCR software cannot recognize right
characters under these conditions.

To solve these problems, we proposed a multi-fonts Japanese
character recognition method for early-modern printed books
[4]. However, we selected just ten kinds of (Japanese) Kanji
characters, which are commonly and frequently used, for the
recognition experiment. Thus, the effectivity of the proposed
method was not clearly shown. In this paper, we extend the
kinds of Kanji characters for several recognition experiments
to validate our method. To perform several recognition
experiments, we need enormous character images with various
font sets from early-modern books by various publishers.
Therefore we need to perform automatic character clipping
from images. Then, we extract the features of character
images using a feature extraction method for handwritten
Kanji character recognition because of the wide variety of
font-sets and hard noises. Finally, the Support Vector
Machine (SVM), which is one of promising recognition
methods, is used for the recognition of the feature vectors.

The rest of this paper is organized as follows. In section II, we
present the overview of our multi-fonts Kanji character
recognition method. The evaluation method to validate the
effectivity of our method is explained in section III. In section

† Currently works for Fujitsu Limited.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 727

IV, we describe evaluation experiments and discuss the
experimental results.

2 The Recognition Method
 In this section, we give the overview of our multi-fonts

Kanji character recognition method presented in [4].
For the character recognition of early-modern printed books,
we think we should not use the typical OCR processes
because each publisher might use different font sets in those
days. The flow of our recognition method is shown below.

a) An image containing a character is given as training data.

b) Several pre-processes such as binarization, normalization
and noise reduction are applied to the given image.

c) The PDC (Peripheral Direction Contributivity) feature
[5] is extracted from the pre-processed image, and each
feature vector for the given image is labeled with the
category according to the kind of the character included
in the given image.

d) A dictionary is generated by an SVM with the training
data extracted in c). The dictionary is used for the
recognition of test data.

Giving character images at a), several pre-processes are
applied to each image. Any pixel in the images must be black
or white when PDC features are extracted from the images.
Thus binarization is applied to the images. In normalization,
margins are removed from the images so that each character
size is equivalent to be scaled. Noise reduction should be also
applied since printing and archiving quality of early-modern
printed books is mostly poor. Without noise reduction, noises
of images would be recognized as character strokes to be
extracted as unsuitable PDC features.

PDC feature vectors are calculated with category labels at c),
and used for the learning phase of SVM at d). A training data
for SVM learning is a set of PDC feature vectors and its label
while a test data for SVM classification is a set of PDC
feature vectors without label. All character images are
converted to training or test data by processes a) to c). Half of
the whole data are randomly selected from each category as
training data, and the others are used for test data. An SVM
learns separated hyper-planes in the PDC feature vector space
with the training data. The trained SVM can classify test data
according to the separated hyper-planes.

In our previous research [4], the SVM recognition
experiments were performed for ten kinds of Kanji characters.
Furthermore we compared the experimental result of SVM
with a neural network (NN). The experimental result of SVM
was the recognition rate of 97.8% while the NN was 77.6%.
We confirmed that our SVM based method was more suitable
for learning and classification of PDC features than the NN

based method. However, there are 6,349 kinds of Kanji
characters, which Japanese Standards Association selects as
the Japanese character code [6]. In addition, the structure of
kanji characters is hierarchical: There are a lot of similar
Kanji structures such as radical indices.

In this paper, we extend the kinds of Kanji character up to 256
kinds for several recognition experiments and validate the
effectivity of our method. In [4], all character images for the
recognition experiment were clipped from early-modern
books by hand. Because of the large number of the kinds of
Kanji characters for this experiment, we also implement
automatic Kanji character clipping for early-modern books.

3 Automatic Kanji Character Clipping
The flow of automatic Kanji character clipping to extract

each character image for the recognition experiments is shown
below.

1) A page of the book images is given as an object image
and divided into right and left parts.

2) Several pre-processes such as binarization, noise
reduction and affine transform are applied to each
divided half part of the object.

3) Layout analysis is applied to each part.

4) Character strokes are clipped within the layout analysis
results.

5) Labeling is performed for each clipped character stroke
so that each label is mapped to a character image.

Several pre-processes are executed on each part image.
Binalization is applied to the image since the distribution of
the vertically projected pixel values is used for extracting
character domains. Noises of the image might be recognized
as a false character domain. Then the noise reduction by a
median filter is performed. Furthermore, distortion correction
by an affine transformation is also applied since the distortion
by capturing has a great influence to layout analysis.
Therefore, layout analysis would be performed more correctly
with noise reduction and distortion correction. The threshold
is calculated with the distribution of the vertically projected
pixel values, and layout analysis is executed. The auto-
correlation function by Sondhi [7] is applied to the
distribution of the vertically projected pixel values to
calculate stroke spacing. Finally labeling is performed to each
character stroke, which is clipped based on the stroke spacing.
Each labeled part of connected black dots is recognized as a
character domain to clip a character from the original book
images.

In this paper, we use the character images clipped by the
automatic character clipping. Figure 1 shows some examples

728 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

of clipped character images. Each character image is clipped
from nine early-modern books with various publication ages
and publishers so that we get character images with various
font sets. It means we get nine kinds of PDC feature vector
sets for each Kanji character. In this paper, a PDC feature
vectors is calculated with nine character images in Fig. 1, for
example. Furthermore, we calculate the averages of each
dimension to obtain the standard deviation of the PDC feature
vector. As the result, the standard deviation is 11.53, which
seems to be an enough small value. That is, the fluctuation of
characters are enough small. Therefore, we use nine character
images clipped from different books for each character. Four
character images for each character are randomly selected as
training samples, and the others are used for test samples.

book2

book9book8

book5 book6

book1

book7

book3

book4

Figure 1 Clipped kanji character images from different
books

4 Experiments
4.1 Experiment Method

We explain the data used in this experiment. To confirm
the effectivity of our method, character images with various
font sets should be collected from early-modern books of
various ages. In the early-modern ages, different publishers
used different font sets in general. Even the same publisher
might use different font sets in different ages. Therefore, we
need various character images for each kind of characters
clipped from as many different font sets as possible. The
question is how to get the sufficient number of samples for
each target character. We use the Aozora Bunko [8] to check
which books contain a target character.

The Aozora Bunko is a Web based online collection of the
public domain literary works in Japanese. Users can download
the works as text data. The number of works offered by the
Aozora Bunko is about 7,200. All of them are also included in
NDL’s “the digital library from the Meiji era”. The works in
the Aozora Bunko can be used as a subset of the works in the
digital library from the Meiji era. By using text data of the
works in the Aozora Bunko, the character occurrence
frequency can be calculated easily. The data set for the
experiment is collected from text data in the Aozora Bunko,
and image data corresponding to the data set are obtained
from the digital library from the Meiji era as shown below.

Table 1 The list of nine early-modern works

Book
Number

Title Author Publisher Publication
Year

1 L'Incident de Sakai Mori Ougai Suzuki Miekichi 1914

2 Like that Mori Ougai Momiyama bookstores 1914

3 The Boat on the
Takase River

Mori Ougai Shunyodo Publishing
Co., Ltd.

1918

4 I Am a Cat Natsume
Soseki

OKURA Publishing Co.,
Ltd.

1905-1907

5 London Tower Natsume
Soseki

Senshokan 1915

6 Tobacco and the Devil Akutagawa
Ryunosuke

SHINCHOSHA
Publishing Co., Ltd.

1922

7 Strange Reunion Akutagawa
Ryunosuke

KINSEIDO Publishing
Co., Ltd.

1922

8 Returning a Favor Akutagawa
Ryunosuke

Jiritsusha 1923

9 One Day in the Life of
Oishi Kuranosuke

Akutagawa
Ryunosuke

Bungei shunjyu Ltd. 1926

Table 1 shows the list of nine early-modern works used for
this experiment. Firstly, we examine all Kanji characters used
in the nine early-modern works with the text data from the
Aozora Bunko to find the Kanji characters that are used in the
nine works in common. We find there are 262 kinds of
commonly used Kanji characters. We randomly select several
sets from 262 kinds of Kanji characters, and clip the Kanji
character images from the nine book images of the digital
library. In this experiment, we use the Kanji character sets of
16, 32, 64, 128, and 256 kinds to examine the recognition rate
for each set.

The original book images are monochrome with 256 gray
scales. Several pre-processes are applied to each Kanji
character image. The image data are binarized in the first pre-
process for PDC feature extraction. The second pre-process is
noise reduction by a median filter. The median filter with a 3
by 3 mask is applied to the images. The normalization of size
and position is performed by trimming the margins to clip the
Kanji character image area. To fit the Kanji character images
precisely into the square of 128 by 128 pixels, centering and
affine transformation are applied. By these pre-processes, all
Kanji character image data are converted to binary images
with 128 by 128 pixels.

PDC feature vectors are generated from the pre-processed
images and used for the learning phase of SVM. Five samples
are randomly selected for each Kanji character and used as
training samples. The other five samples are used for the
recognition phase as test samples. We adopt an SVM as a
recognition method.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 729

4.2 Results
SVMs require careful parameter choices for their

learning processes in general. In this experiment, we
determined the parameters by grid-search and 5-fold cross-
validation for the SVM. We use LIBSVM [9] for the
experiments in this paper. Radial Basis Function (RBF) is
used as the kernel function of the SVM. The numbers of Kanji
characters sets are 16, 32, 64, 128, and 256, and each range of
two RBF parameters, γ and C, is determined by grid-search. C
is a penalty parameter for the SVM. Each element of PDC
feature vectors is rescaled to the range of [-1, 1]. Each
parameter for five experiments is shown as follows. In the
cases of 16, 32, 64, 128, and 256, the parameters are set to (γ,
C) = (2-13, 25), (2-9, 23), (2-9, 23), (2-11, 25), and (2-13, 27),
respectively. Note that these parameters are chosen just by a
simple grid-search. Since the experiments in this paper are
preliminary, we do not optimize the parameters.

Table 2 shows the experimental results. As is easily expected,
the recognition rate becomes low as the number of Kanji
characters increases. However, the recognition rate of each
case always keeps more than 92%. Several examples of
unrecognized samples are shown in Tab. 3, Tab. 4 and Tab. 5.

Table 2 The number of errors and the recognition rates

92.67675949/1024256

93.16435477/512128

96.8758248/25664

96.8754124/12832

100064/6416

Recognition
rate[%]

ErrorsCorrect/Test samplesThe number of
Kanji characters

Table 3 Miss-recognized characters with the same radical
indices

Case1

Case2

Case4

Case3

Case7

Case6

Case5

Case8

Case10

Case9

Pre-processed
image data

Correct
character

Recognized
character

違

過

後

感
聞

問

側

遠

通

沈

微

思
間

間

何
連 遠

聞

渡

4.3 Discussion
We analyzed the recognition results in detail to find

three cases for miss-recognized Kanji characters. The three
cases are listed below.

i) The miss-recognized Kanji characters have the same
radical indices.

ii) The miss-recognized Kanji characters do not have the
same radical indices but similar structures.

iii) The miss-recognized Kanji characters do not have any
similar structures.

Table 4 Miss-recognized characters with similar structures

置

右

眞

床

時

者

国

左

兵

左

成

幾

着

五

自

場 現

申 出

持

快 色

同 問

白 自

Pre-processed
image data

Correct
character

Recognized
character

Case11
Case12
Case13
Case14
Case15
Case16
Case17
Case18
Case19
Case20
Case21
Case22
Case23
Case24

Table 5 Other miss-recognized characters

Case25

Case26

Case28

Case27

Case31

Case30

Case29

Case32

Case34

Case33

Pre-processed
image data

Correct
character

Recognized
character

寝

抵
微
深

張

深

草

着
成

空

紙

無

深

結

得
無

730 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Table 3 shows some examples of miss-recognized Kanji
characters with the same radical indices. Table 4 shows some
examples of miss-recognized Kanji characters with similar
structures. Recognition errors of cases 1-4 shown in Tab. 3
and cases 11-17 shown in Tab. 4 are caused by lack of
character strokes removed at the pre-processes phase. Similar
features of Kanji characters may be emphasized by lack of
character strokes. In cases 1-4, similar features are radical
indices. In cases 11-17, similar features are horizontal and
vertical strokes and slant of character strokes. These false
features may lead the SVM to miss-recognition.

In cases 5-8 and cases 18-20, the pre-processes seem to
eliminate complex structures of the character strokes.
Especially, cases 6, 8, 19 and 20 are much smeared images.
The recognition error of case 9 is caused by noises in the
image that are not removed at the pre-processes. In case 10
and cases 21-24, the possibility that the recognition errors are
caused by noises is low since the pre-processed images have
relatively few noises. In each occasion, correct cases and
unrecognized cases have common features: Horizontal and
vertical character strokes and their slants. These common
features may lead the SVM to false recognition.

Table 5 shows some examples of miss-recognition among the
Kanji characters that do not have any similar structures. The
reason of miss-recognition in cases 25-28 is the same to cases
11-17. The reason of miss-recognition in cases 29-34 is the
same to cases 5-8 and cases 18-20. Thus, noises prevent the
original images from correctly clipping margins. Or they are
recognized as some parts of character strokes. Therefore, the
calculation of PDC feature vectors is greatly affected by
noises in the original Kanji character images.

Table 6 Miss-recognitions by title

11531One Day in the Life of
Oishi Kuranosuke

9

14720Returning a Favor8

10500Strange Reunion7

12410Tobacco and the Devil6

10612London Tower5

0000I Am a Cat4

2100The Boat on the
Takase River

3

12711Like that2

1000L'Incident de Sakai1

256 kinds128 kinds64 kinds32 kindsTitleBook
Number

Table 6 reflects our discussion. It shows the number of miss-
recognitions by title. Titles 2, 5, 7, 8 and 9 have a lot of miss-
recognitions. Figure 2 shows examples of Kanji character
images clipped from titles 2, 5, 7, 8 and 9. The Kanji
character images in Fig. 2 are broken because of poor printing

and archiving quality. Furthermore, Tab. 7 shows the relation
between the number of Kanji characters and the number of
miss-recognitions for cases i), ii) and iii). The more the
number of Kanji characters for experiments is increased, the
more the ratio of cases i) and ii) to three cases. Therefore, it is
observed that miss-recognitions caused by similar structures
increase as the number of target Kanji characters increases in
the experiments.

 Therefore, the reasons of miss-recognition are considered as
follows. Firstly, noises sometimes give bad effects to PDC
feature extraction. The second reason is the similarity of Kanji
characters: radical indices, horizontal and vertical character
strokes, and their slants.

Table 7 Miss-recognitions by case

The number of
Kanji characters

Case (i) Case (ii) Case (iii)

32 0 2 2

64 0 3 5

128 5 15 12

256 13 27 28

book9

book2

book8

book7book5

Figure 2 Exsamples of miss-recognized clipped Kanji
characters

5 Conclusions
In this paper, we evaluated the SVM based multi-fonts

Kanji character recognition method for early-modern
Japanese printed books. To evaluate our recognition method,
we used 262 kinds of Kanji characters, which are commonly
used in nine early-modern titles from different publishers
found in “The Digital Library from the Meiji Era”. We
applied automatic character clipping to the nine titles to clip
Kanji character images. To extract features of Kanji
characters, the PDC feature was calculated from the pre-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 731

processes character images. For effective experiments, we
generated five sets (16, 32, 64, 128, and 256) of Kanji
characters. We selected each set from the 262 kinds of Kanji
characters at random, and clip Kanji character images from
nine different images of NDL’s digital library. To recognize
Kanji character images based on the extracted PDC features,
their feature vectors were given to an SVM for learning.
When the targets were 16, 32, 64, 128, and 256 kinds of Kanji
characters, the recognition rates were 100%, 96.875%,
96.825%, 93.164%, and 92.676%, respectively. Each
recognition rate for training samples was 100%.

We showed that our SVM based Kanji character recognition
method could recognize printed Kanji characters clipped from
early-modern Japanese printed books. However, two reasons
of miss-recognition are considered. Firstly, miss-recognitions
are caused by noises. Kanji character images clipped from
early-modern printed books are usually broken or smeared
because most of the early-modern printed books have been ill-
preserved. The second reason is the similarity of Kanji
characters: radical indices, horizontal and vertical character
strokes, and their slants.

We think it will require some kind of hierarchical structures
for learning data. In that case, the question is how 6,400
Japanese Kanji characters are divided in to a hierarchical
structure, which is still an open problem. Another point of
improvement is the pre-processes. We should improve the
noise reduction to apply to heavy noises with poor printing
quality on debased papers.

Acknowledgment
This work is partially supported by Grant-in-Aid for scientific
research from the Ministry of Education, Culture, Sports,
Science and Technology of Japan (MEXT).

References
[1] National Diet Library: www.ndl.go.jp/en/ index.html

[2] Digital Library from the Meiji Era, kindai.ndl.go.jp/ (in
Japanese)

[3] Pamphlet of Digital Library from the Meiji Era,
kindai.ndl.go.jp/information/kindai(eng).pdf

[4] C. Ishikawa, N. Ashida, Y. Enomoto, M. Takata, T.
Kimesawa, and K. Joe, “Recognition of Multi-Fonts
Character in Early-Modern Printed Books,” Int’l Conf.
on Parallel and Distributed Processing Techniques and
Applications (PDPTA’09), 2009, pp.728-734.

[5] N. Hagita, S. Naito and I. Masuda. “Handprinted
Chinese Characters Recognition by Peripheral Direction
Contributivity Feature”, IEICE, Vol.J66-D, 10, pp.1185-
1192, 1983. (in Japanese)

[6] Japanese Standards Association:
www.jsa.or.jp/default_english. asp

[7] Man Mohan Sondhi: “New Methods of Pitch
Extraction”, IEEE Transactions on Audio and
Electroacoustics, Vol.AU-16, No.2, June 1968, pp.262-
266.

[8] Aozora Bunko www.aozora.gr.jp/ (in Japanese)

[9] V. Vapnik. “The Nature of Statistical Learning Theory”.
Springer-Verlag, 1995.

732 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Optimization of the Particle-based Volume Rendering for
GPUs with Hiding Data Transfer Latency

Kyoko Nakao, Erika Matsui1, Naoko Yoshii, Masami Takata, Kazuki Joe

Graduate School of Humanities and Sciences,
Nara Women’s University, Nara, 630-8506, JAPAN

1 Currently working for Hitachi, Ltd.

Abstract – In this paper, we present the optimization of the
particle-based volume rendering for GPU platforms. In
general, data transfer between CPU and GPU accompanies
long latency. Using page lock memory of the CUDA runtime
API, data area is selected so that the data transfer between
CPU and GPU becomes faster to reduce the execution time.
In the meantime, Using streams, the overlap of data transfer
and the execution of kernels is achieved. As the result of
experiment with the voxel data of a typhoon (1,188 × 979 ×
64, 140MB), data transfer time and kernel execution time are
improved and bring out about 30% performance of the GPU.

Keywords: GPGPU, volume rendering, optimization, HPC

1 Introduction
3D visualization technique is widely used for easy

understanding of simulation and/or measurement results in
the areas of science and technology, and for creating 2D
images from CT and/or MRI data in medical fields.
Simulation technologies are necessary to solve highly
complicated problems. Recently it tends to require higher
precision and resolution as the performance of computers
increases. As the result, the volume data resulted from the
simulation would enlarge and get complex. As a visualization
method for such volume data, volume rendering techniques
[1] are widely known to be effective. Volume rendering is
used for visualizing not only the surfaces of 3D objects but
also the inner information when 3D images are generated.
Since it requires extremely data and computation intensive
tasks, the computation time for visualization of huge data is
enormously long. On the other hand, real time 3D
visualization environments are preferable for efficient
research activities where researchers explore new knowledge
from data analysis with volume rendering.

In this paper, we present an optimization method for the
particle-based volume rendering [2] using GPGPU. There are
two features in the particle-based volume rendering. First, it
does not need depth sorting of given sampling points by
deleting implicit points with a z-buffer algorithm when

obscure and luminescent particles are projected to a screen.
Therefore, it is suitable for the visualization of large-scale 3D
data. The other feature is that the particle based model can
display very fine objects such as fogs, smoke and clouds.
GPUs are cost effective as well as a highly computational
resource, and easy for any users to install. In this paper, we
present an efficient application of the particle-based volume
rendering to a GPU. As a development environment, we use
CUDA [3], which is an integrated development environment
of C language for GPUs by NVIDA.

There are several papers that present improved
implementations of the particle-based volume rendering for
GPUs and/or CUDA. In [4] an acceleration method of the
particle-based volume rendering for a GPU is reported, and
the authors improved the method to a CUDA environment [5].
In [4,5], the authors present how fast the improved particle-
based volume rendering is executed on a GPU and/or in a
CUDA environment. So they just present “frame per second”.
We are interested in the HPC aspect of volume rendering
methods, especially the particle-based volume rendering. So
we separate the particle-based volume rendering into HPC
parts and drawing parts to present the improved performance
in FLOPS.

The paper is constructed as follows. In section 2, we
introduce the particle-based volume rendering. In section 3,
we explain the optimization method in detail. In section 4, we
validate the optimization method by experiments.

2 Particle-based Volume Rendering
In this section, we briefly introduce the particle-based

volume rendering. Volume rendering is a technique to
visualize data in 3D. It directly renders the data from their
volume information. To generate 3D images, it is used for
visualizing not only the surfaces of 3D objects but also the
inner information. When we display surfaces of a 3D object
by volume rendering, the volume information remains as well
as the surface information. It has the advantage of applying a
variety of visualization methods at any time because it always
keeps the volume information. However, this process requires
a huge amount of memory and computation resource because

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 733

Fig. 1 The particle-based volume rendering and a volume rendeirng

Step (7) Sub-pixel processing of the large amount of volume information to be calculated.
To reduce the amount of memory and computation, particle
based volume rendering has been proposed [2].

First, voxel data are loaded in Step (1). The voxel data are
converted into available scalar values because they are stored
in a binary format. In step (2), the data are sent to a transfer
function so that the opacity of each voxel is calculated. In
step (3), the particle density for each voxel is calculated by
the opacity. In step (4), the number of particles to be
generated for a volume is determined from the particle
density. In step (5), the generated particles are located in a
space for the volume by random, and their colors are
determined in reference to the voxel data. In step (6), the
generated particles get perspective projection and the screen
color is determined. In step (7), the colors of the pixels on the
screen image are averaged and alpha blended so that finer
drawing is obtained.

Existing volume rendering algorithms capture sampling
points along to or from the view direction so that the
integration of view direction calculations are reused.
Therefore, ordering sampling points is required. The ordering
calculation requires large computation resource. On the other
hand, the particle-based volume rendering generates particles
based on particle density obtained from given volume data. In
other words, the particle-based volume rendering generates
luminescent particles with opacity property inside volume
data to express the volume data as a discrete model using a
set of luminescent particles with opacity. The model does not
require sorting sample points toward the view direction, so
the calculations can be performed in any order. Therefore, it
is one of the most effective visualization methods for large
volume data. During the particle-based volume rendering, the
order to project particles to a screen is free, and the
transparency of particles is very simple because hidden point
removal operations are executable just by the comparison of
the depth of each particle. Also, when there is no data in the
target space, no calculation is performed because the view
directions from particles are toward the screen. Thus, it is
suitable for sparse volume data. Figure 1 shows the
calculation difference between an existing volume rendering
and the particle-based volume rendering. The particle-based
volume rendering algorithm is given below.

3 Optimization
 In this section, we propose an optimization method for
the particle-based volume rendering using GPGPU. In
subsection 3.1, we explain the target platform. In subsection
3.2, we explain data transfer between the CPU and the GPU
of the target platform. In subsection 3.3, we propose an
optimization method for the particle-based volume rendering.

3.1 Target platform

Table 1 shows the overall performances of Tesla C1060
and GeForce8400GS that are included in the target platform.
Tesla C1060 is the first chip for GPGPU provided by
NVIDIA. The performance of Tesla’s floating-point
operations is extremely high compared with existing GPUs,
and used mainly for large-scale simulation and of high quality
image generation. It is intended for the high performance
computing market. However, we cannot use C1060 to render
with OpenGL because it is not equipped with video output.
As we explain above, the purpose of this paper is to

Step (1) Load voxel data
Step (2) Calculate the opacity by a transfer function
Step (3) Calculate the particle density by the opacity
Step (4) Calculate the number of particles generated from the

particle density
Step (5) Calculate colors and positions of the generated

particles
Step (6) Project them on a screen

734 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

demonstrate the performance of the particle-based volume
rendering with GPGPU. So we use GeForce8400GS to render
with OpenGL. GeForce8400GS is a low-end model of
GeForce 8 series with a memory system compatible to DDR2.

GPGPU. Figure 2 shows the optimized procedure. Since
the voxel data used in the experiments (section 4) is stored in
a three dimension array (1,188 by 979 by 64), we regard
blocks as two dimension data and threads as vector data.

 The optimized procedure is enumerated below.
 (1) Read voxel data

Tab. 1 Specification of C1060 and 8400GS (2) Send voxel data to Tesla C1060
 (3) Calculate the opacity and the density of particles

(4) Calculate the number of generated particles Tesla
C1060

GeForce
8400GS

Peak Performance (Gflops) 933 67
of SPs 240 16

Clock (MHz) 1300 900
Memory Bandwidth (GB/sec) 102 6.4

Memory Size (MB) 4096 512
Memory Clock (MHz) 1600 800

(5) Send the number of generated particles to the host
(6) Select the storage location for generated particles
(7) Send the storage location for generated particles to Tesla

C1060
(8) Calculate the color, the location, and the gradient of

particles
(9) Send the results to the host
(10) Send the particle data to GeForce 8400GS
(11) Perspective projection of the particle data

3.2 Data transfer between CPU and GPU (12) Display the calculation results to a screen
In (1), a voxel data set is given to the host PC and the

voxcel data is sent from the host PC to Tesla C1060 in (2). In
(3), the opacity and the density of particles are calculated.
These operations are performed in parallel for each voxel data
as shown in Fig. 3. The number of generated particles is
calculated in (4), and positions, colors and gradients of
generated particles are calculated in (8), as shown in Fig. 4, in
parallel for each sub-voxel data. In (5), the number of the
generated particles is send back to the host. In (6), the
locations to store the generated particles are calculated. This
calculation has to be performed in the host because it requires
data exchange between blocks in the GPU. The locations to
store the generated particles are sent to Tesla C1060 in (7).
Since Tesla C1060 does not have rendering operations, the
particle data is sent to GeForce 8400GS via the host in (9) and
(10). In (11) and (12), the particle data gets perspective

The data transfer latency between the host PC and GPUs
via PCI-e is considerable. To reduce the latency, we use page-
locked memory provided by CUDA runtime APIs to allocate
memory blocks for fast data transfer. A CUDA-enabled GPU
can perform the execution of a CUDA kernel function and the
communication between the GPU and the host PC
simultaneously. The condition for the simultaneous execution
is that there is no data dependency between the kernel
function and the data transfer. To keep the condition, we use
streams to manage it by stream number. A series of processes
given the same stream number is considered to have data
dependency. In addition, a stream is available only for the
data in page-locked memory.
3.3 Optimized procedure

For the algorithm of the particle-based volume rendering
presented in subsection 2.1, we apply some optimizations for

Fig. 2 Optimized procedure

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 735

projection to display on a screen using OpenGL functions.
In (2), (5), (7), (9), and (10), data transfers between

GPUs and the host are required. To reduce the communication
latency, we use the page-locked memory for particle data,
storing locations of generated particles, particle colors,
particle positions, and an array for gradient values. In addition,
multiple streams are used for the data transfers: (2) and (3) are
operated with stream 1, and (7), (8), and (9) are with stream 2.
Memory references in CUDA make use of grid blocks. Using
the grid blocks, block IDs and thread IDs are obtained, and
the IDs are used for memory reference to perform parallel
processing. Equation (1) is used for calculating the position of
the volume data to be accessed.

index = (gridDim.x*blockDim.x*blockI dx.y) + (blockDim.x *

blockIdx.x)+ threadIdx.x (1)

Fig. 3 Parallel calculation by voxel

Fig. 4 Parallel calculation by sub-voxel

4 Experiments
To validate the performance of our optimization method

for the particle-based volume rendering, we performed some
experiments. The experiment environment is as follows. The
host PC consists of Intel (R) Core (TM) i5 760@2.80GHz
and 4GB Memory with CUDA2.3. The GPUs are GeForce
8400GS and Tesla C1060. We use a voxel data set of
typhoon density of which size is 1,188 by 979 by 64
(74,435,328) for the 140MB.

For Tesla C1060, we perform experiments to validate
the optimization effect for the calculations of the number of
the generated particles and particle density, opacity, position,
color and gradient of the generated particles. We also perform
the same experiments by the host for the comparison purpose.
The parameters for the particle-based volume rendering are

TF(S) = S/19840, α = TF, where TF stands for Transfer
Function and S is a scalar value. In subsection 4.1, we
compare the execution times of Tesla C1060 with and
without streams. In subsection 4.2, we compare the
performance difference between the host and Tesla C1060.

4.1 Comparison of executions with and
without streams

In this subsection, we investigate the effects of stream.
As described in subsection 3.3, we use two streams. Stream 1
includes the density calculations for particles as kernel and
the voxel exchanges as data transfer. Stream 2 includes the
the position, color and gradient calculations for particles as
kernel, the location to be stored, color, position and gradient
exchanges as data transfer.

without
stream

with
stream

kernel (particle density) 0.066 0.025
kernel (position, color, gradient) 0.013 0.013
data transfer (voxel data) 24.646 0.044
data transfer (location of particles) 48.450 0.005
data transfer (position, color, gradient) 96.741 0.008

Tab. 2 Execution time (msec) with/without streams

Table 2 is the execution times of each kernel and data
transfer with and without streams. As for the kernel execution
times, the calculation of particle density with stream 1 is
faster than without stream. This is because there are overlays
between calculation and data transfer in stream 1 (kernel
execution for particle density). On the other hand, the kernel
with stream 2 (position, color and gradient) does not get any
performance benefit. This means that the kernel with stream
2 does not contain any data transfer.

As for the data transfer executions, the execution times
of voxel data, locations to be stored for particles, and
position/color/gradient of particles with streams are faster
than without streams 560, 9,690, and 12,729 times,
respectively. The reason of the performance gain is
considerable overlays between calculation and data transfer
as well as low-latency of page-locked memory. Thus, the
communication time is hidden by the use of stream and page-
lock memory.

4.2 Comparison of execution times of Host and
C1060

In this subsection, we compare the computation times of
particle density, the number of generated particle, and their
positions/color/gradient between the host (a 2.8GHz CPU)

736 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

5 Conclusions and Tesla C1060. The computations are kernels with stream 1
and stream 2 described in subsection 3.3. Table 3 shows the
execution time of each kernel. In this paper, we took note of the particle-based volume

rendering suitable for visualization of very large volume data
to speed up its main part using GPGPU. As optimization
methods, we calculated the opacity and the density of each
particle in parallel by voxel, and computed the number of
generated particles, the position, the color and the gradient of
the generated particle in parallel by volume. Since the data
transfer latency between the host and Tesla C1060 is
considerably long, we used page-locked memory of CUDA
runtime API to allocate the array data for generated particles,
their storeing positions, and their color/position/gradient so
that the data transfers and the kernels were executed with two
streams simultaneously. A stream contains the kernel (particle
density) and the data transfer (voxel data) while the other
stream contains the kernel (position, color, gradient) and the
data transfer (storing location, position, color, gradient). As
for the data transfer, the transfer times of voxel data, storing
locations, and position/color/gradient of particles with
streams are faster than without streams 560, 9,690, and
12,729 times, respectively. The calculation times of Tesla
C1060 for particle density, the number of generated particle,
and the position/color/gradient of particles is 215, 286, and
364 times faster than the 2.8GHz CPU, respectively.

Tab. 3 Performance comparison (msec)

Host C1060
particle density 5.396 0.025

of generated particles 4.292 0.015
position, color, gradient 4.744 0.013

We find that Tesla C1060 is 215, 286, and 364 times
faster than the 2.8GHz CPU for the calculation of particle
density, the number of generated particle, and the
position/color/gradient of particles, respectively. The
performance gain comes from parallel executions of Tesla
C1060 kernels and hiding the communication latency by
overlaying data transfer and kernel executions as described in
subsection 4.1.

of
operations

performance
(Gflops)

peak
 ratio

particle density 3,126,283,776 125.05 0.13
of generated particles 2,486,617,812 165.77 0.18
position, color, gradient 3,903,282,340 300.25 0.32

In the experiments, we found that a kernel had achieved
300GFLOPS performance, which is almost 1/3 of Tesla
C1060’s theoretical performance. So far, there are several
reports about the performance of the particle-based volume
rendering using GPU, but most of them are interested in the
drawing performance. In this paper, we showed that the
optimized implementation of the particle-based volume
rendering achieved 1/3 performance of Tesla C1060’s peak.
This is meaningful since it is reported from the HPC site
using GPGPU.

Tab. 4 Performance of C1060 kernels

Table 4 shows the number of operations, the
performance of each C1060 kernel in Giga FLOPS and their
peak performance ratios. We observe that the kernel for
calculating (position, color, gradient) has achieved
300GFLOPS, which is almost 1/3 of Tesla C1060’s peak
performance. Even the worst performance of the kernel for
(particle density) is 125GFKOPS, which is considered as
highly optimization.

We are working for design a new architecture with high-
end GPGPU boards and several normal GPU for remote sites.
The results of this paper (Tesla C1060 as a high-end GPGPU
board and GeForce 8400GS for remote) are to be used for the
new architecture design, and it is our future work.

In this experiment, we confirmed that our optimization
of the particle-based volume rendering for Tesla C1060
recorded enough computing performance as GPGPU.
However, we have not implemented the effective use of
shared memory of Tesla C1060 for our method. We expect
that we can improve the lower performance kernels by using
the shared memory.

Acknowledgement
We would like to thank Prof. N. Sakamoto and Prof. K.
Koyamada of Kyoto University for their helpful adivices.

References

 [1] R. A. Drebin, L. Carpenter, and P. Hanrahan : Volume
rendering. In Computer Graphics (Proceedings of
SIGGRAPH '88), Volume 22, pp. 65–74 (1988).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 737

[2] N. Sakamoto, J. Nonaka, K. Koyamada, S. Tanaka:
"Particle-based Volume Rendering", Asia-Pacific Symposium
on Visualization (APVIS 2007), pp.129-132 (2007).

[3] <http://www.nvidia.com/object/cuda_home.html>.

[4] D. Zhongming, T. Kawamura, Naohisa Sakamoto, Koji
Koyamada : "GPU Acceleration of Improved Particle-based
Volume Rendering for Irregular-grid Data", Proceedings of
International Conference on System Simulation and Scientific
Computing 2008, pp.685-692 (2008).

[5] Z. Ding, T. Kawamura, N. Sakamoto, K. Koyamada :
"Particle-based Multiple Irregular Volume Rendering on
CUDA", Simulation Modelling Practice and Theory, 18,
1172-1183 (2010).

738 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

A Real-time Analysis Environment for a Wireless

BMI Device Enobio

Yu Ishikawa, Sanae Teramae1, Naoko Yoshii, Masami Takata, Kazuki Joe
Graduate School of Humanities and Sciences,

Nara Women’s University, Nara, 630-8506, JAPAN

Abstract – In this paper, we present a real-time analysis
environment for an electroencephalogram system Enobio. The
analysis environment consists of data acquisition, data
processing, data display and GUI modules. To validate the
real-time performance of the analysis environment, several
experiments are performed. We investigate the difference
among various algorithms and/or libraries of DFT and ICA so
that we select the fastest data processing. Using the selected
data processing functions, we show the delay time of the
analysis environment from data acquisition to data display is
almost one second.

1 Currently works for Mitsubishi Electric Corporation.

Keywords: BMI, real-time data analysis, EEG, Enobio

1 Introduction
Brain-Machine Interfaces (BMIs) [1] are a technology to

explore thinking states of human beings with biological
information taken from brain for manipulating various
machines just by their thinking, and are recently receiving
increasing attention. The biological information is given as
electroencephalogram (EEG) and there are many
measurement technologies developed for EEG. The existing
BMIs are roughly divided in two groups: large-size devices
having multichannels to measure and analyze EEG for various
purposes with high accuracy, and small-size devices having a
single channel to measure a part of EEG for limited purposes
with low accuracy. No need to say, the former is expensive
and for experts while the latter is cheap and for toys. We are
interested in developing a BMI with multichannel and a
small-size to be used in daily life. Enobio [2] is a wearable,
modular and wireless electrophysiology sensor system, and
we use Enobio for our BMI. In this paper, we present a real-
time multichannel EEG analysis environment using Enobio.

The analysis environment presented in this paper consists of
four modules: 1) the data acquisition module to get stream
data from Enobio via TCP/IP, 2) the data processing module
to apply ICA (Independent Component Analysis) [3] and
DFT (Discrete Fourier Transform) to obtained data for EEG
analysis preprocesses, 3) the data display module to display

the stream data and/or preprocessed data using OpenGL [4],
and 4) the GUI module.

The paper is constructed as follows. In section 2, we give an
overview of Enobio. In section 3, we present a real-time
analysis environment using Enobio. In section 4, we evaluate
the environment by experiments.

2 Enobio
Enobio [1] developed by Starlab is a wireless

electrophysiology recording system for EEG. It has four
electrodes and is classified into scalp electrodes and bipolar
derivation. A BMI using Enobio is classified into output and
non-invasive systems [5]. Figure 1 shows an Enobio, and the
specification of Enobio is shown in Tab. 1. Enobio
communicator is lightweight (65g) and has a wireless signal
transfer mechanism, so it is possible to measure EEG of
which targets move relatively freely. Enobio is used for EEG,
Electro-oculogram (EOG) and Electro-cardiogram (ECG).
Among the supported functions, Enobio supports TCP/IP just
for EEG, so we deal with EEG in this paper. The stream data
of Enobio range from 0 to 65535 in micro volt. The real-time
output data of four channels via TCP/IP are shown as follows.
The first and the second bytes of the output data present the
MSB and the LSB bytes of the first value of channel 1,
respectively. The third and the fourth present the second value
of channel 1, and so on.

Figure 1 Enobio

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 739

Table 1 Specification of Enobio

Number of Channels 4
Input EEG, EOG, ECG

Digital streaming over TCP/IP Output Raw data files – ASCII output and EDF compliant
Sampling 16 bit sampling at 250 S/s

Windows XP/Vista(32bits) or MAX OS X (Intel)
1GB RAM or more
JAVA 1.6 RE for Windows and JAVA 1.5 RE for
MAC OS X
USB2.0 port

System Requirements

CPU Pentium D or better
Dimensions 660x550x250 mm

Weight 65 g

Figure 3 Processing flow between server and client by

winsock

3 Real-time Enobio Analysis Environment
 In this paper, we use a small-size, lightweight and
multichannel EEG measurement system Enobio. Although
Enobio provides attachment applications, it is insufficient for
our target BMI development to observe and analyze the
Enobio stream data. Thus, we present a real-time analysis
environment for multichannel EEG Enobio to take advantage
of its TCP/IP output function. We use Windows XP as the
development environment.

Figure 2 Enobio’s optional electrodes

Since each channel data by clock consists of two bytes, the
following calculation is required to get the actual electric
potential.

3.1 The data acquisition module
Enobio supports streaming output via TCP/IP for

measured data. We use winsock for real-time data reception
functions via TCP/IP in our developing system. Figure 3
shows the processing flow between Enobio at server-side and
the receiving program at client-side. First, the receiving
program creates a socket by a socket function. Next, a TCP/IP
address is specified for the connection by a connect function.
The target address is obtained by the pre-defined number by
an attachment application of Enobio. Then, the receiving
program receives the data by the recv function with the
necessary number of bytes and the storage location.

1st value of channel 1 = 256×byte1+byte2
1st value of channel 2 = 256×byte3+byte4
1st value of channel 3 = 256×byte5+byte6
1st value of channel 4 = 256×byte7+byte8

The drawback of Enobio was its limitation of sensor position:
just four positions around frontal cortex. Since our BMI
system is to be used for exploring EEGs in daily life to
support the person wearing the BMI system, we needed more
flexibility about the kind of EEG data, namely sensor
positions.
Recently Starlab announced that they provide optional
electrodes, which can be located with a special hat. The
Enobio user can replace the existing four electrodes with the
optional electrodes to get other EEGs. Figure 2 shows the
optional electrodes.

3.2 The data processing module
In this subsection, we expound some signal processing

methods applied to the obtained data in the data processing
module. In 3.2.1, we describe ICA (Independent Component
Analysis) to separate independent components from the
stream data and to remove noises. In 3.2.2, we describe DFT
for the frequency distribution analysis of the stream data.

3.2.1 ICA
 We aim to develop a BMI used in daily life, so we do

not suppose any BMI measurement under special conditions

740 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

such as shield rooms to block electromagnetic waves from
various peripheral devices and limitation of targets activities
where they are forced to keep quiet or close eyes. Therefore,
the stream data out of Enobio may include noises from
peripheral power supplies and from eye movements or blinks
of the targets. The received signals from an electrode can be
mixed with other independent EEGs from multiple locations
in a brain caused by electrodes arrangement. So we apply ICA
to the stream data to remove noises and extract independent
components as a pre-process for our BMI. In this paper, we
adopt FastICA [6], which is known to have the fast
convergence ability, as an ICA algorithm. We use IT++
library that includes the FastICA implemented in C++. The
FastICA class library in IT++ library provides separate
operations by selecting the type of orthogonalization or
nonlinear function methods with an updating rule for the
reconstruction matrix W.

Figure 4 GUI

3.3 The data display module

3.2.2 DFT
In EEGs, the frequency components change by cognitive

activities such as visual and auditory sense. We believe that
human thinking states can be detected by observing the
change of frequency components of EEGs to capture the
features. Thus, we apply DFT (Discrete Fourier Transform) to
observe the frequency changes of EEGs from Enobio. DFT of
n discrete points xi (i = 0, 1,… , N - 1) is defined by
expression 1.

Using OpenGL, the data display module visualizes the
obtained data in the data acquisition module and/or the data
processing module. The drawing target data are the original
stream data, the DFT applied results, the ICA applied results
and the DFT results after ICA. They are drawn in a form of
polygonal line graphs. The drawing area has the size of 700
by 900 pixels for presenting last two seconds information of
each channel, where the vertical and horizontal axis
represents electric potential and time, respectively. The
attachment application of Enobio shows each channel
information on different graphs. This display method is
suitable for observing potential changes by channel, but it is
difficult to find potential relation among four channels. The
display data of the attachment application uses only the
original stream data, so it cannot show any pre-processed data
such as ICA and/or DFT. Thus, for our developing analysis
environment, we implement the following functions which are
not included in the Enobio attachment application.

 (1)

Let xi be a complex signal where xi = Re(xi) + jIm(xi) and
resolve expression 1 into the real part and the imaginary part

by Euler's formula . We express the
real part of Xk is Re(Xk) and the imaginary part is Im(Xk). The
stream data in this paper are presented as real, so we just treat
the real part Re(Xk) as follows.

The total window to display the whole data

A graph window is used for displaying four channels data
simultaneously. Herewith, we get the information about
relative potential difference among four channels.
Furthermore, each channel is uniquely colored for easy
understanding of the potential differences.
 The frequency component size is represented below.
Zooming a single channel

The data in a single channel can be zoomed into the whole
screen. We can observe more detailed wave forms than the
original graph of Enobio. We apply the above expressions to the stream data (250

samples per second) from Enobio for observing the frequency
distribution.

Grid
We improve observational efficiency with drawing separator
lines, where the vertical and horizontal axis represents electric
potential and time, respectively. The horizontal lines are
drawn by 10,000 microvolts and the vertical lines by 100
msec, which construct grids on the graph.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 741

Line width module. Button 3 changes the line width of wave forms.
Button 4 controls the pre-processes for the stream data. The
button 4 is used for selecting "no pre-process", "just DFT",
"just ICA", and "DFT right after ICA". Button 5 gives TCP/IP
client services. The button is the toggle for "TCP open" and
"TCP close" which creates a socket in the data acquisition
module and closes the process, respectively. Button 6 is used
for starting or stopping the acquisition of the stream data. By
button 7, the program is terminated. Button 8 resets the time
counter. The time counter increases by one each time when
250 data are drawn, and is used for time keeping by second.

Table 2 Average processing time in the data processing module

ICA

DEDL SYMM

POW3 TANH GAUSS SKEW POW3 TANH GAUSS SKEW

DFT

data 1 21 2103 3220 3435 166 19 14 12 15

data 2 2931 14276 3500 21003 8 18 24 20 16

data 3 6656 6192 2709 105375 15 29 30 11 15

The line width of the grids is changeable.We get detailed
wave forms when the line width is fine while it is easy to
observe enhanced wave forms when the line width is thick.

Drawing intervals
We can change the interval between drawing refreshment.
Compared to the data receiving time, drawing a wave form
needs longer time. To keep real-time performance in
observing wave forms, we reduce the number of drawing
refreshments per second.

4 Experiments 3.4 GUI

We develop a GUI to change drawing methods in the
data display module and to control pre-processes of the
stream data. Figure 4 shows the developed GUI.

 In this section, we validate the real-time performance of
the developed analysis environment by some experiments.
First, we measure each processing time of ICA and DFT in
the data processing. To determine which kind of
orthogonalization and nonlinear functions are effectively
performed in the data processing module, we investigate the
processing time for several evaluation functions and
optimization methods of ICA in the experiment. Then, we
measure the elapsed time from the acquisition of output data
from Enobio in a second to the completion of drawing a wave
form in the experiment. Furthermore, we compare the time
differences among update intervals for drawing with or
without data processing. This experiment is performed on a
computer with an Intel(R) CoreTM2 Duo E8400 3GHz CPU
and 3GB memory.

The GUI is constructed with three parts: the graph display
area, the information display area and the control area. The
graph display area is used for displaying the graphs drawn in
the data display module. In the information display area, the
raw stream data and/or processing time are displayed by
integer. The control area includes several buttons to control
each component part of the analysis environment. The
following eight kinds of buttons are located in the graph
display area and the information display area.

(1) Display range
(2) Refresh interval
(3) Line width
(4) Data processing 4.1 Experiments in the data processing module
(5) TCP open/close

We measure the processing time of the data processing
module, which is estimated as the most computation intensive
in the proposed analysis environment. In this experiment, we
measure the application of ICA and/or DFT to 250 samples
from each Enobio channel by second. We adopt FastICA as
an ICA algorithm, and use the IT++ library where FastICA is
implemented. When the FastICA of IT++ library is executed,
the types of orthogonalization and nonlinear functions are
selected by option. In the FastICA class library,
orthogonalization is selectable from Gram-Schmidt
orthogonalization (DEFL) and symmetric orthogonalization
(SYMM), while the nonlinear function g(y) is from y3
(POW3), tanh(y) (TANH), y exp(-y2/2) (GAUSS) and y2

(6) Start/Stop
(7) Exit
(8) Reset time counter

 Button 1 defines the display range of a wave form. In the
total window for the whole data, the vertical axis drawing
range is limited between 0 to 65535 microvolts in the data
display module. Ch-all represents all channels and "ch-1" to
"ch-4" represents each channel, where calculation results from
the minimum potential to the maximum potential are used for
the display range of the vertical axis. Button 2 defines the
refreshment rate for drawing the wave form in the data
display

742 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

It is easily expected that the processing times depend on the
cumulative waiting time for data reception from Enobio. The
data sampling rate of Enobio is 250 Hz so that a chunk of
stream data is sent from Enobio every four msec. Therefore,
the data acquisition module has a waiting time from a data
reception to the next data reception. In the case of drawing
intervals of 50 or fewer times, since the sum of the total
drawing time and the processing time is shorter than the
cumulative waiting time, it is almost same to the case of
drawing interval 0 that is just the data acquisition time and
waiting time. In the case of drawing interval of 250 and 125,
the sum of the total drawing time and the processing time is
longer than the cumulative waiting time, which means that the
drawing module cannot draw within a waiting time. In
summary, the real-time performance of our analysis
environment is kept when the drawing intervals are less than
equal 50.

Table 3: Average processing time under various conditions

Update Intervals

Processes

250 125 50 25 1 0

Non 1400 1050 1006 1007 1006 1007
DFT 1409 1060 1007 1007 1007 -
ICA 1409 1059 1008 1006 1006 -

DFT&ICA 1422 1070 1007 1007 1007 -

(SKEW). We measure each processing time for all the
combinations in this experiment.

Table 2 shows the average processing times of the application
of ICA and DFT to three kinds of EEG data out of 100 trials.
The data used in the experiment is from a pre-stored text file
generated by Enobio. The table indicates that SYMM is faster
than DEFL. SYMM calculates all independent components at
once, while DEFL calculates each independent component
recursively one by one. This is the reason of performance
difference. Among SYMM, the processing times with POW3
and SKEW options are relatively short. However, the POW3
option causes performance variation depends on data.

5 Conclusions
 In this paper, we presented a real-time multichannel
EEG analysis environment to support BMI research using
Enobio which is a wearable, modular and wireless
electrophysiology sensor system. The proposed environment
consists of four modules: the data acquisition module, the
data processing module, the data display module, and the
GUI module. The data acquisition module receives stream
data from Enobio via winsock. In the data processing module
ICA and DFT are implemented for EEG observation analysis.
The data display module is to draw wave forms of the stream
data with OpenGL, and several functions which are not
included in the Enobio attachment application have been
implemented. In the GUI module, many functions for starting
and stopping the data acquisition, controlling pre-processes
for the stream data, and setting drawing wave forms have
been implemented with the Windows form.

From the above considerations, we adopt SYMM and SKEW
with the shortest processing time as well as enough stability
for FastICA options to observe wave forms in real time. Next,
we discuss DFT for observing the frequency components in
EEG data. The processing time of DFT is about 15 msec for
any chunk of EEG data stream, and it is enough short
compared with one second of each chunk. Thus, it keeps the
analysis environment with real-time performance to
implement DFT.

4.2 Experiments for Drawing Intervals

We measure processing time for 250 data from each
channel of Enobio starting from the data acquisition until the
completion of drawing wave forms to validate the real time
performance of our analysis environment for Enobio. In the
experiment, we investigate several measurement conditions of
various drawing intervals and pre-processes presence. The
conditions for drawing intervals are 250, 125, 50, 25, 1 and 0
times in a second and "no pre-process", "just DFT", "just
ICA", and "DFT right after ICA" for pre-processes presence.
Drawing interval 0 means just the processing acquisition for
stream data without calling the data display module and it
does not use any pre-process.

 To validate the real-time performance of the analysis
environment, we performed some experiments to measure
processing times. First, we measured processing times of the
data processing module where ICA and DFT are
implemented. The experimental results showed that the
processing time by the combination of SYMM and SKEW is
the shortest among FastICA library options used for the ICA
implementation. Next, we measured various processing times
from the data acquisition to the wave forms drawing with
changing processes applied to the stream data and drawing
intervals of the analysis environment. The experimental
results showed that we need the drawing intervals of 50 or
fewer to the keep real-time performance of the developed
analysis environment.

 Table 3 shows the average of 100 measurements for the
processing time under various conditions. It shows that the
processing time is over 1,000 msec under any condition, even
with drawing interval 0, which means just data acquisition
time. Drawing intervals of 50, 25 and 1 take the processing
times as long as drawing interval 0 without pre-processes. In
the meantime, drawing intervals of 250 and 125 take longer
processing times than the other conditions and pre-processes.

Acknowledgement
We would like to thank Dr. Masayo Haneda of Starlab for her
helpful comments.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 743

References
[1] Guido Dornhege, José del R. Millán, Thilo Hinterberger,
Dennis J. McFarland and Klaus-Robert Müller; Toward
Brain-Computer Interfacing, MIT Press (2007).

[2] http://starlab.es/products/enobio

[3] Aapo Hyvärinen, Juha Karhunen, Erkki Oja :
Independent Component Analysis, Wiley-Interscience (2001).

[4] http://www.opengl.org/

[5] Mikhail A. Lebedev and Miguel A.L. Nicolelis: Brain-
machine interfaces: past, present and future, TRENDS in
Neurosciences, Vol.29, No.9, pp.536-546 (2006).

[6] A. Hyvarinen and E. Oja.: A Fast Fixed-Point
Algorithm for Independent Component Analysis, Neural
Computation, 9(7), pp.1483-1492 (1997).

744 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Distributed PACS
using Network Shared File System

Tomoyuki Hiroyasu
Faculty of Life and Medical Sciences

Doshisha University
Kyoto, Japan

tomo@is.doshisha.ac.jp

Yoshiyuki Minamitani
Graduate School of Engineering

Doshisha University
Kyoto, Japan

yminamitani@mikilab.doshisha.ac.jp

Masato Yoshimi
Department of Science and Engineering

Doshisha University
Kyoto, Japan

myoshimi@mail.doshisha.ac.jp

Mitsunori Miki
Department of Science and Engineering

Doshisha University
Kyoto, Japan

mmiki@mail.doshisha.ac.jp

Abstract—In this paper, a distributed PACS (Picture Archiving
and Communication Systems) using a network shared file system
is proposed. Several distributed hospitals and sites use PACS
to manage medical images. For these distributed sites to work
together, it is necessary to construct integrated PACS for these
distributed files. In the proposed system, the DICOM (Digital
Imaging and Communications in Medicine) metadata and the
DICOM image data are registered separately on the server. In
the proposed system, several operations can be performed using
only the metadata. For example, images can be searched using
only the information stored in the metadata, and therefore the
client can find the target image without downloading the whole
DICOM data. DICOM image size is usually huge. Therefore,
if a file can be found or transformed without downloading the
whole data, the file operation can be performed very quickly. To
implement the proposed system, the open source Gfarm network
shared file system, which treats metadata as XML data, was
used. This paper describes construction of the proposed system,
and discusses experimental comparison of Gfarm and NFS with
regard to transfer rates.

I. INTRODUCTION

Several types of medical information technology have re-
cently been introduced into hospitals and medical research
centers. These systems store and utilize many types and huge
amounts of medical information, typically medical image data
from MRI, NIRS, CT, etc. The management system used for
medical images is the picture archiving and communication
system (PACS). PACS stores, browses and manages medical
images sent from medical devices such as MRI, NIRS, CT,
etc. PACS was designed to use medical images stored at each
hospital or facility. However, there has been a recent increase
in collaborations between hospitals. When several hospitals
collaborate in this way, these medical images must be inte-
grated. One of the easiest ways to integrate distributed medical
images or distributed PACS is to integrate all of the medical
images onto a central server. However, the amount of medical
image information is expected to increase markedly with the
future development of medical equipment and systems. In
addition to the file size of medical images, the number of

such images is increasing on a daily basis. Based on current
trends, it is estimated that over one billion diagnostic imaging
procedures will be performed in the USA in 2014, which will
generate about 100 petabytes of data[1][2]. Therefore, there
are limitations to having a central imaging server for dis-
tributed PACS integration. To solve this problem, we focused
on distributed PACS that treats and utilizes distributed medical
images as one data.

Medical image data standards, such as DICOM (Digital
Imaging and communications in Medicine), are very impor-
tant. DICOM consists of metadata and actual images. The
metadata includes various types of medical information, such
as inspection items, patient information, etc.

Here, we propose a novel distributed PACS in which only
the DICOM metadata are stored on a central server. Actual
images are saved on the distributed site. For example, to find
a specific image, the user accesses the information stored in
the metadata. Thus, it is inefficient to access the entire medical
image when user retrieves only the DICOM metadata. Using
this method, a high-speed extraction result can be obtained
with retrieval of only the metadata.

To implement the proposed system, Gfarm was utilized as
a network shared file system[3]. Gfarm stores the metadata
of the file as XML data. Therefore, the proposed system
can be constructed easily with Gfarm. In the experimental
system, the DICOM metadata are stored in Gfarm XML meta-
data. DICOM is distributed and stored on the storage node.
Moreover, DICOM can be retrieved using the XML metadata.
A flexible security policy is necessary when DICOM data
are shared. DICOM includes information that can specify an
individual, such as the patient’s name, address, etc. This access
to individual information is also controlled by managing the
metadata. In the experimental system, individual information
is deleted when the medical images are shared.

This paper is organized as follows. Section II presents the
back ground of the research. Section III presents the proposed
system using DICOM metadata. Section IV describes the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 745

implementation of the experimental system. Section V presents
an experiment to verify the system, and Section VI presents the
discussion. Section VII provides our conclusions and discusses
prospects for future work.

II. BACKGROUND

A. DICOM

DICOM is a typical medical image standard and a network
communications protocol for use with medical image diag-
nosis equipment, such as MRI and CT defined by the ACR
(American College of Radiology) and NEMA (National Elec-
trical Manufacturers Association). DICOM is also an interna-
tional standard (ISO TC-215). DICOM is a container format
that can include various types of data, such as image data, and
it consists of actual data and information metadata[4]. Fig.1
shows an outline of DICOM.

DICOM

・ patients information
　　name，address, sex，etc.
・ inspective information
　　modality, contrast medium, etc.
・ image information
　　image size, color model, etc.
・medical information

Metadata

Fig. 1. Outline of DICOM

Various types of information, such as image data size and
color model, as well as patient information such as name,
address, date of birth and sex are stored in the metadata.
The DICOM standard defines more than 3000 terms. When
medical images are sorted or found, the information in the
metadata is used. However, because information than can
specify individual patients is included in the metadata, this
raises privacy issues in information sharing.

B. PACS

PACS is now considered the typical standard in the radi-
ology community and is widely implemented even on very
large scales[5][6]. PACS have been introduced at a number of
hospitals and are used to manage medical images with elec-
tronic patient records[7] [8]. However, it has recently become
necessary to construct PACS capable of enabling cooperation
with outside hospitals. One solution for integrating distributed
PACS is to use cloud computing systems, which promise lower
costs, high scalability, and high availability[9][10].

C. Distributed file system and Gfarm

1) Distributed file system: GFS (Google File System) is
a distributed file system developed by Google[11]. On GFS,
a large amount of data of PC cluster can be processed.
MapReduce is a widely used process to treat such large
amounts of data on GFS.

HDFS (Hadoop Distributed File System) is an open source
file system which refers GFS[12]. GFS and HDFS are de-
signed to treat data of the order of several million MB, and
these systems are not suitable for accessing large amounts of
small data. At the same time, methods for these file systems
are not versatile because files are operated through the API
that is different from standard file systems. On the other
hand, Gfarm supports the POSIX standard API and enables
decentralized parallel processing. Gfarm shows equivalent
read performance and about 30% higher write performance
compared to HDFS[13].

2) Gfarm: Gfarm is a global distributed file system
used to share data and to support distributed data-intensive
computing[3]. Gfarm federates local file systems of compute
nodes connected on a network, and can be used at various
scales, such as LAN, PC clusters, and large-area clusters.
Gfarm is provided under an open source license and may
be used as Network File System (NFS) and the distributed
networked file system Andrew File System (AFS). Gfarm
consists of three types of node: metadata servers, which
manage the preservation of location information of each file;
I/O servers where the main body of data is stored; and clients
that access the files. The metadata servers manage file system
data of a virtual directory tree and the locations of the actual
files, etc., as metadata. First, the client inquires about the
position of the I/O server, which stores a file of the metadata
server when it access the file which is stored in Gfarm. The
client then accesses the I/O server where the file is stored. Fig.
2 shows the Gfarm architecture.

Gfarm Meta DB

Gfarm Pool
Gfarm FileSystem

Other filesystems

Global network

Fig. 2. Gfarm architecture[14]

The Gfarm metadata server not only to manages preserva-
tion of the location information of files but also treats meta-
data as XML data. This mechanism, called XML extended
attributes, specifies the related XML file of each saved file,
and enables retrieval of the file by XPath. As retrieval becomes
possible without directly accessing the file, Gfarm enables
high-speed information retrieval in file sharing of the large
area.

• Meta data server
The metadata server manages the file system metadata,
file open status, I/O server status, global user accounts,
group membership information, etc. These information
are related to the saved files through XML.

• I/O Server

746 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

The I/O server provides file access for a local file system.
The client connects directly to the I/O server when
accessing file data. The major issue for the I/O server
is the maintenance of consistency between the physical
file and the file system metadata.

• Client
The client is a host that uses Gfarm. The gfarm2fs
command is used in the client to mount the Gfarm file
system in user space using the FUSE[15] mechanism.
After mounting the Gfarm file system by gfarm2fs on
file system nodes and clients, any existing program can
access the Gfarm file system without any modification.

III. PROPOSED DISTRIBUTED PACS

In this chapter, the proposed distributed PACS, which treats
metadata and real data of DICOM separately, is described.

A. Outline of proposed system

Here, we assume that several PACS utilized at multiple
sights are integrated. As described in Chapter 1, the proposed
system involves integration of several PACS with no central
PACS. To share large-sized DICOM file over the large-area
environment, it is necessary to construct a system to integrate
the PACS used in each location. In integrated PACS, it is
inefficient to access the whole medical image data when
retrieving the DICOM metadata. Thus, it is necessary to
separate metadata information from DICOM data.

In the proposed system, DICOM data are stored at each site
and DICOM metadata information are stored separately on the
metadata server. When metadata are stored, if it is necessary
to separate and manage individual information for privacy
protection. The access authority to individual information is
set according to the authority of the client. It is necessary
to construct a system where only clients that have access
authority to individual information can retrieve the whole
DICOM data.

To achieve this goal, it is necessary to prepare a distributed
file system that can be used for metadata, and the metadata
information should be managed. The open source network
shared file system Gfarm is used for the experimental system
discussed here as discussed in the next chapter. Fig. 3 shows
the outline of the proposed system.

Metadata ServerI/O Server

Metadata files are created.

Individual information
 is deleted from DICOM.

DICOM
Metadata
Indivudual

Metadata
Individual

DICOM
Metadata

Metadata files are registered with metadata servers.

DICOM files are stored in I/O servers.

Fig. 3. Outline of proposed system

As shown in Fig. 3, XML are made from the metadata of
DICOM and XML metadata is specified for the XML extended
attribute of file system. XML is stored on the metadata server.
Therefore, the XML metadata alone can be used without the
need to access the large DICOM file image information. High-
speed retrieval can be achieved because the file system itself
retrieves the file. The proposed system stores the DICOM
files and allows sharing over a large area. On the other hand,
patient information is separated, and the associations with
stored DICOM files are preserved by the I/O servers. Account
information of the client is set to the DICOM file and access
to individual information is controlled appropriately.

The following three DICOM file operations are performed:

• Saving DICOM files
When users store the DICOM file through the client
system, the client of the proposed system stores DICOM
metadata as XML on the metadata server. DICOM data
containing no individual information are stored on the I/O
Server. If necessary, individual information is separated
from DICOM data.

• Reading DICOM files
When the user accesses the DICOM file, the proposed
system reads individual information from the metadata
server according to the authority of the client. The
proposed system combines the DICOM file obtained from
the I/O server with individual information on the client
side.

• Retrieval DICOM metadata
The retrieval is performed with the metadata server for
the DICOM metadata stored in file system. Moreover,
it is possible to use only the DICOM metadata by
downloading the XML used for retrieval.

B. Merits of the proposed system

Here, the following four advantages of the proposed system
are described.

• Promotion of telemedical care
There is a great deal of interest in telemedicine services
with diagnosis based on medical images. The proposed
system can facilitate such telemedicine services. The
patient may ask a doctor to make a diagnosis using
medical images taken at another hospital. In this case,
the patient’s individual information is not necessary for
diagnostic imaging. In the proposed system, DICOM data
can be stored without individual information. Thus, the
proposed system may contribute to the promotion of
telemedicine care because it can be used to acquire only
the data necessary for diagnostic imaging.

• Developing Medical treatment Cloud
Patients can receive different examinations using the same
medical images obtained at several hospitals if each
hospital participates in this system. When medical images
are used for the examination, it is currently necessary
to obtain permission from the hospital where they were
originally taken. The proposed system will allow the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 747

TABLE I
SPECIFICATIONS OF THE SERVER

CPU Quad-Core AMD Opteron 2.3GHz × 2
Memory DDR2 667 MHz 8GB
OS WindowsServer HPC Edition 2007

TABLE II
SPECIFICATIONS OF EACH VIRTUAL NODE

Number of processors 1
Memory 512MB
OS CentOS 5.5
Kernel 2.6.18-194.el5
gfarm 2.4.0
gfarm2fs 1.2.1

development of a medical treatment cloud system, which
will allow patients to easily obtain a second opinion.

• Academic use for medical images
Statistical data of medical images is very important for
academic use. Patients’ individual information is not
necessary for academic use of medical images.

• File system retrieval function
Many items are stored in the DICOM metadata. The
DICOM file will contain a number of medical images,
and therefore the data size will usually be very large.
However, several types of operation can be performed
using only the metadata and do not require the actual
image data. Therefore, in these cases it is not necessary
to download all of the data. The client can quickly retrieve
the DICOM metadata without downloading the DICOM
data directly using the XML extended attributes, which
is the function of Gfarm.

IV. IMPLEMENTATION OF THE PROPOSED SYSTEM

The proposed system was implemented using Gfarm and
an experimental system was developed. Gfarm stores XML
data as extended XML attributes of the saved file. These
mechanisms are suitable for the proposed distributed file
system. Gfarm is also distributed under an open source license
and is therefore easy to develop. This chapter describes the
implemented system.

A. Outline of the implemented system

The actual production system will be located in several
remote locations. However, the implemented experimental
system was constructed on a virtual server using the Hyper-
V function of Windows HPC Server 2008. We constructed
an experimental system consisting of one metadata server,
two I/O servers, and one client on a virtual node. The next
chapter discusses a number of experiments performed using
this system. To avoid the influence of communication time
and the overhead of each file system is focused, the processing
overhead of each file system, the assessment experiment was
performed on this virtual system.

Tables I and II show the specifications of the server and of
each virtual node, respectively. Fig. 4 shows the flow of the

implemented system.
As shown in the figure, the client divides the metadata and

actual images, and these data are stored on Gfarm. When
images are searched or derived, the client can obtain the
metadata and actual data from Gfarm integrated as DICOM
data.

The following sections describe Gfarm and how to use the
commnads.

B. Introduction to Gfarm

We compiled Gfarm with XML extended attributes enabled.
All other settings were left at the defaults, and the common
key cryptosystem was used as the authentic method.

C. Commands for the experimental system

We prepared the commands for downloading and uploading
of DICOM data. As Gfarm can search a file from XML data,
the existing Gfarm search command is used for file retrieval.
These commands were prepared on the client system and
implemented in Python.

• Uploading DICOM file
We prepared a “dgf up” command to upload DICOM
files to the experimental system. When the client up-
loads DICOM ifles to the experimental system using the
“dgf up” command, the experimental system produces
XML from the metadata of the specified DICOM files.
Individual information is then deleted from the DICOM
files. The experimental system stores DICOM image
data separately from individual information on the I/O
server. The experimental system adds the XML extended
attributes using the Gfarm command “gfxattr” for DI-
COM files stored on the I/O server. The XML extended
attributes are managed on the metadata server.

• Downloading DICOM file
We prepared the “dgf down” command to download DI-
COM files from the experimental system. When the client
acquires DICOM files including individual information
using the “dgf down” command, the client downloads the
DICOM files separately from the individual information
from the I/O server and XML from the metadata server.
The client acquires DICOM files including individual
information by reading the individual information from
the XML and adding it to the DICOM files on the
client side. Moreover, clients that do not have access
authority to the individual information can only acquire
the DICOM files without the individual information.

• Retrieving DICOM file
The client retrieves DICOM files with XPath using the
Gfarm command “gffindxmlattr”. Clients that do not have
access authority to the individual information can also
retrieve DICOM files in the same way using the metadata
without the individual information.

V. EXPERIMENTAL ASSESSMENT

As described in this chapter, Gfarm was confirmed to show
sufficient performance as a file system for medical images

748 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

DICOM

XML
Metadata

Metadata

DICOM
Metadata
Indivudual

Clients Clients

XML files are created and

 individual infomation is deleted.

XML files are registered with a Metadata server.

DICOM files

 are stored in I/O servers.

DICOM files are retrieved from XML files.

DICOM files are

 downloaded and

 individual information is

 added them from XML files.

DICOM files without

 individual information are downloaded.

upload retrieval, download

Individual
Metadata Server

I/O Servers

DICOM
Metadata

DICOM
Metadata
Indivudual

Fig. 4. Flow of implemented system

TABLE III
DICOM AND XML FILE SIZES

File Size Number Sum size
DICOM 135KB 1000 132MB

XML 16KB 1000 16MB

and to be useful for separation and retrieval of metadata in
the implemented system.

Gfarm was compared with NFS[16], which is a well-known
small-scale file sharing system. NFS is not a file system which
is designed for large-area environments. However, NFS was
compared from the viewpoint of the ease of file access and
high-speed performance. In the experimental system, three
virtual machines were constructed as an experimental envi-
ronment for Gfarm. On the other hand, two virtual machines
were constructed as an experimental environment for NFS. In
NFS, one virtual machine stored the DICOM files minus the
individual information and the other stored XML files with
the individual information.

Table III shows the sizes of DICOM and XML files used in
the experiment. We measured and evaluated the time required
to write to the system and delete individual data for thousands
of DICOM files and XML files. We measured the time required
for processing five times using the “time” command.

A. DICOM and XML file storage

In this section, we compare the processing speeds when
DICOM and XML files are stored at the same time on Gfarm
and NFS. NFS stored DICOM files on one of two servers,
with XML files stored on the other server. Gfarm stored
DICOM files on two I/O servers with the XML extended
attributes stored on one metadata server. Table IV shows the
measurement results for saving 1000 DICOM files and 1000
XML files. In this table, “real” is the total time, “user” is the
user CPU time, and “system” is the system CPU time.

TABLE IV
RESULTS FOR SAVING DICOM AND XML FILES

Process Gfarm NFS
real 5m22.507s 5m48.150s
user 0m20.957s 0m05.509s

system 0m56.123s 1m53.721s

TABLE V
RESULTS FOR SAVING XML FILES

Process Gfarm NFS
real 2m29.210s 1m23.912s
user 0m14.642s 0m00.098s

system 0m26.630s 0m13.922s

B. XML file storage

In this section, the processing speeds of storing only XML
files are compared between Gfarm and NFS. NFS stored XML
files on one server. Gfarm added the metadata to the DICOM
data already stored on the I/O server. Table V shows the
measurement results for saving 1000 XML files.

C. DICOM file storage

In this section, the processing speeds of storing only DI-
COM files between Gfarm and NFS were compared. Table VI
shows the measurement results for saving 1000 DICOM files.

D. XML creation

In this section, the access speed with creating XML from
DICOM files was measured. Table VII shows the measurement
results for creating XML from 1000 DICOM files.

E. Deleting individual information of dicom

Table VIII shows the access speeds when individual infor-
mation was deleted from 1000 DICOM files.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 749

TABLE VI
RESULTS FOR SAVING DICOM

Process Gfarm NFS
real 2m47.496s 4m03.428s
user 0m00.156s 0m00.149s

system 0m02.200s 1m49.631s

TABLE VII
RESULTS WHEN CREATING XML FROM DICOM FILES

Process Time
real 8m06.603s
user 7m34.788s

system 0m31.611s

VI. DISCUSSION

As shown in Table IV, the access time for writing is shorter
for Gfarm than for NFS. This result suggested that Gfarm has
smaller write overhead than NFS. It has also been reported
that Gfarm has the same access time as HDFS. Therefore, the
proposed system has high file access capability because it uses
Gfarm.

As shown in Table V, the Gfarm processing time was longer
than that of NFS with regard to writing the XML files on each
server. For Gfarm, there is a process for adding XML extended
attributes. This process may take some time.

On the other hand, as shown in Table VI, the processing
time of Gfarm is shorter than that of NFS. Moreover, it was
confirmed that the system CPU time of Gfarm was smaller
than that of NFS. These results showed that Gfarm has a
mechanism to reduce the overhead.

Tables VII and VIII show the operation times for creating
and deleting DICOM data. The proposed system took more
than 8 minutes to create 1000 XML files. It also took more
than 12 minutes to delete patient information from XML
data of 1000 DICOM files. These overhead times are too
long and must be reduced in future. The proposed system
was implemented using Python. The module involved in data
operations will be rewritten in C to improve the speed.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a distributed PACS was proposed. In the pro-
posed system, the metadata and the actual images of DICOM
data are treated differently. For system implementation, the
Gfarm network shared file system was used. Through com-
parative experiments between NFS and Gfarm, we confirmed
that the proposed system inherited the characteristics of Gfarm.
Thus, the proposed system may have high scalability of access
speed and data size. We also confirmed the effectiveness and
improved ease of retrieval access control as the proposed
system only can access the DICOM metadata.

In future work, we will examine the scalability of large-size
files stored in Gfarm. We will also improve the system for use
in medical facilities. To achieve this goal, we will examine
security and access control mechanisms.

TABLE VIII
RESULTS WHEN DELETING INDIVIDUAL INFO FROM DICOM FILES

Process Time
real 12m08.176s
user 11m29.293s

system 00m32.916s

REFERENCES

[1] C.-C. Teng, J. Mitchell, C. Walker, A. Swan, C. Davila, D. Howard, and
T. Needham, “A medical image archive solution in the cloud,” Software
Engineering and Service Sciences (ICSESS), 2010 IEEE International
Conference on, 2010.

[2] Frost &Sullivan, “Prepare for disaster & tackle terabytes when evaluating
medical image archiving,” 2008, http://www.frost.com.

[3] O. Tatebe, K. Hiraga, and N. Soda, “Gfarm grid file system,” New
Generation Computing, vol. 28, pp. 257–275, 2010.

[4] Herman Oosterwojk, DICOM Basics Third Edition edition. OTech Inc,
2005.

[5] D. Bandon and C. Lovis and A. Geissbuhler and J.-P. Vallee, “Enterprise-
wide pacs: beyond radiology, an architecture to manage all medical
images,” Academic Radiology 12 (2005), pp. 1000–1009.

[6] Huang HK, “Enterprize pacs and image distribution,” Comput Med
Imaging Graphics 2003, vol. 27, pp. 241–253.

[7] H. Munch, U. Engelmann, A. Schroeter, and H. Meinzer, “The inte-
gration of medical images with the electronic patient record and their
web-based distribution,” Acad Radiol 2004.

[8] O. Ratib, Y. Ligier, D. Bandon, and D. Valentino, “Update on digital
image management and pacs,” Abdom Imaging 2000, vol. 25, pp. 333–
340.

[9] R. Zheng, H. Jin, Q. Zhang, and P. Chu, “Heterogeneous medical
data share and integration on grid,” Proceedings of 2008 International
Conference on Biomedical Engineering and Informatics (BMEI ’08),
IEEE Computer Society Press, 2008.

[10] S. Erberich, J. Silverstein, A. Chervenak, R. Schuler, M. Nelson, and
C. Kesselman, “Globus medicus― federation of dicom medical imaging
devices into healthcare grids,” Stud Health Technol Inform, vol. 126, pp.
269–278.

[11] GHEMAWAT S., “The google file system,” Proceedings of 19th ACM
Symposium on Operating Systems Principles (SOSP-19), 2003, 2003.
[Online]. Available: http://ci.nii.ac.jp/naid/30013225513/

[12] The Apache Software Foundation, “Apache hadoop,”
http://hadoop.apache.org/.

[13] S. Mikami, K. Ohta, and O. Tatebe, “Data intensive distributed com-
puting using mapreduce on gfarm file system,” Information Processing
Society of Japan, vol. 2010, no. 4, 2010.

[14] G. Datafarm, http://datafarm.apgrid.org.
[15] M. Szeredi, “Fuse : Filesystem in userspace,” http://fuse.sourceforge.

net/.
[16] B. Callaghan, Pawlowski, and Staubach, “NFS Version 3 Protocol

Specification,” RFC 1813, 1995.

750 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

A Framework for Genetic Algorithms
in Parallel Environments

Tomoyuki HIROYASU
Department of Life and Medical Sciences

Doshisha University
Kyoto, Japan

tomo@is.doshisha.ac.jp

Ryosuke YAMANAKA
Graduate School of Engineering

Doshisha University
Kyoto, Japan

ryamanaka@mikilab.doshisha.ac.jp

Masato YOSHIMI
Department of Science and Engineering

Doshisha University
Kyoto, Japan

myoshimi@mail.doshisha.ac.jp

Mitsunori MIKI
Department of Science and Engineering

Doshisha University
Kyoto, Japan

mmiki@mail.doshisha.ac.jp

Abstract—In this research, we developed a framework to
execute genetic algorithms (GA) in various parallel environments.
GA researchers can prepare implementations of GA operators
and fitness functions using this framework. We have prepared
several types of communication library in various parallel en-
vironments. Combining GA implementations and our libraries,
GA researchers can benefit from parallel processing without
requiring deep knowledge of different parallel architectures. In
the proposed framework, the GA model is restricted to a micro-
grained model. In this paper, parallel libraries for a Windows
cluster environment, multi-core CPU environment, and GPGPU
environment are described. A simple GA was implemented with
the proposed framework. Computational performance is also
discussed through numerical examples.

Index Terms—Genetic Algorithms，Parallel Computing

I. I NTRODUCTION

Recently, several types of parallel architecture have come
into wide use. For example, calculation with multi-core CPU
which more than four cores is not unusual. General purposed
GPU becomes also easy to use. In Japan, some of the super-
computing centers are open for researchers to use high-end
computational resources. We can use the Earth Simulators and
will be able to use the next-generation Keisoku supercomputer.
However, these parallel architectures have the different config-
urations. Thus, even when we wish to use the same algorithms,
it is necessary to prepare different implementation codes
suitable for different parallel architectures. This places a heavy
burden on algorithm researchers, because in-depth knowledge
of the different parallel architectures is required to run their
implementation codes efficiently on parallel machines.

GA is a type of optimization algorithm with multipoint
search[1]. GA may find the optimum point even when the land-
scape of the objective function has multiple peaks. However,
GA requires much iteration to find the optimum. This results in
high calculation cost. As GA is a multipoint search algorithm,
it implicitly has several types of parallelism[2][3][4][5]. Thus,
several types of research regarding parallelization of GAs are

existed. Ono et al, introduced the GA model and implemen-
tation parallel models of GA should be clarified. As there is
parallelism in the GA itself, parallel GA can be performed even
on a single process. We call this the logical parallel model. On
the other hand, because GA has multiple search points, a single
model can be implemented on parallel computers. In this case,
an implementation parallel model should be prepared.

In most GA research, these logical and implementation
parallel models are not distinguished clearly and are often
the same[6][7][8]. When the logical model is closely related
to the implementation model, GA users should have deep
knowledge of the parallel architectures on which their parallel
GAs are running. At the same time, as the logical model and
implementation model are closely related, different parallel
codes are required for different parallel machines. Therefore,
it would be of great benefit if GA users were not required to
have such deep knowledge of novel parallel architectures to
run their GAs in parallel.

Here, we propose a parallel environment framework for
GA that adopts the micro-grained model as an implementation
model. GA researchers prepare the implementations of GA
operators and fitness functions using the proposed framework.
We are preparing parallel communication libraries for this
framework. Using GA implementations and these libraries, GA
users can derive efficient parallel GA codes without requiring
specific knowledge regarding to parallel architectures. Thus,
the proposed framework improves the productivity of GA
users.

We constructed a system for Windows cluster with Win-
dows Communication Foundation (WCF) in C# with multi-
threading in C language for three types of parallel environment,
i.e., cluster, multi-core CPU, and GPU. In addition, we verified
the system through the preliminary experiments.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 751

S
ta
rt

In
it
ia
li
z
a
ti
o
n

E
v
a
lu
a
ti
o
n

S
e
le
c
ti
o
n

C
ro
s
s
o
v
e
r

M
u
ta
ti
o
n

E
v
a
lu
a
ti
o
n

T
e
rm
in
a
te

C
h
e
c
k

E
n
dYes

No

Fig. 1. Flowchart of GA.

II. GENETIC ALGORITHM

A. Overview

The GA is an optimization algorithm that mimics natural
evolution with varietion and adaptation to the environment.
In evolution processes in nature, an individual that is better
adapted to the environment among a group of individuals
forming a certain generation survives at a higher rate, and
leaves offspring to the next generation. In the GA concept,
the computer finds an individual that is better adapted to the
environment, or a solution that yields an optimum value to an
evaluation function, by modeling the mechanism of biological
evolution. Figure 1 shows a typical flowchart of GA.

The GA applies genetic operations, crossover and mutation,
to each individual in the population to produce new individuals.
These individuals are evaluated and the GA selects superior
individuals for the next generation. The GA searches for
a solution by repeating this series of operations until the
termination condition is met. The evaluation time is the same
as the number of populations. GAs have good performance in
parallel environments because they have data-level parallelism.

B. Parallel Model of GA

The GA is able to parallelized because it searches multiple
points and repeats sampling. Parallel models of GA can be
divided into coarse-grained and micro-grained models

1) Coarse-grained model:The coarse-grained model is
generally called a distributed population model. This model
splits the population into multiple subpopulations, which are
then searched. Therefore, several individuals in several subpop-
ulations are moved into other subpopulations. This operation
is called the migration. Figure 2 shows the flow of the coarse-
grained model. This model uses computational resources effec-
tively, because it connects to computational nodes only during
migration. In addition, this model changes performance of the
search compared to a serial algorithm.

2) Micro-grained model:Evaluations account for a large
share of total execution time in complex of objective problems.
The micro-grained model is based on the general concept of
parallelization. This model is a master-slave model. A master
processor executes other genetic operations besides evaluation.

Evaluations are executed by slave processors. A master
processor sends individuals that should be evaluated. Slave
processors evaluate these individual, and return them to the

node 1 node 2 node N

GA GA GA

migration

GA GA GA

migration

migra!on

interval

Fig. 2. Coarse-grained model.

Master

Slave

Individual

Individual

Individual

EvaluationEvaluationEvaluation

Genetic Operation

Slave Slave

Fig. 3. Micro-grained model.

master processor. Figure 3 shows the flow of micro-grained
model. This model shows inferior parallelization performance
compared to the coarse-grained model, because it must have
many connections and the master processor uses a CPU. In
addition, this model does not alter the search performance
compared to a serial algorithm.

III. PROPOSEDFRAMEWORK

A. Background

In conventional parallel GA research, the proposed GAs are
often fully connected to the particular parallel environment. In
these cases, the proposed GAs cannot be used in the different
parallel environments. Advanced programming techniques are
required to use computational resources with GPGPU and
many cores. As new architectures appear, more GA users will
be required to make implementations for them. This represents
a burden on GA users. The coarse-grained model has important
differences from the micro-grained model. The coarse-grained
model has few connections and can use parallel environments.
However, when this model is adopted, the designed GA and
the search performance are changed. The micro-grained model,
on the other hand, does not alter the search performance are
changed. At present, users adopt the coarse-grained model to
make effective use of parallel environments. Therefore, GA
development is limited.

752 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Genetic

Operation

Genetic

Operation

EvaluationEvaluation

1

2

3

4

migration

Individual
node

Fig. 4. Island model with serial implementation.

B. Requirements

To overcome the disadvantages discussed in the previous
section, a framework is proposed with the following require-
ments:

• Systematization of parallel models
• Adoption of micro-grained model
• Standardized interface

These requirements are described in more detail below.
1) Systematization of Parallel Models:There are two aims

of parallelization in GA. The first is to parallelize algorithms
for improved search performance. The second is to parallelize
the implementation to reduce computational time. We must
declare two parallelization that parallel implementation does
not confine algorithms of GA. We define them as a logical
model and an implementation model. Figure 4 shows a GA
that adopts the island model as a logical model and serial
model as an implementation model. Figure 5 shows a GA that
adopts the island model as both the logical model and as the
implementation model. The logical model searches in parallel;
however, it can also be implemented in serial. In addition,
the logical model is confined by the limits of implementation
model.

2) Adoption of Micro-grained Model:It is necessary for
GA users to use an arbitrary algorithm with which any and all
GAs can benefit from parallel processing. The micro-grained
model is adopted as the implementation model. Therefore, the
GA can be implemented without changing the logical model.

3) Standardized Interface:To reduce the burden on GA
users, it is necessary that they should be able to use any and
all parallel environments with a common interface.

C. Overview of Proposed Framework

The purpose of the proposed framework is to allow GA
users to perform parallel processing with the micro-grained
model as an implementation model of GA, without pro-
gramming techniques for parallel processing. Figure 6 shows

Genetic

Operation

Genetic

Operation

EvaluationEvaluation

1

2

1

2

migration

node nodeIndividual

Fig. 5. Island model with parallel implementation.

GA User

GA PoolThrow

Get

Parallel

Environment

Evaluation

Evaluation

Evaluation
Individual

GA User implements Framework implements

Genetic

Operation

Fig. 6. Concept of the framework.

an overview of the framework. The framework introduces
the concept of the GA Pool as the interface. GA users
throw individuals into the GA Pool. Thus, they are able to
get evaluated individuals from the GA Pool. The GA Pool
evaluates thrown individuals with parallel environments. The
framework supplies an implementation for use of parallel en-
vironments. GA users can construct an arbitrary logical model
and implement GA operations besides evaluation part. They
implement the evaluation part with the prepared template. This
template has arguments and return value of the function of the
evaluation. This template hides implementation of a particular
connection and scheduling for the task of evaluation from
the GA user. Thus, GA users can construct GAs adapted to
parallel environments without requiring knowledge regarding
connections and scheduling jobs.

D. GA Pool

The GA Pool is composed of two queues as shown in
Figure 7. These queues are the throw queue, which puts
thrown individuals, and the get queue, which puts evaluated
individuals. When individuals are put, a thread that monitors
the throw queue sends individuals to computational resources

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 753

GA

Pool
Throw

Get

Parallel

Environment

Individual

Background

Thread

Pack Individuals

Unpack Individuals

Throw Queue

Get Queue

Fig. 7. Constitution and function of GA Pool.

TABLE I
ARCHITECTURE OF A NODE ON THEWINDOWS CLUSTER.

OS Windows HPC Server 2008
Memory 8 GB

CPU AMD Opteron2356(Quad)× 2

and calculatesthe evaluation. The thread executes connections
adapted to the architecture of the computational resources
in the parallel environment. When the thread puts evaluated
individuals into the get queue, it unpacks them one by one.

IV. EVALUATION

A. Confirmation of Parallelism with Framework

This section confirms the parallelism of GAs constructed
with the proposed framework in a cluster environment.

1) Computational Environments:A Windows cluster run-
ning Windows HPC Server was used as a distributed mem-
ory environment. The communication infrastructure was Win-
dows Communication Foundation (WCF)[9] with C#, and
we used a novel parallel model different from MPI. This
parallel model is based on Service Oriented Architecture
(SOA)[10][11][12][13]. Only function implementation is lo-
cated on the computational nodes as slaves. The client ma-
chine acting as a master calls the function to control jobs
interactively. WCF does not share sources between master and
slave processors. Therefore, it has the good expandability. In
addition, WCF adapted the micro-grained model such that the
slaves execute evaluation only, because slave processors have
only the function evaluation. The Windows cluster is able to
view a core as a computational resource. This section discusses
confirmation of the parallelism of GAs constructed with the
proposed framework with 16 cores on 2 machines, as shown
in Table I. Table II shows the parameters of the GA used in
this section.

2) Results:Figure 8 shows the relation between the number
of computational nodes and execution time. List 1 shows
pseudo-code of a simple GA constructed with the proposed
framework. Lines 4, 8, 11, and 20 in List 1 are descriptions
for using the framework. GA users add only four descriptions
and can reduce the execution time by increasing the calculation
resources as shown in Figure 8.

0

100

200

300

400

500

600

700

800

1 2 4 8 16

T
o

ta
l
ti
m

e
 [
m

in
u
te

]

Number of nodes

Fig. 8. Relation between number of computational nodes and execution time.

