Int'l Conf. Frontiers in Education: CS and CE | FECS'11 |

SESSION
PROJECTS + SOFTWARE ENGINEERING +
PROGRAMMING/LANGUAGE ISSUES
Chair(s)

TBA

Int'l Conf. Frontiers in Education: CS and CE | FECS'11 |

Int'l Conf. Frontiers in Education: CS and CE | FECS'11 |

Mobile Robotics as a Platform for Capstone Projects

Costa Gerousis, Anton Riedl, Dali Wang
Department of Physics, Computer Science and Engineering
Christopher Newport University, Newport News, Virginia 23606, USA

Abstract — Several years ago we started the development
of an autonomous mobile robotics platform as a theme for
hands-on projects in our Computer Engineering and
Computer Science programs. Since then our MObile Sensing
and Exploration System (MOSES) has been the subject of
nine independent study and capstone projects. The topics
have ranged from purely software-oriented robotics
simulation to hardware setup and microcontroller
programming such as autonomous GPS-waypoint driving
and obstacle avoidance. Overall, the initiative has been quite
successful. Student response as well as faculty evaluations in
general have been positive. As a consequence, we believe
that mobile robotics is well suited as a theme for capstone
projects at the undergraduate level. It allows students to
work with complex equipment and to apply their
programming and engineering knowledge, while still keeping
the projects accessible and inexpensive.

Keywords: Autonomous and Robotic systems, Science and
Engineering education.

1 Background and Motivation

About four years ago, a decision was made in the
Department of Physics, Computer Science and Engineering
at Christopher Newport University (CNU) to develop an
autonomous Mobile Sensing and Exploration System
(MOSES) [1]. Apart from being of interest to several faculty
members, the main reasons for choosing this theme of
mobile robotics were its high attractiveness and also its
relevance for our students. Several publications have
demonstrated that frameworks with similar degrees of
complexity could provide interesting student projects in
computing related areas [2, 3, 4]. As such, we envisioned that
the MOSES system would also become a platform for
ongoing student projects.

For the initial planning of the system, following main
criteria, which are being discussed below in more detail,
were taken into consideration:

= the need for challenging, yet manageable projects

= ABET’s requirements for engineering programs

= appropriateness for undergraduate and graduate students
= suitability for individual and team projects

= costs and sustainability.

Undergraduate students in our computer engineering (CE)
program as well as in computer science (CS) and in physics
are required to do a capstone project in their senior year. As a
consequence, there is always a need for interesting,
multifaceted projects, which are challenging, yet manageable
within a limited amount of time. Given the varying level of
expertise that students have acquired by the time they start
their capstone, it is also necessary to offer projects with
different degrees of complexity and difficulty. Mobile
robotics provides this as it spans different areas of
knowledge, which are in the realm of our department: robot
control, communication and networking, real-time operating
systems, high and low level programming, artificial
intelligence and sensing.

In view of ABET accreditation of our CE program, CE
students need to be able to work on projects that emphasize
the engineering perspective and, thus, cannot be purely
research-based. According to ABET [5], projects have to
provide a major design experience with realistic constraints,
in which students apply knowledge and skills acquired in
earlier courses. Again, given the multitude of possible topics
under the umbrella of mobile robotics, it is quite easy to cut
out engineering projects.

Another requirement was that projects be appropriate for
students at the undergraduate as well as graduate level. While
most students at CNU are undergraduate students, our
department offers a Masters program in Applied Computer
Science and Physics, which also has a concentration in
computer engineering. It is therefore important to be able to
offer Master thesis topics with a focus on hardware and
hardware-near software.

The platform has to be suitable for individual as well as
team-oriented projects. Typically team projects are preferred
as these contribute an important part to a student’s
educational experience [6]. However, the small size of our
programs requires that students can work on projects
individually in order to not delay their studies.

Finally, it was important that the individual system
modules were affordable in order to allow students to buy
equipment if they wanted to. Furthermore, this way the
platform would be sustainable even through times with less
available funding. Our decision with this regard was to build
the system only with commercial off-the-shelf products
(COTS), which would be added to the platform as needed.

Overall, the introduction of MOSES as a project theme has
been successful. So far, nine students have been involved in
the design and development of the system. Furthermore, we
have seen positive results on the educational experience
survey completed by graduating computer engineering
students who have participated in the MOSES project. Such
results showed higher ratings on the learning outcomes than
for students who have worked on other, often self-proposed
projects.

The remainder of the paper is organized as follows: We
first describe the platform and its components, providing
important design criteria. Then, three projects are presented
in order to give an impression of the type of projects that are
being carried out. Finally, initial observations and results
regarding the educational outcomes are presented and
analyzed.

2 The MOSES Platform

2.1 Drivetrain

As drivetrain we use a Traxxas Truck model E-Maxx,
which has proven to be a solid and cost-effective
construction. The mechanical platform of the robot was
stripped down and its radio control unit bypassed in order to
control the servos from a central drive control. The Traxxas
model uses three separate servomotors for speed control,
switching between gears and turning. All motors are
controlled by Pulse Width Modulation (PWM).

In addition to this system, and mainly in cases when
multiple students are working on the system concurrently, we
are also making use of the DFRobot platform [7]. This is a 4-
wheel-drive mobile system that can easily be paired with an
Arduino microcontroller (see below). Both drivetrain models
are illustrated in Figure 1.

Figure 1: MOSES Drivetrain (Traxxas left, DFRobot right)

2.2 Robot Control

Originally, the design for MOSES included a Stargate
processor board from Crossbow as the central processing
unit of the robot. The Stargate provides a complete Linux
machine based on a 400 MHz XScale processor. It includes a
daughter card that adds Ethernet, USB Host, and serial
connections. The main board has a Compact Flash (CF) and
PCMCIA card slot. To release the on-board computer from
the burden of frequent control action, an additional SSCII
Mini motor control unit was employed. This microprocessor-
based unit takes simple commands from its serial port and

Int'l Conf. Frontiers in Education: CS and CE| FECS'11 |

translates them into PWM signals. The programming of the
Stargate-based drive control was done in two ways. The
algorithms were implemented either in Java or through the
robotics framework Player [8]. Player is an open-source
robotics framework, which allows networked clients to drive
a robot via a server running on the control board.

Several students worked with this system. However, the
use of this software in combination with the Stargate board
proved to be too complicated for undergraduate projects. As
a consequence, it was decided to change the design and
employ a simpler and better-supported architecture. We now
use Arduino development boards as the basis for our robot
control. Arduinos, which are built around Atmel
microcontrollers, provide an inexpensive open-source
prototyping platform. They offer many ways to interface
with robotics hardware, including digital and analog 1/O
ports (some PWM capable) and various serial interfaces.
Additionally, there is ample support for miscellaneous
devices such as sensors, servos and communication modules.
Most are already mounted on break-out boards compatible
with the Arduino architecture. Programming is done using a
Wiring-based language, which is very similar to C++.

2.2 Sensing and Wireless Communication

For the MOSES system to be able to act autonomously,
various sensor capabilities are necessary. Furthermore,
wireless communication functionalities have been
implemented in order to allow the system to interact with
human controllers or with other devices such as data
collection stations or even additional autonomous vehicles.

Over time, following sensing and communication units
have been added:

= A Global Positioning System (GPS) module, which is
used for navigation capabilities. Communication
between the microcontroller and the GPS module is
implemented via the serial interface, where NMEA
strings containing information on the speed, current
time, and the current latitude and longitude coordinates
are sent from the device to the controller.

= Two gyroscopes, which are being used to assist in
navigation. In general, gyroscopes allow for precise
measurements of the turn and tilt of the vehicle body. In
our case, the two devices have different resolutions for
the turning rate. One is used for determination of the
general direction, while the second determines the
direction more precisely during turning procedures.
Integrating both gyroscopes enables the robot to keep
track of large degree variances in movement while
providing precision during turning procedures.

= An electronic compass for absolute heading calculations.
This is especially important in situations where the
vehicle is in standstill and, thus, the GPS cannot
determine the heading.

= An ultrasonic distance sensor for obstacle detection and
avoidance. The sensor is mounted on a 360 degree

Int'l Conf. Frontiers in Education: CS and CE | FECS'11 |

rotation servo, which allows turning the sensor in any
direction and enables MOSES to detect obstacles in its
vicinity.

= A 433 MHz ultra low power data radio module for
establishing one-to-one communication links over a
relatively long distance. The selected modem has a range
of about 1000 m with a bit rate of 1200 bps. This
communication link is meant mainly to transmit simple
control commands or heart beat signals between the
robot and a control station.

= A 2.4GHz XBee module, which is based on the IEEE
802.15.4 protocol stack and which provides low-power
communication over shorter distances (up to about
100 m). This form of communication is used for
exchange of data between the robot and various base
stations, which simulate data collection units. For future
projects, it is planned to use this communication
technology to establish an ad-hoc communication
infrastructure between multiple MOSES systems.

As the platform has grown in functionality, the number of
components has increased considerably and as a consequence
a redesign of the overall hardware base has become
necessary. The layout of the electronic components and the
overall system platform are currently being optimized in a
student project. The objective is to develop a cleaner
structure, which supports rapid prototyping while offering a
clear layout of the individual devices.

3 Selected Student Projects

In order to provide an impression of the type of projects
students are working on within the MOSES framework, a
few concrete examples are presented.

3.1 Stargate, Player and Stage

Two early projects were concerned with the
implementation of the Player framework on the Crossbow
Stargate device and with a simulation using the software
Stage.

As mentioned above, Player is an open-source robotics
framework developed by robotics researchers and used at
labs around the world. The control system is centered on a
server, which runs on the control board and interacts with
sensors and actuators. The actual control algorithms are
implemented in clients, which connect to the server via
TCP/IP sockets.

