
SESSION

NOVEL APPLICATIONS + ALGORITHMS +
SUPPORTING SYSTEMS

Chair(s)

TBA

Int'l Conf. Embedded Systems and Applications | ESA'11 | 1

2 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Detecting Eating Using a Wrist Mounted Device During Normal
Daily Activities

Yujie Dong1, Adam Hoover1, Jenna Scisco2, Eric Muth 2

1Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA
2Department of Psychology, Clemson University, Clemson, SC, USA

Abstract— The prevalence of obesity is a growing, world-
wide health concern. Self-monitoring of eating consumption
is widely recognized as a necessity for weight loss. In this
paper we describe a novel method for automated monitoring
of eating. Our method uses a single sensor that is worn on
the wrist, similar in form to a watch. Wrist orientation was
captured at a rate of 60 Hz for an entire day while four
subjects conducted their natural daily routine. In our first
experiment, we manually segmented the wrist motion data
according to task logs kept by the subjects, and developed
an algorithm to classify the tasks, achieving an accuracy of
91%. In our second experiment, we automatically segmented
the wrist motion data in order to detect eating sessions,
achieving a detection accuracy of 82%. Our methods will
enable new opportunities in the study of dietetics, weight
loss and management, nutrition, and health monitoring.

Keywords: activity recognition, sensor, motion tracking, eating

1. Introduction
This work is motivated by the growing prevalence of

obesity in the world. In 2007-2008, the National Health
and Nutrition Examination Survey showed that 68.3% of
Americans were overweight and 33.9% of Americans were
obese [1]. The World Health Organization reported that 1.5
billion adults (age 20+) were overweight and 500 million
adults were obese worldwide [2]. Obesity is strongly associ-
ated with several major health risk factors, such as diabetes,
heart disease, high blood pressure, stroke and higher rates of
certain cancers [3]. In the United States, the annual medical
expense of obesity has been estimated at $147 billion in
2008 compared to $78.5 billion in 1998 [4].

Weight control can be assisted by self-monitoring of
intake consumption, which has been consistently related
to successful weight loss [5]. The most well known tool
for monitoring food intake is an eating diary; however,
this tool places the burden on the user to manually record
all foods eaten. In addition, people have a tendency to
forget or underreport the calorie consumption [6] [7]. Some
researchers have investigated using a scale embedded in a
dining table [8] [9]. However, this method can only monitor
consumption when people eat at the instrumented table.
Another method is to use a PDA or a cell phone to take

photos before and after the eating and use image processing
to estimate the amount of food intake [10] [11]. However,
because foods must be carefully separated and positioned
for imaging, these methods have not yet been studied in
natural daily living. Combinations of neck, ear, arm, and
back worn sensors have been investigated for recognizing
eating activities [12]. While these configurations may find
applications in a laboratory or clinic, they are not suitable
for day-to-day living. In summary, none of the existing
methods automates the process of self-monitoring of eating
consumption in an easy-to-use manner.

Our group has previously described methods using a
micro-electro-mechanical system (MEMS) sensor to track
wrist motion in order to measure the number of bites eaten
during a meal [13]. We have discovered that while eating, the
wrist motion of a person undergoes a characteristic rolling
motion that is indicative of the person taking a bite of food
[14]. However, our device requires the user to press a button
to turn the device on before eating and turn the device off
after eating. In this paper, we explore methods to overcome
this limitation by differentiating eating sessions from other
activities using the same MEMS sensor.

With their low power and small size, MEMS sensors can
be comfortably worn on the human body and operated for
hours at a time. Researchers have investigated their use
for recognizing common daily activities such as walking,
running, sitting and resting [15] [16] [17] [18], accidental
falls [19], sports activities [20], assembly tasks [21], and
tremors associated with Parkinson’s disease [22]. Sensors
can be placed on different parts of the body, such as the chest
[15], shoulder [19], waist [18] [19], thigh [19], ankle [20],
hip [17] and wrist [17]. The sensor type varies as well. The
most common type is accelerometers [15] [18] [19] [20] [21]
[23], while ECGs [16] [17], light sensors [19], microphones
[19] [21] and temperature sensors [17] have also been used.

None of these works has considered the problem of
detecting eating activities during normal daily life. To our
knowledge, the methods we describe herein are the first
to look at this difficult problem. In addition, many of the
previous works on activity recognition require a large set
of sensors [17] [19] [23], that together with the wiring,
are difficult to wear outside the laboratory. Experiments are
typically performed in a laboratory setting where subjects are

Int'l Conf. Embedded Systems and Applications | ESA'11 | 3

Fig. 1: InertiaCube3 prototype

asked to repeat activities of interest, interspersed with other
motions [15] [16] [17] [20]. In contrast, we instrumented
our subjects with a single sensor and instructed them to
conduct normal activities for an entire day. While the results
presented in this paper are preliminary and on a limited
number of subjects, we believe our methods will ultimately
enable new opportunities for weight management and weight
loss paradigms.

The rest of the paper is organized as follows: In section
2 we describe our approach of classifying eating activity on
pre-segmented motion data and detecting eating sessions in
real time. In section 3 we present experimental results to
validate our proposed algorithms. Finally, we conclude our
paper and discuss future work in section 4.

2. Methods
2.1 Hardware and prototype

A wired InertiaCube3 sensor produced by InterSense
Corporation (InterSense, Inc., 36 Crosby Drive, Suite 150,
Bedford, MA 01730, www.isense.com) was used to record
the wrist motion data. It is composed of an accelerometer,
a gyroscope and a magnetometer on each of the three axes
which provide an orientation heading in each of these three
orientations: roll, pitch, and yaw. Figure 1 shows the wired
Inertiacube3 sensor and its size compared to a US quarter.
The sensor was connected to an external 9V battery as a
power source and a laptop with a running program to store
collected data through an RS232 interface. Both the external
battery and the laptop were carried by the subject in a
backpack. The adjustable wire connecting the two parts was
long enough to make sure the subject’s normal behaviors
were not being affected.

2.2 Data collection
Subjects were asked to wear the sensor and carry the

backpack to record their wrist motion data when they got

Fig. 2: Data collection using a single orientation sensor on
the wrist

Fig. 3: Data collection using a single orientation sensor on
the wrist

up in the morning, and to stop recording the data when they
went to bed at night. As shown in Figure 2, the subject
placed the sensor on the dominant eating hand, and then
wrapped the band tightly around the forearm to ensure it
would not slide around the arm. The program running on
the laptop in the backpack (Figure 3) was set up to collect
the orientation data from the sensor in real time.

Using the recording program on the laptop was straight-
forward. Double clicking the program icon on the desktop
would automatically start it to record the pitch, yaw and
roll orientation at a rate of 60Hz. Due to the fact that the

4 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Segmented

Velocity Data

Ambulatory? Eating?

NO

YES

YES

Sedentary

Activity

Ambulatory

Activity

Velocity

Data

Orientation

Signal

Log

File

NO

Eating

Activity

Fig. 4: Diagram of offline detection

battery in the laptop could only last for about four hours, the
program generated continuous beeping for 3 minutes when
the battery level of the laptop dropped to 10%. The subject
was asked to close the program and replace the battery (an
extra was provided in the backpack) when he or she heard
the beeping reminder. He or she was asked to restart the
program afterward to continue recording.

During recording, subjects were asked to conduct daily
activities as naturally as possible. The subject was asked
to remove the device when engaging in activities which
would damage the device, such as taking a shower or playing
contact sports. The subject was asked to record activity
behaviors in a written log book. The subject was asked to
record the start time and the name of the activity for each
new task. For example, 08:02:04 eating; 13:24:58 walking.
A task was defined as a piece of work or activity to be
finished. The log information written by the subject was used
for segmenting the ground truth tasks from the wrist motion
data later.

A total of 4 subjects participated in this experiment. Two
were male and two were female. All the data was collected
in a completely free living condition, with no supervision.

2.3 Offline eating classification
For our first experiment, we consider the problem of

classifying the eating activity using both the collected motion
data and time information in the log book. An outline of the
process for the offline eating classification is shown in Figure
4.

Since different subjects might wear the sensor at different

Table 1: activity category
Eating activity Sedentary activity Ambulatory activity
Eating Using computer Cooking

Using phone Walking
Reading Driving
Writing Washing dishes
Napping Cleaning
Talking Doing laundry
Watching TV Packing
Changing laptop battery Brushing
Filing nail Shopping
Playing card game
Going to restroom
Being passenger in car
Playing video game

angles, it is difficult to define the task if we use the absolute
value of the orientation data. Therefore, we calculate the
derivative data, which is comparable. Since we have recorded
the data at 60Hz, the simplest way to calculate the derivative
data is in Equation 1 wheredt is the derivative data at time
t andot is the orientation data at timet.

dt = (ot − ot−1)× 60 (1)

The second step is to segment the derivative data into
tasks based on the log file. In the log file, subjects recorded
the start time for each new task. We use the start time of
current task as one boundary and the start time of the next
task as the other boundary for the current task to segment
the derivative data. For each segmented data, we categorize it
based on the content in the log file into one of 23 categories,
as shown in Table 1.

Although we were able to map most user defined tasks
into Table 1, a few tasks were difficult to categorize. First,
two categories may happen at the same time, such as eating
apples and working on a computer. Second, different people
can make notes on the same activity in different ways. For
instance, some subjects may categorize “walk to car, stop to
talk to a friend” as one log entry, but some other subjects put
it into two categories. Because we are interested in eating
activities, any note with eating is categorized as “eating”.
Any notes without eating mentioned were categorized to the
best of our ability.

Since eating is the most important activity to us, we do
not need to classify all these 23 tasks. We cluster these 23
categories into three clusters:

1) Eating activity: eating activity is a task which related
to eating food or drinking liquid.

2) Sedentary activity: sedentary activity is a task (except
eating) which involves sitting down, not moving or not
exercising. All tasks in the middle column of Table 1
belong to this category.

3) Ambulatory activity: ambulatory activity is a task
which is related to walking, moving or exercising. All

Int'l Conf. Embedded Systems and Applications | ESA'11 | 5

tasks in the right column of Table 1 belong to this
category.

These clusters were chosen because it is typically easier to
distinguish sedentary and ambulatory activities. Once these
have been separated, eating activities can be recognized as
a subset of sedentary activities.

To classify the segmented tasks, we calculate five features
for each task:

1) Variance of yaw velocity (Y_VAR)
2) Variance of pitch velocity (P_VAR)
3) Variance of roll velocity (R_VAR)
4) Bites per minute (BPM) using bite detection method.

The method to detect bite counts using the derivative
data is described in our previous work [13].

5) Occurrences when the bite detection method does
not detect a bite over a span of at least one minute
(NOT_EAT).

Using these features, each task is classified as follows:

1) A task is classified as an ambulatory activity if any of
the following conditions are met:

a) Y_VAR + P_VAR + R_VAR> T1
b) Y_VAR > T2
c) P_VAR> T3
d) R_VAR > T4

2) A task is classified as an eating activity if all of the
following conditions are met:

a) Y_VAR < T5 and Y_VAR> T6
b) P_VAR< T7 and P_VAR> T8
c) R_VAR < T9 and R_VAR> T10
d) BPM > T11
e) NOT_EAT< T12

3) Otherwise a task is classified as a sedentary activity

Here, {T1, T2, ... T12} is a set of thresholds. In our
default setting, these values are {8500, 5000, 1000, 5000,
3000, 200, 900, 150, 5000, 600, 2, 3}. If the variance of the
task’s velocity data is large, it is considered as an ambulatory
task. If this criterion is not met, the task is considered as
either an eating task or a sedentary task. The eating activity
has the following characteristics: the variance of pitch, yaw
and roll should be within a certain range. In addition, the
eating activity should have reached certain bite counts per
minute and should not include a long period where no bite
is detected. These characteristics are used to separate eating
tasks from sedentary tasks.

2.4 Real time eating detection
Our second experiment considers the problem of detecting

eating activity without knowing the start time of each task
in the log file. This method has the potential to detect the
eating activity in real time as we collect the data. The outline
of our method is shown in Figure 5. In our algorithm, we
only use the roll orientation data.

Velocity

Data

Orientation

Signal

Eating

Activity

Feature

Extraction

Categorize

Discard Very Short

or Long Task

Eating?

Get Potential

Eating Boundary

YES

Fig. 5: Diagram of real time detection

We calculate the roll velocity data from the orientation
data, same as in section 2.3. To identify eating activity in real
time, we use a sliding window to extract the motion feature.
The window size is set to 10 minutes and we update the
motion feature every 1 minute. For each 10 minute window,
the data is segmented into 2 parts, one fromt− 10 to t− 5
and one fromt−5 to t. Each of these two parts is classified
using the methods outlined in section 2.3. Based on these
classifications, the point at timet− 5 is categorized as one
of 4 categories:

1) category 1: this point may be a start boundary for an
eating task.

2) category 2: this point may be an end boundary for an
eating task.

3) category 3: this point cannot be inside an eating task.
4) category 4: this point may be inside or outside an

eating task.

Figure 6 illustrates a state machine that shows our method.
Initially we are in the state “not eating”. After that, we
update the transition condition (category of the time stamp)
every 1 minute. If the transition condition is category 1,
the state transits to “possibly eating”, at the same time, we
update the potential start time of an eating session. While
in the state “possibly-eating”, if the transition condition
is category 1, we update the start time; if the transition
condition is category 3, we go back to state “not eating”;
if the transition condition is category 2, we have detected
a potential eating session. We output the start time and the
end time of the potential eating session and go back to state
“not eating”.

For every potential eating session, we examine the dura-
tion. If the duration is too short or too long, it is not to be
considered as an eating activity.

We also extract the features and run the same algorithm
illustrated in section 2.3 to classify the potential eating

6 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Not

eating

Possibly

eating

(1)

(3)

(2) (3) (4)

(2)

(1)

update

start time

(4)

update

start time

end time detected

output eating session

Fig. 6: State machine of potential eating session detection

session. If all criteria are met, an eating session is detected.

3. Results
As described in Section 2.2, a total of 4 subjects were

recorded, each for an entire day. We had no restriction on
how subjects should do their activities and how long they
should do each task. For any eating task, subjects could eat
their own food and liquid, and use any utensils they preferred
(hand, spoon, fork, or chopsticks). Each recording session
was completely unsupervised.

Table 2 shows some statistics of all the tasks for these
subjects. The total time recorded for these four subjects
ranged from 9.4 hours to 13.4 hours. The total number
of tasks for each subject was between 23 and 39. Table 2
also shows the shortest task duration, longest task duration,
average task duration, and standard deviation of task duration
for each subject. In addition, the most frequent task for
different subjects varied.

We also include the statistics of eating tasks for these 4
subjects in Table 3. The total eating time of each subject
was from 0.7 hour to 1 hour. This was consistent with
the “American Time Use Survey” from the United States
Bureau of Labor Statistics [24] which reported an average
of 1.18 hours on eating and drinking per weekday. The total
number of eating tasks was within a range from 4 to 6 times.
Table 3 also shows the shortest eating session, longest eating
session, average eating session, and standard deviation of
eating session for each subject.

Table 4 shows the results of task classification using the
information on the log file. There were 125 total tasks across
all 4 subjects; 16% of the tasks were eating activity, 43% of
the tasks were sedentary activity, and the rest were ambula-
tory activity. The classification accuracy is calculated using

Equation 2. In our experiment, the classifcation accuracy
was 91%.

accuracy =
sum of correct classifications

total number of classifications
(2)

Table 5 shows the results of real time eating activity
recognition without knowing any information in the log file.
In the table, the second and the third column show the
ground truth time of each eating task. The second column
shows the start time of the eating task and the third column
shows the end time of the corresponding eating task. The
fourth column and the fifth column show the computer
detected boundary for each eating task. The fourth column
shows the detected start time of each eating task and the fifth
column shows the detected end time of the corresponding
eating task. All of these numbers are in minutes. A row
without any number in the fourth and fifth column indicates
that there is an undetected eating task. A row without any
number in the second column and third column indicates
that there is a false detection of an eating task. A row with
numbers in all columns indicates that this is a detected eating
task. The sensitivity is calculated using Equation 3 and the
positive predictive value (PPV) is calculated using Equation
4.

sensitivity =
true detected

true detected+ undetected
(3)

PPV =
true detected

true detected+ false detected
(4)

Although there were a total of 20 eating sessions recorded
by the subjects, 3 of them lasted for less than 3 minutes
so they were not included in Table 5. We excluded these
tasks because they were so short that our feature set did
not adequately describe them. For the remaining 17 eating
tasks, 3 of them were not detected. There were 6 false
detections. Thus the sensitivity was 82% and the positive
predictive value was 70%. In addition, for the 14 eating
sessions detected, 10 of them were detected with start and
end boundaries which match the log file within 2 minutes.
For the other 4 sessions, the boundary errors are (0, 5), (1,
3), (4, 9), (3, 1) minutes respectively. We hypothesize that
these boundary errors are likely due to timing misalignments
between the user logs and wrist motion data, as well as
judgment calls by the subjects as to when they actually
started and stopped eating.

4. Conclusions
The prevalence of obesity is a growing, worldwide health

concern. Self-monitoring of eating consumption is widely
recognized as a necessity for weight loss. However, there
are currently no automated methods for monitoring eating
consumption in natural daily living. In this paper we have

Int'l Conf. Embedded Systems and Applications | ESA'11 | 7

Table 2: statistics of all the tasks for these subjects
Subject 1 Subject 2 Subject 3 Subject 4

total time of all tasks (h) 13.4 9.8 10.1 9.4
total number of tasks 39 36 23 27
shortest task (min) 3 1.2 3.3 3.5
longest task (min) 93.3 90.7 97.5 78.7
average task (min) 20.6 16.3 26.3 20.9
standard deviation of task (min)20.6 19.1 27.4 21.7
most frequent task Using computer Driving Eating Using computer

Table 3: statistics of eating tasks for these subjects
Subject 1 Subject 2 Subject 3 Subject 4

total time of eating (h) 0.8 0.7 1 0.8
total number of eating sessions 5 5 6 4
shortest session (min) 5.8 1.2 3.3 7
longest session (min) 18.6 15.3 12.3 21.7
average session (min) 10.2 7.9 10 12.6
standard deviation of session (min)5.2 6 3.6 6.5

Table 4: offline classification result
Classify: Eating Classify: Sedentary Classify: Ambulatory

GT: Eating 17 2 1
GT: Sedentary 4 49 1

GT: Ambulatory 2 1 48

Table 5: real time classification result (minutes)
Ground Truth PC Detect

Subject Start time End time Start time End time
S1 11 17 9 17
S1 195 205 194 205
S1 393 400 393 399
S1 537 547 537 549
S1 654 673 653 674
S1 685 700
S2 78 91 78 96
S2 523 538
S2 565 573
S2 100 112
S2 192 201
S2 538 548
S3 85 94 85 94
S3 166 178 166 179
S3 257 269 258 272
S3 412 424 412 426
S3 603 615 601 615
S3 362 370
S4 14 27
S4 270 277 270 276
S4 462 484 466 475
S4 518 527 515 528

described preliminary experiments that use a single wrist-
worn sensor to track wrist motion throughout the day, in
order to detect eating sessions. Four subjects were recorded
for an average period of 11 hours, performing an average
of 31 self-classified tasks, of which an average of 5 were
eating. In our first experiment, we segmented the wrist
motion data according to the subjects’ logs, and demon-
strated a 91% accuracy in classifying the tasks. In our
second experiment, we automatically segmented the wrist
motion data and demonstrated an 82% accuracy in detecting
eating sessions. While the number of subjects tested was
small, this is the first work to examine the problem of
automatically monitoring eating during daily living. In the
future we plan to continue this experiment on a much larger
number of subjects. We also intend to simplify the apparatus
to something that can be worn completely on the wrist. For
these first experiments, we used a laptop in a backpack in
order to record the large amount of data generated during
an entire day. For our next experiments we intend to use a
“smart phone”.

References
[1] K. Flegal, M. Carroll, C. Ogden and L. Curtin, “Prevalence and trends

in obesity among US adults, 1999-2008”, inJournal of the American
Medical Association, vol. 303, 2010, pp. 235-241.

8 Int'l Conf. Embedded Systems and Applications | ESA'11 |

[2] World Health Organization Media Center, ”Obesity and overweight”,
http://www.who.int/mediacentre/factsheets/fs311/en/index.html,
retrieved March 5, 2011.

[3] N. Wellman and B. Friedberg, “Causes and consequences of adult
obesity: health, social and economic impacts in the United States”, in
Asia Pacific Journal of Clinical Nutrition, vol. 11, no. 667-751, 2002,
pp. 705-709.

[4] E. Finkelstein, J. Trogdon, J. Cohen and W. Dietz, “Annual medical
spending attributable to obesity: Payer- and service-specific estimates”,
in Health Affairs, vol. 28, 2009, pp. w822-w831.

[5] L. Burke, J. Wang and M. Sevick, “Self-monitoring in weight loss: A
systematic review of the literature”, inJournal of the American Dietetic
Associationvol. 111, no. 1, 2011, pp. 92-102.

[6] C. Champagne, G. Bray, A. Kurtz, J. Monteiro, E. Tucker, J. Volaufova
and J. Delany, ”Energy intake and energy expenditure: A controlled
study comparing dieticians and non-dieticians”, inJournal of the
American Dietetic Association, vol. 102(10), 2002, pp. 1428-1432.

[7] K. Glanz, J. Brug and P. van Assema, “Are awareness of dietary
food intake and actual fat consumption associated? A Dutch-American
Comparison", inEuro. J. of Clinical Nutrition, vol. 51, 1997, pp. 542-
547.

[8] H. Kissileff, G. Klingsberg and T. Van Itallie, “Universal eating monitor
for continuous recording of solid or liquid consumption in man”, in
Amer. J. of Physiology, vol. 238 no. 1, 1980, pp. R14-R22.

[9] K. Chang, S. Liu, H. Chu, J. Hsu, C. Chen, T. Lin, C. Chen and
P. Huang, “The diet-aware dining table: Observing dietary behaviors
over a tabletop surface,” in the proc. of4th Int’l Conf. on Pervasive
Computing, LNCS vol. 3968, 2006, pp. 366-382.

[10] F. Zhu, A. Mariappan, C. Boushey, D. Kerr, K. Lutes, D. Ebert
and E. Delp, “Technology-Assisted Dietary Assessment”, inSPIE:
Computational Imaging VI, vol. 6814, 2008, pp. 1-10.

[11] R. Weiss, P. Stumbo and A. Divakaran, “Automatic Food Documen-
tation and Volume Computation using Digital Imaging and Electronic
Transmission”, inJ. of American Dietetics Assoc., vol. 110 no. 1, 2010,
pp. 42-44.

[12] O. Amft and G. Troster, “On-Body Sensing Solutions for Automatic
Dietary Monitoring”, inPervasive Computing, vol. 8(2), 2009, pp. 62-
70.

[13] Y. Dong, A. Hoover, and E. Muth, "A Device for Detecting and
Counting Bites of Food Taken by a Person During Eating", in the proc.
of IEEE Conf. on Bioinformatics and Biomedicine, 2009, pp. 265-268.

[14] Y. Dong, "A Device for Detecting and Counting Bites of Food Taken
by a Person During Eating", master’s thesis, Electrical & Computer
Engineering Dept., Clemson University, 2009.

[15] A. Khan, Y. Lee, S. Lee and T. Kim, “A Triaxial Accelerometer-Based
Physical-Activity Recognition via Augmented-Signal Features and a
Hierarchical Recognizer”, inIEEE Trans. on Information Technology
in Biomedicine, vol. 14, no. 5, Sept 2010, pp. 1166-1172.

[16] T. Pawar, S. Chaudhuri and S. Duttagupta, “Body Movement Activity
Recognition for Ambulatory Cardiac Monitoring”, inIEEE Trans. on
Biomedical Engineering, vol. 54, no. 5, May 2007, pp. 874-882.

[17] M. Ermes, J. Parkka, J. Mantyjarvi and I. Korhonen, “Detection of
Daily Activities and Sports With Wearable Sensors in Controlled and
Uncontrolled Conditions”, inIEEE Trans. on Information Technology
in Biomedicine, vol. 12, no. 1, Jan 2008, pp. 20-26.

[18] D. Karantonis, M. Narayanan, M. Mathie, N. Lowell and B. Celler,
“Implementation of a Real-Time Human Movement Classifier Using
a Triaxial Accelerometer for Ambulatory Monitoring”, inIEEE Trans.
on Information Technology in Biomedicine, vol. 10, no. 1, Jan 2006,
pp. 156-167.

[19] J. Yin, Q. Yang and J. Pan, “Sensor-Based Abnormal Human-Activity
Detection”, inIEEE Trans. on Knowledge and Data Engineering, vol.
20, no. 8, Aug 2008, pp. 1082-1090.

[20] J. Parkka, L. Cluitmans and M. Ermes, “Personalization Algorithm for
Real-Time Activity Recognition Using PDA, Wireless Motion Bands,
and Binary Decision Tree”, inIEEE Trans. on Information Technology
in Biomedicine, vol. 14, no. 5, Sept 2010, pp. 1211-1215.

[21] J. Ward, P. Lukowicz, G. Troster and T. Starner, “Activity Recognition
of Assembly Tasks Using Body-Worn Microphones and Accelerome-
ters”, in IEEE Trans. on Pattern Analysis & Machine Intelligence, vol.
28, no. 10, Oct 2006, pp. 1553-1567.

[22] A. Salarian, H. russmann, C. Wider, P. Burkhard, F. Vingerhoets and
K. Aminian, “Quantification of Tremor and Bradykinesia in Parkinson’s
Disease Using a Novel Ambulatory Monitoring System”, inIEEE
Trans. on Biomedical Engineering, vol. 54, no. 2, Feb 2007, pp. 313-
322.

[23] L. Atallah, B. Lo, R. Ali, R. King and G. Yang, “Real-Time Activity
Classification Using Ambient and Wearable Sensors”, inIEEE Trans.
on Information Technology in Biomedicine, vol. 13, no. 6, Nov 2009,
pp. 1031-1039.

[24] United States Bureau of Labor Statistics, American Time Use Sur-
vey, "Eating and Drinking", http://www.bls.gov/tus/current/eating.htm
retrieved March 5, 2011.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 9

A Novel Sphygmogram Sampling and Self-Adjusting

Scheme for e-Home Healthcare

Wei Xuan Fang
1
, Ming Chui Dong

1
, Wai Kei Lei

2
, Xiang Yang Hu

3

1
Faculty of Science and Technology, University of Macau, Macau SAR, China

2
Institute of Systems and Computer Engineering, Macau SAR, China

3The 5th Affiliated Hospital of Sun Yat-sen University, ZhuHai, China

Abstract - Pulse wave transmit time method has been used to

estimate blood pressure by simultaneously measuring

electrocardiogram & pulse signals [1]. Most researchers use

photo reflective sensor to capture photoplethysmograph (PPG)

signal by attaching sensor on finger tip. However, such a way

would interfere hands in operating further the e-home

healthcare system, plus PPG has flatter morphological shape

[2] which is not adequate for searching feature points. Thus

the piezoelectric ceramics is selected to acquire sphygmogram

(SPG) signal with sharp morphological shape from wrist.

Using such a way can free fingers to operate the e-home

healthcare system. A SPG sampling scheme with signal

conditioning circuit and relevant software for realizing signal

amplitude and baseline-shift self-adjustment are proposed in

this paper. A close-loop control is constructed between

computer and micro control unit (MCU) such that to acquire

the self-adjusted stable SPG signal. The testing results show

out superior features of this scheme.

Keywords: e-Home Healthcare, SPG, Signal Conditioning

Circuit, Close-loop Control, Amplitude and Baseline-shift

Self-adjustment

1 Introduction

 Pulse signal can be sampled from different positions on

human body, such as finger tip, wrist, chest, leg or any place

with underneath carotid and radial artery. Since photo

reflective sensor has been developed in recent years, most

researchers choose finger tip as measurement position [3-6],

such as ring-type PPG signal measurement device proposed

by Chinese Univ. of Hong Kong. However, such a way is

uncomfortable due to the space between fingers is limited for

a ring-type device, which contains signal conditioning and

wireless communication circuits and battery. Moreover, PPG

has flatter morphological shape which is not adequate for

searching feature points. Selecting other positions, such as

chest and leg cannot get stronger signal, plus sticking the

sensor on skin is even more uncomfortable. Alternatively,

position on wrist has strong pulse signal which can be easily

found out by most people, plus the SPG has sharp

morphological shape which is good for searching feature

points accurately, better still entire measurement device can

be miniaturized as a watch-type, thus has extensive

application foreground in e-home healthcare. Consequently,

location of radial artery is selected for pulse acquisition in this

paper.

 The hospital used medical instruments having SPG

acquisition function from wrist generally is large and the price

is too expensive for home user. In addition, they need

professional to adjust system parameters and record signal,

eliminate existing external disturbance during SPG acquisition.

To tackle such a problem, a home used SPG sampling scheme

with self-adjusting technology is proposed in this paper,

which can record a stable SPG waveform and transmit it to

computer through universal serial bus (USB). Following

content firstly introduces scheme structure and depicts each

module; then explains the designed signal conditioning circuit

and shows software flowchart for signal control &

transmission; finally presents signal amplitude and baseline-

shift self-adjustment method for SPG acquisition.

2 Sampling and self-adjusting scheme

 A filmy passive piezoelectric transducer with 3.5cm

diameter and 0.5mm thick is constructed as SPG acquisition

sensor which transfers mechanical oscillation to electrical

signal through piezoelectric effect [9]. His allowed pressure

range is -500~5000mmHg with sensitivity of 2000µV/mmHg.

Elastic band is used to attach transducer on wrist.

 As shown in Fig. 1, the scheme is consists of six

functional modules. The piezoelectric transducer transfers

pulse signal to electrical waveform. Through signal

conditioning circuit the amplitude of this SPG signal is

processed as one within analog-to-digital (ADC) required

range 0~5V. The signal conditioning circuit includes pre-

amplifier, baseline-shift and filtering circuits. The refractory

missions of this module are that greatly reduce signal phase

delay to less than 40 degree, and keep the signal to noise ratio

(SNR) being larger than 10dB. After that, the analog SPG is

digitized in MCU module by using ATMEGA88V, which

contains six 10bit successive-approximation-type ADC input

channels. MCU module is also designed as signal processing

and transmission unit since it supports simple math

This work was supported by Science and Technology Development Fund (FDCT) of Macau S.A.R with project ref. No.

018/2009/A1: “Embedded-Link Monitoring Platform for Cardiovascular Healthcare”

10 Int'l Conf. Embedded Systems and Applications | ESA'11 |

calculation and has two programmable USARTs (universal

synchronous asynchronous receiver transmitter) [10].

 Output signal of MCU is sent to USB interface module

through USART, where the latest device FT232R is selected.

Software is constructed to graph and analyze the digitized

SPG waveform on computer, in the meanwhile it sends

information of waveform amplitude and baseline back to

MCU to adjust digitizing SPG signal. This close-loop

feedback endows scheme with amplitude and baseline-shift

self-adjusting capability which helps to stabilize SPG

waveform.

 The onset point of SPG signal is lower than 0V, which

indicates that the operational amplifier needs ±5V power

supply, plus the ADC’s reference voltage is 5V, using

Max1680 and through USB port, computer provides such

required powers.

Fig. 1 Structure of Sampling and Self-Adjusting Scheme

3 Signal conditioning circuit

 The transducer sampled SPG signal is -400mV~0.9V, in

which often exist high-frequency interference noises and the

baseline-shift affected by tightness of elastic band. The signal

conditioning circuit processes SPG signal as one within ADC

required input range and filters out noises. Multisim 8 is used

to analyze circuit performance which offers bode plot and

distortion analysis.

 As shown in Fig. 2 and 3, a 1st order high pass filter

(HPF) with 0.0008Hz cut-off frequency and large loading

impedance (20MΩ) is designed to reduce signal’s DC offset.

The buffer circuit offers high input impedance and low output

impedance. Then a pre-amplifier is added to increase SPG

signal amplitude and SNR. Subsequently, a summing circuit is

designed to shift signal minimum points to above 0V. Due to

noise amplitudes are also increased after using pre-amplifier

and summing circuit, a low pass filter (LPF) with 40.8Hz cut-

off frequency is designed to reduce noises. Finally, ADC

buffer is used to provide low output impedance.

Fig. 2 Functional Diagram of Signal Conditioning Circuit

 The frequency of SPG signal varies from 0.03Hz to

40Hz [8], thus a 10Hz sinusoidal signal with 0.6V offset and

1V peak-to-peak amplitude is used for simulation in Multisim.

Eq. (1) determines HPF resistive and capacitive values. In Fig.

3, buffer circuit adds equivalent resistors to inverting and non-

inverting nodes which compensate voltage drop caused by

bias current and reduce total harmonic distortion (THD) by

0.017%.

RC

fc
π2

1
= (1)

 where fc is cut off frequency, R and C are corresponding

resistor and capacitor in HPF circuit.

 The maximum peak-to-peak output voltage of operation

amplifier (TL064) is 8V and the amplitude of SPG signal is

about 1V. To satisfy ADC required range 0~5V and increase

SNR, SPG signal is amplified by gain 3.35 so that let its

amplitude be close to 4V. Eq. (2) determines resistors values

in pre-amplifier circuit.

34

3938

R

RR
Ao

+
= (2)

 where Ao is gain, R38, R39 & R34 are corresponding resistors in

pre-amplifier circuit.

Fig. 3 HPF, Buffer and Pre-amplifier Circuits

 After pre-amplifier, the negative amplitude of SPG

signal becomes -1.34V with baseline located at 0V and noise

amplitude is increased from 180mV to 460mV. Thus a

summing circuit and an inverting amplifier are integrated

together as shown on Fig. 4 to shift up baseline about 1.54V.

Fig. 5 shows LPF and ADC buffer circuits. Through a 1st

order LPF, noises are further reduced. All determined

parameter values, that defined through simulation first and

further adjusted by hardware experiment later are clearly

marked in Fig. 3~5.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 11

Fig. 4 Summing Circuit and Inverting Amplifier Circuits

Fig. 5 LPF and ADC Buffer Circuits

 The bode plot shown in Fig. 6 indicates effect of

conditioning circuit on sampled SPG signal. When spectrum

of SPG signal varies from 0.001Hz to above 40Hz, its

amplitude decays quickly after 40Hz. The phase shift is zero

degree within 0.03-1Hz and starts to increase after 1Hz,

reaches -31degree at 40Hz. Eq. (3) transfers phase shift at

40Hz to delay time as 2.08ms which is acceptable in this

scheme. Fig. 7 shows out the comparison between original

sampled SPG signal and processed SPG signal after signal

conditioning. The amplitude of processed SPG is within ADC

required range (0~5V) with baseline located at about 1.5V.

Moreover, its SNR is increased from 7.48dB to 12.7dB and

satisfies design requirement (>10dB).

x

pd
f

T
1

360

φ
= (3)

 where φ is phase delay in degree, Tpd and fx are corresponding
propagation delay time and frequency [7].

Fig. 6 Bode Plot of Signal Conditioning Circuit

Fig. 7 Comparison between Original Sampled SPG (blue) and Processed

SPG (red) Signals

4 Close-loop MCU control

 Microcontroller ATMEGA88V supports C language in-

system programming, thus it is programmed to control ADC,

signal conditioning, timing and USB data transmission. Fig. 8

shows flowchart of MCU Control Program.

Fig. 8 Flowchart of MCU Control Program

 In initial setting of MCU, the sampling frequency of

ADC is set to 1000Hz and baud rate to 38400/s. Timer and

the interrupt receiver are all enabled. Then MCU control

program waits for interrupt signal. Once timer counter equals

1ms, timer is interrupted and set CPU to sleep mode. MCU

carries ADC once with less power consumption and obtains

12 Int'l Conf. Embedded Systems and Applications | ESA'11 |

smaller noise from I/O periphery equipment due to CPU is in

sleep mode. Subsequently, ADC interrupt wakes up MCU and

stores digitized SPG data. Finally, MCU carries signal

conditioning according to received control code and send out

finalized digitized SPG data using USART. During whole

procedure, once get the receiving interrupt MCU stores

control code sent from PC.

5 Amplitude and baseline-shift self-

adjusting method

 Ideally SPG baseline can be stably located at 0V after

signal conditioning, but the home-user’s improper operation

in SPG measurement might shift SPG waveform to saturation

or cutoff area and cause distortion. To tackle such an

uncertainty and imprecision problem, an amplitude and

baseline-shift self-adjusting method is proposed in this paper,

which adjusts SPG baseline & amplitude, minimizes SPG

distortion and lets SPG waveform totally satisfy the sampling

criteria, then starts recording SPG automatically.

 C++ program is constructed to realize this self-

adjustment function and automatic SPG recording. Once

receives SPG waveform from MCU, it compares its amplitude

with sampling criterion every second. The highest point of

SPG waveform is required to be larger than 4V but smaller

than 5V; the lowest point must be lower than 1V but larger

than 0V. When this sampling criterion is satisfied stably and

continuously for 10 seconds, software system will start

recording SPG waveform occurred in these 10 seconds. If the

sampling criterion cannot be satisfied, software system starts

to analyze amplitude and baseline of SPG waveform, and

feedbacks control code to MCU. This hardware and software

integrated, analysis and feedback loop between computer and

MCU form a close-loop control which speeds up the sampling

and guarantees the quality of sampled SPG waveform.

Obviously it is a prominent brightness in such a novel scheme.

 Actually, the highest and lowest points of SPG

waveform are separately used to estimate amplification and

baseline adjusting degree. Three ranks of amplification degree

A1, A2, A3 and three ranks of baseline-shift degree B1, B2,

B3 are defined. As shown in Fig. 9, software system analyzes

the amplitude of input SPG waveform, classify its highest and

lowest points according to above defined ranks. This analysis

follows two rules: (1) if the highest point is larger than 5V,

the amplification degree decreases one rank. (2) if the lowest

point is lower or equals to 0V, the baseline-shift degree

increases one rank. Therefore, the software system determines

amplification and baseline-shift adjusting rank and feedbacks

the control code to hardware MCU to adjust its digitizing

SPG signal accordingly. This self-adjusting happens every

second until the SPG waveform satisfies the sampling

criterion. If the highest and lowest points of SPG waveform

are not located at defined ranges, which is caused by the

elastic band is too tight or too loose, or the measurement

position is wrong, then the software system will show out a

message to notice user to re-tie elastic band or adjust the

measurement position on wrist. Fig. 10 shows the results of

prototyping system adapted this novel SPG sampling and self-

adjusting scheme, which had been successfully used in our

developed e-Home Healthcare system.

Fig. 9 SPG Amplitude and Baseline-shift Self-adjusting Method

Notation:

A1: the SPG highest point is located in 5V~4V, use amplification gain 1;

A2: the SPG highest point is located in 3.5V~4V, use amplification gain 1.2;

A3: the SPG highest point is located in 3.5V~3V, use amplification gain 1.4;

B1: the SPG lowest point is located in 2V~1.5V, shift baseline down 1.5V;

B2: the SPG lowest point is located in 1.5V~1V, shift baseline down 1V;

B3: the SPG lowest point is located in 1V ~0V, do not shift baseline.

Fig. 10 Result of Prototying System Adapted This SPG Sampling and Self-

Adjusting Scheme

6 Conclusions

 Demanded by pressure PWT method to estimate blood

pressure, hands free SPG fast and stable sampling is a new

challenge to all researchers working on e-Home Healthcare

field. Towards to this mission, a SPG sampling scheme using

piezoelectric transducer with signal conditioning circuit,

close-loop control and relevant software for realizing signal

amplitude and baseline-shift self-adjustment are elaborated

and constructed. The test results show that this novel SPG

sampling and self-adjusting scheme makes significant

Int'l Conf. Embedded Systems and Applications | ESA'11 | 13

improvement in fast sampling SPG signal with tiny distortion

and larger SNR.

 By combining Bluetooth communication technology

with this sampling scheme and designing watch-type

measurement device instead of using elastic band to attach

piezoelectric transducer to wrist, this scheme can offer better

solution to cardiovascular monitoring and diagnosis system in

e-home healthcare.

7 References

[1] Weixuan Fang, Mingchui Dong, Weikei Lei. “Novel

System Sampling Multi Vital Signs for e-Home Healthcare”;

7th Int. Conf. on Information, Communications and Signal

Processing, pp 1-5, Dec. 2009.

[2] Z. C. Luo, S. Zhang, Z. M. Yang. “Engineering Analysis

for Pulse Wave and its Application in Clinical Practice”; The

College of Life Science and Bio-engineering, pp. 19, 2006.

[3] D. C. Zheng, Y. T. Zhang. “A Ring-type Device for the

Noninvasive Measurement of Aterial Blood Pressure”;

Proceedings of the 25
th
 Annual Int. Con. of IEEE EMBS, pp.

17-21, Sep. 2003.

[4] P. A. Shaltis, A. Reisner, H. H. Asada. “Wearable, Cuff-

less PPG-Based Blood Pressure Monitor with Novel Height

Sensor”; Proceeding of the 28
th
 Annual Int. Con. of IEEE

EMBS, pp. 908-911, Sep. 2006.

[5] J. M. Zhang, P. F. Wei, Y. Li, “A LabVIEW Based

Measure System for Pulse Wave Transit Time”; Proceeding

of the 5
th
 Int. Con. on Information Technology and

Application in Biomedicine, pp. 477-480, May 2008.

[6] P. Roncagliolo, L. Arredondo, A. Gonzalez.

“Biomedical Signal Acquisition, Processing and Transmission

Using Smartphone”; 16
th
 Argenine Bioengineering Congress

and the 5
th
 Conference of Clinical Engineering, 2007.

[7] A. B. Williams, F. J. Taylor. “Selecting the Response

Characteristic”; Electronic Filter Design Handbook, pp. 8-25,

2008.

[8] L. Y. Wei, P. Chow. “Frequency Distribution of Human

Pulse Spectra”; IEEE Transactions on Biomedical

Engineering, Vol.BME-32, No.3, Mar. 1985.

[9] X. Chen. “Pulse Signal Acquisition Based on LabView

Software”; IEEE International Seminar on Future BioMedical

Information Engineering, pp. 336-339, Jun. 2009.

[10] ATMEL. “8-bit AVR Microcontroller with 8K Bytes

Programmable Flash”; ATMEL Corporation, Apr. 2007.

14 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Wireless Sensor Nodes with IR Room Location Capability

Scott A. Henry1, Ramzi Ammari2, and Jack Jean2

1Dept. of Electrical Engineering, Wright State University, Dayton, Oh, USA
2Dept. of Computer Science and Engineering, Wright State University, Dayton, Oh, USA

Abstract— This paper describes the design approach of two
wireless sensor nodes for health care applications. Both
nodes are wireless and have the capability to identify their
location through an infrared signal assigned to individual
rooms. This gives a baseline for comparison in the following
aspects: performance of Zigbee vs. Bluetooth, overall power
concern, and development boards vs. custom prototyped
printed circuit boards.

Keywords: medical device; wireless sensor nodes; Zigbee; Blue-
tooth, temperature, fall detection

1. Introduction
This study is part of an effort to develop two wireless

sensor nodes that will provide a path towards better health
care monitoring and more independent living for the elderly.
In many situations healthcare requires a cyclic measurement
of patient vitals, but because of either a large number of
patients or small staff sizes, these measurements are only
taken at longer intervals or are not monitored at all. In
assisted living situations for example a nurse may visit the
residents only a few times, but could provide better patient
diagnostics or even emergency care in critical situations if
they could provide more frequent monitoring.

To improve the diagnostic ability and emergence response
the need for wireless sensor nodes for healthcare monitoring
is extremely important. There are many vitals parameters and
situational events that can aid in better healthcare monitor-
ing. Temperature (a vitality parameter) and fall detection (a
situational event) will be develop on separate platforms since
both parameters have different specifications for coding as
well as recording frequency. Being able to compare both
sensors’ issues and constraints gives a baseline set of data
that can be applied to other vitality statistics that can be
measured as technology grows and the number of sensor
types increase.

Another important issue in healthcare monitoring is the
location of patients. Infrared (IR) transmitters or beacons
placed in strategic locations can be programmed to broadcast
their location ID; with the use of an IR receivers these
signals can be decoded and the position of the patient can
be determined with minimum processor resources and a low
impact on the cost of a resulting product.

The project was divided into two parallel elements. One
approach used Zigbee protocal as the wireless communica-
tion method, temperature monitoring as its sensor component

and a custom pcb design. While the second approach used
Bluetooth, an accelerometer as its sensor to detect falls and
a modified development board. Both platforms include an IR
sensor with two approaches for decoding the room location
ID from a commercial product A750R Room Locater by RF
Code.

2. Zigbee Node Platform
The Zigbee sensor platform was designed to be a small

device that will monitor human body temperature on a
regular interval and run on a small battery. The approach
for the Zigbee Sensor design will be documented here in
detail, including the components chosen and why.

2.1 Xbee RF Module
The wireless transmission method was chosen based on

a few specifications. The device had to be able to transmit
a reasonable range so only one wireless base station would
be required to receive data for a normal size house. Next,
the device had to have low power consumption so that
a small battery can last for a resonable amount of time.
Finally, the device had to have a flexible network structure
for data transmission, and a built-in encryption engine would
be beneficial later in production.

A few wireless transmission appraoches met these re-
quirements; Bluetooth, the 802.11(Wi-Fi) standard and the
Zigbee protocol. Out of those three, two were chosen to
proceed with, mainly based on cost and ease of use. Both of
Zigbee and Bluetooth had commerical of the shelf devices

Table 1: Wireless standards.
Zigbee 802.11(Wi-Fi) Bluetooth

Data Rates 20, 40, 11/54 Mbits/s 1Mbits/s
and 250kbits/s

Range 10-100m 50-100m 10m

Ad-hoc, peer Ad-hoc,
Network Topology to peer, star Point to hub and very

or mesh small network

Complexity Low High High

Power Very low (sleep High Medium
Consumption in uA range)

Join existing Requires Requires
Join Time network in under 3-5 up to

30ms seconds 10 seconds

Int'l Conf. Embedded Systems and Applications | ESA'11 | 15

Table 2: Maximum Error Temperature Range
Temperature Max. Error

Less than 35.8 ◦C ±0.3 ◦C

35.8 ◦C to less than 37.0 ◦C ±0.2 ◦C

37.0 ◦C to 39.0 ◦C ±0.1 ◦C

Greater than 39.0 ◦C to 41.0 ◦C ±0.2 ◦C

Greater than 41.0 ◦C ±0.3 ◦C

that consume low power and can be easily implemented into
a design. In Table 1 a brief overview of the features and
specifications are given [10]. After further research, Zigbee
was the protocol of chosen for one of the platforms and
Bluetooth was the choice for the second platform.

Within the Zigbee protocol there are many different
companies that make a Zigbee compliant product. Mi-
crochip® and Digi® were the two companies initially
looked at for component selection. Microchip® was cho-
sen first for the cheap price, but later was changed to
Digi® because of the time constraint for developing the
device stack on the micro-controller. The Digi® Xbee
Module was a “no configuration needed out-of-the-box RF
communication” [12]. But also had the option for a more
complicated communication setup as the platform matured.
Later revision of the platform could revert back to the
Microchip’s MRF24J40MA module, because the power con-
sumption and the physical size are slightly smaller. Another
point is that the Microchip’s MRF24J40(the RF integrated
circuit that handles the physical level of the protocol on the
MRF24J40MA module) could be used to further reduce the
size by designing the antenna and other circuity on the same
PCB as the rest of the senosr. This would then require an
FCC certification and testing, which is an additional step in
manufacturing commercially marketable device quickly.

The Xbee Module has a few versions in its product line.
In our current platform the Series 1 modules are being
used, but can be interchanged with the Series 2 giving more
networking options later if the need presents itself. Also
within the Series 1 family there are two types, standard and
PRO. The standard is used here for its low current draw.
Although the PRO module does have extended range, it
comes with the cost of higher current needs.

The actual function of the Xbee module is simply receiv-
ing a stream of UART data from the micro-controller and
sending it to the receiving module which is connected to
a PC for data logging, then the module is put to sleep to
conserve power while not needed. This feature had a few
options, but based on the fact that an external MCU would
control the overall system, the pin sleep mode was chosen
to lower the current draw to ~10µA for the long duration
of inactivity. While transmitting and receiving, current draw
peaked around 55mA but only for approximately of 150ms,

giving great results for battery life at a very low duty cycle.

2.2 Temperature
Temperature measurement devices range from thermistors

to silicon packaged IC’s. All have their pros and cons from
accuracy and resolution to linear or non-linear outputs[2].
For the Zigbee Sensor Node platform, a silicon IC was used
from Microchip, the TC77. This sensor meets the standards
set forth by the ASTM specification for Thermometers in
Table 2[11].

The TC77 sensor outputs a 13-bit resolution
(0.0625 ◦C/Bit) two’s compliment digital word via an
SPI interface. Figure 1 shows the IC surface mounted on
the PCB platform. Careful attention to the specifications in
the data sheet for the TC77 temperature sensor was made .
The website states that the sensor has a ±1.0 ◦C accuracy,
but a closer look at Figure 2-1 of the data sheet shows that
it does meet the ±0.1 ◦C accuracy required by the ASTM
standard[11][8].

Another reason for the choice of the TC77 is its low
power usage. According to the data-sheet the current for
Continuous Conversion Mode is 250µA (typ.) this has been
verified by the performance test that has been done on this
platform. The goal though is to have further control of
the device and reach its Shutdown Mode current at 0.1µA
(typ.). This goal would be achieved in future work. Further
research has been done on temperature devices and the uses
of thermistors seem to be a common practice. This could
be because of cost and size, and will likely be implemented
to further reducing the current draw as well as overall size
of the sensor platform. With the current PCB layout the
temperature sensor is on the bottom level of the board and
creates unused space that could be used for the battery or
other devices in the future. Thus, with a thermistor, it can

Fig. 1: TC77 Surface Mounted to PCB Platform.

16 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Fig. 2: First Revision of the Zigbee Sensor Platform.

be attached by two leads and the actual sensor itself can be
placed on the shell of the enclosure. This would elminate
the need for the bottom level to be clear of parts.

2.3 PIC24F16KA102 MCU
The Microchip® PIC24F family has a wide range of

low power MCU’s with many features and peripherals. The
micro-controller that was chosen was based on previous
experience and also its ultra-low power capabilities. Another
reason the PIC24F16KA102 was used is because it has a
sleep mode that can run a RTCC (Real Time Clock and
Calendar) around 500nA [9]. This is ideal for a long term
battery operated sensor platform as well as its wide range
of voltages (1.8 to 3.6V).

2.4 Power Supply
The power supply was and is the major challenge for

this platform to reach its goal of 30 days or more of run
time. Thus size and capacity are the key specification for
this platform.

Initially a Polymer Lithium Ion battery was considered
as a possible solution, but as the development progressed
the need for a rechargeable battery was proven to be less
important than focus on footprint size. At this point two
options were researched, a single AA battery and a CR2032
Button Cell battery.

The AA battery with a boost converter would reach the
needed 3.0-3.3V of the Xbee module as well as the peak
current draw of 55mA. The capacity of the AA battery
(2200mAh) would give us a theoretical life of ~45 days
based on current measurement of the boost converter’s
current draw of approximately 2mA[5]. This solution worked
well for the power consumption and did reduce the footprint
size of a comparable Polymer Lithium Ion battery by about
one-half, but this still did not meet the intended market for
the size.

The CR2032 Lithium Coin battery is the ideal size, but
this battery presents a few issues. The typical capacity of

a CR2032 is around 240mA, with a max pulse current of
15mA[4]. The latter is the major issue since the 15mA pulse
current does not meet the peak current draw needs of the
Xbee module during transmission, which is close to 55mA.
At this point a secondary component had to be added to
the power supply section to get the extra current needed
by the Xbee module for the short 55mA pulse. This can
be accomplished by using a capacitor in parallel with the
battery. And thus during the low current draw sleep mode
(~450µA), the capacitor will charge and then during the
needed high peak current phase the capacitor will source the
needed 55mA. Further research is needed to find an optimum
capacitor size, but currently a 40mF supercapacitor has
worked in this fashion. Another note about this configuration
is that a start-up circuit will be needed for this platform to
allow the capacitor to charge, or a longer delay before the
first transmission is done than currently programmed.

2.5 IR Room Location
This part of the platform is what makes this device unique

compared to other wireless sensor platforms. Using an
infrared receiver the platform decodes the signal transmitted
by the RF code’s A750 Room Locater via a finite state
machine(FSM) style algorithm. The FSM uses the PIC24
input capture feature to capture the timing of the incoming
signal and decodes it. The signal is a bi-phase binary stream
that repeats the room location 3 to 4 times back to back.
This bit stream is transmitted every 3 second from the A750
Room Locater. After the room location is converted from
the binary bi-phased stream, it is then framed in an octal
format and sent to the UART output of the PIC24 in ASCII
format.

2.6 Further Development
At this point there are two areas of improvement needed

to reach a commercially marketable device. The first area
is reaching the goal of over 30 days of run time on the
button cell battery or similar size. This can be done by taking
advantage of the other device’s sleep modes and being able
to control the sensor power whether it is on or off. Second,
reducing the physical footprint of the platform. This will
require a change in the temperature sensor location or type
of sensor used. One thought is to use a thermistor and the
PIC24’s ADC to measure the temperature, thus giving us the
entire bottom of the PCB to put components on. This will
take some minor adjusting with the time thresholds and a
calibration method for getting an accutate temperature.

3. Bluetooth Node Platform
For elderly people, unexpected falls can cause significant

injuries. Fall related injuries are the leading cause of injury-
related deaths among adults 65 years old and older; these
injuries are also the number one reason for emergency room

Int'l Conf. Embedded Systems and Applications | ESA'11 | 17

visits [3]. For that reason previous research has approached
this problem to come up with a mechanism to detect falls.

Common fall detection methods include a detection fea-
ture and a trigger to issue an emergency call to provide
medical care. Fall detection is built on algorithms that use
sensor values such as accelerometers, gyroscopes, and air
pressure sensors. These sensors cannot fully differentiate
between falls and ADL (Activity of Daily living) which leads
to a high percentage of false alarms; the main reason for
the failure of these systems and the fact that it is mainly
rejected for commercial use by monitoring services is the
high percentage of false alarms [6]. In our design we added
the room location capability to identify the location of the
fall, send this information to software that triggers a wireless
camera to stream live video feed from that room to identify
the fall and send medical care to the patient first. This is
an optimal solution for an assisted living situation where
you have a large number of elderly people as well as large
number of rooms.

An independent living for the elderly is also an important
aspect of this paper. The high cost of these systems for
personal use made it difficult to be commercially successful.
The choice of Bluetooth vs. Zigbee has its pros and cons, for
the fall detection device we chose to use Bluetooth so that
we cut the cost of having to use a base unit to initiate the
emergency call, and the need to have a dispatcher to send
the help needed.

The idea is that most people use cell phones that have
Bluetooth capability. By the close of 2005; wireless subscrip-
tions hit nearly 2 billion on a worldwide basis, with cellular
mobile dominating the wireless technology field, according
to a trends study from Deloitte Research. By establishing
a connection between the Bluetooth modules in the device
and the cell phone once a fall is detected, we can initiate an
emergency call directly from the phone to 911 or to family
members.

3.1 Hardware Architecture
The initial goal for this device was to design a prototype

with sensor interfacing and wireless capability. So we used

Fig. 3: RF Code A750 Room Locator.

the Ardunio Uno board which is the latest revision of
the basic Arduino USB board. Arduino is an open-source
electronics prototyping platform based on flexible, easy-to-
use hardware and software. Future work will include the
design of printed circuit board with only needed components
on the board which will ultimately lower power consumption
and make the size much smaller.

The Arduino Uno is a micro-controller board based on the
Atmega328. It has 14 digital input/output pins (of which 6
can be used as PWM outputs), 6 analog inputs, a 16 MHz
crystal oscillator, a USB connection, a power jack, an ICSP
header, and a reset button. It contains everything needed to
support the micro-controller [1].

The accelerometer used is the ADXL335 which is a small,
thin, low power complete 3-axis acceleration measurement
system. The ADXL335 has a measurement range of ±3g
minimum. It contains a poly-silicon surface-micro machined
sensor and signal conditioning circuitry to implement open-
loop acceleration measurement architecture. The output sig-
nals are analog voltages that are proportional to acceleration.
Figure 5 shows the numeric values for the accelerometer,
the x,y,z graphs of the accelerometer as well as the room
location.

The Bluetooth module used is the Bluesmirf gold Blue-
tooth which is an FCC Approved Class 1 Bluetooth Radio
Modem delivers up to 3 Mbps data rate for distances up
to 100m. This module has Low power consumption (30mA
connected, and less than 10mA sniff mode).

3.2 36kHz Infrared (IR) Receiver Module
Infra-Red is a normal light with a particular color. Humans

cannot see this color because its wavelength of 950nm is
below the visible spectrum. An IR remote works by turning
the LED on and off in a particular pattern. However, to
prevent interference from IR sources such as sunlight or
lights, the LED is not turned on steadily, but is turned
on and off at a modulation frequency (typically 36, 38, or
40KHz). Modulation is the answer to make our signal stand
out above the noise. With modulation we make the IR light
source blink in a particular frequency. The IR receiver will
be tuned to that frequency, so it can ignore everything else.
You can think of this blinking as attracting the receiver’s
attention. Humans also notice the blinking of yellow lights
at construction sites instantly, even in bright daylight.

In serial communication we usually speak of ’marks’ and
’spaces’, which are decoded into 1-s and 0-s depending on
the protocol that’s being used. If you know the encoding
algorithm, you can determine the code value. For example,
televisions decode the infrared signal received from the
remote control into sequence of 1-s and 0-s; for each button
pressed you get a unique code that can be used to trigger a
specific function such as turning the volume up or down.

The A750R Room Locator decoded signal is more com-
plex than the ordinary infrared signal. The signal transmitted

18 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Fig. 4: Arduino UNO with Bluetooth and Accelerometer

carries information about the tag ID, room location, and
privileges for whom can access certain rooms. This complex
signal is hard to decode with any known protocol. So our
approach is to uniquely distinguish each signal transmitted.
If we turn each unique sequence of pulses into a unique
value, then this value will indicate the room location.

A simple routine developed by Ken Shirriff was modified
to decode the infrared signal [7]. The code looks at the
sequence of the space signals and compares them according
to their length. The code then assign a 0,1, or 2 if the length
is equal, longer, or shorter. Same way with the mark signals.
The resulting 0-s, 1-s and 2-s are hashed into a 32-bit value.
This gives a unique code for each room. The device searches
a look up table to match the code to the room number.

4. Comparison and Discussion
The design of these two platforms gives a good starting

point for future research and a good starting point for further
reduction in size and power consumption. Both platforms
have a viable use in further research that is needed in
healthcare monitoring for both assisted living and clinical
situations. In comparing the two devices on a performance
basis we found it somewhat difficult, mainly because one
was an out of the box development board and the other was
a design from the ground up. The ground up Zigbee platform
did not have to worry about extra current running LEDs
or other devices. On the other hand the development using
Bluetooth Arduino board was a very simple to use platform,
that was flexible for changes later in the development. So
from that aspect of comparison of platform to platform, both
devices had their advantages and disadvantages.

The wireless communication is another point of discus-
sion. Here the Zigbee outperformed the Bluetooth device
for its intended application, in both ease of use as well as
power consumption. The ease of use came from the fact
that the Xbee module could take a UART signal and pass

the signal onto the base station without any configuration.
Also it was flexible enough to be able to give an assigned
ID to the node through a simple GUI interface on the PC
base station. And finally the sleep modes were far easier to
access: in the Zigbee case a sleep/wake pin could be chosen
for putting the module to sleep. This in turn dropped the
current draw to ~50µA or less, saving a very large draw
of current. The Bluetooth had similar power saving features
that use 30mA when connected, and less than 10mA in sniff
mode. Future research and development should be able to
improve the power consumption of both platforms as well
as any other problems that might arise.

As far as the IR Room Location decoding approaches,
we proposed two methods. The first approach is a capture
and compare to known patterns (basically a look up table
of sorts) and the second is a state machine algorithm, two
trade-offs were apparent. The weakness of the first being the
time it takes to learn the patterns for each Room ID and then
the physical memory it takes to store them. This approach
worked very well, but limits the Room ID’s to the available
space on the MCUa and the time it takes to gather and
input the patterns acquired. Since the protocol is proprietary
and is currently inaccessible to our research group, the
look-up table works and still fits into the space currently
available on the MCU. But the second approach uses far
less resources. By deciphering the protocol with a software
serial decoder algorithm, a better result can be achieved since
any number of Room ID’s can be read without having to
learn or pre-program the MCU with the appropriate code.
The down side is the timing requirement if the FSM misses
the transmitted or reads an incorrect input capture then is
must start over and look for a start bit again, until it can
decode the data correctly. Currently a more robust algorithm
is being adjusted to decode the signal faster and still maintain
accuracy.

Fig. 5: Accelerometer Data Resukts

Int'l Conf. Embedded Systems and Applications | ESA'11 | 19

5. Conclusion
The healthcare industry is in need of better ways to

improve the care of both clinical and assisted living patients.
These platforms can be good starting point for a commer-
cially developed product that will solve vital monitoring
needs as well as provide data for medical researchers to find
new treatments and solutions to aid and monitor the growing
population.

Developing these two platforms in parallel was very useful
to compare different technologies and learn the limitations
and advantages of these platforms. Further research is still
needed and will be continued in this area to improve these
platforms to meet the standards of consumer quality and use.

References
[1] “Arduino–ArduinoBoardUno.” [Online]. Available:

http://arduino.cc/en/Main/ArduinoBoardUno.
[2] Bonnie Baker. (1999) “AN679 Temperature Sensing

Technologies.” Microchip Technology Inc. [Online]. Available:
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&
nodeId=1824&appnote=en011702.

[3] Department of Health and Human Services. “Fatalities
and Injuries from Falls Among Older Adults–United
States, 1993-2003 and 2001-2005.” [Online]. Avail-
able: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5545a1.htm.
November 2006.

[4] Energizer, “Energizer CR2032.” CR2032 data sheet. 2010.
[5] Energizer, “Energizer E91.” AA E91 data sheet. 2010.
[6] G. Pérolle, P Fraisse, M Mavros, and I Etxeberria. “Automatic fall de-

tection and activity monitoring for elderly.” Sponsored by the CRAFT
project.

[7] “IR remote control theory.” [Online]. Available:
http://www.sbprojects.com/knowledge/ir/ir.htm. [September 23,
2009].

[8] Microchip Technology. “TC77.” TC77 data sheet. [Jan. 2011].
[9] Microchip Technology. “PIC24F16KA102.” PIC24F data sheet. [Feb.

2011].
[10] Software Technologies Group, Inc. “Zigbee vs ver-

sus other networking standards.” [Online]. Available:
http://www.stg.com/wireless/ZigBee_comp.html. 2009.

[11] Standard Specification for Electronic Thermometer for Intermittent
Determination of Patient Temperature, ASTM International Standard
E1112-00, 2006.

[12] “XBee-PRO®802.15.4 OEM RF Modules –Digi International.”
[Online]. Available: http://www.digi.com/products/wireless-
wired-embedded-solutions/zigbee-rf-modules/point-multipoint-
rfmodules/xbee-series1-module.jsp#overview. [Feb. 2011].

20 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Developing a Remote Digital Wildlife Camera Triggered by
Spatially Deployed Infrared Sensors

William Collins1, Daniel Sanchez1, Zachary Sharp2, Scott C. Smith (contact author)3, and Jingxian Wu3

Department of Engineering Science, Sonoma State University, Rohnert Park, CA1

Department of Electrical Engineering, Arkansas Tech University, Russellville, AR2

Department of Electrical Engineering, University of Arkansas, Fayetteville, AR3

collinswf@gmail.com, danjsanch@gmail.com, zacharylsharp@gmail.com, smithsco@uark.edu, and wuj@uark.edu

Abstract—This paper describes the design, construction, and
operation of a system devised to capture images of wildlife with a
full 360 degrees of view. The system uses infrared detection in a
circular configuration to detect movement of heat signatures and
then relays that information to a base station via short distance
radios. The base station uses a microcontroller to take this
information and turn a camera using a stepper motor. When the
camera is in the correct position it is triggered to take a picture.
Images are stored on an internal SD Card, and are then
transferred to a remote location via long distance radios where a
user can view captured images without manually retrieving them.

Keywords- Wireless Sensor Network, Stepper Motor, 8051
Microprocessor, ePIR Sensor, XBee Radio

I. INTRODUCTION

The main motivation driving the work done throughout the
Electrical Engineering Summer Research Experiences for
Undergraduates (REU) was to improve the current technology
available to wildlife researchers and hunters through the
enhancement of wireless embedded system instrumentation.
This was achieved by the design and fabrication of a system
capable of using infrared sensors arranged along a perimeter
that wirelessly communicate with a base station that uses a
stepper motor to turn a camera towards a detected moving heat
signature and then take a picture.

Section II describes previous work done in the field of
automatic wildlife imagery; Section III provides an overview
of the system and details all of its components; Section IV
describes how the system operates; and Section V discusses
our results and conclusion with future work.

II. PREVIOUS WORK

There are several companies that manufacture and market
cameras designed for wildlife research and scouting. One
major problem with these digital wildlife cameras is the
limited range of their sensing mechanism and corresponding
viewing area. Most game cameras use a single differential
passive infrared (PIR) sensor configuration mounted in a fixed
direction to detect the heat signatures of passing game, which
triggers the camera to take its picture. The problem with this
sensing mechanism is that it is singular in its point of focus
and covers a narrow area defined by the camera’s field of view
and the acceptable sensitivity range of the embedded sensor. A
typical configuration would capture activity on a known trail

within a wedge shaped area of approximately 440 square feet.
This is highly inadequate for monitoring most fields, which
are normally much larger than 30 feet across, such that much
of the wildlife passing through may not trigger the sensors,
and therefore the camera will not take their picture.

III. OVERVIEW OF SYSTEM

This project developed a remote access digital wildlife
camera. To achieve the objective, multiple wireless nodes
equipped with PIR sensors were deployed in a circular
configuration, thus forming a monitored perimeter with a
digital camera at the center. The game camera was mounted
on a microprocessor controlled stepper motor. When one of
the sensors detects the heat signature of passing wildlife, the
digital camera is directed to turn toward the sensor and record
a still image. This configuration expands the monitored area
by creating multiple image zones, which are determined by the
maximum sensitivity (range) of the sensors, image collection
strategy (i.e., the camera lens field of view), and number of
images taken in each zone. In order to simplify the required
camera control interface a fixed focal length lens was utilized.
Since multiple sensor nodes were deployed, the radius and
therefore the total coverage area of the monitored zones was
constrained only by the resolution of the camera and the
effective distance of the flash for low light image acquisition.

A. Base Station

The base station is comprised of several elements
including: a camera, stepper motor, 8051 microprocessor,
2.4GHz and 900MHz XBee Radios, and a power supply
sourced by a 12 volt battery.

i. Camera
While reviewing cameras, several different makes and

models were considered, from commercial point and shoot,
digital SLR, and specialized industrial cameras. The final
decision was to buy and modify a refurbished commercial trail
camera. The Moultrie Game Spy I65 Digital Trail Camera was
chosen based on its features and price. Besides having four
picture resolution settings and a built-in infrared lens and
flash, this camera came with many additional features that are
well suited to its intended purpose. The wide viewing angle of
the camera helps ensure that the system captures pictures of
animals under a broad set of circumstances including multiple
animals passing simultaneously, animals moving laterally

Int'l Conf. Embedded Systems and Applications | ESA'11 | 21

across the field of view and directly toward the camera, and
animals that have moved past the trigger point while the
camera is positioned and prepared for image capture. The lens
of the camera is fixed but provides an adequate focus distance.
A major advantage of this camera is that it automatically
switches to an infrared mode in night time shooting conditions
and includes an integrated IR LED flash that was tested as
effective up to 50 feet in night time conditions. The camera is
also easily accessible, meaning that it is very simple to open
and manipulate, and is housed in a waterproof case, as shown
in Fig. 1, which makes it ideal for its intended use. The camera
is capable of operating from a 12 volt input that allows us to
use a standard deep cycle 12 volt lead acid battery as its power
source, which can also be used to drive the stepper motor with
adequate torque. A final feature is the camera’s information
bar, which imprints each picture with time, date, moon phase,
temperature, and barometric pressure. All of this information
could be viable in studying the habits of wild game.

Figure 1: Camera in Weatherproof Enclosure

ii. Stepper Motor
One of the main components of the base station is the

stepping motor. By utilizing the stepping motor’s full range of
rotation, the viewing field of the camera was increased from
52 degrees to 360 degrees. The stepping motor is an Airpax
brand, 6 volt, 5 ohm, 1.8 degrees per step device. While it is
rated for 6 volts, it was driven by the 12 volts coming from the
power supply. The stepping motor is a 6 wire motor and is
therefore capable of bipolar operation, but for ease of use the
wire leads coming from the nodes connecting each of the two
half stators together have been left floating so that the motor
operates as a unipolar stepping motor. Unipolar stepping
motors are easier to use considering that their pulse timing is
not as critical since their configuration does not lend to

shorting current over multiple transistors. The two windings
within the stepping motor are driven by their own individual
UC3770B Stepper Motor Drive Circuits. These circuits
control and drive the current of their respective windings.

Figure 2: Stepper Motor Control Circuit

The Phase, I0, and I1 pins control the direction and speed of
the stepper motor as shown in Fig. 2. Each whole motor step
increment requires an 8 step sequence diagramed in Fig. 3.

Figure 3: Stepper Control Logic

The stepping motor described above is part of a gear
system that was salvaged from a decommissioned custom lab
instrument. The gears were rearranged from a 10:1 ratio to
produce a 2.5:1 ratio. That is 2 ½ motor rotations will make
one full rotation of the turntable. The turntable is where the
camera is mounted, so this gear ratio allows for more accurate
positioning of the camera. On the shaft just under the turntable
is a collar with one small slit. Around this collar a Photologic
OPB972 slotted optical switch is positioned in order to help
calibrate the camera. The switch outputs a logic high unless
the turntable is in the location such that the slit is positioned
where the infrared passes through the slit and is received by
the collector. Using this switch configuration allows the user
to know exactly where the camera is positioned.

22 Int'l Conf. Embedded Systems and Applications | ESA'11 |

iii. Base Station Circuitry
The base station serves as the hub of the system both

physically and logically. Its primary purpose is to: coordinate,
prioritize, and respond to the signals from the sensor nodes
and the remote management node; control the digital camera
and manage the image acquisition process by controlling the
digital camera shutter release and stepper motor positioning
circuits; and provide a method for a remote file retrieval
service for the remote management node.

The base station was designed as an embedded system with
a Dallas Semiconductor DS89C450 [1], which is an Intel 8051
microcontroller variant that provides up to 64K of program
space, one instruction per clock cycle at 11.0592MHz, and
4 eight pin I/O ports including two UARTs for serial I/O and
on chip programming. The communication sub-system
consists of a short distance (up to 300’ line of sight) 2.4 GHz,
1mW, IEEE 802.15.4 radio [2] for interacting with the sensor
nodes and a long distance (up to 1.8 mi. line of sight)
900 MHz, 50mW radio [3] for communication with the remote
management node.

The camera subsystem provides a weatherproof enclosure
for the camera, integrated IR flash, base station circuit board,
both radios, and all interfaces to the stepper motor and
external power supplies.

As shown in Fig. 4, the layout of the main base station
circuit board was determined by the relative location of
interfaces to both on and off-board components and
subsystems. In order to minimize the demand of limited on-
board real estate the 3.3V, 5V, and 12V power supplies are
located in an external enclosure. In addition, the DB9 serial
programming port is to be brought to an external location
while the RS232 to TTL level shifter will remain on the main
circuit board. If desired the 8051 could be programmed by
physically removing the chip and placing it in an external
programming platform which could reduce wiring congestion
and free up space by eliminating the in-circuit programming
capability. This would reduce the space requirement by
approximately 1.5 square inches by removing two LM3904
transistors and several bias resistors along with the MAX202
level shifter and charge pump capacitors. The camera
enclosure provides enough space for a second smaller circuit
board that will host a Vinculum USB host controller chipset
[4] to be used as an interface to the camera SD card storage
subsystem, as shown in Fig. 5.

iv. XBee Radios
The communication sub-system will consist of a short

distance (up to 300’ line of sight) 2.4 GHz, 1mW, IEEE
802.15.4 radio [2] for interacting with the sensor nodes and a
long distance (up to 1.8 mi. line of sight) 900 MHz, 50mW
radio [3] for communication with the remote management
node. These radios are mounted to the back covering of the
camera with leads running to the microprocessor board inside
of the camera enclosure.

Figure 4: Base Station Block Diagram – Bottom Tier

Figure 5: Base Station Block Diagram - Top Tier

v. Base Station Power Supply

To extend the service life of the entire system, a 12 volt
battery was implemented into the design, as shown in Fig. 6.
The power source consists of Step Down (Buck) converters
that use pulse width modulation to bring the 12 volt source
down to 3.3 volts and 5 volts, both rated for 3 amps. The
power supply has in line fuses and diodes to prevent damage
to any circuitry if polarity on the battery is accidentally
reversed or if too much current is being drawn. Lastly, the

Int'l Conf. Embedded Systems and Applications | ESA'11 | 23

power supply has a simple single pull single throw switch for
easily turning the power to the base station on and off.
LM2576 switching regulators rated for 5 volts and 3.3 volts
were implemented. Also on the power supply box is a single
pull single throw switch tied to a pull up resistor through a
5 volt source that acts as our calibration switch.

1 2 3 4 5

1000uF

100uH
100uF

LM2576
(3.3V)

1 2 3 4

1000uF

100uH

LM2576
(5V)

(3.3V)Fuse (5V)Fuse

12V
Battery

Bridge Rectifier

+ ‐

3.3V
Regulated

Output

5V
Regulated

Output12V output

Figure 6: Base Station Power Supply Schematic

vi. Base Station Construction
Since our final product was to be field operational, many

precautions were taken to ensure that the system could endure
a variety of weather conditions typical of our location. All
circuitry chosen was rated to withstand temperatures well
within the norm of North West Arkansas. However, our main
concern was making the system water-proof. The power
supply was built inside of a project box, and then placed with
the battery inside of a battery box. The stepping motor was
mounted inside of a section of 6 inch PVC tubing with only
the mounting bracket for the camera exposed at the top. The
camera itself is waterproof, and the whole system sets on top
of a surveyor’s tripod, which is capable of being adjusted for
leveling and height purposes.

B. Remote Sensing Nodes

The main components of the remote sensing nodes include:
ePIR sensors, power supply, and the 2.4GHz XBee radio.

i. ePIR Sensors
The product chosen for the motion detection was Zilog’s

ePIR Motion Detection Zdots Single Board Computer (SBC).
This product is a complete motion detection system that has a
PIR sensor (passive infrared) and a Fresnel lens and comes
pre-programmed with motion detection software. Its
sensitivity parameters are controlled via simple hardware
configuration. The important factor for choosing a sensor was
the detection pattern. The area covered by the ePIR, or range,

is maximized by using it in Extended Range Mode. This actual
distance depends on the sensitivity setting but it ranges from 3
meters by 3 meters to 5 meters by 5 meters with a 60 degree
angle. Preliminary tests indicated that the range of detection
was indeed up to 5 meters but held most consistent up to
4 meters. It has a digital output so that when motion is
detected the output is 0V, and 5V when no motion is detected.
The detection is most reactive to motion perpendicular to its
pattern which is what determined the optimum configuration
of the sensors around the base station.

With a few options for configuring the sensors, the
objective was to minimize the number of sensors required to
ensure full coverage (minimize cost) as well as maximize the
efficiency of the range. The first sensor formation that was
considered was an array of sensors facing one direction where
each node would be placed at the exact range distance with no
overlap. The lack of overlap was to minimize the number of
sensor nodes required. It was decided that if the detection
range for some reason wasn’t as consistent as its specs specify
there would be a possibility of misdetection, which is why the
second formation was considered. This formation was just a
slight variance of the first being that there would be
overlapping. The tradeoff for this formation was the higher
accuracy over the expense of adding more sensor nodes to our
system. The final configuration decided was to place two
sensors on each sensor node at an angle of X to meet the
requirement of covering a radius of 40ft from the base station.
With this formation, the number of radios necessary was cut in
half and the overlapping range of coverage by each ePIR was
addressed. As shown in Fig. 7, each sensor node covers a
40 degree zone from the camera in the center, requiring
9 sensor nodes to cover all 360 degrees.

Figure 7: Sensor Node Coverage Pattern

24 Int'l Conf. Embedded Systems and Applications | ESA'11 |

ii. Node Power Supply
Size and longevity were both considered when choosing a

power source for the nodes. After weighing the advantages
and disadvantages of several different sources, it was decided
to use packs of two C-Cell batteries per node. These C
batteries were believed to give the best power output for their
size and were easily adapted into node construction. As shown
in Fig. 8, Max756 chips were used to step the voltage output
of the batteries up to a regulated 3.3V. Stability was a main
factor when choosing the Max756 for the radio’s source
voltage, since when this varies within a few hundred mV, the
packets become distorted and inconsistent. This converter
accepts all the way down to .7V input and converts it to a
stable 3.3V or 5V depending on its configuration, with 87%
efficiency at 200mA.

iii. Node Construction
The nodes were placed in a PVC enclosure comprised of a

4 inch DWV Female Adapter, a 4 inch cleanout plug, and a
4 inch cap. On the bottom side of the cleanout plug a 1 inch
plug was attached and tapped for a ¼ 20 bolt. This allowed us
to fasten the nodes to 3 foot iron stakes. The PVC enclosure
was drilled for the two ePIR sensors to point out of. We then
used clear silicon to secure the ePIR sensors into place and to
prevent water from entering the node. The power supply and
2.4GHz XBee radio were also put into the enclosure along
with an on off switch and a calibration button.

Figure 8: Sensing Node Circuitry

C. Remote Management Node

A remote management node was constructed consisting of
an XBee Pro 900MHz, 50mW radio and an FTDI USB to
UART interface. This unit can be tethered to a PC. Drivers are
readily available for most common operating systems and
provide a virtual com port that can be addressed with a simple
terminal program to facilitate the bi-directional
communication with the Base node. The radio is configured
for operation at 115,400 baud, 8 data bits, no parity and 1 stop
bit. The remote node hardware is powered from the USB port

and has an external RP-SMA connector for a 900MHz quarter
wave antenna.

IV. SOFTWARE DESIGN

The functional logic of the base station is implemented as a
simple finite state machine. There are three primary
operational states, shown in Fig. 9: Idle, Sense, and Manage.

Figure 9: Finite State Machine

In addition a fourth test state can be utilized for future

system development and verification by manually altering the
code but this state is not active in normal operation.

Once powered up, the base station sits in the Idle state
waiting for a byte stream from one of the two base radios. The
arrival of a byte from one of these radios will invoke an
interrupt service routine associated with one of the two 8051
UARTs. The ISR will set the software defined state variable to
the appropriate state value, Sense or Manage, and perform
minimal processing before surrendering control to the finite
state machine code segment.

A received packet from one of the sensor nodes via the
2.4GHz radio on serial port 1 will cause the finite state
machine to transition to the Sense state. It will remain in this
state and perform stepper calibration, camera position, and
image acquisition sub-states or actions until a complete image
cycle has occurred as shown in Fig. 10. Upon completing an
image acquisition cycle, it will transition back to the Idle state.

Figure 10: Sense State

When a command byte is received from the remote

management node via the 900 MHz radio on serial port 0 the
system will transition to the Manage state. The primary

Int'l Conf. Embedded Systems and Applications | ESA'11 | 25

Manage state envelops sub-states and actions necessary to
respond to a remote management node as shown in Fig. 11.

Each sub-state corresponds to or supports a command
request from the remote management node and additionally
provides the initialization routines required to communicate
with the camera's SD card storage system via the Vinculum
VDIP USB host controller. Once the initialization routines
have established a communication link with the camera file
system, individual files may be retrieved by the remote node
one at a time by sending a four byte command from the remote
management node to the base station.

A simple command protocol was created as shown in
Fig. 12. Each command consists of a four byte sequence that
begins with a command flag byte (0xE7), followed by a
command ID byte (0xC0-0xCF or 0xA0-0xAF), a parameter
byte for command arguments, and a command termination
flag (0xE8). For example, the command to request file number
10 from the camera would be formulated as the four bytes:
0xE7 0xC2 0x0A 0xE8. Each byte is sent as a hex value
with no carriage return or line feed within or at the end of the
string.

Figure 11: Manage State

The 16 available command IDs from 0xC0 to 0xCF are
reserved for commands from the remote management node to
the base. Command IDs from 0xA0 to 0xAf are responses sent
from the base to the remote management node.

The camera images are recorded in medium resolution
JPEG EXIF format. The base station processes the file request
command by converting the file number parameter into a

properly formatted file name for the camera file system such
as PICT0nnn.JPG where nnn is replaced by the decimal
converted hex value sent as a parameter. All bytes are sent as a
continuous stream until the base station detects the end of the
file. The base station will send an A9 command string to the
remote node to signal that the file transfer is complete.

The Manage state must be terminated by the remote node
via an End of Session command C9. Upon receipt of this
command the base station will disconnect from the camera file
system by removing power from the USB interface and return
to the base station Idle state.

Figure 12: Command Protocol

V. SYSTEM OPERATION

To operate the system, the first thing required is to set up
the base station and sensor nodes. The base station that sits on
top of the surveyor’s tripod should be leveled and
approximately 4 feet off the ground. Once this is in place the
system should be turned on and switched into calibrate mode.
While in this mode pressing the calibrate button on any of the
sensing nodes causes the camera to turn and face the direction
where the node should be placed. To help with alignment the
camera itself is switched into aim mode which lights an LED
on the face of the camera. Users can utilize this light along
with a measuring device of 40 feet to locate the exact position
of every sensor node. The node is also marked so that the
enclosure should face the camera correctly and align the ePIR
sensors properly.

It is important to note that before the camera turns towards
the correct location, it returns to its home position, which is
known by the use of the Photologic OPB972 slotted optical
switch. This is to prevent miss positioning the nodes due to the
camera being manually turned or a gear slipping. Another
reason for implementing this switch is to keep the camera
from turning more than 360 degrees. If the motor is turned
more than 360 degrees without the OPB972 switch being
triggered, the system is shut down. This is to prevent the
camera from constantly turning in one direction which would
twist and break the wires running through the shaft of the
motor hardware.

Once the system is set up, the calibrate switch is flipped to
sense. This turns the camera on so that it is ready to snap a
picture, and also has the microprocessor looking for radio
packets that tell it where to point the camera. By default the

Command ID Description Parameter

C0 Ping remote none

C1 Get file count none

C2 Request file Hex byte

C9 End Of Session none

A0 Remote ping response 0x01

A1 File count Hex byte

A9 End of file transfer none

26 Int'l Conf. Embedded Systems and Applications | ESA'11 |

camera is at its home position until it receives an order to turn
a certain direction.

There are two identifiers when decoding a packet received
from a tripped motion sensor: one is the radio nodes (1-9) and
the other is which side of the node it is, left or right. The
decoding process of these 14 byte packets includes entering an
interrupt service routine where it processes each individual
byte. For these packets byte 5 defines which radio is being
triggered and byte 12 defines which side is being triggered.
The radio node and side are called in a function of code that
moves the stepper motor to point in the appropriate direction.

Once the camera is turned towards the heat signature that
has tripped the ePIR sensor, it is then pulsed to take a picture.
The camera has a sleep function that takes effect after
100 seconds of inactivity. If in sleep mode, the camera takes
approximately 12 seconds to wake up. The code is set to
recognize if the camera is in sleep mode and enter a subroutine
to wake it up and wait an appropriate amount of time before
capturing an image.

Another feature of the system is its nighttime operation.
The ePIR sensors function well in lowlight conditions and the
camera has a light sensor which switches between daytime and
nighttime pictures. The camera has an infrared flash and lens
which are automatically deployed when low light levels are
detected.

Files can be retrieved remotely using the remote
management radio node. A terminal communication program
such as Hyperterm or RealTerm is required to send commands
to the base station and receive the image files from the base
station. Each command from the remote node consists of four
bytes as described in Section IV. When a command is sent to
the base station from the remote management node, the base
station will respond with the appropriate data. If a file is being
retrieved, the remote management node terminal software
must be ready to capture all of the bytes and save them to a
file as there is effectively no delay between receipt of the
command and the initiation of the data stream. The base
station will send the four byte sequence of 0xE7 0xA9 0x00
0xE8 to indicate that the file transmission is complete. The
remote management session must be terminated by sending
the End of Session command to the base station.

VI. RESULTS, CONCLUSIONS, AND FUTURE WORK

The final design operated as intended. The calibration
mode made setting up the sensing nodes simple. Switching
into sense mode allowed the camera and motor to operate
simultaneously with correct timing to obtain high quality still
images when a packet was transferred and received by the
2.4GHz XBee radios.

There was some difficulty with receiving false triggers
from the ePIR sensors. The exact source of the problem is
unknown but some probable causes could be the high ambient
temperature observed while testing, movement of vehicles and

trees, and the reflection of the sun off of surrounding
buildings. A possible solution to reduce these false triggers
would be to attach a CDS photo cell to the light gates of the
ePIR sensors. This would give a voltage to the light gate
proportional to that of the ambient temperature.

One other design problem encountered was an excessive
amount of noise in the voltage lines which seemed to be
produced by the stepping motor circuitry while the motor was
still with holding torque. This was a critical issue as the excess
noise would not allow for the base station radio to distinguish
packets coming from the node radios. A solution to this
problem was to run a separate ground from the power source
straight to the stepping motor circuitry. This seemed to reduce
the noise and allow the base station 2.4GHz radio to receive
packets from its node counterparts.

In conclusion, the design and implementation of the project
was a success as all of the subsystems worked together to
achieve the image capture of moving heat signatures. Our final
system increased the viewing angle of the camera from
52 degrees to a full 360 degrees at a 40 foot radius, increasing
the image capture range from 726 ft2 to 5026 ft2. This much
broader scope should capture images of wildlife that would
not be photographed by today’s leading wildlife cameras.

Future work could include enhancements to the remote
management functionality by providing custom software to
provide more remote control features such as on demand
image acquisition, automated multiple file transfer, and error
and flow control options. This software could also provide the
ability to view and catalog images dynamically. A more
elaborate front end would include a command driven interface
to provide camera file management tasks such as rename or
delete, and camera image parameter controls such as
resolution. This feature set would require additional hardware
modifications to the base station to provide access to
additional camera controls.

REFERENCES
[1] “DS89C430/DS89C450 Ultra-High-Speed Flash Microcontrollers”,

MAXIM Semiconductor, April 05, 2007, [Online], Available:
http://www.maxim-ic.com/datasheet/index.mvp/id/4078

[2] “XBee®/XBee-PRO®RFModules”, Digi International,September 23,
2009, [Online], Available:
http://ftp1.digi.com/support/documentation/90000982_B.pdf

[3] “XBee-PRO® 900/DigiMesh™ 900 RF Modules”, Digi International,
September 25, 2009, [Online], Available:
http://ftp1.digi.com/support/documentation/90000903_C.pdf

[4] “Vinculum VNC1L Module Datasheet”, Vinculum, March 03, 2010,
[Online], Available:
http://www.vinculum.com/documents/datasheets/DS_VDIP2.pdf

[5] “Instructions for I65 Game Camera”, Moultrie, September 08, 2009,
[Online], Available:
http://images.ebsco.com/pob/moultrie/catalog/game-spy-i65-user-
manual.pdf

Int'l Conf. Embedded Systems and Applications | ESA'11 | 27

Synthesis of Embedded Test System for
Process Plants: A Proposed Architecture

Akin Cellatoglu and Karuppanan Balasubramanian

Department of Computer Engineering, European University of Lefke
Turkish Republic of Northern Cyprus, Mersin 10, TURKEY

(Email: acellatoglu@eul.edu.tr , kbala@eul.edu.tr)

Abstract - An embedded test system to assess the dynamic
performance of a process plant is proposed. A simple
Process rate controller plant and a simple chemical plant are
taken as models and the test systems are synthesized. In each
system a virtual plant performing all tasks of real time plant
is emulated and an analysis package to assess the
performance is incorporated. The virtual plant is synthesized
to provide anticipated ideal behavior and outcome of the
plant. The responses obtained at selected output terminals of
the real time plant and virtual plant are compared and
analyzed in the analysis package of the test system. The test
results assess the performance of the real time plant and
suggest possible modifications to its electronic hardware and
programs as to improve the dynamic performance of the real
time plant.

Keywords: Dynamic performance, process plant, process
rate controller, test system , virtual controller.

1 Introduction
 Process plants are designed to meet the production of
materials and products meeting the required specifications. In
real time process plants there are numerous varieties of
parameters involved and many of them would be interactive
in nature[1]-[3]. In some plants only few parameters are
being monitored and controlled and in some cases even just
one parameter is being controlled and monitored. This project
envisages establishing a test system for systematic assessment
of the process plants so as to exploit their full capacities. In
order to explain the approach a temperature rate controller
employed in several process plants is selected and
implemented. This is based on the technique used for
assessing the dynamics of a simple temperature controller
reported[4]. Both approaches on ON-OFF control and
continuos control were attempted.
 The real time temperature rate controller keeps the
reference temperature changing with time and follows a
predetermined profile. The tempearture rate controller is
emulated in the proposed test system and the responses of
real time rate controller and emulated rate controller are
analyzed. Also, a test system for a model chemical plant
involving more parameters is synthesized. This study would
enable us to optimize the performance of the respective real
time plants.

2 System for Temperature Rate
 Controller Plant
 Temperature rate controllers are widely being used in
several production plants involved in producing materials
needed for several industrial and commercial applications.
While in operation they keep the process chamber to follow a
definite preset temperature-time profile.

2.1 Profile of Temperature Rate Controller

 A PC based programmable process rate controller was
reported in the past[5]. Subsequently, on similar lines a
microcontroller based process rate controller was employed in
a project on remote control[6]. In principle the temperature
time profile used for the temperature rate controller is having
a structure as shown in Fig.1.

 When the production is started the temperature T has to be
maintained at different time rates shown. Four nodes of
Temperature-time pattern are shown {T1-t1, T2-t2, T3-t3 and
T4-t4} wherein T1-t1 is the starting node and T4-t4 is the
terminating node. When the process is set ON it has to start
with the temperature T1and the starting time is denoted as t1.

 2.2 Real Time Temperature Rate Controller

 At any instant of time of its functioning, the temperature is
maintained at the set value in profile by employing ON/OFF
control performed through a relay switching the electric
heater. Fig.2 shows the simplified hardware schematic of the
Temperature rate controller which controls the temperature
rate to adhere to the profile.

 T3

 T2

Temp
 T1

 T4

 t1 t2 Time t3 t4

 Fig. 1.Temperature Time Profile

28 Int'l Conf. Embedded Systems and Applications | ESA'11 |

 A microcontroller is established with the processor 80286
to have standard RAM, EPROM, Keyboard, Display, Timer
and Interrupt Interface.