List 1. Simple GA constructed with the proposed framework
1 // initialization of population
2 InitPopulation();
3 // initialization of framework
4 Initialize (POPULATION_SIZE, MAX_GENERATION);
5 for (int i = 1; i <= MAX_GENERATION; i++) {
6 for (int j = 0; j < POPULATION_SIZE; j++)
7 // throw individuals to GA Pool
8 Throw(individual);
9 for (int j = 0; j < POPULATION_SIZE; j++)

10 // get individuals from GA Pool
11 individual = Get ();
12 // selection
13 population = selection(population);
14 // crossover
15 crossover(population);
16 // mutation
17 mutation(population);
18 }
19 // Finalization of framework
20 Finalize ();

B. Verification of connection performance with along to data
size

This section evaluates the connection performance of a
cluster, multi-core CPU, and GPU. We verify the influences
of data volume and number of connections on execution time
with changing numbers of individuals in a connection. There
are several parameters in algorithms and parallel libraries,
and these parameters should be tuned optimally to achieve
high parallel efficiency. In a distributed memory environment,
communication overheads are large. In a shared memory
environment, it is necessary to consider the limits of memory
based on the processor architecture. Here, we use a system
that controls data volume and number of connections when
the master processor communicates with the slave processors.
In particular, the system controls the number of individuals in

TABLE II
PARAMETERS OFGA.

Parameter Value
PopulationSize 64

Gene Length 41
Max Generation 32

Optimization Problem HRE[14]
Logical Model Simple GA[1]

754 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

TABLE III
ARCHITECTURE OF NODE WITH MULTI-CORECPU.

OS Debian 5.0.8
Memory 16 GB

CPU AMD Opteron2423 2.0 GHz (Six-Core)× 2

TABLE IV
ARCHITECTURE OF NODE WITHGPU.

OS CentOS
Memory 16 GB

CPU AMD Opteron2356 2.3 GHz (Quad)× 2
GPU Memory 512 MB

GPU NVIDIA GeForce GTX250 1.84 GHz (128-Core)

a connectionas shown in Figure 7. During the simulation, the
best data volume and number of connections can be determined
dynamically.

1) Environments:The cluster environment is the same as
the system used in section IV-A. A multi-core CPU and GPU
are used as shared memory environments. We used C language
on multi-core CPU and CUDA with NVIDIA on GPU. In
shared memory environments, multiple threads in relation to
the number of cores are generated for parallel processing. GA
users need not send a program of the evaluation module to
computational resources. We use computational resources to
compare each environment. One node is used for a Windows
cluster and one thread is used for multi-core CPU and GPU.

Tables III and IV show the specifications of multi-core CPU
and GPU.

Table V shows the parameters of the GA used in this
evaluation. A total 512 data (4000 bytes each) are sent to the
computational resources, because the population size is 512
and the data volume of an individual is 4000 bytes. Power-of-
two data are sent, and we record the execution time.

2) Results: Figures 9, 10, and 11 describe the relation
between data volume in a connection and execution time in
each parallel environment. The values in these graphs are the
medians of 100 independent trials. As show in each figure,
the data volume was confirmed to affect the execution time.
In addition, we confirmed that the optimal data volume that
reduces the running time to the greatest extent is different for
each architecture. The optimal values are 64× 4000 bytes for
the cluster, 8× 4000 bytes for the multi-core CPU, and 16×
4000 bytes for the GPU is.

V. D ISCUSSION

As shown in Figures 9 - 11, it was confirmed that the min-
imum execution time according to data volume was different
between the cluster, multi-core CPU, and GPU environments.

TABLE V
PARAMETERS OFGA.

Population Size 512
Gene Length 1000

Data Type of a Gene int (4 bytes)

0

50000

100000

150000

200000

250000

1 2 4 8 16 32 64 128 256 512

T
im

e
 [
m

s
e

c
]

Data volume in one connection [bytes]
×4000

Fig. 9. Relation between data volume in one connection and execute time
on Windows cluster.

0

10

20

30

40

50

1 2 4 8 16 32 64 128 256 512

T
im

e
 [
m

s
e

c
]

Data volume in one connection [bytes]
×4000

Fig. 10. Relation between data volume in one connection and execute time
on multi-core CPU.

704

706

708

710

712

714

716

718

1 2 4 8 16 32 64 128 256 512

T
im

e
 [
m

s
e

c
]

Data volume in one connection [bytes]
×4000

Fig. 11. Relation between data volume in one connection and execute time
on GPU.

Table VI shows the differences between the max and min
values of execution time in each environment. As shown in

TABLE VI
DIFFERENCES BETWEEN MAX AND MIN TIMES.

Environment Difference[msec]
Cluster 107170

Multi-core CPU 23.1068
GPU 3.52358

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 755

this table,the difference is smallest in GPU and the largest
in cluster. This suggests that tuning has a greater effect in
distributed memory environments. However, the tuning affects
are also different even for shared memory environments.
This evaluation used only homogeneous parallel environments.
However, these results show that changing data volume has a
greater influence in heterogeneous parallel environments.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we proposed a framework for GAs in parallel
environments. GA researchers can prepare implementations
of GA operators and fitness functions using this framework.
We have prepared several types of communication library
for use in various parallel environments. Combining the GA
implementations and our libraries, GA researchers can benefit
from parallel processing without requiring deep knowledge
regarding parallel architectures. In the proposed framework,
the GA model is restricted to a micro-grained model. In
this paper, parallel libraries for Windows cluster environment,
multi-core CPU environment, and GPGPU environment were
prepared.

For the Windows cluster, parallel communication libraries
were prepared with WCF and C#. Using the libraries and
the framework, GA researchers can implement the parallel
processing part with only four descriptions．In addition, we
verified data volumes and number of connections on the
Windows cluster, multi-core CPU, and GPU with a system that
changes the number of individuals in a connection. The results
indicated that the best number of individuals in a connection
differs according to the architecture.

In future work, a mechanism to find the best number of
individuals and to tune it dynamically will be implemented in
the libraries. In addition, we will also attempt to prepare other
parallel libraries for other parallel architectures.

REFERENCES

[1] David E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, 1989.

[2] T. Starkweather, D. Whitley, and K. Mathimas,Optimization using
Distributed Genetic Algorithms, Parallel Problem Solving form Nature,
1991.

[3] H. Mühlenbein, “Parallel genetic algorithms, population genetics and
combinatorial optimization,” inParallelism, Learning, Evolution, vol.
565 ofLecture Notes in Computer Science, pp. 398–406. Springer Berlin
/ Heidelberg, 1991.

[4] C.Belding Theodore, “The Distributed Genetic Algorithm Revisited,”
Proc.6th International Conf. Genetic Algorithms, pp. 114–121, 1995.

[5] M. Miki, T. Hiroyasu, M. Kaneko, and K. Hatanaka, “A Parallel Genetic
Algorithm with Distributed Environment Scheme,”IEEE International
Conference on Systems, Man, and Cybernetics, vol. 1, pp. 695–700,
1999.

[6] Lim D., Ong Y. Soon, Jin Y., Sendhoff.B, and Lee B. Sung, “Efficient
hierarchical parallel genetic algorithms using grid computing,”Future
Generation Computer Systems, vol. 23, no. 4, pp. 658–670, 2007.

[7] J. Ming Li, X. Jing Wang, R. Sheng He, and Z. Xian Chi, “An efficient
fine-grained parallel genetic algorithm based on gpu-accelerated,” in
Network and Parallel Computing Workshops, 2007. NPC Workshops.
IFIP International Conference on, 2007, pp. 855–862.

[8] Thompson, A. Matthew and Dunlap, I. Brett, “Optimization of analytic
density functionals by parallel genetic algorithm,”Chemical Physics
Letters, vol. 463, no. 1–3, pp. 278–282, 2008.

[9] “Windows Communication Foundation,”
http://msdn.microsoft.com/en-us/library/dd456779.aspx.

[10] “Understanding Service-Oriented Architecture,”
http://msdn.microsoft.com/en-us/library/aa480021.aspx.

[11] M.P. Papazoglou and D Georgakopoulos, “Service-Oriented Computing,”
Communications of the ACM, vol. 46, no. 10, pp. 25–28, Oct. 2003.

[12] W. Zhang and G. Cheng, “A service-oriented distributed framework-
wcf,” Web Information Systems and Mining, International Conference
on, vol. 0, pp. 302–305, Nov. 2009.

[13] Alaa M. Riad, Ahmed E. Hassen, and Qusay F. Hassen, “Design of
SOA-based Grid Computing with Enterprise Service Bus,”International
Journal on Advances in Information Sciences and Service Sciences, vol.
2, no. 1, pp. 71–82, Mar 2010.

[14] Y. Kosugi, A. Oyama, K. Fuji, and M. Kanazaki, “Conceptual Design
Optimization of Hybrid Rocket Engine,”Proceedings of Space Trans-
portation Symposium, 2009.

756 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

An Intelligent Lighting System
to Realize Individual Lighting Environments

Based on Estimated Daylight Distribution
Mitsunori MIKI

Department of Science and Engineering
Doshisha University

Kyoto, Japan
mmiki@mail.doshisha.ac.jp

Takuro YOSHII
Graduate School of Engineering

Doshisha University
Kyoto, Japan

tyoshii@mikilab.doshisha.ac.jp

Tomoyuki HIROYASU
Department of Life and Medical Sciences

Doshisha University
Kyoto, Japan

tomo@is.doshisha.ac.jp

Masato YOSHIMI
Department of Science and Engineering

Doshisha University
Kyoto, Japan

myoshimi@mail.doshisha.ac.jp

Hiroyuki YONEMOTO
Graduate School of Engineering

Doshisha University
Kyoto, Japan

hyonemoto@mikilab.doshisha.ac.jp

Abstract—When we introduced a lighting system to realize
individual lighting environments into real office environments,
difficulties arose in placing illuminance sensors on users’work-
planes. This study hence proposes a new approach to control
a lighting system intended to realize individual lighting environ-
ments without placing illuminance sensors on users’workplanes.
This system uses illuminance sensors for measuring not the
illuminance on workplanes but that of daylight: it optimizes
lighting based on simulations for different luminous intensities
of lighting and patterns of daylight illuminance distribution
which are estimated from measurements by daylight illuminance
sensors. An experiment to converge illuminance at target positions
into target illuminance levels was conducted in a setting with 15
fluorescent lights and 9 illuminance sensors, which was intended
to simulate a real office environment. The result indicated that
such a system can realize illuminance levels required by individual
users with minimum power consumption responding to changing
daylight conditions.

Index Terms—lighting, intelligent lighting system, illuminance
distribution, daylight, optimization, illuminance sensor

I. INTRODUCTION

With the development of electronic parts and information
technologies, microcomputer chips are now built into many
machines. In this context, there have been many attempts
to develop an intelligent system which enables the machine
itself to autonomously control its operation to suit user or
environmental requirements. In the field of lighting and air
conditioning, however, the introduction of intelligent systems
has been rather slow compared to other products from such
concerns as installation costs. Yet at last in recent years,
attempts of intelligent designs have increased also in lighting
systems, intended, for instance, to realize lighting patterns
meeting different user requirements or to minimize energy
consumption. One example is a residential lighting fixture with
automatic brightness adjustment function by sensor[1]. In this

system, an illuminance sensor built into the lighting fixture
detects reflection by the surrounding surfaces and natural
daylight so that, based on the measurement, the system may
control the luminous intensity of the lighting to keep the
illuminance within the area at a certain level. Such a system
can prevent the luminous intensity from being higher than
necessary so as to minimize energy consumption.

This lighting system, however, cannot provide brightness
(illuminance) at the level and the point as desired by the
user, as long as the illuminance sensor is positioned on the
lighting fixture. On the other hand, it has been reported that
providing the illuminance most appropriate to the task of each
worker is an effective choice for the improvement of office
environment[2]: to realize energy efficiency and to improve
optical environment for each worker, the use of task-ambient
lighting systems will be an effective approach.

But in reality, task-ambient lighting systems are not widely
accepted in Japanese offices because (1)typical office buildings
are equipped with ceiling lighting fixtures which can ensure a
desktop illuminance of 750 lx without a task-ambient lighting,
and (2)most companies are not willing to pay additional costs
for purchasing task-ambient lightings, as well as consider that
task-ambient lighting systems spoil the visual impression of
the office.

Against this backdrop, the authors have proposed an intelli-
gent lighting system which can provide brightness as required
by users at any given points specified by users, depending only
on ceiling lighting fixtures[3], [4]. With this intelligent lighting
system, each user specifies a target illuminance level for an
illuminance sensor which is to be placed on the workplane,
then the system will realize the target illuminance level. The
intelligent lighting system, composed of a lighting fixture, a
control device, an illuminance sensor and a wattmeter, can re-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 757

alize any lighting patterns as required by the user independent
of electrical wiring. The intelligent lighting system has proven
successful in our laboratory experiments[5].

Toward the commercialization of our intelligent lighting
systems, currently verification experiments are underway in
several offices in Tokyo[6]. The results so far indicate that there
are cases where it is difficult to place an illuminance sensor
on the user’s workplane. In this study, we will propose a new
approach for controlling intelligent lighting systems to realize
an individualized lighting environment without a need to place
an illuminance sensor on the user ’s workplane. Further, an
operational experiment under an environment simulating a real
office is conducted to verify the effectiveness of the proposed
system.

II. INTELLIGENT LIGHTING SYSTEM

A. Construction of Intelligent Lighting System

The intelligent lighting system, as indicated in Fig.1, is
composed of lights equipped with microprocessors, portable
illuminance sensors, and electrical power meters, with each
element connected via a network.

Fig. 1. Configuration of Intelligent Lighting System

Individual users set the illuminance constraint on the illu-
minance sensors. At this time, each light repeats autonomous
changes in luminance to converge to an optimum lighting
pattern. Also, with the intelligent lighting system, positional
information for the lights and illuminance sensors is unneces-
sary. This is because the lights learn the factor of influence
to the illuminance sensors, based on illuminance data sent
from illuminance sensors. In this fashion, each user’s target
illuminance can be provided rapidly.

The most significant feature of the intelligent lighting
system is that no component exists for integrated control of
the whole system; each light is controlled autonomously. For
this reason, the system has a high degree of fault tolerance,
making it highly reliable even for large-scale offices.

B. Adaptive Neighborhood Algorithm using Regression Coef-
ficient(ANA/RC)

The control algorithm is a critical element for the control of
an intelligent lighting system. The speed of convergence to the
target illuminance as well as its accuracy depends largely on
the lighting control algorithm. As the best algorithm presently
available for lighting control, we have proposed an Adap-
tive Neighborhood Algorithm using Regression Coefficient
(ANA/RC)[7], which was developed by adapting the Stochastic
Hill Climbing method (SHC) specifically for lighting control
purposes.

In ANA/RC, the design variable is the luminous intensity
of each lighting: the algorithm aims to minimize the power
consumption while keeping the illuminance at the target level
or above. It further enables the control system to learn the
effect of each lighting on each illuminance sensor by regression
analysis and, by changing the luminous intensity in response,
enables a quick transition to the optimum intensity.

The following is the flow of control by ANA/RC:

1) Each lighting lights up by initial luminance.
2) Each illuminance sensor transmits illuminance infor-

mation (current illuminance, target illuminance) to the
network. The electrical power meter transmits power
consumption information to the network.

3) Each lighting acquires the information from step 2, and
conducts evaluation of objective function for current
luminance.

4) Neighborhood is determined, which is the range of
change in luminance based on factor of influence and
illuminance information.

5) The next luminance within the neighborhood is randomly
generated, and the lighting lights up by that luminance.

6) Each illuminance sensor transmits illuminance informa-
tion to the network. The electrical power meter transmits
power consumption information to the network.

7) Each light acquires the information from step 6, and
conducts evaluation of objective function for next lu-
minance.

8) A regression analysis is conducted and the level of
influence is estimated.

9) If the objective function value is improved, the next
luminance is accepted. If this is not the case, the lighting
returns to the original luminance.

10) Steps 2～9 are one search operation of the luminance
value, which is repeated.

A search operation process (requiring about 2 seconds)
consists of steps 2) through 9) above: by iterating this process,
the system continues to learn how the lighting affects the
illuminance sensor measurement until it realizes the target
illuminance with minimum power consumption. Furthermore,
by using the influence level found in step 8) as a basis for the
evaluation and generation of the next illuminance value, the
system can quickly optimize illuminance.

Next, we will see the objective function used in this
algorithm. The purpose of the intelligent lighting system is

758 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

to achieve each user’s desired illuminance, and to minimize
energy consumption. Thus, it can be understood as an op-
timization problem in which each light optimizes its own
luminance. Following from this, the luminance of each light is
considered a design variable, under the constraint of the user’s
target illuminance, in resolving the problem of optimization to
minimize energy consumption. For this reason, the objective
function is set as in Eq. (1).

f = P + w
n∑

i=1

gi (1)

gi =
{ (Iti − Ici)2 I∗ ≤ |Iti − Ici|

0 otherwise
(2)

P : Power consumption, w: Weight, Ic: Current illuminance
It: Target illuminance, n: Number of target points
I∗: Threshold on illuminance difference

The objective function was derived from amount of elec-
tric power P and illuminance constraint gj . Also, changing
weighting factor w enables changes in the order of priority for
electrical energy and illuminance constraint. The illuminance
constraint is decided so that a difference between current
illuminance and target illuminance within a threshold, as
indicated by Eq. (2). The threshold value is set as a 50 lx.

Since this intelligent lighting system uses an autonomous
distributed-control algorithm, particular cases of installation
may use either distributed control or centralized control.

III. VERIFICATION EXPERIMENTS IN REAL
OFFICE ENVIRONMENTS

From around 2009 onward, we have conducted experiments
to verify the effectiveness of the intelligent lighting system
in several offices in Tokyo. Fig.2 shows how the intelligent
lighting system is used in an office of Mori Building Co.,
Ltd. (Roppongi Hills Mori Tower). As shown in the photo,
an illuminance sensor is placed on the workplane and the
user presets the target illuminance. This enables the intelligent
lighting system to realize the targeted brightness on the user’
s workplane using the control algorithm described in the
preceding chapter.

Fig. 2. An experimental intelligent lighting system in a real office

In our experiments in some offices, however, it was found
difficult to place illuminance sensors on user workplanes due
to mounting documents. In those cases, illuminance sensors
were placed at such points as a corner or a partition top. Fig.3
shows an example of an illuminance sensor placed on top of
a partition. Positioning the illuminance sensor this way makes
it impossible for the system to realize the target illuminance
on the user ’s workplane.

Fig. 3. A situation prohibiting the placement of an illuminance sensor on
the workplane (example)

Therefore, to solve this problem while maximizing the
workspace available for the user, we propose a new control
algorithm for intelligent lighting systems.

IV. OPTIMAL CONTROL OF LIGHTING BASED ON
ESTIMATED DAYLIGHT DISTRIBUTION PATTERNS

A. Configuration of the proposed system

As mentioned in the preceding chapter, it was found difficult
in some real office environments to place illuminance sensors
on users ’workplanes. Hence, we propose a new system to
realize the desired illuminance at any given point specified by
each user with minimum power consumption without placing
an illuminance sensor on the user’s workplane. To realize the
target illuminance at the workplane which does not have an
illuminance sensor, the system estimates illuminance there by
simulation. Further, to maximize the accuracy of simulation,
illuminance sensors are set in readily available spaces such as
partition tops, and the system estimates patterns of daylight
illuminance based on the distribution of illuminance measure-
ments. Unlike earlier intelligent lighting systems, this system
requires data on user and illuminance sensor positions for mak-
ing simulations. Here, the point where the target illuminance
should be realized is typically the user’s workplane. Therefore
the positions of target points where certain illuminance levels
are desired by users will be readily known since desk positions
are usually fixed.

The proposed system will be composed of lighting fixtures,
illuminance sensors and a central control device. In the pro-
posed system, an optimum lighting pattern is found based on

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 759

simulations using illuminance sensor measurement data, then
the luminous intensity of each lighting is determined. Since
this makes it impossible to use a distributed control approach
with control devices built into each lighting fixture, a central
control device is used unlike our earlier intelligent lighting
systems. Illustrative configuration of the proposed system is
shown in Fig.4, which is a view of a room from the top.

Fig. 4. Illustrative configuration of the proposed system

B. Proposed system control
The proposed system estimates the effect of light from

sources other than the lightings under control, such as daylight,
based on the measurement data obtained from all illuminance
sensors in different positions within the room. Then, in view
of the distribution of illuminance from daylight, it determines
an optimum lighting pattern based on a simulation. For this
simulation, the Stochastic Hill Climbing method (SHC) is used
as it was in preceding intelligent lighting systems. Although
SHC tends to find a local optimum solution if the objective
function is multimodal, studies have indicated that a good
solution can be obtained with SHC by limiting the area of
neighborhood to an appropriate range, which is defined as a
range of generation of next solutions.

By using this method, the system will be able to provide the
desired illuminance results without setting illuminance sensors
on users ’workplanes. The flow of control of the proposed
method is shown below. Here, illuminance sensor positions
and target positions are given initially.

1) Calculate the optimum luminous intensity of each light-
ing to realize the target illuminance at target positions
with minimum power consumption based on illuminance
calculation, then turn on each lighting with the calculated
luminous intensity (the luminous intensity from daylight
is assumed to be 0 lx).

2) Obtain illuminance data from illuminance sensors.
3) Calculate the difference between the calculated illu-

minance and the actual illuminance measured at each
illuminance sensor position, which should be the illumi-
nance from daylight at the sensor position.

4) Estimate the distribution of daylight in the entire room
based on the daylight illuminance values obtained from
the above calculation, and then estimate the illuminance
from daylight at each target position.

5) For each target position, optimize the luminous intensity
of the lighting so as to bring its illuminance as close as

possible to the difference between the target illuminance
and the illuminance from daylight.

6) Repeat steps 2) through 5).
Using this method, even when illuminance sensor positions

do not coincide with the points where the desired illumi-
nance should be realized, the system can realize the target
illuminance values responding to changing daylight conditions
with minimum power consumption. Just as in our previous
intelligent lighting systems, the objective function of Eq.(1)
is used, where illuminance Lc is the sum of the illuminance
from the lighting (lighting illuminance) and the illuminance
from natural daylight (daylight illuminance).

Ici = Ili + Idi (3)

Il: Illuminance from lighting
Id: Illuminance from daylight

Lighting illuminance is calculated using an illuminance
simulator described in the following section, while daylight
illuminance at any given point is calculated using a daylight
simulator described in the following section. By using these
two simulators, the optimization problem expressed by Eq.(1)
is solved to realize lighting control.

C. Illuminance simulator

To calculate illuminance at a given point in a given room,
different approaches have been studied including the point-by-
point method and the lumen method calculations using Monte
Carlo method[8], which are known to be capable of realizing a
high level of accuracy. Still, to ensure a high level of accuracy
with these methods require defining many parameters such as
the luminous flux of lighting, maintenance factor, luminous
intensity distribution curve or reflection by walls, of which
values are not readily known in most real-world environments.

Therefore, to enable highly accurate simulations in a simpli-
fied method, the proposed approach uses only a limited number
of parameters. Given that the target points where a certain
illuminance level is required are on fixed workplanes, here we
need to simulate only illuminance at specific positions rather
than at any arbitrary positions. In the proposed approach, the
actual illuminance at a particular point is measured with the
relevant lighting illuminated at a particular luminous intensity,
and the level of influence by the lighting at that point is
stored on a database. Then based on this value, illuminance
at that particular point under any given lighting pattern can be
calculated. At the illuminance sensor positions, the daylight
illuminance can be calculated as a difference between the
measured illuminance and the lighting illuminance.

D. Daylight simulator

Different approaches have been studied to calculate daylight
illuminance distribution[9], [10], which use such factors as the
position of the sun, the amount of clouds, and the transmittance
of the windowpane material to calculate daylight distribution
patterns. Yet they either assume an environment without a
window blind or require detailed data on the effects of blinds.

760 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Also, dust on blinds may change the reflectance of the blind
to spoil the accuracy of simulation.

Therefore in the proposed method, illuminance sensors are
positioned in spaces where they can be placed readily and the
daylight illuminance distribution function is estimated using
the least square method based on the daylight distribution
assessed as described above.

E. Derivation of a model equation

Plenty of illuminance sensors were set in the experimental
environment as shown in Fig.5 and daylight illuminance was
measured by each sensor. A model equation was derived based
on the daylight illuminance measurements on sunny, cloudy
and rainy days over a period from October to January.

Window

Lighting Fixture Illuminance Sensor

Fig. 5. Daylight illuminance measurement system

After making many trials and errors, we derived a model
equation which best expresses the indoor daylight illuminance
distribution. Eq. (4) is the derived model equation. In the pro-
posed method, the daylight illuminance distribution function
is estimated based on the model equation, when positional
coordinates are (x,y) and the daylight illuminance at that
position is z.

z = β0+β1x4y3+β2x3y4+β3x3y2+β4x2y4+β5xy3+β6xy2+β7y (4)

V. SUMMARY OF AN OPERATIONAL EXPERIMENT

An operational experiment was conducted for a total of 9
hours between 7:00 and 16:00 on December 19, 2010, which
was a sunny day. The proposed system was constructed and its
validity was tested for verification. Illuminance sensors were
set at regular intervals and the points for which users will
specify desired illuminance levels (hereinafter called“ target
points”) were defined.

The experiment used 9 illuminance sensors and assumed 5
users with target points arranged as shown in Fig. 6. The target
points included points A, B, C, D and E, for which the target
illuminance was set at 400 lx, 500 lx, 550 lx, 600 lx and 700
lx respectively.

Illuminance data were taken every second and lightings
were turned out once in every minute. Since the purpose of
turning out lights here is only to allow comparison between the

daylight illuminance distribution as estimated by the proposed
system and the actual distribution of illuminance from daylight,
they were never turned out while operating the system under
the proposed method. For the experiment, window blinds were
arranged 45 degrees outward and neutral white fluorescent
lamps were used of which luminous intensity was variable
between 401 cd and 1336 cd.

Window

A

1

B

C E

D

2

3

Lighting Fixture Illuminance Sensor Target Point

4

5

6

7

8

9

10

11

12

13

14

15

Fig. 6. Experimental environment

In the operational experiment, the lighting pattern was
changed every 30 seconds to verify whether the target illu-
minance levels are constantly realized at target points.

VI. EXPERIMENT RESULTS AND DISCUSSIONS

Fig.7 shows history of the illuminance data at target points
A, B, C, D and E. Fig.8 shows history of the daylight
illuminance data, measured once in every minute with lights
turned out. Fig.9 shows history of the luminous intensity data
of lights 4, 5, 7, 10 and 12 which are located near some target
point.

Il
lu

m
in

a
n

c
e

[l
x
]

300

400

500

600

700

800

900

1000

7 8 9 10 11 12 13 14 15 16

Target point E(700 lx)

Target point D(600 lx)

Target point B(500 lx)

Target point A(400 lx)

Time[hour]

Target point C(550 lx)

Fig. 7. History of the measured illuminance data

Fig.7 indicates that target luminance levels were constantly
achieved after 12:30. There were, however, some periods
when target illuminance levels were not achieved: particularly
around 10:00 and from 11:00 until around 12:20, the actual
illuminance levels were higher than target values. Noting that,
let us examine Fig.8 and Fig.9: Fig.8 indicates that in those
periods when target illuminance was not achieved, the effect of
daylight illuminance was significant. Also, as one can see from
Fig.9, the luminous intensity levels of the lightings were kept

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 761

Il
lu

m
in

a
n

c
e

[l
x
]

7 8 9 10 11 12 13 14 15 16

Target point E

Target point D

Target point B

Target point A

Time[hour]

0

100

200

300

400

500

600

700

800

Target point C

Fig. 8. History of the measured daylight illuminance data

at a minimum level during such periods. These results indicate
that when actual daylight illuminance is too large, it was
simply physically impossible to realize the target illuminance
levels. For this, from the history of the measured illuminance
data in the periods between 7:00 and 9:40 and after 12:30, we
can learn that the luminous intensity of each lighting changes
as the measured daylight illuminance changes, and thus the
target illuminance values can be achieved.

L
u

m
in

a
n

c
e

[c
d

]

7 8 9 10 11 12 13 14 15 16

Light 7

Time[hour]

400

Light 4

Light 10

Light 12

Light 5

200

600

800

1000

1200

Fig. 9. History of the luminous intensity in the proximity of target points

Next, we will examine the energy efficiency of the proposed
method. Fig.10 shows history of the luminous intensity data
of lightings number 9 and 11 which are distant from target
points.

Fig.10 indicates that lightings distant from target points
illuminated at a minimum intensity, demonstrating the energy
efficiency of the proposed system. These results demonstrated
that the proposed method can provide desired illuminance
levels on workplanes without setting illuminance sensors on
those workplanes while saving energy.

VII. CONCLUSION
In this paper, we proposed a new control algorithm for an

intelligent lighting system which realizes desired illuminance
levels on workplanes based on illuminance distribution pat-
terns estimated from illuminance data obtained by illuminance
sensors placed on readily available spaces such as partition
tops instead of workplanes.

L
u

m
in

a
n

c
e

[c
d

]

7 8 9 10 11 12 13 14 15 16
Time[hour]

400

200

600

800

1000

1200

Light 11

Light 9

Fig. 10. History of the luminous intensity distant from target points

To verify the validity of the proposed method, an opera-
tional experiment was conducted in an environment simulating
a real office. The experiment demonstrated that the method
we propose can realize desired illuminance levels with energy
efficient lighting patterns by estimating daylight from windows
even when illuminance sensor positions do not coincide with
the points where users wish to realize desired illuminance lev-
els. These results demonstrate that individualized illuminance
environments can be realized even where illuminance sensors
cannot be placed on workplanes.

REFERENCES

[1] H. Yoshida and T. Mannam :Technologies — Panasonic Electric Works
— Panasonic - ”Residential Lighting Fixture with Automatic Brightness
Adjustment Function by Sensor”, panasonic, Technical Report Vol. 57,
No. 4, 2009
http://panasonic-electric-works.net/technologies/report/574e/main02.html

[2] P. Boyce and N. Eklund and N. Simpson :”individual Lighting Control
Task Performance, Mood, and Illuminance”, J. of the Illuminating
Engineering Society, pp.131-142, 2000.

[3] M. Miki, T. Hiroyasu, and K.Imazato :”Proposal for an intelligent
lighting system, and verification of control method effectiveness”, Proc.
IEEE CIS, pp.520-525, 2004.

[4] M. Miki, K. Imazato, and M. Yonezawa :”Intelligent lighting control
using correlation coefficient between luminance and illuminance”, Proc.
IASTED Intelligent Systems and Control, vol.497, no.078, pp.31-36,
2005.

[5] M.Miki, Y.Kasahara,T.Hiroyasu and M.Yoshimi :”Construction of Illu-
minance Distribution Measurement System and Evaluation of Illumi-
nance Convergence in Intelligent Lighting System”, IEEE Sensors2010
Acoustic and Optical Sensing Systems, 2010.

[6] S.Inoue, MITSUBISHI ESATE COMPANY Ltd,:Towards ”the City of
the Future”
http://www.jetro.org/documents/green innov/Shigeru Inoue Presentation.pdf

[7] S. Tanaka, M. Miki, T.Hiroyasu and M.Yoshikata :”An evolutional
optimization algorithm to provide individual illuminance in work-
places”,Proc:Systems Man and Cybernetics, 2009. SMC 2009. IEEE
International Conference on ”，pp.941-947, 2009.

[8] Y. Ohtani, M. Ohkawa, A. Uchida and T. Yamaya :”Illuminance Calcu-
lation Using Monte Carlo Method”, J. Light &Vis. Env., Vol. 24, No.1,
pp.1 42-1 49, 2000.

[9] C. Reinhart and S. Herkel :”The simulation of annual daylight illumi-
nance distributions ― a state-of-the-art comparison of six RADIANCE-
based methods”, Trans. Energy and Buildings, Volume 32, Issue 2,
pp.167-187,2000.

[10] D. Li, G. Cheung and C. Lau :”A simplified procedure for determining
indoor daylight illuminance using daylight coefficient concept”, Trans.
Building and Environment Volume 41, Issue 5,pp. 578-589, 2006.

762 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Event Detection using Archived Smart House Sensor Data
obtained using Symbolic Aggregate Approximation

Ayaka ONISHI 1, and Chiemi WATANABE 2

1,2 Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-Ku, Tokyo, Japan

Abstract - In recent years, the widespread usage of network
and sensor technologies has resulted in an increased number
of applications that use various types of sensors. We propose
the development of a futuristic house that can adapt to rapid
changes in information technology. This project is called “The
Ocha House Project.” We focused on data obtained using
sensors and proposed and implemented a database system,
which stores information pertaining to critical parameters in
the house. This system can form the basis for developing other
applications. We used the symbolic aggregate approximation
(SAX) to quickly retrieve data. SAX converts data from a time
series into a string. In addition, we created an index by
applying suffix trees. In this study, we investigated queries
that can be used for detecting events in a smart house using
the SAX index and archived sensor data.

Keywords: Symbolic aggregate approximation, event
detection; sensor data

1 Introduction
Owing to the widespread use of networks and sensors

technology in recent years, significant opportunities for using
sensors have emerged places such as offices, and shops.

In this study, we focus on sensor applications in daily life.
We are currently participating in the“Ocha House Project”
which aims to develop a futuristic house that would facilitate a
life style using a variety of IT technologies [1]. The methods
and systems proposed in the project will be implemented in an
experimental smart house called “Ocha House” (Figure 1) [2].

Figure 1. Experimental smart house called “Ocha House.”

In our study, we focus on technologies involving the

storage of sensor data in a manner that enables the system to
efficiently answer queries arising from using sensor
applications. By querying sensor data, applications can
extract“house’s information.” This includes information about
events that occur in the house, such as the time of opening or
closing a particular door, the duration for which the light in
the living room is used, among others. If such information can
be retrieved, many useful devices can then be implemented
using the data. Some examples include tools that manage who
may enter or exit a room and those that calculate the
relationship between the behavior of occupants in the house
for a given time period and the corresponding electricity bill.

To extract such data, sensor data needs to be archived
into a database system. However, because sensors
continuously measure parameters and transmit data, sizeable
amounts of data will need to be stored on the database. To
efficiently retrieve and analyze this data, we need to provide a
methodology that can respond to queries for such large
volumes of data.

Thus, we propose a methodology that can effectively
retrieve data on house parameters from the large dataset that
has been archived. First, we leverage the symbolic aggregate
approximation (SAX) index structure [3] proposed by Lin et.
al.

The purpose of SAX is to quantize the original sensor
data, which is usually a sequence of numerical values, and
translate them to character strings. In this paper, we name the
character strings according to the sensor data as “SAX index”.

We assume that queries are issued using the query by
example (QBE) style. Therefore, sequences of numerical
values are issued as a query, and the system should then
answer several numerical sequences, which are similar to the
query pattern. Our system translates query sequences into the
corresponding character string and retrieves substrings of
SAX indices that are similar to the query string. One of the
features of the SAX index is that various techniques dealing
with character strings can be utilized for query retrieval and
data mining. For example, motif discovery [4] using SAX can
be implemented.

 Because the sensor continually measures data and the
sensor data sequence also increases in length, the
corresponding SAX index will be a long string. Therefore, we
apply the suffix tree as a method for effectively retrieving
substrings from a long SAX index. However, we should note

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 763

that the suffix tree index is usually used for exact matches. For
event detection such as the opening and closing of doors, the
system needs to perform similarity retrieval because sequences
assigned to identical events have slightly different patterns
depending on the person(s) triggering the event.

As a similarity measure, we then propose the application
of similarity retrieval according to the edit distance. We define
an editing cost for the edit distance based on the definition of
the SAX approximation distance and are able to realize the
fast similarity retrieval using the error-tolerant recognition
algorithm [5], which deals with the edit distance retrieval
method with a tree.

In Chapter 2, we explain the SAX method. Chapter 3
describes the application of the suffix tree to the SAX index,
while chapter 4 presents the application of an index to the
stored sensor data. In chapter 5, we describe the similar
retrieval method using the edit distance, and Chapter 6
describes the investigations of event detections. Chapter 7
briefly discusses related research, while the conclusions and
challenge faced are mentioned in chapter 8.

2 SAX
 SAX is an expression technique used for time series data,

and it quantizes this data into a string. Two parameters are
required for generating a SAX index: length of the string w (or
the amount of data for converting one alphabet) and the
number of alphabetic types a. These values are experimentally
determined on the basis of the data. The steps for converting
time series data into a string are as follows: (Figure 2 shows
an example, where the dashed line is the sensor data that
applies SAX.)

(1) Data is divided into w equal sized “frames.”
(2) The mean value of each frame is calculated.
(3) The regions with numerical sensor data values are

divided into multiple sub-regions, and the alphabetic
characters a, b, and c are assigned to the
corresponding sub-regions.

(4) The mean value obtained in (2) is converted into
characters according to the sub-region that is
described in (3).

Figure 2. Time series data converted into a string by SAX.

 There are three advantages of using SAX: (1) it is easy to
implement, (2) it has a “symbolic” approach that allows lower
bounding of the true distance, and (3) users can apply retrieval and
data-mining techniques for obtaining the text string.

In this study, we implemented the methods described
above and created a SAX index that converted sensor data into
strings [1]. A query to the SAX index must first be converted
to a string query. Time can be calculated from the position of
the substring that matched the query.

We have introduced SAX as an indexing technique, and
we translate sensor data into character strings.

In this system, we assume that queries are issued using
the QBE style. That is, a sequence of numerical values is
issued as a query, and the system responds to several
sequences of numerical values that are similar to the query
sequence. Our system also translates query sequences into the
corresponding character string and retrieves substrings of the
SAX index that are similar to the query string.

To perform a similarity, the system calculates the distance
between the query sequence (Q) and subsequences of the sequence
stored in the database. ({C1,…,Cn|Ci refers to the subsequences of
the sequence C}) and answers a set of subsequences whose distances
are less than a specified threshold. The Euclidean distance is often
used as a measure of distance in time series data (Fig. 3 (A)).

On the other hand, the distance between a query string ,
which is translated into a character string by SAX, and ,
which is one of the substrings of the SAX index, is defined as
the sum of the square of the distance between dist(,) (Fig.
3 (B)), where and are the i-th characters in the strings

, respectively, w is the number of characters in the
SAX index, and n is the amount of original data.

F
Figure 3. Definition and a schematic of distance between
strings in SAX.

The distance dist(,) between the characters and
are defined by the distance between the maximum value
assigned to the character and the minimum value assigned to
the character . For example, the left side of Figure 4 shows
the distribution of values in the time series data. Since the
SAX index normalizes values before quantization, they follow
a normal distribution. The time series values are divided into
four types of characters, as shown in Figure 4. The distance
dist(“a,” “d”) is found to be equal to 1.34 because the
maximum value for “a” is −0.67, and the minimum value for

764 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

“d” is 0.67. There is no need for the system to measure the
distance between characters whenever a query is issued
because a table showing the distances between characters can
be prepared in advance (The table in Figure 4 shows the
distance).

By defining these distances, the distance between the
strings using SAX is the approximate distance for the original
time series data and is guaranteed to allow lower bounding of
the true distance.

Figure 4. Table and illustration of the distance between the
characters in SAX.

3 Application of suffix tree to SAX index
 Queries using the SAX index retrieve substrings of the

SAX index, which are similar to the query string. However,
when the SAX index becomes a long sequence, it is not
efficient to retrieve subsequences by sequential scanning. We
therefore apply a suffix tree to the SAX index as a data
structure that allows fast string retrieval.

The suffix tree is a data structure that represents suffixes
of a given string as a tree. Each suffix corresponds to a
different path in the tree. A leaf node takes the position of the
corresponding suffix in the original string. For example,
Figure 5 shows the suffix tree construction for the suffixes in
the SAX index “babac.” The suffix of the string “babac” is
five: “babac,” “abac,” “bac,” “ac,” and “c.” When users want
to retrieve data, they will traverse a suffix tree beginning at the
root. For example, if a user retrieves “ac” on the tree in Figure
5, he/she arrives at the leaf node 3. Therefore, he/she will
know that “ac” exists in the third position from the beginning
of the original string.

Figure 5. Suffix tree construction for the string “babac.”

To confirm the effectiveness of the suffix tree, we
compared the retrieval speed using the SAX index for data
that had been archived over a two-day period and
corresponded to 2,230,000 characters. Table 1 shows the
results obtained, and they confirm that the SAX index that
used the suffix tree retrieves data faster than a sequential scan.

Table 1. Comparison of speed of retrieval.
suffix tree No suffix tree

Sequential Scan
3ms 267ms

4 Applying indices to sensor data
Data are sent continuously by the sensor, and the end

point of the sensor data sequence is always changing.
Therefore, we should note the following two problems that
may be encountered when the SAX index and suffix tree are
generated for the sensor data.

(1) The sensor data should be normalized before generating

the SAX index. However, we need to use the data’s
statistics for the normalization process. It is difficult to
normalize the data correctly because sensor data are
continuously being accumulated.

(2) The suffix tree is a tree of the suffix pattern. Since suffixes
change every time new sensor data arrives, the depth of the
tree increases exponentially.

To solve the first problem, we currently record the

statistics when the accumulated data has reached an
appropriate length. We currently set up the accumulated data
for a one day. Sensor data is then normalized using these
statistics. However, this approach is a temporary solution, and
it is necessary for an alternative solution to be found. If the
distribution of sensor data changes significantly after
recording the statistics, there is no guarantee that the lower
bounding of the approximate distance is allowed because the
values assigned to letters are based on the normal distribution.

In order to resolve the second problem, we specified a
limit for the depth of the suffix tree. This approach is similar
to the use of sliding windows for retrieving subsequences of
time series data. In SAX [1], the same approach for
dimensionality reduction has been applied; hence, our
approach is appropriate, except for the case where very long
events are to be detected.

5 Preliminary investigations for event
detection

In this section, we consider whether events that are

categorized as “house information” can be detected using the
SAX index, which applied a suffix tree. For example, the
event “opening and closing a door” generates several

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 765

sequence patterns. The speed of the moving door depends on
the person who opens the door and/or the situation in which
the door is opened. We need to examine whether such patterns
can be returned by a query using the SAX index and the
corresponding suffix tree index. However, we are already
aware of two problems that exist when detecting events by
query processing using a SAX index and suffix tree.

The first problem is that normal suffix trees cannot deal
with similarity matches. SAX can perform a similarity match
using an approximate distance to compare two strings.
However, the suffix tree was applied to quickly retrieve
substrings from a long SAX index. Because the suffix tree is
essentially a data structure for substrings that match exactly, a
similarity match cannot be performed. For example, Figure 6
shows the sequence data for the door sensor. From the
sequence, it is observed that there are three behavior patterns.
Subsequence (A) and (B) show the sensor value behavior
when the same person opens and closes the door twice, while
subsequence (C) indicates that the person who opened the
door kept it open for a longer time period, after which it was
closed. The bottom of Figure 6 shows the SAX index (w = 53,
a = 8) that was converted into string values. For visualization
purposes, the SAX index is compressed using run length
encoding. If the retrieved query is a time sequence (Q), (A),
(B), and (C) are not returned as the result because neither of
them match the string (Q) exactly.

Figure 6. Behavior of the actual sensor data during opening
and closing of door.

The second problem concerns the inability to determine
the difference in speed when the door is being opened and
closed. For example, Figure 7 shows the variation in the
sensor data sequence as someone first opens and closes the
door at normal speed, after which he/she slowly opens and
closes the door. The bottom of Figure 7 shows the SAX index
(w = 41, a = 8) that was converted into string values.

The time series A and D represent the same event
(“opening and closing the door”), but they have a slightly
different SAX index owing to the difference in the speeds with
which the actions were performed. Currently, we cannot
differentiate between these values.

Figure 7. Difference in opening and closing time of door.

6 Similar retrieval method using the
edit distance
In order to facilitate situations such as those mentioned in

section 5, we define the edit distance as the distance between
the strings.

The edit distance is the minimum total value of the costs
(replace, delete, insert) required for converting a string Q into
a string C. The minimum total value is considered to be the
distances dist(Q,C) between the string C and the string Q. For
example, if the string Q is “AFC” and the string C is “ABCE,”
strings Q and C will match if the second character of Q
(character “F”) is replaced by the character “B” and if the
character “E” is inserted into the fourth character of Q. If the
cost is defined as the number of “replace” and “insert”
operations that are required, then, dist(Q,C) will be 2.

An approach that can be used to retrieve a partially
similar string using a suffix tree and applying the edit distance
has been proposed as the error-tolerant recognition algorithm
[3]. This can be adopted to perform similar retrieval of strings
using a suffix tree.

The second problem described in the previous section
may be solved using the dynamic time warping (DTW)
distance.

DTW is a measure of the distance of the time series. It
can be calculated using the distance absorbed scaling and the
time gap. Chen [5] describes the application of DTW to the
cost value of the edit distance. We can therefore calculate the
edit distance based on DTW by applying this approach.

In section 6.1, we describe the edit distance in the SAX
index, and in section 6.2, we describe the experiments
involving the detection of the “doors” event.

6.1 Definition of edit distance in SAX index

According to DTW, the editing costs of the editing
distance comprise.
• Replacement Cost

The replacement cost is determined by the distance
dist(,) between characters in SAX (section 2).

• Gap (insert and delete) Costs

The insert cost is defined as the distance between the
inserted character x and the character y, which is before one
of the positions into which the insertion is made. For

766 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

example, to compare the costs of “ABC” and “AC,” the
insert cost associated with inserting B between A and C in
the second string is dist(A,B). The same concept applies to
the delete cost, which is defined as the distance between the
delete character x and the character y, which is before one
of the positions that is to be deleted.

Based on this concept, the distance of a string from the
first character to the respective i-th and j-th characters of Q
and C in the SAX index can be defined as follows:

 P(Qi,Cj) = min{P(Qi-1,Cj-1)+dist(qi,cj), #permute

P(Qi-1,Cj)+dist(qi−1,cj), #delete
P(Qi,Cj − 1)+dist(qi,cj − 1)} #insert

However, in our case, we anticipate that user requests

will include the desire to control the speed with which a door
is opened or closed. Therefore, in order to consider speed, the
retrieval uses the following equation:

P(Qi,Cj) = min{P(Qi − 1,Cj − 1) + dist(qi,cj), #permute

P(Qi−1,Cj)+α*dist(qi−1,cj), #delete
P(Qi,Cj − 1) + α*dist(qi,cj − 1)} #insert

A control parameter α can be specified by a user on delete and
insert cost. If α is increased, the retrieval can include speed
information for the “doors” event.

6.2 Experiments involving “doors” event
detection

We performed “doors” event detection experiments using
the edit cost as it was defined in the previous section. Figure 8
shows SAX strings of the experimental data and a query Q.
The seven events that are observed include four successive
open-and-close events, followed by a slow open-and-close
event and a fast open-and-close event, and finally, a case
where a subject kept the door open for a longer time before
closing it. For this example, we performed detection
experiments during the time period shown in red as the query
Q.

Figure 9 shows the results of detection experiments that
resulted in changed thresholds, delete, and insert costs. The
orange parts are substrings of the detection result.

Figure 8. Behavior of experimental dataw=287 a=10

The threshold in case (1) is set to 0.2 and α = 1, while the
threshold in case (2) is set to 0.2 and α = 10.

Figure 9. Detection results

In case (1), the first three events and the faster event

could be viewed as detection results. However, when only α is
varied and the threshold is not varied as in case (2), neither the
fifth event nor the last event were detected. We had expected
that all events would have been detected in case (2), but the
result in case (2) were the same as in case (1), the parameter α
did not function correctly. One possible reason may be that it
is too small to affect the delete cost. Therefore, we will not
regulate the collective costs to insert and delete, but will
instead separately regulate them.

7 Related research
 SAX is based on the piecewise aggregate

approximation [6], which quantizes time series data using a
fixed interval; it is an extended approach that allows the lower
bounding of the true distance in the approximate distance. It
can be applied to a variety of search technologies and
techniques for mining strings.

In this paper, we performed fast retrieval of partial time
series data using suffix trees and edit distances. Chen also
performed a similar retrieval for the time series data using edit
distance [7][8]. In [7], the original value was not quantized,
and the cost was determined on the basis of whether the
distance between the two characters in the time series was
within a specified threshold. In [8], a cost is defined that
satisfies the axioms of distance and speeds up the retrieval
using the measured index.

In addition, iSAX is an extension of SAX and is
applicable for very long time series [9]. This approach
generates an index for short SAX strings that are split using a
sliding window and has achieved a fast retrieval for substrings
of a long string. Unlike the suffix tree that we adopted, the
iSAX index considers n-dimensional data as a string of n
characters that are divided using a sliding window and which
generate an index on the feature space using an n-dimensional
vector. However, this approach does not correspond to the
scaling of time series.

Gao et. al. [10], Zhi et. al. [11], and others have
conducted research into part similarity retrieval of streaming
data. Sakurai et. al have studied a similar retrieval method
using high-speed DTW in streaming data [12].

We have tried a similar retrieval method using a speed-up
approach of the string retrieval method for time series data
that is quantized by SAX. In future, the effectiveness of these
methods needs to be verified.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 767

8 Conclusions
In this paper, we implemented a SAX index that allows

fast retrieval of archived sensor data for a smart house. In
addition, we achieved fast similarity event detections using a
suffix tree and performed experiments for event detections.

In the future, we will focus on improving the proposed
retrieval method and perform additional experiments using
different events.

9 References
[1] Ocha House:

http://www.siio.jp/index.php?OchaHouse
[2] Ocha House Projects:

http://www.siio.jp/index.php?OchaHouseProjects
[3] Jessica Lin Eamonn Keogh Stefano Lonardi and Bill Chiu.

“A Symbolic Representation of Time Series, with Implications
for Streaming Algorithms,” SIGMOD workshop, 2003.

[4] Yoshiki Tanaka and Kuniaki Uehara. “Motif Discovery
Algorithm from Motion Data,”; 18th Annual Conference of the
Japanese Society for Artificial Intelligence (JSAI), June 2004.

[5] Kemal Oflazer. “Error-tolerant finite-state recognition with
applications to morphological analysis and spelling
correction,”; Journal of Computational Linguistics, Vol. 22,
Issue 1, March 1996.

[6] Yi, B, K, and Faloutsos, C. “Fast Time Sequence Indexing for
Arbitrary Lp Norms,”; 26st International Conference on Very
Large Databases, pp 385–pp 394, 2000.

[7] Chen L. Chen, M.T.zsu, and V. Oria. “Robust and efficient
similarity search for moving object trajectories,”; CS Tech.
Report. CS-2003-30, School of Computer Science, University
of Waterloo.

[8] Lei Chen and Raymond Ng. “On the marriage of Lp-norms and
edit distance,”; 30th International Conference on Very Large
Data Bases (VLDB 2004), 2004.

[9] Jin Shieh and Eamonn Keogh. “iSAX: Indexing and mining
terabyte sized time series,”; 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2008.

[10] Like Gao and Sean. X. Wang. “Continually Evaluating
Similarity-Based Pattern Queries on a Streaming Time Series,”;
The 2002 ACM SIGMOD International Conference on
Management of Data, pp 370−pp 381, June 2002.

[11] Y. Zhu and D. Shasha. “StatStream: Statistical monitoring of
thousands of data streams in real time,”; 28th International
Conference on Very Large Data Bases (VLDB 2002), pp 358–
pp 369, August 2002.

[12] Y. Sakurai, C. Faloutsos, and M. Yamamuro. “Stream
Monitoring under the Time Warping Distance,”; 23rd IEEE
International Conference on Data Engineering (ICDE 2007), pp
1046–pp 1055, April 2007.

768 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Semi-ShuffledBF: Performance Improvement of a

Privacy-Preserving Query Method

for a DaaS Model Using a Bloom filter

Shizuka Kaneko
 1
, Chiemi Wtanabe

 2
, and Toshiyuki Amagasa

 3

1,2
 Ochanomizu University Graduate School of Humanities and Sciences, 2-1-1 Otsuka, Bunkyo-ku, Tokyo,

Japan
3
 Tsukuba University Systems and Information Engineering, 1-1-1Tennodai, Tsukuba-shi, Ibaraki, Japan

Abstract - In database-as-a-service, users can utilize a

database service that is maintained by third parties via the

Internet. In such an environment, it becomes difficult for the

user to hide confidential information from the data

administrator. To solve this problem, we previously proposed

“Privacy-Preserving Query Method Hiding Schema

Information Using a Bloom filter.” With this method

(ShuffledBF), we generate a Bloom filter for the queries of

each tuple and shuffle bit sequence by using the key in each

tuple. In this way, it is possible to prevent the leakage of bit

patterns. On the other hand, it is problematic that the time

required is proportional to the number of tuples processed,

because we must restore the shuffled bit sequence by applying

a hash function to each tuple when we run the query. While, in

contrast, the case of a Non-Shuffled Bloom filter (Non-

ShuffledBF) has a security problem. Therefore, we propose a

hybrid technique called Semi-ShuffledBF that consists of two

steps: 1) Non-ShuffledBF and 2) ShuffledBF.

Keywords: database outsourcing, cloud computing, database-

as-a-service(DaaS), Bloom filter, Privacy-Preserving Query

Method

1 Introduction

 Recently, database-as-a-service (DaaS) has attracted

considerable attention. DaaS provides a data management

service in the cloud computing environment. Many DaaS

services have already been provided by Amazon, Google,

Microsoft, et al., such as S3，EC2，SimpleDB，Azure，
Google Apps Engine, and so on. DaaS services are used by

individuals and small companies who find it difficult to

administer the DBMS on a constant basis.

In such an environment, we should note that DaaS

administrators are third parties from the viewpoint of DaaS

users. Therefore, it is natural that users need to hide sensitive

data from DaaS administrators. To achieve such a user

requirement, techniques for privacy-preserving query

processing have been investigated by many researchers

[1][2][3][5][7][9].By using the investigated techniques, users

can store data that is encrypted at the client end, and can issue

queries to the encrypted database to receive the appropriate

results, without leaking the original value of the stored data in

the DBMS.

Figure 1 shows the general flow of the Privacy Protection

Method.

Figure 1: System of Privacy Preserving Query Method.

As the first step, the system encrypts each tuple on the client

side, and sends the encrypted tuples to the database server.
During this time, the system also sends the search index (① in

Figure 1) for the corresponding tuple. The search index is

used by the query processor on the database server to process

queries without leaking the original value of the encrypted

tuples. Previous studies [1][2][3][5][7][9] prepared the search

index for each attribute in each tuple, and a scheme for

making an index has been proposed according to the data

types and operation types issued in the query.

In our previous studies [12], we have proposed ShuffledBF,

which is a technique for privacy-preserving processing using a

Bloom filter. ShuffledBF combines the search indices for

multiple attribute values in a tuple, and then, it conceals the

schema information and distribution information of the

original table. ShuffledBF generates hash values that are used

for generating a Bloom filter by using the attribute and the

identifiable values of the tuple. Therefore, even if two tuples

have the same attribute value, the hash values that are

generated from the attribute values are different from each

other. By using this mechanism, ShuffledBF guarantees a high

level of security. However, ShuffledBF has the problem of

low processing speed.

In this study, we focus on Non-ShuffledBF. Non-ShuffledBF

generates hash values based only on the attribute value, and if

two tuples have the same attribute value, then the hash values

are the same. The performance of query processing is

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 769

obviously better by using Non-ShuffledBF than by using

ShuffledBF; however, it cannot guarantee privacy preserving

against adversaries. In this paper, we propose Semi-

ShuffledBF, which is combining ShuffledBF to utilize the

advantages of both the mechanisms. We investigate the query

processing time in a single-server environment, and find that

Semi-ShuffledBF can improve the query processing time in

circumstances when the selection ratio is low.

The paper is organized as follows. The previous study on

ShuffledBF is presented in Section 2, and the proposed

structure of Semi-ShuffledBF is described in Section 3. We

show the results of our performance measurements in Section

4 and the related research in Section 5. Finally, we discuss our

conclusions and future work in Section 6.

2 ShuffledBF

 ShuffledBF is a Privacy-Preserving Query Method using

a Bloom filter. ShuffledBF can carry out a selection

protection operation to a single relation; when selecting, it can

carry out the operations of exact string, matching part, and

number attribute. Therefore, ShuffledBF has high security,

and its schema information and value cannot be guessed from

the original data of the query and the stored data on the server.

The generation of the search index is described in Section 2.1,

and the query is described in Section 2.2. The means of

transrating a numeric attribute is presented in Section 2.3.

2.1 Generating the Search Index

 In this section, we describe the means to convert tables,

encrypt tuples, and convert queries. This method uses a Bloom

filter for the search index. A Bloom filter is an index that can

quickly determine whether a collection contains an element. It

is characterized as space efficient and can perform faster

searches and OR calculations, and detect false positives.

Figure 2 shows an example of a conversion table.

Figure 2: Example of a conversion table.

The table Patients is composed of the attributes ID, name,

sex, address, and diagnosis. We prepare Patients
s
 in the server

that correspond to Patients. This table has only two attributes:

etuple and bfindex. The attribute etuple stores the values of

the encrypted tuples. The attribute bfindex is the search index

of the tuple. Because there is only one bfindex created per

tuple regardless of the source schema, it is difficult to

determine the attributes of Patients that are derived from

Patients
s
. This makes the distribution of the values confusing

and prevents attacks on the data.

Figure 3 shows a flow diagram of generating a Bloom filter

index (ShuffledBF) from the tuple t1.

Figure 3: Generating a Bloom filter index.

Bfindex is an index that uses a Bloom filter. Its structure is

based on the attribute names and values of the tuple. For

example, the corresponding word of the value ―Alice‖ of the

attribute ―attribute‖ in Figure 3's tuple t1 is ―name:Alice‖(①

in Figure 3). For each word that is made in this way, multiple

hash functions are applied.② in Figure 3 is an example of

applying three hash functions for ―word:Alice.‖ We used the

HMAC hash function and some required keys. ② in Figure 3

uses three keys: key1, key2, and key3. Next, we apply these

hash values via HMAC using etuple as a key. If the tuples

have the same value of standing bits in different locations,

applying a second hash function prevents the gathering of

features of the original data from the bit pattern. A Bloom

filter index that does not apply the first hash function is called

Non-ShuffledBF (NSBF).

2.2 Query

 In this section, we describe the means of transrating a

query. Figure 4 shows an example of transrating a query.

770 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Figure 4: Example of transration of query.

The upper SQL in Figure 4 is entered by the client, and the

lower SQL is sent to the server. The lower SQL replaces the

condition of the attributes and the text search of each tuple to

the conditions of bfindex. Therefore, database administrators

cannot read what we have specified as the condition of the

attribute.

Next, Figure 5 shows how query processing proceeds on the

server.

Figure 5: Example of processing query.

First, generate the words from the search condition (① in

Figure 5), apply the first hash function, and then, send the

SQL to the server (② in Figure 5). At the server side, match

the query conditions by processing smatch function written in

where section in SQL by each tuple. In the smatch function,

we apply the hash function used by the key as the hash values

generated at the client side (105,356,214 in④ in Figure 5).

We match the values to the Bloom filter (⑤ in Figure 5). In

this way, the user can hide the type of the number and

operation to the schema information as well as the search

condition．

2.3 Transrating a Numeric Attribute

Because it is impossible for the Bloom filter to compare

numbers, we need to transrate the numbers in the data into

words in order to apply a Bloom filter to the numbers.

Basically, the domain is divided into several buckets of

numeric attributes, and the generated words are added to the

bucket name and attribute name.

Figure 6: Representation of bucket of numeric attributes.

 In Figure 6, 25,55,88 represent each set of words.

If the limit of the bucket is less than the value of v against all

buckets B = B1, …, Bb, we add the word 「 <attribute

name>:lt:<bucket name>」. If the limit of the bucket is more

than the value of v, we add the word 「 <attribute

name>:mt:<bucket name>」 . In another case, we add the

word 「 <attribute name>:eq:<bucket name> 」 . When

comparing the values with the magnitude using this method,

for example, if you want to get a value greater than 75, you

focus on (B7) (left of (B8)) that contain 75, and search for the

tuple that has the word 「<attribute name>:lt:B7」. On the

other hand, if you want to get a value less than 35, you focus

on the right bucket (B5) and search for the tuple that has the

word 「 <attribute name>:lt:B5 」 . Thus, we can treat a

numeric comparison operation as a matching string.

3 Semi-ShuffledBF

 ShuffledBF is secure, because it is difficult to estimate

the original data from the Bloom filter on the server. However,

there is a problem that the processing time is very long,

because we apply the hash function against all tuples with

each query (see Figure 10). Therefore, we propose Semi-

ShuffledBF, which can perform privacy-preserving queries

without rack safety and is faster than combined Non-

ShuffledBF that does not apply a conversion function.

We describe the basic idea of Semi-ShuffledBF in Section 3.1,

the way of inserting data in Section 3.2, and the method of the

query in Section 3.3.

3.1 Basic Idea

 Semi-ShuffledBF is an index that is a combination of the

ShuffledBF and Non-ShuffledBF indices, which narrows

down the number of tuples to be applied to a hash function. At

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 771

query time, we expect to reduce the number of tuples by

applying it to the hash function by narrowing down using Non-

ShuffledBF and ShuffledBF indices. We apply the following

hash function on the Non-ShuffledBF index:

… （1）

Here, m is the bit length of the Bloom filter, l is an integer

parameter and takes the value of at least 2, and the function gj

is set for each attribute Aj in the source table R (A1, …, An). On

the other hand, on ShuffledBF we set up the remainder of m,

which is the bit length of the Bloom filter, and on Non-

ShuffledBF, we set up the remainder of [m/l]. We increase the

false positives from Non-ShuffledBF by increasing the value

of l, so it is difficult to estimate the original data. The gj

function is a function for determining the location of the bit

standing of each attribute Aj, and for preventing the

duplication of the position of a bit in a single Bloom filter. In

addition, Semi-ShuffledBF does not separate Non-ShuffledBF

from ShuffledBF, so the false positives may be higher by

combining them. However, we consider that this can be

adjusted by making the bit length m of the Bloom filter

slightly longer.

3.2 Inserting data

 The insertion of data into Semi-ShuffledBF is divided

into the following four stages:

(1) Generate ShuffledBF (Figure 3 in Section 2.1).

(2) Generate Non-ShuffledBF.

(3) Carry out an OR operation in

ShuffledBF and Non-ShuffledBF.

(4) Store the result in bfindex.

First, we generate the search words in ShuffledBF . And we

generate it in Non-ShuffledBF by applying the Equation(1).

We store the result by performing an OR operation in Non-

ShuffledBF and ShuffledBF as Semi-ShuffledBF in bfindex.

3.3 Method of the Query

 The method of the query of Semi-ShuffledBF is divided

into the following two stages.

(1) Search with Non-ShuffledBF.

(2) Search with ShuffledBF.

First, apply Non-ShuffledBF to each tuple. Thus, only the

tuples that correspond to Non-ShuffledBF are applied to

ShuffledBF.

3.4 Effect of Semi-ShuffledBF

 The effect of using Semi-ShuffledBF is a secure, more

rapid search. ShuffledBF has the problem that the processing

time is very long, because we apply the hash function against

all tuples with each query. Semi-ShuffledBF uses Non-

ShuffledBF, which can process rapidly and apply only the

tuples matched by the Non-ShuffledBF hash function. In this

way, Semi-ShuffledBF becomes faster.

Figures 7 and 8 show examples of ShuffledBF and Semi-

ShuffledBF queries.

Figure 7: Example of ShuffledBF query.

Figure 8: Example of Semi-ShuffledBF query.

 The process marked within red dots in Figures 7 and 8 is

the part of the process that is performed faster. Figure 7 shows

the process for all tuples; on the other hand, Figure 8 shows

the process for only the tuples matched with Non-ShuffledBF.

772 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

This improved processing speed is because the process for the

tuples was omitted, which is not correct.

4 Performance Evaluation

 As a preliminary experiment for the proposed method, we

extended the programs of the Privacy-Preserving Query

Method that is built on previous research, used DBMS to

improve the performance, and evaluated the performance.

4.1 Experimental Environment

 We evaluated the performance using a Linux Server

(CPU: Intel (R) Xeon (R) 2.00 GHz Memory: 8 GB) and a

database server (PostgresSQL) as the experimental

environment. We used 100,000 tuples of artificial data and

specified the length of the Bloom filter m as 128 bytes, the

function gj as a primary function, and the partition number l

as 10.

In this study, we measured only the query processing time on

the server.

In the Privacy-Preserving Query Method, users can obtain the

result by re-querying the data after leeching and decoding the

correct tuple that is searched on the server. In fact, the time

for leeching to the client and decoding may be very long, but

in this study, we do not consider this duration because it is

beyond the scope of this proposed method.

4.2 Experimental Results

 Following are the performance results of ShuffledBF,

Non-ShuffledBF, and Semi-ShuffledBF on the experimental

server.

Figure 10: Performance results

(selection rate sets ―the number of correct tuples/the number

of all tuples‖).

 The case where the selection rate is a row (① in Figure 10),

processing efficiency is improved when using Semi-

ShuffledBF. However, the case where the selection rate is

high (② in Figure 10), the processing efficiency does not

improve.

4.3 Considerations

 In this experiment, there are two reasons why Semi-

ShuffledBF has not yet improved significantly compared to

ShuffledBF.

(1) The process used for Non-ShuffledBF in not very fast.

We expected that the process would be fast, because we were

basically operating with only bit, but it actually took about

700 ms. This is because you need a table scan to check all the

tuples.

(2) The same action (processing times) occurs for answer

tuples.

 Semi-ShuffledBF reduces processes to not fit query

condition. In the case that the selection rate is high, however,

the effect is small because the processes are not many.

Therefore, the result is the same as in the preceding section.

Following are some possible ways to improve these two

issues:

(1) Grant bitmap indices for Semi-ShuffledBF.

It is suggested that bitmap indices be granted to bfindex to

make the primary search on Non-ShuffledBF faster.

Thus, because you can access the location of the bits directly,

without performing a file scan of all the tuples, it is expected

that the I/O costs of the disk can be reduced.

(2) Do not search by ShuffledBF.

In the case when the selection rate is high, use Semi-

ShuffledBF to search most of the tuples rather than

ShuffledBF.

It is suggested to calculate the selection rate after searching by

Non-ShuffledBF. Thus, in the case when the selection rate is

high, it is considered that all the tuples are correct and a

search by ShuffledBF is not required.These approaches will

increase the false positives of the search, but we believe that

this problem can be solved by the artifice in client as

mentioned in Section 4.1.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 773

5 Related Research

 Many studies have been performed on the Privacy-

Preserving Query Method for outsourcing. Hacigumus et al.

proposed to store the search index to the database on the

server, how to query the index on the server generated by a

user and the generation of query exection which exect divided

instead of the query on client .The search index is provided

for each attribute and are produced by different methods in

data types and the calculation of used the conditions.

In the method of generating the index, the distributed value

may obtain the original value. On the other hand, Hore et al.

proposed a method for splitting the bucket, which makes it

difficult to estimate the value of the distribution [7]. Agrawal

et al. [1] proposed a conversion method of the number

attribute that preserves the relationship. This method can

prevent the estimation of the original value by converting the

distribution of values that are different from the original

distribution. It can process both compared and combined

operations. Lee et al. [8] and Hasan et al. [6] have used the

proposed method. Aggregations and k-neighbor [11] used an

encryption method with homomorphism, which has also been

proposed by Mykletun et al. [4] and Ge et al. [10]. In these

studies, there is a problem of security and performance, as

exists in our research. On creating an index for each cell, there

is a problem that if there are many data on the server, it is

possible that someone may obtain the original value by

analyzing the trend of the index values. In case of checking

the condition for each tuple, there is the problem that you

cannot use the index. In addition, if you create an index,

someone may obtain the original value from the index. In our

proposed method, the possibility of obtaining the original

value is low compared to the method of generating an index

for each cell, because the index is in one tuple. It is

anticipated that Semi-ShuffledBF displays a performance

improvement by applying a bitmap index of the Bloom filter.

We conclude that the ability to obtain the original values from

the index is low because it contains shuffled bits.

6 Conclusions and Future Work

We proposed Semi-ShuffledBF, which can perform Privacy-

Preserving Queries without rack safety and faster than Non-

ShuffledBF that does not apply the conversion function.

 In the future, we plan to speed up the performance of Semi-

ShuffledBF and establish its indicators of performance and

security.

We will also evaluate the performance of other DaaS, such as

Windows SQL Azure.

Acknowledgment

Part of this research is from ―KAGAKU-KENNKYUUHI-

HOJYO-KINN-WAKATE-

KENNKYUU(B)(number:21700099)..‖

7 References

[1] Agrawal R., Kiernan J., Srikant R., and Xu Y.: Order

preserving encryption for numerical data, Proceedings of the
2004 SIGMOD International Conference, pp.563–574
（2004）．

[2] Bellovin S. and Cheswick W. ： Privacy-enhanced searches
using encrypted bloom filters‖（2004）．

[3] Boneh D., Crescenzo G.D.，Ostrovsky R., and Persiano G.:
Public Key Encryption with Keyword Search, Proceedings of
EUROCRYPT ’04, vol.3027 LNCS, pp.506—522 (2004）．

[4] E. Mykletun, G. Tsudik：Aggregation queries in the database-
as-a-service model. IFIP WG 11.3 on Data and Application
Security （2006） ．

[5] H． Hacigumus， B． Iyer， C． Li， and S． Mehrotra.：
―Executing SQL over Encrypted Data in the Database-Service-
Provider Model ， ‖Proceeding of the ACM SIGMOD
International Conference on Management of Data, pp. 216-227,
（2002）．

[6] Hasan Kadhem, Toshiyuki Amagasa, and Hiroyuki Kitagawa：
―A Secure and Efficient Order Preserving Encryption Scheme
for Relational Databases," Int'l Conf. on Knowledge
Management and Information Sharing （ KMIS 2010 ） ,
Valencia, Spain, October 25-28（2010） ．

[7] Hore B, Mehrotra S., and Tsudik G.：A privacy-preserving
index for range queries, Proceedings of the 30th International
Conference on Very Large Data Bases, pp.720—731（2004） ．

[8] S. Lee, T. Paek, D. Lee, T. Nam, and S. Kim： Chaotic Order
Preserving Encryption for Efficient and Secure Queries on
Databases, IEICE Transactions on Information and Systems
E92.D（11）, 2207-2217（2009） ．

[9]Ting Yu and Shushil Jajodia ： Secure Data Management in
Decentralized Systems, Springer-Verlag NewYork Inc, p.462
（2006） ．

[10]Tingjian Ge, Stanley B. Zdonik ： Answering Aggregation
Queries in a Secure System Model. Proceedings of VLDB
2007, pp.519-530（2007） ．

[11]W．K．Wong，D．W．Cheung，B．Kao and N．
Mamoulis：Secure kNN computation on encrypted databases，
Proceedings of the 35th VLDB Conference，pp．139-152
（2009）

[12]Watanabe C. and Arai Y.：Privacy-Preserving Queries for a
DAS model using Two-Phase Encrypted Bloomfilter, Proc. of
International Conference on Database Systems for Advanced
Applications (2009）．

774 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Implementation and performance evaluation of new inverse
iteration algorithm with Householder transformation in terms of

the compact WY representation

Hiroyuki ISHIGAMI1, Kinji KIMURA1, and Yoshimasa NAKAMURA1

1Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

Abstract— A new inverse iteration algorithm that can be
used to compute all the eigenvectors of a real symmetric
tridiagonal matrix on parallel computers is developed. In
the classical inverse iteration algorithm, the modified Gram-
Schmidt orthogonalization is used, and this causes a bottle-
neck in parallel computing. In this paper, the use of the com-
pact WY representation is proposed in the orthogonalization
process of the inverse iteration algorithm with the House-
holder transformation. This change results in drastically
reduced synchronization cost in parallel computing. The new
algorithm is evaluated on a 32-core parallel computer, and
it is shown that the algorithm is up to 7.46 times faster than
the classical algorithm in computing all the eigenvectors of
matrices with several thousand dimensions.

Keywords: compact WY representation, Householder transforma-
tion, inverse iteration, eigenvalue decomposition

1. Introduction
The eigenvalue decomposition of a symmetric matrix, i.e.,

a decomposition into a product of matrices consisting of
eigenvectors and eigenvalues, is one of the most important
operations in linear algebra. It is used in vibrational analysis,
image processing, data searches, etc.

Owing to recent improvements in the performance of
computers equipped with multicore processors, we have
had more opportunities to perform calculations on parallel
computers. As a result, there has been an increase in the
demand for an eigenvalue decomposition algorithm that can
be effectively parallelized.

Such an eigenvalue decomposition algorithm involves a
process of transforming a real symmetric matrix into a
real symmetric tridiagonal matrix as a preconditioning step.
Therefore the problem of eigenvalue decomposition can be
reduced to that of a symmetric tridiagonal matrix. Several
eigenvalue decomposition algorithms for a real symmetric
tridiagonal matrix have been proposed. They are classi-
fied into two types. The first type of algorithm computes
simultaneously all the eigenvalues and the eigenvectors.
Algorithms of this type includes the QR algorithm [5] and
the divide-and-conquer algorithm [8]. The second type of
algorithm computes all or some eigenvalues and all or some
eigenvectors. Algorithms for computing eigenvalues includes

the root-free QR algorithm [7] and the bisection algorithm
[5]. Algorithms for computing eigenvectors includes the
MR3 algorithm [3] and the inverse iteration algorithm [10].
LAPACK (Linear Algebra PACKage) [9], a software library
for numerical linear algebra, has codes that integrate all the
above-mentioned algorithms.

The inverse iteration algorithm is an algorithm for com-
puting eigenvectors independently associated with mutually
distinct eigenvalues. However, when we use the inverse iter-
ation algorithm, we must reorthogonalize the eigenvectors if
some eigenvalues are very close to each other. Adding this
reorthogonalization algorithm increases the computational
cost. Moreover, for this reorthogonalization, we have gen-
erally used the MGS (modified Gram-Schmidt) algorithm.
However, this algorithm is sequential and inefficient for par-
allel computing. As a result, we are unable to maximize the
performance of parallel computers. Hereinafter, we will refer
to the inverse iteration algorithm with the MGS algorithm
as the classical inverse iteration algorithm.

We can also orthogonalize vectors by using the House-
holder transformation [12], and we call this orthogonaliza-
tion precess the Householder orthogonalization algorithm.
While the MGS algorithm is unstable in the sense that
the orthogonality of the resulting vectors depends on the
condition number of the symmetric tridiagonal matrix [13],
the Householder algorithm is stable because its orthogonality
does not depend on the condition number. The Householder
algorithm is also sequential and ineffective for parallel
computing, and its computational cost are higher than those
of the MGS algorithm.

In 1989, the Householder orthogonalization algorithm in
terms of the compact WY representation was proposed in
[11]. By adopting this Householder orthogonalization, stabil-
ity and effective parallelization can be achieved. Hereafter,
we refer to this algorithm as the compact WY orthogo-
nalization. In 2010, Yamamoto demonstrated the fact [13]:
When this algorithm is used in the Arnoldi process, the
computation time for parallel computation is less than that
when the MGS algorithm is used, and the orthogonality of
the eigenvectors generated using this algorithm is better than
that of the eigenvectors generated using the MGS algorithm.

In this paper, we consider an implementation of the
compact WY orthogonalization to the inverse iteration al-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 775

gorithm and we evaluate its performance. Thereafter, we
present a new inverse iteration algorithm for computing the
eigenvectors of a real symmetric tridiagonal matrix.

The contents of this paper are as follows. In Sec.2,
we explain the classical inverse iteration algorithm and
describe its defect. In Sec.3, we explain the Householder
orthogonalization and the compact WY orthogonalization.
In Sec.4, we present a new inverse iteration algorithm,
namely, the compact WY inverse iteration algorithm, whose
orthogonalization process is performed by compact WY
orthogonalization instead of MGS, and we explain its proper-
ties. In Sec.5, we discuss numerical experiments on parallel
computers and their results. In the experiments, we compute
eigenvectors of symmetric tridiagonal matrices with several
thousand dimensions by using the classical algorithm and
the new algorithm. It is shown that the new algorithm is up
to 7.46 times faster than the classical algorithm. Section 6
presents our conclusions.

2. Classical inverse iteration algorithm
and its defect
2.1 Classical inverse iteration

We consider the problem of computing eigenvectors of a
real symmetric tridiagonal matrix T ∈ Rn×n. Let λj ∈ R
be eigenvalues of T such that λ1 < λ2 < · · · < λn. Let
vj ∈ Rn be the eigenvector associated with λj . When λ̃j ,
an approximate value of λj , and a starting vector v

(0)
j are

given, we can compute an eigenvectors of T . To this end,
we solve the following equation iteratively:(

T − λ̃jI
)
v
(k)
j = v

(k−1)
j . (1)

Here I is the n-dimensional identity matrix. If the eigenval-
ues of T are mutually well-separated, the solution of v

(k)
j ,

Eq.(1) generically converges to the eigenvector associated
with λj as k goes to ∞. The above iteration method is
the inverse iteration method. The computational cost of this
method is of order mn when we compute m eigenvectors,
and it is less than that of other methods for eigenvalue
decomposition. In the implementation, we have to normalize
the vectors v

(k)
j to avoid overflow.

When some of all the eigenvalues are close together or
there are clusters of eigenvalues, we have to reorthogonalize
all the eigenvectors associated with such eigenvalues because
they need to be orthogonal to each other. If we apply
the MGS orthogonalization, the computational cost is of
order m2n. Therefore, when we calculate eigenvectors of
the matrix T that has many clustered eigenvalues, the total
computational cost increases significantly. In general, when
we implement the inverse iteration method on computers, we
use the MGS orthogonalization with the Peters-Wilkinson
method [10] as the standard orthogonalization process. The
MGS with the Peters-Wilkinson method is also available

on DSTEIN, the LAPACK code of the inverse iteration
algorithm for computing eigenvectors of a real symmetric
tridiagonal matrix. In the Peters-Wilkinson method, when
the distance between the close eigenvalues is less than
10−3∥T∥, we regard them as members of the same cluster
of eigenvalues, and we orthogonalize all of the eigenvectors
associated with these eigenvalues.

Figure 1 shows the inverse iteration algorithm based on
the MGS with the Peters-Wilkinson method outlined above.
We call this the classical inverse iteration method.

1: for j = 1 to n do
2: Generate v

(0)
j from random numbers.

3: k = 0
4: repeat
5: k ← k + 1.
6: Normalize v

(k−1)
j .

7: (1)：Compute v
(k)
j by using v

(k−1)
j .

8: if |λ̃j − λ̃j−1| ≤ 10−3∥T∥, then
9: for i = j1 to j − 1 do

10: v
(k)
j ← v

(k)
j − ⟨v(k)

j ,vi⟩vi

11: end for
12: else
13: j1 = j
14: end if
15: until some condition is met.
16: Normalize v

(k)
j to vj .

17: end for

Fig. 1: Classical inverse iteration algorithm. j1 means the
index j of the first eigenvalue of cluster.

2.2 The defect of the classical inverse iteration
algorithm

The inverse iteration is a prominent method for computing
eigenvectors, because we can compute eigenvectors indepen-
dently and this process is easily parallelized. When we use
the classical inverse iteration on parallel computers, we can
parallelize it even if some clusters exist.

Let us consider the Peters-Wilkinson method in the clas-
sical inverse iteration. When the dimension of T is greater
than 1000, most of the eigenvalues are regarded as being in
the same cluster [3].

In this case, we have to parallelize the inverse iteration
with respect to not the cluster but the loop described from
lines 1 to 17 in Figure 1. This loop includes the iteration
based on Eq.(1) and the orthogonalization of the eigenvec-
tors. This orthogonalization process becomes a bottleneck
of the classical inverse iteration with respect to the com-
putational time. The MGS algorithm is mainly based on a
BLAS level-1 operation such as the inner product operation
and the AXPY operation, and it is a sequential algorithm.
Because of this, when we compute all the eigenvectors in
parallel computers, the number of synchronizations is of
order m2. Therefore, the MGS algorithm is ineffective on
parallel computing.

776 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

In conclusion, the classical inverse iteration is an inef-
fective algorithm for parallel computing because the MGS
algorithm is used in its orthogonalization process

3. Other orthogonalization algorithms
3.1 Householder orthogonalization

The Householder orthogonalization, based on the House-
holder matrices, is one of the alternative orthogonaliza-
tion methods. When some vectors v, d ∈ Rn satisfy
∥v∥2 = ∥d∥2, there exists the symmetric matrix H satisfying
HH⊤ = H⊤H = I , Hv = d defined by

H = I − tyy⊤, y = v − d, t =
2

∥y∥22
. (2)

The transformation by H is called the Householder trans-
formation. We can orthogonalize some vectors by using the
Householder transformations. The algorithm of the House-
holder transformations is shown in Figure 2. The vector
yj is the vector in which the elements from 1 to (j − 1)
are the same as the elements of v′

j and the elements from
(j + 1) to n are zero. The vector ej is the jth vector of
an n-dimensional identity matrix. In this paper, we call this
algorithm the Householder orthogonalization.

1: for j = 1 to m do
2: Generate vj from q1, · · · , qj−1.
3: v′

j =
(
I − tj−1yj−1y

⊤
j−1

)
· · ·

(
I − t2y2y⊤

2

) (
I − t1y1y⊤

1

)
vj .

4: Compute yj and tj by using v′
j .

5: qj =
(
I − t1y1y⊤

1

) (
I − t2y2y⊤

2

)
· · ·

(
I − tjyjy

⊤
j

)
ej .

6: end for

Fig. 2: Householder orthogonalization algorithm.

The orthogonality of the vectors qj generated by the
Householder orthogonalization does not depend on the con-
dition number of the matrix T . Therefore, the Householder
orthogonalization is more stable than the MGS. On the other
hand, being similar to the MGS, it is a sequential algorithm
that is mainly based on a BLAS level-1 operation. Its
computational cost is higher than that of the MGS. Thus the
Householder orthogonalization algorithm is an ineffective
algorithm in parallel computing.

3.2 Compact WY orthogonalization
In 2010, Yamamoto presented the Householder orthog-

onalization in the Arnoldi process in terms of the compact
WY representation [13]. This study suggests that the House-
holder orthogonalization becomes capable of computation
with a BLAS level 2 operation in terms of the compact WY
representation [11]. Yamamoto also showed that the compu-
tation time for orthogonalization on parallel computers has
decreased with the use of the Householder orthogonaliza-
tion algorithm in terms of the compact WY representation,
compared to this computational time in the case of the MGS
algorithm [13]. Although Yamamoto mainly shows the new

representation of orthogonalization in [13], in this paper, we
show the implementation of this orthogonalization to the
inverse iteration algorithm, and we evaluate its performance.

Now, we consider the Householder orthogonalization in
Figure 2 and we introduce the compact WY representation.
First, we define Y1 = y1 ∈ Rn×j and T1 = t1 ∈ R1×1.
Next, we define matrices Yj ∈ Rn×j and upper triangular
matrices Tj ∈ Rj×j recursively as follows:

Yj =
[
Yj−1 yj

]
, Tj =

[
Tj−1 −tjTj−1Y

⊤
j−1yj

0 tj

]
. (3)

In this case, the following equation holds

H1H2 · · ·Hj = I − YjTjY ⊤
j . (4)

As shown by Eq.(4), we can rewrite the product of the
Householder matrices H1H2 · · ·Hj in a simple block ma-
trix form. Here I − YjTjY

⊤
j is called the compact WY

representation of the product of the Householder matrices.
Figure 3 shows the orthogonalization algorithm. Hereinafter,
we refer to this orthogonalization algorithm as the compact
WY orthogonalization.

1: for j = 1 to m do
2: Generate vj from q1, · · · , qj−1.
3: v′

j =
(
I − Yj−1T

⊤
j−1Y

⊤
j−1

)
vj .

4: Compute yj and tj by using v′
j .

5: (3)：Update Yj and Tj by using tj , yj , Tj−1 and Yj−1.
6: qj =

(
I − YjTjY

⊤
j

)
ej .

7: end for

Fig. 3: Householder orthogonalization algorithm in terms of
the compact WY representation.

3.3 Comparison of the orthogonalization algo-
rithms

The compact WY orthogonalization has a stable orthog-
onality arising from the Householder transformations, and
its mathematical calculation is mainly performed by BLAS
level-2 operations such as the product of a matrix and a
vector and a rank-1 update operation. As a result, this orthog-
onalization has more stable and sophisticated orthogonality,
and it is more effective for parallel computing than the
MGS. Table 1 displays the differences in performance of
the three orthogonalization methods, considered in the above
sections. In this table, “House” denotes the Householder
orthogonalization and “cWY” denotes the compact WY
orthogonalization. Computation denotes the order of the
computational cost. Synchronization denotes the order of the
number of synchronizations. Orthogonality denotes the norm
∥Q⊤Q−I∥, where Q = [q1, . . . , qn]. ϵ denotes the machine
epsilon and κ denotes the condition number of a matrix.
These are the results obtained from [1] and [13].

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 777

Table 1: Comparison of the orthogonalization methods [1]
[13].

methods Computation Synchronization Orthogonality

MGS O(2m2n) O(m2) O(ϵκ(A))
House O(4m2n) O(m2) O(ϵ)
cWY O(4m2n) O(m) O(ϵ)

4. Inverse iteration method with the
compact WY orthogonalization

In this section, we present a new inverse iteration algo-
rithm. This new algorithm is described in Figure 4 and is
based on DSTEIN, a LAPACK code of the classical inverse
iteration. We change the orthogonalization process from the
MGS to the Householder transformation in terms of the
compact WY representation. In other words, we rewrite
the MGS algorithm (from line 4 to 15 in Figure 1) to the
compact WY orthogonalization algorithm shown in Figure
3.

Next, we explain an application of the compact WY
orthogonalization to the classical inverse iteration. For the
DSTEIN algorithm, we need not know the index jc which
denotes the jc-th eigenvalue of the cluster in computing
the jc-th eigenvector. However, we must know the index
for the compact WY orthogonalization when we compute
and update Tj , Yj . To overcome the above difficulty, we
introduce a variable jc on line 9, and we can recognize it.

This introduction of jc enables us to execute the intended
program. However, we do not get accurate results because
the compact WY orthogonalization algorithm includes many
equations with a comparatively large number of elements
such as YjcT

⊤
jc
Y ⊤
jc

and YjcTjcY
⊤
jc

and they may cause
overflow. To overcome this difficulty, we have to normalize
v
(k)
j on line 6, and this normalization excludes overflow.
Finally, to reduce the computational cost, we transform

parts of the equations. There are some examples in Figure
4 for jc = 1, i.e., j = 2 in Figure 3.

In the original DSTEIN algorithm, we need not know that
λj1 (j1 = j − 1) is the first eigenvalue of the cluster. How-
ever, we must compute y1 and t1. Therefore, at the starting
point of the computation of the eigenvector associated with
the second eigenvalue, we compute y1 and t1. At this time,
because T1 is a 1 × 1 matrix, i.e., a scalar, we can omit
the computation of some of Eq.(3) and only compute them.
In addition, because we normalize v

(k−1)
j on line 6 so that

v
(k−1)
j = q1, we need not compute y1 again. As shown in

lines 15 and 17, to save the computation step that is required
when using BLAS, we change the formula from the matrix-
vector operations to the vector operations. In addition, we
implemented another formula because of the benefit of using
BLAS computations to reduce the computational cost in line
23.

1: for j = 1 to n do
2: Generate v

(0)
j from random numbers.

3: k = 0
4: repeat
5: k ← k + 1.
6: Normalize v

(k−1)
j .

7: (1)：Compute v
(k)
j by using v

(k−1)
j .

8: if |λ̃j − λ̃j−1| ≤ 10−3∥T∥, then
9: jc ← j − j1.

10: if jc = 1 and k = 1， then
11: Compute Y1 = y1 and T1 = t1 by using vj1−1.
12: end if
13: Normalize v

(k)
j .

14: if jc = 1, then
15: v′

2 ← v2 − t1⟨y1,v
(k)
j ⟩y1.