The objective of the first capstone project was to get the
Player server to work on the Stargate, which was running a
version of Linux for embedded devices, and to demonstrate
its functionality. This required the crosscompilation of the
software for the appropriate architecture, the use of the serial
interface in order to control the servos, as well as the
implementation of simple clients to activate the servos.
While this project was mainly software-oriented, it still
required good understanding of hardware components and

systems. As such it was very suitable for a computer
engineering student.

The second project dealt with simulation of robots in
Stage. One of the reasons for originally choosing the Stargate
controller was its support by the Player software, which itself
is closely related to Stage. Stage is a simulation environment
that can be used in conjunction with Player in order to test
client implementations. Stage provides a virtual world
interface for Player, making it possible to develop and test
control algorithms without having an actual robot.

We considered this ability to implement and test
algorithms independently from the hardware a good way to
also involve computer science students in the MOSES
project. Unfortunately, the Player/Stage framework and its
implementation on the Stargate architecture turned out to be
too complicated to be applied effectively by our students.
Therefore, we decided to switch to the Arduino controller
architecture, which is not as sophisticated, but more intuitive
and accessible.

3.2 GPS Way-Point Driving

This project was based on the Arduino platform. The
robot is programmed to follow a path given by GPS way-
points that are uploaded to the controller beforehand. The
vehicle stops either when an emergency stop occurs or a
waypoint is reached. An emergency stop is signaled by
pressing a push button on the robot or by sending a particular
command over the RF interface. Figure 2 illustrates a typical
path.

st 022 ’?‘

cauistion
acauie=

Tum
loop

Blind
straight

Blind
straight

Gos |
™

Waypoint 2

A
%\
>

Blind

N\
>
straight Y

5°
/\ \\Q
o

2]

\
\ Blind
\ straight \

Figure 2: Typical path of the robotic vehicle

The driving algorithm is implemented as a state machine,
which is indicated in Figure 3. This state machine
demonstrates that while the Arduino platform is simple
enough to be understood quickly by students at the
undergraduate level, it still supports programs of
considerable complexity. In this project, the Arduino
controller drives two servos via PWM, reads in and

processes the information from multiple sensors, and
performs necessary control calculations, including a PID
controller for turning and direction adjustment.

Power up,
reset
First Data

Aquisition

waypoint

desired direction reached

calculated

turn process
finished too much reached

waypoint derivation

reached of direction:
Blind - blind distance passed GPS
Straight P Drive

Figure 3: Way-Point State Machine

new waypoint available

waypoint

3.3 Obstacle Detection and Avoidance

Another project also based on the Arduino framework
was concerned with obstacle detection and avoidance. For
this, the smaller test robot was equipped with a ultrasonic
distance sensor, a continuous rotation servo and the Arduino
microcontroller. To allow for estimation of the size of an
obstacle for proper avoidance, the ultrasonic sensor was
placed on top of the servo. This allows for flexible readings
of distances to objects within a certain range around the
vehicle. Based on the readings the robot determines whether
objects are in the way and if so, which direction it should
take to avoid them.

The obstacle avoidance algorithm is based on a danger-
grid used in Bayesian Occupancy Filtering [9]. During
forward drive the servo stays positioned at a central point
until it receives a reading of 4 meters or less. It then rotates
the sensor in slight increments from left to right and reads in
the respective distance values. The actual obstacle avoidance
decision is based on intelligent Bayesian filtering where the
individual sectors around the robot are assigned danger
probabilities, i.e., probabilities that an obstacle is in the
robot’s path. Based on these probabilities, the robot makes a
decision on which way to best drive around the obstacle.

Figure 4 illustrates the obstacle avoidance algorithm. At
each point in time, there are basically four possible obstacle
scenarios considered when making a decision on the path to
take. The first is the simplest consideration, which is not
having an obstacle at all. If no obstacle is detected, the
vehicle continues on its current path. The second type of
obstacle situation deals with an obstacle that is either dead
center or too close to the robot. In this case, the robot will
back up approximately a meter in distance and then it will
check again for the dangerous paths ahead and avoid the
obstacle. If there is most likely an obstacle located more to
the left of the vehicle as determined by the Bayesian danger
probability calculation, the vehicle makes a sharp right turn

Int'l Conf. Frontiers in Education: CS and CE| FECS'11 |

until the obstacle is out of view. The same happens if an
obstacle is seen on the right side of the vehicle, except that
the vehicle will turn sharp left until the obstacle is not in
view and continue on its path to the waypoint.

—={ Read Sensor

Calc Bayesian
»| Probability of Obstacle
inCurrent Zone.

Calc Danger Weight
YES for Current Zone

Update Calculated
Probability of Obstacles

Take Path with least
amount or no danger

Continue to
Waypoint

Figure 4: Obstacle avoidance algorithm.

4 Assessment of Educational Qutcomes

As the majority of the students who have worked on
MOSES so far were from the Computer Engineering
program we focus our assessment on this group of students.

For the Computer Engineering program, the capstone
course plays an essential role in two educational outcomes:

* an ability to design a hardware and software systems to
meet desired needs

* an ability to use the techniques, skills, and engineering
design automation tools necessary for effective
computer engineering practice

As part of our program outcome assessment process, we
conduct an exit interview with all graduating seniors who
have just completed their capstone course. As part of the exit
interview process, we ask our students to assess, on a scale
from 1 to 5, the extent to which these program outcomes
have been addressed. We compare the results from the
students who have used MOSES as the main theme of their
projects with the ones from all computer engineering majors
over a period of 3 years. The summary of the student
responses is presented in Table 1. The total number of
students over this period who have worked with MOSES was
9. The number of students who have done a different project
was 22.

Table 1: Comparison of educational outcome evaluation
(student data)

Outcomes Average Average
(MOSES (all students)
students)

Design a hardware and 4.64 4.09

software system

Use the techniques,
skills, and engineering 4.53 3.91
design automation tools

Int'l Conf. Frontiers in Education: CS and CE | FECS'11 |

It is shown that the students in the MOSES group rated these
two design-orientated program outcomes significantly higher
than other students.

Faculty evaluation of the senior project is another part of
our program outcome assessment process. Students
completing these capstone projects are required to make a
formal presentation before the faculty. At the presentation,
faculty members fill in an evaluation form for each student
project. Several aspects of student projects are evaluated,
among them the two design-orientated program outcomes.
The summary of the faculty responses is presented in
Table 2.

Table 2: Comparison of educational outcome evaluation
(faculty data)

Outcomes Average Average
(MOSES (all students)
students)

Design a hardware and 4.50 4.47
software system
Use the techr.uque.s, 456 447
skills, and engineering
design automation tools

It is shown that faculty evaluation of the MOSES related
project is only slightly higher than that of all projects. We
think that two factors contribute this phenomenon. First,
students tend to demonstrate more personal interest in the
MOSES related projects (the “cool” factor), while faculty
tend to look into each work more objectively. Second, all
faculty have been actively involved in mentoring student
capstone projects. The department as well as the university
has a long history of valuing faculty mentoring of student
research. As a result, most capstones are well-defined
engineering projects targeting our computer engineering
majors.

5 Conclusion

Overall, the MOSES system has met many of the
expectations that were initially put into this platform. It has
proven itself to be very suitable for undergraduate capstone
projects, specifically for computer engineers. As the sample
projects demonstrate, MOSES provides many opportunities
for appropriately complex capstone projects where students
get to design and implement solutions to typical engineering
problems. Through MOSES students have been exposed to a
number of technologies, hardware as well as software, and
they have had the opportunity to integrate various modules
into a coherent system and write the programs for this.

With regards to educational outcomes, our initial
assessment indicates that students typically find the work
with MOSES interesting and also educational. Most
importantly, they feel they have gained experience in two
areas that are central to the engineering education: in the

design of a hardware and software system, and in the use of
techniques, skills, and engineering design automation tools.
The average ratings they give for both of these outcomes are
higher than the ratings given by students who were working
on other projects. When it comes to faculty evaluating the
projects, this advantage is not as clear-cut. However, this
discrepancy seems to be due to a more objective and more
balanced evaluation of projects by the faculty members. In
their view, all projects receive equally high values.

6 References

[1] A. Riedl, D. Wang, C. Gerousis, R. A. Flores & David
Doughty, “A Robotics Platform for Capstone Projects in
Computer Engineering and Computer Science,” 2009
International Conference on Frontiers in Education:
Computer Science and Computer Engineering (FECS
'09), Las Vegas, July 13-16, 2009, pp. 217-222.

[2] J. J. Evans. “Undergraduate research experiences with
wireless sensor networks.” Proceedings of the 37"
Frontiers in Education Conference, pp. S4B-7 - S4B-12,
October 2007.

[3] A. Saadl, “Mobile Robotics as the Platform for
Undergraduate Capstone Electrical And Computer
Engineering Design Projects.” 34" ASEE/IEEE
Frontiers in Education Conference, pp. S4B-7 - S4B-9,
October 2004.

[4] J.K. Archibald & R.W. Beard. “Goal! Robot soccer for
undergraduate students.” IEEE Robotics & Automation
Magazine, Volume: 11, Issue: 1, pp. 70 — 75, March
2004.

[5] ABET. “Criteria for accrediting engineering programs
(2008-2009)”, ABET Engineering Accreditation
Commission, 2008.

[6] L.R. Lattuca, P.T. Terenzini, & J. Fredricks Volkwein.
“Engineering Change — A study of the impact of
EC2008”. Joined published by ABET and Center for the
Study of Higher Education, The Pennsylvania State
University, 2006.

[7] DFRobot. Internet: http://www.dfrobot.com/index.php?
route=product/product&product_id=116

[8] R.T. Vaughan & V.P.Gerkey “Reusable Robot Software
and the Player/Stage Project.” D. Brugali (Ed.), Software
Engineering for Experimental Robotics 2007, pp. 267 —
289, Springer-Verlag.