2.2.1 Control Activity
 The temperature of the process chamber is sensed in a
sensitive Thermistor sensor and the signal is conditioned as in
standard procedure and implementations. The sensed
temperature signal is digitized with an 8-bit flash ADC
(Analogue to Digital Converter) built under improved
architecture [7]-[8] and read to the microprocessor.
 Two interrupts are used for the purpose of ON/OFF
control as to maintain the temperature-time profile. The Timer
involved in the microcontroller hardware is programmed to
give periodic pulse train at a set frequency. This pulse train is
frequency divided at two levels such that 1Hz frequency and
1/20Hz frequency output are obtained. They are given as
hardware interrupts to the microprocessor. While INTR1 is
occurring once in a second the interrupt INTR2 is occurring
once in 20 seconds. INTR1 reads the temperature of the
processor chamber, checks it with the current temperature in
the profile and makes the relay ON or OFF accordingly. It
repeats its operation 20 times in 20 seconds before it takes up
the next temperature from the profile. The main instructions
used in the Interrupt Service procedures are shown in Fig.3.

The reference temperature is loaded to DH register from the
lookup table where the temperature-time profile is stored. To
avoid oscillations Hysterisis effect is utilized in switching.
INTR2 routine reads the DH register from the table and
increments the address in the table to take the next data. In the
main routine the present time and latched temperature are
displayed alternately in a period of one second each .

2.3 Test System for Assessing the Performance
 of Rate Controller Plant
 There are three main functional units involved in the
design of the test setup and analysis system; i. real time
temperature rate controller ii. virtual instrument emulating the
process rate controller and iii. analytical unit performing the
assessment of the dynamics of the rate controller. Both the
virtual instrument and the analytical unit are realized in a PC
supported by its peripherals. The real time temperature rate
controller performs the display routine and the maintenance
of temperature rate is performed through interrupts. The test
system for temperature rate controller is shown in Fig.4.

 The real time temperature rate controller senses the current
temperature of the chamber compares it with the reference
temperature in the profile and switches ON or OFF the heater
as to keep the chamber temperature same as that of the
reference temperature.

;In the main routine
 MOV BX, OFFSET TABLE; Initialize
 ;lookup table
 MOV TIME, 0 ; Set the Running
 ;Time as zero
 L1: CALL Display

 ;INTR1 service procedure
 INC TIME
 IN AL, 22H ; read temp t from plant
 INC DH; Keep hysterisis in switching,
 ; t: tr+Δt
 CMP AL,DH
 JNC OFFRelay ; t> tr+Δt
 DEC DH ;
 DEC DH; Keep lower level tr-Δt
 CMP AL,DH ; Compare t with tr-Δt
 JC ONRelay ; t < tr-Δt
OFFRelay: MOV AL,0
 JMP L2
ONRELAY: MOV AL,1
 L2: OUT 24H, AL; control relay
 L3: IRET

 ; INTR2 service procedure
 MOV DH, [BX]
 INC BX
 IRET

 Fig. 3.Main Instructions in Service Procedures Fig.2. Simplified Schematic of the Temperature Rate

Control Plant

Temp
Sensor

Sig
nal
Co
ndi

80286

Micro
Contr
oller

Dis-
play

Key
board

A
D
C

Re-
lay

Electric
Power

Electrical
Heater

RAM
EPROM

Frequency
Divider

Tim
er

I
N
T
R
1

I
N
T
R
2

Process
Chamber

Int'l Conf. Embedded Systems and Applications | ESA'11 | 29

The digitized value of the sensed temperature is fed to the
virtual controller to do the comparison with the reference
temperature. The reference temperature is made available in a
simulated manner from a firmware. The temperature-time
profile is programmed in the firmware and it is read
periodically matching the time span of the profile.

 In the virtual controller, when relay is ON the temperature
increases and the increase in process temperature with time is
programmed in it. It calculates the next temperature in
accordance with the current temperature level and the status
of the relay. Also, if the relay is OFF the decay rate of the
temperature is programmed accordingly. Wherever possible
in the software lookup table approaches are implemented. As
time progresses the change in status of the relay with time is
provided by virtual controller and fed to the analysis package.
Moreover, in the analysis package the pattern of the relay
status of virtual controller and the real time controller are
compared in time domain and results are drawn.

2.3.1 Virtual Package

 Work bench software[9] and the software of Mathlab[10]
installed in PC enables us to simulate the real time
temperature rate controller as to form the virtual instrument.
During analytical observation, both real time controller and
virtual controller would be running simultaneously. The final
control bit obtained from digital comparator of real time unit
and that from virtual unit are taken for comparison and
analysis. The virtual instrument is so programmed with the
expectations of the controller yielding optimal results and
solutions.

 In the time domain part the relay status variation on time
is put into correlation analysis and matching factor is
determined. The matching factor would be unity when the
relay status of real controller is exactly the same as that of the
virtual controller. This factor is determined on various
temperature levels and results are saved for estimating the
needs for changing the hardware components or the
software

parameters of the real time temperature rate controller. On
frequency domain analysis part the spectral contents of the
pattern of the relay status of the real time controller and the
virtual controller are evaluated and spectral match is
determined. Here again the matching factor at various
temperature levels are determined and saved. Fig.5 shows
sample results.

2.4. Additional Tests Performed
 The setup enables us to perform static and dynamic tests
required to assess the performance of the real time
temperature rate controller for suggesting possible changes
needed to reach optimal performance.

2.4.1 Effect of Word Length

 The ADC provides the binary word of current temperature
in 8-b word length and the controller program also works
with data of 8-bits word length. In order to perform the test
on word length we need to tap the analog signal from
temperature sensor and feed it to the programmable word
length flash ADC[8] and get the binary word in different
word lengths of 16-bits, 24 bits and 32 bits. In the virtual unit
separate programs are made to deal the data in respective
word lengths and the control bit driving the relay is obtained
for each case. Also, processing is made in different word
lengths for keeping the temperature profile. Then these
results are compared with the results of the real time
temperature controller working with a word length of 8-bits.
The path in which the current temperature progresses in time
is compared with the demanded temperature time profile and
the magnitude of the error is computed.

 N
 Er = Σ √ (1/Ts).(Ts-Tc)2 (1)
 n=1

where N is total number of samples, Ts= set temperature in
the profile and Tc=current temperature trying to reach the Ts.
A typical characteristic of error response with word length is
shown in Fig.6. The error gets reduced with increase in word
length and gets saturated after some length and therefore there

Temperature

 Fig. 5. Matching Factor Variation with Temperature

Time Domain Match Factor

Frequency Domain Match Factor

Mat-
ching
Factor

Fig.4. Test System for Temperature Rate Controller Plant

Real Time Temperature
Rate Controller

Firm-
ware

ADC

Relay

Power

Virtual
Controller

Analytical
Unit

Graphics
Display

Electrical

Relay out

30 Int'l Conf. Embedded Systems and Applications | ESA'11 |

would be no further effect in error on increasing the word
length.

3 Test System for Chemical Plant
 The real chemical plant involving in producing chemical
products such as pharmaceuticals have several inlets of raw
materials to process chamber, performs their thermal and
chemical treatments and takes the finished products through
appropriate outlets[11]. In order to visualize the synthesis of
test system for such real chemical plant, it involves in
considering large number of parameters and their control
actions. However, the principle involved in the synthesis of
test system for a chemical plant can be presented by
considering a simple chemical plant involving only few
parameters for control. Fig.7 shows the schematic of such a
simple model for the chemical process chamber. The
synthesis of the test system for this chemical plant would
furnish enough information for extending it to the synthesis of
large sized real chemical plant.

 There are two inlet pipes admitting the raw chemical fluids
into the process chamber through valves V1 and V2
controlled from microcontroller. There is an outlet pipe taking
out the processed chemical fluid whose flow is controlled by
the valve V3. The chemical process demands the temperature
of the fluid to be maintained at a reference level. This is
achieved by sensing the temperature from a Wheatstone
bridge having thermistor sensor and reading the voltage to
microcontroller after digitizing the same. In the
microcontroller it is compared with the reference temperature
and a bit is issued to switch ON or OFF of the electric heater.
In other words ON-OFF control with Hysterisis is used for
maintaining temperature.
 Likewise, the pressure signal and the level signal obtained
from the respective transducers are processed based on set
rules and stepper motors are driven to operate the control
valves as to allow the inlet fluid to the process chamber and
take out the output flow. The plant is running itself with the
built-in program available in the firmware of the
microcontroller. Therefore, the microcontroller senses the

three parameters in real time and controls the inlet flow of raw
chemicals and outlet flow of finished chemical fluid. The
schematic of the microcontroller in simplest form is shown in
Fig.8.
 The analogue signals obtained from the respective
transducers are given to a MUX-ADC such that any one
signal could be selected to the ADC by the microprocessor.
The control word for selecting a channel is issued from
microprocessor through one of its output port. The selected
signal from the three inputs is digitized by the ADC and read
into microprocessor through an input port.

1.0

Normalized
Error

0

 8 Word length bits 32

 Fig.6 Error Response with Word Length

Press MUX
ADC

Micro-
controller Level

Temp
sensor

To Relay,
Steppers
controlling
V1,V2 and V3

Fig.8 Schematic of Microcontroller Peripherals

 Fig.7 Schematic of Proposed Chemical Process Plant

Int'l Conf. Embedded Systems and Applications | ESA'11 | 31

The microprocessor also provides data to control the stepper
motors associated with the valves V1, V2 and V3. The
processing of signals is following a sequence and it repeats
periodically and cyclically.
 While starting a cycle the temperature is processed first
for ON-OFF control with Hysterisis and then the level signal
is processed to control the inlet valves V1 and V2. Then
pressure signal is processed to control the outlet valve V3. The
control word for controlling valves is derived through lookup
table approach. The control program in its simple form is
shown in Fig.9.

3.1 Functionalities of the Test System
 The test system for chemical plant takes the relay control
bit and the status of stepper control words for controlling
stepper motors from the real time plant and from the virtual
plant. The running time and sequence are evaluated and the
results extracted from the output are displayed in the CRT
monitor. Its simple schematic is shown in Fig.10. The virtual
microcontroller is synthesized based on the expected ideal
performance of the plant and from the real performance of the
best chemical plant run in the past. All mathematical models
available for chemical reaction are applied and the final
results are put in the form of lookup tables involving the
parameters that could be accessed and controlled. It produces
the relay bit status based on the present temperature and the
reference temperature.
 Also, keeping the information of level and pressure the
chemical reaction results are applied to derive the word of
control bits for stepper motors. It continues to produce the
stepper control drive pattern sequence for all three valves by

using the current values of temperature, level and pressure
and lookup tables are employed for all these activities. The
matching factors estimated in time domain and frequency
domain are displayed and also saved for further analysis.

4 Discussions and Conclusions
 Two models of process plants have been considered here
and the test systems are established for assessing the dynamic
performance of the plants. One is process rate controller plant
and the other is chemical production plant. Although only few
parameters have been considered for the synthesis of the test
system the underlying priciple is good enough to provide
required information for synthesis procedures of test systems
of plants involving in large number of parameters. Therfore
any process plant with large number of interactive parameters
could easily be attempted to synthesize its test system.

 The test setups enable us to achieve quality in the system
implementation of the real time process plants as full
knowledge of the dynamic performance of them could be
obtained. The performance of the real time plants are
compared with the virtual plants yielding ideal behavior and
compensatory measures could be undertaken as to reach close
to the ideal performance with the real time plants. This can be
in the form of changes in the operating ranges of the hardware
electronic components or in the control programs used. The
test system also helps in performing quick fault diagnosis of
the plants for counteracting unwarrented occurrence of faults,
if any.

5 References

[1] S.Rangan, G.R.Sarma and V.S.V.Mani, Instrumentation

Devices and Systems, Tata McGraw Hill, NewDelhi,
2003.

Real Time
Microcontroller

Virtual
Microcontroller

Relay Stepper Control Stepper Control Relay
 bit words words bit
 Analysis Package

Memory Monitor

Temp ST: MOV AL,0
 OUT 40H,AL ; select temp t
 IN AL,42H ; Read temp
 CMP AL,[SI+1] ; Compare t with tr+Δt
 JNC L1 ; t > tr+Δt
 CMP AL,[SI-1] ; Compare t with tr-Δt
 JNC L2 ; t with in Hysterisis band
 MOV AL,01 ; set heater ON
 JMP L3 ;

L1 : MOV AL,0 ; set heater OFF
L3 : OUT 4AH,AL ;
L2 : MOV AL,01 ; set selecting Level
 OUT 40H,AL ; select Level
 IN AL,42H ; Read L
 MOV BX,Table1 ; set look up table for V1 ,V2
 XLAT ; Get data for V1,V2
 OUT 44H,AL ; Control V1
 OUT 46H,AL ; Control V2
 MOV AL,02 ; Set selecting p
 OUT 40H,AL ; select p
 IN AL,42H ; Read p
 MOV BX,Table2; set look up table for V3
 XLAT
 OUT 48H,AL ; Control V3
 JMP ST;

Fig.9 Main Instrctions in Control Program

Fig.10. Schematic of the Test System for Chemical Plant

32 Int'l Conf. Embedded Systems and Applications | ESA'11 |

[2] Kocaarslan, I., Cam, E. and Tiryaki, H, “An Investigation
of Cleanness in Boilers of Thermal Power Plants with
Fuzzy Logic Controller”, 2nd International Conference
on TPE, TPE2004, September 2004.

[3] Ronald W. Breault, “National Energy Technology
Laboratory’s Advanced Gasification Program and FBC
Update”, Proceedings of Turkish American Clean
Energy Conference, Istanbul, Jan 2008.
http://www.turkey-
now.org/db/docs/Clean_Energy_Conference_2008/

[4] A.Cellatoglu and K.Balasubramanian, “Assessment of the
Dynamic Performance of Process Control Systems: A
Case Study with Temperature Controller”, Proceedings of
3rd International Conference on Electronics Computer
Technology (ICECT 2011), Kanyakumari, India, April
2011, ppV4-19-V4-23.

[5] Z.G.Altun, K.Balasubramanian and K.Guven, "PC-based
programmable process rate controller", Proceedings of
the 1994 IEEE Instrumentation and Measurement
Technology Conference, Hamamtsu, Japan, May 1994,
pp 845-848.

[6] K.Balasubramanian and A. Cellatoglu, “Remote Control
Techniques for Selected Applications Performed through
Internet”, Proceedings of the International Conference
on Control, Automation, Communication and Energy
Conservation, Perundurai, India, June 2009, pp 419-425.

[7] K.Balasubramanian, “On the design and development of
flash ADCs”, Journal of AMSE-Modelling Measurement
and Control, A-series, France, 2003, Vol 76, No. 5, pp
31-43.

[8] K.Balasubramanian, “A High Performance Flash ADC
with Programmable Word-Length”, Proceedings of the
2006 International Conference on Real-Time Computing
Systems and Applications, Las Vegas, USA, June 26-29,
2006, pp 1021-1027.

[9] http://www.electronicsworkbench.com/ Feb2011.
[10] http://www.mathworks.com/products/matlab/ Feb 2011.
[11] Paul Hass, An Introduction to the Chemistry of Plant

Products-Vol-II: Metabolic Processes, Obscure Press,
2007.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 33

An Embedded Architecture for Smart Wheelchair
Navigation via Wireless Network

Y. Touati, A. Ali-Cherif, H. Aoudia and M. Demri
Computer Science and Artificial Intelligence Lab. LIASD dept. MIME

University of Paris 8 at Saint-Denis
2, rue de la Liberté, 93526 Saint-Denis Cedex, France

touati@ai.univ-paris8.fr

Abstract—One of the main trends in smart wheelchairs design is
how to ensure a reliable remote tele-operation task with obstacle
avoidance in a constrained environment. In this direction,
various methods based on impedance control, potential field and
edge detection have been investigated. These methods have
advantage of making the fast motion planning for nearby
obstacles, but with a shortcoming of getting into a local minimum
where the attractive and repulsive forces are equal. To overcome
the local minimum, a virtual impedance method is proposed,
where a free vector is added to the repulsive force. The principle
is to generate a virtual force between mobile system and
environment using exteroceptive localization tools. In this paper,
we are interested by this kind of approach to monitor a smart
wheelchair through a wireless network based on 802.11
standards. Virtual forces are translated to a human operator
through a joystick as tactile information. To illustrate the
efficiency of the proposed approach, experimentation on a smart
wheelchair developed in our Lab. called LIASD-WheelChair has
been performed.

Keywords-Smart Wheelchairs; Virtual impedance; Wireless Network.

I. INTRODUCTION

Several projects have been investigated in the last decade
to conceive and to develop new hardware architectures for
disabled and handicapped people’s assistance [1]. TAO-2, is a
project concerning autonomous wheelchair conception
intended for people with various types and degrees of
handicap [2]. The project aims to establish a methodology to
design, implement, and test an effective add-on autonomy
management system for use in conjunction with most common
commercially available power wheelchairs. The Intelligent
Assistive Technology and System Lab of University of
Toronto is developing an assistive technology that is adaptive,
flexible and intelligent, enabling people who have cognitive
diseases to participate fully in their daily lives [3][4]. In this
project, an anti-collision and navigation system for smart
wheelchairs has been proposed in order to provide a safe and
intuitive means of mobility. In [5], an intelligent assistance-
system for an electrically powered wheelchair has been
developed in order to facilitate driving a wheelchair for
severely disabled and elderly people with heavily reduced
physical and/or mental abilities. The approach is to make use
of a cognitive model of the user to considerably reduce the
amount of necessary user commands in order to enhance the

dependability of the control of the wheelchair. This makes
driving the wheelchair safe and reliable at a high degree. An
UT-Intelligent Wheelchair Project has been investigated at
University of Texas at Austin [6]. A notion of graceful motion
is introduced for a robotic wheelchair motion that is safe,
smooth, fast, and intuitive. In same manner, the wheelchair is
experimented in complex navigational situations. Thus, for a
given task, conventional joystick and proportional head-
joystick can be used to assist the operator in his manoeuvring.
Altering the translational and rotational velocities in situations
where an obstacle blocks the user-commanded way, the
driving assistance module significantly improves driver-
performance by preventing all collisions along the way [7]. In
the same requirements, low level approaches based control
methods have been prospected in order to increase
performances in terms of accessibility and autonomy.

Actually, one of the main trends in smart wheelchairs
development is how to ensure a reliable remote tele-operation
task with obstacle avoidance in a constrained environment
taking into account system’s interactive behaviour. For this
purpose, various methods have been investigated such as edge
detection [8], potential field [9] and impedance control [11]. In
edge detection methods, the objective is to determine the
vertical edges of the obstacle and consequently attempts to
steer the mobile system around an edge. The main drawback is
the proximity between the mobile system and the obstacles
which is not suitable for the real time computation. Potential
field methods allow a collision avoidance motion planning by
generating a virtual force against obstacles and toward the
goal. An attractive force between the mobile system and the
target, and a repulsive force against an obstacle are generated.
As it’s mentioned in [10], all these methods have advantage of
making the fast motion planning for nearby obstacles, but with
a shortcoming of getting into a local minimum where the
attractive and repulsive forces are equal. To overcome the
local minimum, an extended virtual force field method is
proposed, where a free vector is added to the repulsive force.
This force becomes larger for larger obstacles since repulsive
forces are coming from all obstacle-detecting sensors, which
makes this method unsuitable for certain applications.
Impedance methods which are based on the concept of active
control constitute a considerable contribution to deal with
issues cited above. Both free and constrained motions can be

34 Int'l Conf. Embedded Systems and Applications | ESA'11 |

handled by controlling the relation between input commands
and robot-environment contact forces. In the same manner,
impedance methods based on virtual aspects [12] are used to
determine a repulsive force for mobile robot navigation
avoiding obstacles. The principle is to generate a virtual force
between mobile system and environment using exteroceptive
localization tools such as US sensors, LIDAR and so on. In the
most cases, these generated virtual forces are transferred and
translated to a human operator through a joystick as tactile
information. In this paper, we are interested by this kind of
approach to monitor a smart wheelchair through a wireless
network based on 802.11 standards.

The remainder of this paper is organized as follows: In
section 2, we describe the system overview describing
hardware/software architectures of the developed LIASD-
Wheelchair. Section 3 presents the proposed Virtual
Impedance (VI) approach leading to control and to monitor
LIASD-Wheelchair remotely. This kind of approach allows a
reliable remote manoeuvring with obstacle avoidance in a
constrained environment taking into account system’s
interactive behaviour. Simulations and experimentation results
of our automated wheelchair are outlined in Section 4. Finally,
a brief conclusion and future research are summarized in
Section 5.

II. SYSTEM OVERVIEW

A. Embedded System

As it illustrated on Fig.1, LIASD-Wheelchair is an
adjustable adults’ powered wheelchair [13][14]. It is suitable
for indoor or outdoor use, has a range of 30km, and has the
capacity to climb 35% slopes and 15cm kerbs. The wheelchair
includes some standard features: a non-powered seating
platform, adjustable removable armrests with embedded
joystick, adjustable swinging leg-rests and a head-rest
incorporating an embedded camera. The wheelchair is fitted
with four ultrasonic (US) sensors to identify obstacles from
distance of 3cm to 6m, with 3 to 4cm of resolution. Our
system includes two optical incremental encoders called Line
Drivers Encoders HEDL-5540#A06 with resolution of 500
Counts per Revolution.

Figure 1. LIASD-WheelChair structure

Fig.2 shows different modules interconnection (remote
computer, embedded laptop, different sensors, .etc.) for a
better data flow using both wired and wireless networks. The
wireless network is based on IEEE 802.11 standard with a
router as an access point. Thus, the wheelchair can be
controlled remotly using an external force-feedback joystick.

An embedded laptop mounted at the rear of the wheelchair
allows managing US sensors via Fiveco card and controls
Roboteq card using respectively an Ethernet and serial RS232
links.

Figure 2. Interaction devices and communication scheme

In order to ensure navigation and anti-collision objectives a
Wireless Internet Camera Server (TV-IP110W) is mounted on
the wheelchair headrest. Images from the camera can be used
to refine the odometry by computing the distance of objects
from the wheelchair and then determine the safest routes to the
desired location taking into account collision avoidance
strategy. The wheelchair embeds also a USB joystick which is
a little bit more sophisticated than traditional one. The joystick
which is a SpeedLink SL-6612 has many configurable buttons
that makes the navigation easier.

B. Communication network architecture

As it’s illustrated on Fig.3, an I2C protocol is used to
manage US sensors module via a Fiveco card, and implement
USB and RS232 communication bus for embedded laptop
(Asus-EeePC-1002H) and AX2550 controller interconnection.
Via an adapter, incremental encoders are connected to
Roboteq card trough an RJ45 link.

Figure 3. Communication network architecture

Int'l Conf. Embedded Systems and Applications | ESA'11 | 35

An embedded Asus-EeePC-1002H laptop use to control the
whole architecture of the wheelchair, includes some features
allowing a better information handling of different embedded
modules (FiveCo, RoboTek, TRENDnet-TV camera,...) as well
as those remotely located (server, routers ,...) via a wireless
network.

In order to insure the safety of assisted people, a remote
monitoring system using wireless network based on the IEEE
802.11 standard is implemented. Thus, an external joystick is
requested to ensure the wheelchair monitoring and control
continuously. This kind of control transition can happen in
emergency cases particularly, when the wheelchair doesn’t
respond to some desired control actions. One can note that an
approach based on virtual impedance method is implemented
in this direction. Moreover, the use of a Wireless Internet
Camera Server, which is mounted on the wheelchair headrest,
enables the user to refine the odometry by computing the
distance of objects from the wheelchair and then determine the
safest routes to the desired location by avoiding collisions.

In this paper, we are interested by this kind of
communication network.

III. V IRTUAL IMPEDANCE APPROACH

A. Principles of the proposed approach

Since the works of Hogan in [15], impedance control
approach is considered as one of the most frameworks to
control the interactions between system and environment. This
kind of approach ensures a smooth implementation of desired
tasks by taking into account some real impedance parameters
properties such as inertia, viscosity and stiffness, so that:

 eeeeeee dXKXdBXdMF ⋅+⋅+⋅= &&& . (1)

Where Fe describes the interaction force between system and
environment and Me, Be and Ke represent respectively the
desired inertia, viscosity and stiffness of the considered
system.

The displacement between the current position of the
system Xe and the desired one Xd, can be defined as follows:

 de XXdX −= . (2) (1)

The principle of classical impedance is clearly illustrated
bellow (Fig.4).

However, since no effort is exerted until making contact
between system and environment, this approach is not useful
[16]. Recent researches have been directed towards the
development of new concepts based on VI principles using
visual information [17][18]. Based on these works, and
particularly on those developed in [11], we propose in this
paper a non-contact impedance control approach for smart

wheelchair monitoring through wireless communication based
on 802.11 standard.

Figure 4. Impedance interpretation

As it’s shown on Fig.5, VI is represented as spherical
configuration between a mobile system and environment
obstacles. Thus, when the mobile comes inside the virtual
sphere, a virtual force is then generated before any contact.

Figure 5. Virtual impedance representation

Let us consider now, the case when the mobile approaches
a security zone, and set a virtual sphere with radius r at the
center of the mobile.

When the mobile comes into the interior of the virtual sphere,
the normal vector from the surface of the sphere to the mobile
dX0 can be written as:

 nrXdX r ⋅−=0 . (3)

Where evr XXX −= 0 represents the displacement vector of

the mobile from position X0 to the center of the sphere Xev.

The vector ln ℜ∈ is given by:

()
()

=

≠
=

0 si 0

0 si

r

r
r

r

X

X
X

X

n . (4)

Where, Mev, Bev and Kev represent respectively the virtual
inertia, viscosity and stiffness. One can note that the virtual

36 Int'l Conf. Embedded Systems and Applications | ESA'11 |

force Fev becomes zero when the mobile is not in the virtual
sphere or is at the center of that sphere.

Furthermore, it should be mentioned that a Proportional,
Integral and Differential (PID) controller using an AX2550
module which is embedded in the rear of the wheelchair is
implemented also. Thus, a closed loop speed mode is
performed using a full featured PID algorithm. The ultimate
goal in well tuned PID parameters is to allow reaching the
desired speed quickly without overshoot or oscillation. In that
way, every 16 milliseconds, the controller can measure the
actual motor speed and subtracts it from the desired position to
compute the speed error. The resulting error value is then
multiplied by a user selectable Proportional Gain. The effect
of this part of the algorithm is to apply power to the motor
which is proportional with the difference between the current
and desired speed: when far apart, high power is applied, with
the power being gradually reduced as the motor moves to the
desired speed.

B. Software aspects

This approach is implemented according to some
considerations concerning force-feedback joystick abilities to
monitor remotely LIASD-WheelChair taking into account
environment obstacles. As it is illustrated on Fig.6, the
developed algorithm for our application shows that according
to US sensors data, the perceived efforts as tactile information
on the joystick allow the users to take right decisions to
monitor the wheelchair.

 Start

Joystick
detection

Sensors
MODE ON

Obstacle
detection

Obstacle-Wheelchair
distance > R*2

Force feedback
activation

Operating
mode ON ?

Motors Control

No

No

No

No

No

Yes

Yes

Yes

Yes

Figure 6. Implementation phases

In this context, as it’s shown on Fig.7, we have developed a
software architecture including a set of classes taking into
account the application entirely. Thus, G_SDL_Jostick and
joy_impl represent two classes developed to handle the force-
feedback joystick module allowing the user to monitor
remotely the wheelchair.

Figure 7. Software architecture

We note that these classes are developed with Qt and
implemented under directInput tool.

IV. EXPERIMENTATL AND SIMULATION RESULTS

The objective is to perform some tests in order to analyze
the behaviour of the LIASD-WheelChair interacting with
environment. Thus, based on generated virtual forces that are
transferred and translated through a joystick as tactile
information, the human operator can perform a set of
movements to maneuver the wheelchair. In this context, as a
model of environment, we have proposed a circular
configuration with a real behaviour model of LIASD-
WheelChair. One can note that different models of
environment can be chosen such as square, ellipse, etc.

First, VI parameters Kev, Bev and Mev are set arbitrarily and
respectively to the following values 50 [N/m], 10 [Ns/m] and 2
[kg]. Notice that the stiffness of the object is much higher that
the positional stiffness of the impedance, so that the
environment can be considered rigid. Moreover, for Sample-
axis, each second corresponds to 100 Samples.

Thus, according to the obtained results, Fig.8 illustrates the
exerted efforts by the joystick in the environment
(Environment 1). Indeed, from sample 250, we note an
increasing of the perceived efforts on the joystick

Int'l Conf. Embedded Systems and Applications | ESA'11 | 37

corresponding to the first contact between the wheelchair and
the virtual sphere. At this time, the reached value is 1100 and
oscillates around 1000 and 1250. After sample 2000, the
perceived force decreases to a minimum value of 400. Despite
this, the intensity remains very weak.

Figure 8. Exerted efforts on the environment

From Fig.9, one can see that the real trajectory of
wheelchair (Environment 1) doesn’t reflect the desired one, but
it also goes beyond the specified environment. This can be
explained by the fact that the virtual stiffness has a small value
which leads to a weak force felt on the joystick.

To show the interest of VI method, we have simulated
another implementation with different value of Kev. Thus, we
have integrated a value of 250 [N/m]. Thus, as we can see from
Fig.8 and 9, the joystick set a real trajectory which doesn’t go
through the desired one (Environment 2). The fact that the
stiffness value is significant, the perceived efforts are also
significant (Environment 2) leading thus, to make the
wheelchair follow the trajectory without any direct contact with
real environment.

Figure 9. Desired and real trajectories

These results show that the increasing of the perceived efforts,
from sample 300, to the value of 1000 corresponds to an
elementary displacement dX0 of 20 [cm]. This illustrates the
first contact between the wheelchair and the virtual sphere.
These efforts tend to oscillate respectively between 1200 and
25 according to X and Y-axis.

Fig.10 and 11 show respectively the wheelchair trajectories
according to X-axis and Y-axis for different values of stiffness
Kev= 50 [N/m] and 250 [N/m].

Figure 10. Real trajectories for Kev = 50 [N/m]

Figure 11. Real trajectories for Kev = 250 [N/m]

To illustrate the usefulness of the proposed VI approach for
LIASD-WheelChair remote monitoring experimentally, we
have performed some tests. For this purpose, information
coming from various sources, i.e., US sensors and wireless
camera, through wireless network allow the human operator to
ensure a right positioning a sweet maneuverability of the
wheelchair.

Thus, Fig.12 illustrates different postures of the
wheelchair. Here, the monitoring is ensured using both an
external and embedded joysticks with identical characteristics.
Thus, to ensure a safe control of the wheelchair according to

38 Int'l Conf. Embedded Systems and Applications | ESA'11 |

some tele-operated movements of the joysticks, a specific PID
parameters related to speed controller have been determined,
so that, Proportional, Differential and Integral components
values are respectively Kp = 2, Kd = 2 and Ki = 2.

Figure 12. LIASD-WheelChair moving in constrained environment

Using Wi-Fi communication mode (Fig.12 (a)-(j)), the
wheelchair performs a good trajectory in constrained
environment. In this case, an external joystick is requested to
ensure the wheelchair monitoring continuously. This kind of
control transition can happen in emergency cases particularly,
when the wheelchair doesn’t respond to some desired control
actions. Moreover, the use of a Wireless Internet Camera
Server, which is mounted on the wheelchair headrest, enables
the user to refine the odometry by computing the distance of
objects from the wheelchair and then determine the safest
routes to the desired location by avoiding collisions. In Fig.12
(k)-(m), the wheelchair is locally monitored by the user. Here,
as in tele-operated mode, via a force feedback joystick the user
perceives virtual forces leading him to have a better
monitoring.

V. CONCLUSION

In this paper we have proposed an approach dedicated for
improving handicapped people’s assistance and particularly
those concerning smart wheelchairs. We have presented an
approach based on virtual impedance method leading to control
and to monitor LIASD-Wheelchair remotely through wireless
communication network which is based on 802.11 standards.
This kind of approach allows a reliable remote maneuvering
with obstacle avoidance in a constrained environment taking
into account system’s interactive behaviour. In order to test the
effectiveness of the proposed approach, simulations and
experimentation have been designed in this respect. Thus,
according to the obtained results, some future researches and
perspectives involving new techniques such as neural networks

and fuzzy logic should be undertaken in order to increase
performances in terms of accessibility and autonomy.

REFERENCES
[1] C. Gao, I. Hoffman, T. Panzarella, and J. Spletzer, ATRS - A

Technology-based solution to automobility for wheelchair users, 6th Int.
Conf. on Field and Service Robotics, vol. 42, 2007.

[2] G. Takashi, The TAO Project: Intelligent wheelchairs for the
handicapped, AAAI Technical Report FS-96-05, 1996, pp.28-37.

[3] A. Mihailidis, P. Elinas, J. Boger, and J. Hoey, An intelligent powered
wheelchair to enable mobility of cognitively impaired older adults: An
anti-collision System, IEEE Transactions on Neural Systems &
Rehabilitation Engineering, 15(1), 2007, pp.136-14.

[4] P. Viswanathan, J. Boger, J. Hoey, P. Elinas and A. Mihailidis, The
future of wheelchairs: Intelligent collision avoidance and navigation
assistance, Geriatrics and Aging Magazine, 10(4), 2007, pp.253-256.

[5] M. Jipp, A. Wagner and F. Badredine, Individual ability-based system
design of dependable human-technology interaction, the 17th IFAC
World Congress, 2008, Seoul, South Korea, pp.15779-14784.

[6] S. Gulati and B. Kuipers, High performance control for graceful motion
of an intelligent wheelchair, IEEE Int. Conf. on Robotics and
Automation, 2008, Pasadena, California, pp.3932-3938.

[7] T. Röfer, C. Mandel & T. Laue, Controlling an automated wheelchair
via joystick/head-joystick supported by smart driving assistance, IEEE
Int. Conf. on Rehabilitation Robotics, ICORR’09, 2009, Kyoto, Japan,
pp.743-748.

[8] J. Borenstein and Y. Koren, Obstacle avoidance with ultrasonic sensors,
IEEE Journal of Robotics and Automation, vol.RA-4, n°.2, 1988,
pp.213-218.

[9] J. Borenstein and Y. Koren, Real-time obstacle avoidance for fact
mobile robots, IEEE Transaction on System, Man and Cybernetics,
vol.19, n°.5, 1989, pp.1179-1187.

[10] L. Tao, Z. Haibing and H. Huosheng, An embedded control system for
intelligent wheelchair, Proc. of 27th Annual Int. Conf. of the IEEE
Engineering in Medecine & Biology Society, 2007, Shanghai, China,
pp.5036-5039

[11] N. Hogan, Impedance control: An approach to manipulation: Part I, part
II, part III, ASME J. Dynam. Systems, Measurements and Control,
vol.107, n°.1, 1985, pp.1-24.

[12] J. Ota, T. Arai, E. Yoshida, D. Kurabayashi and T. Mori, Real time
planning method for multiple mobile robots, Proc. of the IEEE Int.
Symp. On Assembly and Task Planning, 1995, pp.406-411.

[13] Y. Touati and A. Ali-Chérif, Smart Wheelchair design and monitoring
via Wired and Wireless Networks, IEEE International Symposium on
Industrial Electronics and Applications, 2009, Kuala Lumpur, Malaysia,
pp.920-925.

[14] Y. Touati, H. Aoudia, and A. Ali-Chérif, Intelligent Wheelchair
localization in wireless sensor network environment: A fuzzy logic
approach, 5th IEEE International Conference on Intelligent Systems,
2010, London, UK , pp.408-413.

[15] N. Hogan, Stable Execution of Contact Tasks using Impedance Control,
IEEE Int. Conf. on Robotics and Automation, 1987, Raleigh, North
Carolina, USA, pp.1047-1054.

[16] Y. Tanaka, M. Terauchi, T. Tsuji and M. Kaneko, Online learning of
virtual impedance parameters in non-contact impedance control using
neural networks, Int. Symp. on Flexible Automation, 2002, Hiroshima,
Japan, pp.807-812.

[17] T. Tsuji and M. Kaneko, Non-contact impedance control for redundant
manipulator, IEEE Transaction on Systems, Man and Cybernetics, Part-
A, vol.29, n°.2, 1999, pp.184-193.

[18] Y. Nakabo, I. Ishii, and M. Ishikawa, Robot control using visual
impedance, in Proceedings of the JSME Annual Conference on Robotics
and Mechatronics, JSME’96, vol.B, 1996, pp.999-1002.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 39

Sub-Interval and Feed forward Techniques to

Improve Signal Quality.

R. Dixit
1
, and H. Singh

1

1
Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI, USA

Abstract - Noise on the signal line has been commonplace,

and many researchers have been addressing the techniques to

remove like-spectra noise from control signal. Degraded

signal to noise can affect control system performance.

Application of such schemes is wide ranging, including

improving recognition accuracy of limited vocabulary speech

interactive systems, improving speech based password access,

and reducing noise pollution in many sensor and tracking

applications – like radar. The problem is significant, as the

characteristics of the noise sources and of the environment

are often time varying. The frequency content, amplitude,

phase and velocity of the undesired noise are non-stationary,

and of similar spectra as the desired signal. In this work, we

extend these techniques using two novel approaches, sub-

interval spectral subtraction techniques for momentary-

stationary noise and, feed-forward techniques for non-

stationary noise. We show that it is possible to improve

degraded signal to noise by up to 10dB, and thereby improve

control system performance (in our example for key-word

recognition) from 40 – 50% to better than 90%.

Keywords: control noise, adaptive filtering, convergence

algorithms.

1 Introduction – Active Noise Control

 Additive noise in the control channel is a very

commonplace occurrence. Most plant control systems utilize

various strategies for characterizing and controlling noise.

When the noise is out-of-band from the control signal, it is

fairly trivial to filter out the un-wanted signals. But when the

noise is in-band, and of similar spectra as the desired control

signals, noise suppression is challenging. Typically, noise can

be broadband, or narrowband, and can be stationary or non-

stationary. The problem is very generic, and can affect any

system, where the control signal is corrupted – and includes

such applications as password recognition, range & track, and

generally systems with low tolerance for false positives/ false

negatives. As an illustrative example, in this research, control

signals are assumed to be voice, and interfering noise – is

assumed to be also acoustical. The „plant‟ used for analysis is

a limited-vocabulary key-word, speech recognition system.

Many researchers have been looking at various means of

noise suppression [1]. This particular investigation was

directed towards active noise control. That is, for stationary

noise, it is possible to develop anti-noise and thereby improve

s/n, but for non-stationary noise, adaptive filtering is required.

In the context of signal processing, the term filtering

refers to the linear process designed to alter the spectral

content of an input signal in a specified manner. Filters,

whose magnitude and phase responses satisfy certain

specifications in the frequency domain, accomplish this task.

Conventional filters are linear and time-invariant. They

perform a constant set of linear operations on the data

sequence x(n) to provide an output based on the coefficient

values. In the case of adaptive filters, this restriction of time-

invariance is removed. Adaptive filtering means that the filter

parameters such as bandwidth and resonant frequency change

with time. This is done, by allowing the coefficients of the

adaptive filter to vary with time and to be adjusted

automatically by an adaptive algorithm [2]. By allowing the

coefficients of an adaptive filter to vary with time, it is

possible to change bandwidth and resonant frequency.

2 The key-word, limited-dictionary

Speech Recognition algorithms

For purpose of this paper, we pick the task of key-word

recognition, using a speaker-dependent, pattern matching

approach. This can be applied many varied classes of

problems, including password verification systems as well as

to radar return detection of arbitrary waveforms. The task is

training a system, then, using that to recognize key words

spoken by that, or other speakers. The challenges are that the

training and use of the key-word may have time-warping

issues. ie: the trained word may not be not time-identical to

the usage word. For example, in radar returns, there are

frequency shift issues. The input pattern consists of a vector

sequence, derived from the speech input by some form of

preprocessing, i.e. usually frequency spectrum analysis using

Fast Fourier Transform (FFT). The comparison is done by

calculating the Euclidean distance between the incoming

speech pattern and all the reference patterns, after the time

normalization of the patterns to a standard duration [3]. As

developed by Baum-Walch [4], the hidden Markov model

approach, is best suited for this pattern matching.

After filtering, ie cleaning the input signal, the task is straight

forward:

 to Detect word-edge boundaries….this packetizes the

input to region of interest

40 Int'l Conf. Embedded Systems and Applications | ESA'11 |

 to Code the input, time warp the input, into the stored-

word timeline, and,

 to use Modeling to perform recognition.

MATLAB™ provides extensive tools for word edge

detection, coding and for time warping, and using their HMM

and Fuzzy logic tool kits, it is easy to perform the speech

recognition function. The flowchart shown in Figure 1 is such

a MATLAB evaluation model.

Figure 1. MATLAB algorithm for analysis.

Most error starts with inaccurate word edge boundary

detection. Typical segmentation algorithms [5] look at the

energy, zero crossing rate, and duration of the signal.

Dynamic Time Warping and Hidden Markov models are

applied to automatic word boundary detection, and Viterbi

algorithm is used to segment signals. The algorithm, as

implemented, is based on signal energy and adaptive

thresholds.

The speech signals are essentially non-stationary signals over

long period of time. However, speech can be considered as a

quasi-stationary process over short periods of time (on the

order of 20ms). If we take a 20ms segment of a speech signal,

we can see that it shows a high degree of predictability due to

this quasi-stationary property. Speech coders try to exploit

this predictability to reduce the amount of data required and

gain efficiency in speech recognition. The HMM techniques

exploit this, 20 ms window segmentation approach to create

the speech vectors. Figure (2) illustrates this.

Figure 2 – Speech Coding

Many researchers [6] have adapted Linear predictive coding

(LPC) is to code the speech signals, especially since during a

short period of time; the speech signal shows a high degree of

predictability. This predictability arises from the periodic

repetition of the wave shapes. Linear predictors try to predict

the value of the next sample of a speech signal, represented as

a linear combination of the previous samples.

After extraction and coding, the next task in designing a

speech recognizer is modeling and recognition of these

patterns. A detailed explanation of Hidden Markov models is

provided in [7].

Basically, the observations are probabilistic functions of the

states rather than the states themselves. Unlike the states of a

Markov model, the states of an HMM do not represent a

physical event. The underlying stochastic process, the state

sequence, is not observable, and can only be estimated

through another set of stochastic processes that produce the

sequence of observations. This work uses a left-to-right

hidden Markov model.

The following steps are taken in building an HMM for a word:

1) Segmentation: The speech signal that contains the word is

segmented using the algorithm above.

2) Coding: Segmented speech data is coded using linear

predictive coding, which gives a set of speech patterns, O

= o1, o2, . . ., oT.

3) HMM Modeling: An HMM is initialized by k-means

segmentation into the states. The initialized HMM is

trained using the Baum-Welch algorithm. After training,

the probability of the speech patterns O increases. The

training procedure is repeated until the probability of O is

unchanged within a certain tolerance.

Speech

waveformm

1.1.1 C

o

di

n

g
1.1.2 S

p

e

e

c

h

1.1.3 v

e

c

t

o

r

s

 o1 o2 o3 - - - oT

Int'l Conf. Embedded Systems and Applications | ESA'11 | 41

3 Putting it together - A Voice

Activated System, with noise

reduction, and results.

 The speech signals were between 300 – 3500 Hz,

sampled at 8 kHz. Over an arbitrary window of 128 ms. Some

of the noise sources were time varying. Short time frequency

transform (STFT) was used to characterize the temporal

aspect of the signal. STFT of the word „dial’ is shown in the

three-dimensional plot of Figure 3. This section presents the

3-steps, cleaning the signal, coding the signal, and

recognition.

3.1 Section and subsection headings

3.1.1 Subsection within another subsection

Figure 3. Short time frequency transform (STFT) of the word

„dial’.

Both HMM and DTW based speech recognizers are speaker

dependent. The training and the test data were the digits (0 to

9). Two recognizer models were used, including w and w/o

DTW, and tested against four speakers under varying s/n.

Figure 4 shows the results.

Figure 4 – Recognition Accuracy of DTW and HMM based

SD Recognition Systems for test a and test b

In our example, low s/n can degrade key-word recognition

accuracy to as low as 46%. In case of rapidly changing non-

stationary noise, the situation will worsen. This paper

discussed novel feed-forward implementation for pre-

processing algorithms as shown in Figure 5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time (s)

M
a
g
n
it
u
d
e

0

2

4

6

0

200

400

600
-40

-20

0

20

40

60

Frequency (kHz)Time (msec)

F
F

T
 m

a
g
n
it
u
d
e
 (

d
B

)

5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

SNR (dB)

R
e
c
o
g
n
it
io

n
 A

c
c
u
ra

c
y

DTW based SD digit recognizer
HMM based SD digit recognizer

5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

R
e
c
o
g
n
it
io

n
 A

c
c
u
ra

c
y

SNR (dB)

DTW based SD digit recognizer
HMM based SD digit recognizer

42 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Additionally, if we assume a windowed noise signal n(k) has

been added to a windowed speech signal s(k), with their sum

denoted by x(k). Then [8],

 x k s k n k() () () (1)

Taking the Fourier Transform of both sides gives

 X e S e N ejw jw jw() () () (2)

The spectral subtraction estimate of S(e
jw

) is

|))((|)(

|)(

)(
1)(

)()()(ˆ

)(),)](|)([|)(ˆ

|

jwjw

jw

jwjwjw

jw

X

jjwjwjw

eNEe

eX

e
eH

with

eXeHeS

or

ewhereeeeXeS

jw

jw

And, a novel spectral subtraction estimate of the speech signal

s(k) is calculated by taking the inverse Fourier transform of

the estimated spectrum of the signal,

 () ()s k S e e dwjw jwk1

2
 (4)

Spectral subtraction based noise suppression does not require

additional microphones for noise spectrum estimation.

Instead, noise spectrum is estimated from the signal during

non-speech activity. As summarized by the above equations,

during the speech activity the spectrum of noise is subtracted

from the spectrum of the noisy speech to obtain clean speech.

Here, it is assumed that the noise remains stationary during

the speech activity and when the noise changes to a new

stationary state, there exists enough time (on the order of

300ms) to obtain a new estimate of the noise spectral

magnitude before speech activity starts again. Our results

show that spectral subtraction techniques can improve s/n by

up to 10dB. If the noise cannot be assumed to be stationary

during the sampling window, then adaptive (multi-

microphone) approaches can be employed. Other results

show that this can further improve s/n [9]. The accuracy of a

speech recognizer can be measured in different ways. One

possible measurement can be done as follows:

Re
/

#
cognition Accuracy x

of words recognized of rejection errors

total of words
100

2

Recognition accuracy depends on various factors. SNR is one

of the most important factors that affect the accuracy. Figure

6, shows that, the higher the SNR is the better will be the

accuracy.

Figure 6 – Recognition Accuracy of DTW and HMM based

SD Recognition Systems under several SNR ratios

4 Results

It was observed that the performance of the designed

speech recognizer depends on the words that were chosen as

commands. The speech recognizer was tested using ten words

(the numbers one thru ten) The words with two or more

phonemes were easier than recognizing short words. In

addition, accurate recognition of short words is very sensitive

to the boundaries found by the automatic boundary detection

algorithm. Missing the actual boundaries by a couple of

frames decreases the recognition accuracy. However, accurate

recognition of long words is less sensitive to proper

identification of the word boundaries. Missing the boundaries

of long words by a couple of frames does not affect the

recognition accuracy as much as it does with short words. The

SNR

0 0.5 1 1.5 2 2.5 3 3.5 4
50

55

60

65

70

75

80

85

90

95

100

DTW based SD digit recognizer
HMM based SD digit recognizer

5dB 10dB 15dB 20dB Clean Speech

Int'l Conf. Embedded Systems and Applications | ESA'11 | 43

10 12 14 16 18 20 22 24 26 28 30
30

40

50

60

70

80

90

100

SNR (dB)

R
e
c
o
g
n
it
io

n
 A

c
c
u
ra

c
y
 (

%
)

manually segmented data
automatically segmented data

training data were ten words (the numbers one thru ten) , four

utterances each. Testing consisted of any of these ten

numbers. The effect of additive non-stationary noise and the

recognizer performance was investigated [9]. The window

length was 20ms, and 10 linear prediction coefficients were

used to represent each window. Two state (N=2) left-to-right

hidden Markov models were built for each word. It was

observed that models from 2 to 6 states were appropriate.

However, increasing the number of states does not necessarily

increase the recognition accuracy. In general, it is appropriate

to select the number of states to be equal to the number of

sounds within the word. This is reasonable because speech

vectors derived from a word are distributed among the states

of an HMM, and the states of the HMM approximately

correspond to different sounds in the word. Because most of

the words used to test the recognizer had two phonemes, two

state HMMs were used to model these words. The probability

distribution of the observations accounted with each state of

the HMMs were modeled using five Gaussian distributions

(M=5).

The recognizer was tested in two ways:

1-) training and the test data were manually segmented,

2-) training and the test data were automatically segmented

using the algorithm developed earlier. The recognizer is also

tested under different levels of white noise conditions.

Figure 7 – Recognition Accuracy

Figure 7 shows the accuracy of the speech recognizer as a

function of signal to noise ratio (SNR). The noise free data

(clean speech) was recorded in a lab environment where there

was actually a fair amount of noise. The accuracy of the

recognizer with manually segmented data was 98%. When the

noise free data was automatically segmented, the recognition

accuracy of the recognizer was 97%. This accuracy is, for all

practical considerations, almost equal to that of the manually

segmented noise free data.

5 Conclusions

The issue about noise in the signal line is a significant control

problem. Two techniques were investigated and modified to

suit in-line speech recognition engines. These are the feed-

forward, and in-situ spectral subtraction active noise control

schemes. Dynamic time warping and hidden Markov model

toolkits from MATLAB ™ implemented the speech

recognition algorithms. We conclude that it is indeed possible

to improve s/n and thus to improve word-recognition

accuracy by greater than 90%. The recognition accuracy for

manually segmented data was 98%. In order to automate this,

we investigated a new segmentation algorithm to separate

speech from noise and background noise. The recognition

accuracy for the automatically segmented data was 97%,

which is almost same as for the manually segmented data.

This was the case when the data was noise free. When we

added various noise to the speech signals, the recognition

accuracy for the automatically segmented data was very close

to that of the manually segmented data. Thus, we conclude

that the new segmentation algorithm performs well, even in

the presence of some noise. All the words were modeled

using hidden Markov models with same number of states, N,

and mixture coefficients, M. The testing was limited to

speaker-dependent, isolated word recognizers. In fact, this can

be easily adapted to a wide variety of signal processing

applications.

REFERENCES

1. T. H. V. Pelt, R. Venugopal and D.S. Bernstein,

“Experimental comparison of adaptive cancellation

algorithms for active noise control”. Proceedings of the

1997 IEEE International Conference on Control

Applications. Hartford CT. October 5-7 1997. pp. 559-

564.

2. B. Widrow, M. G. Larimore and C. R. Johnson,

“Stationary characteristics of SG adaptive filter”.

Proceedings of the IEEE, 70. August 1996, pp. 1151-

1162.

3. K. C. Zangi, “A new two-sensor active noise cancellation

algorithm”. Proceedings of ICASSP Vol. II, 1993, pp

351-354.

4. Y. C. Sung, H. T. Chang, H. L. Yang and S. C. Lin,

“Adaptive noise cancellation combined tree-structured

sub-band filtering and cross talk adaptive filtering: A two

microphone approach”. ISCPAT Conference proceedings,

Toronto 1998, pp. 27-31.

5. S. J. Young and J. A. N. Flores, “Continuous speech

recognition in noise using spectral subtraction and HMM

adaptation”. Journal of Speech recognition, Vol 1, pp

409. 1999.

44 Int'l Conf. Embedded Systems and Applications | ESA'11 |

6. R. Lahouari; B. Abdelkader; M. Larbi, “Application of

hidden Markov model and neural network approach for

radar target detection”. 2005 ICSC Congress on

Computational Intelligence Methods and Applications,

07 August 2006

7. Guoshen Yu, Stéphane Mallat, and Emmanuel Bacry,

“Audio De-noising by Time-Frequency Block

Thresholding”. IEEE TRANSACTIONS ON SIGNAL

PROCESSING, VOL. 56, NO. 5, MAY 2008

8. Hai Huyen Dam, Sven Nordholm,, Siow Yong Low, and

Antonio Cantoni, “Blind Signal Separation Using

Steepest Descent Method”. IEEE TRANSACTIONS ON

SIGNAL PROCESSING, VOL. 55, NO. 8, AUGUST

2007

9. L. R. Rabiner, M. R. Sambur, “An Algorithm for

Determining the Endpoints of Isolated Utterances”. Bell

Systems technical Journal, Vol 54, No. 2, pp. 297 – 315,

February 1975

Int'l Conf. Embedded Systems and Applications | ESA'11 | 45

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11034

Health Monitoring Nano -Wear System for Astronauts

1Jennifer Rajkumari K, 2T.Arun Prasad, 3L. Nirmala Rani
1 IEEE Member, Karunya University, Coimbatore, Tamil Nadu, INDIA

 2 IEEE Member, Silicon Technologies, Coimbatore, Tamil Nadu, INDIA
3 Dept of Mathematics, Karunya University, Coimbatore, Tamil Nadu, INDIA

Abstract- This paper discusses the novel sensor technology
which aims at monitoring health status to improve comfort and
efficiency of astronauts as well as to eliminate catastrophic
failure to the individual and mission. Continuous ambulatory
monitoring of vital signs will enable proactive personal health
management and better treatment of astronauts. It proposes to
develop a low-weight, non-invasive, fully-interconnected Nano
system to be worn underneath the spacesuit without the
complexity of multi-wire and Multi-locations for mapping
crewmembers’ health status. It can sense more than 7 vital
parameters such as heart rate, electrocardiogram (ECG),
Blood Pressure (BP), Respiration, Sp02, radiation,
Phonocardiogram (PCG), Body Temperature for both extra
and intra-vehicular activities with the help of nuclear battery.
In this system, all parameters’ signals can be processed by
MSP430F2274 and displayed through TMS320 DSP controller
with Novel architecture to meet space requirements.

Keywords: Multi-locations, 7 parameters, sensor, Nuclear
Battery, Nano, Microcontroller.

1 Introduction

 Life of the flesh is in the blood [1]. Definitely the
abnormalities & the disease will be reflected (will have
variations) in the flow of blood. The pain and abnormalities in
the body is due to the obstruction of blood in the blood vessels
in the affected area that are sensed by the brain through our
nervous system.

1. 1 Existing Health Monitoring Devices

 There exists a large variety of situations in which
noninvasive and continuous monitoring of physiologic and
related parameters are extremely useful in a remote setting.
Remote telemedicine [2], in-home care [3], patient transport
(ambulance, aircraft [4]), military use, emergency worker
monitoring (first responders) [5], as well as in- and out-of-
hospital clinical monitoring [6-9], cardiac monitoring, sleep
studies, clinical trials of medications) are but a few. For space

applications [10], these include extravehicular activities (EVA),
launch and deorbit, exercise in microgravity, physiologic
research, and unexpected medical events.

Fig. 1.1 Existing multisensory placements

 Many of these applications require a rugged device,
capable of daily use in an extreme environment due to pressure
(hyperbaric, hypobaric), vibration (shuttle launch), radiation
(on-orbit), temperature and humidity (emergency workers) or
other environmental factors.

 This automatic reflecting diagnostic system is bulky,
expensive and it takes a professional medical doctor fluent with
meridian points to interpret the results. Therefore, in the late
1990s, a lot of research was done in Taiwan to come up with a
testing system that incorporated Dr. Volla's technology and the
Traditional Chinese Meridian points and acupuncture, in a
small enough packages that are affordable for the average
person and also the results are interpretable to the average
person. The bioelectric current, which is released by the
meridian and the acupoint in the human body, can be read by
the sensor connected to the computer and be statistically
analyzed and correlated with the millions of clinical data
records of the Data Center and the resulting report will be sent
back to the computer. With the data being accumulated and
revised continuously, the resulting report will be more and
more precise and accurate. We give below some of the
physiological parameter specifications that are in the existing
health monitoring systems.

46 Int'l Conf. Embedded Systems and Applications | ESA'11 |

 Fig1.2 Automatic reflecting diagnostic system

Table 1.1 Sensor Specifications

Parameter Sensor/Device Range Accuracy

ECG (Lead II and
V5)

Button
electrodes - 12bit

Respiration
(Body-
Impedance)

Button
electrodes - 12bit

Temperature
(Skin) FM50

-40C …
+125C +/-0.5C

Activity 2 x (2-
axis Acceleration) ADXL210E +/-10g 2mg

SpO2 (Pulse
Oximeter)

Nonin Xpod
3011 70…100%

+/-4
digits

Pulse Rate (Pulse
Oximeter)

Nonin Xpod
3011

18… 300
pulses per
min.

+/-3
digits

Blood Pressure
(Cuff,
Auscultatory) Accutracker II - 1mmHg

1.2 Disadvantages of existing systems

 All these systems are bulky and during diagnosis we need
an assisstant for measurements and some experts to interpret
the results. More over in these systems, the person has to be in
the lying position for ECG and for BP measuers the hand of
the person should be at rest.

 2. Proposed Novel System

 It is a simple, pocket size, inexpensive, and a tiny battery-
powered instrument. It consists of Wireless network system
with a single location for the sensors to include 8 parameters
that can process all the data and transmit them either
simultaneously or individually to a display system worn on the

wrist of the astronauts or in the ground control. Our system is
an excellent one as it needs zero preparation for measurements
during diagnosis.

2.1 Significant Location & Sensor Module

 The significant organ of the blood flow is the unique
heart in our human body. We have the smooth flat surface of
the chest (upper sternum) as the significant location for the
sensors, which is more suitable even in life threatening
situations when blood circulation is limited to torso and head
without any time delay of minimum 15seconds as usual in the
existing health monitoring systems for the blood to reach
diagnosis locations namely finger & wrist [11]

Fig 2.1.1 Upper Sternum for sensor location

 In our novel system all the sensors are placed on a single
circular disc with angle specifications for each sensor. Each
sensor has a protective lid on its top so that, during the usage
of an individual sensor , the mixing of other sensors’ signals
can be avoided.The ECG copper fill sensors are provided with
adjustable extension holders with scale measurement. Under
this circular disc all the signal processing circular discs are kept
one below the other with microcontroller for signal processing.
There is a button system for the projection of each individual
sensors during its usage

Fig 2.1.2 Top View with Sensors

 The sensor system can be firmly and compactly fixed on
the chest at all times throughout the journey both in & out of

Int'l Conf. Embedded Systems and Applications | ESA'11 | 47

the space shuttle if needed. The sensor operation for a specific
diagnosis can be triggered and controlled by remote system of
either the individual astronauts in the shuttle or ground control
station. The description of each parameter and its function in
our novel system is dealt below.

2.2 ELECTROCARDIOGRAM

 An electrocardiogram is an instrument that measures the
electro-mechanical activity of the heartbeat. With each beat, an
electrical impulse (or wave) travels through the heart. This
wave causes the muscle to squeeze and pump blood from the
heart. The ECG (Electrocardiogram) sensor measures cardiac
electric potential waveforms (voltages produced during
contractions of the heart).

2.2.1 Problem Identification:

 Normally in the surface of the heart, muscle action
potential is 20mV. It withstands up to 150-300ms at a
frequency of 0.05-100Hz. As, the action potential in the
surface of the chest is only 1mV, we need a highly sensitive
single located sensor instead of 5 electrodes that are located at
different parts of the body namely chest, hands and legs to
pickup the signals of RA, LA, LL, RL and V2.

 The sensor in our proposed system is a set of non-contact
bio potential copper fill capacitive type electrodes [11] placed
at the top circular disc with angle specifications to pick up
signals of leads I, II, III, aVR, aVL, aVF and V2. In our novel
system the person need not lie down.

Fig 2.2.1 Copper fill capacitive type electrodes with amplifier
unit

2.3 RESPIRATION

 Respiratory rate is the number of breaths a human being takes
per minute. It is usually measured when a person is at rest by
counting the number of times the chest rises per minute. The
Ultra-Piezo Sensor generates a small voltage signal from the
normal expansion and contraction of the chest or abdominal
wall. This voltage is immediately passed through an electronic
filter before the respiratory signal is applied onto a
physiological monitoring or recording system.

Fig 2.3.1 Continuous Respiration signal

 Since the sensor generates a voltage when stressed by
breathing, no battery is required for operation. This system is
convenient, non-constraining, comfortable and durable for
sleep disorder testing also.

Fig 2.3.1 Ultra Piezo Sensor

2.4 BLOOD PRESSURE

 Blood pressure (BP) is the pressure exerted by circulating
blood, upon the walls of blood vessels, and is one of the
principal vital signs. During each heartbeat, BP varies between
a maximum (systolic) and a minimum (diastolic) pressure.

 Arterial hypertension may have adverse effects. Persistent
hypertension is one of the risk factors for strokes, heart attacks,
heart failure and arterial aneurysms and is the leading cause for
chronic renal failure. Even moderate elevation of arterial
pressure leads to shortened life expectancy.

 Our proposed system is a chest based continuous and non-
invasive method of monitoring and measuring blood pressure
with display of continuous graph of systolic and diastolic
readings every second. The design of continuous method
provides a better monitoring of rise and falls in the blood
pressure values. This device can be used so that the risk of
higher and lower blood pressure can be eliminated and suitable
precautionary measures can be adopted before the condition
gets critical.

 Fig 2.4.1 Analysis of Blood Pressure Curve

48 Int'l Conf. Embedded Systems and Applications | ESA'11 |

http://en.wikipedia.org/wiki/Blood_pressure#cite_note-0

2.5 HEART RATE

 Heart rate is the number of heartbeats per unit of time,
typically expressed as beats per minute (bpm).

 The R wave to R wave interval (RR interval) is the inverse of
the heart rate.Heart rate is measured from the chest (apex of
heart), which can be felt with one's hand or fingers.

 In our method the heart rate (HR) is readily calculated from
the ECG as follows:

HR = 1,500/RR interval in millimeters,

HR = 60/RR interval in seconds,

or HR = 300/number of large squares between
successive R waves.

Fig 2.5.1 Heart Rate Analysis

2.6 TEMPERATURE

 As a precision CMOS temperature sensor, the FM50 is cost
effective for accurate, low power; temperature monitoring
applications. Output voltage versus temperature is extremely
linear. With no load, the supply current is typically 130µA. For
normal operation, the load on VOUT should be 100KΩ or less.

 In a typical application, a remotely mounted FM50 is
monitored by a microcontroller unit (MCU) with an analog
A/D converter input. Alternatively, the FM50 can drive a
comparator with a high-impedance input.

 Accuracy is typically +0.5oC at room temperature, and
better than +2oC from 0 to 75oC. FM50 is available in a 3-pin
SOT-23 package.

2.7 Sao2

 This paper presents a prototyped novel chest-based Pulse
Oximetry system. It reports on test results from comparative
trials with a commercially available finger-based Pulse
Oximetry system using several human subjects. In our chest
based novel system a reflective sensor is used where the LEDs
and photodiode are mounted beside each other at the center of

the sensor circular disc. Initially, a simple sensor arrangement
is realized by mounting a bi-colour LED (SMT660/910) and a
blue enhanced PIN silicon photodiode (PDV-C173SM) onto a
PCB board. This enabled the optimal gap size between both
components to be experimentally determined during later
testing. The main circuit consists of two amplifier stages
(figure 2.7.1). In the trans-impedance amplifier stage the PIN
photodiode is placed across both inputs. In the second stage a
DC offset removes a large DC component of the photodiode
signal before further amplification. Two readings are taken by a
12-bit ADC module when one LED is switched on. The ADC
readings are distinguished by the MCU into two signal pairs
(red and infrared).

Fig 2.7.1 Input front end circuit and LED control of the single-
chip Pulse Oximeter design using the MSP430.

 Each signal pair is processed by the MCU to calculate the
current for the individual LED and the required DC offset. The
LED current is used to control the illumination of tissue with
the aim to obtain the largest possible peak-to-peak amplitude in
the amplified photodiode signal. ADC readings of the second
amplifier output produce a red and infrared peripheral pulse
graph (PPG). The baseline of both raw PPG signals varies and
sudden signal distortions and baseline shifts are mainly induced
by motion artefacts (breathing, movements of the sensor on the
chest, etc.). The noise in both PPG signals differs from subject
to subject and also depends on the environment (ambient light,
electromagnetic interferences (EMI)). The DC residuals and
noise in both raw signals are reduced through filtering with a
high and low pass digital filter.

2.8 Phonocardiograph

 A Phonocardiogram or PCG is a plot of high fidelity
recording of the sounds and murmurs made by the heart with
the help of the machine called phonocardiograph, or
"Recording of the sounds made by the heart during a cardiac
cycle." The sounds are thought to result from vibrations
created by closure of the heart valves. There are at least two:
(i) when the atrio ventricular valves close at the beginning of
systole (ii) when the aortic valve closes at the end of systole. It
allows the detection of sub audible sounds and murmurs and
makes a permanent record of these events. In contrast, the
ordinary stethoscope cannot detect such sounds or murmurs,
and provides no record of their occurrence.
 A piezo electric heart sound transducer is used to pick up
the vibrations of the four heart valves. The PCG is then

Int'l Conf. Embedded Systems and Applications | ESA'11 | 49

http://en.wikipedia.org/wiki/Heart
http://en.wikipedia.org/w/index.php?title=Phonocardiograph&action=edit&redlink=1
http://en.wikipedia.org/wiki/Cardiac_cycle
http://en.wikipedia.org/wiki/Cardiac_cycle
http://en.wikipedia.org/wiki/Heart_valve
http://en.wikipedia.org/wiki/Systole_%28medicine%29
http://en.wikipedia.org/wiki/Aortic_valve
http://en.wikipedia.org/wiki/Heart_murmur
http://en.wikipedia.org/wiki/Stethoscope

interfaced to the display unit for processing after which the
frequency spectrum and time period analysis is done. The PCG
along with its data is provided on the screen for detecting the
disorders associated with the heart Valves. The technique of
phonocardiography has evolved continuously to grab an
important role in the proper and accurate diagnosis of the
defects of the heart. This technique, though seemingly quite
reliable, is quite difficult to master. As with the stethoscope, it
requires highly educated professionals to read the PCG signal.
[12]

Fig.2.8.1 Cardiovascular signals comparison

3. Signal Processing and Transmission

 A small base unit powers the entire system by nuclear
battery and signal processing is done using MSP430F2274 and
with the help of wireless transmitter like zigbee the data is sent
to either TMS320 based receiver or other external device for
display.

 Each parameters’ sensor is connected to a signal processing
circular disc (with on / off button) kept one below the other
sensors disc. Data in each signal processing disc is transmitted
to the display unit worn on the wrist or to remote ground
control unit

Fig 3.1 Lateral View of Signal Processing Unit

3.1 Nuclear Battery

 In our novel system we use 3V nuclear battery for many
reasons.In space applications; nuclear power units offer
advantages over solar cells, fuel cells and ordinary batteries.

Fig 3.1.1 Nuclear Battery

 When the satellite orbits pass through radiation belts
such as the Van- Allen belts around the Earth that could
destroy the solar cells. Operations on the moon or Mars where
long periods of darkness require heavy batteries to supply
power when solar cells would not have access to sun light.

 Space missions in opaque atmospheres such as Venus,
where solar cells would be useless because of lack of light. At
distances far from the Sun, for long duration missions where
fuel cells, batteries and solar arrays would be too large and
heavy. Heating the electronics and storage batteries in the deep
cold of space at −245°C is a necessity. So in the future it is
ensured that these nuclear batteries will replace all the existing
power supplies due to its incredible advantages over the other.
It is quite sure that the future will be of ‘Nuclear Batteries’
because of the applications which require a high power, a high
life time, a compact design over the density, an atmospheric
conditions-independent power supply. NASA is on the hot
pursuit of harnessing this technology in space applications.

3.2 Mixed Signal Microcontroller MSP430F2274

 The Texas Instruments MSP430 family of ultra low power
microcontrollers consists of several devices featuring different
sets of peripherals targeted for various applications. The
architecture combined with five low power modes is optimized
to achieve extended battery life in portable measurement
applications. The device features a powerful 16-bit RISC CPU,
16-bit registers and constant generators that attribute to
maximum code efficiency. The digitally controlled oscillator
(DCO) allows wake-up from low-power modes to active mode
in less than 1 ms.

 The MSP430F2274M series is an ultra low-power mixed
signal microcontroller with two built-in 16-bit timers, a
universal serial communication interface, 10-bit A/D converter
with integrated reference and data transfer controller (DTC),
two general-purpose operational amplifiers in the
MSP430F2274M devices and 32 I/O pins. Typical applications
include sensor systems that capture analog signals, convert
them to digital values and then process the data for display or
for transmission to a host system. Stand-alone RF sensor front

50 Int'l Conf. Embedded Systems and Applications | ESA'11 |

end is another area of application. Available in Military
Temperature (–55°C/125°C) Range.

3.3 Zig bee

 Zig Bee is a specification for a suite of high level
communication protocols using small, low-power digital radios
based on the IEEE 802.15.4-2003 standard for Low-Rate
Wireless Personal Area Networks (LR-WPANs), such as
wireless light switches with lamps, electrical meters with in-
home-displays, consumer electronics equipment via short-range
radio needing low rates of data transfer. The technology
defined by the Zig Bee specification is intended to be simpler
and less expensive than other WPANs, such as Bluetooth.

 Zig Bee is targeted at radio-frequency (RF) applications
that require a low data rate, long battery life, and secure
networking. Zig Bee is a low-cost, low-power, wireless mesh
networking standard. The low cost allows the technology to be
widely deployed in wireless control and monitoring
applications. The low power-usage allows longer life with
smaller batteries. The mesh networking provides high
reliability and more extensive range.

Fig 3.3.1 Zig Bee Module

 The software is designed to be easy to develop on small,
inexpensive microprocessors. The radio design used by Zig
Bee has been carefully optimized for low cost in large scale
production. It has few analog stages and uses digital circuits
wherever possible.

3.4 TMS320 DSP controller

 The TMS320C672x is the next generation of Texas
Instruments' C67x generation of high-performance 32-/64-bit
floating-point digital signal processors. The TMS320C672x
includes the TMS320C6727, TMS320C6726, and
TMS320C6722 devices. C67x+ is an enhanced version of the
C67x CPU used on the C671x DSPs. It is compatible with the
C67x CPU but offers significant improvements in speed, code
density and floating-point performance per clock cycle. The
Efficient Memory System maps the large on-chip 256K-byte
RAM and 384K-byte ROM as unified program/data memory.
Development is simplified since there is no fixed division
between program and data memory size as on some other
devices. Universal Host-Port Interface (UHPI) is a parallel
interface through which an external host CPU can access
memories on the DSP. Multichannel Audio Serial Ports

(McASP0, McASP1, McASP2) - Up to 16 Stereo Channels
I2S.

 The flexibility of this line of processors has led to it being
used not merely as a co-processor for digital signal processing
but also as a main CPU. Newer implementations support
standard IEEE JTAG control for boundary scan and/or in-
circuit debugging.

3.5 Receiver and display Unit

 Fig 3.5.1 Novel TMS320 DSP based Multipara System

 Using TMS320C6727 the display of the ECG curve,
continuous BP curve, Sao2, oxygen level, PCG, body
temperature, heart rate, respiration radiation effect of space can
be mounted on the wrist of the individual astronauts & the
ground control center as well.

 4. Conclusion

 The proposed novel integrated wireless single location
sensor system is without the complexity of multi-wire and
multi-locations. It can acquire more than 7 vital parameters
simultaneously or single parameter of our choice. The signal
processing and simultaneous mapping is done using
TMS320C6727 DSP controller with a novel wrist watch type
display.

5. References
[1] Bible: Leviticus: Chapter 17, Verse 11- Kings James
Version

 [2] Satava, R., Angood, P.B., Harnett, B.,Macedonia., and
Merrell, R., “The Physiologic Cipher at Altitude: Telemedicine
and Real-Time Monitoring of Climbers on Mount Everest, ”
Telemedicine Journal and e-health,vol. 6 No. 3, 2000, pp. 303 –
313.

[3] Korhonen, I., Pärkkä, J., and van Gils, M., “Health
Monitoring in the Home of the Future,” IEEE Engineering in
Medicine and Biology Magazine, vol. 22, no. 3, May/June
2003, pp. 66 – 73.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 51

http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/JTAG

[4] Gandsas A; Montgomery, K; Altrudi, R; and McKenas, D;
“In-Flight continuous vital sign telemetry via the Internet,”
Journal of Aviation, Space, and Environmental Medicine,
v71(1), January 2000.

[5] Park, S., and Jayaraman, S., “Enhancing the Quality of
Life Through Wearable Technology,” IEEE Engineering in
Medicine and Biology Magazine, vol. 22, no. 3, May/June
2003, pp. 41 – 48.

[6] Moy, M. L., Mentzer, S. J., and Reilly, J. J., “Ambulatory
Monitoring of Cumulative Free-Living Activity,” IEEE
Engineering in Medicine and Biology Magazine, vol. 22, no. 3,
May/June 2003, pp. 89 – 95.

 [7] Asada, H. H., Shaltis, P.,Reisner, A., Rhee, S, and
Hutchinson, R. C., “Mobile Monitoring with Wearable
Photoplethysmographic Biosensors,” IEEE Engineering in
Medicine and Biology Magazine, vol. 22, no. 3, May-June
2003, pp. 28 – 40.

 [8] Jovanov, E., O’Donnell Lords, A., Raskovic, D., Cox,P.G.,
Adhami, R., and Andrasik, F., “Stress Monitoring Using a
Distributed Wireless Intelligent Sensor System,” IEEE
Engineering in Medicine and Biology Magazine, vol. 22, no. 3,
May-June 2003. pp. 49 – 55.

[9] Waterhouse, E., “New Horizons in Ambulatory
Electroencephalography,” IEEE Engineering in Medicine and
Biology Magazine, vol. 22, no. 3, May/June 2003, pp. 74-80.

[10] Kramer,C.D., and Kalla, E. M., “The Challenge of
Designing Biomedical Equipment During Human Research for
Long Duration Low-Gravity Missions,” Proceedings of the
Sixteenth Southern Biomedical Engineering Conference, 4-6
April 1997, pp. 30 – 37.

[11] Yu M. Chi and Gert Cauwenberghs, “Non-contact
EEG/ECG Electrodes for Body Sensor Networks.” University
of California, San Diego La Jolla, CA 92093

[12] A. Mahabuba, J. Vijay Ramnath and G. Anil Analysis of
heart sounds and cardiac murmurs for detecting ardiacdisorders
using phonocardiography Department of Electrical &
Electronics Engineering, B.S.A. Crescent Engineering College,
Chennai, Jl. of Instrum. Soc. of India Vol. 39 No. 1 March
2009

[13] Collin Schreiner, Philip Catherwood, John Anderson and
James McLaughlin, Blood Oxygen Level Measurement with a
chest-based Pulse Oximetry Prototype System NIBEC,
University of Ulster, Newtownabbey, Northern Ireland
Intelesens Ltd, Belfast, Northern Ireland

[14] E.S. Valchinov and N.E. Pallikarakis. An active electrode
for bio potential recording from small localized biosources.
Biomedical engineering online, 3, July 2004.

52 Int'l Conf. Embedded Systems and Applications | ESA'11 |

SESSION

COMPILERS + OS + SOFTWARE TOOLS AND
ENVIRONMENTS, DEVELOPMENT ISSUES +

LIBRARIES

Chair(s)

TBA

Int'l Conf. Embedded Systems and Applications | ESA'11 | 53

54 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Bi-Endian Compiler: A Robust and High Performance

Approach for Migrating Byte Order Sensitive

Applications

M. Domeika
1
, M. Loenko

2
, P. Ozhdikhin

2
, and E. Brevnov

2

1
Intel Compiler and Languages, Intel Corporation, Hillsboro, Oregon, U.S.A.

2
Intel Compiler and Languages, ZAO Intel A/O, Novosibirsk, Russia

Abstract - In this paper, we describe the implementation and

performance evaluation of a bi-endian capable compiler.

Software migration of legacy applications from one endian

architecture to another is oftentimes hampered by byte order

dependencies hidden in the source code. These dependencies

can be expensive to find and address in a systematic fashion.

We introduce the Bi-endian Compiler (BEC) capable of

generating code that executes with the opposite byte order

semantics as the underlying architecture. The programmer

designates the byte order required of data in memory. During

translation, the compiler inserts additional instructions to

transform, where necessary, data into the native byte order

before it’s operated upon in the processor registers. This

paper details the language extensions, compiler design, and

optimization of the implementation. We include a performance

characterization comparing against native-endian SPEC 2000

and EEMBC benchmarks which show the performance

overhead of enforcing opposite endian semantics to be in the

range of 5.6% to 13.8%. The BEC has been successfully

employed in production-quality software applications

comprising millions of lines of source code.

Keywords: Byte order, big-endian, little-endian, endian-

neutral, endian conversions, software migration

1 Introduction

 Programming in standardized high level languages has

the benefit of being readily portable across architectures. One

would think that portability exists as long as programmers

constrain themselves to features specified by the language

standard and employ compilers that are dutiful in

implementing to the standard. Unfortunately, this is not

always the case. Migration of software between architectures

can become problematic when byte order dependent code [7]

exists in the source base only to be discovered when runtime

problems surface. In large, legacy code bases consisting of

millions of lines of code, it is very difficult to find and

transform all of the byte order dependencies using known

techniques [1] into endian-neutral code.

 The Bi-Endian Compiler (BEC) enables applications to

execute with the byte order semantics as which they were

designed. For example, the BEC implementation discussed in

this paper enables applications to execute with big-endian

semantics on a little-endian processor. Employing BEC

requires the programmer to designate the byte order of all

data. During compilation, BEC inserts code sequences, where

necessary, to load data into processor registers such that the

data is in native endianness before operations are performed.

Subsequently, code sequences are inserted that transform the

results in native byte order into the resulting data’s declared

byte order before storing to memory.

 This paper first provides background on the subject by

reviewing byte order dependencies and current techniques to

mitigate issues involving them. The BEC is then introduced,

discussing the language features necessary to communicate

byte order and the underlying compiler implementation.

Feature enhancements made as a result of interaction with

customers are then discussed; these features include enhanced

diagnostics and special accomodations for pointers.

Performance optimization and evaluation is then detailed

showing techniques to improve the performance of the

implementation. The conclusion includes discussion on future

enhancements planned for the technology.

2 Background

 Endianness, or byte order, is the format of how multi-

byte data is stored in memory [3][9]. It specifies the location

of the most significant and least significant bytes that

comprise a multi-byte type such as a 32-bit integer. The two

types of endian architectures are termed Big-Endian and

Little-Endian. Discussions on the advantages and

disadvantages of each has been characterized to being akin to

a religious war [4][6]. Regardless, both big-endian and little-

endian architectures exist and this can cause problems when

migrating between architectures due to byte order dependent

code. Figure 1 shows a code snippet and sample output which

is different depending upon the byte order of the processor

architecture. On a big-endian processor, where the most

significant byte is stored in the lowest memory address, the

pointer ap points to 12. On a little-endian processor, where

the least significant byte is stored in the lowest memory byte

address, the pointer ap points to 78. Legacy code bases built

up over several years by many different programmers can be

Int'l Conf. Embedded Systems and Applications | ESA'11 | 55

littered with such snippets of code motivated in many cases by

optimization; assuming the location of a smaller subset of

bytes in a multibyte element saves in terms of memory

transactions.

 Techniques of transforming byte order dependent code

into endian-neutral code are well understood [1][7]. In the

previous example, macros could be defined whose

implementation would be platform dependent, but would

agree upon which byte of a larger component is considered

first, second, and so on. The techniques require the

programmer to first identify byte order dependent code and

make manual code changes to enforce endian-neutrality. In

comparison, BEC does not require the programmer to find the

specific byte order dependent code, but to only identify the

byte order of the data. The compiler enforces that the correct

byte order semantics are being executed. In the example from

Figure 1, if the code was written to assume big-endian, the

programmer only specifies that the variable a is big-endian

and the compiler ensures that the expectation is met.

 A second approach to migrating byte order dependent

code is encapsulated by binary translation techniques [8].

These techniques encompass more in that they enable

execution of one processor’s instruction set architecture (ISA)

on a processor with a different ISA by intelligently and

efficiently translating between the two. This approach is

attractive due to its relative ease of use for the customer;

Apple employed its Rosetta technology to help migrate from

the PowerPC architecture to Intel architecture. Compared to

BEC, this approach typically incurs greater overhead as the

application is translated during runtime without the benefit of

aggressive static compiler optimization techniques.

3 Bi-endian Implementation

 Byte order is a type attribute and can be bound to a

builtin type, typedef or to a type as part of a variable

declaration. The byte order attribute can be bound to pointer

types, floating point types, and be part of a type chain

consisting of multiple pointer indirections, integral, and

floating point types. The language constructs and compiler

implementation comprising the technology is numerous. High

level components are detailed here and provide a basic

understanding.

3.1 Language Features

 The primary function of the language extensions is to

enable the programmer to communicate the byte order of

translation units, code sections, and individual declarations to

the compiler. Figure 2 shows a code sample employing each.

The source file, file.c, is compiled using the –little-endian

option which specifies all data declarations in the translation

unit are little-endian. This method is termed an implicit

endianness declaration. The variable, a, would be stored in

little-endian byte order. In the file, #pragma byte_order

(push, bigendian), specifies that declarations following the

pragma are big endian. The variable, b, would be stored in

big-endian byte order. In addition, the optional parameter

push specifies that a stack of byte orders is maintained which

enable byte order declarations spanning nested include files.

This declaration method is also implicit and overrides the byte

order specified at the command line. A section of code that

has an implicit declaration bound to it is termed a big- or

little-endian section (depending on the specified byte order).

At the finest granularity an explicit declaration occurs via a

byte order attribute. The variable, c, would be stored in big-

endian byte order. The byte order attribute overrides both

implicit methods.

3.2 Compilation Phases

 Similar to many modern compilers, the BEC is

multiphase, transforming one representation of the code to

another beginning with the source code and concluding with

the executable. Figure 3 illustrates the compilation phases.

 The front-end phase parses the source code and

transforms it into an abstract syntax tree (AST). During this

phase, byte order attributes are associated with the program

types represented in the AST and are dependent upon the byte

order context at the point of declaration and as discussed in

the previous section.

 The BEC employs a proprietary Intermediate Language

(IL) to represent the program under compilation. The IL

translation phase converts the AST representation into this IL

representation. Translated variables may have byte order

conversion operations (BOCOs) placed both before and after

Figure 2. BEC Byte Order Declarations

.

icc –little-endian file.c

/* file.c */

int a = 0x12345678; /* little-endian */

#pragma byte_order (push, bigendian)

int b = 0x12345678; /* big-endian */

#pragma byte_order(pop)

int __attribute__((bigendian) c=0x12345678; /*big-

endian */

Figure 1. Byte Order Dependent Code Example

.

#include <stdio.h>

int a = 0x12345678;

char *ap = (char *)&a;

printf("%2x %x\n", *ap, a);

Output on a big endian processor:

12 12345678

Output on a little endian processor:

78 12345678

56 Int'l Conf. Embedded Systems and Applications | ESA'11 |

the variable in cases when its type has a byte order opposite of

the underlying target.

 The optimization phase operates on the IL representation

to make execution of the code on the target platform more

efficient. Since the BOCOs are represented in the IL just as

any other instructions, standard compiler optimization can be

applied. These optimizations and a description of each

include:

 common subexpression elimination – removes

redundant BOCOs for unused data

 code motion - moves BOCOs up to the function

entry which reduces the number of BOCOs

 constant propagation - determines if a constant that

requires a BOCO has already been loaded (and

converted) which eliminates unnecessary BOCOs.

 In addition, an optimization solely designed to remove

redundant BOCOs is invoked. This optimization, termed the

bswap elimination optimization, is described in a later section.

 The code generator phase converts the IL representation

into the binary code specific to the target platform. BOCOs

are implemented using either hardware shift instructions or

BSWAP instructions. Hardware BSWAP instructions provide

an efficient method of converting between byte orders.

3.3 Data Initialization

 In the BEC pointer data types can also be attributed with

a byte order. As a result there may be situations where a

pointer has the opposite byte order as the target platform.

Pointer variables possessing opposite byte order types must be

byte swapped upon initialization. This presents a challenge

when pointers are initialized by link time constants because

these constants are unknown at compile time and are resolved

later at the linking stage.

 In order to perform the necessary byte swap operations

for pointers, the compiler generates and places special

initialization data in a section of the object file, the .initdata

section. This information is used in a three step data

initialization process detailed as follows:

1. At the static data initialization step, a post link tool

is employed which initializes data that can be

initialized statically such as data that does not have

relocations associated with it.

2. The dynamic loader initialization step is optional

and requires a modified operating system loader.

3. The dynamic runtime initialization step, employs a

run-time routine to initialize data stored in the

opposite byte order as the underlying platform. This

routine is automatically invoked prior to passing

control to the main routine.

4 Advanced Features

4.1 Diagnostics for Code Endianness Issues

 With the bi-endian technology it is possible to execute

code that possesses mixed endian semantics; some of the data

is little-endian and some is big-endian. In combination with

the fact that C and C++ are not type safe, this introduces

special considerations. For example, conversion between

pointers to values of different sizes (for example between

char * and int *), while safe in code that employs little-endian

types, may result in an incorrect pointed–to value in code that

employs big-endian types executing on a little-endian

architecture. Standard compiler diagnostics are extended to

account for pointer casts of different sizes.

 The compiler also implements byte order specific

warnings. For instance, when a function is declared implicitly

the compiler would assume its parameters have the byte order

that is implicitly declared at the function call. In the general

case, the implementation of the function may assume a

different byte order. The compiler emits a diagnostic in these

cases to discourage such programming practice.

 The compiler also emits a diagnostic when it detects

adjacent bit fields of opposite byte order. Big-endian and

little-endian bit fields are allocated differently in their

containers. As a result, bit fields of different byte order would

overlap if they were allowed in the same container.

 The void type allows a byte order to be attributed to it.

This alleviates potential issues casting through the void type

where the original and final casted type is of opposite byte

order.

Figure 3. BEC Compilation Phases

.

BEC

Source

code

Binary

code

Code Generation phase

Optimization

phase

IL translation

phase

Front-End phase

Int'l Conf. Embedded Systems and Applications | ESA'11 | 57

4.2 Handling Parameters Passed by Pointer

 When data of a primitive type is passed by value to a

function that expects data of the opposite byte order, the BEC

ensures correctness by automatically converting the byte

order. However, if a pointer to big-endian data is passed to a

function expecting a pointer to little-endian data, or vice

versa, the compiler cannot automatically perform the

conversion. For example, when an array is passed and the size

of the array is not statically known, the compiler cannot

determine how many data elements to swap.

 There are cases where the compiler manages to modify

the code to solve this problem and preserve the intended

semantics. The most typical case is a big-endian local variable

in the user code whose address is passed to a system function

expecting a pointer to little-endian data. The BEC may

convert the local variable to little-endian byte order if it can

prove that such a change is safe. In a more complex scenario,

a local variable may be used in both big- and little-endian

contexts. In this case, the application of a copy-in/copy-out

approach is employed if proven to be safe. Finally, if a global

variable is passed as a parameter in big- and little-endian

functions then endianess of the formal parameter of the

method may be changed. This may require function

specialization techniques.

 Finally, if the compiler does not manage to automatically

convert the specific mismatch it issues a diagnostic. The

programmer would need to manually convert between byte

orders for correct operation.

5 Performance Evaluation and

Optimization

 In addition to implementing traditional compiler

optimizations, the BEC implements several byte order-

specific optimizations to reduce the overhead of byte order

swap operations added at the boundaries of big- and little-

endian code.

5.1 Bswap Elimination Optimization

 The Bswap elimination optimization is based on the

concept of swap-tolerant expressions, which is defined as an

expression that can be replaced with another expression

operating on (some or all of) arguments of different byte order

and producing a valid result of the same or a different byte

order.

 For example, a comparison to a constant (e.g. x ==

0x12345678) is swap-tolerant since it has a counterpart (y ==

0x78563412) which if given a swapped argument SWAP(x)

would produce the same result as the original expression.

 A bit-wise AND is swap-tolerant since there is an

operation (the same AND) such that taking the swapped

arguments it would produce the correct but of different byte

order result.

 Arithmetic (+, -, *, /) operations are not swap-tolerant

since they strictly require data of specific byte order to

produce correct results.

 Domain is defined as a set of expressions of the code

under compilation.

 Domain entry is an expression outside the domain, result

of which is taken as an argument by an expression belonging

to the domain.

 Domain exit is an expression outside the domain that

takes a result of an expression belonging to the domain as an

argument.

 A Swap-tolerant domain is defined as a set of swap-

tolerant expressions that can be replaced by their counterpart

expressions such that if some or all of the domain arguments

are replaced with data of different byte order then all the

domain results would be valid results of the same or a

different byte order.

 Swap of the domain is a code transformation involving

the following two actions:

1. Changes byte order of some or all of the domain

entries and exits by placing or removing byte swap

operations at necessary domain entries and exits.

2. Substituting all expressions in the domain with

their counterparts operating on different byte order,

so that code semantics are preserved. Byte swap

operations are removed if the entry or exit

expression is a byte swap.

Example:

 T1 = SWAP(A)

 T2 = SWAP(B)

 RES = T1 == T2

 The expression “T1 == T2” comprises a swap-tolerant

domain, expressions “SWAP(A)” and “SWAP(B)” are

domain entries, assignment “RES = ...” is a domain exit. A

domain swap would be:

 T1 = A //byte swap is removed

 T2 = B //byte swap is removed

 RES = T1 == T2 //byte order of result is the same

58 Int'l Conf. Embedded Systems and Applications | ESA'11 |

 Domain swap benefit is an estimate of the performance

benefit from the swap and is computed by factoring in the

amount of code removed minus the amount of code added

(taking into account execution cycle counts of specific

instructions placed and removed).

 To build a swap-tolerant domain one should start with

any swap-tolerant expression or from a byte swap desired to

be removed and extend the domain with connected swap-

tolerant expressions. If further domain extension is either

impossible or performance negative, convert the current

domain and move to the next expression.

5.2 Data Byte Order Choice

 The BEC discussed in this paper is primarily used to

compile legacy code to execute on modern little-endian

architectures. One typical usage model is where the

programmer marks all of the legacy code as big-endian rather

than determining and employing explicit byte order

declarations on the minimal set of data. In this use case, the

compiler adds BOCOs after loads and before stores of the

data even when its byte order is not really sensitive. A second

usage model is in a mixed endian environment where the user

application requires big endian semantics and the underlying

operating system is a commercial offering for the target

requiring little endian semantics. This usage model also has a

fair number of additional, but semantically unnecessary

BOCOs.

 Another optimization that improves performance is

related to the choice of the actual data byte order. At times,

the compiler can prove that the programmer specified byte

order has no impact on the program semantics. In cases where

data with opposite byte order would perform better, the

compiler will convert the data to employ that byte order.

 The byte order of the data (variables, data structures,

heap data, function arguments, etc) is not visible to

programmer if all of the stores and loads of the data are of the

same size.

 Figure 4 is a flow chart that represents the algorithm

used to prove that all stores and loads of the data are of the

same size. For example, byte order of a top level static

variable, address of which is never taken is not visible to the

programmer.