16: Compute y2 and update Y2 by using v′
2.

17: Compute t2 and T1,2 = −t2t1⟨y1,y2⟩ and update T2.
18: else
19: v′

jc+1 =
(
I − YjcT

⊤
jc
Y ⊤
jc

)
v
(k)
j .

20: Compute yjc+1 and tjc+1 by using v′
jc+1.

21: (3)：Update Yjc+1 and Tjc+1 by using tjc+1, yjc+1,
Tjc and Yjc .

22: end if
23: v

(k)
j ←

(
I − Yjc+1Tjc+1Y

⊤
jc+1

)
ejc+1.

24: else
25: j1 ← j.
26: end if
27: until some condition is met.
28: Normalize v

(k)
j to vj .

29: end for

Fig. 4: Algorithm of the compact WY inverse iteration.

5. Numerical experiments
In this section, we describe some numerical experiments

performed using DSTEIN and DSTEIN-cWY in parallel
computers, and we compare the computation time. DSTEIN
is implemented in the classical inverse iteration algorithm,
and DSTEIN-cWY is implemented in the new inverse iter-
ation algorithm presented in the previous section.

5.1 Contents of the numerical experiments
In this subsection, we report computations of all the eigen-

vectors associated with eigenvalues of some matrices by us-
ing DSTEIN and DSTEIN-cWY on parallel computers, and
we compare the calculation time. In these experiments, we
compute the approximate eigenvalues by using LAPACK’s
program DSTEBZ, which is capable of computing them by
using the bisection method. We record the calculation time
for DSTEIN and DSTEIN-cWY using TIME, which is the
internal function of Fortran and returns an integer number
of times.

In the experiments, we use two computers equipped with
multicore CPUs, and we implement those algorithms by
using GotoBLAS2 [6], which is implemented to parallelize
BLAS operations by assigning them to each CPU core. Table
2 shows the specifications of two computers.

All the matrices in the experiments are the glued-
Wilkinson matrices W †

g , which are real symmetric and have

778 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Table 2: The specification of Computer 1 and 2
Computer 1 Computer 2

AMD Opteron 2.0GHz Intel Xeon 2.93GHzCPU 32cores(8cores×4) 8cores(4cores×2)
Memory 16GB 32GB

Compiler Gfortran-4.4.5 Gfortran-4.4.5
LAPACK LAPACK-3.3.0 LAPACK-3.3.0

BLAS GotoBLAS2-1.13 GotoBLAS2-1.13

dimensions on the order of thousands. More precisely, W †
g

consists of the block matrix W †
21 ∈ R21×21 and the scalar

parameter δ ∈ R1×1 and is defined as follow:

W †
g =

W †
21 δ
δ W †

21 δ

δ
. . .

. . .
. . .

. . . δ
δ W †

21

, (5)

where W †
21 is defined by

W †
21 =

10 1
1 9 1

1
. . .

. . .
. . . 0

. . .
. . .

. . . 1
1 10

, (6)

and δ satisfies 0 < δ < 1 and is also the semi-diagonal
element of W †

g . Since W †
g is real symmetric tridiagonal and

its semi-diagonal elements are nonzero, all the eigenvalues of
W †
g are distinct and real, and they are divided into 11 clusters

of close eigenvalues. When δ is small, the distance between
the minimum and maximum eigenvalues in any cluster is
small. In our experiments, we set δ = 10−4.

Computing eigenvalues and eigenvectors of the glued-
Wilkinson matrix is one of the benchmark problems of
eigenvalue decomposition. For example, in [2] and [4], the
glued-Wilkinson matrix was used to evaluate the perfor-
mance of the algorithm.

5.2 Results of the experiments
Table 3 shows the results of the experiments on Computer

1 that were mentioned in the previous section, and Table
4 shows the results of the experiments on Computer 2. In
addition, Figure 5 illustrates the results in Tables 3 and 4
through graphs. The dotted line corresponds to Table 3 and
the straight line to Table 4.

From Table 3 and 4, we see that, on both Computers 1
and 2, all the eigenvectors of the glued-Wilkinson matrix
W †
g with dimensions of the order of several thousand are

computed in parallel.

It is noted that DSTEIN-cWY is faster than DSTEIN.
We see that the change from MGS to the compact WY
orthogonalization on the DSTEIN code in parallel computing
results in a significant reduction in computation time. We
introduce a barometer t/tcwy of the reduction effect by
using the program DSTEIN-cWY which depends on n, the
dimension of W †

g . On Computer 1, the maximum value
of t/tcwy is 7.46 for n = 7, 350 and t/tcwy = 6.71 for
n = 10, 500. On Computer 2, the maximum value of t/tcwy

is 3.16 for n = 4, 200 and t/tcwy = 2.03 for n = 10, 500.
Considering these facts, even if the dimension of W †

g is
larger than that in these examples, we cannot expect that
the computation time can be further shortened by using
DSTEIN-cWY. In the following section, we discuss this
computation time phenomenon.

5.3 Discussion on numerical experiments
It is shown that DSTEIN-cWY is faster than DSTEIN

for any dimension n of the glued-Wilkinson matrix both on
Computers 1 and 2. As mentioned earlier, according to the
theoretical background in section 3.3, this result shows that
the compact WY orthogonalization is an effective algorithm
in parallel computing.

The cause of this is related to the time required for
floating-point arithmetic and for synchronization in parallel
computing. The floating-point computation time increases
with increasing n because the elements of the computation
increase. In comparison, the synchronization cost does not
change significantly even if n becomes larger. Therefore,
in parallel computing, DSTEIN, which contains MGS (for
which the number of synchronizations is large), creates a
huge bottleneck for the synchronization cost when n is small.
This bottleneck gradually becomes less when n is larger.
However, DSTEIN-cWY has a smaller bottleneck for the
synchronization cost because the compact WY orthogonal-
ization requires less synchronization, and the floating-point
computation time increases to a value greater than that of
DSTEIN. This reduction effect is seen in Table 3 and 4.

6. Conclusions
In this study, we present a new inverse iteration algorithm

for computing all the eigenvectors of a real symmetric
tridiagonal matrix. The new algorithm is equipped with the
compact WY algorithm in the orthogonalization process.
We have performed numerical experiments for computing
eigenvectors of certain real symmetric tridiagonal matrices
that have many clusters with several thousand dimensions by
using two types of inverse iteration algorithms on parallel
computers. The results show that the compact WY inverse
iteration is more efficient than the classical one owing to the
reduction in computation time.

The main reason for this outcome is the parallelization
efficiency with respect to computation time. The paralleliza-
tion efficiency of the compact WY orthogonalization is

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 779

Table 3: DSTEIN and DSTEIN-cWY on Computer 1. Here, n is the dimension of the glued-Wilkinson matrix, t and tcwy

are computation time (sec.) by DSTEIN and DSTEIN-cWY on Computer 1, respectively.
n 1050 2010 3150 4200 5250 6300 7350 8400 9450 10500

t 2 9 25 55 106 178 276 400 560 758
tcwy 1 2 5 10 16 25 37 57 81 113

t/tcwy 2.00 4.50 5.00 5.50 6.63 7.12 7.46 7.02 6.91 6.71

Table 4: DSTEIN and DSTEIN-cWY on Computer 2. Here, n is the dimension of the glued-Wilkinson matrix, t and tcwy

are computation time (sec.) by DSTEIN and DSTEIN-cWY on Computer 2, respectively.
n 1050 2010 3150 4200 5250 6300 7350 8400 9450 10500

t 1 3 8 19 37 67 109 159 225 309
tcwy 1 1 3 6 13 25 45 73 107 152

t/tcwy 1.00 3.00 2.67 3.16 2.84 2.68 2.42 2.17 2.10 2.03

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1050 2100 3150 4200 5250 6300 7350 8400 9450 10500

T
im

e(
se

c.
)

n : Dimension of matrix

DSTEIN-cWY
DSTEIN

 0

 50

 100

 150

 200

 250

 300

 350

 1050 2100 3150 4200 5250 6300 7350 8400 9450 10500

T
im

e(
se

c.
)

n : Dimension of matrix

DSTEIN-cWY
DSTEIN

Fig. 5: Dimension n of the glued-Wilkinson matrix and the computation time by DSTEIN and DSTEIN-cWY. the above
graph corresponds to Computer1 and the below Computer 2, respectively.

greater than that of the MGS orthogonalization where the
classical inverse iteration is used. As the number of cores of
the CPU increases, the parallelization efficiency increases.

In future studies, we will try to apply the new inverse
iteration algorithms to other types of matrix eigenvector
problem, such as eigenvectors of a real symmetric banded
matrix, or singular vectors of a bidiagonal matrix.

Acknowledgements.
The authors thank Professor Yusaku Yamamoto of Kobe

University for providing several helpful suggestions.

References
[1] J. W. Demmel, L. Grigori, M. Hoemmen and J. Langou,

Communication-optimal parallel and sequential QR and LU factor-
izations, LAPACK Working Notes, No.204, 2008.

[2] J. W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel, Perfor-
mance and accuracy of LAPACK’s symmetric tridiagonal eigensolvers,
SIAM J. Sci. Comput., Vol. 30, No. 3, pp. 1508-1526, 2008.

[3] I. S. Dhillon, A new O(n2) algorithm for the symmetric tridiagonal
eigenvalue/eigenvector problem, Ph.D. thesis, Computer Science Divi-
sion, University of California, Berkeley, California, available as UC
Berkeley Technical Report UCB//CSD-97-971, 1997.

[4] I. S. Dhillon, B. N. Parlett, and C. Vömel, Glued matrices and the
MRRR algorithm, SIAM J. Sci. Comput., Vol. 27, No. 2, pp. 496-510,
2005.

[5] G. Golub and C. van Loan, Matrix Computations, Johns Hopkins Univ.
Press, 1996.

[6] GotoBLAS2, http://www.tacc.utexas.edu/tacc-projects/gotoblas2/.
[7] M. Gu and S. C. Eisenstat, A stable algorithm for the rank-1 modifi-

cation of the symmetric eigenproblem, Computer Science Department
Report YALEU/DCS/RR-916, Yale University, New Haven, CT, 1992.

[8] M. Gu and S. C. Eisenstat, A divide-and-conquer algorithm for the
symmetric tridiagonal eigenproblem, SIAM J. Mat. Anal. Appl., Vol.
16, pp. 172-191, 1995.

[9] LAPACK, http://www.netlib.org/lapack/.
[10] G. Peters and J. Wilkinson, The calculation of specified eigenvectors

by inverse iteration, contribution II/18, in Linear Algebra, Handbook
for Automatic Computation, Vol. II, Springer-Verlag, Berlin, pp. 418-
439, 1971.

[11] R. Schreiber and C. van Loan, A storage-efficient WY representation
for products of Householder transformations, SIAM J. Sci. Stat.
Comput., Vol. 10, No. 1, pp. 53-57, 1988.

[12] H. Walker, Implementation of the GMRES method using Householder
transformations, SIAM J. Sci. Stat. Comput., Vol. 9, No. 1, pp. 152-
163, 1988.

[13] Y. Yamamoto, Parallelization of orthogonalization in Arnoldi process
based on the compact WY representation, Proceedings of the Annual
Conference of JSIAM, pp. 39-40, 2010 (in Japanese).

780 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Resultant-factorization Technique for Obtaining Solutions to
Ordinary Differential Equations

Kinji Kimura∗ and Hiroshi Yoshida†
∗ Graduate School of Informatics, Kyoto University,

36-1 Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
† Faculty of Mathematics, Kyushu University,

Ito, Motouoka 744, Nishi-ku, Fukuoka 819-0395, Japan.

Abstract— We propose a technique for obtaining solutions
to ordinary differential equations. A system of differential
equations sometimes has multiple solutions with distinct
features. Prime ideal decomposition can be used for extract-
ing the desired solution from these solutions. Solutions to
algebraic equations contain many parameters, and in such
a case, prime ideal decomposition is less tractable. As an
alternative, we propose a resultant-factorization technique
for extracting the desired solution. We also demonstrate the
implementation of this technique and show its timing data.

Keywords: resultant, factorization, prime ideal decomposition,
Gröbner basis, saturation

1. Introduction

In ordinary differential equations, we often need to an-
alyze complicated polynomials with multiple irreducible
affine varieties (solutions). It is therefore essential to perform
prime ideal decomposition. To understand the importance of
the decomposition, consider the following set of polynomi-
als: {x3 − x2y − xy − 2x + y2 + 2y, xy − x − y2 + y}.
Prime ideal decomposition shows that the above polynomials
can be decomposed into two irreducible affine varieties,
{x − y} and {x2 − 3, y − 1}. While one cannot determine
concrete values of x and y using the former, one can
determine them, x = ±

√
3 and y = 1, using the latter.

Hence, to decide whether or not we can determine the values
of variables, we must perform prime ideal decomposition
of polynomials. In ordinary differential equations, how-
ever, there are many parameters and variables that describe
observed data and systems, respectively. In general, large
numbers of parameters and variables render prime ideal
decomposition more difficult [4]. Especially, the method in
[4] needs the computation of Gröbner basis in the beginning.
Under large numbers of parameters and variables render, the
computational cost of Gröbner basis increases. This leads
us to propose a resultant-factorization technique [6] that
provides the desired irreducible affine variety (solution). By
using the resultant-factorization technique, we can reduce
the computational cost of Gröbner basis.

2. Resultant-factorization technique
On the basis of [1], we propose an efficient technique to

arrive at the targeted affine variety (solution); the technique
is shown in Fig. 1(a).

Let BP = {BPi | 1 ≤ i ≤ n} be an original set
of polynomials. Let F1 be a set of n − 1 resultants of
polynomials BPj (1 ≤ j ≤ n, i 6= j) for some BPi(1 ≤ i ≤
n) in a variable, say, x1. It is reasonable to select a variable
x1 such that BPi and BPj are low-degree polynomials in
x1. For instance, if one can factorize some element f in
F1 into mutually disjoint elements f1, f2, and f3, 〈F1〉 can
be decomposed into 〈F1, f1〉 ∩ 〈F1, f2〉 ∩ 〈F1, f3〉. As a
result of the factorization, the resultant F21 in x2 can usually
be described by a smaller set of polynomials. Furthermore,
when one obtains a factorized term like (y1+y2

2)(z−y2
3+3)3

with the rate constants y1 and y2, it is sufficient to consider
only (z−y2

3+3) because the rate constants are guaranteed to
be positive (y1 > 0∧y2 > 0 ⇒ y1 +y2

2 > 0) and the radical√
〈BP 〉 suffices. We can also ignore a factor like (y1 − y2)

when we assume y1 6= y2 because of unacceptable factors or
mathematically trival factors. These simplifications allow us
to prune the branches of the resultant-factorization series1.
When we arrive at an appropriate ideal (〈F32〉 in Fig. 1(a)),
we can efficiently determine all the rate constants by using
the ideal 〈BP 〉 + 〈F32〉, as illustrated in Fig. 1(a).

3. Implementation
We have implemented our “Resultant-factorization

technique,” which is shown as “ScodeRFP.rr” on
http://sites.google.com/site/codes86/. The main routine
of “ScodeRFP.rr” is “automatic_decom,” which calls the
following seven procedures:

1) Procedure 1: shortcut_speed(ideal I , list of polyno-
mials lp) returns an ideal obtained by removing the
factors in lp from ideal I. This procedure aims to
remove unacceptable factors or mathematically trival
factors.

2) Procedure 2: idealclean(ideal I) returns an ideal ob-
tained by removing redundant elements from ideal I.

1Recently, such a pruning procedure in algebraic approaches has been
studied, e.g., “positive quantifier elimination”(QE) [5].

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 781

BP

x1

F1

F21 F22 F23

F 31 F32

x3

x2

(a)

Figure 1: Schematic illustration of the resultant-factorization
technique

3) Procedure 3: coefficientcleaner(ideal I , poly p) returns
an ideal obtained by removing common factors and p
from ideal I.

4) Procedure 4: constant_check(ideal I) checks whether
or not ideal I has an element composed of only the
parameters. If there is such an element , the function
returns 0 to indicate the presence of an error in the
top-level function.

5) Procedure 5: idealfactorize returns a list of elements
that can be factorized over Q in a given ideal; if
there are no such elements in the ideal, then it re-
turns the given ideal. This is based on the relation√

< I, f ∗ g > =
√

< I, f > ∩ √
< I, g >.

6) Procedure 6: variable_choice returns a variable that is
to be removed in the next procedure. There are two
types of outputs. Let lp be a given list of polynomials.

a) In lp, when there is a variable contained in
only one polynomial, “variable_choice” returns
the variable. In this case, it is not necessary to
calculate resultants in the next procedure because
the resultant of polynomials p and q in x is qr,
where q does not contain the variable x and r is
the degree of x in p.

b) Otherwise, we select a variable as follows:
i) We calculate di– the maximum degree of

variable xi(1 ≤ i ≤ n) by considering lp.
If a single dj is the minimum among di(1 ≤
i ≤ n), xj is returned.

ii) If multiple di’s have the same minimum
value, let y1, y2, . . . , ym be variables that
provide this minimum. We calculate ni, the
number of polynomials that contain yi. If
a single nj provides the minimum among
ni(1 ≤ i ≤ m), yj is returned.

iii) If multiple ni’s provide the same minimum,
let z1, z2, . . . , zk be the variables that provide

this minimum. We calculate ti which means
the number of terms in the polynomials that
contain zi. Variable zj that provides the min-
imum and that is calculated first is returned.

In (i)-(iii), as an accompanying output, we return
the polynomial that contains the returned variable
and has the minimum number of terms.

7) Procedure 7: idealresultant returns a set of resultants
on the basis of the output of Procedure 6.

We perform Procedures 1,2,. . . ,7 for a given input ideal.
Procedure 5 gives rise to branches of Procedures where the
main routine is recursively called. Finally, the main routine
returns a list of polynomials together with the input original
ideal. Prime ideal decomposition can be rapidly performed
for each of the polynomials in the list.

4. Model

In this section, we introduce the Painlevé VI equation [2]

y′′ =
1

2

(
1

y
+

1

y − 1
+

1

y − t

)
y′2

−
(

1

t
+

1

t − 1
+

1

y − t

)
y′

+
y(y − 1)(y − t)

t2(t − 1)2
×

(
α2

1

2
− α2

4

2

t

y2
+

α2
3

2

(t − 1)

(y − 1)2

−α2
0 − 1

2

t(t − 1)

(y − t)2

)
, (1)

which is an ordinary differential equation. Equation (1)
has four parameters:α0, α1, α3, and α4. We discuss typical
solutions, which are called “rational solutions.” All rational
solutions for the equation have been obtained in [3]. We
can use algebraic geometry for studying the equation (1).
However, in general, we cannot use these techniques for
all ordinary differential equations. Thus, we treat equation
(1) in the condition that we do not know the mathematical
structure of the equation (1). We assume rational solutions of
the form y(t) = (k0+k1t+k2t

2)/(l0+t) and substitute these
solutions in the equation. We then obtain algebraic equations
for the eight variables k0, k1, k2, l0, α0, α1, α3, and α4. By
using the resultant-factorization technique proposed in the
previous section 2, we can determine the solutions.

We assume rational solutions of the form y(t) = (k0 +
k1t + k2t

2)/(l0 + t) and substitute these solutions in the

782 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

equation (1). Then, we get the following ideal,

P = {−k4
0 ×

(α1k0 + (−α1 − α3)l0) ×
(α1k0 + (−α1 + α3)l0),

. . . ,

−k24 ×
(α1k2 − α1 + α0) ×
(α1k2 − α1 − α0)}
= {p1, p2, . . . , p13} = 0. (2)

For convenience, we define five equations: f1 = α1k0 +
(−α1 + α3)l0, f2 = α1k0 + (−α1 − α3)l0, g1 = α1k2 −
α1 + α0, g2 = α1k2 − α1 − α0, and h = k0 − l0k1 + l20k2.
Hence, we can divide the original problem(P = 0) to the
six cases,

P1 = {f1, p2, · · · , p12, g1} = 0,

P2 = {f1, p2, · · · , p12, g2} = 0,

P3 = {f2, p2, · · · , p12, g1} = 0,

P4 = {f2, p2, · · · , p12, g2} = 0,

P5 = {k0, p2, · · · , p12, p13} = 0,

P6 = {p1, p2, · · · , p12, k2} = 0.

We explain the resultant-factorization technique for the
case of P1 = 0 in detail. Thus, we consider the ideal,

< f1, p2, · · · , p12, g1 > .

We compute solutions in the case of f1 = 0 and g1 = 0
as follows,

1) Step 1: we compute,

Q
(0)
1 = resultantα0

(g1, f1),

Q
(0)
2 = resultantα0

(g1, p2),

. . .

Q
(0)
12 = resultantα0

(g1, p12).

We factorize Q
(0)
12 and set Q

(1)
1 , . . . , Q

(1)
12 ,

Q
(1)
1 = Q

(0)
1 ,

. . .

Q
(1)
11 = Q

(0)
11 ,

Q
(0)
12 = (k2 − 1)Q

(1)
12 , (3)

Q
(1)
12 =

Q
(0)
12

k2 − 1
.

2) Step 2: we compute,

R
(0)
2 = resultantα3

(Q
(1)
1 , Q

(1)
2),

...

R
(0)
12 = resultantα3

(Q
(1)
1 , Q

(1)
12).

We factorize R
(0)
2 and set R

(1)
2 , . . . , R

(1)
12 ,

R
(0)
2 = l0(k0 − l0)R

(1)
2 , (4)

R
(1)
2 =

R
(0)
2

l0(k0 − l0)

R
(1)
3 = R

(0)
3 ,

. . .

R
(1)
12 = R

(0)
12 .

3) Step 3: we compute,

S
(0)
2 = resultantα4

(R
(1)
12 , R

(1)
2),

...

S
(0)
11 = resultantα4

(R
(1)
12 , R

(1)
11).

We factorize S
(0)
2 , · · · , S

(0)
11 and set S

(1)
2 , . . . , S

(1)
11 ,

S
(0)
2 = 4l40

(
S

(1)
2

)2

, S
(1)
2 =

√
S

(0)
2

4l40

S
(0)
3 = l40

(
S

(1)
3

)2

, S
(1)
3 =

√
S

(0)
3

l40
· · ·

S
(0)
10 = l40

(
S

(1)
10

)2

, S
(1)
10 =

√
S

(0)
10

l40

S
(0)
11 = l40(k2 − 1)2

(
S

(1)
11

)2

,

S
(1)
2 =

√
S

(0)
11

l40(k2 − 1)2

4) Step 4: we compute,

T
(0)
3 = resultantα1

(S
(1)
2 , S

(1)
3),

...

T
(0)
11 = resultantα1

(S
(1)
2 , S

(1)
11).

We factorize T
(0)
2 , · · · , T

(0)
11 and set T

(1)
3 , . . . , T

(1)
11 ,

T
(0)
3 = l60(k2 − 1)2(k0 − l0)

2h2
(
T

(1)
3

)2

,

T
(1)
3 =

√
T

(0)
3

l60(k2 − 1)2(k0 − l0)2h2

T
(0)
4 = l40(k2 − 1)2h2

(
T

(1)
4

)2

,

T
(1)
4 =

√
T

(0)
4

l40(k2 − 1)2h2

· · ·
T

(0)
11 = l40(k2 − 1)2h2

(
T

(1)
11

)2

,

T
(1)
11 =

√
T

(0)
11

l40(k2 − 1)2h2
.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 783

5) Step 5: from the process of the above-mentioned
computation, we can assume the following conditions,

k2 6= 1, l0 6= 0, k0 6= l0, h 6= 0, k0 6= 0.

6) Step 6: we compute the Gröbner basis(G0)[4] of the
ideal,

< T
(1)
3 , · · · , T

(1)
11 > .

7) Step 7: by using saturation technique [4], we remove
the component k2 − 1 from the ideal(G0),

G1 =< G0, 1 − u(k2 − 1) > .

8) Step 8: by using saturation technique, we remove the
component l0 from the ideal(G1),

G2 =< G1, 1 − u(l0) > .

9) Step 9: by using saturation technique, we remove the
component k0 − l0 from the ideal(G2),

G3 =< G2, 1 − u(k0 − l0) > .

10) Step 10: by using saturation technique, we remove the
component h from the ideal(G3),

G4 =< G3, 1 − u(h) > .

11) Step 11: by using saturation technique, we remove the
component k0 from the ideal(G3),

G5 =< G4, 1− u(k0) > .

12) Step 12: we can get the ideal(G6) by using computa-
tion of the following ideal,

G6 =< G5, P1 > .

13) Step 13: we get solutions(D1) from G6 by using prime
ideal decomposition.

5. Timing data
If we do not use the resultant-factorization technique, we

cannot obtain all the solutions for the ideal (2) within 48 h.
However, we can compute solutions with Table 1 by using
the resultant-factorization technique. Since the solutions of
the equation (1) has a large number of irreducible affine
varieties, the resultant-factorization technique functions ef-
fectively. Table 1 shows the computing times for the different
cases. All the algorithms are implemented on Risa/Asir 2 and
measurements are performed on a PC with Intel Core i7 920
and 12 GB of main memory.

2http://www.math.kobe-u.ac.jp/Asir/asir.html

Table 1: computing time for different cases
Cases Time Solutions

f1 = 0 & g1 = 0 4m34s D1

f1 = 0 & g2 = 0 4m46s D2

f2 = 0 & g1 = 0 4m35s D3

f2 = 0 & g2 = 0 4m41s D4

Cases Time Solutions
k0 = 0 351m56s D5

l0 = 0 45s D6

k2 = 0 146m14s D7

Cases Time Solutions
k2 = 1 7s D8

k0 = l0 78m57s D9

h = 0 3s D10

6. Solutions
We show D1, D5, D6, D7, D8, D9 and D10.

D1 = {{α1 + 2, k1 + 2k2 + α4,−k1 + α3 + 1,

2k2 − α0 − 2,−k1 + 2l0k2 − l0,−2k0 + l0k1 + l0,

(−4k2 + 2)k0 + k2
1 + k1}, · · ·

{k1 + 2k2 − 2, k0 − k2 − l0 + 1, α4 + 2,

α1 − α3 − α0 + 1, α3l0 − α1 + α3 − 1,

−α1k2 + α3 − 1}, · · · } = 0

D5 = {{l0, k2,−α3 + α4 + α1, α0 + 1,

−α4 − k1α1}, · · ·
{l0, k1 + k2 − 1, α4 + 1, α0 + α3 + α1,

α3 + k2α1}, · · ·
{l0, α1 + 1, α4 + k1 + k2, α3 + k1− 1,

α0 + k2 − 1}, · · ·
{l0, k2, k1 − 1, α3},
{k2, k1 − l0 − 1, α1 + 1,−α0 + α3 + α4,

(l0 + 1)α3 + l0α4}, · · ·
{k2, α4 + 1, α0 + α3 + α1 + 2,

(l0 + 1)α3 + α1 + l0 + 1, k1α1 + l0 + 1,

k1α3 + k1 − 1}, · · ·
{k2, k1 − l0 − 1, α1 − 1,−α0 + α3 + α4,

(l0 + 1)α3 + l0α4}, · · ·
{k2, α4 + 1,−α0 − α3 + α1 − 2,

(l0 + 1)α3 − α1 + l0 + 1, k1α1 − l0 − 1,

k1α3 + k1 − 1}, · · ·
{k1− l0k2, α3 + 1, α0 − α4 + α1,

−α4 + k2α1}, · · ·
{k1 + k2 − l0 − 1,−α3 + α4 − α1 + 2, α0 + 1,

784 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

−α4 − l0α1 − 1, (k2 − 1)α1 + 1,

(−k2 + 1)α4 − k2 + l0 + 1}, · · ·
{k1 + 1, α3 + 2, α0 − α4 + α1 + 1,

l0α4 + α1 + 1,−α4 + k2α1 + 1}, · · ·
{k1− l0k2, α3 + 1,−α0 + α4 + α1,

−α4 − k2α1}, · · ·
{k1 + k2 − l0 − 1,−α3 − α4 − α1 + 2, α0 − 1,

α4 − l0α1 − 1, (k2 − 1)α1 + 1,

(k2 − 1)α4 − k2 + l0 + 1}, · · ·
{k1 + 1, α3 + 2,−α0 + α4 + α1 + 1,

−l0α4 + α1 + 1,−α4 − k2α1 − 1}, · · ·
{k2, k1 − l0 − 1, α1 + 1, α0 + α3 + α4,

(l0 + 1)α3 + l0α4}, · · ·
{k2, α4 + 1,−α0 + α3 + α1 + 2,

(l0 + 1)α3 + α1 + l0 + 1, k1α1 + l0 + 1,

k1α3 + k1 − 1}, · · ·
{k2, k1 − l0 − 1, α1 − 1, α0 + α3 + α4,

(l0 + 1)α3 + l0α4}, · · ·
{k2, α4 + 1, α0 − α3 + α1 − 2,

(l0 + 1)α3 − α1 + l0 + 1, k1α1 − l0 − 1,

k1α3 + k1 − 1}, · · ·
{k2, k1, α4},
{k1− l0k2, α3 + 1, α0 + α4 + α1,

α4 + k2α1}, · · ·
{k1 + k2 − l0 − 1,−α3 − α4 − α1 + 2,

α0 + 1, α4 − l0α1 − 1, (k2 − 1)α1 + 1,

(k2 − 1)α4 − k2 + l0 + 1}, · · ·
{k1 + 1, α3 + 2, α0 + α4 + α1 + 1,

−l0α4 + α1 + 1, α4 + k2α1 + 1}, · · ·
{k1− l0k2, α3 + 1,−α0 − α4 + α1,

α4 − k2α1}, · · ·
{k1 + k2 − l0 − 1,−α3 + α4 − α1 + 2,

α0 − 1,−α4 − l0α1 − 1, (k2 − 1)α1 + 1,

(−k2 + 1)α4 − k2 + l0 + 1}, · · ·
{k2 − 1, k1− l0, α0},
{k1 + 1, α3 + 2,−α0 − α4 + α1 + 1,

l0α4 + α1 + 1, α4 − k2α1 − 1}, · · · } = 0

D6 = {{k2, k0 + k1 − 1, α1, α3 + 1,

α4 + α0 + 2, (α4 + 1)k1 − α4}, · · ·
{k1 + 2k2 − 2, k0 − k2 + 1, α1,

α4 + 2, α3 + 1, α0}, · · ·
{k1 + k2 − 1, k0, α4 + 1,

α1 + α3 + α0, α1k2 + α3}, · · ·
{k2, k0, α1 + α4 − α3, α0 + 1,−α1k1 − α4}, · · ·
{k0, α1 + 1, k1 + k2 + α4,

k1 − α3 − 1, k2 + α0 − 1}, · · ·
{k1 + k2 − 1, k0, α4 + 1,

α1 + α3 − α0,−α1k2 − α3}, · · ·
{k1, k0, α3 + 1, α1 + α4 + α0, α1k2 + α4}, · · ·
{k1, k0, α3 + 1, α1 + α4 − α0,−α1k2 − α4}, · · ·
{k2, k1, α1, α4, α3 + 1, α0 + 2}, · · ·
{k2, k1 − 1, k0, α3}, {k2, k1, k0, α4},
{k2 − 1, k1, k0, α0}} = 0

D7 = {{k0, α4 + 1, α1 + α3 + α0 + 2,

(α3 + 1)l0 + α1 + α3 + 1, α1k1 + l0 + 1,

(α3 + 1)k1 − 1}, · · ·
{k1 − l0 − 1, k0, α1 + 1, α4 − α3 + α0,

(α4 − α3)l0 − α3}, · · ·
{k0, α4 + 1, α1 − α3 + α0 + 2,

(α3 − 1)l0 − α1 + α3 − 1, α1k1 + l0 + 1,

(α3 − 1)k1 + 1}, · · ·
{k1 − l0 − 1, k0, α1 + 1, α4 + α3 + α0,

(α4 + α3)l0 + α3}, · · ·
{k1, k0, α4},
{k0 − l0k1, α1 − α4 + α3,

α0 + 1, α1k1 − α4}, · · ·
{k0 + k1 − l0 − 1, α3 − 1, α1 − α4 + α0 + 2,

(α4 − 1)l0 + α1, α1k1 + l0 − α1,

(α4 − 1)k1 − α4}, · · ·
{k1 + l0,−α1 + α4 − α3 − 1, α0 + 2,

(−α1 − 1)l0 − α4,−α1k0 + (α4 − 1)l0,

(−l0 − α4)k0 + (−α4 + 1)l20}, · · ·
{k1 + l0,−α1 + α4 − α3 + 1, α0 + 2,

(−α1 + 1)l0 − α4,−α1k0 + (α4 + 1)l0,

(l0 − α4)k0 + (−α4 − 1)l20}, · · ·
{k0 − l0k1, α1 + α4 + α3, α0 + 1,

α1k1 + α4}, · · ·
{k0 + k1 − l0 − 1, α3 − 1, α1 + α4 + α0 + 2,

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 785

(α4 + 1)l0 − α1, α1k1 + l0 − α1,

(α4 + 1)k1 − α4}, · · ·
{k1 + l0,−α1 − α4 − α3 − 1, α0 + 2,

(−α1 − 1)l0 + α4,−α1k0 + (−α4 − 1)l0,

(−l0 + α4)k0 + (α4 + 1)l20}, · · ·
{k1 + l0,−α1 − α4 − α3 + 1, α0 + 2,

(−α1 + 1)l0 + α4,−α1k0 + (−α4 + 1)l0,

(l0 + α4)k0 + (α4 − 1)l20}, · · ·
{k0 − l0k1, α1 + α4 − α3, α0 + 1,

−α1k1 − α4}, · · ·
{k0 + k1 − l0 − 1, α3 + 1, α1 + α4 + α0 + 2,

(α4 + 1)l0 − α1, α1k1 + l0 − α1,

(α4 + 1)k1 − α4}, · · ·
{k1 + l0,−α1 − α4 + α3 − 1, α0 + 2,

(α1 + 1)l0 − α4, α1k0 + (α4 + 1)l0,

(−l0 + α4)k0 + (α4 + 1)l20}, · · ·
{k1 + l0,−α1 − α4 + α3 + 1, α0 + 2,

(α1 − 1)l0 − α4, α1k0 + (α4 − 1)l0,

(l0 + α4)k0 + (α4 − 1)l20}, · · ·
{k0 − l0k1, α1 − α4 − α3, α0 + 1,

−α1k1 + α4}, · · ·
{k0 + k1 − l0 − 1, α3 + 1, α1 − α4 + α0 + 2,

(α4 − 1)l0 + α1, α1k1 + l0 − α1,

(α4 − 1)k1 − α4}, · · ·
{k1 − 1, k0 − l0, α3},
{k1 + l0,−α1 + α4 + α3 − 1, α0 + 2,

(α1 + 1)l0 + α4, α1k0 + (−α4 + 1)l0,

(−l0 − α4)k0 + (−α4 + 1)l20}, · · · } = 0

D8 = {{k1 + 1, k0, α1 + 1, α4, α3 + 2, α0}, · · ·
{k1 − l0, k0, α0},
{k0 − l0k1 + l20, α1 + 1, k1 − l0 + α4 + 1,

k1 − l0 + α3 − 1, α0}, · · ·
{k1 − l0, 2k0 − l20 − l0, α1 + 2, l0 + α4 + 2,

l0 + α3 − 1, α0}, · · ·
{k0 − l0k1 + l20, α1 + 1, k1 − l0 + α4 + 1,

k1 − l0 − α3 − 1, α0}, · · ·
{k1 − l0, 2k0 − l20 − l0, α1 + 2, l0 + α4 + 2,

l0 − α3 − 1, α0}, · · ·
{k1, k0 − l0, α1 + 1, α4 + 2, α3, α0}, · · · } = 0

D9 = {{l0, k1, α3 − 1, α1 − α4 − α0, α1k2 − α4},
· · · {l0, k2 − 1, k1, α0}, · · ·
{2l0 − 1, 2k2 − 1, k1 − 1, α1 − 2, α4 + 2, α3 − 2,

α0 − 1}, · · ·
{2l0 − 1, 2k2 + 1, k1 + 1, α1 − 2, α4 + 2, α3 − 2,

α0 − 3}, · · ·
{k2 − 1, k1 − l0, α1l0 − α1 + α4,

α0, l
2
0 − l0 + 1, α2

1l0 − α2
1 + α2

3 + 1},
{k2 − l0, k1 − l0 + 1, α1l0 − α4, α3 − 1,

α1l0 − α1 + α0, l
2
0 − l0 + 1}, · · ·

{k2 − 1, k1 − l0, α0, l
2
0 − l0 + 1,

α2
1l0 − α2

1 + α2
3 + 1},

{k2 − 1, k1 − l0, α0, l
2
0 − l0 + 1}} = 0

D10 = {{k2, k1, α4},
{k1 − l0k2, α3 + 1, α1 + α4 + α0, α1k2 + α4}, · · ·
{k2 − 1, k1 − l0, α0},
{k2, α1 + α4 + α3, α0 + 1, α1k1 + α4}, · · ·
{k1 + (−l0 + 1)k2 − 1, α4 + 1,

α1 + α3 + α0, α1k2 + α3}, · · ·
{α1 + 1, k1 + (−l0 + 1)k2 + α4, k1 − l0k2 + α3 − 1,

k2 + α0 − 1}, · · ·
{k1 + (−l0 + 1)k2 − 1, α4 + 1,

α1 + α3 − α0,−α1k2 − α3}, · · ·
{α1 + 1, k1 + (−l0 + 1)k2 + α4, k1 − l0k2 + α3 − 1,

k2 − α0 − 1}, · · ·
{k2, α1 + α4 − α3, α0 + 1,−α1k1 − α4}, · · ·
{k2, k1 − 1, α3},
{k1 + (−l0 + 1)k2 − 1, α4 + 1, α1 − α3 + α0,

α1k2 − α3}, · · ·
{α1 + 1, k1 + (−l0 + 1)k2 + α4, k1 − l0k2 − α3 − 1,

k2 + α0 − 1}, · · ·
{k1 + (−l0 + 1)k2 − 1, α4 + 1, α1 − α3 − α0,

−α1k2 + α3}, · · ·
{α1 + 1, k1 + (−l0 + 1)k2 + α4, k1 − l0k2 − α3 − 1,

k2 − α0 − 1}, · · · } = 0

7. Conclusion
We proposed the technique for obtaining solutions to

ordinary differential equations. And, we also demonstrated
the implementation of this technique and showed its timing
data. If we do not use the resultant-factorization technique,
we cannot obtain all the solutions for the ideal (2) within
48 h. However, we can compute solutions with Table 1 by
using resultant-factorization technique.

786 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

References
[1] Y. Kawano, K. Kimura, H. Sekigawa, M. Noro, K. Shirayanagi,

M. Kitagawa, and M. Ozawa. Existence of the exact CNOT on
a quantum computer with the exchange interaction. Quantum Inf.
Process., 4(2):65–85, 2005.

[2] K. Kajiwara, T. Masude, M. Noumi, Y. Ohta, and Y. Yamada. Deter-
minant formulas for the toda and discrete toda equations. Funkcial.
Ekvac., 44:291–307, 2001.

[3] M. Mazzocco. Rational solutions of the painlevé vi equation. J. Phys.
A: Math. Gen., 34:2281–2294, 2001.

[4] T. Shimoyama and K. Yokoyama. Localization and primary decom-
position of polynomial ideals. J. Symbolic Comput., 22(3):247–277,
1996.

[5] T. Sturm and A. Weber. Investigating genetic methods to solve
Hopf bifurcation problems in algebraic biology. In K. Horimoto,
G. Regensburger, M. Rosenkranz, and H. Yoshida, editor, Algebraic
Biology, volume 5147 of Lecture Notes in Computer Science, pages
200–215. Springer(Heidelberg), 2008.

[6] H. Yoshida, K. Kimura, N. Yoshida, J. Tanaka and Y. Miwa Algebraic
approaches to underdetermined experiments in biology. IPSJ Transac-
tions on Bioinformatics, 3:62–69, 2010.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 787

Hierarchical Visualization of Similarities
between Probabilistic Distributions for Profiling

Akira Ito, Tomohiro Yoshikawa, Takeshi Furuhashi
Dept. of Computational Science and Engineering

Nagoya University
Furo-cho, Chikusa-ku, Nagoya 466-8603, Japan

Abstract— One of the most important purposes in the
analysis of questionnaire data is to get profiles for the
target group(s). As the result of profiling gives a great
influence on the planning marketing strategy, the reliability
of profiling is very important. Correspondence Analysis,
Association Rule mining are typical methods for profiling
and are useful to grasp the relationships between cate-
gorical variables in data. However, the results of these
methods may “overfit" to the data and be different from
the behavior in the general population, especially when the
sample size is small. This paper proposes a new profiling
method considering behavior in the general population by
the probabilities. It derives the probabilistic distributions
of each choice on a question by Bayesian approach for
each attribute, and visualizes the similarities between these
distributions. This paper applies the proposed method to an
actual questionnaire data on a scanner product. It shows
that a user can profile the data considering the uncertainty
of extracted rules for the relationship between each attribute
and the answer to the essential question. It also shows that
the visualization supports a user to grasp the similarities
between the probabilistic distributions for each attribute and
to extract the characteristics of attributes.

Keywords: Analysis of Questionnaire Data, Profiling, HPD In-
terval, Similarity between Probabilistic Distributions, Hierarchical
Visualization

1. Introduction
In the marketing field, questionnaires are often carried

out and the acquired data are analyzed in order to grasp
the market trends and to plan a marketing strategy. For
example, when a company plans a marketing strategy for a
new product, it often surveys the impression of customers for
the product by a questionnaire. It analyzes the questionnaire
data and utilizes the results for the prediction of marketing
scale or the decision of the target groups to sell[1][2].

One of the most important purposes in the analysis of
questionnaire data is to find “Who are the target group?,"
in other words, to get profiles for the target group(s).
As the result of profiling gives a great influence on the
planning marketing strategy, the reliability of profiling is

very important. Various methods for profiling have been
employed so far.

Correspondence Analysis[3], Association Rule mining[4]
are typical methods for profiling[5][6]. Correspondence
Analysis is a technique designed to analyze two-way or
multi-way contingency tables. The goal of a typical analysis
is to represent the relationship between the rows and/or
columns of the table, e.g., hobbies and ages, on the visual-
ized space. Association Rule mining is that to extract the reg-
ularities in data, and the analysis is based on the evaluation
indices for association rules. The evaluation indices for the
rule {A⇒B} represent the relationship between A and B, for
example, one of them represents the conditional probability
of having item B given item A. These methods are useful
to grasp the relationships between categorical variables in
data. However, the results of these methods may “overfit" to
the data and be different from the behavior in the general
population, especially when the sample size is small[7][8].
It may lead to unreliable profiling.

This paper proposes a new profiling method considering
behavior in the general population by the probabilities. It
assumes that people with attribute X respond to each choice
on a question with the probabilityθ. For each attribute, the
probabilistic distribution of the question with the choices is
derived by Bayesian approach, and the expectation value
and Highest Posterior Density (HPD) interval[9] of the
distribution are defined as the evaluation indices. Then, each
attribute is mapped onto the visualized space based on the
similarities between the probabilistic distributions for them.

This paper applies the proposed method to an actual
questionnaire data on a scanner product. It shows that a
user can profile the data considering the uncertainty of
extracted rules for the relationship between each attribute
and the answer to the essential question with the derivation
of their probabilistic distributions and evaluation indices. It
also shows that the visualization supports a user to grasp the
similarities between the probabilistic distributions for each
attribute and extract the characteristics of attributes.

2. Proposed Method
It assumes that people with attribute X respond to

a question with the probabilities for each choiceθ =

788 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

{θ1, θ2, ..., θk}(see Fig.1). These probabilities are the param-
eters and the probabilistic distribution of them is derived by
Bayesian approach. The expectation value and HPD interval
of the distribution are defined as the evaluation indices. The
probabilistic distribution for every attribute on the question
is derived and the similarities between them are calculated.
Then, each attribute is mapped onto the visualized space
based on these similarities.

Fig. 1: Answer to question withk choices by respondents
with attribute X

2.1 Derivation of Probabilistic Distribution and
Evaluation Indices
2.1.1 Probabilistic Distribution

Let θ = {θ1, θ2, ..., θk} denote a set of parameters and
x = {x1, x2, ..., xk} denote the data.θi represents the
probability of choicei to a question andxi represents the
number of respondents who chose itemi from a set ofk
items (choices). The probability of the datax under the
parametersθ is given by

p(x|θ) = (Σixi)!∏
i xi!

k∏
i=1

θxi
i . (1)

The probabilisticdistribution of the parameters is derived
from the data by Bayes’ theorem.

p(θ|x) = p(x|θ)p(θ)
p(x)

∝ p(x|θ)p(θ) (2)

p(θ|x) is the posterior distribution andp(θ) is the prior
distribution. Now, we set the prior distribution as the eq.(3)
below.

p(θ;α) =
Γ(Σiαi)∏

i Γαi

k∏
i=1

θαi
i . (3)

p(θ;α) is a conjugate prior for the likelihood (eq.(1)).α =
{α1, α2, ..., αk} is called hyper parameters. From eq.(1), (2)

and (3), the posterior distribution is given by

p(θ|x) =
Γ(Σi(xi + αi)∏
i Γ(xi + αi)

k∏
i=1

θxi+αi−1
i

=
1

B(x+α)

k∏
i=1

θxi+αi−1
i . (4)

This distribution form is called Dirichlet distribution[10].

2.1.2 Evaluation Indices

The expectation value (mean) and the HPD interval of the
posterior distribution are defined as the evaluation indices for
each attribute.
Expectation value

The expectation value of the Dirichlet distribution is
analytically derived[10]. In the case of eq.(4), the expectation
value is given by

E[θi] =

∫
p(θ|x)θidθ =

xi + αi
Σi(xi + αi)

. (5)

HPD interval
An intervalR in the parameter space is called 100(1−ϵ)%

HPD interval, and it has the following characteristics.
1. p(θ ∈ R|x) = 1− ϵ
2. for θ1 ∈ R andθ1 /∈ R, p(θ1|x) ≥ p(θ2|x)
The HPD interval hask dimensions and it can be obtained
by numerical computing[9].

Fig.2 shows an example of these evaluation indices. The
larger sample size is , the closer the expectation value
becomes to mode (simple conditional probability in data)
and the smaller the HPD interval becomes.

Fig. 2: Example of evaluation indices

2.2 Visualization of Similarities between Prob-
abilistic Distributions
2.2.1 Similarities between Probabilistic Distributions

This paper employs the Bhattacharyya distance as the
measure of the similarity between probabilistic distributions.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 789

The BhattacharyyadistanceJB between two Dirichlet dis-
tributions,

pa = 1
B(λa)

∏k
i θ

λai−1
i , λa = {λa1, λa2, ...λak} and

pb =
1

B(λb)

∏k
i θ

λbi−1
i , λb = {λb1, λb2, ...λbk},

is analytically derived as the eq.(6) below[11].

JB = − ln

∫
θ

√
papbdθ = ln

√
B(λa)B(λb)

B(12λa +
1
2λb)

(6)

2.2.2 Multi Dimensional Scaling with Spring Model

Multi Dimensional Scaling method[12] can visualize the
similarities (distances) between instances in the original
space. The distance between instancesi andj in the original
space and that in the visible space are defined asdij and
d∗ij , respectively. The coordinates of instances in the visible
space, which are determined randomly at the beginning, can
be calculated by minimizing the energy functionE.

E = Σn−1
i=1 Σ

n
j=i+1kij(dij − d∗ij)2 (7)

kij is a control parameter, which is called a spring coeffi-
cient. The distance between the two instances in the visible
space gets close to be equal to that in the original space
whenkij becomes larger.

2.2.3 Hierarchical Visualization with Segmentation of
Attributes

Each attribute is mapped onto the visible space by Multi
Dimensional Scaling method with spring model described
above based on the similarities between the probabilistic
distributions for the attribute. Fig.3 shows the image of the
visualization of attributes.

First, the visualization of rank 0 and rank 1 is done
(see Fig.3(a)). Rank0-attribute means the probabilistic dis-
tribution for all data and rank1-attribute means that for a
single attribute such as {male}, {20’s}, and so on. They
are mapped together onto the same visible space while
the spring coefficients between the different ranks are set
to be large value to keep their original distances. Next, a
user can see the relationship in the lower rank for more
detail analysis. He/she chooses an attribute and then the
visualization with the segmentation of the attribute is done
in the same way to the rank 0-1 visualization (see Fig.3(b)).
Rank2-attribute means the combination between the chosen
attribute and others such as {male & 30’s}, {male & part-
timer}, and so on when the attribute {male} is chosen. This
hierarchical visualization enables the user to intuitively grasp
the similarities of the attributes in terms of the probabilistic
distributions on the question between the different ranks
and in the same rank, and to extract the characteristics of
attributes for profiling.

(a) rank0-1

(b) rank1-2

Fig. 3: Image of visualization of attributes

3. Experiment and Discussion

3.1 Experimental Setting

In this experiment, questionnaire data on a scanner prod-
uct was used. The number of respondents was 1564. We
focused on the question “Utilization experience of scanner"
(Did you use scanner(s) in the past year?). TABLE 1 shows
the questions related to respondents’ attributes.

Table 1: Questions on attributes
Contents

Sex
Age

Occupation
Household income

790 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

3.2 Comparisonwith Association Rule Mining
In this section, we compare the evaluation indices of

the proposed method, the expectation value and the HPD
interval, with theconfidence, which is one of the main
evaluation indices in Association Rule[4][6], in terms of their
estimation errors.

Association Rule mining is that to extract the regular-
ities in data, and the evaluation indices for a rule {A⇒
B} represent the relationship between A and B.Support
represents the probability of having both item A and item B.
Confidence represents the conditional probability of having
item B given item A.

The hyper parameterαi was set to 1 (uniform prior
distribution), and this experiment was done as follows:

1) 100 samplesDs were randomly extracted from all data
D, 1564 samples, in the questionnaire data.

2) The rulesR whose consequent was {Utilization expe-
rience of scanner = no} inDs under the conditions,
support ≥ a and rank ≤ 2, were extracted.R10

denotes the rules which have top 10confidence in
R.

3) E1 was evaluated, which is the average of the differ-
ence betweenconfidence onDs andconfidence on
D for R10.

4) E2 was evaluated, which is the average of the
difference between expectation value onDs and
confidence on D for R10.

5) E3 was evaluated, which is the proportion that
confidence on D was out of 95% HPD interval on
Ds for R10.

Fig.4 shows the result of the comparison. The horizontal
axis is a, the threshold ofsupport. Confidence-error
represents the average ofE1 in 10 trials and expectation-
error, HPD-error represents that ofE2, E3. The lowera
becomes, the largerconfidence-error is while expectation-
error is relatively small in anya. HPD-error for 95% HPD
interval is also small, which is lower than or equal to 5%.
Although we set the conditionrank ≤ 2 in this experiment,
it seems thatconfidence-error becomes larger when we
accept higher-rank rules because these rules generally have
higherconfidence but lowersupport.

The result shows that the expectation value gives better
estimation thanconfidence which is the evaluation index
for closed data, and we can also consider the reliability of
rules by HPD interval. It seems that the evaluation indices
of the proposed method are suitable for the profiling in the
analysis of questionnaire data especially when the sample
size is small.

3.3 Profiling
Fig.5 shows the visualization results by the proposed

method and TABLE 2 shows the evaluation indices, expecta-
tion value and 95% HPD interval, for some attributes in the

Fig. 4: Estimation error

figure when the hyper parameterαi was set to 1 (uniform
prior distribution). IDA-F in TABLE 2 correspond to those
in Fig.5.

Fig.5 shows the result of rank 0-1 visualization.A, B
and C are plotted far from the rank 0, all data. From
Fig.5(a) and TABLE 2, it seems that all respondents tend not
to use scanner(s) frequently. {Occupation = homemaker},
{Occupation = part-timer} are the groups which tend to use
scanners less frequently than all respondents and {Household
income = over 20 million yen}, {Occupation = employee
(executive)} are those to use more frequently. There is no
overlap in HPD interval between these attributes and all
respondents. So, these groups have significantly different
trends from all respondents in the utilization experience of
a scanner.

We focused on the attributes {Occupation = employee
(executive)}, {Household income = over 20 million yen} and
more analysis was done by seeing the lower rank of them.
Fig.5(b) shows the result when {Occupation = employee
(executive)} was segmented. The expectation value of {Uti-
lization experience of scanner = yes} for {Occupation = em-
ployee (executive) & Household income = 8-10 million yen}
is lower and that for {Occupation = employee (executive) &
Household income = 18-20 million yen} is higher than that
for the higher rank {Occupation = employee (executive)}.
From these results, the amount of household income is
related to the utilization experience of a scanner in those
who are executive-employees. However, the HPD interval for
{Occupation = employee (executive) & Household income
= 18-20 million yen} is large and the lower bound is 0.23.
It means that this rule or profile is uncertain because the
number of applicable data is not enough.

Fig.5(c) shows the result when {Household income =
over 20 million yen} was segmented andF is the part of
them at rank 2. The variance of the attributes is very small
in Fig.5(c). It means that the probabilistic distributions for
these attributes obtained by the segmentation of {Household
income = over 20 million yen} are similar one another. In
these attributes, {Household income = over 20 million yen}
is strongly affected and there are no significant differences

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 791

Table2: Evaluation indices

ID 　　　　　　　　　　　　　 Attribute
Utilization expe-
rience of scanner
= no

Utilization expe-
rience of scanner
= yes

all 0.79 (0.77-0.81) 0.21 (0.19-0.23)

A
Occupation =homemaker 0.87 (0.83-0.91) 0.13 (0.09-0.17)
Occupation =part-timer 0.90 (0.83-0.95) 0.10 (0.05-0.17)

B Household income= over 20 million yen 0.57 (0.41-0.73) 0.43(0.27-0.59)
C Occupation =employee (executive) 0.64 (0.57-0.71) 0.36 (0.29-0.43)
D Occupation =employee (executive) & Household income = 8-10 million yen 0.75 (0.59-0.90) 0.25 (0.10-0.41)

E
Occupation =employee (executive) & Household income = 18-20 million yen0.40 (0.04-0.77) 0.60 (0.23-0.96)
Occupation =employee (executive) & Household income = unknown 0.40 (0.17-0.64) 0.60 (0.36-0.83)

F
Household income= over 20 million yen & Sex = male 0.58 (0.36-0.79) 0.42 (0.21-0.64)
Household income= over 20 million yen & Age = 20’s 0.57 (0.24-0.90) 0.43 (0.10-0.76)

※ expectationvalue (HPD interval)

of the trends in the utilization experience of a scanner among
them.

4. Conclusion
This paper proposed a new profiling method considering

behavior in the general population by the probabilities.
The proposed method derived the probabilistic distribu-
tions for each attribute of each choice on a question by
Bayesian approach, and visualized the similarities between
these distributions. The expectation value and HPD interval
of the distribution were defined as the evaluation indices
for the attributes. This paper applied the proposed method
to an actual questionnaire data on a scanner product. It
showed that a user could profile the data considering the
uncertainty of extracted rules for the relationship between
each attributes and the focused question. It also showed that
the visualization supports a user to grasp the similarities
between the probabilistic distributions for each attribute and
the characteristics of attributes. Our future works are the
study on the measures of the similarity between probabilistic
distributions and the design of appropriate prior distribution
(hyper parameters).

Acknowledgment
This work was supported in part by a Grant-in-Aid for

Scientific Research (C) from the Ministry of Education,
Culture, Sports, Science and Technology (MEXT), Japan,
Grant number: 22500088.

References
[1] S. Liao, C. Chen, C. Hsieh, and S. Hsiao, “Mining information

users’knowledge for one-to-one marketing on information appliance,”
Expert Systems with Applications, vol. 36, no. 3, pp. 4967–4979, 2009.

[2] S. Kuroda, T. Yoshikawa, and T. Furuhashi, “A proposal for analysis
of sd evaluation data by using clustering method focused on data
distribution,” in Proc. of the International Symposium on Frontiers of
Computational Science 2005, 2007, pp. 317–320.

[3] M. O. Hill, “Correspondence analysis: A neglected multivariate
method,”Applied Statistics, vol. 23, no. 3, pp. 340–354, 1974.

[4] R. Agrawal and R. Srikant, “Fast algorithms for miningassociation
rules,” in Proc. of the 20th VLDB Conf., 1994, pp. 487–499.

[5] M. J. Greenacre,Correspondence Analysis in Practice. Chapman
and Hall, London, 2007, vol. 23, no. 3.

[6] J. Jiao and Y. Zhang, “Product portfolio identification based on
association rule mining,”Computer-Aided Design, vol. 37, no. 2, pp.
149–172, 2005.

[7] X. Yin and J. Han, “Cpar: classification based on predictive associ-
ation rules,” inProc. of the 3th SIAM International Conf., 2003, pp.
331–335.

[8] T. Scheffer, “Finding association rules that trade support optimally
against confidence,”Intelligent Data Analysis, vol. 9, no. 4, pp. 381–
395, 2005.

[9] M. Chen and Q. Shao, “Monte carlo estimation of bayesian credible
and hpd intervals,”Computational and Graphical Statistics, vol. 8,
no. 1, pp. 69–92, 1999.

[10] T. Minka, “Estimating a dirichlet distribution,” M.I.T, Tech. Rep.,
2000.

[11] T. W. Rauber, T. Braun, and K. Berns, “Probabilistic distance mea-
sures of the dirichlet and beta distributions,”Pattern Recognition,
vol. 41, no. 2, pp. 637–645, 2008.

[12] M. T. Pham, T. Yoshikawa, T. Furuhashi, and K. Tachibana, “Pattern
recognition based on two-dimensional dendrogram map using spring
model,” in Proc. of the 1th International Workshop on Aware Com-
puting, 2009, pp. 614–619.

792 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

(a) rank0-1

(b) rank1-2 (rank1-attribute:C)

(c) rank1-2 (rank1-attribute:B)

Fig. 5: Visualization result

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 793

Construction of a Mathematical Model and Quantitative
Assessments of Impression in Western Painting

URANO Sachi1

1School of informatics, University of Tsukuba, Tsukuba, Ibaraki, Japan

Abstract - We present a new method to evaluate the
impression of paintings, in terms of a mathematical modeling
and quantitative assessments of impression in western
painting. The present method is based on a detailed modeling
of various factors and elements that consist of the composition
of the painting. Impressions of 20 subject-people for 50
paintings are measured using the semantic differential method,
which are compared to the impressions calculated with the
present method. Their correlation is analyzed with Akaike’s
Information Criterion (AIC) standard. A strong correlation is
obtained.

Keywords: composition, art, mathematical model,
impression, parameter

1 Introduction
 A number of fascinating paintings, which gives us a
deep sympathy have remained up to now. These works are
not only superior in their painting materials and techniques
but also in the construction of the motif and the arrangement
of the layout. There is an approach to understand the layout of
objects in the painting by categorizing the whole screen to
several common parts, which is called the composition.
 Because the composition strongly affects the impression
of the painting, it has been studied by many researchers to
find a good composition or the general rule for the good
painting, which gives a specific impression. In many previous
studies and textbooks, it has been a common method to draw
a parting line on the painting to analyze the composition.
However, there are few works that succeeded to evaluate the
relation between the impression and the composition,
explicitly. Ozawa[1] analyzed the composition of ukiyoe
paintings based on three-dimensional space geometry.
Unfortunately it was difficult to expand the method to the
western paintings. The research groups in Visual Perception
and Aesthetics Lab[2] and Christopher Tyler Lab[3] tried to
figure out the general rules for the composition in terms of an
arrangement of the subject, using many photographs and
paintings. While their approach was straightforward, the
relation among the composition elements and their
quantitative definition (composition factors) derived by their
relation are not clearly expressed, since they focused on the
intuitive and subjective appreciations of the viewers.
 In this paper, we present a new mathematical approach
to evaluate the relation between the composition and the
impression, which is based on the analysis of a three-
dimensional space geometry.

2 Description of the method
2.1 Terminology

 The composition is classified into two major categories,
which are the shape and the relation among the objects
(fundamental form), and the size of the objects and their
layout (arrangement form). We discuss the arrangement form,
which can be analyzed mathematically. The following ten
composition factors are prepared:

1) μ (balance), area fraction of elements on the left side of
the screen after splitting the screen vertically in the
middle.

2) φ (density), area fraction of all the elements that are in
the screen.

3) J (jump ratio), area fraction of the smallest element to
the biggest one inside the slit (magnification ratio).

4) Χ (information value), number of all elements.
5) σs (slit ratio), area fraction of the smallest rectangle that

includes all the elements in a picture (slit) to that of
the whole paintings.

6) p+ (upper vertical proportion), range between the
horizon and the upper limit of the picture.

7) p− (lower vertical proportion), range between the
horizon and the lower limit of the slit.

8) δ (density parameter), homothetic area of elements not
to occlude each other.

9) λ (similarity ratio), homothetic ratio of the fronting
element to the backend element.

10) σv (printing domain vertical ratio), slit height.

Objects in the painting are described with ei {i = 1, 2, … , n} ,
where e1 and en stand for the fronting and the backend
elements, respectively.

2.2 Mathematical modeling and definition

2.2.1 Domains
 We divided the screen into four domains to evaluate the
composition factors and the object arrangement (Figure 1):

 D+ = [−1, 1] × [p− + 2σv(1 + 2p+), 2p+]
 :upper domain
 S = [−1, 1] × [− p−, p− + 2σv(1 + 2p+)]
 : printing slit
 D ⊂ S : printing domain
 D− = [−1, 1] × [−1,− p−] : lower domain

794 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

 D+ ∪ S ∪ D− = [−1, 1] × [−1, 2p+] : image plane.

Figure 1: Domains and parameters (D+, S, Dand D−stand for
upper domain, printing slit, printing domain and lower
domain, respectively). {p+, p−, σv, λ} ∈ [0, 1].

2.2.2 Object size and composition factors
 A viewer maps objects in the three-dimensional space

into the two-dimensional image plane through a screen settled
between the objects and the viewer. It is done by fixing the
observing point, which was followed by changing the visual
points, several times.

 Geometry models of the three different visual points
towards a group of objects {Oi: i = 1, … , n} that are lined up
over the horizon in a similar space interval are shown in
Figure 2 (objects are trees, in this example). We see how the
objects are projected over the screen. We assume the same
heights for the closest and the farthest trees, O1 and On
respectively, for the simplicity of the discussion. The heights
of the visual points in the screen are set to: (a) the top of the
trees, (b) between the top of the tree and the horizon and (c)
the horizon, respectively. The image of the closest and the
farthest trees e1 and en aligns on (a) the top, (b) middle and
(c) root of the trees, respectively, in the two dimensional
plane. It is understood that the size and layout of the images
{en} in two-dimensional picture plane are the function of the
relative position of the horizon and the slit; range between the
horizon and the upper limit of the picture (p+), the lower limit
of the slit (p−) and the slit height (σv), respectively, when we

Figure 2: Geometry models of the three different visual points towards a group of trees (a:
top of the trees，b: between the top of the trees and the horizon，c: the horizon).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 795

observe the objects from the fixed visual point.
 The area ratio of e1 to en is λ2, where λ is a homothetic
ratio of e1 to en. The distance between O1 and On is 1 − λ−1
when we assume the distance between the viewer and O1 of 1.
The composition elements are expressed as follows,

 { ei ⊂ D: i = 1, 2, … , n} : texture elements
 e1 ⊂ D : fronting element
 en ⊂ D : backend element,

using the following parameters

 ρ ∈ [0, 1] : principal and subsidiary element ratio
 ρp ∈ [0, 1] : principal elemental ratio
 ρs ∈ [0, 1] : subsidiary elemental ratio
 δ ∈ [0, 1] : density parameter
 ε : quantization unit of en.

When we introduce the secondary parameters,

 σh ∈ [0, 1] : printing domain horizontal ratio,
 n ∈ [1, 2, … , N] : information number,

we obtain,

 σs = 2σhσv

1+2p
＋

 ∈ [0, 1] : slit ratio,

 J = (1 − λ)2 ∈ [0, 1] : jump ratio (reciprocal),
 χ = n

N
 ∈ [0, 1] : information value.

2.2.3 Element layout rule
 We consider a digitized picture or painting. The smallest
element size ε is min (2

H
, 1+2p+

V
), when the screen has H × V

pixels. Assuming the heights of the fronting and backend
elements of d and (1 − λ)d respectively, we have the
following equations:

 (Case 1)
 p+ ≥ ε

4σv(1−λ)
− 1

2
, in case of p− ≤ 2σv(1 + 2p+), (1)

 (Case 2)
 p+ ≥ ε+λp−

4σv
− 1

2
, in case of p− > 2σv(1 + 2p+). (2)

When we choose p+ so as to satisfy the above mentioned
conditions, the height d is uniquely expressed with the four
fundamental parameters {p+, p−,σv, λ}:

(Case 1) d = 2σv(1 + 2p+), (3)
(Case 2) d = 2σv(1+2p+)+ λ p−

(1−λ)
. (4)

Figure 3 shows the two types of arrangement models. In case
1, the fronting element e1 is the largest in the picture, since it
is inscribed inside S, bordering upper and lower parts. In case
2, e1 is not the largest element, since e1 and en border S on
the lower and upper sides, respectively, yet both are inscribed
in S.

 The height of the elements {ei: i = 2, … , n − 1}
becomes − d

p−
y , when we assume the base coordinates of

y ∈ [−p−,−(1 − λ) p−], because of the mutual similarity.

Figure 3: Arrangement of the elements (a : Case 1, b : Case
2).

 We assume {e1, en} of the principal elements, and the
proportion of the height and width of 1: 4ρp. The height ratio
of the principal and subsidiary elements is 1: ρ, so that the
aspect ratio becomes ρ: ρρs . The elements {ei: i = 2, … , n −
1} can be principal or subsidiary (see Figure 4 for details).

Figure 4: Principal and subsidiary elements.

 All the elements that belong to the printing slit S must
satisfy ei ⊂ S . {e1, en} are arranged according to the
condition 1 explained below, to avoid occlusion en ⊂ e1 .
Assuming the center of the element being fixed, we
recursively arrange ei in the paintings using the image of ei,
Uδ(ei), whose homothetic ratio is 1: δ in order to fulfill both
conditions below (see Figure 5 for details).

(Condition 1)

 Uδ(ei) ∩ (⋃ eji−1
j=1 ∪ en) = ∅ for δ ∈ [0.5, 1.0], (5)

 (Condition 2)
 ei ∩ (⋃ eji−1

j=1 ∪ en) ≠ ∅ for δ ∈ [0, 0.5]. (6)

 (Case 1)

(Case 2)

796 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

The images can be reduced or magnified depending on the
size of δ:

 reduced ：ei ⊂ Uδ(ei) for δ ∈ [0.5, 1.0], (7)
 magnified ：Uδ(ei) ⊂ ei for δ ∈ [0, 0.5]. (8)

If all the elements cannot be arranged, the number of the
elements will be reduced to i + 1, where i(< 𝑛) represents
the number of the elements, which completed the
arrangement.

Figure 5: Elements layout rules(a: 𝑙𝑖 ⊂ 𝑈𝛿(𝑙𝑖), b: 𝑈𝛿(𝑙𝑖) ⊂
𝑙𝑖).

3 Quantitative evaluation of impression

3.1 Sample preparation
 An experimental confirmation about the present method
has been carried out with an experiment. It is important to
generate a geometric model that the objects in the paintings
can be distinguished from the background, satisfying the
conditions mentioned above, and that the picture is visually
perspective with the horizon contained in it. We chose 50
western landscape paintings with people from the art books [4,
5, 6] that fulfill all the conditions. 44% paintings were from
between 15th and 20th centuries, and 26% paintings were in
18th and 19th, which were categorized to the Romanticism,
Neoclassicism, Realism and Impressionism. The paintings
were processed into monochrome prior to the experiment.
The maximum information number N was limited to ten.

Figure 6: Example of Principal and subsidiary elements.

 In Figure 6, four people are pictured (N = 4). In this case,
the objects {D, B} or {e1, e4} are the principal (fronting and
the backend) elements. {e2, e3} are the subsidiary elements
with reduction ratios of ρ = 0.6, ρs = 0.05, ρs = 0.38 ,
respectively. After arranging all the elements on the screen,
we calculated the balance and the density, {μ,φ} ∈ [0, 1]
[7].

Figure 7: Examples of the paintings and the analytical results
with the characteristic quantities.

3.2 Experimental
 We evaluated the impressions of the paintings using the
methods introduced by Ooyama [8]. The adjectives were
categorized into three factors; evaluation factor, activity
factor and potency factor, respectively. A rating scale group
{i=1,2,…,10}, which consisted of ten pairs of adjectives of
preferably independent meanings dispersed each of the
factors was prepared to measure the impression. We showed
50 different paintings {j=1,2,…,50} to the 20 people. The
subject-people assessed their impressions using a scale of
seven degrees (Semantic Differential Method).
 We, then, calculated the mean impression Yij ∈ [0, 1]
for each panting. The impression according to the
arrangement form Imij_e was obtained,

 Imij_e = Yij − αij, (9)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 797

Table 1: Quantity evaluation of impression using AIC

Factor No Adjective Function AIC
Evaluation 1 Good (↔Bad) Im1j = 0.358φ1j − 0.355χ1j + 0.162λ1j + 0.398 -212.82

2 Beautiful (↔Ugly) Im2j = −0.454χ2j + 0.221λ2j + 0.454 -210.73
3 Bright (↔Dark) Im3j = 0.145µ3j − 0.119p+3j − 0.463p−3j + 0.16λ3j

+ 0.777
-183.17

4 Noisy (↔Quiet) Im4j = 0.272χ4j − 0.202 σv4j + 0.648 -180.91
Activity 5 Uncomfortable

(↔Comfortable)
Im5j = 0.587 -204.83

6 Dynamic (↔Static) Im6j = 0.358p−6j − 0.332 σv6j + 0.409 -174.51
7 Showy (↔Plain) Im7j = −0.147σv7j + 0.601 -212.87
8 Unnatural (↔Natural) Im8j = 0.403χ8j − 0.21λ8j − 0.133 σv8j + 0.6 -200.15

Potency 9 Light (↔Heavy) Im9j = 0.897φ9j − 0.506σs9j + 0.124δ9j + 0.164λ9j
+ 0.518

-200.28

10 Strong (↔Weak) Im10j = 0.454 -210.14

Table 2: Example of quantitative assessment of potency factor

Factor No Adjective Function AIC
Potency 9′ Light (↔Heavy) Im9j

′ = 0.154κ9j + 0.275p−9j + 0.253 -213.55
10′ Strong (↔Weak) Im10j

′ = −0.304p−10j + 0.681 -215.57

where, |αij| ∈ [0, 1] is the correction factor for the experiment
uncertainty due to the impressions caused by the variously-
shaped objects, eye direction and some patterns.
 The impression calculated by the present method, Imij_c,
can also be expressed using ten composition factors,

Imij_c = ai1µij + ai2φij + ai3Jij + ai4χij + ai5σsij +
 ai6p+ij + ai7p−ij + a i8δij + ai9λij + ai10σvij, (10)

where {�a𝑖𝑘� ∶ k = 1,2, … ,10} ∈ [0, 1] are the free
coefficients. We calculated the AIC-value, (AIC =
 −2 log(𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑚𝑙𝑙𝑙𝑚ℎ𝑜𝑜𝑜 𝑓𝑚𝑛𝑓𝑓𝑚𝑜𝑛) − 2(𝐴𝐴𝑚𝑓𝐴)) to
evluate the degree of correlation between the experimentally-
obtained impression (Imij_e) and the calculated one by the
composition factors (Imij_c). The multiple classification
analysis was applied to evaluate the correlation. Table 1
summarizes the adjectives and the impression, Imij , which
gave the minimum AIC-values. According to the AIC
standard, the smallest AIC-value represents the strongest
correlation.

3.3 Discussion
 Imij shows the impression in numerical form. Multiple
parameters were required to evaluate the impression except
for adjectives No.5 and No.10. Here, we can observe a
correlation between the impression obtained by the 20
subject-people and that evaluated with the present method.

We have found that people feel the painting noisy, when the
impression was expressed with information value χ4j and
printing domain vertical ratio σv4j. It has also been pointed
out by the previous study carried out by the ref.[7].
 The definition of the composition factors affect to the
evaluation results. For example, if we define κ = {2μ for μ ∈
 [0, 0.5], −2μ + 2 for μ ∈ [0.5, 1.0]}, and analyze

Imij

′ = ai1κij + ai2Jij + ai3χij + ai4σsij + ai5p+ij +
 ai6p−ij + a i7σvij, (11)

the potency factors will change (Table 2), and the AIC-values
are even smaller.
 We may have to introduce other composition factors, or
appropriate factors other than the composition to improve the
strength of the correlation, so that it well represents the
impression of the people. The selection of the adjectives also
affects the results. We will survey various adjectives that
show strong correlation to the composition.

4 Conclusions
 In summary, we were able to explicitly evaluate the
impression of the people for the 50 different paintings, with
the present method, which was based on the detailed
evaluation of the composition factors of the paintings. The
results obtained with the present study supported that the
impression can be quantitatively assessed. We will
improveme the present method by introducing appropriate

798 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

composition factors and other ones to find the strong
correlation to the impression. The present method can be
applied to the evaluation of the impression not only for the
paintings, but also for the photographs. It may also be applied
to the other scientific fields, such as Kansei Engineering.

5 Acknowledgement
 The author thank Prof. K. Sakai from the University of
Tsukuba for his valuable comments. This work is supported
in part by MEXT "Support project for students majoring in
the field of math and science (University of Tsukuba)".

6 References
[1]Ozawa Kazumasa: Towards a Model of Painting – A
Consideration, Information Processing Society of Japan, 1996.
[2]Jonathan S. Gardner et al.: Exploring Aesthetic Principles
of Spatial Composition Through Stock Photography, VSS
Poster, 2008.
[3]CHRISTOPHER W. TYLER: Some principles of spatial
organization in art, Spatial Vision Vol.20 No.6, pp.509-530,
2007.
[4]John Oliver Hand: National Gallery of Art Master
Paintings from the Collection, ABRAMS, 2004.
[5]Vincent Pomerede: 1001 Paintings at the Louvre, MUSEE
DU LOUVRE EDITIONS, 2008.
[6]Stephan Farthing: 1001 Paintings You must See Before
You Die, UNIVERSE, 2007.
[7]VISUAL DESIGN LABORATORY INC.: Basics of
Composition(Japanese), VISUAL D.
[8]Ooyama Tadasu et al.: Chapter 4, Means for Psychological
Investigating, SAIENSU-SHA, pp.65-75(Japanese), 2005.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 799

Abstraction of DNA Graph Structures for
Efficient Enumeration and Simulation

Ibuki Kawamata, Fumiaki Tanaka, Masami Hagiya
Department of Computer Science,

Graduate School of Information Science and Technology, University of Tokyo
ibuki@is.s.u-tokyo.ac.jp, fumi95@is.s.u-tokyo.ac.jp, hagiya@is.s.u-tokyo.ac.jp

Abstract— We propose a graph model of DNA molecules
and an abstraction of that model for efficient simulation of
molecular systems powered by DNA hybridization. In this
paper, we first explain our DNA molecule model composed
of graph data structures and highlight the problem of the
large number of DNA structures that results. We then define an
abstraction of the model, which focuses on local structures of
DNA strands, and introduce reactions among the local struc-
tures. To verify the effectiveness of the abstraction, we develop
simulators for the original and abstract models, and compare
the number of structures generated by those simulators. Based
on this research, computer-aided design of reaction systems
that consist of biological molecules may become easier than
conventional designs that rely on human trial and error.

Keywords: DNA computing, graph, local structure, simulation,
enumeration

1. Introduction
Molecular systems using DNA and its simple hybridization

mechanism have been recently developed, including nano-
scale DNA structures [1], [2], DNA logic gates [3], [4], and
DNA amplification machines [5], [6]. The design of such sys-
tems, however, is extremely difficult for humans because the
combination of molecules in the system increases rapidly as
the number of molecular species increases. This combinatorial
explosion prevents humans from predicting system behavior
and limits the total number of molecular species that can be
used.

A variety of approaches for overcoming this difficulty in
combining molecules have been proposed, most of which are
based on simplified molecules and restricted reactions. Good
examples of such approaches include simple hairpin strands
of DNA that allow a cascade of reactions [7], the program-
ming language for DNA circuits [8], and the computer-aided
tool to produce three-dimensional DNA structures [9]. Even
these methods, however, still require human trial and error to
synthesize systems of interest. These researches simplified and
restricted DNA structures and reactions so that systems to be
designed were limited in their functions.

We previously proposed a method for the automatic design
of DNA logic gates to synthesize small systems based on a
flexible DNA model without human trial and error [10]. In
that method, we defined a graph data structure to represent
DNA molecules and developed a simulator based on chemical

kinetics. Although we restricted the model of DNA structures
and introduced threshold to ignore unimportant structures, the
simulator still led to a combinatorial explosion of structures.

In this study, we abstract the model by focusing on the
local structure of DNA strands to overcome the explosion
problem. The approach based on the local structures is similar
to the equilibrium computation for hybridization reaction
systems [11] and the rule-based language for cellular signaling
pathways [12].

The organization of this paper is as follows. Section 2
reviews our previous work which introduced the graph model
of DNA and three reactions among graph structures. Section 3
illustrates the unbounded increase of structures initiated by
three types of molecules, which is an instance of the main
problem in simulating DNA hybridization systems. Section 4
is the main contribution of the paper, which gives an ab-
straction of graph data structures. Section 5 explains how we
simulate DNA hybridization systems based on our original
and abstracted models. Section 6 exhibits experimental results,
which verify the advantage of our work. Section 7 and 8 are
the discussion and conclusion of this paper.

2. Graph Structure Modeling
In this section, we briefly explain how to model DNA

by simple graph data structures in our previous work [10].
Remaining parts after this section are based on this graph
model.

2.1 Structure

Fig. 1

DNA MODELING

We modeled DNA molecule as a graph data structure to
provide a computational model for systems composed of

800 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

DNA [10]. For example, Fig. 1 shows the application of the
model to a DNA logic gate [3] in a step-by-step manner.
Chemically, DNA is a sequence of nucleotides that can be
specified by a string of the four elemental bases ‘A’, ‘T’, ‘G’,
and ‘C’. The duplex structure is formed by hydrogen bonds
between complementary base pairs in antiparallel directions
(upper left in Fig. 1). Because the target system was a logic
gate, we ignored information about the duplex and saved the
directions of phosphate backbones by representing a single
DNA strand as an arrow and hydrogen bonds as connected
lines (upper right in Fig. 1).

We treated a reaction unit of bases as a segment, and a single
DNA strand was abstracted into a sequence of segments by
allocating a letter to each segment (bottom left in Fig. 1). We
used lowercase and uppercase letters to represent information
about complementary relationships between segments. For
example, ‘a’ is complementary to ‘A’.

Although many kinds of systems are designed using a
similar modeling technique, we further abstracted this model
as a graph data structure to simplify the reaction rules. We
regarded segments as nodes, hydrogen bonds as undirected
edges, and phosphate backbones as directed edges (bottom
right in Fig. 1). We assumed that one DNA structure cor-
responds to a connected graph and regarded a disconnected
graph as a set of DNA structures.

2.2 Reaction

Fig. 2

REACTION RULES

After the DNA graph data structure is thus obtained, we
defined three reaction rules, namely, hybridization, denatura-
tion, and branch migration (Fig. 2), because many artificial
DNA systems can be developed using only these three simple
mechanisms (such as [3], [4], [5], [6]). Hybridization rep-
resents a reaction in which antiparallel complementary base
pairs bind together with hydrogen bonds. This corresponds to
adding a new undirected edge between nodes of uppercase
and lowercase letters (transition from the left to center in
Fig. 2). Denaturation is the inverse reaction in which hy-
bridized complementary base pairs separate from each other.
This corresponds to erasing the undirected edge (transition
from the center to left in Fig. 2). Branch migration is a reaction
in which an exchange of hydrogen bonds occurs in a single
molecule at the branching position of three hybridized strands.
This corresponds to transferring an undirected edge (transition
from the center to right in Fig. 2).

This data structure and the reaction model are sufficient
to represent artificial systems powered by DNA hybridization
reactions.

3. Explosion Problem
The combinatorial explosion of molecules is a fundamental

problem, especially in simulations of molecular reaction sys-
tems including those inside a cell. For example, an unbounded
number of structures are produced by a hybridization chain re-
action (HCR) that causes a cascade of hybridization reactions
triggered by an initiator [6]. In an HCR, there are two hairpin
DNA strands at the initial condition of the system and one
initiator strand that serves as input (Fig. 3).

Fig. 3

HCR COMPONENTS IN THE GRAPH MODEL

By adding the initiator to the system, hybridization and
branch migration reactions occur alternately and the length
of the structure grows unboundedly because of the very large
number of copies of hairpin strands (Fig. 4). The figure lists the
possible structures of the early stage of HCR using the DNA
graph model to illustrate the concept of unbounded growth.

Fig. 4

L IST OFHCR STRUCTURES

Simulating this kind of system is impossible because of the
requirement to allocate an unbounded number of variables to
each structure.

4. Abstraction by Local Structure
To avoid such unbounded numbers of structures, we intro-

duce an abstraction of the graph model by focusing on the
local structure. Although the information about the global
structure is lost by the abstraction, using the simulator to
design DNA circuits is possible when the outputs are assumed
to be single-stranded. The abstraction is done by enumerating
possible connecting states of single strands; this is possible

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 801

because thenumber of strands is limited even if the number of
structures is unbounded. At least13 local structures of single
strands exist for the HCR reaction, as shown in Fig. 5. Note
that each undirected line corresponding to a hydrogen bond
contains information about the segment to which it connects
but the information is omitted in the figure. By a calculation
explained later, the total number of local structures is126,
which means that a finite number is obtained by enumerating
local structures.

Fig. 5

LOCAL STRUCTURES EXAMPLE

The concept of local structure is defined formally as follows.
Assume that an alphabetΣ and a set of single strandsS ⊆ Σ∗

are given in advance, and the binary relationX ⊆ Σ ⊗ Σ is
also defined to represent the complementary relationships of
segments, where⊗ represents a direct product of sets. By
distinguishing all segments of strands, we define the set of
local segmentsG ⊆ S ⊗ N as

G = {(s, i) | s ∈ S, i ∈ N, i ≤ |s|} ,

whereN denotes the set of all positive integers, and|s| denotes
the length ofs. We define a functionLETTER, which is a
map fromG to Σ such that for anyg = (s, i) ∈ G and
s = a1 a2 a3 · · ·, LETTER(g) = ai holds. This function
gives the corresponding letter of a given local segment. As
a consequence, the set of local structuresL ⊆ S ⊗ (G ∪ ϵ)∗
is defined as

L = {(s, g1 g2 · · · gn) | s = a1 a2 · · · an ∈ S,
either(ai, LETTER(gi)) ∈ X or

gi = ϵ holds for all1 ≤ i ≤ n} .

Note that we useϵ as a symbol to represent unconnected
segments, and sequence ofϵ is allowed in g1 g2 · · ·. Thus,
(s, g1 g2 · · · gn) corresponds to single-stranded DNA ifgi = ϵ
holds for all1 ≤ i ≤ n.

For example, modeling an HCR by the graph data structure

gives sets

Σ = { ‘a’, ‘A’, ‘b’, ‘B’, ‘c’, ‘C’}
S = {“abcB”, “BAbC”, “BA” }

and the relation

(‘a’, ‘A’) ∈ X, (‘b’, ‘B’) ∈ X, · · · .

Local segments and local structures are defined as

G = {(“abcB”, 1), (“abcB”, 2), (“abcB”, 3),
(“abcB”, 4), (“BAbC”, 1), (“BAbC”, 2), · · ·}

L = {(“abcB”, ϵ ϵ ϵ ϵ), (“abcB”, ϵ ϵ ϵ (“abcB”, 2)),
(“abcB”, ϵ ϵ ϵ (“BAbC”, 3)), · · ·} .

Enumeration of local structures is performed by finding all
possiblel ∈ L. To enumerate the total number of local struc-
tures from a given alphabet and strands, we define functions
SEGMENTS , COMPLEMENTS , and CONNECTIONS .
First, SEGMENTS is a map fromS to 2G defined as

SEGMENTS (s) = {(s, 1), (s, 2), · · · , (s, |s|)} ,

which expresses all local segments in a given strand. Next,
COMPLEMENTS is a map fromG to 2G defined as

COMPLEMENTS (g) =
{g′ | (LETTER(g),LETTER(g′)) ∈ X} .

This finds all segments that are complementary to the given
segment. Then,CONNECTIONS is a map fromS to N
defined as

CONNECTIONS (s) =∏
g∈SEGMENTS(s)

(|COMPLEMENTS (g)|+ 1),

where |COMPLEMENTS (g)| denotes the cardinality of set
COMPLEMENTS (g). This calculates the number of all
combinations of connections from a given strand. Finally, the
total number of local structures is calculated by the following
expression ∑

s∈S

CONNECTIONS (s).

5. Simulation
This modeling process makes simulation of the concentra-

tion changes possible by solving the differential equation using
numerical analysis. We defined two kinds of deterministic
simulations using either the original or abstracted models of
DNA structures. We refer to the simulator based on the original
graph and abstracted local model as the original simulator
and local simulator, respectively. If a user defines the initial
configuration as a set of structures and their concentrations,
the simulators return the calculation results and the user can
trace the concentration changes. These simulators perform
the calculations in two stages: enumerating structures that
can be constructed from initial structures, and analyzing the
concentration changes numerically.

802 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

At the beginning of a simulation, the simulators enumerate
whole structures in a system to determine the number of
variables and their relationships, where each variable repre-
sents the concentration of the corresponding structure. The
total number of structures is determined by applying the three
reaction rules to the initial set of structures as shown in the
HCR reaction example in the previous section.

The original simulator enumerates possible graph structures
with two restrictions. First, a structure cannot contain two or
more identical single strands; this prevents the combinatorial
explosion of structures that contain a repeated sub-structure.
Second, structures that have a concentration less than10−5 are
disregarded to ignore unimportant structures that may not be
the main products of a simulation. To implement this feature,
the original simulator generates structures dynamically and
checks whether the concentration of each structure exceeds
the threshold given in advance. More concretely, the period
of a simulation is divided into intervals, and the simulator
checks the concentration at the beginning of each interval.
The simulator then continues the rest of the simulation with
the remaining structures whose concentration does not exceed
the threshold.

On the other hand, the local simulator enumerates all of
the possible local structures without restriction as explained
in section 4.

After enumerating structures and reactions among them,
the simulators assign variables to each structure and define
differential equations using chemical kinetics. The simulators
formalize all three reactions. Figs. 6 and 7 show schematic
examples of the original and local simulators, respectively.
According to the reactions shown in the figures, differential
equations for the original simulation are

d

dt
C1 = −kdC1

d

dt
C2 = kdC1

d

dt
C3 = kdC1,

and differential equations for the local simulation are

d

dt
C4 = −kdR(C4C5)

d

dt
C5 = −kdR(C4C5)

d

dt
C6 = kdR(C4C5)

d

dt
C7 = kdR(C4C5)

wherekd is thereaction rates for denaturation andC1, · · · , C7

are the variables assigned to each structure as a concentration.
Because many reactions occur in a single simulation, each
of d

dtC1, · · · is defined by summing up all of the reactions
on which the corresponding structure depends. In the local
simulation, we introduce an arrangement (represented by the
symbolR) in the differential equations compared with ordi-
nary chemical kinetics. ThisR is introduced to emulate multi-

Fig. 6

FORMALIZATION FOR DENATURATION IN ORIGINAL SIMULATION

Fig. 7

FORMALIZATION FOR DENATURATION IN LOCAL SIMULATION

molecular reactions as unimolecular reactions because denatu-
ration (especially denaturation reactions that separate multiple
segments in a row) and branch migration must be unimolecular
reactions. This calculates the ratio of concentration among all
possible connections from reacting segments. Suppose thatCl

denotes the concentration of the local structurel, and function
CONNECTED is a map fromG to 2L as

CONNECTED(g) =
{l | s ∈ S, g⃗ ∈ (G ∪ ϵ)∗, l = (s, g⃗) ∈ L, g appears in⃗g} ,

where “g appears in⃗g ” means that⃗g = g1 g2 · · · gn andg =
gi holds for somei. CONNECTED finds all local structures
that are connected to the given local segment.R(Cl1Cl2) for
denaturation between the segmentsg1 of local structurel1 and
g2 of l2 is defined as

Cl1Cl2∑
l∈CONNECTED(g1)

Cl
,

which is equivalent to

Cl1Cl2∑
l∈CONNECTED(g2)

Cl
.