[9] H. Hu and M. Brady, “A Bayesian Approach to Real-
Time Obstacle Avoidance for a Mobile Robot,”
Autonomous Robots, 69-92, 1994.

Int'l Conf. Frontiers in Education: CS and CE| FECS'11 |

Third-Year Parallel Programming
for CS Undergraduates

William B. Gardner
School of Computer Science, University of Guelph, Guelph, ON, Canada

Abstract - This paper describes a successful new course
aimed at helping soon-to-graduate students move into
jobs using current tools for parallel programming, by
acquiring the theoretical background needed to keep
abreast with rapid industry developments and to evolve
with them. It intentionally spans the range of multicore to
cluster computing, based on the same underlying princi-
ples. All aspects of the course are described, including
textbook, schedule, lab content, assignments, projects,
and outcomes after two offerings.

Keywords: Parallel programming, Undergraduate CS
curriculum, Multicore, High-performance computing

“I help search for water on Mars.” At the first meet-
ing of our new Parallel Programming course, rolled out
experimentally as a Special Topic offering in Fall of
2009, we were going around the room, each student
invited to say why he or she had registered and what they
hoped to learn. Among the expected third- and fourth-
year CS undergraduates was this one graduate student
from the Physics Department. Her research group ana-
lyzed spectrographic data radioed back from the Mars
Rover for telltale signs that water molecules could be
present. In order to interpret the spectrograms, they
would compare them to those of simulated bombard-
ments by 50 billion photons onto various artificial com-
positions of Martian “soil” spiked with specific amounts
of water. Each run for a single soil/water composition
would take 24 hours to complete on a high-end desktop
computer, and she was the only person in the lab who
considered this state of affairs decidedly subpar for the
new millennium of computing!

For CS students who were used to coding assign-
ments that instantly compiled upon pressing Enter, and
executed in tens of seconds at most, this was a revela-
tion. In the event, she lacked the programming back-
ground to stay with us, but her case study provided
invaluable motivation for launching the course.

1 Background and introduction

Our School offers a Bachelor of Computing degree
with two majors, classical computer science and soft-
ware engineering. For the last several years, it was obvi-
ous that we would have to come to grips with teaching
parallel programming beyond the basic introduction to
concurrency that has long formed a topic in Operating
Systems (OS). As the faculty member whose research
has centered on formal methods for specifying concur-
rent systems [1], with background in digital hardware as
well as software engineering, I was relatively suited to
the task of examining our options and creating a suitable
course.

Specifying the OS course as a prerequisite, the 2009
Special Topic attracted 17 students. It was repeated,
again as a Special Topic, in Fall 2010, with modifications
based on the first experience. This time 26 students
signed up, including another graduate student in Physics
(this one stayed and did an impressive project). Based on
student surveys, the course can clearly be called a suc-
cess. By Fall of 2011, it will enter the regular curriculum
as CIS*3090 Parallel Programming, an annually offered
elective.

This paper covers every important aspect of the
course, for the benefit of those who may wish to copy or
adapt it, including the following:

» Approach: why we chose to mount a single spe-
cial course, as opposed to incorporating parallel
programming topics into existing core courses

* Characteristics: breadth over depth, wide-spec-
trum (multicore to high-performance clusters),
theory-based with programming practice, tools-
oriented (for profiling and error detection), pro-
gramming techniques selected for prospects of
longevity, special-hardware focus avoided,
assumed prerequisites, target audience

* Organization: lecture topics, 12-week schedule,
programming platforms, software tools

Int'l Conf. Frontiers in Education: CS and CE | FECS'11 |

» Textbook: strengths and weaknesses

* Assignments: rationale, coordinated hands-on
lab sessions, contests

* Project component: categories, sample of topics,
approach to evaluation

¢ Human resources: instructor workload, use of
teaching assistants

2 Approach

From the standpoint of impact on curriculum, the
first question to settle is whether a CS department will
attempt to integrate parallel programming concepts
into several existing core courses, or will mount a stan-
dalone course, or even do both. With an eye to the bur-
geoning multicore future, it seems wise to start
“parallel consciousness raising” early, and we do not
oppose that approach. Nonetheless, pursuing some
degree of integration does not detract from the benefits
of mounting a full course—in particular, training stu-
dents to have job-ready skills—and indeed could allow
that course to have a more advanced starting point.
Furthermore, in a department such as ours, there are
enough drawbacks and stumbling blocks so as to make
it a choice between mounting a standalone course right
away, versus doing nothing helpful for possibly a long
time. In the end, we took the standalone approach for
several reasons:

First, it was less disruptive to the faculty and cur-
riculum as a whole. The core courses in our 12-week
semesters are already “full,” so that adding topics nec-
essarily means displacing something else, which, if
shifted around, can widen the impact to other courses.

Second, while it has been suggested that we
should cease teaching sequential programming and just
carry on with parallel programming [2], this is not con-
vincing. Parallel programs are made of sequential por-
tions, and applications that don’t require special
performance will continue to be written adequately as
sequential codes. Similarly, going back to the early
prediction that object-oriented programming (OOP)
would displace procedural programming, this has not
occurred, and we see that OO methods are made up of
procedural code. Like many departments, we continue
to teach both styles of programming with full courses,
and there is no good reason to think that sequential pro-
gramming courses can simply be converted to parallel
courses. For a number of years to come, it will be nec-
essary to take up the latter as additional subject matter.

Third, there is the problem of personnel. Given
that most present faculty members were educated in

the sequential programming era, how are they going to
readily teach parallel topics? It is more straightforward
to concentrate the responsibility for that new knowl-
edge and skills in some volunteers who already have
suitable background, and let them create a course.

Finally, model curricula with integrated parallel
topics are only now being proposed (for example, see
[3]), and being an early adopter is risky. Many depart-
ments will prefer to learn from others’ experiences
before tampering with their own core courses, which
may be based on textbooks that do not have parallel
topics. In contrast, the investment in a standalone
course can pay benefits right away in terms of student
satisfaction. And if the department eventually moves to
introduce parallel topics early, the programming course
can adapt by starting from a more advanced level,
which is a win-win outcome.

3 Characteristics

What is the target audience of students, and which
prerequisites should be demanded? We decided to aim
for third- and fourth-year students, for whom program-
ming per se is no longer a big challenge, thus they are
free to concentrate on grasping new concepts and
applying them with the programming skills they
already possess. Two essential elements of background
knowledge are concurrency—which in many OS
courses is taught along with POSIX threads, and
exposes students to critical sections, deadlocks,
resource contention, mutexes, and condition vari-
ables—and basic computer architecture. For decades,
computer and OS designers have dedicated themselves
to making the hardware largely invisible to software,
and may have succeeded too well. By now, we find that
many students will only take an architecture course
grudgingly, and feel there is no purpose in it. And yet,
in learning how to get maximum speedups out of paral-
lel programs, it is necessary to draw in issues like
memory bandwidth limitations, cache coherency, and
false sharing. If students are going to understand why a
program’s speed may depend on the arrangement of a
data structure in memory, they have to know something
about hardware. We find that our second-year Structure
and Application of Microcomputers course gives
enough exposure that they can follow the hardware
issues related to parallel performance.

When parallel programming courses started to be
mounted in universities, a typical approach was to
focus on a certain architecture, e.g., IBM Cell BE or
GPU. But, emphasizing special hardware carries risks
of rapid platform evolution or obsolescence. We prefer

10

to give students a broad introduction ranging from the
now-ubiquitous multicore desktop to the previously
established world of high-performance computing
(HPC) clusters. These disparate platforms have both
similarities and differences that help students under-
stand the underlying hardware issues, and the advan-
tages and limitations of various programming
techniques. We chose to teach POSIX threads,
OpenMP, and message-passing programming because
they leverage, to some extent, concurrency background
taught in the OS course, are widely practiced in indus-
try and academia, and show no sign of going away.

4 Organization

Organizing any CS course is a major undertaking
that necessitates consideration of textbooks or other
learning resources, programming languages and com-
puting platforms, often supplied via in-house computer
labs, additional software packages and training in their
use, plus plans for assignments, exams, and possibly
term projects.

The various components of the course were
weighted into the grade as follows:

* Assignments 30%
* Term project 35%
* Final exam 25%

» Participation 10%

The exam was based on the textbook and the three pro-
gramming methodologies. Participation marks were
given to encourage attendance at, and peer evaluation
of, the project presentations.

Since the textbook is a kind of linchpin, the sub-
sections below start with that, and then the schedule of
lecture topics is presented, coordinated with textbook
chapters. Next, the programming platforms and soft-
ware packages are described. The plan for the pro-
gramming assignments is given, and then for the
projects. Finally, utilization of human resources is
described.

4.1 Textbook

In 2008 and 2009, there were as yet few solid
entries into the market for parallel programming text-
books. Fortunately, I have been very content to dis-
cover Principles of Parallel Programming, by Calvin
Lin and Larry Snyder, Addison-Wesley, 2009. It strikes
the right balance for a university setting, between mas-

Int'l Conf. Frontiers in Education: CS and CE| FECS'11 |

tering techniques and tools, on the one hand, and pre-
senting a theoretical basis, on the other. The authors
introduce their parallel pseudocode, called Peril-L,
which is suitable for implementing as pthreads,
OpenMP, or message-passing. Similarly, the theory
component is equally applicable across the spectrum of
parallel platforms. Sufficient hardware description is
supplied to explain phenomena that must be grasped in
order to produce scalable programs.

The first chapter is captivating: It commences
straightaway with a simple case study that points out
several common pitfalls in parallel programming, e.g.,
the parallel version runs slower than the serial version,
race conditions produce incorrect results, it is not very
scalable with more cores, and so on. From a student’s
standpoint, this immediately raises the stakes from
“here we are, learning yet another programming lan-
guage (which I could have taught myself)” to “maybe
there is something I don’t know after all!” This has the
effect of strongly motivating the course, and it plays
into an important theme: the computer professional
knows how to obtain good results (here, parallel per-
formance) by applying knowledge and skills; the
hacker gets good results, if at all, mainly by luck.