 Data byte order visibility is calculated conservatively,

i.e. treat byte order as visible if not proved otherwise. To

define byte order visibility of function arguments the compiler

additionally ensures that all the calls of the function are

known (including indirect calls).

 An implementation works on two compilation passes.

On the first pass it accumulates information about data usage

and also calculates byte order preference from the

performance perspective. At the second pass, the data usage is

adjusted according to the selected byte order for each specific

piece of data. To reduce compile time the BEC may

heuristically break analysis and make conservative decisions.

5.3 Performance

 To estimate the penalty for the BOCOs a modified

version of little-endian benchmarks was used: the benchmarks

were adapted and compiled to execute with big-endian

semantics. The execution times were compared with the

original benchmarks compiled as a regular little-endian code.

 Table 1 shows the performance impact of the

benchmarks compiled as big-endian (system libraries

compiled as little-endian) compared to the same benchmarks

compiled entirely as little-endian. The benchmarks
i
 comprise

the C benchmarks in SPEC2000 and EEMBC 1.1. The

benchmarks were executed on systems based upon the Intel®

Atom
TM

 processor and the Intel® Core
TM

 i7 processor under

both 32 and 64-bit modes as detailed in the table. The Intel®

Atom
TM

 processor-based system executed at 1.66 GHz,

included 2GB RAM, and ran Ubuntu Linux 10.04. The Intel®

Core
TM

 i7 processor-based system executed at 3.33 GHz,

included 6GB RAM, and ran Red Hat Enterprise Linux5.U2

x86. The Intel® C++ Compiler Standard Edition for Linux*

OS with Bi-Endian Technology, version 11.2, was employed

in all cases.

Figure 4. Determining Byte Order Sensitivity

.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 59

Table 1. Penalty for the Byte Swaps

CPU Mode

Overhead compared to

little-endian

Benchmarks Geomean

Intel® Atom
TM

Processor
32 1-13% 5.6%

Intel® Core
TM

i7 Processor
32 1-14% 8.5%

Intel® Core
TM

i7 Processor
64 5-30% 13.8%

 There are two reasons for the overhead. The first is that

byte swap operations take time. The overhead depends on the

efficiency of byte swap elimination optimizations.

Performance impact of the bswap operations also depends on

the efficiency of byte swaps on underlying computer

architecture. For that reason the gap on the Intel® Atom™

architecture having the MOVBE instruction is lower.

 The second reason is that the presence of the byte swaps

might be an obstacle for optimizations to generate good code.

For example, byte swaps in a loop may prevent it from being

vectorized. Byte swap eliminations applied at an early

compilation phase usually helps to minimize this issue.

 The overall impact of byte swap elimination on geomean

score for the selected benchmarks is about 10-15%. There are

tests (e.g. in the EEMBC suite) which improve their

performance in times when these optimizations are applied.

6 Conclusions

 The BEC enables migration of large legacy code bases

containing byte order dependencies. The BEC does not find

the specific byte order depedencies, but instead enables the

application to execute with the same byte order semantics as

which it was produced. This paper detailed the design of the

bi-endian technology, extensions to aid in its use, and

performance optimizations. A performance assessment shows

the overhead of employing the BEC as ranging from 5.6% to

13.8% on a range of benchmark programs. Future research

directions include enabling full use of C++ features such as

operator overloading with bi-endian types.

7 Acknowledgements

Our thanks go to Hugh Wilkinson, Matt Adiletta, Bob Kushlis

and Jack Johnson for early work on the Bi-Endian Compiler.

We thank Azita Refah, Peter Horn, Michael Rice, Kittur

Ganesh, Xinan Tang, Damion Desai, Greg Anderson, Joe

Wolf, and Kevin J. Smith for their contributions to this project

spanning multiple years.

8 References

[1] Adiga, H. Writing Endian-Independent Code in C.

Retrieved April 24, 2007 from,

http://www.ibm.com/developerworks/aix/library/au-

endianc/index.html?ca=drs-.

[2] Adiletta, M., Wilkinson, H., and Kushlis R., “Method and

apparatus for implementing a bi-endian capable

compiler,” U.S. Patent 7 552 427, June 22, 2006.

[3] Blanc, B. and Marraoui, B. Endianness or Where is Byte

0. Retrieved Dec. 21, 2008 from, http://3bc.bertrand-

blanc.com/endianness05.pdf.

[4] Cohen, D. 1981. On Holy Wars and a Plea for Peace.

IEEE Computer 14, 10 (Oct. 1981), 48-54. DOI=

http://dx.doi.org/10.1109/C-M.1981.220208.

[5] Domeika, M. 2008. Software Development for Embedded

Multi-core Systems. Elsevier Inc., Burlington, MA, 93-99.

[6] James, D. 1990. Multiplexed Buses: the Endian Wars

Continue. IEEE Micro 10, 3 (Jun. 1990), 9-21. DOI=

http://dx.doi.org/10.1109/40.56322.

[7] Matassa, L., Endianness Whitepaper, Retrieved May 13,

2008 from, Intel Software Network:

http://software.intel.com/en-us/articles/endianness-

whitepaper/.

[8] Souloglou, J., Rawsthorne, A., “Program code

conversion,” U.S. Patent 7 421 686, Sept. 2, 2008.

[9] Understanding Big and Little Endian Byte Order.

Retrieved Sept. 19, 2006 from, Better Explained:

http://betterexplained.com/articles/understanding-big-and-

little-endian-byte-order/.

i
 The benchmark results are not official results because the

source code was modified to execute with big endian

semantics.

Refer to:
 http://software.intel.com/en-us/articles/optimization-notice

for more information regarding performance and optimization

choices in Intel software products.

60 Int'l Conf. Embedded Systems and Applications | ESA'11 |

http://www.ibm.com/developerworks/aix/library/au-endianc/index.html?ca=drs-
http://www.ibm.com/developerworks/aix/library/au-endianc/index.html?ca=drs-
http://3bc.bertrand-blanc.com/endianness05.pdf
http://3bc.bertrand-blanc.com/endianness05.pdf
http://dx.doi.org/10.1109/C-M.1981.220208
http://dx.doi.org/10.1109/40.56322
http://software.intel.com/en-us/articles/endianness-whitepaper/
http://software.intel.com/en-us/articles/endianness-whitepaper/
http://betterexplained.com/articles/understanding-big-and-little-endian-byte-order/
http://betterexplained.com/articles/understanding-big-and-little-endian-byte-order/

Model transformation and scheduling analysis of an AUTOSAR system

Ahmed Daghsen, Khaled Chaaban, Sébastien Saudrais
ESTACA campus ouest

Embedded systems laboratory
Laval, 53000, France

ahmed.daghsen@estaca.fr

Mohamed Shawky
Université de Technologie de Compig̀ne

Heudiasyc laboratory
Compiègne, 60200, France

mohamed.shawky@hds.utc.fr

Abstract— AUTOSAR standard provides a common
framework for software development in the automotive
domain. It enables to manage the growing of the automo-
tive architecture complexity by facilitating the integration
and reuse of software components. However, additional
work is needed to enable scheduling analysis and to
handle with more timing properties in the system. In
this paper, we propose an approach to enable a model
transformation of the AUTOSAR timing model to a
classical scheduling one. This allows to apply directly
fundamentals scheduling theories for timing analysis.
Then, we apply our approach through a steering-by-wire
case study. Finally, we analyze the results given by the
holistic algorithm and those given by a compositional
one.

I. INTRODUCTION

Many automotive applications are considered as
time-critical or at least time-dependent. Thus, precise
timing and prioritization of functions are essential for
both safety and comfort of in-vehicle applications.The
AUTomotive Open System ARchitecture (AUTOSAR)
standard [1] is introduced to define a standard lay-
ered software architecture and interfaces. Many im-
provements and extensions to the current AUTOSAR
system model have been developed recently to handle
all timing-related information during the development
process. Thus, complexity and development cost cycle
are reduced significantly while reliability is improved.
AUTOSAR allows an easy integration of timing infor-
mation, however, few works use these timing properties
and constraints to make a global timing analysis of
the system. The local timing analysis addresses tasks
scheduling regarding an Electronic Control Unit (ECU),
and global scheduling considers the global distributed
system where communication bus and gateways must
be analyzed together with ECUs tasks. We can distin-
guish between local and global timing analysis. Where

local timing analysis addresses tasks scheduling regard-
ing a processor or an ECU, global scheduling considers
the global distributed system where communication
bus and gateways must be analyzed together with
ECUs tasks. There are several problems related to such
distributed system that must be addressed, such as task
synchronizations and communication dependencies be-
tween processes. In this paper we propose an approach
to enable a transformation of AUTOSAR timing prop-
erties and constraints into a complete scheduling model.
By using this model, we can apply directly existing
scheduling theories to the AUTOSAR application. As

INPUT SYSTEM :

AUTOSAR
Timing extensions

 SYSTEM :

AUTOSAR
Scheduling analysis

OUTPUT SYSTEM :

AUTOSAR
Scheduling model

Model

Transformation

Applying

scheduling methods

1 2

Fig. 1. AUTOSAR model transformation

shown in figure 1 the approach consists of two main
steps. The first step consists in applying a model
transformation to convert AUTOSAR timing model to
a scheduling model. The second step permits to apply
the scheduling techniques for a global timing analysis
of the AUTOSAR system. We show that this analysis
allows to take into account further timing properties
like task synchronizations, process communications
modeled as offsets, jitter, constrained deadlines, pro-
cess preemption and blocking overheads. The proposed
method is applied to a steering-by-wire case study and
we analyze scheduling results given by both a holistic
and compositional scheduling approaches.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 61

II. AUTOSAR METHODOLOGY

In this section, we present a brief description of
AUTOSAR methodology. Figure 2 describes the devel-
opment process structure of an AUTOSAR software.

Deployment of SWCs

To ECUs

Fig. 2. AUTOSAR methodology

The first step consists on the definition of software
components (SWCs) constituting the user software
applications. SWCs communicate using ports through
their interfaces. A SWC may be one of the three
types: sensor/actuator, application or calibration type.
Each SWC contains runnable entities which represents
the C code that will be executed on the ECU. A
runnable is triggered using an event which may be
of timing or data type. In second step, at the Vir-
tual Functional Bus (VFB) level, SWCs are defined
without consideration of the underlying hardware on
which these SWCs will run on later. So, two software
components might run on the same ECU or on different
ECUs and this is completely transparent to software
developers. The communication between the compo-
nents is then either an intra-ECU communication or an
inter-ECU communication and is routed via the VFB
bus which allows a virtual integration of the system
independently of underlying software and hardware.
Next, the mapping of the SWCs to available ECUs is
performed. This phase requires some information about
system and ECU constraints such as the input/output
hardware connection. Finally, we can proceed by the
development and integration of each ECU. The soft-
ware architecture of an ECU is composed of three
main layers: the SWCs, the Run Time Environment
(RTE) and then the Basic Software (BSW) layer. The

SWCs contain the application’s functional code. RTE
represents an instance of the VFB bus per ECU. It
provides standardized interfaces to communicate with
the BSW layer and to communicate between SWCs
themselves. Data exchange between SWCs themselves
and between SWCs and the underlying BSW layer is
performed exclusively via RTE. Depending on SWCs
locations, data exchange is performed either directly
via a shared memory or by sending messages via a
network bus. BSW layer makes the link between RTE
layer and all hardware features of the ECU.

III. SYSTEM SCHEDULING ANALYSIS

In this section, we present related works dealing with
timing analysis in AUTOSAR system and the existing
formal approaches for system level performance anal-
ysis.

a) Scheduling in AUTOSAR: few works are deal-
ing with the exploitation of AUTOSAR timing exten-
sions for timing analysis. In the scope of TIMMO
project, [6] gives a general framework for the relation
between AUTOSAR concepts and timing constraints.
They have proposed also an extension of AUTOSAR
standard towards the possibility to specify the system’s
timing constraints. Thus, a scheduling analysis of an
AUTOSAR application can be performed at the low-
level. But the resulting task timing reveals hardly any
direct timing-relation with high-level software com-
ponents to which timing information shall finally be
attached.

b) Compositional & Holistic scheduling: com-
positional performance analysis enables performance
analysis for complex heterogeneous embedded archi-
tectures and supports subsystem integration [4]. This
approach consists of integrating either offline or online
scheduling analysis techniques into a system-level anal-
ysis. On the other hand, holistic analysis [8] introduced
by Tindel, refers to a consistent end-to-end response
time analysis approach for multi-processor real-time
systems, where processors communicate over a bus and
offline scheduling methods could be applied for timing
analysis. The holistic technique also captures the timing
using system-level equations. However, flexibility, sub-
system integration and scalability are major weaknesses
of holistic techniques. Recent works of Turja and
Nolin [5] presented a method for calculating tighter
(i.e. lower) response-times. Their method, under certain
conditions, calculates the exact worst-case response
time with offset. In practice the holistic approach is

62 Int'l Conf. Embedded Systems and Applications | ESA'11 |

used in system configurations having low dependency
complexity such as deterministic TDMA network. [2]

IV. TRANSFORMATION OF THE AUTOSAR MODEL

Our approach aims to perform a transformation of
AUTOSAR timing properties and constraints into a
complete scheduling model. By using this model, we
can apply existing scheduling theories to the AU-
TOSAR application.

A. AUTOSAR input model

We consider an AUTOSAR system model as an input
of the transformation process. The main timing related
concepts of this model (AUTOSAR release 4.0) are:
• SWC: encapsulates a part of the functionality of

the application.
• Event timing chain: Temporal correlation between

two observable events.
• Period: Time interval between two consecutive

event occurrences.
• Jitter: The maximum variation of timing event

period
• Latency: The time duration between the occur-

rence of the stimulus and the occurrence of the
response.

• Runnable: Is a part of an atomic software compo-
nent which can be executed and scheduled inde-
pendently.

In this model, a task is called an end-to-end chain
which consists of a set of subchains and has an end-to-
end deadline. Each subchain is assigned a proper pri-
ority and its worst-case response time can be bounded.

B. Model transformation

Table I illustrates some relationship between
scheduling system model and the AUTOSAR timing
concepts one. The output model consists of an end-to-
end system model which is used as the basis of this
work.

AUTOSAR model System model
Subchain Subtask

ECU Processor
Communication bus Link processor

Latency Release time
Runnable Subtask

TABLE I
RELATIONSHIP BETWEEN SCHEDULING SYSTEM MODEL AND

AUTOSAR 4.0 CONCEPTS

In real-time system, an end-to-end system consists
of more than one processor and a set of end-to-end
tasks. In our model, the workload on a multiprocessor
Pi system consists of a set Ti of end-bend tasks, each
of which is a periodic task with period pi, phase fi,
execution time ti, and relative deadline Di. In this paper,
we assume that the relative deadline of a task is less
than or equal to its period, i.e., Di ≤ pi. The release
time of the first instance of Ti,1 is the phase fi of task
Ti. An instance of Ti, j cannot start to execute before
the complete execution of Ti, j−1. A task Ti is a chain of
subtasks Ti, j. Each subtask Ti, j is one continuous execu-
tion thread of Ti on one processor and has a maximum
execution time Yi, j and a fixed priority prioi, j. Subtasks
are statically assigned to processors. Subtask Ti, j is a
predecessor (successor) of subtask Ti,k if j < k (j > k),
and Ti, j is the immediate predecessor (successor) of
Ti,k if they are also adjacent (| j−k |= 1). The system
model imposes strong restrictions on tasks properties.
We consider both preemptive and non-preemptive tasks
and subtasks. We also assume a common time base for
all processors and we consider the jitter and the offset
of periodic tasks.

V. CASE STUDY

The main objective of this section is to apply both
the holistic and compositional analysis to a steering-by-
wire case study. We begin by presenting the steering-
by-wire system, which is developed in our labora-
tory. Then, we apply our approach using a holistic
scheduling algorithm: Per Task Time Demand function
(PTTDF). Finally, we simulate the system using a com-
positional scheduling tool and we analyse the results of
each scheduling approach.

A. Steering-by-wire system

As depicted in Figure 3, a basic steering-by-wire sys-
tem is composed of three main blocks: the hand wheel
(i.e. steering), controllers and the road wheels. When
the driver operates the hand wheel to turn the vehicle, a
steering angle signal will be sent to the controller. Two
kinds of sensors are necessary to acquire the steer angle
and the torque applied by the driver. The controllers
will process all acquiring signals and also perform

Fig. 3. Steering-by-wire system

Int'l Conf. Embedded Systems and Applications | ESA'11 | 63

Fig. 4. Implementation of the rack torque function in AUTOSAR

some control functions associated with the vehicle’s
steering function and output an actuator angle for the
road wheels that in turn will turn the wheels through
an actuator. The feedback signals (actuator feedback
and wheel feedback) involve some kind of force or
torque sensors and are necessary so that the driver
get the feeling of turning a traditional steering wheel
and feel the effect of turning the wheels on a certain
type of road. The steering-by-wire system may be
composed of two main functions: the feedback torque
function and the rack torque function. The feedback
torque function permits to compute the feedback force
applied to the steering wheel, so that the driver feels
the effect of tuning the wheels on a certain type of
road. The rack torque function is the main system
function that permits to control the front axle actuator.
The distributed steering-by-wire architecture involves
several components: ECUs, Flexray bus for the com-
munication lines and appropriate sensors and actuators.
Flexray technology provides higher bandwidth, fast
communication, fault tolerant and deterministic latency,
enabling the development of innovative automotive
system. Figure 4 illustrates the implementation of the
rack torque function according to AUTOSAR approach.
At the VFB level, the signal path involves four com-
ponents. The ”Steer Sensor” component acquires the
sensor physical data and passes it to the application
software component ”Steer Manager”. Afterwards the
signal is sent to the application software component
”Wheel Manager” for order computation until it is
finally send to the actuator via the ”Wheel Actuator”
component. At the system level, we map SWCs to
available ECUs and then we configure RTE and BSW
modules. In our case study we have only two ECUs:
the steer ECU and the wheel ECU.

B. Applying scheduling algorithm to the AUTOSAR
transformed model

We consider the system model obtained after the
transformation process. Note that in AUTOSAR, and

end-to-end task passes by three stages: from hardware
to software represented by the transformation of data
from the physical sensor to the sensor SWC (e.g. steer
sensor or wheel sensor SWC), the second stage is all
the actions that pass between the sensor SWC till the
software control represented by the actuator SWC. The
last stage is the interface that is done between the
actuator SWC and the physical actuator (as shown in
Figure 5). Each function, feedback torque function and
rack torque function is represented as an end-to-end
task. Then, the steering-by-wire system is represented
by two end-to-end tasks. Let’s note T1 as the rack torque
end-to-end task and T2 as the feedback torque end-to-
end task:
T1: has 17 subtasks: T1,1, T1,2, T1,3, T1,17.
T2: has 17 subtasks: T2,1, T2,2, T2,3, T2,17.
Each end-to-end timing chain segment in AUTOSAR
model corresponds to a subtask. Subtasks of each
function are executed on a specific ECU. As noted
above, we have two processors: P1 at the steer side and
P2 at the wheel side. The communication bus represents
a link processor P3.

We remind that each process can be specified as a
constrained deadline periodic task T=(O; J; p; t; D),
where O is offset, J is jitter, p is period, t is the
execution time, and D(≤ T) is deadline. Priorities are
fixed with respect of precedence constraint.

After having established the AUTOSAR scheduling
model, we can now apply the PTTDF holistic algo-
rithm. This algorithm presented in [7] allows to com-
pute the tighter upper bounds of the response times of
the end-to-end tasks in static systems. After computing
the different equations of the algorithm, we obtain:

• The upper bound of task T1: C1 = 133 > 50 then
T1 is not schedulable.

• The upper bound of task T2: C2 = 203.91 >> 50
then T2 is not schedulable.

Finally, according to the proposed algorithm and the
obtained results the system is not schedulable.

C. Compositional analysis

In order to make a compositional analysis of the
steering by wire system we use the SymTA/S tool [3]. It
is a formal system-level performance and timing anal-
ysis tool of distributed systems. The approach is based
on the compositional analysis. It permits to couple local
scheduling analysis algorithms using event streams.
Event streams describe the possible input/output timing
of tasks.

64 Int'l Conf. Embedded Systems and Applications | ESA'11 |

T1,1 T1,2 T1,3 T1,4 T1,5 T1,6 T1,7 T1,8 T1,9 T1,10 T1,11 T1,12 T1,13 T1,14 T1,15 T1,16 T1,17

Fig. 5. End-to-end timing representation of AUTOSAR methodology

Start

Sampling delay

5ms Execution

Steer1_Tsk_Steer1_5ms

1.6msSampling delay

5 ms

Frame transmission

Sig_InterECUSteer1

0.145 ms Sampling delay

5 ms

Execution

Wheel1_Tsk_InterECU_Steer1

0.4ms
Sampling delay

5 ms

Execution

Tsk_Wheel1_5ms

1.6 ms

End

 SteerManager1 FlexrayCluster WheelManager1

Steer1_SteerAngleData1

Steer1_Tsk_Steer1_5ms

Steer1_WheelAngle

Sig_InterECUSteer1

Wheel1_InterECU

Steer1

Wheel1_Tsk_Inter

ECUSteer1

Wheel1_OutWheel

Tsk_Wheel1_5ms

Fig. 6. End to end path of the rack torque function

By using SymTA/S analysis tool, we can calculate
the local best-case and worst-case response times for
tasks and frames, end-to-end best-case and worst-case
response times for critical paths, deadline violations,
utilization of resources, load contribution of individual
tasks and individual frames.

Figure 6 illustrates the path of the rack torque
function.

SymTA/S was used to model the steering-by-wire
system with the timing properties like the task exe-
cution time, task periodicity, task execution type (pre-
emptive, non-preemptive etc) etc. These timing models
could define the system on design level and implemen-
tation level. The feasibility of the system was found
out by using timing analysis feature available in the
tool. Figure 7 shows the response time of the end-to-
end path taking into consideration the synchronization
between calculators, the offset and the jitter constraints.

D. Results and discussion

It has been shown that the holistic approach leads to
pessimistic bounds. Since the used algorithm does not
take into account the precedence constraints of subtasks
when computing PTTD function which is the sum of
all subtasks’ execution time. This function assumes that
the subtasks of each end-to-end task are independent,
but the actual time demand may be less than the sum
because of the precedence constraints among subtasks.
Then the PTTD function can be considered as the
maximum of the sum of all subtasks. Moreover, by
considering the jitter and offset values, the obtained
bound are higher. The holistic approach is more accu-
rate by applying analytic equations. This technique is
more suitable for system configurations with simplified
equations such as deterministic Flexray and TDMA
networks. The compositional analysis is a good candi-
date for more complicated heterogeneous system. The
compositional model are well structured and uses event
stream representation to allow component wise local
analysis and also facilitates the subsystem integration.

VI. CONCLUSION

Performance analysis and timing requirements in
AUTOSAR have received a wide attention recently.
The main goal is to perform an early verification
and analysis of the system performance at the design
level and before implementation. There are few formal
approaches to heterogeneous systems. In this paper,
we have proposed an approach to transform an AU-
TOSAR timing model to a scheduling model. By this
transformation, we can apply fundamentals scheduling
techniques to the AUTOSAR system. Although, the
proposed transformation is sufficiently generic to be
integrated to other AUTOSAR architecture and com-
munication paradigms like CAN or LIN, our approach
makes several simplifications on the system model.
However, a more accurate system model must be con-
sidered in order to take into consideration the archi-
tecture complexity, tasks interdependency and the low
level layer interaction. Also, as a future work, we plan

Int'l Conf. Embedded Systems and Applications | ESA'11 | 65

Path delay: 22.745 ms

5.3 ms

5.3 ms

5.3 ms

3.7 ms

Execution Steer1_Tsk_

Steer1_5ms

InternalActivation: P (5 ms)+J (0.3 ms)

Frame transmission Sig_

InterECUSteer1

Resource: Flexray_Cluster

Execution Wheel1_Tsk_

InterECU1_Steer1

InternalActivation: P (5 ms)+J (0.3 ms)

Execution Tsk_Wheel1_5ms

InternalActivation: P (5 ms)+J (0.3 ms)

End to End delay

Delay: 22.74 ms

1.4 ms

0.14

ms

1.4 ms

0.2 ms

Fig. 7. Process with synchronization, offset = 0.2 and jitter = 0.3

to extend our system model by taking into consideration
CPU resource sharing such as shared memory, multi-
cores architecture and hardware constraints such as
pipelining and caching.

REFERENCES

[1] Simon Fürst et al. Autosar - a worldwide standard is on the
road. In 14th International VDI Congress Electronic Systems
for Vehicles, Baden-Baden, 2009.

[2] Rajesh K. Gupta and Giovanni De Micheli. System-level
Synthesis using Re-programmable Components. PhD thesis,
1992.

[3] Rafik Henia, Arne Hamann, Marek Jersak, Razvan Racu, Kai
Richter, and Rolf Ernst. System level performance analysis -
the symta/s approach. 2005.

[4] Marek Jersak. Compositional Performance Analysis for Com-
plex Embedded Applications. PhD thesis, Technical University
of Braunschweig, 2004.

[5] Jukka Mki-turja and Mikael Nolin. Tighter response-times for
tasks with offsets. 2004.

[6] M. Rudorfer O. Scheickl. Automotive real time development
using a timing-augmented autosar specification. BMW, Munich.

[7] Jun Sun, Riccardo Bettati, and Jane W. s. Liu. An end-
to-end approach to schedule tasks with shared resources in
multiprocessor systems. 1994.

[8] Ken Tindell and John Clark. Holistic schedulability analysis
for distributed hard real-time systems. Microprocess. Micro-
program., 40(2-3):117–134, 1994.

66 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Army Vehicle Software Complexity Prediction Metric-

Five Factors

M. S. Dattathreya
1
, and H. Singh

2

1
Tank Automotive Research, Development and Engineering Center, Warren, MI, USA

2
Electrical and Computer Engineering Department, Wayne State University, Detroit, MI, USA

Abstract - Army vehicle software interacts with complex

electronics from multiple vendors. The software structure

complexity is influenced by many factors prior to software

development. Understanding, predicting and resolving

complexity of vehicle software prior to its development is a

necessity for Army mission success. Current complexity

metrics focus on software and its technical structure with no

consideration of its influencing factors. Non-technical metrics

related to software complexity are required to address diverse

skill set including the management. In this paper, the authors

propose five non-technical factor metrics based on the

current software development process to predict future Army

vehicle software complexity. Fuzzy logic techniques are used

for developing, modeling and analyzing the software

complexity prediction metric.

Keywords: Metrics, Process Metrics, Reliability, and

maintainability.

1 Introduction
3

 ARMY has to perform several critical complex functions

to defeat enemy forces. To carry out a mission, the Army uses

vehicles including armored fighting, medical, and mortar

carrying vehicles. These vehicles have multiple electronic

devices and computing resources. The vehicle on-board

devices are from multiple vendors and have unique software

interfaces. These devices interact with each other using a

complex network. The Army battle success depends on

effective interoperable communications between these devices

and its software.

 The Army vehicles’ devices are real-time and are

controlled by embedded operating systems. The Army

vehicles have software related to radios, navigation,

diagnostics, etc. For the Army, the vehicle software is crucial

3
 This document is UNCLASSIFIED: Dist A. Approved

for public release.

and any complexity in it hinders the mission success. The

Army software is developed under intense tight requirements

using multiple vendors. The software has millions of lines of

code. They are developed using many different programming

languages and require efficient integration to minimize

possible software complexity. The Army has to focus more on

its vehicle software complexity than any other commercial

software, because, the Army environment is dynamic and its

requirements are changing frequently to meet mission needs.

The complex software in an Army vehicle introduces many

defects and makes it difficult to understand the software and

correct the defects in a relatively faster pace. If the software

cannot accommodate frequent changes in a faster way, the

vehicles cannot perform its intended function and it is not

acceptable to the Army. There is a bigger need for identifying

metrics to predict the Army vehicle software complexity in

very early stages of its development cycle. Many researchers

have postmortem historical software and identified the

reasons why a given software structure is complex, but, to our

knowledge, no body has made an attempt to identify the Army

vehicle software complexity contributing factors by inspecting

the current software development process.

 We define true software complexity as a combination of

three main elements i.e. reliability, availability, and

maintainability (RAM). Reliability (R) is the probability of

performing a required function under stated conditions for a

specified period of time [1]. Availability (A) is a measure of

the degree to which software is in an operable state and can be

committed at the start of a mission when called for at an

unknown (random) point in time. Availability as measured by

the user is a function of how often failures occur and

corrective maintenance is required, how often preventative

maintenance is performed, how quickly indicated failures can

be isolated and repaired, and how quickly preventive

maintenance tasks can be performed [1]. Maintainability (M)

is the ability of software to be retained in, or restored to, a

specified condition when maintenance is performed by

personnel having specified skill levels, using prescribed

procedures and resources, at each prescribed level of

maintenance and repair [1]. If the software is complex, its

reliability is hard to achieve, due to this, the software may

suffer availability issues. If the software is hard to understand,

Int'l Conf. Embedded Systems and Applications | ESA'11 | 67

hard to fix defects, then the maintainability suffers. The

bottom-line is, the RAM controls the entire software

dependability, and without it the Army cannot perform its

intended functions. These arguments confirm that the software

complexity is really consisting of RAM elements.

 The complexity is influenced by many factors prior to

software development. Understanding, predicting and

resolving complexity of vehicle software prior to its

development is a necessity for Army mission success. In this

paper we describe the proposed software complexity

prediction metric for Army vehicle software. We describe the

proposed software complexity prediction metric in the

subsequent sections.

2 Related Work

 The McCabe’s [2] software complexity introduces the

concept of Cyclomatic Complexity, where the number of flow

graph edges, nodes and predicate nodes are combined to

represent the complexity. The Cyclomatic Complexity of a

source code is the linearly independent paths count through

the source code.

 The Halstead [3] software complexity measures the

complexity by counting number of operators and operands in

software. It measures the software's ability to understand and

estimates the effort required to develop a software algorithm.

It also indicates the amount of time to implement an

algorithm. Halstead metrics are difficult to calculate and it is

very hard to count the distinct and total operators and

operands in a software program.

 The Henry and Kafura [4] provide the measure of

couplings between modules in terms of number of parameters,

global variables and function calls. It measures given

software’s procedure, module and interfaces.

 The Entropy software complexity measure [5] is based

on the average information content of each operator in a

software program's source code.

 The Cognitive weights [6] from Jingqiu Shao and

Yingxu Wang models the software complexity based on the

cognitive functional size of the software.

 The Relative complexity metrics [7] represents a single,

unified measure on the structure of a software program. It

serves to classify a set of software programs in order of their

increasing complexity in relation to each other.

 The [2], [3], [4], [5], [6], and [7] metrics are too

technical and focus only on technical structure of a software

program. These data are hard to compute and requires many

skilled resources to understand and implement solutions.

 We need metrics captured from the current software

development process documents rather than the software

itself. These metrics must be easily understood by both the

technical and non- technical resources.

3 The Software Complexity Algorithm

We propose the following to predict software complexity.

1) Technical readiness level (TRL)

2) Number of open requirements (OR)

3) Number of planned technical reviews (TR)

4) Number of planned documentation tasks (DOC)

5) Number of planned configuration management tasks

(CM)

 Subsequent paragraphs describe the proposed metric

elements and its association with R, A, and M. For predicting

the Army vehicle software complexity, all the five factors

must be considered because the combination of factors

predicts R, A, and M component of the software complexity

as shown below.

1) TRL, TR, and OR factors predict reliability.

2) TRL and TR factors predict availability.

3) DOC and CM factors to predict maintainability

 The data can be captured from the software development

project plan, development strategy, test strategy, technology

strategy, and requirements analysis documents.

3.1 Technology readiness level (TRL)

 The TRL measures evolving technologies maturity prior

to its implementation. The readiness is indicated by 1 to 9

levels.

TRL1) Basic principles observed and reported

TRL2) Technology concept and/or application formulated

TRL3) Analytical and experimental critical function and/or

characteristic proof of concept

TRL4) Breadboard validation in laboratory environment

TRL5) Breadboard validation in relevant environment

TRL6) Model or prototype demonstration in a relevant

environment

TRL7) Prototype demonstration in an operational

environment

TRL8) Actual system completed and 'flight qualified' through

test and demonstration

TRL9) Actual system 'flight proven'

 A technology with a lower TRL contributes to frequent

failures when the software is developed. This creates lower

mean time between failures (MTBF), increased downtime,

68 Int'l Conf. Embedded Systems and Applications | ESA'11 |

lower meantime between repairs (MTBR), etc. When the TRL

level is more than six it is considered mature enough to

provide good reliable software. Higher MTBF indicates more

reliable software and decreased downtime. Lower MTBR

reduces the availability of software to perform intended

functions. Careful analysis must be performed before a given

technology is chosen. The TRL is a very good indicator of

future R & A of given software.

3.2 Number of open requirements (OR)

 Open requirements have issues & unanswered questions.

Unknown clarity on the requirements contributes to

misunderstood requirements, increased redesigns, missed

schedules, un-maintainable complex modules susceptible to

higher failures and defects. These characteristics jeopardize

the reliability of future Army vehicle software.

3.3 Number of planned technical reviews (TR)

 Technical reviews are performed during software

development phases to find problems soon. If the Army

vehicle software development has planned for relatively fewer

required technical reviews, it will be hard to find the

problems. Fewer planned technical reviews increases rework,

redesign, bad coding practices, defects, etc. The technical

reviews consist of code, design, architecture, and integration

reviews. Lack of these planned reviews is a very good

indicator of future R & A of Army vehicle software.

3.4 Number of planned documentation (DOC)

 Tasks for creating technical documents are a must

requirement for software development. The higher the number

of documentation tasks scheduled for complex functionality

the lower the data integrity, interoperability, testing, and

rework issues. Documentation includes code, design,

architecture, test cases, and requirements in order to reduce

future unknowns and maintenance issues. This is a very good

indicator of future M of Army vehicle software.

3.5 Configuration management (CM)

 CM allows all parts and versions of software to be

properly integrated and documented. A greater number of

configuration management tasks scheduled for complex

functionality to reduce interoperability, maintenance, and

testing issues. CM tasks such as source and documentation

control, release schedules, etc contributes to a reduced

logistics and maintenance footprint. This is a very good

indicator of future M of Army vehicle software.

 Fuzzy logic solution offers great advantages to solve

complex problems using a number of inputs. Fuzzy logic [8]

proposed by L. A. Zadeh has been used where uncertainty and

no mathematical relations exists. Fuzzy logic provides rule

based approaches to solve a given problem using simple steps.

We propose the following Army vehicle software complexity

prediction algorithm using fuzzy logic

Step1: Read inputs S = {Software 1…. Software N} for

predicting software complexity;

Step2: for i=1 to N (for each software)

N (1) = collect TRL number from the technology

 Strategy document for software (i);

N (2) = calculate number of planned technical reviews

 (TR) from the project plan for software (i);

N (3) = calculate number of open requirements (OR)

 From the requirements analysis document for

software (i);

N (4) = calculate number of planned documentation

tasks (DOC) from the project plan for soft

ware (i);

N (5) = calculate number of planned configuration

management tasks (CM) from the project plan for software

(i);

M (i) = N; (Store N array for software (i) in M array).

 end for

Step3: Read integer inputs array from M array;

Step4: Store Fuzzy rules in array X = {rule1.... rule15};

Step5: for i = 1 to N // Loop for computing software

complexity for each software

 W = M(i) //get the ith element from W array

 for j=1 to 5

 Y(i) = fuzzify (W(i));

 end for

Step6: for i = 1 to 15

 if i <=11 then

 Z(i) = apply fuzzyrule(X(i)) on Y(1) & Y(2) & Y(3);

 else

 Z(i) = apply fuzzyrule(X(i)) on Y(4) & Y(5);

 end if

 end for

Step7: Compute Reliability, R = centroid De-fuzzufication of

 Z(1) to Z(11);

 Compute Availability, A = centroid De-fuzzufication of

 Z(1) to Z(10);

 Compute Maintainability, M = centroid De-

fuzzufication

 of Z(12) to Z(15);

Step8: Predict Software complexity from R, A, and M values

end for

4 The Software Complexity Prediction

Model

 We propose a fuzzy logic based Army vehicle software

complexity prediction model using the proposed five factors

metrics. The software fuzzy logic toolbox was used to develop

the model. The prediction model has three components i.e.

fuzzification, rule-based fuzzy inference engine, and de-

fuzzification. The model consists of five inputs, three outputs

and 15 rules. According to the predefined rules, the model

predicts the appropriate software complexity in terms of

Int'l Conf. Embedded Systems and Applications | ESA'11 | 69

RAM. Both the fuzzy inputs and outputs are modeled using

the trapezoidal membership functions. The membership

grades for TRL are described by LOW, MEDIUM, and HIGH

membership functions (Fig. 1) and all other the fuzzy inputs

are described by NOTHING, SOME and FULL membership

functions (Fig. 2). The fuzzy output’s membership grades are

described by RED, YELLOW, and GREEN membership

functions (Fig. 3).

Fig.1 TR Fuzzy input membership

Fig.2 TR, OR, CM, and DOC Fuzzy input membership

Fig.3 R, A, and M Fuzzy output membership

The fuzzy logic toolbox provides a rule-based model as a

software prototype to analyze all the inputs and compute the

output. The de-fuzzification rules are based on the proposed

five factors metrics. The list below shows the 15 fuzzy rules

to predict the software complexity using five inputs and three

outputs.

1) If TRL= LOW & TR = NOTHING & OR =NOTHING then

R = RED & A = RED

2) If TRL= LOW & TR = SOME & OR = NOTHING then R

= RED & A = RED

3) If TRL = LOW & TR=FULL & OR=NOTHING then

R=RED & A=YELLOW

4) If TRL=MEDIUM & TR=NOTHING & OR=NOTHING

then R=RED & A=YELLOW

5) If TRL=MEDIUM & TR=SOME & OR=NOTHING then

R=RED & A=YELLOW

6) If TRL=MEDIUM & TR=FULL & OR=NOTHING then

R=YELLOW & A=YELLOW

7) If TRL=HIGH & TR=NOTHING & OR=NOTHING then

R=RED & A=YELLOW

8) If TRL=HIGH & TR=SOME & OR=NOTHING then

R=YELLOW & A=YELLOW

9) If TRL=HIGH & TR=FULL & OR=NOTHING then

R=GREEN & A=GREEN

10) If OR=SOME then R=YELLOW

11) If OR=FULL then R=RED

12) If DOC=NOTHING || CM=NOTHING then M=RED

13) If DOC=SOME & CM=SOME then M=YELLOW

14) If DOC=SOME & CM=FULL then M=YELLOW

15) If DOC=FULL & CM=FULL then M=GREEN

 R in the RED membership grades indicates that the

reliability component of the Army vehicle software

complexity is in trouble and needs significant improvements

in “TRL” or “TR” or “OR”. A in the RED membership grades

indicates that the availability component of the Army vehicle

software complexity is in trouble and needs significant

improvements in “TRL” or “TR” factors. Similarly, M in the

RED membership grades indicates that the maintainability

component of the Army vehicle software complexity is in

trouble and needs improvements in “CM” or “DOC” factors.

The output values of YELLOW indicate that some

improvements are needed for the associated factors. The

output values of GREEN indicate no improvements needed

for the associated factors. The Fig. 4 describes the complexity

prediction model elements.

Fig.4 Software complexity model

 The fuzzification model element fuzzifies the model

inputs via a max function evaluation based on the membership

functions defined to determine its appropriate membership

grades.

 In this model, when the inputs and outputs are fuzzified,

the max function is applied between the membership

functions. For example, the crisp value of 2.8 falls into two

membership functions i.e. LOW (0.4) and MEDIUM (0.8),

but when max function is applied between them, the

70 Int'l Conf. Embedded Systems and Applications | ESA'11 |

membership grade falls into MEDIUM membership function.

The fuzzified value is 0.8 for an input of 2.8. In this model,

when the results are de-fuzzied, they use the centroid method

of de-fuzzification. This process returns the center area of the

curve

5 Example

 Let’s explain the Army vehicle software complexity

prediction model using a simple example. The following are

the example data: TRL = 5, TR=4, OR=1, DOC=3 and

CM=4. Per the software complexity prediction algorithm, all

the above five inputs are fuzzified using the max function.

The fuzzified input values are TRL = 1 (MEDIUM), TR = 1

(SOME), OR = 1 (NOTHING), DOC = 1 (SOME), CM = 1

(SOME).

 Now the above fuzzified inputs are tested by 15 fuzzy

rules. Per rule#5, If TRL=MEDIUM & TR=SOME &

OR=NOTHING then R=RED & A=YELLOW. Per rule#13,

If DOC=SOME & CM=SOME then M=YELLOW From the

two fuzzy rules #5 & #13, software complexity can be

predicted. The results indicate that the reliability part of the

software complexity as RED (crisp values between 0 & 3).

Availability part of the software complexity is YELLOW

(crisp values between 2 & 6). The maintainability part of the

software complexity is YELLOW (crisp values between 2 &

6). The software fuzzy logic toolbox can be used to simulate

five factors metric input to determine fuzzy outputs and the

appropriate de-fuzzified values. Depending on the output

membership grades appropriate fuzzy value for the output can

be determined from the fuzzy logic toolbox output.

6 Conclusions

 Historical software data based focus on fixing the

symptoms rather than the problem. The proposed software

complexity provides non-technical variables (factors) to

predict the Army vehicle software complexity. The proposed

metric elements are known to all parties involved in a

software development and the metric data collection is simple.

 When complexity is expressed in terms of RAM, the

user can visualize which part of the complexity is having

problems e.g. if R = YELLOW, A = GREEN, and M = RED

then we can say the reliability and maintainability part of the

software complexity is in trouble.

7 Acknowledgment

 The authors wish to thank wishes to thank Pame Watts

Dean of TARDEC University for her support

8 Disclaimer

 Disclaimer: Reference herein to any specific commercial

company, product, process, or service by trade name,

trademark, manufacturer, or otherwise, does not necessarily

constitute or imply its endorsement, recommendation, or

favoring by the United States Government or the Department

of the Army (DoA). The opinions of the authors- expressed

herein do not necessarily state or reflect those of the United

States Government or the DoA, and shall not be used for

advertising or product endorsement purposes.

9 References

[1] T.J. McCabe, “Complexity Measure”, IEEE Trans. Soft

Eng., vol. SE-2, no. 4, pp. 308-320, Dec. 1976.

[2] Halstead, and H. Maurice, “Elements of Software

Science”, Elsevier North-Holland, New York, 1977.

[3] Henry and Kafura,”Software Structure Metrics Based on

Information Flow”, IEEE Trans. Soft Eng., vol. SE-7, no.

5, pp. 510-518, Sep. 1981.

[4] Warren Harrison,”An Entropy Based Software

Complexity Measure”, IEEE Trans. Soft Eng., vol. SE-

18, no. 11, pp. 1025-1029, Nov. 1992.

[5] Jingqiu Shao and Yingxu Wang, “A New Measure of

Software Complexity based on Cognitive Weights”,

Canadian

[6] Journal of Electrical and Computer Eng., vol.28, no.2,

pp. 1333-1338, Apr. 2003.

[7] Khoshgoftaar and Munson, "Applications of a Relative

Complexity Metric for Software Project Management ",

Journal of Systems Software, vol. 12, no. 3, pp. 283-293,

Jul. 1990.

[8] L. Zadeh “Fuzzy Sets,” Inform. Contr., vol. 8, no. 3, pp.

338-353, 1965.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 71

JOINFS: a Semantic File System for Embedded Systems

Matthew Harlan Gabriel Parmer

Computer Science Department
The George Washington University

Washington, DC
{mharlan,gparmer}@gwu.edu

Abstract

Hierarchical file systems are the de-facto abstraction for
storing information on modern computing systems. Though
they are useful for providing structure for categorical data,
their failings are most pronounced on consumer embedded
devices. The limited interface for organizing a directory hi-
erarchy, and abundant structured, network-accessible data
complicate the management of the hierarchy.

JOINFS attempts to enhance the tradition hierarchical
file system abstraction by marrying it with an efficient query
system. Special dynamic directories are populated not by a
rigid hierarchy, but by an active matching of query terms
to meta-data associated with the files in the system. Hier-
archical dynamic directories provide the novel concept of
categorizing semantics, rather than the data itself. These
dynamic directories are exposed as normal filesystem direc-
tories, thus enabling applications and scripts to harness the
querying power of JOINFS with negligible effort. JOINFS
maintains file-system performance on normal files and di-
rectories, has a small footprint, and is implemented as a
modular addition to traditional file-systems.

1 Introduction

File systems provide a hierarchical name-space enabling
the organization of system data into separate directories.
Though pervasive, this abstraction is increasingly inappro-
priate with the steady increases in hard-drive/SSD size,
amount of data stored, and the constrained interfaces used to
access and organize embedded systems and consumer elec-
tronics. All of these trends make it more difficult to organize
larger amounts of data. For example, cell phones and other
personal embedded systems often do not provide a natural
file-system interface for users to use to organize their data,
yet the amount of data available to such systems is vast.
Current mobile systems rely on individual applications to
manually manage their own data. The static organization of
directories seems unable to scale to vast amounts of com-
plex data a system is exposed to, even on devices as small
a cell-phones. The web is a collection of data with little

(global) coordination and classification, and is naturally or-
ganized by search. Fundamentally, complex data often has
no single natural category, and instead has many attributes,
any one of which might be useful as a discriminator for a
user or program.

Others have claimed that “hierarchical file systems are
dead”[6], and that search-based data-access should be the
dominant form of organization. Indeed, commodity operat-
ing systems have integrated search functionality in the form
of Windows search [9] and Apple Spotlight [7]. Such con-
cepts are not new: twenty years ago, the semantic filesys-
tem [3] was proposed in which directories are organized by
attributes, and in ’93 the Inversion FS implemented a file
system on top of a data-base [4] while exposing querying
functionality. JOINFS is motivated by this shared goal of
enabling semantically-aware access (i.e. that is aware of the
meaning of the contents of files) to vast amounts of data.
However, we also focus on the implementation of a prac-
tical system with low resource requirements, that is fully
backwards compatible, and study its performance impact
on modern hardware.

To provide a semantic, search-based interface to tradi-
tional FSs, JOINFS provides dynamic directories. Dynamic
directories appear as file system directories, but are popu-
lated with either files or directories that semantically match
some a predicate associated with the directory. Each file has
a set of meta-data associated with it, and dynamic directory
predicates are used to match this meta-data, thus present-
ing only those files relevant to the search. Importantly, we
maintain the hierarchical structure even in dynamic direc-
tories: JOINFS enables dynamic directories to nest inside
other dynamic directories, effectively returning the inter-
section of the result set for the parent and child dynamic
directories. Thus, the normal manual organization possible
in the hierarchical name-space can also be used in dynamic
directories.

JOINFS design goals. We designed JOINFS with a
number of goals in mind. These include:
• Dynamic directories. Fundamental to JOINFS is the

concept of dynamic directories that are populated dynami-
cally with content with meta-data that matches a predicate
associated with the directory. This enables search at the

72 Int'l Conf. Embedded Systems and Applications | ESA'11 |

.jfs_sub_query/
_jfs_query="artist="

Music/
_jfs_query="format=mp3"

.jfs_sub_query/
_jfs_query="album="

...

......

...

......

...

...

... ...
......

...

......

...

......beethoven/

bach/

Music_beethoven/

/joinfs mozart/

2nd_concerto/

5th_concerto/

9th_concerto/
_jfs_query="format=mp3,artist=beethoven"

.mp3
.mp3

.mp3

.mp3

Figure 1. Example dynamic directory hierarchies created by specific search terms to demonstrate JOINFS usage.
Though we use music in this example, dynamic directory hierarchies can be applied to any files and directories with
any type of meta-data.

file-system level. Additionally, we marry this search capa-
bility with the hierarchical model by enabling hierarchical
dynamic directories, thus enabling the manual categoriza-
tion of the desired semantics of data, rather than the data
itself.
• Transparent Application Enhancement. As JOINFS is

implemented at the actual file-system level, and not in the
shell or as a separate indexing program, any application can
benefit from its functionality. For example, an image view-
ing program can get a succinct list of all images in the sys-
tem by simply creating (or using an existing) an appropri-
ately configured dynamic directory. Indeed this increases
the power of even lowly shell scripts.
• Backwards compatibility. We strive for not only func-

tional compatibility with traditional hierarchical systems,
but also architect JOINFS as an extension on a normal file
system. This means that a traditional FS is still used, and we
maintain performance compatibility with previous systems.
• Low resource requirements. As appropriate for em-

bedded devices including consumer electronics such as cell
phones, we focus on minimal resource utilization including
both CPU and memory. JOINFS uses only technologies and
libraries that are appropriate and commonly found in these
environments, and does not require – through also does not
preclude – a kernel-level implementation.

Contributions. This paper makes the following con-
tributions: 1) it introduces the concept of dynamic direc-
tories that marry semantic search and hierarchical catego-
rization to enable hierarchical categorization on semantics,
not data, 2) it details a practical user-level implementation
of JOINFS that builds on commonly available technolo-
gies, and 3) empirically evaluates the system to measure its
performance characteristics. JOINFS provides a practical
and powerful solution to the data management problem and
is tailored for use not only on conventional desktops and
server, but also embedded and mobile systems.

The rest of this paper is organized as follows: Section 2
discusses how JOINFS is harnessed by applications and
users. Section 3 outlines JOINFS’s implementation, and
Section 4 discusses its experimental validation. Section 5
covers the related work while Section 6 concludes.

2 JOINFS Interface and Use

Much of the novelty of JOINFS is in the interface of the
semantic search with the file system, and in hierarchical dy-
namic directories. JOINFS must associate queries with di-
rectories to populate dynamic directories. For this purpose,
and to store the meta-data associated with each file, we use
POSIX extended attributes. Many modern file-systems en-
able the storage of meta-data in the form of untyped strings
in extended attributes associated with a file.

Dynamic directories. The simplest example usage sce-
nario for JOINFS use is to create a dynamic directory hold-
ing file matching a search. We use the setfattr com-
mand to associate a named attribute with its value. For
this paper, we will describe setting attribute n to value v
on file f as (f,n,v). Given a file system with a num-
ber of file types, we can search for all of the mp3 files
by creating a directory Music, and setting a fixed at-
tribute name jfs query to a list of key=value pairs:
(Music,"format=mp3"). The directory will be popu-
lated with all mp3 music files. Queries can be more specific,
for example, (Music beethoven,"format=mp3,
artist=beethoven"), in Music beethoven will
contain all mp3s with music by Beethoven. Dynamic di-
rectories is dynamically updated with changes in the file
system. If new mp3s are added to the file system, or ex-
isting ones are removed, they will appear or disappear from
the dynamic directory, respectively.

Hierarchical dynamic directories. JOINFS not only
adds semantic search to the file system interface; it also
maintains a hierarchical file system interface. This en-
ables the simple categorization of search data. To en-
able hierarchical dynamic directories, each dynamic di-
rectory can optionally include a .jfs sub query di-
rectory. In this case, the parent dynamic directory’s
query will result in directory results, rather than files.
The .jfs sub query directory can have queries asso-
ciated with it similar to the parent dynamic directory:
(Music/.jfs sub query,"artist="). Intuitively,
this says that the dynamic directory Music should be pop-
ulated with a number of directories, each with the name

Int'l Conf. Embedded Systems and Applications | ESA'11 | 73

JoinFS Process Processes

user−level

kernel−level

SQLite

Kernel Buffer/Directory Caches
Native FS

jfs_db_op
Attribute/Dynamic

Directory Cache

FUSE Library

type of access

FUSE Driver

native?

dynamic?

thread

pool

Figure 2. The high-level JOINFS design. The kernel buffers file data, and JOINFS passes file requests on to the native
file system. Dynamic directories are handled by the logic and SQLite backend.

of one of the artists (i.e. the directories names are the
unspecified values associated with given key). Each of
these directories includes that artist’s mp3 files. Adding
Music/.jfs sub query/.jfs sub query and the
attribute (Music/.jfs sub query/
.jfs sub query,"album="), will now create an or-
ganization where within Music, there is a directory for
each artist, in each of those directories, there is a subdi-
rectory for each album for that artist, and in that directory
are the actual mp3 files by that artist and in that album.

This example demonstrates how JOINFS enables the cat-
egorization using hierarchical structures of not the data it-
self, but of the semantics of interest. Dynamic directories
are created for semantic concepts, not data, and JOINFS
automatically populates the directory with the appropriate
data.

2.1 Metadata Generation

Though the previous example involved mp3 files,
JOINFS is generic in that any file can be annotated with
metadata specific to its semantics. This annotation is be-
yond the scope of JOINFS. We currently use shell scripts to
parse id3 tags for music files, but similar programs could
insert semantically relevant metadata for other forms of data
such as images, video, or source code.

3 JOINFS Design and Implementation

JOINFS uses a number of existing technologies to avoid
recreating the wheel. We implement JOINFS on Linux,
and use FUSE [1] to integrate with the file system names-
pace. FUSE is “File systems in USEr-space”, and enables
the implementation of file systems as separate user-level
processes. Though FUSE has some performance disadvan-

tages [5] compared to native, kernel file systems, it is ap-
propriate for prototyping advanced file system functionality.
With FUSE, file system operations and requests are trans-
lated into inter-process communication (IPC) with the file
system process.

JOINFS makes use of a data-base backend to track file
system files and meta-data. For this, we use the SQLite [8]
database. Though SQLite does not typically provide com-
petitive write performance compared to more complex data-
bases, it is widely accepted on embedded platforms and is
deployed, for instance, in the Android mobile platform. We
find in our evaluation (Section 4) that its performance is not
prohibitive, and its memory consumption is appropriate for
a somewhat capable embedded platform.

metadata_values metadata_keys

key

key_key

links

inode #
path

native path

fk_key

value

key_fs_obj

fk_fs_obj

Figure 3. The database schema for JOINFS. Bold
items are primary keys; arrows are foreign keys.

The database has a simple schema, and includes
only three tables: links, metadata values, and
metadata keys. The relations between these tables are
depicted in Figure 3. The path is the complete path
through the file system namespace exported by JOINFS to
the actual file identified by filename.

3.1 Normal File System Operations

A key design decision in JOINFS is to minimize the in-
volvement of the database in normal file operations. Due
to this, we do not maintain all file data in the database, and

74 Int'l Conf. Embedded Systems and Applications | ESA'11 |

instead use the native file system for holding file data. This
means that critical read and write performance are not sub-
stantively effected by JOINFS, thus taking JOINFS off of
a critical path. In fact, as much functionality as possible
is handed off by JOINFS to the native file system. This
includes permission checking, real path lookup, hard-link
reference counting, and file I/O.

When a request to open, or read a directory is made,
JOINFS must determine if the access is made to a dynamic
directory and it should be handled via data-base accesses,
or to a native file object and it is passed to the native file
system. The JOINFS file system is mirrored on the native
file system with the exception of the contents of dynamic
directories. To determine if a file system request is for dy-
namic contents, JOINFS simply executes a stat on the
object in the native file system. This does impose the over-
head of an additional system call on each file access that
reaches JOINFS (i.e. requests that aren’t satisfied by the
Linux buffer cache). This is a relic of our implementation
on FUSE and this overhead would be diminished if JOINFS
were implemented in the kernel.

JOINFS does impose overhead on some normal file op-
erations. Namely, creating, deleting, and adding attributes
to file system objects. File system object creation and dele-
tion do entail some overhead as the file must be inserted into
or removed from the links table, and attribute operations
have overheads as they are stored in the metadata tables.
We study this effect in Section 4.

3.2 Dynamic Directories and SQL Generation

When a request is made to read the contents of a direc-
tory (e.g. via readdir), and JOINFS finds that it does ex-
ist in the native file system, it must determine if it is a dy-
namic directory. To do this, JOINFS checks if the attribute
jfs query exists for that directory. If the attribute has

a value, the directory has dynamically generated contents.
Attributes are cached, so this check can often be performed
while avoiding data-base interaction. To return the contents
of the dynamic directory based on the query, JOINFS im-
plements a lightweight cache of pathnames used to save the
resulting files generated from a data-base query. This tech-
nique enables the results of expensive SQL query synthesis,
data-base queries, and parsing of the return values, to be
saved for future access.

Our experiments demonstrate that the memory overhead
for these caches is minimal. These caches serve the impor-
tant functions of avoiding database accesses when possible.

If the results of listing a dynamic directory are not
cached, the SQL query is formed from the key value pairs
of all nested hierarchical dynamic directories. They intu-
itively equate to the intersection (or conjunction) of each
of the terms. For each level of dynamic directories, an

SQL sub-statement is constructed that matches the cur-
rent metadata value of the parent directory (e.g. if in
the “Beethoven” directory, it matches key=artist and
value=Beethoven), and returns the set of file identifiers
(database keys). The intersection of these keys is used to
compose the queries of multiple levels of dynamic directo-
ries. When the final level of dynamic directories is found,
and it is time to generate files, thus a SQL statement takes
the file identifiers generated through this process, and re-
turns file information that JOINFS uses as the return values
for the readdir call.

3.3 Database Interaction

SQLite provides a fairly standard database interface.
However, for performance, we added a thread pool, and
an extra caching layer. All interactions with the database
are done using a jfs db op structure. This API provides
functions for creating queries, synchronizing processes with
the multithreaded SQLite query engine that actually exe-
cutes the database operations, and cleans up database oper-
ations once they finish. The API essentially acts as a layer
between JOINFS and the database, enabling the migration
away from SQLite in the future if desired. JOINFS uses
SQLite as it has a low footprint, has acceptable perfor-
mance, and is widely available for many embedded and mo-
bile platforms.

Thread pool for increased concurrency. In order to en-
able fast concurrent database reads, JOINFS makes use of a
thread pool. This thread pool initially starts with the same
number of threads as FUSE, but can expand and shrink as
necessary. The SQL interface adds all database read oper-
ations to a job queue. The read pool grabs jobs from this
queue, executes them, and returns the results. The thread
pool then wakes up the thread that added the job so that they
can continue processing. JOINFS prevents write operations
from taking place by restricting all database connections to
read-only for all reader threads.

The thread pool has the additional benefit of enabling
database connection caching with SQLite. Without the
thread pool, a database connection would have to be made
for each database operation which significantly degrades
performance.

JOINFS handles writes separately because SQLite does
not support concurrent write operations. JOINFS instead
uses a single writer thread with its own job queue to per-
form all database writes. JOINFS also supports executing
multiple writes at once as a transaction. This enables more
complex inserts without having to repeatedly attain an ex-
clusive lock on the database file.

Caching to avoid database access. Even though
databases often cache their results in memory, it is desir-
able in certain situations to have an additional caching layer

Int'l Conf. Embedded Systems and Applications | ESA'11 | 75

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

Small Files
Medium Files

Large Files

S
ec

on
ds

JoinFS
NullFS

Ext3

Figure 4. Overheads of transferring a directory hier-
archy into JOINFS.

in JOINFS to avoid data-base interaction all-together. Thus,
JOINFS caches pathnames and metadata for the contents of
dynamic directories to avoid having to query the data-base
again.

3.4 Hybrid Directories

As JOINFS marriages file systems with database con-
cepts, there are interesting interplays between the two ab-
stractions. For example, a natural question is what happens
when a file is created inside a dynamic directory? In such
cases, JOINFS stores the file or directories created in the
dynamic directory’s native backing store 1. Any files cre-
ated in these directories will appear in the contents of the
dynamic directory. In the future, we will support automat-
ically generating metadata for files placed into dynamic di-
rectories. This metadata will be determined by the metadata
search terms of the dynamic directory.

4 Experimental Results

To evaluate the performance impact of JOINFS, we use
a machine with a 3.3GHz Core i7-920, Intel processor with
6GB of RAM, and a 7200 rpm Western Digital Caviar Black
1 TB SATA drive. We use Ubuntu 10.04 LTS configured to
use the ext3 file system and the Ubuntu version of Linux,
kernel-2.6.32-30-generic.

4.1 Data Transfer

In this section, we wish to investigate the overheads of
JOINFS for normal file operations (not to dynamic directo-
ries) such as creation, and population of file data. JOINFS is
not designed to make these operations faster, and is instead
meant to minimize the overheads to these operations.

1Each dynamic directory and .jfs sub query are stored on the na-
tive file system. The query results that populate those directories dynami-
cally are not.

Figure 4 plots the amount of time it takes to transfer
files from an ext3 file system mount point into a mount
point for 1) JOINFS using a normal directory, 2) NULLFS
the FUSE file system that simply passes all file system op-
erations on to the Linux file system (in this case ext3),
and 3) ext3, the default Linux file system. We include the
results for ext3 only as a lower-bound on performance.
FUSE imposes some overhead, especially on transfers for
small files [5], so we compare more directly to NULLFS.
We transfer three different classes of files: 1) small files
– the Linux source code directory which includes 37,998
comparably small files totaling 400.3 MB (10.5 KB each on
average), 2) medium files – a set of 209 music files totaling
1.4 GB, and 3) large file – 1 movie file totaling 1.4 GB. In
Figure 4, we plot the average of 5 runs for each of the file
systems.

For small files, we see that there is some overhead both
for NULLFS, and JOINFS, and that JOINFS has an over-
head over NULLFS of 48% (14.24 seconds vs 9.59 seconds).
Though this overhead is not insignificant, as the file opera-
tions become dominated by reads and writes instead of file
creation (for medium and large files), we see that all tech-
niques are roughly equivalent (this echos results from [5]).
For devices such as mobile phones and embedded systems
where the focus is on data consumption rather than creation,
we believe these overheads are acceptable.

Filesystem Memory consumption
NULLFS 6.9 MB
JOINFS 9.8 MB

JOINFS Overhead 75 B per file

Table 1. Memory consumption of JOINFS after cre-
ation of 38,208 files.

Table 1 plots the memory usage of JOINFS and NULLFS.
Memory consumption of the system is an important factor
in analyzing its acceptability in many consumer electronics
and embedded applications. We find that JOINFS imposes
some overhead due to the data held in the links table of
75 bytes per file. Even in memory-constrained devices, we
deem this to be acceptable.

4.2 Dynamic Directory Performance

In this section, we investigate the performance of the
dynamic directory implementation in JOINFS. We wish to
study the basic costs of doing a readdir in dynamic di-
rectories that queries the meta-data for all files, and pro-
duces the resulting directory contents. We study the effects
of changing the number of files returned by the query, and
the depth in the hierarchy of dynamic directories of the re-
sults.

76 Int'l Conf. Embedded Systems and Applications | ESA'11 |

 0

 0.01

 0.02

 0.03

 0.04

 0.05

100 200 400 800

S
ec

on
ds

Number of files

ext3
nullFS

JoinFS: depth 1
JoinFS: depth 2
JoinFS: depth 3
JoinFS: depth 4

Figure 5. Latency for listing a variable number of
files from a directory hierarchy. For JOINFS, we vary
the depth of the hierarchy of dynamic directories, and
measure query latency.

Figure 5 plots the latency for completing an ls com-
mand in a directory for 1) JOINFS, 2) NULLFS, and
3) ext3. For JOINFS, we plot the latency in a sub-directory
of a variable depth into the hierarchy of dynamic directories.
The other file systems do not use nested directories. For all
file systems, we plot the latency for a varying number of
files in the directory. Again, we plot the average of 5 runs.

JOINFS for a dynamic directory at a depth of 1 is within
a factor of 5 of the latency for all numbers of query re-
sults to NULLFS. As we have nested dynamic directories,
the overheads grow as complicated queries are synthesized
along the path of directories, and the SQL queries generated
increase in complexity. We don’t believe these overheads
are significant enough to discourage the use of nested dy-
namic directories for a categorical organization of semantic
results.

Filesystem Memory consumption
NULLFS 0.42 MB
JOINFS 2.8 MB

JOINFS Overhead 396 B per file

Table 2. Memory consumption of JOINFS for 6000
files in dynamic directories.

Table 2 plots the memory overhead after the queries
(i.e. readdirs) have completed for all number of files
(1500 in total), for all dynamic directory depths (thus, 6000
files listed in total). The overhead above NULLFS per file
queried is 396 bytes per file. This includes index overheads
in SQLite, and the overhead of JOINFS data-structures.
We believe that an overhead of 2.8 MB is not insignificant,
but is acceptable for queries that return 6K files.

5 Related Work

Multiple operating systems have investigated incorpo-
rating relational concepts into the file system [2, 10]. We
are unaware of any previous system that has aggressively
mixed a relational data-base with a file system while en-
hancing both categorical hierarchical structures with search
and search with categorical, hierarchical structure. Dy-
namic directories provide not only a file-system represen-
tation of search, but nested dynamic directories enable the
categorical, hierarchical organization of not data, but se-
mantic information.

Semantic search and database file systems. [6] pro-
claims that hierarchical file systems are dead. JOINFS takes
a more nuanced approach in which we still support hierar-
chical file systems, but integrate in a novel way dynamic
directories into a hierarchical structure. [3] provides an im-
plementation of semantic search in a file system, but does
not provide nested semantic searches. As JOINFS is imple-
mented on a modern OS, we provide valuable insights into
its applicability in embedded and mobile systems. [4] im-
plements a file system interface on top of a data-base. Un-
like this approach, JOINFS focuses on backwards compati-
bility where possible by relying on a traditional file system
for data-storage and hierarchical organization while provid-
ing dynamic directories as an extension.

Data indexing on top of the file system. Many modern
systems use search applications on top of an existing file
system to index data and enable search [9, 7]. Even the
lowly locate command is implemented in this fashion.

6 Conclusions

This paper presents the design and implementation of
JOINFS. JOINFS integrates semantic search on top of a
hierarchical file system structure in a manner that enables
the continued use of optimized, existing file system, while
adding dynamic directories that are populated by a search
term. In integrating the hierarchical namespace with se-
mantic search, JOINFS provides the novel concept of nested
dynamic directories. Each sub-directory enables the refine-
ment of the parent directory’s search. In such a way, the
results of a search can include not only files, but dynamic
directories themselves. This enables the normal hierarchi-
cal techniques for categorization to be applied not to the
data itself, but to the semantic searches.

In integrating search in a natural way with hierarchical
file-systems, the power of semantic search is made available
to any application without any additional code. A mobile
application for displaying pdf files can easily access all
pdfs in the system by listing a dynamic directory. Even
shell scripting is enhanced.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 77

We have shown that the processing overheads imposed
by JOINFS are acceptable for a great many applications,
and that the memory overheads are generally acceptable for
a variety of embedded and consumer electronics applica-
tions.

The JOINFS source is located at
http://github.com/mharlan/joinFS.

References

[1] Filesystem in user space: http://http://fuse.sourceforge.net/,
retrieved 4/1/11.

[2] D. Giampaolo. Practical File System Design with the Be File
System. Morgan Kaufmann, 1999.

[3] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole,
Jr. Semantic file systems. In Proceedings of the thirteenth
ACM symposium on Operating systems principles, pages 16–
25, 1991.

[4] M. Olson. The design and implementation of the inversion
file system. In Proceedings of the USENIX Winter 1993 Tech-
nical Conference, 1993.

[5] A. Rajgarhia and A. Gehani. Performance and extension of
user space file systems. In Proceedings of the 2010 ACM
Symposium on Applied Computing, SAC ’10, 2010.

[6] M. Seltzer and N. Murphy. Hierarchical file systems are dead.
In Proceedings of the 12th conference on Hot topics in oper-
ating systems, 2009.

[7] Apple spotlight: http://www.apple.com/macosx/what-is-
macosx/spotlight.html, retrieved 4/1/11.

[8] SQLite: http://www.sqlite.org/, retrieved 4/1/11.
[9] Windows search: http://www.microsoft.com/windows/

products/winfamily/desktopsearch/default.mspx.
[10] WinFS: http://blogs.msdn.com/b/winfs/, retrieved 4/1/11.

78 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Specification of Embedded Systems Environment Behaviour with
Alvis Modelling Language

M. Szpyrka1, L. Kotulski1, and P. Matyasik1

1Department of Automatics, AGH University of Science and Technology, Kraków, Poland

Abstract— Alvis, a modelling language for concurrent sys-
tems, combines the advantages of formal methods and
practical modelling languages. Even though Alvis has its
origins in process algebras, instead of algebraic equations, it
uses a high level programming language for the description
of agents behaviour and a graphical language for the
modelling of interconnections among agents. An Alvis model
can be translated into an LTS graph (a labelled transition
system) that is used for formal verification purposes. Alvis
has been designed especially for embedded systems and one
of its main advantages is a possibility of a flexible specifica-
tion of a behaviour of an embedded system’s environment.
Instead of describing an environment as a part of an Alvis
model, we can specify signals/values sent or received by
the environment. Moreover, such an environment border
can be freely modified while developing the corresponding
embedded system. The paper describes the Alvis method of
specification of an embedded system’s environment. This is
illustrated with an Automatic Train Stop system example.

Keywords: Alvis, embedded system, environment specification

1. Introduction
An embedded system is one that is a part of a larger

one. It is surrounded by other parts of the larger system
that constitute the embedded system environment. Such an
embedded system collects inputs that come from its envi-
ronment (from sensors) and provide outputs that go to the
environment (to controllers). To verify an embedded system
formally we cannot separate it from its environment. Thus,
if a formal language is used e.g. Petri nets [1], [2], [3], time
automata [4], process algebra [5] etc., an embedded system
model must include both the system and its environment. As
a result of such a situation a model is often significantly more
complex and the state explosion problem makes a formal
verification difficult or even impossible.

For example, let us consider a simple Automatic Train
Stop system (ATS system for short). This is a kind of
an Automatic Train Protection system used to guarantee
a train safety even if a driver is not capable of controlling
the train. In the ATS system, a light signal is turned on
every 60 seconds to check whether a driver controls the
train. If the driver fails to acknowledge the signal within
6 seconds, a sound signal is turned on. Then, if the driver
does not disactivate the signals within 3 seconds, using the

acknowledge button, the emergency brakes are applied to
stop the train automatically. An RTCP-net (Petri net) model
of such a system is presented in [3]. To verify the Petri net
model of the ATS system, it was necessary to add places
and transitions that simulate the driver behaviour.

The paper presents the Alvis approach to modelling a be-
haviour of an embedded system’s environment. Alvis [6],
[7] is a novel modelling language designed for real-time
systems, especially for embedded ones. The main goal of the
Alvis project was to strike a happy medium between formal
and practical modelling languages. We use the language to
design an embedded system software, but from an Alvis
source code we can designate its formal description in the
form of a Labelled Transition System automatically.

The key concept of Alvis is an agent that denotes any
distinguished part of the system under consideration with
a defined identity persisting in time. An Alvis model is a
system of agents that usually run concurrently, communicate
one with another, compete for shared resources etc. Agents
are divided into three groups: active agents can be treated as
processing nodes, passive agents represent shared resources
and hierarchical agents represent submodels. A model con-
sists of three layers. The code layer uses Alvis state-
ments supported by the Haskell functional programming
language [8] to define a behaviour of individual agents. The
graphical layer is used to define communication channels
among agents. The layer takes the form of a hierarchical
graph, that allows designers to combine sets of agents into
modules that are represented as hierarchical agents. The
third system layer is used for the simulation and verification
purposes. It is the predefined one and is strictly connected
with the considered system hardware environment.

One of the main Alvis advantages is the modelling of
the considered embedded system’s environment. Instead of
designing the environment as a part of the model it is
possible to specify signals generated or collected by the
environment in a very simple way. This approach is also
very useful from the analysis point of view. We can freely
move the system border. In other words, we can start with
modelling a very small part of the considered system in the
first stage, moving all other parts to the environment. Then
we can add more agents in the next stages. A state of a model
is a sequence of agents’ states. Moving some agents to the
embedded system environment can reduce the model states
space significantly.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 79

The paper is organised as follows. Section 2 provides
a short presentation of the Alvis language. Section 3 deals
with the communication among agents. The method of the
specification of an environment is discussed in Section 4.
Two models of the considered ATS system are describe in
Section 5. The paper is summarised in the final section.

2. Alvis modelling language
Alvis has its origins in the CCS process algebra [9], [5]

and the XCCS language [10]. The main result of the fact
is the communication model used in Alvis that is similar
to the one used in CCS and the rendes-vous mechanism
used in Ada [11]. However, Alvis uses a simplified rendez-
vous mechanism with equal agents without distinguishing
servers and clients. In contrast to synchronous programming
languages like Esterel [12] or SCADE [13], Alvis does not
use the broadcast communication mechanism. Only agents
connected with a communication channel can communicate
one with another. A few constructs in Ada were an inspira-
tion while developing Alvis. For example, protected objects
have been used to define passive agents and the Ada select
statement has been used to define the Alvis select state-
ment. An Alvis model composed of few agents that work
concurrently is similar to an Ada distributed system. Active
agents can be treated as processing nodes, while passive
agents as storage ones. Alvis has many features in common
with E-LOTOS – an extension of the LOTOS modelling
language [14]. Alvis, like E-LOTOS, was intended to allow
formal modelling and verification of distributed real-time
systems. In contrast to E-LOTOS, Alvis provides graphical
modelling language. Moreover, Alvis Toolkit supports an
LTS graph generation, which significantly simplifies a formal
verification of models. Alvis has also many features in
common with System Modelling Language (SysML)[15] –
a general purpose modelling language for systems engi-
neering applications. It contains concept similar to SysML
ports, property blocks, communication among the blocks
and hierarchical models. Unlike SysML, Alvis combines
structure diagrams (block diagrams) and behaviour (activity
diagrams) into a single diagram. In addition, Alvis defines
formal semantics for the various artifacts, which is not the
case in SysML. Due to the use of Ada origins, VHDL [16]
and Alvis have a similar syntax for communication and
parallel processing. The concept of an agent in Alvis is
also similar to a design entity in VHDL and both languages
use ports for communication among system components. It
should be noted, however, that Alvis is closely linked with
a graphical model layer. Graphical composition allows for
easier identification of the system hierarchy and components.

From programmers point of view, it is necessary to design
two layers of an Alvis model – graphical and code ones.
The graphical layer is called a communication diagram.
It contains active agents drawn as rounded boxes, passive
agents drawn as rectangles and hierarchical agents indicated

by black triangles. Ports are drawn as circles placed at
the edges of rounded boxes or rectangles. Alvis agents can
communicate one with another directly using communication
channels. A communication channel is defined explicitly
between two agents and connects two ports. Communication
channels are drawn as lines (or broken lines). An arrowhead
points out the input port for the particular connection.
Communication channels without arrowheads represent pairs
of connections with opposite directions.

Alvis communication diagrams enable distributing parts of
a diagram across multiple subdiagrams called pages. Pages
are combined using the so-called substitution mechanism.
A hierarchical agent from one level can be replaced by a
page on the lower level, which usually gives a more precise
and detailed description of the activity represented by the
agent.

Fig. 1
ELEMENTS OF ALVIS COMMUNICATION DIAGRAMS

The code layer is used to define data types used in the
model under consideration, functions for data manipulation
and a behaviour of individual agents. The layer uses the
Haskell functional language (e.g. the Haskell type system)
and original Alvis statements. The set of Alvis statements
is given in Table 1. To simplify the syntax, the following
symbols have been used. A stands for an agent name, p
stands for a port name, x stands for a parameter, g, g1,
g2,... stand for guards (Boolean conditions), e stands for
an expression and ms stands for miliseconds. Each non-
hierarchical agent placed in a communication diagram must
be defined in the corresponding code layer and vice-versa.
For more details see [6], [7].

3. Communication between agents
Before discussing the communication with an environ-

ment let us recall some information about the communi-
cation among agents in Alvis. Alvis uses two statements
for the communication. The in statement for collecting data
and out for sending. Each of them takes a port name as
its first argument and optionally a parameter name as the
second. A communication between two active agents can

80 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Table 1
ALVIS STATEMENTS

Statement Description
cli Turns off the interrupts handlers.
critical {...} Define a set of statements that must be

executed as a single one.
delay ms Delays an agent execution for a given

number of miliseconds.
exec x = e Evaluates the expression and assign

the result to the parameter; the exec
keyword can be omitted.

exit Terminates the agent that performs the
statement.

if (g1) {...} Conditional statement.
elseif (g2) {...}
...
else {...}
in p Collects a signal via the port p.
in p x Collects a value via the port p and

assigns it to the parameter x.
jump label Transfers the control to the line of code

identified with the label.
jump far A Transfers the control to the agent A.
loop (g) {...} Repeats execution of the contents

while the guard if satisfied..
loop (every ms) Repeats execution every
{...} ms miliseconds.
loop {...} Infinite loop.
null Empty statement.
out p Sends a signal via the port p.
out p x Sends a value of the parameter x via

the port p; a literal value can be used
instead of a parameter.

proc (g) p {...} Defines the procedure for the port p of
a passive agent. The guard is optional.

select { Selects one of the alternative choices.
alt (g1) {...}
alt (g2) {...}
... }

start A Starts the agent A if it is in the Init
state, otherwise do nothing.

sti Turns on the interrupts handlers.

be initialised by any of them. The agent that initialises it,
performs the out statement to provide some information and
waits for the second agent to take it, or performs the in
statement to express its readiness to collect some information
and waits until the second agent provides it.

Let us consider the example shown in Fig. 2. Both agents
performs only one statement connected with a communica-
tion between them. To describe the current state of an agent,
we need a tuple with four pieces of information [6]:

• agent mode (am);
• program counter (pc);
• context information list (ci);
• parameters values tuple (pv).

The mode is used to indicate whether an agent is for example
running or waiting for an event. The program counter points
out the current or the next step to be executed. The context
information list contains additional information about the

agent A {
out a;

}
agent B {

in b;
}

Fig. 2
COMMUNICATION BETWEEN ACTIVE AGENTS

current agent’s state e.g. the name of the port used for
the current communication. The parameters values tuple
contains values of agent’s parameters.

Thus, the initial state of the considered model can be
described as follows:

A: (running,1,[],())
B: (running,1,[],())

The agents can perform their steps concurrently that moves
the model to the final state:

A: (finished,0,[],())
B: (finished,0,[],())

Assume that only the A agent executed its step. In such a
case the system state is as follows:

A: (waiting,1,[out(a)],())
B: (running,1,[],())

It means that A is waiting for another agent to collect a signal
from the port a. To complete the example discussion, it
should be underlined that the following state is also possible.

A: (running,1,[],())
B: (waiting,1,[in(b)],())

A communication between an active and a passive agent
can be initialised only by the former. Any procedure in
Alvis uses only one either input or output parameter (or
signal in case of parameterless communication). In case
of an input procedure, an active agent calls the procedure
using the out statement (and provides the parameter, if any,
at the same time). If the corresponding passive agent is
in the waiting mode and the procedure is accessible, the
agent starts it in the active agent context. The passive agent
collects the signal/parameter using the in statement, but it
is not necessary to put the statement as the first procedure
step. Similarly, in case of an output procedure, an active
agent calls the procedure using the in statement. The passive
agent returns the result using the out statement, but it is not
necessary to put the statement as the last procedure step. A
procedure is finished after executing its last step.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 81

agent A {
out a;

}
agent B {

counter ::Int = 0;
proc b {

in b;
counter = 1; }

}

Fig. 3
COMMUNICATION BETWEEN AN ACTIVE AND A PASSIVE AGENT

Let us consider the example shown in Fig. 3. The initial
state is presented below:

A: (running,1,[],())
B: (waiting,0,[in(b)],(0))

A passive agent is always in one of two modes: waiting
or taken. The former one means that the agent is inactive
and waits for another agent to call one of its accessible
procedures. In such a situation pc is equal to zero and ci
contains names of accessible procedures. The taken mode
means that one of the passive agent procedures has been
called and the agent executes it. In such a case, ci contains
the name of the called procedure (i.e. the name of the port
used for the current communication).

The next states for the model under consideration are as
follows:

A: (running,1,[proc(B.a)],())
B: (taken,1,[in(b)],(0))

A: (running,1,[proc(B.a)],())
B: (taken,2,[in(b)],(0))

A: (finished,0,[],())
B: (waiting,0,[in(b)],(1))

4. Communication with environment
Alvis agents may contain ports that are not used in any

connection. Such ports are called border ports and are used
for a communication with the considered system environ-
ment. Border ports can be used both for collecting or sending
some information to the embedded system environment.
Properties of border ports are specified in the code layer
preamble with the use of the environment statement. Each
border port used as an input one is described with at least one
in clause. Similarly, each border port used as an output one
is described with at least one out clause. Each clause inside

the environment statement contains the following pieces of
information:

• in or out key word,
• the border port name,
• a type name or a list of permissible values to be sent

through the port,
• a list of time points, when the port is accessible,
• optionally some modifiers: durable, queue, signal.

in a [1..4] [];
in b [1..4] (map (100*) [1..]);
in c [1..4] (map (100*) [1..]) signal;
in d [1..4] (map (100*) [1..]) durable;
in e [1..4] (map (100*) [1..]) queue;
in f [1..4] (map (100*) [1..]) signal durable;
in g [1..4] (map (100*) [1..]) signal queue;

Fig. 4
BORDER PORTS’ SPECIFICATION

Let us focus on the description of border ports presented in
Fig. 4. Signals directions are considered from an embedded
system point of view, thus all considered ports are used to
send information from an environment to the corresponding
embedded system. In each case, one of the values 1, 2, 3, 4
(at random) can be collected through a port. However, the
ports differ about the time points when values are accessible.
a A value from the port can be collected at any

time point. An agent that performs the in statement
receives the value immediately (never waits for it).
Such border ports are useful for a modelling of
input sensors whose values can be read at any time.

b Every 100 ms a value is provided by the environ-
ment via the port. If none agent waits for it (waiting
mode), the value is lost.

c The port behaves similar to the b one, but the signal
may not be provided.

d Every 100 ms a value is provided by the envi-
ronment via the port. The value is accessible for
the corresponding embedded system until an agent
collects it. If while waiting for a collecting the
value, another one is sent via the port, the previous
one is overwritten.

e The port behaves similar to the d one, but if while
waiting for a collecting the value, another one is
sent via the port, it is put into a FIFO queue.

f The port behaves similar to the c one, but the
value is accessible for the corresponding embedded
system until an agent collects it or it is overwritten.

g The port behaves similar to the f one, but the
values are put into a FIFO queue.

The specifications of the ports b, . . . , g ports use the Haskell
map function and an infinite list. For more details (if
necessary) see [8].

82 Int'l Conf. Embedded Systems and Applications | ESA'11 |

If a border port is used for a parameterless communica-
tion, then the first list is empty. If a border port is used both
as an input and an output one, then it must be described both
with the in and out clauses. If different kinds of signals can
be sent through a border port, then more than one in or out
clause can be used.

It should be underlined that only the signal modifier
should be used in the final model of an embedded system.
Other modifiers are defined mainly for the verification pur-
poses, if reduced models are considered.

Border ports must have unique names in a model. The
same name of a border port used twice means that two agents
use the same border port.

5. ATS system models
Trains could not run safely without signalling devices.

Some automatic systems are used to transfer signals directly
to a driver cab. A driver must always obey such a signal, but
the possibility of human error can cause serious accidents.
As it was already said, Automatic Train Protection (ATP)
systems are used to guarantee a train safety even if a driver
is not capable of controlling the train. Furthermore, computer
systems can drive a train without a human support. The
Automatic Train Stop considered here is used to check
whether a driver controls the train.

The default time unit in Alvis is 1 millisecond. However,
due to the specific features of the system under considera-
tion, we will use 1 second as the basic time unit. As a result
of this assumption, we will omit durations of steps execution.
A single step in this example takes about 1 or 2 milliseconds,
so they do not influence the system properties.

5.1 First approach
We start with a model that contains only one agent called

ATS . Other elements: the cab console, timer, brake etc. are
elements of our system environment. The model is shown
in Fig. 5. Comments contain the numbers of steps.

In the considered example all ports are border ones.
However, the model is already suitable to verify properties
of the ATS agent. The off signal can be generated any one
second, but it does not influence the system behaviour, if it
is generated before the system is waked up. It is possible to
specify the off port behaviour in a more sophisticated way
using Haskell functions:

offlist p0 p1 p2 n k
| k <= n = (p1 + k * p2)

: offlist p0 p1 p2 n (k + 1)
| otherwise = offlist p0 (p0 + p1) p2 n 1

offlist’ = offlist 60000 61000 1000 10 1

In the presented example, the off signal may be generated
only for 10 s after the wakeup signal.

A formal representation of an Alvis model is an LTS graph
(Labelled Transition System) that contains all reachable
states of a considered system and all transitions among

environment {
in wakeup [] (map (60*) [0..]) durable;
in off [] [1..] signal;
out warning [0,1,2] [];
out brake [] [];

}

agent ATS {
loop { -- 1

in wakeup; -- 2
out warning 1; -- 3
select { -- 4

alt (ready [in(off)]) {
in off; -- 5
out warning 0; } -- 6

alt(delay 6) {
out warning 2; -- 7
select { -- 8

alt (ready [in(off)]) {
in off; -- 9
out warning 0; } -- 10

alt (delay 3) {
out brake; -- 11
exit; } -- 12

} } } } }

Fig. 5
ATS SYSTEM – MODEL 1

them. A part of such an LTS graph for the considered
model is shown in Fig. 6. Let us note that an LTS graph
is generated for an Alvis model automatically. The com-
plete graph contains 118 nodes (states). Most of them are
results of the off border port specification. In the considered
example the signal can be generated (label in(*.off))
every one second but most of these signals are ignored.
The in(!*.off) label denotes lack of the off signal at
a moment it could be generated. The included part of the
LTS graph contains, among other things, the system time
out 6 s after the wakeup signal.

5.2 Second approach
In the second approach, we decided to treat the driver

console as a part of the embedded system. Moreover, the
system contains a timer that wakes it up every 60 s. The
model is shown in Fig. 7.

The second model contains only two border ports. In spite
of the fact that two new agents have been included into the
model, the definition of the ATS agent is still the same. The

0The complete LTS-graph can be found at Alvis website
http://fm.ia.agh.edu.pl.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 83

Fig. 6
PART OF THE LTS GRAPH FOR THE ALVIS MODEL SHOWN IN FIG. 5

driver console is represented by the Console passive agent
with a single procedure used to set the console state. The
Timer agent is an active one with a loop every statement.
The agent sends the tick signal every 60 s.

A part of the LTS graph for the model is shown if Fig. 8.
The graph contains 134 nodes. It is easy to find out sim-
ilarities between these two LTS graphs. Both models have
similar properties e.g. one deadlock (after turning on the
brake), and similar paths in the corresponding LTS graphs.
Frankly speaking there is not a big difference between sizes
of these two graphs – only 16 nodes. On the other hand,
the first LTS graph contains 49 nodes that are the result
of generating the off signals that have been omitted by the
ATS system, while the second graph contains 50 such nodes.

environment {
in off [] signal;
out brake [] []; }

agent ATS {
-- ...

}
agent Timer {

loop (every 6000) {
out tick; }

}
agent Console {

state ::Int = 0;
proc setState { in setState state ; }

}

Fig. 7
ATS SYSTEM – MODEL 2

These nodes can be eliminated from the graphs if a more
sophisticated specification of the off port is used. From this
point of view, we have two graphs with 69 and 84 nodes
respectively, i.e. the difference is 18%.

6. Conclusions
The presented examples of ATS systems allow one to find

out the usefulness of the Alvis language for the design of
embedded systems. The possibility of moving borders of an
embedded system environment allows designers to develop
a system increasing the number of its details in subsequent
stages. Thus, we can design a small part of the target system
and test its behaviour or verify it in a formal way using the
LTS graph. Then, a more detailed version of such a system
can be designed and we check whether the new version is
compatible with the old one.

On the other hand, the presented approach can be useful
for verification of more complex models with a very big
state space. We can divide such a model into a set of
subsystems and verify each of them separately. For each
subsystem, we treat other parts of the model as the subsystem
environment. The sum of sizes of LTS graphs generated for
such subsystems is usually less than the size of the LTS
graph generated for the whole system.

84 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Fig. 8
PART OF THE LTS GRAPH FOR THE ALVIS MODEL SHOWN IN FIG. 7

Acknowledgement
The paper is supported by the Alvis Project funded from

2009-2010 resources for science as a research project.

References
[1] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-

ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.
[2] K. Jensen and L. Kristensen, Coloured Petri nets. Modelling and

Validation of Concurrent Systems. Heidelberg: Springer, 2009.
[3] M. Szpyrka and T. Szmuc, “Verification of automatic train protection

systems with RTCP-nets,” in Computer Safety, Reliability and Secu-
rity, ser. LNCS, J. Górski, Ed. Springer-Verlag, 2006, vol. 4166, pp.
344–357.

[4] J. A. Bergstra, A. Ponse, and S. A. Smolka, Eds., Handbook of Process
Algebra. Upper Saddle River, NJ, USA: Elsevier Science, 2001.

[5] L. Aceto, A. Ingófsdóttir, K. Larsen, and J. Srba, Reactive Systems:
Modelling, Specification and Verification. Cambridge, UK: Cam-
bridge University Press, 2007.

[6] M. Szpyrka, P. Matyasik, and R. Mrówka, “Alvis – modelling lan-
guage for concurrent systems,” in Intelligent Decision Systems in
Large-Scale Distributed Environments, ser. Studies in Computational
Intelligence, P. Bouvry, H. Gonzalez-Velez, and J. Kołodziej, Eds.
Springer-Verlag, 2011, ch. 15.

[7] M. Szpyrka, Alvis On-line Manual, AGH Univ. of Science and Tech.,
2011. [Online]. Available: http://fm.ia.agh.edu.pl/alvis:manual

[8] B. O’Sullivan, J. Goerzen, and D. Stewart, Real World Haskell.
Sebastopol, CA, USA: O’Reilly Media, 2008.

[9] R. Milner, Communication and Concurrency. Prentice-Hall, 1989.
[10] K. Balicki and M. Szpyrka, “Formal definition of XCCS modelling

language,” Fundamenta Informaticae, vol. 93, no. 1-3, pp. 1–15, 2009.
[11] J. Barnes, Programming in Ada 2005. Addison Wesley, 2006.
[12] G. Berry, The Esterel v5 Language Primer Version v5 91, Centre de

Mathématiques Appliquées Ecole des Mines and INRIA, 2000.
[13] Welcome to SCADE 6.0, Esterel Technologies SA, 2007.
[14] ISO, “Information processing systems, open systems interconnection

LOTOS, Tech. Rep. ISO 8807, 1989.
[15] OMG Systems Modeling Language (OMG SysML), Object Manage-

ment Group, 2008.
[16] P. Ashenden, The Designer’s Guide to VHDL, 3rd ed. Morgan

Kaufmann, 2008, vol. 3.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 85

DEVELOPMENT OF A LIBRARY FOR TEACHING AND
IMPLEMENTING RESOURCE-LIMITED EMBEDDED SYSTEMS

William A. Stapleton

Ingram School of Engineering, Texas State University – San Marcos
601 University Drive, 5202 Roy F. Mitte Building, San Marcos, TX 78666 USA

wstapleton@txstate.edu, Voice: (512) 245-8746, FAX: (512) 245-7771
The 2011 International Conference on Embedded Systems and Applications

ABSTRACT

Texas State University – San Marcos began
offering its Computer Engineering curriculum in the Fall
2010 semester. A key element of this curriculum is an
emphasis on Embedded Systems design as a mechanism
for addressing the key educational objectives of the
IEEE/ACM Model Curriculum. One of the key
differences between Embedded Systems design and
general system design is the need to address a restrictive
resource-limited environment. This paper describes the
development of an embedded systems library suited for
the dual purposes of teaching resource-limited Embedded
Systems design and for implementation of practical
Embedded Systems.