The rateof each reaction is defined by rule of thumb, and
the kinetics of hybridization and branch migration are fixed.
Only the kinetic velocity of denaturation is calculated accord-
ing to the information of segments that are separating. We
use a Runge-Kutta-Fehlberg-4,5 method [13] to analyze the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 803

differential equations; this is a numerical analysis technique
using step size controls.

6. Enumeration and Simulation Results
We have described two types of simulations for DNA

reaction systems. Experiments were conducted to examine and
compare their features. As an environment for the experiments,
we used a computer with Intel Core2 Duo (2.66GHz) CPU,
4026MB RAM, Windows Vista OS, and executed the simula-
tor on Java 1.6.

6.1 Enumeration Efficiency
The efficiency of the two types of simulations was tested

in terms of the number of structures. As a benchmark, we
generated a random system as a random sequence of letters,
which determines the setS. Note that the size of setΣ was
fixed to 14 for all simulations. Such random systems were
actually generated in our previous work for the automatic
design of DNA logic gates. We first fixed a maximum size of
S, and then we generated and simulated200 random systems
to obtain the average and maximum numbers of structures.
After that, we took another maximum size in turn and repeated
the calculation for each maximum size. We tried21 different
sizes (whose values were suitable for simulations), which
range over thex-axis of Figs. 8 and 9.

The figures show the average and maximum number of
structures produced by four types of simulation: original simu-
lation without threshold, local simulation, original simulation
with threshold, and stochastic simulation. Note that original
simulations with or without threshold impose the restriction
on DNA structures mentioned above. Thex-axis of the figure
corresponds to the maximum number of local segments, which
is the number of letters inS to generate a random system. The
y-axis of the figure corresponds to the number of structures
for each simulation.

The stochastic simulation was not explained above because
it is not an integral part of this research. Stochastic simulation
is an algorithm for simulating discrete chemical reaction
systems using a statistical simulation method. This statistical
method simulates chemical reactions stochastically one by one
according to the distribution of possibility of each reaction.
We actually implemented Gillespie’s algorithm [14] for this
method.

Note that the results of original simulation with threshold
and stochastic simulation are only shown as references in the
figures. Direct comparison of the results is not fair because
the values for the original simulation with threshold and the
stochastic simulation depend on parameters such as threshold
and copy number.

As expected, the original simulation without threshold ex-
hibited faster combinatorial explosion than the others because
entire combinations of structures were tested by the execution.
Completion of the original simulation with a size greater than
40 was impossible due to an out-of-memory error. The increase
in the number of structures in the local simulation seemed to

 1

 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 n
um

be
r

of
 s

tr
uc

tu
re

s

Maximum number of segments

stochastic
threshold

local
no threshold

Fig. 8

AVERAGE NUMBER OF STRUCTURES

 10

 100

 1000

 10000

 100000

 1e+006

 10 20 30 40 50 60 70 80 90

M
ax

im
um

 n
um

be
r

of
 s

tr
uc

tu
re

s

Maximum number of segments

stochastic
threshold

local
no threshold

Fig. 9

MAXIMUM NUMBER OF STRUCTURES

be slower than that of the original simulation without threshold
because of the limit on the number of local structures.

These results indicate that an appropriate model and simula-
tion are necessary for the efficient enumeration and simulation
of DNA hybridization systems.

6.2 Simulation of Entropy-driven Gate
We choose entropy-driven amplifier gate [5] as a benchmark

to verify that the two simulations can predict the behavior of
the DNA gate correctly. This gate is composed of a three-
strand structure with one fuel strand, and an output strand is
emitted using an input strand as a catalyst.

Figs. 10 and 11 show the results of the original and local
simulations, respectively. Thex- and y-axes in the figures
correspond to the virtual time of the simulation and the virtual
concentration of the output strand, respectively. Changes in the
first 2000 time units were due to constructing the gate, and
the input was added after2000 time units had elapsed. The

804 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

V
irt

ua
l c

on
ce

nt
ra

tio
n

Virtual time

input:0
input:0.01
input:0.02
input:0.05
input:0.1
input:0.2
input:0.5

Fig. 10

ORIGINAL SIMULATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

V
irt

ua
l c

on
ce

nt
ra

tio
n

Virtual time

input:0
input:0.01
input:0.02
input:0.05
input:0.1
input:0.2
input:0.5

Fig. 11

LOCAL SIMULATION

graph legends indicate the concentrations of inputs.
Because most of the results exhibit catalytic activity in

which the concentration of the output increases more than
that of the input, it is possible to ensure that both simulations
predict the behavior correctly. However, in the original simu-
lation where0.01 concentration of input was added, the output
concentration did not increase because the input concentration
was too small to exceed the threshold. In contrast, the output
concentration did increase for the local simulation, which is
a more precise simulation of the system than the original
simulation.

7. Discussion
A limit to designing very complex DNA systems lies in the

combinatorial explosion problem of the DNA structures. This
is critical because preventing the combinatorial explosion by
enumerating all of the possible structures is difficult where
an unbounded number of structures can occur. Imposing a

threshold or artificial limitations on the model of structures
did not eliminate the problem and introduced the possibility
of incorrect simulation, as the results in the previous section
showed.

A new approach to avoiding the combinatorial explosion
was proposed that focused on the local structure, and the
efficiency of this approach was better than the original model.
The rapid increase in the number of structures was reduced
in the local simulation. Considering all of the possible local
structures in a simulation was possible because none of the
structures were ignored as the result of imposing an artificial
threshold. The strongest aspect of the model was the ability
to express any kind of structure at the expense of losing some
part of the information, even in the case where unbounded
structures were involved.

The HCR [6] explained in Section 3 is a typical system
that produces an unbounded number of structures, and requires
infinite-dimensional ordinary differential equations (ODEs) to
be solved to compute concentrations of all possible structures.
The original simulator ignores structures with a small concen-
tration and approximates infinite-dimensional ODEs by finite-
dimensional ODEs. On the other hand, the local simulator
focuses on local structures and obtains finite-dimensional
ODEs. The resulting ODEs are not an approximation but
exactly model the behavior of local structures.

A question that naturally arises here is whether it is possible
to obtain concentrations of global structures from the dis-
tributed concentrations of local structures. This seems possible
if we make “maximum entropy assumption” as in the related
work [11], but it is not always the case that the assumption is
true. For example, in the case of the HCR, the maximum en-
tropy assumption induces a Possion distribution on the length
of structures, and the local simulator gives the result in Fig. 13,
while the original simulator gives the result in Fig. 12. Thex-
andy-axes in the figures correspond to the virtual time of the
simulation and the virtual concentration of the DNA structures,
respectively. The graph legends indicate the number of hairpin
strands that connect to the initiator in a structure. In this
comparison, the original simulator is considered more accurate
because it enumerates an enough number of structures. The
results indicate that the local simulator does not recover the
concentrations of global structures accurately.

While the purpose of the related work [11] was to theo-
retically compute equilibrium state of hybridization reaction
system based on locality, we gave a concrete simulator in this
work that can trace the time change of concentration. Though
this work shares the basic idea with the related work [12], we
defined the local structure for our original purpose, which is to
simulate DNA hybridization systems. We actually showed that
the local simulation was effective in enumeration of structures
and more precise than the original simulation with threshold.
Because the targets of our automatic design were gates that
output single-stranded DNA, the modeling using the local
structure can be regarded as a novel abstraction that serves
our purpose.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 805

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0 10 20 30 40 50 60 70 80

V
irt

ua
l c

on
ce

nt
ra

tio
n

Virtual time

length:1
length:2
length:3
length:4
length:5

Fig. 12

ORIGINAL SIMULATION OF HCR

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0 10 20 30 40 50 60 70 80

V
irt

ua
l c

on
ce

nt
ra

tio
n

Virtual time

length:1
length:2
length:3
length:4
length:5

Fig. 13

GLOBAL INFORMATION RECOVERED BYLOCAL SIMULATION OF HCR

8. Conclusion
DNA hybridization systems have been applied to a wide

range of applications including molecular robotics, nano-scale
structures, and medication control. Because selecting combi-
nations of molecules to achieve some desired functionality is
difficult for humans, we previously proposed an automatic
design method using an evolutionary computation. Model-
ing for molecules and reactions was defined by regarding
molecules as a graph data structure. Because the automatic
design method required efficient enumeration and simulation
to avoid combinatorial explosion, we abstracted the model
to limit the number of structures by enumeration, even if an
unbounded number of structures can be constructed. On the
basis of this modeling technique, we developed a simulator and
investigated the efficiency in the enumeration of structures and
the prediction of system behavior. Synthesis of large systems
that are more complex than human beings can design will be
possible using this new abstracted model.

References
[1] Rothemund, P. W. K.: Folding DNA to create nanoscale shapes and

patterns,Nature, Vol. 440, No. 7082, pp. 297–302 (2006).
[2] Andersen, E. S., Dong, M., Nielsen, M. M., Jahn, K., Subramani, R.,

Mamdouh, W., Golas, M. M., Sander, B., Stark, H., Oliveira, C. L. P.,
Pedersen, J. S., Birkedal, V., Besenbacher, F., Gothelf, K. V. and
Kjems, J.: Self-assembly of a nanoscale DNA box with a controllable
lid, Nature, Vol. 459, No. 7243, pp. 73–76 (2009).

[3] Seelig, G., Soloveichik, D., Zhang, D. Y. and Winfree, E.: Enzyme-Free
Nucleic Acid Logic Circuits,Science, Vol. 314, No. 5805, pp. 1585–
1588 (2006).

[4] Qian, L. and Winfree, E.: A simple DNA gate motif for synthesizing
large-scale circuits,DNA Computing, Vol. 5347 of LNCS, pp. 70–89
(2008).

[5] Zhang, D. Y., Turberfield, A. J., Yurke, B. and Winfree, E.: Engineering
Entropy-Driven Reactions and Networks Catalyzed by DNA,Science,
Vol. 318, No. 5853, pp. 1121–1125 (2007).

[6] Dirks, R. M. and Pierce, N. A.: Triggered amplification by hybridization
chain reaction,Proc. Natl. Acad. Sci. U. S. A., Vol. 101, No. 43, pp.
15275–15278 (2004).

[7] Yin, P., Choi, H. M. T., Calvert, C. R. and Pierce, N. A.: Programming
biomolecular self-assembly pathways,Nature, Vol. 451, No. 7176, pp.
318–322 (2008).

[8] Phillips, A. and Cardelli, L.: A programming language for composable
DNA circuits, J. R. Soc. Interface, Vol. 6, pp. 419–436 (2009).

[9] Douglas, S. M., Marblestone, A. H., Teerapittayanon, S., Vazquez, A.,
Church, G. M. and Shih, W. M.: Rapid prototyping of 3D DNA-origami
shapes with caDNAno,Nucleic Acids Res., Vol. 37, No. 15, pp. 5001–
5006 (2009).

[10] Kawamata, I., Tanaka, F. and Hagiya., M.: Automatic Design of DNA
Logic Gates Based on Kinetic Simulation,DNA Computing and Molec-
ular Programming, Vol. 5877 of LNCS, pp. 88–96 (2009).

[11] Kobayashi, S.: A New Approach to Computing Equilibrium State of
Combinatorial Hybridization Reaction Systems, inBio-Inspired Models
of Network, Information and Computing Systems, pp. 330–335 IEEE
(2008).

[12] Danos, V., Feret, J., Fontana, W. and Krivine, J.: Abstract Interpretation
of Cellular Signalling Networks, inVerification, Model Checking, and
Abstract Interpretation, pp. 83–97 Springer (2008).

[13] Fehlberg, E.: Klassische Runge-Kutta-Formeln vierter und niedrigerer
Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf W
”armeleitungsprobleme,Computing, Vol. 6, No. 1, pp. 61–71 (1970).

[14] Gillespie, D.: Exact stochastic simulation of coupled chemical reactions,
The journal of physical chemistry, Vol. 81, No. 25, pp. 2340–2361
(1977).

806 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

A Heuristic Line Balancing Algorithm Accounting for

Component Mounting Order

Hiroshige Tozaki, Hidenori Ohta and Mario Nakamori

Department of Computer Science, Tokyo University of Agriculture and Technology,

Koganei, Tokyo, Japan

Abstract - A printed circuit board production line is

composed of several component-mounting machines

arranged in series that mount components onto each board.

Since the performance of the line is determined by the most

time consuming machine, the line balancing problem occurs

that makes the mounting time by machines as equal as

possible. Conventional line balancing procedures use time

estimates based on the total number of components to be

mounted under each machine. The actual mounting time,

however, is often quite different from such estimates, and a

substantial discrepancy arises between the actual production

time and the estimated one of the line. In the present paper, a

new estimation method of mounting time is proposed based

on the calculation of the length of mounting paths, and also a

heuristic algorithm of the line balancing problem is proposed.

The proposed algorithm is shown by computer experiments to

provide better results than conventional procedures.

Keywords: line balancing, component mounting

1 Introduction

 The process of mounting electronic components, such

as integrated circuits, resisters, and condensers, onto printed

circuit boards (PCB) is generally a bottleneck in the

production of such boards and is the dominant process

affecting production efficiency. This process is carried out

on a line formed of several component mounting machines

(“machines” in abbreviation) connected in series. Previous

studies aiming at reducing production time are either on

rough optimization of the line or on individual optimization

of each machine movement [1], and studies on the total

optimization including both line and individual machine are

scarce.

The present paper addresses the problem of allocating

components in a component mounting line composed of

machines. The target problem of allocating components in a

component mounting line is to assign multiple components

to each machine such that the production efficiency is the

maximum. Both this problem and that of determining the

component mounting order in each machine have influence

to each other. As a result, even if each is optimized

independently, the results will not necessarily result in

overall optimization when combined. The allocation of

components to each machine, however, has been optimized

without taking the issue of component mounting order into

consideration. Furthermore, estimation of the mounting time

has been based on the component numbers of the

components to be allocated by each machine [2], and no

procedure accounting for the mounting path in each machine

has been considered. Estimation methods based on the

number of components show large discrepancies with actual

production time. In the present paper we propose a heuristic

algorithm that allocates components while it calculates the

mounting paths in each machine.

2 Formulation of the Problem

 Each component mounting machine contains a head

equipped with multiple vacuum nozzles that pick

components and mount them on the board. The action of a

machine is as follows: Using its vacuum nozzles, the head

first picks up multiple components that have been positioned

on the supply feeder, transports them to the location on the

board where one of the components is to be mounted,

mounts one component, then moves to the location where a

second component is needed and mounts that component and

so on, repeating until all of the components it picked up have

been mounted, after which the head returns to the supply

feeder to pick up another batch of components. The

sequence of actions from the pick-up to the return of the

head to the supply tray is called a turn.

The present paper addresses the component allocation

problem while at the same time taking into consideration the

mounting paths of each machine. A line is assessed based on

the time spent per single board by the bottleneck machine.

This time is strongly affected by the travel distance of the

head, which is defined as the Chebyshev distance because

head is driven by motors that operate independently in the x

and y directions. Therefore, our algorithm calculates the head

travel distance for each machine considering both component

allocation and component mounting order, evaluating the

component allocation by the maximum head travel distance.

Since this paper focuses on component allocation and

component mounting order, the problem of component pick-

up is only briefly addressed; all components are assumed to

be picked up at an identical point on the supply feeder; the

distances between nozzles are also neglected by assuming

that the head makes no extra motions to pick up components.

For the sake of simplicity, it is also assumed that all the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 807

components could be picked up by any nozzle, and that there

is no upper limit on the number of component types that

could be placed on the supply feeder.

The above problem is formulated as an integer programming

problem as follows:

mounted be tocomponents ofnumber total:

component of coordinate:

component of coordinate:

nozzles ofnumber :

machine ofpathin included components ofnumber total:

feedersupply theof scoordinate:0

path mounting on the compoonentth of scoordinate:

machinein paths mountingcomponent ofnumber :

line production thecomosing machines ofnumber total:

machine of distance traveltotal:

function objective:

5

4,max,

3

2)(,)1(,0

 subject to

1,,1maxminimize

1 1

1 1

M

ayy

axx

N

jrm

c

iic

jm

jsize

jT

z

mM

yyxxbat

Nm

icictmcctT

jsizejTz

a

a

jr

j

j

jsize

j

m

r

jr

abab

jr

m

r

m

i

jrj

j

j

j jr

Formula (1) is the objective function and states that the

maximum value of the total head travel distance of each

machine calculated in (2) should be minimized. Constraint

(3) limits the maximum number of components that can be

mounted in one turn. Constraint (4) defines the Chebyshev

distance between two component insertion points.

Constraint (5) expresses the number of components mounted

on a single board.

3 Conventional procedures

In conventional procedures, once the components have been

allocated to machines in a balanced manner according to the

number of components, the mounting order of the

components in each machine is determined and the head path

is created. This procedure is easily adaptable to simulated

annealing as follows: we use the allocation obtained from the

above conventional method as the initial solution; in order to

improve temporary solution, we exchange the components

allocated to the bottleneck machine with those allocated to

other machines or pass the components allocated to the

bottleneck machine to another machine. We call this method

“extended conventional procedure.” Figure 1 shows a flow

diagram for the extended conventional procedure.

Figure 1 Extended conventional procedure

4 Proposed algorithm

In the present paper we propose a hybrid genetic

algorithm, which is a combined version of a genetic

algorithm with local search technique. Figure 2 shows a

flow diagram of the proposed algorithm.

Incorporating local search technique into the genetic

algorithm strengthens weak points of genetic algorithm and

provides a more precise solution. In the algorithm proposed

here, local search is used for initial solution generation,

mutation and offspring solution improvement.

4.1 Expression of solutions

 In the proposed algorithm, all machines are assumed to

mount their components in the same number of turns. When

the number of turns increases, the head must move between

the supply tray and the board more frequently, so it is

desirable that the number of turns for each machine be

reduced as much as possible. The minimum number of turns

necessary for a single machine is obtained by (6). Note that,

depending on the number of machines and components

available for mounting, there will be turns during which no

components are picked up by some of the nozzles.

 6

jsizeN

M
m j

The components are assigned individual numbers, and the

solution is expressed by a row of these component numbers

aligned as shown in Fig. 3. If the arranged components are

separated into blocks based on a fixed number of

components starting from the first, this will correspond with

start

Allocation of components to machines

Creation of paths

・nearest neighborhood method

・2-opt neighborhood local search

2-swap neighborhood local search among paths

Simulated annealing

・Exchange of components

・Pass of components

end

Conventional procedure

Extended part

start

Allocation of components to machines

Creation of paths

・nearest neighborhood method

・2-opt neighborhood local search

2-swap neighborhood local search among paths

Simulated annealing

・Exchange of components

・Pass of components

end

Conventional procedure

Extended part

808 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

their allocation to the machines and paths. Furthermore, the

sequence of component numbers within a turn will reflect the

mounting order. Figure 3 shows an example involving two

machines and six nozzles, where each machine carries out

two turns of component mounting. Unused nozzles are

flagged with the letter “e” in place of the component number.

Figure 4 shows the component allocation corresponding to

the solution shown in Figure 3 and the paths of the head.

Figure 2 Proposed algorithm

Figure 3 Expression of the solution

Figure 4 Component allocation corresponding to Fig 3

4.1.1 Fitness of solution

 The evaluation value is the head travel distance of the

bottleneck machine. Accordingly, when we select parents

and individuals during crossover based on the score, we are

not considering any machines other than the one that has

become the bottleneck. However, the path lengths in the

other machines might have a significant influence on the

solution generated by crossover and mutation. Therefore, in

this paper, in addition to the interconnect length in the

machine that is identified as the bottleneck, we calculate the

fitness value of the solution while incorporating the total

interconnect length for all machine heads. The fitness value

of each individual is the inverse of the square of the sum of

the head travel distance of the bottleneck machine and the

head travel distances of all the other machines. Equation (7)

shows how to calculate the total path length L and Equation

(8) shows how to calculate the fitness value f, where S is the

size of the area.

 8
1

7

2

1

S
Lz

f

TL
jsize

j

j

4.2 Generation of the initial solution

 Our genetic algorithm requires initial solutions as many

as the pre-determined number of individuals. Each of the

initial solutions is generated using the following two steps:

 (1) A sequence is created at random.

 (2) Sequences are improved by 2-opt and 2-swap

neighborhood local search.

4.3 Crossover

 Crossover is performed in the proposed algorithm in

the order from (1) to (3) below, to obtain a child:

 (1) A partial sequence of random length is selected

from parent 1.

 (2) A sequence is formed by removing all of the

elements included in the partial sequence selected in

step (1) from parent 2.

 (3) The partial sequence selected in step (1) from parent

1 is inserted into the sequence created in step (2)

from parent 2. The insertion location is the same

location at which the selected sequence had

previously existed in parent 1.

Figure 5 shows an example of crossover. For two parent

individuals, crossovers are performed that are randomly

selected at a probability proportional to their fitness values.

The above steps (1)-(3) are executed for parents 1 and parent

2 as well as for parent 2 and parent 1, so we have two

children from one couple.

start

Creation of sequence at random

Improvement of paths

・2-opt neighborhood local search in a path

・2-swap neighborhood local search among paths

Crossover

Mutation

・Partial sequence exchange

・Path exchange

Improvement of paths

・2-opt neighborhood local search in a path

・2-swap neighborhood local search among paths

Natural selection

・Elite strategy

・Roulette wheel selection

termination condition

end

Generation of initial solution

No

Yes

start

Creation of sequence at random

Improvement of paths

・2-opt neighborhood local search in a path

・2-swap neighborhood local search among paths

Crossover

Mutation

・Partial sequence exchange

・Path exchange

Improvement of paths

・2-opt neighborhood local search in a path

・2-swap neighborhood local search among paths

Natural selection

・Elite strategy

・Roulette wheel selection

termination condition

end

Generation of initial solution

No

Yes

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 809

Figure 5 Crossover

4.4 Mutation

Two types of mutations are proposed here, partial

sequence exchange and path exchange. The parent

individuals used to generate the mutation are selected at

random from all the individuals.

4.4.1 Mutation by partial sequence

exchange

 In mutation by partial sequence exchange, two partial

sequences are selected at random from each selected

individual and exchanged. The length of the partial sequence

is changed at random within a specified range. Figure 6

shows a typical exchange when the partial sequence length is

two.

4.4.2 Mutation by partial sequence

exchange

In mutation by path exchange, two partial sequences

corresponding to paths are selected at random from each

selected individual and exchanged. Figure 7 shows a typical

mutation by path exchange.

Figure 6 Partial sequence exchange

Figure 7 Path exchange

810 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

4.5 Natural selection

 30% of the present generation are selected by the

elite strategy as individuals left to the next generation.

Some of the remaining 70% unselected by the elite

strategy are decided by roulette wheel selection to be

individuals left to the next generation. In roulette wheel

selection, individuals are chosen at a probability

proportional to fitness.

5 Computer experiment

 We made a comparative experiment on a computer

to evaluate the performance of the proposed procedure.

The computer environment is an Intel Core2 Duo 3.00

GHz CPU with 1.96 GB of memory. The programming

language used was C++.

The supposed line contained six machines, each with a

head equipped with 12 nozzles. The starting point for

insertion was at a location 350 mm in the y direction from

the center of gravity of the board. Nine sets of data were

prepared for entry, which randomly specified the

coordinates of the mounting locations on a board 100 mm

wide by 100 mm deep in size.

The proposed algorithm used 25 individuals and the

ending condition was the 3000th generation. The values

for other parameters were specified appropriately based

on a preliminary experiment. Figure 8 shows the relation

between the scores for the proposed procedure and the

extended conventional procedure as well as the

calculation time and shows that the proposed procedure

quickly obtains better solutions than the extended

conventional one.

 Figure 8 Evaluation value and time

Table 1 presents the evaluation values for the proposed

procedure, the conventional procedure, and the extended

conventional procedure obtained after a sufficient length

of time, for each data set entered. The proposed

procedure obtained the best evaluation values in all of the

nine data sets of various types. The extended

conventional procedure showed a mean improvement over

the conventional procedure of 13.9%, while the proposed

procedure showed a mean improvement over the

conventional procedure of 14.6%.

Table 1 Comparison of conventional procedure, extended conventional procedure and our algorithm

 Conventional procedure Extended conventional procedure Our algorithm

Number of

mounting

points

Search time

(sec)
Evaluation value

Search time

(sec)
Evaluation value

Search time

(sec)
Evaluation value

1 100 0.005 1694.93 837.08 1420.66 495.92 1414.69

2 100 - 1674.24 840.00 1405.06 525.12 1404.95

3 100 - 1675.75 829.32 1441.25 520.31 1423.67

4 200 0.005 2594.38 3896.77 2232.47 3632.48 2197.78

5 200 0.016 2594.04 3922.46 2225.78 3648.23 2194.31

6 200 - 2585.95 3880.22 2210.18 3869.80 2181.23

7 400 0.130 5048.42 42167.83 4381.65 34179.47 4357.23

8 400 0.125 5041.57 39346.17 4381.29 31826.50 4360.36

9 400 0.130 5052.73 38433.20 4373.88 31012.80 4342.90

2180

2200

2220

2240

2260

2280

2300

2320

2340

0 1000 2000 3000 4000 5000

E
va

lu
at

io
n
 v

al
u
e

Time

Our argorithm

Extended conventional procedure

Average of extended conventional

procedure

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 811

6 Conclusions

 In this paper we proposed a procedure for allocating

components to machines on a printed circuit board

production line by actually creating component mounting

paths, rather than by creating rough estimates using only the

number of components to be mounted. Computer

experiment shows that the proposed procedure provides good

solutions than the conventional procedure or an extended

version of the conventional procedure. Issues to be

addressed in the future include incorporating limitations

specific to printed circuit board production lines, such as

number of component types and component heights.

7 References

 [1] Masri Ayob, Graham Kendall. A survey of surface

mount device placement machine optimisation: Machine

classification. European Journal of Operational Research

186 (2008) , 893–914

[2] Osman Kulak, Ihsan Onur Yilmaz. Hans-Otto Günther,

A GA-based solution approach for balancing printed circuit

board assembly lines. OR Spectrum 30 (2008), 469–491

[3] Sun, D.S., Lee, T.E., Kim, K.H.: Component Allocation

and Feeder Arrangement for a Dual-Gantry Multi-Head

Surface Mounting Placement Tool. International Journal of

Production Economics, Vol.95, pp.245?264 (2005).

[4] Yamada, T., Miyashiro, R., and Nakamori, M.: An

Algorithm of Feeder Arrangement and Pick up Sequencing

of Component Placement Machine on Printed Circuit Board,

Proc. International Conference on Parallel and Distributed

Processing Techniques and Applications, pp.403-409 (2005).

[5] Ahmadi, R. H. and Mamer, J. W.: Routing Heuristics for

Automated Pick and Place Machines, European Journal of

Operational Research, Vol. 117, pp. 533?552 (1999).

[6] Burke, E. K., Cowling, P. I. and Keuthen, R.: New

Models and Heuristics for Component Placement in Printed

Circuit Board Assembly, International Conference on

Information Intelligence and Systems, pp. 133?140 (1999).

[7] Burke, E. K., Cowling, P. I. and Keuthen, R.: Effective

Heuristic and Metaheuristic Approaches to Optimize

Component Placement in Printed Circuit Board Assembly,

Evolutionary Computation 2000 Proceedings of the 2000

Congress, pp. 301?308 (2000).

[8] Burke, E. K., Cowling, P. I. and Keuthen, R.: The

Printed Circuit Board Assembly Problem : Heuristic

Approaches for Multi-Headed Placement Machinery,

Proceedings of the International Conference on Arti?cial

Intelligence ICAI’2001 , pp. 1456?1462 (2001).

[9] Hackman, S. T., Magazine, M. J. and Wee, T. S.: Fast,

Effective Algorithms for Simple Assembly Line Balancing

Problems, Operations Research, Vol. 37, pp. 916?924 (1989).

812 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

SESSION

NOVEL APPLICATIONS AND ALGORITHMS +
CUDA + GPU + GPGPU + MULTI-CORE +

CLUSTER COMPUTING + I/O SYSTEMS + TOOLS

Chair(s)

Prof. Hamid R. Arabnia

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 813

814 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Scalable Data-Privatization Threading for Hybrid
MPI/OpenMP Parallelization of Molecular

Dynamics

Manaschai Kunaseth1, David F. Richards2, James N. Glosli2,
Rajiv K. Kalia1, Aiichiro Nakano1, Priya Vashishta1

1Departments of Computer Science, Physics, Material Science,

University of Southern California, Los Angeles, CA 90089-0242, USA
{kunaseth, rkalia, anakano, priyav}@usc.edu

2Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
{richards12, glosli}@llnl.gov

Abstract— Calculation of the Coulomb potential in the molecular
dynamics code ddcMD has been parallelized based on a hybrid
MPI/OpenMP scheme. The explicit pair kernel of the particle-
particle/particle-mesh algorithm is multi-threaded using
OpenMP, while communication between multicore nodes is
handled by MPI. We have designed a load balancing spanning
forest (LBSF) partitioning algorithm, which combines: 1) fine-
grain dynamic load balancing; and 2) minimal memory-footprint
data privatization via nucleation-growth allocation. This
algorithm reduces the memory requirement for thread-private
data from O(np) to O(n + p1/3n2/3)—amounting to 75% memory
saving for p = 16 threads working on n = 8,192 particles, while
maintaining the average thread-level load-imbalance less than
5%. Strong-scaling speedup for the kernel is 14.4 with 16-way
threading on a four quad-core AMD Opteron node. In addition,
our MPI/OpenMP code shows 2.58! and 2.16! speedups over the
MPI-only implementation, respectively, for 0.84 and 1.68 million
particles systems on 32,768 cores of BlueGene/P.

Keywords: Hybrid MPI/OpenMP Parallelization; Thread
Scheduling; Memory Optimization; Load Balancing; Parallel
Molecular Dynamics

I. INTRODUCTION
Molecular dynamics (MD) simulation is widely used to

study material properties at the atomistic level. Large-scale
MD simulations are beginning to address broad problems [1-
6], but increasingly large computing power is needed to
encompass even larger spatiotemporal scales. For example,
Glosli et al. performed a massively parallel MD simulation
involving 62 billion particles using the MD code ddcMD,
which demonstrated excellent performance and scalability [7].

Due to shifting trends in computer architecture,
improvements in computing power are now gained using
multicore architectures instead of increased clock speed.
Furthermore, the number of cores per chip is expected to
continue to grow. As a consequence, the performance of
traditional parallel applications, which are solely based on the
message passing interface (MPI), is expected to degrade

substantially [8]. Hierarchical parallelization frameworks,
which integrate several parallel methods to provide different
levels of parallelism, have been proposed as a solution to this
scalability problem on multicore platforms [6, 9-11].

Hybrid parallelization based on MPI/threading schemes will
likely replace MPI-only parallel MD. However, efficiently
integrating a multi-threading framework into an existing MPI-
only code is difficult for several reasons: 1) highly overlapped
memory layout in typical MD codes incurs serious race
condition; 2) naïve threading algorithms usually create
significant overhead, and limit the threading speedup for a
large number of threads; and 3) dynamic nature of MD
requires low-overhead dynamic load balancing for threads to
maintain good performance [12].

To address these issues, we have designed a load balancing
spanning forest (LBSF) partitioning algorithm, which
combines: 1) fine-grain dynamic load balancing; and 2)
minimal memory-footprint data privatization via nucleation-
growth allocation. We have implemented this algorithm in
ddcMD and demonstrated that the hybrid MPI/threading
scheme outperforms MPI-only scheme in terms of the strong
scaling of large-scale problems.

This paper is organized as follows. Section II summarizes
the hierarchy of parallel operations in ddcMD, followed by the
description and analysis of the proposed data-privatization
algorithm in section III. Section IV evaluates the performance
of the hybrid parallelization algorithm, and conclusions are
drawn in section V.

II. DOMAIN DECOMPOSITION MOLECULAR DYNAMICS
Molecular dynamics simulation follows the phase-space

trajectories of an N-particle system, where the forces between
particles are given by the gradient of a potential energy
function !(r1, r2,…, rN). Positions and velocities of all
particles are updated at each MD step by numerically
integrating coupled ordinary differential equations. The
dominant computation of MD simulations is the evaluation of

PDPTA’11, July 18-21, 2011, Las Vegas, Nevada, USA.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 815

the potential energy function and associated forces. One model
of great physical importance is the interaction between a
collection of point charges, which is described by the long-
range, pair-wise Coulomb field 1/r (r is the interparticle
distance), requiring O(N2) operations to evaluate. Many
methods exist to reduce this computational complexity [13-
15]. We focus on the highly efficient particle-particle/particle-
mesh (PPPM) method [13]. In PPPM the Coulomb potential is
decomposed into two parts: A short-range part that converges
quickly in real space and a long-range part that converges
quickly in reciprocal space. The split of work between the
short-range and long-range part is controlled though a
“screening parameter” ". With the appropriate choice of ",
computational complexity for these methods can be reduced to
O(NlogN).

Because the long-range part of the Coulomb potential can
be threaded easily (as a parallel loop over many individual 1D
fast Fourier transforms), this paper explores efficient
parallelization of the more challenging short-range part of the
Coulomb potential using OpenMP threading. The short-range
part is a sum over pairs: ! = "i<jqiqjerfc("rij)/rij, where qi is the
charge of particle i and rij is the separation between particles i
and j. Though this work is focused on this particular pair
function, much of the work can be readily applied to other pair
functions. In addition to this intranode parallelization, the
ddcMD code is already parallelized across nodes using a
particle-based domain decomposition implemented using MPI.
Combining the existing MPI-based decomposition with the
new intranode parallelization yields a hybrid MPI/OpenMP
parallel code. An extensive comparison of MPI-only ddcMD
with other pure MPI codes can be found in [16].

A. Internode Operations
In typical parallel MD codes the first level of parallelism is

obtained by decomposing the simulation volume into domains
each of which is assigned to a compute core (i.e., an MPI
task). Because particles near domain boundaries interact with
particles in nearby domains, internode communication is
required to exchange particle data between domains. The
surface-to-volume ratio of the domains and the choice of
potential set the balance of communication to computation.

The domain-decomposition strategy in ddcMD allows
arbitrarily shaped domains that may even overlap spatially.
Also, remote particle communication between nonadjacent
domains is possible when the interaction length exceeds the
domain size. A domain is defined only by the position of its
center and the collection of particles that it “owns.” Particles
are initially assigned to the closest domain center, creating a
set of domains that approximates a Voronoi tessellation. The
choice of the domain centers controls the shape of this
tessellation and hence the surface-to-volume ratio for each
domain. The commonly used rectilinear domain
decomposition employed by many parallel codes is not
optimal from this perspective. The best surface-to-volume
ratio in a homogeneous system is achieved if domain centers
form a bcc, fcc, or hcp lattice, which are common high-density
packing of atomic crystals.

In addition to setting the communication cost, the domain
decomposition also controls load imbalance. Because the
domain centers in ddcMD are not required to form a lattice,
simulations with a non-uniform spatial distribution of particles
(e.g., voids or cracks) can be load balanced by an appropriate
non-uniform arrangement of domain centers. The flexible
domain strategy of ddcMD allows for the migration of the
particles between domains by shifting the domain centers. As
any change in their positions affects both load balance and the
ratio of computation to communication, shifting domain
centers is a convenient way to optimize the overall efficiency
of the simulation. Given an appropriate metric (such as overall
time spent in MPI barriers) the domains can be shifted “on-the-
fly” in order to maximize efficiency [17].

B. Intranode Operations
Once particles are assigned to domains and remote

particles are communicated, the force calculation begins.
Figure 1(a) shows a schematic of the linked-list cell method
used by ddcMD to compute pair interactions in O(N) time. In
this method, each simulation domain is divided into small
cubic cells, and a linked-list data structure is used to organize
particle data (e.g., coordinates, velocities, type, and charge) in
each cell. By traversing the linked list, one retrieves the
information of all particles belonging to a cell, and thereby
computes interparticle interactions. The dimension of the cells
is determined by the cutoff length of the pair interaction, Rc.

Linked-list traversal introduces a highly irregular memory-
access pattern, resulting in performance degradation. To
alleviate this problem, we reorder the particles within each
node at the beginning of every MD step so that the particles
within the same cell are arranged contiguously in memory
when the computation kernel is called. At present we choose
an ordering specifically tailored to take advantage of the
BlueGene “double-Hummer” (SIMD) operations. However,
we could just as easily reorder the data to account for NUMA
or GPGPU architectural details. We consistently find that the
benefit of the regular memory access far outweighs the cost of
particle ordering. The threading techniques proposed here are
specifically constructed to preserve these memory-ordering
advantages.

The computation within each node is described as follows.
Let Lx, Ly, and Lz be the numbers of cells in the x, y, and z
directions, respectively, and {Ck | 0 ! k < LxLyLz} be the set of
cells within each domain. The computation within each node
is divided into a collection of small chunks of work called a
computation unit #. A single computation unit #k = {(ri, rj) | ri
Ck; rj # nn+(Ck)}

for cell Ck is defined as a collection of

pair-wise computations (see Fig. 1(b)), where nn+(Ck) is a set
of half the nearest-neighbor cells of Ck. Newton’s third law
allows us to halve the number of force evaluations and use
nn+(Ck) instead of the full set of nearest-neighbor cells, nn(Ck).
The pairs in all computation units are unique, and thus the
computation units are mutually exclusive. The set of all
computation units on each node is denoted as $ = {#k | 0 ! k <
LxLyLz}. Since most of our analysis is performed at a node
level, n = N/P hereafter denotes the number of particles in

816 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

each node (P is the number of nodes), and p is the number of
threads in each node.

Figure 1. (a) 2D schematic of the linked-list cell method for pair
computation with the cell dimension Rc. Only forces exerted by particles
within the cutoff radius (represented by a two-headed arrow) are computed for
particle i. (b) 2D schematic of a single computation unit #k. The shaded cells
Cj pointed by the arrows constitute the half neighbor cells, nn+(Ck).

We parallelize the explicit pair force computation kernel of
ddcMD at the thread level using OpenMP. Two major
problems commonly associated with threading are: 1) race
condition among threads; and 2) thread-level load imbalance
[8]. The race condition occurs when multiple threads try to
update the force of the same particle concurrently. Several
techniques have been proposed to solve these problems:
• Duplicated pair-force computation—simple and scalable,

but doubles computation. Usually used in GPGPU
threading [18, 19].

• Spatial decomposition coloring [20]—scalable without
increasing computation, but can cause load imbalance.

• Mutually exclusive dynamic scheduling [21, 22]—robust
and suited for dynamic load balancing, but can incur
considerable overhead for context switching.

• Data privatization—no penalty on computation, but with
excessive O(np) memory requirement per node and
associated reduction sum cost [22].
This paper focuses on hybrid MPI/OpenMP parallelization

on Sequoia, the third generation of BlueGene, which will be
online in 2011-2012 at Lawrence Livermore National
Laboratory (LLNL). On this SMP platform called Sequoia,
MPI-only programming will not be an option for full-scale runs
with 3.2 million concurrent threads.

III. DATA-PRIVATIZATION SCHEDULING ALGORITHM
A traditional data-privatization algorithm avoids write

conflicts by replicating the entire write-shared data structure
and allocating a private copy to each thread (Fig. 2(a)). The
memory requirement for this redundant allocation scales as
O(np). Each thread computes forces for each of its
computation units and stores the force values in its private
array instead of the global array. This allows each thread to
compute forces independently without a critical section. After
the force computation for each MD step is completed, the
private force arrays are reduced to obtain the global forces.

Figure 2. (a) Schematic of a memory layout for a traditional data
privatization. (b) Schematic workflow of our hybrid MPI/OpenMP scheme.

To reduce the redundant memory requirement, we have
developed a low-overhead approach that provides excellent
load balancing while imposing minimal interference on the
worker threads. Our algorithm utilizes a scheduler to distribute
the workload before entering the pair computation, i.e.,
parallel section. In this approach, the scheduling cannot
interfere with the worker threads since the scheduling is
already completed before the worker threads are started.
Because the schedule is recomputed every MD step (or
perhaps every few MD steps) there is adequate flexibility to
adapt load balancing to the changing dynamics of the
simulation.

The hybrid MPI/OpenMP parallelization of ddcMD is
implemented by introducing the thread scheduler into the
MPI-only ddcMD. Figure 2(b) shows the workflow of the
hybrid MPI/OpenMP code. The program repeats the following
computational phases: First, the master thread performs
initialization and internode communications using MPI; the
scheduler computes the scheduled workload for each thread;
and the worker threads execute the workloads in an OpenMP
parallel section.

Since the scheduling is performed frequently, the load-
balancing algorithm needs to be simple yet provide sufficient
load-balancing capability. Therefore, we have adopted a greedy
approach for the load-balancing scheduler, which is discussed
and analyzed in section III-A. In section III-B, the load-
balancing scheduler is further enhanced by introducing a
nucleation-growth allocation algorithm.

A. Thread-Level Load-Balancing Algorithm
We implement thread-level load balancing based on a

simple greedy approach, i.e., iteratively assign a computation
unit to the least-loaded thread, until all computation units are
assigned. Let Ti % $ denote a mutually exclusive subset of
computation units assigned to the i-th thread, &k=0,...,LxLyLz#k =
'. The computation time spent on #k is denoted as $(#k). Thus,
the computation time of each thread $(Ti) is a sum of all
computation units assigned to thread Ti. The algorithm
initializes Ti to be empty, and loops over #k in $. Each
iteration selects the least-loaded thread Tmin = argmin($(Ti)),
and assigns #k to it. This approach is a 2-approximation
algorithm [23] and its pseudo code is shown in Fig. 3.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 817

Algorithm Fine-Grain Load Balancing
1. for 0 ! i < p do
2. Ti ('
3. end do
4. for each #k in $ do
5. Tmin (argmin0)i<p($(Ti))
6. Tmin (Tmin * #k
7. end do

Figure 3. Thread load-balancing algorithm.

The algorithm is simple yet provides an excellent load-
balancing capability. As shown below, this approach has a
well-defined upper bound on the load imbalance. To quantify
the load imbalance, we define a load-imbalance factor % as the
difference between the runtime of the slowest thread and the
average runtime,

!

" =
max(# (Ti)) $# average

average
. (1)

By definition, % = 0 when the loads are perfectly balanced.
Since min($(Ti))) $average,

!

" #
max($ (Ti)) %min($ (Ti))

$ average
. (2)

In our load-balancing algorithm, the workload of Tmin is
increased at most by max($(#k)) at each iteration. This
procedure guarantees that the variance of the workloads
among all threads is limited by

!

max(" (Ti)) #min(" (Ti)) $ max(" (%k)) . (3)

Substituting Eq. (3) in Eq. (2) provides an upper limit for the
load-imbalance factor,

!

" #
max($ (%k))
$ average

. (4)

Performance of this load-balance scheduling algorithm
depends critically on the knowledge of time spent on each
computation unit $(#k). Since the runtime of the computation
units are unknown to the scheduler prior to the actual
computation, the scheduler has to accurately estimate the
workload of each computation unit. Fortunately, since particle
positions change slowly $(#k) remains highly correlated
between the consecutive MD steps. Therefore, we use $(#k)
measured in the previous MD step as an estimator of $(#k). This
automatically takes into account any local variations in the cost
of the potential evaluation. For the first step as well as steps
when the cell structure changes significantly (e.g.,
redistribution of the domain centers), the workload of cell $(#k)
is estimated by counting the number of pairs in #k.

B. Load Balancing Spanning Forest Partitioning Algorithm
As mentioned before, the memory requirement of the data-

privatization algorithm is O(np). However, since only a small
subset of $ is assigned to each thread it is not necessary to
allocate a complete copy of the force array for each thread.
Therefore, we allocate only the necessary portion of the global
force array corresponding to the computation units assigned to
each thread as a private force array. This idea is embodied in a
three-step algorithm (Fig. 4): 1) the scheduler assigns
computation units to threads and then determines which subset
of the global data each thread requires; 2) each thread allocates
its private memory as determined by the scheduler; 3) private
force arrays from all threads are reduced into the global force
array.

Figure 4. Memory layout and three-step algorithm for scheduling algorithm.

To do this, we create a mapping table between the global
force-array index of each particle and its thread-array index in
a thread memory space. Since ddcMD sorts the particle data
based on the cell they reside in, only the mapping from the
first global particle index of each cell to the first local particle
index is required. The local ordering within each cell is
identical in both the global and private arrays.

It should be noted that assigning computation unit #k to
thread Ti requires memory allocation more than the memory
for the particles in Ck. Since each computation unit computes
the pair forces of particles in cell Ck and half of its neighbor
cells nn+(Ck) as shown in Fig. 1(b), the force data of particles
in nn+(Ck) need to be allocated as well. In order to minimize
the memory requirement of each thread, the computation units
assigned to it must be spatially proximate, so that the union of
their neighbor-cell sets has a minimal size. This is achieved by
minimizing the surface-to-volume ratio of Ti. For this purpose,
we implement the LBSF algorithm (Fig. 5) by modifying
algorithm shown in section III-A. First, we randomly assign a
root computation unit to each thread. Then, the iteration
begins by selecting the least-loaded thread Tmin. From the
surrounding volume of Tmin, we select a computation unit #j*

that has the minimum distance to the centroid of Tmin, and add
it to Tmin. The algorithm repeats until all computation units are
assigned. If all of the surrounding computation units of Tmin are
already assigned, Tmin randomly chooses a new unassigned
computation unit as a new cluster’s root and continue to grow
from that point.

Figure 6 shows a 2D example of the LBSF partitioning.
Figure 6(a) shows non-uniform particle distribution, where the
workload in each cell is assumed to be proportional to the
number of particles in the cell. Figure 6(b) illustrates the result
of a partitioning by scheduler. Most computation units on the

818 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

lower left corner are assigned to T1, while the rest are assigned
to T2. The load-imbalance factor % in this example is 0.044.

Algorithm LBSF Partitioning
1. i (0
2. while i < p do
3. repeat
4. #root (random($)
5. until #root + Tj(<i)
6. Ti (#root
7. i (i + 1
8. end do
9. while *0)i<pTi & $ do

10. Tmin (argmin0)i<p(,(Ti))
11. j* (argminCj#nn(Tmin)(||centroid(Tmin)-Cj||)

 12. Tmin (Tmin * #j*
13. end do

Figure 5. LBSF partitioning algorithm.

Figure 6. 2D illustration of the LBSF partitioning algorithm. (a) Spatial
particle distribution where the normalized particle density is color-coded. (b)
The corresponding computation-unit assignment to two threads originating at
T1 and T2 cells.

The memory requirement of this algorithm can be analyzed as
follows. The memory for each thread comes from two sources:
1) memory for the actually assigned computation units M#; and
2) memory for the surface cells neighboring the assigned
computation units Ms. The amount of memory requirement for
one thread is

!

M" =O(n / p)
Ms =O(n / p)2/ 3

, (5)

and the memory footprint of p threads on a single node is

!

M node = p M" +Ms()
=O(p(n / p) + p(n / p)2/ 3)
=O(n + p1/ 3n 2/ 3)

. (6)

The asymptotic memory requirement for each node is thus
O(n+p1/3n2/3), which is much smaller than the O(np) memory
requirement of traditional data-privatization.

Although this algorithm reduces the memory footprint
significantly, it poses a minor difficulty in the reduction sum.
This difficulty arises from the fact that the partial private force
arrays are not aligned with each other. Nevertheless, the cost of
linear reduction sum is reduced to O(n+p1/3n2/3) as a
consequence of the reduced memory footprint. In fact, for a

given p, the computation time of the partial linear reduction
sum could be less than that of a hypercube reduction when n is
large such that O(p1/3n2/3) < O(nlog p).

IV. PERFORMANCE EVALUATION
In this section, we perform performance measurements and

analysis of the algorithm described in the previous section.
Section IV-A measures the load-imbalance factor of our
scheduler, and section IV-B measures the memory-footprint
reduction by our approach, confirming its O(n+p1/3n2/3) scaling.
Section IV-C demonstrates the reduction of the scheduling cost
without affecting the quality of load balancing, followed by
strong-scaling comparison of the hybrid MPI/OpenMP and
MPI-only schemes.

A. Thread-Level Load Balancing
We perform a load-balancing test for the scheduling algorithm
on a dual six-core AMD Opteron 2.3 GHz with n = 8,192 (Fig.
7(a)). The actual measurement of the load-imbalance factor %
is plotted as a function of p, along with its estimator
introduced in section III-A and the theoretical bound, Eq. (4).
The results show that %estimated and %actual are close, and are
below the theoretical bound. % is an increasing function of p,
which indicates the severity of the load imbalance for a highly
multi-threaded environment and highlights the importance of
the fine-grain load balancing.

We also observe that the performance fluctuates slightly
depending on a selection of root nodes in LBSF algorithm.
While the random root selection tends to provide robust
performance compared to deterministic selection, it is possible
to use some optimization techniques (e.g., reinforcement
learning) to dynamically optimize the initial cell selection at
runtime. For more irregular applications, it is conceivable to
combine the light-overhead thread-level load balancing in this
paper with a high quality node-level load balancer such as a
hypergraph-based approach [24].

B. Memory Footprint
To test the memory efficiency of the proposed method, we

perform simulations on a four quad-core AMD Opteron 2.3
GHz machine with a fixed number of particles n = 8,192,
16,000, and 31,250. We measure the memory allocation size
for 100 MD steps while varying the number of threads p from
1 to 16. Figure 7(b) shows the average memory allocation size
of the force array as a function of the number of threads for
the proposed algorithm compared to that of a traditional data-
privatization algorithm. The results show that the memory
requirement for 16 threads is reduced by 65%, 72%, and 75%,
respectively, for n = 8,192, 16,000, and 31,250 compared with
the traditional O(np) memory per-node requirement. In Fig.
7(b), the dashed curves show the reduction of memory
requirement per thread estimated as

!

m = ap"1 + bp"2/ 3 , (7)

where the first term represents the memory scaling from actual
assigned cells and the second term represents scaling from

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 819

surface cells of each thread, see Eq. (5). The regression curves
fit the measurements well, indicating that the memory
requirement is accurately modeled by O(n+p1/3n2/3).

We also measure the computation time spent for the
reduction sum of the private force arrays to obtain the global
force array. Figure 7(c) shows the reduction-sum time as a
function of the number of threads p for n = 8,192, 16,000, and
31,250 particles. Here, dashed curves represent the regression,

!

treduction = ap1/ 3 + b , (8)

which fit all cases well.

Figure 7. (a) Load-imbalance factor % as a function of p from theoretical
bound, scheduler estimation, and actual measurement. (b) Average memory
consumption for the private force arrays as a function of p using LBSF
compared to the conventional method. Numbers in the legend denote n. (c)
Average reduction-sum time of the LBSF scheduling as a function of p.

C. Strong-Scaling Performance
We measure the performance of the combined nucleation-

growth allocation and load-balancing algorithms. Figure 8(a)
shows the thread-level strong-scaling speedup on a four quad-
core AMD Opteron 2.3 GHz. The algorithm achieves a
speedup of 14.43 on 16 threads, i.e., the strong-scaling multi-
threading parallel efficiency is 0.90. As shown in section IV-
B, the combined algorithm reduces the memory consumption
up to 65% for n = 8,192, while still maintaining excellent
strong scalability.

Next, we compare the strong-scaling performance of the
hybrid MPI/OpenMP and MPI-only schemes for large-scale
problems on BlueGene/P at LLNL. One BlueGene/P node
consists of four PowerPC 450 850 MHz processors. The MPI-
only implementation treats each core as a separate task, while
the hybrid MPI/OpenMP implementation has one MPI task per
node, which spawns four worker threads for the force
computation. The test is performed on P = 8,192 nodes, which
is equivalent to 32,768 MPI tasks in the MPI-only case and
32,768 threads for hybrid MPI/OpenMP. Figures 8 (b) and (c)
show the running time of 843,750 and 1,687,500 particles
systems for the total number of cores ranging from 1,024 to
32,768. The result indicates that the hybrid scheme performs
better when the core count is larger than 8,192. On the other
hand, the MPI-only scheme gradually stops gaining benefit
from the increased number of cores and becomes slower. The
MPI/OpenMP code shows 2.58! and 2.16! speedup over the
MPI-only implementation for N = 0.84 and 1.68 million,
respectively, when using 32,768 cores. Note that the crossover
granularity of the two schemes is n/p ~ 100 particles/core for
both cases.

Figure 8. (a) Thread-level strong scalability of the parallel section on a four
quad-core AMD Opteron 2.3 GHz with fixed problem size at n = 8,192
particles. (b) Total running time per MD steps of 1,024 – 32,768 Power PC
450 850 MHz cores on BG/P for a fixed problem size at N = 0.84-million
particles and (c) 1.68-million particles.

820 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

This result indicates that the Amdahl’s law limits the
performance of the MPI/OpenMP code when using small
number of nodes. Namely, only the pair kernel is parallelized,
while the rest of the program is sequential in the thread level.
This disadvantage of the MPI/OpenMP code diminishes as the
number of cores increases. Eventually, the hybrid
MPI/OpenMP code performs better than the MPI-only code
after 8,192 cores. The main factors underlying this result are:
1) the surface-to-volume ratio of the MPI-only code is larger
than that of the hybrid MPI/OpenMP code; and 2) the
communication latency for each node of the MPI-only code is
four times larger than that of the hybrid MPI/OpenMP
code.This result confirms the assertion that the MPI/OpenMP
model (or similar hybrid schemes) will be required to achieve
better strong-scaling performance on large-scale multicore
architectures.

V. CONCLUSIONS
Our LBSF partitioning algorithm successfully overcomes

the disadvantages of the traditional data-privatization threading
with minimal overhead. The LBSF scheduling guarantees a
bounded load imbalance while reducing the memory
requirement from O(np) to O(n+p1/3n2/3). The cost of
scheduling can be eliminated without the loss of load-balancing
quality by reducing the scheduling frequency. Also,
benchmarks of the massively parallel MD simulations suggest
significant performance benefits of the hybrid MPI/OpenMP
scheme for fine-grain large-scale applications.

ACKNOWLEDGMENT
This work was performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 (LLNL-
CONF-469312). The work at USC was partially supported by
DOE BES/EFRC/SciDAC/SciDAC-e/INCITE and NSF
PetaApps/EMT.

REFERENCES
[1] J. C. Phillips, et al., "NAMD: Biomolecular simulations on

thousands of processors," in Supercomputing, Los Alamitos, CA,
2002.

[2] F. H. Streitz, et al., "Simulating solidification in metals at high
pressure: The drive to petascale computing," SciDAC 2006:
Scientific Discovery Through Advanced Computing, vol. 46, pp.
254-267, 2006.

[3] K. J. Bowers, et al., "Zonal methods for the parallel execution of
range-limited N-body simulations," Journal of Computational
Physics, vol. 221, pp. 303-329, 2007.

[4] B. Hess, et al., "GROMACS 4: Algorithms for highly efficient,
load-balanced, and scalable molecular simulation," Journal of
Chemical Theory and Computation, vol. 4, pp. 435-447, 2008.

[5] D. E. Shaw, et al., "Millisecond-scale molecular dynamics
simulations on Anton," in Supercomputing, Portland, Oregon, 2009,
pp. 1-11.

[6] K. Nomura, et al., "A metascalable computing framework for large
spatiotemporal-scale atomistic simulations," in International
Parallel and Distributed Processing Symposium, 2009.

[7] J. N. Glosli, et al., "Extending stability beyond CPU millennium: a
micron-scale atomistic simulation of Kelvin-Helmholtz instability,"
in Supercomputing, Reno, Nevada, 2007, pp. 1-11.

[8] S. R. Alam, et al., "Impact of multicores on large-scale molecular
dynamics simulations," in International Parallel and Distributed
Processing Symposium, Miami, Florida USA, 2008.

[9] L. Peng, et al., "A scalable hierarchical parallelization framework
for molecular dynamics simulation on multicore clusters," in
International Conference on Parallel and Distributed Processing
Techniques and Applications, Las Vegas, Nevada, USA, 2009.

[10] M. J. Chorley, et al., "Hybrid message-passing and shared-memory
programming in a molecular dynamics application on multicore
clusters," International Journal of High Performance Computing
Applications, vol. 23, pp. 196-211, 2009.

[11] R. Rabenseifner, et al., "Hybrid MPI/OpenMP parallel
programming on clusters of multi-core SMP nodes," Proceedings of
the Parallel, Distributed and Network-Based Processing, pp. 427-
436, 2009.

[12] C. Long, et al., "Dynamic load balancing on single- and multi-GPU
systems," in International Parallel and Distributed Processing
Symposium, 2010, pp. 1-12.

[13] D. York and W. Yang, "The fast Fourier Poisson method for
calculating Ewald sums," The Journal of Chemical Physics, vol.
101, pp. 3298-3300, 1994.

[14] R. Hockney and J. Eastwood, Computer simulation using particles.
New York: McGraw-Hill, 1981.

[15] T. Darden, et al., "Particle mesh Ewald: An N log(N) method for
Ewald sums in large systems," The Journal of Chemical Physics,
vol. 98, pp. 10089-10092, 1993.

[16] D. F. Richards, et al., "Beyond homogeneous decomposition:
scaling long-range forces on Massively Parallel Systems," in
Supercomputing, Portland, Oregon, 2009, pp. 1-12.

[17] J.-L. Fattbert, et al., unpublished.
[18] A. Sunarso, et al., "GPU-accelerated molecular dynamics

simulation for study of liquid crystalline flows," Journal of
Computational Physics, vol. 229, pp. 5486-5497, 2010.

[19] J. Yang, et al., "GPU accelerated molecular dynamics simulation of
thermal conductivities," Journal of Computational Physics, vol.
221, pp. 799-804, 2007.

[20] C. Hu, et al., "Efficient parallel implementation of molecular
dynamics with embedded atom method on multi-core platforms," in
International Conference on Parallel Processing Workshops, 2009,
pp. 121-129.

[21] D. W. Holmes, et al., "An events based algorithm for distributing
concurrent tasks on multi-core architectures," Computer Physics
Communications, vol. 181, pp. 341-354, 2010.

[22] K. Madduri, et al., "Memory-efficient optimization of Gyrokinetic
particle-to-grid interpolation for multicore processors," in
Supercomputing, Portland, Oregon, 2009, pp. 1-12.

[23] J. Kleinberg and E. Tardos, Algorithm Design, 2 ed.: Pearson
Education, Inc., 2005.

[24] U. V. Catalyurek, et al., "Hypergraph-based dynamic load balancing
for adaptive scientific computations," in International Parallel and
Distributed Processing Symposium, 2007, pp. 1-11.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 821

Efficient data access for Open Modeling Interface (OpenMI)
components

Tom Bulatewicz, Daniel Andresen
Dept. of Computing and Information Sciences, Kansas State University, Manhattan, KS, USA

Abstract— Data management for linked (or coupled) simu-
lation models can be a challenging task when deploying to
grid environments. In cases where the linked models conform
to a standard interface for data input and output, general-
purpose data providers can be used to supply data to the
models from online sources, reducing the complexity of the
deployment. We have developed a data provider component
that conforms to the Open Modeling Interface (OpenMI)
that is suitable for use on computational grids. Through
the application of three techniques, caching, prefetching,
and pipelining, the component efficiently retrieves data
from standards-based web services and delivers the data
to OpenMI-compliant models. Each technique resulted in
varying performance improvements both within a single
simulation and across multiple simulations concurrently
executing on a cluster. In this paper we report on the design
of the component and the evaluation of its performance.

Keywords: OpenMI, data access, web services, modeling and
simulation

1. Introduction
Computer models require input data in order to perform

simulations. This data may originate from a variety of
sources, may vary in space and time, and may be used
during the initialization of a simulation and during its
execution. In the case of linked (or coupled) models that
execute independently and cooperate to collectively perform
a simulation, each model requires its own input data. Models
often have unique input data formats requiring inputs to be
individually prepared for each model prior to the simulation
run and often results in duplication of the data that is
common between models. These input datasets must be
deployed with the models to the execution environment, such
as a computational grid. To obviate the need to prepare input
data in model-specific formats and to increase the portability
of datasets between models, standard data formats have been
developed (e.g. netCDF [1]). To obviate the need to deploy
datasets to the execution environment and to provide access
to real time measurement data, data distribution frameworks
have been developed that allow models to access online
data sources (e.g. via web services). In the general case,
models must have the capability to use these standard
data formats and data distribution frameworks. In the case
of models that are software components with well-defined

input/output interfaces (e.g. CCA [2]), data access using
these standards can be implemented in general-purpose data
components which can be linked to model components. Such
data provider components play an important role in any
linked modeling environment.

The Open Modeling Interface (OpenMI) [3] provides a
standard way for software components to exchange data with
each other and coordinate their execution. It defines a set
of capabilities that a component must possess in order for
it to be linkable to other components These capabilities are
both descriptive, to support the task of specifying component
interactions at the domain level, and functional, to support
the execution of a set of linked components. To fulfill the
descriptive requirements, a component must be capable of
providing a list (via a function call) of the domain quantities
that it can provide and those that it uses as input, along with
the units and spatial distribution of each. These are called
output exchange items and input exchange items, and in the
case of model components there is typically one output item
for each quantity that it simulates and one input item for
each of its inputs. To fulfill the functional requirements, a
component must possess a GetValues function through which
it provides data (that corresponds to the exchange items) at
runtime.

The GetValues function has three parameters and returns
a set of values as illustrated in Figure 1. The parameters

C3

C2

C1 Trigger

GetValues(Q,T,E)

GetValues(Q,T,E)

V

V

temperature

Q - quantity

12/1/2010

T - time

18915

18921

18923

18956

E - elementset

67.2

73.1

68.2

65.9

V - valueset

spatial element
conceptualization

18921 18923

18956
18915

Fig. 1: OpenMI pull-based execution. Solid lines indicate
function calls and dashed lines indicate the flow of data.

822 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

collectively identify a specific set of values that represent
the state of a quantity at a single point in time over
some spatial distribution. The quantity is described by a
textual identifier, the time by a modified-Julian date, and
the spatial distribution by a list of spatial elements called an
elementset. An elementset is a list of geo-referenced spatial
elements such as a point, line segment, or polygon. The
GetValues function returns a list of floating-point values
called a valueset. The values in a valueset describe the state
of a single quantity at a specific point in time where each
individual value corresponds to a different spatial element
(based on array index).

The GetValues function not only provides a means for
the exchange of data between a set of linked components
(called a composition) but it also provides a means for
their coordinated execution at runtime. A special component
called a trigger begins by invoking GetValues on one of
the components. The first time GetValues is invoked on a
component it begins executing (e.g. performing time steps)
from its starting simulation time. The component executes
until it requires input values for one of the quantities on
one of its links, at which point it invokes GetValues on
the component at the providing end of the link and blocks.
The component blocks until the call to GetValues completes
and the values are returned, at which point it continues
its execution. The components take turns executing and
pull data from each other until the simulation completes.
A component only performs time steps as-needed in direct
response to a call to its GetValues function.

Compositions can be created in a highly automated way.
Using visual software tools, a scientist chooses a set of com-
ponents of interest, interactively specifies the links between
them, and then executes the simulation. Each link maps an
output exchange quantity from one component to the input
exchange quantity of another component and links can be
uni-directional or bi-directional.

In this work we present the design and evaluation of a
general-purpose Data Provider Component (DPC) that is
capable of delivering data from online sources to OpenMI
components. We describe the design and implementation of
the DPC in the following section and present our experimen-
tal results in Section 3. We review related work in Section
4 and present our conclusions in Section 5.

2. Methods
2.1 System Overview

Figure 2 illustrates the movement of data through a
distributed data delivery system for linked model compo-
nents. Compositions of linked components execute on cluster
nodes. Each composition includes a DPC that retrieves data
from web services and provides it to the other components.
DPCs within compositions that are running on different
cluster nodes share data with each other. When a component

cluster

node

DPC

C1

C2

DPC

C5C4

C3

web
services

Fig. 2: System overview.

needs input values it invokes GetValues on the DPC for the
needed quantity, time, and spatial elements and the DPC
returns the appropriate valueset. The DPC calls web services
for a specific quantity identifier, time, and list of location
identifiers (which correspond to elements) and then extracts
the valueset from the response. Thus the content of a web
service call mirrors that of a GetValues call. We assume that
each spatial element has a unique identifier, although this is
not enforced by the OpenMI. Any web service that can be
queried for a quantity, time, and list of locations and returns
a list of values could be used as a data source for the DPC.

Within the context of water resources, there are several
standards for data models to store observations data and
web services to access them [4]. The WaterOneFlow [5] web
service API has recently been utilized by several government
agencies (http://hiscentral.cuahsi.org) and has a GetValues
method that can be queried for an individual quantity in a
single location or region for a timespan. Time series data is
returned in XML that conforms to the WaterML schema [6].

The initial implementation of the DPC supports SOAP
calls to WaterOneFlow web services and to a custom variant
that allows multiple quantities and locations to be queried
in a single call which is not currently supported by the Wa-
terOneFlow API but is necessary to evaluate the performance
of the DPC. The implementation supports parsing WaterML
responses via SAX. An example of a request and response is
shown in Figure 3. The DPC’s configuration file defines its
output exchange items (i.e. quantities and elementsets) and
the information about each web service, such as the URL,
API, response format, and which quantities can be queried.
The implementation can be extended to support other web
services and response formats.

If the DPC were to make a web service call on each
invocation of GetValues then the rest of the composition
would be paused for the duration of the call, adding to the
overall runtime of the simulation. In addition, invocations
by different components for the same values would result in

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 823

<timeSeriesResponse>
 <timeSeries name="DailyWeather">
 <sourceInfo>
 <dataSetIdentifier>DailyWeather</dataSetIdentifier>
 <dataSetLocation>98651</dataSetLocation>
 </sourceInfo>
 <variable>
 <variableCode>1</variableCode>
 <variableName>MaxTemperature</variableName>
 <units>degrees</units>
 </variable>
 <values>
 <value dateTime="2010-11-01T00:00:00">56.2902</value>
 </values>
 </timeSeries>
</timeSeriesResponse>

<GetValues>
 <variables>
 <variable>Temperature</variable>
 </variables>
 <locations>
 <location>72312003871</location>
 </locations>
 <times>
 <time>2010-11-01T00:00:00</time>
 </times>
</GetValues>

Web Service Request

Web Service Response

Fig. 3: Example web service request and response (attributes
and SOAP envelope removed for clarity).

duplicate web service calls which would also increase the
overall runtime and inefficiently utilize network bandwidth
and other resources. To minimize the effect that the DPC has
on the execution of the composition in terms of runtime and
resource use, the DPC must (1) minimize the time it takes for
GetValues to return a valueset and (2) minimize the number
of times a valueset is retrieved from a web service.

In the ideal case there would be zero wait time and
each valueset would be retrieved from a web service once.
To these ends, the DPC utilizes three strategies: caching,
prefetching, and pipelining. All valuesets are retrieved from
web services once and are then cached so that they are im-
mediately available for subsequent invocations of GetValues
by other components (within and across compositions) and
subsequent executions of the composition. Since components
typically advance forward through simulation time, valuesets
are prefetched so that they are available in the cache before
they are requested. Multiple web service calls are performed
simultaneously in a pipelined fashion to maximize use of
available network bandwidth.

The DPC consists of a fetching module and a caching
module as illustrated in Figure 4. The fetching module
identifies the valuesets that the other components need,
retrieves them from the web services, and then stores them in
the cache. The caching module handles calls to GetValues by
retrieving the appropriate values from the cache, assembling
the valueset, and returning it to the calling component.

distributed
map

GetValues(Q,T,E)

Fetching Caching

web
services

predict

request

inspect

89.0 72.357.1

find

67.2

67.2 73.168.2

57.1
67.289.073.1

call
68.273.1

67.2

73.1

68.2

Fig. 4: Operation of the data provider component. Solid lines
indicate function calls and dashed lines indicate the flow of
data.

2.2 Caching
During the execution of a composition, several compo-

nents within a single composition may request the same
valuesets from a DPC. Components in independently exe-
cuting compositions on different cluster nodes may request
the same valuesets from different DPCs. In both cases it is
advantageous for the DPCs to cache the valuesets that they
retrieve from the web services and to share those valuesets
across all the DPCs that are executing simultaneously in
different compositions across a cluster. The same valuesets
may be needed on subsequent executions of the same com-
position so it is also advantageous for the cached valuesets
to be persisted between executions.

To serve these needs, a clustering, scalable data distri-
bution platform (Hazelcast [7]) is utilized by the caching
module to store the values retrieved from the web services.
Each DPC has an instance of the platform peer that is
managed by a set of threads within the same process as
the DPC. Instances dynamically cluster and discover peers
via multicast and communicate via TCP/IP. Thus, there are
no servers involved and each DPC is self-sufficient and
shares data directly with other DPCs. The data structure
used to store the values is a distributed map. Entries in
the cache are evenly partitioned onto the currently executing
instances across the cluster (i.e. DPCs). Each instance uses a
private database file [8] to persist the cache entries between
executions.

The valuesets that are retrieved from the web services
are decomposed into individual values and stored in the
distributed map. Storing the individual values allows the
map to assemble different valuesets ad-hoc as they are
requested by model components, maximizing the reusability
of data and the effectiveness of the cache. Alternatively the
complete valuesets could be stored as single entries in the
map but this would limit the reusability of the data to cases
where subsequent requests are for the same combination of

824 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

quantity, time, and elementset.
The DPC may be linked to several model components

that use different time steps, different input element sets,
and different units. It is the responsibility of the providing
component (the DPC) to apply necessary transformations
(units, spatial, temporal) to meet the input of the requesting
component (the model). To maximize the effectiveness of
the cache the DPC caches the values retrieved from the
web service and when a component requests a valueset the
appropriate values are extracted from the cache, transformed,
and provided to the model. Alternatively the DPC could
cache the transformed valuesets but this would limit the
reusability of the data to cases where subsequent requests
are for the same combination of quantity, time, elementset,
and units.

Entries in the distributed map are tuples of the form
<value, availability> and are keyed by a textual string that
uniquely identifies a value by the concatenation of its time,
quantity identifier, and element identifier. The value is a
floating point number and the availability flag is a boolean
that indicates whether the value has been retrieved (true)
or a web service call for the value is in progress (false).
The contents of the map are persisted to the database upon
completion of a composition run and then restored into the
map upon startup.

When GetValues is called by a component, the DPC
checks to see if the value for each element of the requested
elementset exists in the cache by creating the key and then
performing a get operation on the distributed map using the
key. If values for any of the elements are missing then the
valueset is not available and the cache waits for a period of
time before checking again (during which the composition
is blocked). The cache relies on the fetching module to
populate the map with values.

2.3 Fetching
The simulation of physical processes (especially those for

which the OpenMI was initially designed) typically involve
the calculation of output quantities over a simulation period.
The components step through simulation time and periodi-
cally request values from each other. The frequency at which
GetValues is invoked on the DPC by other components is
likely not the most efficient frequency for the DPC to call the
web services. For this reason the DPC prefetches valuesets
to minimize the time that the other components must wait
when calling GetValues on the DPC. Multiple web service
calls are issued simultaneously in a pipelined fashion to take
advantage of multi-core and multi-host web services.

Throughout the execution of a composition the compo-
nents are at approximately the same point in simulation time.
This is because components typically require input data that
reflects their current simulation time which requires that the
components providing the inputs advance to that same point
in simulation time. Prefetching is thus most effective when

it is done such that the data for all components is prefetched
to the same future point in simulation time.

Prefetching relies on knowledge of what data will be
needed before it is requested. It is not possible for the DPC
to obtain this information directly from the other components
as this functionality is not supported by the OpenMI. The
DPC predicts what valuesets will be requested in the future
by observing what valuesets have been requested in the past.
Components that use a fixed-length time step request data
from the DPC at fixed intervals making it possible for the
DPC to identify these components and determine the length
of their time steps. In such cases the DPC can accurately
predict the valuesets that will be requested in the future. It
is more difficult for the DPC to predict the data needs of
components that use a variable-length time step and is not
addressed in this work.

Web service calls request different combinations of quan-
tity, time, and spatial elements, and thus these calls may
be coalesced along any or all of these three dimensions.
Since our goal is to minimize wait time, the coalescing
strategy should group together similar requests as much as
possible without inducing additional wait time. Of the three
dimensions, only spatial coalescing is guaranteed to not incur
any unneeded wait time because the DPC cannot provide
a valueset to a model component unless all values for the
entire elementset have been retrieved. Coalescing by time or
quantity may result in a model component waiting a longer
period of time for a valueset that is part of a larger request
than it would have if the valueset was requested individually.
For this reason the DPC only coalesces web service requests
spatially such that each valueset, corresponding to a single
quantity and time over a complete set of spatial elements, is
requested in each web service call.

2.3.1 Runtime Operation
The fetching module manages a fetch thread for each web

service. It is responsible for identifying the valuesets that
must be retrieved from the web service and issuing the web
service calls to retrieve them. When the state of the fetch
thread changes (as a result of a call starting or completing) or
a cache miss occurs, the fetch thread attempts to identify and
download as many valuesets as possible. A single quantity
may be provided along several links at different temporal
intervals or different spatial elementsets, so each link must be
checked for necessary valuesets individually. Each attempt
makes a series of passes through the links until no valuesets
are found or until there are no available resources. On each
pass, the earliest valueset (either by request or predicted)
needed by a link that is not already in the cache is identified
and a web service call is started (at which time placeholder
entries (availability = false) for the values are created in
the cache to indicate that they are being retrieved). Multiple
DPCs may request intersecting valuesets in which case only
partial valuesets are requested from the web service.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 825

Resource usage maximums can be externally parame-
terized statically in terms of the maximum number of
concurrent web service calls and dynamically in terms of
maximum network bandwidth or CPU utilization (via the
Java Management Extensions). When the maximum number
of concurrent calls is met or the maximum CPU or network
bandwidth is reached, prefetching stops for a period of time
before it is attempted again.

To keep all links prefetched to approximately the same
point in simulation time, each link is prefetched up to a
moving limit: limit = min{p + n × i, e} where p is the
earliest time to which all links are prefetched to, i is the
longest request interval across all links, and e is the ending
time of the composition. The constant n controls how close
in simulation time the links are to be prefetched to and
should be 1 when the difference in request intervals is large
and may be higher when the difference is small.

3. Experimental Results
We conducted a performance study using an onsite Linux-

based Beowulf cluster. The compute nodes had 16-core 2
GHz processors and 64 GB of memory and the server node
had a 4-core 2.7 GHz processor and 8 GB of memory con-
nected via gigabit ethernet. The software components were
implemented in Java (Alterra SDK) conforming to version
1.4 of the OpenMI and the web service was implemented in
ASP.NET. The time spent by the web service to generate the
response to each request was configurable and the contents
of the response contained random numbers.

To represent a model component we created a placeholder
component that used a fixed-length time step of 1 day
and would sleep for 10 s between time steps to mimic
the time spent calculating a time step, which we call the
processing time. There was a single link between the model
component and the DPC and the elementset consisted of
50000 elements. Each composition ran for 60 time steps
resulting in a total of 3 million values in the cache at the
end of the run.

3.1 Caching
To investigate the effect of the cache we performed

two sets of simulations with varying numbers of model
components with and without the cache and measured the
runtime and amount of data transferred (prefetching was
disabled). In the first set, the model components were part
of a single composition and linked to a single DPC. In
the second set, each model component was in a separate
composition running on a different node so each composition
consisted of one model component and one DPC. In both
sets the model components request the exact same valuesets
to maximize the effect of the cache. Since the design of the
DPC necessitates a cache, the effect of disabling the cache
was approximated by removing each valueset from the cache
after it was returned to a model component.

When a component invokes GetValues on a DPC the
requested valueset is either retrieved from the cache if it
exists (a cache hit) or it is retrieved from a web service if
it does not (a cache miss). We define wait time to be the
amount of time that it takes a call to GetValues to return
a valueset. We define total wait time to be the sum of all
wait times over the course of a composition run and may be
estimated by:

W =
m∑
i=1

(Ri +Ni +Xi) +
m+h∑
j=1

Lj (1)

where m is the number of cache misses, h is the number of
cache hits, R is the average web service response time, N
is the average data transfer time, X is average time to parse
a response, and L is the cache lookup time. We empirically
identified values for N , X and L in our estimation of
expected performance.

The effect of the cache is shown in Figure 5 (top). When
caching was disabled the wait time increased linearly as
the number of components increased (top-left). Enabling the
cache within a single composition achieved constant wait
time. In the case of distributed compositions there was a
super-linear increase in the wait time due to the higher
cache lookup time associated with the distributed map. The
total data transferred increased linearly with the number
of components when the cache was disabled and remained
constant at 1.5 GB when the cache was enabled (top-right).

3.2 Prefetching
To evaluate the effect of prefetching we measured the

wait time of a single model component linked to a DPC
as we varied the web service response time. We used
response times that were multiples of the model component’s
processing time. The DPC prefetched valuesets with a limit
of one active web service call at any one time.

In the ideal case there is perfect predictive capability and
perfect overlap of the time that the DPC spends prefetching
and the time that the model component spends calculating
time steps. In this case the total wait time is based on
the time spent performing concurrent operations C and
performing serial operations S:

C =
m∑
i=1

(Ri +Ni +Xi) (2)

S =
t∑

k=1

Pk +
m+h∑
i=1

Li (3)

where t is the total number of time steps performed by
the model component and P is the processing time of each
time step. The total wait time W with prefetching may be
estimated by:

W = max(C − S, 0) +
m+h∑
i=1

Li (4)

826 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 5: Performance results: effect of caching (top) and effect of prefetching and pipelining (bottom).

We refer to Ri +Ni +Xi as the web service retrieval time
as it reflects the total time necessary to retrieve a valueset
from a web service.

With prefetching disabled the wait time increased linearly
with the web service response time (Figure 5 bottom-left).
When prefetching was enabled the total wait time increased
at the same rate but was lower by a constant value that
corresponded to one web service retrieval time. The speedup
in this case was constant (bottom-right).

3.3 Pipelining

To evaluate the effect of multiple concurrent web service
calls we measured the wait time of a single model com-
ponent linked to a DPC as we varied both the number of
concurrent requests and the web service response time.

When web service calls are made simultaneously the time
spent on concurrent operations is reduced by a factor of the
number of simultaneous calls. Thus, the total wait time W

with pipelining may be estimated by:

W = max(
C

Q
− S, 0) +

m+h∑
i=1

Li (5)

where Q is the number of simultaneous web service calls.
The wait time remains constant as long as the number

of simultaneous web service calls is the same as the factor
by which the web service retrieval time is greater than the
model component processing time. The wait time increases
sub-linearly with the web service retrieval time once the
number of simultaneous web service calls is insufficient to
complete all of the necessary prefetching during the model
component processing time.

4. Related Work
The synergy between web services and modeling and

simulation was recognized quickly as web standards
emerged [9]. Web services can provide both a means to
access data and to control the execution of online models [9],

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 827

[10], [11], [12]. Workflow Management Systems (WMS)
provide an infrastructure to setup, execute, and monitor
scientific workflows composed of web services [13], [14].
Standard data formats [1], [15] and data access systems [16]
have been developed to improve data portability.

There has been recent interest in enabling OpenMI com-
ponents to interoperate with web services. In one effort [17]
a feature type component was developed that can retrieve
point time series data from a server using the OGC Web
Feature Services (WFS) standard. The component steps
forward through time and when GetValues is invoked it
returns the value of the feature type that corresponds to the
current time. Another component [18] was developed that
can retrieve time series data from a proprietary data platform.
To obviate the need for a local data server on the machine
that is executing a composition, the component serves as a
proxy between the components of a composition and the data
server. Our work complements these efforts in the context
of computational grids.

5. Conclusions
We presented the design of the Data Provider Component

(DPC) for OpenMI components and evaluated its perfor-
mance. The DPC efficiently retrieves data from multiple
web services and delivers the data to OpenMI components
that are executing on a cluster. We adapted three common-
practice optimizations, caching, prefetching, and pipelining,
to the unique behavior and constraints of OpenMI compo-
nents. General-purpose data components simplify the task
of deploying linked models to runtime environments and
provide a means for integrating real-time measurement data
into their simulations.

The DPC consists of a fetching module and a caching
module. The fetching module continuously monitors the data
requests made by model components and prefetches data
from web services in a pipelined fashion. The caching mod-
ule services the data requests by extracting the appropriate
data from a distributed map that is shared among all DPCs
across a cluster.

We evaluated the performance of each of the three op-
timizations: caching, prefetching, and pipelining. Caching
within a single composition achieved linear speedup in
wait time as the number of model components increased.
Distributed caching was less performant in terms of wait
time and would be most advantageous in situations with
high latency web services. In both cases the amount of
data transferred was minimized and remained constant as
the number of model components increased. Prefetching
achieved constant speedup in wait time as the web service re-
trieval time increased and pipelining achieved linear speedup
given a sufficient number of simultaneous web service calls.

To mitigate some of the challenges of data management
for linked simulations, intelligent, efficient data provider
components will become an essential part of any OpenMI

linked model. We believe that this work provides a sound
basis for the development of such components.

6. Acknowledgments
This work was supported by the National Science Founda-

tion (grants GEO0909515, EPS0919443, EPS1006860). Ac-
cess to the Beocat compute cluster at the Dept. of Computing
and Information Sciences at Kansas State University was
appreciated.

References
[1] R. K. Rew and G. P. Davis, “The Unidata netCDF: Software for

scientific data access,” in Sixth International Conference on Interactive
Information and Processing Systems for Meteorology, Oceanography,
and Hydrology. Anaheim, California: American Meteorology Soci-
ety, February 1990, pp. 33–40.

[2] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes,
S. Parker, and B. Smolinski, “Toward a common component architec-
ture for high-performance scientific computing,” in Proceedings of the
8th IEEE International Symposium on High Performance Distributed
Computing, 1999, p. 13.

[3] J. B. Gregersen, P. J. A. Gijsbers, and S. J. P. Westen, “OpenMI: Open
modeling interface,” J. Hydroinform., vol. 9(3), pp. 175–191, 2007.

[4] P. Taylor, “Harmonising standards for water observation data – dis-
cussion paper, OGC 09-124r2,” Open Geospatial Consortium Inc.,
2010.

[5] T. Whiteaker, “CUAHSI WaterOneFlow workbook, HIS document 5,”
CUAHSI, 2010.

[6] I. Zaslavsky, D. Valentine, and T. Whiteaker, “CUAHSI WaterML,
OGC 07-041r1,” Open Geospatial Consortium Inc., 2007.

[7] T. Ozturk, “Scalable data structures for java,” in Devoxx, Metropolis
Antwerp Belgium, November 2010.

[8] The HSQL Development Group, B. Simpson, and F. Toussi, “Hyper-
SQL user guide: HyperSQL database engine (HSQLDB),” The HSQL
Development Group, 2010.

[9] S. Chandrasekaran, G. Silver, J. Miller, J. Cardoso, and A. Sheth,
“Web service technologies and their synergy with simulation,” Winter
Simulation Conference, vol. 1, pp. 606–615, 2002.

[10] J. M. Pullen, R. Brunton, D. Brutzman, D. Drake, M. Hieb, K. L.
Morse, and A. Tolk, “Using web services to integrate heterogeneous
simulations in a grid environment,” Future Gener. Comput. Syst.,
vol. 21, pp. 97–106, January 2005.

[11] S. Shasharina, C. Li, R. Pundaleeka, N. Wang, D. Wade-Stein,
D. Schissel, and Q. Peng, “HDF5WS – web service for remote access
of simulation data,” APS Meeting Abstracts, p. 2014, October 2006.

[12] J. Horak, A. Orlik, and J. Stromsky, “Web services for distributed and
interoperable hydro-information systems,” Hydrol. Earth Syst. Sci.,
vol. 12, pp. 635–644, 2008.

[13] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li,
and T. Oinn, “Taverna: a tool for building and running workflows
of services,” Nucleic Acids Research, vol. 34(Web Server issue), pp.
729–732, 2006.

[14] L. Bavoil, S. P. Callahan, C. E. Scheidegger, H. T. Vo, P. J. Crossno,
C. T. Silva, and J. Freire, “Vistrails: Enabling interactive multiple-
view visualizations,” Visualization Conference, IEEE, vol. 0, p. 18,
2005.

[15] H. H. Page, “The HDF Group,” 2010,
http://www.hdfgroup.org/HDF5/.

[16] A. Rajasekar, M. Wan, R. Moore, and W. Schroeder, “A prototype
rule-based distributed data management system,” in HPDC workshop
on Next Generation Distributed Data Management, Paris, France,
2006.

[17] Q. Harpham, “Future service chain platform,” in First Open Con-
sultation Meeting, Distributed Research Infrastructure For Hydro-
Meteorology Study, Genoa, Italy, October 2010.

[18] KISTERS, “Kisters news,” 2010,
http://www.kistersnews.com.

828 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Leveraging Parallelism with CUDA and OpenCL

S. Park
1
, D. Shires

1
, J. Ross

2
,

and D. Richie

3

1
U. S. Army Research Laboratory, APG, MD

2
High Performance Technologies Inc., Reston, VA

3
Brown Deer Technology, Forest Hill, MD

Abstract - Graphics processing units (GPUs), originally

designed for computing and manipulating pixels, have

become general-purpose processors capable of

executing in excess of trillion calculations per second.

Taking advantage of GPU’s compute power and

commodity popularity, the field of computing systems is

exhibiting a trend toward heterogeneous platforms

consisting of a central processor integrated with

graphics hardware. To leverage parallelism within

graphics processors, programming approaches

employing CUDA and more recent OpenCL framework

are evaluated in the context of implementing a ballistic

threat field calculation.

Keywords: CUDA, OpenCL, GPGPU

1 Introduction

With the advent of general-purpose computing on

graphics processing units (GPGPU), high performance

computing has become accessible to general public as

the cost of computing has fallen with prevalent and

powerful commodity compute resources. Through the

combination of consumer market and data-parallel video

processing, graphics processing units (GPUs) have

become a standard in computer systems and gaining

momentum in addressing the processing demands of

computationally challenging applications. Ranging

from handheld devices to supercomputers, the graphics

processing technology is making a mark and

contributing to various fields and algorithms [1]. As

trends in computing systems are observed, common

denominator in Amazon’s EC2, Intel’s Sandy Bridge,

AMD’s Fusion, and Apple’s A4, is that modern systems

are frequently heterogeneous platforms where multiple

levels of parallelism must be exploited to utilize the full

potential of these systems.

In the ideal case of just looking at maximum

hardware capability, theoretical performance of GPU

architectures are clearly superior when compared to the

maximum floating-point arithmetic intensity of a CPU.

This is evident by the TOP500 list, which ranked

Tianhe-1A, the heterogeneous system consisting of

CPUs and GPUs, as the world’s fastest supercomputer

in November 2010 [2]. Higher capability in math

processing with graphics processors is achieved by

employing a greater compute density in chip design.

With more lightweight compute elements, increased

arithmetic throughput is achieved. For instance, AMD’s

high-end products have in excess of a thousand stream

processors, leading to a peak performance surpassing a

trillion floating-point operations per second (TFLOPs).