The main weakness of the first edition—possibly a
symptom of being rushed into a hot market—is a large
number of errata, most of which are noted on the
authors’ website [4]. One can only hope that a second
edition will be printed to solve these problems.

Two other books were put on the course syllabus
as recommended reading: Patterns for Parallel Pro-
gramming, by Mattson, Sanders, and Massingill, Addi-
son-Wesley, 2005; and The Art of Multiprocessor
Programming, by Herlihy and Shavit, Morgan Kauf-
mann, 2008.

The Lin and Snyder textbook is organized into
sections. We studied the entire first section’s five chap-
ters, which provide the necessary conceptual basis for
program development. Specific programming method-
ologies are covered in chapters 6 to 8, classified as
threads, “local view” languages, and “global view”
languages, respectively. One is free to pick and choose
among them. Chapter 9 gives an assessment of existing
approaches, and becomes rather abstract for our pur-
poses. Chapter 10 surveys “future directions” and goes
well alongside overviews of selected platforms I chose
to introduce: NVDIA GPU with the CUDA language,
OO threading libraries from .NET and Intel, and the
IBM Cell BE. Anticipating use in a project context, the
book ends with a practical “capstone project” chapter
(11).

The overall timing strategy for the 12-week course
involved three stages:

Int'l Conf. Frontiers in Education: CS and CE | FECS'11 |

1. Laying the conceptual groundwork for parallel pro-
gramming, based on chapters 1-5.

2. Learning three specific programming methodolo-
gies applicable to non-shared memory (cluster) and
shared memory (multicore) platforms, with one
assignment each.

3. Surveying a variety of topics while students were
carrying out projects utilizing the above methodolo-
gies. If experts on specialized topics are available,
this is an ideal time to bring in guest lecturers.

The schedule of topics, coordinated with textbook
chapters and labs, is shown in Table 1. There was a

Table 1. Course schedule

Unit Reading Lab

chs. 1 & 11
Getting Started

1. Introduction

2. Understanding ch.2
Parallel Computers

3. Reasoning about ch. 3 to Pilot
Performance Trade-Offs library

4. First Steps Toward ch. 4
Parallel Programming

5. Scalable Algorithmic | ch. 5 Intel
Techniques Parallel
Studio

6. Programming with
Threads

ch. 6 (parts)

e POSIX Threads
* OpenMP

7. Preparing for Project | ch. 11
Capstone

8. Assessing the State of | chs. 9,3 & 11
the Art (finish)

9. Future Directions in ch. 10
Parallel Programming

definite purpose in the order of teaching the program-
ming methodologies:

The first one, message-passing programming for
high-performance clusters, utilizes an in-house library,
Pilot [5], which is a simple process/channel abstraction
layered on top of conventional MPI, and targeted at
novice scientific programmers. Pilot’s process defini-

tions are similar to pthread create (which students
know from the OS course), and its distinctive C API is
modeled on stdio’s well-known fprintf/fscanf, so it is
simple to teach and more difficult to abuse than MPI.
Pilot also includes an integrated deadlock checker that
is capable of diagnosing right to the line number in
program code that misused of the API or caused a cir-
cular wait, for example, thus preventing the phenome-
non of silent, hung programs commonly experienced
by beginning MPI users.

The above features make Pilot very suitable to
teach while the course content is just starting to build,
and students can use it for the first assignment. Those
who wish to do a cluster-based project on hundreds of
processors can still use Pilot (which also has a Fortran
API), or they can branch out and learn the more com-
plex, low-level MPI, for which Pilot will have given
them good preparation. Pilot is available for free down-
loading from its website [6], and installs with any MPI.

Next comes pthreads with Intel Parallel Studio
tool support; and OpenMP, also with Parallel Studio.
Pthreads is taught before OpenMP, both to connect
back to students’ OS course experience, and because
OpenMP is deceptively easy to use, to the point of
making them feel that Pthreads programming is too
onerous. Assignments #2 and #3 involve implementing
the same program in pthreads and OpenMP, which
helps them to closely compare these technologies. The
purpose of using Intel Parallel Studio (available under
free academic license) is to employ its tools Parallel
Inspector, for detecting shared memory conflicts and
potential race conditions, and Parallel Amplifier, for
profiling program performance down to the core level.
These tools strongly support the common use case of
parallelizing existing sequential programs. Students
find it very illuminating to see just how much of the
time their program spends utilizing n cores (where
n=1-16 on our system).

4.2 Parallel programming platforms

In order to offer an exciting suite of high-end
parallel hardware for assignments and projects, we
were able to procure a “pre-owned” 32-node Itanium
cluster from SHARCNET—our university's associated
high-performance computing consortium—running
Linux, and a 16-thread Mac Pro Core i7 running
Windows Server under Apple’s Bootcamp.
(SHARCNET accounts were available for projects
wanting hundreds of processors.) This enabled students
to obtain hands-on experience typical of both the HPC

11

12

world and systems used in industry. The same Intel C/
C++ compiler was installed on both systems.

Intel offers a free Summer School with training on
Parallel Studio. It is that training material that we use
successfully for the course labs. The Pilot hands-on
labs are the same half-day tutorial that we run at inter-
national conferences. Those labs are also available for
downloading from the Pilot website.

4.3 Assignments

The students carry out one assignment using each
of the three programming techniques, starting with
Pilot. As stated above, the pthreads assignment gets
rewritten using OpenMP for the purpose of comparing
and contrasting.

A key requirement for all assignments is short
written reports describing the rationale for the student’s
parallel design, and featuring timing, speedup, and effi-
ciency graphs against an X axis of number of proces-
sors, all with the student’s interpretations. Timing is
done both with and without compiler optimization.
Students are often shocked to see that the compiler can
cut execution time by as much as one-third. They must
provide proof of program correctness, and explanations
for what they learned from refining their programs to
improve performance. These write-ups showed that
they were able to understand and apply the theory we
had learned.

The three graphs basically show the same data in
different ways, yet they are not redundant and one can
learn something more from each of them. The timing
graph (wall clock time) gets right to the obvious objec-
tive: how fast is my program? The speedup graph,
showing the ratio of serial time vs. parallel time, serves
to factor out compiler optimization effects, and yields a
frank assessment of scalability or lack thereof. The
efficiency graph, speedup divided by number of pro-
cessors, shows how far their parallel performance falls
short of the perfect “1.0” efficiency line.

Bonus points were awarded for the fastest solu-
tions, in keeping with the parallel performance empha-
sis. Those finishing in second and third place were
allowed to challenge the winner to a rematch, which
gave them the experience of consciously trying to tune
their programs, and often the ranking—and the bonus
points—changed hands.

4.4 Projects

As important as programming assignments are,
they have to be tightly specified and of limited scope.

Int'l Conf. Frontiers in Education: CS and CE| FECS'11 |

To really apply what they are learning, doing an inde-
pendent project is invaluable. Students were allowed to
work as individuals or form teams of two.

Each student or team has to propose (and get
approved), program, and present to the class a project
chosen from five categories, some of which come from
the textbook. A written project report is handed in
along with their source code. The categories, with sam-
ples from the two years, are as follows:

1. (Re)implement existing parallel algorithms: checker
playing, cryptology, Quine-McCluskey method

2. Compete with standard benchmarks (no one chose
this)

3. Develop new parallel computations: force histo-
grams for 3D vector images, traffic simulator, gaus-
sian blur

4. Pilot-related development: porting Pilot to Lua
(LuaPilot) and Python (Pylot)

5. Exploring beyond the course, which could involve
parallel languages that we did not study as a class:
F# (solving Minesweeper), C# TPL (tree search)
Cilk++, CUDA (particle simulation), OpenCL
(image processing)

The approval step is advisable for ensuring that
students do not recklessly launch into unsuitable top-
ics, and that the scope is compatible with the few
weeks left in the course, or that they at least have a fall-
back strategy in case things go more slowly than they
expect. There was no formal deadline for the proposal,
which was intended to facilitate rapid turn-around by
avoiding having them all submitted at once. Counter-
balancing that flexibility, students were required to
provide weekly progress logs of their project activi-
ties—they could read each other’s logs—and points
were deducted if the instructor’s weekly spot check
found no update. This served to keep them moving
along.

This “exploring” feature is an excellent way to
keep the course up to date, by encouraging students to
try out the very latest technologies and report to the
class, which in turn enables the instructor to freshen the
course without having to continually revise the instruc-
tional components.

Because of the knowledge they have gained, it is
typically straightforward for the students to relate most
tools or techniques to concepts they have learned, com-
paring and contrasting with methodologies they all
(now) understand and have experience with. This gives
the students a lot of confidence when they see they are

Int'l Conf. Frontiers in Education: CS and CE | FECS'11 |

capable of understanding and trying out some new par-
allel programming technology on their own.

4.5 Human resources

In terms of instructor workload, the projects
require the greatest time commitment, depending on
how thorough one wishes to make the evaluation. I
found the projects to be so interesting, that I wanted to
build and run each one. This is probably the least scal-
able component of the course as it is currently con-
structed.

If teaching assistants are available, one good place
to use them is for “hand-holding” in the lab sessions,
that is, walking around and assisting anyone who is
having problems doing the exercises. Another worth-
while use is for compiling and running all the submit-
ted assignments, checking for correct output, and
making timings for the contests. This leaves the
instructor to read and evaluate the paper reports. Some-
one who took the course before makes an ideal TA,
otherwise it would be difficult to find anyone qualified
who has only come through standard CS training.

5 Conclusion

Today's computer science students are entering a
new era in parallel computing, featuring cheap multi-
cores and high-performance clusters, but have received
traditional largely-sequential training. Based on our
experience with this course, we found that resources
are presently available to mount a standalone course
relatively cheaply. It meets CS students’ practical edu-
cational needs, and it can be extremely gratifying to
teach.