Keywords: embedded systems, engineering education

1. INTRODUCTION

In 2008, Texas State University-San Marcos

(TSUSM) created the Ingram School of Engineering by

moving the Manufacturing Engineering and Industrial

Engineering programs from the Department of

Technology and creating a new Electrical Engineering

(EE) program [1]. Beginning in Fall 2010, The Ingram

School of Engineering began offering a Computer

Engineering (CompE) program as an option in the EE

program. This CompE curriculum was developed using

the IEEE/ACM Model Computer Engineering curriculum,

implementation C [2-3]. By partnering with the

Computer Science program, the EE program was able to

offer all of the necessary coursework to create the

CompE program only two years after offering EE courses

for the first time at TSUSM.

In developing the CompE program, the TSUSM

faculty considered how they would incorporate as many

of the items from the Computer Engineering Body of

Knowledge [3]. Building on a model developed at The

University of Alabama, a curricular focus utilizing the

theme of Embedded Systems was developed that covers a

wide range of these knowledge objectives [4-9]. In

brief, there are considerations in embedded systems

design which translate well into general system design

which do not translate as well in the other direction. In

particular, many embedded systems labor under the

constraints of very limited resources, e.g. small memory,

slow processing speed, limited electrical power, and

limited I/O bandwidth. Techniques that work with a

MHz microprocessor with kibibytes of RAM will work

with a GHz microprocessor with gibibytes of RAM but

the reverse is often not true. Many modern general

purpose system design tools such as object-oriented

compilers and graphical user interfaces simply

overwhelm the capabilities of embedded systems.

In order to address all of these concerns, the

embedded systems design techniques are incorporated

across multiple courses in the curriculum along with

more general-purpose design techniques. During the

incorporation of these techniques into the curriculum, a

library of fundamental routines was developed. These

routines are useful as a teaching tool as showing the

students how they were developed is instructive of how

to interact at a low level with the microprocessor

hardware. These same routines are sufficiently versatile

to serve as a set of building blocks for complex projects

including capstone design and beyond.

86 Int'l Conf. Embedded Systems and Applications | ESA'11 |

2. SELECTING AN ARCHITECTURE

The IEEE/ACM Model Curriculum lists a

number of Embedded Systems topics appropriate to a

Computer Engineering Curriculum [3]. These include:

history and overview; embedded microcontrollers;

embedded programs; real-time operating systems;

low-power computing; reliable system design; design

methodologies; tool support; embedded multiprocessors;

networked embedded systems; and interfacing and

mixed-signal systems.

While developing the TSUSM CompE

curriculum, the concept of incorporating these topics

beginning as early as the Digital Logic and

Microprocessors courses and continuing through the

Capstone Design courses via the development and use of

a core set of programming libraries came to fruition.

The importance of and techniques for incorporating these

topics has been previously studied [4-6,8-9].

In order to build a library, a microprocessor

architecture needed to be selected. A prior-existing

course, CS 2318: Assembly Language, uses the

RISC-style MIPS architecture for development solely

through a software emulation environment. A founding

tenet of the Ingram School of Engineering is to provide

strong “hands on” engineering whenever possible

without compromising theoretical rigor [4,10].

Therefore, the decision was made to incorporate a

physical architecture in EE 3420: Microprocessors and

subsequent courses. Several were considered and the

salient points for making a decision included a desire for

a simple enough architecture that students could become

fluent in its use in one semester, a readily-available and

inexpensive hardware platform that students could easily

purchase for themselves if desired, a readily-available

toolset for both low-level assembly programming and

high-level languages such as C/C++, and common usage

in at least one industrial context.

The selected architecture was the FreeScale

MC9S12 (formerly Motorola 68HC12) family [11-13].

This is an older 16-bit CISC-style architecture which is

commonly used in automotive industry applications.

The toolset for this family of microprocessors includes a

number of freeware/shareware tools such as AsmIDE,

MiniIDE, and GCC for 68HC11/68HC12 [14-16]. The

CodeWarrior development platform has also been made

available for MC9S12 [17]. Evaluation board

architectures using the MC9S12 microprocessors are

available from a number of vendors [11,13,18-19]. The

TSUSM EE/CompE laboratories are equipped with

Dragon12, MiniDragon, and DragonFly12 boards from

Wytec but the libraries are suited for use with any

MC9S12 products and have been tested with boards from

Technological Arts and Axiom Manufacturing [13,18-19].

The libraries are similarly compatible with either the

older D-BUG12 monitor or newer Serial Monitor (via

uBug12 or CodeWarrior) on any of the MC9S12 boards.

3. LIBRARY CONTENTS AND EMBEDDED
SYSTEMS TOPICS

The library incorporates code examples and

subroutines intended to both address the Model

Curriculum topics and to serve as useful building blocks

for student projects. When designing for

general-purpose computers, having hardware and

operating system support for a common set of

input/output (I/O) devices, e.g. keyboard, mouse, VGA

screen, printers, etc. Embedded systems designers

cannot expect the same standardized hardware.

The first routines included in the library are

used to establish input from a 4x4 grid of switches used

as a touch-tone telephone style keypad and interfaced via

4 row pins and 4 column pins. The library routines

allow for polling of the keypad or, if the selected I/O pins

allow, for interrupt-driven key action. The keypad

routines allow for custom mapping of ASCII characters

to each key. Similar routines allow individual switches

to be attached to any I/O pin and monitored.

The next routines included in the library are

used to allow output to either simple indicator LEDs or

alphanumeric LED displays. Because using multiple

digit displays (even simple 7-segment displays) may

quickly allocate all I/O pins on a microprocessor, the

Int'l Conf. Embedded Systems and Applications | ESA'11 | 87

routines incorporate time-multiplexing of multiple

7-segment displays. Two versions of the routine exist

differing by triggering the digit multiplexing may by

either an active delay loop or via a hardware-timed

interrupt.

The next routines allow the use of standard

character-based LCD panels up to 4 rows of 40

characters each. The panel may be interfaced using

either a byte-wide data interface or a 4-bit wide interface

directly connected from the microprocessor I/O pins to

the panel.

In addition to supporting direct attachment of

devices to the microprocessor I/O pins, the library

contains routines for support of standard interface types.

The first interface supported is the RS-232 serial standard

(called Serial Communication Interface or SCI by

FreeScale). This is an asynchronous, peer-to-peer

standard with no addressing. The subroutine support

for SCI includes transmission and receipt of single bytes

similar in form to the putc() and getc() routines in C.

Extended routines allowing for null-terminated strings of

bytes similar to the C puts() and gets() via SCI are also

included. Because SCI I/O speeds are relatively slow,

support routines allow for non-blocking tests of the

transmit and receive buffers to allow background I/O

processing.

The most common interface for development of

programs involves using a PC as a terminal for the

microprocessor with data transmitted over RS-232. The

most common interface model used as a terminal

emulator on PCs is the VT-100 terminal. In addition to

input and output of simple text, the VT-100 terminal

model allows control of the terminal properties such as

cursor position, text size/font, text color, and type

variants such as boldface, italics, or blinking text.

A second standard interface type is Serial

Peripheral Interconnect (SPI). SPI is a synchronous

master-slave standard with a single select bit per slave

for addressing. With SPI transmit and receive

operations are always simultaneous so the library

includes an SPI byte-exchange routine.

The basic SPI routines are also utilized to form

software interfaces for several peripherals. One such

interface in the library is for the LCD panels on the

Axiom Manufacturing boards which physically access

the LCD panel via a 74HC595 serial-to-parallel interface

chip connected to the SPI port. Another device

supported by the library is the MAXIM Integrated

Circuits MAX3110E SPI to RS-232 UART bridge which

provides an additional RS-232 UART to the

microprocessor system [20]. The library supports this

chip as one of multiple chips on the SPI bus for

extending the I/O capabilities of a system.

Both the SCI and SPI interfaces are typically

used for transfer of characters. Internally, all

microprocessors treat data as binary numbers. The

library contains routines for conversion between ASCII

character data and binary formats. These are similar to

the C atoi() and itoa() routines. The inherent data

types on the MC9S12 family are 8-bit and 16-bit integers.

The library routines add support for basic arithmetic for

extended-length (32-bit, 64-bit, and arbitrary-length)

integers and fixed-length fraction formats.

While the MC9S12 does not include

floating-point data formats natively, the library offers

support for simple floating point I/O and basic arithmetic

via software. More comprehensive floating-point

support is also provided in the library using the

MicroMega µM-FPU floating-point unit [21]. The

µM-FPU is a stand-alone IEEE 754 standard

floating-point arithmetic chip interfaced via SPI. The

library incorporates routines which use the

aforementioned SPI functions to provide access to all of

the floating-point arithmetic capability of the µM-FPU.

The libraries also include a full set of macros which

allow FPU access to appear as extensions to the existing

assembly language syntax.

In addition to the simple point-to-point serial

protocols, SCI and SPI, all of the MC9S12 variants used

in the laboratories support two additional

communications protocols used for multi-point

communications, Inter-Integrated Circuit (IIC) and

88 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Controller Area Networking (CAN). The library

includes support for addressing and simple message

passing using each of these protocols.

The IIC bus allows for multiple devices, up to

128, to share a single bus and was originally designed as

the control bus for chip-to-chip communications on a

single backplane for multimedia equipment. The IIC

protocol allows any bus device to become the bus master

then send or request data from any other device. The

IIC-based components of the library allow for simple

messages to be sent or received via IIC. The Dragon12

board contains a Dallas Semiconductor DS1302 Real

Time Clock (RTC) interfaced via IIC and library utilizes

the basic IIC routines to provide an interface for reading

and writing the RTC.

The CAN bus is an automotive industry

standard for noise-tolerant communications. This is a

complete networking standard with message routing and

other communications protocols components. The

library provides the simplest case support for specifying

a target address and sending a message or filtering

incoming message to receive only those locally

addressed. Complex CAN bus support is not included

in the current version of the library.

The various members of the MC9S12 family

have both simple EEPROM and FLASH EEPROM.

Support for reading and writing these memory stores are

are integrated into the library. Typically, when students

first learn to program using wither D-BUG12 or the

Serial Monitor, many of the system initialization tasks

are completed by the monitor before a student’s program

begins so that their programs always begin from a known,

sane state. Students building programs to take control

of a board from power-up for the first time rarely

remember to include all of the setup details in their

programs. The library includes setup routines for most

of the common functional units in the MC9S12 to allow

the students to quickly choose their initial setup easily.

One of the common microprocessor interfacing

tasks is creating pulse-width modulated (PWM) signals

for control of various devices. The MC9S12 chips

contain hardware PWM units. The library includes

functions to streamline setting the PWM parameters for

applications such as servo motor control and tone

generation. Specifically for tone generation, the library

includes a table of the PWM periods for musical notes

covering eight octaves.

The MC9S12 hardware includes several

independent variable-length timers. The library

incorporates routines for streamlining control of setting

the times for desired periods. Accompanying this

support in the library is support for pulse accumulation

for applications such as tachometer speed feedback for

motor control.

The MC9S12 chips contain integrated

analog-to-digital (A/D) conversion. The library

includes routines for setup and control of the A/D units

and scaling of the digital samples back to a voltage or

other desired quantity. The library contains support for

using several common thermistors for reading ambient

temperature. The MC9S12 chips do not include internal

digital-to-analog (D/A) conversion. The library

includes support for interfacing the Linear Technology

LTC1661 dual D/A convertor via the SPI bus. These

chips are available on the Dragon12 boards in the

laboratories.

The final group of library support routines is for

control of motors. There are library routines which

allow for easy control of servo motors which follow the

50Hz, 5%-10% duty-cycle format common in

radio-controlled hobby applications. There are library

routines for control of reversible DC motors via H-bridge

with PWM speed control in either clockwise or

counter-clockwise rotation. There are routines for

control of unidirectional DC motors with integrated

tachometers (e.g. PC case fans) allowing for speed

control. There are routines for control of both 4-phase

unipolar stepper motors and 2-phase bipolar stepper

motors in both single and half step modes.

4. INCORPORATING THE LIBRARY INTO
STUDENT LEARNING EXPERIENCES

Int'l Conf. Embedded Systems and Applications | ESA'11 | 89

In EE 3420: Microprocessors, students are

introduced to the MC9S12 architecture and the

accompanying assembly language as well as an

associated C compiler. As this microprocessor

architecture is taught as one exemplar of a complete

architecture complete with design compromises, the

students are shown the libraries piecemeal after each

portion of the library is recreated as class exercises. The

accompanying laboratory assignments begin with

relatively simple tasks such as creating a serial link over

infrared between two boards and continue to include such

things as motor control with feedback to control a fan

speed using PWM as measured by a tachometer pulse in

response to temperature measured by a thermocouple.

The culminating experience in the class involves the

students building simple robots which must follow lines

on a track searching for objects to either collect or reject.

The other courses which have shown the most

widespread usage of the library for applications are the

two Capstone Design courses, EE4390 and EE4391.

While the EE program is young enough to only have its

third group of students enter the Capstone Design

sequence, the library has already proved useful as a

building block for several projects. The first Capstone

Design class had three groups who used the library.

The first group used the library on a MC9S12

microprocessor working in conjunction with a DSP board

to create a powerline networking protocol capable of

passing signals through multiple levels transformers

between communicating nodes. The second group used

the library on a MC9S12 board to build a controller for a

press and oven for producing semiconductor ceramics.

The third group using the library built a digital

goniometer for the Physical Therapy program in the

School of Nursing at TSUSM. The goniometer is used

to make measurements of joint position for patient

flexibility, record those measurements, and transmit them

into the patient database The second Capstone Design

class included several groups using the library. One

group is building a camera mount which automatically

tracks movement. A second group is building an energy

harvesting monitor to report the condition of battery

charge at a combined solar/wind generation station. A

third group is building a self-organizing mesh

communications network for the public transit system on

campus. In the most recent Capstone Design class, one

group is using the library to create a controller for an

automated telescope mount. Another group is building

an RFID-based asset inventory system. A third group is

using the library to build a game controller for the Wii

incorporated into a treadmill for wheelchairs which

provides resistance and flexibility training for wheelchair

physical therapy.

In addition to use in required coursework, two

teams of students involved in the IEEE Student Branch at

TSUSM have used the library for design of the control

electronics in the Student Autonomous Vehicle

competition sponsored by the IEEE Region 5. In the

2010 competition, which was the first time that TSUSM

fielded a team, the participating students placed sixth in a

field of twenty-seven.

5. FUTURE EXPANSION

The library currently supports the most common

members of the FreeScale MC9S12 family found in

evaluation boards. Part of the ongoing library creation

and maintenance program involves adding support for

additional features present in subsets of the MC9S12

family. A few members of the MC9S12 family include

on-board Ethernet capability. Adding Ethernet support

is one of the targeted additions to the library in the near

future.

FreeScale has also released the MC9S12X

microprocessor family which contains a secondary

programmable logic core called the XGATE in addition

to the standard MC9S12 core. Programming the

XGATE coprocessor requires a very different

programming model to the traditional MC9S12 core.

Support for XGATE functionality is a long-term

possibility for the library.

FreeScale has other microprocessor families for

90 Int'l Conf. Embedded Systems and Applications | ESA'11 |

which similar libraries could be built. The Freescale

MC9S12 family grew from the Motorola 6800 family.

Similarly the FreeScale ColdFire family grew from the

Motorola 68000 family. Not surprisingly, there are

some strong parallels in the architectures and many of the

techniques used to program one family should be readily

adaptable to the other.

6. CONCLUSIONS

The Ingram School of Engineering at Texas

State University – San Marcos has been in existence for

three years and has offered its full complement of

programs for two years. The Electrical Engineering

program, including the Computer Engineering option,

has grown from non-existent to over 270 students in just

over two years. A key element in the coursework

design for the EE and CompE curricula has been the

incorporation of a strong Embedded Systems theme.

Central to a cohesive Embedded Systems theme is a

common library of tools used for both teaching of

concepts and as an underpinning basis for student

projects. This library has allowed students to attempt

more extensive projects than they might otherwise have

been able without such a resource.

7. REFERENCES

[1] Stapleton, William, “Zero to Two Hundred in Two

Years: Launching a New Program”, The 2010

International Conference on Frontiers in Education:

Computer Science and Computer Engineering, Las

Vegas, NV, July 12-15, 2010.

[2]

 URL: http://www.computer.org/portal/web/educatio

n

 URL:

 [3]

uburn.edu/ece/CCCE/CCCEhttp://www.eng.a

-FinalReport-2004Dec12.pdf

 Stapleton, William A., “Embedded Assessmen

Microcomputer Fundamentals for Embedded

Systems Education”, The 2008 International

Science and Computer Engineering, Las Vegas, NV,

July 2008.

[4] t of

Conference on Frontiers in Education: Computer

[5] Ricks, K.G., Jackson, D.J., Stapleton, W.A., “An

Embedded Systems Curriculum Based on the

IEEE/ACM Model Curriculum,” IEEE Transactions

on Education, Vol. 51, Issue 2, pp. 2262-2270, (2008)

– selected IEEE Education Society 2009 Best

Transactions Paper.

[6] Ricks, Kenneth G., David J Jackson, William A.

Stapleton, “Incorporating Embedded Programming

Skills within an ECE Curriculum”, SIGBED Review,

Volume 4, No. 1, pp. 17-26 (2007).

[7] Kenneth G. Ricks, David J. Jackson, William A.

Stapleton, “An Evaluation of the VME Architecture

for Use in Embedded Systems Education,” SIGBED

Review, Vol 2. No. 4, pp. 63-69, (2005).

[8] Ricks, K. G., Stapleton, W. A., Jackson, D. J., “A

Focused Curriculum for Embedded Systems”,

Proceedings of the 32nd Annual International

Symposium on Computer Architecture (ISCA),

Madison, Wisconsin, June 2005.

[9] Stapleton, William, Kenneth Ricks, Jeff Jackson,

“Implementation of an Embedded Systems

Curriculum”, Proceedings of the ISCA 20th

International Conference on Computers and Their

Applications (CATA’05), New Orleans, LA, March

2005.

[10] Stapleton, William, Stern, Harold, Asiabanpour,

Bahram, Gourgey, Hannah, “A Novel Engineering

Outreach to High School Education”, 39th Annual

Frontiers in Education Conference (FIE 2009), San

Antonio, TX, October 18-21, 2009.

[11]

URL: http://www.freescale.com/webapp/sps/site/ho

mepage.jsp?code=UNIVPROGRAM_HOME_CAT

[12]

URL: http://www.freescale.com/webapp/sps/site/ove

rview.jsp?code=UNIVPROGRAM_SLKITS_CAT

[13] URL: http://www.evbplus.com/

Int'l Conf. Embedded Systems and Applications | ESA'11 | 91

http://www.computer.org/portal/web/education
http://www.eng.auburn.edu/ece/CCCE/CCCE-FinalReport-2004Dec12.pdf
http://www.freescale.com/webapp/sps/site/homepage.jsp?code=UNIVPROGRAM_HOME_CAT
http://www.freescale.com/webapp/sps/site/homepage.jsp?code=UNIVPROGRAM_HOME_CAT
http://www.freescale.com/webapp/sps/site/overview.jsp?code=UNIVPROGRAM_SLKITS_CAT
http://www.freescale.com/webapp/sps/site/overview.jsp?code=UNIVPROGRAM_SLKITS_CAT
http://www.evbplus.com/

[14] URL: http://directory.fsf.org/project/asmide/

[15] URL: http://www.mgtek.com/miniide/

[16] URL: http://m68hc11.serveftp.org/

[17]

URL: http://cache.freescale.com/lgfiles/devsuites/H

C12/CW_HC12_v5.1_SPECIAL.exe?WT_TYPE=I

DE%20-%20Debug,%20Compile%20and%20Build

%20Tools&WT_VENDOR=FREESCALE&WT_FI

LE_FORMAT=exe&WT_ASSET=Downloads

[18] URL: http://axman.com/

[19] URL: http://technologicalarts.com/

[20]

 URL: http://datasheets.maxim-ic.com/en/ds/MAX3

110E-MAX3111E.pdf

[21] URL: http://micromegacorp.com/umfpu-v3.html

92 Int'l Conf. Embedded Systems and Applications | ESA'11 |

http://directory.fsf.org/project/asmide/
http://www.mgtek.com/miniide/
http://m68hc11.serveftp.org/
http://cache.freescale.com/lgfiles/devsuites/HC12/CW_HC12_v5.1_SPECIAL.exe?WT_TYPE=IDE%20-%20Debug,%20Compile%20and%20Build%20Tools&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=exe&WT_ASSET=Downloads
http://cache.freescale.com/lgfiles/devsuites/HC12/CW_HC12_v5.1_SPECIAL.exe?WT_TYPE=IDE%20-%20Debug,%20Compile%20and%20Build%20Tools&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=exe&WT_ASSET=Downloads
http://cache.freescale.com/lgfiles/devsuites/HC12/CW_HC12_v5.1_SPECIAL.exe?WT_TYPE=IDE%20-%20Debug,%20Compile%20and%20Build%20Tools&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=exe&WT_ASSET=Downloads
http://cache.freescale.com/lgfiles/devsuites/HC12/CW_HC12_v5.1_SPECIAL.exe?WT_TYPE=IDE%20-%20Debug,%20Compile%20and%20Build%20Tools&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=exe&WT_ASSET=Downloads
http://cache.freescale.com/lgfiles/devsuites/HC12/CW_HC12_v5.1_SPECIAL.exe?WT_TYPE=IDE%20-%20Debug,%20Compile%20and%20Build%20Tools&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=exe&WT_ASSET=Downloads
http://axman.com/
http://technologicalarts.com/
http://datasheets.maxim-ic.com/en/ds/MAX3110E-MAX3111E.pdf
http://datasheets.maxim-ic.com/en/ds/MAX3110E-MAX3111E.pdf
http://micromegacorp.com/umfpu-v3.html

 Abstract—The performance of software executed on a

microprocessor is adversely affected by the basic fetch-execute

cycle. A further performance penalty results from the load-

execute-store paradigm associated with the use of local variables

in most high-level languages. Implementing a software algorithm

directly in hardware such as on an FPGA can alleviate these

performance penalties. Such implementations are normally

developed in a hardware description language such as VHDL or

Verilog. Previous work has been completed to create a compiler

for converting high-level stack-based languages to VHDL for use

on an FPGA or ASIC. This allowed for special-purpose

processors to be generated efficiently from high-level algorithms

with minimal design time. Introduced in this paper is a significant

optimization to the original flowpaths – we have completely

eliminated the controller and modified all operations to control

themselves. These new self-propagating flowpaths execute faster

and are less resource intensive. Comparisons to previous

examples show that the new design exhibits, on average, a

decrease in execution time of 32%, operating frequencies of 1.6

times higher, and a 33% decrease in power consumption. These

flowpaths can be generated from languages with a stack-based

intermediate representation including Java, C++, C#, and VB.

Index Terms—Field Programmable Gate Arrays, Program

Compilers, Embedded Systems, Object-oriented Design.

I. INTRODUCTION

ver the past ten years, field-programmable gate arrays

(FPGAs) have become increasingly popular in the area of

embedded systems. Due to lower costs and an increase in the

resources available with lower-end models, FPGAs can be

used in a wide range of applications. FPGAs have shown to be

optimal for use in high-performance systems while reducing

power consumption.

A special-purpose processor (SPP) or custom digital circuit

implemented on an FPGA is an ideal replacement for a

microcontroller. Custom hardware such as SPPs can realize an

algorithm more efficiently than a general-purpose

microcontroller with load-execute-store overhead. However,

SPPs increase in size, requiring more logic for larger

algorithms, while a microcontroller can execute as large an

algorithm as the program memory can hold using a fixed

amount of logic. For others, a SPP on an FPGA can be used as

a coprocessor to a microcontroller to help speed up particular

functions or sub-procedures.

Manuscript received March 31, 2011.

Darrin M. Hanna, Bryant Jones, Lincoln Lorenz, and Mark Bowers are

with the School of Engineering and Computer Science at Oakland University

in Rochester, MI (dmhanna@oakland.edu).

Designing a SPP is much more difficult than writing

software in a high-level programming language to execute on a

microcontroller. In order to design a SPP for a particular

algorithm, a designer must learn how to develop hardware

using a hardware description language such as VHDL or

Verilog. Further, design of a SPP for a lengthy algorithm can

be time consuming and requires a skilled computer engineer to

do so efficiently.

One common idea to decrease development time is to use a

high-level language to develop hardware. Several techniques

have been introduced that use this concept. Techniques for

generating SPPs such as Handel-C, often require learning a

new or significantly altered language, and have the bottleneck

of often being register based as described in [1].

Using the method introduced in [1, 3] SPPs can be

generated from algorithms written in high-level stack-based

intermediate representations (IR). This has the advantage of

being generated from an unmodified high-level language. This

is also more efficient than previous methods that use registers

for each variable. The SPPs generated using this technique are

called flowpaths. An embedded system can be designed and

implemented rapidly using a high-level programming

language.

Our previous method generated flowpath SPPs with two

basic components, a datapath and a state controller. An

optimization of this architecture is to distribute the controller

into each low-level operation to allow for smaller, more

efficient designs that can operate at higher frequencies.

In this paper, an optimization of the flowpaths architecture

is introduced using a stateless self-propagating method that

results in improvements for both speed and chip utilization.

Outlined in Section 2 is the new stateless self-propagating

architecture. Section 3 shows results using several

benchmarking algorithms, comparing efficiency in an

embedded system. Sections 4 and 5 describe additional

benefits of flowpaths. The paper closes by providing

concluding remarks and future work.

II. SELF-PROPAGATING FLOWPATHS

Software programs written in a stack-based language can be

converted directly to circuits called flowpaths [3]. Stack-based

programming languages inherently minimize the use of local

variables. This is in contrast to other methods that have been

developed for converting register-based code into circuits by

converting each variable into a register and each assignment

and access into a sequential operation. Those methods suffer

from fan-out and routing issues and therefore operate at lower

clock rates [1]. Several software-programming languages

compile to an intermediate representation (IR) that is stack-

Generating Hardware from Java Using

Self-Propagating Flowpaths

Darrin M. Hanna, Bryant Jones, Lincoln Lorenz, and Mark Bowers

O

Int'l Conf. Embedded Systems and Applications | ESA'11 | 93

based. Examples include the stack-based Java bytecode which

is compiled from Java, and the Common Interface Language

(CIL) that languages compatible with the .NET framework

compile to, such as C++, C#, VB, and J#. Any of these

languages could be represented similarly in hardware. The

flowpaths compiler described here currently uses Java. The

Java Virtual Machine (JVM) is a stack machine that runs on a

microprocessor and executes Java bytecodes. Therefore,

instead of executing bytecodes on a JVM, flowpaths

completely eliminate the JVM by creating custom hardware

that implements the program. Java bytecodes are translated to

hardware operations, also known as OPs. A function-call

within a Java program translates to a datapath which contains a

series of connected OPs. Since flowpaths is IR-based, the

generated hardware is represented in a human-readable way,

unlike similar tools which often generate hardware that is

obscure and difficult to modify.

Self-propagating (SP) flowpaths uses a system of cascading

enables to avoid the need for an overall state controller. The

nature of the hardware generated is such that algorithms or

parts of algorithms execute in sequence where one operation

after another is active. In this scheme, no overall controller is

necessary; no single, overarching entity requires knowledge of

every operation in the datapath. Rather, this knowledge is

intrinsic to the individual OPs, and is therefore distributed.

A. Control Signals

Each OP is triggered by an “enable” signal, and its

completion is conveyed with a “done” signal. Self-propagation

is achieved by wiring the done signal from a given OP to the

enable signal of the successive OP. An initial enable pulse to

the system starts the cascading enables. The changing

execution stack and the locals stack flow alongside this

cascading status. Both combinational and sequential operations

adhere to this format. The overall architecture including the

new control signals is explained in Fig 1 using an example of a

greatest common divisor (GCD) algorithm. A simplified

flowpath to compute the GCD requires three OPs: an equality

detector (OPEq), a magnitude comparator (OPLt), and a

subtraction OP (OPMinus). A path using multiplexers and

branches connects these OPs. The top of Fig 1 shows the GCD

with the original flowpath including the state controller, and

the bottom of Fig 1 shows the SP flowpath with cascading

enables.

Conditional branching was previously controlled using the

main state controller. Two boolean results were received from

the conditional OP to notify the controller which OP should be

enabled next. In this new architecture, conditional OPs simply

produce two done signals, representing two paths the flow

could take. When the two paths converge again, a multiplexer

is used to select the appropriate flow to propagate onward. A

one-hot select line is used for the multiplexer, which is driven

by the done control signal output by the last OP in the active

path. This is demonstrated in Fig 2.

Software loops, such as those generated by the while and for

statements in Java, are very similar to conditional branches, the

difference being that they contain an unconditional branch at

the bottom of the statement. Unconditional branches are simply

represented as connections between two OPs. If there is a

conditional check within a loop there is a possibility that three

paths will flow to a multiplexer: an initial entrance path, a loop

condition path, and the conditional OP path.

B. Memory

Memory operations simply assume control of the memory

when activated. Currently, since only one OP in a given

Fig 1. Comparison of the original controller (top) and SP (bottom) flowpath

architectures

Fig 2. Conditional Branching in the SP Architecture

94 Int'l Conf. Embedded Systems and Applications | ESA'11 |

datapath is active at any one time, no memory arbitration

scheme is necessary. Every memory OP within a given

datapath is multiplexed to the memory controller. If every

memory OP were directly multiplexed into the memory

controller, problems would occur with routing as the design

increased in complexity. In the case of a method call, OPs are

multiplexed within the datapath itself and a single set of

memory control signals are routed to the datapath that calls it.

The top method of the hierarchy is wired directly to the

memory controller. Multiplexing within a single datapath

occurs through a sub-multiplexing routine where operations

are multiplexed into groups before the final multiplexing stage

to the single output. Relative to a datapath, a sub-method call

with memory appears as a normal OP with memory. In order

to support multithreaded designs with parallel flowpaths, a

memory arbiter is needed.

III. RESULTS

Several examples varying in difficulty were tested to verify

functionality and performance relative to both the original

flowpaths architecture and a microcontroller-based embedded

system. Euclid’s greatest common divisor (GCD), a quicksort,

the Sieve of Eratosthenes, a complex FFT, Linpack, and the

Mandelbrot fractal were tested. The GCD is a small algorithm

with relatively simple constructs, such as branching,

subtracting, comparing, and method calls. The Sieve of

Eratosthenes and quicksort both require the use of memory,

with quicksort requiring the most. FFT, Linpack, and the

Mandelbrot fractal use fixed-point arithmetic.

The flowpaths produced by the compiler have been

experimentally verified by simulation in Xilinx ISE version

12.3. Since all of the algorithms were written in standard Java,

it is easy to verify functionality. Additionally, since the process

does not alter the Java language, the exact same source code is

compiled on every platform. This adds to the relevancy of

performance comparisons and it aids in debugging.

Euclid’s GCD was compared in both architectures of the

flowpath compiler and the jStamp j-80 [4], a custom

architecture that natively executes Java bytecodes at 73.7

MHz. The GCD of the values 12,365,400 and 906 was

calculated. Table I displays the results of the implementation

using a Xilinx Spartan 6 XC6SLX75. The new architecture

showed a large decrease in the number of clock cycles

necessary, along with a significant increase in the maximum

execution frequency. In the original design, the algorithm

required 112 slices, and the SP design only required 77 slices

of the device.

Method
Data

Bus
Clock Cycles

Time(ms)

 @ Max

Freq

Max

Freq

(MHz)

Energy

(mW·ms)

@Max

Original

Flowpath
32 bit 95,648 0.637 150 148

SP

Flowpath
32 bit 54,652 0.273 200 54

jStamp 32 bit 2,690,000 36.5 73.7 6862

Table I. Relative performance comparison of GCD

The Sieve of Eratosthenes algorithm for finding all of the

prime numbers less than 2048 was executed using several

different methods to provide a relative performance

comparison. The algorithm was compiled to a flowpath using

both the original and SP architectures, and the jStamp. Results

comparing the architectures are provided in Table II. Both

flowpaths targeted a Xilinx Spartan6 XC6SLX75. The original

flowpath generated hardware that requires 496 slices,

occupying 4% of the chip. The SP flowpath, however, only

requires 268 slices at 2% consumption. This space savings is

expected as a result of the removal of the state controller.

Method
Data

Bus
Clock

Cycles

Time(ms)

@ Max

Freq

Max

Freq

(MHz)

Energy

(mW·ms)

@Max

Original

Flowpath
16 bit 22,116 0.211 105 29

SP

Flowpath
16 bit 16,023 0.1282 125 12

jStamp 32 bit 943,000 12.8 73.7 2406

Table II. Relative performance comparison of Sieve of Eratosthenes

A comparison of the two compilers was also done for

quicksort using an identical series of 4000 random data values.

The algorithm used was an iterative version, since recursion is

not yet supported in flowpaths. Both designs were

implemented using the same Xilinx Spartan6 XC6SLX75.

Implementation results comparing the architectures are

provided in Table III.

Method
Data

Bus
Clock

Cycles

Time(ms)

@ Max

Freq

Max

Freq

(MHz)

Energy

(mW·ms)

@Max

Original

Flowpath
16 bit 659,671 13.19 50 1279

SP

Flowpath
16 bit 486,520 3.892 125 366

jStamp 32 bit 37,520,000 509.1 73.7 95,711

Table III. Relative performance comparison of QSort

To demonstrate the quick design prototyping capabilities of a

flowpath, a 1024-point complex FFT was created in Java.

Implementing the same algorithm in hardware would take a

considerable amount of time and expertise. Using flowpaths, a

moderately efficient FFT implementation can be created for

use in an embedded system. This was implemented targeting a

Xilinx Spartan 6 XC6SLX75T FPGA. The generated hardware

required 8,349 slices, utilizing 71% of the chip. The same Java

algorithm was implemented on a jStamp embedded processor.

The FFT utilized a 32-bit fixed-point notation for

computations. Results are summarized in Table IV. In

comparison to the jStamp, the flowpath FFT showed superior

performance. Since the FFT algorithm can be effectively

parallelized, the serial version generated by the compiler is not

expected to achieve optimal results.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 95

Method
Data

Bus
Clock

Cycles

Time(ms)

@ Max

Freq

Max

Freq

(MHz)

Energy

(mW·ms)

@Max

SP

Flowpath
32 bit 268,891 3.841 70 714

jStamp 32 bit 17,500,000 237.6 73.7 44,669

Table IV. Relative performance comparison of 1024-point complex FFT

The classic benchmarking algorithm, Linpack, which

computes the solution to a system of linear equations, was

generated using the flowpath compiler. Implementing the same

hardware in custom VHDL would be considerably expensive

in terms of time and expertise. This generated flowpath was

implemented targeting a Xilinx Spartan 6 XC6SLX150T

FPGA. The hardware required 15,632 slices, utilizing 67% of

the chip. The flowpath was compiled using 32-bit fixed-point

notation for the computations, and the results are shown in

Table V. Times are given for the solution of a linear system of

size 100x100. As shown with the FFT algorithm, Linpack

showed an extreme performance increase in comparison to the

jStamp equivalent.

Method
Data

Bus
Clock Cycles

Time(ms)

@ Max

Freq

Max

Freq

(MHz)

Energy

(mW·ms)

@Max

SP

Flowpath
32 bit 4,276,400 122.2 35 34,065

jStamp 32 bit 2.064 x 108 2800.0 73.7 526,400

Table V. Relative performance comparison of Linpack

The Mandelbrot set is a fractal image produced by iterating a

quadratic polynomial across points in the complex plane. A

Mandelbrot calculation unit was generated using the flowpath

compiler. This unit operates upon a point in the Mandelbrot set

until the exit conditions for that particular point are reached.

The generated flowpath was implemented targeting an Altera

Cyclone II EP2C35F672C6 FPGA. The flowpath was

compiled using a 32-bit fixed-point number system. This was

profiled against both a custom VHDL component written by

hand, and the same Java code running in a jStamp.

The generated flowpath consumed 3217 logic elements (9%

of the chip), while the custom VHDL component consumed

725 logic elements (2% of the chip). Performance results for

calculating a single point in the Mandelbrot set for 255

iterations are summarized in Table VI.

The flowpath version is on the same order-of-magnitude as

the custom VHDL version, in terms of speed, power

consumption and resource usage. Additionally, since the

flowpath was generated directly from Java, the development

time was substantially faster. Both hardware versions greatly

exceeded the performance of the jStamp processor.

Method
Data

Bus
Clock

Cycles

Time(ms)

@ Max

Freq

Max

Freq

(MHz)

Energy

(mW·ms)

@Max

SP

Flowpath
32 bit 6,893 0.0656 105 15.55

Custom

VHDL
32 bit 1,276 0.0111 115 2.02

jStamp 32 bit 199,000 2.7 73.7 319

Table VI. Relative performance comparison of Mandelbrot calculation

Ratiometric comparisons between original flowpaths and SP

flowpaths were calculated and are shown in Table VII.

Examples shown are GCD, QSort, and Sieve. Data was

unavailable for other examples.

Experiment Time Max Freq Energy

GCD 0.45 1.3 0.36

Sieve 0.61 1.19 0.41

Qsort 0.29 2.5 0.29

Table VII. Ratiometric comparison of SP flowpaths vs. original flowpaths

IV. OPTIONS FOR FURTHER SPACE REDUCTION

Occasionally, a hardware designer may approach size

limitations with a specific design. Depending on how large the

design is, several choices can be considered to work around

such an issue. Choices may include: exploring optimization

methods, inserting a soft-core processor, dynamic

reconfiguration, or partitioning a device over multiple FPGAs.

One space optimization is to remove repetitive OPs in a

datapath. A series of similar OPs could also be considered

redundant in terms of space utilization. Another optimization

to save space would be to insert an elastic processor capable of

computing the OPs needed, in their place. Elastic cores are

also ideal for complex pieces of an algorithm that are executed

relatively few times. Using SP flowpaths, a design could be

easily partitioned by splitting the flowpath into sections and

using the simple interface to every OP as a bus to an adjacent

FPGA.

V. DESIGN FLEXIBILITY

Flowpaths have the capability to make use of custom hand-

crafted VHDL blocks for use into the flowpath. An interface

can be created in Java to describe the custom VHDL

component. The Java method would be empty and only defines

the inputs and output of the block. The compiler will recognize

this as a custom block and insert it into the generated flowpath.

This can be used to define the interconnection to multiple

custom VHDL blocks. This concept is further described in the

paper [5].

96 Int'l Conf. Embedded Systems and Applications | ESA'11 |

VI. FUTURE WORK

Future work includes defining a metric for determining and

minimizing the critical delay path of the system. Improved

optimization techniques for enhancing the speed and reducing

the size of the flowpaths generated by the compiler are also

being explored. These optimizations include hardware

component reuse and further reduction in unnecessary clock

cycles through optimization of the operations and memory

usage. Furthermore, future work includes integrating CIL,

another stack-based IR, to the compiler, allowing for a wide

range of .NET languages to be compiled to hardware.

VII. CONCLUSION

This paper shows how standard stack-based programs, such

as Java bytecodes, can be compiled directly to flowpaths

without a centralized controller. A refined architecture was

introduced here that demonstrates improved efficiency in the

areas of execution speed, maximum clock frequency, power

dissipation, and the amount of logic used. Using this

methodology, not only is the performance increased, but also

the development time is significantly decreased.

Flowpaths can outperform microprocessors at lower clock

frequencies and therefore consume less energy than

microprocessors or microprocessor cores. Even in situations

where the FPGA requires power on the same order of

magnitude as a processor, the energy required to perform a

function is significantly less since special-purpose processors,

including flowpaths, greatly reduce the execution time and

number of clock cycles required. Energy consumption is

compared in the last column of each table in Section 3. On

average, flowpaths running on FPGAs consumed over 50 times

less energy than a Java microcontroller.

The space reduction and performance increase of SP

flowpaths makes generation of SPPs for complex algorithms

such as FFT or Linpack practical to implement in an

embedded hardware system. Highly complex algorithms

implemented in flowpaths have shown to be superior to an

identical algorithm executed on a jStamp embedded processor.

Furthermore, designs can be created easily with minimal

design time, and the resulting hardware is easily

understandable and modifiable by a hardware designer.

REFERENCES

1. D. M. Hanna and R. E. Haskell, “Flowpaths: Compiling Stack-Based IR

to Hardware,” Microprocessors and Microsystems, vol. 30, pp. 125 -

136, 2006.

2. D. M. Hanna and M. Duchene, "Executing Large Algorithms on Low-

Capacity FPGAs using Algorithm Partitioning and Runtime

Reconfiguration," Journal of Microprocessors and Microsystems, vol

31/5 pp 302-312, August 1, 2007.

3. D. M. Hanna, M. Duchene, L. Kennedy, and B. Carpenter, "A Compiler

to Generate Hardware from Java Byte Codes for High Performance, Low

Energy Embedded Systems," The 2007 International Conference on

Engineering of Reconfigurable Systems and Algorithms, Las Vegas,

NV, June 25 - 28, 2007.

4. Systronix, “JStamp: Real-time Native Java Module,” 2003.

5. D. M. Hanna, B. Jones, L. Lorenz, and M. Bowers, “Flexible Embedded

System Design Using Flowpaths,” Submitted to the International

Conference on Embedded Systems and Applications, 2011.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 97

Using Real Time Java for Evaluating the Performance of
DDS Platforms

Rojdi Rekik1 and Salem Hasnaoui2
1 Sys-Com Laboratory, ENIT University, Tunis, TUNISIA
2 Sys-Com Laboratory, ENIT University, Tunis, TUNISIA

Abstract- It is necessary to develop QoS for DDS plat-
forms that enable participants to communicate by publish-
ing the information they have and subscribing to the infor-
mation they need in a timely manner. Since there is little
existing evaluation of the ability of these platforms to meet
the performance needs of DRE information management,
this paper provides two contributions: (1) it describes
three metrics choose for Evaluating the performance of
DDS platforms (2) it describes the exploitation of Real
Time Java to inject theses metrics in life cycle of DDS
component to be evaluating. Our strategy is available to be
developing for other Real Time middleware.

Keywords: Information Management in DRE Systems;
QoS-enabled Publish/Subscribe Platforms; Data Distribu-
tion Service; RTSJ;

1. Introduction
Data Distribution Service (DDS) are data-centric QoS-

enabled publish/subscribe middleware responsible to en-
sure the right information gets to the right place at the right
time by satisfying end-to-end quality of service (QoS) re-
quirements, such as latency, throughput, dependability, and
scalability.

Service-Oriented Architecture (SOA) middleware plat-
forms not guarantee theses QoS mechanisms because to
their lack of support for data-centric. For example, the Java
Messaging Service is a SOA middleware platform that is
not adapted for Distributed Real Time Environment (DRE)
due to its limited QoS support, lack of real-time operating
system integration, and high time/space overhead.

 Real-time CORBA [7] is poorly adapted Pub-
lish/Subscribe communication due to excessive layering,
extra time/space overhead, and inflexible QoS policies.

The Object Management Group (OMG) has adopted
the Data Distribution Service (DDS) [5] specification to be
applied for DRE systems. DDS is a standard for QoS-
enabled pub/sub communication aimed at mission-critical
DRE systems. It is designed to provide (1) location inde-
pendence via anonymous pub/sub protocols that enable
communication between collocated or remote publishers
and subscribers, (2) scalability by supporting large num-
bers of topics, data readers, and data writers, and (3) plat-
form portability and interoperability via standard inter

faces and transport protocols. Ling unmanned vehicle
communication with their ground stations, and in semi-
conductor fabrication devices.

This paper describe choose and implementing of met-
rics used to evaluate the performance of DDS middleware.

The remainder of this paper is organized as follows:
Section 2 summarizes the DDS specification; Section 3 de-
scribes choose of metrics; Section 4 summarizes Real Time
characteristic of RTSJ; Section 5 describes use of Real-
Time Java to implement these metrics; Section 6 resume
our future directions.

2. Overview of DDS
DDS is the Data-Centric Publish-Subscribe (DCPS)
model, whose specification defines standard interfaces that
enable applications to write/read data to/from a global data
space in a DRE system. To sharing information with oth-
ers, the applications can use global data space to publish
data belonging one or more topics of interest to partici-
pants. The DCPS model decouples the declaration of in-
formation access intent from the information access itself,
thereby enabling the DDS middleware to support and op-
timize QoS-enabled communication [1].

DDS

Transport

Data
Writer

Publisher

application

Data
Reader

Subscriber

application

Topic

domain

Data
Writer

Publisher

application

Data
Reader

Subscriber

application

Topic

domain

Communication Network

Figure 1: Architecture of DDS

When we create a DCPS DDS application, the follow-
ing DDS entities are involved, as shown in Figure 1:
• Domain – DDS applications send and receive data with-

in a domain, only participants within the same domain
can communicate.

98 Int'l Conf. Embedded Systems and Applications | ESA'11 |

• Domain Participant - It’s the entity responsible to fac-
tory, container, and manager the publishers and sub-
scribers in the domain.

• Data Writer and Publisher – Data writers publish data
values to the global data space of a domain. A publisher
is created by a domain participant and used as a factory
to create and manage a group of data writers with similar
behavior or QoS policies.

• Subscriber and Data Reader – Data readers receive
data. A subscriber is created by a domain participant and
used as a factory to create and manage data readers. A
data reader can obtain its subscribed data via two ap-
proaches: listener-based, which provides an asynchro-
nous mechanism to obtain data via callbacks in a sepa-
rate thread that does not block the main application and
wait-based, which provides a synchronous mechanism
that blocks the application until a designated condition is
met.

• Topic – A topic connects a data writer with a data
reader: communication happens only if the topic pub-
lished by a data writer matches a topic subscribed to by a
data reader. Publishers and subscribers need not be con-
cerned with how topics are created nor who is writ-
ing/reading them since the DDS DCPS middleware
manages these issues [2].

DDS supports many QoS properties, such as

• The degree and scope of coherency for information up-
dates, i.e., whether a group of updates can be received as
a unit and in the order in which they were sent.

• The frequency of information updates, i.e., the rate at
which updated values are sent and/or received.

• The maximum latency of data delivery, i.e., a bound on
the acceptable interval between the time data is sent and
received

• The priority of data delivery, i.e., the priority used by the
underlying transport to deliver the data.

• The reliability of data delivery, i.e., whether missed de-
liveries will be retried.

• How to arbitrate simultaneous modifications to shared
data by multiple writers, i.e., to determine which modifi-
cation to apply.

• Mechanisms to assert and determine liveliness, i.e.,
whether or not a publish-related entity is active.

• Parameters for filtering by data receivers, i.e., predicates
which determine which data values are accepted or re-
jected.

• The duration of data validity, i.e., the specification of an
expiration time for data to avoid delivering “stale” data.

• The depth of the ‘history’ included in updates, i.e., how
many prior updates will be available at any time, e.g.,
‘only the most recent update,’ ‘the last n updates,’ or ‘all
prior updates’ [3].

These parameters can be configured at various levels of
granularity (i.e., topics, publishers, data writers, subscrib-
ers, and data readers), thereby allowing application devel-
opers to construct customized contracts based on the spe-

cific QoS requirements of individual entities. Since the
identity of publishers and subscribers are unknown to each
other, the DDS DCPS middleware is responsible for deter-
mining whether QoS parameters offered by a publisher are
compatible with those required by a subscriber, allowing
data distribution only when compatibility is satisfied.
 DDS enables clients to subscribe to meta-events
that they can use to detect dynamic changes in network
topology, membership, and QoS levels. This mechanism
helps DRE information management systems adapt to envi-
ronments that are continuously changing [4].

3. Metrics for DDS Platforms Evaluation
This section describes our methodology for evaluating

DDS platforms. To be attending our goal, we are chosen
three metrics in accordance with real-time and embedded
characteristics of DDS middleware;

3.1. Data Age

For each data value, Data Age is the difference
between the consumption date of this instance by the Data
Reader and the creation date by Data Writer. Data Age
must be less than lifespan to ensure consume data by the
Data Reader before they expire.

3.2. Delivery Rate

Suppose the publishers have published k Data
Objects in the super-period, denoted by d1, d2… dk. For a
Data Object di, let the number of Data Readers interested
in it be tsi, and the number of Data Readers that receive it
before the deadline be dsi. We can define a metric called
delivery rate of the system as follows:

1

1

k

i
i

k

i
i

d s

t s

=

=

∑

∑
This metric shows consumer satisfaction.

3.3. Completion Time

Completion time represents the difference between

the point of time in which the Data Reader’s execution
cycle takes end and the release time of the Data Reader.

() ()C T D R R D R−

Completion time must be less than deadline.

4. Real-Time Java Timing
Time is the essence of real-time systems and the basic

requirement of the Real-time-Specification for Java
(RTSJ). Time precision (millisecond, nanosecond) may
vary with hardware present on the system. Temporal con-
straints are presented with the release parameters classes
that contain relative time and absolute time attributes.

The specification also mandates that time objects must
be constructed from other time objects or from time values,
and the addition and subtraction of both objects and time

Int'l Conf. Embedded Systems and Applications | ESA'11 | 99

values and comparison (using the Comparable-interface)
must be supported.

4.1. High Resolution Time

 RTSJ specifications define a few classes used to man-
age the time with very important precision. HighResolu-
tionTime is the base class for AbsoluteTime, RelativeTime.

Figure 2: RT-JAVA Timing

There is two type of High Resolution Time: Absolute Time
and Relative Time; Absolute Time is the time exactly (ex-
ample 10:44:55), Relative time is a rounded basically or
duration time. RTSJ offer a few methods that are permit to
add and subtract time.

4.2. Release Parameters

ReleaseParameters is the top-level class for release
characteristics of schedulable objects.

Figure 3: Temporal Parameter

Release parameters use HighResolutionTime values for
cost, and deadline. Since the times are expressed as a
HighResolutionTime values, these values use accurate
timers with nanosecond granularity. The actual resolution
available and even the quantity the timers measure depend
on the clock associated with each time value.

5. Using RT-JAVA to inject metrics in
DDS code

 This section describes our chosen methodology to
evaluate DDS middleware component. We choose to
calculate metrics values with RT-JAVA to enjoy the
precision and available algorithms in the language. We
implement a real time clock and we inject it in the source
code of DDS component. This Real Time Clock assists this
DDS component in their life cycle.

Figure 4: Attributes and Constructor of RealTime-
Clock class

The attributes presented in Figure 4 are necessary to realize
our real time counter, the start time, remaining time,
System clock, and the delay of each execution period are
initialized in the constructor. If counting equals true our
counter started, if go equals true the execution time is
completed.
A few methods are detailed in figure 5, this methods permit
to consult a period, a current time and to reset, stop and
restart counter.

Scheduler

ReleaseParameters

 cost : RelativeTime
 deadline : RelativeTime
 overrunHandler : AsyncEventHandler
 missHandler : AsyncEventHandler

PeriodicParameters

 start : HighResolutionTime
 period : RelativeTime

«interface»
Schedulable

parameterizes

schedules

AperiodicParameters SporadicParameters

 minInterarrival : RelativeTime

public class RealTimeClock extends
javax.realtime.RealtimeThread
 {

 private String name;
 private AbsoluteTime startTime;
 private RelativeTime remainingTime;
 public Clock myClock;
 private boolean counting;
 private boolean go;
 private RelativeTime tick;
 public RealTimeClock (AbsoluteTime at,RelativeTime
countDown,int delay) {
super();
startTime = at;
remainingTime = countDown;
 myClock = Clock.getRealtimeClock();
counting = true;
go = false;
tick = new RelativeTime(delay,0);
 }
…}

100 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Figure 5: Getters and Setters methods

Run method are developed in Figure 6

Figure 6: Run Method

The source code of run method explain that the real time
counter defined in real time thread arrive to calculate
remaining time, wait next period and update the attributes
in class if necessary to conserve a correct functionality.

5.1. Data Age metric

 Our real time counter must be injected in a source code
of Data entity from DDS to manage life cycle.

Figure 7: DataImpl class

 Through the temporal parameters of RT-Java, we can
calculate the Data Age. ClockData is creating in a
constructor of DataImpl so they will have a same life cycle.
Data Age is a subtract of current time and the creation time
of data from Data Writer (return by getTimestamp()
method).

5.2. Delivery rate metric

 In order to calculate delivery rate, programming
intervention will be at in the DataReaderImpl class and
SubscriberImpl class.

Figure 8: DataReaderImpl class

public RelativeTime getResolution(){
 return tick;
}
public synchronized AbsoluteTime getCurrentLaunchTime(){
return new
AbsoluteTime(myClock.getTime().add(remainingTime));
 }
public synchronized void stopCountDown(){
 counting = false;
 }
public synchronized void restartCountDown(){
 counting = true;
 notifyAll();
 }
public synchronized void resetCountDown(RelativeTime to){
remainingTime = to;
}

public void run(){

try {

synchronized(this) {

while(myClock.getTime().compareTo(startTime) < 0)
{
System.out.println("waiting:!
myClock.getTime().compareTo(startTime) < 0 "+name);
HighResolutionTime.waitForObject(this, startTime);
// wait for next period
 }
 System.out.println("---------");

while(remainingTime.getMilliseconds() > 0) {
System.out.print("waiting!remainingTime.getMillisecond
s() > 0"+name);
System.out.println(remainingTime.getMilliseconds());
////remaining time is shown
 while(!counting){
 wait();
 }
 HighResolutionTime.waitForObject(this, tick);
 remainingTime.set(remainingTime.getMilliseconds()-
tick.getMilliseconds()); // update remaining time
 }
 go = true;
 notifyAll();
 }
 }
catch(InterruptedException ie) {
 System.out.println("failer to manage system
time");
 }

}

public class DataImpl extends javax.realtime.RealtimeThread
implements Data{

 SchedulingParameters sched;
 ReleaseParameters release;
 RealTimeClock clockData;
 private MemoryCalc memory;
 private AbsoluteTime thisTime;
 private AbsoluteTime endTime;
 private RelativeTime dataAge;;

public DataImpl(….)
{
clockData = new RealTimeClock
(release.getStart(),release.getPeriod(),release.getDeadline());

}

public void run(){
…..
clockData.run();
thisTime=clockData.myClock.getTime();
dataAge= thisTime.subtract(memory.getTimestamp());

}

public class DataReaderImpl extends
javax.realtime.RealtimeThread implements DataReader {

private static int numberOfDataReader=0;
private static int numberOfDataReaderDeliver=0;
private Subscriber SubParent ;
public DataReaderImpl (….)
{
numberOfDataReader++;
}
Public void incrementNumberOfDataReaderDeliver()
{
numberOfDataReaderDeliver++;
}
public double deliveryRate() { return numberOfDataReaderDeliver/
numberOfDataReader ;}
}

Int'l Conf. Embedded Systems and Applications | ESA'11 | 101

Figure 9: SubscriberImpl class

 If Subsriber arrive to read DataReader the number
of data reader deliver was increment. The number of
data reader and number of data reader deliver are
static to be shared from one instance of data reader.

5.3. Completion Time metric

 For calculate completion time we inject our real
time clock in DataReaderImpl class.

Figure 10: Completion Time

 thisTime and startTime attributes are manager by
clockDataReader. CompletionTime is a relative time,
the application of network priority mapping algorithm
showed an improvement of completion time.

6. Conclusions

 This paper present one solution for evaluate a mid-
dleware in general and specially DDS middleware.
This solution is applicable if the middleware is devel-
oped with RT-JAVA language. Use RTSJ to evaluate
a performance of DDS middleware give more preci-
sion of results and prevents the application of mathe-
matical models. Our research group seek an effective

solution be easily integrated in process development.
We are developed and evaluate with RT-JAVA a
functionally DDS middleware working via Control
Area Network (CAN) Bus. Actually we applied a
same work on FlexRay bus. We search soft ant hard-
ware real time characteristics.

7. References
[1] Gerardo Pardo-Castellote, Bert Farabaugh, Rick War-
ren, “An introduction to DDS and Data-Centric Communi-
cations,” www.rti.com/resources.html.

[2] Douglas C. Schmidt and Carlos O'Ryan, “Patterns and
Performance of Distributed Real-time and Embedded Pub-
lisher/Subscriber Architectures,” Journal of Systems and
Software, Special Issue on Software Architecture -- Engi-
neering Quality Attributes, edited by Jan Bosch and Lars
Lundberg, October 2002.

[3] Chris Gill, Jeanna M. Gossett, David Corman, Joseph
P. Loyall, Richard E. Schantz, Michael Atighetchi, and
Douglas C. Schmidt, “Integrated Adaptive QoS Manage-
ment in Middleware: An Empirical Case Study,” Proceed-
ings of the 10th Real-time Technology and Application
Symposium, May 25-28, 2004, Toronto, CA.

[4] Gerardo Pardo-Castellote, “DDS Spec Outfits Publish-
Subscribe Technology for GIG,” COTS Journal, April
2005.

[5] OMG, “Data Distribution Service for Real-Time Sys-
tems Specification,” www.omg.org/docs/formal/04-12-
02.pdf.

[6] Ioana Burcea, Milenko Petrovic, Hans-Arno Jacobsen.
S-ToPSS: Semantic Toronto Publish/Subscribe System.
International Conference on Very Large Databases
(VLDB). p. 1101-1104. Berlin, Germany, 2003.

[7] Arvind S. Krishna, Douglas C. Schmidt, Ray Klefstad,
and Angelo Corsaro, “Real-time CORBA Middleware,” in
Middleware for Communications, edited by Qusay Mah-
moud, Wiley and Sons, New York, 2003.

[8] Fox, G., Ho,A., Pallickara, S., Pierce, M., and Wu,W,
“Grids for the GiG and Real Time Simulations,” Proceed-
ings of Ninth IEEE International Symposium DS-RT 2005
on Distributed Simulation and Real Time Applications,
2005.

[9] D.S.Rosenblum, A.L.Wolf, “A Design Framework for
Internet-Scale Event Observation and Notification,” 6th
European Software Engineering Conference. Lecture No-
tes in Computer Science 1301, Springer, Berlin, 1997,
pages 344-360.

public class SubscriberImpl extends
javax.realtime.RealtimeThread implements Publisher {

private Vector<DataReader> dataReaders ;

public DataReader lookup_datareader(String topicName) {

{ boolean read=false;
 DataReader found=null;

// find DataReader

if(read) found.incrementNumberOfDataReaderDeliver();

return found;

}

public class DataReaderImpl extends
javax.realtime.RealtimeThread implements DataReader {
…
 private RealTimeClock clockDataReader;
 private AbsoluteTime thisTime;
 private AbsoluteTime endTime;
 private AbsoluteTime startTime;
 private RelativeTime completionTime;
public void run(){
…………………………………………..
do{
completionTime = thisTime.subtract(this. startTime);
}
While(waitForNextPeriod())
}
}

102 Int'l Conf. Embedded Systems and Applications | ESA'11 |

SESSION

FPGA + NOC + MULTI-CORE SYSTEMS +
MICRO-CONTROLLERS + COMMUNICATION

ISSUES

Chair(s)

TBA

Int'l Conf. Embedded Systems and Applications | ESA'11 | 103

104 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Connectivity based Dual Vdd Assignment Algorithm for Power
Reduction in FPGA

G. Veera Sekhar and Jatindra Kumar Deka
Department of Computer Science and Engineering, Indian Institute of Technology Guwahati, Assam, India

Abstract— In the past few decades with advancement in
VLSI technology, FPGA chip density has increased and
FPGA devices now provide a large number of smaller feature
size transistors and can support higher clock speeds. While
this advancement is beneficial for implementing larger and
faster designs within a single chip, it also leads to increased
power consumption. With the remarkable growth of FPGA
based battery-powered systems, such as personal computing
devices, wireless equipment and consumer electronics, low
power FPGA design is of increased importance. With this
huge continuing increase in FPGA size, its complexity and
the new technology emergence has made power estimation
and optimization as an ultimate design consideration. In this
work, we are supplying dual Vdd to the logic blocks, instead
of the single Vdd used in traditional FPGAs. The assignment
of dual Vdd(low/high) to a logic block is based on the criti-
cality of the path. We have proposed an alternative algorithm
to find out the critical path in the FPGA implementation of
the circuit. Depending on the priority of a node in a critical
path, we assign low Vdd to a node so that the performance
of the circuit remains within the specified limit. Due to the
application of low Vdd to some of the nodes in the FPGA
implementation, the power consumption is reduced.

Keywords: FPGA, Dual Voltage Assignment, Power Reduction,
Critical Path

1. Introduction
FPGA, field programmable gate array is the most com-

monly used programmable device at present. FPGA is an
integrated circuit(IC) designed to be configured by the
customer or designer hence field programmable. Hardware
description language (HDL) is generally used to specify the
FPGA configuration similar to that used for ASIC. Using
FPGA we can implement any logic function that an ASIC
could perform [2]. The main advantages of FPGAs are lower
development, lesser time to market and their ability to be
reprogrammed several times. Due to these advantages, a
lot of research has been done on development environment,
architecture and applications for FPGA.

Nowadays usage of mobile devices and portable devices
like mobile phones, digital cameras, notebooks, etc. increase
rapidly. From end user point of view most often perfor-
mance, features, size, and weight are the main criteria. This
criterion has become the main design constraints in the

design process and has an impact on the power consump-
tion [1], [5], [7], [8], [10]. These demand for low power con-
suming devices and so power becomes most important issue
in FPGA architecture design. As the application of FPGA
extends to image processing and to other high complexity
processes, a multimillion gate FPGAs are become necessary.
These consume a lot of energy. Thus in case of mobile
devices power optimization or maintenance techniques has
become more important to guarantee long battery life. Even
in non mobile devices, where power is continuously avail-
able the low power design constraint is still important. In
many applications we can achieve the desired performance
by increasing the operating frequency under given power
constraints. It is crucial to implement a power efficient FPGA
design without affecting the performance for many FPGA
systems. There are a number of techniques proposed already
for the reduction of power in ASIC domain. But, they cannot
be applied directly to FPGA’s, because FPGA and ASIC
differ in architecture design. One more disadvantage about
consuming high power is that devices generate lot of heat
which further affects device performance though we have
some techniques to get rid from the heat generated. Low
power techniques are much better than in some cooling
techniques such as sinks and fans. Thus thermal management
and power management has got more importance in the
FPGA design architecture [3], [4], [6], [9], [11], [12].

Moreover, programmability of FPGA can be leveraged
to develop efficient low power design techniques. There
are two possible approaches for the reduction of power
consumption by FPGA based systems. (i) Redesign the
FPGA device to reduce the static power and its components
which contribute to dynamic power such as output gate
capacitance and resistance of CMOS gates etc. (ii) take
dynamic power into consideration while designing an FPGA
circuit. The first option will require modification of FPGA
architecture and topological change in its implementation.
The second option mainly considers about reducing the
dynamic power. Dynamic power consumed by an FPGA is
primarily dependent on clock frequency, switching activity,
supply voltage and resource utilization. In this work, we
consider the reduction of dynamic power by reducing the
supply voltage and for that we use two voltage level low
VDD and high VDD.

A field-programmable gate array (FPGA) is a user or
customer configured integrated circuit, and so is called "field

Int'l Conf. Embedded Systems and Applications | ESA'11 | 105

programmable". A HDL (Hardware Description Language)
language can be used to specify the configuration of a FPGA,
similar to that an ASIC.

Nowadays FPGA’s are used in many applications in-
cluding many portable devices like mobile applications.
Considering both high performance and mobile applications,
power consumed by these have become a limiting factor for
FPGA’s wide applications.

Low power design is important from three different rea-
sons, there are mainly, device temperature, life of the battery
and overall energy consumption.

The remaining of the paper is organized as follows:
In Section 2, we present the basic architecture of FPGA.
Section 3 and Section 4 deal with the power sources of
FPGA and low power techniques respectively. The dual
Vdd assignment algorithm is presented in Section 5. The
experiment results is shown in Section 6 and finally the
conclusion of the paper is given in Section 7.

2. FPGA Architecture
2.1 Logic Block

Logic blocks are the primary elements of FPGA through
which any function can be implemented. The capacity of
the logic blocks can be increased by increasing the size,
e.g., by increasing the number of inputs, one can augment
the possible functions which could be implemented by less
number of logic blocks. But the research works showed that
the area delay product will increase with the increase of the
size. However this could be a waste in some applications
where not all inputs are utilized. FPGAs use Look Up Tables
(LUTs) for implementation of logic functions. With n input
LUT one can implement 2m possible functions, where m is
2n and each function requires 2n bits configuration. Previous
work has shown that 4 inputs LUT is optimum in terms
of area and power [3]. Fig. 1 shows the basic logic which
consists of one 4-input LUT, where a combination function
is implemented. A flip-flop that will be needed in sequential
circuit design. A 2-to-1 MUX is used to switch between
registered and unregistered output.

Fig. 1: Basic Logic Block

2.2 The Connection Block
The connection block is responsible of connecting the re-

sources between each other and assures that data can flow to

the I/Os. Each connection block consist of a programmable
connection block which selects the signals in the given
routing channel to be connected to the logic block’s terminal,
and a programmable switch block that connects between
horizontal and vertical routing resources. The structure of
Connection Block is shown in Fig. 2.

Fig. 2: Clustered Based Logic Block

The programmable interconnect is the core of an FPGA,
which connects different LUTs and flip-flops to each other
and route signals to and from the input output blocks(IOBs).
In addition current generation FPGAs feature a large number
of on chip synchronous blocks and a few on chip macro
functions such as multiplexers and shift registers. The LUTs
in current generation are clustered into a logic element or
configurable logic block (CLB).

2.3 Routing Architectures
Since the routing wires consume a major part of the

total amount of FPGA area and power, selection of routing
architecture is crucial in a FPGA design. Island style routing
architecture is used in this work. In Island Style Routing
Architecture the logic blocks are connected by a two di-
mensional, mesh-like interconnect structure with horizontal
and vertical routing channels and these are connected by
programmable switch boxes. A simplified view of island
style routing architecture is shown in Fig. 3. In this routing
structure, half of the routing tracks consists of length 1
wires (wire that span for one logic block) and remaining
half consists of length 2 wires. Pass transistorize tri-state
buffers are used as programmable routing switches. There
are also connecting boxes connecting the wire segment to
the logic block inputs and outputs.

106 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Fig. 3: Island Style Routing Architecture

3. Power Sources in FPGA
In FPGA, power is mainly divided into two categories -

static power and dynamic power. Static power is the power
consumed by the node when there is no signal transition
to that node, that is, the power required to keep it on.
Static power dissipation is mainly due to leakage current.
Leakage current is caused due to two main reasons - Reverse
biased diode leakage current and Sub-threshold conduction
of transistors [4]. These leakage currents depend on supply
voltage and the technology used. By reducing the supply
voltage, the leakage current may be reduced.

Dynamic power is the power consumption caused by
dynamic circuit activities which are reflected by dynamic
current flowing between two circuit nodes. On the other
hand, we can say that dynamic power is proportional to the
signal transitions of a design that mapped into an FPGA.
This dynamic power is consumed only when there occurs a
signal transition at gate output and there are two types of
signal transitions.
• Functional transition: This is the signal transition nec-

essary to perform the required logic functions between
two consecutive ticks.

• Glitch or spouse transition: It is an unnecessary signal
transition due to the unbalanced path delay to the inputs
of a gate. Glitch power consumes most part of the
dynamic power. So, a change from supply voltage is
transferred to the CMOS gate output capacitance when
the output of a CMOS gate changes from level 0 to 1.
This transition causes power dissipation in the resistive
CMOS network.

The dynamic power consumed by an FPGA is primarily
dependent on Clock frequency, Switching activity, Supply
voltage and Resource utilization. Unused resources in an

FPGA design have a switching activity nil and hence they
do not consume any dynamic power. Hence dynamic power
consumption in FPGA is proportional to the amount of
resource used by a design.

Switching power is the power that is consumed due to the
current charging and discharging the capacitance at the gate
output. A CMOS inverter is a good example to illustrate this
analysis of switching power. When the input to the inverter
goes low, the NMOS transistor is cut-off and the PMOS
transistor conducts, creating a direct path from the supply
voltage to the output capacitance. The equation for switching
power is given as,

¶sw = f.Vdd
2.

n∑

i=1

Ci Ei (1)

Where n is the total number of nodes, f is the clock fre-
quency, Vdd is the supply voltage, Ci is the load capacitance
for node i and Ei is the transition density for node i.

It is obvious from Equation 1, the switching power can be
reduced by reducing the supply voltage. But the reduction of
supply voltage may degrade the performance of the circuit.
In this work, we are exploring the use of dual voltages in
FPGA. We will apply high Vdd to the nodes which are in
critical paths and effect the performance of the circuit. We
will apply low Vdd to others nodes.

4. Low Power Techniques
In our work, we use dual Vdd architecture where, the

Vdd of a circuit block is selected between Vddh (high Vdd)
and Vddl (low Vdd) by using two transistors connecting the
block to the supply voltages. By using our Vdd assignment
algorithm, we will set a configuration bit which controls the
on/off state of each supply voltage transistor. The configura-
tion bit is set in such a way that the block will either connect
to one of the power supply or it will disconnect completely
from power supply if the block is not in use. That is, we will
switch off the block when it is completely idle or unused.
This reduces the static power required to a block when it is
idle.

We are using cluster based island style FPGA architecture
for our proposed dual Vdd architecture and the configuration
bits are stored in SRAM cells. This facilitates configurable
supply voltage for logic blocks and routing multiplexers. The
architecture of the FPGA is shown in Fig. 4. The basic logic
element consists of one 4-input LUT and one flip-flop. A
CLB is formed with the clustering of 8 BLE’s together. Dual
Vdd design requires level conversion when a low Vdd block
drives a block operating at high Vdd and vice versa. In our
dual Vdd architecture, level conversion only takes place at
CLB pins. So, we attach the level converters to the CLB
pins.

This placement of level converters (LCs) at the CLB pins
reduces the complexity. We have two different architectures

Int'l Conf. Embedded Systems and Applications | ESA'11 | 107

for placing the level converters at CLB pins [16]. One at
CLB input pins and another CLB output pins. Fig. 4 shows
the second architecture, where LC’s are placed at CLB
output pins.

Fig. 4: CLB used in Dual vdd architecture

A routing multiplexer is used in dual Vdd architecture as
shown in Fig. 4. As per our requirements, the output of
previous stage is directly given to the next stage or it may
be provided after level conversion. Level converters are used
to change the level of a signal voltage from low voltage to
high or high to low.

5. Connectivity Based Dual Vdd Assign-
ment

This algorithm takes all the nodes and critical paths into
consideration. It arranges all the nodes of the critical paths
based on their connectivity factor. Connectivity of a node
defines the number of paths connected to the node. If a node
is connected to more number of the paths than the other
nodes then it has the highest priority to get assigned high
Vdd than the other. Before assigning the high Vdd to this
nodes, we check whether all the paths passing through this
node meet the delay requirement. If some of the paths do
not meet the delay specification, we assign high Vdd to this
selected node. After assigning high Vdd to this node, if the
performance does not improve or the delay requirement goes
below the specified limit, we backtrack and reassign the low
Vdd to that node. We repeat this procedure for other nodes
till we achieve the required performance.

Input: Critical Path nodes and delay factors
Output: Critical path nodes with high Vdd

Assign Vddh to all CLBs and routing MUXes;
P ← List of all paths in the design;
T ← Longest delay path when all circuit blocks
operate at Vddh;
Td ← x*T , where x >= 1 is a user defined
performance metric;
VddlDelay(Pi) ← Delay(Pi) when all blocks in Pi are
at Vddl;
Path List(P) ← {All paths ‖ Criticality(pi) >
Criticality (Pi+1)};
Critical Path ← {Pi ∈ P‖ Vddl Delay(Pi) > Td};
N ← All CLBs in the circuit sorted in descending
order based on their priority given to them based on
their Connectivity;
while N is Not Empty do

Assign Vddh to Ni and to all the routing MUXes
driven by Ni;
Remove Ni from the list;
if Delay of any PathList(Pi) < Td then

Reset last action;
else

Update delay of all paths passing through Ni;
end

end

Algorithm 1: Priority Based Dual Vdd Assignment Al-
gorithm

In this work, we are proposing a low-high priority based
algorithm. We first assign Vddl to all CLBs and routing
muxes and calculates the delays of each path. After the
calculation of delays, we sort the paths such that longest
delay path should come first (descending order). Now, define
a performance metric Td, Td=x∗t, where x >=1 (t is the
longest delay) as a threshold voltage applicable to circuit.
This should be different for different circuits. Now, consider
the CLBs and calculate the number of paths to which each
CLB is connected. Assign the number to priority variable.
Now, sort them (in descending order) based on their priority
value. Now, we consider each path one by one and assign
the high Vddh to the first occurring block of that path. Now,
check if any path violates this allocation. That is if any
path delay that involves this block exceeds than its threshold
delay. If there is no path like that, we proceed to next
node, otherwise we will reset the block voltage and proceeds
further.

This algorithm gives a relatively better Vddl allocation for
the nodes in a circuit. We are using low-to-high assignment
of Vdd. This is preferable than high-low, because in high-low
all the blocks will be assigned high voltage at the beginning
and will be assigned low voltage afterward. In this each CLB
consumes high Vddh at startup and sometimes this may cause

108 Int'l Conf. Embedded Systems and Applications | ESA'11 |

the paths delay to be reduced more than what is necessary
in assigning low Vddl.

6. Experimental Results
In this work, we are trying to reduce the power consumed

by the FPGA circuits. We proposed one algorithm, which
is used to assign the voltages to the nodes such that the
total power consumed by the FPGA circuit will be reduced
without reducing the specified performance.

We try to decrease the dynamic power consumed by the
FPGA circuit. The power consumed by the FPGA circuit is
the total power consumed by its each and every individual
node. The circuit includes LUTs, switch boxes, input and
output pads. So to decrease the power consumed by the
complete FPGA circuit means, we have to decrease the
voltage (power depends on the voltage applied) applied to
the individual node. There are some critical paths in the
circuit and we must ensure that the total delay of the critical
path shouldn’t vary as it is pre programmed to get the
expected result. Though we can change the delay metrics
of individual nodes of the critical path until we ensure the
total path delay is not altered.

To reduce the power consumed by the FPGA, we will
assign low voltage (we divide the voltage into two operative
voltages depending on the technology used) to the nodes of
the circuit that are not on the critical path. We will assign
high voltage to some of the nodes on the critical path based
on our proposed algorithm. In the process, we must ensure
that the circuit performance should not degrade while trying
to reduce the power.

In our experimental set up, we have used the ISCAS89
bench mark circuits to show the benefit of our method. The
detail flow of our experiment is:
• Logic synthesis and optimization
• LUT mapping (cluster based)
• Packing using t-v pack
• Placement and routing
• Vdd assignment
• Power estimation
For our simulation purpose, we have taken the ISCAS89

benchmark circuit in .bench format. We have used the ABC
synthesizer for logic synthesis and logic optimization. Next
we use the RASP tool for technology mapping, which
maps the circuit to LUT based FPGA. It also does the
post processing for area reduction. After that we use the
placement and routing tool VPR to place and route the FPGA
circuit.

We have implemented the algorithm for the assignment
of voltage to the different nodes of the FPGA. According to
the algorithm, it assign either low voltage or high voltage to
a node.

We have used the power evaluation tool FPGAEVA-LP to
estimate the power consumed by an FPGA implementation

of the benchmark circuits. This tool also estimates the
delay of the circuit. For comparison, we have estimated the
power consumption by the existing method [14] and by our
proposed method.

Circuit Gates LUTs Cri.Nodes Vddh Vddh

Nodes(pro) Nodes(Exi)
S27 8 10 21 11 16
S400 106 162 32 19 22
S444 119 181 36 19 21
S838a 288 446 50 6 8
S953 311 418 48 26 31
S208 61 96 42 16 21
S298 75 119 30 18 26
S382 99 158 32 20 29
S510 179 211 34 21 26

Table 1: Comparing Both The Solutions

The experiment result is presented in Table 1. The first
column of the table indicate the circuit number that we
have used. Second and third column provide the number of
gates of the circuit and number of LUTs used during FPGA
implementation respectively. Column four gives the number
of critical nodes of the circuit. Column five and column six
indicate the number of nodes to which high Vdd have been
assigned by our proposed method and the existing algorithm
respectively. It has been observed that our proposed method
has assigned high Vdd to less number of nodes in all test
circuits in comparison to the existing method.

Fig. 5: Graphical Representation of Power consumed by two
algorithms

The power consumed by each circuit in both the algo-
rithms are represented graphically in Fig. 5. It is observed
that in our proposed method the power consumption is al-
ways less. The delay experienced by each circuit in both the
algorithms are represented graphically in Fig. 6. Obviously
the delay incurred by a circuit in our proposed method is
more than the delay incurred by the existing algorithm. It
is quite obvious that in our case we are applying high Vdd

to less number of nodes. But in both the cases, the delay
incurred by each circuit is always less than the specified
delay of the circuit.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 109

Fig. 6: Graphical Representation of delay by two algorithms

Circuit PowerSaved(%)
S27 32.436919
S400 17.419271
S444 18.656502
S838a 12.443598
S953 12.013707
S208 17.867090
S298 17.704979
S382 18.536043
S510 15.448448

Table 2: Total Power Saved

The percentage of power saved by our method is shown
in Table 2.

7. Conclusion
We have presented a Dual Vdd assignment algorithm

for low-power FPGA based on priority. The priority of
the node is determined by the critical path. If a node is
present in several critical paths, then it contributes more
for the degradation of performance. In such situation, we
apply high Vdd to this node. After applying the high Vdd

to such nodes, we again check for the performance of the
circuit. In experiment result, we have observed that our
proposed method able to reduce the power consumption
without affecting the performance of the circuit.

References
[1] A. P. Chandrakasan and R. W. Brodersen, "Low Power Digital CMOS

Design Norwell," MA,USA: Kluwer Academic Publishers, 1995.
[2] "Introduction of FPGA," Wikipedia.org.
[3] H. Hassan, "Design Methodologies and CAD Tools for Leakage Power

Optimization in FPGAs,"University of Waterlo., 2008.
[4] J.M. Chang and M. Pedram, "Register allocation and binding for low

power," in DAC ’95: Proceedings of the 32nd annual ACM/IEEE
Design Automation Conference. New York, NY, USA: ACM, 1995,
pp. 29-35.

[5] N.Weste and K. Eshraghian, "Principles of CMOS VLSI design,"
AddisonWesley VLSI system series, 2008.

[6] H. Veendrick, "Short-circuit dissipation of static cmos circuitry and its
impact on the design of buÂőer circuits, Solid-State Circuits," IEEE
Journal of, vol. 19, no. 4, pp. 468-473, Aug 1984.

[7] A. Raghunathan, N. K. Jha, and S. Dey, "High-Level Power Analysis
and Optimization," Norwell, MA, USA: Kluwer Academic Publishers,
1998.

[8] Chandrakasan.P and Brodersen.R, "Low Power Digital CMOS Design,"
Kluwer Academic Publishers, 1995.

[9] J. P. Knight and R. S. Martin, Power-proÂŕler: "Optimizing asics power
consumption at the behavioral level," Design Automation Conference,
pp. 42-47, 1995.

[10] S. Malik and S. Devadas, "A survey of optimization techniques
targeting low power vlsi circuits," Design Automation Conference, pp.
242-247, 1995.

[11] M. E. Rabaey, Jan M.; Pedram, "Low Power Design Methodologies,"
Kluwer Academic Publishers, 1995.

[12] F. Li, D. Chen, L. He, and J. Cong, "Architecture evaluation for power-
efficient FPGAs," in FPGA ’03: Proceedings of the 2003 ACM/SIGDA
eleventh international symposium on Field programmable gate arrays.
New York, NY, USA: ACM, 2003, pp. 175-184.

[13] D. Chen, J. Cong, F. Li, and L. He, "Low-power technology mapping
for fpga architectures with dual supply voltages," in FPGA ’04:
Proceedings of the 2004 ACM/SIGDA 12th international symposium on
Field programmable gate arrays. New York, NY, USA: ACM, 2004,pp.
109-117.

[14] Fei Lei, Yan Lin, Lei He, "FPGA Power Reduction using Configurable
Dual Vdd," Elcetric Engineering Dept, UCLA,2006

[15] Fei Li and Lei He, "Power Modeling and Characteristics of Field
Programmable Gate Arrays", IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems.

[16] Fei Lei, Yan Lin, Lei He, " Low power FPGA using pre-defined Dual-
Vdd Dual VT fabrics", Electrical engineering department, University
of California, Losangels.

110 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Parametrizable NoC Emulation Framework for Performance
Evaluations

Jaya Suseela and Venkatesan Muthukumar
Dept. of Electrical and Computer Engineering, University of Nevada Las Vegas, Las Vegas, NV-USA

Abstract: Specific parameters for Network on Chips (NoCs),
such as topology, switching method, and packet sizes, have a
huge impact on performance of NoCs. Cycle and bit accurate
simulation and emulation are necessary to evaluate and
validate the performance of the NoC system. The goal of this
work is to develop an open platform, synthesizable NoC
framework that would evaluate such performance metrics as
area, power, latency, and congestion for various design
explorations. The NoC framework developed is completely
parameterizable, where the designer can evaluate various
design space explorations like topology, PE architecture,
switching and routing algorithms, packet size, and error
correction, by modifying the configuration file. The proposed
NoC framework has been evaluated for various congestion
scenarios, and the results are discussed.

Keywords: NoC, Router, Implementation, Cycle and bit
accurate, Openrisc.

1 Introduction
Networks on Chips (NoCs) have been proposed as a
promising solution to complex on-chip communication
problems. However, many challenging research problems
remain unsolved at all levels of design abstraction, such as
design exploration of NoC architecture for applications;
scheduling and mapping algorithms; evaluation of switching,
topology or routing algorithms for efficient execution of
applications; and optimizing communication costs, area,
energy, and so forth. A solution to solving the above
problems calls for the development of a synthesizable,
parameterizable NoC framework that would evaluate and
implement these problems and algorithms with minimum
ease and flexibility.

The main contribution of our work is the implementation of a
parameterizable cycle accurate NoC framework. The
framework helps us to: (1) explore the architectural design
space faster (2) evaluate and choose efficient NoC
architecture from a range of switching techniques and
topologies, with regard to latency, area and power; and (3)
evaluate different architecture, topologies, switching, and
routing algorithms extensively with various regular traffic
patterns and application-oriented traffic. Moreover, the
design is fully synthesizable and has been implemented in a
field-programmable gate array (FPGA).

A brief summary of existing NoC simulators and emulators
are presented here. Orion [7] and LUNA [8], two NoC

simulators especially developed for power simulation of on-
chip interconnection networks, do not consider
computational cores. FAST [6] is a functionally accurate
NoC simulator limited to IBM’s proprietary Cyclops-64
architecture. SICOSYS [13] is a general-purpose
interconnection network simulator that captures essential
details of low-level simulation. RSIM simulates shared-
memory multiprocessors and uniprocessors built from
processors that aggressively exploit instruction-level
parallelism (ILP). RSIM, which is execution-driven, models
state-of-the-art ILP processors, an aggressive memory
system, and a multiprocessor coherence protocol and
interconnect, including contention at all resources. NoC
simulators such as NNSE [9], Noxim [10], and NIRGAM
[11] have flexibilities in configuring parameters of on-chip
networks and are capable of obtaining performance metrics;
however, these simulators are based on SystemC and are not
synthesizable. XPIPES [19] consists of parameterizable
network building blocks that can be composed at
instantiation time; the parameterizable factors are the
network interface, switches, and links.

The ability of a network to efficiently disseminate
information depends largely on the topology. Mesh and
Torus are the most commonly used topologies. The WK-
recursive networks [16] are a class of recursively scalable
networks that offer a high degree of regularity, scalability,
and symmetry.

The NoC framework with WK-recursive topology is shown
in Figure 1.

Figure 1: NoC Framework with WK Topology

In this paper, Section 2 explains briefly the implementation
details, and Section 3 details the communication flow in the
NoC framework. Performance analysis of switching

Int'l Conf. Embedded Systems and Applications | ESA'11 | 111

networks and topologies from simulation and synthesis
results also are presented in Section 3. Section 4 provides
the results and conclusions of this work.

2 NoC Framework Implementation
The proposed NoC framework consists of five main
modules: i) the Processing Architecture, ii) the
Communication Infrastructure, iii) a Communication
Paradigm, iv) the Monitor, and v) the Traffic Generation
Module.

The Processing Architecture module consists of a Processing
Element (PE) and Network Adapter (Core Network
Interface) module. The Communication Infrastructure
consists of network topology and a routing node. The
Communication Paradigm describes the switching techniques
and routing algorithms employed in the NoC Communication
Infrastructure. The Monitor module includes two sub
modules: a) a Node monitor, which monitors the activities in
a routing node, and b) an NoC monitor, which monitors the
communication within the framework.

2.1 Processing Architecture
The processing element (PE) in the framework can be a
master PE or a slave PE. Only master PEs can initiate a
message transfer. Slave PEs respond to the requests from the
master PE either by sending back the requested signals/data
or by saving the received information. In our framework,
UART, TIMER, Instruction/Data Memory and slave
processors are considered as slave PEs, and the master PEs
and slave processors are capable of performing
computational operations.

Each master PE or slave processor consists of one OpenRisc
1000 (OR1K) [1] processor that communicates to an
Instruction memory (IMEM) through a Wishbone bus.
OR1K is a 32-bit load and stores an ARM9-based RISC
embedded processor with 5 state pipelines; it has a maximum
clock frequency of 250MHz. The OR1K processor shows
better performance per clock cycle than MicroBlaze in the
Stanford benchmark [4], and therefore is considered a more
efficient architecture than the MicroBlaze architecture [3].
The architecture defines several features that are quite useful
for networking and embedded computer environments. Most
notable are the 32/64-bit architecture, the Programmable
Interrupt Controller, several instruction extensions, a 2/3
Level Cache, a configurable number of general-purpose
registers, a configurable cache and TLB sizes, dynamic
power management support, and space for user-provided
instructions. IMEM is a Block Ram with an 8-bit data bus
and a 32-bit address bus. The instructions to be executed by
the core are loaded in IMEM. The Wishbone clock frequency
can be equal to an OR1K or an OR1K/2 clock frequency.

The Network Adapter (NA) interfaces the PEs with the
network. Its main function is to generate and process packets
to and from the PEs. The NA component on the master side
is called the Core Interface (CI); the Network Adapter on the
slave side is called a slave network interface (NI).

Figure 2: Routing node

2.2 Communication Infrastructure
The communication infrastructure consists of a routing node
and network topology. The routing node (shown in Figure 2)
consists of a link controller and a router. The link controller
(LC) provides an interface between the NA and the NoC. Its
main function is to match the NA clock rate with that of the
network topology. Routing nodes run at four times the
frequency of PEs. Synchronization registers are used to
match clock rates between the slow PE and fast routing
nodes. First-in first-out (FIFO) buffers are also added in the
LC to store data packets from the network before
transmitting to adjacent PEs.

noc_w_o

noc_w_i

noc_s_o noc_s_i

noc_e_i

noc_e_o

noc_n-‐o

noc_n_iip_outip_in

count

count

countcount
FIFO

LC LC

FIFO LC

LC

FIFO

FIFO

Arbiter

FIFO

Figure 3: Router Architecture

The Network Router is responsible for the transfer of packets
between nodes. Each router consists of two main
components: input buffers and an arbiter. Each router (shown
in Figure 3) has five input and five output ports. There exist
four inputs/outputs from/to the four cardinal directions
(North, East, South and West), and one from/to the PE. To

112 Int'l Conf. Embedded Systems and Applications | ESA'11 |

prevent deadlocks, the input buffer implements the virtual
channel concept.. The Virtual Channel (VC) identifier
module determines which VC should be used based on
occupancy of the input buffer. VC identifier polls the buffer
count of each VC and directs the incoming packet to the least
occupied VC. The Switch Identifier module chooses a packet
from each VC in a round-robin manner and sends it to the
output port based on the routing signals obtained from the
arbiter. The arbiter implemented is FSM-based, and consists
of the routing table with the shortest path to the destination
PE.

2.3 Communication Paradigm
In order to forward the message/packet, the implemented
NoC framework can choose either the Store and Forward
(SF) switching technique or the Wormhole (WH) switching
technique. In SF switching, the message can be sent either as
packets or in the form of flits. Each flit is contains 25 bits.
When the message is transmitted as flits, each routing node
will wait until the entire message is received before
processing the HEADER. The end of the message/packet is
determined by the TAIL flit. In Wormhole routing, the
message is transmitted as soon as the HEADER is available.
The path is determined from the HEADER as it moves
through the network. The remaining flits follow the same
path. The path is disconnected when the TAIL flit is
received. For the Torus and Mesh topologies, the
implementation uses an XY routing algorithm with store and
forward switching. For WK-recursive topology the
framework uses the adaptive routing algorithm with
wormhole switching.[18].

2.4 Monitor Module
Every routing node in the NoC is connected to a “Node
monitor,” which connects to a top-level monitor called the
“NoC monitor.” The main function of the NoC monitor is to
collect information from individual Node monitors regarding
the traffic. The Node monitors generate control information
based on the buffer conditions of that router node. The Node
monitor uses a few ON/OFF signals, such as FAIL, FULL
and ALMOST FULL, to communicate with the NoC
monitor.

2.5 Traffic Generator Module
The Traffic Generator (TG) module is responsible for
generating different traffic distribution in the network. The
TG can generate mainly three different types of traffic: 1)
uniform traffic, where packets are send at equal intervals of
time; 2) hotspot traffic [2], where the cores either receive
packets at a higher rate than the rate they can process or else
generate packets at a higher rate than the destination can
process; and 3) sporadic traffic, where each core generates a
burst of packets.

3 NoC Framework Communication
Flow

This section explains the control and data flow sequence
followed during the transfer of packets between PEs. Each
packet can contain a variable number of flits. Every packet
consists of a header and a tail flit. Data and address flits are
optional. The framework allows packing of a variable
number of data flits into a single packet, which further
reduces latency during burst mode data transfers. The
packets are classified as request packets, which have an
optional address field; and response packets, which have a
data field. The address field defines the local memory
address in the destination PE. This allows the slave PE to
have its own unique memory address space. The packet
format is shown in Figure 4.

Figure 4: Packet Format

The header flit can consist of either only the source and
destination address or the entire route. Two bits in each flit
are used as a packet ID, which determines the type of packet
(00-Header, 01-Data, 10-Address, 11-Tail). In the data and
address flits, the first three bits next to the packet ID
determines the order of the data/address flits. Every flit
contains a control bit (stb_*), which determines the validity
of packet. The we_* bit signifies if the packet has to perform
a read or write operation. Typically, each data or address flit
contains 16 bits of data or address information. The tail flit
contains parity bits for every data or address flit. A parity bit
is a bit that is added to ensure that the number of bits with
the value of “one” in a set of bits is even or odd. Parity bits
are used as the simplest form of error detecting code (ECC).
The type of ECC (odd or even parity) used in tail flit is
parameterizable.

Every channel/link in the network is full duplex, i.e., two
messages can travel simultaneously on the link in opposite
directions. A channel/link is said to be congested if its
associated router buffer is completely full or partially full
(parameterizable). A READY and SEND signal are used to
communicate between adjacent routers. Whenever the
channel buffer is partially full, the monitor informs every
adjacent router about a possibility of congestion.. When the
channel buffer of the router is full, the monitor flags the
congestion by setting the READY signal to low.