Starting as accelerators responsible for generating

pixels, GPUs are now TFLOP capable devices. With

the aid of modern video card technology, a personal

high performance computing system can be realized at a

fraction of historical supercomputing costs. Moreover,

massively parallel structure of graphics processors can

be utilized for executing integer operations. The issue

rates for various integer and floating-point instructions

are documented in [3-5].

There are two leading software APIs for leveraging

graphics processors toward general-purpose computing:

CUDA and OpenCL. NVIDIA was one of the earlier

companies offering software development environment

for accessing underlying graphics architecture for

parallel computing. As such, a greater adaptation and

user base of CUDA exists in GPGPU community.

Moreover, this head start translates to more available

tools and refined libraries. Similarly, OpenCL

addresses the programming of ever increasing parallel

devices and is an open standard with an impressive list

of participants [6]. One of the distinctions with

OpenCL is its ability of targeting wide range devices

such as high performance computers, mobile devices,

and embedded systems [7]. This paper investigates the

programming experiences with the framework of

CUDA and OpenCL.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 829

2 CUDA and OpenCL

A cursory look at source codes reveals that CUDA

programs tend to be less verbose than OpenCL codes.

To support various compute resources, OpenCL

implementation requires more setup management of

which include querying for platform and device,

creating contexts and command queues, building

programs, setting kernel arguments, and enqueuing

kernels. As a result, OpenCL is able to support various

parallel architectures and take advantage of available

compute resources within a heterogeneous system. The

goal is to define a standard low-level API for parallel

computing that provides extreme portability across wide

range of computing devices (smartphones to

supercomputers).

CUDA uses Open64 compiler for building

implementations where as OpenCL rely on LLVM and

Clang. A notable feature in OpenCL is the just-in-time

compilation support, which builds a kernel program at

runtime. This dynamic compilation model consists of

two steps: first a code is compiled to a LLVM

intermediate representation using the front-end

compiler, then the intermediate representation is

compiled to a machine code by the back-end compiler.

First step is usually done once and the intermediate

representation is stored. The application loads the IR

and performs the second step at runtime. Installable

Client Driver (ICD) allows multiple implementations to

co-exist where a code only links to the OpenCL shared

library.

3 Factors Affecting Performance

Clear correlation exists between software

programming and performance. Understanding of

execution model and architectural details of underlying

processor is the key in reaching full capacity.

Regardless of whether an implementation is in CUDA

or OpenCL, knowledge of hardware characteristics and

impact on performance is applicable across languages.

Programming must reflect architecture specific

optimization and make effort to fine tune for a particular

hardware. Most likely, a code specialized and

optimized specifically for the AMD’s Radeon graphics

card is not going to perform at the same optimal level

when executed on a Nvidia’s GPU due to differences in

low-level hardware. Typically, CPUs accelerate

through SSE, Nvidia GPUs follow SIMT execution

model, and AMD GPUs employ VLIW technique.

Runtime is also tied to how an algorithm is

translated and ported to a processing unit. A

programmer needs to apply architecture insights during

the process of mapping an algorithm to a particular

hardware. Understanding memory structure hierarchy,

data access behavior, and multithreading operation

could result in an order magnitude performance

improvement. An excellent implementation is typically

obtained via reformulating an algorithm to take

advantages of hardware’s mode of operation.

3.1 Data Types and Structures

The data type float4 proves helpful to both x86 and

AMD GPU architectures, which leads to optimal

hardware utilization. The float4 data type translates to

packed SSE instructions in x86 processors and maps

efficiently to five-way scalar VLIW processors for

AMD GPUs [8]. As for NVIDIA products, float4 data

type is supported, but the operations involving float4

variables are not included natively (although provided

under SDK package). In this project, operation

overloading was employed for float4 data types in

CUDA to match OpenCL source code. In terms of

meeting the requirement for coalesced memory

operations, data alignment is automatic for float4 data

primitive in CUDA. Having a correct alignment with

some unused element access would still result in a

single memory transaction.

Data structure arrangement of choice in data-

parallel computing is structure of arrays (SoA), which

avoids interleaved data pattern apparent in array of

structures (AoS). This holds true for CPUs, since SoA

structure allows the application to fully utilize the SIMD

registers and could lead to reduced memory traffic (only

relevant data is loaded into cache). In CUDA, SoA

layout satisfies the requirement of the efficient

coalesced memory transfer, which in general

significantly reduces memory transfer time. In

summary, the SoA data structure is a more natural

structure for SIMD operations yielding better

performance. When impractical to maintain data in

SoA format, one option is to restructure AoS to SoA for

SIMD computation then stored back in intuitive AoS

format.

830 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

3.2 Balance of Arithmetic and Memory

For analysis and optimization of multithreaded

processors, it is helpful to determine the limiting factors

of performance. The goal is to keep the processing

elements fully occupied and busy while overlapping the

latency of memory accesses. As addressed in [9],

optimization on multithreaded hardware model can be

counterintuitive. In some cases, increasing arithmetic

instructions resulting in lower occupancy can lead to

reduced runtime due to extra arithmetic executions

masking memory latency. This is an example of

insufficient amount of arithmetic that degrades GPU’s

performance as a result of computing resources in idle

state.

During an optimization process, an algorithm of

interest should be evaluated for computation and

memory limitations. Source code modification to

measure memory-only and math-only versions of a

kernel is outlined in [10]. This analysis will indicate an

entry point and narrow the area of focus for

optimization.

4 Ballistic Threat Field Algorithm

The algorithm under investigation is an application

that computes ballistic threat field calculations inside a

3D urban terrain modeled as 68,356 triangles. The

design of the algorithm is structured such that the

development can grow as a ray tracing application. The

core calculation computes a line-plane intersection,

which generates radiating rays from a shooter’s position

to each triangle to determine the nearest hit triangle.

Once the line of sight calculation is discovered, a hit

probability function is applied to calculate the ballistic

thread probability. Input data is a triangle file derived

from a downloaded file in Google 3D Warehouse

represented in XML format. The triangles representing

building and terrain surfaces are indexed by a quadtree

data structure to take advantage of early termination.

The chosen 3D map environment has a balanced

mixture of an urban area consisting of building

structures and an undeveloped area representing an open

rough terrain.

4.1 Runtime Results

Performance results for CUDA and OpenCL was

measured and listed in Table 1. The source code was

written in languages C, CUDA, and OpenCL. The C

version represents a straight-forward single-threaded

implementation running on a single core. Because

Xeon E5520 has lower clock frequency, C

implementation on Xeon 5160 outperforms the quad-

core. The CUDA version is only able to target Nvidia

GPUs. CUDA implementation performed poorly on the

Tesla card where memory transfer seems to be slower

on the Tesla cluster configuration. Lastly, the OpenCL

version allows for diverse platform execution. For

OpenCL source code, the value of local thread size was

adjusted according to the targeted hardware.

Comparing the runtimes of the sequential and

parallelized approaches illustrates the significant impact

in runtime based on the programming approach.

Table 1: Execution times

 CUDA OpenCL C

GeForce 8800

GTX

1.05 sec 3.22 sec N/A

Tesla C1060 1.19 sec 0.98 sec N/A

Firestream

9250

N/A 1.78 sec N/A

Xeon 5160

Dual-Core 3.0

GHz

N/A 7.67 sec 82.65

Xeon E5520

Quad-Core

2.26 GHz

N/A 1.53 sec 100.76

5 Conclusion

A close examination of processor architectures

typically reveals and explains justifications behind

hardware features, design choices, and optimization

techniques leading to faster processing. Since processor

designs are limited by power and heat, many core,

VLIW, and SIMD execution models focus on reducing

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 831

power consumption while increasing parallelism. In the

era of parallel hardware, performance gain is obtained

through software programming.

In the end, there is a strong relationship between

performance and time investment of applying

optimizations. It boils down to learning how

architecture affects runtime and programming

accordingly to reach maximum hardware utilization.

Regardless of programming frameworks and associated

languages, the architecture knowledge is portable across

software tools in achieving better performance.

Algorithms implemented with architecture awareness

enable operation to better exploit architecture specifics

and features.

6 References

[1] Nickolls, J., Dally, W.J., "The GPU Computing

Era," Micro, IEEE , vol.30, no.2, pp.56-69, March-April

2010.

[2] TOP500. Retrieved February 22, 2011,

http://www.top500.org

[3] AMD, “Programming Guide: AMD Accelerated

Parallel Processing OpenCL,” Jan 2011.

[4] Nvidia, “NVIDIA CUDA C Programming Guide,”

Version 3.2, Nov 2010.

[5] Nvidia, “NVIDIA’s Next Generation CUDA

Compute Architecture: Fermi,”, V1.1, 2009.

[6] Khronos Promoting Member Companies. Khronos

Group. Retrieved February 12, 2011,

http://www.khronos.org/members/promoters

[7] A. Munshi, B. Gaster, T. G. Mattson, D. Ginsburg

(2010). OpenCL Programming Guide, Rough Cuts,

Addison-Wesley Professional.

[8] Behr, D. (2009, September). AMD GPU

Architecture. PPAM 2009, Wroclaw, Poland.

[9] Micikevicius, P. (2010, October). Analysis-Driven

Optimization. GTC 2010, San Jose, CA.

[10] Volkov, V. (2010, October). Better Performance at

Lower Occupancy. GTC 2010, San Jose, CA.

832 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Distributed Parallel D8 Up-Slope Area Calculation in Digital
Elevation Models

R. Barnes1, C. Lehman2, and D. Mulla3
1Ecology, Evolution, & Behavior, University of Minnesota, Minneapolis, MN, USA
2College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA

3Soil, Water, & Climate, University of Minnesota, Minneapolis, MN, USA

Abstract— This paper presents a parallel algorithm for
calculating the eight-directional (D8) up-slope contribut-
ing area in digital elevation models (DEMs). In contrast
with previous algorithms, which have potentially unbounded
inter-node communications, the algorithm presented here
realizes strict bounds on the number of inter-node commu-
nications. Those bounds in turn allow D8 attributes to be
processed for arbitrarily large DEMs on hardware ranging
from average desktops to supercomputers. The algorithm
can use the OpenMP and MPI parallel computing models,
either in combination or separately. It partitions the DEM
between slave nodes, calculates an internal up-slope area
by replacing information from other slaves with variables
representing unknown quantities, passes the results on to
a master node which combines all the slaves’ data, and
passes information back to each slave, which then computes
its final result. In this way each slave’s DEM partition is
treated as a simple unit in the DEM as a whole and only
two communications take place per node.

Keywords: D8, up-slope area, digital elevation model, distributed,
parallel, flow accumulation

1. Introduction
DEMs are data structures, usually a rectangular array of

floating-point or integer values, representing terrain elevation
above some common base level, generally measured via
remote sensing techniques or LIDAR.

DEMs are used extensively to model hydrologic processes
and properties including soil moisture (based on catchment
area), terrain instability (based on slope and catchment area),
erosion (based on slope), and stream power (based on slope
and catchment area) [5].

Underlying the aforementioned calculations is a flow
function responsible for determining what proportion of each
cell’s flow each neighbouring cell will receive. Perhaps the
most widely used function is the D8 function introduced by
O’Callaghan and Mark [3]. This function directs the entirety
of each cell’s flow to the lowest of its eight surrounding
neighbours. This implies that flows combine but never dis-
perse: a property we take advantage of. In contrast is the
D∞ method introduced by Tarboton [4], which calculates
an angle of steepest descent based on adjacent pairs of

neighbouring cells and directs flow to one or both neighbours
along that path.

The accuracy of DEM-based calculations is related to the
DEM’s resolution. These have gone from thirty-plus meter
resolution in the recent past to the sub-meter resolutions
becoming available today. Increasing resolution has led to
increased data sizes: current data sets are on the order of
gigabytes and increasing. While computer processing and
memory performance have increased appreciably during this
time, legacy equipment and algorithms suited to manipulat-
ing smaller DEMs with coarser resolutions make processing
these improved data sources costly, if not impossible.

Wallis et al. [5] present one solution for calculating
“up-slope area" based on previous work by Mark [2] and
O’Callaghan and Mark [3]: a parallel algorithm suitable for
both D8 and D∞ calculations for use in environments where
communication is inexpensive using a queue-based up-slope
area function. Although their algorithm, as published, as-
sumes shared memory, this is not a strict requirement.

The algorithm presented here applies only to D8, is
suitable for environments where inter-node communication
is expensive relative processing, makes efficient use of multi-
processor nodes, and optimises the queue method presented
by Wallis et al. [5].

2. Up-Slope Area
Up-slope area A is defined physically for each point p

in a watershed as the set of all points P whose flow, if we
were to put a liquid in them, would eventually pass through
p. Mathematically, this is defined by the recursion relation:

A(p) = 1 +
∑

i=n(p,P)

A(i) (1)

Where n(p, P) defines the points neighbouring p, given P .
In practice, points are generally represented by cells of some
sort, which may or may not be of equal area and may or
may not be weighted equally in the calculation. In the case
of most DEMs and this paper, the points are represented by
square cells with an area and weight of one.

3. The Algorithm
It is assumed that the DEM has been preprocessed to

remove pits and flats. Pits are cells with no lower neighours

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 833

or groups of cells from which there is no outlet. In the case
of a single cell, the cell is generally raised to the level
of its lowest neighbor; in the case of groups, an outlet is
usually drilled. Flats are cells with one or more neighbours
of equal elevation, these my be resolved by making slight
elevation modifications within the flat; Garbrecht and Martz
[1] present one approach.

Following this, each of S slave nodes reads in an equal
number of horizontal rows of the DEM, with any extra rows
allocated to the final slave. In addition to its allotted rows,
each slave also reads in two extra rows above and below
its strip. This permits the slave to determine flow direction
for the cells at the edge of its allotted strip and for the
cells bordering it. Henceforth, cells at the edge of a slave’s
allotted strip are called edge cells and are found in either
the TopRow or the BottomRow of the strip.

In this algorithm, the D8 flow direction of a cell is
specified as being towards the neighbour with the steepest
slope relative that cell using the Euclidean distance between
centers of the two cells. We call the net flow field F .

Throughout this paper procedures marked with a parallel
subscript (“‖") may be safely invoked on multiple processors
whereas loops marked with a parallel subscript be safely
partitioned between processors. Any commands which may
lead to race conditions are marked as atomic.

Using the flow field F , each slave finds the dependencies
of all its cells using Algorithm 1. A cell c is a dependent
of a neighbour n if n’s flow is directed into it; thus, a
cell may have 0–8 dependencies, inclusive. If a cell has no
dependencies, it is pushed on to the back of a double-ended
queue Q; otherwise, the number of dependencies is stored
in an array D.

Algorithm 1 Slaves calculate dependencies
1: procedure FINDDEPENDENCIES

Require: F,D,Q
2: for‖ all c in F
3: for all n inputs to c do
4: D(c)← D(c) + 1
5: end for
6: if D(c) = 0 then
7: ATOMIC(push c onto back of Q)
8: end if
9: end for‖

10: end procedure

The purpose of the double-ended queue is to minimize
contention in multi-processor environments by decoupling
the queue’s push and pop functions. The for‖ loop on Line
2 may be safely run in parallel because none of the data
being read is altered by the function and only one processor
will be writing to any given memory location. The queue-
push on Line 7 must be done atomically for the algorithm
to run safely. It is possible to implement Algorithm 1 such

that there is no contention by having each processor build
its own queue and then merging these just after the function
completes.

Following Algorithm 1, each slave performs calculates its
Internal Up-slope Area A using Algorithm 2. This algorithm
begins with the local maxima of the DEM—those cells added
to Q by Algorithm 1—which have an up-slope area of one
(only themselves) and decrements the dependency counter of
the cells they flow into. When a cell’s dependency counter
reaches zero, it is added to Q. Thus, as the up-slope area
of higher-elevation cells becomes known, it is possible to
calculate that of lower-elevation cells.

Algorithm 2 Slaves calculate internal up-slope area
1: procedure INTERNALUPSLOPE‖(c)

Require: F,D,Q,A
2: if c was not specified then
3: ATOMIC(c← front of Q)
4: if c was not set then
5: return
6: end if
7: end if

8: A(c)← 1
9: for all n inputs to c do

10: A(c)← A(c) +A(n)
11: end for

12: n← downslope neighbor of c
13: if n exists then
14: D(n)← D(n)− 1
15: if D(n) 6= 0 then
16: n←NULL
17: end if
18: end if
19: return INTERNALUPSLOPE(n)
20: end procedure

Algorithm 2 is defined using tail recursion and, to avoid
excessive stack sizes, should be implemented appropriately.
Since Q cannot be equitably divided among processors
beforehand, it is necessary for each processor to atomically
pop cells from it when necessary. However, the depth-
first search embodied by the recursion on Line 19 reduces
contention on Q.

At this point, information from other slaves is required to
resolve the remaining dependencies. Figure 1 depicts this
conceptually. A represents a flow path originating in the
current slave’s portion of the DEM: all its dependencies can
be satisfied with the information available to the slave, but
these results must be communicated to neighbouring slaves.

If we assume that flow is generally directed to the lower-
right, then B represents an up-slope area originating in a
different slave and terminating in this one. In such a case a

834 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 1
CONCEPTUAL IMAGE OF DEPENDENCIES AND RESOLUTIONS

single communication between the slaves provides sufficient
information to compute up-slope area.

C represents a similar situation, but two communications
are necessary because the flow path loops back up: one to
resolve this slave’s dependencies and another to resolve its
neighbour’s.

D represents a situation in which two communications are
necessary to pass information from one neighbouring slave
to another through the current slave.

If C and D link through the upper neighbouring slave,
then four communications would be necessary. Or, if flow
is directed to the upper-left, and B, C, and D are linked,
then five communications would be necessary. We denote
the average number of communications a slave will need
to make as its “winding factor" φ. In situations where
communication is cheap, φ is unimportant and algorithms
such as that presented by Wallis et al. [5] are effective.
In situations where communication is expensive, a different
algorithm, such as that presented here, is necessary.

If each slave denotes external inputs from other slaves
by variables, it is possible to continue the calculation with
minimally inter-nod communication.

We call edge cells with unresolved dependencies in other
slaves’ DEMs receivers. They receive information from at
most 3 of the other slave’s edge cells. Cells upon which
another slave’s DEM depends are either givers or joiners.
A giver cell’s upslope-area has already been calculated by
Algorithm 2; a joiner is the dependent of one or more
receiver cells.

It is a property of the D8 flow function that flows join but
never disperse and, therefore, that every joiner is a dependent
of at least one receiver while each receiver ultimately feeds
into at most one joiner. This property does not hold for the
D∞ flow function, preventing its use in this context.

Algorithm 3 presents one possible way of preparing the
slave to perform the External Up-slope Area calculation.
The original dependency grid is saved on Line 2 to be used
later in calculating the true up-slope area. Once this is done,
the external dependencies of all edge cells are removed and
those cells which are “satisfied" are added to Q. The cell is
marked as a receiver by assigning it a special variable name
on Line 5.
CellV , first mentioned on Line 5, is a map between cells

c and variable names, which are represented as globally-
unique numbers with −1 acting as a special value used to

denote receivers. Algorithm 3 marks all cells as receivers;
Algorithm 4 will remark those which are not.

Algorithm 3 Slaves prepare to calculate external up-slope
area

1: procedure SATISFYRECEIVERS
Require: F,D,DO, CellV , Q

2: DO ← D
3: for‖ all c in TopRow
4: V ←NEWVARIABLE
5: CellV (c)← −1
6: for all n above-inputs to c do
7: D(c)← D(c)− 1
8: end for
9: if D(c) = 0 then

10: ATOMIC(push c onto back of Q)
11: end if
12: end for‖
13: . Analogous code for BottomRow
14: end procedure

Algorithm 4 calculates External Up-slope Area, keeping
track of how cells depend on receivers. When a cell is
popped off Q, it is associated with a new variable name
V (Line 7) which is unique across all slaves and used in
future iterations to keep track of the flow path’s origin using
the multimap1 Origin (Line 8). Since only edge cells are
in Q, new variables are only formed at the edge cells.

After incrementing a cell c’s up-slope area, the algorithm
attempts to follow the flow path from c to its neighbour n
(Line 19). If there is a neighbour and its dependencies are
satisfied, the algorithm recurses, maintaining knowledge of
which edge cell its flow path originated at using V (Line
23). If n’s dependencies are not satisfied, the algorithm uses
the map CellV to inform a future iteration of the existence
of the flow path it’s about to abandon (Line 26).

On Lines 14–18, after the cell’s up-slope area has been
incremented, the algorithm inspects the present cell and and
cells flowing into it to see if it or they are part of a previously
abandoned flow path. If so, it merges that flow path with the
present one and continues.

Ultimately, the algorithm reaches a point where no down-
slope neighbour exists and there are no more cells in Q. It
abandons the flow path (Line 26), recurses, and exits (Line
5). The result of this algorithm is a map CellV indexed
on the joiner cells. These cells are part of the border of the
current slave and the edge of the adjacent slave—they are the
adjacent slave’s receivers. So CellV , coupled with Origin
link one slave’s receivers to another’s.

1A hash table which associates the same key with multiple values. In
this paper empty or nonexistent keys in maps and multimaps always return
NULL when their values are cell identifiers and 0 when their values are
used mathematically.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 835

Algorithm 4 Slaves calculate external up-slope area
1: procedure EXTERNALUPSLOPE‖(V, c)

Require: F,D,Q,A,CellV , Origin
2: if c was not specified then
3: ATOMIC(c← front of Q)
4: if c was not set then
5: return
6: end if
7: V ←NEWVARIABLE
8: Origin(V)← c
9: end if

10: A(c)← 1
11: for all n inputs to c do
12: A(c)← A(c) +A(n)
13: end for

14: for all n inputs to c and c itself do
15: append Origin(CellV (n)) to Origin(V)
16: erase Origin(CellV (n))
17: erase CellV (n)
18: end for

19: n← downslope neighbor of c
20: if n exists then
21: D(n)← D(n)− 1
22: if D(n) = 0 then
23: return EXTERNALUPSLOPE(V, n)
24: end if
25: end if
26: CellV (c) = V
27: return EXTERNALUPSLOPE(−,−)
28: end procedure

Each slave now sends CellV , Origin, and the up-slope
area of its bordering cells to the master node.

Conceptually, the situation is exemplified by Figure 2.
Data from different slaves is separated by wide vertical gaps;
it is important to remember that the cells bordering these
gaps, though they appear in different slaves are, in fact, the
same in the DEM. Within a slave’s data, receivers and joiners
form sometimes-complicated linkages while between slaves
the linkages are simple; from the master’s perspective, the
slaves combine to form a directed acyclic graph.

In Figure 2, receivers are marked by variables. These are
passed along to joiners, accumulating up-slope area along
the way. Therefore, the joiners are represented by the sum
of their associated receivers’ variables and the upslope area
connecting them to each receiver. Givers are represented by
a pure number: this is a true up-slope area and a starting
point for the next calculation.

Algorithm 5 prepares the slaves’ data for processing by
locating giver cells and determining how many dependencies

Fig. 2
CONCEPTUAL IMAGE OF MASTER NODE’S DATA

each joiner has. Since the map keys are globally unique,
all the slaves’ CellV s are combined; likewise, the Origins.
The function Invert on Line 14 turns Origin’s keys into
values and vice versa. The result is a simple map serving
the same purpose as the flow field array F of Algorithm 2.
The dependency array holds: 1 for receivers since they only
depend on data from cells in adjacent slaves; -1 for givers so
that they are not later mistaken for receivers; and a positive
number, 1 or more, for joiners.

Algorithm 5 Master node prepares received data
1: procedure MASTERPREP

Require: D,Q,CellV , Origin
2: for‖ all Slaves s
3: for all c in (TopRow,BottomRow) do
4: if CellV (c) is undefined then . Giver
5: ATOMIC(push c onto back of Q)
6: D(c)← −1
7: else if CellV (c) = −1 then

. Receiver
8: D(c)← 1
9: else . Joiner

10: D(c)←LENGTH(Origin(CellV (C)))
11: end if
12: end for
13: end for‖
14: Destination←INVERT(Origin)
15: end procedure

Algorithm 6 solves the system of equations presented by
the slaves using the same methodology as in Algorithms
2 and 4. Lines 8–18 identify the cell’s destination. If one
has not been explicitly declared the cell must either be a

836 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

giver or a joiner and its destination is implied as being to
the slave above/below it, provided that cell is a receiver.
Figure 2 depicts one situation wherein this would arise.
The destination of the cell in the bottom right labeled
“c+ 9" is implied to be directly below it; however, the two
are unconnected. If the destination is valid, the algorithm
continues in the usual fashion.

Algorithm 6 Master node calculates up-slope area
1: procedure MASTERUPSLOPE‖(c)

Require: A,D,Q,CellV , Destination
2: if c was not specified then
3: ATOMIC(c← front of Q)
4: if c was not set then
5: return
6: end if
7: end if

8: n← Destination(c)
9: if n is undefined then

10: if c is a top cell then
11: n←cell above c
12: else
13: n←cell below c
14: end if
15: if CellV (n) 6= −1 then . Not A Receiver
16: n←NULL
17: end if
18: end if
19: if n is undefined then
20: return MASTERUPSLOPE(−)
21: end if

22: A(n)← A(n) +A(c)
23: D(n)← D(n)− 1
24: if D(n) 6= 0 then
25: n←NULL
26: end if
27: return MASTERUPSLOPE(n)
28: end procedure

Once Algorithm 6 is completed, the area of each slaves’
top and bottom rows are returned. Since Algorithm 4 set the
areas of the slaves’ receivers to one and calculated up-slope
area that, we simply have to add each receivers’ incoming
area to all its dependents. Line 9 of Algorithm 7 enables this
by setting up a map between receivers and their incoming
variables. This map will later be used to keep track of which
incoming areas belong to which flow path. Finally, the slaves
run Algorithm 8.

Algorithm 8 is similar to Algorithm 4 insofar as it prop-
agates variables forward. However, rather than propagating
variables and combining flow paths, only the incoming areas
are propagated forward.

Algorithm 7 Slaves prepare incoming data
1: procedure PREPFINALISEINTERNAL

Require: F,D,DO, CellV , Q
2: D ← DO

3: for‖ all c in TopRow
4: for all n above-inputs to c do
5: D(c)← D(c)− 1
6: end for
7: if D(c) = 0 then
8: ATOMIC(push c onto back of Q)
9: AreaD(c)← Aincoming(c)

10: end if
11: end for‖
12: . Analogous code for BottomRow
13: end procedure

Algorithm 8 Slaves finalise internal up-slope areas
1: procedure FINALISEINTERNAL‖(S, c)

Require: F,D,Q,A
2: if c was not specified then
3: ATOMIC(c← front of Q)
4: if c was not set then
5: return
6: end if
7: S ← AreaD(c)
8: end if

9: for all n inputs to c do
10: S ← S +AreaD(c)
11: erase AreaD(c)
12: end for
13: A(c)← A(c) + S

14: n← downslope neighbor of c
15: if n exists then
16: D(n)← D(n)− 1
17: if D(n) = 0 then
18: return FINALISEINTERNAL(S, n)
19: end if
20: end if
21: AreaD(c) = S
22: return FINALISEINTERNAL(−,−)
23: end procedure

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 837

4. Conclusions
The algorithm presented here makes efficient use of multi-

processor nodes and is well-suited to environments where
communication is expensive and must be kept to a minimum.
Each slave communicates with a master node only once and
the master node communicates with each slave only once.
In the case of a single node performing the calculations, it
would be possible to store intermediate results to disk or
layer this algorithm, allowing the node to process arbitrarily
large DEMs dependent only on disk space.

References
[1] Jurgen Garbrecht and Lawrence W Martz. The assignment of drainage

direction over flat surfaces in raster digital elevation models. Journal
of Hydrology, 193:204–213, June 1997. ISSN 00221694. doi:

10.1016/S0022-1694(96)03138-1. URL http://linkinghub.
elsevier.com/retrieve/pii/S0022169496031381.

[2] D.M. Mark. Modelling in Geomorphological Systems, chapter Network
models in geomorphology, pages 73–97. John Wiley & Sons, 1988.

[3] John O’Callaghan and David Mark. The extraction of drainage net-
works from digital elevation data. Computer Vision, Graphics, and Im-
age Processing, 28(3):323–344, December 1984. ISSN 0734189X. doi:
10.1016/S0734-189X(84)80011-0. URL http://linkinghub.
elsevier.com/retrieve/pii/S0734189X84800110.

[4] David G Tarboton. A New Method For Determining Flow Directions
And Upslope Areas In Grid Digital Elevation Models. Water Resources
Research, 33(2):309–319, 1997.

[5] Chase Wallis, Dan Watson, David Tarboton, and Robert Wallace. Par-
allel Flow-Direction and Contributing Area Calculation for Hydrology
Analysis in Digital Elevation Models. In International Conference on
Parallel and Distributed Processing Techniques and Applications, pages
1–5, Las Vegas, Nevada, USA, 2009.

838 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Selecting the Best Tridiagonal System Solver Projected on Multi-Core
CPU and GPU Platforms

Pablo Quesada-Barriuso1, Julián Lamas-Rodríguez1, Dora B. Heras1, Montserrat Bóo1, Francisco Argüello1
1Centro de Investigación en Tecnoloxías da Información (CITIUS), Univ. of Santiago de Compostela, Spain

Abstract— Nowadays multicore processors and graphics cards
are commodity hardware that can be found in personal comput-
ers. Both CPU and GPU are capable of performing high-end
computations. In this paper we present and compare parallel
implementations of two tridiagonal system solvers. We analyze
the cyclic reduction method, as an example of fine-grained par-
allelism, and Bondeli’s algorithm, as a coarse-grained example
of parallelism. Both algorithms are implemented for GPU
architectures using CUDA and multi-core CPU with shared
memory architectures using OpenMP. The results are compared
in terms of execution time, speedup, and GFLOPS. For a large
system of equations,222, the best results were obtained for
Bondeli’s algorithm (speedup1.55x and 0.84 GFLOPS) for
multi-core CPU platforms while the cyclic reduction (speedup
17.06x and5.09 GFLOPS) was the best for the case of GPU
platforms.

Keywords: Tridiagonal system solver, multi-core CPU, OpenMP,
GPU, CUDA

1. Introduction
The tridiagonal system solvers are widely used in the field

of scientific computation, especially in physical simulations.
The tridiagonal matrix algorithm, also know as the Thomas
Algorithm [1], is one of the most known algorithms used to
solve tridiagonal systems. It is based on the Gaussian elimina-
tion [2] to solve dominant diagonal systems of equations. As
it is not suitable for parallel implementations, new algorithms
such as cyclic reduction [3], [4] or recursive doubling [5] were
developed to exploit fine-grained parallelism. Other parallel
tridiagonal solvers like [6], [7], [8] were designed with a
coarse-grained parallelism in mind.

OpenMP is designed for shared memory architectures [9].
The development in recent years of cluster-like architectures
favoured the Multiple Instructions Multiple Data programming
languages, particularly MPI. However, recent multi-core archi-
tectures have increased interest in OpenMP which has led us
to choose this API for our CPU implementations.

The Computed Unified Device Architecture [10] developed
by NVIDIA provides support for general-purpose computing on
graphics hardware [11] with a fine-grained and coarse-grained
data parallelism. However, in most cases, neither sequential nor
parallel algorithms can be implemented directly into the GPU.
The algorithm’s design needs to be adapted in order to exploit
each architecture.

In this paper we present and compare a parallel implemen-
tation of cyclic reduction as described in [12] and one of
Bondeli’s algorithm [8]. Both algorithms are valid for large
systems of equations. They have been implemented for multi-
core CPUs using OpenMP and for GPU computing using
CUDA. The data access patterns and workflows of the al-
gorithms are divided into several stages, making them good
candidates for a parallel implementation using OpenMP, but a
challenge for a GPU version owing to the specific features of
this architecture. We shall analyze the performance of the cyclic
reduction given that it was one of the first parallel algorithms
described for solving tridiagonal systems. The cyclic reduction
algorithm was focused towards fine-grained parallelism which
could be achieved into the GPU architecture. And we shall
analyze Bondeli’s algorithm as an example of coarse-grained
parallelism in a divide-and-conquer fashion, more suited to a
multi-core CPU architecture.

In Section 2 we briefly present the proposed algorithms.
An overview of the OpenMP programming model and the
implementation of the algorithms are presented in Section 3.
In Section 4 we present the GPU Architecture and CUDA pro-
gramming model with the implementations of the algorithms.
The results obtained for each proposal are discussed in Section
5. Finally, the conclusions are presented in Section 6.

2. Tridiagonal System Algorithms
The objective is solving a system ofn linear equations

A~x = ~d, whereA is a tridiagonal matrix, i.e.:

b1 c1 0

a2 b2
. . .

. . .
. . . cn−1

0 an bn

x1

x2

...

xn

=

d1

d2
...

dn

. (1)

We shall denote each equation of this system as:

Ei ≡ aixi−1 + bixi + cixi+1 = di, (2)

for i = 1, . . . , n wherex0 = xn+1 = 0.
In the following subsections, the tridiagonal system solvers

of cyclic reduction and Bondeli’s algorithm are presented.

2.1 Cyclic reduction
The cyclic reduction algorithm [12] starts with aforward

reduction stage where the system is reduced until a unique

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 839

Fig. 1: Dependencies in cyclic reduction for an 8-equation
system.

unknown is obtained. At each steps of this stage the new
system is reduced to half the number of unknowns and new
equations are generated:

E
(s)

i = α
(s−1)

i E
(s−1)

i−2s−1 + E
(s−1)

i + β
(s−1)

i E
(s−1)

i+2s−1 , (3)

with i = 2s, . . . , n, a step size2s, α(s−1)

i = −a
(s−1)

i /b
(s−1)

i−2s−1

and β
(s−1)

i = −c
(s−1)

i /b
(s−1)

i+2s−1 . The forward reduction stage
needs⌊log

2
n⌋ steps to complete.

The second stage,backward substitution, computes first
the unique unknownxn−1 of the equationE(s)

n−1
, with s =

⌊log
2
n⌋, generated in the last step of the forward reduction.

The values of the next unknowns are computed using the
previously solved ones. At each steps = ⌊log

2
n⌋ − 1, . . . , 0

of the backward substitution, the Equation (3) is reformulated
as:

xi =
d
(s)

i − a
(s)

i xi−2s − c
(s)

i xi+2s

b
(s)

i

. (4)

for i = 2s, . . . , n, with step size2s+1.
Figure 1 shows a scheme of the resolution of the cyclic

reduction algorithm for an 8-equation system. In the first stage,
each square represents an equationE

(s)

i in the tridiagonal sys-
tem. The operation described by expression (3) is represented
with lines in the figure. In the second stage, a square represents
one of the unknownsxi whose value is calculated at each step,
and dependencies in expression (4) are represented with lines.

2.2 Bondeli’s algorithm
The Bondeli’s method [8] is based on a divide-and-conquer

strategy to solve a tridiagonal system of equations. The system
is initially divided into blocks of sizek × k:

B1 C1 0 . . . 0 0
A2 B2 C2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . Ap Bn

~x1

~x2

...
~xn

 =

~d1
~d2
...
~dn

 . (5)

where each termAi, Bi, andCi represents a matrix block of
sizek = n/p, beingp > 1 an arbitrary positive integer. Each
vector~xi and ~di has alsok elements. It is assumed thatn is
divisible by p andk > 1.

This method has three different steps: solving each block
of the linear tridiagonal systems, building and solving an
intermediate tridiagonal system, and computing the unknowns
using the results of the first and second steps. Each step is
describe below:

1) Solving the following3p− 2 tridiagonal systems:

Bi~yi = ~di i = 1, . . . , p, (6a)

B1~z1 = ~ek i = 1, (6b)

Bp~z2p−2 = ~e1 i = p, (6c)

Bi~z2i−2 = ~e1 i = 2, . . . , p− 1, (6d)

Bi~z2i−1 = ~ek i = 2, . . . , p− 1. (6e)

where~yi (for i = 1, . . . , p) and~zj (for j = 1, . . . , 2p−2)
are vectors of unknowns of sizek, and~eT

1
= (1, 0, . . . , 0)

and~eTk = (0, 0, . . . , 1) are two vectors of sizek. During
the first step, the original system is divided into blocks
and the generated subsystems are solved to obtain the
values of~yi and~zi.

2) From the results obtained in the previous step, a new
tridiagonal systemH ~α = ~β of size 2p− 2 is built and
solved (variables are the same than defined in [8]):

s1 t1

r2 s2
. . .

. . .
. . . t

2p−3

r
2p−2

s
2p−2

α1

α2

...

α
2p−2

=

β1

β2

...

β
2p−2

. (7)

3) Lastly, in the third step, the values of the unknowns~xi

in the original system are computed from the solution~α
of the intermediate system and the values of~zj obtained
in the first step. The values of~xi are calculated as:

~xi =

~y1 + α1~z1 i = 1
~yi + α

2i−2
~z
2i−2

+ α
2i−1

~z
2i−1

i < p
~yp + α

2p−2
~z
2p−2

i = p.
(8)

Fig. 2: Steps in Bondeli’s algorithm for an 8-equation system
divided into 2 blocks.

840 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Figure 2 shows each step of Bondeli’s algorithm for an 8-
equation system divided into 2 blocks of size 4. Each square
represents an Equation (6) and (7) in steps 1 and 2 respectively,
and the computation of an unknown in step 3. In this example
3p − 2 = 4 subsystems are solved in the first step and an
intermediate tridiagonal system of size2p− 2 = 2 is built and
solved in the second step. Note that Equations (6d) and (6e)
are not generated in this example due to the small number of
blocks of the first step.

3. Tridiagonal System Solvers Implemen-
tations with OpenMP

In this section we present an overview of the OpenMP
programming model and the parallel implementations of the
two algorithms introduced in Section 2.

3.1 OpenMP Overview
OpenMP is the standard Application Program Interface (API)

for parallel programming on shared memory architectures [9].
Communication and coordination between threads is expressed
through read/write instructions of shared variables and other
synchronization mechanisms. It comprises compiler directives,
library routines and environment variables and is based on a
fork-join model (see Figure 3) where a master thread creates a
team of threads that work together on single program multiple
data (SPMD) constructs.

In shared memory architectures OpenMP threads access the
same global memory where data can besharedamong them
or exclusive (private) for each one. From a programming
perspective, data transfer for each thread is transparent and
synchronization is mostly implicit. When a thread enters a
parallel region it becomes the master, creates a thread team
and forks the execution of the code among the threads and
itself. At the end of the parallel region the threads join and the
master resumes the execution of the sequential code.

Different types of worksharing constructs can be used in
order to share the work of a parallel region among the threads
[13]. The loop constructdistributes the iterations of one or
more nested loops intochunks, among the threads in the team.
By default, there is an implicit barrier at the end of a loop
construct. The way the iterations are split depends on the
schedule used in the loop construct [13]. On the other hand, the
single constructassigns the work on only one of the threads in
the team. The remaining threads wait until the end of the single
construct owing to an implicit barrier. This type of construct is
also known as non-iterative worksharing construct. Other types
of worksharing constructs are available.

Although there are implicit communications between threads
through access to shared variables or the implicit synchroniza-
tion at the end of parallel regions and worksharing constructs,
explicit synchronization mechanisms for mutual exclusion are
also available in OpenMP. These are critical or atomic direc-
tives, lock routines, and event synchronization directives.

Fig. 3: OpenMP fork-join model.

OpenMP is not responsible for the management of the
memory hierarchy but certain issues regarding cache memory
management should be borne in mind. There are two factors
that determine whether a loop schedule is efficient: data locality
and workload balancing among iterations. The best schedule
that we can choose when there are data locality and a good
workload balance is static with a chunk size ofq = n/p, where
n is the number of iterations andp the number of threads. In
other cases dynamic or guided schedules may be adequate.

When a cache line, shared among different processors, is
invalidated as a consequence of different processors writing
in different locations of the line, false sharing occurs. False
sharing must be avoided as it decreases performance due to
cache trashing. One way to avoid false sharing is to divide the
data that will be accessed by different processors into pieces of
size multiple of the cache line size. A good practice to improve
cache performance is to choose a schedule with a chunk size
that minimizes the requests of new chunks and that is multiple
of a cache line size.

3.2 OpenMP implementations
In this section we present our OpenMP proposals, for the im-

plementation of the tridiagonal system solvers: cyclic reduction
and Bondeli’s algorithm.

3.2.1 Cyclic reduction

For the two stages of the cyclic reduction algorithm we
distributeq = n/p equations among the threads, wheren is the

Fig. 4: Work shared among the threads in the forward reduction
and backward substitution stage of cyclic reduction for an 8-
equation system.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 841

number of equations andp the number of threads. The storage
system of this implementation employs five arrays: three matrix
diagonals, right-hand side, and unknowns. All arrays are shared
among the threads to satisfy the data dependencies.

Figure 4 (left) shows the access pattern for each thread in the
forward reduction stage for the case of an 8-equation system.
Each thread reducesq consecutive equations (2 equations in
Figure 4) except for the lastlog

2
p steps, wherep is the number

of threads, as there are more threads than there are equations
to reduce. An implicit barrier at the end of each step keeps
the reduction stage synchronized. Figure 4 (right) shows the
access pattern for each thread in the backward substitution
stage, where the work is shared among the threads in the same
way as in the reduction stage.

3.2.2 Bondeli’s algorithm

For this implementation the different steps that form Bon-
deli’s algorithm, described in Section 2.2, are executed in the
same parallel region saving the time needed to create new
thread teams when entering a new parallel region. We use
implicit barriers to synchronize the different steps. The storage
system of these implementations consists of five arrays that
store the three diagonals, the right-hand coefficients and the
unknowns of the tridiagonal system. The values of vectors~yi
and ~zj computed in the first step are stored in two separate
arrays, and the intermediate systemH ~α = ~β described in the
second step is stored in a similar way to the original system;
i.e. in five arrays. All arrays are shared among the threads in
order to read and write the data needed in each step.

The tridiagonal system is divided into blocks of sizek × k
wherek = n/p, wheren is the number of equations and3p−2
the number of threads. The resulting subsystems are solved in
the first step of the algorithm. This is the most costly step where

Fig. 5: Work shared among the threads in the different steps
of the implementation of Bondeli’s algorithm for an 8-equation
system.

the subsystems are solved using the Thomas algorithm [1].
Figure 5 shows the worksharing constructs in the different

steps of Bondeli’s algorithm for an 8-equation system divided
into 2 blocks of size 4. The work shared among the threads in
this implementation for each step of the algorithm is as follows:

1) First step.-Solve the linear tridiagonal systems of size
k = n/p. Each thread requests one subsystem of equa-
tions Bi~yi = ~di, one B1~z1 = ~ek or Bp~z2p−2 = ~e1,
Equations (6a)-(6c), Section 2.2. In our implementation
the original tridiagonal system is split into2 blocks, so
Equations (6d)-(6e) do not need to be solved. A barrier at
the end of the last directive synchronizes all the threads
before the next step.

2) Second step.-Computeαi by solving the tridiagonal
systemH ~α = ~β. The elementssi, ri, ti of H and ui

of ~β (see [8] for details) are calculated in parallel by
the different threads. The systemH ~α = ~β of 2p − 2
equations (2 equations in Figure 5) is solved by one
thread. The thread team is synchronized before the next
step.

3) Third step.- Compute the solution with two SAXPY-
operations. The final solution is computed sharingq =
n/t equations among the threads, wheren represents the
number of equations andt the number of threads.

4. Tridiagonal System Solver Implementa-
tions with CUDA

In this section we present an overview of the GPU architec-
ture and the CUDA implementations of the proposed algorithms
introduced in Section 2.

4.1 GPU Overview
CUDA technology is the Compute Unified Device Architec-

ture for NVIDIA programmable Graphic Processor Units [10].
This architecture is organized into a set of streaming mul-
tiprocessors (SMs) each one with many-cores or streaming
processors (SPs). These cores can manage hundreds of threads
in a Simple Program Multiple Data (SPMD) programming
model. The number of cores per SM depends on the device
architecture [10], i.e. the NVIDIA’s G80 series has a total of
128 cores in 16 SMs each one with 8 SPs. Figure 6 shows a
schema of a CUDA-capable GPU.

A CUDA program, which is called a kernel, is executed
by thousands of threads grouped into blocks. The blocks are
arranged into a grid and scheduled in any of the available cores
enabling automatic scalability for future architectures. If there
are not enough processing units for the blocks assigned to a
SM, the code is executed sequentially. The smallest number of
threads that are scheduled is known as a warp. All the threads
within a warp execute the same instruction at the same time.
The size of a warp is implementation defined and it is related
to shared memory organization, data access patterns and data
flow control [10], [14].

842 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 6: A schema of streaming multiprocessors in a CUDA-
capable GPU.

The memory hierarchy is organized into aglobal memory
and a read-onlyconstant and texture memories, with special
features such as caching or prefetching data. These memories
are available for all the threads. There is an on-chipshared
memory space available per block enabling extremely fast
read/write access to data but with the lifetime of the block.
Finally, each thread has its own local and private memory.

There are mechanisms to synchronize threads within a block
but not among different blocks. Due to this restriction data
cannot be shared among blocks. This becomes a challenge
when a thread needs data which have been generated outside
its block.

4.2 CUDA implementations
In this section we present our proposals, using CUDA, for

the implementation of the tridiagonal solvers under analysis.
The major challenge in pursuing an efficient implementation

of a tridiagonal system solver in the GPU is the distribution
of the system among the thread blocks. For small systems, the
solution of the entire system can be computed using only shared
memory and the register space without writing the intermediate
results back to global memory. This can result in substantial
performance improvements, as can be observed in [15], [16].

In the case of very large tridiagonal systems, the equations
must be distributed among thread blocks, and a mechanism
must be implemented to combine the partial operations per-
formed by these individual blocks and to obtain the global
solution. In standard FFT approaches, which present similar
access patterns, the transformation of a large sequence can be
computed by combining FFTs of subsequences that are small
enough to be handled in shared memory. Data are usually
arranged into a bidimensional array, and the FFTs of the
subsequences are computed along rows and columns [17], [18].
This technique cannot be applied directly to tridiagonal systems
solvers, since the factorization of a tridiagonal system into
subproblems to be independently computed is not as regular
as the FFT case.

4.2.1 Cyclic reduction

When the cyclic reduction method is implemented in global
memory, the forward reduction stage can be implemented
through a loop executed by the host, which calls a CUDA
kernel at each step. The forward reduction kernel call invokes
one thread for each equationEi of the system that is modified
in the current step and executes the operations stated in
Expression (3). In this stage, the number of invoked threads
drops by a factor of two at each new step. Once the forward
reduction is completed, the backward substitution begins, and
a second kernel is called, where an unknownxi is assigned
to each thread which computes the value thereof by applying
Expression (4). At each of the second kernel calls the number
of threads increases by a factor of two.

In our GPU implementation of the cyclic reduction, we
used the shared memory space as much as possible [19].
The forward reduction stage is done in two kernels. A first
kernel splits the equations into several non overlapping blocks.
Each thread within a block copies an equation from global
memory into the shared memory of its block. This kernel then
solves as many steps of the reduction stage as possible with
the data stored in the shared memory. Finally the intermediate
results are copied back to global memory. The second kernel
computes the equations that can not be solved due to data
dependencies with the adjacent blocks. These equations are
computed directly into global memory what is more efficient in
this case due to the small number of equations remaining. Both
kernels are successively executed until the forward reduction
stage is completed. The backward substitution stage can be
computed in a similar way.

4.2.2 Bondeli’s algorithm

In this implementation, the different stages of Bondeli’s
algorithm, described in Section 2.2, are executed in several
kernels because of the global synchronization needed in each
stage [19]. The original tridiagonal system is split in small sub-
systems which can be solved independently. All subsystems are
solved in just one kernel call, and the solution is nearly entirely
performed in the shared memory space. This is possible due to
the small size of the subsystems, which can now be assigned
to different blocks of threads and be solved independently in
parallel using the cyclic reduction algorithm.

5. Results
We have evaluated our proposals on a PC with an Intel

Core 2 Quad Q9450 with four cores at 2.66 GHz and 4 GB
of RAM. The main characteristics of the memory hierarchy
are described in [20]. Each core has a L1 cache divided into
32 KB for instructions and32 KB for data. With respect to
L2, it is an unified cache of6 MB shared by 2 cores (12
MB in total). Cache lines for the L1 and L2 caches are 64
bytes wide. The code has been compiled using gcc version
4.4.1 with OpenMP 3.0 support under Linux. For the CUDA

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 843

implementations we ran the algorithms on a NVIDIA GeForce
GTX 295. The CUDA code has been compiled using nvcc also
under Linux. In both cases the code was compiled without
optimizations.

The results are expressed in terms of execution times,
speedups and GFLOPS. The execution times were obtained
as an average of one hundred executions. The speedup are
calculated for both OpenMP and CUDA implementations with
respect to the sequential implementation of the Thomas algo-
rithm. The execution times for the OpenMP implementations
are those corresponding to 4 threads. These times include the
creation of the thread team which is OpenMP implementa-
tion defined. As the final goal is to execute the tridiagonal
system solvers within a larger computational algorithm, the
data transfer between the host and the device in the CUDA
implementations is not included in the execution times.

5.1 OpenMP
Figure 7 shows the results for the OpenMP implementations

of the cyclic reduction and Bondeli’s algorithm for increasing
system sizes from210 to 222 in steps of22. The best results
for the cyclic reduction implementation are obtained for216-
equation systems, which presents an speedup of2.15x. The
decrease in speedup for larger systems is due to the storage
requirements of the algorithm. For example, a system of220

equations requires20 MB of memory which is more than the
12 MB of the L2 cache. Consequently, the number of cache
misses increases and, given that the data accesses do not present
spatial locality, the execution time also increases.

For small systems Bondeli’s algorithm presents lower
speedups than the cyclic reduction algorithm, mainly due to
the high arithmetic requirements of the algorithm. Nevertheless,
its speedup curve presents a more linear behavior than for the
cyclic reduction algorithm because the intermediate subsystems
are solved with the Thomas algorithm, which presents a se-
quential access data pattern. Another reason is a good workload

Fig. 7: OpenMP speedup of cyclic reduction and Bondeli’s
algorithm with different tridiagonal system sizes.

Table 1: Performance results obtained for a220-equation system
(CR denotes cyclic reduction).

Algorithm Thomas CR Bondeli

Sequential
Time 0.0547 s ——- ——-
GFLOPS 0.14
OpenMP
Time —— 0.0507 s 0.0365 s
GFLOPS 0.44 0.78
CUDA
Time —— 0.0029 s 0.0058 s
GFLOPS 15.33 17.50

balance. As shown in Figure 7, a speedup of1.14x is achieved
for a 216-equation system, lower than for the case of cyclic
reduction.

Table 1 shows a summary of the performance results we have
obtained for the different implementations for a220-equation
tridiagonal system using single floating points arithmetic. The
OpenMP cyclic reduction exhibits a speedup of1.08x and
Bondeli’s algorithm 1.50x, with 0.44 and 0.78 GFLOPS,
respectively. The GFLOPS rate for Bondeli’s algorithm is
nearly twice that for the cyclic reduction owing to the higher
arithmetic requirements of the first as mentioned above.

The key for the OpenMP implementations is performing
a good schedule that maximizes cache locality, especially in
cyclic reduction, and selecting the optimal block size in Bon-
deli’s algorithm to ensure a good workload balance. Memory
cache plays an important role in the speedup of the cyclic
reduction method. The best results for Bondeli’s algorithm are
achieved for large systems due to the memory requirements of
the cyclic reduction that can not be satisfied by the multicore
memory hierarchy.

5.2 CUDA
Figure 8 shows the speedups of the CUDA implementations

for the cyclic reduction and Bondeli’s algorithm varying the

Fig. 8: CUDA speedup of cyclic reduction and Bondeli’s
algorithm with different tridiagonal system sizes.

844 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

system size. For small tridiagonal systems, the speedup is low,
as the available parallel hardware cannot be fully exploited
due to the small number of computations associated. For
larger systems, the GPU shows good performance in terms
of speedup. Both algorithms scale well as the system size
increases. This is a typical behavior for the GPUs, which need
to be fed with thousands of data to exploit their computational
capabilities to the full [14]. A maximum speedup of18.87x is
achieved for the cyclic reduction implementation for a system
of 220 equations and a GFLOPS rate of15.53 (see Table 1). A
lower speedup is obtained by Bondeli’s algorithm, with9.3x
for the same system size but a higher GFLOPS rate of17.50.
The reason is, as for the OpenMP implementations, the higher
number of computations associated to Bondeli’s algorithm.

6. Conclusions
We have analyzed two tridiagonal system solvers (cyclic

reduction and Bondeli’s algorithm) exhibiting different levels
of parallelism in two different parallel hardware platforms:
multi-core architectures (CPU) and GPUs platforms. The im-
plementations are analyzed in terms of speedups and GFLOPS
with respect to a sequential implementation of the Thomas
algorithm. These algorithms were executed in a PC with an
Intel Core 2 Quad Q9450 and a NVIDIA GeForce GTX 295.

In OpenMP, for small systems the cyclic reduction algorithm
presents a better speedup than Bondeli’s algorithm. This is
mainly due to the high computational requirements of Bondeli’s
algorithm. When the system size increases over216 equations
(large systems) the performance of the cyclic reduction im-
plementation decreases as the data storage requirements for
the algorithm exceed the capacity of the L2 cache, increasing
the data movement. The speedup changes more linearly for
Bondeli’s algorithm because of the good workload balance and
because it uses the Thomas algorithm which present sequential
accesses to memory, for solving the subsystems generated by
the algorithm. For systems of220 equations the best results
are a speedup of1.50x obtained by Bondeli’s algorithm and a
GFLOPS rate of0.78.

The results in CUDA are always better for cyclic reduction.
The complex algorithm structure and the different types of
stages involved in Bondeli’s algorithm makes the implemen-
tation thereof a challenge. For a220 equation system, the best
results of the CUDA implementation are a speedup of18.87x
with a GFLOPS rate of17.50.

The results have shown how the cyclic reduction solver, that
exhibits fine-grained parallelism, achieves always best results in
the GPU comparing to the Bondeli’s algorithm, with a coarse-
grained parallelism. This also happens in a multicore CPU
when the system of equations was small enough to fit into the
cache. When the size of the system is larger than220, Bondeli’s
algorithm presents better results.

In conclusion, fine-grained parallelism problems often
achieve highly positive results in the GPU, although the time

invested in adapting other types of problems also has its reward
in terms of speedup.

ACKNOWLEDGEMENTS
This work was supported in part by the Ministry of Science

and Innovation, Government of Spain, and FEDER funds under
contract TIN 2010-17541, and by the Xunta de Galicia under
contracts 08TIC001206PR and 2010/28.

References
[1] L. H. Thomas, “Elliptic problems in linear difference equations over a

network,” Watson Sci. Comput. Lab. Rept, 1949.
[2] F. Gauss, “Theory of motion of heavenly bodies,” 1809.
[3] B. L. Buzbee, G. H. Golub, and C. W. Nielson, “On direct methods

for solving poisson’s equations,”SIAM Journal Numerical Analysis, vol.
7(4), pp. 627–656, 1970.

[4] R. W. Hockney, “A fast direct solution of poisson’s equation using fourier
analysis,”ACM, vol. 12, pp. 95–113, 1965.

[5] H. S. Stone, “An efficient parallel algorithm for the solution of a
tridiagonal linear system of equations,”Journal of the ACM, vol. 20,
pp. 27–30, 1973.

[6] S. M. . S. D. Müller, “A method to parallelize tridiagonal solvers parallel
computing,” vol. 17, pp. 181–188, 1991.

[7] H. H. Wang, “A parallel method for tridiagonal equations,”ACM Trans.
Math. Softw., vol. 7, no. 2, pp. 170–183, 1981.

[8] S. Bondeli, “Divide and conquer: a parallel algorithm for the solution of
a tridiagonal linear system of equations,”Parallel Comput., vol. 17, no.
4-5, pp. 419–434, 1991.

[9] OpenMP Architecture Review Board, “OpenMP application
program interface, Specification,” 2008. [Online]. Available:
http://www.openmp.org/mp-documents/spec30.pdf

[10] NVIDIA, “Cuda technology,” Nvidia Corporation, 2007. [Online].
Available: http://www.nvidia.com/CUDA

[11] M. Harris, “General-purpose computation on graphics hardware,” 2002.
[Online]. Available: http://www.gpgpu.org

[12] S. Allmann, T. Rauber, and G. Runger, “Cyclic reduction on distributed
shared memory machines,”Parallel, Distributed, and Network-Based
Processing, Euromicro Conference, vol. 0, p. 290, 2001.

[13] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon,Parallel programming in OpenMP. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2001.

[14] D. B. Kirk and W. m. W. Hwu, Programming Massively Parallel
Processors: a Hands-on Approach. Massachussets: Elsevier, Burlington,
2010.

[15] Y. Zhang, J. Cohen, and J. D. Owens, “Fast tridiagonal solvers on the
gpu,” in Proceedings of the 15th ACM SIGPLAN symposium on Principles
and practice of parallel programming, ser. PPoPP ’10. New York, NY,
USA: ACM, 2010, pp. 127–136.

[16] D. Goddeke and R. Strzodka, “Cyclic reduction tridiagonal solvers
on gpus applied to mixed-precision multigrid,”IEEE Transactions on
Parallel and Distributed Systems, vol. 22, pp. 22–32, 2011.

[17] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli,
“High performance discrete fourier transforms on graphics processors,”
in Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
ser. SC ’08. Piscataway, NJ, USA: IEEE Press, 2008, pp. 2:1–2:12.

[18] A. Nukada, Y. Ogata, T. Endo, and S. Matsuoka, “Bandwidth intensive 3-
d fft kernel for gpus using cuda,” inProceedings of the 2008 ACM/IEEE
conference on Supercomputing, ser. SC ’08. Piscataway, NJ, USA: IEEE
Press, 2008, pp. 5:1–5:11.

[19] “Tridiagonal system solvers, internal report,” Department of Electronics
and Computer Science, University of Santiago de Compostela, Santiago
de Compostela, Spain,” Technical report, 2011.

[20] Intel Corporation,Intel 64 and IA-32 Architectures Software Developer’s
Manual, System Programming Guide, May 2011. [Online]. Available:
http://www.intel.com/products/processor/manuals

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 845

Parallel Merge Sort Implementation

Using OpenMP

Jaeyoung Park, Kyong-Gun Lee, and Jong Tae Kim

School of information communication engineering,

 Sungkyunkwan University, Suwon, GyeongGi-Do,

South Korea

Abstract – One of representative sorting a algorithm, merge

sort, is widely used in database system that requires sorting

due to its stability. To raise performance of merge sort, it is

effective to change parallel method but due to difficulty of

changing database system, it requires parallel method that

minimizes changing the system. We suggest parallel merge

sort that uses OpenMP, capable of parallel, inserted directive

to existing program code that improves performance while

minimizing change to the system. Also, we examined

performance of merge sort depending on k-th number of way

and performance of parallel region occupied by sort that can

affect sorting process by constructing variety of cases using

2
20

or 1,048,576 data for experimental purposes. As a result,

the most important factor that affects parallel method is usage

of core, not ways. By considering this factor, experimental

results demonstrate a speedup of 1.8 on 2 processor core, and

a speed up of 2.8 on 4 processor core.

Keywords: OpenMP, Merge sort, k-way merge sort, parallel

processing.

1 Introduction

For database system that processes large amount of

information, there are many search algorithms that are fast

and accurate for usage. Similarity of all these algorithms is

that data are assembled in sort by search requirement [1]. It

means that fast and accurate search is fast and accurate sorting.

When huge amount of information is updated in a day, this

situation demands more frequent data sort. Also, there is trend

in which amount of data for sort is getting increased for one

process. Therefore, in database system, time and effort are

getting increased for sorting. A method is needed to reduce

sorting time to fix this problem. A database system that

processes huge amount of information needs increase in

system effectives but since information must be provided

continuously, it requires a method that does not alter system

greatly while increasing effectiveness. However, a regular

comparison-based algorithm can‟t go beyond

effectiveness change [2]. There are parallel method that takes

care of data simultaneously in hopes of raising effectiveness

but those methods arranges road balancing or makes

communication between inter- processor faster[3], which

makes construction of parallel method difficult and creates

great change to the system in the process. Trying to solve

these weaknesses, this thesis chose merge sort algorithm due

to its characteristic of being stable, which is a reason it is

widely used in database system, and OpenMP was used for

parallel method. OpenMP would not alter system greatly by

inserting directive for parallel code into existing code, and it is

supported by most of compilers so it can be used in most of

systems [5]. Therefore, parallel merge sort using OpenMP can

solve problems discussed earlier. In comparison to other

methods, it can be implemented easily so we can expect

higher effectiveness without much effort. Along with parallel

merge sort algorithm, variety of scenarios will be constructed

so that results will be analyzed by examining effectiveness

depending on change of k in k-way merge sort and effective

of parallel region in applying OpenMP to suggest effective

parallel method.
Section 2 would explain k-way merge sort algorithm

and OpenMP that was used for parallel sorting. Section 3

would explain which method to divide data domain in attempt

to parallel sorting. Next, Section 4 would analyze the results

and finally give conclusion.

2 Related Work

2.1 K-way Merge Sort

 Merge sort is one of premium sorting algorithms that

before sorting, data is separated (divide), each partial

component is sorted (conquer), then all sorted components are

pasted together in a cycle to sort entire data, which is one of

the (divide and conquer) method. During a cyclical call, it

goes through three steps; divide, conquer, and paste. Divide is

a step where given data is divided into many small data.

Conquer is a step where divided data is sorted in orderly

manner. Last step is paste where data is pasted and completely

sorted. During merge sort‟s process, depending on how unit is

divided and goes through those three steps are called k-way

merge sort. Like Fig 1, if it is divided into two units, it is

called 2-way. Like Fig 2, if it is divided into four units, it is

called 4-way.

846 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Figure 1. 2-way merge sort

Figure 2. 4-way merge sort

2.2 OpenMP

OpenMP is an API[6] for parallel programming model

that allowed to be used by application by inserting compiler

directive to allow parallel processing. Even if program code is

created in order manner, if directives are added, only specified

area is changed for parallel processing. OpenMP can only be

used is SMP (shared memory multiprocessor) but after few

years, most of CPU provides at least dual core so there is no

problem for use it [7]. Its positive trait is that it is de-facto

standard, therefore it is provided by many compliers. It can be

inserted into given program code so with little effort we can

expect high rise in effectiveness and expansion. Fig 3 is the

example of the use of OpenMP. When executing the below

instruction, the execution time can be reduced by parallel add

operation with 4 threads.

#pragma omp parallel for shared(n,a,b,c) private(i)

for(i=0;i<n;i++)

c[i]=a[i]+b[i];

Iteration

Thread 0
1-250

Thread 1
251-500

Thread 2
501-750

Thread 3
751-1000

a

+

b

=

c

Figure 3. Example of the use of OpenMP

3 Parallel Method

 In this paper, previously mentioned merge sort is

paralleled by using OpenMP. In types of merge sort, to find

out difference in speed due to number of way, way is changed

and implemented to 2-way, 4-way, and 8-way. Also, to find

out difference between performance of parallel region and

performance due to number of cores, according to number of

way, method of dividing and number of cores were changed

together.

3.1 2-way Merge Sort

In case of Fig 4, total data is divided into four (1).

Divided data are each goes to merge sort in (2). In (3) and (4),

it goes through merge sort again and then pasted into sorted

data. In a case where four cores are used, in (2), each one goes

through merge sort so (2) uses four cores, and (3) and (4) each

uses two and one respectively. When two cores are used for

parallel processing, in (2), first two data are sorted then next

remaining two are sorted. Then it goes to (3). Number of core

used in (2) is two, and it was used twice. (3) and (4) used two

and one respectively to reduce the time.

Figure 4. 2-way merge sort divided by 4 data

In case of Fig 5, it is total process is equal to Fig 4, but the

data is divided into 8 units and if four cores are used, in (2),

first four goes through merge sorted, then next four goes

through merge sort. In (3), eight data are simultaneously

pasted together using four cores. In case where two cores are

used, in (2), two data goes through merge sort four times. In

(3) and (4), two cores are used twice and once respectively. In

last step (5), only one core is used. This was for comparing

number of division and speed of sorting when total amount of

data is equal for merge sort.

Figure 5. 2-way merge sort divided by 8 data

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 847

3.2 4-way Merge Sort

4-way merge sort, different from 2-way which

compares two data at a time, it can compare four data at once

for sorting. Therefore, data distribution is increased to

multiples of four, four and sixteen, to compare four data at

once. Fig 6 shows entire data is divided into four so one

through four data goes through merge sort by each core, and it

goes through merge sort in the last step. If all four cores are

used, it can go to last step at once. If two cores are used,

parallel processing goes twice in the second step and one core

is used for the last step in the 4-way merge sort. Fig 6 shows

order for 4-way merge sort when data is divided into four. In

case where two cores are used, dark box shows data pairing

where 1 and 2 are processed, then 3 and 4, then when 1

through 4 is done, last 4-way merge sort is done by using only

one core.

Figure 6. 4-way merge sort divided by 4 data

Fig 7 shows 4-way merge sort when data is divided into

sixteen. Merge sort is processed in numerical order, and dark

box shows data pairing when four cores are used. Four cores

each process 1~4, 5~8, 9~12, and 13~16 then process 17~20.

After that you get the result in the last step with one core. If

only two cores are used, then units should be numerically

paired in two and be processed.

Figure 7. 4-way merge sort divided by 16 data

3.3 8-way Merge Sort

If you ignore the fact that number of units that can be

processed at once is eight, then 8-way merge sort is similar to

other k-way merge sort. Fig 8 shows method for arranging

data by dividing it into eight. Once 1~8 are sorted by merge

sort, then 8-way merge sort is processed once more to get

final result.

Figure 8. 8-way merge sort divided by 8 data

4 Experimental Results

Experiment took place in quad core 2.4Ghz

environment. 2
20

or 1,048,576 data were randomly generated

and measured time it took to sort. Time is measured using

CPU internal clock. Table 1 results are averages of 100 times

it ran to minimize error that can occur using CPU internal

clock. Unit for time is sec. Horizontal line shows number of

cores processing merge sort and vertical line shows under

what condition merge sort is processed. It also shows number

of data divided for 2-way, 4-way, and 8-way. One means one

data is used, and it was not divided. For each k-way, one

means no parallel process exist, therefore no speed up.
Table 1 results shows that in 4-way and 8-way, even if there

were no parallel process, in case of 4-way when data is

divided into four and in case of 8-way when it is divided into

eight, time was reduced slightly. Through running it 100 times,

it showed steady difference so it can‟t be said that it is an error.

It can be predicted that it happened because experiment was

done in quad core system so it can be effect of optimizing

compiling stage and effect of multi thread that is

automatically done by operating system. It‟s increases is too

small, and it is in margin of error in 2-way so it clearly does

not show improvement so we can„t conclude that dividing

earlier data into many pieces leads to improvement.

In looking at method of dividing data for parallel

processing in k-way, if two cores are used, when data is split

into four you get 0.1749. When data is split into eight you get

0.1753. If four cores are used, when data is split into four you

get 0.1162. When data is split into eight you get 0.1192 so it is

almost equal. In 4-way, you get 0.2042 and 0.1971 for two

cores and 0.1344 and 0.1351 for four cores. Therefore raising

number of dividing data does not much affect parallel

performance. This is due to four or two core are run with

limits of CPU so CPU usage is almost same. If in 2-way,

where data is divided by two, CPU that actually runs it can‟t

use more than two cores so as shown in Table 1, you can‟t

expect improvement when four cores are used. Also if in 4-

way, when data is split into five, previously sorted four must

wait for the fifth one so it would reduce effectiveness.

However, in 2-way where data is divided into two, although

one would expect no improvement, it improved effectiveness

by 1.17. This is a small profit of work being processed earlier

by optimal condition in compiling stage. Therefore, there is no

change in conclusion that if there is N core, then data should

be divided in multiples of N for most improvement in

effectiveness.

848 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Table 1. Execution time of merge sort (sec)

Num of cores

Condition
Single Dual Quad

2-way

1 0.3362 0.3376 0.3377

2 0.3405 0.2076 0.1768

4 0.3345 0.1749 0.1162

8 0.3396 0.1753 0.1192

4-way

1 0.3857 0.3849 0.3832

4 0.3788 0.2042 0.1344

16 0.3614 0.1971 0.1351

8-way
1 0.3936 0.3915 0.3906

8 0.3669 0.2035 0.1246

Most clearly shown result is when core is increased to

take care of many data simultaneously. If two cores are used

for parallel processing, in case of 2-way with dividing data

into four showed above 1.9 improvement. If four cores were

used it showed 2.8x improvement. It used twice as much cores

but showed 1.5x improvement from two. This is due to

parallel region is limited which all four cores can‟t participate

in processing at once. In 8-way, from single to dual showed

1.8x improvement and single to quad showed 2.9x

improvement similar to 2-way. In case of 4-way, if data is

split into four and sixteen, single to quad showed 2.8x and

2.67x respectively. This is due to process where data is

increased for single core, some of it were sorted early by

operating system. So area available for OpenMP were smaller.

Specific number is different but shows similar amount of

improvement in performance.

5 Conclusion

For improving performance of database system,

performance of sorting algorithms must increase. Among

techniques that improve performance, there is parallel

processing. However, it is difficult to materialize, unexpected

error can occur, and can alter system greatly. Therefore, being

effective and easy to use, we paralleled merge sort algorithm

using OpenMP. We got the results like table 1 changing the

number of cores which participate merge sort process and the

region of parallel processing. When looking at the results

using the same number of cores, there is no clear relationship

with k-way and merge sort. Though changing k-way, it can

reduce number of combining but due to computer‟s trait, k

can‟t be all handled at once and internally it uses binary

comparator so total number of comparison is the same. It

should be distributed to parallel merge sort algorithm using

OpenMP and parallel region should be at least be greater than

number of core so that it can reduce time that core is not being

used. If the number of parallel regions are less than the

number of cores, the performance is hardly improved not

being able to conjugate the resources. It can be shown by

using single core with k-way merge sort and using dual or

quad core with 2-way merge sort. For greater effectiveness,

area should be in multiples of number of core so that when

earlier steps are done, number of core waiting can be reduced,

which will result in greater usage of entire core and great

performance in parallel processing. Through running merge

sort algorithm we implemented with conclusions, in case of

dual core, it showed 1.8x improvement, and in case of quad

core, it showed 2.8x improvement. Finally, without changing

system greatly, data should be divided so that area where

OpenMP is applied should be set and parallel that part so great

improvement were acquired.

6 References

[1] Gary G, Leonard D, Sujata R. “Parallel Merge Sort

Method and Apparatus”. United States Patent.

[2] VLADIMR E, DERICK W. “A Survey of Adaptive

Sorting Algorithm”; ACM Computing Surveys., Vol. 24., No.

4., December, 1992.

[3] Minsoo K, and Dongseung K. “Parallel Merge Sort with

Load Balancing”; International Journal of Parallel

Programming., Vol. 31., No. 1., 2003.

[4] Knuth D.E. “The Art of Computer Programming”., Vol.

3:Sorting and Serching., Addison-Wesley., 1973.

[5] Rohit C, Leonaldo D, Dave K, Dror M, Jeff M, Ramesh

M. “Parallel Programming in OpenMP”, 2001.

[6] Bakara C, Gabriele J, and Ruud van der P. “Using

OpenMP”, 2007.

[7] Leonardo D, Ramesh M. “Standard API for Shared-

Memory Programming”; IEEE Computational Science &

Engineering, 1998.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 849

Low-synchronisation Work Stealing under Parallel Data-List
Processing in Multicores

J. Buenabad-Chávez1, M. A. Castro-García2, J. L. Quiroz-Fabián2, D. M. Yellin 3,
G. Román-Alonso2 and E. F. Hernández-Ventura1

1Departamento de Computación, CINVESTAV-IPN, México City, D.F., 07360 México
2Departamento de Ing. Eléctrica, UAM-I, México City, D.F, 09340 México
3IBM Israel Software Lab, Jerusalem Tech Park, Jerusalem, 96951 Israel

Abstract— In the context of processing data lists in parallel
in a multicore, various threads share a workload, each using
a list to get and insert the data items to be processed;
and when a list becomes empty, the owner thread steals
data items from another list — thus balancing the workload
according to the processing capacity of each thread trans-
parently to the programmer. The first algorithm we designed
to synchronise work stealing in such context addressed
various important issues such as cache locality and memory
consumption.

This paper presents a new low-synchronisation algorithm
for work stealing in the above context which improves
performance and also tends to make performance more
predictible. We present experimental results comparing both
algorithms using various applications with different granu-
larities and access patterns.

Keywords: Parallel Computing, Load Balancing, Multithreading,
Shared Memory, Atomic Operations

1. Introduction
The arrival of multicores made parallel computing main-

stream, meaning that performance in these architectures is
to be mostly improved both through multithreaded paral-
lelism based on shared memory communication and through
mechanisms to load balance the workload among the threads
running an application. This is not an easy task, and thus
software tools and middleware have been proposed whose
aim is to hide parallelism and load balancing issues from
end users. OpenMP can be used to make sequential code
parallel through the use of keywords and without affecting
the sequential source code. However, this approach is mostly
of benefit for sequential end-user applications.

Middleware for parallel computing, such as Skeletons [1],
[2] and Mapreduce [3], must be modified to capitalise
on the inherent parallelism of multicores typically within
the context of clusters of multicore nodes, addressing both
intra- and inter-node parallelism through shared memory and
message passing, respectively. This is the context of our
work. We outline this context below. The work presented
here is, however, only (or mostly) relevant to multicore
platforms, and has various points in common with the “data

structures in the multicore age” presented in [4]; we discuss
some of those points in Section 6.

We have developed the Data List Management Library
(DLML), a middleware to process data lists in parallel. Users
only need to organise their data into items toinsert andget
from a list using DLML functions. DLML applications run
under the SPMD (Single Program Multiple Data) model:
all processors run the same program but operate on distinct
data lists. When a list becomes empty, it is refilled through
stealing data items from another list transparently to the
programmer. Only whenDLML_get() does not return
a data item the processing in all nodes is over. DLML
functions hide synchronisation communication from users,
while automatic list refilling tends to balance the workload
according to the processing capacity of each processor,
which is essential for good performance.

The first version of DLML [5], [6] was targeted at clusters
composed of uniprocessor nodes, and was based on mul-
tiprocess parallelism and message-passing communication
with MPI. In this version, an application process and a
DLML process are run in each node. The former runs
the application while the latter is in charge of: i) making
data requests to remote nodes when thelocal list becomes
empty, and ii) serving data requests from remote nodes
whose list has become empty. Both tasks follow a message-
passing protocol. Message passing is also used between an
application process and itssibling (in-same-node) DLML
process to move list items between their address spaces.

Although the first version of DLML can run unmodified in
clusters of multicore nodes (through running an application
process and a DLML process for each core), we obviously
wanted to capitalise better on the inherent parallelism of
each multicore by reducing the communication overhead
of message passing between sibling cores through multi-
threaded parallelism and communication based on shared
memory. This proved to be more difficult than we initially
thought, however. The first version of DLML would run
much better than our initial multithreaded designs. After
addressing cache locality and memory consumption issues,
we came up with a multithreaded design that performed
better than the first version of DLML. This multithreaded
design usesglobal lockingfor list refilling: when an empty

850 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

list is to be refilled through stealing data items from another
list, all lists in a multicore are locked.

This paper further improves on our multithreaded design
and presents alow-synchronization lockingalgorithm for
work stealing in order to refill an empty list. Basically,
this algorithm does not require all threads to acknowledge
synchronisation through identifying safe phases to access
lists. This algorithm not only improves performance but
also tends to make it predictible. We compare our low-
synchronization algorithm to our global-locking algorithm
using various applications with different granularities and
access patterns. We do this only in the context of a single
multicore (not clusters) to appreciate better the behaviour
of both algorithms (as in clusters the overhead of message
passing becomes dominant).

Section 2 presents some of the design issues addressed in
the design of DLML for multicore nodes. Section 3 describes
our global locking algorithm and ourlow-synchronization
lockingalgorithm. Section 4 presents our experimental plat-
form and applications to compare both algorithms. Section 5
presents our results. Section 6 presents related work and we
conclude in Section 7.

2. Designing a Multicore DLML
This section describes our experience in designing a

multicore version of DLML based on multithreaded paral-
lelism and shared memory for intra-node communication.
In so doing, we will refer to the original DLML based on
multiprocess parallelism and message passing as DLML, and
to theMultiCore (MC) version(s) as MC-DLML.

We designed various versions of MC-DLML before the
version that outperformed DLML. The first versions of MC-
DLML were outperformed by DLML by a significant mar-
gin, particularly running our fine-grain application, despite
the fact that DLML uses messages to send list items between
sibling (in-same-node) DLML and application processes.
We eventually realised we had to address four issues: i)
the locking overhead for MPI calls to be thread safe, ii)
cache locality, iii) memory consumption, and iv) intra-node
synchronisation cost.

i) Although the first issue is not core to the main al-
gorithm described in this paper, we briefly discuss it for
completeness. One early design of MC-DLML used one
thread to make (data) requests to remote nodes and another
thread to serve requests from remote nodes, and as many
application threads as the number of cores available in
each multicore node. The coding was simpler to under-
stand and thus to maintain. Another design used that many
application threads and another thread both to make and
to serve requests; this thread would make remote requests
through messages after receiving, through messages too,
local requestsfrom sibling application threads. However,
allowing two or more threads to make MPI calls requires us-
ing MPI_THREAD_MULTIPLE or ...SERIALIZED level

support, which involves thread-safe locking whose over-
head with fine-grain applications we found to be quite
high. Thus our design of MC-DLML that outperforms
DLML uses only application threads and only one of
them, the one that initialises MPI, makes MPI calls under
MPI_THREAD_FUNNELED support to make/serve requests
to/from remote nodes.

ii) We also tried various alternatives regarding list man-
agement within each multicore: 1, 2 and even 3 lists for
each application thread to reduce contention. One version
used a list to get items and another dynamic list to insert
items dynamically generated; items from dynamic lists were
moved to a global list from which other threads could steal
work when their lists became empty. However, performance
was bad with fine granularity because we were loosing cache
data locality, as follows. DLML manages a single list for
each application process: getting items from, and inserting
items dynamically generated at, the front of the list. Hence
items that have just been placed on the list are sooner
removed from the list and processed while still resident in
the cache. By using a separate list for dynamically generated
items we lost this cache locality.

iii) Also, one of our applications, the non-attacking
Queens (NAQ) problem, consumes much less memory when
we use a single list for getting and inserting elements as
described above. The NAQ problem consists of finding all
possible ways of placing N queens on an N×N chessboard,
so that no queen attacks another queen [7]. The parallel
version is achieved by placing one more queen at a time
and inserting the new item (with one more queen) into the
list so that other threads can insert another queen until either
all queens have been placed or no more queens can be placed
because they attack other queens. Thus an item with more
queens has a shorter lifecycle – it is closer to N queens.
Hence by placing more recent items at the front of the list
– those with more queens – less memory will be consumed,
and the algorithm will perform more efficiently and require
less swapping if at all (a problem similar to traversing a tree
either depth-first or breadth-first). Thus our design of MC-
DLML that outperforms DLML uses a single list for each
application thread, with gets from and inserts at the front,
and list refilling using a 2-phase global locking. The rest of
the paper will focus on (iv) how to lower the synchronization
cost of this global locking.

3. Work Stealing within each Multicore
3.1 Global Locking Work Stealing

Our design of MC-DLML that outperformed DLML uses
the work stealing algorithm described in this section for list
refilling within each multicore. The context is as follows:
each application thread has its own list to get and insert
items. The work-stealing algorithm operates entirely within
the procedureDLML_get().

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 851

1 int DLML_get(LIST *L, ITEM *item) {
2 if stoppedthreads > 0
3 // wait if a refill is going on
4 increase_byone_atomic(stoppedthreads)
5 copy = refillstamp
6 wait while copy == refillstamp
7 if L->size > 0
8 *item = L->first // GET ITEM
9 ...

10 return 1
11 else // REFILL LIST
12 increase_byone_atomic(emptylists)
13 __1st_LOCKING_PHASE__:
14 lock(refilllock)
15 stoppedthreads = 1 // 2nd locking phase
16 wait until:
17 stoppedthreads+emptylists == THREADS_NR+1
18 loop over other lists to choose largest
19 if data available
20 refill L taking half of largest
21 stoppedthreads = 0
22 refillstamp++
23 decrease_byone_atomic(emptylists)
24 unlock(refilllock)
25 return DLML_get(L, item)
26 else if emptylists < THREADS_NR
27 stoppedthreads = 0
28 refillstamp++
29 unlock(refilllock)
30 goto __1st_LOCKING_PHASE__ // try again
31 else
32 stoppedthreads = 0
33 refillstamp++
34 unlock(refilllock)
35 return 0 // finish
36 }

Fig. 1: Global-locking work stealing.

Figure 1 shows the main tasks ofDLML_get() (in a
multicore) in pseudo-code: getting an item and refilling
an empty list. Getting an item does not require locking
(lines 7-10 in that figure), nor does inserting an item.
Refilling an empty list does require locking all lists, as it
involves choosing the largest list and moving (stealing)
half of its items to the list being refilled. To refill its
list a thread must: i) acquirerefilllock (line 14),
ii) signal other threads to stop using their lists, through
turning on the flag-and-counterstoppedthreads
(line 15), and iii) wait for all other threads to stop
using their lists, a condition that is reached when
emptylists+stoppedthreads == THREADS_NR+1
(lines 16-17), as follows. Other threads either will be trying
to refill their lists, and thus have atomically increased
emptylists by one and are blocked inrefilllock
(lines 12-14), or will be processing an item and will next
call DLML_get() and find stoppedthreads > 0
(line 2), and will then increasestoppedthreads by one
and then wait whilecopy == refillstamp (lines 4-6).
In the condition in lines 16-17,THREADS_NR+1 is used
as opposed toTHREADS_NR because the thread refilling
its list has both increasedemptylists and turned on the

flag-counterstoppedthreads.
Once all other threads have stopped using their lists, the

thread refilling its list loops over all other lists to choose the
largest one (line 18). If it finds data available, it refills its
list by moving half of the items of the largest list, undoes
both locking phases, decreasesemptylists by one, and
finally callsDLML_get() again (lines 19-25); this call will
succeed in returning an item (to the calling application code)
because the list has just been refilled.

If the thread refilling its list findsno data available (i.e.,
finds all other lists empty after looping over all of them),
it checks this condition again through checking the value
of the variableemptylists (line 26). This variable is
increased by one by each thread that has exhausted its list
(line 12) and is trying to acquirerefilllock (line 14)
to start a refill operation. Ifemptylists is smaller than
the number of application threads (THREADS_NR in line
26), there may be threads whose list is empty but may be
processing an item from which new items will be generated
(one of our applications generates new items dynamically);
hence the thread refilling its list undoes both locking phases
and goes to__1st_LOCKING_PHASE__ in line 13 to
start the refill operation again (lines 27-30). On the other
hand, if emptylists is not smaller thanTHREADS_NR
but equal (lines 31-35), then all data has been exhausted and
all threads are trying to refill their lists; each thread reaching
this condition undoes both locking phases and returns0 to
the application code, signalling the end of computation.

3.2 Low-synchronisation Work Stealing
The main problem with global locking for work stealing

is that a thread refilling its list must wait for all other threads
to acknowledge synchronisation (i.e., stop using their lists)
before it can start refilling its list. This is an issue with
coarse grain applications or if imbalance occurs out of other
applications sharing the cores within a multicore, as in either
case some of the threads running under DLML will not ac-
knowledge that synchronisation immediately, thus delaying
each list refilling. The algorithm presented in this section has
low synchronisation overhead by not requiring all threads to
acknowledge synchronisation; this is accomplished through
identifying safe phases to access the lists of other threads.

Figure 2 showsDLML_get() with low-synchronisation
locking in pseudo-code. Refilling a list is also based on 2-
phase locking, and the overall structure of the algorithm is
the same as that of the global locking algorithm in Figure 1;
only the lines marked//*** are different or new. The first
locking phase is the same as with global locking: acquiring
refilllock (lines 14-15). The second phase is somewhat
different, however: after turning on the flagstopthreads
(line 16) to signal that a refill is going on, the thread refilling
its list does not wait for all other threads to stop using
their lists as in the global locking algorithm. Instead, it
immediately loops over all other lists to choose the largest

852 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

list L2 that is not being used, a condition known to hold
as described below. This algorithm is quicker to refill than
the global locking algorithm out of not waiting for all other
threads to stop using their lists, but may not choose the
largest list as the global locking algorithm does.

A list L2 is not being used, and will not be used,
by the owner thread if any of the following two
conditions holds: eitherL2->inside_dlml == 0 or
L2->stamp==refillstamp (lines 17-18), as follows.
Each thread that entersDLML_get() increases by one
its flag inside_dlml in line 2, thus signalling it is
using its list; this signal is turned off just before the
thread returns fromDLML_get(): inside_dlml is
decreased by one (to0) or assigned the value0 in
lines 10, 21, 33. Likewise, each thread that enters and
returns from DLML_insert() (not shown) increases
and decreases by one its flaginside_dlml. Thus,
if L2->inside_dlml == 0 (lines 17-18), the owner
thread ofL2 is not running withinDLML_get() nor within
DLML_insert() (but is executing application code), and
it is safe to use its list for refilling.

If L2->inside_dlml is not equal to0, the owner
thread of L2 is running within DLML_get() or
DLML_insert(). However, it may be waiting for the
refill going on to finish after having acknowledged the
stopthreads signal (lines 3-6). If this is the case,
L2->stamp==refillstamp (lines 17-18), and it is also
safe to use its list for refilling.
DLML_insert() is not shown but its first 5 lines

of code are the same as the first 5 lines of code of
DLML_get() (lines 2-6). Also, the last line of code
of DLML_insert() is the same as the 10th line of
code ofDLML_get(), which atomically decreases by one
..->inside_dlml (to 0), thus signaling the running
thread has returned to application code.

We still use the variableemptylists (lines 13, 24,
27), in the same way as in the global locking algo-
rithm, to detect when all lists are empty in order to
signal the end of computation. Note that the use of
increase_byone_atomic() operations with variables
L->inside_dlml in line 2 andstopthreads in line
16 is compulsory in architectures that are not sequential
consistent in order to commit immediately the new value
to memory, thus serialising the access to both lists and
avoid race conditions. If a thread refilling its list used
stopthreads = 1 instead, the new value would be
stored only in the cache; another thread would not see it
and would proceed to access its list L, while the former
thread would have proceeded to loop over all other lists
and could eventually take elements from L. This simulta-
neous manipulation of L would not be safe. In lines 21-
22, 28 and 33, there is no need to use atomic operations
on those variables because the new values are committed
to memory on unlocking refilllock (a few lines below).

1 int DLML_get(LIST *L, ITEM *item) {
2 increase_byone_atomic(L->inside_dlml) // ***
3 if stopthreads > 0
4 // wait if a refill is going on
5 L->stamp = refillstamp
6 wait while L->stamp == refillstamp
7 if L->size > 0
8 *item = L->first // GET ITEM
9 ...

10 decrease_byone_atomic(L->inside_dlml)// ***
11 return 1
12 else // REFILL LIST
13 increase_byone_atomic(emptylists)
14 __1st_LOCKING_PHASE__:
15 lock(refilllock)
16 increase_byone_atomic(stopthreads) // ***
17 loop other lists & choose largest list L2 if:
18 L2->inside_dlml==0 || L2->stamp==refillstamp
19 if data available
20 refill L from half of L2
21 L->inside_dlml = 0 // ***
22 stopthreads = 0
23 refillstamp++
24 decrease_byone_atomic(emptylists)
25 unlock(refilllock)
26 return DLML_get(L, item)
27 else if emptylists < THREADS_NR
28 stopthreads = 0
29 refillstamp++
30 unlock(refilllock)
31 goto __1st_LOCKING_PHASE__ // try again
32 else
33 L->inside_dlml = 0
34 unlock(refilllock)
35 return 0 // finish
36 }

Fig. 2: Low-synchronisation work stealing.