One measure of success is how the students view
themselves as parallel programmers. After each course,
they were asked to fill in an anonymous survey includ-
ing the statement “I think I can handle parallel pro-
gramming” (0-10 scale), comparing before vs. after the
course. Their confidence rose impressively, on aver-

age, from 2.8 to 9.2. That confidence, plus all the lan-
guages and tools to write on their resumes, should give
them a significant employment advantage.

If, in the future, our department decides to begin
integrating parallel programming topics into the exist-
ing core courses, that will simply strengthen students’
preparation for this dedicated course.

6 References

[1] William B. Gardner. Converging CSP specifications and
C++ programming via selective formalism. ACM Trans.
on Embedded Computing Sys., 4(2):302-330, 2005.

[2] Wen-Mei Hwu, David Kirk, Christoph Lameter, Charlie
Peck, and Michael Wrinn. There is no more sequential
programming. Why are we still teaching it? In Super
Computing (SC08), Education Program, Panel
Discussion, Austin, TX, Nov. 17 2008.

[3] NSFE/IEEE-TCPP curriculum initiative on parallel and
distributed computing: Core topics for undergraduates
[online]. Available from: http://www.cs.gsu.edu/ tcpp/
curriculum/index.php.

[4] Errata for Principles of Parallel Programming [online].
Available from: http://www.cs.utexas.edu/ lin/
errata.html.

[5] John Carter, W.B. Gardner, and G. Grewal. The Pilot
approach to cluster programming in C. In Proc. of the
24th IEEE International Parallel & Distributed
Processing Symposium, Workshops and Phd Forum,
Workshop on Parallel and Distributed Scientific and
Engineering Computing (PDSEC-10), pages 1-8,
Atlanta, Apr. 23 2010.

[6] Pilot home [online]. Available from: http:/
carmel.socs.uoguelph.ca/pilot.

13

14

Int'l Conf. Frontiers in Education: CS and CE| FECS'11 |

Incorporating Emerging Technologies and Lifelong
Learning into Capstone Projects

L. Donnell Payne

Computer Science Department, Texas Christian University, Fort Worth, Texas, USA

Abstract — Numerous computer science educators have
reported on characteristics of capstone projects. Typical
features include the wuse of appropriate software
development process models, team collaboration, planning
and management activities, demonstration of verbal and
writing skills, reviews and critical evaluation, the
opportunity to work on real world problems, and the
incorporation of new concepts and technologies.

The author presents two exemplary capstone projects that
included a significant learning component and discusses the
relevance of this requirement to project outcomes. Results
from these capstone projects suggest that incorporating
technologies, new to students, significantly improves student
interest and engagement as well as providing students with
the confidence and appreciation for lifelong learning.

Keywords: Capstone course, lifelong learning, GIS, gesture
recognition, mobile applications

1 Introduction

1.1 Characteristics of capstone projects

Computer science educators have reported on
numerous attributes and requirements of computer science
capstone projects. Of significant importance in the capstone
project is that it “cap off” the undergraduate experience by
requiring students to apply skills and knowledge obtained in
the program to produce an exemplary senior project.

Representative
characterized by:

capstone course projects are

e an extensive requirements gathering, design,
implementation, and testing effort (generally a
two-course, year-long project) utilizing an
appropriate software development process;

e project development in a team environment
demonstrating the development of interpersonal
skills;

e use of project planning and management skills;

e demonstration of oral and written communication
skills through numerous project presentations and
documentation requirements;

e several reviews and critical evaluations — of both
the product and the team members;

e selection of projects that have applicability outside
the classroom, often with external sponsors; and

e incorporation of a significant learning component
required for the project.

Most capstone experiences reported in the literature
have the majority of these requirements [2, 3, 5, 6]. Many
differ on the emphasis or type of projects developed. For
example, some place more emphasis on creating real world
solutions [1, 5] whereas others believe that learning the
process is more important than the actual product [8].

1.2 Capstone course at this university

The capstone course for computer science majors at
this university is a challenging two-course sequence. The
first semester is primarily a lecture-based Software
Engineering course but also includes preliminary project
work. By the completion of the fall semester, projects and
teams have been determined, requirements elicited, and an
initial requirements specification and design produced. The
second semester is project-based and includes requirements
revisions, additional design work, implementation, testing,
and the deployment phases of the project.

The course format and requirements are not unlike
those of other programs. Students are required to select from
candidate projects and work in teams. They are required to
plan and manage their own project, post weekly activity
reports, and provide periodic peer evaluations. Each team
must specify, design, implement, test, and deploy a complex
software system using an appropriate software development
process. Version control software is used in all projects. All
teams deliver appropriate documentation, with revisions,
and have numerous oral and written communication
requirements.

Several report increased student interest and
motivation in projects developed for external clients and

Int'l Conf. Frontiers in Education: CS and CE | FECS'11 |

projects exploring new technologies [5, 6]. At this
university, considerable effort is given to identifying
projects that require the students to explore new
technologies and projects that have applicability outside the
classroom. When possible, it is also desirable to involve
interaction with outside clients.

1.3 Overview of paper

This paper describes exemplary capstone projects of
two recent years that required extensive student learning of
both the problem domain and of technologies new to the
students. Further, it relates the author’s belief in the
importance of incorporating significant student learning in
the capstone projects in order to maintain student interest
and motivation in the intense, year-long effort.

The remainder of this paper is organized as follows.
Section 2 introduces a mobile geographic information
system (GIS) developed for mapping and data collection on
mobile devices in the field. It was originally developed to
give forestry consultants the ability to map and obtain
forestry data while on location. Section 3 discusses an
acceleration-based gesture recognition system that was
developed as last year’s senior capstone project. The intent
of the project was to investigate the use of mobile devices,
with acceleration-based motion sensing capabilities, as
innovative interaction devices. Section 4 summarizes project
results and observations. Section 5 provides some
concluding remarks.

2 Mobile GIS project

2.1 Background

The mobile GIS project originated from the need of
forestry management personnel to obtain and utilize geo-
referenced timberland information in the field. While it is
true that there is at least one commercial GIS application
that could be adapted for this application [4], that system
requires the user to have extensive GIS training and, when
integrated with the desktop components for display and
analysis, is quite costly.

Forestry management consultants typically divide large
timberlands into multiple subplots for management
purposes. They maintain maps and management histories on
each timber subplot comprising the entire tree farm. This
history includes such things as harvest dates, harvest
amount, undergrowth burn dates, acreage of each subplot,
and estimated timber on each subplot. The on-site creation
of custom maps and collection of associated data with
editing and presentation capability was needed.

The goal of this project was to produce a low-cost,
general-purpose mobile GIS application that provides for
mapping and data collection in the field, is easy to use, and
could readily be applied to this and many similar domains.

2.2 Learning new technologies

The system was developed for Windows Mobile
touchscreen devices using Visual Studio and C#. Windows
Mobile 5 and 6 emulators were used extensively in the
development phase. Also, stand-alone GPS receivers with
Bluetooth (BT) connectivity were selected for project
development because they allowed field testing of all
features of the system on each of our test platforms: laptop
(utilizing the emulators); the HP iPAQ 2970 Pocket PC; and
the AT&T 8925 Tilt smartphone. The i.Trek M5+ BT GPS
receiver was selected for development and performed well.
All of these technologies were new to the students as they
had not developed in the .NET environment or worked with
GPS prior to starting the project.

In addition to learning how to acquire GPS data
through BT connections, the students had to learn
fundamentals of mapping, map projections, and geographic
information systems. This included learning how to obtain
latitude and longitude information from NMEA satellite data
and transforming and projecting geographic information
from the 3D earth onto a 2D screen. This was not a trivial
task.

2.3 System functions

The mobile GIS system developed provides four basic
functions: Build Map, Edit Map Data, Map View, and
Remote Tracking. Each is briefly described below in order
to give an appreciation for the magnitude of the project.

The Build Map and Remote Tracking functions require
latitude and longitude values to be obtained in real-time
from an active GPS receiver. Figure 1 shows the main menu
and the GPS status screen with the GPS currently active and
tracking 6 satellites. These screen shots were obtained from
the emulator running on a laptop with the Bluetooth GPS
device attached.

Boundary Establishing System l
for Topology

GPS Active: ¢

Tirne: 04:40:10 UTC
Altitude: 2349 M
Satelites: B
Fied: 4

Latituce: 32°42'30"N
Longituide: 97°21'30" W
Signal Quality (SNR): 24.83 (+4) dB
&} settings Errars: 0
/CF GPS onfoff Status (Debug): READY

for Topology
Load Map [wwP Ranch]

T] l ¥
Boundary Establishing System

ﬁﬁ Euild Map

% Edit Map Data

@ Map View

[Ql. Remote Connection

Home [GPS Stat

Figure 1. Main menu (left) and GPS status (right).

Home -GPS Stat
1)

.@‘

The Build Map function allows the user to construct a
map using any combination of 4 sampling methods. Map
objects may be created by simply touching the screen with

15

16

the stylus, by manually entering latitude and longitude
values, by collecting arbitrary GPS points, or by sampling
GPS values at a user selectable time interval.

Edit Map Data provides the ability to enter and obtain
information on map objects. Properties of map objects are
determined by a user defined XML configuration file. Figure
2 shows a map with pine timber subplots (dark polygons) on
the lower right side. Timber subplot 108 has been selected
and its associated properties (acreage, volume of standing
timber, last cut year, and last burn year) displayed in the
screen on the right. The map was built using several of the
map construction methods previously noted. This included
manual entry of latitude and longitude values for perimeter
corners, use of the stylus for placing some of the cross-
fencing, and real-time GPS interval sampling for mapping
the creeks, roads, and subplots.