The communication flow in the proposed NoC framework, as
shown in Figure 5, can be summarized as follows. Let us
assume a scenario where the master PE wants to write data to

Int'l Conf. Embedded Systems and Applications | ESA'11 | 113

a specific address location on a slave PE (D-MEM). The
master PE initiates the transfer by activating the Network
Adapter (NA), which validates the memory address and
assembles the packet. In source routing, the NA uses a
routing table to determine the route. Once the packet is
ready, the Link Controller stores the packet in the input
buffer of the router. The router arbiter, based on the route
information and the availability of input buffers in the
adjacent routers, determines the output port and forwards the
packet.

Figure 5: Control and Data Flow

When the packet reaches the input buffer of the adjacent
router, the router arbiter performs a “destination check” on
the packet to determine if the packet has reached its
destination. If the packet had reached its destination, the
router arbiter sends the packet to the network adapter. The
network adapter decodes the packet into the D-MEM address
and the data, and performs the write operation. If the packet
has not reached its destination, the router arbiter forwards the
packet to the next router in a similar manner as the master
router arbiter. In case of channel congestion, the router stores
the packet in its buffer until the congestion is eliminated.

4 Evaluations and Results
The parameterizable NoC framework that was developed
was implemented in Verilog HDL. The input to the design is
a configuration file that determines the topology (torus,
mesh, or WK-recursive), switching (Store and Forward or
Wormhole), size, depth and the number of virtual channel
buffers, size of packet, and type of ECC (odd or even parity).
The parameters are static, which means the configurations
cannot be modified during simulation or after synthesis.
Also, different architectural components of the framework
can operate at different frequencies to mimic real-world
applications and real-time traffic. These characteristics can
be modeled by modifying the NoC configuration file. Table
1 summarizes the most important features that can be
parameterized in the framework.

Table 1: Parameterizable features in the NoC framework
NETWORK
TOPOLOGIES

LINEAR, MESH,
TORUS, WK-
RECURSIVE

Channel Width/Packet
size

22-80 bits

Flow Control ON/OFF
Switching mode SF and Wormhole
Routing Algorithm XY for Mesh, Torus,

Simplex Routing
Algorithm for WK-
recursive

Buffering

Input Buffering, Single or
Multiple Virtual Channels

Network Synchronization Synchronous
Virtual Channels Depth, size and number of

virtual channels are
parameterizable

Traffic Patterns Uniform, Sporadic,
Hotspot

A packet flow/traffic can be initiated either by the Traffic
Generator (TG) or by the master PE. OR1k has a GNU tool
chain, including the GCC compiler and the GNU debugger.
The application software can be loaded in the external
instruction memory of the corresponding master PE. The
processor uses on-chip RAM to execute a bootloader, in
which the cache, stack, and MMU are enabled and
initialized. After initialization, the master PE interacts with
other PEs in framework, thereby executing the application.
The complete emulation framework is presented in Figure 6.

114 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Figure 6: The complete NoC Emulation Framework

The NoC network clock (Router node) is operated at 1GHz.
Framework consists of several master and slave PEs. Master
PEs (OR1K+IMEM) operates at 250MHz. The slave PEs,
which includes: TIMER, UART, and normal data memory
unit operate at 125MHz, a D-MEM operates at 250MHz
(Slow Mode) or 500MHz (Fast Mode). Congestion scenarios
(hot-spot) are simulated when a faster PE sends a series of
packets to a slower PE. Regular traffic scenarios are
simulated when a faster/slower PE sends a series of packets
to a faster PE. Also traffic scenarios for single and multiple
hop transfers are modeled. Figure 7, shows the different
traffic scenarios modeled in the proposed NoC framework.

Figure 7: Congestion Traffic Models

In order to evaluate the flexibility and diversity of the
proposed NoC framework, the following design variations
are considered. First, the 3x3 Torus topology with SF
switching and XY routing algorithm is evaluated. Second,
the WK(2,4) topology with Wormhole(WH) switching and
minimum routing algorithm is evaluated. Evaluation of WK
topology includes support for burst data transfer. A master
sending multiple data to same destination can be packed into
a single packet in WH, hence further reducing latency.

Figure 8: Latency Evaluation of Torus Topology

Figure 9: Latency Evaluation of WK Topology

The performance metrics of these design variations include:
latency vs injection rate (packets/clock cycle), logic area
(number of slices) and power (in watts). The designs were
also evaluated for performance metrics under normal and
hotspot traffic conditions. Figure 8 shows the latency for
Torus and WK topologies for uniform traffic, and Figure 9
shows the latency for hotspot traffic for different hops. The
design was synthesized for Virtex4, using Xilinx ISE 11.1.
Table 2 shows the area and static power comparisons of
different NoC architecture components for the Torus and
WK topologies.

Table 2: Area and Power of Torus and WK

 Area (Slices) Power (W)

Block/Module WH SF WH SF

PE-OR1K 5992 5992 0.38216 0.38216

Router 1670 1778 0.17106 0.19048

Core Interface 65 543 0.17948 0.16633

Network Interface 37 69 0.16183 0.16893

Int'l Conf. Embedded Systems and Applications | ESA'11 | 115

5 Conclusion
A synthesizable NoC framework was developed using
Verilog HDL. The framework is parameterizable, and has
been used as a tool for design space exploration of various
topology (Torus and WK), switching techniques (SF and
WH), and network traffic (uniform and hot-spot). The
performance metrics of the design space exploration include
latency, area, and power. By using the proposed framework,
researchers will be able to evaluate and compare various
novel NoC architectures and algorithms with accurate
performance, power, and area parameters, and hence
facilitate the determination of system-level performance.

6 References
[1] OpenRisc 1000 architecture Manual from
<opencores.com>

[2] A. Kumar et al; “Toward Ideal On-Chip Communication
Using Express Virtual Channels”. IEEE Micro Vol 28, Issue
1, January- February 2008, pp 191-202.

[3] D.Mattsson and M. Christensson , “Evaluation of
Synthesizable CPU Cores” master’s thesis 2004.

[4] https://benchmark.stanford.edu

[5] Krishnan Srinivasan, Karam S. Chatha, and Goran
Konjevod “Linear-Programming-Based Techniques for
Synthesis of Network-on-Chip Architectures”. In
Proceedings of the IEEE International Conference on
Computer Design (ICCD '04). IEEE Computer Society,
Washington, DC, USA, 422-429.

[6] Juan del Cuvillo et al.: FAST: A Functionally Accurate
Simulation Toolset for the Cyclops64 Cellular Architecture.
MoBS’05 Workshop in conjunction with ISCA’05, 2005.

[7] Hangsheng Wang et al.: Orion: A Power-Performance
Simulator for Interconnection Networks. In Proceedings of
MICRO 35, 2002.

[8] Zhonghai Lu, Rikard Thid, et al.: NNSE: Nostrum
network-on-chip simulation environment. Design,
Automation and Test in Europe Conference, 2005.

[9] Noxim. http://sourceforge.net/projects/noxim, 2008.

[10] Lavina Jain et al.: NIRGAM: A Simulator for NoC
Interconnect Routing and Application Modeling. Design,
Automation and Test in Europe Conference, 2007.

[11] CellSim. http://pcsostres.ac.upc.edu/cellsim, 2007.

[12] V. S. Pai et al., “RSIM: Rice Simulator for ILP
Multiprocessors,” SIGARCH Comput. Archit. News, vol.
25, no. 5, p. 1, 1997.

[13] V. Puente et al., “Sicosys: An integrated framework for
studying interconnection network performance in
multiprocessor systems,” Parallel, Distributed, and Network-
Based Processing, Euromicro Conference on, vol. 0, p. 0015,
2002.

[14] Y. Hu, H.Chen, Y.Zhu, A. A. Chien and C. Cheng,
"Physical Synthesis of Energy-Efficient Network-on-Chip
Through Topology Exploration and Wire Style
Optimizations," Design (ICCD), pp.111-118, 2005.

[15] K. Srinivasan and K.S. Chatha, “A technique for low
energy mapping and routing in network on chip
architectures”. In Proceedings of the 2005 international
symposium on Low power electronics and design (ISLPED
'05). ACM, New York, NY, USA, 387-392.

[16] G. D. Vecchia and C. Sanges, “A recursively scalable
network VLSI implementation,” Future Generation
Computer Systems, 4(3) 235-243, 1988.

[17] D.Rahmati, A.Kiasari, S.Hessabi, H.Sarbazi-Azad, "A
Performance and Power Analysis of WK-Recursive and
Mesh Networks for Network-on-Chips", IEEE International
Conference on Computer Design (ICCD 2006), San Jose,
CA, USA, Oct. 2006.

[18] Della Vecchia, G., Sanges, C.: A Recursively Scalable
Network VLSI Implementation. Future Generation
Computer Systems 4(3), 235–243 (1988).

[19] M. Dallosso et al., “Pipes: A Latency Insensitive
Parameterized Network-on-chip Architecture for Multi-
Processor SoCs,” pp. 536-539, Proc. Int’l Conf. Computer
Design, 2003.

116 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Demand Based Routing in Network-on-Chip(NoC)

Kullai Reddy Meka and Jatindra Kumar Deka
Department of Computer Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, India

Abstract— In this paper, we present new routing tech-
nique called “Demand based routing” for mesh Network-
on-Chip(NoC) which improves throughput in terms of tasks.
We are proposing this because usually different nodes/tiles
on NoC perform different tasks which intern may depend
themselves. Various existing routing algorithms for Network-
on-Chip(NoC) are improving throughput in terms of packets,
global delay and energy consumption etc. In all these algo-
rithms sender node is the initiator of packet transmission.
Our proposal of “Demand based routing in NoC” aims to
improve throughput in terms of tasks, where packet transmis-
sion can be initiated by receiver node along with sender node
based on situation. So in this schema receiver can request a
packet(which we termed as “demand”) based on situation.
This routing technique improves task completion time of a
node through demanding the required packet.

Keywords: Demand Based Routing, Network-on-Chip, NoC
Routing, System-on-Chip, NoC, SoC.

1. Introduction
The regular tile-based NoC architecture was proposed

as a solution to the complex communication problems of
System-on-Chip[1]. NoC concept nicely separates the con-
cerns of computing and communication. It is hoped that
NoC will provide solutions to increased system complexity
and declining system productivity. Several researchers have
suggested that a 2-D mesh[2], [3] architecture for NOC will
be more efficient in terms of latency, power consumption and
ease of implementation, as compared to other topologies.
Most common NoC topologies are mesh and torus which
constitute over 60% of cases[2]. Due to these two reasons
the platform under consideration is composed of a n×n array
of tiles which are inter-connected by a 2D mesh network.

NoC Routing algorithms can be generally classified into
oblivious and adaptive[4]. In oblivious routing algorithms
the path to route a packet/flit is determined by the source
and the destination address, but in case of adaptive routing
the path to route a particular packet with source and a
destination address depends on dynamic network conditions
(e.g.congested links due to traffic variability).

The main advantage of using deterministic routing is its
simplicity of the routers design. Because of the simplified
logic, the deterministic routing provides low latency when
the network is not congested. However, as the packet injec-
tion rate increases, deterministic routers are likely to suffer
from throughput degradation as they can not dynamically

respond to network congestion. In contrast, adaptive routers
avoid congested links by using alternative routing paths, this
leads to higher throughput. However, due to the extra logic
needed to decide on a good routing path, adaptive routing
has a higher latency at low levels of network congestion.

Jingcao Hu and Radu Marculescu has proposed a rout-
ing algorithm called Dynamic Adaptive Deterministic rout-
ing(DyAD) for NoC which combines the advantages of
both deterministic and adaptive routing schemes[5]. This
DyAD algorithm consists both deterministic and adaptive
algorithms, switches between these two based on the net-
work’s congestion conditions.

Nodes/tiles of NoC may generate huge amount of data for
communication as complexity of applications is increasing
day by day. Due to the increase of the data, the packet size
will increase and to handle the bigger packet, the complexity
of the router will also increase. The amount of data generated
by a node will be treated as message and the message will be
divided into several packets and packets will be transmitted
flit by flit. In this scenario, it may happen that one node
of NoC receives few packets of a message and waiting for
other packets of the same message to arrive. To reduce the
waiting time by a node, the concept of demand based routing
is introduced in this paper. When a node is waiting for some
packets of a message, it can raise the demand for those
packets. Once the router of a node receives a demand flit
for a packet, and if the packet is available in the buffer of
that router, then priority will be given to that packet and it
will forwarded accordingly.

The major advantage of the Demand based routing is to
improve delivery time of messages which intern improves
throughput in terms of tasks as tasks depends on these
messages. We proposed this Demand based routing for NoC
by adding demanding a packet/flit and supplying a packet/flit
to DyAD routing.

Rest of the paper is organized as follows. In next section
we review the related work. In section 3, we present the
Demand based routing algorithm and its router architecture.
Analysis is done in section 4. Finally, we conclude in the
last section.

2. Related Work
There have been various routing algorithms proposed for

NoC that are based on wormhole routing in the literature.
Most of the algorithms given in this section for NoC mesh
topology. Majority of these routing protocols are classified

Int'l Conf. Embedded Systems and Applications | ESA'11 | 117

into two classes they are Oblivious and Adaptive routing
algorithms[4]. These algorithms need to handle deadlock,
live lock and starvation.

2.1 Oblivious Routing Algorithms
Oblivious routing algorithms have no information about

conditions of the network, like traffic amounts or congestion.
A router makes routing decisions on the grounds of some
algorithm or for example randomly. There are three types
of Oblivious Routing Algorithms, they are Dimension order
routing, Turn Models and Deterministic Routing Algorithms.

Dimension order routing (DOR) is a typical minimal
turn algorithm. The algorithm determines to what direction
packets are routed during every stage of the routing[6]. XY-
Routing[7], Pseudo Adaptive XY Routing[7] and Surround-
ing XY Routing[4] comes under this category.

Turn model algorithms determine a turn or turns which
are not allowed while routing packets through a network
such that network is livelock free[8][4]. West-first Routing,
North-last Routing and Negative-first Routing[4][9] comes
under this category.

Deterministic routing algorithms route packets every time
from a particular source to particular destination along
a fixed path. A router makes routing decisions on the
grounds of pre-collected data and some algorithm. There are
various deterministic routing algorithms they are Distance
vector, Link state, Source routing, destination tag routing and
Stochastic Routing algorithms. Deterministic algorithms are
used in both regular and irregular networks, in congestion
free networks deterministic algorithms are reliable and have
low latency[4]. They suit well on real time systems because
packets always reach the destination in correct order and so
a reordering is not necessary. In the simplest case each router
has a routing table that includes routes to all other routers in
the network. When network structure changes, every router
has to be updated. Deterministic routing is not reliable in
congested networks because all flits from particular source
to particular destination will follow same path which creates
unbalanced load in network.

2.2 Adaptive Routing Algorithms
These algorithms consider information about conditions

of the network, like traffic amounts or congestion while
routing. A router makes routing decisions on the grounds of
network condition and some algorithm. Adaptive Routing
Algorithms can be classified into two categories, they are
Minimal Adaptive Routing and Fully Adaptive Routing.

Minimal adaptive routing algorithm always routes packets
along the shortest path. The algorithm is effective when more
than one minimal or as short as possible, routes between
sender and receiver exist. The algorithm uses route which is
least congested[6]

Fully adaptive routing algorithm uses always a route
which is not congested. The algorithm does not care although

the route is not the shortest path between sender and receiver.
Typically an adaptive routing algorithm sets alternative con-
gestion free routes to order of superiority. The shortest route
is the best one[6]. Various Fully adaptive algorithms are
Odd-even routing, Q-routing and New Dynamic Routing,
Turnaround Routing, IVAL, 2TURN, slack-time aware and
Hot-Potato Routing Algorithms [4].

Deadlock in wormhole routing[13] is caused by packets
waiting on each other in a cycle[13]. Previous methods, such
as the turn model and the XY algorithm, avoid deadlock by
prohibiting certain turns. Instead, the odd-even turn model is
based on restricting the locations at which certain turns can
be taken so that a circular wait can never occur. Odd-even
routing is a deadlock free turn model where circular wait
never as it prohibits turns from east to north and from east
to south at tiles located in even columns and turns from north
to west and south to west at tiles located in odd columns. In
odd-even routing adaptiveness is more when compared with
XY-routing or turn model algorithms. It will work well in
the congested networks[10].

Q-routing algorithm is based on the network traffic statis-
tics. The algorithm collects information about latencies and
congestion, and maintains statistics about network traffic.
The Q-routing algorithm does the routing decisions based
on these statistics[11]. Collecting these statistics create more
overhead in NoC, so because of overhead it is using very
less in NoC[11], [4].

New Dynamic Routing algorithm proposed in the year
2007[12]. It combines two partial adaptive algorithms,
North-Last and South-Last routing algorithms, to achieve
better results. The algorithm says that if more than one
packet arrive at the same time and require the same destina-
tion, one packet passes while others wait till the destination
is free, then they obtain the link in the priority. Thus they
are preventing starvation[12].

Turnaround Routing, IVAL, 2TURN, slack-time aware
and Hot-Potato Routing Algorithms are not using much as
these are having overheads in implementation on on-Chip[4].

2.3 Other Routing Algorithms
DyAD: Dynamic Adaptive Deterministic switching(DyAD)
uses both Deterministic and Adaptive algorithms. It uses XY
and Odd-even routing. Depends on the Network condition it
switches between these two algorithms. It improves perfor-
mance but have little overhead, so depends on application
requirement we can choose[5]. In this paper, we are adding
Demanding a packet/flit and supplying a packet/flit of de-
mand to DyAD as now a days we can have good amount of
buffer space(Improvements in hardware is very high).

3. Proposed Methodology
Proposed work for demand based routing for NoC com-

prises of two modules, they are Transmitting module and
Receiving module. Each router in the NoC should have these

118 Int'l Conf. Embedded Systems and Applications | ESA'11 |

modules in order to have the demand based routing. Some
preliminaries to Demand based routing are given in the next
subsection, before going to details of these modules.

3.1 Preliminaries
Packets and Flits: In NoC application level datagrams are
known as messages, node level datagrams are known as
packets. These packets are transmitted in units of flits. Fig. 1
shows message which divided into packets, which intern
divided into flits. So flits are smallest units in which packets
are transmitted between two nodes.

Fig. 1: Message format

Fig. 2: Flit formats

Usually a packet is divided into Header flit, Body flits
and Tail flit. Only header flit consists of routing information
and it indicates starting of packet as it uses NoC wormhole
switching[13]. Tail flit indicates end of packet. We are
introducing new flit for our work which is known as Demand
flit. This Demand flit is used to send request, when a node
requires a packet(s) of particular message from particular
node. Formats of these flits are given in the Fig. 2.

Flit source and destination fields sizes depends on NoC
mesh size, for a 8 × 8 mesh NoC 6 bits are required to
represent a node. Flit type which is a 3 bit field and router
considers this before going to take routing action. Various
flit types are given in the Table 1.
Demand Matrix: Router uses a Demand
Matrix of size Number_of_nodes_of_mesh ×
Number_of_nodes_of_mesh in order to maintain
demands raised so far, where each entry of Demand
Matrix is either 0 or 1 to indicate whether a
demand is raised or not. So the memory required

Table 1: Various Flit Types
FLIT TYPE VALUE MEANING

000 Header Flit
001 Body Flit
010 Tail Flit of Packet and

saying still Packets are there
011 Tail Flit and

No more Packets of Message
100 Demand ON Flit
101 Demand OFF Flit

for this matrix is Number_of_nodes_of_mesh ×
Number_of_nodes_of_mesh bits. Initially all the entries
of this matrix are 0. These are updated to 1 whenever
Demand ON flit is raised and 0 whenever Demand OFF flit
is raised. It can be checked in unit time whether a demand
between particular source and destination is raised or not.
Packet Matrix: Router uses a Packet Ma-
trix of size Number_of_nodes_of_mesh ×
Number_of_nodes_of_mesh in order to maintain
what are the packets present in router buffers so far,
where each entry of Packet Matrix is either 0 or 1 to
indicate whether a packet from a particular source to
destination is present or not. So the memory required
for this matrix is Number_of_nodes_of_mesh ×
Number_of_nodes_of_mesh bits. Initially all the entries
of this matrix are 0. These are updated to 1 whenever
packet header flit is kept in router buffers and 0 whenever
packet header flit is moved from router buffers to router
output ports. It is used to check whether a packet from a
particular source and destination is there or not(in router
buffers) in constant time, which intern helps in taking the
decision of whether a demand is need to forward further or
not(when it raised).
Router Architecture: Fig. 3 illustrates the router archi-
tecture of Demand based routing. DyAD router[5] is ref-
erence router for our Demand Based router. Each cardi-
nal buffer is collection of three buffers, general buffer,
Demanded_packets_buffer and Demand_flits_buffer. De-
manded_packets_buffer is only for demanded packet’s flits
and Demand_flits_buffer is only for demand ON and OFF
flits.

Whenever a flit is coming into router the port controller
decides its buffer by considering its flit type, Demand Matrix
and Packet Matrix. Matrices controller updates matrices
based on incoming flits and it also controls matrices ac-
cession by port controllers.

The Crossbar Arbiter maintains the status of the current
crossbar connection and determines whether to grant con-
nection permission to the port controller. When there are
multiple input port controllers requests for the same available
output port, the Crossbar Arbiter uses the first-come-first-
served policy to decide which input port to grant the access,
such that the starvation at a particular port can be avoided.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 119

Fig. 3: Router Architecture

Each port controller monitors buffer ratios and if ratio
reaches threshold of that buffer then it set corresponding
congestion flag to indicate that buffer has reached threshold.

The Mode Controller continuously monitors its neigh-
boring congestion to determine either deterministic or the
adaptive routing mode of DyAD(our Demand based rout-
ing intern uses DyAD). If any congestion flag from its
neighboring routers are asserted, then the Mode Controller
commands all the input port controllers to work in the
adaptive mode. Otherwise, it switches the port controllers
to the deterministic mode.

Now Demand based routing is simple, whenever a node
is waiting for packets from a particular source it will raise
demand by doing Restricted broadcasting of demand ON
flit. When a node receives a demand ON flit, it will set the
corresponding position of Demand Matrix to 1 and broadcast
the Demand ON flit using restricted broadcasting algorithm
if the node is not the destination one. While receiving a
packet by a node, it checks against Demand Matrix. If
there is demand then put the packet into corresponding de-
manded_packet_buffers else put it into corresponding buffer
and update Packet Matrix.

While transmitting, first transmit Demanded Packets if any
and then normal packets. Once a node receives required
packets then it will do Restricted broadcasting of demand
OFF flit in order to tell that received required packets. In
general broadcasting is costly but here we proposed a Re-
stricted broadcasting technique for mesh topology which is
enough to Demand based routing. This Restricted broadcast-
ing is given in Transmitting Module subsection of proposed
work.

To achieve this(Demand based routing) each router need
to have two modules, Receiving Module and Transmitting
Module. These two modules are described in next subsec-
tions.

3.2 Receiving Module

Every router should have receiving process, which handles
all the incoming flits. In this algorithm when a flit coming
into router, depends on its type the Receiving Process algo-
rithm will update all corresponding Demand Matrix entries,
Packet Matrix entries and buffers. This reduces searching
time of transmitting process for any raised Demand and
Packet.

Receiving Process Algorithm
Input: Incoming flit
Output:Updated Demand Matrix, Packet Matrix
and Buffers

Begin if Header Flit then
if corresponding Demand Matrix entry then

Put flit in corresponding Demanded_packets_buffer
& Update buffer level.

else
Update related Packet Matrix entry to 1. Put flit in
corresponding buffer(based on in direction) &
Update buffer level.

end
if corresponding buffer is full then

Set corresponding congestion_flag.
end

else
if Demand Flit then

Update related Demand Matrix entry to 1. if
Demand_dest_id != local_id then

Put Demand flit into corresponding
Demand_flit_buffer(Based in-port) & Update its
buffer level.

end
else

Put flit into corresponding buffer(wormhole
switching) & Update buffer level. if corresponding
buffer is full then

Set corresponding congestion_flag.
end

end
end
End

According to the Receiving Process algorithm, if in-
coming flit is header flit of a packet then check against
Demand Matrix and if there is demand then put it into De-
manded_packets_buffer of that direction, else put the flit into
corresponding buffer(based on incoming direction), update
Packet Matrix and buffer levels. If incoming flit is demand
flit, update corresponding Demand Matrix entry to 1 and put
demand flit into corresponding Demand_flit_buffer(based
on in-port). Suppose the incoming flit is demand flit and
its destination Id is equal to local Id then just update
corresponding Demand Matrix entry to 1.

Finally if flit is either body flit or tail flit, simply put it
into corresponding buffers based on directions and update
the buffer level.

120 Int'l Conf. Embedded Systems and Applications | ESA'11 |

3.3 Transmitting Module
Every router should have Transmitting process in order to

control all the outgoing packets. Transmitting module first
handles Demand flits if any, then Demanded packets if any
and then normal packets. This algorithm intern uses two
functions, these are Broadcast algorithm and DyAD routing
algorithm[5]. Broadcast algorithm to broadcast demand flit
and DyAD routing algorithm for getting the path(route) or
direction for forwarding data flits of packets. DyAD routing
algorithm applies either adaptive or deterministic routing
algorithm to determine route or direction to forward flit by
considering network congestion status[5].

Transmitting Process Algorithm
Input:Buffers, Demand and Packet Matrices
Output:route to forward(Direction)

Begin if current router want to generate Demand flit then
Generate Demand flit and put into NORTH or SOUTH
Demand_flit_buffer.

end
if Demand_flit_buffers has Demand flits then

Restricted Broadcast of those flits
end
if If last received flit is tail flit of any demanded packet then

Restricted Broadcast of Demand OFF flit of that packet
end
if last transmitted flit == tail flit then

if Demanded_packets_buffers has demanded packets then
Get route by applying DyAD to header flit. Send
remaining flit of that packet in the same route by
wormhole switching.

end
else

if current flit == tail flit then
Send tail flit by wormhole switching. Update related
entry of Packet Matrix to 0

else
Send body flit by wormhole switching.

end
end
End

The transmitting module handles flit in order- first De-
mand flits, then Demanded Packets and then General Pack-
ets. It also update corresponding buffer level which is obvi-
ous thing done by transmitting module after transmission of
any flit.
Restricted Broadcasting Algorithm:

In Demand Based Routing, broadcasting is needed only
to broadcast demand ON and OFF flits. Demand flits need
to broadcast as we don’t know where the required packets
are resided in the mesh because routing path is decided
dynamically. In Computer Networks broadcasting is costly,
but in NoC we are making it not much costly as we already
know the topology of it.

Here restricted means we are restricting broadcasting to
particular area based on relative position of destination with
source of demand flit as the probability of availability of

Restricted Broadcast Algorithm
Input:Demand flit for Restricted broadcast
Output:Restricted Broadcast

Begin if (Current id == Destination id) or related entry of
Packet Matrix is 1 then

Stop forwarding Demand flit. Remove it from its
Demand_flit_buffer.

else
if Demand_flit_buffer is EAST or WEST then

if Destination.x<Current.x then
Make a duplicate of Demand flit and it towards
WEST.

else
if Destination.x>Current.x then

Make a duplicate of Demand flit and send it
towards EAST.

end
end
Remove it from it’s Demand_flit_buffer.

else
if Destination.x<Current.x then

Make a duplicate of Demand flit and send it
towards WEST.

else
if Destination.x>Current.x then

Make a duplicate of Demand flit and send it
towards EAST.

end
end
if Destination.y<Current.y then

Make a duplicate of Demand flit and send it
towards NORTH.

else
if Destination.y>Current.y then

Make a duplicate of Demand flit and send it
towards SOUTH.

end
end
Remove it from it’s Demand_flit_buffer.

end
end
End

required packet in that are is high. An example of Re-
stricted Broadcasting and general way of Broadcasting from
node(3,3) to node(1,1) is given in the Fig. 4 and Fig 5, which
clearly shows the differences between Restricted Broadcast-
ing algorithm and general way of broadcasting. Restricted
Broadcasting Algorithm is very simple, we are just finding
where the destination lies(means Upper or lower and left
or right) from current node by comparing their coordinates.
Once we got position then based on the incoming port of that
demand flit we are deciding outgoing ports for broadcasting.

As we considered static mesh topology for NoC, we
designed this Restricted broadcasting algorithm. According
to Restricted broadcasting algorithm, if the demand flit
destination Id is current/local Id (i.e current Id is demanded
packet’s origin) or required packet is in local buffers (by
checking Packet Matrix) then stop broadcasting (further
forwarding) of the demand flit. Otherwise, based on the
input port of the demand flit into router and the position

Int'l Conf. Embedded Systems and Applications | ESA'11 | 121

of the destination, the outgoing port is decided for further
broadcasting. Fig. 4 shows an example of this algorithm,
broadcasting of demand flit generated by node(3,3) to
node(1,1).

Fig. 4: Restricted Broadcasting from node(3,3) to node(1,1)

Fig. 5: General way of Broadcasting from node(3,3) to
node(1,1)

4. Analysis
In this section we analyze the complexities and perfor-

mance of our proposed work.
Each router need to maintain Demand

Matrix and Packet Matrix. Each of this ma-
trices need Number_of_nodes_of_mesh ×
Number_of_nodes_of_mesh bits of memory, example
is 8 × 8 mesh needed 64 × 64 bits which is 512 bytes.
Routers need to have Demanded_Packet_buffers and
Demand_flit_buffers along with general buffers of routers,
so these extra buffers is 25% of general buffers as per our
assumptions of our router architecture. So here we can
reduce the general buffers by 25% and use it for extra
buffer space needed or if we are able to have extra 25% of
general buffers then we can put this extra buffers in router.
If any application needed this Demand based routing then
we should be able to handle this memory.

Packet Matrix is used to decide whether a demand ON
flit needs to forward further or not. This can be done in unit
time by using Packet Matrix as Packet Matrix maintains the

information of any packet about its source and destination. If
router doesn’t have enough memory we can remove Packet
Matrix and it costs some more traffic by forwarding demand
ON flit further. The extra traffic without Packet Matrix is less
as we are using Restricted broadcasting which is not costly.
So depends on memory availability we can decide whether
to use Packet Matrix or not and accordingly it will effect
the performance.

Router has to update Demand Matrix entry whenever it re-
ceives a demand flit, it can be done in unit time by checking
addresses in demand flit. Some times router need to update
Packet Matrix based on flit type and Demand matrix, it also
can be done in unit time. Selection of buffer for incoming
flits from general buffer, Demanded_packets_buffer and De-
mand_flit_buffer(based on flit type and Demand Matrix and
Packet matrix) can be done in constant time by flit type and
matrices. So overall time overhead is constant.

In our algorithm, a node broadcasts Demand ON and
OFF flits for each packet which needs to be demanded.
Each demand flit consumes space in Demand_flit_buffer
and Demanded packet consumes some space in De-
manded_packets_buffer and creates some traffic. So some
restriction may be imposed on the number of nodes that
can demand a packet and the number of packets that can be
demanded by each node. This restriction may vary according
to the application run on a NoC.

5. Conclusion
In this paper we have presented a routing technique for

NoC where the task of bigger size can be handled and
the amount of data transfer between nodes of the NoC is
more. For the proper management of data in a router, we
require some extra memory for book keeping operation.
Since we are handling the data packet wise, the buffer size of
router need not to increase more. Since the waiting time has
been reduced by introducing demand flit, so the throughput
will be improved. It may have some extra overhead due to
the broadcast of demand flit, but we have used restricted
broadcast to overcome this problem. There is a possibility
to reduce the broadcast packet by introducing priority to
nodes and only high priority node can demand for a packet.
Sometimes this restriction depends on application that is
executed in the NoC.

References
[1] W.J. Dally and B. Towles, Route Packets, Not Wires: On-Chip Inter-

connection Networks, Design Automation Conf. (DAC), pp. 683-689,
2001.

[2] Erno Salminen, Ari Kulmala, and Timo, Survey of Network-on-chip
Proposals, White Paper, OCP-IP, March 2008 2005.

[3] P. Pratim Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh,
Performance evaluation and design trade-offs for network-on-chip
interconnect architectures, IEEE Transactions on Computers, vol. 54,
no. 8, pp. 1025-1040, 2005.

[4] Ville Rantala, Teijo Lehtonen, Juha Plosila, Network on Chip Routing
Algorithms, TUCS Technical Report No 779, August 2006.

122 Int'l Conf. Embedded Systems and Applications | ESA'11 |

[5] Jingcao Hu, Radu Marculescu, DyAD-Smart Routing for Network-
sonchip, ACM Journal, 2004.

[6] J. Dally and B. Towles, Principles and Practices of Interconnection
Networks, Morgan Kaufmann, 2004.

[7] M. Dehyadgari, M. Nickray, A. Afzali-kusha, Z. Navabi, Evaluation of
Pseudo Adaptive XY Routing Using an Object OrientedModel for NOC,
17th International Conference on Microelectronics, 13-15 December
2005.

[8] Christopher J. Glass, Lionel M.Ni, The Turn Model for Adaptive
Routing, ACM Journal, vol 41, 1994.

[9] H. Kariniemi, J. Nurmi, Arbitration and Routing Schemes for On-chip
Packet Networks. Interconnect-Centric Design for Advanced SoC and
NoC, Kluwer Academic Publishers, 2004, pp. 253-282.

[10] Ge-Ming Chiu, The Odd-Even Turn Model for Adaptive Routing ,
IEEE Transactions on Parallel and Distributed Systems, Vol. 11, July
2000.

[11] M.Majer, C. Bobda, A. Ahmadinia, J. Teich, Packet Routing in
Dynamically Changing Networks on Chip , 19th IEEE International
Parallel and Distributed Processing Symposium, 4âĂŞ8 April 2005,
pp. 154b.

[12] Mohamed M. Sabry, M. Watheq El-Kharashi, Hassan Shehata Bedor,
A New Dynamic Routing Algorithm for Networks-on-Chips, Communi-
cations, Computers and Signal Processing, 2007. PacRim 2007. IEEE
Pacific Rim Conference.

[13] Mohapatra, Wormhole routing techniques for directly connected mul-
ticomputer systems, ACM Computing Surveys, 30(3), pp. 374-410,
September 1998.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 123

Performance Analysis of WK-Recursive and Torus Routing
Algorithms for NoCs

Jaya Suseela and Venkatesan Muthukumar
Dept. of Electrical and Computer Engineering, University of Nevada Las Vegas, Las Vegas, NV-USA

Abstract: Network on Chip (NoC), specific parameters such
as topology, switching methods and routing algorithms, have
a huge impact on performance and the cost of the NoCs. In
this work, we propose a deterministic mirror routing
algorithm for Torus topology and an adaptive routing for
WK-recursive topology. To evaluate the routing algorithms,
a complete NoC synthesizable framework was implemented
in Verilog HDL. Congestion scenarios in the NoC framework
have been simulated, and the routing algorithms are
evaluated for latency, area, and power. Evaluation shows
that the performances of the proposed algorithms are
superior compared to classical routing algorithms.

Keywords: NoC, topology, WK-recursive, torus, adaptive
routing.

1 Introduction
Networks-on-Chip (NoC) have been proposed as a promising
solution to multi-processor on-chip communication
problems. To catalyze the deployment of the NoC paradigm
for many high performance computational applications,
many challenging research problems of NoC design
abstractions need to be addressed at all levels. The active
problems in the field of NoC design include: design space
exploration of NoC architecture for applications, application
scheduling and mapping algorithms, evaluation of switching,
topology or routing algorithm for efficient execution of
application, and optimization of communication cost, area,
and power.
The design of the NoC system is divided into four procedural
levels of abstraction, or models: i) the Application model,
which includes traffic generation and monitoring; ii) the NoC
framework architecture model and its components; iii) the
Communication Flow model, which models communication
among different NoC components; and iv) Algorithm
models, which model switching and routing algorithms in the
NoC architecture. Figure 1 shows the NoC framework model
developed for this evaluation.
The Application model encompasses three main components:
i) application mapping and scheduling, ii) a traffic controller,
and iii) a monitor. The Architecture model includes: i) the
NoC Framework, which includes such processing elements
(PEs) as OR1K processors, TIMERs, UARTs, Instruction
(IMEM) and data memories (DMEM), and a Network
Adapter; ii) the router, and iii) network topology. The
Communication Flow model defines the control and data
flow in the NoC at the system level, the network level, and
the data link level. The system level defines the flow

between master to slave PEs, slave to master PEs and
between master PEs. The control flow within the router is
defined in network layer. The lowest level is the data link
level. This level deals with encoding, decoding, and
synchronizing packets or flits. The Algorithmic model
defines the various switching and routing algorithms used in
data and control flow.

R0 R1 R2

R4 R5 R6

R8 R9 R10

PE0 PE1 PE2

PE4 PE6PE5

PE8 PE9 PE10

R3

R7

R11

PE3

PE7

PE11

R12 R13 R14

PE12 PE13 PE14

R15

PE15

M0 M0 M0 M0

M0 M0 M0 M0

M0 M0 M0 M0

M0 M0 M0 M0

NOC	 MONITOR

TRAFFIC	 	 GEN
ERATO

R

Figure 1: NoC Framework

Latency and power consumption overheads of the NoC
system are determined by the communication architecture
(router design and topology) and the algorithmic model that
is adopted.
In this work, we propose, implement, and evaluate efficient
routing algorithms -- both static and adaptive routing
algorithms -- for Torus and WK-recursive topologies,
respectively. The performances (latency, power, and area) of
the proposed routing algorithms are evaluated and
summarized.

2 Literature Review
In this section, a brief overview of different topologies and
routing algorithms adopted in our NoC framework are
presented. The ability of the network to efficiently
disseminate information depends largely on the topology.
Also, application mapping and routing protocol are
dependent mainly on the topology. Linear, Mesh, and Torus
[2] are the most widely used homogenous topologies;

124 Int'l Conf. Embedded Systems and Applications | ESA'11 |

however, Spidergon [12] and WK-recursive topologies [6,11]
are gaining greater importance.
The WK-recursive networks [6] are a class of recursively
scalable networks with many desirable properties. They offer
a high degree of regularity, scalability, and symmetry, which
conforms very well to a modular design and to the
implementation of distributed systems involving a large
number of computing elements. WK(d,L) represents a WK
topology with node degree d and expansion level L. For this
family of topologies, one can start from a WK(d,1) structure
and recursively expand and arrive to level L (WK(d,L)).
Characteristics of the WK-recursive, Torus, Mesh, and
Hypercube topologies are shown in Table 1.

Table 1: WK, Torus, Mesh and Hypercube Topology
Characteristics

Network # N degree Diameter Bisection
Width

WK(d,L) dL d 2L-1 d
Torus k2 4 k-1 2k
Mesh k2 2-4 2*Sqrt(k) Sqrt(k)
Hypercube 2*n n n 2(n-1)

Routing Algorithms
Routing algorithms define the path taken by a packet
between source and target switches. They must prevent
deadlock, livelock, and starvation [8,9] situations.
A great deal of research has been conducted in creating
various NoC routing algorithms. The most common and
efficient routing algorithm proposed is the XY routing
algorithm. The XY routing algorithm is based on the turn
model, which restricts packets moving from Y to X direction
and hence avoids a deadlock [7]. West First (WF), North
Last (NL), and Negative First (NF) are various partially
adaptive routing algorithms based on turn models. For
medium to large NoCs, Mello, A. et al. [14] proved that the
deterministic XY routing algorithm outperforms partially
adaptive North last, Negative first, and West first algorithms.
A comparative study done by W. J. Dally [15] proves that
full or partial adaptive algorithms are not necessarily
beneficial for wormhole routing. Their simulation results
indicate that the partially adaptive NL algorithm performs
worse than the non-adaptive e-cube routing algorithm for all
three traffic patterns (hotspot, uniform, and local). M. H.
Ghadiry et al. [13] compared the node load caused by several
routing algorithms in presence of a blocking or a fault in a
node; they concluded that the e-cube routing algorithm has
better load balancing than other algorithms. Compressionless
routing prevents deadlock by using fine-grained flow control
and back-pressure of wormhole routing.
For WK-recursive mesh topologies, Della Vecchina et. al.
[18] proposed a simple deterministic routing algorithm,
called the self-routing algorithm. Mostafa Rezazad et al.
investigated a deadlock-free shortest path routing algorithm
for WK-recursive mesh networks [1]. This algorithm uses the
self-routing algorithm [18] and also a second order routing
scheme to route the packet. The Multi Path Graph algorithm,

proposed by Fernandes et al. [10], is able to tolerate up to d-2
faults; however, it also has increased network traffic due to
the d-1 copies send for every message, which is a drawback.
This work proposes: i) a low overhead, mirror routing
algorithm for torus topology, classified as source routing,
lookup-table-based, deterministic routing algorithm; and ii)
an adaptive routing algorithm for WK topology, which is
classified as a MUX control based, adaptive routing
algorithm. In order to evaluate the proposed routing
algorithms, the below described NoC framework was
developed.

3 NoC Framework

The NoC framework/system consists of five main modules:
i) the processing architecture, ii) the communication
infrastructure, iii) the communication paradigm, iv) the
monitor module, and v) the traffic generator module.
The processing architecture module consists of a processing
lement (PE) and a network adapter module. The
communication infrastructure consists of the network
topology and the routing node. The communication paradigm
describes the switching techniques and routing algorithms
employed in the NoC communication infrastructure. The
monitor module includes two sub-modules: a node monitor,
which monitors the activities in a routing node, and a NoC
monitor, which monitors the communication in the
framework. The traffic generator (TG) module injects
packets (traffic) into the network. It can initiate either a
request or a start of transmission from the top level. The TG
also determines the type of traffic (uniform, hotspot,
sporadic) as well as the source and destination nodes for
traffic flow. Different congestion scenarios and node failures
can also be created through the TG. The design consists of a
node monitor at each router and an NoC monitor at the
network level (see Figure 1). The transaction monitor at each
router contains information about the buffer count in each
virtual channel and sends this information to the top NoC
monitor and traffic controller. It also keeps track of PE
status.
The NoC processing architecture consists of several
master/slave processing elements (PEs) that are connected to
the communication infrastructure by means of a network
adapter. The PEs can be a master PE or slave PE, depending
on whether it can initiate a message transfer or only respond
to a request. Only master PEs can initiate a message transfer.
Slave PEs respond to the requests from master PE either by
sending back the requested signals/data or by saving the
received information. UART, TIMER, and Instruction/Data
Memory all are considered slave PEs, whereas the master
PEs used in the design are capable of performing arithmetic
and logical operations. The network adapter receives signals
from the PEs and generates packets to be sent to the
communication infrastructure. Hence, the main function of
the adapter module is to transform the data to and from the
format required by underlying infrastructure.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 125

The data/message is communicated as packets. The entire
message can be either generated as a single packet or the
packets can be divided into flits before actually transmitted.
The packet format is shown in Figure 2.

Header Data Data Address Address Tail

Header	 ID Route/Dest wb_stb_i wb_cyc_i

PACKET

FLIT

Figure 2: Packet Format

Routing Node
Routing nodes connect each PE in the desired topology.
Routing logic consists of three components: i) a link cntroller
ii) channels/links, and iii) a router arbiter. Routing nodes
route the message/packets/flits according to the adopted
switching technique and routing algorithm. Each router in
Torus and Mesh topology has five input and five output
ports: four input ports from the four cardinal directions
(North, East, South, and West) and one (ip_*) from the local
processing wlement (PE). In WK topology, router nodes
have three to four input/output ports, depending on the
position of router in network. The ports are named as North
(noc_n*), South (noc_s*), Across (noc_a*), Over (noc_o*),
East (noc_e*), and West (noc_w*). The ports to South-West
or South-East are called Across ports and those to North-
West and North-East directions are known as Over ports.
Figure 3, shows the network router module with virtual
channels and a link controller.

4 Routing Algorithms
This work proposes two novel, low-overhead routing
algorithms: 1) mirror routing for torus topology, based on
turn model routing; and 2) an adaptive routing algorithm for
WK-recursive mesh topology, based on the minimal routing
algorithm.

LC

LC

LC

LC

CROSSBAR	 SWITCH

NETWORK	 ARBITER

noc_n_in

noc_e_in

noc_w_in

noc_s_in

noc_n_in

noc_e_in

noc_w_in

noc_s_in

noc_ip_in noc_ip_out

Figure 3: Network Router and Channels

XY Routing
This is the most common and efficient routing algorithm.
The framework implements the XY routing for torus
topology. Consider the scenario (Figure 4), in which the
processing element PE3 wishes to send packets to PE7 by the
XY routing algorithm; packets will flow from R3 to R4 (R3–
R4) and then to R7 (R4-R7). In cases where either of the
links R3-R4 or R4-R7 is congested, or if PE R4 fails, then
the packets will stall until resources become available.

Mirror Routing
This section explains a deterministic routing algorithm for
torus topology called “Mirror Routing” (MR). It exploits the
path diversity property of the torus structure and hence many
routing possibilities. The mirror routing implemented is an
incremental extension of the XY routing algorithm. The MR
algorithm (based on Store and Forward switching) is
implemented to compare the performance of the adaptive
routing algorithm (based on wormhole switching) for WK
topology.
When the torus network is path diversified (or path
multiplied, where several parallel lanes exist in each row or
column), the address encapsulation mechanism can be used
to take advantage of the path diversity while preserving the
simplicity and obliviousness of dimension order routing [16].
In mirror routing, switching is implemented based on SF
switching mechanism; lookup table based routing
implementation and source routing for simplicity. Hence, the
source node has a routing table that includes the entire path
the packet transverses before it reaches the destination node.
If a link is congested or failed, the node monitor informs the
NOC monitor through READY and FULL signals. The
monitor can even inform the onset of congestion by
considering the present buffer occupancy. When the network
arbiter (NA) of any routing node receives congestion/failure
information from an adjacent node or from the NOC
monitor, it chooses an alternative route that is opposite in
direction to the normal route. This is done by including an
alternative exit path in the routing table in the routing node.
The area overhead incurred due to the inclusion of this
alternative exit path is negligible.
Consider the scenario where PE3 has to send packets to PE7,
and link R3-R4 is congested. Mirror routing will route the
packet through R3-R5 and R4-R7, shown by arrows in
Figure 5. Similarly, if PE4 has to send packets to PE2 and
link/channel R4-R1 is congested, the packets will get
redirected through R7.
Since the Mirror Routing follows the XY turn model, mirror
routing is also deadlock-free. The 3D Torus network offers a
high degree of path diversity, and therefore is relevant in
such topologies.	

126 Int'l Conf. Embedded Systems and Applications | ESA'11 |

R0 R1 R2

R3 R4 R5

R6 R7 R8

M0

PE0
M0

PE1
M0

PE2

M0

PE3
M0

PE5
M0

PE4

M0

PE6
M0

PE7
M0

PE8

Figure 4: Mirror Routing

	
Minimal Routing for WK Topology
A WK(d,L) network contains exactly d(L-1) different
WK(d,1) sub-networks. Each WK(d,1) is connected by a
complete graph, and the link between any two sub-networks
is referred to as a flipping link. The flipping links are shown
by dotted lines in Figure 5. Every Extern nodes has 3 ports.
All nodes except Extern nodes have 4 links/ports.

	

0000
(00)

0001
(01)

0100
(10)

0010
(02)

0011
(03)

0110
(12)

1000
(20)

1001
(21)

1100
(30)

0101
(11)

0111
(13)

1101
(31)

1010
(22)

1011
(23)

1110
(32)

1111
(33)

S

T

X

Y

Figure 5. Node Addressing in WK Topology

In WK topology, each node is addressed, as shown in Figure
5. In a deterministic minimal routing algorithm [11], only the
destination address is required to deliver a message. Suppose
the node S (00) has to send data to node T (30). A routing
path between them can be constructed as follows:
 Step 1: Compare the MSB of the node addresses of S and

T. If they are the same, the destination node is in same
sub-network. In this case, the routing becomes
elementary, as each node in the sub-network is
interconnected to every other node. Here they are 0 and 3.
Hence, the nodes are not in the same sub-network. If they
are in a different sub-network, proceed to Step 2.

 Step 2: Determine the flipping edge. The flipping edge
(X, Y) is the bridge between the two sub-networks. In our
example, the flipping edge is the edge between (03) and
(30).

 Step 3: Determine the routing path from S to X and the
routing path from X to T. The routing path from S to T is
the concatenation of the routing path from S to X, the
flipping edge (X, Y), and the routing path from Y to T.
Hence the path is (00),(03),(30).

Adaptive Routing (AR) for WK Topology
A new adaptive routing algorithm is proposed for WK
topology, based on priority routing. Depending on the
destination, different routing paths are chosen based on
availability and priority, as shown in Table 2.

Table 2: Priority Routing Table
Source Des/1st P 2nd P 3rd P

IP/O/N/E/W A S E/W
S A W E

IP/O/A/N S E A
E/W S A W/E

IP/O/A/N E S A
S E A N

A = Across, N= North, S= South, E= East, W= West, O=
Over.

Consider the scenario in which the source node (00) has to
send data to (30) and the link (00)-(03) is congested.
According to first row in the priority table, when the packet
from PE (IP) has to go to Across (A) and if Across is
congested, then the second priority of South (S) is selected.
Hence, the packet from (00) is routed to (02). Thereafter, it
follows the shortest path. Therefore, the new path that the
packet will follow is given as (00),(02),(03),(30).
The adaptive routing algorithm requires virtual channels to
provide deadlock-free routing. To provide deadlock free
routing, a proposed policy for pHOP virtual channel
selection [11] is adopted in this work.. Each node is assumed
to know the status of its neighbors.

5 Synthesis Results
The NoC framework was implemented in Verilog HDL. The
framework is completely parameterizable. The user can
parameterize the topology, switching, depth and size of the
channels, packet structure, and router buffer size. The
framework also includes a synthesizable PE. Different
architectural components of the framework can operate at
different frequencies to mimic real-world applications and
real-time traffic. These characteristics can be modeled by
modifying the NoC configuration file.

A packet flow/traffic can be initiated either by traffic
generator (TG) or by the master PE. The NoC network clock
(router node) is operated at 1GHz. Master PE operates at
250MHz. The slave PEs, which include TIMER, UART, and

Int'l Conf. Embedded Systems and Applications | ESA'11 | 127

an instruction memory unit(I-MEM), operate at 125MHz; a
D-MEM operates at 250MHz (Slow Mode) or 500MHz (Fast
Mode). Congestion scenarios (hot-spots) are simulated when
a faster PE sends a series of packets to a slower PE. Regular
traffic scenarios are simulated when a faster/slower PE sends
a series of packets to a faster PE. Also, traffic scenarios for
single and multiple hop transfers have been modeled.
In order to evaluate the performances of the proposed routing
algorithms, the following design and synthesis variations are
considered: 1) the evaluation of the 3x3 and 4x4 Torus
topologies with SF switching to the XY routing algorithm
and the Mirror Routing algorithm and 2) the evaluation of
the WK(4,2) topology with Wormhole (WH) switching,
minimum routing and an adaptive routing algorithm.
Evaluation of WK topology includes support for burst data
transfer. A master sending multiple data to the same
destination can be packed into a single packet in WH, hence
further reducing latency.
The performance metrics of these design variations include:
determining latency for different congestion scenarios, logic
area (number of slices) and power (in watts). In addition, the
design is evaluated for performance metrics under normal
and hotspot traffic conditions. The design is synthesized for
Virtex4 using Xilinx ISE 11.1. Table 3 shows comparisons
of the area, static power, and total power (static and
dynamic) of different NoC architecture components for the
Torus and WK topologies.

Mirror Routing Simulation.
To evaluate the mirror routing, we considered the scenario
where a faster master PE, PE0, sends information to Slave
PEs, PE1 and PE4. The processing elements PE0 and PE4
have faster clocks of 500MHz, whereas PE1 processes data
at a much lower frequency, 250MHz. PE0 sends the bulk of
data to PE1 and then to PE4; this eventually results in
congestion in link R0-R1.

R0 R1 R2

R3 R4 R5

R6 R7 R8

Fast	
PE0

Slow
PE1

PE2

PE3 PE5
Fast
PE4

Fail
PE6

PE7 PE8

Figure 7. Torus structure with a congested link and failed

node.

In normal XY routing, the node R0 will wait until the
channel R0-R1 is available; whereas in mirror routing, the
NA at R0 chooses an alternative route for the messages
through R0-R2, R1-R4. A similar scenario is shown in

Figure 7. Latency of packets using SF switching with XY-
routing and mirror routing for 3x3 and 4x4 torus topologies
are shown in the graph in Figure 8. The latency increases
with size of topology, but it also ensures correct data transfer
in presence of a single fault. The power and area
performance metrics are shown in Table 3.

Figure 8: Mirror routing algorithm comparison: Latency

Adaptive Routing (AR) Simulation.
The adaptive routing algorithm for WK(4,2) topology is
evaluated for various hops and congestion scenarios. Figure
9 shows the latency performance of the minimal routing,
adaptive routing, and an exhaustive routing with respective
to the ratio of congested links to the number of hops. The
power and area performance metrics are shown in Table 3.

Figure 9: Adaptive routing algorithm comparison: Latency.
6 Conclusion
This work proposes two routing algorithms, one for Torus
and one for WK-recursive topology. The routing algorithms
are evaluated for congestion scenarios on respective
topologies, and their performance for latency is determined.
From Figure 8, it is clear that for congestion scenarios, the
mirror routing algorithm performance is similar to the
classical XY routing algorithm. However, the performance of
the mirror algorithm degrades as the network size increases.
The difference in area and static power overhead between the
mirror and XY routing algorithms is insignificant for small
size topologies. From Figure 9, we conclude that the latency
of the adaptive routing algorithm is less than that of the
exhaustive routing algorithm, where all minimal and
alternative routes are stored in the routing table and the first
uncongested route is selected for transmitting the packets.

128 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Also, note that if no congestion or fault exists in the links or
PEs, then the adaptive routing algorithm performance
matches that of the minimal routing algorithm.. Similarly,
since the control logic for physical and virtual channel
selections are implemented using multiplexers, the area and
static power overhead of the adaptive routing algorithm is
negligible compared to the minimal routing algorithm.

Table 3. Synthesis Results

 Area (Slices) Static Power
(W)

Total (S+D)
Power (W)

Routing AR MR AR MR AR MR
PE-

OR1K 2605 2605 0.382 0.382 - -

Router 3330 933 0.202 0.190 1.472 1.023
Core

Interface 32 40 0.197 0.205 0.729 0.752

Network
Interface 34 34 0.167 0.167 0.767 0.762

Switching WH SF WH SF WH SF

In general, the area overhead of the WH switching (with 4
VCs for WK topology) is 72% more, compared to the SF
switching. The static power overhead of WH switching is
31% more and latency is 18% less, compared to SF
switching. The total power (static + dynamic power) of
implementing the mirror routing on torus topology and the
adaptive routing on WK topology are dependent on the
number of additional hops encountered during congestion or
fault. The total power overhead for each additional hop can
be calculated by considering the total power, as shown in
Table 3.

7 References
[1] Mostafa Rezazad, M. Hoseiny Farahabady, and Hamid
Sarbazi-Azad “A deadlock free shortest path routing
algorithm for WK-recursive meshes ICDCN’08 Proceedings
of 9th international conference on Distributed computing and
networking,2008
[2] J. Duato, et. al. “Interconnection Networks: An
Engineering Approach”. Morgan Kaufmann, 2002 ..
[3] H. T. Salminen E., Kulmala A., “Survey on Network on
chip Proposals” White Paper OCP-IP, March 2008.
[4] C. Seitz, “Let’s Route Packets Instead of Wires”,
Advanced Research in VLSI: Proceedings of the Sixth MIT
Conference, pp. 133-138, 1990.
[5] Ni, L. M.; McKinley, P. K. A Survey of Wormhole
Routing Techniques in Direct Networks. IEEE Computer
Magazine, v.26(2), February, 1993, pp. 62-76.
[6] Della Vecchia, G., Sanges, C. “A Recursively Scalable
Network VLSI Implementation.”, Future Generation
Computer Systems 4(3), 235–243 (1988)
[7] C. J. Glass, L. M. Ni. “The turn model for adaptive
routing”. In Proc. ISCA, 1992.

[8] S. Toueg and K. Steiglitz, “Some Complexity Results in
the Design of Deadlock-Free Packet Switching Networks,”
SIAM Journal on Computing, Vol. 10, No. 4, pp. 702-712,
November 1981.
[9] Liang, J.; Swaminathan, S.; Tessier, R. aSOC: “A
Scalable, Single-Chip communications Architecture. In:
IEEE International Conference on Parallel Architectures and
Compilation Techniques”, Oct. 2000, pp. 37-46.
[10] R. Fernandes, D.K. Friesen, and A. Kanevsky.
“Efficient Routing and Broadcasting in Recursive”
Interconnection Networks. In Proceedings of Int’l
Conference on Parallel Processing, 1994
[11] D.Rahmati, A.Kiasari, S.Hessabi, H.Sarbazi-Azad, "A
Performance and Power Analysis of WK-Recursive and
Mesh Networks for Network-on-Chips", Computer Design,
2006. ICCD 2006. International Conference on Oct. 2007, pp
142 – 147
[12] Mahmoud Moadeli, Ali Shahrabi, Wim
Vanderbauwhede, Mohamed Ould-Khaoua “An Analytical
Performance Model for the Spidergon NOC”, Advanced
Information Networking and Applications, 2007. AINA '07.
21st International Conference, May 2007, pp 1014 - 1021
[13] M.H. Ghadiry, M.Nadi, M.T. Manzuri-Shalmani,
D.Rahmati, “Performance and Power analysis of Routing
Algorithms on NOC” 2008
[14] Mello, A.; Copello Ost, L.; Gehm Moraes, O.; Laert, N.;
Calazans, V. “Evaluation of Routing Algorithms on Mesh
Based NOCs”, Faculty of Informatics, Pontifícia
Universidade Católica do Rio Grande do Sul, Brasil,
Technical Report Series, No. 040, May 2004.
[15] W.J.Dally “Virutal Channel Flow Control” , IEEE
Trans. On Parallel and Distributed Systems, Vol 3, No. 2,
March 1992, pp 194.
[16] Assaf Shacham, Keran Bergman, Luca P. Carloni “On
the design of a Photonic Network on Chip”, Networks-on-
Chip, 2007. NOCS 2007. First International Symposium,
May 2007, pp 53 - 64
[17] Y. Hu, H.Chen, Y.Zhu, A. A. Chien and C. Cheng,
"Physical Synthesis of Energy-Efficient Network-on-Chip
Through Topology Exploration and Wire Style
Optimizations," Design (ICCD), pp.111-118, 2005.
[18] Verdoscia, L., Vaccaro, R.: “An Adaptive Routing
Algorithm for WK-Recursive Topologies”, Computing
63(2), 171–184 (1999).

Int'l Conf. Embedded Systems and Applications | ESA'11 | 129

Genetic Algorithm Based Bank Selection for Partitioned

Memory Architectures

Liao Ximi
1, 2

, He Yanxiang
1, 2

, Chen Yong
1, 2

, Li Fuyang
1, 2

1
 School of computer, Wuhan University, Wuhan 430072, China

2
 State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China

Wuhan, China

ximil@whu.edu.cn, yxhe@whu.edu.cn, cyong1000@163.com, dxfly@yahoo.com.cn

Abstract— For partitioned memory architectures, bank

selection is a challenging problem. As we all know, it is a NP-

hard problem. To solve this NP-Hard problem, people have

studied in this area for many years. But we still have some

distance away from the optimal solution. In this paper, I will

introduce how to solve the bank selection problem by using

Genetic Algorithm
[1][2]

. Though we still can't give the best

solution, the approximate optimal one can be found through

this method. And the main attribution of this paper is not only

giving an efficient bank selection algorithm, but a new idea of

the bank selection for partitioned memory architectures.

Keywords: partitioned memory architectures, bank selection,

Genetic Algorithm.

1 Introduction

For partitioned memory architectures, bank selection is a

challenging problem. And it is of vital importance for

optimizing compilers. Bank switching is a common technique

to increase the size of code and data memory without

extending the address buses of CPU. The address space is

partitioned into memory banks, and the CPU can only access

one bank at a time, which is called the active bank. A bank

selection instruction is issued to switch between banks. In this

paper, we want to find the right data banks that the variables

of a program are placed. We did this because it can affect

many aspects, such as runtime, low power, small code size or

a combination of these parameters. And we concentrate on the

code size. That is to say, we used the genetic algorithm to

present an optimization that inserts a minimum number of

bank selection instructions in the program to guarantee that

banked memory is used completely.

For instance, there is a program which has m variables.

They have been represented as P (Vi, value) (0<i<=m). In

witch Vi is the identifier of a variable and value represents the

size of the variable. And we also have an interference graph G

to show the interaction of different variables. We assume

there are 2k banks in our architecture. They were signed from

0 to 2k- 1. So our work in this paper is allocating these m

variables to the 2k banks and it should satisfy the two rules

below:

1) All the variables should be allocated and for every

bank, the total size of the variable allocated in this

bank can’t be bigger than it is capacity.

2) We should try the best to minimize switching

between the banks so that a minimum number of

bank selection instructions are used.

The remainder of this paper is organized as follows. In

section two, we introduce the conception and principle of

genetic algorithms and analyze why we choose this method to

solve the bank selection problem. In section three, we

introduce the algorithm used in this paper in detail. And then

in section four, we will give a small example to show how this

algorithms worked. Some related work will be given in

section five. We round off the article with a conclusion and

list some further work as well in section six.

2 Background

A genetic algorithm is a search heuristic that mimics the

process of natural evolution. It is usually used to generate

useful solutions to optimization and search problems
[3]

.

Genetic algorithm is a simulation of Darwinian natural

selection of genetic selection and biological evolution process

model. In a genetic algorithm, it expresses the solution of a

problem as "chromosome" and through the change of the

"chromosome" from generation to generation which including

reproduction, crossover and mutation, eventually converge to

the "best adapted individuals".

We can then see that the principle of genetic algorithms

is simple:

1) . Encoding of the problem in a binary string.

2) . Random generation of a population. It includes a

genetic pool representing a group of possible

solutions.

3) . Reckoning of a fitness value for each subject. It will

directly depend on the distance to the optimum.

4) . Selection of the subjects that will mate according to

130 Int'l Conf. Embedded Systems and Applications | ESA'11 |

their share in the population global fitness.

5) . Genomes crossover and mutations.

6) . And then start again from point 3.

The steps were shown in Figure 1.

start

Coding, randomly generated

individuals

estimate

Meet the stop condition

select

crossover

mutation

estimate

Output the

optimal solution

N

Y

Figure 1: the general steps of genetic algorithm.

1) Initialization: Many individual solutions are

randomly generated to form an initial population. The

population size depends on the nature of the problem. We

encode candidate solutions in binary as strings of 0s and

1s.The different combinations of structural data strings

constitute a different individual.

2) Estimate: We use the fitness evaluation function to

show the advantages and disadvantages of each of the

individual or the solution. The fitness evaluation function is

defined in different ways according to different issues.

 3) Selection: We have to select good individuals from

the current population according to the fitness evaluation to

be the "parents". To do this they have the opportunity to breed

generations.

4). Crossover：The crossover operation is the most

important genetic algorithm operation. Two selected "parent"

could generate a new individual by crossover operation. It

embodies the idea of information exchange.

5). Mutation ： At first, we choose an individual

randomly and change a random code of it in a certain

probability. The mutation operation provided an opportunity

to generate new individual.

6). Stop condition: If the stop condition is met, we

choose the individual with the largest fitness in the current

population to be the final result and terminate the algorithm.

As we introduced, the genetic algorithm is a good choice

to solve optimization problems. The bank selection problem is

an optimization problem witch asks for the optimal selection

of the bank to make sure that the variables use minimum

space of the CPU. Therefore, use the genetic algorithm to

solve this problem is a good choice.

3 Genetic algorithms based bank selection

As we introduced in section one, we need to solve the

problem of bank selection by genetic algorithm. In the

problem, m variables need to be assigned to 2k banks. At the

same time, we should try to use the least amount of space and

bank selection instructions. Now we will introduce the

algorithm in detail.

3.1 The individual coding

Because we have 2k banks, for every variable, there are

2k kinds of placement. We will encode the individual

according to the bank of a variable.

For example, if there are 5 variables and 4 banks, we

need two bits to represent the selected bank of a variable.

That is to say in the total, ten bits will be used to encode and

there are 4
5
 kinds of encodings. Assuming that a selection as

shown in figure 2 below.

V1

V2

V4 V5 V3

Bank 0 Bank 1 Bank 2 Bank 3

Figure 2:. the selection of an example

The figure shows that V1 and V2 are allocate in bank

1,V4 is in bank 2, V5 is in bank 2 and V3 is in bank 3.So we

Int'l Conf. Embedded Systems and Applications | ESA'11 | 131

http://en.wikipedia.org/wiki/Candidate_solution

can encode it as 00 00 11 01 10.

To solve the problem in this paper, we need m*k bits and

there will be 2
mk

 kinds of encodings.

3.2 Population initialization

In this paper, we will define the size of the initial

population to S = m*2k. We will use an array to store these

numbers. Then use the algorithm as shown below randomly

generated S individuals of the initial population.

Figure 3 a simple algorithm for initiation

3.3 Fitness function

The fitness function is used to calculate the fitness of

individual. In this paper, the fitness value is the amount of

space it will take for a selection. At first, we should calculate

the bank selection instructions according to the interference

graph G. We use n to records the number of bank selection

instructions. At first, we set n=0. And then, we traverse the

graph G. if there is an edge from node1 to node2, the two

nodes are in deferent banks, n=n+1.Then the total size of the

selection is calculated using the formula (1) as following:

 (1)

As shown above, the total size is the number of bank

select instructions plus the whole size of the variables.

However, due to the special problems involved in this

paper, we should do another thing before we calculate the

fitness of individual. We need to first determine the

reasonableness of such coding. It is very easy, and we just

need to calculate the sum size on each bank. If it bigger than

the size of the bank size, the selection must be given up.

3.4 Parent selection

In this paper, roulette wheel selection method
[4]

 was

used to select the parents. Roulette wheel selection method

simulates gambling game roulette. A roulette wheel is divided

into N-sectors. Each sector represents a chromosome of the

population. The area of each sector is proportional to the

fitness value of the chromosome. In order to select the

individuals from the population, we assuming there is a

pointer to the wheel, turn the wheel, when the wheel stopped,

the pointer points to the selected chromosome. Therefore, the

greater the fitness value of a chromosome indicates the larger

of the chromosome area and the greater likelihood of it to be

chosen. The specific process is as follows:

1). Calculate the sum of the fitness value of all the

individuals of the population using formula (2) :

1

0

()
n

i

T o ta l f i

 (2)

2). Calculate selection probability for each individual using

 formula (3):

()

Pr () 0,..., 1
f k

nSel o k k n
Total

(3)

3). Calculate the sum of probability of all the individuals

using formula (4):

0

Pr () Pr () 0,..., 1
k

i

nTo o k nSel o i k n

(4)

4). Turn the wheel N times. We use a random number in [0,

1] to simulate the location pointed when the wheel stopped.

If Pr (0)r nTo o , it means the pointer pointed the first

sector and we choose the first individual. Generally

if Pr (1) Pr ()nTo o k r nTo o k , it shows it pointed the

k-sector, and then select the k-chromosome.

3.5 Crossover

In this article, we choose Single-point crossover. It is a

simple algorithm, but enough for our experiments using. The

Single-point crossover algorithm uses two parent bodies to

crossover and produce two offspring individuals. Assuming

the length of a binary bit string is L. In this paper, it is S. It

generates random integer pos to be the crossover point. Then

we exchange the substring of two parent bodies which is the

right of crossover point and generate two offspring individuals.

The schematic diagram of single-point crossover is in figure 4.

exchange

Parent 1

Parent 2

son 1

son 2

F

igure 4 Schematic diagram of single-point crossover

3.6 Mutation

We use a pre-set probability pm to mutate the

chromosome genes of population. If a gene was chosen to

mutate, we turned 1 to 0 and 0to 1. For every gene of the

population, we generate a random number r. If r>pm, then the

gene mutation.

1） Initialize array, make array [i] = 0;

2） for (int i=0; i<=S; i++){

3） randomly generate a m*k bits number s;

4） Make array[i] =s;}

5） exit

132 Int'l Conf. Embedded Systems and Applications | ESA'11 |

3.7 Stop conditional

The user type in the number of iteration Num. we will

test whether the number of iteration is bigger than Num. If not,

it will go on to do the iteration. After every time of iteration,

we should find the best solution of the current population and

compare it with the previous one. We will store the better one

until we get to Num. Then we quit and return the best solution.

4 Experimental result

To test the effect of the algorithm, we did an experiment

on an embedded system. It is HR6P serial micro control unit

designed by an integrated circuit company in China, which

own 8-bits RISC instruction set. In this paper, we focus on the

method of bank selection based on genetic algorithm. The

user cases are designed especially for the compiler. We will

compare the normal algorithm with the genetic algorithm with

the number of bank selection instructions

We test our genetic algorithm on a real system. The

experimental environment is shown in Table 1.

TABLE 1 THE EXPERIMENTAL ENVIRONMENT

CPU Intel Pentium 4 3.06G

operating system Windows XP sp3

internal memory DDR2, 1G

develop environment Visual Studio 2005

Target Chip RISC

Test case Cooperation provided

Test board the actual system

Figure 5. Experimental results

As we shown in Figure 5, we choose 17 cases to evaluate

the feasibility and effectiveness of the algorithm. The x-axis

present the cases used and the y-axis is the number of

instruction used for the bank’s selection. From these cases, we

can see that it reduces about 12.94% on average and 20.66%

for the fifteenth case. So the genetic algorithm is useful to

solve the problem of bank selection. After the operation of

this algorithm, the number of bank selection instructions

significantly reduced.

5 related work

As we all know, many works have been done for

optimizing bank selection instructions. Bernhard et al.
[5]

formulated the problem of optimizing bank selection

instructions for multiple goals as a form of Partitioned

Boolean Quadratic Programming (PBQP). They assume that

the variable had been assigned to specified banks. Liu

Tiantian et al.
[6]

 claimed they had integrated variable

partitioning into optimizing bank selection instructions. With

the analysis of code patterns, they placed the emphasis on the

positions for inserting bank selection instructions. Yuan

Mengting et al.
[7]

 take the variable partitioning on shared

memory. Especially, Li Qingan et al.
[8]

 present an algorithm

to reduce the overhead of page switching. To pursue small

code size, they place the emphasis on the selection of

functions into suitable pages with a heuristic algorithm. Many

other works
 [8][10][11]

 about variable partitioning focused on

DSP processors, where parallelism and energy consumption

attracted the main attentions. There is also work to improve

the overall throughput for MPSoc architecture by variable

partitioning
 [12]

.

6 Conclusion and future work

In this paper, we present the genetic algorithm to

optimize the bank selection. Our experimental results showed

it achieved a great improvement with respect to code size.

However, there is still much work to be done to improve this

algorithm. In this algorithm, we have not considered a matter

of time. And in the future, we will make improvements in this

area. Finally, complete content and organizational editing

before formatting. Please take note of the following items

when proofreading spelling and grammar:

7 References

[1] A.E.Eiben and J.E.Smith. Introduction to Evolutionary

Computing. Springer- Verlag Berlin, 2003

[2] K. John, M. Keane, M. Streeter, W. Mydlowec, J. Yu

and G. Lanza. Genetic Programming IV: Routine Human-

Competitive Machine Intelligence. Kluwer Academic

Publishers, 2003

[3] Baragilia R Hidalgo Ji Perego R, A hybrid heuristic for

the traveling salesman problem. IEEE Transactions on

Evolutionary Computation. 2001(05)

[4] E. E. E. Ail.A proposed genetic algorithm selection

method. King Saud University, ccis, 2006.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 133

[5] Bernhard Scholz, Bernd Burgstaller, and Jingling Xue.

Minimizing Bank Selection Instructions for Partitioned

Memory Architectures. Proceedings of the 2006 International

Conference on Compilers, Architecture and Synthesis for

Embedded Systems, 2006, pages 201-211.

[6] Liu Tiantian, Minming Li, and Chun Jason Xue. Joint

Variable Partitioning and Bank Selection Instruction

Optimization on Embedded Systems with Multiple Memory

Banks. Proceedings of the Asia and South Pacific Design

Automation Conference (ASP-DAC 2010), 2010.

[7] Yuan Mengting, Wu Guoqing, and Yu Chao. Optimizing

Bank Selection Instructions by Using Shared Memory. The

2008 International Conference on Embedded Software

Systems (ICESS2008).

[8] Li, Qing'an；He, Yanxiang；Chen, Yong；Wu, Wei；
Xu, Wenwen. A Heuristic Algorithm for optimizing Page

Selection Instructions. ICSTE 2010 - 2010 2nd International

Conference on Software Technology and Engineering,

Proceedings,, 2010 v 2, p 143-148.

[9] Zhong Wang, Xiaobo Sharon Hu. Power Aware

Variable Partitioning and Instruction Scheduling for Multiple

Memory Banks. Proceedings of the Design, Automation and

Test in Europe Conference and Exhibition (DATE’ 04),

2004.

[10] Rainer Leuper, Daniel Kotte. Variable Partitioning For

Dual Memory Bank DSPs. ICASSP, 2001.

[11] Meikang Qiu, Lei Zhang, Minyi Guo, Fei Hu, Shaobo

Liu and Edwin H. –H. Sha.. Global Variable Partition with

Virtually Shared Scratch Pad Memory to Minimize Schedule

Length. Proceedings of the 2009 International Conference on

Parallel Processing Workshops, 2009.

[12] Qingfeng Zhuge, Edwin Hsing-Mean Sha, Bin Xiao,

and Chantana Chantrapornchai. Efficient Variable

Partitioning and Scheduling for DSP Processors With

Multiple Memory Modules. IEEE Transactions on Signal

Processing, Vol. 52, No. 4, 2004.

134 Int'l Conf. Embedded Systems and Applications | ESA'11 |

http://s.g.wanfangdata.com.cn/Paper.aspx?f=detail&q=作者:
http://s.g.wanfangdata.com.cn/Paper.aspx?f=detail&q=作者:
http://s.g.wanfangdata.com.cn/Paper.aspx?f=detail&q=作者:
http://s.g.wanfangdata.com.cn/Paper.aspx?f=detail&q=作者:
http://s.g.wanfangdata.com.cn/Paper.aspx?f=detail&q=作者:

Dedicated hardware for RC5 cryptography and its
implementation

Masaya Yoshikawa, Koichi Sakaue

Department of Information Engineering, Meijo University, Nagoya, Japan

Abstract – Recently, the number of electronic devices
handling confidential information has increased. In these
devices, encryption is applied to protect the confidential
information. Therefore, technologies to incorporate
cryptographic circuits into these cards have become
important. This paper proposes a new hardware dedicated to
RC5, a typical cryptograph. In the proposed RC5 dedicated
hardware, by introducing an architecture suitable for each
operation used for the encryption, high-speed processing and
area reduction can be realized. Experimental results of which
proposed hardware architecture is implemented on FPGA
proved the validity of the proposed one.

Keywords: RC5 cryptography, Dedicated Hardware, FPGA
implementation

1 Introduction
 Important information such as account numbers is
recorded on magnetic tapes on the back of credit and cash
cards. Because magnetic tapes can be forged easily,
integrated circuit (IC) chips (cryptographic circuits) have
been used in recent years. Therefore, technologies to
incorporate cryptographic circuits into these cards have
become important[1]-[8]. This study proposes hardware
dedicated to RC5[9]-[18], a typical cryptograph. RC5 is a
common-key block cipher in which the size of the block, the
number of rounds, and the size of the key can be changed.
RC5 is enciphered by combining three operations of
exclusion: exclusive OR, rotation, and residue addition. In the
proposed RC5 dedicated hardware, introducing an
architecture suitable for each operation used for encryption
enables the realization of high-speed processing and area
reduction. Moreover, the proposed architecture is
incorporated into a field-programmable gate array (FPGA),
and we verify its validity.

 Mitsuya et al.[13] and Nonaka et al.[14],[15] conducted
typical studies on RC5. Mitsuya et al. created an RC5
decryption algorithm. Nonaka et al. proposed a known
plaintext attack using correlation. These studies were related
to software processing. To the author's knowledge, there is no
study of RC5-dedicated hardware using the unique
architectures investigated in this paper.

 In this paper, we describe the outline of the algorithm of
RC5 cryptography in the next section. We introduce the
proposed architecture in section 3. In section 4, we evaluate
the proposed architecture by implementation on FPGA.
Finally, section 5 summarizes and concludes this study..

2 RC5 cryptographic algorithm
 Please RC5 is a cryptography created by R.L.Rivest[9],
which uses the word length w (16/32/64 bits), the number of
rounds r (form 0 to 255), and the size of the key b (0-255
bytes) as variables. In addition, one block is composed of two
words. Because the variables w = 32, r = 12, and b = 16 are
generally used, the present study also uses these values. RC5
uses two secondary keys in each round. Figure 1 shows the
method to generate a secondary key.

Fig.1 The method to generate a secondary key

Int'l Conf. Embedded Systems and Applications | ESA'11 | 135

 Moreover, two additional secondary keys are required
for the entire encryption. Therefore, when the number of
rounds is set at r, 2r + 2 secondary keys are used. As this
figure shows, the generation of a secondary key involves
three processes: initialization, conversion, and mixture.
During the initialization process, a sequence consisting of t
words, which is expressed by S[0],..., S[t - 1] and is used for
saving a secondary key, is prepared. This sequence is then
initialized using random numbers, the input values of which
are variables r and w. In the initialization, Pw = Odd[(e -
2)2w] and Qw = Odd[(PHI - 1)2w] are calculated. Here, e
represents the base of the natural logarithm and PHI
represents the golden ratio (1 + (5)^(1/2))/2. Figure 2 shows
the initialization of sequence S using Pw and Sw.

Fig.2 The initialization of sequence S using Pw and Sw

 In the conversion process, sequence K[0], K[1],..., K[b -
1] is prepared to develop a key, and the sequence is converted
into sequence L[0], L[1],..., L[c - 1] consisting of c words. In
addition, c is (b x 8)/w (decimals are raised to the next whole
unit). During this processing, sequence L is initialized to 0
and the value of sequence K is directly copied at the memory
location of L. Here, if b is not an integral multiple of w, the
right end part of L will remain 0.

 In the mixture process, the initialized sequence S of the
secondary key is mixed with the converted sequence L of the
input key to generate sequence S of the final secondary key.
Figure 3 illustrates this mixture process.

Fig.3 Example of mixture process

 In this figure, the plus sign ("+") expresses the addition
of "mod 2w," x <<< y expresses the leftward shift of word x
by y bits, and x >>> y expresses the rightward shift of word x
by y bits. The mixture process compares t, which is the size
of the secondary key's sequence (S), to c, which is the size of
the input key's sequence (L). The larger value is multiplied by
three and the calculation is repeated with the obtained number.

When the result of the addition exceeds the word length,
overflow occurs.

 Figure 4 shows encryption of RC5 using secondary keys.
In this encryption, plaintexts are stored in 2 w bit registers A
and B. When round i is completed, data that were divided
into the left and right sides have already been stored in
variables LEi and REi, respectively.

Fig.4 Example of encryption of RC5

136 Int'l Conf. Embedded Systems and Applications | ESA'11 |

 The cryptogram that exists after the completion of r
rounds is stored in two variables, LEr and REr. Figure 5
shows the processing procedures of LEi and REi. During
decryption, 2 w bits of a cryptogram are assigned to LDr and
RDr; then the decryption can be performed following the
procedure that reverses the encryption. Figure 6 shows the
decryption process.

3 Proposed architecture
 In order to realize high-speed processing and area
reduction, this study introduces arithmetic processes suitable
for hardware during encryption and decryption. First, a shift
process used for encryption is replaced by a bit selection
process. Because of this substitution, the shift process can be
realized in wiring.

 The mixture process usually requires t x 3 = 78
calculations. The proposed architecture divides the
processing by inserting a register between calculations and
introducing a loop process, which reduce the required
calculations to 26.

 Dividing the processing of each round enables high-
speed processing. As Fig. 4 shows, RC5's round processing
enciphers a 64-bit plaintext. However, the actual processing
is performed every 32 bits. Therefore, the round is divided
into the left and right parts to perform left and right
processing with two clock signals, which raises the operating
frequency and improves latency.

4 Implementation on FPGA
 In order to verify the proposed architecture's validity,
we incorporated it into an FPGA. The FPGA used in the
experiment was XC5VLX30/50 and we used ISE ver.12.3 of
Xilinx as the developmental environment. Figure 7 shows the
target device for implementation. For comparison, the RC5
algorithm used in Section 2 was described in Verilog HDL.
This paper refers to the algorithm used for comparison as the
normal method; Table 1 shows that method's circuit scale and
Table 2 shows the proposed method's circuit scale.

 In each table, "FF" expresses a flip-flop, "LUT" (look-
up table) expresses a basic logical element in the FPGA, and
"Slice" expresses a block composed of an FF and four LUTs.

 As Table 1 shows, because the number of LUTs
exceeded the number that the normal method can use, that
method cannot be incorporated into an FPGA. As Table 2
shows, although the proposed method had more FFs and
Slices than the normal method, the proposed method can be
incorporated into an FPGA because it remarkably reduces the
number of LUTs. Table 3 shows the operating speed.
Because the normal method could not be incorporated into an
FPGA, we could not evaluate its operating speed. When we
used the proposed method, it operated at 100 MHz.

Fig.5 Example of the processing procedures of LEi and REi

Fig.6 Example of decryption process of RC5

Int'l Conf. Embedded Systems and Applications | ESA'11 | 137

Fig.7 The target device for implementation

Table 1 The normal method's circuit scale

Resources Used Available Utilization

Slices [N/A] 4,800 [N/A]

LUTs 22,360 19,200 116%

FFs 554 19,200 2%

Table 2 The proposed architecture’s circuit scale

Resources Used Available Utilization

Slices 2,488 4,800 51%

LUTs 8,893 19,200 46%

FFs 2,281 19,200 11%

Table 3 Comparison of the clock frequency

Method Period Frequency

Normal [N/A] [N/A]

Proposed 9.920 ns 100.806MHz

5 Conclusion
 This study proposed hardware dedicated to RC5, which
is a common-key block cipher. In the proposed hardware, by
introducing a new hardware-oriented algorithm into the shift
arithmetic, mixture, and round processes during encryption
and decryption, high-speed processing and area reduction
were realized. Incorporating it into an FPGA verified the
proposed hardware's validity. In the future, we will develop
an identification system using the proposed hardware.

6 Acknowledgment
 This research was supported by Japan Science and
Technology Agency (JST), Core Research for Evolutional
Science and Technology (CREST).

7 References
[1] A.Klimm, M.Haas, O.Sander, J.Becker, "A flexible
integrated cryptoprocessor for authentication protocols based
on hyperelliptic curve cryptography", Proc. of International
Symposium on System on Chip (SoC), pp.35-42, 2010.

[2] A.Irwansyah, V.P.Nambiar, M.Khalil-Hani, "An AES
Tightly Coupled Hardware Accelerator in an FPGA-based
Embedded Processor Core", Proc. of International
Conference on Computer Engineering and Technology, Vol.2,
pp.521-525, 2009.

[3] B.B.Brumley, K.U.Jarvinen, "Conversion Algorithms
and Implementations for Koblitz Curve Cryptography", IEEE
Transactions on Computers, Vol.59, No.1, pp.81-92, 2010.

[4] M.Rahman, I.R.Rokon, "Efficient hardware
implementation of RSA cryptography", Proc. of International
Conference on Anti-counterfeiting, Security, and
Identification in Communication, pp.316-319, 2009.

[5] F.A.G.Muzzi, R.B.Chiaramonte, E.D.M.Ordonez, "The
Hardware-based PKCS#11 Standard using the RSA
Algorithm", IEEE Latin America Transactions, Vol.7, No.2,
pp.160-169, 2009.

[6] Zhang Lina, "Research on critical technology of elliptic
curve cryptosystem SOC". Proc. of International Conference
on Communication Systems, Networks and Applications
(ICCSNA), Vol.2, pp.77.80, 2010.

[7] Zhimin Chen, P.Schaumont, "Early feedback on side-
channel risks with accelerated toggle-counting", Proc .of
IEEE International Workshop on Hardware-Oriented Security
and Trust, pp.90-95, 2009.

[8] H.Rahaman, J.Mathew, A.Jabir, D.K.Pradhan, "C-
testable S-box implementation for secure advanced

138 Int'l Conf. Embedded Systems and Applications | ESA'11 |

encryption standard", Proc .of IEEE International On-Line
Testing Symposium, pp.210-211, 2009.

[9] R.L.Rivest, "The RC5 Encryption Algorithm". Proc. of
the Second International Workshop on Fast Software
Encryption (FSE), pp.86-96, 1994.

[10] A.Biryukov, "Improved cryptanalysis of RC5",
Advances in Cryptology-Proc. of EUROCRYPT'98, Lecture
Notes in Computer Science 1403, pp.85-99, 1998.

[11] L.Knudsen, "Improved differential attacks on RC5",
Advances in Cryptology-Proc. of CRYPTO'96, Lecture Notes
in Computer Science 1109, pp.216-228, 1996.

[12] J.Borst, "Linear Cryptanalysis of RC5 and RC6", Proc.
of Fast Software Encryption, Lecture Notes in Computer
Science 1636, pp.16-30, 1999.

[13] H.Mitsuya, T.Shimoyama, and S.Tsuji, "Experimental
results of cryptanalysis of RC5 (1)", Technical report of
IEICE. ISEC 98(426), pp.31-38, 1998.

[14] M.Nonaka, A.Miyaji, Y.Takii, "A Study on Known
Plaintext Attack against RC5 by using Correlations",
Technical report of IEICE. ISEC 101(311), pp.61-68, 2001.

[15] A.Miyaji, M.Nonaka, Y.Takii, "Known Plaintext
Correlation Attack Against RC5", Lecture Notes in Computer
Science 2271/2002, pp.115-141, 2002.

[16] A.Ali, L.Aliyar, V.K.Nisha, "RC5 encryption using key
derived from fingerprint image", Proc. of IEEE International
Conference on Computational Intelligence and Computing
Research, pp.1-4, 2010.

[17] K.M.Rudrappa, H.D.Maheshappa, C.Puttamadappa,
K.Somashekar, K.S.V.Prasad, "Implementing RC5 protocol
for remote control applications", Proc. of International
Conference on Control, Automation, Communication and
Energy Conservation, pp.1-6, 2009.

[18] Tingyuan Nie, Yansheng Li, Chuanwang Song,
"Performance Evaluation for CAST and RC5 Encryption
Algorithms", Proc .of International Conference on Computing,
Control and Industrial Engineering, Vol.1, pp.106-109, 2010.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 139

Reliability Modeling in Multi-core Embedded Systems: A

Fast Approach

E. Cubillos
1
, F. Bolaños

2
, F. Rivera

3
, and J. Aedo

4

1,4
Electronics Department, Universidad de Antioquia – ARTICA, Medellin, Colombia

2
School of Mechatronics, Universidad Nacional de Colombia – ARTICA, Medellin, Colombia
3
Computer Science Department, Universidad de Antioquia – ARTICA, Medellin, Colombia

Abstract - Development of embedded systems has been

growing significantly in the last years, specially, in systems

aimed to multicore platforms. As the complexity of these

systems grows, high level reliability models are required in

order to guarantee correct operation. Currently, there is a

lack of design methodologies that consider reliability as an

inherent property of such systems. This research explores a

model to evaluate the reliability of a system during the design

process. The system is represented by a task graph and

redundancy is applied to provide reliability at design time.

Several design choices can be explored to allow the designer

selects the best according to design requirements. Three case

study were used; each case is an embedded system with

different complexity. For each one of such systems, assessment

for several design choices was obtained using the proposed

model, in order to select the most reliable alternative.

1 Introduction

 The technological trend has increased the availability of

resources and the complexity of the embedded systems, which

has, in turn, boosted its presence on several fields, such as:

health, transport, communications, entertainment, and

manufacturing process. The embedded systems used in these

innovative applications are characterized by their high

complexity and the use of architectures with many processing

units and an increasing demand on its reliability.

In medical and transport applications, for instance, it is

necessary to have a high level of reliability in order to

guarantee the correct behavior of the system, even under

critical conditions. Because of this, it is necessary to use

techniques to increase reliability and to establish models to

evaluate it.

Fault tolerance is the most often used technique to achieve

reliability. This technique is implemented through the use of

redundancy, in which the information flow is replicated to

assure a correct result, even if a failure occurs. The

redundancy can be applied in two ways: temporal redundancy,

in which a specific task is replicated several times in the same

resource but in different time interval, and spatial redundancy,

in which the task is replicated in other available resources.

This paper presents a model to evaluate the reliability of an

embedded system. A given system is represented by a task

graph. The proposed model is used to assess several design

alternatives, which are generated when different levels of

spatial redundancy are implemented for the system's tasks.

This article is organized as follows: Section 2 summarizes

some concepts about reliability and related work. The section

3 presents a model to evaluate the reliability. Section 4

presents the experiments to model verification. The

conclusions and future work is presented in section 5.

2 Background and Related Work

 The dependability can be defined as the capacity of a

system to provide a service that can justifiably be trusted on

[1, 2]. Such a concept is formed by several attributes:

reliability, maintainability, availability, integrity, safety and

confidentiality. The reliability can also be defined as the

probability of a system to work well in an interval [to, t].

Currently, there are several techniques to increase the

reliability in embedded systems as the redundancy, in which

the information flow is reproduced to ensure the functioning

of system under faults. This technique can be applied of

several forms, depending on the number of copies used to

replicate a single task (N-module redundancy), Among these

approaches, double module redundancy (DMR) [3, 4] and

triple module redundancy (TMR) [5, 6] are a common

scenario. In TMR, modules are connected to the input of a

voting system, aimed to decide which is the correct result for

the task. This allows to detect and correct single event upset

(SEU) errors, which can be produced by electromagnetic

radiation in devices such as microprocessors and memories

[7].

On the other hand, it is necessary set models to assess the

reliability. These models can be classified in three categories:

combinational models, state space models, and simple

analytical models.

The fault trees [8, 9, 10, 11], reliability graph [10, 12, 13],

and the reliability blocks diagrams [14, 15, 16, 17] belong to

combinatorial models. These models focus on a probabilistic

140 Int'l Conf. Embedded Systems and Applications | ESA'11 |

evaluation of reliability characteristics, they can isolate

system parts that are sensitive to faults and allow individual

analysis. However, these models do not either consider the

ordered sequence of faults that can arise in the system, nor

temporal dependence among the isolated parts, neuther

consider they the dependency among components that can be

repaired, in which many components share reparation

properties. These aspects are very important to total

evaluation of reliability system.

The state space models such as the Markov Chains [12, 18,

19, 20, 21, 22] and Petri Nets [23, 24, 25, 26] include the

temporal characteristics of system, because they allow

modeling deterministic and non-deterministic events similar to

real systems, they also can integrate fault rate or system state

transitions taking into account the repair state of system

components and the temporal dependency of system division.