Line 10 could beL->inside_dlml = FALSE instead of
decrease_byone_atomic(), but the latter would make
the relevant list immediately visible for refilling another list.

4. Experimental Platform and Applica-
tions

This section describes the experimental platform and
applications we used to compare the performance of both
algorithms described above. Our hardware platform is a
cluster with 32 multicore nodes. However, recall that we
will only show experiments within a single multicore node
to appreciate better the performance of both algorithms, as
using two or more nodes would involve message-passing
overhead which will become dominant. Each node has a
2.67GHz Intel i7 920 processor with 4 hyperthreading cores,
4GB RAM, and a 500 GB disk. The software library used
was the Pthreads library v. 4.1.2.

Our applications include: i) image segmentation (IS) using
the Mean-Shift (MSH) method, ii) a matrix multiplication
(MM) algorithm, and iii) the Non-Attacking N-Queens
(NAQ) problem. Image segmentation (IS) with the Mean-
Shift method (MSH) is used to reconstruct 3D brain images
[8], [9], through applying such method to each pixel on

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 853

several 2D images (cuts). The method is expensive for the
large number of cuts and high resolution required. The
number of cuts is fixed, but the processing cost of each
cut varies according to MSH cost, which depends on the
intensity of pixels of each cut. In the DLML version, each
list item is an integer value that identifies an image cut; our
experiments processed 165 image cuts.

Matrix multiplication (MM), C = A × B, is a static
application because all data is known in advance. In the
DLML version, each list item contains all the data to
compute an element in the results matrixC, i.e.: a full row
of A, a full column ofB, and thex, y position of the element
in C. A, B andC areN×N matrices, and we experimented
with N = 300 and400.

The NAQ problem consists of finding all possible ways
of placing N queens on an N×N chessboard, so that no
queen attacks another queen [7]. The search space of NAQ
can be modeled with an N-degree search tree. The solutions
are found exploring the search tree for possible solutions,
eliminating those that can not be solved. In the DLML
version, each list item contains a possible solution to explore
formed by the number of queens to be placed and an array
of size N with the position of the queens placed so far.
The listdynamicallyincreases and decreases as new possible
solutions are generated and failed solutions are eliminated.
The cost of finding a solution is a function of the depth of
the relevant item in the search tree.

5. Results
This section presents experimental results on the per-

formance of global locking work stealing (global-locking)
and low-synchronisation work stealing (lowSync-locking)
running our applications. In the figures shown below,
the Y axis shows response time and theX axis the
number of (application) threads used to run an applica-
tion. Note that in our hardware platform each node has
4 hyperthreading cores which appear to software (call-
ing sysconf(_SC_NPROCESSORS_ONLN)) as being8
cores.

5.1 Image Segmentation (IS)
Figure 3 shows the performance of global-locking

lowSync-locking running IS with 165 image cuts. IS is
a static application in that the total number of images is
inserted into a list at the start of computation by the master
thread, and is coarse-grain in that processing each image
cut is relatively expensive compared to getting its id from
a list. IS gets itself imbalanced due to the different costs of
processing image cuts with different pixel intensities; hence
work stealing does occur, and lowSync-locking performs
better than global-locking the more number of threads are
used. The fewer the number of threads used, the more work
each thread has to do and thus the less work stealing occurs.
As the number of threads increases, each thread has less

 500

 1000

 1500

 2000

 2500

 3000

 1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
)

Threads

image segmentation

global-locking
lowSync-locking

Fig. 3: Global-locking and lowSync-locking work stealing
for IS.

work to do and more work stealing occurs. With global-
locking, this means that each work stealing action has to
wait for all other threads to finish processing the current
image cut they are processing in order for them to be able to
acknowledge the synchronisation required by global locking.
With 8 threads the performance gain of lowSync-locking is
about100 seconds. Note that using more than8 threads does
not affect performance with lowSync-locking but does with
global-locking. We analyse this further below.

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
)

Threads

matrix multiplication

300-global-locking
300-lowSync-locking

400-global-locking
400-lowSync-locking

Fig. 4: Global-locking and lowSync-locking work stealing
for MM.

5.2 Matrix Multiplication (MM)

Figure 4 shows the performance of global-locking and
lowSync-locking running MM withN = 300 and 400.
MM is a static, medium-grain application. Global-locking
and lowSync-locking perform similarly using from1 to

854 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 4 5 6 7 8

T
im

e
(s

ec
)

Threads

matrix multiplication with imbalance

300-global-locking
300-lowSync-locking

400-global-locking
400-lowSync-locking

Fig. 5: Global-locking and lowSync-locking work stealing
for MM with imbalance.

7 threads. With more threads the performance of global-
locking deteriorates significantly. MM runs for a very short
time (less than1s with no imbalance) and thus any of
its threads that gets blocked significantly affects overall
performance. This is for the following reason: if while a
thread is suspended another thread attempts a refill, global-
synchronization will cause all threads to wait and syn-
chronize, and this synchronization cannot happen until the
suspended thread becomes live again. This is the case when
more than7 threads are used as at least one of them will be
temporarily suspended by the operating system threads that
run periodically.

This effect can be seen more easily when we create an
external load on the machine, which will cause some of
the threads of MM to block. Figure 5 shows runs of MM
with an external load consisting of4 threads continuously
running within a while cycle computing sine and cosine
values. This external load (4 threads) is applied to MM
running with4 to 8 threads, and thus contention for the cores
available increases with the number of threads run by MM.
The performance of global-locking deteriorates accordingly,
as each work stealing action becomes more costly out of
having to wait for suspended threads to acknowledge the
synchronisation required by global locking. Note that global-
locking performs slightly better than lowSync-locking for
N = 300 with 4 and5 threads, wherein contention for cores
is not too high. The reason for this is the extra overhead
of using atomic operations by lowSync-locking to signal a
thread getting in and out of DLML.

5.3 The Non-attacking Queens (NAQ) problem
Figure 6 shows the performance of global-locking and

lowSync-locking running NAQ for14 − 16 queens (with
no imbalance). NAQ is a fine-grain application: processing
an item (usually adding a queen) is very quick compared

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
)

Threads

non-attacking Queens

14-global-locking
14-lowSync-locking

15-global-locking
15-lowSync-locking

16-global-locking
16-lowSync-locking

Fig. 6: Global-locking and lowSync-locking work stealing
for NAQ – time in logarithmic scale.

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
)

Threads

non-attacking Queens with imbalance

14-global-locking
14-lowSync-locking

15-global-locking
15-lowSync-locking

16-global-locking
16-lowSync-locking

Fig. 7: Global-locking and lowSync-locking work stealing
for NAQ with imbalance – time in logarithmic scale.

to getting or inserting an item. It is thus prone to high
contention overhead. However, NAQdynamicallygenerates
new items which each thread inserts into its own list and
thus keeps busy doing work. It also becomes imbalanced
due to dynamically generating data. The figure shows that
for long-running computations (16 queens) the use of atomic
operations by lowSync-locking to signal getting in and
out of DLML can incur a high overhead (the time scale
is logarithmic). However, lowSync-locking is more stable
than global-locking when there is contention for the cores
available, as shown when more than8 NAQ threads are used,
or when there is external imbalance (consisting of4 more
threads as described above), as shown in Figure 7 (the time
scale is also logarithmic).

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 855

6. Related Work
Work stealing is a scheduling algorithm and is discussed

in [10] in the context of scheduling multithreaded computa-
tions in multiprocessors, and in context of hiereachical sys-
tems (clusters and grids) in [11], which compares two recent
systems that use work stealing: Satin and Kappi. Withwork
stealing, whenever a processor is underutilised, it attempts
to steal threads/tasks from other processors. In contrast, with
work sharing, “whenever a processor generates new threads,
the scheduler attempts to migrate some of them to other
processors in hopes of distributing the work to underutilized
processors... Intuitively, the migration of threads occurs
less frequently with work stealing than with work sharing,
since when all processors have work to do, no threads
are migrated by a work-stealing scheduler, but threads are
always migrated by a work-sharing scheduler” [10]. Our
work is based upon work stealing of data items. Hence it
is perhaps best to call this workdata stealing. In DLML, all
application threads within a multicore run the same code,
and we have not addressed any issues relating to thread
scheduling yet, but rather reducing communication between
threads under work stealing actions.

Our work so far requires that the processing of each data
item be independent from the processing of any other data
item. As such, our work is particularly relevant to the design
issues of data structures for multicores discussed in [4],
wherein techiques are suggested to reduce communication
overhead between threads in multicores. Various techniques
are suggested including low-contention locking, an elimina-
tion tree, ... and arelaxeddistributed data structure with no
ordering of operations for the sake of performance. This re-
laxed distributed data structure is very similar to the various
data lists we managed (one for each thread) for the purpose
of reducing contention and improving cache data locality.
In the design of MC-DLML we tried several variations
of those techniques, e.g., a single list with low-contention
locking. However, as mentioned earlier, contention was high
with fine-grain applications and we also were loosing cache
locality. Overall our work provides empirical evidence to
some of the design issues discussed in [4].

7. Conclusions
We have presented a low-synchronisation algorithm for

work stealing in the context of parallel data list processing in
multicores. Our algorithm shows good performnace overall
and is more stable than the first algorithm we designed
based on global locking. Low synchronisation is achieved
by not requiring all threads to acknowledge synchronisation
when a work stealing action is going on; this in turn is
achieved through identifying safe phases to access other
threads lists. Identifying safe phases is based on the use of
atomic operations whose use under long-running fine-grain
applications incurs a significant overhead. We will address

this issue in the future; we will also investigate concurrent
list refills as opposed to only one list refill at a time as is the
case with our current implementation. Our work has various
points in common with the design issues of data structures
for multicores disccused in [4], and we will investigate some
of them further in the context of DLML for multicores.

References
[1] M. Cole, “Bringing skeletons out of the closet: a pragmatic manifesto

for skeletal parallel programming,”Parallel Computing, vol. 30, no. 3,
pp. 389–406, 2004.

[2] H. Tanno and H. Iwasaki, “Parallel skeletons for variable-length lists
in sketo skeleton library,” inEuro-Par, 2009, pp. 666–677.

[3] J. Dean and S. Ghemawat, “Mapreduce: Simplifed data processing
on large clusters,” inOperating Systems Design and Implementation,
2004, pp. 137–149.

[4] N. Shavit, “Data structures in the multicore age,”Commun. ACM,
vol. 54, no. 3, pp. 76–84, 2011.

[5] J. Buenabad-Chávez, M. A. Castro-García, and G. Román-Alonso,
“Simple, list-based parallel programming with transparent load bal-
ancing.” inParallel Processing and Applied Mathematics, ser. LNCS,
vol. 3911. Springer, 2005, pp. 920–927.

[6] M. A. Castro-García, “Programación con listas de datos para cómputo
paralelo en clusters,” Ph.D. dissertation, CINVESTAV-IPN, México
07360, D.F., 2007.

[7] A. Bruen and R. Dixon, “Then-queens problem,”Discrete Mathe-
matics, vol. 12, pp. 393–395, 1975.

[8] J. R. Jiménez-Alaniz, V. Medina-Bañuelos, and O. Yáñez-Suárez,
“Data-driven brain mri segmentation supported on edge confidence
and a priori tissue information,”IEEE Trans. on Medical Imaging,
vol. 25, no. 1, pp. 74–83, January 2006.

[9] G. Román-Alonso, J. R. Jiménez-Alaniz, J. Buenabad-Chávez, M. A.
Castro-García, and A. H. Vargas-Rodríguez, “Segmentation of brain
image volumes using the data list management library,” inEngineering
in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual
International Conference of the IEEE, 2007, pp. 2085–2088.

[10] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded
computations by work stealing,”J. ACM, vol. 46, no. 5, pp. 720–
748, 1999.

[11] J.-N. Quintin and F. Wagner, “Hierarchical work-stealing,” in
Proceedings of the 16th international Euro-Par conference
on Parallel processing: Part I, ser. EuroPar’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 217–229. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1887695.1887719

856 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Analysis of GPGPU Platforms Efficiency in General-

Purpose Computations

P. Kartashev
1
 and V. Nazaruk

1

1
Institute of Applied Computer Systems, Riga Technical University, Riga, Latvia

Abstract - Nowadays a technique of using graphics process-

ing units (GPUs) for general-purpose computing (or GPGPU)

is becoming more and more widespread. The goal of this pa-

per is to analyze efficiency of computing with use of the

GPGPU technique, depending on several factors. In this pa-

per, there are analyzed differences in performance and plat-

form organization between widespread GPGPU computa-

tional platforms (both hardware and software). There are also

described differences between CPU and GPU computations,

as well as presented performance measurements for some

GPGPU hardware architectures. This paper can help soft-

ware developers choose more appropriate ways to implement

specific fairly large computational tasks.

Keywords: graphics processing units (GPUs), general-

purpose computing on graphics processing units (GPGPU),

OpenCL

1 Introduction

 Many modern computers (approximately since 2006)

have video cards that can be used not only for performing

calculations connected with graphics, but also for arbitrary

(even not related with graphics) calculations. Such technique

of using graphic processing units for general-purpose calcula-

tions is called general-purpose computing on graphics proc-

essing units (GPGPU).

 Therefore, nowadays (in contrast to a period of several

years before) most processing systems belong to one of the

following two classes:

— central processing units (CPUs),

— graphics processing units (GPUs).

 In order to use GPUs for computations, it is needed to

write a program which uses a specific GPGPU programming

model and architecture. Nowadays there exist several GPGPU

platforms, which implement some different programming

models and/or architectures; most notable of them include

NVIDIA CUDA, OpenCL, Microsoft DirectCompute, ATI

Stream.

 For some kind of applications (usually for those which

are multi-threaded and/or parallel), the use of general-purpose

computations on modern GPUs can achieve speeds way be-

yond that on modern CPUs. Therefore, the use of graphics

processing units for general-purpose computations is a topical

sphere of research nowadays. The goal of this paper is to

analyze efficiency of computing with use of GPGPU tech-

nique, depending on several factors, including target process-

ing units, as well as GPGPU platforms themselves.

 When speaking about the efficiency of GPGPU plat-

forms, the thing that should be considered first is execution

speed of programs which use the GPGPU technique. This

mostly depends on specific processing units used for calcula-

tions, but also on a specific GPGPU platform architecture and

programming model.

 In this paper, there are analyzed and explained differ-

ences in performance and platform organization between

GPGPU computational platforms (both hardware and soft-

ware). Such GPGPU model comparison can help developers

choose from these platforms to achieve best compatibility,

speed, and portability for their GPGPU applications. Some

guidelines for GPGPU developers, when they can use each of

these platforms best, are formulated.

 In the paper, there are also described differences be-

tween CPU and GPU computations. In our work, a compari-

son of GPU and CPU instructions is provided. There are pre-

sented performance measurements for GPGPU hardware

architectures (including information about performance and

time utilization of target processing units); some of the advan-

tages and disadvantages of platforms are determined. Results

concerning the performance measurements are based on prac-

tical experiments: by the authors, there was written and util-

ized an application (for the OpenCL programming model) for

measuring the time of execution of different types of calcula-

tions. The methodology used is discussed further in this pa-

per.

2 General-purpose computations on

GPUs

 A GPU is specialized for compute-intensive, highly

parallel computation — exactly what graphics rendering

does — and therefore designed in such a way that more tran-

sistors are devoted to data processing rather than data caching

and flow control. A GPU is suited to problems that can be

expressed as data-parallel computations — the same program

is executed on many data elements in parallel — with high

arithmetic intensity. Same program is executed for each data

element, there is a lower requirement for sophisticated flow

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 857

control, and because it is executed on many data elements and

has high arithmetic intensity, the memory access latency can

be hidden with calculations instead of big data caches.

 Many applications that process large data sets can use a

data-parallel programming model to speed up the computa-

tions. In 3D graphics, rendering large arrays of pixels and

vertexes are processed in parallel are applied to parallel

threads [1]. Unlike CPUs, GPUs have a parallel throughput

architecture that emphasizes executing many concurrent

threads slowly, rather than executing a single thread very fast.

This approach of solving general purpose problems on GPUs

is known as GPGPU. GPU has advantage over CPU by run-

ning data in parallel — benefit many tasks such as

video/audio processing, large data sets processing, computa-

tional modelling (as industrial, weather, nature, particle simu-

lation), ray-tracing, post-processing of rendered images, video

encoding and decoding, image scaling, stereo vision, and

pattern recognition. Many algorithms outside the field of

image rendering and processing are accelerated by data-

parallel processing, from general signal processing or physics

simulation to computational finance or computational biology

[1].

 The main GPU advantage over CPU is its high through-

put. Whilst CPU performance now increases only ~26% a

year, GPU performance increases more than 100% a year.

 GPU uses different architecture using many ALU units

in the chip is the main difference from CPU, for example

AMD PHENOM II X4 has 12 ALU, but GeForce GT240

GPU — 96 ALU (see Table 1).

 GPU developers provide free GPU programming librar-

ies (or SDKs), e. g. OpenCL, CUDA by Nvidia, Stream SDK

by AMD.

 CUDA (an acronym for ―Compute Unified Device Ar-

chitecture‖) is a parallel computing architecture developed by

NVIDIA. CUDA is the computing engine in NVIDIA graph-

ics processing units (GPUs) that is accessible to software

developers through variants of industry standard program-

ming languages. CUDA is accessible to software developers

through C for CUDA, CUDA Fortran Compiler and third

party language wrappers, such as Jcuda, pyCUDA, etc.

CUDA has been used to accelerate non-graphical applica-

tions. Programmers use C for CUDA (C with NVIDIA exten-

sions and certain restrictions), compiled through NVCC com-

piler to code algorithms for execution on the GPU. CUDA

gives developers access to the virtual instruction set and

memory of the parallel computational elements in CUDA

GPUs.

 CUDA uses a recursion-free, function-pointer-free sub-

set of the C language, plus some simple extensions. However,

a single process must spread across multiple disjoint memory

spaces, unlike other C language runtime environments. Fermi

GPUs now have (nearly) full support of C++ [2].

 OpenCL (Open Computing Language) is a framework

for writing programs that execute across heterogeneous plat-

forms consisting of CPUs, GPUs, and other processors.

OpenCL provides parallel computing using task-based and

data-based parallelism.

 OpenCL includes a language based on the C99 standard

for writing kernels, plus APIs that are used to define and then

control the GPGPU platforms. Programs written on OpenCL

can access GPU of all supported GPU vendors for GPGPU

computations. The OpenCL specification is under develop-

ment by Khronos Consortium, which is open to everyone [3].

 Microsoft’s DirectCompute is a new GPU Computing

API that runs under both Windows Vista and Windows 7.

DirectCompute is supported on current DirectX 10 class

GPUs, DirectX 11 GPUs. It allows developers to harness the

massive parallel computing power of GPUs to create compel-

ling computing applications in consumer and professional

markets [4].

 GPGPU platform comparison is described in further

sections.

Table 1. Comparison of modern CPU and GPU

used for the measurements in this paper

 AMD Phenom II

X4

NVIDIA GeForce

GT240

ALU in core / multiproces-

sor

3 8

Cores / Multiprocessors 4 12

Total ALU 12 96

Peak theoretical perform-

ance, GFLOPS

48 (3000 MHz) 385.9 (MADD+MUL)

(3 instructions per cycle)

(~1400 MHz)

3 Related works

 In this section, there are discussed similar works to the

research topic.

 V. Volkov’s work [5] shows that matrix manipulation

with GPU can achieve speedup up to 2 times greater in dou-

ble precision and 4–8 times for single precision than CPU.

Comparison of performance is maintained. In [6], the authors

provide a research study to achieve 10
3
 speedup by using

algorithm implementation with CUDA. Some works imple-

ment whole complex of algorithms on GPU: for example, the

work [7] shows up to 20–100 times speedup, by implement-

ing SQL-Lite SQL engine on CUDA architecture. The work

[8] shows 20x speedup over CPU in AES cryptography. Re-

search has been done by using NVIDIA CUDA. The work [9]

proves that GPGPU computing problem is high PCI-E latency

and low bandwidth, and sometimes optimizations required to

achieve performance and there is big speedup in processing

when using large data-set processing on GPU.

 These works prove the efficiency of GPU based algo-

rithms and describe useful uses of GPU. GPU has been used

858 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

mainly for scientific computations and large data processing.

In this field, according to preceding works, GPU mostly out-

performs CPU.

4 Comparison of GPGPU platforms

 In this section, most widespread GPGPU programming

models are described in context of comparison with each

other.

 We describe native programming language support and

well as support for third party languages, for example Java,

Python. We compare 3 main GPGPU platforms: OpenCL,

CUDA, DirectCompute. We provide 3 criteria for the com-

parison:

1) Portability: what operating systems GPGPU compu-

tations could be made on?

2) Third party language support: is there support for

GPGPU platform function call from other program-

ming languages?

3) Possible execution on CPU (heterogeneous comput-

ing).

 The weakness of DirectCompute is that it uses compute

shader, which has specific restrictions: initialize a Direct3D

device, create data buffers (resources) for shader, set shader

state and launch it. Specific programming rules must be met.

 As one can see, the DirectCompute API relies on

DirectX 10 or 11 API to initialize GPU and make computa-

tions possible.

 Despite DirectCompute benefits, that there is no need to

special driver to make GPGPU computations using Di-

rectCompute, and computations will run on every GPU that

supports DirectX 10 or 11. DirectCompute is available for

Windows Vista/7 only.

 OpenCL and CUDA provide more flexibility and easy-

to-write applications for GPU. We do not need compute

shader to write and execute CUDA and OpenCL application.

CUDA is available to only NVIDIA GPU's – application

which was written for NVIDIA CUDA platform cannot be

executed on ATI GPU's. OpenCL in comparison can be exe-

cuted on various kinds or processing units, the only request is

OpenCL driver from manufacturer of processing unit.

 For the comparison summary, see Table 2.

Table 2. Summary of GPGPU programming model comparison

 OpenCL CUDA DirectCompute

Programming C/C++ extensions C/C++ extensions C/C++, Shader

Language

Portability Windows, Linux,

MacOS

Windows, Linux,

MacOS

Windows Vista/7

with DirectX

10/11

API OpenCL API CUDA API DirectX 11 API

 OpenCL CUDA DirectCompute

Third party lan-

guage support

yes

(JOCL,

PyOPENCL etc.)

yes

(JCUDA, pyCU-

DA, Fortran PGI

CUDA compiler

etc.)

no

Heterogeneous

computing possi-

ble?

yes partial

(only with pro-

gram recompila-

tion)

no

(possible execu-

tion only on GPU)

5 Analysis of an impact of a GPGPU

platform on computations

 As it is stated before in this paper, use of GPGPU in an

application can have an effect on the resulting characteristics

of computations. The impact can be made, for example, by a

target architecture for a GPGPU application. Such an impact

is analyzed next; as well as further in this section, there is

analyzed a possible impact of a platform on the performance

of a GPGPU application.

5.1 Comparison of possible target hardware

architectures for GPGPU: CPUs and

GPUs

 Platforms for general-purpose computing on graphics

processing units (for example, OpenCL and CUDA) provide

ways to execute an application written with a GPGPU tech-

nique also on computers where there are no GPGPU-

compatible GPUs. In these cases, all instructions of the pro-

grams are executed on CPU — a GPGPU environment is

imitated on CPU in a way that is transparent for an executing

program.

 This means that there exist two main target processing

unit models for programs with GPGPU: when a program is

executed both on a CPU and a GPGPU-enabled GPU, and

when it is run only on a CPU. Therefore, it is important to

compare which each other these two possible modes of oper-

ating for a GPGPU program.

 For much software, the speed of their execution is of

great importance. Bottlenecks for this speed usually are a

processor (or processors) on which the software is executed,

as well as memory and buses. However, when the software

highly depends on calculations, or in the software there are

many continuous uniform operations, the execution speed is

mostly dependent on performance of the processing units.

 In order to efficiently maximize the speed of execution

of an application, a processing unit should be used to the

extent possible.

 All GPUs suitable for arbitrary calculations (i. e., with a

support of GPGPU) are multi-core (for example, NVIDIA

GeForce 580 GTX consists of 16 multiprocessors); and a

large number of modern CPUs are also multi-core.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 859

 Modern GPUs, in contrast to CPUs, are composed of a

large number of cores. Moreover, computational power of

GPUs in average is comparable to (and mostly larger than)

computational power of CPUs. This means that GPUs (as

well as multi-core CPUs) provide a big possibility for speed-

ing up execution of applications [10].

 A majority of common algorithms are defined in a se-

quential way (i. e., the corresponding code of an algorithm is

sequential). However, the fact that nowadays most of modern

processors are multi-core assumes that for a specific sequen-

tial algorithm in order to execute efficiently, it should be

parallelized — divided into several maximally independent

(parallel) tasks. Thus, in order to take advantage of using

multi-core processors, algorithms should be adapted for paral-

lel execution [10].

 Despite both CPUs and GPUs are multi-core, their ar-

chitectures differ significantly. According to Flynn’s taxon-

omy [11], multi-core CPUs have in general a MIMD (Multi-

ple Instruction stream, Multiple Data stream) architecture,

with each core usually having a support for a set of SIMD

(Single Instruction, Multiple Data) instruction. Alternatively,

all GPGPUs have a SIMD architecture [10].

 The difference between the architectures of multi-core

CPUs and GPGPUs substantiates differences between optimi-

zation processes for these two types of processing systems.

However, all optimizations for a SIMD architecture are also

applicable to a MIMD architecture — because a MIMD archi-

tecture can be considered as a more enriched SIMD architec-

ture [10]. This means that when writing an application for a

heterogeneous GPGPU programming model and targeting

and correspondingly optimizing it for execution on a SIMD

GPU, the optimizations will work and will have effect also

when executing on a CPU.

 There are differences between x86 CPU instructions and

GPU instructions — GPU takes with one instruction also

memory reference (address). This makes addressing more

effective. Also GPU can deploy single instructions with many

operands into SIMD array, which can consist of 8–512

(NVIDIA GPU) ALU. This makes developing parallel appli-

cations in a more effective way. In CUDA, OpenCL, Di-

rectCompute, there is an emended native parallelism support.

That make sense for example GPU executes parallel code 100

times faster than CPU, but CPU executes serial code 50 times

faster than GPU. It is efficient to combine CPU and GPU to

make possible heterogeneous computing with task diver-

gence.

5.2 Analysis of performance of GPGPU

applications

 If one wants to use a processing unit to the maximal

extent, before implementing an application it is good to know

some guidelines, what actions which will perform the applica-

tion are supposed to be fast, and which actions are supposed

to be slow while running on a specific processing unit. In case

of slow actions, at the application design stage, it is useful to

avoid using slow operations to the extent possible. Therefore,

it is useful to know, which operations on a specific applica-

tion platform will perform faster, and which — slower.

 In this section there are described practical results con-

cerning speed of execution of primitive unary and binary

operations (including basic arithmetical and bitwise Boolean

operations) for three commonly used data types (char, int,

and float) on the OpenCL GPGPU platform. OpenCL as a

programming model was chosen mainly because of its sup-

port for ATI, NVIDIA GPUs and CPU, as well as multiple

operating systems. OpenCL provides opportunity to run the

same code on CPU and GPU.

 For the measurement of speed, by the authors there was

written a test application — an OpenCL program in the C++

programming language. To maximally smooth out the meas-

urement errors, to measure small amounts of time with a high

precision, each operation with the same input data was called

10 million times. This was implemented in a following way:

an OpenCL kernel contained one operation (or a block of

several similar operations), and the kernel was executed a

specific number of times (for different data values) in a spe-

cial loop (provided by an OpenCL programming model). The

measurement of time intervals needed for the kernel to exe-

cute was implemented in the following way: the system time

was measured just before and just after the execution of the

kernel, and the difference of these values was considered as

the execution time. The system time was measured using

system calls, with the precision of several milliseconds.

 The test programs (32-bit) were executed on a computer

with an AMD Phenom II X4 965 CPU (3.40 GHz in each of

4 cores), 4 GB RAM, and 64-bit Microsoft Windows 7 oper-

ating system, and the following video adapters:

— GPU ATI = ATI Radeon HD 5750,

— GPU NVIDIA = NVIDIA GeForce 240 GT.

 With GPU NVIDIA due to technical problems there

were measured only operations on the char data type.

 It is needed to be stated that the obtained CPU perform-

ance is when forcing to run an OpenCL application on a CPU,

not GPU. This means that in such a way obtained perform-

ance is not the same as the performance of a CPU when an

application is implemented especially for running on CPU

(i. e., without a use of a GPGPU).

 The generalized results of the experiments in different

views are provided in Figure 1–Figure 3.

860 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

CPU GPU ATI
GPU

NVIDIA
CPU GPU ATI CPU GPU ATI

char float int

(empty kernel) 17,02 2,02 0,48 18,30 2,04 19,32 2,09

arithmetical 14,45 9,47 1,87 16,91 2,01 14,68 2,01

arithmetical and bitwise 6,88 8,48 1,60 6,93 1,98

assigning a constant 20,52 4,44 1,30 20,31 2,00 20,70 2,01

assigning a variable 19,28 4,44 1,30 24,28 2,00 21,24 2,01

bitwise 15,12 8,62 1,75 15,23 1,96

negation 24,48 8,47 1,91 28,06 2,06 24,47 2,05

0,00

5,00

10,00

15,00

20,00

25,00

30,00

Figure 1. Time (in milliseconds) needed to execute 10 million equal primitive operations in an OpenCL kernel, depending on a type of operations, a data type,

and a target processing unit

0,00

5,00

10,00

15,00

20,00

25,00

30,00

(e
m

p
ty

 k
e

rn
e

l)

ar
it

h
m

e
ti

ca
l

ar
it

h
m

e
ti

ca
l a

n
d

 b
it

w
is

e

as
si

gn
in

g
a

co
n

st
an

t

as
si

gn
in

g
a

va
ri

ab
le

b
it

w
is

e

n
e

ga
ti

o
n

(e
m

p
ty

 k
e

rn
e

l)

ar
it

h
m

e
ti

ca
l

ar
it

h
m

e
ti

ca
l a

n
d

 b
it

w
is

e

as
si

gn
in

g
a

co
n

st
an

t

as
si

gn
in

g
a

va
ri

ab
le

b
it

w
is

e

n
e

ga
ti

o
n

(e
m

p
ty

 k
e

rn
e

l)

ar
it

h
m

e
ti

ca
l

ar
it

h
m

e
ti

ca
l a

n
d

 b
it

w
is

e

as
si

gn
in

g
a

co
n

st
an

t

as
si

gn
in

g
a

va
ri

ab
le

b
it

w
is

e

n
e

ga
ti

o
n

char float int

CPU

GPU ATI

GPU NVIDIA

Figure 2. Time (in milliseconds) needed to execute 10 million equal primitive operations in an OpenCL kernel, depending on a type of operations, a data type,

and a target processing unit. It is easy to see that almost in all tested cases the fastest target processing unit is NVIDIA GPU, and the lowest — CPU

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 861

Figure 3. Time (in milliseconds) needed to execute 10 million equal primitive operations in an OpenCL kernel, depending on a type of operations, a data type,

and a target processing unit. One can see that on GPUs all operations with char data type (which takes integer values from -128 to 127) are significantly slower

than operations with int and float data types. However, on GPUs operations with float data type are approximately as fast as with int data type; the same situa-

tion is on CPUs with all data types

 From Figure 2 one can see that the fastest target process-

ing unit is NVIDIA GPU, and the lowest — CPU. This is true

almost for all operations. The performance of two different

GPUs should not be compared directly; however, comparing

the performance of the GPUs with a performance of the

CPUs, one can see that the formers are much higher than the

latter.

 From Figure 3 one can see that on GPUs all operations

with char data type (takes integer values from -128 to 127)

are significantly slower than operations with int and float data

types. This situation is slightly different from the usual situa-

tion with CPUs, where operations with char operands per-

form much faster than operations with int and float operands.

Also, from the figure it is seen that, on GPUs operations with

float data type are approximately as fast as with int data type;

the same situation is on CPUs with all data types.

 The differences between the obtained results showing

GPU instruction performance, and generally known results on

the performance of CPU instructions (including that floating-

point operations on a CPU are performed much slower that

integer operations) can be explained with the differences in

the instruction sets and architectures of GPUs and CPUs. (For

example, in [12], there is described instruction set architec-

ture for ATI Evergreen Family GPUs).

6 Conclusions

 When designing programs for GPUs which support

general-purpose computing, in order to make programs be

efficient, it is necessary to be aware of some specific features

of GPUs. This includes the knowledge of the performance

level of primitive mathematic operations — as there was

shown in this paper, in calculations, it is better not to use

variables of small size (i. e., of char/byte data type) but re-

place them with integer-type or floating point variables.

 When intending an application for a GPGPU platform, it

is needed to be known that in case of there is no GPGPU-

enabled GPU on a destination computer, the performance will

somewhat suffer. Speaking about GPGPU software platforms,

it can be stated that OpenCL and CUDA provide more flexi-

bility and easiness to write applications for GPU: there is no

need for a compute shader to be used to execute CUDA and

OpenCL app (unlike in DirectCompute). However, Di-

rectCompute benefits from the point of view that there is no

need to special driver to make GPGPU computations using

DirectCompute, and computations will run on every GPU that

supports DirectX 10, 11 or later. In addition to the above, in

many cases the use of a specific GPGPU software platform

(except OpenCL) can be limited either by GPU manufacturer

(CUDA supports only NVIDIA GPUs, and Stream supports

only ATI GPUs), or by a running operating system (Di-

rectCompute cannot be run, for example, on Linux).

0,00

5,00

10,00

15,00

20,00

25,00

30,00

C
P

U

G
P

U
 A

TI

G
P

U
 N

V
ID

IA

C
P

U

G
P

U
 A

TI

G
P

U
 N

V
ID

IA

C
P

U

G
P

U
 A

TI

G
P

U
 N

V
ID

IA

C
P

U

G
P

U
 A

TI

G
P

U
 N

V
ID

IA

C
P

U

G
P

U
 A

TI

G
P

U
 N

V
ID

IA

C
P

U

G
P

U
 A

TI

G
P

U
 N

V
ID

IA

arithmetical arithmetical
and bitwise

assigning a
constant

assigning a
variable

bitwise negation

char float int

862 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

 One of the directions of the further work is to improve

the application used for the experiments in order to be able

obtain wider measurement results (for example, not only for

arithmetic or Boolean operations). Also, the experiments

should be made on a larger set of different processing units.

 GPGPU computations benefit in such tasks as image

processing, physics simulations, large array processing, and

many others tasks which deals with large data sets. A signifi-

cant importance is information synchronization between

threads that uses shared memory. As CPU cores can also use

shared memory, it is possible for the further research to com-

pare CPU and GPU data synchronization. Also the future

research may include a new field of study — heterogeneous

computing, which include both CPU and GPU computations.

This is topical when a CPU and a GPU are combined on sin-

gle die. Future research in the heterogeneous computing and

APU (accelerated heterogeneous processing units) field may

give results in understanding how to accelerate today’s algo-

rithms and programs in order for them to run faster on hetero-

geneous processors. In further studies, there could be also

discussed the way how computations can be transferred be-

tween CPU and GPU, and how effectively a program written

for GPU can be translated for running on CPU, and vice

versa.

7 References

[1] ―NVIDIA OpenCL Programing guide for the CUDA

architecture, Version 3.2‖. [Online]. Available:

http://developer.download.nvidia.com/compute/cuda/3_2/tool

kit/docs/OpenCL_Programming_Guide.pdf. [Accessed: Oct

2010].

[2] ―CUDA - Wikipedia, the free encyclopedia‖. [Online].

Available:

http://en.wikipedia.org/w/index.php?title=CUDA&oldid=389

564200. [Accessed: Oct 2010].

[3] ―OpenCL - Wikipedia, the free encyclopedia‖. [Online].

Available:

http://en.wikipedia.org/w/index.php?title=OpenCL&oldid=38

9311710. [Accessed: Oct 2010].

[4] ―DirectCompute - Wikipedia, the free encyclopedia‖.

[Online]. Available:

http://en.wikipedia.org/w/index.php?title=DirectCompute&ol

did=389634399. [Accessed: Oct 2010].

[5] V. Volkov and J. W. Demmel, ―Benchmarking GPUs to

tune dense linear algebra‖, University of California at Berk-

ley, SC08, November 2008. [Online]. Available:

http://parlab.eecs.berkeley.edu/sites/all/parlab/files/Benchmar

king%20GPUs%20to%20tune%20dense%20linear%20algebr

a.pdf. [Accessed: Oct 2010].

[6] A. C. Thompson, C. J. Fluke, D. G. Barnes, and

B. R. Barsdell, ―Teraflop per second gravitational lensing ray-

shooting using graphics processing units‖, Centre for Astro-

physics and Supercomputing, Swinburne University of Tech-

nology, May 2009. [Online]. Available:

http://arxiv.org/pdf/0905.2453.pdf. [Accessed: Oct 2010].

[7] P. Bakkum and K. Skadron, ―Accelerating SQL Data-

base Operations on a GPU with CUDA‖, Department of

Computer Science University of Virginia, GPGPU-3, March

2010. [Online]. Available:

http://www.cs.virginia.edu/~skadron/Papers/bakkum_sqlite_g

pgpu10.pdf. [Accessed: Oct 2010].

[8] S. Manavski, ―CUDA Compatible GPU as an Efficient

Hardware Accelerator for AES Cryptography‖, 2007 IEEE

International Conference on Signal Processing and Commu-

nications (ICSPC 2007), 24–27 November 2007, Dubai,

United Arab Emirates: 2007. [Online]. Available:

http://www.manavski.com/downloads/PID505889.pdf. [Ac-

cessed: Oct 2010].

[9] R. V. van Nieuwpoort, J. W. Romein, ―Using Many-

Core Hardware to Correlate Radio Astronomy Signals‖,

Netherlands Institute for Radio Astronomy, 23rd ACM Inter-

national Conference on Supercomputing. [Online]. Available:

http://www.cs.vu.nl/~rob/papers/ics09-correlator.pdf. [Ac-

cessed: Oct 2010].

[10] V. Nazaruk and P. Rusakov, ―Implementation of Cryp-

tographic Algorithms in Software: An Analysis of the Effec-

tiveness‖, Scientific Journal of Riga Technical University,

Vol. 43, pp. 97–105, 2010.

[11] M. Flynn, ―Some Computer Organizations and Their

Effectiveness‖. IEEE Transactions on Computers, Vol. C-21,

Issue 9, pp. 948–960, 1972.

[12] ―Evergreen Family Instruction Set Architecture. In-

structions and Microcode. Reference Guide‖, Advanced Mi-

cro Devices, Inc., September 2010. [Online]. Available:

http://developer.amd.com/gpu/ATIStreamSDK/assets/AMD_

Evergreen-Family_Instruction_Set_Architecture.pdf. [Ac-

cessed: Oct 2010].

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 863

http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/OpenCL_Programming_Guide.pdf
http://en.wikipedia.org/w/index.php?title=CUDA&oldid=389564200
http://en.wikipedia.org/w/index.php?title=CUDA&oldid=389564200
http://en.wikipedia.org/w/index.php?title=OpenCL&oldid=389311710
http://en.wikipedia.org/w/index.php?title=OpenCL&oldid=389311710
http://en.wikipedia.org/w/index.php?title=DirectCompute&oldid=389634399
http://en.wikipedia.org/w/index.php?title=DirectCompute&oldid=389634399
http://parlab.eecs.berkeley.edu/sites/all/parlab/files/Benchmarking%20GPUs%20to%20tune%20dense%20linear%20algebra.pdf
http://parlab.eecs.berkeley.edu/sites/all/parlab/files/Benchmarking%20GPUs%20to%20tune%20dense%20linear%20algebra.pdf
http://parlab.eecs.berkeley.edu/sites/all/parlab/files/Benchmarking%20GPUs%20to%20tune%20dense%20linear%20algebra.pdf
http://arxiv.org/pdf/0905.2453.pdf
http://www.cs.virginia.edu/~skadron/Papers/bakkum_sqlite_gpgpu10.pdf
http://www.cs.virginia.edu/~skadron/Papers/bakkum_sqlite_gpgpu10.pdf
http://www.manavski.com/downloads/PID505889.pdf
http://www.cs.vu.nl/~rob/papers/ics09-correlator.pdf
http://developer.amd.com/gpu/ATIStreamSDK/assets/AMD_Evergreen-Family_Instruction_Set_Architecture.pdf
http://developer.amd.com/gpu/ATIStreamSDK/assets/AMD_Evergreen-Family_Instruction_Set_Architecture.pdf

Study of Performance Issues on a SMP-NUMA System using the
Roofline Model

Juan A. Lorenzo1, Juan C. Pichel1, Tomás F. Pena1, Marcos Suárez2 and Francisco F. Rivera1
1Computer Architecture Group, Electronics and Computer Science Dept., Univ. of Santiago de Compostela,

Santiago de Compostela, Spain.
2Land Laboratory, Univ. of Santiago de Compostela,

Lugo, Spain.

Abstract— This work presents a performance model based
on a combination of hardware counters and a Roofline
Model developed to characterize the behavior of the FINIS-
TERRAE supercomputer, one of the largest SMP-NUMA
systems. Our main objective is to provide an insightful model
which allows to determine, at a glance, performance issues
related to thread and memory allocation of irregular codes in
this machine. Results show that this model provides practical
information of the effects that degrade the performance of a
code and, additionally, gives hints to improve it.

Keywords: Roofline Model, Irregular Codes, Hardware Counters.

1. Introduction
State-of-the-art architectures involve many cache levels in

complex several-node NUMA configurations with different
number of multi-core processors. A good example is the
supercomputer FINISTERRAE installed at the Galicia Su-
percomputing Center in Spain [1]. FINISTERRAE is a SMP-
NUMA system with more than 2500 Itanium2 Montvale pro-
cessors and 19 TB of RAM memory. Designed to undertake
great technological and scientific computational challenges,
it is one of the biggest shared-memory supercomputers
in the World. Improving the performance and scalability
of dense or sparse codes on such multicore architectures
can be extremely non-intuitive. Although there exist some
stochastic analytical [2] models and statistical performance
models [3] which can accurately predict performance, they
rarely provide insight into how to improve the performance
of programs, compilers and computers. We approached this
problem by developing a Roofline Model for FINISTERRAE.

The Roofline Model [4] provides realistic expectations
of performance and productivity. It does not try to predict
program performance accurately. Instead, it integrates in-
core performance, memory bandwidth and locality into a
single readily understandable performance figure, showing
inherent hardware limitations for a given computational
kernel, potential benefit and priority of optimisations. In this
regard, this work demonstrates that hardware counters can
assist in this task.

Subsequent sections will introduce the Roofline Model
developed for FINISTERRAE and the main results obtained.

Fig. 1: HP Integrity Rx7640 node.

2. FINISTERRAE’s Roofline Model
The Roofline Model relies on three metrics: Computa-

tion measured as GFlops/s, Communication measured as
DRAM bandwidth (GBytes/s) and Locality. The metric that
relates performance to bandwidth is defined as Operational
Intensity. It is measured in Flops/Byte and means “FP
operations performed per byte of DRAM traffic transferred”.
That is, traffic is measured between caches and memory,
not between the processor and the caches. This measure
predicts the DRAM bandwidth needed by a kernel on a
particular computer. Figure 2 shows the roofs of our model
for a Rx7640 FINISTERRAE node (see Figure1). The plot is
on log-log scale. The Y-axis shows the attainable double-
point performance in GFlops/s. The X-axis displays the
operational intensity. The horizontal line shows the peak
floating-point performance of the computer, and its com-
putation values can be derived either from the processor’s
manual or from performance benchmarks. The maximum
attainable bandwidth is a line of unit slope (GFlops/s

Flops/Byte
=

GBytes/s) and can be derived also from the architecture
manual or from a benchmark. Both lines intersect at the
point of peak computational performance and peak memory
bandwidth. The peak floating-point performance as well as
the maximum bandwidth of FINISTERRAE were obtained
from the manufacturer’s documentation [5]. Note that the

864 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 2: Roofs of FINISTERRAE Roofline Model.

former (102.4 GFlops/s) comes from the product of a
Montvale processor’s peak performance times the number
of processors in a FINISTERRAE node, whereas the latter
(34.4 GBytes/s) comes from the maximum bandwidth of
a memory bus times the number of buses in a node (see
Figure 1). The attainable performance of a given kernel is
upper bounded by both the peak flop rate, and the product
of bandwidth and the flop:byte ratio.

Gflop/s = min

{
Peak Gflop/s
Peak Memory BW ∗ actual flop : byte ratio

These roofs cannot ever be reached, since they are phys-
ical limits given by the architecture. They are defined once
per multicore computer and can be reused for any kernel.

The next step consists in adding ceilings to the model.
Ceilings are performance barriers which limit the maximum
attainable performance. They suggest which optimisations
to perform and the potential benefit to achieve. We can-
not break through one ceiling without first performing the
corresponding optimisation. Figure 3 depicts computational
(horizontal lines) and bandwidth (slanted lines) ceilings.
These ceilings are not fixed and can be chosen depending on
the performance limits of interest. Since this study is focused
on a FINISTERRAE node which comprises several proces-
sors, computational ceilings in the figure show performance
limits depending on the number of cores involved. These
values are derived from the architecture manual. Bandwidth
ceilings are related to memory imbalance and were collected
by a tuned version of the LMbench benchmark [6]. Each
ceiling denotes the maximum sustained bandwidth attainable
when all the traffic is concentrated in a single cell (i.e.,
is handled by a single memory controller) or when it is
distributed between both cells. Ceilings, as well as roofs,
are measured only once per multicore computer and can be
reused for any kernel which runs in that machine.

Fig. 3: Ceilings added to the FINISTERRAE Roofline Model and
locality wall for a SpMV.

The last step to create the Roofline Model involves the
computational kernel under study. The attainable perfor-
mance for a kernel is related to its operational intensity.
Indeed, moving to the right of the Roofline Model (towards
higher values in the x-axis) means a higher number of
FP operations per byte transferred from memory to cache
and, therefore, a better performance. There is a limit in
the maximum operational intensity of a kernel, given by
the lower limit to communication: the compulsory traffic.
This limit is called locality wall and is unique for a kernel-
architecture combination. Note that the actual operational
intensity may be lower due to cache misses. A kernel can
be cpu-bound or memory-bound depending on whether its
maximum operational intensity is on the right of the ridge
point or on the left, respectively. Figure 3 shows the locality
wall for a Sparse Matrix-Vector product (SpMV). This limit
was obtained by reducing the size of the matrix A and the
arrays x and y until they fit into cache, narrowing down
the memory accesses to the compulsory traffic to fetch the
data just once into cache. As seen in the figure, the SpMV
is a memory-bound kernel, with a maximum operational
intensity rather low due to its scarce reuse of the cache
memory.

2.1 Experiment setup
Once sketched the roofs and ceilings of the Roofline

Model, the next step consisted in measuring the performance
of a target program to depict it according to the magnitudes
of this model. In particular, our objective was to see graph-
ically the influence of thread and data allocation in a way
that could cast some light about which improvements might
be made.

A parallel openMP SpMV with block distribution was
used. To place a performance point in the Roofline Model, a
pair of coordinates ([Operational Intensity, Attainable Per-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 865

formance]) are needed. In order to get them, PAPI [7] was
used to instrument the code and access native events of the
Montvale processor, measuring the following magnitudes:

• Computation (GFlops/s): The number of Flops of
the kernel is given as the sum of the values per
thread returned by the event FP_OPS_RETIRED.
The elapsed time is given by the function
PAPI_get_real_usec(). The Computation
is calculated as the sum of all Flops divided by the
time of the slowest thread.

• Operational Intensity (Flops/byte): The traffic be-
tween main memory and cache memory is measured
in Montvale as the sum of all bus memory transac-
tions, stated as the number of full cache line trans-
actions (event BUS_MEMORY_EQ_128BYTE_SELF)
plus the number of less than full cache line trans-
actions (event BUS_MEMORY_LT_128BYTE_SELF).
The number of bytes transferred per thread is then cal-
culated according to the formula: Bytes transferred =

BUS_MEMORY _EQ_128BY TE_SELF ∗ 128 +
BUS_MEMORY _LT_128BY TE_SELF ∗ 64
The whole number of bytes transferred by the kernel is
the sum of the number of bytes per thread. The value
of the operational intensity is calculated as the quotient
between the sum of Flops from all threads and the sum
of bytes transferred by all threads.

A set of matrices from the University of Florida Sparse
Matrix Collection (UFL) [8] was represented using the
Roofline Model. Two of these matrices, pct20stif and
exdata_1, chosen as being paradigmatic of a well and a
badly-balanced matrix, respectively, are analized here. Table
1 shows their imbalance as a result of dividing each matrix
in blocks for 2, 4, 8 and 16 threads. This value is the quotient
between the blocks with lowest and highest NNZ values. The
closer to 1, the better the balance. It seems clear, therefore,
how pct20stif is much better balanced than exdata_1.

2.2 Experiment #1: Default parallelization
In this configuration, the parallel SpMV was executed for

1, 2, 4, 8 and 16 threads. The Linux scheduler was allowed
to map threads to cores at its will. Data were allocated by the
default system first-touch policy. Figure 5 shows the perfor-
mance of the parallel SpMV for matrices pct20stif (a)
and exdata_1 (b). Each red cross displays the performance
of each n-thread case. Note that matrix pct20stif shows
a much more regular pattern than exdata (see Figure 4),
which concentrates most of its nonzero values into a small
region. Some interesting information can be inferred from

2p 4p 8p 16p
pct20stif 0,9386 0,8816 0,8008 0,703
exdata_1 0,0046 0,002 0,002 0,002

Table 1: Matrix imbalance of pct20stif and exdata_1.

(a) (b)

Fig. 4: Matrices pct20stif (a) and exdata_1 (b).

their Roofline Models: Figure 5(a) shows performance points
that grow both in computation and operational intensity as
the number of processors increases. Indeed, given the big
size of the matrix, the 1-thread case shows a high number
of conflict misses, which reduces the ratio flops:byte (i.e.
the operational intensity) with respect to the maximum value
(the compulsory misses wall). Consequently, the number of
GFlops/s is not as high as it could be if the conflict misses
were lower. As the number of threads increases, the matrix
(and the arrays x and y) is shared out among the processors.
Therefore, the number of conflict misses decreases, the
points in the graph shift towards the compulsory wall, and
the computation value increases.

Note that, whereas the number of processors duplicates in
each case, the points in the graph are not equidistant. There
is a bigger gap between 2 and 4 processors, and between
8 and 16, than the remaining cases. Quantified, the ratio of
attainable GFlops/s between 2 and 1 thread is ∼ 1, 35. So
it is with the ratio between 8 and 4 threads. However, the
ratio between the 4 and 2 threads is ∼ 1, 9, and between 16
and 8 threads is ∼ 2, 7. Two reasons for this can be found
here. Firstly, the number of conflict misses does not decrease
linearly as the number of processors increases. Thus, the
shift increment of each point towards the compulsory wall
is not constant. Secondly and more important, the SpMV
considered uses its master thread to allocate all data before
starting the computation. Therefore, the system’s first touch

(a) (b)

Fig. 5: SpMV results for pct20stif (a) and exdata_1 (b).

866 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

policy will place all data uniquely in the master’s memory.
When using 2 threads, they are bound to have been

attached to cores in different cells. One of them will need
to fetch data remotely and this explains the little difference
in performance between 1 and 2 threads. However, for the
4-thread case, the scheduler has mapped most of the threads
to cores in the same cell and, therefore, the performance is
much higher. Again, for a 8-thread case, the difference in
performance with the 4-thread case is not too noticeable,
which implies that threads have been spread out between
both cells. For 16 threads all cores are used, although 8 of
them fetch data from a remote cell. Therefore, performance
will be higher than for a 8-thread case, but not as high as
the architecture allows (the 16-thread point is far from the
peak memory bandwidth).

Note that, while pct20stif is a matrix with a pattern
with diagonal shape, exdata_1 has most of its data
concentrated in a small region. Hence, its pattern is prone
to cause load balance problems. The representation of its
performance in the Roofline Model (shown in Figure 5(b))
substantially differs from the one of pct20stif. The
performance achieved is virtually identical for 1 and 2-thread
cases. Indeed, openMP divides evenly the number of rows
among the available threads. Splitting this matrix in two
halves (in terms of number of rows) gives ∼ 99.6% of the
load to one single thread in the 2-thread case. Therefore,
a glance to the figure attracts our attention to an important
load imbalance problem.

The 4-thread point for exdata_1 is placed below the
points for 1 and 2 threads and slightly to the right of
them. This means that, whereas this case yields a worse
performance, its operational intensity is better. Therefore,
the load is badly balanced but the bus bandwidth is less
saturated than in previous cases. So we can conclude that the
scheduler spreads out two threads to each cell, but keeping
most of the load in the same cell. Finally, 8 and 16 threads
provide a finer distribution of the matrix among the threads
in both cells, so the performance increases in both GFlops/s
and operational intensity.

2.3 Experiment #2: Exploiting thread
allocation

The SpMV was run with 1, 2, 4, 8 and 16 threads. Threads
were mapped to cores explicitly and data were allocated
manually to memory modules using the Linux numactl
command. Whereas in the previous section all threads had
been mapped to cores by the Linux scheduler and data had
been allocated in cell 0 due to the system’s first-touch policy,
in this experiment we made sure that threads 1 to 8 were
mapped to cores in cell 0, as well as their data. Specifically,
the threads were mapped alternately to cores in both buses
of a same cell. Note that all threads were placed as far
as possible from the remaining ones in order to spread the

(a) (b)

Fig. 6: Exploiting thread distribution of SpMV for matrices
pct20stif (a) and exdata_1 (b).

threads out among the available buses. For 16 threads, data
were allocated in the interleaving zone.

Figure 6 shows the outcomes for matrices pct20stif
and exdata_1. Note the distribution of points for cases
1p to 8p in Figure 6(a). In this case all the performance
values are vertically equidistant from each other. Since
pct20stif is a well-balanced matrix, the only remain-
ing cause for imbalance would be the thread allocation.
However, in this case threads have been manually mapped to
cores in the same cell where data are, taking care of keeping
them always balanced between both buses in the cell. That
justifies the well-distributed points in the Roofline Model.

16 threads is a particular case. We noticed an increase in
performance as steady as in previous cases. However, the
operational intensity is almost alike. In this case, a decrease
in performance was expected because data were allocated
in the interleaving memory, which presents a latency higher
than local data. A rough calculation showed that the memory
needed to allocate the matrix and the arrays x and y is 71, 64
Mbytes. This size, divided by either 8 or 16 processors,
yields a value below the 9 MBytes size of the L3 cache mem-
ory. Therefore, although the higher latency will influence
the performance, only the compulsory cache misses together
with a limited amount of conflict misses (which prevents
the performance points to reach the compulsory wall) will
occur. That is the reason why the operational intensity is
similar in both cases. Figure 6(b) shows the Roofline Model
for matrix exdata_1. As expected, the only difference
in performance with Figure 5(b) is the 4-thread case. The
manual thread allocation in cell 0 balances better the data
between the buses in the cell. However, the imbalance due to
the irregular nature of the matrix still exists, and that is why
the performance is practically the same previously obtained
for 1, 2 and 4 threads.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 867

3. Conclusions
This work has presented the development of a Roofline

Model for a node of the FINISTERRAE supercomputer. The
experiments performed using a parallel SpMV stated that
codes with a high level of cache replacement and data size
larger than the L3 cache should have their threads shared
out among the available buses and their data placed in the
same cell. The Roofline Model has provided us with an
insightful way to provide information at a glance about the
performance of a program related to load balance and both
thread and data allocation issues.

4. Acknowledgements
This work has been partially supported by Hewlett-

Packard under contract 2008/CE377, by the Ministry of Edu-
cation and Science of Spain, FEDER funds under contract
TIN 2010-17541 and by the Xunta de Galicia (Spain) under
contract 2010/28 and project 09TIC002CT. The authors
also wish to thank the supercomputer facilities provided by
CESGA.

References
[1] Galicia Supercomputing Center, http://www.cesga.es.
[2] A. Thomasian and P. Bay, “Analytic queueing network models for

parallel processing of task systems,” Computers, IEEE Transactions
on, vol. C-35, no. 12, pp. 1045 –1054, dec. 1986.

[3] E. Boyd, W. Azeem, H.-H. Lee, T.-P. Shih, S.-H. Hung, and E. David-
son, “A hierarchical approach to modeling and improving the perfor-
mance of scientific applications on the ksr1,” in Parallel Processing,
1994. ICPP 1994. International Conference on, vol. 3, aug. 1994, pp.
188 –192.

[4] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, pp. 65–76, April 2009.

[5] HP Integrity rx7640 Server Quick Specs,
http://h18000.www1.hp.com/products/quickspecs/12470_div/
12470_div.pdf.

[6] L. McVoy and C. Staelin, “LMbench: portable tools for performance
analysis,” in Proceedings of the 1996 annual conference on USENIX
Annual Technical Conference. Berkeley, CA, USA: USENIX Associ-
ation, 1996, pp. 23–23.

[7] Performance Application Programming Interface (PAPI),
http://icl.cs.utk.edu/papi/.

[8] T. A. Davis, “The University of Florida sparse matrix collection,” NA
DIGEST, 1997.

868 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Muhammed Al-Mulhem and Raed Al-Shaikh

Department of Computer Science
King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia
{mulhem, g199607190}@kfupm.edu.sa

Abstract - In recent years, we have witnessed a growing
interest in optimizing the parallel and distributed computing
solutions using scaled-out hardware designs and scalable
parallel programming paradigms. This interest is driven by the
fact that the microchip technology is gradually reaching its
physical limitations in terms of heat dissipation and power
consumption. Therefore and as an extension to Moore’s law,
recent trends in high performance and grid computing have
shown that future increases in performance can only be
reached through increases in systems scale using a larger
number of components, supported by scalable parallel
programming models. In this paper, we evaluate the
performance of two commonly used parallel compilers, Intel
and Portland’s PGI, using a state-of-the-art Intel Westmere-
based HPC cluster. The performance evaluation is based on
two sets of experiments, once evaluating the compilers’
performance using an MPI-based code, and another using
OpenMP. Our results show that, for scientific applications that
are matrices-dependant, the MPI and OpenMP features of the
Intel compiler supersede PGI when using the defined HPC
cluster.

Index Terms— HPC, Intel, PGI, compilers, Infiniband.

I. INTRODUCTION
In recent years, we have witnessed a growing interest in

optimizing the parallel and distributed computing solutions
using scaled-out hardware designs and scalable parallel
programming paradigms. This interest is driven by the fact
that single CPU-chips are reaching their physical limits in
terms of heat dissipation and power consumption. Therefore
and as a continuation to Moore’s law, recent trends in high
performance and grid computing have shown that future
increases in performance can only be achieved through
increases in systems scale using a larger number of
components, which are supported by scalable parallel
programming models. Accordingly, scaled-out computing is
clearly becoming the trend.

In terms of the underlying hardware, multi-cores CPUs
and ultra-fast interconnects are today’s ingredients for the
High Performance Computing systems. Intel and AMD are
still the leaders in the CPU industry, dominating the
top500.org list of the most powerful supercomputers
worldwide, and taking over 80% of HPC as of 2010 [9].
Nowadays, most of the high performance clusters use multi-

core CPUs in their compute nodes, ranging from 2 to 4
cores per nodes, while 6-cores sockets will become more
common on clusters as Intel and AMD released their
Westmere and Phenom II multi-core CPUs, respectively [7].
On the HPC interconnects side, there are several network
interconnects that provide ultra-low latency (less than 1
microsecond) and high bandwidth (several gigabytes per
second). Some of these interconnects may even provide
flexibility by permitting user-level access to the network
interface cards for performing communication, and also
supporting access to remote processes’ memory address
spaces [1]. Examples of these interconnects are Myrinet
from Myricom, Quadrics and Infiniband [1]. The
experiments in this paper are done on the Infiniband
architecture, which is one of the latest industry standards,
offering low latency and high bandwidth as well as many
advanced features such as Remote Direct Memory Access
(RDMA), atomic operations, multicast and QoS [2].
Currently, available Infiniband products can achieve latency
of 200 nanoseconds for small messages and a bandwidth of
up to 3-4 GB/s [1]. As a result, it is becoming increasingly
popular as a high-speed interconnect technology option for
building high performance clusters.

On the parallel programming level, MPI and OpenMP
have become the de facto standard to express parallelism in
a program. OpenMP provides a fork-and-join execution
model, in which a program begins execution as a single
process or thread. This thread executes sequentially until a
parallelization directive for a parallel region is found. At
this time, the thread creates a team of threads and becomes
the master thread of the new team. All threads execute the
statements until the end of the parallel region. Work-sharing
directives are provided to divide the execution of the
enclosed code region among the threads. The advantage of
OpenMP is that an existing code can be easily parallelized
by placing OpenMP directives around time consuming
loops which do not contain data dependences, leaving the
source code unchanged. The disadvantage is that it is a big
challenge to scale OpenMP codes to tens or hundreds of
processors. One of the difficulties is a result of limited
parallelism that can be exploited on a single level of loop
nest.

Another program parallelization can be achieved through
the message passing programming paradigm, which can be

Performance Modeling of Intel and Portland Compilers Using
Westmere-Based Infiniband HPC Cluster

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 869

employed within and across several nodes. The Message
Passing Interface (MPI) [4] is a widely accepted standard
for writing message passing programs. MPI provides the
user with a programming model where processes
communicate with other processes by calling library
routines to send and receive messages. The advantage of the
MPI programming model is that the user has complete
control over data distribution and process synchronization,
permitting the optimization of data locality and workflow.
The disadvantage is that existing sequential applications
require a fair amount of restructuring for parallelization
based on MPI.

Our objective in this paper is to evaluate the performance
of two commonly used parallel compilers, Intel and
Portland’s PGI, using a state-of-the-art HPC cluster. As
described in the evaluation section, the performance
evaluation is based on two sets of experiments, once
evaluating the compilers’ performance using an MPI-based
code (between cluster nodes), and another using OpenMP-
based code (using a single cluster node with dual hexa-cores
Westmere sockets). To the best of our knowledge, this is the
first paper that discusses Intel and PGI compilers’
performance based on the latest Intel’s Westmere
technology and Infiniband QDR interconnect.

The rest of the paper is organized as follows: In section 2,
we briefly shed some light on the compilers, the Infiniband
interconnect technology, the Intel Westmere CPU
architecture, and the MPI implementations used to
benchmark our compilers, while in section 3 we describe
our experimental evaluation and interprets the benchmark
results. We state our conclusion and future work in the last
section.

II. BACKGROUND
In this section, we briefly describe the characteristics of

both the Intel and PGI compilers. Also, we will shed light
on the technologies used to benchmark the two compilers.
These are: the Quad Data Rate (QDR) Infiniband
interconnect technology, the Intel Westmere architecture,
and the MPI implementations.

A. Intel and PGI Compilers
Both Intel C and Fortran compilers support compilation

for IA-32, Intel 64, Itanium 2, processors and certain non-
Intel but compatible processors, such as certain AMD
processors [7]. The Intel compiler further supports both
OpenMP 3.0 and automatic parallelization for SMP. With
the add-on capability Cluster OpenMP, the compiler can
also automatically generate MPI calls for distributed
memory multiprocessing from OpenMP directives.

Similar to the Intel compilers, PGI C/C++ includes native
parallelizing/optimizing OpenMP C++ and ANSI C
compilers. In addition, PGI’s server version includes the
OpenMP and MPI parallel graphical debugger (PGDBG)
and the OpenMP and MPI parallel graphical performance
profiler (PGPROF) that can debug and profile up to 16 local

MPI processes. PGI Server also includes a precompiled
MPICH message passing library.

Both Intel and Portland Group Inc. (PGI) continuously
tune their compilers to optimize for hardware platforms to
minimize stalls and to produce code that executes in the
fewest number of cycles. Both compilers share many
technical features and high-level optimizations, such as:
interprocedural optimization (IPO), profile-guided
optimization (PGO), and high-level optimizations (HLO) [7,
8]. High-level optimizations are optimizations performed on
a version of the program that more closely represents the
source code, such as loop interchange, loop unrolling, loop
distribution and data-prefetch. These optimizations are
usually very expensive and may take considerable
compilation time.

Interprocedural optimization applies typical compiler
optimization that may affect multiple procedures, multiple
files, or the entire program. IPO aims to reduce or eliminate
duplicate calculations, inefficient use of memory, and to
simplify iterations such as loops. In addition, IPO reorders
the procedures for better memory utilization and locality.
IPO also incorporates typical compiler optimizations on the
entire program, for example, removing codes that are never
executed in a program.

Profile-guided optimization, on the other hand, refers to a
mode of optimization where the compiler performs a sample
run of the program across a representative input set. The
data would then indicate which sections of the program are
executed more frequently, and which areas are accessed less
frequently. All optimizations benefit from profile-guided
feedback because they are less reliant on heuristics when
making compilation decisions.

B. Infiniband Architecture
Infiniband is a technology that provides a high bandwidth

I/O communication over a high speed serial data bus. It uses
a switched fabric topology, as opposed to a hierarchical
switched network like Ethernet [2]. It is designed to directly
route data from one point to another point through a switch,
where all transmissions begin or end at a channel adapter
(HCA). Each Infiniband processor contains a host channel
adapter (HCA) and each peripheral has a target channel
adapter (TCA).[3] The Infiniband serial connection
signaling rate is 2.5 Gbit/s in single data rate (SDR)
technology, 5.0 Gbit/s in double data rate (DDR) technology
or 10 Gbit/s in quad data rate (QDR), in each direction per
connection. Moreover, the links can be aggregated in units
of 4 or 12, designated as 4X and 12X. However, Infiniband
uses 8B/10B encoding, which implies four fifths of the
traffic is useful, therefore DDR 4X link curries 20 Gbit/s
raw, or 16 Gbit/s of useful data. Table-1 summarizes the
different Infiniband technologies with their associated
theoretical performance numbers.

870 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Table 1: Performance numbers of different Infiniband technologies

IB
technology

SD IB Data
Rate

DD IB Date
Rate

QDR IB
Data Rate

1x 2Gbps 4Gbps 8Gbps
4x 8Gbps 16Gbps 32Gbps
12x 24Gbps 48Gbps 96Gpbs

Infiniband uses a hardware-offload protocol stack [3].

Extra memory copies that are sent from the application to an
adapter can be avoided by the zero copy mechanism that
optimizes the message transfer time. Moreover, Infiniband
allows moving data from local memory to remote memory
using RDMA (Remote Direct Memory Access), which
allows the zero copy mechanism without involving the
receiver host processor [2]. The number of user-kernel
context switching and memory copies can be reduced by the
direct access to the Infiniband HCA. Obviously, enabling
communication between devices and hosts, without the
traditional system resource overhead associated with
network protocols, off-loads data movement from the server
CPUs to the Infiniband HCA. Through virtual lanes (VLs),
Infiniband offers traffic management, creating multiple
virtual links within a single physical link that allows a pair
of linked devices to isolate communication interference
from other connected devices.

C. Intel Westmere Specifications
Westmere is the code name for the latest in the series of

multi-core processors by Intel. This is Intel’s true hexa-core
processor with L2 cache sharing and utilizing the
revolutionary Quick Path Interconnect (QPI) architecture [7]
that provides two separate lanes for the communication
between the CPU and the chipset. The QPI technology
allows the CPU to transmit and receive I/O data in parallel,
as opposed to the traditional architecture using a single
external bus where the external bus is used for both input
and output operations reads and writes cannot be done at the
same time. The latest version of the QPI works with a clock
rate of 3.2 GHz, transferring two data per clock cycle
(Double Data Rate), making the bus to work as if it was
using a 6.4 GHz clock rate.

Further, Intel Westmere generation is equipped with
Turbo Boost Technology [7] that automatically allows
processor cores to run faster than the base operating
frequency if it's operating below power, current, and
temperature specification limits. This frequency change is
dependent on the number of active cores, estimated current
consumption, estimated power consumption and processor
temperature. When the processor is operating below these
limits and the user's workload demands additional
performance, the processor frequency will dynamically
increase by 133 MHz on short and regular intervals until the
upper limit is met or the maximum possible upside for the
number of active cores is reached.

D. MVAPICH MPI Implementation
The Message Passing Interface (MPI) is the dominant

programming model for parallel scientific applications.
Given the role of the MPI library as the communication
substrate for application communication, the library must
ensure to provide scalability both in performance and in
resource usage. In our experiments, we used MVAPICH,
one of the most commonly used MPI implementations in the
HPC industry. MVAPICH [12] implementation is mainly
known for its support for Infiniband interconnect
technologies as well as having high performance scalability
support for clusters running thousands of cores. As for the
Intel MPI, MVAPICH also supports various runtime
environments such as SLURM and PBS.

III. PERFORMANCE EVALUATION AND RESULTS
To perform benchmark evaluation, a DELL cluster of

PowerEdge M610 Blade Servers was used. The cluster
consisted of 32 nodes with dual sockets and Intel hexa-Core
x5670 (Westmere) 2.93GHz processors. The operating
system running on the nodes was RedHat Enterprise Linux
Server 5.3 with the 2.6.18-128.el5 kernel. Each node was
equipped with an Infiniband Host Channel Adapter (HCA)
supporting 4x Quad Data Rate (QDR) connections with the
speed of 32Gbps. Each node also had 24 GB (6 x 4GB)
DDR3 1333Mhz of memory, thus the total amount of
memory the system had was around 786 GB.

The physical layout of the cluster consisted of two
chassis, and each chassis hosts up to 16 blade nodes. From
each node we had a 4x-QDR Infiniband connection going to
a central 32-port Qlogic Infiniband switch. Figure 1 shows
the Infiniband interconnection design as described. It is
important to mention that this design is considered non-
blocking as each node guarantees to have the full 4x QDR
32Gbps interconnect speed. This fast interconnect would
drive the cluster to a higher utilization, which in theory, may
affect the diskless concept.

Our Infiniband interconnect topology uses three switches:
A top-level switch and other two leaf switches. Under this
configuration, IPC communication among nodes of 12 sub-
clusters is localized to one leaf switch, but for the cluster of
16 nodes, the top-level switch is involved to support more
nodes.

Figure 1: The DDR Infiniband interconnect for a 32 nodes cluster

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 871

In order to evaluate the performance of the two compilers,
the benchmarks were run on the cluster nodes starting with
one thread and scaling up to 12 threads for the OpenMP
tests, and ranging from one node and up to 12 nodes for the
MPI experiments.

In our experiments, we used two versions of matrix
multiplication algorithms [13, 14] to benchmark the two

compilers. Beside it is computationally intensive with
)(3nO iterations, we chose the matrix multiplication since

it is a fundamental operation in many numerical linear
algebra applications. Its efficient implementation on parallel
computers is an issue of prime importance when providing
such systems with scientific software libraries.

1. #include <omp.h>
2. #include <stdio.h>
3. #include <stdlib.h>
4. #define NRA 4000 /* # rows in matrix A */
5. #define NCA 4000 /* # columns in matrix A */
6. #define NCB 4000 /* # columns in matrix B */
7. int main (int argc, char *argv[])
8. {
9. int tid, nthreads, i, j, k, chunk;
10. double a[NRA][NCA], /* matrix A to be multiplied */

 b[NCA][NCB], /* matrix B to be multiplied */
 c[NRA][NCB]; /* result matrix C */

11. chunk = 10; /* set loop iteration chunk size */
12. /*** Spawn a parallel region explicitly scoping all variables ***/
13. #pragma omp parallel shared(a,b,c,nthreads,chunk) private(tid,i,j,k)
14. {
15. tid = omp_get_thread_num();
16. if (tid == 0)
17. {
18. nthreads = omp_get_num_threads();
19. printf("Starting matrix multiple example with %d threads\n",nthreads);
20. printf("Initializing matrices...\n");
21. }
22. /*** Initialize matrices ***/
23. #pragma omp for schedule (static, chunk)
24. for (i=0; i<NRA; i++)
25. for (j=0; j<NCA; j++)
26. a[i][j]= i+j;
27. #pragma omp for schedule (static, chunk)
28. for (i=0; i<NCA; i++)
29. for (j=0; j<NCB; j++)
30. b[i][j]= i*j;
31. #pragma omp for schedule (static, chunk)
32. for (i=0; i<NRA; i++)
33. for (j=0; j<NCB; j++)
34. c[i][j]= 0;
35. /*** Do matrix multiply sharing iterations on outer loop ***/
36. /*** Display who does which iterations ***/
37. printf("Thread %d starting matrix multiply...\n",tid);
38. #pragma omp for schedule (static, chunk)
39. for (i=0; i<NRA; i++)
40. {
41. printf("Thread=%d did row=%d\n",tid,i);
42. for(j=0; j<NCB; j++)
43. for (k=0; k<NCA; k++)

c[i][j] += a[i][k] * b[k][j];
44. }
45. } /*** End of parallel region ***/
46. /*** Print results ***/
47. printf("Result Matrix:\n");
48. for (i=0; i<NRA; i++)
49. {
50. for (j=0; j<NCB; j++)
51. printf("%6.2f ", c[i][j]);
52. printf("\n");
53. }
54. printf ("Done.\n"); }

Figure 2: Matrix multiplication in C with OpenMP directives

872 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Figure 2 shows the OpenMP C code for matrix
multiplication. The routine omp_get_num_threads in line
15 is responsible for returning the number of threads that are
currently in the team executing the parallel region from
which it is called, while the omp for (static, chunk)
schedule directive divides the iterations in the loop into
pieces of size “chunk” and then statically assigns them to
threads.

Figure 3: Intel vs. PGI using OpenMP directives in matrix multiplication

The OpenMP code was compiled using –openmp and –mp

options for Intel and PGI compilers, respectively, while all
other advance options were ignored to achieve a fair
comparison. Figure 3 shows the performance benchmark of
both Intel and PGI for multiplying 4000x4000 and
5000x5000 size matrices. Initially, all runs were
significantly improved when adding more cores, while their
improvement slowed down when reaching 6 cores. It was
also observed that when the size of the matrices were
increased from 4000 to 5000, the Intel-compiled code run
time was increased by 79% in average, while PGI-compiled
code was increased by 85%. In this OpenMP set of tests, the
Intel compiler superseded PGI in all iterations.

0
25
50
75

100
125
150
175
200

1 2 3 4 5 6 7 8 9 10 11 12

Intel (5000x5000) PGI (5000x5000)

Intel (4000x4000) PGI (4000x4000)

T
im

e
 (
se
c
)

Number of nodes

Figure 4: Intel vs. PGI using MPI in matrix multiplication

Figure 4 shows performance of the Intel and PGI

compiled code using MPI routines. In this test, the C code
(too long to be included in the paper, but can be found in
[15]) was compiled using MVAPICH with Intel and PGI

parallel mpicc compilers. Similarly, all advance options
were ignored. It is noticeable that the Intel compiled MPI-
run on a single node/core took around 165 seconds, whereas
it took only 150 seconds when running OpenMP on a single
core. This is due to the fact that the MPI-based matrix
multiplication C code has more routines and functions to
call, making the code more complex, and thus more time to
run. Another observation is the slight increase in the run
time when multiplying the 4000x4000 size matrices on 11
and 12 cores. This increase is related to the additional
communication overhead with respect to the computation
time. This communication is lessened in the 5000x5000
multiplication as the computation time gets larger with
respect to the communication overhead. Similar to the
OpenMP test, the Intel compiler outperformed PGI in both
4000 and 5000 iterations.

To magnify the effect of MPI communication overhead
with respect to computation time, we extended the MPI
matrix multiplication benchmark runs to 32 nodes. Figure 5
shows the effect of this communication overhead as the
number of nodes increases.

Figure 5: MPI scalability in 5000x5000 and 4000x4000 cells matrix

multiplication using up to 32 nodes

Our next experiment was to evaluate the performance of
the two compilers using a hybrid MPI/OpenMP
environment to exploit the strength of both models.
Specifically, the main driver for the hybrid parallel
paradigm is to combine process level coarse-grain
parallelism using MPI together with fine-grain parallelism
on a loop level using OpenMP. Obviously, finding the right
combination of cores/nodes to gain the best performance
depends on the nature of the application and can only be
found by performing empirical runs. As previously observed
in figure 3, the OpenMP runs started to saturate when
exceeding 8 cores. Based on this statement and since the
matrix multiplication algorithm is compute-bound, we
varied the number of cores in our next experiment between
4 and 12 cores, while varying the number of nodes between
1 and 32 to obtain the right cores-to-nodes (i.e. OpenMP-to-
MPI) ratio that gives the best performance numbers. Figure
6 shows the evaluation performance of running this hybrid
code using 5000x5000 cells matrices. Noticeably, the best

0
20
40
60
80

100
120
140
160
180

1 2 3 4 5 6 7 8 9 10 11 12

Intel (5000x5000) PGI (5000x5000)

Intel (4000x4000) PGI (4000x4000)

Ti
m
e
 (
se
c)

No. of cores

0

15

30

45

60

75

8 16 32

Intel (5000x5000) PGI (5000x5000)

Intel (4000x4000) PGI (4000x4000)

T
im
e
 (
se
c)

Number of nodes

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 873

ratio was found when running on 8 nodes with 4 cores in
each node (39 seconds), while the worst combination was
resulted when running on 32 nodes and 12 cores in each
node (180 seconds) (a total of 384 processes were spawned).

0

50

100

150

200

250

1 2 4 8 16 32

Intel (8 cores) PGI (8 cores) Intel (12 cores)
PGI (12 cores) Intel (4 cores) PGI (4 cores)

Number of nodes

T
im

e
 (
se
c)

Figure 6: Intel vs. PGI using MPI in matrix multiplication

IV. CONCLUSION
Intel and Portland Group have been designing their

parallel compilers to leverage the rich set of performance
enabling features in modern CPUs and parallel systems.
This is achieved by tightly integrating OpenMP directives
and advanced MPI optimizations to generate efficient
multithreaded code for exploiting parallelism at various
levels. In this paper, we evaluated the performance of two
commonly used parallel compilers, Intel and Portland’s
PGI, using a state-of-the-art Intel Westmere-based HPC
cluster. The performance evaluation was based on two sets
of experiments, once evaluating the compilers’ performance
using an MPI-based code, and another using OpenMP. Our
results show that, for scientific applications that are
matrices-dependant, the MPI and OpenMP features of the
Intel compiler supersede PGI when using the defined HPC
cluster.

ACKNOWLEDGMENT
 We thank KFUPM for their support.

REFERENCES

[1] R. AlShaikh, M. Ghuson, M. Baddourah, “Performance Evaluation of
Myrinet and Cisco Infiniband Using Intel MPI Middleware", the 9th
LCI International Conference on High Performance Computing,
NCSA, Univerity of Illinois, USA, May 2008.

[2] V. Tipparaju, G. Santhanaraman, J. Nieplocha, and D. K. Panda,
“Host-Assisted Zero-Copy Remote Memory Access Communication
on InfiniBand”, Int’l Parallel and Distributed Processing Symposium
(IPDPS 04), April, 2004.

[3] C. Bell, D. Bonachea, Y. Cote and et al. “An Evaluation of Current
High-Performance Networks”, Int’l Parallel and Distributed
Processing Symposium (IPDPS’03), April 2003.

[4] J. Liu, B. Chandrasekaran, J. Wu and et al. “Performance
Comparison of MPI Implementations over InfiniBand, Myrinet and
Quadrics”, Supercomputing, ACM/IEEE, pages 58- 58, Nov. 2003.

[5] Myrinet, Myricom. Available at: http://www.myri.com
[6] R. Fatoohi, K. Kardys, S. Koshy and el at. “Performance evaluation

of high-speed interconnects using dense communication patterns”,
Parallel Computing Volume 32, Issue 11-12, pages 794-807, 2006.

[7] Intel Inc. Available at: http://www.intel.com
[8] Portland PGI. Available at: http://www.pgroup.com/
[9] The top500 supercomputers. Available at: http://www.top500.org
[10] MVAPICH: MPI over InfiniBand and iWARP. Available at:

http://mvapich.cse.ohio-state.edu
[11] T. Typou, V. Stefanidis, P.D. Michailidis and K.G, “ Margaritis,

Implementing Matrix Multiplication on an MPI Cluster of
Workstations”, in Proceedings of the 1st In’t Conference "From
Scientific Computing to Computational Engineering" (IC-
SCCE'2004), Athens, Greece, vol. II, pp. 631-639, 2004

[12] B. Madani, R. Al-Shaikh, “Performance Modeling and MPI
Evaluation Using Westmere-based Infiniband HPC Cluster”, 4th
European Modelling Symposium on Mathematical Modelling and
Computer Simulation, Pisa, Italy, 2010

[13] Lawrence Livermore National Laboratory – OpenMP tutorial.
Available at: https://computing.llnl.gov/tutorials/openMP/

[14] Simple matrix multiplication on MPI. Available at:
http://sushpa.wordpress.com/2008/05/20/simple-matrix-
multiplication-on-mpi/

874 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Predictive and Distributed Routing Balancing for HPC Clusters

Carlos Núñez Castillo, Diego Lugones, Daniel Franco, and Emilio Luque
Computer Architecture and Operating Systems Department, Universitat Autònoma de Barcelona, Spain

Abstract— Current parallel applications in parallel com-
puting systems require an interconnection network to provide
low and bounded communication delays. Communication
characteristics such as traffic pattern and communication
load change over time and, eventually, they may exceed net-
work capacity causing congestion and performance degrada-
tion. Congestion control based on adaptive routing should be
applied in order to adapt quickly to changing traffic condi-
tions. Studies of parallel applications show repetitive behav-
ior and that they can be characterized by a set of representa-
tive phases. This work presents a Predictive and Distributed
Routing Balancing technique (PR-DRB) to control network
congestion based on adaptive traffic distribution. PR-DRB
uses speculative routing based on application repetitiveness.
PR-DRB monitors messages latencies on routers and logs
solutions to congestion, to quickly respond in future similar
situations. Experimental results show that the predictive
approach could be used to improve performance.

Keywords: Interconnection networks, predictive routing, parallel
applications, application aware routing.

1. Introduction
In the early days of High Performance Computing (HPC)

systems, interconnection network high latency and low band-
width bottleneck significantly affected applications execu-
tion. Advances in technologies such as InfiniBand (IBA)
[1] allowed higher transmission rate and lower latency.
HPC communications are characterized by bursty traffic [2].
Bursty traffic can produce Hot-Spot situations, where some
network resources are congested while others remains idle.
If congestion is not efficiently controlled, message latency
is increased and performance is degraded. Communication
patterns in HPC applications are repetitive [3]. This repet-
itiveness could be useful to the routing module to solve
future network congestions. We propose a Predictive and
Distributed Routing Balancing algorithm (PR-DRB) after
considering routing algorithm limitations and requirements
together with applications repetitiveness. Our main goal is to
reduce latency under repetitive communication patterns. PR-
DRB is based on DRB [4], but enhanced with a predictive
routing module. DRB adapt itself to congestion by opening
alternative paths. This stabilization process is costly in time.

The main contributions of this work is the capability to
learn from a parallel application communication pattern,
solve congestion and then use this solution when simi-
lar congestion is detected again. Repetitive communication

patterns alternated with computation is a typical HPC ap-
plication feature[2], and it represents an application phase
[3]. Applications alternate between phases, which causes
specific traffic patterns (e.g. a set of source/destinations
pairs) to reappear. PR-DRB strategy is shown in Fig. 1.
During application first phase, PR-DRB has high latency
values (1) because it is searching alternative paths. At the end
of phase 1 (2), latency is stable and the best solutions found
are saved at the source node. Best solutions are identified
when latency curve starts decreasing. Later phases do not
reach its highest historical latency value. Here, PR-DRB has
identified similar communication patterns again(3) and best
paths saved are used(4). PR-DRB approach is to maintain
stable latency values during the whole application execution.
The rest of this paper is organized as follows. In Sec. 2
congestion control, parallel application repetitiveness and
their relation to this work are given. In Sec. 3 the PR-DRB
methodology is described. Sec. 4 shows the performance
evaluation. Conclusion are explained in Sec. 5.

Time (s)

L
a

te
n

c
y
 b

e
h

a
v
io

r
(s

)

PR-DRB

(latency)

Traffic

(1) and (3) Congestion Detected

(2) and (4) Stable Latency

L
o

a
d

 (
b

it
s
/s

)

Application Application Application

Phase 1 Phase nPhase 2

(3)(1)

(2)

Stable latency value

(4)

Low Traffic

H
ig

h

T
ra

ff
ic

Fig. 1: PR-DRB-Process

2. Background and Justification
2.1 Congestion Control

Congestion control is based on monitoring, detection and
further control. To evaluate congestion alternatives such as
point to point latency [5], buffer occupation level [6] or
backpressure [7] could be used. Message Throttling [8] stops
(or reduces) packet injection but latency is increased be-
cause packets must remain at source nodes longer. Adaptive
routing algorithms [4], [9] work by sending messages from
source to destination through alternative paths. In adaptive
routing congested area is avoided and message injection is
upheld. Monitoring overhead , path changing and the need to
guarantee both: deadlock freedom [10] and ’in-order’ packet
delivery are some of its disadvantages.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 875

2.2 Parallel Application Repetitiveness
Studies of parallel applications in HPC reveal they have

repetitive behavior, based on computing and communications
phases [3]. Programs have a very strong periodic behavior
[11]. On Fig. 2 the repetitive behavior of the NAMD
application is shown. Repetitive behavior is represented by
fundamental phases of the entire application (e.g. a set
of source/destination pairs). For example, the NAS CG
benchmark has 4 representative phases and they consume
99.10% of execution time. Each phase here is repeated 2600
times on average during execution. The SMG2000 also has
4 representative phases, and they consume 99.99% of total
execution time. Here, phases 1 to 4 are repeated 1, 1, 1185
and 15 times, respectively. Here only phase 3 is relevant to
communications. SWEEP3D has approximately 80 different
phases, but only 5 phases are representative by consuming
96.17% of total time. Representative phases were extracted
with the PAS2P tool [3].

Fig. 2: Repetitiveness in Parallel Applications

2.3 Justification
Based on previous examples of communication patterns

repetitiveness, we can say that High Speed Interconnection
Networks (HSIN) routing performance depends mostly on
the communication pattern used and the mapping of nodes to
processors. To improve communication performance, hence
applications currently running in the network, a technique
capable to dynamically combine adaptive algorithms and
communication patterns is needed, so that routing and con-
gestion control can perform as fast as possible and minimize
overhead.

3. Predictive-Distributed Routing Bal-
ancing

We propose a routing algorithm, PR-DRB, based on the
study of communication latencies and repetitive application
patterns in HPC applications. PR-DRB internals is covered
here in more details.