! | volume_MBF:

677.936
Last Cut Year: 2004

Last Burn Year: 1997

Table of Contents
e,

| Aoz
Show Legend
Save this map

Figure 2. Edit Map Data with subplot selected (left) and data
for selected object displayed (right).

Map View provides the user with common interactive
techniques such as selection, zooming, panning, and “center
on me”. The map objects created are defined in the Table of
Contents and placed on layers. This gives the ability to
show/hide layers, modify layer ordering and label with
selected properties. Map View also provides the ability to
form queries and have selected objects highlighted. For
example, Figure 3 illustrates a query for all timberstands
greater than 40 acres that were harvested in 2004. Three
subplots are shown selected in the screen on the right.

Operation:

Value

EE

[Trberstand] Acreage == 40.0

s}
[Timberstand] Vear = 2004
la

[Timberstand] Cut = Yes

Figure 3. User query with selected Timberstands highlighted.

Int'l Conf. Frontiers in Education: CS and CE | FECS'11 |

And finally, Remote Tracking provides for the tracking
of workers on location from a central server. Remote
tracking also allows workers in the field to view the location
of all connected co-workers. Devices must be activated for
tracking and have Internet connectivity through phone
service for this feature to be enabled.

3 Gesture recognition project
3.1 Background

Human-computer interaction is moving away from the
traditional mouse and keyboard. Motion-based gesture
recognition is a versatile and intuitive form of interaction.
For this project, students were challenged to develop a hand
gesture recognition system using the acceleration sensing
capabilities available on Sun Microsystems’ Sun SPOTs
shown in Figure 4. Further, the system was to be designed to
allow other acceleration-sensing mobile devices, such as the
Android, Windows Mobile HTC Fuse, or iPhone to be used
as interaction devices to the system in the future.

Figure 4. Sun Microsystems’ Sun SPOT.

3.2 Learning new theory and technologies

To prepare for this project the students had to become
familiar with capabilities, limitations, and programming the
Sun SPOTs shown above [10]. SPOTs (Small
Programmable Object Technology) are small, wireless,
battery-powered experimental sensor devices that can be
easily adapted for wireless sensor network applications or
novel user interfaces — the latter is used here. SPOTs have
several on-board sensors including the 3D accelerometer
that was used in this project to detect hand motion.

In addition to learning how to effectively program the
SPOTs, students had to study several research papers
dealing with acceleration-based gesture recognition. It was
decided to take an approach used on the wiigee project [9]
that utilized statistical Hidden Markov Models (HMM) to
recognize gestures [7].

3.3 System functions

Requirements for the system included the ability to
train gestures, recognize gestures, evaluate the effectiveness
and accuracy of the gesture recognition, and an

Int'l Conf. Frontiers in Education: CS and CE | FECS'11 |

implementation of a simple game to demonstrate proof of
concept.

The Training mode, shown in Figure 5, allows one
user to connect a 3D acceleration sensing mobile device
(e.g., Sun SPOT) and train the system with multiple
gestures. The training data (X, y, z acceleration vectors) is

captured, analyzed, and saved for later use in the
recognition, evaluation, and demonstration modes.

|2/ FROG Recognizer of Gestures - Training [9]=1[5]

Session | Device Terminal

NewSession Ci1{ors | 2u Acceleration Values | New Session =

Load Session CiiL o

Save Session Ctil-S

Exit Training ~ Cti-%

Circle
- .

Sun SPOT: 1BE9
Status: Connected

L

Figure 5. Training Mode.

The Recognition mode allows up to four users to
simultaneously connect to the system and perform simple,
previously trained gestures. Each user must load a library of
trained gestures in order to perform recognition.

The Evaluation mode, shown in Figure 6, allows a
user to connect and evaluate recognition accuracy. In this
mode the system prompts the user to perform a specific
gesture, accepts the gesture (x, y, z acceleration data) from
the user, and then determines if the system is able to
correctly identify the gesture performed. Statistics on
number correct and incorrect are maintained allowing the
user to determine the validity of his training set and
reliability of the procedure.

2 FROG Recognizer of Gestures - Evaluation BE]
Evaluation Device Terminal

Customize Evaluation Session

Make &
A Triangle

ot Recognized Percent Correci Average Certainty -

Gesture Session Loaded: demo
Sample Size: 10] Randomize
Stop lear Stat

Gesiure

Correct Incorrect

v] Circle 6 4 0 60.0% 100.0%
v Square 9 o 1 90.0% 100.0%

V] Triangle 1 4 0 20.0% 100.0%

Circle | Square | Triangle [X | 7 | Session
204

15

Number

10

Comet _ Incorect Not Recognized
Event

= 4 Sun SPOT: 1BE
Status: Connected

>

Figure 6. Evaluation Mode.

To provide a proof of concept, students were required
to create a simple game that responded to hand gestures. The
idea of the game was to prevent the UFOs from abducting
the cows that were grazing in the pasture below. The UFOs
were labeled with trained gestures (z, X, circle, square in
Figure 7). The game player had to correctly perform the
gesture matching the label before the UFO flew off-screen
with the cow. Correct gesture recognition resulted in the
UFO exploding, points for the player, and the cow being
released. The game allowed up to four simultaneous players.

B

= A v

‘- | & /"' " I'

Figure 7. Demonstration Mode.

4 Results and observations

4.1 GIS project

The mobile GIS project was an extra ordinary project
and student effort. The team members were very dedicated
and committed to meeting deadlines and staying on
schedule. Geographic information systems and map
projections were new topics for the students and they had to
take it upon themselves to research these subjects. In
addition, mobile device programming with .NET and C#
was a new programming environment for all team members
and they embraced the opportunity to learn the technology.
This project turned out to be a nice fit for the members of
this team because it gave them the opportunity to apply
concepts from upper level elective graphics and algorithms
classes they had just completed.

As project sponsor, this author believes the student
interest was significantly enhanced by affording the team the
opportunity to program on mobile devices as they had no
prior exposure to .NET or mobile device programming. In
addition, this project had applicability outside the classroom
and the students saw it as more than just a classroom
exercise. They worked with real data obtained from a
forestry management consultant. Just knowing that they
were working on a real problem provided additional
motivation.

17

18

This project was presented at the college’s spring
Student Research Symposium (SRS) and received a first
place award for the department.

4.2 Gesture recognition project

This project served as the capstone senior project for
the 2009-2010 academic year. As with the GIS project, it
also represented an amazing effort on the part of team
members and the project team leader. The work required to
have all phases of the project operational was substantial
and required excellent team effort and project management.

The makeup of the seven member team was such that
there was a nice division of responsibilities. The project was
particularly well suited for this senior class as there were
two students with strong math backgrounds interested in
investigating the training and recognition algorithms, other
students were interested in sensors and SPOT
communication issues, and still others interested in the
interface design.

The students presented this project at an area student
conference and at the college’s Student Research
Symposium (SRS) where it won a People’s Choice Award
and received a first place for the department. As with all
senior capstone projects, the students also presented the
project in a year-end capstone project presentation attended
by their peers, faculty, family members, the department’s
Industry Advisory Board members, and other interested
parties.

5 Conclusions

As previously discussed, there are several desirable
requirements that should be considered for computer science
capstone projects. With the exception of an external
sponsor, the program at this university tries to address them
all. And even this year, projects with external sponsors are
being sought more aggressively.

In addition to the requirements traditionally
emphasized, this author believes it to be very important that
projects include a significant learning component — a new
technology or new concepts. Students need to be able to
learn on their own. The two projects included in this paper
fulfilled that requirement.

Incorporating a significant learning component is
essential, not only to provide additional motivation and
student interest in projects, but perhaps more importantly, to
instill in students a confidence in their ability to “dig out”
information on their own. Graduates need to leave the
program with confidence in their ability and knowledge that
they are prepared to be lifelong learners.

Int'l Conf. Frontiers in Education: CS and CE| FECS'11 |

6 References

[1] Buckley, M., et al. 2004. Benefits of Using Socially-
Relevant Projects in Computer Science and Engineering
Education. In Proceedings of the SIGCSE '04 (Norfork, VA,
Mar 3-7, 2004), 482-486. DOI=
http://doi.acm.org/10.1145/971300.971463.

[2] Coppit, D., Haddox-Schatz, J. 2005. Large Team
Projects in Software Engineering Courses. In Proceedings of
the SIGCSE 05 (St. Louis, MO, Feb 23-27, 2005), 137-141.
DOI= http://doi.acm.org/10.1145/1047344.1047400.

[3] Dascalu, S., Varol, Y., Harris, F., and Westphal, B.
2005. Computer Science Capstone Course Senior Projects:
From Project Idea to Prototype Implementation. In
Proceedings of the IEEE FIE-2005 Frontiers in Computer
Education Conference (Indianapolis, IN, Oct 19-22, 2005),
S3J/1-6.

[4] ESRI. Environmental Systems Research Institute, Inc.
http://www.esri.com.

[5] Gorka, S, Miller, J, and Howe, B. 2007. Developing
Realistic Capstone Projects in Conjunction with Industry. In
Proceedings of the SIGITE "07 (Destin, FL, Oct 18-20,
2007), 27-32. DOI=
http://doi.acm.org/10.1145/1324302.1324309.

[6] Hadfield, S. and Jensen, N. 2007. Crafting a Software
Engineering Capstone Project Course. Journal of
Computing Sciences in Colleges, 23(1), 190-197.

[71 Rabiner, L. R. A tutorial on hidden Markov models
and selected applications in speech recognition. Proceedings
of the IEEE 77 (Feb 1989), 257-286.

[8] Roggio, R. F. 2007. Process-Driven Software
Development: An Approach for the Capstone Sequence. In
Proceeding of ISECON 2007 (Pittsburg, PA, 2007), 1-11.