However, these type of models are not easy to be built or

studied; they require high level mathematical methods to

analyze them. They suffer from a problem of state explosion

when they are not properly handled. In complex systems this

explosion is not manageable, and the system representation

becomes unviable.

Using Petri nets, it is possible to model both fault and

reparation states, but its final structure depends on the

designer´s experience. There are not formulae to reach a Petri

net representation in an univocal way.

Analytical models allow a fast reliability evaluation from the

design process, evaluating different design alternatives, in

order to select the best according to design requirements.

Jhumka et al., [27] present a model of this type, described by

the equation 1, where Ci is an importance factor of task i, pi is

the fault probability of such task, and fi is its replication

factor. The fault probability is associated with the fault

probability of resource where the task is executed. In this

model, the design alternatives are represented by several

redundancy schemes, i.e. each task in the system may have a

different replication factor, which means how many times a

given task would be executed simultaneously in different

resources.

(1)

The Jhumka model has some weaknesses such as:

1. The model calculates the dependability of the system, but

only evaluates one of the attributes of dependability: “the

reliability”. A more complete model should take into

account several dependability attributes. The Jhumka´s

model is only concerned with reliability

2. The importance factor Ci provides subjectivity to

evaluation. This does not represent a good option for the

reliability calculation, so it is necessary to define a set of

rules for determining the value Ci. Several designers could

give completely different values to importance factors on a

given design's scenario. Nevertheless, importance factor is

a very useful way to give more weight or criticity to a

given task in the system, which allows reflecting this

importance on the reliability assessment.

3. The expression (1 – pi
fi
), where fi is the replication factor

and pi the task fault probability, assumes that the

redundancy applied is “temporal redundancy,” in which

the replicas made are always in the same resource. This

type of redundancy increases the reliability of the system,

but it is necessary to bear in mind that the fault probability

of task is associated to resource in which it is executed if a

fault in the task appears, this imply a fault in the resource,

and it would not be possible to execute the other replicas.

4. The model ignores the task dependence. That means a

drawback, when modeling real designs.

This paper propos a simple analytical model, based on

Jhumka's model described in section 2.

3 Proposed Model

3.1 Representation of the System

The system under design can be represented by a set of tasks

which are organized by means of a task graph. In such a graph,

tasks are represented by nodes and task dependences are

represented by means of edges. The figure 1 represents an

application with 8 tasks.

Figure 1. Task graph.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 141

The TGFF tool was used to generate the tasks, in order to test

the proposed model [28]. This tool has been widely used in

many related scenarios with the digital design [29, 30, 31, 32,

33, 34].

TGFF provides a common base, in order to compare several

modeling strategies and provides values for figures of merit

such as performance, power, and fault probability.

The design scenario consists on five resources (namely R1 to

R5), available for replication. Table 1 provides information

about the fault probability of each resource. When a task is

about to be replicated, lowest fault probability available

resource is chosen in order to optimize the reliability of the

system.

Table 1. Fault probability or resource

Fault Prob.

R1 0.05

R2 0.06

R3 0.14

R4 0.15

R5 0.34

There could be up to five resources available for replicating a

given task on a given time. The number of actual replicas

executed for each task (namely n) will determine the value of

reliability of such a task. The system reliability is calculated as

the sum of individual tasks reliabilities. Figure 2 shows a

given redundancy scheme, for the graph shown on Figure 1. In

the figure 2, the task T1 is not replicated, the task T2 is

replicated three times, the task T3 is also replicated three times

and so on with the rest of the system. As mentioned before, the

criterion for assigning resources is the order in which there are

organized (lowest to highest fault probability): the task T1 will

be executed in the resource R1, the task T2 will be executed in

the resources R1, R2 and R3. Besides if a task Ti is replicated 4

times, it will use the resources R1, R2, R3 and R4, and if it is

replicated 5 times, it will use all available resources.

3.2 Model

The proposed model looks for overcoming some drawbacks

present in Jhumka's model, given the following considerations:

1. The model is used to calculate the attribute of reliability,

which is represented by letter R.

2. The importance factor Ci will be used to give more weight

to tasks that have higher index of criticity. In case that the

task is not critic, the value will be 1.

3. The expression (1 – pi
fi
) of Jhumka's model assumes

temporal redundancy, since the task is replicated fi times

in the same resource but in different time intervals. This

means that even if there are idle resources to replicate a

Figure 2. Task´s redundancy.

given task, the system must execute such replicas using the

same resource, degrading the system's performance. This

research propose to use the available resources in order to

implement redundancy; consequently the expression must

be changed for the sake of taking into account several fault

probabilities of the resources involved, as shown on

equation (2).

(2)

4. It is necessary to consider the task dependences when

calculating a given task reliability. This is known as

conditional reliability. An adjacency matrix to model the

tasks dependences is proposed. Table 2 shows such

adjacency matrix, for the graph shown on Figure 2. In

such a table, 1 placed on row i and column j means that

task j has a direct dependence with respect to the task i. By

definition, every task has dependence with itself, so all

entries on diagonal of the matrix are equal to one.

Table 1. Adjacency Matrix
T 1 2 3 4 5 6 7 8

1 1 1 0 0 0 0 0 0

2 0 1 1 0 0 0 1 0

3 0 0 1 1 0 0 1 0

4 0 0 0 1 1 1 0 0

5 0 0 0 0 1 0 0 0

6 0 0 0 0 0 1 0 0

7 0 0 0 0 0 0 1 1

8 0 0 0 0 0 0 0 1

Starting from the adjacency matrix, it is necessary to

derive an expression in order to assess the conditional

reliability for each task. If tasks are numbered properly,

T1, T2, T3 etc., fault probability of a single task i can be

calculated according with equation (3). In such equation,

142 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Aji corresponds to the (i, j) entry of the adjacency matrix,

and fj corresponds to the failure probability of resource j.

(3)

Figure 3. Graph Task N° 2.

The proposed model is shown in equation (4). As can be seen,

each term of the sum has two multiplicands: The first is

related with the dependence of the task with previous tasks on

the graph. The second one is related with the reliability of the

individual task given the replication factor assigned to it. The

sum of all individual reliabilities is equal to the system

reliability.

(4)

4 Obtained results

In order to test the proposed model, three experiments were

used. As said before, each experiment is represented by a task

graph, as shown on figures 1, 3, and 4. Several considerations

were taken into account in order to test the model:

 TGFF was used to generate the experimental data.

 All tasks have equal criticity index; consequently the

importance factor is equal a 1.

 In the first experiment, 4 design alternatives were used.

1. Without applying redundancy.

Figure 4. Graph Task N° 3.

2. The task T2, T3 and T8 were replicated three times.

3. The task T1, T2, T4 and T8 were replicated three times and

the task T7 was replicated four times.

4. All tasks were replicated five times.

 The second and third experiment, the reliability was

evaluated for two options: without applying redundancy

(minimum redundancy) and applying five replicas

(maximum redundancy), to analyze the reliability variation.

 The Jhumka's model was used as reference in three

experiments, even if the redundancy scheme used in both

approaches was different.

Figures 5, 6 and 7 show the results of models comparison. As

can be observed, the biggest difference between the two

models occurs when no redundancy is used. This is due to the

fact that the proposed model works taking into consideration

among tasks, consequently the term related with such

dependences, becomes more important in the calculations if

there are not replications at all.

Figures 5, 6, and 7 also show that both models provide similar

results, if the replication factor for each task grows to its

maximum values. This is due to the asymptotic nature of the

Int'l Conf. Embedded Systems and Applications | ESA'11 | 143

reliability models, which they themselves saturate to a

maximum value.

Execution time for Jhumka's model was about 0.037 ms, while

for the proposed model execution time was 4 ms. The

difference reflects the additional complexity of the proposed

model, but also shows that such model is suitable for design

space exploration, since this time does not represent high

delays on reliability calculations.

Figure 5. Results experiment N° 1.

Figure 6. Results experiment N° 2.

Figure 7. Results experiment N° 3.

To verify the model, an algorithm was implemented in Matlab

R2009a, in Windows XP SP3 in a laptop Compaq Presario

C708LA with o Intel Dual Core T2310 - 1.47 GHz processor,

RAM de 2 GB and HD120 GB.

5 Conclusions and future work

 A new model for reliability assessment in design space

exploration has been presented, with promising results, when

compared with similar analytical models, reported on

literature.

 The proposed model works in design scenarios in which

there are several resources for implementing the system's tasks

(multicore). A task graph and the fault probabilities of each

available resource are the inputs of the model, in order to

assess the reliability of such system.

To effectively apply the model from design process, it is

necessary the creation of benchmark or a real database, in

which different tasks with their corresponding in a precise

resource can be executed.

The main difference between the proposed model and the

reference model is that the later uses temporal redundancy, in

order to increase system reliability. The proposed model deals

with spatial redundancy. As a future work two developments

are proposed: 1. Model which takes into account both kinds of

redundancy. 2. Model which takes into account other

dependability attribute, in order to complete the model

proposed here.

6 Acknowledgments

Authors thank to ARTICA, to COLCIENCIAS, to

Communications Ministry of Colombia, to Universidad

Nacional de Colombia and to Universidad de Antioquia, for

their support in this research.

7 References

[1] A. Avizienis, J. Laprie, and B. Randell, “Fundamental

concepts of dependability”, Third Information

Survivability Workshop ISW-2000, 2000.

[2] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr,

“Basic concepts and taxonomy of dependable and secure

computing”, IEEE Transactions on Dependable and

Secure Computing, vol. 1, pp. 11-33, 2004.

[3] J.E. Kim, J. Lin, L. McMurchie, C. Sechen, "Mitigation

of Single-and Multiple-Cycle-Duration SETs using

Double-Mode-Redundancy (DMR) in Time," 2005 IEEE

Aerospace Conference, pp.1-10, 5-12 March 2005..

[4] A. Golander, S. Weiss, and R. Ronen, "Synchronizing

Redundant Cores in a Dynamic DMR Multicore

Architecture," II: Express Briefs, IEEE Transactions on

144 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Circuits and Systems, vol.56, no.6, pp.474-478, June

2009.

[5] O. Ruano, J.A. Maestro, P. Reviriego, "A Methodology

for Automatic Insertion of Selective TMR in Digital

Circuits Affected by SEUs," IEEE Transactions on

Nuclear Science, vol.56, no.4, pp.2091-2102, Aug. 2009.

[6] Y. H. Kang, T. Kwon and J. Draper, "Fault-Tolerant

Flow Control in On-chip Networks", 2010 Fourth

ACM/IEEE International Symposium on Networks-on-

Chip (NOCS), pp.79-86, 3-6 May 2010.

[7] T. Sato, and T. Funaki, “Dependability, power, and

performance trade-off on a multicore processor”, EDA

Technofair Design Automation Conference Asia and

South Pacific, pp. 714-719, 2008.

[8] H. Zhu, S. Zhou, J. B. Dugan and K. J. Sullivan, "A

benchmark for quantitative fault tree reliability analysis,"

Reliability and Maintainability Symposium, 2001, pp.86-

93, 2001.

[9] S.V. Amari and J. B. Akers, "Reliability analysis of large

fault trees using the Vesely failure rate," Reliability and

Maintainability, 2004 Annual Symposium - RAMS, pp.

391- 396, 26-29 January 2004.

[10] S. Distefano and A. Puliafito,"Dependability Modeling

and Analysis in Dynamic Systems," IEEE International

Parallel and Distributed Processing Symposium, 2007.

IPDPS 2007. pp. 1-8, 26-30 March 2007.

[11] R. Beresh, J. Ciufo and G. Anders, "Basic Fault Tree

Analysis for use in protection reliability," Power Systems

Conference: Advanced Metering, Protection, Control,

Communication, and Distributed Resources, 2007. PSC

2007, pp.1-7, 13-16 March 2007.

[12] K. Trivedi, D. Kim, A. Roy and D. Medhi,

“Dependability and Security Models”, 7th International

Workshop on the Design of Reliable Communication

Networks, 2009.

[13] A. Kusiak and A. Zakarian, "Reliability evaluation of

process models," IEEE Transactions on Components,

Packaging, and Manufacturing Technology, Part A,

vol.19, no.2, pp.268-275, Jun 1996.

[14] A. Brall, W. Hagen and H. Tran, "Reliability Block

Diagram Modeling - Comparisons of Three Software

Packages," Reliability and Maintainability Symposium,

2007. RAMS ’07, pp.119-124, 22-25 January 2007.

[15] S. Distefano, "Dependability of complex, large, dynamic

systems," 8th International Conference on Reliability,

Maintainability and Safety, 2009. ICRMS 2009, pp.27-

31, 20-24 July 2009.

[16] O. Boncalo, M. Vladutiu and A. Amaricai, "Accuracy

analysis of the parallel composition for the block

diagram based reliability assessment of quantum

circuits," 2010 International Joint Conference on

Computational Cybernetics and Technical Informatics

(ICCC-CONTI), pp.355-359, 27-29 May 2010.

[17] A. Elamy and B. Far, "Condition-based reliability

modeling for systems with partial and standby

redundancy," 23rd Canadian Conference on Electrical

and Computer Engineering (CCECE), pp.1-5, 2-5 May

2010.

[18] M.G. McQuinn, P. Kemper, and W. H. Sanders,

"Dependability Analysis with Markov Chains: How

Symmetries Improve Symbolic Computations," Fourth

International Conference on the Quantitative Evaluation

of Systems, 2007. QEST 2007, pp.151-160, 17-19

September 2007.

[19] G. Xiao and Z. Li, "Estimation of Dependability

Measures and Parameter Sensitivities of a Consecutive- k

-out-of- n: F Repairable System With (k-1) -Step Markov

Dependence by Simulation," IEEE Transactions on

Reliability, vol.57, no.1, pp.71-83, March 2008.

[20] H. Boudali, et al., “Architectural dependability

evaluation with Arcade," IEEE International Conference

on Dependable Systems and Networks with FTCS and

DCC, 2008. DSN 2008, pp.512-521, 24-27 June 2008.

[21] S. M. Iyer, M. K. Nakayama and A. V. Gerbessiotis, "A

Markovian Dependability Model with Cascading

Failures," IEEE Transactions on Computers, vol.58,

no.9, pp.1238-1249, September 2009.

[22] E. Bode, et al., "Compositional Dependability Evaluation

for STATEMATE," IEEE Transactions on Software

Engineering, vol.35, no.2, pp.274-292, March-April

2009.

[23] S. Bernardi, and S. Donatelli, "Building Petri net

scenarios for dependable automation systems," 10th

International Workshop on Petri Nets and Performance

Models, pp. 72- 81, 2-5 September 2003.

[24] S. Bernardi, and S. Donatelli, "Stochastic Petri nets and

inheritance for dependability modelling," 10th IEEE

Pacific Rim International Symposium on Dependable

Computing, pp. 363- 372, 3-5 March 2004.

[25] S. Liu, Z. Xu, G. Chen and X. Hu; "Dependability

Research of Standby System Based on Stochastic Petri

Net," International Conference on Networks Security,

Wireless Communications and Trusted Computing,

2009. NSWCTC ’09, pp.179-183, 25-26 April 2009.

[26] H. Xiaojing, L. Shixi and L. Ma, "Research on

dependability of virtual computing system based on

Stochastic Petri nets," International Conference on

Computer Application and System Modeling (ICCASM),

2010, 22-24 October 2010.

[27] A. Jhumka, S. Klaus and A. Huss, “A Dependability-

Driven System Level Design Approach for Embedded

Systems,” Design, Automation, and Test in Europe, Vol

1, pp: 372 - 377, 2005.

[28] K. Vallerio, Task graphs for free (TGFF v3.0),

http://ziyang.ece.northwestern.edu/tgff/, 2003.

[29] Y. Yu and V.K. Prassana, “Energy-Balanced Task

Allocation for Collaborative Processing in Wireless

Sensor Networks” Proceedings of the 2003 ACM

SIGPLAN conference on Language, compiler, and tool

for embedded systems, 2003

[30] J. Hu and R. Marculescu, “Energy and Performance

aware mapping for regular NoC Architectures”, IEEE

Int'l Conf. Embedded Systems and Applications | ESA'11 | 145

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2005.

[31] C. L. Cathey, J. D. Bakos and D. A. Buell, “A

Reconfigurable Distributed Computing Fabric Expliting

Multilevel Paralelism”, 14th Annual IEEE Symposium

on Field-Programmable Custom Computing Machines

(FCCM’06), 2006.

[32] T. Xie, X. Qin and M. Nijim, “Solving Energy-Latency

Dilemma: Task Allocation for Parallel Applications.

Heterogeneous Embedded Systems” Proc. 35th Int’l

Conf. Parallel Processing, 2006.

[33] L. Fan, B. Li, Z. Zhuang and Z. Fu, “An Approach for

Dynamic Hardware/Software Partitioning Based on

DPBIL”, Third International Conference on Natural

Computation (ICNC 2007), 2007.

[34] Y. Zhang, et al., “A hardware/software partitioning

algorithm based on artificial immune principles”,

Applied Soft Computing - ACM, 2008.

146 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Developing a Smart Home System

Peter Killeen1, John Monkus1, Biz Klessig1, D Hearn2, Jingxian Wu1, and Scott C. Smith (contact author)1

Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701, USA1
Department of Computer Science, Mississippi Valley State University, Itta Bena, MS 38941, USA2

pkilleen@uark.edu, jmonkus@uark.edu, eklessig@uark.edu, dantehearn@gmail.com, wuj@uark.edu, and smithsco@uark.edu

Abstract—This paper describes the design of a smart home
system. This design is able to talk wirelessly with radios attached
to each end node and the base station. The end nodes collect data
and send it back to the base station where an 8051
microcontroller and an Arduino board interpret the information.
The intent is to make a person can feel safer in their home, and
provide them with a way to monitor their home from a computer
or smart phone while away.

Keywords- microcontroller; Arduino; wireless sensor network

I. INTRODUCTION

This project is about developing a smart home system. A
smart home is a system that is set up in someone’s house that
alerts the home owner if something is not right at their house or
can allow a person to change something, such as temperature,
in their house while they are away. Its design is for ease of
access in one’s home. Within this particular design there are
multiple radios that talk wirelessly back and forth to each other
with help from an 8051 microcontroller [1] and an Arduino
board [2], which is then interfaced with a website and text
messaging system. All this together helps create a safe
environment for the home owner that can allow them to call the
police before anything extremely bad happens.

This project was undertaken during a 10-week Research
Experiences for Undergraduates (REU) program to gain more
knowledge on embedded systems, get work experience as an
undergrad, and have something fun and intellectually
challenging to do during the summer.

Section II provides an overview of the project, and
Section III presents the results, conclusions, and future work.

II. OVERVIEW

The smart home monitoring system is composed of
several different sensors and nodes. These sensors and nodes,
which will be in different destinations of the home, are in
essence the subsystems of the smart home. These nodes are
designed to communicate between two 8051 microcontroller
boards through xBee radios and an Arduino board to perform
pre-determined programmed tasks. The nodes are composed of
an RFID tag reader, infrared sensors, xBee radios, Arduino,
cellular module, web interface, temperature sensor, smoke/
CO detector, buzzer, voice recorder, security camera, and a
stepper motor. Using these nodes the home owner will be able
to keep track of activity in the house.

The basic look of the house will have an RFID reader at
the door that the owner can use to turn on and off the security
sensor without typing in a key code. The RFID will also let the
base station know that the owner is in the house. This will
cause the base station to alter its usual functions between
homeowner present and away.

The end nodes will also monitor temperature, humidity,
smoke, and CO for comfort and safety. This information will
allow the homeowner to monitor his/her house. The
information will be updated periodically on a webpage and if
certain conditions are met, text messages will be sent to alert
the homeowner of possible alarming conditions and the
message recorder will sound with a message saying that
motion was detected. To further assist the homeowner a
camera will have some range of motion that will allow them to
further inspect the conditions of the monitored environment.

There will be several infrared sensors throughout the
house. The infrared sensors inside the house will be set to
detect movement inside the house while the owner is away.
The owner reserves the right to activate the security system
while he/she is still in the house. If unwanted motion is
detected the alarm (a buzzer) will sound and flashing lights
will be set off. The buzzer which is connected to the Arduino
will sound when the end nodes’ safety and environment with
infrared sensors on them detect motion. By setting up enough
nodes around the house the owner will know of an intruder
before the intruder can realize the owner is in the house. This
will allow the owner to get to a safer room in the house and
alert the police, if necessary. On the other hand, if the
homeowner is away anytime motion is detected a text message
will inform them of the occurrence.

All of these nodes communicate wirelessly with the base
station. This is done using a series of xBee radios. Every node
has one radio associated with it. The end node radios transmit
data to the coordinator in packages, and the coordinator sends
the packages out through UART to a microcontroller. A
diagram of a network is shown in Fig. 1.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 147

Figure 1. Wireless Network

This is an approach for creating a smart and safe house for

an owner to enjoy without the need to run wires throughout
the entire house.

A. Base Station

The base station has two main parts, the information
retrieval and decoding, and the networking and remote user
interface part. The information retrieval and decoding was
processed on a DS89C450 8051 microcontroller. The
networking and user interface was accomplished on an
Arduino main board with an Arduino Ethernet shield and a
cellular shield. The base station also has a LCD screen, an
xBee radio, a message recorder, and a buzzer for an alarm.
The diagram of the base station is shown in Fig. 2.

LCD Screen

D
A
T
A
/
C
M
D

rs
rw
en

8051
Microcontroller

0
1
2
3
4
5
6
7

P1

0
1
2
3
4
5
6
7

P3
7
6
5
4
3
2
1
0

P2

7
6
5
4
3
2
1
0

P0

xBee
Radio

Coordinator

2
3

Cellular
Shield

SIM
Card

Rx
Tx

Arduino
Main Board3

4
10
11
12
13

Rx
Tx

Arduino
Ethernet
Shield

Ethernet
Port

S
P
I
B

Buzzer

9

14
15
16

Message
Recorder M1

M2
M3

5V

Figure 2. Base Station Block Diagram

1) Information Retrival and Decoding

This subsystem is run by the 8051 microcontroller and is
in charge of retrieving RF data from the end nodes and
decoding the RF packages as well as allowing some user
interface through an LCD screen. The microcontroller receives
the information from the wireless network coordinator radio
through a UART and processes the information. This
information is then decoded by the 8051 and certain functions
are preformed depending on the data. The 8051 actions are
dependent on several settings that are set either by the user at
the base station, with RFID tags at the entrance node, or
online. These settings include changing the time at the base
station, setting a time dependant alarm, and resetting and
clearing the microcontroller’s variables.

The microcontroller works almost entirely on interrupts.
This allows the base station to receive transmissions at
anytime while still operating the LCD screen properly. Using
the serial interrupts allows the receiving and sending of data at
random when needed, while using the external interrupts for
setting and changing features of the LCD screen. The last
interrupt is a timer interrupt used to create a clock and also
used as a counter for several operations.

The base station receives environment data, motion data,
and RFID data. Depending on what information is received,
different tasks are performed and different alarms are
triggered. It also alternates every five seconds between
displaying RFID, and temperature and humidity data, on the
LCD screen.

When motion sensor data is received the microcontroller
performs two separate tasks. It decodes all the motion sensor
data and saves it to memory for further use. This prototype has
four motion sensors throughout the nodes. The base station
holds one bit of information for each one but it packages it all
together in one byte. This allows for easy transmission of the
data to the networking section, while also allowing for easy
individual changes in memory of each motion sensor. The
other function the microcontroller performs is turning on/off
lights at the remote camera node. These lights are turned off
when the all clear is received from the networking section.

Another simple type of digital data that is received from
the end nodes is information on the smoke and CO detector
incorporated on the safety node. This information sets off the
same alarms in the environment, but the networking section
alerts the user in different manners.

When environment data is received the microcontroller
performs two operations. First it saves the data to its own
memory, and then it passes the data through another UART to
the networking and remote user interface section. The
environment data consists of humidity and temperature levels
in the monitored environment. The microcontroller displays
the data on the LCD screen as mentioned before.

When RFID data is received the microcontroller saves it
to memory. The RFID tags are used for turning on and off the
alarm, working as key passes or fobs for the user. Therefore,
when an RFID tag is read the memory changes the state of that
card from away to present or vice versa. This allows for the

148 Int'l Conf. Embedded Systems and Applications | ESA'11 |

alarm system to be on when no one is home, and turned off
when people are present. Using the push buttons and switches
on the base station, the user can clear all the RFID tags
effectively turning on the alarm. The RFID information is also
transmitted to the networking and interface section for the
purposes of the web page.

Another way to set the alarm is by using the clock and time
dependent alarm. The clock is created using a timer on the
microcontroller. Once this was created it allowed for extra
time dependant features to be added. One such feature is a
time dependant alarm. Using the switches and pushbuttons the
correct time can be set and then an alarm on time and alarm
off time can be set. The interface of the switches can be
observed in Table I. The switches are read by the
microcontroller whenever one of the pushbuttons is pressed.

Table I: LCD Interface

 The pushbuttons are connected to the external interrupts of
the microcontroller which cause the microcontroller to run a
certain section of code asynchronously. Once the
microcontroller is running one of these code sections, it checks
the switch inputs and decides what operation to perform. All
these actions are visible on the LCD screen as well.

2) Networking and Remote User Interface
This subsystem is controlled by the Arduino

microcontroller which was chosen to be used in conjunction
with the 8051 microcontroller for its ability through
peripherals to easily host a web server and provide cellular
service. Using the Ethernet shield, which contains the Wiznet
W5100 Ethernet chip, the Arduino can perform TCP/IP
processes. It can easily host a web server with the use of the
webduino library, written by Ben Combee, and can generate
the GET and POST parameters for a web page. Cellular
service is provided by the SM5100B cellular module and SIM
card on the cellular shield. The Arduino can communicate
with the cellular module by sending AT commands across
software serial ports to send and receive text messages and
make phone calls. In addition to the Ethernet and cellular
shield, the Arduino has a buzzer to signal either intrusion
detected or if someone has approached the entrance node and a
message recorder to play recorded voice messages for alerting
authorities or fire fighters.

The web server generates two web pages: one that asks for a
combinational pass code and another that generates the main

page with the processed data and user controls if given the
correct pass code. The main web page displays the humidity
and temperature sensor data, the RFID tags that are present,
the security camera along with buttons to pan left and right,
and conditional statements with buttons that allow for
responses when motion, smoke/CO, or someone at the
entrance, is detected.

The cellular module uses simple AT commands transmitted
serially from the Arduino to the cellular module. Text message
warnings can be sent/received and emergency calls can be
made. When an ePIR sensor is tripped the Arduino sends some
strings of serial data to the cellular module which uses a SIM
card to connect to a cellular network and send a “motion
detected” text message. If the home owner is monitoring the
web page and a motion sensor goes off then they can decide
by pressing a button whether or not to call the police for the
detected motion. This call is also made by sending AT
commands via the soft serial ports. The cellular module is
used to receive text messages as responses to alarms and
makes meaningful phone calls with audio recordings via the
message recording chip. Also, if smoke/CO are detected the
cellular module calls the fire fighters.

B. Android Web Application

 The android web application was constructed to allow ease
of access for the home owner. With this application the home
owner will be able to access the internet from anywhere in the
world by use of a cellular phone. The application itself is a
web browser that, when opened, will automatically allow the
home owner to gain access to their home’s private
information. The first page that appears is a log in page for
the home owner. This assures that the person accessing the
data is an authorized party and not someone trying to gain
access to someone’s private information. The application itself
is a general view of the web page. It is a general view because
the home owner will not be able to view the security camera
through the application, at least not at first. If the home owner
wants to view the security camera they will have to click the
Go button that is at the top of the application. The Go button
will cause the application to forward the embedded URL to the
phone’s default web browser. To aid in the security, the home
owner will have to reenter their security code to view the web
page. After they have gained access to the web page they will
have to use their log in access code to view the camera. If they
do not enter their code they will not be able to view the
security camera.

C. End Nodes

 The system has four end nodes and a base station. The end
nodes have various sensors on them to monitor the
environment. This system has an environment, safety, camera,
and an entrance end node. Each end node has an xBee Radio
that does the necessary transmissions of data to and from the
base station. The settings for the xBee Radio are different for
each end node; however, as a similarity, each radio has an
LED connected to it to indicate its status.

Switches Push Buttons

1 2 3 One Two

1 0 0 Increase Hour Increase Minutes

0 1 0
Increase Hour of Alarm
time Off

Increase Minutes of Alarm
time Off

0 1 1
Increase Hour of Alarm
time On

Increase Minutes of Alarm
time On

1 1 1 no operation system reset/start up

0 0 0 RFID tags cleared no operation

Int'l Conf. Embedded Systems and Applications | ESA'11 | 149

1) Environment Node
 The environment end node consists of temperature and

humidity sensors to monitor the environment. This end node
also has an ePIR motion sensor on it. The purpose of the ePIR
is to cover more area of the room/house.
 The radio for this end node has several settings different
from the rest. First of all, the radio has to read analog inputs
from the temperature and humidity sensors, and also monitor
the motion sensor. The radio’s settings were for reading two
analog inputs, and sending the information collected once
every minute. It also has digital change detection enabled for
the motion sensor. Therefore, this end node sends two types of
data packages to the base station. It sends the analog
information periodically and the digital information when
there is movement detected. The analog to digital conversion
takes place in the radios’ own microprocessor. However, the
analog inputs on the radio have a range from 0 to 1.2V, while
our sensors outputted voltages in the range of 0 to 5V. A
simple voltage division was used to convert the 0-5V sensor
outputs to 0-1.2V. For the motion sensor an inverter was used,
therefore logic high is motion, and logic low is the no
detection state.
 The radio was programmed to go into cyclic sleep and
wake up periodically. If something requires action it then
proceeds to do it. This behavior can be observed on the
associated LED, and all the rest of the radios have this
capability as well. This LED can show if it is awake, asleep, or
looking for a network to join. The diagram for this node is
shown in Fig. 3.

Figure 3. Environmental Node

2) Safety Node
 The safety end node consists of a smoke/CO detector and

two ePIR motion sensors. The purpose of this node is to keep
the home owner safe from fire related occurrences. The
smoke/CO detector is a commercial one with an alarm pin.
The detector itself comes with an alarm to alert people in the
house, but the alarm pin gives the opportunity of connecting it
to a bigger system. The ePIR are introduced in this module for
the same reason as the last, just to cover more area.

 The end node will alert the base station when there is
movement or smoke/CO via the radio. This information will
then be processed by the base station. The diagram for the
node is shown in Fig. 4.

Figure 4. Safety End Node

3) Entrance Node
 The entrance end node consists of an RFID reader and a

motion sensor. The purpose of this node is to work as an
enable/disable for the system when the user exits or enters the
house. The motion detector has a dual purpose: one to function
as a doorbell to tell the homeowner there is a visitor and/or
wake up the radio to transmit RFID data.

 This node transmits two types of data packages to the base
station. One package is the RFID data, which tells the base
station which RFID tag was just read, and the other is the
motion sensor data, both of which are edge triggered. The
RFID tag is decoded in the base station. Unlike the other
radios this one is programmed to have Pin wakeup. This is
configured so that the radio wakes up when the motion sensor
is tripped to be ready for the RFID read to take place. The
radio also does cyclic sleeping just to stay in the network. The
diagram for this end node is shown in Fig. 5.

Figure 5. Entrance Node

4) Camera Node
 The camera node’s purpose is to provide a video feed into

the house allowing the home owner to view their house via the
internet. For a larger viewing angle a stepper motor was added
to the node that allows the camera to pan to different locations

150 Int'l Conf. Embedded Systems and Applications | ESA'11 |

on the owners command. For control of the motor there is the
Easy Driver that provides easy control for the motor, and an
xBee radio to receive remote commands from the base station.
However, some decoding to interface between the radio and
motor was required so another microcontroller was utilized.
This allows for simple left/right control of the motor, and
since there is already a full processor on the node, more
advanced commands can be implemented in the future.

 The radio on this end node is configured to receive data
from the base station with instructions on what to do with the
camera. Since the radio can be sent data at any time, sleep
mode was disabled. This makes sure that no data sent by the
base station is lost.

 Another difference for this node is that the motor needed a
12V supply, therefore a 12V wall jack was used, and the
motor draws its current and voltage directly from it, and not
from a voltage regulator like the other components.

 The camera, axis 2100 network camera, was chosen for this
prototype because of its simplicity. The camera has its own
networking capabilities and web server. Therefore, the camera
just needs an Ethernet cable and it’s good to go. Not only does
it show its live video feed online, but it also gets its power
from the Ethernet cable. The live video feed was then
embedded in the webserver of the base station and there is
only one website that is needed for the system.
 The stepper motor is simple and small size but at the same
time supplies sufficient torque for the prototype. This motor is
also compatible with the easy driver, which allows for very
effortless control. The diagram of the camera node is shown in
Fig. 6.

0
1

3
2

4
5

6
7

0
1

3
2

4
5

6
7

Figure 6. Camera Node

III. RESULTS, CONCLUSIONS, AND FUTURE WORK

 The smart home described in Section 2 was successfully
designed and a complete working prototype system
implemented by the end of the 10-week summer REU
program. The smart home security system implements many
different sensors to provide a safe environment for home
owner and all that may reside with them. As stated earlier in
the paper, these sensors include a motion sensor, temperature
sensor, security camera, and various other sensors. All of the
sensors work together to provide maximum coverage for the
home owner. An android app and a security web page have
also been constructed to aid in providing protection and
enhanced monitoring.

In the future, several improvements can be added to the
smart home security system to allow for more comfort and
protection. These include but are not limited to: a full climate
control interface to provide a comfortable living condition for
the home owner, a lighting control system to allow the home
owner to turn off/on lights when they are not at home, more
security cameras to view more of the house at one time, and a
keypad to allow the user to add more RFID tags to the
database without reprogramming the base station’s
microcontroller. Various other nodes can also be implemented
to add to the coverage area.

REFERENCES
[1] Muhammad Ali Mazidi, Janice Gillispie, and Rolin D. McKinlay. (2006)

The 8051 Microcontroller and Embedded Systems: Using Assembly and
C, 2nd ed., Upper Saddle River, New Jersy: Pearson Education, Inc.

[2] (2010) Arduino[online], available: http://www.arduino.cc/ (available
April 2011).

[3] Burnette, Ed. (2008) Hello Andriod, United States of America:
Pragmatic Bookshelf.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 151

A SystemC-TLM Platform for Wireless Sensor

Networks Design Exploration

D. Serna
1
, S. Villa

1
, F. Rivera

2
 and J. Aedo

1

1
Electronics Department, Universidad de Antioquia – ARTICA, Medellin, Colombia

2
Computer Science Department, Universidad de Antioquia – ARTICA, Medellin, Colombia

Abstract—Wireless Sensor Networks (WSN
1

) have gained

worldwide attention in recent years, due to their potential for

development of applications in various areas: health,

environmental monitoring, control and monitoring processes,

etc. Due to the complexity of WSN design, it is necessary to

employ design methodologies at a very high level of

abstraction which allow the exploration of diverse alternatives

of hardware and software architectures. In this research a

generic platform using SystemC TLM (Transaction Level

Modeling) to support the design of system-level WSN was

developed. The platform allows the system’s functional

evaluation at a very high level of abstraction. A virtual

functional model of a WSN could be built using platform

components to estimate system performance and power

consumption. A model of a WSN using the MSP430

Microcontroller, the CC2420 radio transceiver and a wireless

network model were built to show the effectiveness of this

approach. The simulation results were highly satisfactory.

Keywords: SystemC, Wireless Sensor Networks, modeling

platform.

I. INTRODUCTION

The design of WSN-based systems should consider many

factors such as energy consumption, network lifetime,

scalability, robustness, simplicity, network connectivity and

information security, among others, while ensuring QoS

metrics [1]. The optimization of these factors is a non-trivial

task, and has a direct impact on the design process complexity,

thus directly affecting design times [2]. Therefore, it is

essential to have high level design methodologies which

simplify the management of the before mentioned complexity,

reducing both the design and development times.

Some methodologies that have been proposed in the

literature, such as model-based design [3] and platform-based

design (PBD) [4] are based on predefined platforms that allow

1 WSN: The Wireless Sensor Networks are distributed devices, self-employed,

which use sensors to cooperate in a common task.

performing early design verification. A platform is defined as

a library of communication and computing components,

conformed by models that represent their capabilities, and

provide an estimate of their physical characteristics. These

various components can be instantiated to construct a wide set

of architectures [2].

In this research a generic platform using SystemC-TLM

is proposed for modeling and simulation of WSN. The

platform allows system functional evaluation and validation in

early design stages. It is also capable to estimate system

performance in terms of instruction count and energy

consumption, to emulate the instructions execution,

exceptions, interruptions, memory mapping, and peripheral

interaction. The platform is presented as a contribution to a

WSN-based systems design methodology that is being

developed in the ARTICA’s embedded systems research

group. Such methodology aims at the efficient administration

of the complexity in designing a WSN-based system at a high

level of abstraction.

The platform modeling is based on SystemC-TLM,

which is an IEEE standard language for system-level design

[5, 6]. The platform provides an executable model for wireless

sensor networks with instruction-level accuracy, power

consumption estimation, and hardware details. The executable

model is capable of achieve high speeds due to the extensive

use of the Transaction Level Modeling (TLM) methodology

and standard [7]. TLM is used for communication modeling

among components, and allows more flexibility and

generality. The model flexibility allows adding, changing or

removing different modules without affecting the behavior of

others. Thus, the platform components can test different

architectures for WSN-based systems in order to choose the

best design decision.

The rest of the paper is distributed as follows: Section II

describes related work that has been carried out in the field.

Section III describes the proposed platform components.

Section IV shows the experimental results obtained so far, and

Section V presents the conclusions and future work.

152 Int'l Conf. Embedded Systems and Applications | ESA'11 |

II. RELATED WORK

Various tools and description languages have been

proposed for the design, modeling, and simulation of WSN-

based platforms. Languages such as VHDL-AMS [8] and

Verilog-AMS [9] have been used, both having some

restrictions on simulation performance and interoperability

[10]. Matlab has been proposed as a modeling and simulation

tool, but the excessive complexity of hardware modeling

inside it has made its use ineffective and error prone [11].

Other simulation tools using Java such Avrora [12] or

COOJA/MSPsim [13] have been proposed. These tools allow

the simulation of a WSN through instruction-level emulators

of WSN nodes. One of the main drawbacks is the slow

simulation speed due to the use of an interpreted language.

Another limitation is their coarse resolution in power

estimation [14]. A major concern in the design process is the

development of virtual simulation models of WSN in order to

test and validate the applications without the need of building

real prototypes. These models should provide sufficiently

precise estimates of performance and power consumption in

order to carry out the exploration of different design

alternatives.

Some approaches using SystemC to built virtual WSN

prototypes have been reported [15, 16]. In [10, 17] a system

level approach to model and simulate WSN was proposed.

The main limitation of this work is that it does not consider the

power consumption of the entire system. In [18] the modeling

and simulation of a WSN using SystemC and SpecC were

presented. In this paper, a simple WSN node is developed. The

node is constituted by an Analog-Digital Converter (ADC), a

microcontroller, and a transmitter. One drawbacks of this work

is that the communication process among nodes is modeled

using simple FIFO channels. In [19] the simulation of an ultra

low power WSN was showed. In this research the power

consumption of the whole system was estimated through

simulation. The simulation model considers a network with

multiple nodes and communication channels among them.

This work lacks of a complete modeling of the wireless

communication channel, fact that can decrease the accuracy of

the power consumption estimation when performing

simulation of the entire system.

III. PLATFORM COMPONENTS MODELING

In this research, a generic platform using SystemC-TLM is

proposed for modeling and simulation of WSN. The platform

allows the construction of functional simulation models of the

entire network, in which the application is distributed across

all nodes, even considering the use of an operating system

(such as TynyOS, Contiki or FreeRTOS). A special strategy

was developed to simulate with instruction level accuracy, and

to estimate power consumption at both the node and the entire

network. Thus the platform enables the exploration of

different alternatives to implement the application in an

efficient way.

The components of the platform are designed using

SystemC-TLM, in which communication among modules is

modeled with function calls without considering pin-level

detail. The SystemC-TLM provides a great flexibility for the

modeling. Thus it is possible to instantiate different

components of a node in order to verify various alternatives in

the design process, estimating the performance and the power

consumption.

As a study case of our modeling approach, it was built a

system based on a Shimmer node [20], which is a small WSN

system aimed to health monitoring applications. The

simulation model structure is show in Figure 1. A functional

model for MSP430 processor, for the CC2420 radio

transceiver chip, and for the monitors that estimate the cycle’s

number and power consumption was built. Every instantiated

node will communicate with the others via the channel model

built in SystemC as well.

Fig. 1. Architecture of WSN using the platform components.

A. Platform structure

As mentioned before, the Shimmer system could be used

to record and transmit physiological data in real-time. The

application developed to test the models consisted on two

nodes to monitor the heart rate and a fall detector, which will

be implemented as part of a portable health monitoring device.

The developed model emulates the behavior and

functionality of the Shimmer system with instruction accuracy

and power consumption estimation. The simulation platform

consists on five modules which will be described below:

a) Texas Instruments ultra-low-power MSP430

Microcontroller, which incorporates a 16-bit RISC CPU,

peripherals, and a flexible clock system which are

interconnect using a von-Neumann common memory

address bus (MAB) and memory data bus (MDB). The

Int'l Conf. Embedded Systems and Applications | ESA'11 | 153

MSP430 architecture, combined with five low power

modes is optimized to achieve extended battery life in

portable measurement applications [21]. Our simulator

provides a functional implementation of the MSP430. The

processor model is composed of a core and various

peripherals. This model is showed in Figure 2. The core

model uses an instruction-set simulator (ISS) for

emulating the processor behavior on a simulation host

machine. The ISS uses interpretive simulation, in which

each instruction of the target program is fetched from

memory, decoded, and executed. The core of our MSP430

model handles the different modes of operation of the

processor and manages interruptions and peripherals. The

interruption controller can handle interruption priorities

and nested interruptions. The processor model runs the

binary code generated by the compiler, including the

operating system and the embedded application. Our

model uses the Blocking transport interface of the OSCI

TLM-2 standard for modeling communication between

MSP430 core and peripherals, thus allowing more

flexibility. The generic payload extensions mechanism for

the transaction type was used; these extensions represent a

new set of attributes, transported along with the

transaction object. Extra attributes for the transaction

object were created because the MSP430 architecture has

8-bits and 16-bits peripherals. In the MSP430 model, each

peripheral module exports a function void
b_transport(TRANS &tra). To communicate to

some peripherals, the MSP430 core creates a transaction

object, by providing an address, a command (either

reading or writing), a pointer to data, a data size, and an

extension (to indicate 8-bits or 16-bits operation). After

this, the core calls the b_transport function on this

object. The bus will forward the transaction to the

appropriate peripheral according to the memory map.

Eventually, the b_transport method of the

corresponding peripheral module will be executed. Thus

the MSP430 is compatible with any peripheral which

follows the same communication protocol for

transactional modeling.

Fig. 2. MSP430 model.

b) CC2420 chipset, which is a radio transceiver that operates

at 2.4GHz with the IEEE 802.15.4/ZigBee standard. It is

designed for low power consumption and is widely used

by most commercial platforms of WSN. The CC2420

provides extensive hardware support for packet handling,

data buffering, burst transmissions, data encryption, data

authentication, clear channel assessment, link quality

indication and packet timing information [22]. This

simulator provides a functional implementation of the

CC2420, which will include configuration register for

status, register for instructions, RAM for transmitting and

RAM for receiving packages. The CC2420 architecture

model is shown in Figure 3. In Figure 3. A general block

diagram of a CC2420 is presented, which is connected to

a Node_proxy instance through TLM interfaces.

Node_proxy is a class of the SystemC Network Simulator

Library (SCNSL) [23] used to decouple the node

implementation of the network simulation. SCNSL allows

us to collect accurate statistical data about the network’s

behavior.

Fig. 3. CC2420 model.

c) The Power Consumption and Processor Cycles Monitor is

the module responsible for assessing the performance of

the entire network’s model. The monitor is not a part of

the Shimmer’s architecture, but it is modeled to keep

track of the node’s energy consumption and to record the

CPU cycles used in the execution of the different tasks

that run inside each node. Each change in the mode of

operation or use of a given peripheral updates the power

monitor. Each executed instruction updates the CPU

cycles counter. So when the execution is completed, the

monitor delivers a log of the consumed energy and the

used CPU cycles.

d) The sensor module uploads a database of ECG measures

taken in the ARTICA’s embedded systems laboratory,

and passes the data to ADC processor model. The sensor

154 Int'l Conf. Embedded Systems and Applications | ESA'11 |

module is annotated with power consumption taken from

the sensor manufacturer’s data sheets. The integration of a

functional model of the ECG sensor with our simulator is

still in progress.

e) The network interface responsible for communication

between different nodes uses the SystemC Network

Simulator Library, which allows us to collect accurate

statistical data about the network’s behavior. The SCNSL

allows modeling network scenarios with different kinds of

nodes described at different levels of abstraction. SCNSL

was modeled at TLM level and has the same performance

as the NS-2 simulator [23]. In our simulator, the devices

are modeled in SystemC and their instances are connected

to a module that reproduces the behavior of the

communication channel, propagation delay, interference,

collisions, and packet loss, allowing the design

exploration of the entire network space. To use the

library, the nodes are modeled by SystemC primitives for

the specification of its internal behavior and the SCNSL

primitives are used to model communication by sending

and receiving packets through the network, using the

communication channel model. The SCNSL kernel is

responsible for the correct network simulation, executing

events in the correct temporal order and taking into

account channel physical features such as, propagation

delay, signal loss, and so forth.

To build a platform specific model, it is necessary to

integrate the components listed above. To interconnect

modules, an instance of the desired component is created, and

the sockets binding are then carried out. Each output socket of

a component model corresponds to an input socket in the

other. For proper communication among modules, it is

necessary to modify the data sent in each transaction so that

the model works according to the desired architecture.

IV. EXPERIMENTAL RESULTS

Component models for a processor with some peripherals

and the memory have been developed. The memory model is

uploaded with the application’s object code generated by the

toolchains provided by Texas instruments. The processor

model decodes and executes instructions, delivering the CPU

cycles spent on each instruction and also reporting the internal

status of the CPU. Figure 4 shows a simulation of the

processor running a test program that uses all the available

addressing modes and the entire instruction set. The

instruction decoding and the timing accuracy of the model

were compared with Texas Instrument IAR [25] simulator

with the same results of CPU cycles used by the test

application in both simulators. The model of the platform was

compiled in debug mode to print the register internal state, to

help the designer to debug programs. Only a fragment of the

simulation is shown to save space.

Fig. 4. Instruction decode with cycle accuracy.

Component models were developed at different levels of

abstraction in SystemC. The execution times of a test

application running from models coded in the 3 different

levels of abstraction are shown in Table 1. The Column 2

shows the simulation time of a functional model, which is

similar to the simulation time using SystemC-TLM DMI

(column 4). For each abstraction level, a simulation speed

analysis was performed, and the best simulation performance

was obtained when using TLM, and more specifically the

Direct Memory Interface (DMI) [24].

Table 1. Execution times of models in three different abstraction

levels in SystemC.

Preliminary experiments over each node show that it is

possible to obtain very accurate measures of performance and

power consumption when compared to the actual behavior of

both the node and the sensor network. Currently, we are

porting the complete WSN application using two nodes.

The platform that is being developed is the base of a

platform-based design methodology (PBD) for wireless sensor

networks, in which the ARTICA’s embedded systems research

group is currently working on. This methodology seeks to

handle the design complexity of WSN-based systems,

allowing the comparison of diverse hardware-software

architectures at a high level of abstraction.

Instruction: 4269 op: 4 Instruction MOV: 4 4
RegBank[0]: 404e RegBank[1]: 0 RegBank[2]: 0 RegBank[3]: 0
RegBank[4]: 0 RegBank[5]: 0 RegBank[6]: 0 RegBank[7]: 0 RegBank[8
]: 0 RegBank[9]: 4 RegBank[a]: 0 RegBank[b]: 0 RegBank[c]: 0
RegBank[d]: 0 RegBank[e]: 0 RegBank[f]: 0
CPU CYCLES: 1
 Instruction: 4364 op: 4 Instruction MOV: 2 2
RegBank[0]: 4050 RegBank[1]: 0 RegBank[2]: 0 RegBank[3]: 0
RegBank[4]: 2 RegBank[5]: 0 RegBank[6]: 0 RegBank[7]: 0 RegBank[8
]: 0 RegBank[9]: 4 RegBank[a]: 0 RegBank[b]: 0 RegBank[c]: 0
RegBank[d]: 0 RegBank[e]: 0 RegBank[f]: 0
CPU CYCLES: 2
 Instruction: 4075 op: 4 Instruction MOV: 3 3
RegBank[0]: 4054 RegBank[1]: 0 RegBank[2]: 0 RegBank[3]: 0
RegBank[4]: 2 RegBank[5]: 3 RegBank[6]: 0 RegBank[7]: 0 RegBank[8
]: 0 RegBank[9]: 4 RegBank[a]: 0 RegBank[b]: 0 RegBank[c]: 0
RegBank[d]: 0 RegBank[e]: 0 RegBank[f]: 0
CPU CYCLES: 4

Int'l Conf. Embedded Systems and Applications | ESA'11 | 155

CONCLUSIONS

In this research a generic platform using SystemC-TLM to

support the system-level design of WSN was developed. The

platform allows the system functional evaluation at a very

high level of abstraction. A virtual functional model of a WSN

could be built using platform components to estimate system

performance and power consumption. A model of a WSN

using the MSP430 Microcontroller, the CC2420 radio

transceiver, and a wireless network model were built to show

the effectiveness of this approach. A SystemC-TLM with DMI

to improve simulation times while obtaining good speed-

accuracy tradeoff was used. Preliminary experiments over

each node of the WSN show that it is possible to obtain very

accurate measures of performance and power consumption

when compared to the actual behavior of both the node and the

wireless network.

ACKNOWLEDGMENT

This research has been supported by Colciencias,

Colombia ICT Minister and ARTICA (excellence research

center) within the project “Design Methodology of Embedded

Systems with High Reliability and Performance Focused on

Developing of Critical Applications.”

REFERENCES

 [1] L. Wang y Y. Xiao, “Energy saving mechanisms in

sensor networks,” Broadband Networks, 2005.

BroadNets 2005. 2nd International Conference on, 2005,

Págs. 724-732 Vol. 1.

[2] A. Sangiovanni-Vincentelli, “Quo Vadis, SLD?

Reasoning About the Trends and Challenges of System

Level Design,” Proceedings of the IEEE, vol. 95, 2007,

págs. 467-506.

[3] F. Losilla, C. Vicente-Chicote, B. Álvarez, A. Iborra, P.

Sánchez, “Wireless Sensor Network Application

Development: An Architecture-Centric MDE Approach”,

Springer-Verlag Berlin Heidelberg 2007.

[4] A. Bonivento, L. P. Carloni, A. Sangiovanni, “Platform

Based design for wireless sensor network”, Springer-

Mobile Netw Appl. 2006.

[5] SystemC website http://www.systemc.org [On line.

Cited: 10-02-2010].

[6] T. Grötker, S. Liao, G. Martin, S. Swan. “System Design

with SystemC”. © 2002 Springer – Verlag.

[7] D. Black, J. Donovan, B. Bunton, A. Keist. “SystemC:

From the Ground Up”. Springer Science+Business

Media, LLC. 2010.

[8] J. Ravatin, J. Oudinot, S. Scotti, A. Le-clercq, and J.

Lebrun, “Full transceiver circuit simulation using

VHDL-AMS,” Microwave Engineering, May 2002.

 [9] F. Pecheux, C. Lallement, and A. Vachoux, “VHDL-

AMS and Verilog- AMS as Alternative Hardware

Description Languages for Efficient Modeling of Multi-

Discipline Systems,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and

Systems(TCAD), Feb. 2005.

[10] M. Vasilevski, F. Pecheux, N. Beilleau, H. Aboushady, y

K. Einwich, “Modeling and Refining Heterogeneous

Systems With SystemC-AMS: Application to WSN,”

Design, Automation and Test in Europe, 2008. DATE

'08, 2008, págs. 134-139.

 [11] M. Mostafizur, F.Gregoretti, L. Lavagno. “A Framework

for Modeling, Simulation and Automatic Code

Generation of Sensor Network Applications”. SECON

'08. 5th Annual IEEE Communications Society

Conference, 2008.

[12] B. Titzer, D. Lee, y J. Palsberg, “Avrora: scalable sensor

network simulation with precise timing,” Information

Processing in Sensor Networks, 2005. IPSN 2005. Fourth

International Symposium on, 2005, págs. 477-482.

[13] J. Eriksson, F. Osterlind, T. Voigt, N. Finne, S. Raza, N.

Tsiftes, y A. Dunkels, “Demo abstract: Accurate power

profiling of sensornets with the COOJA/MSPsim

simulator,” Mobile Adhoc and Sensor Systems, 2009.

MASS '09. IEEE 6th International Conference on, 2009,

págs. 1060-1061.

[14] Jun Rao, H. Pirahesh, C. Mohan, y G. Lohman,
“Compiled Query Execution Engine using JVM,” in Data
Engineering, 2006. ICDE '06. Proceedings of the 22nd
International Conference on, pág. 23, 2006.

[15] G. S. Besrra, J. de Medeiros, H. Madureira. “System-
level Modeling of a Reconfigurable System on Chip for
Wireless Sensor Networks Applications”. InternatIonal
ConferenCe on IntellIgent and advanCed SyStemS,2010.
Icias 2010.

[16] G. S. Beserra, J.F Eusse, A. Sampaio, J. Pimentel,
R.JacobiI, “A VHDL-AMS Co-Simulation of a System
on Chip for Wireless Sensor Networks” . IBERCHIP
Workshop 2010, IBERCHIP 2010 Proceedings p. 1-5.

 [17] M. Vasilevski, N. Beilleau, H. Aboushady, F. Pecheux.

“Efficient and Refined Modeling of Wireless Sensor

Network Nodes Using SystemC-AMS”. Research in

Microelectronics and Electronics, 2008. PRIME 2008.

Ph.D. Pags: 81 – 84.

[18] M. Rafiee, M. Ghaznavi-Ghoushchi, S. Kheiri, y B.

Seyfe, “Modeling and Simulation of Wireless Sensor

Network (WSN) with SpecC and SystemC,” Computer

Engineering and Technology, 2009. ICCET '08.

International Conference on, 2009, págs. 515-519.

156 Int'l Conf. Embedded Systems and Applications | ESA'11 |

[19] J. Haase, M. Damm, J. Glaser, J. Moreno, C. Grimm.

“SystemC-based Power Simulation of Wireless Sensor

Networks”Specification & Design Languages, 2009.

FDL 2009. Pags. 1 – 4.

[20] Shimmer website http://www.shimmer-research.com/

[On line. Cited:10-02-2010].

[21] MSP430x1xx Family. User’s guide.

[22] Chipcon Products from Texas Instrument CC2420 Data
Sheet.

[23] F. Fummi, D. Quaglia, F.Stefanni. “A SystemC-based

Framework for Modeling and Simulation of Networked

Embedded Systems”. Forum on Specification,

Verification and Design Languages, 2008. FDL 2008.

Pags. 49 – 54.

[24] OSCI Tlm-2.0 Language Reference Manual. Website

http://www.systemc.org [On line. Cited: 10-02-2009].

[25] IAR User and Reference guide. Website

http://www.iar.com/website1/1.0.1.0/225/1/. [On line.

Cited: 11-05-2010].

Int'l Conf. Embedded Systems and Applications | ESA'11 | 157

http://www.iar.com/website1/1.0.1.0/225/1/

Implementation and Functional Verification of Soft IP Core
of USB 3.0 Device MAC Layer

Hasan Baig, Jeong-A Lee

Department of Computer Engineering
Chosun University, South Korea

Abstract – Universal Serial Bus has supported a wide variety
of devices from keyboard, mouse, flash memory, imaging up to
high speed broad band devices. In addition, user applications
demand a higher performance connection between the PC and
other increasingly sophisticated peripherals. USB 3.0
addresses this need by adding even faster transfer rates. It
assures a data transfer rate of 4.8 Gbps as compared to its
former interface USB 2.0 which has a raw data rate at
480Mbps. This implementation of synthesizable Media Access
(MAC) layer of SuperSpeed USB 3.0, with a pipelining
concept of processing the packets, is proposed to support high
speed transfer rate and high throughputs. Alongside, the use of
efficient handshaking signals complies with optimum
performance of the overall device. Master controller has also
been implemented to command over MAC Layer and other
layers that will be implemented in a future research. This
implementation meets the required specifications [1].

Keywords: USB 3.0, MAC Layer, Physical Layer Controller,
FPGA.

4 Introduction

The physical layer classifies the PHY portion of a port and the
physical connection between a downstream facing port (on a
host or hub) and an upstream facing port on a device. The
SuperSpeed physical connection is comprised of two
differential data pairs, a transmit path and a receive path (Fig.
1).

The physical layer classifies the PHY portion of a port and the
physical connection between a downstream facing port (on a
host or hub) and an upstream facing port on a device. The
SuperSpeed physical connection is comprised of two
differential data pairs, a transmit path and a receive path (Fig.
1).

The electrical aspects of each path are characterized as a
transmitter, channel, and receiver; these collectively represent
a unidirectional differential link. Each differential link is AC-
coupled with the capacitors located on the transmitter side of
the differential link. The channel includes the electrical
characteristics of the cables and connectors [1].

At an electrical level, each differential link is initialized by
enabling its receiver termination. The transmitter is
responsible for detecting the far end receiver termination as an
indicator of a bus connection and informing the link layer so

the connect status can be factored into link operation and
management.

When receiver termination is present but no signaling is
occurring on the differential link, it is considered to be in the
electrical idle state.

When in this state, Low Frequency Periodic Signaling (LFPS)
is used to signal initialization and power management
information. The LFPS is relatively simple to generate and
detect and uses very little power.

The USB PHY Layer (PHY Chip depicted in Fig. 1) handles
the low level USB protocol and signaling. This includes
features such as; data serialization and deserialization, 8b/10b
encoding, analog buffers, elastic buffers and receiver detection.
The primary focus of this block is to shift the clock domain of
the data from the USB rate to one that is compatible with the
general logic in the ASIC [1].

Fig 1: PHY/MAC Interface.

2 MAC Interfaces

Since the PIPE (PHY Interface for the PCI Express) is
implemented for USB mode that supports 5.0GT/s, we have
chosen 32 bits data paths with PCLK running at 125MHz [2].
The MAC Layer commands the communication of PHY Layer
with the Link Layer and LTSSM (Link Training and Status
State Machine). PHY layer controller itself is commanded by
Master Controller. The top level block diagram of MAC Layer
(or Physical Layer Controller)1 is shown in Fig. 2.

1 Phy Layer Controller is also called Media Access (MAC) Layer. We will
use these terms interchangeably throughout this paper.

158 Int'l Conf. Embedded Systems and Applications | ESA'11 |

It can be observed that the PHY Layer Controller itself
comprises of some internal modules that will be described
later in the following sub sections.

The MAC layer of USB 3.0 device interacts with Link layer,
LTSSM and is commanded by Master controller. LTSSM and
Link Layer are beyond the scope of this research paper, so will
be described briefly in the next sub sections.

2.1 Link Layer

A Super Speed link is a physical and logical connection
between two ports, called link partners. A port has a physical
part and a logical part. The link layer identifies the logical
portion of a port and the communications between link
partners. The main responsibility of link layer is to ensure the
successful data transfer with the link partner and to maintain
connectivity between them.

2.2 Link Training and Status State Machine

The Link Training and Status State Machine (LTSSM)
behaves as a leading workhorse to maintain reliable link,
highly optimized power consumptions and efficiently fast and
perfect data transfer rate. It also implements various
algorithms for link’s reliability preservation and is also liable
to recover a link when an error arises.

It is LTSSM who manages the power of a device proficiently
and greatly reduces the link’s power consumption. It also
voids the condition that causes the wastage of power.

It co-ordinates and converse with PHY chip, MAC Layer,
Link Layer and Master Controller to perform it’s duties.

Fig 2: Top Level Block Diagram of PHY Layer Controller.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 159

2.3 Dual Port Reference Memory

USB 3.0 specification [1] provides a complex hardware
implication. It has been emphasized to produce such an
architecture that can be easily comprehended, incorporated and
implemented without an extraordinary knowledge of
interfacing other layer in USB 3.0 device.

To achieve this, each layer is kept separated from the other by
inserting dual-port-memories (Fig. 2) in between two
successive layers. When one of the layers is done with writing
data to intermediate memory (dual-port-memory), there is a
primary need of notifiying the next concerned layer to begin
execution and process the valid memory contents in the
intermediate memory area. This need is accomplished by using
the Master Controller which schedules the execution of layers
in a pre-determined sequence which is described in next
section.

2.4 Buffer Interfaces

The primary reason of using buffer interfaces (Fig. 2) is to
overcome the need of incorporating a memory controller into a
layer’s main controller. In case, for example, if MAC layer is
instructed to start processing some valid memory contents,
there could be two possibilities – First MAC layer fetch the
memory contents by issuing address & data to enable ports of
the memory with incrementing each time the address for the
next valid data and asserting the enable ports.

Second possiblity is that it has a separate module which is
notified of the number of bytes to be fetched from memory
and which is resposible of incrementing the address each time
it gets valid data for memory. In order to simplify the
implementation, it is recommended to have separate entities so
that hardware can be easily comprehended and debugged or in
another words the main controller will remain free from some
extra burden while dealing with the memory. Second approach
is quite better. Thus buffer interface (or memory controllers)
are used in the architecture just beside intermdiate dual-port-
memories.

3 Master Controller

Master Controller is developed to command the
communication flow between each module. The centralized
master controller monitors and controls the decoding and
encoding operation separately. It has been designed in such a
way that it can easily be integrated later with Link Layer,
Protocol Layer and LTSSM, which would be in fact a future
enhancement of this research. Top level block diagram of
Master Controller is shown in Fig. 3.

3.1 Decoding Path Controller

The decoding process is to take packet from the PHY chip and
pass it to link layer controller (decoder) and so forth. Master

controller follows the protocols in the sequence mentioned
below.

Fig. 3: Top Level Block Diagram of Master Controller - showing IO interface
with each layer and LTSSM.

1. When Phy Layer Decoder (Fig. 2) receives the

complete packet, it generates an indication signal to
master controller which in turn initializes the Link
Layer (LL) decoder, provided that LL decoder is not
already in a busy state. Meanwhile, master controller
also sends the packet size to the LL decoder that it
received from the Phy Layer decoder at the complete
reception of packet.

2. When the packet is processed by the LL decoder, it

generates an indication signal to master controller
which in turn initializes the Protocol Layer (PL)
decoder, provided that it is not already busy. Link
layer decoder de-assembles the packet received and
sends the new packet size (packet size changes after
passing through the packet de-assembler) to master
controller. Master then sends this new packet size to
protocol layer decoder at the time of its initialization.

3.2 Encoding Path Controller

The controlling protocols, mentioned below, are followed by
the master controller in order to encode the packet

1. Protocol Layer (PL) Encoder is initialized when
master-configuration valid signal is received by the
Master controller provided that the PL encoder must
not already busy. As soon as the complete packet is
encoded, PL encoder generates an indicating signal
(“pl_enc_done”, Fig. 3) to the master informing it the

160 Int'l Conf. Embedded Systems and Applications | ESA'11 |

packet has been transferred into the buffer and ready
to be fetched by Link Layer controller. Master
controller then generates a signal to initialize the Link
Layer (LL) encoder, provided that LL encoder is not
already in a busy state. Meanwhile, master also sends
the packet size to the Link Layer encoder; it had
received from the PL encoder at the complete
reception of packet.

2. After processing, assembling and transferring the

complete packet in the buffer, LL encoder generates
an indication signal (“ll_enc_done”, Fig. 3) to master
controller which in turn initializes the Phy Layer
encoder, provided that it is not already busy. Link
layer encoder also sends the new packet size (packet
size changes after passing through the packet
assembler) to master controller. Master controller
then sends this new packet size to Phy layer encoder
at the time of its initialization.

Master controller must deassert the initializing signal of
Protocol Layer, Link Layer and Phy Layer Encoders as soon
as they acknowledged.

3. Media ACcess (MAC) Layer or
Physical Layer Controller

The main object of this research is the implementation of
MAC Layer encoder and decoder that runs in parallel and
hence ensures the concurrent in-out transaction of USB 3.0
protocols.

Before discussing the developed algorithm of MAC Encoder
and Decoder, it is good to have a look at the standard USB 3.0
packet [1] first. It is also portrayed in Fig. 4. Refer [1] for
detailed description of packet symbols.

Fig. 4: Standard USB 3.0 packet with maximum of 1024 data bytes.

4.1 MAC Layer Encoder (Phy Encoder)

It is recommended to refer [2] first for PHY Chip encoding
signals, in order to understand Phy Encoding algorithm.
Algorithmic State Machine Description (ASMD) of PHY
Encoder is shown in Fig. 5. When an encoding process is done
by Link Layer controller, it asserts “ll_enc_done” (section 3.2),
informing master controller that a valid data has been placed in
dual-port-memory and must be fetched by Phy Encoder.
Master controller then asserts “start_en” (Fig. 3) signal to
initialize Phy encoder and waits for being acknowledged by
Phy encoder.

LTSSM controls the power state of PHY chip through Phy
Encoder. Phy chip remains idle in P1 and P3 power states [1].
In P2 state, encoder waits for the instruction from LTSSM
either to force Phy Chip to transmit LFPS [1] or to do receiver
detection operation (Fig. 5). When a valid data is present in the
buffers, LTSSM instructs Phy Encoder to take Phy chip into
P0 state. Encoder starts the process of fetching data, from
buffer, only when a positive edge of “transmit” is seen
asserted.

When LTSSM asserts “transmit” signal, encoder requests the
data and waits for the acknowledgment from Read Buffer
Interface. When transaction begins, encoder obtains the data
payload size from the packet size (given by master controller,
in terms of bytes) and puts into the register, named
“data_pld_size”. The purpose of calculating the data payload
size is to find out how many number of transactions are
required to send the complete packet to Phy chip. Since each
transaction can have 4 symbols of transmit data (32-bit bus)
[refer 1 for detailed description], therefore a packet size is
divided by 4 to obtain the correct number of transactions
required. Referring [2], TxDataK bus indicates Control or Data
byte in a current transaction.

The RTL of encoder is efficient enough to locate which byte is
a control byte or data byte in a current transaction. Fig.4
depicts that there are two such transactions (1st and 6th) which
have complete control symbols (bytes) in it. The last
transaction should have all control bytes, but it depends on the
data payload size. If data payload size is not a multiple of 4,
then there must be an ambiguity which symbol is a control or a
data byte, in 2nd last transaction. Two least significant bits of
“data_pld_size” indicates the position of data byte in 2nd last
transaction (Fig. 4).

4.2 MAC Layer Decoder (Phy Decoder)

Decoding process is pretty complicated and a challenging task.
It is recommended to refer [2] to grasp the PHY Chip
decoding signals. ASMD of Phy Decoder is shown in Fig. 6.
“PowerState” of Phy Decoder is again in a control of LTSSM.
Phy Decoder remains idle in P1 & P2 states. In P3, LTSSM
asserts “receiver_DO” (See Fig. 2) signal when it requires
“receiver detection” operation to be performed.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 161

Phy Decoder in-turn asserts “TxDetectRx” signal [2],
requesting PHY chip to begin “receiver detection” operation.
This signal should remain high until “phy_status” signal [2]
from Phy Chip is seen asserted. When the receiver detection
operation is completed, PHY chip asserts “phy_status” signal
[2]. Phy decoder then deasserts “TxDetectRx”, meanwhile
informs LTSSM, the status of receiver through
“Rx_status_2LTSSM” bus.

As soon as LTSSM instructs Phy decoder to take PHY Chip
into the power state P0, decoder starts looking for
“Rx_elec_idle” signal. Phy Decoder informs the LTSSM about
LFPS on the basis of “Rx_elec_idle” signal. It then goes into
“idle” state until valid data is present at “RxData” bus. When
the valid data is present, decoder interrogates the “Write
Buffer Interface” (Fig. 2) whether it is ready to accept the
incoming data, and jumps to the “ackldg” (acknowledge) state.

Fig. 5: ASMD of Phy Encoder (see Fig. 2 for block level diagram)

162 Int'l Conf. Embedded Systems and Applications | ESA'11 |

It then waits for the acknowledgment from “Write Buffer
Interface”. As soon as the buffer acknowledges, decoder starts
fetching and sending data from Phy Chip to Write Buffer
Interface respectively (Fig. 2). Phy Decoder keeps on
transferring packet from Phy Chip to Write Buffer Interface
unless the Link Layer Controller asserts “ignore” signal.

When “ignore” is seen asserted, Phy decoder discards the
incoming data from the Phy Chip and starts looking for LRTY
[1]. Phy Decoder also calculates the size of packet while
transferring data from Phy chip to Write Buffer interface. Fig.
4 depicts that a packet can have a maximum size of up to 1024
bytes (max data payload) + 28 bytes (standard protocol of each
packet).

Fig. 6: ASMD of Phy Decoder (see Fig. 2 for block level diagram)

Int'l Conf. Embedded Systems and Applications | ESA'11 | 163

The packet size is calculated in such a way that a counter is
incremented each time a transaction occurs. Decoder
continuously monitors RxDataK lines. Control byte is
indicated by RxDataK bus whenever its value is non-zero.
Whenever a non-zero value is present at RxDataK lines,
another separated counter is incremented to monitor the
number of control byte transactions. Referring to the Fig. 4, it
can be observed that there could only be 3 or 4 such
transactions which have control bytes in it, i.e. the first
transaction, the sixth transaction and the last transaction. There
could be fourth control byte transaction when data payload
size is not a multiple of 4 (i.e. first three of the last four control
bytes can be a part of second last transaction).

Since the first and the sixth transaction is a complete control
byte transaction, therefore one doesn’t need to care about them.
The problem arises after data pay load due to variations in the
data payload sizes.

ASMD shown in Fig. 6 depicts that decoder repeatedly checks
for “rxdataK_count” to become equal to 2. When
“rxdataK_count” become equal to 2, decoder checks the value
of RxDataK. RxDataK = 4’hF point towards that all the four
bytes are control bytes and a current transaction is End of
Packet. RxDataK, other than 4’hF, clearly indicates that the
data payload size is not a multiple of 4 and the present
transaction contains the data byte(s) along with the control
byte(s). Also we would have fourth control byte transaction. If
RxDataK = 4’h8 (4’b1000), it shows, there are 3 data bytes
and 1 control byte. This one control byte is actually from the
four of the last control bytes (shown in Fig. 4). This means that
there will be only 3 (remaining) control bytes in the next
transaction and the last byte will remain empty, thus a value of
1’b1 is subtracted from the size of packet (shown in Fig. 6).
Similar method is implemented for RxDataK = 4’hC and 4’hE.

5 Functional Verification

Although the whole of the USB Device is written in
synthesizable RTL code, this entity will be representing the
behavior of the Host plus the behavior of the PHY Chip. It is
meant only for simulation purposes and can never infer a
hardware at all. It can supress the concept of separate layers
and can accommodate the behavioral of the host entity and
PHY Chip as a single entity which is needed to derive the
MAC layer, appearing in the front-line of the upstream facing
port (USB Device).

Random data is generated through a testbench and inputs to
MAC Layer (assuming that it is coming from Link Layer, See
Fig. 1, and Fig. 2) and a pre-defined packet size for each time
a simulation runs. This data is processed by Phy Encoder via
dual-port-memory and read buffer interface (Fig. 2). Phy
Encoder passes this data to PHY Chip (behavioral model)
which loop backs that to Phy Decoder.

Phy decoder remains idle unless RxValid signal (from
behavioral of PHY, Fig. 2) is seen asserted. As soon as the

rising edge of RxValid signal is sensed, decoder requests
Write Buffer Interface to received data coming from the Host.
Once it acknowledges, the Phy decoders starts fetching the
data and place it on the ports facing write buffer interface
which in turn place the data into the dual-port-memory (Fig. 2).
Meanwhile it also looks for the control bytes (on RxData bus)
on the basis of which it could find out the size of packet (See
Section 4.2).

6 Conclusion And Future Work

Since SuperSpeed protocols are intended for dual simplex
transmission lines, transmitting and receiving transactions in
parallel, there is an absolute need of having the architecture
which support such protocols.

In order to meet the requirements, separate encode and decode
paths work concurrently and independently. Thus encode path
is associated with packet assemblers or encoders while the
decode path is associated with packet disassembler or decoders.
Encode and decode paths are executed by the Master
Controller State Machine to fulfill the dual simplex capability
of the bus.

This synthesizable implementation of MAC Layer (Physical
Layer Controller) follows the latest specification of USB 3.0.
It is designed in such a way that other layers can be easily
interfaced with it.

Link Layer, Protocol Layer and LTSSM will be developed in
future as an independent entity and integrated with this layer.
The future objective could be complete USB 3.0 memory
device.

7 References

[1]. “Universal Serial Bus 3.0 Specification”, Hewlett-

Packard Company, Intel Corporation, Microsoft
Corporation, NEC Corporation, ST-NXP Wireless, and
Texas Instruments, Revision 1.0, November 12, 2008.

[2]. “PHY Interface for the PCI Express TM and USB
Architectures”, Version 2.90, Intel Corporation, 2007-08.

[3]. “Universal Serial Bus Specification”, Revision 2.0, April
27, 2000.

[4]. “On-The-Go Supplement to the USB 2.0 Specification”,
Revision 1.3, December 5, 2006.

[5]. “Inter-Chip USB Supplement to the USB 2.0
Specification”, Revision 1.0, March 13, 2006.

[6]. “USB System Architecture (USB 2.0)”, MindShare, Inc.,
Don Anderson.

[7]. “eXtensible Host Controller Interface for Universal Serial
Bus (xHCI)”, Revision 1.0, 2010.

[8]. Peter J. Ashenden, “Digital Design: An Embedded System
Approach using Verilog”, Elsevier, 2008.

164 Int'l Conf. Embedded Systems and Applications | ESA'11 |

FPGA Based EKF Estimator for DTC Induction Motor Drives

Abstract – A Field Programmable Gate Array based

Extended Kalman Filter estimator employed in Direct

Torque Control system for Induction Motors is

presented in this paper. The implemented algorithm of

Extended Kalman Filter estimates the required state

space variables of Induction Motor for determining the

switching pattern of Voltage Scours Inverter. The

implementation on FPGA including functional

simulations, as well as the hardware in loop tests is

presented.

 Key words – FPGA; DTC Controller; Sensorless

Control, EKF; Induction Motors

I. INTRODUCTION

 Over recent years, several researches have been

conducted with the aim of proposing alternative

solutions to the Field Oriented Control (FOC) of PWM

inverter-fed drives for Induction Motors. The main

goal of these studies, in essence, was to reducing the

complexity while maintaining the accuracy and

effectiveness of the control system. Among those

solutions, the Direct Torque and Flux (DTFC) control

has gained a wide interest satisfying above mentioned

conditions as alternative to the (FOC) control systems

[1], [2]. Alongside with the increasing interests in the

simplified control strategies there is also a growing

demand to minimizing the cost of the hardware of

control systems highlighting the importance of

sensorless controllers. Several sensorless control

strategies to estimate the rotor speed (thereby position)

of Induction motors eliminating the needs to use their

corresponding mechanical sensors have been also

developed. Among these methods, the Extended

Kalman Filter appears to be an efficient candidate as a

robust online estimation towards random noise

environment, [2], [3], [4].

It is evident, by considering the successively improving

reliability and performance of digital technologies, that

even the most complicated control methods are

achievable by means of nowadays technologies. High

speed Digital Signal Processors (DSP), for instance,

because of their software flexibility and ability to

perform very complex calculations, have been of the

highest interests for those control systems requiring

intensive mathematical computations. However, due to

the their inflexible architecture, this kind of DSP have

been proven to fail to offer sufficiently short execution

time which is vital for stability of the controllers

dealing with the rapid systems, i.e. the systems with

very small time constants. The Field Programmable

Gate Arrays (FPGA) technology has, fortunately,

appeared to be the solution for overcoming the above

mention problem. This technology, providing a flexible

architecture, makes it possible to designate the

appropriate duties to be shared by hardware and

software facilities so as the main goal of minimizing

the overall execution time and/or the resource usage to

be achieved. The application of FPGA covers a vast

area such as signal processing, mathematical

computation, control systems, target tracking,

navigation and robotics [5], [6], [7]. The

implementation of an FPGA, however, faces a major

drawbacks which are the complicated and intensive

operations such as multiplication and division that

demands high computational resources [6], [8].

 An FPGA-based EKF has been implemented in this

study to be used in DTC controller for Induction Motor

Drives. Unfortunately, the whole DTC controller was

not implemented due to the lack of laboratory facilities

such as Induction Motor-Load, VSI inverter, so that the

application was limited to the implementation of EKF

estimators using Xilinx ML506 Evaluation Platform.

The obtained results from MATLAB complete DTC

simulation with those obtained from FPGA were

compared to examine the effectiveness of the EKF

estimator thus implemented.

Yadollah Sabri , Virginie Fresse

Hubert Curien Laboratory UMR CNRS 5516

Jean Monnet University- University de Lyon

18 Rue du Professeur Benoît Lauras 42000

Saint Etienne, France

e-mail: yadollah.sabri@gmail.com

virginie.fresse@univ-stetienne.fr

Rachid Beguenane, Francis Okou

Department of Electrical and

Computer Engineering of RMCC

Stn Forces K7K 7B4

Kingston, Canada

Rachid.Beguenane@rmc.ca

e-

mail :Rachid.Beguenane@rmc.ca

Int'l Conf. Embedded Systems and Applications | ESA'11 | 165

mailto:yadollah.sabri@gmail.com

Over subsequent sections, the description of the

Extended Kalman Filter will be presented including the

main features of DTC controller, this section will be

followed by description of EKF algorithm refinement

and simulations. The development of the FPGA-based

EKF algorithm will be then explained providing the

results of the Hardware in Loop. The time/ area

performance of implemented EKF will be discussed at

the final section of this paper.

II . DESCRPTION OF THE EXTENDED

KALMAN FILTER (EKF)

A. The state space model of induction motor and

description of DTC control system

 The space state model of induction motor can be

written as:

vCxy

wuxfx),(
.

 (1)

Where,

T

ss

T

ss

rrss

iiyVVU

iix

],[,],[

],,,[

r

r

s
rrss

r

s

rrsr

r

s
s

r

s

ssr

r

r
sr

r

r
sss

ssr

r

r
sr

r

r
sss

T

T
Ti

T

M
T

T
T

T
i

T

M
T

V
k

T
kL

MR
T

kL

M
TiT

V
k

T
kL

M
T

kL

MR
TiT

uxf

)1(

)1(

1
)1(

1
)1(

),(
2

2

sr

r

s

s

rs LL

MR

L

R

LL

M
kC

 2

2

,,
00010

00001

W and V in Equation (1) are the model and

measurement disturbances which are statically

described by the zero-mean Gaussian noises and

characterized by covariance matrices Q and R as it will

be illustrated in more detail through subsequent part B.

The Direct Torque Control (DTC) strategy, in

essence, utilizes a specific switching pattern introduced

by Takashi and Noguchi [3] with the aim of achieving

an effective exploitation of the full capacity of

induction machines of producing electromagnetic

torque and flux. Unlike the vector control systems, the

DTC is the simplest in structure as it eliminates the

need of using external current loop, while it attains the

same performance as provided by vector controllers [3].

Therefore, the advantages accrued to this control

strategy as mentioned above have still maintained it in

the top spot of interests for industry sector. The DTC

control strategy, however, relies heavily upon the

precise measurement or estimation of electromagnetic

flux and torque as these two variables determine the

switching pattern to be followed by VSI inverter. The

importance of the electric flux and torque estimation

reveals the necessity of using an identification

algorithm to achieve the goal of DTC control strategy.

The estimation or identification method employs the

Extended Kalman Filter (EKF) in this study, so the

subsequent part describes the main features of EKF.

B . Overview of EKF algorithm

 The Kalman filter is a well-known recursive

algorithm which takes the stochastic state space model

of the system with together measured outputs to

achieve the optimal state estimation of the system

under consideration [2], [3]. The goal of Kalman filter,

as it is outlined below, is to obtain the variables which

are not measurable, i.e. covariance matrices Q, R and P

of the system and measurement noise vectors and state

vectors (x), respectively. The filter estimation (

x) is

obtained from the predicted values of the states (x) and

this is corrected recursively by means of correction

factor as the product of the Kalman gain (L) and the

deviation of estimate and the actual output vector as

(y-C

x).

Figure 1, Systolic of the EKF algorithm

The system and measurement noise covariance denoted

as Q and R, are 55 and 22 diagonal matrices,

respectively.

As previously stated, the state vector to be estimated

is],,,,[rrrss iix

and the estimation

kkx /

Prediction

EKF

Compensator

z
-1

z-1

kk+1

kkx /1

 Innovation

yk+1

1/1

kkx

r

r

r

s

s

i

i

uk+1

166 Int'l Conf. Embedded Systems and Applications | ESA'11 |

procedure of Kalman filter is performed over following

steps as illustrated in block diagram form in figure 1.

1) Prediction of the state vector: The

prediction of state vector at sampling time of (k+1)

from the input vector U(k) and state vector at previous

sampling time (k) is given as:

)2())(),/(()/1(kUkkxfkkx

2) Prediction covariance computation:

The prediction covariance matrix is updated by:

)3()()/()()/1(QkFkkpkFkkp T

Where, Q is the covariance matrix of the system noise

with F given as:

)4()(
)/()(kkxkxX

F
kF

3) Kalman gain computation:

The Kalman filter gain or correction matrix is

computed as:

)5())()1()(()()/1()1(1 RkCkPkCkCkkpkL TT

The prediction covariance matrix is then updated in

terms of Kalman filter gain as:

)6()/1()()1()/1()1/1(kkpkCkLkkpkkp

4) State vector estimation or innovation step: The

predicted state-vector

x (k+1/k) is added to the term referred to as innovation

multiplied by Kalman gain to provide the overall state-

estimation vector

x (k+1/k+1) as:

)7())/1()1()(1()/1()1/1(kkxCkykLkkxkkx

III. Algorithm refinement and fixed-point

simulation

 Prior to dealing with implementation of the FPGA-

based EKF algorithm the complete DTC controller was

first simulated in order to evaluating the functionality

of the whole control system.

Figure 2, Block diagram of DTC control system

The block diagram of DTC controller, as shown in

figure 2, is simulated using MATLAB SIMULINK

environment thereby the performance of simulated

EKF block on estimating the state variables vector

],,,,[rrrss iix

was examined.

VSI

INVERTER IM

abc

rrrss ii

 ,,,, ss vv , ss ii ,

EKF

SwitchingL

UT

ees ,,

Sabc

Int'l Conf. Embedded Systems and Applications | ESA'11 | 167

Figure 3, Actual and estimated state space variables: a)

Isa, b) Isb, c) Phira, d) Wr

Figure 3 summarizes the comparison between actual

and estimated state space vector obtained from

simulated Induction Motor and EKF blocks,

respectively. By examining figures 3 (a) through (d), it

can be seen that the proper convergence between actual

and estimated variables was obtained. Moreover, a

refinement of the EKF algorithm, to be implemented,

was achieved so as the appropriate sampling period of

30 S satisfying the control system stability, as well

as an optimal format of 25-bit fixed-point data is

determined.

IV. Development of the FPGA-based EKF

algorithm

 The EKF as described in section III (B) is an

algorithm requiring a huge number of matrix

calculations such as multiplication, division and

addition. Due to such inevitably intensive matrix

treatments, the FPGA architecture needs a special care

regarding the optimization of consumed hardware

resources without admitting any degradation of timing

performances. The FPGA architecture of EKF

compensator module is presented in figure 4 where the

computation of covariance matrix P(k+1/k+1) and the

optimal Kalman gain L(k+1/k+1) required for

innovation step is illustrated. The whole matrix

multiplication, as shown in figure 4, was achieved

using a single][lnm pipelined multiplier where m, n

and l are the dimensions of two][nm and][ln

matrices to be multiplied at each step. The maximum

value for m, n and l was 5 corresponding to the step

when two F(k) and P(k/k) matrices with dimensions of

]55[were supposed to be multiplied. It should be

mentioned that, due to the dependency of the each step

to its precedent operation, unfortunately in case of

using one single multiplier, there was no possibility to

achieve the concurrent operations. Therefore, the whole

EKF algorithm has been fulfilled in a sequential

procedure as summarized in section II (B).

Figure 4, FPGA- based architecture of the EKF

compensator

 A. Hardware-in-loop (HIL) tests: Figure 5

describes the hardware in loop setup for FPGA-based

EKF estimator. The designed and developed

architecture was implemented in Xilinx FPGA

VIRTEX-5 ML506 Evaluation Platform device using

the RTL Precision Synthesis Tool and Xilinx ISE 10.1

[9].

Figure 5, Hardware in Loop

In the proposed setup, the observed or probed signals

were the MATLAB output stator voltage and currents,

and the output or control signals are the estimated state

variables],,,,[rrrss iix

. Figure 6

summarizes the comparisons between the results

obtained from FPGA and those from MATLAB

simulation model as described in previous sections. By

examining the results shown in figure 6 (a) through (d),

Kalman gain control unit

lnm matrix multiplier

en

Clk
Start

en done

done M n l

Addr_a

A: nm matrix B: ln matrix

Addr_b

En_a

En_b
En_a

S-1

+
-

En_inv
matrix inversion

En_inv

Lk+1

pk/k

+
-

En_b

R

pk+1/k

pk+1/k+1

Xilinx ML506

FPGA Evaluation

Platform

168 Int'l Conf. Embedded Systems and Applications | ESA'11 |

it is easy to notice that the results obtained from

MATLAB SIMULINK and FPGA are in proper

convergence as both have used the same fixed-point

data format of 25-bit. The maximum error between the

corresponding results was less than 2% which was due

to the truncation occurred on multiplier operand being

treated by 25×18 embedded pipelined multiplier of

ML506 Evaluation Platform [9].

Figure 6, HIL results, a) Isa, b) Isb, c) Phira, d) Wr

B. Timing diagram of the DTC controller and

time/area performances: The complete DTC

controller was simulated using MATLAB SIMULINK

environment with the sampling period Ts of 30µS. At

each sampling moment the MATLAB SIMULINK

model updated the electrical quantities of simulated

Induction Motor so as the FPGA board started

performing the Kalman gain computation process using

the latest data provided by MATALB. The EKF

architecture was synchronized using 32 MHz clock

signal so as the whole EKF algorithm was performed in

18.61 µS. After performing each Kalman gain

calculation procedure, the FPGA stopped its operation

and waited for the next incoming start signal produced

by MATLAB.

Figure 7 describes the EKF timing diagram where the

execution time for each step of EKF is shown. The

prediction, Kalman gain calculation and innovation

times are 1.1 µS, 16.99 µS and 1.61 µS, respectively.

The whole EKF execution time is 62% the sampling

period of 30 µS.

Figure 7, EKF timing diagram

It is worthwhile to mention that the whole EKF

algorithm has used only 10% of FPGA resources.

Table 1 summarizes the total resources usage of FPGA

by EKF in more detail.

Table 1, FPGA resources usage

 Available Used Utilization

slice registers 32640 41 1%

Slice LUTs 32640 195 1%

Logics 32640 195 1%

25×18 Hw

multipliers
136 9 7%

V. CONCLUSION

 The design and implementation of the FPGA-based

Extended Kalman Filter estimator was presented in this

(k+1)Ts

tpred
tinov

tEKF

kTs

tgain

(b)

(a)

(c)

(d)

Int'l Conf. Embedded Systems and Applications | ESA'11 | 169

paper. The implemented EKF algorithm as a part of

DTC control system was described focusing on the

FPGA architecture. Simulation and hardware in loop

(HIL) results were provided in order to validate the

performance and effectiveness of the developed design

and the time/area analysis was then presented. The later

proves that the employment of FPGA as a hardware

solution improves considerably the execution time

regarding with DSP-based software solutions.

 By comparing the dimensions of the P and Q

covariance matrices of [5×5] and corresponding total

execution time of developed EKF algorithm of

18.61µS with those presented in [5] as [4×4] and

10.25µS, respectively; it is evident that the developed

algorithm in this study is as effective as that one

developed in [5].

As stated previously, due to the lack of laboratory

facilities, the authors have just implemented the EKF

estimator where the rest of the whole DTC controller

was simulated in MATLAB SIMULINK environment.

However, an examination of time/ area performance of

FPGA architecture reveals that the whole DTC

controller is implementable using one single stand

alone Xilinx ML506 FPGA Platform as the total

recourses used for implementing EKF algorithm is only

10% of available FPGA hardware. The rest of the

resource is quite enough to implement all low speed

adders or multipliers required for designing the

remaining parts of complete DTC controller.

ACKNOWLEDGEMENTS

 This work is granted by the Rhone Alpes Region,

SEMBA projet, Cluster ISLE, France.

REFERENCES

[1] G. Bottiglieri, G. Scelba, Sensorless speed

estimationin induction motor drives, IEEE. Elec.

Mac. IEMDC, pp. 624-630, 2003

[2] M. Barut, O. S. Bogosyan and M. Gokasan, An

EKF based reduced order estimator for the sensorless

control of IMs, Control Applications. CCA

Proceedings of IEEE Conference , pp. 1256-1261,

2003

[3] M. Barut, O. S. Bogosyan and M. Gokasan, EKF

based sensorless direct torque control of IMs in the low

speed range, IEEE Trans. Indus. Elec. ISIE, pp. 696-

974, 2005.

[4] S. Belkacem, F. Naceri and R. Abdessemend,

EKF-based speed sensorless direct torque control of

Induction Motor drives, Asian Journal of Information

Technology 6(2): 185-191, 2007

 [5] L. Idkhajine, E. Monmasson, A. Maalouf, FPGA-

based Sensorless controller for Synchronous Machine

using an Extended Kalman Filter. Power Electronics

and Applications. EPE 09. 13th European Conference

on, Barcelona, 2009

[6] A. Bigdeli, M. Biglari-Abhari, Z. Salic, Y. T. Lai,

A new Pipelined Systolic Array-Based Architecture for

Matrix Inversion in FPGA with Kalman Filter Case

Study, EURASIP Journal on Applied Signal Processing

Vol. 2006

[7] I. Bahri, M-W. Naouar, E. Monmasson, I. Salma-

Belkhodja, L. Charaabi, Design of an FPGA-based

real-time simulator for electrical system, Power

Electronics and Motion Control Conference; EPE-

PEMC September 2008

[8] S. Bologani, M. Zigliotto, M. Zordan, EXtended-

Range PSM Sensorless Speed Drive Based on

Stochatic Filtering, IEEE Trans. On Industrial

Electronics, Vol. 16, No 1, January 2001

[9] Xilinx Data Book, [Online], Available on:

www.xilinx.com

170 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Design and Implementation of Low Complexity Router

for 2D Mesh Topology using FPGA

Maheswari Murali
*
 and Seetharaman Gopalakrishnan

 #

*
Assistant professor, J. J. College of Engineering and Technology, Tiruchirappalli, India

Principal, Oxford Engineering College, Tiruchirappalli, India

Abstract
 Modern platform Field Programmable Gate

Arrays provide larger gate count with increased

performance. This feature allows realization of System On

Chip on modern FPGAs. When the number of cores

increases, the communication demands between cores also

increases in SoCs. Hence, Network On Chip has been

proposed, to meet out the challenges between the cores. In

this paper, a design of low cost, low complexity router for

2D mesh topology is proposed. The low complexity router

is implemented on Altera cyclone II FPGA EP2C35F672C6

device. From the implementation results, the proposed

router is operated with higher speed, lower area and lower

power dissipation compared with previous designs. We

have also tested 2 x 2, 3 x 3 and 4 x 4 mesh for the

designed router and implemented on cyclone II FPGA.