3.1 PR-DRB Working Scheme
PR-DRB seeks better response time by using cached

communication and alternative paths. The proposed model

performs four basic tasks: Monitoring, Notification, Path
Configuration and Path selection procedures. Monitoring in-
cludes the tasks of latency values accumulation and contend-
ing flows identification, performed at intermediate routers.
Notification is initiated at destination endnodes. Here, and
Acknowledge (ACK) message with path information is cre-
ated and sent back to the source. The third task involves the
configuration of new alternative paths (Metapath Configura-
tion) according to latency values, also performed at source
nodes. If there are saved solutions for a congestion situation,
the paths are taken from the saved solution database. Oth-
erwise, new alternative paths are created. Later, the fourth
task is accomplished when new messages are injected into
the network. Here, selection procedures distributes messages
among the paths configured in previous task. Fig. 3 shows
PR-DRB functionality and its tasks. When a source node
wants to send some data, depicted in Source Endnode, a
message is built and injected into the network. Then, as seen
in Message Routing, the multi-header message is forwarded
through intermediate routers. As shown in the Monitoring
box in Fig. 3, the delay suffered in switch buffers (queuing
latency) is logged into the message. If queuing latency
values exceeds a threshold while still at intermediate routers,
contending flows patterns are also logged by PR-DRB. Once
the message reaches destination, as seen in Destination
Endnode, Notification takes place. The Notification box
depicts the task involved in this procedure. Here, latency
as well as contending communication patterns found are
sent back to the source in an ACK. Not all contending
flows are notified, but only those which contributes most to
congestion. At source nodes latency value and contending
flows are analyzed as shown in the Fig. 3, at the Metapath
Configuration box. This module configures alternative paths
to be used accordingly to latency value. If latency denotes
congestion, then new alternative paths are needed. PR-DRB
then looks for an already analyzed congestion situation. If
this is the case, the set of optimal alternative paths used
previously is obtained from the database. If no solutions
are found, then alternative paths opening procedures are
initiated. If latency values denotes congestion stabilization,
then alternative paths closing procedures are invoked. Here,
information about contending flows during congestion situ-
ations is also updated. Later, when a message is ready to
be injected into the network PR-DRB performs the Path
Selection. Here, PR-DRB selects which paths are going to
be used from those configured in the Metapath Configuration
step. Paths having lower latency values are more frequently
used, and they receive proportionally a greater number of
messages. Given a source node with N alternative paths,
let’s be Lci(i : 1..N) the latency recorded by path Ci. The
alternative path Cx will be selected in the following injection

876 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 3: PR-DRB-Process

according to the probability:

p(Cx) =
(1/LCx)∑N
i=1 1/LCi

(1)

The process of detecting already analyzed situations is
based on contending flows similarity, which is based on
approximation matching. As shown in Fig. 3, a message is
forwarded without any overhead when the output port is free.
Otherwise, packet is queued and latency is simultaneously
accumulated until the message is ready to be forwarded
again. PR-DRB is based on the DRB algorithm, and already
proposed congestion control for Infiniband [10] could be
used. As IBA already has functionalities required by PR-
DRB (e.g. monitoring functions at IBA switches, the CCA
has procedures for congestion notification and path open-
ing), PR-DRB integration is feasible. The following section
presents the performance evaluation of PR-DRB policy.
The evaluation is designed to compare PR-DRB behavior
against DRB [4], which has been already compared against
other traditional algorithms, under different interconnection
network scenarios.

4. PR-DRB Evaluation
Latency is evaluated in order to assess PR-DRB. Latency

is the time elapsed since a packet is created until it reaches
its destination, in seconds. Evaluation was conducted for fat
tree topologies with 32 and 64 nodes.

4.1 Modeling Environment
PR-DRB operations together with network components

were modeled [12] using the standard simulation and mod-
eling tool OPNET [13]. OPNET provides a Discrete Event
Simulator engine. This allows defining network components
behavior, and it supports detailed specification of protocols.
We have assumed virtual Cut-through flow control [14]. Link
Bandwidth was set to 2Gbps, packet size was set to 1024
bits and the size of routers buffers was 2MB.

4.2 Analysis with Permutation Traffic
PR-DRB is evaluated under the fat tree topology with 32

and 64 nodes. Communication patterns used are: "Matrix
Transpose" and "Perfect Shuffle". Fig. 4 and 5 shows the
performance under Matrix transpose pattern, for 32 nodes
and traffic load from 400 to 600 mbps/node respectively.
PR-DRB latency reduction achieved is 24% under both
scenarios. Proper communication balancing procedures and
packets sent through optimal alternative paths from the be-
ginning, keep congestion at minimum. Under 600 mbps/node
injection, PR-DRB uses progressively the maximum number
of alternative paths to deliver messages. For repetitive traffic
patterns, maximum path expansion is done directly. By
avoiding intermediate path expansion, unnecessary ACK
messages are avoided and overhead is minimized. With at
most 4 alternative paths, PR-DRB performs a remarkable
lower latency than DRB. Fig. 6 shows results with 64
communicating nodes. Latency reduction under the perfect
shuffle pattern is 32%. Fig. 7 shows the Matrix Transpose
pattern results. Higher load is injected and latency remains
bounded. Latency is reduced here around 40% compared to
DRB. Recall that PR-DRB will behave similarly to DRB
only under the first phase of the application. In this stage
PR-DRB is learning from the path opening procedures. In
later phases of parallel applications, like those shown here,
PR-DRB will apply directly the best solutions saved. From
time 1.015 latency values of both algorithms tend to become
stable and converge.

5. Conclusion
We proposed the Predictive and Distributed Routing Bal-

ancing, PR-DRB, which uses alternative paths to reduce
latency by considering traffic dynamic behavior constraints.
Applications that run on an HSIN possess repetitive be-
havior, and PR-DRB is capable to learn from it and save
information for later use. PR-DRB has been developed to

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 877

Fig. 4: Permutation patterns - Fat tree 32 nodes - 400 mbps

Fig. 5: Permutation patterns - Fat tree 32 nodes - 600 mbps

fulfill HSIN objectives such as all-to-all connection, and low
and uniform latency under any traffic load. The proposed
method is in line with commercial interconnects (as Infini-
Band [1]). Our policy allows heavier communication load
in the network, or in cost-bounded data centers it allows
using less network components, because they are efficiently
handled. The evaluation performed to validate PR-DRB has
revealed improvements in latency. We have shown that PR-
DRB is a fast and robust method. PR-DRB is useful for
bursty communication patterns, which are commonly created
by parallel applications and can produce the worst hot-spot
situations. As future work, we plan to predict congestion
before it appears by analyzing latency trend.

ACKNOWLEDGMENT
This work has been supported by the MEC-MICINN

Spain under contract TIN2007-64974. Also, we thank OP-
NET Technologies Inc. for the OPNET Modeler licenses.

References
[1] Infiniband, “Iba,” http://www.infinibandta.org/, 2011.
[2] G. Rodriguez et al., “Exploring pattern-aware routing in generalized

fat tree networks,” in ICS ’09: Procs of the 23rd int. conf. on
Supercomp. USA: ACM, 2009, pp. 276–285.

[3] A. Wong et al., “Parallel application signature,” CLUSTER ’09. IEEE
Int. Conf. on, vol. 1, pp. 1–4, 2009.

Fig. 6: Permutation patterns - Fat tree 64 nodes - 400 mbps

Fig. 7: Permutation patterns - Fat tree 64 nodes - 600 mbps

[4] D. Franco et al., “A new method to make communication latency
uniform: distributed routing balancing,” in ICS ’99: Procs of the 13th
int. conf. on Superc. USA: ACM, 1999, pp. 210–219.

[5] D. Lugones et al., “Dynamic and distributed multipath routing policy
for high-speed cluster networks,” in CCGRID ’09: Procs of the 2009
9th IEEE/ACM Int. Symp. on Cluster Comp. and the Grid, USA, 2009,
pp. 396–403.

[6] P. Garcia et al., “Recn-dd: A memory-efficient congestion manage-
ment technique for advanced switching,” Parallel Proc., Int. Conf. on,
vol. 0, pp. 23–32, 2006.

[7] E. Baydal et al., “A family of mechanisms for congestion control
in wormhole networks,” IEEE Trans. Parallel Distrib. Syst., vol. 16,
no. 9, pp. 772–784, 2005.

[8] S. Yan et al., “An enhanced congestion control mechanism in infini-
band networks for high performance computing systems,” Adv. Inf.
Networks and App., Int. Conf. on, vol. 1, pp. 845–850, 2006.

[9] A. Singh et al., “Globally adaptive load-balanced routing on tori,”
IEEE Comput. Archit. Lett., vol. 3, no. 1, p. 2, 2004.

[10] D. Lugones et al., “Dynamic routing balancing on infiniband net-
works,” in Journal of Comp. Science & Tech. (JCS&T), ser. Cluster
Computing ’08, 2008, pp. 104–110.

[11] T. Sherwood et al., “Basic block distribution analysis to find periodic
behavior and simulation points in applications,” in PACT ’01: Procs
of the 2001 Int. Conf. on Par. Arch. and Compil. Tech. USA: IEEE
Comp. Soc., 2001, pp. 3–14.

[12] D. Lugones et al., “Modeling adaptive routing protocols in high speed
interconnection networks,” OPNETWORK 2008 Conf., 2008.

[13] T. OPNET, “Opnet modeler accelerating network r&d,”
http://www.opnet.com, June 2008, oPNET.

[14] J. Duato et al., Interconnection Networks: An Engineering Approach.
USA: M. Kaufmann Pub. Inc., 2002.

878 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

A parallel algorithm for the verification of Covering Arrays

Himer Avila-George1, Jose Torres-Jimenez2, Vicente Hernández1 and Nelson Rangel-Valdez2
1Departamento de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia, Valencia, Spain
2Laboratorio de Tecnologías de Información, CINVESTAV-Tamaulipas, Ciudad Victoria, Tamaulipas, Mexico

Abstract— Covering Arrays (CAs) are combinatorial ob-
jects that, with a small number of cases, cover a certain
level of interaction of a set of parameters. CAs have found
application in a variety of fields where interactions among
factors need to be identified; some of these fields are biology,
agriculture, medicine, and software and hardware testing.
In particular, a covering array is anN × k matrix over an
alphabetv s.t. eachN × k subset contains at least one time
each combination from{0, 1, ..., v − 1}t, given a positive
integer valuet. The process of ensuring that a CA contains
each of thevt combinations is called verification of CA.
When CAs have many variables or their strength is greater
than 3, its verification is computationally very expensive.
In this paper we present an algorithm for CA verification
and its implementation details in sequential and parallel
computing.

Keywords: Covering Arrays, Parallel Computing Algorithms,
Software Testing

1. Introduction
The experimental design is a key piece in the software

development given that it allows to identify fails in the
software before it begins to operate. A good strategy to
test a software involves the generation of the whole set of
cases that participate in its operation. However, testing all
the possible cases of a program requires a great amount of
time, which can be inadmissible even for small programs
[1].

An alternative strategy to test a software is the use
of Covering Arrays (CAs). A Covering array (CA) is a
combinatorial object that, with a small number of cases,
covers a certain level of interaction of a set of parameters.
The meaning of level of interaction relates any subset oft
parameters of a matrix to the set of thevt different combi-
nations derived fromv different values. The confidence level
of the testing using combinatorial objects as CA increases
with the interaction level involved [2].

Covering arrays(CAs) have been object of study and
application in different research areas. Cawse [3] used CAs
in the material design, Hedayatet al. [4] used them in
medicine and agriculture; in biology and industrial processes
have also been used by Shashaet al. [5] and Pahdke [6]. CAs
have been used in hardware testing [7] but significantly the
area with the major application of these objects is in software

testing [8], [9]. Next, Definition 1.1 is a formal definition of
CA.

Definition 1.1 (Covering Array):Let N, t, k, v be posi-
tive integers witht ≤ k. A covering array, denoted by
CA(N ; t, k, v), of alphabetv, strengtht, is an arrayM of
sizeN × k, where each elementmi,j takes values from the
set S = {0, 1, 2, ..., v − 1} and each subset ofM of size
N × t contains all the possible combinations derived from
{0, 1, ..., v − 1}t symbols. In the rest of this document a
subset of sizeN × t will be known as at-tuple and the
initial t-tuple will be {1, 2, ..., t}.

To illustrate the CA approach applied to the design of
software testing, consider the Web-based system example
shown in Table 1, the example involves four parameters
each with three possible values. A full experimental design
(t = 4) should cover34 = 81 possibilities, however, if the
interaction is relaxed tot = 2 (pair-wise), then the number
of possible combinations is reduced to 9 test cases.

Table 1: Parameters of Web-based system example.

Browser OS DBMS Connections

0 Firefox Windows 7 MySQL ISDN
1 Chromium Ubuntu 10.10 PostgreSQL ADSL
2 Netscape Red Hat 5 MaxDB Cable

Figure 1 shows the CA corresponding toCA(9; 2, 4, 3);
given that its strength and alphabet aret = 2 and v = 3,
respectively, the combinations that must appear at least once
in each subset of sizeN×2 are{0, 0}, {0, 1}, {0, 2}, {1, 0},
{1, 1}, {1, 2}, {2, 0}, {2, 1}, {2, 2}.

0 0 0 0
0 1 1 1
0 2 2 2
1 0 1 2
1 1 2 0
1 2 0 1
2 0 2 1
2 1 0 2
2 2 1 0

Fig. 1: A combinatorial design,CA(9; 2, 4, 3).

Finally, to make the mapping between the CA and the
Web-based system, every possible value of each parameter
in Table 1 is labeled by the row number. Table 2 shows
the corresponding pair-wise test suite; each of its nine
experiments is analogous to one row of the CA shown in
Figure 1.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 879

Table 2: Test-suite covering all 2-way interactions,
CA(9; 2, 4, 3).

Experiments

1 Firefox Windows 7 MySQL ISDN
2 Firefox Ubuntu 10.10 PostgreSQL ADSL
3 Firefox Red Hat 5 MaxDB Cable
4 Chromium Windows 7 PostgreSQL Cable
5 Chromium Ubuntu 10.10 MaxDB ISDN
6 Chromium Red Hat 5 MySQL ADSL
7 Netscape Windows 7 MaxDB ADSL
8 Netscape Ubuntu 10.10 MySQL Cable
9 Netscape Red Hat 5 PostgreSQL ISDN

When aCA contains the minimum possible number of
rows, it is optimal and its size is called theCovering Array
Number(CAN). TheCAN is defined according to

CAN(t, k, v) = min{N : ∃ CA(N ; t, k, v)}.

The trivial mathematicallower boundfor a covering array is
vt ≤ CAN(t, k, v), however, this number is rarely achieved.
Therefore determining achievable lower bounds is one of the
main research lines for CAs.

The construction ofCAN(2, k, 2) can be efficiently done
according with [10]; the same is possible forCA(2, k, v)
when the cardinality of the alphabet isv = pn, wherep is a
prime number andn a positive integer value [11]. However,
in the general case determining thecovering array number
is known to be a hard combinatorial problem [12], [13]. For
the values oft and v that no efficient algorithm is known,
we use approximated algorithms to construct them. Some
of these approximated strategies must verify that the matrix
they are building is a CA. If the matrix is of sizeN × k
and the interaction ist, there are

(

k

t

)

different combinations
which implies a cost ofO(N×

(

k
t

)

) for the verification (when
the matrix hasN ≥ vt rows, otherwise it will never be a
CA and its verification is pointless). For small values oft
and v the verification of CAs is overcame through the use
of sequential approaches; however, when we try to construct
CAs of moderate values oft, v andk, the time spent by those
approaches is impractical. Then, the necessity for parallel
algorithms to construct and verify CAs appears.

In this paper we propose an algorithm to verify that a
given matrix is a CA. The algorithm is implemented follow-
ing the sequential and parallel strategies. The performance of
each paradigm is experimentally compared with the purpose
of showing their particular limitations. The remaining of
the paper is organized as follows. Section 2 reviews related
work dedicated to the construction and verification of CAs.
Section 3 formally presents the problem of verifying a CA
and describes the approaches proposed in this paper to
verify CAs. Section 4 presents the methodology followed
to experimentally compare the approaches; this section ends
with some discussion derived from the results obtained from
the experiment. Section 5 presents the conclusions derived
from the research presented in this paper.

2. Relevant related work
Because of the importance of the construction of (near)

optimal CAs, much research has been carried out in develop-
ing effective methods for construct them. There are several
reported methods for constructing these combinatorial mod-
els. Among them are: (a) algebraic methods, (b) recursive
methods, (c) greedy methods, and d) meta-heuristics. In
this section we describe the relevant related work to the
construction of CAs.

Algebraic approaches construct CAs using predefined
rules. Most algebraic approaches compute CAs directly by
a mathematical function [14], [15]. The algorithms that use
recursive constructions generate a number of small CAs and
with them build CAs of greater size. These algorithms have
been used in Augmented Annealing [16] and CTS [17] to
construct CAs. The majority of commerce and open source
test data generating tools use greedy algorithms for cover-
ing array construction (AETG [18], TCG [19], DDA [20],
ACTS [12], [21], and IRPS [22]). Some meta-heuristics that
have been used to solve the CA problem are: Simulated
Annealing (SA) [23], [24], Tabu Search (TS) [25], [26] and
Memetic Algorithms (MA) [27].

All the algorithms already presented that construct cover-
ing arrays must contain a certificate that the resulting matrix
is indeed a CA. For general matrices, the certificate is given
by the verification process of a CA; this process requires
to test that the sub-matrices derived from the

(

k

t

)

different
t-tuples contain all the combinations of symbols found in
{0, 1, ..., v − 1}t. Hence, the cost of verifying a CA is a
time consuming task that is highly combinatorial and rapidly
becomes impractical to be solved by sequential approaches
(even for moderate values oft, k, v of the CA). It is there
where lies the necessity of a parallel strategy that makes
faster the verification process in larger CAs.

The next section presents sequential and parallel strategies
proposed in this paper to verify a given matrix as a CA.

3. How to verify CAs
A matrix M of sizeN × k is a CA(N ; t, k, v) iff every

t-tuple contains the set of combination of symbols described
by {0, 1, ..., v−1}t. We propose a strategy that uses two data
structures calledP and J , and two injections between the
sets oft-tuples and combinations of symbols, and the set of
integer numbers, to verify thatM is a CA.

Let C = {c1, c2, ..., c(kt)
} be the set of the differentt-

tuples. A t-tuple ci = {ci,1, ci,2, ..., ci,t} is formed by t
numbers, each numberci,1 denotes a column of matrix
M. The setC can be managed using an injective function
f(ci) : C → I betweenC and the integer numbers, this
function is defined in Equation 1.

f(ci) =

t
∑

j=1

(

ci,j − 1

i+ 1

)

(1)

880 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Now, letW = {w1, w2, ..., wvt} be the set of the different
combination of symbols, wherewi ∈ {0, 1, ..., v − 1}t.
The injective functiong(wi) : W → I is defined as
done in Equation 2. The functiong(wi) is equivalent to the
transformation of av-ary number to the decimal system.

g(wi) =

t
∑

j=1

wi,j · v
t−i (2)

The use of the injections represents an efficient method
to manipulate the information that will be stored in the data
structuresP and J used in the verification process ofM
as a CA. The matrixP is of size

(

k

t

)

× vt and it counts
the number of times that each combination appears inM in
the differentt-tuples. Each row ofP represents a different
t-tuple, while each column contains a different combination
of symbols. The management of the cellspi,j ∈ P is done
through the functionsf(ci) andg(wj); while f(ci) retrieves
the row related with thet-tupleci, the functiong(wi) returns
the column that corresponds to the combination of symbols
wi. The vectorJ is of sizet and it helps in the enumeration
of all the t-tuplesci ∈ C.

Table 3 shows an example of the use of the functiong(wj)
for the Covering ArrayCA(9; 2, 4, 3) (shown in Figure 1).
Column 1 shows the different combination of symbols.
Column 2 contains the operation from which the equivalence
is derived. Column 3 presents the integer number associated
with that combination.

Table 3: Mapping of the setW to the set of integers using
the functiong(wj) in CA(9; 2, 4, 3) shown in Figure 1.

W g(wi) I

w1 ={0,0} 0 · 31 + 0 · 30 0
w2 ={0,1} 0 · 31 + 1 · 30 1
w3 ={0,2} 0 · 31 + 2 · 30 2
w4 ={1,0} 1 · 31 + 0 · 30 3
w5 ={1,1} 1 · 31 + 1 · 30 4
w6 ={1,2} 1 · 31 + 2 · 30 5
w7 ={2,0} 2 · 31 + 0 · 30 6
w8 ={2,1} 2 · 31 + 1 · 30 7
w9 ={2,2} 2 · 31 + 2 · 30 8

The matrixP is initialized to zero. The construction of
matrix P is direct from the definitions off(ci) andg(wj);
it counts the number of times that a combination of symbols
wj ∈ W appears in each subset of columns corresponding to
a t-tupleci, and increases the value of the cellpf(ci),g(wj) ∈
P in that number.

Table 4b shows the use of injective functionf(ci). Table
4b presents the matrixP of CA(9; 2, 4, 3). The different
combination of symbolswj ∈ W are in the first rows. The
number appearing in each cell referenced by a pair(ci, wj)
is the number of times that combinationwj appears in the
set of columnsci of the matrixCA(9; 2, 4, 3).

In summary, to determine if a matrixM is or not a CA
the number of different combination of symbols pert-tuple

is counted using the matrixP . The matrixM will be a CA
iff the matrix P contains no zero in it.

Several approaches can be followed to implement this
strategy to verify a CA. The traditional one is the sequential
algorithm (one instruction at a time), other approach is
parallel computing. These strategies use the data structures
described in this section and are discussed in the following
subsections.

3.1 Sequential Algorithm (SA) to verify CAs
The Sequential Algorithm (SA) takes as input a matrix

M and the parametersN, k, v, t that describe the CA that
M can be. Also, the algorithm requires the setsC andW
and, without lost of generality, the valuesKl andKu that
represent the first and lastt-tuple to be verified (which for
SA areKl = 1,Ku =

(

k
t

)

). SA outputs the total number
of missing combinations in the matrixM to be a CA.
The algorithm first counts for each differentt-tuple ci the
times that a combinationwj ∈ W is found in the columns
of M corresponding toci. After that, SA calculates the
missing combinationswj ∈ W in ci. Finally, the algorithm
transformsci into ci+1, i.e. it determines the nextt-tuple to
be evaluated.

The pseudo-code for SA is presented in Algorithm 1. For
each differentt-tuple (lines 5 to 21) the algorithm performs
the following actions: counts the expected number of times
a combinationwj appears in the set of columns indicated
by J (lines 6 to 11, where the combinationwj is the one
appearing inMn,J , i.e. in rown and t-tuple J); then, the
counter covered is increased in the number of different
combinations with a number of repetitions greater than zero
(lines 10 and 11). After that, the algorithm calculates the
number of missing combinations (line 12). The last step of
each iteration of the algorithm is the calculation of the next
t-tuple to be analyzed (lines 13 to 21). The algorithm ends
when all thet-tuples have been analyzed (line 5).

3.2 Parallel Approach (PA) to verify CAs
The parallel strategy to verify CAs is simple. It involves

a block distribution model of the set oft-tuples. The setC is
divided inton blocks, wheren is the processors number; the
size of blockB is equal to⌈C

n
⌉. The block distribution model

maintains the simplicity in the code; this model allows the
assignment of each block to a different core such that SA
can be applied to verify the blocks.

To make the distribution of work, it is necessary to
calculate the initialt-tuple f for each core according to its
ID (denoted byrank), whereF = rank · B. Therefore it is
necessary a method to convert the scalarF to the equivalent
t-tuple ci ∈ C. The sequential generation of eacht-tuple
ci previous tocF can be a time consuming task. There is
where lies the main contribution of our parallel approach; its
simplicity is combined with a clever strategy for computing
the initial t-tuple of each block.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 881

Table 4: Example of the matrixP resulting fromCA(9; 2, 4, 3) presented in Figure 1.

(a) Applying f(ci).

ci
index t-tuple f(ci)

c1 {1, 2} 0
c2 {1, 3} 1
c3 {1, 4} 3
c4 {2, 3} 2
c5 {2, 4} 4
c6 {3, 4} 5

(b) Matrix P .

g(wj)
f(ci) {0,0} {0,1} {0,2} {1,0} {1,1} {1,2} {2,0} {2,1} {2,2}

0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1

Algorithm 1: SA, sequential algorithm to verify a CA.
1 t_wise(MN,k, v, t,Kl,Ku)
2 begin
3 Miss← 0, iMax ← t− 1, P ← 0

/* Get initial t-tuple */
4 J ← getInitialTuple(k, t, c

Kl
)

5 while Jt ≤ k and f(J) ≤ Ku do
6 covered← 0
7 for n← 1 to N do
8 Pf(J),g(Mn,J) ← Pf(J),g(Mn,J) + 1

9 for j ← 1 to vt do
10 if Pf(J),j > 0 then
11 covered← covered + 1

12 Miss←Miss + vt
− covered

/* Calculates the next t-tuple */
13 Jt ← Jt + 1
14 if Jt > k and iMax > 0 then
15 JiMax ← JiMax + 1
16 for i← iMax + 1 to t do
17 Ji = Ji−1 + 1

18 if JiMax > k − t + iMax then
19 iMax ← iMax − 1
20 else
21 iMax = t

22 return Miss

We propose the Algorithm 2 as a method that generates
cF , according to a lexicographical, without generating its
previoust-tuplesci, wherei < F . To explain the purpose
of the Algorithm 2, lets consider theCA(9; 2, 4, 3) shown
in Figure 1. This CA has as setC the elements found in
column1 of Table 4a. The algorithmgetInitialTuple
with input k = 4, t = 2, F = 3 must returnJ = {1, 4}, i.e.
the values of thet-tuple c3. The Algorithm 2 is optimized
to find the vectorJ = {J1, J2, ..., Jt} that corresponds to
F . The valueJi is calculated according to

Ji = min
j≥1

∆i ≤

j
∑

l=Ji−1+1

(

k − l

t− i

)

where

∆i = F −
i−1
∑

m=1

Jm−1
∑

l=Jm−1+1

(

k − l

t−m

)

and
J0 = 0.

Algorithm 2: Get initial t-tuple to PA.
1 getInitialTuple(k, t, ci)

Output : Initial t-tuple each core
2 begin
3 Θ← i, iK ← 1, iT ← 1

4 kint ←
(

k−iK
t−iT

)

5 for i← 1 to t do
6 while Θ > kint do
7 Θ← Θ− kint

8 iK ← iK + 1

9 kint ←
(

k−iK

t−iT

)

10 Ji ← iK

11 iK ← iK + 1
12 iT ← iT + 1

13 kint ←
(

k−iK
t−iT

)

14 return J

In conclusion, the Algorithm 2 only requires the computa-
tion ofO(t×k) binomials to compute then initial t-tuples of
the PA. This represents a great improvement in contrast with
the naive approach that would require the generation of all
the

(

k
t

)

t-tuples, as done in the SA. The next section presents
the experimental results of using SA and PA approaches
proposed in this paper applied to the verification of CAs.

4. Experimental design to compare the
different approaches to verify a CA

This section presents an experimental design and results
derived from testing the approaches described in the last
section. The purpose of the experiment is to show the
performance of each approach and the limitations that one
can find on them. The two approaches were implemented
in C language. SA was compiled withgcc -O3and PA was
compiled withmpicc -O3. SA and PA were run in the Tirant
supercomputer belonging to the Spanish Supercomputing
Network [28].

In order to show the performance of the verification of
CAs algorithm, two experiments were developed. The first
experiment uses a benchmark that contains 16 binary CAs,
the second experiment uses a benchmark that contains 16
ternary CAs. Each benchmark was created using the follow-
ing parameters:t = {2, 3, 4}, k = {64, 128, 256, 512}.
We developed a specific implementation of Galois algo-
rithm [11], enhanced by the use of logarithmic tables [29].

882 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 4 8 12 16

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 4 8 12 16

S
pe

ed
up

Processors
k64 k128 k256 k512

(a) Speedup (t = 2)

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 4 8 12 16

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 4 8 12 16

S
pe

ed
up

Processors
k64 k128 k256 k512

(b) Speedup (t = 3)

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 4 8 12 16

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 4 8 12 16

S
pe

ed
up

Processors
k64 k128 k256 k512

(c) Speedup (t = 4)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 4 8 12 16

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 4 8 12 16

E
ffi

ci
en

cy

Processors
k64 k128 k256 k512

(d) Efficiency (t = 2)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 4 8 12 16

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 4 8 12 16

E
ffi

ci
en

cy

Processors
k64 k128 k256 k512

(e) Efficiency (t = 3)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 4 8 12 16

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 4 8 12 16

E
ffi

ci
en

cy

Processors
k64 k128 k256 k512

(f) Efficiency (t = 4)

Fig. 2: Performance analysis whent = {2, 3, 4} k = {64, 128, 256, 512} andv = 2.

We use this implementation to generate the 32 CAs. For
simplicity, the only multi-core approach considered during
the comparison was PA having a maximum number of cores
of 16 and the maximum time was 48 hours.

The comparison was based on the speedup (S) and the
efficiency (E) on a parallel architecture against a single core
case. We define speedup as the factor by which the execution
time for the application changes,S(n) = τ(s)

τ(n) , whereτs is
execution time on a single processor andτn is execution
time on a multiprocessor. Efficiency gives fraction of time
that processors are being used on computation, (E = S(n)

n
).

4.1 Binary benchmark
This subsection presents a comparison between the SA

and PA approaches using a binary benchmark with the
purpose of studying the variation in the performance between
a single core approach and an approach with more than one
core. Table 5 shows the time (in seconds) spent by SA and
PA to verify the experimental CAs. The first four columns
describe the test case, the rest of the columns show the time
spent by SA and PA, respectively, to verify each instance.

Figures 2a and 2d shows the performance achieved for
the instances of strengtht = 2; it is possible to observe that
for almost all the cases the speedup is almost linear up to4
cores, and after that it drops considerably. Figures 2b and 2e
shows the performance for the instances wheret = 3. A
linear speedup up to8 cores, and after that it drops slightly.
Figures 2c and 2f shows the performance for the instances

Table 5: Comparison of the performance of SA and PA. This
table shows the time (in seconds) spent by each approach
when verifying the chosen benchmark.

N t k v SA PA (16 cores)

64 2 64 2 0.000382 0.000108
64 3 64 2 0.018693 0.001287
64 4 64 2 0.662790 0.044016
64 5 64 2 14.490000 0.911106
128 2 128 2 0.001592 0.000182
128 3 128 2 0.159930 0.010300
128 4 128 2 12.760802 0.812173
128 5 128 2 709.999744 47.536213
256 2 256 2 0.005984 0.000580
256 3 256 2 1.276129 0.079378
256 4 256 2 206.547729 13.151242
256 5 256 2 27240.528490 1753.620271
512 2 512 2 0.024898 0.001681
512 3 512 2 10.938686 0.685710
512 4 512 2 3568.107378 231.240136
512 5 512 2 898675.740682 69418.805718

where t = 4. The performance shows a better behavior in
the speedup and the efficiency than the ones observed for the
cases wheret = {2, 3}, i.e. the speedup is almost linear and
the efficiency is almost 100% in all the instances showed.

4.2 Ternary benchmark
This subsection presents a comparison between the SA

and PA approaches using a benchmark that contains 16
ternary CAs. The Table 6 shows the time (in seconds) spent
by SA and PA to verify the experimental CAs. The first four
columns describe the test case, the rest of the columns show

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 883

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 4 8 12 16

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 4 8 12 16

S
pe

ed
up

Processors
k64 k128 k256 k512

(a) Speedup(t = 2)

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 4 8 12 16

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 4 8 12 16

S
pe

ed
up

Processors
k64 k128 k256 k512

(b) Speedup(t = 3)

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 4 8 12 16

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 4 8 12 16

S
pe

ed
up

Processors
k64 k128 k256 k512

(c) Speedup(t = 4)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 4 8 12 16

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 4 8 12 16

E
ffi

ci
en

cy

Processors
k64 k128 k256 k512

(d) Efficiency (t = 2)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 4 8 12 16

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 4 8 12 16

E
ffi

ci
en

cy

Processors
k64 k128 k256 k512

(e) Efficiency(t = 3)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 4 8 12 16

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 4 8 12 16

E
ffi

ci
en

cy

Processors
k64 k128 k256 k512

(f) Efficiency (t = 4)

Fig. 3: Performance analysis whent = {2, 3, 4}, k = {64, 128, 256, 512} andv = 3.

the time spent by SA and PA, respectively, to verify each
instance. A cell in the table with the expressionn.a. denotes
that this experiment does not end at the maximum available
time (48 hours).

Table 6: Comparison of the performance of SA and PA. This
table shows the time (in seconds) spent by each approach
when verifying the chosen benchmark.

N t k v SA PA (16 cores)

64 2 64 3 0.000430 0.000255
64 3 64 3 0.104173 0.009200
64 4 64 3 2.233600 0.143011
64 5 64 3 35.201100 2.217308
128 2 128 3 0.007564 0.000590
128 3 128 3 1.109700 0.071200
128 4 128 3 68.076500 4.308390
128 5 128 3 2134.342164 135.955665
256 2 256 3 0.026556 0.001728
256 3 256 3 9.335492 0.584722
256 4 256 3 1895.894700 124.724641
256 5 256 3 132781.989216 9024.639374
512 2 512 3 0.112200 0.007339
512 3 512 3 80.039744 5.056195
512 4 512 3 41956.982600 2733.268051
512 5 512 3 n.a. n.a.

To illustrate the scalability of our parallel algorithm we
use the cases whent = {2, 3, 4}, k = {64, 128, 256, 512}
and processors = {4, 8, 12, 16}. The Figure 3 shows that
the acceleration is almost linear and the efficiency is about
95% whenv = 3. Therefore we can conclude that our
parallel algorithm scales very well.

5. Conclusions

This paper presents sequential and parallel approaches to
solve the problem of verifying CAs. The approaches were
used to verify a benchmark formed by 32 matrices which
were proposed to be verified as CAs. The CAs to be verified
have alphabetsv = {2, 3}, strengthst = {2, 3, 4, 5} and
number of columnsk = {64, 128, 256, 512}.

The results of the two experiments presented showed SA
as a good option whent ≤ 3; however, this approach
consumed a lot of time whent ≥ 4 and k > 128 which
made it impractical to use.

We proposed an optimized algorithm to calculate the
initial t-tuple, its computational cost isO(t×k). PA approach
worked well in the cases whent > 2. In general, the results
showed that the partition strategy proposed for PA was
efficient for the CA verification problem due to it required an
almost null communication; this fact is observed in the linear
speedup seen experimentally. Therefore we can conclude that
our parallel algorithm scales very well.

Finally, given that the results gave birth to new CAs,
another contribution of this paper is a new set of CAs
which have been concentrated in the repository avail-
able at http://www.tamps.cinvestav.mx/~jtj/
CA.php. In this web site it is possible to download the
CAs, with better upper bounds than the ones given at the
NIST Web site [30]. The current best upper bounds can be
found in [31].

884 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Acknowledgments

The authors thankfully acknowledge the computer re-
sources and assistance provided by Spanish Supercomputing
Network (TIRANT-UV). This research work was partially
funded by the following projects: CONACyT 58554, Calculo
de Covering Arrays; 51623 Fondo Mixto CONACyT y
Gobierno del Estado de Tamaulipas.

References

[1] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling, “Augmenting
simulated annealing to build interaction test suites,” inProceedings of
the 14th International Symposium on Software Reliability Engineering
(ISSRE ’03). IEEE Computer Society, 2003, pp. 394–405.

[2] R. Kuhn, Y. Lei, and R. Kacker, “Practical combinatorial testing:
Beyond pairwise,”IT Professional, vol. 10, no. 3, pp. 19–23, 2008.

[3] J. N. Cawse,Experimental Design for Combinatorial and High
Throughput Materials Development, J. N. Cawse, Ed. John Wiley
& Sons, Inc., 2003.

[4] A. Hedayat, N. Sloane, and J. Stufken,Orthogonal Arrays: Theory
and Applications, A. Hedayat, N. Sloane, and J. Stufken, Eds.
Springer-Verlag, 1999.

[5] D. E. Shasha, A. Y. Kouranov, L. V. Lejay, M. F. Chou, and G. M.
Coruzzi, “Using combinatorial design to study regulation by multiple
input signals: A tool for parsimony in the post-genomics era,”Plant
Physiol, vol. 127, no. 4, pp. 1590–1594, 2001.

[6] M. S. Phadke,Quality Engineering Using Robust Design, M. S.
Phadke, Ed. Prentice Hall PTR, 1995.

[7] K. K. Vadde and V. R. Syrotiuk, “Factor interaction on service delivery
in mobile ad hoc networks,”IEEE J Sel Area Comm, vol. 22, no. 7,
pp. 1335 – 1346, 2004.

[8] K. Burr and W. Young, “Combinatorial test techniques: Table-based
automation, test generation and code coverage,” inProceedings of the
Intl. Conf. on Software Testing Analysis and Review. West, 1998,
pp. 503–513.

[9] C. Yilmaz, M. B. Cohen, and A. A. Porter, “Covering arrays for
efficient fault characterization in complex configuration spaces,”IEEE
T Software Eng, vol. 32, no. 1, pp. 20–34, 2006.

[10] D. J. Kleitman and J. Spencer, “Families of k-independent sets,”
Discrete Math, vol. 6, no. 3, pp. 255–262, 1973.

[11] K. A. Bush, “Orthogonal arrays of index unity,”Ann Math Stat,
vol. 23, no. 3, pp. 426–434, 1952.

[12] Y. Lei and K. Tai, “In-parameter-order: A test generation strategy for
pairwise testing,” inThe 3rd IEEE International Symposium on High-
Assurance Systems Engineering, ser. HASE ’98. IEEE Computer
Society, 1998, pp. 254–261.

[13] C. J. Colbourn, “Combinatorial aspects of covering arrays,”Le Matem-
atiche, vol. 58, pp. 121–167, 2004.

[14] M. Chateauneuf and D. L. Kreher, “On the state of strength-three
covering arrays,”J Comb Des, vol. 10, no. 4, pp. 217–238, 2002.

[15] K. Meagher and B. Stevens, “Group construction of covering arrays,”
Journal of Combinatorial Designs, vol. 13, no. 1, pp. 70–77, 2005.

[16] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling, “Constructing
strength three covering arrays with augmented annealing,”Discrete
Math, vol. 308, no. 13, pp. 2709–2722, 2008.

[17] A. Hartman and L. Raskin, “Problems and algorithms for covering
arrays,”Discrete Mathematics, vol. 284, no. 1-3, pp. 149 – 156, 2004.

[18] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton, “The
combinatorial design approach to automatic test generation,”IEEE
Software, vol. 13, no. 5, pp. 83–88, 1996.

[19] Y. Tung and W. S. Aldiwan, “Automating test case generation for the
new generation mission software system,” inAerospace Conference
Proceedings. IEEE, 2000, vol. 1, pp. 431–437.

[20] R. C. Bryce and C. J. Colbourn, “The density algorithm for pairwise
interaction testing,”Softw Test Verif Rel, vol. 17, no. 3, pp. 159–182,
2007.

[21] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “IPOG:
A general strategy for t-way software testing,” inProceedings of the
14th Annual IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems (ECBS ’07). IEEE, 2007,
pp. 549–556.

[22] M. Younis, K. Zamli, and N. Mat Isa, “IRPS: An Efficient Test
Data Generation Strategy for Pairwise Testing,” inKnowledge-Based
Intelligent Information and Engineering Systems, ser. Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2008, vol. 5177,
pp. 493–500.

[23] J. Torres-Jimenez and E. Rodriguez-Tello, “Simulated annealing for
constructing binary covering arrays of variable strength,” inIEEE
Congress on Evolutionary Computation. IEEE, 2010, pp. 1–8.

[24] J. Martinez-Pena, J. Torres-Jimenez, N. Rangel-Valdez, and H. Avila-
George, “A heuristic approach for constructing ternary covering arrays
using trinomial coefficients,” inIBERAMIA, ser. Lecture Notes in
Computer Science, Á. F. K. Morales and G. R. Simari, Eds., vol.
6433. Springer, 2010, pp. 572–581.

[25] T. Berling and P. Runeson, “Efficient evaluation of multifactor depen-
dent system performance using fractional factorial design,”IEEE T
Software Eng, vol. 29, no. 9, pp. 769–781, 2003.

[26] L. Gonzalez-Hernandez, N. Rangel-Valdez, and J. Torres-Jimenez,
“Construction of mixed covering arrays of variable strength using a
tabu search approach,” inCOCOA (1), ser. Lecture Notes in Computer
Science, W. Wu and O. Daescu, Eds., vol. 6508. Springer, 2010, pp.
51–64.

[27] E. Rodriguez-Tello and J. Torres-Jimenez, “Memetic algorithms for
constructing binary covering arrays of strength three,” inArtificial
Evolution 2009. Springer, 2009, vol. 5975, pp. 86–97.

[28] Tirant supercomputer, “Spanish Supercomputing Network,” URL:
http://www.uv.es/siuv/cas/zcalculo/res/descripcion.wiki. Accessed 20
April 2011.

[29] J. Torres-Jimenez, N. Rangel-Valdez, A. L. Gonzalez-Hernandez, and
H. Avila-George, “Construction of logarithm tables for Galois Fields,”
International Journal of Mathematical Education in Science and
Technology, vol. 42, no. 1, pp. 91–102, 2010.

[30] National Institute of Standards and Technology, “NIST covering array
tables,” URL: http://math.nist.gov/coveringarrays/. Accessed 20 April
2011.

[31] C. J. Colbourn, “Covering array tables for t=2,3,4,5,6,” URL: http:
//www.public.asu.edu/~ccolbou/src/tabby/catable.html. Accessed 20
April 2011.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 885

Methodology for Performance Evaluation of the Input/Output
System

Sandra Méndez1, Dolores Rexachs1, and Emilio Luque1
1Computer Architecture and Operating System Department (CAOS)

Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain

Abstract— The increase of processing units, the speed
and the computing power, and the complexity of scientific
applications that use high performance computing require
more efficient Input/Output systems. To use the I/O system
efficiently it is necessary to know its performance capacity
to determine whether it fulfills I/O requirements of the
applications. This paper proposes a methodology for I/O
system performance evaluation for computers clusters. The
approach encompasses the characterization of the appli-
cation, I/O system, and devices. We select and evaluate
the I/O factors that have an impact on the application
performance by considering the application and the I/O
architecture configuration. During the analysis of the I/O
configuration, we identify configurable factors that impact
the I/O system performance. In the evaluation phase, we
evaluate the application under different I/O configurations
and we determine the inefficiency by analyzing the difference
between measured values and characterized values.

Keywords: Parallel I/O System, I/O Architecture, I/O Configura-
tion, I/O Characterization

1. Introduction
The increase of processing units, the advance in speed

and computing power, and the increasing complexity of
scientific applications that use high performance computing
require more efficient Input/Output(I/O) Systems. Due to the
historical “gap“ between the computing performance and
I/O performance, in many cases, the I/O system becomes
the bottleneck of the parallel systems. The efficient use of
the I/O system and the identification of I/O factors that
influence the performance can help to cover this “gap“.
To use the I/O system efficiently, it is first necessary to
know its performance capacity to determine if it fulfills the
application I/O requirements. There are several papers on
performance evaluation of I/O system and since I/O system
performance depends on the software and hardware of the
I/O, these studies are made for specific parallel computer
configurations. Roth [1] presented event tracing for charac-
terizing the I/O demands of applications on the Jaguar Cray
XT supercomputer. Fahey [2] experimented in the I/O system
of the Cray XT, and the analysis was focused in the LUSTRE
filesystem. Laros [3] carried out a performance evaluation of

I/O configuration. Previous papers do not directly consider
the I/O characteristics of applications.

We propose the I/O system evaluation by analyzing each
level on the I/O path. Furthermore, we take into account
the application I/O requirements and the I/O architecture
configuration. The proposed methodology has three phases:
characterization, the analysis of I/O configuration, and the
evaluation. In the characterization phase, we extract the I/O
requirements of the application, bandwidth and IOPs (I/O
operations per second) at filesystem level, interconnection
network, I/O library and I/O devices. In the analysis of
the I/O configuration phase we identify configurable factors
that impact the performance of the I/O system. We analyze
the filesystem, I/O node connection, placement and state of
buffer/cache, data redundancy and service redudancy. We use
these factors along with application behavior to compare
and analyze existent I/O configurations in the cluster. In
the evaluation phase we collect metrics of the application
execution under different configurations. The inefficiency is
determined by analyzing the difference between measured
values and characterized values.

The rest of this article is organized as follows: Section
II introduces our proposed methodology. In Section III we
review the experimental validation of this proposal. Finally,
in the last section, we present conclusions and future work.

2. Proposed Methodology
The methodology (Fig. 1) has three phases: characteri-

zation, I/O configuration analysis and evaluation. The I/O
system performance is related to I/O time, which depends
on the transfer rate and I/O operations. We analyze the
application and I/O system to identify the possible points of
inefficiency. We also extract information in order to select
the more suitable configuration for the application.

2.1 Characterization
We analyze the application I/O characteristics and the I/O

system. Fig. 2 shows information obtained in this phase.
Here we describe the process of the characterization.

2.1.1 Parallel I/O System
Parallel system was characterized at I/O library level,

filesystem (local, distributed and/or parallel) and storage

886 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Fig. 1: Methodology for Performance Evaluation of I/O
System

Fig. 2: Characterization phase
network (Direct Attached Storage (DAS), Network Attached
Storage (NAS), Storage Area Network (SAN) and NAS
devices (NASD)). We characterize the IOPs and bandwidth
for each level, as shown in figure 3. To evaluate filesystem,
IOzone [4] and/or bonnie++ [5] benchmarks can be used.
For library level it is possible to use b_eff_io [6] or IOR
[7].

The I/O system analyzed corresponds to the cluster Ao-
hyper. This cluster has the following characteristics: 8 nodes
AMD Athlon(tm) 64 X2 Dual Core Processor 3800+, 2GB
RAM memory, 150GB local disk, and local filesystem linux
ext4; 1 NFS server with RAID 1 (2 disks) with 230GB
capacity and RAID 5 (3 disks) with stripe=256KB and
917GB capacity, both with write-cache enabled (write back);
two Gigabit Ethernet networks, one for communication
and one for data. The parallel system and storage devices
characterization were done with IOzone (TABLE 1). In this
case the minimum bandwidth corresponds to I/O library. The
experiments were performed at block level with a file size
which doubles the memory size. Block size was changed
from 32KB to 16MB. For I/O library, the IOR benchmark
was used wich was configured for 8 segments, from 16MB
to 128MB block size and transfer block size from 32 to
256KB. It was launched with 8 and 16 processes. evaluation

2.1.2 Scientific Application
We extract the type, amount and size of I/O operation at

library level. TABLE 2 shows the application I/O require-
ments. This information is used in the evaluation phase to

Fig. 3: I/O system Characterization

Table 1: I/O system characterization of Aohyper - Average
(MB/sec)

Measures read write read write read write
home home raid1 raid1 raid5 raid5

I/O Library 27 48 28 48 29 48
Local Filesystem 68 85 133 113 273 193
Global
Filesystem

47 50 48 50 47 50

determine whether application performance is limited by the
application or by the I/O system. To evaluate the application
characterization at process level, an extension of PAS2P [8]
tracing tool was developed. To expand the characterization
phase, the methodology is applied to Block Tridiagonal(BT)
application of NAS Parallel Benchmark suite (NPB)[9]. NAS
BT-IO is a compute and I/O intensive application with com-
munications between processes. Therefore, compute node,
networks and I/O system have an influence on applications
performance. The TABLE 2 shows the characterization done
for the class C of NAS BT-IO in full and simple subtype.

2.2 Input/Output Configuration Analysis
Users do not normally know I/O system in detail. They

trust that the parallel system is capable to processing all
I/O requests and hope to recover processed data when they
demand. We propose the idea that an application can use
a different set of I/O configurable resources of existent
I/O architecture. This configurable resource set is called
I/O configurations. We evaluate I/O system components for
evaluating the impact on application performance due to
configuration, as shown in Fig. 3.

Table 2: Characterization NAS BT-IO - Class C - 16 pro-
cesses

Parameters full simple
number of application files 1 1
number of reads 640 2,073,600 and 2,125,440
number of writes 640 2,073,600 and 2,125,440
block size to read 10 MB 1.56KB and 1.6KB
block size to write 10 MB 1.56KB and 1.6KB
number of open calls 32 32
number of close calls 32 32
number of processes 16 16

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 887

Fig. 4: Evaluation Phase

2.2.1 Identification of Configurable Factors
We considered the following configurable factors in the

I/O architecture: filesystem type and placement (local, dis-
tributed and parallel), number and type of interconnection
network (dedicated and shared to compute), state and place-
ment of buffer/cache, RAID level, number and placement
of I/O node. The cluster Aohyper has two RAID levels:
1 and 5 and JBOD (Just a Bunch Of Disks). There is no
redundancy of service. Aohyper has an NFS server that is
also I/O node for sharing accesses. For local accesses there
are eight I/O nodes and the data sharing must done by the
user. At filesystem level, the cluster has ext4 as its local
filesystem and NFS as its global filesystem. There are two
networks, one for services and other for data transfer.

2.2.2 Selection of I/O Configurations
The configuration is selected in function of performance

provided in I/O path and the RAID level. Three configura-
tions were selected: JBOD, with RAID1 and with RAID5.
However, the I/O system also has configurations with soft-
ware RAID levels composed by local disks and with one or
two networks for communication and data.

2.3 Evaluation
The Fig. 4 shows the evaluation step. In this phase, we

prepared the evaluation environment, we defined I/O metrics
for evaluation and we analyzed application performance in
different configurations.

2.3.1 Preparation the Evaluation Environment
For the evaluation phase we set parameters of application,

library and architecture. For our example, we evaluate the
NAS BT-IO class C with MPICH library.

2.3.2 Evaluation of I/O metrics
The metrics for the evaluation were: execution time,

I/O time (time to do reading and writing operations), I/O
operations per second (IOPs), latency of I/O operations and
throughput (number of megabytes transferred per second).

2.3.3 Analysis of relationship between I/O factors and
I/O metrics

We compared the measures of the application execution
with characterized values on I/O path levels by each con-

Fig. 5: NAS BT-IO Class C 16 Processes

Fig. 6: Transfer rate percentages for NAS BT-IO

figuration. Each configuration has associated an array A =
[bwlib, bwmpi, bwfs, bwnet, bwdisk], each value corresponds
to a level in path I/O. We have compared the array A
with the application transfer rate, taking into account the
I/O operation type. With this information, we can identify
possible points of inefficiency in the I/O path. When the
throughput of application is much lower than min(A) then
the application does not efficiently use the capacity of I/O
system due to its access patterns.

Fig. 5 shows the execution time, I/O time and throughput
for NAS BT-IO class C using 16 processes executed in the
cluster Aohyper on three I/O configurations. The evaluation
is for full subtype (with collectives I/O) and simple (without
collectives). In Fig. 6, we observed a low transfer rate,
NAS BT-IO simple subtype use about 50% of I/O library
characterized values for reading and about 30% for writing
in the three configurations. NAS BT-IO simple subtype
does 4,199,040 writes and 4,199,040 reads with block size
of 1,600 and 1,640 bytes (TABLE 2). This has a high
penalization in I/O time impacting on execution time (Fig.
5).

Fig. 6 shows NAS BT-IO full subtype (with block size
10 MB for reading and writing, TABLE 2), the rate transfer
is about 70% of local filesystem characterized values for
writing and 90% for reading in JBOD. In RAID1, the
rate transfer is about 50% of local filesystem characterized
values for writing and 45% for reading. The configuration
with RAID 5 has higher performance for simple subtype.
However, this I/O capacity is not exploited (Fig. 6) by simple
subtype due to its the access pattern.

3. Experimentation
In order to test the methodology, an evaluation of NAS

BT-IO for 16 and 64 processes in a different cluster was
done. Such a cluster is called cluster A. It is composed

888 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Table 3: I/O system of Cluster A
Measures in MB/sec read write

raid5 raid5
I/O library 32 51
Local Filesystem 260 200
Global Filesystem 89 79

Fig. 7: NAS BT-IO Clase C - 16 and 64 processes

of 32 compute nodes: 2 x Dual-Core Intel (R) Xeon (R)
3.00GHz, 12 GB of RAM, and 160GB SATA disk Dual
Gigabit Ethernet. A front-end node as NFS server: Dual-
Core Intel (R) Xeon (R) 2.66GHz, 8 GB of RAM, 5 of 1.8
TB RAID and Dual Gigabit Ethernet. Characterization of
I/O system of cluster A is presented in TABLE 3. IOR tests
to evaluate the library of I/O were done with 8 segments,
block size of 256MB, and 256KB transfer block.

Characterization of NAS BT-IO is similar to the cluster
Aohyper. The characterization of application with 16 pro-
cesses in cluster A is shown in TABLE 2. As we analyze
application behavior, it is not necessary to characterize the
application again in other systems for the same class and
number of processes. Fig. 7 shows execution time, I/O time
and throughput for NAS BT-IO full subtype and simple. NAS
BT-IO simple subtype (Fig. 8) for 16 processes has a transfer
rate of about 3% of characterized value on I/O library for
writing and 2% for reading operations. The transfer rate is
lower for 64 processes with 1% for reading and about 2%
for writing. The simple subtype of NAS BT-IO is limited
by I/O in this I/O configuration of cluster A. We analyze
the full subtype in (Fig. 8), whre we see the full subtype
surpasses the barrier of the I/O library. The Fig. 8 shows
percentages of characterized values for NFS. The higher
transfer rate is achieved with 16 processes and the lowest
I/O time impacting in execution time. With this information
we can observe that full subtype of NAS BT-IO is limited by
computing or communication in Cluster A. NAS BT-IO full
subtype does not achieve 60% of NFS characterized values

Fig. 8: Transfer rate percentage NAS BT-IO

and the execution time is increased with more processes due
to the increase of the I/O operations and communication
among processes.

4. Conclusion
A methodology to analyze I/O performance of parallel

computers was shown. Such methodology encompasses the
characterization of the I/O system at different levels: devices,
I/O system and application. The configuration of different
elements that impact on performance were analyzed and
evaluated by considering the application and the I/O ar-
chitecture. This methodology is applied in two different
clusters for the NAS BT-IO benchmark. I/O systems features
are shown, as well as their impact on the applications
performance.

An application I/O model is being defined to give support
to the evaluation and design of configurations. This model
is based on the characteristics of the application and the I/O
system. The objective of this model is to determine which
configuration of I/O meets the user’s performance require-
ments, taking into account the behavior of the application
I/O in a given system. For other configurations evaluation,
we are analyzing the simulation framework SIMCAN[10].
We plan to use this tool to model full I/O architectures.

Acknowledgment
This research has been supported by MICINN-Spain under

contract TIN2007-64974.

References
[1] P. C. Roth, “Characterizing the i/o behavior of scientific applications

on the cray xt,” in PDSW ’07: Procs of the 2nd int. workshop on
Petascale data storage. USA: ACM, 2007, pp. 50–55.

[2] M. Fahey, J. Larkin, and J. Adams, “I/o performance on a massively
parallel cray xt3/xt4,” in Parallel and Distributed Procs, 2008. IPDPS
2008. IEEE Int. Symp. on, 14-18 2008, pp. 1 –12.

[3] J. H. Laros et al., “Red storm io performance analysis,” in CLUSTER
’07: Procs of the 2007 IEEE Int. Conf. on Cluster Computing. USA:
IEEE Computer Society, 2007, pp. 50–57.

[4] W. D. Norcott, “Iozone filesystem benchmark,” Tech. Rep., 2006.
[Online]. Available: http://www.iozone.org/

[5] R. Coker, “Bonnie++ filesystem benchmark,” Tech. Rep., 2001.
[Online]. Available: http://www.coker.com.au/bonnie++/

[6] R. Rabenseifner and A. E. Koniges, “Effective file-i/o bandwidth
benchmark,” in Euro-Par ’00: Procs from the 6th Int. Euro-Par
Conference on Parallel Procs. London, UK: Springer-Verlag, 2000,
pp. 1273–1283.

[7] . S. J. Shan, Hongzhang, “Using ior to analyze the i/o performance
for hpc platforms,” LBNL Paper LBNL-62647, Tech. Rep.,
2007. [Online]. Available: www.osti.gov/bridge/servlets/purl/923356-
15FxGK/

[8] A. Wong, D. Rexachs, and E. Luque, “Extraction of parallel appli-
cation signatures for performance prediction,” in HPCC, 2010 12th
IEEE Int. Conf. on, sept. 2010, pp. 223 –230.

[9] P. Wong and R. F. V. D. Wijngaart, “Nas parallel benchmarks
i/o version 2.4,” Computer Sciences Corporation, NASA Advanced
Supercomputing (NAS) Division, Tech. Rep., 2003.

[10] A. Núnez, , et al., “Simcan: a simulator framework for computer
architectures and storage networks,” in Simutools ’08. Belgium:
ICST, 2008, pp. 1–8.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 889

Computational Aspects of Silicate Networks

Paul Manuel
 1
, Indra Rajasingh

 2
, Albert William

2 and Antony Kishore
 2

1 Department of Information Science, Kuwait University, Kuwait 13060
2 Department of Mathematics, Loyola Collage, Chennai, India, 600 034

Abstract - In this paper we consider a new interconnection

network motivated by molecular structure of a chemical

compound SiO4. The different forms of silicates available in

nature lead to the introduction of the silicate networks. We

investigate various parameters related to this network. We

provide an addressing scheme for the nodes of the network

and also an algorithm that enables us to draw the silicate

network in the two dimensional plane aesthetically. Certain

properties of this network are brought out using classical

geometry. We also identify edge disjoint cycles of this

network. The embedding of the honeycomb and hexagonal

networks into silicates is studied in order to demonstrate

that they are all computationally equivalent.

Keywords: Silicate networks, topological properties,

mesh-like architectures, embedding, and drawing

algorithm

1 Introduction

 Interconnection network is a programmable system that

transports data between terminals. Early work on

interconnection networks was motivated by the needs of the

communications industry, particularly in the context of

telephone switching. With the growth of the computer

industry, applications for interconnection networks within

computing machines began to become apparent. As interest

in parallel processing grew, a large number of networks

were proposed for processor to memory and processor to

processor interconnection [10].

An interconnection network consists of a set of

processors, each with a local memory, and a set of

bidirectional links that serve for the exchange of data

between processors. A convenient representation of an

interconnection network is by an undirected graph G = (V,

E) where each processor is a vertex in V and two vertices

are connected by an edge if and only if there is a direct

communication link between processors[10].

 A few networks such as Hexagonal, Honeycomb, and

grid networks, for instance, bear resemblance to atomic or

molecular lattice structures. Honeycomb networks, built

recursively using the hexagon tessellation [14,15,16], are

widely used in computer graphics [11], cellular phone

base station [12], image processing [2], and in chemistry

as the representation of benzenoid hydrocarbons [15]

and Carbon Hexagons of Carbon Nanotubes [9]. Hexagonal

networks are based on triangular plane tessellation, or the

partition of a plane into equilateral triangles [3,12,16].

Hexagonal network represents a host cyclotriveratrylene with

halogenated monocarbaborane anions [1] and Silicon Carbide

[13]. Carbon nanotubes consist of shells of sp2-hybridized

carbon atoms forming a hexagonal network, arranged

helically within a tubular motif [1].

 In this paper, we deal with silicate networks which was

introduced recently; silicates are obtained by fusing metal

oxides or metal carbonates with sand. Essentially all the

silicates contain SiO4 tetrahedra. The corner vertices of SiO4

tetrahedron represent oxygen ions and the center vertex

represents the silicon ion. Graph theoretically, we call the

corner vertices as oxygen nodes and the center vertex as

silicon node. See Figure 1. The minerals are obtained by

successively fusing oxygen nodes of two tetrahedra of

different silicates.

Figure 1: SiO4 tetrahedra where the corner vertices represent

oxygen ions and the center vertex the silicon ion

 In this paper, we study the topological properties of

silicate networks as it has been studied for other

interconnection networks [2,3,5,8,10,14,16]. We study its

structure and properties from the perspective of computer

science. In order to compare the computational powers of

silicate networks with the other similar mesh-like

architectures, those architectures are embedded into

silicates. We also look at the compound from the

perspectives of chemistry. We study the topological

structure of silicates. We identify an equilateral property of

silicates and we partition the oxygen edges into edge

disjoint cycles. We propose an addressing scheme of

silicate networks and map the nodes of silicate networks

onto a Cartesian plane to draw the silicate network

aesthetically.

890 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

(a) (b)

Figure 2: Construction of Silicate Network SL(n) from

honeycomb network HC(n)

2 Properties of Silicate Networks

 A silicate network can be constructed in different ways.

Here in this paper we describe the construction of a silicate

network from a honeycomb network. Consider a honeycomb

network HC(n) of dimension n. Place silicon ions on all the

vertices of HC(n). Subdivide each edge of HC(n) once. Place

oxygen ions on the new vertices. Introduce 6n new pendant

edges one each at the 2-degree silicon ions of HC(n) and

place oxygen ions at the pendent vertices. See Figure 2(a).

With every silicon ion associate the three adjacent oxygen

ions and form a tetrahedron as in Figure 2(b). The resulting

network is a silicate network SL(n). The parameter n of SL(n)

is called the dimension of SL(n). The graph in Figure 2(b) is a

silicate network of dimension 2.

Theorem 1: The number of nodes in SL(n) is 15n2 + 3n. The

number of edges of SL(n) is 36n2. □

 When all the silicon nodes are deleted from a silicate

network, we obtain a new network which we shall call as an

Oxide Network. An n-dimensional oxide network is denoted

by OX(n).

Theorem 2: The number of nodes in OX(n) is 9n2 + 3n. The

number of edges of SL(n) is 18n2. □

3 Addressing the nodes of Silicate

Networks

 In order to study the properties of silicate networks, it is

important to assign a unique identity id (coordinate) to each

node of silicate network. First we shall propose a coordinate

system that can be used to assign an id to each node of oxide

network. Then we shall extend this coordinate system to

silicate network.

 We shall adapt the coordinate system that was proposed

for a honeycomb network by Stojmenovic [14] or a

hexagonal network by Nocetti et al. [12]. Three axes, α, β and

γ parallel to three edge directions and at mutual angle of 120

degrees between any two of them are introduced, as indicated

in Figure 3. The three coordinate axes are α = 0, β = 0, and γ

= 0 respectively. We call lines parallel to the coordinate axes

as α-lines, β-lines and γ-lines. Here α = h and α = – k are α-

lines on either side of α - axis.

1

1

1

0

1

1

0
0

1

22

(2,-1,-3)

(0,0,0)

(1,-2,-3)

(3,1,-2)

2

(3,2,-1)

(-3,-3,0)

2

2

2

3

3

3

33

3

Figure 3: Coordinate System in Oxide Networks

Lemma 1: In (α, β, γ) coordinate system, the three lines α = h,

β = k, and γ = l intersect if and only if k = h + l.

Proof:

Since the α-lines are parallel to X-axis, the α-line “α = 0” is

taken as the x-axis. Line α = h, h Z of OX(n) is mapped to

y = h in the Cartesian system. A β-line β = k makes an angle

60o with X-axis and forms a y-intercept 2k in the Cartesian

system. Thus line β = k, k Z is mapped to y = (tan 60o)x +

2k which is y = √3x + 2k. A γ-line γ = ℓ makes an angle 120o

with X-axis and forms a y-intercept – 2ℓ in the Cartesian

system. Thus line γ = ℓ, ℓ Z is mapped to y = (tan 120o)x –

2ℓ which is y = – √3x – 2ℓ. See Figure 3.

The lines α = h, β = k, and γ = l intersect

 the third line passes through the point of intersection of

the first two lines

 y = h passes through the point of intersection of y = √3x

+ 2k and y = – √3x – 2ℓ.

 y = h is satisfied by

,
3

k l
k l

 h = k – ℓ i.e., k = h + ℓ.□

Lemma 2: (α, β, γ) represents an oxide molecule if and only

if

 (1) β = α + γ and

 (2) at least one of α, β, γ is odd.

Proof: The proof is obvious. See Figure 3. □

The above lemma can also be restated as

A node of OX(n) is assigned a triple (a, b, c) when the node

is the intersection of lines α = a, β = b, and γ = c and at least

one of a, b, c is odd.

Remark: In an oxide molecule, exactly two of α, β, γ must be

odd.

 Each silicon node is at the centroid of three oxygen

nodes of a tetrahedral SiO4. Thus it is enough to specify an

addressing scheme for the oxygen nodes of SL(n). For all

practical purposes, we don’t need separate id for silicon

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 891

nodes since the silicate network is completely characterized

by the oxide network. However for the sake of completeness,

one can assign ids to silicon nodes by applying the formula of

centroid of a triangle.

4 The edge set of OX(n) is partitioned

into edge disjoint cycles

Definition: An edge of OX(n) is called α-edge if it is in some

α-line. A β-edge and a γ-edge are defined in the same way. A

cycle of OX(n) is said to be a symmetric cycle if it is formed

by an α-edge, a β-edge and a γ-edge alternatively. Notice that

the number of edges of any symmetric cycle of OX(n) is a

multiple of 3. We demonstrate that the edge set of OX(n) is

partitioned into edge-disjoint symmetric cycles.

Theorem 3: The edge set of OX(n) can be partitioned into

edge-disjoint symmetric cycles.

Proof: As a strategy to partition the edge set of OX(n), we

orient the edges of OX(n) as follows:

Orient the edges of lines α = 1, 3 … 2n + 1 in the positive

direction.

Orient the edges of lines α = –1, –3 … –2n – 1 in the negative

direction.

Orient the edges of lines β = 1, 3 … 2n + 1 in the positive

direction.

Orient the edges of lines β = –1, –3 … –2n – 1 in the negative

direction.

Orient the edges of lines γ = 1, 3 … 2n + 1 in the positive

direction.

Orient the edges of lines γ = –1, –3 … –2n – 1 in the negative

direction.

Figure 4: Edge set of OX(n) is partitioned into cycles

 See the orientation in Figure 4. Symmetric cycles in the

oriented OX(n) are unique. Hence it is now easy to partition

OX(n) into edge-disjoint symmetric cycles. The innermost

symmetric cycle is a hexagon of the length 6. Then onwards,

each successive symmetric cycle forms a layer on the

previous one. See Figure 4. The length of each symmetric

cycle is a multiple of 6. □

5 Equilateral Triangle Property of

Silicate Network

 Three vertices u, v, w of a graph G(V, E) are said to

form an equilateral triangle if d(u, v) = d(v, w) = d(w, u)

where d(x, y) denotes the distance between x and y. There is

an interesting equilateral triangular property of silicate

networks.

Theorem 4: Three vertices A(x1, x2, x3), B(y1, y2, y3) and C(z1,

z2, z3) of SL(n) form an equilateral triangle if x1 = y1, y2 = z2

and z3 = x3. □

 Continuing the above theorem, we discuss a stronger

result. Consider a triangle ABC formed by some α-line, β-line

and γ-line. By the above theorem, ΔABC is equilateral. Let a1,

a2 … ar be the nodes on the β-line between B and C. Let b1,

b2 … br be the nodes on the α-line between C and A. Let c1,

c2 … cr be the nodes on the γ-line between A and B. See

Figure 5. We know that d(A, B) = d(A, C). The interesting

observation is that d(A, B) = d(A, ai) = d(A, C) for i = 1, 2 …

r.

Theorem 5: Let ΔABC denote a triangle of SL(n) formed by

three vertices A(x1, x2, x3), B(y1, y2, y3) and C(z1, z2, z3) such

that x1 = y1, y2 = z2 and z3 = x3. Let a be a node on the β-line

between B and C, let b be a node on the α-line between C and

A and let c be a node on the γ-line between A and B. Then

d(A, B) = d(B, C) = d(C, A) = d(A, a) = d(B, b) = d(C, c). □

A

a
1

a
2

a
3

a
4

B

C
b

1
b

2
b

3
b

4

c
1

c
2

c
3

c
4

Figure 5: Equilateral triangle property

6 Embedding of Honeycomb and

Hexagonal Networks in Silicate

Networks

 Let G and H be finite graphs with n vertices. V(G) and

V(H) denote the vertex sets of G and H respectively. E(G)

and E(H) denote the edge sets of G and H respectively. An

embedding [10] f of G into H is defined as follows:

1. f is a bijective map from V(G)→V(H).

2. f is a one-to-one map from E(G) to {Pf(f(u),f(v)) /

Pf(f(u),f(v)) is a path in H between f(u) and f(v), (u,v)

E(G)}.

892 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

The dilation),(ˆ HGD f
 of an embedding f of G into H is

defined as

|))(),((|max),(ˆ
)(),(

vfufPHGD f
GEvu

f

where |Pf(f(u),f(v))| denotes the length of the path Pf(f(u),f(v)).

Then, the dilation of G into H is defined as

),(ˆmin),(ˆ HGDHGD
f

where the minimum is taken over all embeddings f of G into

H. The dilation problem for a graph G into H is that of

finding an embedding of G into H that induces the dilation

),(ˆ HGD .

 We next state the results pertaining to embedding of

honeycomb and hexagonal networks into silicate networks.

Theorem 6: The dilation of the embedding of a honeycomb

network of dimension n into a silicate network of the same

dimension is 2.

Proof: From the structure of SL(n) described in Section 3, it

follows that the subdivision of the honeycomb network of

dimension n is a subgraph of SL(n). See Figure 6. Hence the

dilation of the embedding of HC(n) into SL(n) is 2. □

6

5

4

3

2

1

6

5

4

3

2

1

Figure 6: Dilation of the embedding is 2

Theorem 7: The dilation of the embedding of HX(n) into

SL(n – 2) is at most 3.

Proof: We provide an embedding of HX(n) into SL(n – 2) as

follows:

Step 1: The nodes of HX(n) are labeled along α –lines from

left tot right as in Figure 7.

Step 2: Each hexagon of HX(n) between successive α = 2k +

1 and α = 2k + 3 lines is mapped into the corresponding

hexagon of SL(n – 2). See Figure 8.

Step 3: The center node of a hexagon of HX(n) is mapped

into a node which sits on top of the corresponding hexagon of

SL(n – 2). See Figure 9.

The Figure 10 shows the embedding of HX(n) into SL(n – 2).

It is easy to verify that the dilation of this embedding is 3. □

3 4

8
9

10
1413 15

16
17 18 19 20 21

22

23
24 25 26 27

28

29
30 31 32

33

34

35 36

37

1 2

5
6 7

11 12

Figure 7: The nodes of Hexagon HX(n) are labeled

3 4

9

10 1413 15

16 18 20 22

23

24 25 26 27

28

29 31 33

34

35 36

37

3 4

9

10
1413 15

18 20
22

23
24 25 26 27

28

29
31

33

34

35 36

37

1 2

5
7

11 12

1 2

5 7

11 12

Figure 8: Hexagons of HX(n) between successive α = 2k + 1

and α = 2k + 3 lines are mapped into the corresponding

hexagons of SL(n – 2).

8

17 19 21

30 32

8

17 19 21

30 32

6

6

Figure 9: Center node of the hexagon of HX(n) is mapped into a

node which sits on top of the corresponding hexagon of SL(n –

2)

1 2 3 4

5
6 7 8

9

10
11 1412 13 15

15
16 17 18 19 20

21

22
23 24 25 26 27

28

29
30 31 32

33

34
35 36

37

1 2 3 4

5

6

7

8

9

10 11 1412 13 15

15

16

17

18

19

20

21

22

23 24 25 26 27 28

29

30

31

32

33

34

35 36

37

Figure 10: An embedding of HX(n) into SL(n – 2). The edge

(6, 11) of HX(n) is dilated along 6, 1, 5, 11 in SL(n – 2). The

dilation of HX(n) into SL(n – 2) is 3.

 Thus algorithms such as minimum communication cost,

routing, and broadcasting algorithms of honeycomb and

hexagon networks [5, 8, 10] can be simulated in silicate

networks with a time complexity that differ by a constant.

7 More Properties of Silicate Networks

Theorem 8: (i) OX(n) contains a Hamiltonian path.

 (ii) SL(n) contains a Hamiltonian path.

Proof: (i) By the method of induction.

 OX(1) contains a Hamiltonian path. See Figure 11 (a).

 Assume the theorem is true for OX(k). i.e., OX(k) has a

Hamiltonian path.

 To prove the theorem is true for OX(k + 1).

By theorem 3, The edge set of OX(n) is partitioned into edge-

disjoint symmetric cycles. By induction, there exists a

Hamiltonian path in OX(k). This path is connected to the

outermost symmetric cycle thus producing a Hamiltonian

path in OX(k+1). See Figure 11 (b)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 893

 (ii) The proof of (ii) is similar to the above proof as the path v1

v2 v3 is replaced by v1 v2 v4 v3. See Figure 12 (a) and 12 (b). □

 (a) (b)

Figure 11: Hamiltonian path in OX(1),and OX(2)

Figure 12: (a) A Hamiltonian path in a triangle of OX(n),

(b) A Hamiltonian path inside a triangle of SL(n),

(c) A Hamiltonian path in SL(2).

Remark: Using exhaustive MATLAB simulation, we

observe that OX(n) has no Hamiltonian cycle. However there

is no mathematical proof to show that OX(n) has no

Hamiltonian cycle. It is interesting to derive a logical proof to

show that OX(n) has no Hamiltonian cycle.

Theorem 9:

 (i) OX(n) is tripartite and its chromatic number is 3.

 (ii) SL(n) is 4-partite and its chromatic number is 4.

1

1

1

0

1

1

0
0

1

22

(2,-1,-3)

(0,0,0)

(1,-2,-3)

(3,1,-2)

2

(3,2,-1)

(-3,-3,0)

2

2

2

3

3

3

33

3

 (a) (b)

Figure 13: (a) Coordinate System in Oxide Networks,

(b) Chromatic coloring for OX(2)

Proof: Claim that the chromatic number (())OX n is 3.

See Figure 13. Label the nodes on the - lines corresponding

to = … –4, –2, 0, 2, 4 … by color 1 (red). Label the nodes

on the - lines corresponding to = … –3, –1, 1, 3, 5 … by

color 2 (yellow) and color 3 (blue) such that adjacent nodes do

not have the same color. Since no two nodes on = … –4, –

2, 0, 2, 4 … are adjacent and each node on these -lines is

adjacent to nodes colored yellow and blue, (())OX n 3.

Since the chromatic number of a triangle is 3, (())OX n 3.

Thus (())OX n = 3 and hence OX(n) is tripartite. □

Remark:

(i) SL(n) is not bipartite since it contains odd cycles.

(ii) OX(n) is Eulerian but SL(n) is not Eulerian since it

contains odd degree vertices.

Domatic Number: A dominating set in a graph is a set of

vertices such that every vertex in the graph is either in the set

or has a neighbour in the set. A domatic partition is a

partition of the vertices so that each part is a dominating set

of the graph. The domatic number of a graph G denoted by

D(G) is the maximum number of dominating sets in a

domatic partition of the graph G, or equivalently, the

maximum number of disjoint dominating sets[4]. The

domatic partition problem is that of partitioning the vertices

of a graph into the maximum number of disjoint dominating

sets. The domatic partition problem is one of the classical NP

– hard problems [7].

Lemma 1 [4]: Every graph G satisfies D(G) 1, and unless

G contains an isolated node, D(G) 2.

Lemma 2 [4]: Let denote the minimum degree of a node

in the graph G. Then D(G) + 1.

Proof: Since the node with minimum degree must have some

neighbor (or itself) in each of the disjoint dominating sets,

D(G) + 1. □

Theorem 10: (i) The domatic number of OX(n) is 3.

 (ii) The domatic number of SL(n) is 4.

Proof: By Lemma 2, D(OX(n)) 3 and D(SL(n)) 4.

 (a) (b)

Figure 14: (a) Domatic coloring for OX(2),

 (b) Domatic coloring for SL(2)

 We have presented in Figure 14, a domatic partition of

size 3 for OX(n) and size 4 for SL(n). Therefore

 D(OX(n)) 3 and D(SL(n)) 4. □

8 Drawing Algorithm for Silicate

Networks

 Let us classify the edges of a tetrahedral SiO4 as follows:

An edge incident at a silicon node is called silicon edge.

Otherwise it is called an oxygen edge. The drawing algorithm

894 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

provides a method to draw SL(n) in the Cartesian plane. That

is, it provides a formula to map a node (α, β, γ) of SL(n) into a

point (x, y) of Cartesian System. Our objective is to draw

SL(n) in Cartesian plane in such a way that all the drawn

edges of SL(n) are of equal length in the 2-dimnesional plane.

However, it is not possible to draw a tetrahedral SiO4 (a

complete graph on 4 vertices) in the 2-dimensional plane

such that all edges are of equal length. Therefore, we design a

drawing algorithm such that all the silicon edges are of the

same length and all the oxygen edges are of the same length.

As mentioned earlier, it is enough to design a drawing

algorithm for oxide network.

 The oxygen edges of a tetrahedral SiO4 form a triangle.

In other words, these three oxygen edges should make an

equilateral triangle in order to be of equal length. Geometrically,

these three edges make an angle of 60o with each other.

Moreover, these three oxygen edges are on α-lines, β-lines, and

γ-lines of OX(n) respectively. In order to keep all the oxygen

edges of equal length, α-lines, β-lines, and γ-lines of OX(n)

are drawn as follows:

All α-lines are parallel to X-axis, β-lines make 60o with X-axis

and γ-lines make 120o with X-axis.

Successive α-lines (β-lines, and γ-lines) are equally spaced in

the Cartesian plane.

(1) Since the α-lines are parallel to X-axis, the α-line “α = 0”

is taken as the x-axis. Line α = (2h+1), h Z of OX(n) is

mapped to y = (2h+1) in the Cartesian system.

(2) A β-line β = (2k+1) makes an angle 60o with X-axis and

forms a y-intercept 2(2k+1) in the Cartesian system. See

Figure 3. Thus line β = (2k+1), k Z is mapped to y = (tan

60o)x + 2(2k+1) which is y = √3x + 2(2k+1).

(3) A γ-line γ = (2ℓ+1) makes an angle 120o with X-axis and

forms a y-intercept – 2(2ℓ+1) in the Cartesian system. See

Figure 3. Thus line γ = (2ℓ+1), ℓ Z is mapped to y = (tan

120o)x – 2(2ℓ+1) which is y = – √3x – 2(2ℓ+1).

From (1), we have

α = (2h+1) and y = (2h+1), h Z

Thus

y = α. (A)

From (2) and (3) we have

β = (2k+1) and y = √3x + 2(2k+1).

γ = (2ℓ+1) and y = – √3x – 2(2ℓ+1).

Solving the above two equations, we get

x = – (β + γ)/√3. (B)

Combining (A) and (B), we arrive at a function f that maps a

node (α, β, γ) of OX(n) to a node of Cartesian System as

follows:

f(α, β, γ) = (– (β + γ)/√3, α). (C)

This function f provides an algorithm to draw OX(n) in a

Cartesian plane.

 Once the oxide network is drawn in the Cartesian plane,

placing silicon nodes is rather simple. As we know, a silicon

node is at the centroid of three oxygen nodes of a tetrahedral

SiO4. If (x1, y1), (x2, y2), (x3, y3) are the Cartesian coordinates

of oxygen nodes of a tetrahedral SiO4, then ((x1+x2+x3)/3,

(y1+y2+y3)/3) is the Cartesian coordinate of the silicon node

of the tetrahedral SiO4. This completes the drawing algorithm

of SL(n).

Theorem 11: A silicate network can be drawn in a two-

dimensional Cartesian plane such that all the silicon edges are

of equal length and all the oxygen edges are of equal length.

□

8.1 MATLAB program to draw SL(n)

function silicate(n)

close all;axis square;hold on

T=0:0.01:1;

rad1=0.07;

for i=-2*n:2*n

 for j=-2*n:2*n

 for k=-2*n:2*n

 if (j-k == i && (mod(i,2)~=0 || mod(j,2)~=0 ||

 mod(k,2)~=0))

 fill(-(j+k)/sqrt(3)+rad1*cos(2*pi*T),

 i+rad1*sin(2*pi*T),'b')

 if (mod(i,2)==0 && i~=2*n)

 for t = -1:1

 if t~=0

 fill(-(j+1/3+k-1/3)/sqrt(3)+rad1*cos(2*pi*T),

 t*(i+2/3)+rad1*sin(2*pi*T),'r')

 plot([-(j+1/3+k-1/3)/sqrt(3) -(j+k)/sqrt(3)],

 [(i+2/3) i],'b')

 plot([-(j+1/3+k-1/3)/sqrt(3) -(j+1+k)/sqrt(3)],

 [(i+2/3) i+1],'b')

 plot([-(j+1/3+k-1/3)/sqrt(3) -(j+k-1)/sqrt(3)],

 [(i+2/3) i+1],'b')

 plot([-(j+1/3+k-1/3)/sqrt(3) -(j+k)/sqrt(3)],

 [-(i+2/3) -i],'b')

 plot([-(j+1/3+k-1/3)/sqrt(3) -(j+1+k)/sqrt(3)],

 [-(i+2/3) -(i+1)],'b')

 plot([-(j+1/3+k-1/3)/sqrt(3) -(j+k-1)/sqrt(3)],

 [-(i+2/3) -(i+1)],'b')

 end

 end

 end

 end

 end

 end

end

for i=1:n

 for j = -1:1

 if j~=0

plot([(4*(n-1)+3-2*(i-1))/sqrt(3) -(4*(n-1)+3-2*(i-1))/sqrt(3)],

 [j*(2*i-1) j*(2*i-1)])

plot([j*(4*(n-1)+3-2*(i-1))/sqrt(3) j*(2*(n-1)-4*(i-1))/sqrt(3)],

 [-(2*i-1) 2*n])

plot([j*(4*(n-1)+3-2*(i-1))/sqrt(3) j*(2*(n-1)-4*(i-1))/sqrt(3)],

 [(2*i-1) -2*n])

 end

 end

end

hold off

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 895

Figure 15: Silicate drawn using MATLAB

9 Conclusion

 In this paper we have considered a new interconnection

network motivated by the molecular structure of certain

chemical compounds. We have investigated the topological

and structural properties of this network. We have provided

an addressing scheme for the nodes of the network and also

an algorithm that enables us to draw the silicate network in

the two dimensional plane aesthetically.

 It is shown that any algorithms such as minimum

communication cost, routing, and broadcasting algorithms of

honeycomb and hexagon networks can be simulated in

silicate networks with a time complexity by a difference of

constant factors.

 This paper is an eye opener for researchers in the sense

that different networks can be derived using the ores and

compounds available in nature.

10 References

[1] Ahmad R, Franken A, Kennedy J. D, Hardie M. J, Group

1 Coordination Chains and Hexagonal Networks of Host

Cyclotriveratrylene with Halogenated Monocarbaborane

Anions, Chemistry, vol. 10(9):2190-8, May 3, 2004.

[2] Bell S. B. M, Holroyd F. C, Mason D. C, A Digital

Geometry for Hexagonal Pixels, Image and Vision

Computing, vol. 7, pp 194-204, 1989.

[3] Catherine Decayeux, David Seme, 3D Hexagonal

Network: Modeling, Topological Properties, Addressing

Scheme, and Optimal Routing Algorithm, IEEE Transactions

on Parallel and Distributed Systems, vol. 16, no. 9, pp 875-

884, 2005.

[4] E.J. Cockayne and S. Hedetniemi, Towards a theory of

domination in graphs. Networks 7 (1977), 247-261.

[5] Day K, Tripathi A, A Comparative Study of Topological

Properties of Hypercubes and Star Graphs, IEEE Transactions on

Parallel and Distributed Systems, vol. 5, no. 1, pp 31-38,

1994.

[6] Gamst A, Homogeneous Distribution of Frequencies in a

Regular Hexagonal Cell System, IEEE Transactions on

Vehicular Technologies, vol. 31, pp 132-144, 1982.

[7] M. R. Garey and D. S. Johnson, Computers and

Intractability: A gude to the Theory of NP – completeness.

Freeman. 1979.

[8] Hamid Reza Tajozzakerin, Hamid Sarbazi-Azad,

Enhanced-Star: A New Topology Based on the Star Graph,

LNCS, vol. 3358, pp 1030-1038, 2005.

[9] Hongwei Zhu, Kazutomo Suenaga, Jinquan Wei, Kunlin

Wang, Dehai Wu, Atom-Resolved Imaging of Carbon

Hexagons of Carbon Nanotubes, J. Phys. Chem. C, vol. 112,

no. 30, pp 11098-11101, 2008.

[10] Junming Xu, Topological Structure and Analysis of

Interconnection Networks, Kluwer Publishers, 2001.

[11] Lester L. N, Sandor J, Computer Graphics on Hexagonal

Grid, Computer Graphics, vol. 8, pp 401-409, 1984.

[12] Nocetti F.G, Stojmenovic I, Zhang J, Addressing and

Routing in Hexagonal Networks with Applications for

Tracking Mobile Users and Connection Rerouting in Cellular

Networks, IEEE Transactions On Parallel And Distributed

Systems, vol. 13, no. 9, pp 963-971, September 2002.

[13] Paul Manuel and Indra Rajasingh, Minimum Metric

Dimension of Silicate Networks, Ars Combinatoria (volume

98, January 2011).

[14] Stojmenovic I, Honeycomb Networks: Topological

Properties and Communication Algorithms, IEEE Trans.

Parallel and Distributed Systems, vol. 8, pp 1036-1042,

1997.

[15] Tosic R, Masulovic D, Stojmenovic I, Brunvoll J, Cyvin

B. N, Cyvin S. J, Enumeration of Polyhex Hydrocarbons up

to h = 17, Journal of Chemical Information and Computer

Sciences, vol. 35, pp 181-187, 1995.

[16] Wenjun Xiao, Behrooz Parhami, Further Mathematical

Properties of Cayley Digraphs Applied to Hexagonal and

Honeycomb Meshes, Discrete Applied Mathematics, vol.

155, no. 13, pp 1752-1760, 2007.

896 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Improving Distributed Processing in the COPAR system

Stephen J. Hartley, Joel M. Crichlow, Michael Hosein
1 Computer Science Dept, Rowan University, Glassboro, NJ 08028, hartley@elvis.rowan.edu

2 Computer Science Dept, Rowan University, Glassboro, NJ 08028, crichlow@rowan.edu
3 Computing and Information Tech Dept, University of the West Indies, Trinidad, mhosein2006@gmail.com

Abstract - COPAR (Combining Optimism and Pessimism in
Accessing Replicas) is a distributed transaction system that
manages updates for widely-scattered nodes containing
replicas of a database of resource counts. The distinguishing
feature is that the nodes of the system are connected by a
high-latency, low-bandwidth, or congested network. An
example is the distribution of relief supplies in a large-scale
disaster situation. To implement responses to allocation and
deallocation requests at a particular node in a timely manner,
the database of available resources is replicated at each
node. This article describes the system architecture, and how
it was modified to improve the performance.

Keywords: Distributed Transaction Processing, Replica
Management, Concurrency Control, Availability, Optimistic
Processing, Pessimistic Processing.

1 Introduction
 Consider the following situation. A collection of travel
agency offices is scattered over a large geographical area and
connected by a slow or congested network. An airline flight
with a certain number of available seats is scheduled to take
off at a date and time in the future. Each office handles the
flight reservation requests and cancellations of customers
walking into or calling the office.
 A similar situation is the following. A collection of
dispersed disaster relief centers handles the requests for relief
supplies by distressed people near each center. Supplies are
delivered from a central warehouse to relief centers based on
their need. The centers and a central warehouse are connected
by a slow or congested network. Trucks will carry the
requested supplies from the central warehouse to the relief
centers in the near future.
 In these and other similar situations, depending on the
slow network to synchronize updates to a single shared
database of available resources would result in unacceptably
lengthy response times to transactions (allocation and
deallocation requests). COPAR [1, 2, 3, 4, 5] is a system
supporting the replication of the database of available
resources at each node (travel agency, relief center) in order
to shorten transaction response times.

2 COPAR Operation

 Each node maintains two counts of available resources.
One count is called the permanent or pessimistic count; the
other count is called the temporary or optimistic count.

Changes to the permanent count are synchronized with all the
other nodes over the slow network using the two-phase
update/commit algorithm. Thus, this count is always identical
at all the nodes and represents true resource availability on the
airline flight or at the central relief supply warehouse. The
temporary count is maintained separately and independently
by each node.
 In general, resource counts for availability are a single
non-negative integer R, such as for airline seats, or a vector of
non-negative integers (R1,R2, ...,Rm), such as for m types of
relief supplies. Similarly, resource counts for transactions
(allocation and deallocation requests) are a single integer r,
negative for an allocation and positive for a deallocation or
release, or a vector of integers (r1, r2, ..., rm).
 When the system is initialized, the permanent count Pj at
each node j is set to the initial resource availability Rinitial ,
such as 100 seats on an airplane or 200 first aid kits, 100
blankets, and 400 bottles of water at a central warehouse for
disaster relief. The temporary count Tj at each node is set to
the initial permanent count divided by the number of nodes n.
Tj is then adjusted upward by an overbooking allowance c,
called the cost bound, where c >= 1.