[9] Schlémer, T., Poppinga, B., Henze, N., and Boll S.
2008. Gesture Recognition with a Wii Controller. In
Proceedings of the 2nd International Conference on
Tangible and Embedded Interaction (Bonn, Germany, Feb
18-20, 2008), 11-14.
DOI=http://doi.acm.org/10.1145/1347390.1347395.

[10] Sun Microsystems Sun SPOT.
http://www.sunspotworld.com.

Int'l Conf. Frontiers in Education: CS and CE | FECS'11 |

Transforming Undergraduate Computer Science into
Software Engineering

Kevin Daimi and Katy Snyder
Department of Mathematics, Computer Science and Software Engineering
University of Detroit Mercy
4001 McNichols Road, Detroit, M1 48221
{daimikj, snyderke}@udmercy.edu

ABSTRACT

The Software Engineering process involves a number of
complex sub-processes including requirements
engineering, analysis, design, testing, configuration, and
maintenance. Designing a curriculum for an
undergraduate Software Engineering program has never
been an easy task. Converting an existing computer
science program into a software engineering one is just
as difficult. The goal of this paper is to introduce the
process, justification, and details for transforming an
existing undergraduate Computer Science program at
the University of Detroit Mercy into a Software
Engineering program.

Keywords

Computer Science, Education, Software Engineering,
Transformation Process.

I. INTRODUCTION

Software Engineering is concerned with developing and
maintaining reliable and quality-based software
systems. These systems should be cost-effective to
develop and maintain. It is essential that such systems
satisfy all the customer’s requirements to be qualified as
useful and effective solutions for customers’ problems
[11], [15]. To achieve these goals, software engineering
integrates the principles of mathematics, computer
science, and management with engineering practices.
Achieving such integration is a complicated process for
curriculum designers. Curricula should help students
develop skills from a variety of areas, including those
listed above as well as software management, software
design and development, communication, and critical
thinking.

Because of the broad and interdisciplinary set of skills
necessary to meet the needs of industry, the field of
software engineering has become extremely complex

[1]. When designing software engineering curriculum,
the Software Engineering Body of Knowledge
(SWEBOK) recommends ten knowledge areas to be
included in the curriculum: software requirements,
design, construction, testing, maintenance, configuration
management, engineering management, engineering
processes, engineering tools and methods, and quality
[6]. Further recommendations for designing
undergraduate software engineering curriculum are in
the 2004 Software Engineering Curriculum Guide [14].

Bridging the gap between software engineering
education and industry is an essential curriculum design
criteria [8]. To accomplish that, collaboration between
industry and academia throughout all the design stages
is needed. In addition, tools deployed by industry
should be extensively used within the program to
prepare graduates, who are ready to use such tools.
Software engineering practitioners have a great role to
play in improving the future and the practical nature of
software engineering education [9].

An industry prospective on software engineering
education has been documented [13]. This author
identified the need for software engineers who are
problem solvers, possess excellent communication
skills, and work collectively with users in an
interdisciplinary environment. He added that
universities should concentrate on providing students
with knowledge and concepts, and leave the
development of specific skills for the job field. In
addition, universities should have more broadly defined
learning objectives and establish a process to solicit
industry inputs. While we agree with these viewpoints,
we believe that some skills can still be acquired during
students’ time at the university if projects for various
courses are provided by industry. This approach is
more suitable for producing graduates who are ready to
do the job with minimal additional guidance.

19

20

This paper describes a process for converting a current
undergraduate degree program in Computer Science
into Software Engineering. The Software Engineering
program has the traditional math courses required for
many engineering degrees in addition to a number of
Electrical Engineering courses. The new Software
Engineering program integrates software engineering
with computer science, mathematics, hardware and
networking, management, and entrepreneurship. It is
important to enhance our software engineering
programs with entrepreneurship as this supports the
development of new computing markets, the
introduction of new software and hardware
technologies, and has the potential to create additional
opportunities for employment [3]. In addition to
software, requirements, testing, verification, security
and integration, the transformed curriculum also
includes courses on software quality, project
management, professional world of work, engineering
ethics, software ethics, technical writing, and software
integration. In general, software engineering curriculum
coverage is weak in the area of software integration
[12]. This course was recommended by our Advisory
Council, which consists of members from industry,
health, government, and education.

Il. TRANSFORMATION RATIONALE

During the academic year 2006-2007, the Bachelor of
Science in Computer Science program went through a
comprehensive program review. The Dean of the
College of Engineering and Science (E&S), the external
reviewer from academia, the external reviewer from
industry, the University Undergraduate Review
Committee, and the University Faculty Governance
suggested that the department should develop a more
focused curriculum for our undergraduate degree to
increase enrollment despite the fact that computer
science enrollments are down nationwide.

At the beginning of the academic year 07-08, three
paths were explored to improve the program in order to
make it more appealing and focused. The first path
concentrated on developing interdisciplinary minors
with other departments within and outside the E&S
College. The first minor in Bioinformatics was created
in collaboration with the Department of Biology. There
are more plans in this regard.

The second path aimed at making freshmen
programming classes more appealing and fun to
students. A number of approaches, such as multimedia,
game programming, and programming a robot are being
considered to make programming more pleasurable.
Currently, all of the projects in these freshmen classes

Int'l Conf. Frontiers in Education: CS and CE| FECS'11 |

are game-oriented. The intention is to aid in the
recruiting process, to retain students, and to help
provide motivation for students to put in the time and
effort necessary to overcome the frustrations frequently
faced by students as they are introduced to the discipline
of developing quality code.

The third path, developing a more focused curriculum,
was the most difficult task. The first suggestion was to
replace the current program with a bachelor degree in
Bioinformatics. This option was ruled out since it
requires developing a number of new courses, and
because of the inability to locate an accreditation body
to accredit such a program. In addition, the department
wanted to observe how the minor in Bioinformatics will
proceed before switching to a degree in this field.
Furthermore, it was felt that a graduate degree in
Bioinformatics may be more appropriate than an
undergraduate one.

Having considered the above options, the
recommendation was to transform the computer science
degree into software engineering. We looked at
software engineering degrees at other universities,
examined the Software Engineering Body of
Knowledge (SWEBOK) introduced jointly by the
Institute of Electrical and Electronics Engineers (IEEE)
and the Association for Computing Machinery (ACM),
and analyzed the demand for Software Engineering. In
addition, the committee consulted faculty at other
universities, as well as our Department’s Advisory
Committee. It was determined that in order to focus on
Software Engineering, only few courses needed to be
developed in addition to courses in leadership and
entrepreneurship. We were encouraged by the
following findings:

e There is a high demand for software engineers in
the market. According to the US Department of
Labor, “Computer software engineers are one of the
occupations projected to grow the fastest and add
the most new jobs over the 2006-2016 decade,”
[10].

e For schools that offer degrees in Software
Engineering, the minimum enrollment nationwide
is 25 and the maximum enrollment is 343. Within
the state of Michigan, the University of Michigan —
Dearborn has an enrollment of 72 [5].

e Offering a degree in Software Engineering may
allow the opportunity for students to receive a
Professional Engineering (PE) license when
available. Texas is the first State to grant PE in
software engineering.

Int'l Conf. Frontiers in Education: CS and CE | FECS'11 |

There are 17 undergraduate programs in Software
Engineering (SWE) that are accredited by ABET.
In Michigan, University of Michigan — Dearborn is
the only university that has its SWE program
accredited [5]. It is anticipated that our program
will acquire accreditation as well.

The recommendation and support from our
Advisory Council to pursue the transformation.

The Institute of Electrical and Electronics
Engineers (IEEE) offers the CSDP Certified
Software Development Professional exam [2]. This
is based on software engineering. The transformed
program will prepare students for this exam.

At our university, students look upon computer
science as equivalent to programming. This fact
has discouraged a number of students from
enrolling in computer science. With software
engineering, students will concentrate on
developing the software product. To do that, they
will be introduced to software requirements
engineering, modeling and analysis, design, testing,
and maintenance of software systems.

There is some confusion regarding computer
science and engineering among high school
students, and to a certain extent, among admissions
staff. Students in general, do not understand the
difference between computer science and computer
engineering. Both departments belong to the
College of Engineering and Science, and a number
of the same classes are required for both programs.

Traditional —undergraduate computer science
programs’ enrollments are decreasing nationwide.
We believe that our focus on software engineering,
in addition to making freshmen courses attractive
and fun, will contribute to recruiting more students
to the program.

The focus on software engineering will further
increase the collaboration with Electrical and
Computer Engineering programs. Students will
have more classes available from which to choose
from. Furthermore, this collaboration will provide
additional opportunities for students to do
interdisciplinary projects. Electrical Engineering
students can concentrate on the hardware part, and
Software Engineering students will take care of the
software part. The fact that students from both
majors have been introduced to software and
hardware will be quite valuable.

The College of Engineering and Science offers a
Doctor of Engineering (DEng.) degree. Currently,
only students in Civil, Electrical, and Mechanical
Engineering take advantage of it. Converting our
programs to software engineering will make this
degree available to our students as well.

I1l. THE FORMER PROGRAM

The Bachelor of Science in Computer Science was
launched in 1976. This program was very successful in
attracting students at the time it was introduced.
However, it was mainly a liberal arts program rather
than a professional program. To meet the requirements
of industry, the program underwent a thorough revision
in 1998. As a result of this revision, courses from
Electrical Engineering, and Computer and Information
Systems were added to the major requirements. In
2001, another review was carried out. Based on the
feedback and comments from computer experts in the
auto industry, recommended courses, such as Data
Mining, Embedded Programming, and Distributed and
Parallel Systems were added. In 2003, we added
Software Engineering and Software Project
Management based on the feedback we got from
industry and other sectors that our graduates were
lacking software engineering and leadership skills.
With the growing need for security nationwide, courses
in computer and network security were added in 2004.
Finally, in 2006 Bioinformatics was added to serve the
needs of researchers in Pharmaceutical Industry and
Biomedical Engineering.