From the implementation results, the proposed one gives

better performance in terms of area, speed and power.

 Key words: FPGA, SOPC, SOC, and NOC

1 Introduction

 In the last decade there has been an increase in the

computation requirement and the number of Intellectuel

property (IP) cores for embedded systems. This has fostered

the development of high performance embedded platforms

that can handle the computational requirements of complex

algorithms. With the advancement of semiconductor

technology, now-a-days embedded platforms like modern

Field Programmable Gate Arrays (FPGAs) have embedded

hard and soft core processors, digital signal processors,

memories, peripherals, and clock management systems.

FPGAs with their Embedded memory and other

specialized functionality have become feasible choice to

implement a System On Chip (SOC) design in Application

Specific Integrated Circuits (ASIC). But for

implementation in ASIC, system complexity will increase

the requirements for on-chip communication. Hence, the

Network On Chip (NOC) has evolved as a solution for

addressing this challenge. In addition, FPGA can also take

up the NOC model in order to support more complex SOC

implementations [1]. For NOC, Router and other logic

can be implemented using programmable logic in FPGA,

and dedicated NOC elements can lead to better

performance and more efficient utilization of on chip FPGA

resources [2, 3]. However a certain degree of

configurability is required even for embedded NOC

support within FPGA. In NOC messages are being routed

through routers called switches [4]. IP cores are connected

to the router through Network Interface (NI). It is shown in

Fig. 1. Connecting IP cores through routers has several

advantages than dedicated bus based wiring. It delivers high

bandwidth, low latency, and low power [5].

 This paper first, describes a reconfigurable router for

2D mesh topology with modified architecture. Second,

the design has also been tested for (2 X 2), (3 x 3)

and (4 x 4) 2D mesh network. In Altera tool, SOPC builder

generates softcore processor NIOS II (32 bit). The

reconfigurable router is implemented using NIOS II

processor.

 The organization of the rest of the paper is as

follows: In section 2, the review of previous work related to

NOC is discussed. In section 3, the router architecture and

design and implementation details are discussed. In section

4, the implementation results and performance analysis are

discussed. Finally section 5, summarizes conclusions.

Fig. 1. 3 X 3 mesh NOC

Int'l Conf. Embedded Systems and Applications | ESA'11 | 171

Fig.2. Router Architecture

2 Review of previous work in NOC

 Literature of NOC shows that most of the work in

Network On Chip have been carried out using ASIC,

However a few research works have been carried out using

FPGA. Important contributions are made to NOC design

in [7] but implementation details are not given. Highly

scalable Network On Chip for reconfigurable systems has

been made in [8]. In this, the design of NOC with virtual

cut through switching which has low latency, and it uses

large buffer which occupies more silicon area. In [9],

design of a router for NOC has been tested for two

applications (FFT & Matrix Multiplication). A scalable

packet switch based router for 2D mesh and torus

topology has been implemented in both FPGA and ASIC

in [10]. R. Gindin et al proposed a design of NOC on

FPGA and used a standard mesh topology. In this

the reconfigurability is limited to routing schemes only. In

[11], a router is designed for 2D mesh topology and it

has been synthesized on Xilinx FPGA. In this, the design

contains limited routing and arbitration and no applications

were tested. Also the design consists of routers that

evaluated with logic simulation only.This router design [11]

is similar to the proposed work in this paper with minar

modifications in the FSM Controller and arbitration. All

the above said works have complex design. But, in this

paper FSM controller is efficiently designed and it occupies

less area, which reduces the complexity of the router

compared to other designs discussed above. The proposed

router and the mesh topologies are implemented and

verified using Altera Nios II processor which first of its

kind.

 3 Router Architecture

 Network On Chip consists of three important

components Router, Processing Element, Network

Interface. The router architecture is shown in Fig. 2.

Routing Node is responsible for forwarding the data

packets to the destination node. Each router has associated

with unique XY address. In a mesh based NOC, a router

has five directional channels. They are EAST, WEST,

NORTH, SOUTH and a Local channel to which design

core is connected. The directional channels connect the

172 Int'l Conf. Embedded Systems and Applications | ESA'11 |

router with its neighboring routers and the local channel is

used to connect the Processing Element to the router.

Processing Element is used to implement the computing

functionality in DSP, Microcontroller or memory block,

and input/output device controller. Network Interface is an

interface between router and design core. It performs two

way communications. First it collects the data from the

design core, then pocketize and adds the header and it

pushes the packet into the router. Second it receives the

packet from the attached router and depacketizes then

sends the data to the Processing Element. Fig. 2 shows the

router architecture which contains input port, output port,

cross bar switch, arbiter and header decoder.The function of

these blocks are explained in the following subsections.

3.1 Input Port

 Each input port shown in fig. 2 has a FIFO buffer

header decoder, and FSM controller. The diagram for

input port is shown in Fig. 3(a). FIFO buffer is used to

store the data packets. Header decoder is used to decode the

destination address. The FSM controller is used to control

all the operations. FIFO buffer is implemented using

Quartus II Mega wizard function. The size of the FIFO

buffer is parameterizable and use 8 bit data width and 32

locations depth to store the packets. When the request

comes from neighboring router, if the FIFO buffer is empty

the input port sends the acknowledgement (ACK) signal to

the neighboring router, after receiving the acknowledgment

the neighboring router sends the first flit. This flit is stored

in the buffer and a signal is sent to the header decoder to

decode the destination address and then first flit is sent to

the header decoder. Header decoder after decoding the

address send a request to an arbiter of the corresponding

output port. If the destination address is matched with

router address, then the particular data is for that

corresponding PE. So the acknowledgement is sent to the

arbiter of the local output channel.

Fig. 3(a). Input Port

3.2 Output Port

 The output port has an arbiter, and a FSM controller.

The diagram for output port is shown in Fig. 3(b).

Each output port has two locations depth buffer to store the

flit temporarily untill it gets access from the down stream

router. In Fig. 3(b), an arbiter is used to resolve the

conflicts when more than one requests come to the same

output port. If more than one requests comes to a particular

output port, the arbiter gives access to only one input port

based on round robin priority. The priority is rotated in

round robin fashion. The input port which has been granted

access to send the remaining flits, then sends the flits to the

output port through the cross bar switch. After receiving the

first flit, the output port sends a request to the neighboring

router to which it is connected. If ACK comes from

neighboring router it sends the flits to next router.

Fig. 3(b). Output Port

 3.3 Cross Bar Switch

 The cross bar switch is shown fig. 2. In the

 proposed router, simultaneously five transmissions

 are possible. Hence each output port has cross bar

 switch, and it is implemented using Multiplexer

 and De-multiplexer. All the input ports are connected

 to the multiplexer inputs and all the De-multiplexer

 outputs are connected to all the output ports except its

 own output port . Each output channel configures the

 multiplexers and De- multiplexer to establish the

 appropriate input-output connection.

3.4 Arbiter

 The arbiter is shown in fig. 2. The arbiter resolves

the problem if requests come from more than one input

ports to the same output port and gives access to only one

input port using round robin priority. This arbiter assigns

priority in round robin fashion in the order east, west, north,

Int'l Conf. Embedded Systems and Applications | ESA'11 | 173

south, and local. For example if east input port is assigned

with the highest priority and then the next highest priority is

assigned to west input port. The arbiter gives access to east

input port first and then west input port and so on.

 3.5 Header Decoder

 The Header decoder in the input port is shown in

fig.3(a). In this paper, XY routing algorithm is proposed.

Each router has its unique coordinate as address (X,Y).

When the header decoder receives the destination

address (Rx, Ry), it compares local X coordinate with the

destination coordinate Rx, and sends the packet through

east channel if Rx > X and through west channel if Rx < X.

If Rx is equal to the local X coordinate, then Y coordinate

of the router is compared with destination coordinate Ry. If

Ry > Y coordinate then the packet is routed through North

Channel, else the packet is routed through south channel. If

Ry =Y, then the packet is sent through the local channel to

the Processing Element.

3.6 SOPC approach for NOC

 Altera System On Programmable Chip (SOPC)

Builder is used to add the design element. Using SOPC

builder, the proposed router and all mesh topologies are

added to the Nios II processor as the custom block. The

program to be executed and verified by writing in C using

Nios II IDE [12]. The custom block is invoked as the

function in C code. The C program is complied and the

configuration bits are downloaded to the FPGA for

verification.

4 Implementation Results &

 Performance Analysis

 The proposed router is implemented on Altera

cyclone II FPGA. It has been designed by writing HDL.

The buffer which is used to store the flits decides the area

of the router. Hence, the proposed design uses FIFO buffer

which is available in Quartus II mega wizard function. The

FIFO which is used in this design is a parameterizable. The

data width is 8 bit and the depth of the buffer is chosen as

32 locations for testing purpose. The flow control

mechanism used is wormhole method which requires less

buffer size to store the data. The proposed design uses

XY routing algorithm.

 In the proposed design uses random number

generator to generate random numbers. First, this random

number generator is connected to all the input channels and

verified the data from the output channels of a single router.

Second, the 2D mesh topology is implemented with the

designed router and verified using random number

generator for 2 X 2 configurations. The same method has

been adopted to test 3 x 3, 4 x 4 configurations of 2D mesh.

The designed router has been implemented on Altera

cyclone II FPGA EP2C35F672C6 device [6]. We used

Quartus II 8.1 to synthesis and simulate the RTL design.

The area and the speed of the single router, 2 x 2 and 3 x 3

mesh configurations are compared with the design of [11].

The proposed design occupies 20% less area and 50%

higher speed. The synthesis results are shown in figure. 4.

The simulation result shown in the figure. 5. The RTL

schematic view of the proposed router is shown in

figure. 6.

4.1 Synthesis Report

The implementation of the proposed router

occupies 592 LUTs which is only 2% of the total Altera

EP2C35F672C6 device. The area occupied by the 2 x 2,

mesh is 1374 LUTs which is only 4% of the total area 3 x

3 is 2645 which is 8% of total area, and 4 x 4 mesh is 3634

which is 12% of total area.

4.2 Power Analysis

From the implementation results, the power

dissipation for single router, 2 x 2 and 3 x 3 are shown in

figure 4. The power dissipation is measured using Power

play power Analyzer tool available with Altera Quartus

8.1. The power dissipation for the single router design is

found to be low compared to [11]. The proposed design

consumes only 120mw of thermal power dissipation, 80mw

of core static thermal power, and 38mw I/O thermal power

dissipation.

Fig. 4. Implementation Result

174 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Fig. 5. Simulation result of single router

clk

grnt_local

grnt_north

grnt_south

grnt_west

reqin_east

rst

ack_west

ackout_east

req_to_west

dataout_east[7..0]

0

0

0

ack_from_east

ack_from_local

ackin_west

clk

req_from_east

req_from_local

rst

muxin_east[7..0]

muxin_local[7..0]

muxin_west[7..0]

grnt_to_east

reqout_west

dataout_west[7..0]

0

0

clk

grnt_local

grnt_north

reqin_south

rst

ack_to_north

ackout_south

req_to_north

dataout_south[7..0]

0

ack_from_east

ack_from_local

ack_from_south

ack_from_west

ackin_north

clk

req_from_east

req_from_local

req_from_south

req_from_west

rst

muxin_east[7..0]

muxin_local[7..0]

muxin_west[7..0]

muxin_north[7..0]

muxin_south[7..0]

grnt_to_south

reqout_north

dataout_north[7..0]

0

0

0

0

0

0

clk

grnt_east

grnt_local

grnt_north

grnt_south

reqin_west

rst

ack_south

ackout_west

req_to_south

dataout_west[7..0]

ack_from_east

ack_from_local

ack_from_north

ack_from_west

ackin_south

clk

req_from_east

req_from_local

req_from_north

req_from_west

rst

muxin_east[7..0]

muxin_local[7..0]

muxin_west[7..0]

muxin_north[7..0]

muxin_south[7..0]

grnt_to_west

reqout_south

dataout_south[7..0]

clk

grnt_from_east

grnt_from_north

grnt_from_south

grnt_from_west

reqin_local

rst

ack_to_east

ackout_local

req_to_east

dataout_local[7..0]

ack_from_local

ack_from_west

ackin_east

clk

req_from_local

req_from_west

rst

muxin_east[7..0]

muxin_local[7..0]

muxin_west[7..0]

grnt_to_local

reqout_east

dataout_east[7..0]

clk

grnt_local

grnt_south

reqin_north

rst

ack_local

ackout_north

req_to_local

dataout_north[7..0]

0

ack_from_core

ack_from_east

ack_from_north

ack_from_south

ack_from_west

clk

req_from_east

req_from_north

req_from_south

req_from_west

rst

muxin_east[7..0]

muxin_local[7..0]

muxin_west[7..0]

muxin_north[7..0]

muxin_south[7..0]

grnt_to_north

req_to_core

dataout_local[7..0]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

east_inputchannel_new:ea1
west_outputchannel_new:we1

8' h00 --

8' h00 --

south_inputchannel:sou1

north_outputchannel:nor5

8' h00 --

8' h00 --

8' h00 --

8' h00 --

north_inputchannel:nor1

clk

rst

reqin_east

ackout_east

reqout_west

ackin_west

reqin_south

ackout_south

reqout_north

ackin_north

reqin_west

ackout_west

reqout_south

ackin_south

reqin_local

ackout_local

reqout_eas t

ackin_east

reqin_north

ackout_north

reqout_local

ackin_local

dataout_west[7..0]

dataout_north[7..0]

dataout_south[7..0]

dataout_eas t[7..0]

dataout_local[7..0]

west_inputchannel:w1

local_inputchannel:l2

south_outputchannel:sou2

8' h00 --

8' h00 --

8' h00 --

8' h00 --

east_outputchannel:e2

8' h00 --

8' h00 --

local_outputchannel:l1

8' h00 --

8' h00 --

8' h00 --

8' h00 --

Fig. 6. RTL Schematic view of single route

5 Conclusions

The proposed router has been designed for 2D

mesh topology which has low complexity and high speed.

The single router and 2 x 2, 3 x 3, 4 x 4 mesh topology have

been implemented and tested with SOPC using NIOS II

processor. From the implementation results, it is found that

the proposed router is operated with higher speed and lower

area and lower power dissipation compared with the

previous design. Our future work is to test the signal

processing application using this proposed router.

6. References

[1]. Ronny Pau and Naraig Manjikian

“High level Specification and logic

implementation of Single chip

Multiprocessor system based on a

configurable router” IEEE, pp.1039- 1044,

2008.

[2]. H.Elmiligi et al . “Introducing

OperaNP : A Reconfigurable NoC based

platform” Proc.2007 IEEE Canadian Con.

On Electrical and computer Engineering,

pp. 940-943, 2007.

[3]. R. Gindin et al .“NoC based FPGA

Architecture and routing” In Proc.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 175

Intet. Sympo. on Network On chip, pp 253-

264, 2007.

[4]. W.J.Dolly and B.Towles “Principles

and Practices of Interconnect

Networks”. Morgan Kaufmann Publishers –

2003.

[5]. T.Bjerregaard and S. Mahadevan “A

survey of Research Practices of Network

On Chip” ACM Computing Survey Vol-

38, no-1, pp. 1-51, 2008.

[6]. Altera Inc. http :// www.altera.com.

[7]. L.Benni and G. D Micheli “Network on

Chips: A new SOC Paradigm” IEEE

Computer, vol. 35 no.1 , pp. 70-78 , 2002.

[8]. A. Batric et al. “Highly Scalable Network

On Chip for reconfigurable systems” In

proceedings of the International Conference

on Systems On Chip 2003, pp. 79-82,

NOV. 2003.

[9]. Gaoming Du, Duolo Zhang et al

“Scalability Study on mesh based

Network On Chip” IEEE PAWCIIA-

2008, pp. 681-685, 2008.

[10]. Yahia SALAH, Mohamed ATRI,

Rached TOURKI “Design of a 2D Mesh-

Torus Router for Network On Chip”

IEEE International Symposium on Signal

Processing and Information Technology,

pp. 626 – 631, 2007.

[11]. Balasubramanian Sethuraman , et al

“LiPaR: A Light Weight Parallel

Router for FPGA based Network On

Chip” GLSVLSI, pp. 452 – 457, 2005.

[12]. G.Seetharaman and B. Venkatramani

“SOC implementation of wave

pipelined circuits” Proc. of International

Conference on Field Programmable

Technology, (ICFPT’2007) pp.9-16, Japan,

2007.

176 Int'l Conf. Embedded Systems and Applications | ESA'11 |

SESSION

EMBEDDED SYSTEMS + MICROCONTROLLERS
+ SMART CARDS + SYSTEM ON CHIP + SENSORS

Chair(s)

Prof. Hamid R. Arabnia

Int'l Conf. Embedded Systems and Applications | ESA'11 | 177

178 Int'l Conf. Embedded Systems and Applications | ESA'11 |

SCADA IMPLEMENTATION USING GSM NETWORK
FOR COMMUNICATION

A. Dr. Riaz Ul Hasnain Syed1, B. Engr. Haider Zaman2, and C. Engr. M. Hanif3

Electronic Engineering Department, University of Engineering and Technology Peshawar, Abbottabad
Campus, Pakistan.

Abstract - Remote and centralized control is the basic need of
todays industrial control systems, where a separate
microcomputer monitors and controls the process at each
remote unit. Collecting and displaying data from remote sites
on a single monitoring unit let the operator to supervise all
the sites, regardless of the volume of industry.

Different aspects of Supervisory Control And Data Aquisition
(SCADA) system is a vast field for the researchers. This paper
presents an implementation of a SCADA system, and
particulary focused on the communication scheme between
Remote Terminal Unit (RTU) and the Master Terminal Unit
(MTU). The developed system consist of a single Remote Unit
that is a microcontroller based system with temprature sensor,
relays and a DC motor interfaces. A windows application is
developed working as the master unit that communicate with
the RTU through short messaging services(SMS).The RTU
collects data through its interfaces and transmit for MTU
using the Global System for Mobile communication (GSM)
network.

The proposed system is simulated using Proteus and the
positive, accurate and timely response approved the system
for implementation.

Keywords: Supervisory Control and Data Aquisition, Remote
Terminal Unit (RTU), Master Terminal Unit (MTU),
Microcontroller.

1 Introduction
 Distributed Control System (DCS) is employed in case
of large industrial setup, where the whole system is divided
into sections each unit performing a particular task out of the
whole process, that is each working as an embedded system.
The units communicate to work in collaboration with each
other and a Master Station to complete the process cycle.

Many manufacturing companies have developed products to
meet the DCS requirments, such that they could control a
process and communicate with the other units whenever
required.

Varoius researches have been presented regarding control and
communication technology in a SCADA system. In
communication case the researches are focused on the

responsiveness, low cost, security and efficiency of the
communication system [1].

Keeping these aspects in mind the developed system utalizes
the GSM network. GSM is a well tested and implemented
network with a large span advantages including all the above
mentioned.

 A SCADA system consists of the following components an
MTU, RTUs and communication system between MTU and
RTUs also between two RTUs.

 The block diagram of the system is as shown in Fig.1. In this
implementation the complete SCADA system is developed. A
microcontroller based RTU and a software package collecting
data serving as MTU while the wirless communication is
implemented with the help of GSM network.

 Fig. 1: SCADA System

2 Remote Terminal Unit
The Remote Terminal Unit is usually defined as a

communication satellite within the SCADA system and is
located at the remote site. The RTU gathers data from field
devices stores in memory until the MTU initiates a send
command [2].
A microcontroller based system is serving as RTU in this
implemention. Although there could be more than one RTU
depending on the senerio, however the experiment has been
carried out with a single RTU.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 179

The microchip PIC18F452 has been used, that is an 8-bit
microcontroller, with 32 K flash, 32 digital I/0 , and 8 analog
input channels[3]. Project development with PIC controller is
extremly easy. Especialy the programming tools available for
these controller are more user friendly.
Fig.2 shows the RTU interfaces. The temperature sensor reads
the temperature of the unit and displays on a LCD display.
The LM35 has been chosen as it is a low cost and voltage
output, semiconductor temprature sensor, that can read
temparture from -50 to 150 degree celsius. The output voltage
varies for 0 - 2.5 V with a small amount of noise. A non
inverting amplifier has been used that redefine the output
voltages as 0-5V.

Fig.2: Remote Terminal Unit

Three Relays are interfaced with microcontroller to control
three different ac devices. 100 W bulbs are used for the
experimental purpose. Since microcontroller cannot source
enough current to excite the windings of a relay so relay
driver (ULN2803) are employed to meet the current and
voltage rating of relays.

The DC motor has been interfaced such that not only its speed
but direction can be changed. Again the problem of current
sourcing capability of microcontroller, L293D has been
chosen that is an H-Bridge drive with built-in protection
diodes.

3 Master Terminal Unit

The master unit is the central control, and is the core part of a
SCADA system, that provides interface for operator. The
MTU collects data from remote fields, process that data and
sends instructions and commands accordingly.

The developed application is programmed such that it sends a
data request message after every 3 seconds. In response the
RTU verifies the number acting as address of MTU and reply
with temperature, duty cycle of the Pulse Width Modulated
signal and status of the all the three relays.
The controls provided in the Graphical User Interface (GUI)
are according to the RTU interfaces. The RTU’s temperature
sensor data received is displayed on thermometer scale, the
DC motor speed on gauge and state of relays through a bool
data-type LED (Light Emitting Diode). Two different colors
are assigned to both states of relays. The GUI is refreshed in
every 3 seconds by receiving SMS from MTU. The two-way
switches can change state of the relays at RTU. GUI is shown
in Fig. 3. The developed software can store the temperature
history and a graph is of temperature verses time is provided
in tab. Temperature history graph is shown in Fig. 4.

Fig.3: Developed Software

Operating the software package is very easy all Operater has
to do is to enter the destination mobile number, COM port,
baud rate (supported by the mobile set being used) for
communication.
The interface can also be developed with lab view VIs. The
C# is preffered because it results into a standalone package
installable on windows system. However the controls of the
measurement studio are better tools for designing control
interfaces e.g the thermometer, the gauge, LED and switches
are the part of measurement studio library.

“TRACE MODE” and “Winlog SCADA” are the software
packages used to develop SCADA systems. The
communication protocols of PLCs from various
manufacturers are defined in these tools.

180 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Fig. 4: Temperature History Graph

4 Communication

Communication infrastructure connects the Remote Terminal
Units to supervisory system. Data is transmitted between
master unit and remote unit through communication unit.
Communication can be a through a wired or wireless media
depending on the distance separating the Units. Wired media
is preffered in case of small distance while wirless is preffered
in long distance case. The main concerns of SCADA
networks are its functionality and security.
In this implementation GSM network is employed that is a
wireless communication technology; most popular today for
transmitting data anywhere in the world. The GSM
performance, reliability, flexibility are robust. GSM is more
responsive as it provides authentication of messages
delivering. GSM services are very economic and are
available universally [2].

The GSM modules has been interfaced with RTU and MTU
working as transceivers in this implementation. Both units
communicate with the GSM modules serially through AT
commands sets. In this message-based polling system a
unique message format has been implemented, conveying
RTU’s interfaces status.
Many SCADA systems these days employ internet for
communication. However internet represent a significant
vulnerability to cyber attacks to the SCADA network. If any
location that has a connection to the SCADA network can be
a target, especially unguarded remote sites [4]. If Cyber
system is not protected at each layer against other systems so
the system can be hacked. So, for cyber security additional
measures have to be taken for providing security. It is good
security engineering practice to avoid connecting SCADA

systems to the Internet so the attack surface is reduced.
Internet system is at risk of shutting down, if any fault is
introduced in the optical fiber e.g if cable is damaged, it is a
time consuming and cumbersome job to repair or replace.

GSM infrastructure for communication between MTU and
RTU has been chosen as it is more responsive, low cost,
secure system and efficient.

In this SCADA implementation unique, proprietary protocols
for communications between field devices and master
terminal unit has been used.The security of SCADA systems
is based on the secrecy of these protocols, which we have
defined our own protocols for both transmission and
reception.

5 Conclusions
 The implemented system can be extended for more than
one RTU. It can control devices at much higher level in
industries. Along with communication between RTU and
MTU, inter-RTU communication can also be established.
Security of the SCADA system can be ensured for
communication between RTU and MTU. GSM is a
communication mechanism for concise information and with
ability to screen messages. SMS benefits including the
delivery of notifications and alerts, guaranteed message
delivery, reliable and low-cost. Moreover, as far as the
messages are concerned they are in specific codes so cannot
be analyzed by intruders.

6 References
[1] Allen Bradley “SCADA System Application guide”
Rockwell automation, Publication AG-UM008C-EN-P-
February 2005.
[2] Architecture for secure scada and distributed control
system networks, comprehensive network-based security for
control systems”, 2010, juniper networks, inc.
[3] Mohammad Ali Mazidi “ The 8051 Microcontroller
and Embedded Systems” Prentice Hall, 2nd Edition, 2006.
[4] “21 steps to improve cyber security of SCADA
networks”, The President’s Critical Infrastructure Protection
Board, Office of Energy Assurance, U.S. Department of
Energy 202/287-1808.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 181

Design of an HVAC Zone Control System

Bassam Shaer and Dana M. Wadsworth
Electrical and Computer Engineering Department, University of West Florida

Shalimar, Florida, United States

Abstract - This paper deals with the concept of temperature
control inside an environmentally controlled structure. In
most cases, the temperature inside a home or business is
controlled by a centrally located thermostat. The thermostat
senses the temperature at the central location and controls the
Heating, Ventilating, and Air Conditioning (HVAC) unit based
on the centralized temperature. A feasible design has been
developed for providing independent temperature for each
zone instead of the centrally located thermostat. The design
incorporates a temperature sensor circuit and a transmitter
for multiple zones. The transmitted data is received and
transferred to a microcontroller that invokes an algorithm that
controls the HVAC system based on the inputs from the
temperature sensors as well as the system thermostat. The
microcontroller also provides control for motorized vent
registers to vary the airflow in each zone based on the
temperature sensor data and provides LCD readout for
centralized monitoring.

Keywords: temperature control, multiple zones, HVAC
system, microcontroller

1 Introduction
 This paper deals with the concept of temperature control
inside an environmentally controlled structure. In most cases,
the temperature inside a home or business is controlled by a
centrally located thermostat. The thermostat senses the
temperature at the central location and controls the Heating,
Ventilating, and Air Conditioning (HVAC) unit based on the
centralized temperature. This project designed and produced
a control system that remotely senses temperatures in
multiple areas and uses a microcontroller to maintain a
consistent temperature throughout the interior of the structure.
This is done by installing remote temperature sensors in
different areas of the structure that report temperature back to
a central controller and in turn control the HVAC on and off
state and close motorized vent registers in the area of interest
when the temperature has reached the desired value

2 Problem Definition
 All environmentally controlled structures, whether
residential or commercial, require some type of control to
enable the HVAC unit to maintain a constant temperature
throughout the interior of the structure. In most cases this is
accomplished by using a centrally located thermostat that
senses the temperature and turns the HVAC on and off based

on the desired temperature provided by the user. Many
variables such as uneven air flow, room size, window
placement, window size, and time of day can cause the
temperatures of areas within the structure to vary greatly from
the central thermostat. Therefore, there was a need to develop
a system that will sense temperatures in multiple locations
throughout the structure independently and control the HVAC
run time accordingly.
 This product is intended for use in the situation where
temperature variations by area are a concern within an
environmentally controlled structure. Both commercial and
residential applications would benefit from this design. Users
would include people or companies that want all areas within
a structure, not just a centrally located area, to maintain a
constant temperature.

 The objectives of this design are as follows:

The temperature sensing circuit shall:

 Use the LM34 Precision Fahrenheit temperature sensor
in a remote sensing circuit designed to detect
temperature and produce a DC voltage that is directly
proportional to the ambient room temperature.

The Analog to Digital Converter circuit shall:

 Convert the DC Fahrenheit voltage from the LM34
temperature sensing circuit to a digital data stream that
can be transferred via wireless connection from the
remote sensing circuit to the centralized system
controller.

The wireless communications circuit shall:

 Use the XBEE RF transceiver pair operating at 2.4 GHz
to transfer digital data via wireless from the remote
sensor circuit to the centralized system controller.

The Microcontroller circuit shall:

 Use the Atmel ATmega168 series microcontroller to
develop a control system that will receive digital
temperature data from multiple remote sensing circuits
as well as a centralized thermostat and implement a
control algorithm that provides open/close control to
motorized HVAC vent registers in multiple areas as well
as HVAC on/off control.

182 Int'l Conf. Embedded Systems and Applications | ESA'11 |

 The final product is a remote monitoring system that
maintains a specified temperature throughout an
environmentally controlled structure. This is done with the
use of remote temperature sensing circuits and an ATmega
microcontroller algorithm to turn on and off the HVAC and
motorized HVAC vent registers. The monitoring system
detects ambient room temperature in various locations,
transfers this temperature data via wireless communications
to a centralized control circuit that will use the control
algorithm to control the HVAC and operate motorized vent
registers in order maintain the specified temperature in
multiple areas of a residential or commercial building

3 Details of the System

3.1 Temperature Sensor Circuit

 Figure 1 shows how the entire system is implemented.
The system consists of at least two subsystems; the
temperature sensor subsystem and the HVAC control
subsystem. Multiple temperature sensor subsystems will be
dependent on the number of areas to be monitored and
controlled. The block diagram in Figure 1 shows two
subsystems isolated from each other. The two subsystems are
shown connected by an RF network. Figures 2 and 3 show
each subsystem in greater detail

Figure 1. Complete System Block Diagram

 The function of the temperature sensing circuit is to
sense the ambient room temperature and provide it to the
control system and LED display sub circuit. The first
component of the sensor circuit is the LM 34. The LM 34 is a
precision integrated-circuit temperature sensor, whose output
voltage is linearly proportional to the Fahrenheit temperature.
The advantage of using the LM 34 over other temperature
sensors is the linear to Fahrenheit output voltage. The LM 34
requires no calibration and is accurate at room temperatures
to 0.5 degrees. The TO-92 package was chosen to get the
sensor away from the other components and as far into the
ambient room air as possible. The sensor has a +5V supply
voltage and the output is a DC voltage at 10mV/degree F.
The typical room temperature of 78 degrees will be processed
as 780 mV. The output of the LM 34 provides data to the
input of two devices. The first is an ADC 8084 8 bit parallel
output Analog to Digital Converter (ADC). The ADC 8084

will convert the output of the LM 34, which is in the mV
scale to a digital signal that will be placed on the parallel
output pins D0-D7. The negative reference voltage will be
ground and the positive will be set by a reference voltage sub
circuit. The ADC is powered by a single +5V supply. The
reference circuit consists of a LM336 2.5V shunt regulator
diode, a 10K potentiometer and an LM358 operational
amplifier. With a +5V supply the shunt diode maintains a
stable 2.5V reference that is used to adjust the input to the op
amp. The op amp is used as a buffer and provides a 1.28V
input to the Vref/2 input of the ADC. The 1.28V input sets
the ADC reference voltage to 2.56V which provides a digital
resolution of 1 bit per degree F.

Figure 2. Temperature Sensor Subsystem

Figure 3. HVAC Control Subsystem

 The ADC is operated in a free running/self-clocking
mode. No additional circuitry design was required. The data
sheet for the ADC0804 provides the wiring and components
required for this mode.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 183

 The output of the LM 34 will also drive a TC7107A
ADC with 7 segment display driver output. The TC7107A
eliminates the need for any binary to BCD conversion and
BCD to display drivers. The output of the TC7107A will
drive 3 - 7 segment LED readouts to provide a temperature
monitor at the point of temperature sensing. This will provide
the user with information to make decisions as to where the
sensor will be located. The actual readout will be in the mV
range with the decimal point after the second digit wired for a
constant “on” indicating a temperature in degrees and decimal
degrees. The TC7107A typically requires a -5V and +5V
supply but is capable of operating in certain circumstances
with a single +5V supply. The additional circuitry required
for an additional reference voltage was not cost effective and
using a charge pump DC-DC Voltage Converter was found to
be the most efficient. The TC7660 DC-DC Voltage
Converter was used to provide the -5V supply.
 The TC7107A has a built-in ADC that is driven by the
same analog signal driving the ADC0804. The TC7107A
requires a 1V reference voltage between the Vref and –Vref.
The –Vref is grounded and a voltage reference circuit
provides the 1V reference to the Vref pin. Three clocking
methods can be used for the TC7107A, an external oscillator
connected to pin 40, a crystal between pins 39 and 40 or a
self-clocking circuit using an RC circuit between pins 38, 39,
and 40. Like the ADC0804, the TC7107A is operated in the
self-clocking mode.
 The parallel data output of the ADC0804 along with
additional RT address bits are loaded into bits of three
HEF4021B, 8 Bit shift registers. The 8 bit temperature data
along with a 4 bit RT address is embedded into a 24 bit digital
data stream. This is done by parallel loading the temperature
data into the asynchronous parallel data inputs. The start and
stop bits for the temperature data are hard wired to either +5V
or ground as is the RT address bits. The serial data output
from the third register is wired to the serial data input of the
second shift register and the second to the first. The serial
data out of the first register will be the 24 bit UART serial
data stream.
 This data stream is shifted out of the three registers and
transferred to the RF transmit circuit using the UART
protocol. UART protocol requires a high idle state so the
initial bit in the 24 bit stream will be high. The next bit is the
“low” start bit for the RT address followed by the RT address
and a stop bit. After a 3 bit idle state between the two 8 bit
words, the temperature data preceded by a start bit and
followed by a high stop bit follows the RT Address word.
Figure 4 shows a diagram for the 24 bit data stream.

Figure 4. UART Digital Data Stream Diagram

 The shift registers’ timing is controlled by a NE556N
general purpose dual bipolar timer IC. The timer IC controls
both the parallel load/Shift functions of the shift register but
also the frequency at which the data is shifted.

 The first timer controls the load/shift of the registers.
The HEF4021B is designed to load data from the
asynchronous parallel inputs when the PL pin is high. When
PL is low the data is shifted out. A single timer is used that
toggles between high and low state alternately loading the
register and then shifting the data. The second timer is used
to set the clock at which the data is shifted out of the
registers. This effectively sets the bit rate or BAUD rate of
the digital bit stream. This rate is critical to interfacing to the
MCU controlling the HVAC.
 Both timers are operated in the astable operation. The
load/shift timer components were calculated for various clock
rates from 10 seconds to 15 seconds. Each temperature
sensor circuit has a unique shift cycle which creates a pseudo
TDMA network with each sensor transmitting data at
different intervals. . Figure 5 shows the typical diagram used
for both timer circuits operating in the astable mode.

Figure 5. Astable Timer

 The clock timer was calculated for 4800 BAUD. A
fixed resistance value is used for RA and a potentiometer that
gives adequate swing on both sides of the calculated value for
RB was used to allow adjustment of the BAUD rate. The
BAUD rate was critical due to the interface with the
transmission medium. An oscilloscope and an initial test
pattern were used to set the BAUD rate. The test pattern was
then connected to the UART input of the MCU. RB was then
adjusted until the MCU read the proper value without frame
error indications.
 The output of the shift registers is then be provided to
the input of an XBEE ZB RF module, which consists of
ZigBee firmware loaded onto an XBee S2 hardware model:
XBEE2. The XBEE modules operate within the ISM 2.4
GHz frequency band and are used in transparent mode. When
operating in transparent mode, the modules act as a serial line
replacement. All UART data received through the DIN pin is
queued up for RF transmission. When RF data is received,
the data is sent out through the DOUT pin. The module
configuration parameters are configured using the AT
command mode interface. For this application the XBEE is
configured to match the output signal of the sensor circuit in
respect to number of bits, no parity, single stop bit and 4800
BAUD rate.

184 Int'l Conf. Embedded Systems and Applications | ESA'11 |

 The final circuit senses the local temperature using the
LM34 analog temperature sensor; converts the analog signal
to a digital signal for local display and remote transmission.
The temperature is displayed locally using the TC7107 ADC
7 segment display driver and 7 segment displays. After
analog to digital conversion, the digital temperature signal is
transferred to the parallel input of the HEF4021B 8 bit shift
register along with management bits to form a serial UART
signal that is transmitted via the XBEE RF transceiver.
Figure 6 shows the complete temperature sensor schematic
(less the local display circuit).

Figure 6. Temperature Sensor Schematic

 The finished temperature sensor module was designed to
be powered by a typical DC wall transformer. The module
draws less than 500mA. A typical 600mA wall transformer
was used for the power supply. A 7805 5 volt power
regulator was used to provide the TTL logic for the circuitry.
Figure 7 shows the prototype sensor circuit.

Figure 7. Temperature Sensor Module

3.2 Centralized HVAC Control Circuit

The function of the centralized HVAC control system is to
take total control away from the system thermostat. The core
component of the control circuit is an ATmega168. The

ATMega168 is a High Performance, Low Power Atmel®
AVR® 8-Bit Microcontroller Unit (MCU). The MCU
acquires digital temperature information from the remote
temperature sensor circuits. This data along with control
inputs from the system thermostat is sampled by the MCU to
make logical decisions for system power on and power off
and remote vent register operation.

The Honeywell RTH3100C thermostat provides inputs to an
MCU that are normally input directly to the HVAC. The
thermostat typically has two 24V inputs that are applied to the
actuator of a power relay during the on state of the heat or
cool cycle. These inputs are provided to the MCU on pins
PB1 and PB2 in the form of TTL logic. The thermostat is
connected to +5 V that is in an on state is shorted to an input
of the MCU indicating that the system thermostat is in its on
state.

The control system turns the system on and off based on
inputs by not only the centralized system thermostat, but also
the inputs provided by the temperature sensing circuits.
Temperature sensor inputs are input on pin PD0 which is set
up for UART serial receive. Eight bit digital temperature data
is decoded from the UART receive data stream and compared
to the desired temperature of operation determined by the
user.

The control system has a temperature set input for the user
to control the temperature of operation. This was
accomplished by using the ADC of the MCU. A simple
voltage divider circuit was used to provide a voltage from 0 to
1V at the input of the ADC on pin PC0 which is set up for
ADC operation. This analog signal is decoded by the MCU
software as a temperature for 0 to 100 degrees.

Heating or cooling operation of the control system is
determined by the state of the Heat/Cool switch. A SPDT
switch provides a TTL logic input to pin PC5. Logic high
places the system in heating mode; logic low places the
system in a cooling mode.

The MCU control circuit also provides the user with LCD
readout to monitor the system temperature setting and the
remote zone temperatures. Figure 8 shows the MCU control
circuitry complete with the XBEE transceiver and LCD
readout.

After receiving the temperature data from the remote
temperature sensors and logic from the system thermostat, the
MCU implements a system control algorithm that provides on
and off logic as well as control to a motorized vent register
circuit. Figure 9 shows control circuit algorithm flowchart for
decision making and system control. If the MCU determines
that any monitored zone or the local thermostat requires
climate control, the MCU turns on the HVAC according to the
temperature setting. The MCU then determine which zones if
any do not require climate control, and close the appropriate
zone vents. Figure 10 shows the integrated thermostat and
HVAC Control Module.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 185

Figure 9. MCU Control Circuit

Figure 10. Integrated HVAC Control Module

3.3 Motorized Vent Register Circuit

One major component of the remote climate control is the
use of motorized vent registers. The motorized vent register
circuit consists of airflow dampeners installed inside the
HVAC duct work. The airflow restrictor is controlled by
stepper motors driven by the MCU. Figure 11 shows the
diagram.

The stepper motors used are small hybrid bipolar stepping
motors with a 1.8° step angle (200 steps/revolution). Each
phase of the stepper motor draws 600 mA at 3.9 V, allowing
for a holding torque of 180 g-cm (2.5 oz-in). The motors have
four color-coded wires and a 4mm-diameter output shaft.

The stepper motor is driven by an A4983 stepper motor
driver board. The driver board is controlled by two
connections from the MCU (step and direction) that will
advance the motor by 50 steps open to close. The driver
board gets its power from the 16V DC transformer used to
power the MCU control circuit and uses a built in power
regulator.

Figure 11. Motorized Vent Register Circuit

3.4 MCU Control Algorithm

The MCU invokes a control algorithm that provides on and
off commands based on the thermostat and temperature
sensors. The algorithm also makes decisions based on these
inputs to set the position of the vent registers and provide the
user with centralized temperature monitoring. The software
code used to develop the MCU control algorithm relied
heavily on sample code from the Nerdkits Guide [9] as a
starting point. Example code from Nerdkit projects were
integrated into the final software design to provide the MCU
ADC, delays, UART, and LCD display functionality. The
MCU logic flowchart is shown in Figure 12. The following
steps describe the flow of the MCU algorithm.
1. Determine the value of the system temperature setting.
2. Read UART input and determine the RT address and

associated temperature data.
3. Determine the absence of any zone reports for a certain set

time threshold.
4. Set any zone that exceeds threshold to off.
5. Print system temperature setting and zone temperature to

LCD.
6. Determine the Heat/Cool setting.
7. Compare temperature setting to zone temperature and adjust

vents accordingly.
8. Determine if thermostat is providing an on command and if

so turn system on.
9. Determine if zone temperatures require system to be on and

if so turn system on.
10. Repeat steps 1-9

186 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Figure 12. MCU Logic Flowchart

4 Conclusions
 The intended users are customers needing to evenly
distribute HVAC airflow throughout multiple zones. A
solution was found for the project design. The design
incorporated a temperature sensor circuit using an analog
temperature sensor that drives two analog to digital
converters that in turn drive a 7 segment LED display and an
RF transmitter. The digital data that is transmitted contains
one of eight possible RT addresses representing a single zone
and eight bits of digital temperature data. Each transmitter is
timed to transmit out of phase with the other transmitters, thus
providing a pseudo TDMA network where and all
transmitters can use the same frequency. The transmitted
data is received by a compatible receiver and transferred to a
microcontroller that invokes an algorithm that turns on and
off the HVAC system based on the inputs from the
temperature sensors as well as the system thermostat. The
microcontroller also provides control for motorized vent
registers to vary the airflow in each zone based on the
temperature sensor data. A prototype unit was built and
tested, and demonstrated. The Zone Control System met all
the design objectives and specifications.
 During the course of building the HVAC zones control
system, there were small improvements that were identified
for future designs. The original RF transmission design was
abandoned due to the devices inability to reliably transmit a

UART signal. The replacement for the RF transmitter was
the XBEE which has capabilities that were not used. The
XBEE transceiver has a built in ADC that can be taken
advantage of in a follow on design, reducing costs by
eliminating the ADC and one of the timers.
 The XBEE transceivers were used with a built in chip
antenna. The antenna specifications stated a 100ft range. In
an indoor environment was not realistic, so an XBEE with
external antenna would be better suited for this application.
 The software code used for the project was not efficient.
As an electrical engineer, the level of code required for this
project was too complicated. The design works, but a
proficient software developer would be able to make
significant improvements to the system functionality.

5 References
[1] Gale Reference Team, Temperature sensors, monitors,

controls, Plastics Technology (Magazine/Journal)
November 1, 2008

[2] Waltenegus Dargie and Christian Poellabauer,
Fundamentals of Wireless Sensor Networks: Theory and
Practice (Wireless Communications and Mobile
Computing), Wiley, September 21, 2010

[3] Balraj A., Patvardhan A., Renuka Devi V., Aiswarya R.,
and Prasen V., Embedded Temperature Monitoring and
Control Unit, in “Recent Trends in Information,
Telecommunication and Computing (ITC), 2010
International Conference, pp 293-297, School of
Interdisciplinary Science and Technology, 2010, IEEE
10.1109/ITC.2010.91

[4] Rashid M. H., Microelectronic Circuits: Analysis &
Design: Analysis and Design, CL-Engineering; 1st
edition, April 1998

[5] Mano Morris M., Ciletti Michael D., Digital Design,
Prentice Hall; 4th edition, December 25, 2006

[6] Atmel Corporation, 8-bit AVR microcontroller users
guide, 2545S–AVR–07/10

[7] National Semiconductor, Temperature sensor handbook
[8] Evans Humberto, Robbins Michael F., The USB Nerdkits

Guide, rev 637-5170nwftf673h88cpzr8, 2009
[9] Digi International, X-CTU Configuration & Test Utility

Software User’s Guide

Int'l Conf. Embedded Systems and Applications | ESA'11 | 187

REAL-TIME sEMG ACQUISITION AND PROCESSING USING a
PIC 32 MICROCONTROLLER

Chandrasekhar Potluri, Member, IEEE, Madhavi Anugolu, Member, IEEE, Amir Fassih, Yimesker Yihun,

Parmod Kumar, Steve Chiu, Member, IEEE, and D. Subbaram Naidu, Fellow, IEEE

Abstract–This paper presents a novel approach for the signal
acquisition and processing using an embedded platform. A PIC
32 microcontroller is used to acquire Surface Electromyographic
(sEMG) signals and the corresponding skeletal muscle force
signal for the respective motor point in this case, for the ring
finger of the dominant hand of a healthy subject. The data is
acquired by MATLAB®/SIMULINK®. Both sEMG and force
signals are acquired at a rate of 2000 samples per sec. The
acquired sEMG data is filtered using three different types of
nonlinear Bayesian filter, Exponential, Poisson, and Half-
Gaussian filter and the force signal is filtered using a Chebyshev
type II filter. The data acquired from the PIC 32 and embedded
test bed are compared with the standard LabVIEW™ data
acquisition system using these three filters and Half-Gaussian
filter with DE 3.1 electrodes gives better results.

I. INTRODUCTION

Human body is one of the most complex and intricate
system available. In the same way the human body signals
such as sEMG are quite complex and challenging to
understand. To aid the peoples with upper extremity
amputations there has been an active research in the field of
upper limb prosthesis. Loss of upper extremity brings a
reduction in functions to amputees and also struggle with
numerous psychological issues which may further complicate
the appropriate control and use of the prosthesis. Research
work in [1] and [2] was mainly based on the
electromyography (EMG) signals. The EMG signal is a
naturally available and can be recorded at the surface of the
limb which is known as surface EMG (sEMG).

Chandrasekhar Potluri is with MCERC, School of Engineering, Idaho State
University, Pocatello, Idaho 83209, USA (email : potlchan@isu.edu).

Madhavi Anugolu is with MCERC, School of Engineering, Idaho State
University, Pocatello, Idaho 83209, USA (email : anugmadh@isu.edu).

Amir Fassih is with Measurement and Control Engineering Research
Center (MCERC), School of Engineering, Idaho State University, Pocatello,
Idaho 83209, USA (email: fassamir@isu.edu).

Yimesker Yihun is with MCERC, School of Engineering, Idaho State
University, Pocatello, Idaho 83209, USA (e-mail: yihuyime@isu.edu).

Parmod Kumar is with Measurement and Control Engineering Research
Center (MCERC), School of Engineering, Idaho State University, Pocatello,
Idaho 83209, USA (email: kumaparm@isu.edu).

Steve Chiu is with Department of Electrical Engineering and Computer
Science, MCERC, Idaho State University, Pocatello, Idaho 83201 USA
(email: chiustev@isu.edu).

D. Subbaram Naidu is with Department of Electrical Engineering and
Computer Science, MCERC, Idaho State University, Pocatello, Idaho 83209
USA (email: naiduds@isu.edu).

 The sEMG is simply an electric voltage ranging between -5
and +5 mV, which is a result of the electrical activity
associated with voluntary muscle contraction. This made the
sEMG signal of great use for the position and force control of
the hand prosthesis [3, 4].

Since the skeletal muscle force and the sEMG signals are
related and an increase force production results in the
increased sEMG activity. Therefore the latter is used as a
control input to realize force and motion control of a
prosthetic hand. This makes the precise interpretation of the
sEMG signal an essential task.

In today’s research environment the embedded systems
have become pervasive and as research advances, more and
more functions of analog circuits are being realized by
microcontrollers, Analog to Digital Converters (ADCs) and
Digital to Analog Converters (DACs). In a modern control
system, embedded system and control performs most of the
data acquisition, processing and control functions. To realize
excellent system performance we need to have a well-
designed embedded control which can deal with widely
varying operating conditions. For robust, fast, precise and
consistent high performance, the embedded system should be
designed carefully. In case of a prosthetic hand we need to
have a real-time embedded control system that performs the
desired force and motion control [5-7].

Present work is a step in this direction where the authors
explore the (Peripheral Interface Controller) PIC 32
microcontroller as an embedded platform to simultaneously
acquire the sEMG and skeletal muscle force. sEMG sensors
are placed on the ring finger motor point of the dominant
hand of a healthy subject and the subject is asked to squeeze a
stress ball which has a force sensing resistor (FSR) attached
to it. The data is simultaneously captured using the PIC 32
embedded platform with MATLAB®/SIMULINK® Real-
Time Workshop (RTW) and regular NI LabVIEW™ data
acquisition. Both sEMG and force data are captured at 2000
Hz. The sEMG signal is filtered using three different types of
nonlinear Bayesian filters, Exponential, Poisson, and Half-
Gaussian filter and the corresponding skeletal muscle force is
filtered by a Chebyshev type-II filter [8]. Among these three
different types of filters the Half-Gaussian filter is giving
better results [8-14].

188 Int'l Conf. Embedded Systems and Applications | ESA'11 |

mailto:yihuyime@isu.edu�
mailto:chiustev@isu.edu�
mailto:naiduds@isu.edu�

The paper is organized as follows: present introductory
section followed by the ‘Experimental Set-Up,’ then the
‘Signal Pre-Processing,’ ‘Proposed Design,’ and ‘Results and
Discussion,’ are presented. The paper is concluded with the
section of ‘Conclusion and Future Work.’

II. EXPERIMENTALSET-UP

Using a muscle stimulator the motor point for the ring
finger of the dominant hand of a healthy subjects are marked.
Prior to placing the sEMG sensors, the skin surface of the
subject was prepared according to International Society of
Electrophysiology and Kinesiology (ISEK) protocols.
Different sets of experiments are conducted with DE 2.1 and
DE 3.1 DELSYS® Bagnoli sEMG sensors. One sensor was
placed on top of the motor point location and two sensors
were placed next to the motor point. Subject is asked to
squeeze the stress ball with the ring finger which has a 0.5
inch force sensing resistor from Interlink™ Electronics. The
sEMG and skeletal muscle force signals were acquired using
the 16-channel DELSYS® Bagnoli sEMG and NI ELVIS™
respectively. Similar experimental set-up was designed using
a PIC 32 embedded platform where the sEMG and the force
data is acquired using this platform. Both the data are
captured at a sampling frequency of 2000Hz. Fig. 1 and 2
show the two experimental set-ups.

Fig.1. Experimental Set-Up with NI ELVIS and DELSYS®

EMG System.

III. SIGNAL PRE-PROCESSING

Previous research work [15] shows that the Bayesian based
filtering method yields the most suitable sEMG signals. These
nonlinear filters significantly reduce noise and extract a signal
that best describes EMG signals and can be effective for
prosthetic hand signal processing. The latent driving signal 𝑥𝑥
results in the EMG which can be computed using an
instantaneous conditional probability𝑃𝑃(𝐸𝐸𝐸𝐸𝐸𝐸│𝑥𝑥),[15].
Research work in [16] describes EMG signal as amplitude-
modulated zero mean Gaussian noise sequence. This

estimation algorithm uses the model of the conditional
probability of the rectified EMG signal 𝑒𝑒𝑒𝑒𝑒𝑒 = |𝐸𝐸𝐸𝐸𝐸𝐸|, [15].

Equation (1) gives an “Exponential Measurement Model”
for the rectified EMG signal [15].

𝑃𝑃(𝑒𝑒𝑒𝑒𝑒𝑒|𝑥𝑥) =
exp(−𝑒𝑒𝑒𝑒𝑒𝑒𝑥𝑥)

𝑥𝑥
. (1)

Equation (2) gives a “Poisson Measurement Model” for
the rectified EMG signal [15].

𝑃𝑃(𝑒𝑒𝑒𝑒𝑒𝑒|𝑥𝑥) ≈ 𝑥𝑥𝑛𝑛 𝑒𝑒𝑥𝑥𝑒𝑒 −𝑥𝑥

𝑛𝑛 !
. (2)

In equation (2) 𝑛𝑛 is the number of events. Equation (3)
presents the “Half-Gaussian measurement model” for the
rectified EMG signal [15].

𝑃𝑃(𝑒𝑒𝑒𝑒𝑒𝑒|𝑥𝑥) =
2∗exp(−𝑒𝑒𝑒𝑒𝑒𝑒

2

2𝑥𝑥2)

√(2𝜋𝜋𝑥𝑥2)
. (3)

The model for the conditional probability of the rectified
EMG is a filtered random process with random rate and the
likelihood function for the rate evolves in time according to a
Fokker–Planck partial differential equation [15]. The discrete
time Fokker–Planck Equation is given by Equation (4).

𝑒𝑒(𝑥𝑥, 𝑡𝑡−) ≈ 𝛼𝛼 ∗ 𝑒𝑒(𝑥𝑥 − 𝜀𝜀, 𝑡𝑡 − 1) + (1 − 2 ∗ 𝛼𝛼) ∗ 𝑒𝑒(𝑥𝑥, 𝑡𝑡 − 1) +
𝛼𝛼 ∗ 𝑒𝑒(𝑥𝑥 + 𝜀𝜀, 𝑡𝑡 − 1) + 𝛽𝛽 + (1 − 𝛽𝛽) ∗ 𝑒𝑒(𝑥𝑥, 𝑡𝑡 − 1) (4)

In the Equation (4) 𝛼𝛼 and 𝛽𝛽 are two free parameters, where
𝛼𝛼the expected rate of gradual is drift and 𝛽𝛽 is the expected
rate of sudden shift in the signal [15]. The latent driving signal
𝑥𝑥 is discretized into bins of 𝜀𝜀. An elitism based Genetic
Algorithm (GA) is used to optimize these free parameters of
the non-linear Half-Gaussian filter model. GA is an
optimization algorithm which is based on observing nature
and its corresponding processes to imitate solving complex
problems, most often optimization or estimation problems, see
[17-18]. Skeletal muscle force signal from FSR is filtered
utilizing a Chebyshev type II low pass filter with a 550 Hz
pass band frequency.

IV. PROPOSED DESIGN

In this proposed design the analog input and the UART
(universal asynchronous receiver/transmitter) modules of the
PIC 32 are used for the acquisition and transmission of the
sEMG signals. The outputs from the DELSYS® Bagnoli
system are connected to the analog input channels of the PIC
32 micro controller. In this present work the signal from the
motor unit (middle sensor) is acquired and pre-processed. The
sEMG signal and the corresponding skeletal muscle force are
acquired at 2000 samples per second. A dsPIC blockset is
used to generate the C code for the PIC32 from SIMULINK®.
The dsPIC blockset generates a ‘.hex’ file, and this file is

Int'l Conf. Embedded Systems and Applications | ESA'11 | 189

imported by MPLAB® to program the PIC32. The analog
input module is used for reading the sEMG and the
corresponding skeletal muscle force data. The PIC32 has an
internal ADC which has a 10-bit resolution so that it can
distinguish up to 1024 different voltages, usually in the range
of 0 to 3.3 volts, and it yields 3mV resolution.The UART
module in the PIC32 is used to transmit the signals from the
microcontroller to the PC using serial communication. In this
design, a virtual ‘com port’ is created to feed the data via
USB cable to the computer. MATLAB® is used to read the
signals from the ports. The acquisition system using the PIC
32 micro controller is shown in the Fig. 2.

Fig. 2. Experimental Set-Up with PIC 32 Embedded
Platform and DELSYS® EMG System.

V. RESULTS AND DISCUSSION

The sEMG and the corresponding skeletal muscle force
data are acquired from the microcontroller through UART
channel 2 of the PIC32MX360F512L by a virtual com port
via USB at 57600 baud rate. The data from the
microcontroller is converted into uint16 data before it is
transmitted through the UART. The PIC32 microcontroller is
running at 80 million instructions per second (MIPS) with its
phase lock loop (PLL) activated with a clock frequency of
8MHz with internal scaling enabled. Figs. 3 and 4 show the
sEMG signal acquired by the proposed acquisition system
using DE 2.1 electrodes. Fig. 5 and 6 show the sEMG signals
acquired by the proposed acquisition system using DE 3.1
electrodes. These acquired signals are processed using the
Half-Gaussian filter.

Fig. 3. Unfiltered sEMG Signal from the Proposed

Acquisition System Using DE 2.1 Electrodes.

The following experiment is repeated several times to check
the consistency and the accuracy of the proposed acquisition
system. Figs. 7 and 8 show the validation for the proposed
acquisition system for repeated experiments using DE 2.1 and
DE 3.1 electrodes. It is evident from the Fig. 6 that the DE 3.1
electrodes are giving good results when compared to DE 2.1
results.

Fig. 4. Filtered sEMG Signal from the Proposed Acquisition

System Using DE 2.1 Electrodes.

190 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Fig. 5. Unfiltered sEMG Signal from the Proposed

Acquisition System Using DE 3.1 Electrodes.

The sEMG signals acquired from the proposed acquisition
system using DE 3.1 electrodes are in good correlation with
the sEMG signals acquired from the standard acquisition
system. The sEMG signals and the corresponding skeletal
muscle force acquired from the standard acquisition system
are given in Fig. 9 and 10. Since the sEMG is a random signal
corrupted with noise it is hard to achieve the same correlation
every time.

Fig. 6. Filtered sEMG Signal from the Proposed Acquisition

System Using DE 3.1 Electrodes.

Fig. 7. sEMG Signal from the Proposed Acquisition System
Using DE 2.1 Electrodes with Repeated Experiment.

Fig. 8. sEMG Signal from the Proposed Acquisition System
Using 3.1 Electrodes with Repeated Experiment.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 191

Fig. 9. sEMG Signal from the Standard Acquisition System.

Fig. 10. Filtered Force Signal from the Standard Acquisition

System.

VI. CONCLUSION AND FUTUREWORK

A real-time sEMG acquisition system was designed for the
control of the robotic hand prototype. The proposed design
gives better performance when compared with the standard
EMG acquisition system. Comparison between DE 2.1 and
the DE 3.1 electrodes is done and the DE 3.1 electrodes are
giving better results. This proposed acquisition system
facilitates the transmission of the data from the
microcontroller to the computer. This enables the user to
compare the accuracy and performance of the acquisition

system. Investigation was done on various other filters and
finally Half-Gaussian filter with DE 3.1 elctrodes is giving
better results.

For future work we are planning to implement real time
model-based force estimation and along with controller design
for position and force control, based on this embedded
platform [19, 20]. It will be interesting to acquire signals from
the three sensors and then make a comparison between the
standard and the proposed acquisition system. Finally, we
plan to implement the acquisition and control for a five
fingered prototype.

ACKNOWLEDGMENT

This research was sponsored by the US Department of the
Army, under the award number W81XWH-10-1-0128
awarded and administered by the U.S. Army Medical
Research Acquisition Activity, 820 Chandler Street, Fort
Detrick MD 21702-5014. The information does not
necessarily reflect the position or the policy of the
Government, and no official endorsement should be inferred.
For purposes of this article, information includes news
releases, articles, manuscripts, brochures, advertisements, still
and motion pictures, speeches, trade association proceedings,
etc. Further, the technical help from Dr. Marco P. Schoen is
greatly appreciated.

REFERENCES
[1] N. Dechev, W. L. Cleghorn, and S. Naumann,“Multiple finger, passive
adaptive grasp prosthetic hand,”Mechanism and Machine Theory, 36(2001),
pp. 1157-1173.
[2] H. Kawasaki, T. Komatsu, and K. Uchiyama, “Dexterous
Anthropomorphic Robot Hand With Distributed Tactile Sensor: Gifu Hand
II,”IEEE/ASME Transactions on Mechatronics, Vol. 7, No. 3, September
2002, pp. 296-303.
[3] M. Zecca, S. Micera, M. C. Carrozza, and P. Dario, “Control of
Multifunctional Prosthetic Hands by Processing the Electromyographic
Signal,”Critical Reviews™ in Biomedical Engineering, 30(4-6), 2002, pp.
459-485.
[4] C. Castellini and P. van der Smagt, “Surface EMG in advanced hand
prosthetics,”Biological Cybernetics, (2009) 100, pp. 35-47.
[5] C. Potluri, P. Kumar, J. Moliter, M. Anugolu, A. Jensen, K. Hart, and
S. Chiu, “Multi-Level Embedded Motor Control for Prosthesis,” International
Conference on Embedded Systems and Applications, ESA’2010, Las Vegas,
Nevada, USA, July 12-15, 2010.
[6] C. Potluri, P. Kumar, M. Anugolu, S. Chiu, A. Urfer, M. P. Schoen,
and D. S. Naidu, “sEMG Based Fuzzy Control Strategy with ANFIS Path
Planning For Prosthetic Hand,” 3rd IEEE RAS & EMBS International
Conference on Biomedical Robotics and Biomechatronics, Tokyo, Sept 26-
30, 2010.
[7] C. Potluri, Y. Yihun, P. Kumar, J. Molitor, S. Chiu, D. S. Naidu, and
S.H. Mousavinezhad, “sEMG Based Real-Time Embedded Force Control
Strategy for a Prosthetic Hand Prototype” IEEE International Conference on
Electro/Information Technology, Mankato, Minnesota, USA, May 15-17,
2011.
[8] M. Anugolu, A. Sebastain, P. Kumar, M. P. Schoen, A. Urfer, and D.
S. Naidu, “Surface EMG Array Sensor Based Model Fusion Using Bayesian
Approaches for Prosthetic Hands,” 2009 ASME Dynamic Systems and
Control Conference, Hollywood, California, USA, Oct. 12-14, 2009.

192 Int'l Conf. Embedded Systems and Applications | ESA'11 |

[9] C. Potluri, P. Kumar, M. Anugolu, A. Urfer, S. Chiu, D. S. Naidu, and
M. P. Schoen, "Frequency Domain Surface EMG Sensor Fusion for
Estimating Finger Forces," 32nd Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, Buenos Aires, Argentina,
Aug. 31 - Sept. 4, 2010.
[10] P. Kumar, A. Sebastian, C. Potluri, A. Urfer, D. S. Naidu, and M. P.
Schoen, “Towards Smart Prosthetic Hand: Adaptive Probability Based
Skeletal Muscle Fatigue Model,” 32nd Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, Buenos Aires,
Argentina, Aug. 31 – Sept. 4, 2010.
[11] P. Kumar, C. Potluri, A. Sebastian, S. Chiu, A. Urfer, D. S. Naidu, and
M. P. Schoen, “An Adaptive Multi Sensor Data Fusion with Hybrid
Nonlinear ARX and Wiener-Hammerstein Models for Skeletal Muscle Force
Estimation,” The 14th World Scientific and Engineering Academy and
Society (WSEAS) International Conference on Systems, Corfu Island,
Greece, July 22-24, 2010.
[12] P. Kumar, C. Potluri, A. Sebastian, S. Chiu, A. Urfer, D. S. Naidu, and
M. P. Schoen, “Adaptive Multi Sensor Based Nonlinear Identification of
Skeletal Muscle Force,”WSEAS Transactions on Systems, Issue 10, Volume
9, October 2010, pp. 1051-1062, 2010.
[13] P. Kumar, C. Potluri, M. Anugolu, A. Sebastian, J. Creelman, A. Urfer,
S. Chiu, D. S. Naidu, and M. P. Schoen, “A Hybrid Adaptive Data Fusion
with Linear and Nonlinear Models for Skeletal Muscle Force Estimation,” 5th
Cairo International Conference on Biomedical Engineering, Cairo, Egypt,
Dec. 16-18, 2010.
[14] P. Kumar, C. Potluri, A. Sebastian, Y. Yihun, A. Ilyas, M. Anugolu, R.
Sharma, S. Chiu, J. Creelman, A. Urfer, D. S. Naidu, and M. P. Schoen, “A
Hybrid Adaptive Multi Sensor Data Fusion for Estimation of Skeletal Muscle
Force for Prosthetic Hand Control,” The 2011 International Conference on
Artificial Intelligence, ICAI’11, Las Vegas, Nevada, USA, July 18-21, 2011.
[15] T. D. Sanger, “Bayesian Filtering of Myoelectric Signals,”J
Neurophysiol, 97, 2007, pp. 1839–1845.
[16] M. B. I. Reaz, M. S. Hussain and F. Mohd-Yasin, “Techniques of
EMG signal analysis: detection, processing, classification and
applications,”Biol. Proced. Online, 2006, 8(1), pp. 11-35.
[17] E. Kral, L. Vasek, V. Dolinay, P. Varacha, “Usage of PSO Algorithm
for Parameter Identification of District Heating Network Simulation
Model,”The 14th World Scientific and Engineering Academy and Society
(WSEAS) International Conference on Systems, Corfu Island, Greece, July
22-24, 2010.
[18] A. Neubaur, “The Intrinsic System Model of the Simple Genetic
Algorithm with 𝛼𝛼-Selection, Uniform Crossover and Bitwise Mutation,”The
14th World Scientific and Engineering Academy and Society (WSEAS)
International Conference on Systems, Corfu Island, Greece, July 22-24, 2010.
[19] C. Potluri, Y. Yihun, M. Anugolu, P. Kumar, S. Chiu, M. P. Schoen,
and D. S. Naidu, “Implementation of sEMG-Based Real-Time Embedded
Adaptive Finger Force Control for a Prosthetic Hand”, submitted to IEEE
CDC, 2011.
[20] C. Potluri, M. Anugolu,Y. Yihun,A. Jensen, S. Chiu, M. P. Schoen,
and D. S. Naidu, “Optimal Tracking of a sEMG based Force Model for a
Prosthetic Hand,” submitted toIEEE EMBS, 2011.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 193

Electronic Healthcare Model Based on Smart Card
For Saudi Medical Centers

Ebtisam Alabdulqader1, and H. Fourar-Laidi2

1 Information Technology Department / 2 Information Systems Department,
College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia

Abstract - This paper presents a healthcare model based on
smart cards. The purpose of the proposed model is to facilitate
information exchange and integration across medical
organizations. Currently, in Saudi Arabia, all medical centers
have their own healthcare system. Each time a patient visits a
clinic; a new file is created for him. Clinical information
history related to the previous consultations is not available.
Confidential information is not protected by the traditional
folder. Prescriptions provided by doctors are signed manually
and not efficiently authenticated by pharmacies. Claims are
transmitted to the insurance companies by fax which makes
them subject to falsification. The existing approach of the
ministry of health in maintaining information about patients is
not efficient, because healthcare institutions are not linked to
a central system. In the proposed solution, the smart card will
be used to store medical history of a patient that contains all
diagnosis and drug prescriptions done in different medical
centers. It will be used also to store keys and perform all the
cryptographic computations. The medical institutions should
adhere to the government healthcare organization system
managed by the ministry of health. The healthcare
organization should play the trusted third party as
certification authority (CA). The information exchanged by the
medical institutions should be protected and secured.

Keywords: Healthcare, Smart card, Cryptography, Medical
record, PKI

1 Introduction
 Smart cards have been used by many countries to deploy
healthcare programs [1, 2]. The smart card issued by
healthcare organizations can be read easily with an
appropriate smart card reading device and facilitates the
secure sharing of patient clinical data amongst multiple
healthcare providers. Smart cards can be used by healthcare
institutions to considerably reduce the administrative work.
Patients will no longer be requested to fill their personal
information and describe their medical history each time they
visit a healthcare institution. The proposed solution aims to
use the smart card as portable storage device for clinical
information that can be shared between healthcare
institutions. Our approach consist on a integrated solution that

use the smart card to perform secure transactions between the
medical center, the insurance company, the pharmacy and the
trusted healthcare organization.

In the proposed approach, each time a patient visits a medical
center, he presents his health card. The medical center will
use the card to authenticate the patient and retrieve all needed
information and clinical records history. The clinic can also
update the card by information related to the current visit. The
health card is protected by a Personal Identification Number
(PIN) known only by the patient. Retrieving confidential
information and updating the card is performed by presenting
the card PIN. The information stored in the card is
synchronized with a central healthcare system to assure
coherence and availability of information in case of lost, or in
case the patient visits another medical center. The central
healthcare system should be managed by a government
organization like the ministry of health. The prescriptions
given by doctors are electronically signed and sent to the
pharmacy central service, part of the central healthcare
system. Doctors cannot deny their prescriptions. Pharmacies
can claim their money directly from the insurance company
after authorization given by the patient. The pharmacy
submits a request to the insurance company. Once the
transaction approved, a response is sent to the pharmacy for
completion. The transaction between the pharmacy and the
insurance company is performed securely by using keys and
certificates stored in the smart card.

Due to their cryptographic capability and portability, Smart
cards are an ideal secure storage device that can be used to
store and secure patient records. Smart card will be used also
to secure the information exchange between the clinic access
point and the central healthcare system using digital
signatures, certificates and keys. The proposed model will be
implemented and distributed among the medical centers
(clients). In our project, we did not implement the transaction
service between the pharmacy and the insurance company.
The developed prototype includes the transactions between
the patient, medical center and the healthcare central system.
The use of smart cards to secure transactions assures more
protection for sensitive data. Smart cards reduce the threat of
unauthorized access by the use of stolen credentials because
the hacker must both steal the smart card and obtain the PIN.
The proposed model also offers more flexibility to the current

194 Int'l Conf. Embedded Systems and Applications | ESA'11 |

healthcare system by allowing patients to have rapid access to
their electronic medical folder in any medical center. Patients
do not need any more to redo medical tests each time they are
changing clinic. This paper is structured as follows: in section
2, we present some healthcare models based on smart cards.
Section 3 describes our proposed smart card healthcare model
and its architecture. In section 4, we illustrate the
implementation of the healthcare model using MULTOS
technology.

2 Healthcare Models
 Smart cards offer a new perspective for healthcare
applications due to the security level provided for data
storage. Smart cards in healthcare applications can be used for
storing information including personal data, insurance policy,
emergency medical information, hospital admission data and
recent medical records [3]. Numerous healthcare systems
around the world start using smart cards to improve the
quality of healthcare services [4]. Different healthcare models
have been proposed either on national level; e.g. in Germany
[5] or regional level; e.g. in US. [6].

One of the interesting orientations ongoing is the attempt to
further standardize and develop a framework to support Web-
based medical-specific smart card applications [7, 9]. Many
countries started developing healthcare programs based on
smart cards. Here are three health-related examples. In
Germany, the Krankenversichertenkarte is used to manage
billing to various health-insurance companies for all services
received by the public. Ontario plans to use a smart card to
reduce fraudulent access to public health services.

“Carte Vitale” is one of the healthcare models issued in
France with the aim to automate the paperwork flow between
doctors, patients and insurance companies. Another
healthcare model was an extending to the national ID card in
Malaysia by adding health information as a function on this
card which can only be read by medical professional. This
health information provides next of kin contact details,
detailed information on lifetime health history, hospital
admissions and recent treatments [8]. The goal is to
streamline treatment, reduce test duplication and automate
interactions between patients, healthcare providers and payer
organizations.

 Chan et al. propose a vertical standard framework that
addresses the design requirements specific to the development
of medical applications [9]. The concept of the Java Card
Web Servlet (JCWS) was developed to provide a seamless
access interface between a Web browser and a Java Card-
enabled smart card. In essence, the smart card is viewed as a
repository of Web-enabled objects comprised of applets,
HTML page, data objects, and Java Card applets. The
framework supports tight integration of smart card technology
with an existing Web infrastructure. Therefore, a hospital
with a Java-compliant smart card reader is able to access
medical information directly from the card using a standard

Web browser via the JCWS. An applet contained within the
card can be dynamically loaded into the browser to browse
and update medical information. The applet can also provide
Web links to Internet databases to facilitate wide area access
of further information such as a video of a recent CT scan,
high-resolution X-ray image scans, and so forth. The JCWS
binds the database to the framework, while providing Web-
based browsing and updating services. In this case, the
browsing and updating applet can be downloaded from the
smart card itself via the browser interface.

Another model was proposed by Song and co. this involved
transferring medical prescriptions from the medical center to
the pharmacy via the internet based on 2-way double-type
smart card terminal. This later is used to control security and
privacy of patients and manage drug histories of them [10].
The digital signatures written by the medical professionals
(doctors and pharmacists) holding and using their individually
master smart cards are applied to all contents of the
prescription stored on a patient’s slave smart card at the
synchronized status in the 2-way double-type terminal.
Finally, Attiaoui and al. describe an approach of using the
Web USB smart card service model as a common interface to
communicate and access the medical records residing in a
smart card that seamlessly integrate to existing Web
infrastructure [11].

3 The Smart Card Healthcare Model
 Healthcare sector in Saudi Arabia needs simple identity
cards for all patients to grant access to certain data in
anywhere and at anytime. The proposed smart card healthcare
model represents an alternative solution to improve the whole
healthcare infrastructure by adopting a comprehensive
multifunctional smart card system. The essential idea is based
on multifunction smart card that is used as identity for patient
authentication and stores medical data along with secure
interchange of these data which will be used in various
locations, such as hospitals, clinics and ambulances.
According to that, the model will support both availability
and security of the medical data.

A health smart card will be issued for each patient to replace
their paper based medical record that is currently used in the
region. The smart card will be utilized to store only the
critical medical record information needed for each clinic
visit and emergency cases. This limitation is due to the
limited capacity of the currently available smart cards. The
critical medical record information that will be stored on the
smart card includes the personal and emergency contact
information, urgent medical data such as allergies and list of
current medications if any, as well as the latest patient
medical examinations and prescriptions.

3.1 Architecture of the proposed model
 The smart card healthcare model consists of three
components that consist of the patient’s smart card, the client

Int'l Conf. Embedded Systems and Applications | ESA'11 | 195

terminals and the central system located in the ministry of
health as shown in Figure.1.

Fig.1 - Smart Card Healthcare Model Architecture.

 The model introduces a hybrid solution in which
patient’s smart card is used in the system depending on the
availability of the network. The patient’s smart card will be
used as a medical data carrier which can be accessed without
any need for network connection to access the central system.
It is also used to access additional patient medical data stored
in the central system located in the ministry of health if the
network connection is available.

 In the first option, the data stored in the patient smart card
(on-card) can be accessed quickly by the healthcare
professional through the client terminal without any need for
network connection to access the central system. This data
include the latest medical record of the patient with medical
examinations and prescriptions, personal information,
emergency contact information, allergies and current
medications. By this way, the model supports the medical
data portability even with off-line client terminals when there
is no connection to the central system.

On the other hand, patient’s smart card can be used by the
healthcare professional through the client terminal to access
the healthcare organization system in case the network is
available. This allows the healthcare professional to reach the
remaining patient medical data stored in the central system
and make an update with the information related to the
current visit. The central system will store the additional
medical data of the patient which is already stored in the
medical card. By including a copy of the patient’s card data in
the central system, the healthcare organization will be able to
recover the patient medical data and re-issue another card in
case of lost or damage of the patient’s smart card.

The second component of the system is the client terminal
located in several locations in the medical centers. These
terminals will be used by healthcare professionals to access
the medical data stored on the patient card using the smart
card reader which is connected or embedded to each client

terminal [12]. A secure channel is established between the
client terminal and the patient smart inserted into the reader.
The transmission of patient’s medical data will take place
between patient card and client terminal.

In on-line communication, the client terminal is connected to
the central system and exchanging patient information. The
central system use to synchronize via the client terminal with
the patient medical card by addition new information related
to the last examination and prescription done by the
healthcare professional. While if the client terminal is off-
line, the synchronization will be done in the next connection
of the patient smart card. Each time the client terminal is
connected to the central system, a synchronization process is
started by the central system. The synchronization process
will synchronize the central system with the patient medical
card and record the new medical examination and the related
prescription stored on smart medical card. Consequently this
will insure the availability of the latest medical data in case of
lost or damage of the patient medical card.

3.2 Patient smart card communication session
 The software running on the client terminal allows the
healthcare professional to communicate with the patient smart
card and carry out the examination. The communication
between the client terminal and the patient’s smart card is
shown in Figure.2.

Fig.2 - Patient Smart Card Communication Session.

 In general, communication can only be opened by a
patient smart card. When a patient smart card is inserted in
the reader, the healthcare professional can access the personal
and emergency information of the patient directly without any
verification. In order to access the latest examinations and
prescriptions as well as the confidential information, the PIN
is requested from the card owner. If the PIN is valid, the
client terminal communicates with the patient smart card in

196 Int'l Conf. Embedded Systems and Applications | ESA'11 |

order to exchange the latest examination information. The
information exchange between the client terminal and the
card concerns retrieving information from the card and
updating the card with information related to the current visit.
Once the examination done, healthcare professionals can add
new medical information and prescription on the patient
smart card.

In every step of patient smart card communication session,
the patient should be located in the same location of the smart
card reader. In addition, if any changes have been made
during the session or the visit, and the client terminal is in on-
line state with the central system, a synchronization request
will be automatically issued through the client terminal and
sent to the central system. The purpose of this request is to
synchronize the central system with the new patient medical
card by adding information related to the current visit. In this
case, the complete patient medical data will be available in
the central system and the two sides (patient medical card and
central system) are synchronized. Otherwise, if the client
terminal is in off-line state, the changes will be marked to be
synchronized in the next session when the connection
between the client terminal and the central system will be
available. This design will allow the healthcare organization
the possibility to make another copy of the patient medical
card if this later is lost or damaged.

3.3 The clinic healthcare service (Client)
 The clinic healthcare services provided through client
terminals will communicate with the patient smart card
through the connected smart card reader. This service allows
the healthcare professional to carry out examinations and
record all related data. Through any client terminal, the
healthcare professional can directly access the client personal
information, emergency contact, allergies and current
medications if any. This service is useful in urgent situation,
such as, when the patient is unconscious state.

Moreover, after verification process, which is one of the
services as well, the healthcare professional can navigate
through the latest medical record of the patient with medical
examinations and corresponding prescription and add a new
medical examinations and its related prescription information
on patient smart card if needed. An additional service should
be implemented in the on-line terminal is the synchronization
service. The synchronization service synchronizes the patient
medical data stored in the smart card to the central system
with the new patient medical data already stored in the card.

A ministry unit is responsible for carrying out the system
administration functions through their terminals. Mainly, that
unit is responsible to manage the central system which holds
patients medical records. This unit is also responsible to
record the patient’s information into the system and to
perform the related operations like issuing and cancelling
smart card for patients. A synchronization service is
integrated in the system that will allow having two data

supports close to each other. Due their capacity limitation, we
are storing examination information related to only the ten
last visits. To be able to see the other visit information, the
client terminal should be on line mode with the central system
in order to retrieve needed information not available in the
patient card. The ministry healthcare organization can
recover the patient medical data and re-issue a new patient
smart card in case of loss or damage.

3.4 The ministry healthcare service
 A ministry unit is responsible for carrying out the
system administration functions through their terminals.
Mainly, that unit is responsible to manage the central system
which holds patients medical records. This unit is also
responsible to record the patient’s information into the system
and to perform the related operations like issuing and
cancelling smart card for patients. A synchronization service
is integrated in the system that will allow having two data
supports close to each other. Due their capacity limitation, we
are storing examination information related to only the ten
last visits. To be able to see the other visit information, the
client terminal should be on line mode with the central system
in order to retrieve needed information not available in the
patient card. The ministry healthcare organization can
recover the patient medical data and re-issue a new patient
smart card in case of loss or damage.

4 Implementation of an Electronic
Healthcare System
The proposed smart card healthcare model has been

implemented to validate our approach [13]. Our motivation in
using this technology is the capability of the smart card to
store, protect and manipulate medical data in a secure way.
MULTOS Application Developer Smart Card has been chosen
to implement the patient’s smart card. MULTOS is an open
multi-applications operating system that is ideal for the
security need of our application [14, 15]. The advantage of
this system is that many applications can run on the same
card. The MULTOS card was used as patient’s smart card to
store the required amount of patient medical data.

The two applications developed are the application loaded
into the smart card and the doctor’s client terminal
application. The data communication between the patient’s
card and the doctor’s client terminal can start once the card is
inserted into the reader. This will allow the doctor’s client
terminal to have access to the patient medical data and to
update the card with the information related to the current
visit. The patient’s smart card application is responsible to
handle the stored medical data on the smart card, while the
doctor’s client terminal application is an interface connected
with a smart card reader. The information exchange between
the doctor’s client terminal and the central system will be
done in a secure way using keys stored in the card.
Confidential information is transmitted to the central system
using an RSA algorithm. The content of the message is

Int'l Conf. Embedded Systems and Applications | ESA'11 | 197

encrypted by the RSA function using the public key of the
healthcare organization stored in the card. The same message
is decrypted using the RSA function using the healthcare
organization private key. Some confidential information is not
accessible only if the patient enters the PIN card. Also,
updating the medical card with data related to the current visit
by the doctor’s client terminal is done with the authorization
of the patient by entering the PIN. The client terminal
application will interact with the smart card application by
sending and receiving APDU (Application Protocol Data
Unit) to exchange the medical data between the client terminal
and the smart card in a secure way.

The patient’s smart card application has a hierarchical
modular structure. It consists of three levels, where each level
is responsible to handle specific part of the data, as shown in
Figure.3. The HealthAPDU module is the first level of
abstraction. It defines the external interface with the smart
card. It is responsible to handle all communications involving
APDU operations that can be executed by the card. The
HealthATL module introduces a second level of abstraction
that can communicates with the low level module
(HealthAPDU) and the high level module (SCHS GUI). The
HealthATL module implements functions like OpenSession
that call the HealthAPDU commands: allocOpenCard,
establishContext, connectToCard and selectFileByAid. These
APDU commands allocate the card structure, establishes the
resource manager context with the card if no session is opened
with the card, connect to the card if the smart card is inserted
in the reader, and select the healthcare application. If the
command is not executed as expected, these functions should
return a specific error code. This error code is interpreted by
the HealthATL module and a specific error message is
displayed.

Fig.3 - Architecture of the Smart Card Healthcare System.

 Patient’s smart card application has three modules.
Each module stores and processes a group of medical data.
These modules can be accessed by client terminal to exchange
the medical data. Each smart card module has a buffer for
more than 200 characters to store a group of a related medical
data into the smart card and defines a specific instruction to
process these data. For example, Prescription Application
which when loaded into the smart card is responsible for all
patients’ prescription data. These applications contains the
related functions such retrieving and sending these data to the

client terminal application or writing a new prescription on the
patient’s smart card.

The client terminal communicates and exchanges medical data
with the patient’s smart card module. It is implemented
through three levels. Each level groups the related commands
to allow communication with the smart card reader. Running
commands is performed by sending APDU buffer to the smart
card. These APDU commands read the responses sent from
the smart card that specifies the execution status. In case of
failure, the patient’s smart card should return an error code.
These three levels have been depicted in Figure.3.

The real communication with the smart card is performed in
the lowest level of the client terminal. The communication
with the card include connecting to the card, selecting the
related application, sending APDU command to read or write
medical data in the related module, and finally disconnecting
from the card. The middle level module of the client terminal
(HealthATL) interacts with both the lowest and highest level.
The HealthATL module is responsible for preparing and
manipulating patient’s data before sending them to the next
level (HealthAPDU). The highest level of client terminal
application (SCHS GUI) handles the graphical user interface
operations. The SCHS GUI takes the entered patient’s data
related to the current visit and sends them to the HealthATL
module to be prepared for the HealthAPDU module. The
HealthAPDU module sends the command through an APDU
buffer to the smart card and the received response or the error
code to the HealthATL. Once received, the SCHS GUI
displays the patient’s data requested, or a message that
confirm the update, or a message error explaining the
problem.

The client terminal system has a modular structure and has
been designed within three levels. Each level contains one
specific module. The patient’s smart card application also has
been divided over several modules and data groups as show in
the figure.3. This architecture will facilitate modification,
because each group of the medical data is stored in a separate
module. The change will affect only in one module. Also, if
we need to implement another application for the healthcare
professionals for example, we can use modules like
HealthAPDU to communicate with the smart card. Some of
the client terminal applications will interact only with a
specific group of the medical data and prevented from the
interaction with other data. Thus, this modular structure offers
data protection and ensures that the client terminal application
interacts with the required module only. The pharmacy client
application will interact with prescription smart card module
only. An administrative personalization tool was developed to
load experimental data, keys and certificates.

5 Conclusion
 The smart card healthcare model was developed to allow
each patient to carry a secure medical record in a smart card
and use it in the authentication processes and emergency

198 Int'l Conf. Embedded Systems and Applications | ESA'11 |

cases. This model aims to improve the quality of smart card
services in the healthcare sector in the region. Additionally,
the smart card services in healthcare sector will be enhanced
with the increase capacity and lower costs of the smart cards
with a higher capacity. Smart card would have the capability
of storing extra medical information such as x-ray images.

The smart card healthcare model can be extended to integrate
healthcare professional’s data. These cards will store the
healthcare professional personal information needed by the
medical centers. Consequently, each healthcare professional
can be authenticated using their own card and will able to
access the patient’s medical data with the patient’s card. In
the proposed model, the healthcare professionals can retrieve
data and update the smart card only if the patient enters his
PIN. In the next step, the healthcare professional will not be
allowed to update the card or to execute any transaction if he
doesn’t insert his card first and enter his PIN. In this case,
each transaction data present in the smart card is allowed and
identified.

Furthermore, pharmacies and insurance companies can be
integrated in the model to process the electronic prescriptions
currently stored in smart cards. The pharmacies can proceed
the prescriptions only when they receive an approval from the
insurance companies. Hence, that will provide a paperless
communication between hospitals, pharmacies and insurance
companies.

The insurances companies should adhere to the ministry
health organization in order to trust the reimbursement
request coming from the pharmacies. The healthcare
organization will play the trust party of the pharmacy and the
insurance company. The healthcare organization will permit
the reimbursement transaction. Due to the modular
architecture, those modifications can be added in the
proposed healthcare model. The government healthcare
organization can also revoke the certificate for a healthcare
professional. This alternative was not included in the
developed prototype. In this case, the healthcare organization
will reject the transaction request made by the healthcare
professionals.

6 References
[1] Kardas G. and Tunali E. T. ”Design and implementation
of a smart card based healthcare information system”.
Computer Methods Programs Biomedicine, 81, 1 66-78, Jan.
2006.

[2] Moon D., Chung Y., Pan S. B., and Park J. ”Integrating
fingerprint verification into the smart card-based healthcare
information system”. EURASIP J. Adv. Signal Process, 5-5,
Jan. 2009. DOI= http://dx.doi.org/10.1155/2009/845893

[3] Mayes K., Markantonakis K.. ”Smart Cards, Tokens,
Security and Applications”, Springer, 2008.

[4] A. Alkhateeb, T. Takahashi, S. Mandil, and Y. Sekita.
”The changing role of health care IC card systems”.
Computer Methods & Programs in Biomedicine, 60, 2, 83-92,
1999.

[5] M. Marschollek and E. Demirbilek. “Providing
longitudinal health care information with the new German
Health Card - a pilot system to track patient pathways”.
Computer Methods & Programs in Biomedicine, 81, 3, 266-
271, 2006.

[6] Savostyanova N. and Velichko V. ”Plastic card fraud: a
survey of current relevant card and system properties”, 2004.

[7] Bernd Blodel and Peter Pharow. ”A model driven
approach for the German health telematics architectural
framework and security infrastructure”. International Journal
of Medical Informatics, 76, 169-175, 2007.

[8] Rankl W. and Effing W. ”Smart card handbook”, Wiley
& Sons, 2003.

[9] Alvin T.S. Chan, Jiannong Cao, Henry Chan, and
Gilbert Young. ”A Web-Enabled FRAMEWORK for
SMART CARD Application in Health Services”.
COMMUNICATIONS OF THE ACM, 44, 9, 77-82,
September 2001.

[10] Won Jay SONG, Byung Ha AHN and Won Hee KIM.
”Healthcare Information Systems Using Digital Signature and
Synchronized Smart Cards via the Internet”. Proceedings of
the International Conference on Information Technology:
Coding and Computing (ITCC’02) IEEE Computer Society.

[11] Walid ATTIAOUI, Pr. Mohamed BEN AHMED, Pr.
Moncef TAGINA and Dr. Boutheina CHETALI. ”Integrating
USB Smart Card with Flash Memory to Web based Medical
Information Systems: Application for the pathology of
cancer”, IEEE Explore, 971-977, 2006.

[12] Rodrigues R., Piccolo U., Hernandez A. and Oliveri N.
”Integrated circuit Health data Cards”, Pan American Health
Organization, 2003.

[13] Ebtisam AlAbdulqader. ”Smart Card in Healthcare
Systems”. Project Report submitted for the degree of Master
in Information Systems, College of Computer and
Information Sciences, King Saud University, June 2009.

[14] ”Multos development tools and manuals”. Available at:
http://www.multos.com/

[15] Hendry M.” Multi-application Smart Cards: Technology
and Applications”. Cambridge University, 2007.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 199

http://dx.doi.org/10.1155/2009/845893
http://www.multos.com/

Design and Implementation of SOC and BIST based

Wave-Pipelined Circuit

Rengaprabhu Paramasivam

$
, Venkatasubramanian Adinarayanan

*
, Parasuraman Sakkarapani

@
,

Marimuthu Murugesan
^
, Vivek Karthik Perumal

%
 and Seetharaman Gopalakrishnan

$
Research Scholar, Dept. of Info. & Comm. Engg, Anna University of Technology, Trichy, India

*
Research Scholar, Department of CSE, Sathayabamma University, Chennai, India

@^%
Final year Students, Department of ECE, Oxford Engineering College, Trichy, India

#
Principal, Oxford Engineering College, Trichy, India

Abstract— Wave-pipelining is proposed as one of the

techniques for the design of high speed digital circuits in

the literature. Higher operating frequencies can be

achieved in wave-pipelined digital circuits, by adjusting

the clock periods and clock skews so as to latch the

outputs of combinational logic circuits at the stable

periods. Major contribution of this paper is the proposal

for automation of the above tasks, one using the Built In

Self Test (BIST) approach and another using the System-

On-Chip (SOC) approach. Both of these approaches is

studied by a multiplier using dedicated AND gate by

adopting three different schemes: wave-pipelining,

pipelining and non-pipelining. BIST approach is used for

the implementation on Xilinx Spartan-II device. The

SOC approach is adopted for implementation on Altera

Field Programmable Gate Arrays (FPGAs) based SOC

kits with Nios II softcore processor. From the

implementation results, it is verified that the wave-

pipelined circuits are faster compared to non-pipelined

circuits. The automation scheme has considerably

reduced the effort required for the design and testing of

the wave-pipelined circuits. The pipelined circuits are

found to be faster than the wave-pipelined circuits and

this is achieved at the cost of increase in area.

Keywords: SOC; wave-pipelining; FPGA; self-

testing.