Tj = cRinitial /n

For example, if there are four nodes, if Rinitial is 100, and if c is
1.16, then Pj is set to 100 and Tj is set to 29 at each node.
 Most reservation systems allow some overbooking to
compensate for reservations that are not used, such as
passengers not showing up for an airline flight or people not
picking up supplies when delivered to a relief center. There is
a cost of overbooking, though, such as compensating
passengers denied boarding on an airline flight or worsening
the situation of people needing relief supplies. Organizations
using a reservation system must carefully evaluate the cost of
overbooking and limit it to what can be afforded.
 The system simulates a person walking into or calling a
travel agency by generating a transaction ri for i = 1, 2, ... and
sending it to a node j. The m integers in a transaction are
generated randomly and the node j is chosen at random from
1 to n. Transactions from the generator are numbered
sequentially.
 Each node maintains two queues of transactions, called
the parent or owner queue and the child queue. A transaction
coming into a node from the generator is added to the parent
queue and is also broadcast to all nodes, including itself, to be
added to each node’s child queue. The transactions ri in each
node’s parent queue are kept sorted in order of increasing i, in

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 897

other words, in the order generated by the transaction
generator. Note that a particular transaction ri is in exactly one
node’s parent queue.
 Each node j has two processors (threads), one
responsible for maintaining the parent queue and the
permanent count Pj at the node, and the other responsible for
maintaining the child queue and the temporary count Tj at the
node.
 The permanent processor at each node participates in a
two-phase commit cycle with all the other node permanent
processors. After the processing of transaction ri−1 by its
parent, the node whose parent queue contains transaction ri
becomes the coordinator for the two-phase commit cycle that
changes the permanent count Pj at all nodes j to Pj + ri. If the
number of resource types m is greater than one, the notation
for this change is Pjk to Pjk + rik for k = 1, 2, ...,m. This
change is subject to the restriction that Pjk + rik is nonnegative
for all k. If that is not the case, all Pj are left unchanged and
the transaction ri is marked as a violation.
 At the end of the two-phase commit cycle, the owner
(parent) of transaction ri sends a message to all nodes,
including itself, to remove ri from the node’s child queue if ri
is present.
 The temporary processor at each node j removes the
transaction rt at the head of its child queue, if any, and
calculates if rt can be allocated or satisfied from its temporary
(optimistic) count Tj. In other words, node j checks if it is the
case that Tjk +rtk is non-negative for all k = 1, 2, ...,m. If that
is not the case, transaction rt is discarded; otherwise, node j
sets Tj to Tj + rt and sends a message to the parent (owner)
node of the transaction, the node whose parent queue contains
the transaction. When a node n receives such a message from
node j for transaction rt, node n makes two checks.
• Is this the first such message received from any node’s
temporary processor for transaction rt?
• Has transaction rt been done permanently yet?
 If this is not the first such message, a reply is sent to
node j that it is not first and it should back out of the
temporary allocation it did for rt, that is, change its temporary
count Tj back to Tj −rt.
 If this is the first such message, then if the transaction rt
has not yet been done permanently (pessimistically), node j
sending the message is marked as the node having done
transaction rt temporarily (optimistically). If this is the first
such message, but transaction rt has already been done
permanently, no node is recorded as having done the
transaction temporarily.
 When the permanent processor in a node j coordinates
the two-phase commit for a transaction ri and has decided that
transaction ri is a violation, that is, Pk + rik is negative for one
or more k, node j checks to see if the transaction was marked
as having been done optimistically earlier by some node’s
temporary processor. If so, the transaction ri is marked as
“undone,” meaning that a passenger with a reservation is
denied boarding or a person promised relief supplies is not
given any.

 If no node has done the transaction optimistically and it
is not a violation, the owner’s temporary processor allocation
Tj is “charged” for it, Tj = Tj + ri. This is done to lessen the
probability of a later transaction being performed
optimistically but then marked “undone” by the permanent
processor.
 The goal of the COPAR system is that temporary
processors will be able to generate a reservation for an airline
flight or a promise for relief supplies more quickly than the
permanent processors. Doing a transaction optimistically
involves a pair of messages between two nodes, whereas the
two-phase commit of pessimistic processing involves a
message count proportional to the number of nodes in the
system.

3 Working with stale information
 In earlier versions of the COPAR system described in
[1, 2, 3, 4], nodes that are lightly loaded (receive
proportionately fewer transactions from the generator) or are
on a faster segment of the network or have faster or multiple
CPUs might respond more quickly to transactions
temporarily. This faster response might reduce their
temporary counts more quickly towards zero, while other
nodes retain higher temporary counts, especially if there are
overall more reservations (transactions requesting resources)
than cancellations (transactions returning or releasing
resources) in the simulation of a system, as would be expected
in reserving airplane seats or distributing disaster relief
supplies.
 The earlier versions of the system attempted to respond
to this by recalculating the temporary counts at the end of
every two-phase commit permanent processing cycle, i.e.,

Tj = c Pj/n

where c >= 1 is the overbooking allowance and n is the
number of nodes.
 A serious problem can occur if the permanent
processors lag significantly behind the temporary processors.
This might result if one of the nodes is connected to the others
with a higher latency, lower bandwidth, or more congested
segment of the network compared to the interconnections of
the other nodes. The former node will rarely be the first to
respond temporarily to transactions. However, it must
participate in all two-phase commit cycles of the permanent
processors, slowing them down.
 Suppose there are overall more reservations than
cancellations in the simulation of a system. The temporary
processors of the nodes with fast interconnections will be able
to respond quickly and will get ahead of the permanent
processors. Each time the permanent processors calculate the
new temporary counts of the nodes, they will be using the
permanent count Pj resulting from processing a much older
transaction than the temporary processors are currently
processing.

898 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

 The net effect is that the temporary processors will be
able to reserve the same resource multiple times, resulting in a
much higher overbooking than intended by the cost bound
factor c and resulting in many more temporary transactions
“undone” by the permanent processors when they finally later
on encounter the temporarily done transactions.
 We see this happening in Table 1, which contains
statistical performance data from [4]. The local nodes are on
the same subnet of a local area network at Rowan University
in New Jersey and the UWI node is at a remote location
(University of West Indies, in the Caribbean island of
Trinidad) connected to the Rowan nodes over a wide area
network (the Internet).

200
Transactions
1 per sec

Done
temporarily

Violations Undone

5 local nodes 95 69 3
4 local nodes
+ UWI

200 69 69

200
Transactions
5 per sec

Done
temporarily

Violations Undone

3 local nodes 102 69 6
2 local nodes
+ UWI

191 69 64

Table 1: Original results before the fix

4 Improving performance
 We removed the step in the permanent processor after
the two-phase commit that calculates the new values of the
temporary counts Tj from the permanent counts Pj .
 We see the improvement in Table 2. In simulations
involving a remote node, there are many fewer temporarily
done transactions that must be marked “undone” by the
permanent processors.

200
Transactions
1 per sec

Done
temporarily

Violations Undone

5 local nodes 133 69 16
4 local nodes
+ UWI

137 69 15

200
Transactions
5 per sec

Done
temporarily

Violations Undone

3 local nodes 130 69 10
2 local nodes
+ UWI

136 69 14

Table 2: Results after the fix

5 Further research
 We are investigating ways to deal with the following
possibly occurring while the system handles transactions.
Nodes that are lightly loaded (receive proportionately fewer
transactions from the generator) or are on a faster segment of
the network or have faster or multiple CPUs might respond
more quickly to transactions temporarily. If there are more
reservations than cancellations over time, this faster response
might reduce their temporary counts more quickly towards
zero, while other nodes retained higher temporary counts.
 One proposed attempt to respond to this is by shifting
temporary counts away from the nodes with higher counts to
nodes with lower counts, with the idea that since they were
able to respond more quickly temporarily, they should have
an increased temporary count to facilitate this.
 One way to accomplish the shift is recalculating all node
temporary counts every so often. The temporary counts Tj at
all nodes j are added up, divided by the number of nodes n,
and each node given the quotient as its new temporary count.
 A more refined way to accomplish the shift is to have
each node maintain a running sum of how much temporary
“work” Wj it has done so far, that is, each time a node is the
first to perform a transaction temporarily, the node adds to its
“work” sum Wj the amount of the transaction ri. Then, instead
of using a simple average for each node’s new temporary
count, a weighted average is used.
 Such summing of all Tj requires a “snapshot” of the
system and suspending or freezing the temporary processors
until they get their new counts. We are investigating ways to
redistribute temporary counts that do not involve such a
suspension.
 We are also investigating ways to include in the system
donations of resources. A donation is added to the permanent
counts Pj of all nodes. It is desirable for a donation to be
incorporated immediately into the temporary and permanent
counts by the permanent processors rather than being added to
the end of a possibly lengthy parent queue.

6 Conclusion
 COPAR has been shown to be an effective system for
the distributed handling of reservations over a slow or
congested network. A flaw was discovered and fixed,
preserving the performance of the system. Future
enhancements to incorporate donations and shift temporary
counts where needed are anticipated.

7 References
[1] C. Innis, J. Crichlow, M. Hosein, S. Hartley. A Java
System that combines Optimism and Pessimism in Updating
Replicas, Proceedings of the Sixth IASTED International
Conference on Software Engineering and Applications,
Cambridge, Massachusetts, USA, November 4–6, 2002.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 899

[2] J. Crichlow, S. Hartley, M. Hosein, C. Innis. The COPAR
Service: Combining Optimism and Pessimism in Accessing
Replicas, Proceedings of the Third IASTED International
Conference on Communications, Internet, and Information
Technology, St. Thomas, US Virgin Islands, November 22–
24, 2004, 558–563.
[3] J. Crichlow, S. Hartley, M. Hosein, D. Ivins. Using an
XML File to Test a Distributed Replica Accessing System,
Proceedings of the Fourth IASTED International Conference
on Communications, Internet, and Information Technology,
St. Thomas, US Virgin Islands, November 29–December 1,
2006, 324–329.
[4] J. Crichlow, S. Hartley, M. Hosein. Using COPAR to
Facilitate Quick Distribution of Disaster Relief, Proceedings
of the Ninth IASTED International Conference on Software
Engineering and Applications , Orlando, Florida, USA,
November 16–18, 2008, 100–105.
[5] S. Beharry, M. Hosein, S. Hartley, J. Crichlow. Processing
Transactions With Greater Accuracy and Availability in
COPAR, Proceedings of the 21st IASTED International
Conference on Parallel and Distributed Computing and
Systems, Cambridge, Massachusetts, USA, November 2–4,
2009, 21–28.

900 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

A Novel Cloud Computing Data Fragmentation Service

Design for Distributed Systems

Ismail Hababeh

School of Computer Engineering and Information Technology, German-Jordanian University

Amman, Jordan

Abstract- As many distributed database applications

contain online information that change continuously and

expand incrementally, comprehensive cloud Application

Programming Interface API’s are required to monitor and

control the accuracy of the information and data

proliferation. This cloud software is required to monitor

and control the accuracy of the information and data

proliferation. This software can be viewed as integrated

cloud computing services; data fragmentation, clustering

network sites, and fragments Allocation that support

transactional database applications. In this paper, we

describe our data Fragmentation as a Service (FaaS) in

construction of a cloud computing software system.

Specifically, we design a novel data fragmentation as a

service to facilitate enormous data processing, and

introduce some functioning enhancement on data

distribution to improve the cloud system performance. This

research presents our attempt to implement data

fragmentation service in a cloud computing system, with

large scale data mining as targeted application.

Keywords: SaaS, FaaS, CaaS, AaaS, DFA, API.

1 Introduction

Cloud computing is web based system development in

which huge scalable computing services are provided to

users over the Internet. The cloud computing system

includes web communications, Software as a Service

(SaaS), up-and-coming tools, and has involved extra

attention from researchers in different technology areas.

Many cloud computing providers have their data centers

spread worldwide to maintain data availability which is

typically achieved by replication processes. Amazon’s

cloud simple storage service [1] replicates data across

different geographical regions so that data and applications

can continue even in the face of failures of their location.

This is likely to be help in running applications on data

warehouses, but not transactional data management

systems [2].

Yahoo [3] and Amazon [4] both implement data replication

through PNUTS and SimpleDB cloud data services over

distributed network sites. They designed to run analytical

applications on data warehouses, but not for transactional

data applications. Similarly, Google [5] implements a

replicated database, but does not offer a complete relational

Application Programming Interface and weakens the data

atomicity. The cloud API is written as series of XML-based

messages, and executed on the cloud servers to utilize

remote web-based applications and reduce the number of

calls between the client and the distributed servers [6].

Microsoft SQL Server [7] cloud data service is

implemented over distributed network sites. However, as it

doesn’t apply commit protocols, the distributed system

presents lack of data consistency. Researchers in [8]

designed the H-Store project to minimize the number of

transactions that access data from multiple locations.

However, the project still in the theoretical phase, and its

feasibility on a real world distributed database systems has

not verified.

In distributed relational database systems, the transactions

on the applications are usually subsets of relations

(fragments), so using these fragments and distributing them

over the network sites increases the system throughput by

means of parallel execution. Therefore, an efficient cloud

API fragmentation web service is presented to access and

manage data relationships, and enhance both the speed and

simplicity of the distributed database functionality. This

web service is used to retrieve raw data from the cloud data

centers by external programs like Java applications.

Moreover, it helps to reduce the cost of accessing data over

distributed network sites and increases the distributed

system performance through data allocation processes.

The remainder of the paper is organized as follows: related

work is discussed in Section 2; Section 3 describes the data

fragmentation architecture; data fragmentation design is

presented in Section 4; Section 5 depicts the performance

evaluation and experimental results; and finally Section 6

draws conclusion and outline future work.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 901

2 Related Work

Various strategies have already partitioned data across

distributed systems. There are approaches that determined

three main partitioning categories; vertical, horizontal, and

hybrid [9, 10]. Some have defined the vertical

fragmentation as a process of generating data records

fragments [11, 12, 13, 14]. Other researchers have

addressed the necessity of horizontal fragmentation [15, 16,

17] which make the processes of data backup and restore

much easier. A mixed or hybrid fragmentation; vertical

fragmentation followed by a horizontal or vice versa, has

been covered by few researches [12,18] due to the

intractable nature of this type of fragmentation in relational

distributed database systems.

The studies in [16] and [17] are by far the closest to our

fragmentation method. The method in [16] considered each

record as a fragment in the relation and large number of

database fragments is generated, thus more communication

costs are required fragments processing. In contrast, the

approach in [17] used the whole relation as a fragment, not

all records of the fragment have to be retrieved or updated,

and a selectivity matrix that indicates the percentage of

accessing a fragment by a transaction is considered.

However, more redundant fragments are available, and the

generated fragments are overlapped.

A key difference between our cloud API fragmentation

method and the others is that: it presents the minimum

number of disjoint fragments that could be generated for

each relation according to the queries requirements. This

fragmentation service is designed for a cloud computing

systems in order to reduce the communication cost over the

cloud sites and increase the distributed system throughput.

Moreover, the generated disjoint fragments are allocated

then into the cloud servers where it saves more

communication costs.

3 Data Fragmentation Architecture

In a distributed relational database systems, the

complete database is not a suitable data unit for distribution

because it is too big, especially when considering

information relevant for different cloud data centers.

Therefore, it is appropriate to develop a web application

programming interface service, specifically FaaS, that can

extracts the minimum number of disjoint data records

which would be allocated to the cloud servers.

The architecture of FaaS is recognized by the domain

knowledge and three main processes; eliminating data

redundancy, defining transactions, and fragmenting data

records. Figure 1 describes the Data Fragmentation

Architecture (DFA) service that will be used for generating

data fragments, supporting the use of knowledge

extraction, and helping to achieve the effective use of small

fragments.

The domain knowledge in DFA describes and categorizes

the essential and representative elements of the distributed

database systems, specifically, for the databases

fragmentation. The purpose of the DFA domain knowledge

is to ensure that all data elements are available and

consistent for database fragmentation process. In addition, it

is used to prepare data elements that are valid from one

transaction to another, from one application to another, and

from one database to another in distributed database

systems. The details of this DFA are described and

illustrated in the following section.

Figure 1. Data Fragmentation Architecture

4 Data Fragmentation Design

The requested data in DFA are identified by means of

transactions triggered as queries, which determine the

specific information that should be extracted from the

cloud database servers. The transactions are executed and

result in redundant data records as two or more different

queries may require the same data records. The redundant

data are eliminated and the remaining data records are then

partitioned so as to generate the minimum number of

fragments which are neither replicated nor intersected

(disjoint).

4.1 Eliminating Data Redundancy

Different cloud API’s are developed to get rid of data

redundancy from the distributed cloud servers. The

following algorithm is designed to prevent data replication,

based on Primary Code Number PCN, from being entered

into database application runs over cloud servers.

902 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Eliminating Data Redundancy Algorithm:

Step1: Build a map which stores the unique list of leads

being inserted/updated, using Primary Code

Number as a key.

Step2:Check for any lead where the key is inserted/updated

Step3:If the key is a replication of another lead in this

group, Then do steps 4 and 5

Step4:Create a single database query, using the

lead map, to find all the leads in the

database that have the same key

Step 5: Issue a non validation message

 Else, do step 6

Step 6:If the key is not replicated, Then

 Add this lead to the new lead map

 End If

 End If

Step 7: End

In this cloud API, all transactions are processed and the

redundant data records are eliminated. Thus, database

applications get more speed and so more efficient as it have

only the required data records to be accessed, processed,

and allocated to the distributed cloud servers.

4.2 Defining Database Transactions

The data records requested by the clients determine

the specific information extracted from the database

queries. Database queries are executed as transactions from

the applications at the distributed database system sites.

The results of the transactions are sets of data records that

could be full intersected, partial intersected, or not

intersected. The data set itself consists of complete records.

Figure 2a. Defining Transactions

Figures 2a and 2b illustrates an example of defining and

generating different sets of data records according to the

definition of each transaction.

Figure 2b. Data Records Transactions

In this figure, there exist a full intersection between data

sets (4,10) over relation 3, and a partial intersection

between data sets (1,5), (3,9), and (6,7) over relations 4, 2,

and 1 respectively. On the other hand, there is no

intersection between the data sets over relation 5.

Therefore, a cloud API fragmentation method is developed,

partitioned the database records, and generated the

minimum number of disjoint fragments which will be

allocated to the distributed cloud servers. The details of this

approach are illustrated in the following section.

4.3 Fragmenting Data Records

The fragmentation process starts looking for any two

data records over the same relation having intersection

records between them. From any two intersected data sets,

three disjoint fragments will be generated; the intersection

fragment which represents the common records in both

sets, the fragment that represents the records in the first set

but not in the second intersected set, and the fragment that

represents the records in the second set but not in the first

intersected set. Then, the intersected sets are deleted from

the data sets list. This process is continued until no more

intersections between the data sets still exist. The

subsequent fragmentation algorithm describes the

processes of generating disjoint fragments from the

intersected data records for each relation in DDBS.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 903

Intersected Data Fragmentation Algorithm:

k ← Number of the last fragment in the database (0 at the

beginning)

 Repeat for all relations in the database

 Repeat for all data records Si, Sj in each relation,

where i j

 If Si Sj Ø

k ← k + 1

 Fk ←Si Sj

 Fk+1 ← Si - Fk

 Fk+2 ← Sj - Fk

 Delete Si, Sj

 End if

 Until all intersected data records in each

 relation have been processed

 Until all relations in the database have been

 processed

Rename the final fragments sequentially

The data records over each relation that do not have

intersection between them are renamed as fragments and

considered for further fragmentation process. The

following fragmentation algorithm expresses the non-

intersected data records and adds them to the list of relation

fragments.

Non-intersected Data Fragmentation Algorithm:

k ← Number of the last fragment

Repeat for all relations in the database

 k ← k + 1

 Fk ← R - Fi (for all fragments Fi in relation R)

 IF Fk Ø Then

 Add Fk to the collected fragments of relation R

 End if

Until all relations in the database have been processed

The same fragmentation process is applied for any two

intersected fragments over the same relation. This re-

fragmentation process will be continued until the

intersection between data fragments is finished and the

fragments are totally disjoint. Figure 3 shows an example

of generating disjoint fragments from the data sets over

relation 2 in a DDBS.

In this figure, the data sets 1,2 over relation 2 are sharing a

common data records 2,3,4 which is considered to be

redundant data. The fragmentation process isolates the

shared data records from both data sets, and generates the

following disjoint fragments; F1 which contains the shared

data records 2,3,4, F2 that contains the records 1,5,6,7

which are in data set 1 but not in data set 2.

As the third fragment should be generated contains the

same data records in fragment F1, it will not be created and

the data sets 1,2 have to be deleted. The performance

evaluation of the fragmentation method is presented in the

following section.

Figure 3. Data Sets Fragmentation

5 Performance Evaluation and

Experimental Results

The database fragmentation performance evaluation is

based on the computation resulted from dividing the

reduced storage size for each relation by the relation

queries’ records size. The reduced storage size is computed

as the difference between the size of the queries’ records

and the size of the generated fragments of each relation in

DDBS.

The experimental results are demonstrated the usability and

the efficiency of the cloud API fragmentation method.

When this method is tested for 45 quires over 5 database

relations that construct the whole database, 27 disjoint

fragments are generated. Therefore, 18 data set records are

omitted from the database which eliminates the data

redundancy, saves more data storage, minimizes the

transferred and processed data, and then increases the

overall system performance.

The fragmentation methods in [16] and [17] are

implemented in our fragmentation method. The

performance results of [16] and [17] are compared with our

cloud API fragmentation method and depicted in Figure 4.

904 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Figure 4. Fragmentation Performance Evaluation

It is shown in this figure that the performance

accomplished by our approach outperforms the

performance of the methods in comparison, and this will

help in reducing the communication costs in data allocation

phase.

6 Conclusions

Data fragmentation is one of the primary techniques

used in partitioning and developing cloud computing

services for distributed database systems. This research

discussed the efficiency, usefulness, and the performance

improvement achieved by the API fragmentation service in

a cloud computing system. The experimental results

emphasized the ability of this fragmentation method to

minimize the data processed and transferred between the

distributed database system network sites, reduce the

storage size by eliminating data redundancy, and present

significant performance improvements that increase

distributed database network system throughput.

Moreover, this cloud API fragmentation approach realizes

the optimal solution properties of data fragmentation in a

distributed database system; the relation fragments include

all relation records, the union of all relation fragments

constructs the original relation, and the relation fragments

are disjoint. In addition, it generates the minimum number

of fragments for each relation according to the queries’

requirements. This will reduce the communication cost

over distributed network sites and increase the distributed

system performance.

In a future work, the research will be focused on the

resulted disjoint fragments as objects for distribution over

the network sites. It should be distributed in such a way

that satisfy the requirements of database queries and

enhance the system performance. Therefore, developing

web API services for a cloud computing distributed

systems, like Clustering distributed network sites as a

Service (CaaS) and fragments Allocation as a service

(AaaS), have an important impact on the transactional

database applications, and improve the distributed systems

throughput.

References

[1] Amazon Simple Storage Service (Amazon S3)

http://aws.amazon.com/s3 [Accessed 29
th

 April, 2011].

[2] Daniel J. Abadi. Data Management in the Cloud:

Limitations and Opportunities. Data Engineering, IEEE

Computer Society. March 2009 Vol. 32 No. 1, pp 3-12.

[3] B. Cooper, R. Ramakrishnan, U. Srivastava, A.

Silberstein, P. Bohannon, H. Jacobsen, N. Puz, D. Weaver,

and R. Yerneni. Pnuts: Yahoo!s hosted data serving

platform. Proceedings of VLDB, 2008.

[4] Amazon Simple DB. http://aws.amazon.com/simpledb/

[Accessed 19
th

 February, 2011].

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.

Gruber. Bigtable: a distributed storage system for

structured data. Proceedings of OSDI, 2006.

[6] A.Velte, T.Velte & R.Elsenpeter. Cloud Computing: A

Practical Approach. McGraw-Hill. 2010.

[7] Microsoft SQL Server for Cloud Servers.

http://www.rackspace.com/cloud/blog/2010/12/01/announc

ing-sql-server-licenses-for-cloud-servers. [Accessed 7
th

March, 2011].

[8] M. Stonebraker, S. R. Madden, D. J. Abadi, S.

Harizopoulos, N. Hachem, and P. Helland. The end of an

architectural era (it’s time for a complete rewrite). VLDB,

Vienna, Austria, 2007.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 905

http://aws.amazon.com/s3
http://aws.amazon.com/simpledb/
http://www.rackspace.com/cloud/blog/2010/12/01/announcing-sql-server-licenses-for-cloud-servers
http://www.rackspace.com/cloud/blog/2010/12/01/announcing-sql-server-licenses-for-cloud-servers

[9] Ozsu, M. & Valduriez, P. Principles of Distributed

Database Systems. 2nd ed. Englewood Cliffs NJ, Prentice-

Hall. 1999.

[10] Khalil, N., Eid, D. & Khair, M. Availability and

Reliability Issues in Distributed Databases Using Optimal

Horizontal Fragmentation. Trevor J. M. Bench-Capon;

Giovanni Soda & A. Min Tjoa, ed.,'DEXA' 99, LNCS

1677, Springer, pp. 771-780. 1999.

[11] Son, J. & Kim, M. An Adaptable Vertical Partitioning

Method in Distributed Systems. The Journal of Systems

and Software. 73(3), 2004, pp. 551 – 561.

[12] Agrawal, S., Narasayya, V. & Yang, B. Integrating

Vertical and Horizontal Partitioning into Automated

Physical Database Design. SIGMOD 2004, Paris, France,

ACM 2004, pp. 359-370.

[13] Tamhankar, A. & Ram, S. Database Fragmentation

and Allocation: An Integrated Methodology and Case

Study. IEEE Transactions on Systems, Man. and

Cybernetics-Part A. Systems and Humans. 28(3), 1998, pp.

288 – 305.

[14] Lim, S. & Ng, Y. Vertical Fragmentation and

Allocation in Distributed Deductive Database Systems. The

Journal of Information Systems. 22(1), 1997, pp. 1-24.

[15] Costa, R. & Lifschitz, S. Database Allocation

Strategies for Parallel BLAST Evaluation on Clusters.

Distributed and Parallel Databases. 13, 2003, pp. 99-127.

[16] Ma, H., Scchewe, K. & Wang, Q. Distribution design

for higher-order data models, Data and Knowledge

Engineering. 60, 2007, pp. 400-434.

[17] Huang, Y. & Chen, J. Fragment Allocation in

Distributed Database Design. Journal of Information

Science and Engineering. 17, 2001, pp. 491-506.

[18] Navathe, S., Karlapalem, K. & Minyoung, R. A mixed

fragmentation methodology for initial distributed database

design. Journal of Computer and Software Engineering.

3(4), 1995, pp.395-425.

906 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Parallelizing Tompa’s Exact Algorithm for Finding Short Motifs in
DNA

Christopher T. Mitchell1, Jonathan Grochowski1, Julian H. Dale1, Nicolas B. Wilson1, and Jens Mache1
1Department of Mathematics & Computer Science, Lewis & Clark College, Portland, Oregon, USA

Abstract— Motif finding, the search for regulatory se-
quences in DNA, is a computationally expensive challenge
in bioinformatics. This paper presents a pleasantly parallel
version of Tompa’s exact method for finding short motifs. We
use a distributed-memory computer cluster and MPI to run
our parallel algorithm and collect data. We vary motif length
and allowed substitions. Results indicate good speedup and
scalability.

Keywords: cluster, parallel algorithm, bioinformatics, motif find-
ing, performance evaluation, MPI

1. Introduction

A motif is a short sequence of DNA that has a specific
function and appears multiple times throughout a genome. A
motif could be many things, including a transcription factor
binding site, or a ribosome binding site. Motifs are of interest
to biologists because they often play important roles in the
regulation of gene expression.

Finding a motif amongst a set of DNA sequences is not
a trivial task. The motif may not appear in every single
sequence, and instances of the motif may not be identical due
to substitutions, insertions, and deletions. To find this motif,
one not only needs to accommodate for inexact matches, but
one must also devise a way to filter the true biological motifs
from patterns that randomly occur within the sequences.

Our initial survey of DNA motif finding algorithms
showed that the set of approaches to this problem is very
diverse. Within this set, there are two general approaches
to the problem [1]. The first approach uses a word-based
algorithm that analyzes a string of nucleotides and counts
and compares the frequency of specific k-mers (contiguous
substrings of length k). Word-based algorithms rely on
exhaustive enumeration and can guarantee an optimal result.
The second approach involves using probabilistic models
where the parameters are based on some form of statistical
inference (maximum-likelihood, Bayesian) or weight matrix.

This paper will focus on an exhaustive word-based al-
gorithm designed by Tompa [2]. Our goal was to decrease
the run-time of this algorithm by parallelizing its execution.
This paper will present our method of parallelization, per-
formance results, and suggestions for continued work.

2. Parallelizing Tompa’s algorithm
2.1 Tompa’s word-based algorithm

Tompa developed a word-based algorithm that takes a
set of DNA sequences and a k-mer length as its input,
and outputs z-scores for all motifs (words) of length k.
The algorithm was designed to overcome two weaknesses
that he identified in more naive word-based motif finding
approaches [2]. These naive algorithms (that simply count
k-mer frequency or measure k-mer entropy) are vulnerable
to improperly scoring motifs when either the background
nucleotide distribution is not uniform or when pairs of motifs
occur in largely different number of input sequences.

Tompa’s approach was to score each k-mer with a z-score
constructed from the observed and expected number of input
sequences that have an occurrence of the given k-mer. The
z-score for some k-mer s is given by

Ms =
Ns −Nps
Nps(1− ps)

, (1)

where N is the number of input sequences, Ns is the number
of input sequences that contain an occurrence of s, and
ps is the probability of observing an occurrence of some
s in a random sequence. The idea of the z-score and the
technique for calculating ps was the crux of Tompa’s work,
but not necessarily the most computationally expensive.
It is worthwhile to impress that calculating Ns involves
examining every input sequence in turn with respect to k-
mer s.

2.2 Identifying opportunities for parallelization
To help us determine which portions of the algorithm

would benefit most from parallelization, we profiled our
sequential implementation of the algorithm (pseudocode in
Figure 1). For our profiling, we ran our program with
parameters that mimicked those defined by Tompa in the
motivating computational problem in Section 1.1 of his
paper: 4000 input sequences, each 20 nucleotides long,
searching for 5-mer motifs [2].

The profiling revealed that the 64% of CPU time was spent
in the routine that checks to see if an input sequence contains
(or “matches”) an occurrence of a k-mer (line 5). There
were 4,096,000 calls to that matching function — more calls
than were made to any other function. This number, while

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 907

1 f o r kmer in k m e r _ s e t :
2 p_s = . . .
3 N_s = 0
4 f o r s e q u e n c e in i n p u t _ s e q u e n c e s :
5 i f kmer occurs in s e q u e n c e :
6 N_s += 1
7 M[kmer] = c a l c _ z _ s c o r e (N_s , p_s)
8
9 re turn t op_kmers (M)

Fig. 1: Pseudocode for serial calculation of the z-scores

surprising, can be understood by realizing that for each k-
mer, we check for matches against all sequences:

45 k-mers × 4000 sequences = 4, 096, 000 checks. (2)

Even though checking for a match is fast, by virtue of there
being so many checks, counting Ns takes more time than any
other step in the algorithm. The functions that calculate ps
(line 7), for example, are only called once per k-mer (45 =
1024 many times in this case) regardless of the number of
input sequences.

The simplest way to break up the work of calculating
Ns is to split the work up at the level of calculating Ms,
since Ms is dependent on both Ns and ps. Said differently,
parallelizing the outer loop (line 1) of the algorithm will
yield the easiest and most immediate gain. Only 0.3% of
the program’s execution time was spent outside of the loop.

2.3 Method of parallelization
Since the calculations in the step that we identified could

be easily partitioned into separate (and independent) jobs
that do not need communication, the task is well suited
to run on a distributed computer like a Beowulf cluster
with MPI. We assembled our own Beowulf cluster, called
BeoPup, composed of 18 single-core AMD 64-bit Athlon
processor nodes connected by a TCP/IP Ethernet switch.
For parallelizing the motif finding algorithm on our BeoPup
cluster, MPI was a natural choice because it is designed to
enable parallel computing for interconnected machines that
do not share memory, like our cluster. The Beowulf design
of our cluster was well suited for the low communication
requirements of our parallelization of Tompa’s algorithm.
To use MPI with our Python implementation, we settled on
the mpi4py module [3] because of its active development.

To split the work of calculating the z-scores among
multiple computers, we wrote a SPMD (single program,
multiple data) type program that would calculate the z-
scores for disjoint subsets of all of the k-mers, where the
subset is dependent on which node in the cluster the program
is running on. In MPI terminology, we used a “gather” at
the end of the computations so that the z-scores each node
calculated are sent to a master node (given rank zero in our

example) that sorts and outputs the best scoring k-mers. The
source code for this parallel implementation has been made
available online [4].

3. Results
We ran our program with the same parameters given

earlier on 1, 2, 4, 8, and 16 nodes. We recorded the shortest
of five run-times for each condition in Table 1. Running
the program on 16 nodes, for example, yielded a nearly 15
times speedup over the time it takes to run the program
on just a single node. The efficiency for this 16 node case
is given by the speedup divided by the number of nodes:
14.996

16 = 0.937. An efficiency of 1 would indicate a perfectly
linear speedup, where the parallelized run-time is equal to
the single-node run-time divided by the number of available
nodes. The slightly decreasing efficiency can be explained
by communication overheads and the redundant computation
of the background nucleotide Markov model (used in finding
ps) that occurs on all nodes. A near perfectly linearly
speedup of our algorithm holds until the number of available
processors nears the granularity of the parallelization, which
is given by the number of k-mers.

Table 1: The run-time of our parallelization of Tompa’s
algorithm descreases almost linearly with respect to the
number of compute nodes.

Nodes Speedup Efficiency Time (seconds)

1 1.000 1.000 37.227
2 1.971 0.985 16.873
4 3.894 0.974 8.539
8 7.706 0.963 4.315

16 14.996 0.937 2.217

Figure 3 shows run-time increasing exponentially when
we increase the length of the motifs that we are searching
for. Because of the design of our parallelization, increasing
the problem size in this way will only increase the efficiency
when running on many nodes. This is because the proportion
of time spent calculating z-scores over the time spent in non-
parallel code increases as k increases.

4. Discussion and Future Work
We have shown that the application of parallel techniques

can greatly increase the speed of Tompa’s motif-finding
algorithm. Others have demonstrated success parallelizing
widely-used motif finding algorithms; MEME is one such
example that uses clusters of GPUs [5]. It reasons that other
motif-finding algorithms could benefit from the application
of parallel computing techniques and that the resultant
speedup could make running precise (but expensive) algo-
rithms a more practical prospect.

After the completion of the parallelization of Tompa’s
algorithm, we reached out to members of the bioinformatics
community. So far, the improvements were met with a

908 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

1
2 f o r kmer in k m e r _ s e t :
3 p_s = . . .
4 N_s = 0
5 f o r s e q u e n c e in i n p u t _ s e q u e n c e s :
6 i f kmer occurs in s e q u e n c e :
7 N_s += 1
8 M[kmer] = c a l c _ z _ s c o r e (N_s , p_s)
9

10
11
12
13 re turn t op_kmers (M)

Serial version

k m e r _ s e t = g e t _ k m e r s _ f o r _ r a n k (my_rank)
f o r kmer in k m e r _ s e t :

p_s = . . .
N_s = 0
f o r s e q u e n c e in i n p u t _ s e q u e n c e s :

i f kmer occurs in s e q u e n c e :
N_s += 1

M[kmer] = c a l c _ z _ s c o r e (N_s , p_s)

M = g a t h e r _ t o _ r a n k _ 0 (M)

i f my_rank i s 0 :
re turn t op_kmers (M)

Parallel version
Fig. 2: Pseudocode of parallelization

Fig. 3: Increases in k-mer length exponentially increase run-
time.

variety of feedback as well as some constructive criticism to
help form a plan for the future of our work with Tompa’s
algorithm. An insightful comment was provided by Dr.
Jonathan Visick, a professor of Microbiology and Genetics
at North Central College,

With hundreds of new bacterial whole-genome se-
quences being completed each year, problems like
identifying ribosome-binding sites are not going
away: the sequences are not the same for different
species, necessarily. Plus, an algorithm for finding
a ribosome-binding site presumably would also
be applicable to finding promoters in prokaryotes,
transcription-factor binding sites in eukaryotes and
various other sequence features. [6]

The next step for this algorithm probably entails a more col-

laborative effort from within the bioinformatics community.
The feedback indicates that the importance of motif-finding
is not dwindling and that their utility is greater now than
ever before. Since Tompa’s algorithm does not make any
biological assumptions, it can be adapted to address some
of the challenges mentioned by Dr. Visick.

Tompa’s algorithm involves creating a distinct determin-
istic finite automaton (DFA) for each k-mer. This DFA is
used to match sequences that have an occurrence (recall
that an occurrence allows substitutions) of the related k-
mer, and also to calculate ps. As a possible extension to his
work, Tompa suggests finding a way to accommodate longer
k-mers and more substitutions. This is because the DFA
creation algorithm that we implemented, while computation-
ally fast for simple cases that allow only one substitution,
becomes slow enough when it is modified to allow for more
substitutions that the program’s total run-time is markedly
increased (Figure 4).

Profiling our code showed that DFA creation (instead of
matching) takes up the majority of the run-time when we
allow for three substitutions. Although Tompa suggests core
modifications to his algorithm to allow for more substitu-
tions, simply adding more compute nodes to decrease the
number of k-mers that each node must inspect might be seen
as a possible solution to the problem. For example, the many-
thousand cored super computers ranked in the TOP500 list
could easily tackle a problem with limited substitutions [7].

5. Conclusions
Motif finding is a computationally expensive task. This

paper presented a parallel version of Tompa’s exact method
for finding short motifs [2]. Using a Beowulf cluster, we
showed that our parallel version of the algorithm was able
to significantly speed up the search for motifs. For example,
when searching for a motif using 16 nodes, we achieved

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 909

Fig. 4: For large k-mers, increasing the number of allowed
substitutions significantly increase run-time.

a speedup of almost 15 times. Parallel motif-finding algo-
rithms can enable searching for more complex motifs in
reasonable amounts of time.

6. Acknowledgements
We would like to thank Dr. Jonathan Visick, Dr. Deborah

Lycan and Dr. Adam A. Smith for discussions about biol-
ogy and bioinformatics. This material is based upon work
supported by the John S. Rogers Science Research Program
at Lewis & Clark College and by the James F. and Marion
L. Miller Foundation.

References
[1] M. Das and H.-K. Dai, “A survey of dna motif finding algorithms,”

BMC Bioinformatics, vol. 8, no. Suppl 7, p. S21, 2007. [Online].
Available: http://www.biomedcentral.com/1471-2105/8/S7/S21

[2] M. Tompa, “An exact method for finding short motifs in sequences,
with application to the ribosome binding site problem,” in Intelligent
Systems in Molecular Biology, 1999, pp. 262–271.

[3] “MPI for Python,” http://mpi4py.scipy.org/.
[4] “Code : motif-finder,” https://code.launchpad.net/motif-finder, 2011.
[5] Y. Liu, B. Schmidt, and D. L. Maskell, “An ultrafast scalable many-

core motif discovery algorithm for multiple gpus,” in 2011 IEEE
International Parallel & Distributed Processing Symposium.

[6] J. Visick, personal communication, 2011.
[7] “TOP500 List - November 2010,” http://top500.org/list/2010/11/100,

2010.

910 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

RNS: Remote Node Selection for HPC Clusters

Seyedeh Leili Mirtaheri, Ehsan Mousavi Khaneghah, Siavash Ghiasvand, Mohammad Norouzi Arab, Ashkan

Shirpour and Mohsen Sharifi

School of Computer Engineering

Iran University of Science and Technology

Tehran, Iran

{msharifi, mirtaheri, emousavi}@iust.ac.ir

{noroozi, ghiyasvand, a_shirpour}@comp.iust.ac.ir

Abstract

Scalability of distributed high performance

computing clusters in different administrative

domains is critically dependent on the

deployment of a proper resource discovery

mechanism that can discover resources residing

in different wide administrative domains. In this

paper, we present a new method for remote

cluster node selection called RNS that such a

required resource discovery mechanism may use.

We show analytically that RNS is superior to

existing resource discovery mechanisms in

response time and utilization of free resources.

1. Introduction

The performance of a traditional high

performance computing (HPC) cluster

comprising of a number of homogenous

computers interconnected by a dedicated local

area network is limited by the amount of

available resources in the locality of the cluster.

Better said, traditional HPC clusters are limited

in both performance and scalability. Some

clusters [1] just ignore requests for resources

higher than available in the cluster, while some

others [2] keep some limited number of resources

out of the cluster as reserved and use it in case

there are requests for higher number of resources.

Both approaches fail to remove performance and

scalability limitations.

 One solution to improve the performance and

scalability of HPC clusters is to allow them to

utilize out-of-cluster accessible and available

distributed resources whose types may be

different from the inside-of-the cluster resources

i.e. are heterogonous.

Such distributed clusters as any other distributed

system promise higher performance and

scalability. They however need a proper resource

discovery mechanism that can discover

heterogeneous resources residing in different

wide administrative domains. A resource

discovery mechanism is proper if it can satisfy as

much as possible the dynamic resource

requirements of every local process transparently

irrespective of whether resources are local or

remote.

The main challenge on the way of a proper

resource discovery mechanism is that resources

are heterogeneous and are dynamically added or

crossed out from the set of available resources of

the overall distributed system. Processes request

for resources dynamically too implying that no

prior knowledge exists on resource requirements

of processes.

In this paper, we present a new method for

remote cluster node selection called RNS that a

proper resource discovery mechanism may use.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 911

RNS does not require any agents on remote

machines.

We have organized the rest of paper as follows.

Section 2 presents a brief background on

resource discovery and its operations. Section 3

reports notable related works. Section 4 presents

and comparatively evaluates our proposed RNS

method. Section 5 concludes the paper.

2. Background and Definitions

The duty of a resource discovery service in

distributed systems is to find suitable resources

for current requests generated in the system. Such

a service is dependent on the daemons (agents)

already configured on the member machines of

the system [3, 4]. These daemons look after local

resources so that they can provide accurate

replies to the requests made by other daemons

within the system.

The resource discovery approaches use different

structures to support daemons to communicate.

Three well-known structures are centralized,

decentralized, and distributed [5, 6, 7, 8, 9].

However, regardless of the structure based on

which a resource discovery service’s daemons

are formed, there is protocol according to which

these daemons communicate. Therefore, it can be

stated that the most important matter in

communication of daemons is the common

language they use [5]. This limits different

resource discovery services’ daemons in making

communications with each other. The domain of

a resource discovery service is thus defined by its

daemons and the machines running daemons.

A resource discovery service performs well if

resource requests can be satisfied using resources

of the member machines of a cluster system. But

what happens when all these resources are in

use? How the resource discovery service can

handle new requests? To answer these questions,

we need to determine more accurately the area of

work of the resource discovery service. To do

this, we introduce two areas. The first area

contains member machines of a cluster system

and the second one includes accessible systems

that are not member of the cluster system.

In the first area, everything is almost

preconfigured and foreseen. All system structures

are determined and configured to satisfy the

requirements of the cluster system. As a result,

daemons are installed on every machine. These

systems usually are homogenous or at least have

little heterogeneity.

The second area discusses a completely unknown

and heterogeneous world in which any resource

of any type can exist. These resources are

managed by different operating systems. Also,

the member machines of such a system are not

preconfigured and subsequently their required

daemons are not installed on the machines. As a

result, a uniform approach cannot be used for

interacting with all of the machines. However, as

mentioned earlier, since a resource discovery

service needs to have some daemon

preconfigured on all the machines, it can only

work in the first area. To overcome the resource

shortage inside the cluster, we need to use of out-

of-cluster resources.

Because a resource discovery service is unable to

work beyond the borders of a cluster system [10],

a new service is required to handle requests using

out-of-cluster resources. To implement resource

discovery mechanisms on out-of-cluster

resources, RNS must register those resources as

members and then apply those mechanisms. RNS

is only responsible for finding potential out-of-

cluster resources and after selecting them some

other mechanisms must be activated in order for

the resources to be configured according to the

requirements of the cluster system.

3. Related Work

There are few research works on the use of out-

of-cluster resources. Some [2] use reserved

912 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

resources and some [1] ignore out-of-capacity

requests. Only some researches like Mosix-2

propose instant joining of two cluster systems to

each other to share their resources. The MOSIX

Reach The Clouds Technology (MRC in short)

determines how two MOSIX clusters can join to

share their resources [11]. After joining, any

node in the cluster can manage the cluster and

dispatch its jobs. Therefore, the mentioned

challenge is solved by adding available resources

in other clusters. However, as stated before, some

pre-configurations must be performed and both

clusters must work under the same administrative

domain.

Although a similar work on cluster systems

(respecting the steps and their order) are not

researched in depth, many works have been

conducted on each single step.

Finding neighboring machines are so important

that an IP protocol packet is devoted to it [12].

Two mechanisms for recognizing neighboring

machines are introduced in [13] and [14]. These

mechanisms work in P2P networks. On the other

hand, many works have been conducted on

recognizing resources of remote machines

without using agents and many industrial tools

exist in this field [15]. However, all of these tools

use standards accepted and used by the world

community. Among these tools we can refer to

IBM Tivoli Monitoring [16] as two commercial

tools and HP SiteScope [17] and Zabbix [18] and

Nagios [19] as two open source tools.

4. The Proposed RNS Method

RNS has 4 phases that can be executed

independently each. These phases include:

request reception indicating the need for a

resource, finding neighboring out-of-cluster

machines, communicating with the discovered

machines in order to etch out their resource

information, and finally selecting one of the

discovered machines regarding the requirements

specified in the received message.

In RNS, first a message containing some

information about the required resource is sent to

one of the daemons of RNS located on the edge

nodes of the cluster; an edge node is a node that

is connected to the outside world. The receiving

daemon analyzes the message and if relevant

information exists it returns the information of

the machine for joining it to the cluster. On the

other hand, if there is no relevant information, the

scanning process finds other neighboring out-of-

cluster machines. In the next phase,

communication with these machines starts. This

phase is subdivided into two smaller phases. In

the first sub-phase, the operating system of the

remote machine is determined and in the second

sub-phase the appropriate method for

communication based on its operating system is

chosen. In the final phase, the most suitable

remote machine is chosen so that membership

operations are performed. Also, any relevant

information is cached so that further decisions

are made faster.

RNS can act in a pro-active or passive manner.

The previous scenario used the passive manner.

In pro-active mode, before RNS daemons are

sent messages, the scanning phase starts to

handle requests faster.

The first phase of RNS is the only phase directly

involved with the resource discovery mechanism.

Therefore, it is better for the RNS service to have

a well-defined interface so that it can

communicate with as many resource discovery

mechanisms as possible. In the second phase, it

can make use of many mechanisms available in

this field. In the third phase, using an alternating

structure, this service brings the ability to

communicate with many operating systems.

Based on the operating system recognized at this

phase, many tools and protocols like SNMP,

SSH, DCOM, SLP and WMI can be utilized to

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 913

fetch information on remote machine’s resources.

Figure 1 depicts the relation between these 4

phases.

Figure 1: The relation between different phases involved in

the RNS method

The pseudocode of RNS is presented below.

RNS Mechanism

/* A new request received */

Analyze_The_Request()

IF(Results_From_Previous_Searches_Are_Enough)

THEN

 /* RNS already has sufficient information and

there is no need to search again */

 Compare_Available_Resources_And_Choose_

The_Best()

ELSE

 /* Do discovery phases one by one */

 Scan_Neighborhood()

 Detect_Neighbors_OS()

 Gather_Neighbors_Resource_Info()

 /* choose the best result */

Compare_Results_And_Choose_The_Best()

END IF

/* the selected node is introduced to cluster for further

configurations */

Introduce_The_Selected_Machine_To_Cluster()

IF (Status==Passive) THEN

 // Daemon goes to standby mode until new request

arrives

Exit_And_Wait_For_New_Requests()

ELSE IF (Status==ProActive) THEN

 // Daemon returns to its previous state and

 continues scanning any reachable neighbor

Exit_And_Search_For_New_External_Resources()

END IF

5. Evaluation

The first method is responsible until a resource

within the cluster is available. After all resources

become unavailable, new requests are ignored.

The second method differs from the previous

method in the case all resources within a cluster

are unavailable. At this situation it makes use of

the reserved resources already preconfigured for

such a situation. The third method or RNS

equally behaves about the requests that can be

answered using inter cluster resources. Requests

that cannot be handled using inter cluster

resources are sent to the RNS service so that

some out-of-cluster resource are found for them

based on the mechanisms already described.

One of the main parameters for determining the

ability of a cluster system is its response time to

requests. Therefore, we have chosen this

parameter to compare our method with notable

existing methods.

Figure 2 shows the response time regarding the

number of requests generated. As depicted, the

resource reservation method and RNS behave the

same as the first method in the first interval (up

to R1). Continuing, the first method ignores any

more requests. Therefore, response time of this

method goes to infinity as more requests arrive.

However, the resource reservation uses reserved

resources and can handle coming requests. The

RNS method must find and add resources to the

cluster from outside the cluster and it’ll take

much longer time to complete. Therefore, during

the second interval, RNS is slower than the

resource reservation method. By the beginning of

the third interval all of the resources of the

cluster and reseved resources are no longer

available. In this situation, the first method still

ignores requests and the second method has no

available resources and must wait until some

resource within the cluster itself or from the set

of reserved resources become available.

Therefore, its response time increases as more

Recieve
resource
shortage
request

Find
neighboring
machines

Gathering
machine's
resource
information

Choosing
the best
machine

914 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

and more requests are generated in the system.

However, since RNS does not limit itself to a

preconfigured set of resources, it never faces the

problem of not having enough resources to

handle requests. Although RNS shows lower

performance during the second interval, it can

compensate the lower performance in the third

interval and yield a high performance overall.

Figure 2: Comparison between the three methods in

response time.

Figure 3: Comparison between the three methods in the use

of free resources

At first, all of the resources within the cluster are

free. As more requests are generated in the

system, the number of available resources

decreases. The three methods show the same

behavior until there is no resource available

inside the cluster system. After all the internal

resources become busy, the first method no

longer responds and therefore there are no free

resources. In this situation, the second method

makes use of a set of reserved resources. The

oscillations shown in this method’s curve

represent that the number of resources joining

and leaving the cluster changes dynamically.

Furthermore, as the number of requests exceeds

the capacity of the resources of the cluster and

the reserved set, no resources will be available to

this method any longer. RNS is not limited to a

preconfigured set of resources, therefore after all

resources within the cluster become busy; it adds

new resources from outside of the cluster.

Therefore, it keeps oscillating and never stops

responding requests.

6. Conclusion

In this paper we showed that our proposed

remote cluster node selection called RNS

responds well to cluster requests when cluster

went out of resources. We also showed that we

can prevent system failures in accomplishing

requests and also prevent resources from being

overloaded. We showed that RNS allows the use

of external resources in the cluster system

without doing any pre-reservation with high

response time. Compared to other resource

discovery methods, RNS has higher dynamicity,

can interact with different operating systems, and

does not need any agents on remote machines

with which to communicate. These attributes has

allowed the use of all out-of-cluster resources

while keeping their utilization high. On the other

hand, since no agent is used on remote machines

and also its ability to interact with different

operating systems, scalability is highly provided

by RNS.

References

[1] E. Pournaras, G. Exarchakos, and N. Antonopoulos,

"Load-driven neighbourhood reconfiguration of Gnutella

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 915

overlay," Computer Communications, vol. 31, no. 13, Aug.

2008.

[2] D. Wischik, M. Handley, and M. B. Braun, "The

resource pooling principle," ACM SIGCOMM Computer

Communication Review, vol. 38, no. 5, Oct. 2008.

[3] D. Oppenheimer, J. Albrecht, D. Patterson, and A.

Vahdat, "Design and implementation trade-offs for wide-

area resource discovery," ACM Transactions on Internet

Technology, vol. 8, no. 4, pp. 113-124, Sep. 2008.

[4] M. L. Massie, B. N. Chun, and D. E. Culler, "The

Ganglia Distributed Monitoring System: Design,

Implementation And Experience," Parallel Computing, vol.

30, no. 7, pp. 817-840, Jul. 2004.

[5] R. Raman, M. Livny, M. Solomon, “Matchmaking:

Distributed Resource Management for High Throughput

Computing”, in Proceedings of HPDC, pp.140-140, 1998.

[6] D. Oppenheimer, J. Albrecht, D. Patterson, and A.

Vahdat, "Scalable Wide-Area Resource Discovery," EECS

Department, University of California, Berkeley, California,

United States of America, Technical Report UCB/CSD-04-

1334, 2004.

[7] C. Mastroianni, D. Talia, and O. Verta, “A super-peer

model for resource discovery services in large-scale grids”,

Future Generation Computer Systems, pp.1235–1248, 2005.

[8] S. Ding, J. Yuan, J. Ju, and L. Hu, “A heuristic algorithm

for agent-based grid resource discovery”, Intl. Conf. on e-

Technology, e-Commerce and e-Service, Hong Kong,

pp.222–225, 2005.

[9] D. Talia, P. Trunfio, and J. Zeng, “Peer-to-peer models

for resource discovery in large-scale grids: a scalable

architecture”, High Performance Computing for

Computational Science – VECPAR 2006, pp.66–78, 2007.

[10] I.T. Foster, "Globus Toolkit Version 4: Software for

Service-Oriented Systems", presented at J. Comput. Sci.

Technol., pp.513-520, 2006.

[11] A. Barak. (2011, May) MOSIX:Cluster and multi-

cluster management. [Online].

http://knol.google.com/k/amnon-barak/mosix/qibu8ltfp5fh/5

[12] T. Narten, E. Nordmark, W. Simpson, and H. Soliman,

"Neighbor Discovery for IP version 6 (IPv6)," Network

Working Group RFC 4861, 2007.

[13] C. Mastroianni, D. Talia, and O. Verta, "A P2P

Approach for Membership Management and Resource

Discovery in Grids," in Proceedings of the International

Conference on Information Technology: Coding and

Computing , Washington, DC, USA, 2005.

[14] P. Karwaczyński, D. Konieczny, J. Moçnik, and M.

Novak, "Dual proximity neighbour selection method for

peer-to-peer-based discovery service," in Proceedings of the

2007 ACM symposium on Applied computing, New York,

NY, USA, 2007.

[15] M. Sharifi, S. L. Mirtaheri, E. Mousavi Khaneghah, A

Dynamic Framework for Integrated Management of All

Types of Resources in P2P Systems, The Journal of

Supercomputing, 52(2), 149–170, 2010.

[16] T. Bhe, K. Inayama, C. Lister, M. Parlione, and M.

Vesich, Ibm tivoli monitoring version 5.1.1 creating

resource models and providers. Riverton, NJ, USA: IBM

Corp, 2003.

[17] H. Team, "Going beyond simple monitoring with HP

SiteScope," Hewlett-Packard Company White Paper, 2010.

[18] R. Olups, Zabbix 1.8 Network Monitoring. USA: Packt

Publishing, 2010.

[19] W. Barth, Nagios: System and Network Monitoring.

San Francisco, CA, USA: No Starch Press, 2008.

916 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

http://knol.google.com/k/amnon-barak/mosix/qibu8ltfp5fh/5

2 4 6 3 1 9 8 5 7 10 SEQ1
3 -2 -3 2 Index

1 2 3 4 5 6 7 8 9 10 SEQ1

10 Index

10 9 8 7 6 5 4 3 2 1 SEQ1

-10 Index

Multimerge

Fernando Belmiro do Couto1 and Fabio Silva do Couto2

1Divisao de Ti, BBDTVM, Rio de Janeiro, RJ, Brasil
2UFRJ, Rio de Janeiro, RJ, Brasil

Abstract - MultiMerge is an algorithm that maps the
ordered subsets of a mass of data, ordering them with
Merge routines and using parallel processing. Most sort
algorithms in use nowadays treat the mass of data without
previously analyzing its distribution, no matter if dealing
with full or partially ordered. According to the methodology
applied in this algorithm the whole mass of data is in the
worst case ordered each two elements, excepting its last
element. According to the same method we prove that at
random distributions, are statistically distributed among
subsets of 2 + 3 elements. This algorithm tends to use the
multiprocessing capability of current computers and is able
to adapt itself to increasingly coprocessors quantity. The
algorithm first scans a sequence of N elements, comparing
each element with the next, verifying if they are ordered
according to a previously established criterion and
gathering them on positive or negative value subsets if they
obey or not that criterion respectively. The major algorithm
routine order two subsets using two threads simultaneously.
First thread will merge from beginning until the half of
subsets sum, comparing the smallest group elements.
Second thread will merge from the end until the other half
of the subsets sum, comparing the greatest group elements.

1. Introduction
 Merging is faster then sorting. We can increase the
speed using multithreads and if we have large ordered lists.
Merge, multithreads and ordered lists are the focus of this
algorithm. This is not a mergesort algorithm variant, since
mergesort always divide the data the same way. The
algorithm with performance comparable to this one is the
algorithm proposed by MIT lecture 6172 “Analysis of
multithreaded algorithms”. That mergesort algorithm looses
in average performance because in the begining divide data
always the every two elements and at the final threads
because uses one thread to merge two lists. Multimerge
main routine uses two threads to merge two lists.
There is order in chaos it depends the way we look, in the
first task of the algorithm we search for order.

2. Mapping Data
 The algorithm first scans a sequence of N elements,
comparing each element with the next, verifying if they are
ordered according to a previously established criterion and
gathering them on positive or negative value groups if they
obey or not that criterion respectively. At the end of this

process, if the distribution is ordered, we have only one
index which get a positive N value. On the other hand, if the
distribution is reversed order, this index will get negative
value (Fig. 1) Assuming other hypothesis, index will range
from 2 to (N / 2) +1 in proportion to total date mass. On
average we will have 2N/5 index. To improve speed we
divide the mass of data into fixed sized pieces and
implement this in several threads adding the last index to the
next index in the next piece according to the value. The last
element of a piece is the first element of the next piece.

Figure 1.

3. Worst Case

 For any distribution the worst case for implementation
of the algorithm to initial 4 elements is described as shown in
Table I:

TABLE I.

INITIAL 4 ELEMENTS {A,B,C, D…}
A < B B < C C < D Index(0) Index(1)

TRUE FALSE TRUE 2 2

TRUE FALSE FALSE 2 -2

FALSE TRUE FALSE -2 -2

FALSE TRUE TRUE -2 2

The worst case is the way mergesort begins sort.

4. Average Case
 As we see, the worst case splits the distribution into
two ordered elements groups. We can then infer that on a
random distribution the probability to occur 3 ordered
elements is 50%. Therefore a minimal elements group to

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 917

define a random distribution would be 2+3 type. This feature
is advantageous to mass ordering against Merge Sort
algorithm, which in the beginning divide the distribution at
each two elements, sort then and merge the resulting groups
until the end.

5. Optimal Order
 Grouping data according to the smallest groups size
optimize non parallel merge routines performance.
Nevertheless with multiprocessing the major factor to time
optimization is the number of threads on simultaneously
work. When a thread begins a large data group process, at
the same time many others threads will work on smaller
quantities. Mergesort can’t use this feature because groups
have the same size.

6. Multimerge
 The major algorithm routine order two data mass
subsets using two threads simultaneously. First thread will
merge from beginning until the half of subsets sum,
comparing the smallest group elements. Second thread will
merge from the end until the other half of the subsets sum,
comparing the greatest group elements. (Fig. 2, 3 &.4).

 Figure 2 Thread A

Figure 3 Thread B

Figure 4

7. Multimerge in Parallel
 To increase speed, we need to parallelize the
Multimerge. To do this when the sum of the two lists is
greater then an arbitrary value, we divide the greater list by
two, do a binary search and continue the process until reach
that arbitrary value.

1 3 5 7 9

 Binary Search

2 4 6 8

2 4 6 8
First group

1 3 5 7 9 10
Second group

1 2 3 4 5 6 7 8 9 10

 Thread A Thread B

SEQ1 (SOURCE AREA)

2 4 6 8 1 3 5 7 9 10
P1 P2 Q1 Q2
O K J

SEQ2 (WORK AREA)

1 2 3 4 5 6 7 8 9 10
A1 B1 B2 A2

Thread A Thread B

Thread B

FOR Y = A2 DOWNTO B2
IF Q2<K
 SEQ2[Y] =SEQ1[P2]; DEC P2
ELSE
 IF P2<O
 SEQ2[Y]=SEQ1[Q2]; DEC Q2
 ELSE
 IF SEQ1[Q2]<SEQ1[P2]
 SEQ2[Y]=SEQ1[P2]; DEC P2
 ELSE
 SEQ2[Y]=SEQ1[Q2]; DEC Q2
 END IF
END IF

SEQ1 (SOURCE AREA)
2 4 6 8 1 3 5 7 9 10
P1 P2 Q1 Q2
O K J

SEQ2 (WORK AREA)
1 2 3 4 5 6 7 8 9 10
A1 B1 B2 A2

Thread A Thread B

Thread A

FOR Z = A1 TO B1
IF P1=K
 SEQ2[Z] =SEQ1[Q1] ; INC Q1
ELSE
 IF Q1>J
 SEQ2[Z]=SEQ1[P1] ; INC P1
 ELSE
 IF SEQ1[Q1]<SEQ1[P1]
 SEQ2[Z]=SEQ1[Q1]; INC Q1
 ELSE
 SEQ2[Z]=SEQ1[P1]; INC P1
 END IF
END IF

918 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

8. The Algorithm
The algorithm is composed basically by 3 major Tasks:

The function of Task0 is to identify in the sequence, ordered
and reversed order groups, at this time each index is given
the status 2. To improve this task the mass of data is divided
into groups of N/m +1 elements and parallel threads identify
indexes. If they are ordered or reversed order, the next task
are not started and the process is redirected to a conclusion.
If the sequence is not ordered Task1 starts. The function of
Task1 is to get each group with status 2 and transfer them to
the work area, using multimerge and changing the status to 0.
Then repeat the procedure taking these groups in the work
area and applying multimerge to transfer them to the source
area by changing the status to 1. This routine takes the initial
mapping to optimize the sorting, because if the sign of the
index of adjacent groups are opposing, a position already be
set (Table II). Table II

The Task 1 ends when the last index has its status changed to
1.
If we have more than 1 indice the Task 2 starts and all
indices have positive values.
The function of Task 2 is to apply MultiMerge in each group
that is in the source area with status equal to 1 and transfer
him to the work area by changing the status to 0 and then
returning to the source area with status 1.

The algorithm terminates when Task2 transfer data
completely ordered to the source area or when there is only
one index and its value is equal to N.
To control the flow of threads the algorithm uses a global
variable that stores the number of active threads, allowing
start of new threads if the maximum limit of threads is not
exceeded. The definition of the maximum number of
simultaneously threads depending on the characteristics of
the hardware.

9. Conclusion
The purpose of this algorithm is:
• identify pre-existing organizations in the mass of

data;
• seek the smallest number of iterations for the mass

of data;
• distribute the problem in order to fully utilize the

processing hardware capabilities;
• consume the smallest possible space allocation,
 to achieve the solution of the problem in less time.

I hope this text will contribute to the improvement of the

processes of sorting and help fellow developers around the
world.

10. Acknowledgments
 To my wife Michelle for her patience.

11. References

[1] CORMEN, Thomas H., Introduction to Algorithms,

Second Edition, McGraw-Hill Book Company 2001.
[2] MIT 6.172 Lecture 13 Analysis of multithreaded

algorithms http://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-172-performance-engineering-of-software-
systems-fall-2009/lecture-notes/MIT6_172F09_lec13.pdf

[3] SZWARCFITER, Jaime Luiz; MARKENZONI, Lilian,
(1994) Estrutura de dados e seus algoritmos, Editora
LTC 2ª Edição.

[4] BUCKNALL, Julian; Algoritmos e estruturas de dados
com Delphi, Editora Berkeley.

4 ELEMENTS {…,A,B,C, D…}

A < B B < C C < D
Index

(6)
Index(7) Position

TRUE FALSE TRUE 2 2

TRUE FALSE FALSE 2 -2
B

greatest

FALSE TRUE FALSE -2 -2

FALSE TRUE TRUE -2 2
B

smallest

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 919

A Study of Memory Access Patterns in Irregular Parallel Codes
Using Hardware Counter-Based Tools

Oscar G. Lorenzo1, Juan A. Lorenzo1, J.C. Cabaleiro1, Dora B. Heras1 Marcos Suárez2, and Juan C. Pichel1
1Computer Architecture Group, Electronics and Computer Science Dept., Univ. of Santiago de Compostela,

15782 Santiago de Compostela, Spain
2Land Laboratory, Univ. of Santiago de Compostela,

27002 Lugo, Spain

Abstract— This work presents the development of a series of
tools to simplify both EARs (Event Address Registers) coun-
ters reading and programming in parallel codes. These tools
allow EAR counters access in a user friendly workspace. The
next tools have been developed: A tool for inserting, in a
simple and intuitive manner, the code needed to monitor and
program hardware counters in a parallel program. Another
tool takes as input the data obtained by the monitored
parallel code and shows them in a comprehensive and
detailed way. These tools were used to carry out a study of
parallel irregular codes and to validate a data reordering
technique used to optimize locality of memory accesses in
the SpMxV (sparse matrix vector product) problem. Access
characterization is one of the main issues dealing with the
problem of improving performance of irregular accesses.
This is specially true in parallel shared memory platforms.

Keywords: A maximum of 6 keywords

1. Introduction
A tool has been designed for inserting, in a simple and

intuitive manner, the code needed to monitor and program
hardware counters in a parallel code. Two versions have been
implemented. One of them executable from the command
line, taking as input a source code parallel program and
outputting this same parallel program modified with the
monitoring code. The other provides the same functionality
using a graphical interface, allowing the user to add the
monitoring code gradually.

Another developed tool takes as input the memory access
data obtained by the execution of the monitored parallel code
and shows them in a graphical and detailed way, while at the
same time keeping them clear and user friendly. This tool
allows the detail level to be adjusted, so memory accesses
can be shown all the way from a global view to detailed,
event by event, one.

While there are other similar tools in the market, like PAPI
[1], TAU [2], Vampir [3] or Paraver [4], our tools are simpler
and better oriented to our specific aims.

These tools have been tested during a study of a series
of various irregular parallel problems in the FinisTerrae

supercomputer [5]. In this paper we focus on the use of these
tools to validate a data reordering technique [6][7] aimed to
optimize the locality of the memory accesses performed by
the SpMxV code. Although this work has been carried out
in the FinisTerrae, these tools can be generally applied to
any other hardware counter enabled Itanium2 [8] processor
based environment, both monoprocessor and multiprocessor.

The Itanium2 [8] processor family implements a special
kind of hardware counters called EARs. These counters
offer information about events related to memory accesses
at virtual addressing level. This information includes, among
others, TLB misses and cache misses at different levels, with
their access latency, for each virtual memory address. The
cache hierarchy of this processor is shown in Figure 1. This
information might be of great value to the programmer, but
its access may be complex and tedious. In this work we
present different tools to simplify the use of these hardware
counters.

EARs can be configured to capture only those events in
which we might be interested. For cache miss events both the
read resolution minimum latency, with values from 4 to 4096
cycles, and the cache type, either data or instruction, can be
considered. Here we focus in data cache misses, usually with
low latencies, as to capture the greatest number of events
possible.

To carry out the PMU programming as well as to obtain of
execution data both the libpfm2 [9] library and the perfmon2
[9] communication interface have been used.

Fig. 1: The Itanium2 Montvale processor.

920 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

2. The code insertion tool
This tool aims to solve the problem of adding the neces-

sary code to work with EAR counters in a parallel program
in the most automatic way. The user must be allowed to
name the event to capture or the point in the code from where
to start monitoring, among other considerations, but this tool
reduces greatly the amount of work needed to do this task.
For each miss event relevant information is captured: the
virtual memory address that was accessed, the accessing
instruction memory address, the core where it took place
and an additional item, the operation’s latency in cache miss
events or the TLB miss type in TLB miss events.

This tool adds code automatically in three points in the
parallel code (see Figure 2):

• Previous Code: This code must come before both
counter programming and reading. It is made of library
inclusion directives, constant and variable declaration,
and the global procedures to be used later (mainly those
regarding EARs reading).

• Begin Code: This code comes exactly before monitor-
ing begins, and must be inside the same parallel region
as the code to be monitored. It is made of both libpfm
initialization and PMU counters programming. It ends
issuing the order to start monitoring.

• End Code: This code takes care of ending monitoring,
so it must be added just after the section to be measured.
It processes any information remaining in the sampling
buffer.

Fig. 2: Added code.

3. The visualization tool
The visualization tool main functionality is to classify

captured events in categories according to their memory

address. It then shows them jointly in a histogram delimited
by the initial and final addresses of the studied virtual
memory range as seen in Figure 3. This way it allows the
user to get a general view of memory access patterns in
her parallel program. This histogram can be modified by the
user, for example, by filtering events by their instruction or
core, or by changing the number and size of the categories,
as to raise or lower the detail level (see Figure 4).

Fig. 3: Visualization tool main histogram.

Fig. 4: Visualization tool detailed histogram.

4. A case study: locality optimization
technique

A locality optimization technique [6][7] was used to test
the above tools. It consists of reorganizing the data guided
by a locality model instead of restructuring the code or
changing the sparse matrix storage format. Unlike other
existent locality models that predict in a precise way the data
movement among the levels of the memory hierarchy, our
model is able to characterize, sacrificing accuracy, the trend
of this movement in general terms. In particular, locality
is evaluated using a distance function that depends on the
number of entry matches. Considering accesses to the sparse
matrix by rows, the number of entry matches between any
pair of rows is defined as the number of non-zero elements in

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 921

the same column of both rows. The model provides a value,
noted as total distance, that is inversely proportional to the
locality of the accesses performed by the sparse matrix.

The goal of the data reordering technique is to increase
the grouping of non-zero elements in the sparse matrix
pattern that characterizes the irregular accesses and, as a
consequence, improve the locality in the execution of the
SpMxV code. The reordering technique permutes windows
of locality instead of individual rows or columns of the
matrix. A window of locality is a set of w consecutive rows
(or columns) of the matrix between which there is a high
probability of data reuse when executing the sparse matrix
code.

The method searches for a permutation of windows of
locality that minimizes the total distance of the matrix. In
this way, the problem of locality improvement is formulated
as a classic NP-complete optimization problem, and we solve
it as a graph problem using its analogy to the traveling sales-
man problem. The appropriate order of rows and columns
of the matrix is given as a permutation vector.

In order to select the window size (w) [7], two types of
windows of locality are considered: fixed and variable. In the
variable-size case, the criterion to decide if two consecutive
rows/columns are included within the same window depends
on the locality estimation made by the model. In particular,
the distance between these rows/columns must be lower than
a established threshold. In our studies we conclude that
windows of w = 1 and w = variable are the best choices
in terms of performance.

4.1 Experimental results
The data reordering technique has been applied to the

matrices shown in Figure 5 using both window sizes. These
reordered matrices should present a higher data locality
for each thread individually, which would mean that fewer
memory addresses should be shared between them.

In the Itanium2 architecture, floating point operands by-
pass the level 1 data cache, so reading them always causes
a cache miss [8]. Since the matrix data are floating-point
values the EAR counters can be used to sample among all
memory accesses. Using the tools previously commented
data regarding the SpMxV memory accesses have been easily
collected at a high sample rate.

In Figure 6 the number of total read conflicts caused by
different threads accessing the same memory address are
shown. These are normalized for each pair matrix-number
of threads to the results regarding the unordered matrix. It
shows how both window sizes (w = 1 and w = variable
) are effective for most matrices, and more effective as
the number of threads grows. Only for matrices bcsstk29
and memplus results do not show an improvement with
low number of threads. This is because the pattern of both
matrices already presents high locality, and as such it cannot
be improved at all by the reordering technique.

5. Conclusions
The tools here developed greatly simplify obtaining and

studying data from the EAR counters present in the Itanium2
processors. With these, data memory accesses can be traced
during a program’s execution. We study shared memory pro-
grams using OpenMP. These tools call for some familiarity
using PMU hardware counters, but they nonetheless simplify
adding monitoring code. Since this code is user editable
they can be adapted for use in any number of environments,
architectures or codes. The data visualization tool allows for
an easy statistical study of the captured events, by offering
the most important functionalities related to working with
counter data.

It has been shown that the information obtained is useful
to model the execution of a parallel program, by studying
its memory access patterns. Using this information it is easy
to see, for example, which threads have a greater workload,
relative to their input data, since it determines the number
of memory accesses and their locality.

Using these tools a reordering technique has been vali-
dated to show its benefits. In fact, results show locality is
greatly improved by this reordering techniques.

Acknowledgment
This work has been partially supported by the Ministry of

Education and Science of Spain, FEDER funds under contract TIN
2010-17541 and by the Xunta de Galicia (Spain) under contract
2010/28 and project 09TIC002CT. The authors also wish to thank
the supercomputer facilities provided by CESGA.

References
[1] http://icl.cs.utk.edu/papi/, Performance Application Programming Inter-

face (PAPI).
[2] S. S. Shende and A. D. Malony, “The Tau parallel performance

system,” International Journal of High Performance Computing
Applications, vol. 20, no. 2, pp. 287–311, Summer 2006. [Online].
Available: http://hpc.sagepub.com/content/20/2/287.abstract

[3] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach,
“VAMPIR: Visualization and analysis of mpi resources,” Supercom-
puter, vol. 12, pp. 69–80, 1996.

[4] J. Labarta, S. Girona, V. Pillet, T. Cortes, and L. Gregoris, “Dip: A
parallel program development environment,” in Euro-Par’96 Parallel
Processing, ser. Lecture Notes in Computer Science, L. BougÃl’,
P. Fraigniaud, A. Mignotte, and Y. Robert, Eds. Springer Berlin
/ Heidelberg, 1996, vol. 1124, pp. 665–674, 10.1007/BFb0024763.
[Online]. Available: http://dx.doi.org/10.1007/BFb0024763

[5] http://www.cesga.es, Galicia Supercomputing Center.
[6] J. C. Pichel, D. E. Singh, and J. Carretero, “Reordering algorithms for

increasing locality on multicore processors,” in Proc. of the IEEE Int.
Conf. on High Performance Computing and Communications, 2008,
pp. 123–130.

[7] J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F. Rivera, “Increasing
data reuse of sparse algebra codes on simultaneous multithreading ar-
chitectures,” Concurrency and Computation: Practice and Experience,
vol. 21, no. 15, pp. 1838–1856, 2009.

[8] Dual-Core Update to the Intel Itanium 2 Processor Reference Manual,
download.intel.com/design/Itanium2/manuals/30806501.pdf.

[9] Perfmon2 monitoring interface and Pfmon monitoring tool,
http://perfmon2.sourceforge.net.

922 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

(a) garon2 (b) memplus (c) msc10848 (d) Na5 (e) ncvxbqp1 (f) nmos3

(g) psmigr_1 (h) sme3Da (i) syn12000a (j) tandem_vtx (k) bcsstk29 (l) e40r0100

Fig. 5: Matrix patterns before reordering.

(a) Total Conflicts Fraction - 2 threads

(b) Total Conflicts Fraction- 4 threads

(c) Total Conflicts Fraction - 8 threads

(d) Total Conflicts Fraction - 16 threads

Fig. 6: Conflict reduction after applying both reordering techniques, normalized to the unordered matrix. These results have
been obtained using the hardware counter based tools.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 923

VLSI Parallel Sorter Architecture for Streaming Data

Dongjae Song, Kyoung Kun Lee, Soongyu Kwon, and Jong Tae Kim
School of Information and Communication Engineering,

Sungkyunkwan University,
Suwon, Gyeonggi-do, South Korea

Abstract - Data sorting is used indispensably in computer
system and affects performance of entire processing. Recently,
its importance is increased in many areas from database
server system to embedded computer system. Data sorting
algorithms and implementation methods have been conducted
in many ways that reduces complexity for operation purposes,
along with hardware/software structures. In this paper, we
propose new sorting architecture that uses 8-way merge sort
algorithm to sort streaming data from database. By using
pipelined merge sort algorithm, we can organize parallel
sorter architecture. Through functional simulation, we analyze
relation between amount of data and required clock cycle to
sort the data. Also, we can calculate size of memory to
implement sorter architecture.

Keywords: VLSI architecture, hardware sorter, parallel
sorter, merge sort

1 Introduction
In most computer system and database system, data

sorting is basic and indispensably used operation. Therefore,
data sorting takes important part in capability of entire system.
Its importance is getting bigger from database server to
embedded computer system [4]. Because of its importance,
many experiments have been conducted across the board on
system before to suggest algorithms that reduces complexity
and sorting time for operation purposes, along with
hardware/software structures [1][3][5]. Through them, many
parts are improved and many algorithms were developed.
However, data sorting is still one of the operations that take
most time. That is why it is important to see how sorting
system, which accompanies sorting application, is constructed.
Data sorting algorithms and implementation methods have
been conducted in many ways. For example, at algorithmic
aspect, quick sort, heap sort or merge sort algorithm can be
used. And sorter can consists of hardware only or
hardware/software hybrid method [6]. These implementation
of the sorter has advantages and disadvantages of each are
quite different.

Our objective is to reduce unnecessary time in sorting
streaming data that comes through input and develop VLSI
architecture of hardware sorter that outputs sorted data. Using

8-way pipelined merge sort algorithm, we design hardware
sort unit model using VHDL. Entire sorting system is
developed by connecting these sort units. Then, simulate
system for verification and performance analysis. Through
functional simulations, we derive a simple formula for
relationship between amount of data and required clock cycle
to sort data.

This paper is comprised as following. Section 2 describes
many hardware sorter architecture and pipeline merge sort
algorithm. Section 3 describes our approaches to materializing
VLSI architecture of hardware sorter. Section 4 shows result
of experiment. Section 5 determines conclusion that arises
from result of experiment.

2 Related Work
2.1 Pipeline Merge Sort Algorithm

Figure 1 Pipeline merge sort algorithm

 Merge sort Algorithm performs multiple levels of merge
and compare operation when input is received. Essentially
log2n steps are done and applied to the data in 2-way merge
sort. This process is done in typical time so each merge step
takes O(n) time. Therefore, total operational time costs get
O(nlogn) complexity. In case of 2-way merge sort, the first
step is to merge 1 record. Partially sorted records are called
strings. The second step merges strings with size of two. m-th
step merges string size of 2m-1. Looking at example shown in
Figure 1, SU1(Sort Unit) takes in a series of records and
outputs one arranged string from two records. 7 is greater than
6 so 6 comes first and 7 is put at next clock cycle. During the
process, next records 3 and 5 are computed. SU2, which

924 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

already has input values of string (6, 7), compares first record
of next string 3 with 6 and since 3 is smaller than 6, 3 is
output first. Next calculation compares smallest values from
remaining records of strings. Through operation, if N records
are input, it takes 2N + log2N-1 time to finish sorted output. In
K-way merge sort, through SU1, each record is inputted, K
records are sequentially ordered to one output string. K strings
(K2 Records), which is the output of SU1, becomes input of
SU2. To express it in general terms, if one input of SUm is a
string which consists of Km-1 records, output becomes a string
which has Km records.

2.2 Hardware Sorter Architecture

Table 1 Comparasion of different sorter architectures

Hardware sorter is differentiated in 4 ways depending on

how architecture is formed (parallel, semi-parallel, iterative,
pipeline). Table 1 shows comparison of throughput and input
constraint of different types of sorter. Looking at the
throughput, full-parallel show fastest throughput but it takes
that much area and gates [7]. M is a degree of parallelism so it
lowers hardware efficiency when taking in large values.
Therefore, the throughput listed in Table 1 for serial sorters
only represents an upper-bound.

Figure 2 Hardware sorter using external local memories

Hardware sorters in [5] and [6] use local memory which

lies outside of needed memory as shown in figure 2. This
method uses interface block to control memory. Since this
method put memory outside and queue inside of sort unit,
complexity of sort unit is reduced. However, additional design
is needed for memory interface, which stores date to memory
and reuses data.

3 Approach

Figure 3 Configuration of suggested hardware sorter

Suggested architecture is materialized by reducing time

delay that is addition to time required for merge sort algorithm.
Figure 3 is a block diagram that shows structure of hardware
sorter. Hardware sorter uses these sort units that are connected
in a straight line. In 8-way merge sort, to order 8k records, it
needs k sort units. One sort unit, shown in Figure 4, is
comprised of input block, which takes in streaming data from
database, disk, or output from previous step, and sort
processor block, which compares input data and outputs
finished data. Data width is 100-byte (10-byte key) which can
send one record in one clock cycle. In our approach, we can
extend data sorting capability by connecting sort unit in a
straight. Using this method, once clock frequency is
determined, we can calculate capability and elapsed time of
sorter.

Figure 4 Sort unit block diagram

Our sort processor puts memory inside and seven

comparators are comprised in tree structure as shown in Figure
4. Eight inputs of the sort processor are taken in partially
ordered strings from input block. Records in input string are
stored sequentially in memory. Operation is started when first
record from second memory comes in and output comes out
after comparison. Input block takes in data of disk or values
from previous sort unit to M1 of sort processor. At this time,
according to SUk, data which is sent M1 is controlled. For
example, in SU1, one record is sent to each M1 of sort
processor. In case of SU2, eight records are sent. This

Architecture Throughput Input constraint

Parallel 2l 2l

Semi-Parallel 2l-1 2l

Iterative < 2lⅹM/((l2-l+4)ⅹ2l-2-1) 2M

Pipeline 1 1

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 925

indicates that memory of SUk+1 needs K times the capacity of
memory of SUk. To sort one million records, we uses seven
sort units through SU1 to SU7. To take care of 220 data, 8-way
sort is used between SU1 to SU6. 4-way sort is used for step
SU7.

Figure 5 Timing of each comparator enable signal

Each comparator operates while some of input strings are

stored. Therefore, comparator needs memory equal to string
size. It also needs operational time to finish comparing input
string. Figure 5 shows write enable (WE) signal when string
input in comparator. Figure 5(a) and (b) are WE signals of L1
and L2 comparators. It has no problems since there is plenty
of time in clock cycle between first WE signal and next one.
Figure 5(c) shows WE signal of L3 comparator that comes in
consecutively. In this case, using memory of L1 and L2, two
strings can be overwritten.

Figure 6 Worst case scenario at L3 comparator

Figure 6(a) shows data overwriting case. If all input
records of Ml3(M3 lower) is smaller than all of Mu3(M3
upper), next input sorted strings of Mu3 from upper L2

comparator will overwrite current Mu3 records. To avoid this
malfunctional operation, memory size of L3 comparator is
twice as big as size of input string.

4 Simulation Results

Figure 7 Hardware sorter functional simulation

Using approach of previous section, RTL-code of

hardware sorter is developed with VHDL. Figure 7 is result of
functional simulation using hardware sorter that was designed
with approach of previous section. Sorter that was simulated is
designed through SU1 to SU3. 512 streaming data was
arranged through input. Input was put in 512 clock cycles.
After 20 clock cycle wait, 512 clock cycles were needed for
output, which confirms pipeline structure with throughout of 1.
Simulation clock cycle was 10ns. 512 records were input.
After 20 clock cycles, we can see 512 sorted output strings.
With design of hardware sorter, one clock cycle delay happens
each time it goes through input block and each step of
comparator within sort processor. Therefore, when N number
of data is input as records, delay that happen when it
processed to i level comparator of k-th sort unit is detailed
below.

Total Delay Time (clock cycles)
= input records + delay + output records
= N + [log2N + 4(k-1) + i] + N

With this relationship, Table 2 is arrangement of sort unit

with its input data, delay time, and total delay time. In this
table, capability means total records can be sorted by
connecting SU1 to SUk in a straight line. Delay time means
clock cycle difference between end of input records and start
of output records. Similar context with delay time, total delay
is time takes start of input records to end of output records.

It can be figured out that as input data gets larger, ratio of
delay time, excluding time for input and output, gets smaller.
Ideally, with 100MHz clock input, data line width being 100-
byte, and 100-byte is being input for each clock cycle, a
million data can be sorted in 0.02 seconds.

926 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

Table 2 Capabilities and delays for each sort unit

Sort Unit Capability
(records)

Delay
(cycles)

Total Delay
(cycles)

SU1 8 6 22

SU1 ~ SU2 64 13 141

SU1 ~ SU3 512 20 1,044

SU1 ~ SU4 4,096 27 8,219

SU1 ~ SU5 32,768 34 65,570

SU1 ~ SU6 262,144 41 524,329

SU1 ~ SU7 1,048,576 46 2,097,198

Table 3 Memory size of each sorting unit

(unit : 100-byte)
Sort Unit

Memory SU1 SU2 SU3 SU4

M1 1 8 64 512

M2 2 16 128 1024

M3 8 64 512 4096

Sort Unit

Memory
SU5 SU6 SU7

M1 4096 32768 262144

M2 8192 65536 524288

M3 32768 262144 -

Table 3 shows memory size of each sort unit for sorting
one million(220) records. Width of each record is 100-byte
include 10-byte key. To sort one million records, 8-way merge
sort is used between SU1 to SU6 and 4-way merge sort is used
for SU7. Total memory required is about 628.6MB to sort one
million records.

5 Conclusion
Sorting is important and necessary part which can affect

system performance in the computer system. Its importance is
getting larger from database server to embedded computing
system. This paper used 8-way merge sort to design
architecture of hardware sorter in order to sort streaming data
in parallel way. Merge sort is naturally piplelined algorithm.
We designed sort processor using merge sort algorithm. Entire
system consists of sort units which connected in straight line.
This straight line architecture allows each sort unit operate in
parallel way. Also, this architecture is scalable for amount of
data. Depending size of data to be sorted, we know how to
change structure of sorter. Also we can calculate the number
of sort units and amount of memory needed. Through
simulation, we checked out delay time of suggested hardware
sorter is different depending on size of data. We confirmed
that delay time is reduced in terms of ratio as more data were
sorted, which took advantage of positive trait of pipeline
structure.

6 References
[1] A.A. Colavita, et al, “SORTCHIP : A VLSI
Implementation of a Hardwar Algorithm for Continuous Data
Sorting,” IEEE Journal of Solid-State Circuits, Vol. 38, pp.
1076-1079, No.6, Jun. 2003.

[2] Anon , et al, “A Measure of Transaction Processing
Power,” Datamation, 31(7):112-118, 1985.

[3] M. Bednara, et al, “Tradeoff Analysis and Architecture
Design of a Hybrid Hardware/Software Sorter, ” Proceedings
IEEE International Conference on Application-Specific
Systems, Architectures, and Processors, Jul. 2000.

[4] R. Marcelino, et al, “A Comparison of Three
Representative Hardware Sorting Units,” IECON ’09. 35th
Annual Conference of IEEE, Nov. 2009.

[5] S. Azuma, et al, “DIAPRISM Hardware Sorter,” Sort
Benchmark, 2000.
http://sortbenchmark.org/Y2000_Datamation_DiaprismSorter.
pdf

[6] S. Fushimi, et al. “GREO : A Commercial Database
Processor Based on A Pipelined Hardware Sorter,” ACM
SIGMOD ’93, vol.22, No.2, pp.449-452, 1993.

[7] Yun-Nan Chang, “Digit-Serial Pipeline Sorter
Architecture,” Springer, Journal of Signal Processing Systems,
Vol 61, Issues 2, Nov. 2010.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 | 927

928 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'11 |