The former program was divided into four components;
major requirements, technical electives, university core,
and general electives. The Major Requirements included
courses in computer science, mathematics, electrical and
computer engineering, and technical writing with a total
of 64 credits.

Students were required to take 12 credits of Technical
Elective courses. These included courses in computer
science, mathematics, and electrical and computer
engineering. Students were also required to complete
courses for the university core curriculum. These
courses include: English and Fundamentals of Speech
(ENL 1310, and CST 1010), two courses in natural
science, PHL 1000 (Philosophy), one course in religious
studies, any other course in philosophy or religious
studies, three courses in history/literature/culture, one
course in ethics, and one course in contemporary socio-
political problems. These courses total at least 36 hours.

Finally, the remaining courses were general electives
taken with the advisor's approval in the various areas
where the student has special interests. This may
include up to 9 credits of co-op. The student must
complete 126 hours with at least a 2.0 QPR overall and
a 2.0 QPR for the last 60 hours. A typical student will
have 15 credits of general electives.

21

22

IV. THE TRANSFORMATION PROCESS

The process used to convert the BS in Computer
Science program to a BS in Software Engineering has
been comprised of the following steps:

1)

2)

3)
4)
5)
6)

7)

8)

9)
10)

11)
12)

13)
14)

Students were surveyed to get their feedback on
switching to software engineering. The vast
majority of students favored the idea of switching
to software engineering. Students expressed their
enjoyment of the few software engineering classes
offered within the former program.

Faculty and administrators in the college were
consulted as to the feasibility and desirability of
developing the program.

The first draft of the proposed program was
prepared.

The Department’s Advisory Council was consulted
to obtain their feedback.

The second draft was created.

Software engineering faculty at other universities
were consulted to obtain their feedback on the
second draft.

The third draft was created and verified against the
SWEBOK [6] and the 2004 Software Engineering
Curriculum Guide [14].

The findings were reflected in the fourth draft and
discussed with the Advisory Council.

Details of the transformed program were outlined.
Met with the Department of Electrical and
Computer Engineering (ECE) to discuss the
collaboration regarding the ECE courses and the
interdisciplinary Senior Design Project.

Rolled out the addition of the missing software
engineering classes to the catalog.

Started offering the new courses. This effort started
this academic year.

Completed the offering of all new classes.

Changed the name of the degree to Bachelor of
Science in Software Engineering this winter.

V. THE TRANSFORMED PROGRAM

A. Program Highlights

1)

This transformed program combines computer
science, software engineering, computer
engineering, management, entrepreneurship,

Int'l Conf. Frontiers in Education: CS and CE| FECS'11 |

2)

3)

4)

5)
6)

7)

8)
9)

10)

11)

12)

problem solving, communication, and engineering
and software ethics.

It provides the needed knowledge and foundational
kills learned through industry-based projects.

It is a project-led program. Projects have a weight
of at least 50%. Whenever possible, they are drawn
from industry.

Software engineering courses are taught using the
IBM Rational Software. The tools that have been
adopted for coursework so far are; Rational
Software Architect, Rational RequisitePro, and
Rational Functional Tester. In addition to using the
tools to implement students’ projects, software
tools enhance the teaching process and make
courses more appealing to students.

Software engineering courses adopt the IEEE
standards whenever possible.

The department has ongoing consultation with
industry for continuous improvement.

The transformed program offers Software
Integration, an important course demanded by
industry.

The program is based on interdisciplinary projects
whenever possible.

It follows the requirements of the Accreditation
Board for Engineering and Technology (ABET).
Collaboration with Electrical and Computer
Engineering, and Business is the cornerstone for the
program.

Students in the program concentrate on only one
programming language instead of three. If students
are interested in learning more programming
languages, they can take them as electives. Many
computing professionals, who worked in industry
years ago, were trained in one programming
language. Once a new language was introduced
and there was a need for it at the organization, it
was well within workers’ ability to learn the new
syntax, since they already had mastered the
underlying logic [4]. Furthermore, it has been
concluded that prior programming experience is not
necessary for students’ success in software
engineering [7].

The program allows for the development of
Artificial Intelligence, Data Mining, and
Bioinformatics software using the principles and
techniques of software engineering. Software
engineering practices are essential for creating

Int'l Conf. Frontiers in Education: CS and CE | FECS'11 |

dependable software
bioinformatics [16].

systems, especially in

B. Program Objectives

The program is designed to provide educational
excellence in software engineering and prepare
graduates that are intellectually, spiritually, ethically,
and socially developed to pursue a graduate degree in
Software Engineering, or a career in industry, education,
health, and government. =~ The program objectives
include:

1) Provide graduates with the level of technical skills
needed for the professional practice of software
engineering and for pursuing a graduate degree.

2) Prepare graduates who are intellectually, spiritually,
and ethically developed to engage in lifelong
learning.

3) Develop students’ proficiency in oral and written
communication, and teamwork effectiveness.

4) Instill within graduates the ability to demonstrate
professional and ethical responsibility,
entrepreneurship, leadership, and awareness of
contemporary issues.

C. Program Outcomes

The program outcomes were designed to satisfy the
requirements of ABET accreditation and the need of
industry as recommended by our Advisory Council.

a) Students will be able to apply knowledge of
mathematics, computer science, and software
engineering to identify, analyze, model and solve
software engineering problems, as well as measure
the quality of software engineering solutions.

b) Students will be able to design and conduct
software tests, as well as to analyze and interpret
the test result data and outcomes.

c) Students will be able to develop, validate, and
analyze software requirements for various software
systems or components.

d) Students will be able to design, implement, and
maintain a software system, component, or process
to meet desired needs of stakeholders within a
realistic set of quality constraints.

e) Students will have an ability to work in teams,
including multidisciplinary teams, and lead
software engineering projects.

f) Students will have an ability to identify, formulate,
analyze, and solve software engineering problems.

g) Students will develop an understanding of
professional standards and ethical responsibility
needed for practicing software engineering.

h) Students will be able to effectively communicate
their software engineering outcomes both orally
and in writing.

i) Students will be able to gain the broad education
necessary to understand the impact of software
engineering solutions in a global, economic,
environmental, and societal context.

j) Students will recognize the need for, and an ability
to engage in life-long learning.

k) Students will be able to acquire the knowledge of
contemporary issues and understand the impact of
software engineering on these issues.

I) Students will able to wuse the techniques,
knowledge, and modern software engineering tools
necessary for software engineering practice.

m) Students will be able to apply entrepreneurship
skills to software engineering and develop
leadership skills.

D. Program Requirements

The program requirements are summarized as follows:

e Major Requirements 76 cr.
e Technical Electives 06 cr.
e University Core 36 cr.
e General Electives 08-09 cr.

The Major Requirements include a common Computing
and Software Engineering courses core. Students will
also take 6 hours of Technical Electives. CSSE-4610
Data Mining and CSSE-4620 Bioinformatics must be
taken if the Bioinformatics Minor is pursued. Courses
for the common Computing/Software Engineering core,
Math and Computer Engineering requirements, and the
Technical Electives are provided in Tables 1-3.

The University Core is the same as in the former
program with the exception of replacing the traditional
ethics classes with three courses in Professional World
of Work (ENGR 3010, ENGR 3020, and ENGR 3030),
ENGR-1000 Ethics and Politics of Engineering, and
CSSE-2750 Software Ethics. For the General Electives,
students can take any 8-9 credits as General Electives.

23

24

TABLE |
COMPUTING & SOFTWARE ENGINEERING COURSES

Course Credits

CSSE-1710 Computer Science |

CSSE-1720 Computer Science Il

CSSE-3150 Software Engineering

CSSE-3540 Database Systems

CSSE-4160 Software Testing

CSSE-4390 Software Quality Engineering
CSSE-4400 Software Requirements Engineering
CSSE-4430 Data Structures

CSSE-4490 Operating Systems

CSSE-4540 Computer and Software Security
CSSE-4560 Software Systems Verification
CSSE-4570 Software Project Management
CSSE-4860 Software Integration

CSSE-4910 Software Product Entrepreneurship
CSSE-4930 Senior Design Project

ENL-3030 Technical Writing

WWWWWWWWwWWwWWwWwwWwwWwww

TABLE Il
MATH AND COMPUTER ENGINEERING COURSES
Course Credits
MTH-1410 Calculus | 4
MTH-1420 Calculus 11 4
MTH-2760 Discrete Mathematics 3
MTH-4020 Linear Algebra 3
MTH-4270 Applied Probability and Statistics 3
ELEE-3640 Digital Logic Circuits 3
ELEE-3650 Digital Logic Lab. 1
ELEE-4680 Computer Networks 3
ELEE-4690 Computer Networks Lab 1
ELEE-4800 Computer Architecture 3

TABLE I
TECHNICAL ELECTIVES

Course Credits

CSSE-3270 User Interface Engineering
CSSE-3470 Software Configuration
CSSE-3480 Software Maintenance

CSSE-4411 Perl

CSSE-4130 Java

CSSE-4530 Web Software Engineering
CSSE-4531 Software Architecture
CSSE-4535 Systems Engineering
CSSE-4550 Atrtificial Intelligence

CSSE 4610 Data Mining

CSSE-4620 Bioinformatics

CSSE-4640 Parallel Systems

CSSE-4670 Distributed Systems
CSSE-4900 Special Topics in SWE
MTH-4510 Advanced Calculus

ELEE-3860 Introduction to Microcontrollers
ELEE-3870 Microcontrollers Lab
ELEE-4640 Hardware Description Languages
BUS-3180 Organizational Leadership

WWRFRPWWWWWWWwWwWwwWwwwwwwww

Int'l Conf. Frontiers in Education: CS and CE| FECS'11 |

E. Program Assessment

Program assessment is an essential component when
designing a curriculum. It is an iterative and
incremental process that plays a key role in measuring
learning and improv