1. Introduction

Hardware components in a SOC may include one or

more processors, memories and dedicated components for

accelerating critical tasks and interfaces to various

peripherals [1], [2]. In addition, the development of IP cores

for the FPGAs for a variety of standard functions including

processors, enables a multimillion gate FPGA to be

configured to contain all the components of a platform based

FPGA. Development tools such as the Altera System-On-

Programmable Chip (SOPC) builder enable the integration of

IP cores and the user designed custom blocks with the soft-

core processors such as the Nios II processor [3]. The

increased gate count in a complex SOC results in increased

power dissipation, clock routing complexity and clock skews

between different parts of a synchronous system. These

limitations may be partially overcome by adoption of circuit

design techniques such as wave-pipelining. Wave-pipelining

enables a combinational logic circuit to be operated at a

higher frequency without the use of registers and may result

in lower power dissipation and clock routing complexity

compared to a pipelined circuit. However, the maximization

of the operating speed of the wave-pipelined circuit requires

the following three tasks: adjustment of the clock period,

clock skew () and equalization of path delays. The

automation of these three tasks are proposed for the first time

in this paper. Effectiveness of the automation scheme is

studied by a multiplier using dedicated AND gates as well as

fast carry logic.

The organization of the rest of the paper is as

follows: In section II, the previous work related to wave-

pipelining and the challenges involved in the design of wave-

pipelined circuits are described. In section III, automation

schemes for wave-pipelined circuits are presented. In section

IV, an overview of the multiplier using dedicated AND gate

as well as fast carry logic is presented. In section V, BIST

approaches for the implementation of wave-pipelined circuits

are discussed and the implementation results are presented. In

section VI, SOC approaches for the implementation of wave-

pipelined circuits are discussed and the implementation

results are presented. Section VII summarizes the

conclusions.

2. Review of previous work

Pipelining achieves high speeds in digital circuits at

the cost of increased area, power dissipation and routing

complexity [4]. Wave-pipelining is proposed as one of the

techniques for achieving high speed without the above

limitations. Wave-pipelining has been employed for

implementing a number of systems on both ASICs and

FPGAs [5], [6]. The concept of wave-pipelining has been

described in a number of previous works [7], [8]. To

illustrate this concept, graphical representation of the data

200 Int'l Conf. Embedded Systems and Applications | ESA'11 |

flow through combinational logic circuit, is used [8]. Fig. 1

shows a typical combinational logic circuit along with the

input and output registers [8]. Fig. 2 depicts the flow of data

through the above circuit [8]. The skew between the clocks at

the input and output registers is denoted as . At the

beginning of each clock cycle, data is initiated into the

combinational logic block through the input register.

A number of paths may exist between the inputs and

output of a logic block. A change in the input causes the

output to change after a delay of Dmin, Dmax through the

shortest and longest path respectively. The shaded regions

bounded by (Dmin and Dmax) depict the periods where the

logic levels of the logic block vary with time. The nonshaded

areas depict the stable duration of the logic block. In the

conventional system, the output register is clocked in the

nonshaded region and the minimum clock period, Tclk is

chosen to be greater than Dmax. In the Wave-Pipelined (WP)

system, the clock period is chosen to be (Dmax - Dmin) +

clocking overheads such as set up time, hold time etc.

Fig. 1. A combinational logic circuit with input and output

registers.

Fig. 2. Temporal/spatial diagram of data flow through the

combinational logic circuit.

To ensure correct operation, should be adjusted so

that the active clock edge occurs in the stable period. As the

shaded region increases with increase in the logic depth, the

operating clock frequency should be reduced with increase in

logic depth. Moreover, to maximize the frequency of

operation of the wave-pipelined system, the difference (Dmax -

Dmin) is minimized by equalizing the path delays. Hence,

adjustment of the clock period, clock skew () and

equalization of path delays, are the three tasks required for

maximizing the operating speed of the wave-pipelined

circuit. All the three tasks require the delays to be measured

and altered if required. Layout editors, such as FPGA editor

from Xilinx, may be used for this purpose.

These tasks are carried out manually in [9], [10].

The wave-pipelined circuit designed using the layout editor

may be tested using simulation. However, the simulation is

inadequate for testing due to the difference between the

actual delays and the delays calculated by the layout editor.

This is because, the layout editor considers only the worst

case delays and the actual delays may be significantly

different due to fabrication variations. This difference

becomes important as the logic depth of the circuit increases.

Hence, the design is downloaded to the actual FPGA and its

operation is checked using a PC based test system [10]. If

correct results are not obtained, delays are altered and the

design is downloaded for testing again. A number of

iterations of place and route, simulation, downloading and

testing in the actual device may be required till the correct

results are obtained. The design of wave-pipelined circuit in

this fashion requires human intervention and is time

consuming. Automation of the above three tasks are

considered in the next section.

3. Automation schemes for wave-pipelined circuits

Equalization of the path delays is considered first.

This cannot be completely automated as the commercially

available syntheses tools do not support the specification of

interconnect delays. However, the difference in path delays

can be minimized by specifying the physical location of logic

cells (slices) or logic elements used for the implementation,

through either the User Constraints File (UCF) or the Logic

lock feature supported by the FPGA CAD tools. UCF

approach is proposed for Xilinx FPGAs in [10], [11]. The

logic lock feature is adopted for the Altera FPGAs in this

paper.

The adjustment of the clock skew and clock period

can be automated by adopting programmability. The

programmable clock and clock skew generator may be

implemented in the FPGAs. Fig. 4 gives the circuit diagram

of a clock generation scheme which consists of a delay block

and an inverter. The actual clock period depends on the

interconnect delay. The select input of the multiplexer is

varied with either a processor or a Finite State Machine

(FSM) to achieve different clock frequencies. Similarly, for

the clock skew generator, the same circuit is used, but the

feedback connection is removed and the select line is varied

through processor or FSM to achieve different clock skew

ranges.

 The wave-pipelined circuit using the programmable

clock and skew generator can be operated at a higher

frequency than that can be achieved using the commercially

available synthesis tools which use Dmax for fixing the

operating frequency. The automation may be carried out

using either off-chip processor or on-chip processor. The off-

chip processor is used when the FPGA is used as a

Int'l Conf. Embedded Systems and Applications | ESA'11 | 201

coprocessor or hardware accelerator for a main processor or

microcontroller.

Fig. 3. Programmable clock generator.

 Since off-chip communication between the FPGA

and a processor is bound to be slower than on-chip

communication, in order to minimize the time required for

adjustment of the parameters of the wave-pipelined circuit

(clock frequency and skew), the built in self test approach

using design for testability [12] technique, is proposed for

this case. In the SOC approach, a processor is assumed to be

available on-chip and it is used for adjustment of the

parameters of the wave-pipelined circuit.

3.1 BIST Approach for Wave-Pipelined Circuit

Testing a large chip requires a large test sequence and

application of these test sequences to the Circuit Under Test

(CUT) using external testers is time consuming. Built in self

test scheme is an alternative for minimizing the testing time.

In the BIST scheme, the test sequences are internally

generated, applied to the CUT at full speed and a signature is

generated for finding whether it is good or bad. The block

diagram of a wave-pipelined circuit with BIST is given in

Fig. 4. This is obtained by including the FSM block and self-

test circuit. The self-test circuit contains programmable

clock, clock skew generator, signature analyzer and test

vector RAM to the circuit given in Fig. 4.

3.1.1 FSM Block

The Finite State Machine (FSM) is realized using the off-chip

processor. The FSM block generates the control signal to

choose between the normal mode and the self test mode and

this is applied to the select input of multiplexer. In the self

test mode, the FSM systematically varies the clock skews and

clock periods. For each clock frequency and skew, the self

test circuit generates the test inputs, applies them, generates

the signature, compares it with the expected result and finally

generates a flag indicating the match. The FSM progresses

with the testing till the frequency at which the DUT works

for at least 3 or more skew values is found. The operating

skew value is chosen to be the middle value so that the DUT

would reliably work even if the delays change due to

environmental conditions. In order to minimize the time

required to determine the correct value of clock skew and

clock period, a two step procedure is adopted. The clock

frequencies are varied by large steps to determine the range

of frequency in which the circuit works. This is achieved by

varying only the higher order two bits of the select inputs of

the programmable clock. After the range is determined, fine

tuning is achieved by varying the lower order bits. For every

frequency at which the circuit is tested, the clock skews are

varied gradually and the results are tested for its correctness

and the clock skews for which the circuit works satisfactorily

is noted. The testing time can be minimized by using the

optimal test vector set and a signature analyzer [10].

3.1.2 Signature Generator

For testing the correctness of the circuit, N test vectors may

be fed one after another and the N outputs obtained should be

compared with the expected outputs. In order to minimize the

number of comparisons, a unique signature is generated out

of the N outputs and it is compared with the signature

corresponding to the expected outputs. The signature

generator consists of a Pseudo Random Binary Sequence

(PRBS) generator with multiple data input [Smith 2003] as

shown in Fig. 5. The successive output of the output register

is XOR’ed with the state of the PRBS to generate the next

state.

Fig. 4. Self tuned wave-pipelined circuit.

If the test vector set consists of N vectors, the PRBS

generator output contains the signature after application of N

clock pulses. However, due to the propagation delay in the

Random Access Memory (RAM), I/O registers and the

combinational logic block, the time at which signature

generation begins should be delayed with respect to the time

202 Int'l Conf. Embedded Systems and Applications | ESA'11 |

at which the application of test vectors begins. The delay

depends on the depth of the combinational logic blocks.

Fig. 5. Signature Generator.

3.1.3 Test Vector Generation

In principle, the number of test vectors required for an M

input combinational logic circuit is 2
M

. If the value of M is

small, exhaustive testing of the circuit may be carried out by

generating the test inputs through an M bit counter and

checking the signature after the counter completes one full

cycle. However, some of the inputs may contribute more to

Dmax than the others. For example, in the case of the

multipliers, the maximum propagation delay occurs only

when MSBs of the operands are 1. If the multiplier works for

this case, it will work for the other cases where at least one of

the MSBs is zero. Hence, a (M-2) bit counter is adequate for

testing. For circuits with large number of inputs, exhaustive

testing would require very large testing time. Minimal test

vector set, which reduces the testing time without

compromising the quality of detection of faults, may be

obtained using the automatic test pattern generator (ATPG)

algorithms [Smith 2003]. Computed Aided Design tools may

also be used for generating the minimal test vectors using

ATPG algorithm and assessing their fault coverage ratio.

However, the generation of test patterns for wave-pipelined

circuit is non trivial because we have to account for data

dependent delays (delay for 001 is different from that for

101) [Thomas Gray et al 1993] and this is compounded by

the absence of accurate models for interconnects in FPGAs.

Since the conventional ATPG techniques are not applicable

for wave-pipelined circuits, we have to content with only

random test vectors. By choosing different test vector sets

consisting of different combinations and different ordering of

test vectors, we can improve the confidence level.

The BIST approach requires a number of overheads such

as FSM, signature generator and test vector RAM. These

blocks are useful only when the clock frequency and skew

are to be varied. If the operating frequency is chosen so that

the stable period in Fig. 2 is greater by at least twice the

worst case variation in the delay due to temperature, neither

the clock frequency nor the skew need to be adjusted again.

After these initial selection, the wave-pipelined circuit

requires no further tuning and work satisfactorily without any

external intervention. Instead of using a dedicated circuit

such as BIST, a processor may be used to carry out the above

tuning task. For example, FPGA based speech recognition

with SOC may perform the various tasks required by

optimally partitioning between hardware and software

[Amudha et al 2007]. The tasks performed in software uses

the on-chip processor. The hardware block may use wave-

pipelining and it may be tuned by the on-chip processor at the

beginning.

 For the SOC approach, PRBS generator, signature

comparator blocks in Fig. 4 may be replaced by a block

RAM which is used to store the outputs of the circuit under

test corresponding to the test inputs. Since the

communication interface between the on chip processor and

the circuit under test is faster, the outputs can be directly read

and compared with the expected output for every

combination of skew and clock frequency. The algorithm for

the FSM given in section 3.1 can be modified accordingly.

The select inputs for the clock as well as skew blocks and the

data inputs to the wave-pipelined circuit may be applied and

varied through the on-chip processor.

A variety of choices exist for the implementation of

SOC. The SOC may consist of a hard core processor such as

power PC or ARM processor and an FPGA coprocessor or

DSP block. Alternatively, it may consist of soft-core

processors such as Nios II or Micro blaze and a custom DSP

block implemented in FPGA. In this paper, Altera FPGA

based SOC consisting of Nios II soft-core processor is used

for the implementation. Fig. 6 shows the interface diagram of

a Nios II processor along with the custom block (wave-

pipelined circuit).

3.2.1 Procedure for Adjusting the Clock Period and Skew

In this paper, the multiplier block is implemented as custom

hardware for the soft-core processor. The period of the clock

signal and delay introduced by the clock skew blocks depend

on the interconnect delays, the location of the logic elements

and the interconnects used for the implementation of these

blocks should be fixed so that when this block is integrated

with the multiplier or the processor, the interconnect delays

are not altered. This is achieved by using the Logic Lock

feature in Altera.

The operating frequency of the wave-pipelined circuit is

expected to lie between that of non-pipelined circuit and

pipelined circuit. Hence, the minimum and maximum

frequency of the clock generator should correspond to the

maximum operating frequencies of the non-pipelined and

pipelined circuits respectively. The approximate values of

these two frequencies are found for the circuit to which the

clock is to be applied using the synthesis report. After

determining the range of the frequencies to be generated by

the clock circuit, the number of delay blocks are adjusted.

4. Design of multiplier unit

The effectiveness of the approach proposed is

studied by implementing self tuned wave-pipelined circuits

with combinational logic block: multipliers using dedicated

AND gate.

The implementation of multipliers is considered

first. Xilinx FPGAs such as Spartan-II as well as Virtex

devices and Altera FPGAs such as APEX and Cyclone II

devices have fast carry logic and dedicated AND gate for

each of the Look Up Tables (LUTs) in the Slices/Logic

Int'l Conf. Embedded Systems and Applications | ESA'11 | 203

Elements (LEs). Since multiplying an N bit number by 2

requires only AND gates and adders, fast Nx2 multipliers can

be implemented using this dedicated hardware. To

implement a Nx4 multiplier, output of two Nx2 multipliers

has to be added.

Fig. 9. 10X10 Multiplier dedicated AND gate and fast carry

logic.

 To implement an NxM multiplier, the output of
┌
log2M

┐
, Nx2 multipliers have to be added, 2 at a time in

parallel in
┌
log2M

┐
 stages appropriately. The circuit diagram

of the 10x10 multiplier using dedicated AND gate and fast

carry logic is shown in Fig. 9. The dotted line indicates points

where registers may be inserted for pipelining. For wave-

pipelining all the stages are directly connected without

registers. The registers are used only at the inputs and

outputs.

5. Implementation of self tuned wave-pipelined circuits

using BIST approach

 The multipliers using dedicated AND gate is

implemented on Xilinx Spartan II FPGA using BIST

approach. It may be noted that the BIST approach is also

applicable for Altera FPGAs.

5.1 Implementation results on Multiplier using Spartan-II

XC2S100

The multipliers of size 4x4, 6x6 and 10X10 are

implemented on Spartan-II XC2S100-5PQ208 device. The

multipliers with and without pipelining are also implemented

and the results are shown in Fig. 11. Overhead required for

wave-pipelined circuits are also shown in Fig. 11.

From Fig. 11, it may be noted that the wave-pipelined

multipliers are faster by a factor of 1.43-1.46 compared to the

non-pipelined multipliers. The pipelined multipliers are faster

by a factor of 1.16-1.23 compared to the wave-pipelined

multiplier. This is achieved by increasing the number of

registers by a factor of 1.75-4.1 and slices by a factor of 1.21-

1.26.

Fig. 11. Implementation results of multipliers using dedicated

AND gate and fast carry logic.

5.2 Implementation results on Multiplier using ASIC

The self tuned wave-pipelined circuit in Fig. 4 is

studied by using 10X10 multiplier as the combinational logic

block. These circuits are implemented using 180nm

technology in ASIC. Verilog HDL language is used to

describe the functionality of the circuit and after the circuit is

described in HDL, functionality is verified modelsim

simulation tool. Leospectrum is used for synthesizing the

circuit.

Table. 1. Implementation results of multipliers using

dedicated AND gate and fast carry logic.

Schemes Area Freq.(Mhz)

Pipelining 1623 343.4

Non-pipelining 916 197.1

Wave-pipelining 1431 203.2

204 Int'l Conf. Embedded Systems and Applications | ESA'11 |

From table1, it may be noted that the wave-pipelined

multipliers are faster by a factor of 1.03 compared to the non-

pipelined multipliers. The pipelined multipliers are faster by

a factor of 1.6 compared to the wave-pipelined multiplier.

6. Implementation of self tuned wave-pipelined circuits

using SOC approach

For the SOC approach, the soft-core processor, Nios II, is

implemented on Altera FPGAs and 12X12 multiplier is

implemented as custom hardware.

The optimal clock period and clock skews are determined

using the procedure described in section III.B. Since the

period of the clock signal and delay introduced by the clock

skew block depend on the interconnect delays, the location of

the LEs and the interconnects used for the implementation of

these blocks should be fixed so that when these blocks are

integrated with either the multiplier or the Nios II processor,

the interconnect delays are not altered. This is achieved by

using the Logic lock feature in Quartus II.

As mentioned in section III, simulation is

inadequate to test the wave-pipelined circuit. Hence, this

circuit is implemented along with the Nios II softcore

processor and the former is added as the custom block to the

Nios II using SOPC builder. The program to be executed by

the Nios II is written in C/C++ and the custom block is

invoked as a function in the C/C++ program. A C++ program

is written to read and write from the block RAM in the

custom block.

6.1 Implementation results on Multiplier using Apex

20K200EFC484

The results obtained for the 12X12 wave-pipelined

multiplier using dedicated AND gate and fast carry logic are

shown in Fig. 13. The multipliers with and without the

pipelining are also implemented and these results are also

shown in Fig. 13. Overhead required for wave-pipelined

circuit is also shown in Fig. 13. From Fig. 13, it may be noted

that the wave-pipelined multiplier is faster by a factor of 1.5

compared to the non-pipelined multiplier. The pipelined

multiplier is faster by a factor of 2.02 compared to the wave-

pipelined multiplier. This is achieved with increase in the no.

of registers by a factor of 4.17 and LEs by a factor of 1.05.

Quartus II does not have the power estimation feature for

Altera Apex devices and hence powers dissipated by the

different multiplier schemes are not compared.

7. Conclusion

Two automation schemes proposed in this paper for

the FPGA implementation of the wave-pipelined circuit is

tested using the multipliers with dedicated AND gate as well

as fast carry logic. It is observed that wave-pipelined circuits

operate faster by a factor of 2.6 compared to non-pipelined

circuits. The pipelined circuits are in turn faster than the

wave-pipelined circuits and this is achieved with the increase

in the number of registers and LEs or slices. Out of the two

automation approaches, SOC approach requires less overhead

compared to BIST approach.

Fig. 13. Implementation results of 12X12 multiplier using

dedicated AND gate fast carry logic.

References

1. Flavio R. Wagner, Wander O. Cesario, Luigi Carro and

Ahmed A. Jerraya, “Strategies for the integration of

hardware and software IP components in embedded

systems-on-chip,” Elsevier Integration, The VLSI Journal,

pp. 1-31, Nov. 2003.

2. G. Martin and H. Chang, “System-on-Chip design,”

Proc. of Intl. conf. on ASIC, pp. 12 – 17, 2001.

3. Altera documentation library- 2003, Altera corporation,

USA.

4. K. K. Parhi, “VLSI signal processing systems,” John

Wiley & Sons, 1999.

5. J. Nyathi and J. G. Delgado-Frias, “A hybrid wave

pipelined network router,” IEEE Transactions on

Circuits and Systems I: Fundamental Theory and

Applications, vol. 49, no. 12, pp. 1764 –1772, Dec.

2002.

6. O. Hauck., A. Katoch and S. A. Huss, “VLSI system

design using asynchronous wave pipelines: a 0.35 μm

CMOS 1.5 GHz elliptic curve public key cryptosystem

chip,” Proc. of Sixth Intl. Symposium on Advanced

Int'l Conf. Embedded Systems and Applications | ESA'11 | 205

Research in Asynchronous Circuits and Systems, 2000,

(ASYNC 2000), pp. 188 –197, April 2000.

7. W. P. Burleson, M. Ciesielski, F. Klass, and Liu, “Wave-

pipelining: a tutorial and research survey,” IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 6, no. 3, pp. 464 –474, Sep.1998.

8. C. Thomas Gray, W. Liu and R. Cavin, “Wave Pipelining:

Theory and Implementation,” Kluwer Academic

Publishers, 1993.

9. E. I. Boemo, S. Lopez-Buedo and J. M. Meneses,

“Wave pipelines via look-up tables,” IEEE International

Symposium on Circuits and Systems ISCAS '96, vol. 4, pp.

185 -188, 1996.

10. G. Lakshminarayanan and B. Venkataramani,

“Optimization techniques for FPGA based wave-pipelined

DSP blocks,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 13, no. 7, pp 783-793,

July 2005.

11. Xilinx documentation library, Xilinx Corporation, USA.

12. M. J. S. Smith, “Application Specific Integrated Circuits,”

Pearson Education Asia Pvt. Ltd, Singapore, 2003.

13. G. Seetharaman, B.Venkataramani and G.

Lakshminarayanan, “Design and FPGA implementation of

self-tuned wave-pipelined filters,” IETE journal of

research, vol 52, no. 4, pp. 305-313, July-August 2006.

14. V. Amudha, B. Venkataramani, R. Vinoth Kumar and S.

Ravishankar, “SOC Implementation of HMM Based

Speaker Independent Isolated Digit Recognition System,”

20th International IEEE Conference on VLSI Design

(VLSID’07), pp. 1-6, 2007.

15. G. Seetharaman, B.Venkataramani, V. Amudha, Anurag

Saundattikar, “System on chip implementation of 2D

DWT using lifting scheme,” Proc. of the International

Asia and South Pacific Conference on Embedded SOCs

(ASPICES 2005), July 5-8, 2005, Bangalore.

16. U. Meyer Baese, “Digital Signal Processing with FPGAs,”

Springer Verlag, 2001.

206 Int'l Conf. Embedded Systems and Applications | ESA'11 |

System on Chip implementation of wave-pipelined 2D DWT

Venkatasubramanian Adinarayanan

*
, Rengaprabhu Paramasivam

$
 and

Seetharaman Gopalakrishnan
#

*
Research Scholar, Department of CSE, Sathayabamma University, Chennai, India

$
Research Scholar, Dept. of Info. and Comm. Engineering, Anna University of Technology, Tiruchirappalli, India

#
Principal, Oxford Engineering College, Tiruchirappalli, India

Abstract

This paper presents the design and

implementation of hybrid wave-pipelined 2D DWT

using lifting scheme. In this approach different lifting

blocks are interconnected using pipelining and the

individual blocks are implemented using Wave-

Pipelining (WP). For the purpose of comparison, non

pipelined scheme as well as the scheme with pipelining

within the blocks and between the blocks is

implemented. For images of size 512×512, one level 2D

DWT scheme is implemented on Xilinx based SOC Kits,

using all the three schemes. From the implementation

results, it is concluded that the hybrid WP is faster than

non-pipelined and requires less area, less clock routing

complexity and lower power than pipelined. The one

level 2D DWT scheme is also implemented, in ASICs

using pipelining. This is first of its kind.

Key-Words: FPGA, SOC, ASIC, DWT, lifting.

1. Introduction

 Programmable logic devices such as Field

Programmable Gate arrays (FPGAs) offer an alternative

solution for the computationally intensive functions

performed traditionally by Programmable Digital Signal

Processors (P-DSP). They are also employed at the radio

frequencies as the digital down converter. [1]. The

ability to design, fabricate and test ICs with gates count

of the order of a few tens of million has led to the

development of complex embedded System On-Chip

(SOC) with FPGAs and ASICs. Development tools such

as the Altera SOPC builder and the Xilinx EDK enable

the integration of IP cores and the user designed custom

blocks with the soft-core processors such as the NiosII

from Altera and Micro blaze from Xilinx [2], [3], [4].

The VLSI implementation of image encoders

with 2D DWT has been addressed in number of previous

works. In Ritter [5], FPGA (XC4085XLA) based

implementation of 2D DWT using lifting scheme and

compression using EZT algorithm is reported. For

storing the image and the transform an external RAM is

used in this work. The image block encoder proposed in

[6], uses block RAMs in FPGAs for storing the sub

image and its transform. As 2D DWT is not a block

transform, the image is split into overlapping blocks of

sub images for the 2D DWT computation. For the

implementation of the 2D DWT, lifting scheme proposed

by Swelden [7] is quite suited. However, pipelined

systems require more power dissipation, clock routing

complexity and result in larger clock skews between

different parts of the system. A circuit design technique

such as wave-pipelining is one of the techniques for

achieving high speed without the above limitations. A

number of systems have been implemented using wave-

pipelining on ASICs and FPGAs [9], [10]. The concept

of wave-pipelining has been described in a number of

previous works [11], [12], [13]. Wave-pipelined circuit

dispenses with the need for registers for storing the

intermediate results and instead uses the inherent

capacitance at the input to the various combinatorial

blocks. This results in lower power dissipation at the cost

of speed. The hybrid scheme is aimed at combining the

advantages of both pipelining and wave pipelining.

II. Review of previous work on 2D DWT

2D wavelet transform may be computed using

filter banks. Fig .1 shows One level 2D DWT, x[n]

shows the input image, LL1 shows the subset of the

transform coefficients represents the coarse form of the

input image. The input samples x(n) are passed through

the 2 stages of analysis filters as shown in Fig .1. They

are first processed by the low pass h[n] and high pass

g[n] horizontal filters and are sub sampled by two.

Subsequently, the outputs (L1, H1) are processed by low

pass and high pass vertical filters.

The horizontal and vertical filters contains 5

lifting blocks (, , , ,). The lifting scheme uses a

poly-phase structure for the analysis filter [7]. For the

two level 2D DWT the input is LL1 component and for

further decomposition the same procedure is followed.

For every level the image gets reduced by a factor of

four. In the lifting scheme, the odd and even input

samples are processed by the lifting blocks (, , , ,

Int'l Conf. Embedded Systems and Applications | ESA'11 | 207

(1 & 2)) in cascade as shown in Fig. 1a. 1, 2 are

scaling blocks. Details of and blocks are shown in

Fig. 2a and Fig. 2b. and blocks are obtained by

replacing the constants , with , .

Fig.1 One level 2D DWT

Fig.1a Simplified block diagram of Lifting Scheme for

9/7 filter.

In Fig. 2, since the output from one block is fed

as the input to the next block, the maximum rate at

which the input can be fed to the system depends on the

sum of the delays in all the four stages. The speed is

increased by introducing pipelining at the points

indicated by dotted lines in Fig. 2 [b]. In this case, the

input rate is determined by the largest delay among all

the four blocks. The delay in the individual stages is

reduced further by using Constant Coefficient Multiplier

(KCM). KCM uses a ROM for finding the product of a

constant and a variable. The variable is fed as address to

the ROM, which contains the products corresponding to

all possible combinations of the operands. When the

ROM is implemented using 4 input Look Up Tables

(LUTs), a no. of stages of LUTs and adders are required

to find the product. For example a 12x12 bit KCM

requires one ROM stage consisting of three 16X16

ROMs and two stages of 16 bit adders. The speed of the

KCM can be increased by introducing the pipelining

registers at the outputs of ROMs and adders.

The Pipelined Constant Coefficient Multiplier (PKCM)

using the BW content is referred to as BW-PKCM in [6]

and is shown to be superior compared to the other

approaches. Hence, only this multiplier is considered for

wave pipelining in this paper. The detailed diagram of

the block implemented using BW-PKCM is shown in

Fig. 3. The same scheme can be adopted for the , , ,

1,2

 Fig. 2a block Fig. 2b block

Fig.3 block using BW-PKCM

208 Int'l Conf. Embedded Systems and Applications | ESA'11 |

III. Design of wave-pipelined lifting blocks

on FPGAs

An RTL model of a circuit consists of a

combinational logic circuit separated by the input and

output registers. The combinational logic circuit may be

considered to be a wave-pipelined circuit if a number of

waves are made to simultaneously propagate through it

is shown in Fig. 4a [14]. In other words, at any point of

time, a sequence of data is processed in the

combinational logic block. In the case of pipelining, only

one data is processed in the combinational logic block at

a time. Further, the maximum data rate in the pipelined

circuit depends only on Dmax, the maximum

propagation delay in the combinational logic block.

Fig. 4b shows temporal/spatial diagram of

combinational logic circuits [14]. If Dmin denotes the

minimum propagation delay of the signal through the

combinational logic block, the maximum data rate of the

wave-pipelined circuit depends on (Dmax – Dmin).

Traditionally, in a wave-pipelined circuit, higher speeds

are achieved by equalizing the Dmax and Dmin [9]. The

output of the wave-pipelined circuit alternates between

unstable and stable states. The stable period decreases

with the increase in the logic depth. By adjusting the

latching instant at the output register to lie in the stable

period, the wave-pipelined circuit can be made to work

properly. But, for large logic depths, there may not be

any stable period. Hence adjusting the latching instant by

itself may not be adequate for storing the correct result at

the output register. For such cases, the clock period has

to be increased to increase the stable period.

Fig. 4a Wave-pipelined circuit

Equalization of path delays, adjustment of the

clock period and clock skew are the three tasks carried

out for maximizing the operating speed of the wave-

pipelined circuit. All the three tasks require the delays to

be measured and altered if required. Layout editors,

such as EPIC editor from Xilinx, may be used for this

purpose. In [15], [16], these tasks are carried out

manually. The wave-pipelined circuit designed using the

layout editor may be tested using simulation. However,

the simulation is inadequate for testing due to the

difference between the actual delays and the delays

calculated by the layout editor. This is because, the

layout editor considers only the worst case delays and

the actual delays may be significantly different due to

fabrication variations.

Fig.4b Temporal/spatial diagram of combinational logic

circuits

This difference becomes important as the logic

depth of the circuit increases. Hence, the design is

downloaded to the actual FPGA and its operation is

checked using a PC based test system in [16]. If correct

results are not obtained, delays are altered and the design

is downloaded for testing again. A number of iterations

of place and route, simulation, downloading and testing

in the actual device may be required till the correct

results are obtained. The design of wave-pipelined

circuit in this fashion requires human intervention and is

time consuming. Automation of the above three tasks is

considered in this paper.

IV. Automation schemes for wave-pipelined

circuits

To maximize the operating speed of the wave-

pipelined circuit, the equalization of the path delays is

considered first. This cannot be completely automated

as the commercially available synthesis tools do not

support the specification of interconnect delays.

However, the difference in path delays can be minimized

by specifying the physical location of logic cells used for

the implementation, through User Constraints File

(UCF). This approach is proposed in [16].

The adjustment of the clock skew and clock

period can be automated by using programmable clock

and skew generator. The programmable clock and clock

skew generator (without feedback) may be implemented

in the FPGAs. When the custom block is integrated to

the Nios II core using the SOPC builder or Micro Blaze,

the CPU clock is available as one of the inputs to the

custom block.

Sequential circuits may use this clock as the

basic clock from which other clock frequency are

derived. However, if the custom block requires a large

Int'l Conf. Embedded Systems and Applications | ESA'11 | 209

number of sequential operations, it would be preferable

to use a higher clock frequency to minimize the

computation time. This may be achieved by generating

the clock internally in the custom block. Fig. 5 gives the

circuit diagram of a clock generation scheme which

consists of a delay block and an inverter. The actual

clock period depends on the interconnect delay. The

select inputs s(0)-s(18) are connected to one data input

and a(0)-a(18) are connected to the other port of the Nios

II or Micro Blaze CPU. When prefix code is 0, the clock

is reset to 0 and it keeps toggling periodically for other

prefix codes. The select input of 8:1 multiplexer (s1, s2,

s3) is varied by the processor to achieve different clock

frequencies. Similarly, for the clock skew generator, the

same circuit is used, but the feedback connection is

removed and the select line is varied through processor

to achieve different clock skew ranges. On

implementation of the clock, it is found to contain

glitches of the order of 1ns. This is suspected to be due

to transients in the data ports, which occur when the

prefix code is changed. To overcome this, a majority

logic circuit with 3 inputs is used.

The circuit using the programmable clock and

skew generator is a suboptimal wave pipelined circuit

but can operate at a higher frequency than that reported

by the commercially available synthesis tools which use

Dmax for fixing the operating frequency. The

automation (choosing the correct values for the select

inputs for clock and skew generators) may be carried out

using either off-chip processor or on-chip processor. The

off-chip processor is used when the FPGA is used as a

coprocessor or hardware accelerator for a main processor

or microcontroller. The off-chip communication between

the FPGA and a processor is bound to be slower than on-

chip communication. In order to minimize the time

required for adjustment of the parameters of the wave-

pipelined circuit (clock frequency and skew), the Built In

Self Test (BIST) approach for design for testability [17],

[18] may be used.

In the SOC approach, a processor is assumed to

be available on-chip and it is used for adjustment of the

parameters of the wave-pipelined circuit. Automation

of the tuning process using SOCs based on both Xilinx

and Altera FPGAs are considered in this paper.

 As shown in Fig. 5a, the combinational block

used is the one level 2D DWT. A variety of choices exist

for the implementation of system on-chip. The SOC may

consist of a hardcore processor such as power PC or

ARM processor and an FPGA coprocessor or DSP

block. Alternatively, it may consist of a softcore

processor such as MicroBlaze or Nios II and a custom

DSP block implemented in FPGA. For adjustment of the

parameters of the wave-pipelined circuit, any of these

processors may be used and they need not be dedicated

for this purpose. Even in the worst case, the parameters

of the wave-pipelined circuit may have to be tuned only

once in few hours. Hence, the speed of a combinational

logic circuit can be enhanced with very little overhead

using the SOC approach.

Fig. 5 Clock generation scheme

Fig. 5a SOC approach for wave-pipelined circuit

210 Int'l Conf. Embedded Systems and Applications | ESA'11 |

V. Procedure for adjusting the clock period

and skew

The Altera softcore processor, Nios II, is

implemented on Cyclone-II EP2C35F672C6 device and

Xilinx softcore processor, MicroBlaze, is implemented

on Spartan-III-XC3S200. The one level 2D DWT is

implemented as custom hardware in both cases. As

shown in Fig. 5a, the inputs to these blocks are applied

from the block RAM and the results of these blocks are

stored into the block RAM. During normal operation, the

block RAM contains the array of data to be processed. In

the test mode, the block RAM contains the test data.

 During the testing mode, the processor writes

the test vectors into block RAM, systematically applies

the select inputs for the clock generator and clock skew

blocks and uploads the results to be stored into the

output block RAM for each combination of select

inputs (s1-s3). It then checks the results with the

expected results. It keeps varying the select inputs and

repeats the above steps till the operating frequency at

which the circuit works for three different skew values is

found. The same procedure is followed for the next set

of input vectors.

Alternatively, all possible combination of input

vectors can be stored into block RAM, and the above

procedure can be used to find the operating frequency.

But this is feasible only for small word sizes.

Since the period of the clock signal and delay

introduced by the clock skew block depend on the

interconnect delays, the location of the logic elements

and the interconnects used for the implementation of

these blocks should be fixed so that when these blocks

are integrated with the 2D DWT or the processor, the

interconnect delays are not altered. This is achieved by

using the Logic Lock feature in Altera. In the case of

Xilinx FPGAs, this is achieved by using the Macros.

 The operating frequency of the wave-pipelined

circuit is expected to lie between that of non-pipelined

circuit and pipelined circuit. Hence, the minimum and

maximum frequency of the clock generator should

correspond to the maximum operating frequencies of the

non-pipelined and pipelined circuits respectively.

In the case of 2D DWT, the block shown in

Fig. 3 can be wave-pipelined and tuned using the circuit

shown in Fig.4a. Similar circuits may be used for the ,

, , 1,2 blocks. However, the self tuning blocks need

 block may be tuned using the circuit

given in Fig. 5. After determining the optimum value of

clock period,

output of the o be fed as input to the

period for block is tuned assuming the input to

originate from the cascaded output of ,

Similarly blocks are tuned. Then the , , , ,

1,2

clock frequency should be chosen to be the smallest

frequency at which all the 5 blocks function individually.

For proper operation of the hybrid WP-P BW-KCM, the

skew value of each individual block is to be retuned.

This is carried out after downloading the design onto the

device.

VI. Implementation and study of the 2D

DWT using lifting scheme

The 512x512 gray-level Lena with 8 bits per

pixel is used for testing the three schemes. The 2D DWT

scheme is implemented on Xilinx device using the lifting

blocks with 9/7 biorthogonal filters and BW-PKCM

multipliers. The lifting multiplier constants (, , , ,

1, 2) are assumed to be of 8 bits each and the input

samples are assumed to be of 11 bits. For 2D DWT,

image block of size 32x32 is assumed. Fig. 6 overall

block diagram of one level 2D-DWT. The input image

and the output of the horizontal filters as well as vertical

filters are assumed to be stored in the block RAMs. For

the horizontal filters, the even and odd inputs are applied

from two block RAMs of size 512x11. For testing, the

image is assumed to be loaded into the block RAMs

using Memory Initialization File (MIF). The result is

written into 4 block RAMs of size 256x1.

In this paper In order to minimize the area required for

implementation, a single horizontal filter may be reused

to compute the one level 2D DWT. This procedure is

repeated for the all the 25 sub blocks, then all are merged

suitably. The one of the advantage of wavelet transform

is that a subset of the coefficients represents a coarse

form of the image and can be displayed (LL1) without

computing the inverse transform.

Fig. 6 Overall block diagram of one level 2D DWT

A. Implementation results on Spartan-III XC3S200

Implementation results for one level 2D DWT

on Xilinx Spartan-III XC3S200 using all the three

Int'l Conf. Embedded Systems and Applications | ESA'11 | 211

approaches and the results are given in Fig. 7. The

programmable clock and clock skew blocks are

implemented as Macro blocks using Xilinx ISE 8.1i

project navigator. For tuning the wave-pipelined circuit,

the Micro blaze softcore processor is used. Xilinx

Embedded Design Kit (EDK) software is used to

integrate the custom block to the Micro blaze processor.

The rest of the steps are similar to what is used for the

Altera SOC kit.

Fig. 7 Implementation results on Spartan-III XC3S200

For the all three schemes, the no. of logic elements, no.

of registers, maximum operating frequency and power

dissipated are computed and the results are given in Fig.

7. From this Fig. 7, it may be concluded that for the

lifting scheme, the method using hybrid WP-P BW-

KCM is faster than non pipelined BW-KCM by a factor

of 1.07. The scheme with BW-PKCM is in turn faster

than the hybrid WP-P BW-KCM by a factor of 1.56 and

this is achieved with the increase in the number of

registers by a factor of 3.157 and increase in the number

of LEs by a factor of 1.54 compared to the hybrid WP-P

unit.

B. Implementation of 1 level 2D DWT using ASIC

The 2D DWT scheme is implemented on ASIC

using the lifting blocks with 9/7 biorthogonal filters and

BW-PKCM multipliers. The 2D DWT is implemented

using 180nm technology in ASIC. Verilog HDL

language is used to describe the functionality of the

circuit and after the circuit is described in HDL,

functionality is verified modelsim simulation tool. Leo

spectrum is used for synthesizing the circuit. First time

the 2D DWT is implemented using ASIC. In future, it

can be extended to compare with three schemes.

Table 1. Implementation results of 2D DWT

Scheme Area Freq.(Mhz)

Pipelining 6896 346.8

VII. Conclusions

In this paper, techniques for implementation of

the 9/7 bi-orthogonal filters using hybrid WP-P KCM

with Baugh-Wooley multiplication algorithm are

proposed. The 9/7 bi-orthogonal filters implemented on

Xilinx SOC device using the lifting scheme with the

following three multipliers: with BW-PKCM, BW-

KCM and hybrid WP-P BW-KCM. From the

implementation results, it is verified that hybrid WP-P

BW-KCM is faster compared to non pipelined BW-

KCM and is register efficient, less clock routing

complexity and less power dissipation compared to BW-

PKCM. The one level 2D DWT scheme is also

implemented, in ASICs using pipelining. This is first of

its kind. It can be extended for non-pipelining and WP

for future work.

References

1. G. Martin and H. Chang, “System-on-Chip

design,” Proc. of Intl. conf. on ASIC, pp.12 –

17, 2001.

2. Altera documentation library- 2003, Altera

Corporation, USA.

3. Xilinx documentation library, Xilinx

Corporation, USA.

4. W. Tuttlebee, “Software defined radio,” John

Wiley & Sons ltd. USA, 2004.

5. Jorg Ritter and Paul Molitor, “A pipelined

architecture for partitioned DWT based lossy

image compression using FPGA's,” Proc IEEE

conf. FPGA 2001: 201-206, 2001.

212 Int'l Conf. Embedded Systems and Applications | ESA'11 |

6. G. Lakshminarayanan, B. Venkataramani, J.

Senthil Kumar, A. K. Md. Yousuf and G.

Sriram, “Design and FPGA implementation of

image block encoders with 2D-DWT,” Proc.

TENCON 2003, vol. III, pp 1015-1019, Oct 15-

17, Bangalore, 2003.

7. I. Daubechies, and W. Sweldens, “Factoring

Wavelet Transforms into Lifting Steps,”

Journal of Fourier Analysis and Applications,

vol. 4, pp 247-269, Nov. 3, 1998.

8. A. D. Bruce, J. Ross, B. Böhm, A. P. W.

Charles , and C. Monica, “Accelerated Image

Processing on FPGAs,” IEEE Transactions On

Image Processing, vol. 12, no. 12, pp. 1543-

1551, Dec. 2003.

9. J. Nyathi and J. G. Delgado-Frias, “A Hybrid

wave-pipelined network router,” IEEE

Transactions on Circuits and Systems- I,

Fundamental Theory and Applications, vol. 49,

no. 12, pp. 1764 –1772, Dec. 2002.

10. O. Hauck, A. Katoch and S. A. Huss, “VLSI

system design using asynchronous wave

pipelines: a 0.35 μm CMOS 1.5 GHz elliptic

curve public key cryptosystem chip,” Proc. of

Sixth Intl. Symposium on Advanced Research in

Asynchronous Circuits and Systems 2000

(ASYNC 2000), pp. 188 –197, April 2000.

11. W. P. Burleson, M. Ciesielski, F. Klass and Liu,

“Wave-pipelining: a tutorial and research

survey,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 6, Issue.

3, pp. 464 -474, Sept. 1998.

12. C. Gray, W. Liu and R. Cavin, “Wave-

pipelining: Theory and Implementation,”

Kluwer Academic Publishers, 1993.

13. K. K. Parhi, “VLSI signal processing systems,”

John Wiley & Sons, 1999.

14. C. Thomas Gray, Wental Liu and Ralph K.

Cavin, III, “Wave-pipelining: Theory and

CMOS Implementation,” Kluwer Academic

Publishers, 1994.

15. E. I. Boemo, S. Lopez-Buedo and J. M.

Meneses, “Wave pipelines via look-up tables,”

IEEE International Symposium on Circuits and

Systems (ISCAS '96), vol. 4, pp. 185 -188, 1996.

16. G. Lakshminarayanan and B. Venkataramani,

“Optimization techniques for FPGA based

wave-pipelined DSP blocks,” IEEE

Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 13, no. 7, pp 783-793,

July 2005.

17. M. J. S. Smith, “Application Specific Integrated

Circuits,” Pearson Education Asia Pvt. Ltd.,

Singapore, 2003.

18. G. Seetharaman, B. Venkataramani and G.

Lakshminarayanan, “Design and FPGA

implementation of self tuned wave-pipelined

filters,” IETE journal of research, vol. 52, no.

4, pp. 281-286, July-August 2006.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 213

Design Space Exploration to Find the Optimum Cache
and Register File Size for Embedded Applications

Mehdi Alipour 1, Mostafa E. Salehi1, Hesamodin shojaei baghini2
1 Islamic Azad University, Qazvin Branch, Qazvin 34185-1416 Iran.

2 Computer Engineering Department, Javid University of Jiroft, Azadi Ave, Jiroft, Iran.

Abstract - In the future, embedded processors must process
more computation-intensive network applications and internet
traffic and packet-processing tasks become heavier and
sophisticated. Since the processor performance is severely
related to the average memory access delay and also the
number of processor registers affects the performance, cache
and register file are two major parts in designing embedded
processor architecture. Although increasing cache and
register file size leads to performance improvement in
embedded applications and packet-processing tasks in high
traffic networks with too much packets, the increased area,
power consumption and memory hierarchy delay are the
overheads of these techniques. Therefore, implementing these
components in the optimum size is of significant interest in the
design of embedded processors. This paper explores the effect
of cache and register file size on the processor performance to
calculate the optimum size of these components for embedded
applications. Experimental results show that although having
bigger cache and register file is one of the performance
improvement approaches in embedded processors, however,
by increasing the size of these parameters over a threshold
level, performance improvement is saturated and then,
decreased.

Keywords: Embedded processor, design space exploration,
cache, optimum size of register file, cache access delay.

1 Introduction
 In recent years embedded application and internet traffic

become heavier and sophisticated so, future embedded
processors will be encountered by more computation-
intensive embedded applications, in this way, designing high
performance processors is recommended. By scaling down
the feature size, technology and presentation of chip
multiprocessors (CMP) that are usually multi-thread
processors, somehow the user’s performance necessity have
guaranteed. Inseparable parts in designing these processors
are cache and register file because the performance of a
processor is severely related to cache access and also having
enough registers.

Recently in numerous researches, multi-thread processors
are used to design a fast processor especially in network
processors [4], [9], [11], [23], [25], and [26]. In [3] a Markov
model based on fine grain multithreading is implemented.
Analytical Markov model is faster than simulation and has
dispensable inaccuracy. In this chain, stalled threads defined

as states and transitions are based on cache contention
between threads.
 Cache memories are usually used to improve the
performance and power consumption by bridging the gap
between the speed and power consumption of the main
memory and CPU. Therefore, the system performance and
power consumption is severely related to the average memory
access time and power consumption which makes cache as a
major part in designing embedded processor architectures.
 In [4] cache misses are introduced as a factor for reducing
memory level parallelism between threads. In [5] thread
criticality prediction has been used and for better
performance, resources are given to the threads that have
higher L2 cache misses which are called the most critical
threads.
 To improve packet-processing in network processors, [6]-
[8] have applied direct cache access (DCA). In [9] processor
architecture is based on the simultaneous multithreading
(SMT) and cache miss rate is used to show the performance
improvement.To find out the effect of cache access delay on
performance, a comparison between multi-core and multi-
thread processors has been performed in [10]. Likewise,
victim cache is an approach to improve the performance of a
multi-thread processor [11].

All recent researches are based on the comparison results
with single-core single-thread processors. In the other word
multi-thread processors are the heir of the single thread
processors [23], [25], and [26]. Hence, evaluating the
effective parameters like cache and register file sizes are
required for designing a multithread processor. The basic
purpose of this paper is to study the effect of the cache size on
the performance because embedded processors process
computation and data intensive applications and larger cache
sizes will present better performance.

Generally, one of the easiest way to improve the
performance of embedded and network processors is
increasing the cache size [2], [12], [13], [14], and [22]-[26]
but this improvement, severely increase the occupied area and
power consumption of the processor. So, it is necessary to
find a cache size that creates tradeoffs between performance
and power-area of the processor.

 From other point of view, because of the performance per
area parameter, higher performance in a specified area budget
is one of the most important needs of a high performance
embedded processor. A negative point of the recent
researches is that they don’t have any constraints on the cache
size.

214 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Fig1. Processor pipeline of Multi2sim simulator [19].

Because of the limited area budget in embedded
processors, in this paper we have found the optimum size of
L1 and L2 cache and also, because of the longer latency of
bigger caches, best size of memory hierarchy in relation to
this parameter has been calculated.
As mentioned above, another inseparable part in designing
embedded processors is register file. Like the cache, size of
this parameter has the fundamental effect on the better
processor performance. To improve the performance of a
embedded processor, a large register file must be
implemented. However, larger register files occupy more area
and make a worse critical path [18]. Therefore, exploring the
optimum size of the register file is the second purpose of this
paper. The high importance of this issue is based on the fact
that some parameters encourage designer to have a large
register file. Generally embedded processors are implemented
in multi-issue architecture and out of order (OOO) instruction
execution that has renaming logic [16]-[18], [23], [25], and
[26]. On the other hand, because register files are shared in
multi-thread processors, observing the fact: increment the
common parts in design, force the designer to have a larger
register file [1]. These parameters also make higher
importance for register file size. In [15] effects of register file
size in SMT processors have been studied. However, high
budget for the number of registers has used. In recent
researches effect of register file and cache size in the same
time is not studied, so in this paper this issue will be studied
too.

2 Simulation environment
 For simulation, we have used Multi2sim version 2.3.1
[19], a superscalar multi-thread multi-core simulation
platform which has 5 stages of pipeline named fetch, decode,
dispatch, issue, writeback, and commit. This simulator
executes x86 instruction sets. Fig.1 shows a block diagram of
the processor pipeline modeled in Multi2Sim. In the fetch
stage, instructions are read from the instruction or the trace
cache. Depending on their origin, they are placed either in the
fetch queue or the trace queue. The former contains raw
macroinstruction bytes, while the latter stores pre-decoded
microinstructions (uops). In the decode stage, instructions are
read from these queues, and decoded if necessary. Then, uops
are placed in program order into the uop queue. The fetch and
decode stages form the front-end of the pipeline [19]. The
dispatch stage takes uops from the uop queue, renames their

source and destination registers, and places them into the
reorder buffer (ROB) and the instruction queue (IQ) or load-
store queue (LSQ). The issue stage is in charge of searching
both the IQ and LSQ for instructions with ready source
operands, which are schedule to the corresponding functional
unit or data cache. When and uop completes, the writeback
stage stores its destination operand back into the register file.
Finally, the completed uops at the head of the ROB are taken
by the commit stage and their changes are confirmed. So the
commit stage is where we can log and count the number of
committed instructions for performance comparison. Detail of
this simulation is described in the simulation method and
results section.
Multi2sim can run programs in multi issue platform, but to
evaluate the requirements of each thread we have used the
single issue model for comparison. We changed and compiled
the source code of simulator on a 2.4GHz, dual core processor
with 4GB of RAM and 6MB of cache that run fedora 10 as an
operating system. Base on this configuration the average time
of each simulation is about 20 minutes.

3 Benchmarks
 The aim of this paper is to calculate the optimum cache
and register file size. Because embedded applications are so
pervasive homogenous applications they cannot be a good
choice for DSE. Hence we have applied our DSE on
heterogeneous applications, such that in some of them data
cache is more important and in the others instruction cache is
more important. So we apply PacketBench [20] and MiBench
[27] respectively. PacketBench is a good platform to evaluate
the workload characteristics of network processors. It reads
and writes packets from and to real packet traces, and
manages packet memory, and implements a simple
application programming interface API. This involves reading
and writing trace files and placing packets into the memory
data structures used internally by PacketBench. On a network
processor, many of these functions are implemented by
specialized hardware components and therefore should not be
considered part of the application. Programs in this tool are
categorized in 3 parts: 1- IP forwarding which is
corresponding to current internet standards. 2- Packet
classification which is commonly used in firewalls and
monitoring systems. 3- Encryption, which is a function that
actually modifies the entire payload of the packet.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 215

Fig.2. Effect of cache size on cache access delay

Specific applications that respectively we used from each
category are IPv4-Lctrie, Flow-Classification and IPSec.IPv4-
trie performs RFC1812-based packet forwarding. This
implementation is derived from an implementation for the
Intel IXP1200 network processor. This application uses a
multi-bit trie data structure to store the routing table, which is
more efficient in terms of storage space and lookup
complexity [20].Flow classification is a common part of
various applications such as firewalling, NAT, and network
monitoring. The packets passing through the network
processor are classified into flows which are defined by a 5-
tuple consisting of the IP source and destination addresses,
source and destination port numbers, and transport protocol
identifier. The 5-tuple is used to compute a hash index into a
hash data structure that uses link lists to resolve collisions
[20]. IPSec is an implementation of the IP Security Protocol
[27], where the packet payload is encrypted using the Rijndael
Advanced Encryption Standard (AES) algorithm [28]. This is
the only application where the packet payload is read and
modified.
MiBench is a combination of six deferent categories. We have
selected 3 of them: 1- Dijkstar from network category, 2-
Susan (corners) from automotive and industrial control
category, and 3- String-search from office category. The
Dijkstra benchmark constructs a large graph in an adjacency
matrix representation and then calculates the shortest path
between every pair of nodes using repeated executions of
Dijkstra’s algorithm [49]. Susan is an image recognition
package. It was developed for recognizing corners and edges
in magnetic resonance images of the brain [27]. String-search
searches for given words in phrases using a case insensitive
comparison algorithm.

4 Simulation method and results
 Purpose of this paper is to evaluate optimum size of
cache and register file. At first, we describe the methodology
to extract proper size of cache. For this purpose, it is
necessary to configure the simulator in the way that just the
size of cache be the parameter that has affects on the
performance. So, for each application the execution number of
the main function is calculated in different sizes of L1 and L2
caches. For this purpose we made changes in some parts of

simulator source code to calculate the cycles of sending a
packet (the cycles that are used to execute the main function
of each application).
 To calculate the beginning address and the end address of
the main function we disassemble the executable code of each
benchmark application and extract these addresses and then
these parameters are back annotated to commit.c and
processor.h file of Multi2sim simulator where a thread is
executed.
By these changes we can calculate the number of x86
instructions and macroinstructions and the execution cycles
for each specific function.

The second step is to run the simulator with different cache
sizes. But the worthwhile point is that although based on the
recent researches that recommend doubling the cache size for
improving the performance of a processor, however during
doubling the cache size, important parameters like area power
and cache access delay must be considered. For this purpose
we have used CACTI 5.0 [21], a tool from HP that is a
platform to extract parameters relevant to cache size
considering fabrication technology. Most important
parameters that we used in this research are in table 1.
 To compare the performance based on the cache size,
extracted results from cacti (L1 and L2 cache access delay)
are back annotated to Multi2sim. This work has been done by
calculating the simulator cycle time and comparing it to the
results of cache access time from CACTI. In this way when
the cache size is changed, actual cache access delays are
considered.
 As can be seen in Fig.2, increasing the cache size, leads to
more cache access delays.For exploring the cache size, the
other simulator parameters are set to the default value,
because the purpose is to find the best cache size for a single-
thread single-core processor for embedded applications. i.e.
width of the pipeline stages must be one (issue-width =1).

Table 1
The most important parameters used in cacti

L1 cache L2 cache

Cache size Variable Variable

Cache line size Variable Variable

Associatively Variable Variable

Number of banks 1 1

Technology node (nm) 90nm 90nm

Read/write ports 1 1
Exclusive read ports 0 0

Exclusive write ports 0 0

Change tag No No

Type of cache Fast normal/serial

Temperature (K) 300-400 300-400

RAM cell/transistor
type in data array

ITRS-HP Global

RAM cell/transistor
type in tag array

ITRS-HP Global

216 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Fig.3. Effect of cache size on the performance (a):Dijkstra, (b): String_search, (c):Susan.corners, (d):flow_class, (e):ipv4_lctrie, (f): ipsec

5 Analysis of the simulation results
 Fig.3 shows the extracted result of our simulations. In
this figure each axis is labelled and the vertical axis (per-pen)
shows the performance penalty of related cache size
configuration. Based on these results, by increasing the cache
size we can achieve more hit rates, however, because of the
longer cache access time of larger caches, from a specific
point (best cache size) performance improvement is saturated
and then even decreased. In other word, doubling the cache
size cannot always improve the performance. From other
point of view, area budget is limited and always we can't have
a large cache, so, considering the sizes smaller and near the
best cache size, performance degradations are negligible (3%
in average).

 To calculate the optimum size of register file, we have
applied the parameters used for calculating best cache size,
however, to find out just the effect of register file size on the
performance, we used the best cache size (L1 and L2)
concluded in the previous section for the cache size and run
the simulator accordingly. Fig.4 shows the results of this part.
In this picture vertical column shows the performance effect
(performance penalty) of register file size.
 Numbers in this column are relative to the best size of
register file. It shows that although for all applications, in
average, the best size of register file is 68 and above but in
sizes near the half of this size performance penalty is lower
that 5%.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 217

Fig.4. Effect of register file size on performance of different embedded applications.

Also fig.4 shows that reducing the register file size always
decrease the performance but sometimes, by doubling the
register file size we don't have noticeable performance
improvement. So the first point that the highest performance
is reached, is introduced as the best size for register file.
It is worthwhile to say that in Fig.4 the effect of cache size
and register file size can be seen. In other side of view based
on recent researches [23, 25, 26] to have a multi-thread
architecture we need more area budget, and to run this
architecture in the best performance that can be met, multi
issue architecture with renaming logic , ROB, LSQ, IQ and
other OOO components which occupy large area budget are
needful. Base on these simulations, we calculated 2 point for
cache and register file sizes: 1- best size that has no
performance penalty and occupy bigger area budget and 2-
optimum size that has about 3% performance penalty and
occupy smaller area budget so, we can deduce that in the
optimum size of cache and register file we have saved the area
budget of the processors and qualification to run multi-threads
in the higher issue widths is obtained. In other word in lower
area more performance is achieved and causes to growth the
most important parameters for embedded applications that is
performance per area.
 As mentioned before the multi-thread processors are the
heir of single thread processors. So, extracting the best size
for important parameters like cache size and register file size
is necessary.

6 Conclusion
 In this paper we have studied the effect of cache and
register file size on the performance of an embedded
processor and extracted the best size of these two parameters
for embedded applications. Simulation results show that for
selected benchmarks the best size of L1 and L2 caches are
64KB and 128KB respectively, and the best size of register
file is 80. Experiments show that although by increasing the
cache size performance will improve, but in a specific point
the performance improvement is saturated and then
decreased. Also increasing register file size cannot always
improve the performance and in a specific size the
performance improvement will be saturated. From the area

point of view, based on the results of this research, when we
select half of the best size of the cache and register file,
performance penalty is about 3% in average. In other word in
sizes lower than best size the acceptable performance can be
met. It means we can reach performance requirements in
lower area and also have a better performance/area parameter.

7 References
[1] David A. Patterson, John L. Hennessy.: Computer
organization and design: the hardware/software
interface, Morgan Kaufman 2007.

[2] Davanam, N., Byeong Kil Lee., "Towards Smaller-sized
Cache for Mobile Processors Using Shared Set-
Associatively," international conference on information
technology. pp. 1-6. 2010.

[3] Chen, X.E., Aamodt, T.M., "A First-Order Fine-Grained
Multithreaded Throughput Model," International Symposium
on High Performance Computer Architecture (HPCA),
pp.329-340.2009.

[4] Shailender, Chaudhry. Robert, Cypher. Magnus, Ekman.
Martin, Karlsson. Anders, Landin. Sherman, Yip. Haakan,
Zeffer. Marc,Tremblay," Simultaneous speculative threading:
a novel pipeline architecture implemented in sun's rock
processor," international symposium on computer
architecture(ISCA 2009). pp. 484-495, 2009.

[5] Abhishek, Bhattacharjee. Margaret, Martonosi. "Thread
Criticality Predictors for Dynamic Performance, Power, and
Resource Management in Chip Multiprocessors,"
International Symposium on Computer Architecture (ISCA).
pp. 168-176, 2009.

[6] Huggahalli, R. Iyer, R. Tetrick, S.,"Direct cache access for
high bandwidth network I/O," International Symposium on
computer Architecture (ISCA). pp. 50-59, 2005.
[7] Kumar, A. Huggahalli, R.,"Impact of Cache Coherence
Protocols on the Processing of Network Traffic," International

218 Int'l Conf. Embedded Systems and Applications | ESA'11 |

symposium on Microarchitecture. (MICRO), pp. 161-171,
2007.

[8] Kumar, A. Huggahalli, R. Makineni, S.,"Characterization
of Direct Cache Access on Multi-core Systems and 10GbE,"
International Symposium on High Performance Computer
Architecture (HPCA). pp. 341-352, 2009.
[9] Kyueun, Yi. Gaudiot, J.-L.,"Network Applications on
Simultaneous Multithreading Processors," Journal of IEEE
Transaction on Computer (TCOMPUTER). pp. 1200-1209,
2009.

[10] Guz, Z. Bolotin, E. Keidar, I. Kolodny, A. Mendelson,
A. Weiser, U.C.," Many- Core vs. Many-Thread
Machines:Stay Away From the Valley," Journal Computer
Architecture Letters (L-CA), pp.25-28, 2009.

[11] Colohan, C.B. Ailamaki, A.C. Steffan, J.G. Mowry,
T.C.,"CMP Support for Large and Dependent Speculative
Threads," Journal IEEE Transaction on Parallel and
Distributed systems (TPDS), pp. 1041-1054, 2007.

[12] Bienia, C. Kumar, S. Kai Li.," PARSEC vs. SPLASH-2:
A quantitative comparison of two multithreaded benchmark
suites on Chip- Multiprocessors," International Symposium
on Workload Characterization (IISWC), pp.47-56, 2008.

[13] Guanjun, Jiang. Du, Chen. Binbin, Wu. Yi, Zhao.
Tianzhou, Chen. Jingwei, Liu.," CMP Thread Assignment
Based on Group sharing L2 Cache," International Conference
on Embedded Computing, pp. 298-303, 2009.

[14] McNairy, C. Bhatia, R.," Montecito:a dual core dual
thread Itanium processor," IEEE Journal MICRO, pp.10-20,
2005.

[15] Alastruey, J. Monreal, T. Cazorla, F. Vinals, V. Valero,
M.,"Selection of the Register File Size and the Resource
Allocation Policy on SMT Processors Policy on SMT
Processors," International Symposium on Computer
Architecture and High Performance Computing (SBAC-
PAD), pp.63-70, 2008.

[16] A, Yamamoto. Y, Tanaka. H, Ando. T, Shimada.," Data
prefetching and address pre-calculation through instruction
pre-execution with two-step physical register deallocation," in
MEDEA-8, pp. 41–48, 2007.

[17] Yamamoto. Y, Tanaka. H, Ando. T, Shimada.,"Two-step
physical register deallocation for data prefetching and address
precalculation," IPSJ Trans. on Advanced Computing
Systems. vol. 1, no. 2, pp. 34–46, 2008.

[18] Tanaka, Y. Ando, H.,"Reducing register file size through
instruction pre execution enhanced by value
prediction,"IEEE International Conference on Computer
Design, pp. 238 – 245. 2009.

[19] R, Ubal. J, Sahuquillo. S, Petit. P, L'opez.," Multi2Sim:
A Simulation Framework to Evaluate Multicore-
Multithreaded Processors," journal Proc. of the 19th Int'l
Symposium on Computer Architecture and High Performance
Computing. Oct 2007.
[20] Ramaswamy, Ramaswamy. Tilman, Wolf.,"
PacketBench: A tool for workload characterization of
network processing," in Proc. of IEEE 6th Annual Workshop
on Workload Characterization (WWC-6), Austin, TX. pp. 42-
50, Oct. 2003.

[21] Shyamkumar Thoziyoor, Naveen Muralimanohar, and
Norman P. Jouppi "CACTI 5.0 technical report", form
Advanced Architecture Laboratory, HP Laboratories HPL-
2007. [Online]. Available:www.hpl.hp.com/research/cacti/

[22] Hyunjin, Lee. Sangyeun, Cho. Childers, B.R.,"
StimulusCache: Boosting Performance of Chip Multi-
processors with Excess Cache," IEEE 16th International
Symposium on High Performance Computer Architecture
(HPCA), pp, 1 – 12, 2010.

[23] Chung, E.S. Hoe, J.C.," High-Level Design and
Validation of the BlueSPARC Multithreaded Processor,"
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD). vol. 29, no. 10, pp. 1459–
1470, 2010.

[24] Davanam, N. Byeong, Kil. Lee.," Towards Smaller-sized
Cache for Mobile Processors Using Shared Set-
Associativity," international conference on information
technology, pp. 1-6, 2010.

[25] Kyueun Yi, and Gaudiot J. L, "Network Applications on
Simultaneous Multithreading Processors," IEEE Transaction
on Computer (TCOMPUTER).vol. 59, no. 9, pp. 1200-1209,
SEPTEMBER 2010.

 [26] Wang, H. Koren, I. Krishna, C.," Utilization-Based
Resource Partitioning for Power-Performance Efficiency in
SMT Processors," IEEE Transactions on Parallel and
Distributed Systems, (TPDS) vol. 22, no. 99, pp. 191-216,
2010.

[27]M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T.Mudge, and R. B. Brown, “MiBench: a free, commercially
representative embedded benchmark suite,” in Proceedings of
the IEEE InternationalWorkshop onWorkload
Characterization, pp. 3-14,2001.

 [28]S.K. Dash, T. Srikanthan, "Instruction Cache Tuning for
Embedded Multitasking Applications," IEEE/IFIP
International Symposium on Rapid System Prototyping, pp.
152-158, 2009.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 219

A Wearable Trajectory Reconstruction System Using

Inertial and Magnetic Sensors

Jeen-Shing Wang
1
, Yu-Liang Hsu

1
, Ping-En Cheng

1
, Lun-Chia Kuo

2
, and Jen-Chieh Chiang

2

1Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C.
2Information and Communications Research Laboratories, Industrial Technology Research Institute, Hsinchu,

Taiwan, R.O.C.

Abstract - This paper presents an inertial-sensor-based

wearable device and its associated pedestrian trajectory

reconstruction algorithm to reconstruct indoor pedestrian

trajectories. The wearable device is composed of a triaxial

accelerometer, a triaxial gyroscope, a triaxial magnetometer,

a microcontroller, and a Bluetooth wireless transmission

module. Users can carry the device to walk in indoor

environments at normal speed. A pedestrian trajectory

reconstruction algorithm composed of the procedures of data

collection, signal preprocessing, and trajectory reconstruction

has been developed for reconstructing pedestrian trajectories.

In order to minimize the integral errors caused by the intrinsic

noise/drift of inertial sensors, we utilize sensor fusion

techniques with the Kalman filter for correcting orientation

estimation and trajectory reconstruction. The advantages of

this wearable device include the following: 1) It can be used

anywhere without any external indoor localization technique;

and 2) the pedestrian trajectory reconstruction algorithm can

reduce integral errors effectively and thus can construct the

pedestrian trajectories accurately. Our experimental result on

pedestrian trajectory reconstruction has successfully

validated the effectiveness of the inertial-sensor-based

wearable device and its pedestrian trajectory reconstruction

algorithm.

Keywords: Indoor navigation system, pedestrian trajectory

reconstruction algorithm, Kalman filter

1 Introduction

 Recently, a wearable device embedded with inertial

sensors has been provided for indoor pedestrian navigation or

localization [1], [2]. The salient superiority of inertial sensors

for general indoor location sensing is that they can be

operated without any external indoor localization technique

(such as radio frequency (RF), WiFi, or Zigbee) [3]. This

kind of devices usually consists of two types of sensors:

accelerometers for sensing translational accelerations, and

gyroscopes for detecting angular velocities. However, most

inertial-sensor-based indoor pedestrian navigation systems

suffer from poor accuracy due to various errors generated by

the inertial sensors. The errors not only involve the effects of

sensor uncertainty, namely scale factor (sensitivity) and bias

(offset), but also include contingent error sources, such as

intrinsic drift of inertial sensors, circuit thermal noise, time

discretization, quantization error, vibration, or friction, etc.

To improve the accuracy of trajectory reconstruction, many

researchers have focused on the subject of error reduction and

compensation of inertial sensors by developing effective

algorithms. For example, Bang et al. [4] used an error

compensation method, called zero velocity compensation

(ZVC), to reduce the cumulative error based on the

assumption that velocity should be zero at the start and the

end of a motion. Bird et al. [1] applied the zero velocity

updates (ZUPTs) to pedestrian navigation systems, where

zero velocity was fed into the Kalman filter, during the stance

phase of a gait cycle to reduce the cumulative error. Huang et

al. [5] integrated the strap-down inertial navigation and

pedestrian dead-reckoning techniques for pedestrian tracking

tasks. In addition, the ZUPTs was applied to reduce the

integral errors for reconstructed trajectories in the stance

phase of a gait cycle.

 An inertial-sensor-based wearable device and a

pedestrian trajectory reconstruction algorithm have been

developed in this study. The wearable device is composed of

a triaxial accelerometer, a triaxial gyroscope, a triaxial

magnetometer, a microcontroller, and a Bluetooth wireless

transmission module. The measured inertial and magnetic

signals from the sensors are transmitted to a computer via the

wireless module. Users can carry the device to walk in indoor

environments at normal speed without any space limitation.

The human walking trajectories can be reconstructed by the

pedestrian trajectory reconstruction algorithm, which consists

of the procedures of data collection, signal preprocessing, and

trajectory reconstruction. In order to minimize the cumulative

error caused by the intrinsic noise/drift of sensors, we have

utilized sensor fusion techniques with the Kalman filter for

further improving the accuracy of the estimated orientations

and reconstructed trajectories. The effectiveness of the

wearable device and its associated pedestrian trajectory

reconstruction algorithm has been validated by an indoor

positioning experiment. The advantages of our proposed

wearable device include: 1) It is portable and can be used

anywhere without any external indoor localization technique,

and 2) the pedestrian trajectory reconstruction algorithm can

reduce orientation and integral errors effectively and thus can

reconstruct the trajectories of human walking accurately.

220 Int'l Conf. Embedded Systems and Applications | ESA'11 |

2 Methods

2.1 Apparatus

 The wearable device generates and transmits the inertial

and magnetic signals of a user’s walking motion. The device

includes a triaxial accelerometer (LSM303DLH), a triaxial

gyroscope (L3G4200D), a triaxial magnetometer

(LSM303DLH), a microcontroller, and a Bluetooth wireless

transmission module. The size of the board is 37.5mm ×

25mm × 10mm as shown in Fig. 1 (a). The output signals of

the accelerometer, gyroscope, and magnetic sensors are all

sampled at 60 Hz. The overall power consumption of the

wearable is 30 mA at 3.7 V. The schematic diagram of the

wearable hardware system is shown in Fig. 1 (b). The

pedestrian trajectory reconstruction was performed on a PC

running Microsoft® Windows 7 operating system with an

Intel Core Processor i5-450 and 4G RAM.

2.2 Pedestrian trajectory reconstruction

algorithm

 A pedestrian trajectory reconstruction algorithm has

been developed to perform the trajectory reconstruction of

human walking using the signals measured by the inertial and

magnetic sensors embedded in the wearable device. The

pedestrian trajectory reconstruction algorithm is composed of

the following procedures: 1) data collection, 2) signal

preprocessing, and 3) trajectory reconstruction. At the

beginning of the procedure, the acceleration, angular velocity,

and magnetic signals are transmitted to a computer via the

Bluetooth transceiver. Before using the wearable device, we

need to calibrate the inertial and magnetic sensors to reduce

the errors of sensitivity and offset of the sensors first. Then a

moving average filter is applied to remove high frequency

noise from the raw data. The trajectory reconstruction

procedure includes the following steps: 1) orientation

estimation, 2) coordinate transformation and gravity

compensation, and 3) position estimation. In the orientation

estimation step, the quaternion representation is employed to

express the orientation of the wearable device. To obtain

correct orientation of the wearable device, a sensor fusion

technique with the Kalman filter is used to estimate

orientation angles based on the corresponding filtered

acceleration, angular velocity, and magnetic signals. Once we

obtain the quaternion-based orientation, the filtered

acceleration can be transformed from the body coordinate to

the reference coordinate, and the gravitational acceleration

can then be removed. In the position estimation step, the

velocities and positions (or trajectory) of the wearable device

in a walking motion can be obtained through the single

integral and double integral of the compensated acceleration

signals, respectively. The pedestrian trajectory reconstruction

process of the wearable device is shown in Fig. 2.

3 Experimental results

 The proposed wearable device was mounted on the

users’ foot. 10 users were asked to walk along a straight line

of 23.6 meters on a flat floor of a building with no speed and

pace limit. Fig. 3 shows the result of the experiment. There

are about 1.00.6 meters short compared with the total path

of 23.6 meters. Hence, the average error of the reconstructed

pedestrian trajectory is around 4.23%2.54% as to the

distance traveled. In addition, to validate the effectiveness of

the proposed pedestrian trajectory reconstruction, we

compared the trajectory reconstruction algorithm proposed in

[6] for the same path. There are about 2.31.4 meters short

Fig. 2. Pedestrian trajectory reconstruction process of the

wearable device.

(a)

(b)

Fig. 1. (a) The wearable hardware device for indoor

localization system. (b) The schematic diagram of the

wearable device.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 221

compared with the length of the path. Hence, the error of the

reconstructed pedestrian trajectory is around 9.7%5.93% as

to the distance traveled. Obviously, the result of the proposed

pedestrian trajectory reconstruction algorithm is better than

one of the algorithm proposed in [6].

4 Conclusion

 A systematic framework of the trajectory reconstruction

of human walking for pedestrians has been presented in this

paper. The acceleration, angular velocity, and magnetic

signals are transmitted to a computer via the Bluetooth

transceiver. The proposed pedestrian trajectory reconstruction

algorithm consists of data collection, signal preprocessing,

and trajectory reconstruction. To obtain correct orientation of

the wearable device, a sensor fusion technique with the

Kalman filter is used to estimate orientation angles based on

the corresponding filtered acceleration, angular velocity, and

magnetic signals. In the pedestrian trajectory reconstruction

experiments, the average error of the reconstructed pedestrian

trajectory is around 4.23%2.54% as to the distance traveled.

The effectiveness of the wearable trajectory reconstruction

system and its pedestrian trajectory reconstruction algorithm

has been successfully validated by the experiments.

5 Acknowledgment

 This research was supported by Information and

Communications Research Laboratories (ICL), Industrial

Technology Research Institute (ITRI), Taiwan, Republic of

China under project number A301AR2100.

6 References

[1] J. Bird and D. Arden, “Indoor navigation with foot-

mounted strapdown inertial navigation and magnetic

sensors,” IEEE Wireless Communications, vol. 18, no. 2, pp.

28-35, 2011.

[2] S. Godha and G. Lachapelle, “Foot mounted inertial

system for pedestrian navigation,” Measurement Science &

Technology, vol. 19, no. 7, pp. 1-9, 2008.

[3] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of

wireless indoor positioning techniques and systems,” IEEE

Trans. Systems, Man, and Cybernetics – Part C: Applications

and Reviews, vol. 37, no. 6, pp. 1067-1080, 2007.

[4] W. C. Bang, W. Chang, K. H. Kang, E. S. Choi, A.

Potanin, and D. Y. Kim, “Self-contained spatial input device

for wearable computers,” in Proc. IEEE Int’l Conf. Wearable

Computers, 2003, pp. 26-34.

[5] C. Huang, Z. Liao, and L. Zhao, “Synergism of INS and

PDR in self-contained pedestrian tracking with a miniature

sensor module,” IEEE Sensors Journal, vol. 10, no. 8, pp.

1349-1359, 2010.

[6] Jeen-Shing Wang, Yu-Liang Hsu, and Jiun-Nan Liu,

“An inertial-measurement-unit-based pen with a trajectory

reconstruction algorithm and its applications,” IEEE Trans.

Industrial Electronics, vol. 57, no. 10, pp. 3508-3521, 2010.

Fig. 3. Walking along a straight line. (Block color: reference

path; Red color: reconstructed pedestrian trajectory via the

proposed pedestrian trajectory reconstruction algorithm; Blue

color: reconstructed trajectory via the trajectory algorithm

proposed in [6])

222 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Development of Test Interface for Test Automation of
Automotive Embedded System

Kabsu Han1, Jeonghun Cho1

1School of EE, Kyungpook National University, Daegu, Republic of Korea

Abstract - To certify safety and reliability of automotive
embedded system, analysis, verification and validation stages
are critical parts in software development process. Analysis of
requirements and functionality, embedded software test and
embedded system test must be fulfilled on each stage of
development process. For testing and test automation, well-
defined test interface which support controllability and
visibility is mandatory. Although there are many approaches,
such as simulation and emulation to test embedded system
efficiently, their approaches have a gap between target real
hardware and simulated hardware. Therefore we propose a
rapid prototyping approach using OCD(on-chip debugger) to
perform software testing on a real target microprocessor at
early development process. Our proposed approach is
independent on programming languages and capable of
automating software test process which is time consuming and
labor intensive work.

Keywords: Embedded system testing, Rapid Prototype, Test
automation, Testability, BDM

1 Introduction
 In 1960, Volkswagen Beetle equipped electric circuits

firstly. In 1978, Mercedes S-series equipped embedded
systems for ABS. Now, in 2010s, almost a hundred embedded
processors are equipped in a Luxury car.

Early automotive embedded system consists of a embedded
processor, a sensor and a actuator. And rarely embedded
system shares data among different embedded system.
Automotive embedded systems get complicated with time,
test process is needed to certify safety and reliability and test
cases are increased exponentially.

There are various ways to certify safety and reliability in
automotive embedded system [1][9]. Analysis : examine
software, requirement documents and design to find defects.
Verification : evaluate result of each development process to
check conditions of its phase. Validation : evaluate the end
product to check its requirements. Generally, formal methods,
reviews, logical modeling are required to find logical defects
at the analysis of requirement phase and the analysis of
logical system architecture phase. At the software
development phase, testing of software component, software
integration test must be needed to assure the software
functionality and find errors. After that, embedded software is
loaded to embedded hardware, embedded system is integrated
finally. But not finished yet. It is important embedded system

have to pass system integration test and acceptance test which
assures its safety and reliability.

Figure 1 Design flow of automotive embedded system[9]

At least, Controllability and visibility is needed to test

embedded software components and embedded system [7].
Controllability means ability to control inputs to software and
system under test. Visibility means ability to observe data of
software and system under test. It is easy to test software
component and software integration on host computer. But,
because of lack of controllability and visibility, it is hard to
test software and system on embedded hardware. To solve
these problems, to support test automation, we propose a test
interface using Rapid prototype.
In section 2, we review related work. Section 3 states
proposed test interface. Test environment is described in
section 4. Finally we give a conclusion and future work.

2 Related Work
 Automotive embedded system is a kind of distributed

real-time system and needs special test environment which
consider these characteristics.
Simulated Hardware approach simulate all of the embedded

system include sensors and actuators [3]. This approach can
control inputs of embedded software test easily. But there is
no actual embedded hardware which is a part of embedded
system, we could not observe real data of embedded software.
We could not assure safety and reliability of embedded
system also.

-Human Resource Training Project for Regional Innovation
This research was financially supported by the Ministry of Education, Science Technology (MEST) and National Research Foundation

of Korea(NRF) through the Human Resource Training Project for Regional Innovation

Int'l Conf. Embedded Systems and Applications | ESA'11 | 223

 SoC design approach emulate embedded system with SoC
based on FPGA [2]. Configurable test approach uses HiL
modules to test embedded system and support test automation
[5]. These approaches, which use hardware work like
embedded hardware, show dependable test result but could
not control inputs and observe data easily. However, these
approaches are hard to build test environment and need a high
cost of testing.
 Modeling-in-the-loop approach use embedded hardware,
simulated sensors and actuators [6]. This approach can control
inputs of embedded system under test and can build test
environment easily. But could not observe data of embedded
system relatively.
 On this paper, we propose test environment, which can
control inputs and can observe data of embedded system
under test easily, using on-chip debugging interface on rapid
prototype.

3 On-chip debugging interface
Most of the embedded system support test interface that

allows debugging of embedded system like
BDM(Background Debug mode), JTAG(Joint Test Action
Group), etc.
In proposed approach, We use HCS12x starter kits, which

supports BDM, of Freescale semiconductor, Inc. for
automotive rapid prototype [15]. BDM provides control
commands like a single step execution, break, reset, etc. Also,
can access registers and memory to control inputs and to
observe data of embedded system through serial interface
[12].

3.1 BDM Basic

Commands are transferred by 10 pins or 26 pins BDM port
connector. Each command represents a single 17-bit transfer
across the bus sequentially. When BDM is enabled, several
signals (BKPT, BGND, Double bus fault) can cause the
transition from normal mode to BDM mode which can
execute debugging instructions.

Figure 2 BDM Interface Environment

Table 1 BDM Interface Commands

RAREG/RDREG read address or data register

WAREG/WDREG
write address or data

register
RSREG read system control register

WSREG write system control register

READ read memory
WRITE write memory

DUMP read memory block
FILL write memory block
GO runCPU

CALL call user patch code
RST CPU reset instruction

NOP null command

3.2 USB-based BDM Interface

In proposed approach, we develop a BDM interface module
based on USB. A BDM interface module consist of a
MC68HC908JB8 processor and ICs[18]. USB module is
integrated on MC68HC908JB8 processor of Freescale
semiconductor, Inc. , so we can connect BDM interface to test
environment easily. BDM interface assure maximum 100KB/s
data transfer rate. BDM interface translate test commands into
BDM signals. BDM signals consist of data signals and control
signals. After that, transfer BDM signals to BDM port on the
embedded system.

Figure 3 USB-based BDM interface signal

Control software of BDM interface module and BDM APIs
are implemented with standard C and C library. BDM APIs
run on MS windows, Linux. Also, It is possible import BDM
APIs for Java, TTCN-3 with JNI(Java Native Interface).

Table 2 BDM APIs

unsigned char tbdml_read_byte(unsigned int address)
- read a byte from memory

void tbdml_write_byte(unsigned int address, unsigned char
data)

- write a byte to memory
void tbdml_read_block(unsigned int address, unsigned int
count, unsigned char *data)

- read bytes from memory
void tbdml_write_block(unsigned int address, unsigned int
count, unsigned char *data)

- write bytes to memory
unsigned int tbdml_read_reg_pc(void)

- read data from program counter register
void tbdml_write_reg_pc(unsigned int value)

- write data to program counter register
unsigned char tbdml_set_target_type(target_type_e
target_type)

- set target device (only HC12, HCS08)
unsigned char tbdml_target_sync(void)

- sync target device
unsigned char tbdml_target_go(void)

- execute code from current program counter
unsigned char tbdml_target_halt(void)

- halt debug mode

224 Int'l Conf. Embedded Systems and Applications | ESA'11 |

4 Experimental

4.1 Test Environment

To build test environment with proposed approach, We
construct IILS(Intelligent vehicle Interior Lamp System) on
Rapid Prototype. IILS is a kind of automotive embedded
system which gets inputs from sensors, switches, CAN
network and control Interior Lamps on the vehicle.

Figure 4 Test Environment

4.2 Test Scenario

There are a lot of requirements for IILS. We demonstrate
test scenarios that focus on Room Lamp control among test
scenarios. Test scenarios of IILS for Room Lamp control are
from SW-RL-1 to SW-RL-6.

Table 3 IILS Test Scenario for Room Lamp

SW-RL-1 Turn off the Room Lamp when IILS receives Smart
key Lock signal

SW-RL-2 Turn off the Room Lamp if Auto switched off
SW-RL-3 Turn off the Room Lamp if Auto switch is on and

Light sensor is true, Manual switch is off
SW-RL-4 Turn on the Room Lamp if Auto switch is on and

Light sensor is true, Manual switch is on
SW-RL-5 Turn off the Room Lamp if Auto switch is on and

Light sensor is true, Manual switch is on, vehicle
speed is over 40Km/h

SW-RL-6 Turn on the Room Lamp if Auto switch is on and
Light sensor is false, Door Open signal is true

4.3 Test with BDM interface

 We implement test scenarios for Room lamp control test
with C APIs.

Figure 5 Result of SW-RL-2

Figure 6 Result of SW-RL-4

Figure 7 I/O ports for Room Lamp Control

5 Conclusion
We propose a test interface using rapid prototype which

support testability with low cost. BDM interface, based on
USB, provide simplicity that can build test environment easily
and scalability that can control several serial interfaces within
bandwidth. BDM APIs provide operability that can run on
various test environment. Test interface provide
controllability and visibility also.

To support various rapid prototype, We will research JTAG
interface and others. Also, research test automation for
distributed embedded system. We can build a whole system
of vehicle, when we finish construction of the rapid
prototype of the sub system of a vehicle.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 225

And, we will research test scenario auto generation with
former verification results of the each development phase
simultaneously.

6 References

[1] A. Pretschner, C. Salzmann, T. Stauner, “SW
engineering for automotive systems”, ICSE’05, 2005.

[2] M. Horauer et. Al, “An FPGA based SoC Design for
Testing Embedded Automotive Communication Systems
employing the FlexRay Protocol”, Austrochip, 2004.

[3] Jakob Engblom, Guillaume Girard, Bengt Werner,
“Testing Embedded Software using Simulated Hardware”,
ERTS conference, Toulouse, France, 2006.

[4] Klaus Lamberg, Michael Beine, Mario Eschmann,
Rainer Otterbach, “Model-based Testing Of Embedded
Automotive Software Using Mtest”, J. Passenger Cars-
Electronic and Electrical Systems, vol.7, pp.132-140, July,
2005.

[5] Peter Kruse, Joachim Wegener, Stefan Wappler, “A
highly configurable test system for evolutionary black-box
testing of embedded systems”, GECCO '09: Proceedings of
the 11th Annual conference on Genetic and evolutionary
computation, 2009.

[6] A R Plummer, “Model-in-the-loop testing”, IMechE
2006, System and Control Engineering Vol.220, 2006.

[7] Bret Pettichord, “Design for Testability”, Pacific
Northwest Software Quality Conference, 2002.

[8] Bret Pettichord, “Seven steps to Test Automation
Success”, STAR west, 1999.

[9] Jorg Schauffele et al., Automotive Software engineering,
SAE International, 2005.

[10] CAN Specification Version 2.1. datasheet, Robert Bosch
GmbH., 2006.

[11] MC68300 Family MC68332 User's Manual, Freescale
semiconductor, Inc., http://www.freescale.com/, 2000

[12] CPU32 Reference Manual, Freescale semiconductor,
Inc., 1996

[13] MC68376 User's Manual, Freescale semiconductor, Inc.,
2000

[14] MCF5206 User's Manual, Freescale semiconductor,
Inc., 1998

[15] S12XDP512 User’s Manual, Freescale semiconductor,
Inc., 2005

226 Int'l Conf. Embedded Systems and Applications | ESA'11 |

A Difference-Based Data Compression for Daily Activity

Signals and Its Realization in an Embedded System

Jeen-Shing Wang, Che-Wei Lin, Yen-Shun Chen, Wei-Hsin Wang
Department of Electrical Engineering,

National Cheng-Kung University

Tainan, Taiwan, R.O.C

jeenshin@mail.ncku.edu.tw

Abstract - —This paper presents a difference-based data

compression algorithm for daily activity signals and its

realization in an embedded system. Because daily activity

signals have little variances between consecutive data samples,

the proposed data compression algorithm compresses a

sequence of digital numbers of daily activity signals into an

initial value followed by a sequence of difference values. The

proposed data compression algorithm had been realized in an

embedded system. The realization of the proposed data

compression algorithm utilized little hardware resources; only

one buffer, one subtraction, one look-up table, and one

encoding procedure were utilized. The effectiveness of the

proposed data compression algorithm was validated by two

experiments. For 11 different daily activities, the average data

compression rates for the wrist sensor and ankle sensor were

58.16% and 52.50% respectively. For 24-hour daily activity

signals, the data compression rates for the wrist sensor and

the ankle sensor were 35.37% and 31.97% respectively.

Keywords: Data compression; Accelerometer; Daily Activity

1 Introduction

 Importance of daily activity monitoring has been

gaining much attention in recent years due to the healthy

activity styles could help us to increase our fitness levels,

improve our health conditions, and prevent diseases [1].

Owing to the advances in the embedded system and sensing

technology, accelerometer-based activity monitor were

employed in the studies regarding to the quantification of

daily activities such as sleep-wake period detection [2]-[4],

daily activity detection [5]-[6], energy expenditure [7]-[8],

and gait analysis [9]-[11]. From the aforementioned literature,

the effectiveness of using accelerometer-based activity

monitor has been validated. However, to widely promote the

accelerometer-based activity monitor in the commercial

market, there are still some technical problems needs to be

solved. Hanson et al. concluded that the wireless

communication, power saving, and data storage are the key

factors of widespread adoptions of wearable sensors such as

accelerometer-based activity monitor [12]. The issue of data

storage became notable in the accelerometer-based activity

monitor because large amount of data collected from

accelerometer. For example, the data rate will reach up to

720bps and 62.2MB per day when it continuously works at

30Hz sample rate and 8 bits precision by 3 axes. The large

amount of data causes the problem of high storage space

requirement and high energy consumption. In our literature

survey, the data compression of daily activity acceleration can

be categorized into the implementing in the embedded system

and simulating in the computer. In the field of implementing

the data compression algorithms in the embedded system,

Tanaka et al. employed Golomb-Rice coding in the data

compression and reported that the compression rate is

typically 30% [13]. Reinhardt et al. implemented run-length

encoding (RLE) and adaptive Huffman coding (AHC) in an

embedded system with tiny OS. Reinhardt et al. concluded

that applying data compression may allow saving energy,

even if additional microcontroller operations are required [14].

In the field of simulating data compression algorithms in the

computer, Chen et al. employed wavelet transform and

adaptive differential pulse code modulation (ADPCM) to

compress running and sprinting data sets. The data

compression rate in Chen et al.’s study is around 40%~50%

[6]. Yang et al. examined the performance of the state of art

compression scheme: the compressed sensing (C-S)

framework. The experimental results showed that the C-S

framework could effectively reduce the amount of data [14].

Although the state-of-art data compression algorithms such as

the wavelet and the C-S compression can provide satisfactory

data compression results, to implement those data

compression algorithms in an embedded system is a problem

due to the limited computing power of the embedded systems.

Therefore, this paper aims at developing a hardware-friendly

data compression algorithm for daily activity signals that can

be easily implemented in the embedded system.

 The rest of this paper is organized as follows. In Section

2, we present the hardware platform employed in our daily

activity acceleration collection and data compression. In

Section 3, the proposed data compression algorithm for daily

activity signals is introduced. The results of simulation and

hardware implementation of the proposed data compression

algorithm are reported in Section 4. Finally, conclusions are

given in Section 5.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 227

2 iHelath daily acceleration sensor

 A portable embedded system which is responsible for

collecting signals and executing data compression called

“iHealth daily acceleration sensor” is introduced in this

section. The iHealth daily activity acceleration sensor is

responsible for collecting signals and executing data

compression algorithm in our study. The hardware block

diagram of the iHealth daily acceleration sensor is shown in

Fig. 1. The hardware consists of a microcontroller

(PIC24FJ64GA002), a triaxial accelerometer (MMA7455L),

a flash memory (MX25L128), a wireless RF transceiver

(Nordic nRF24L01+), a Bluetooth® module (BTM-162), and

a power management IC (LTC4063). The sampling rate of the

iHealth daily acceleration sensor is 30Hz (fs = 30Hz), and the

signals data are stored in a flash memory with an 8-bit format

(Sensitivity: ±8g). The circuit size of the iHealth daily

acceleration sensor is 32mm × 30mm × 5mm. The circuit

board of the iHealth daily acceleration sensor is enclosed by a

case which can be worn on subjects’ wrists and ankles to

collect the daily activity signals.

Accelerometer Microcontroller

Flash Memory

Power Management

Unit

iHealth Daily Activity Acceleration Sensor

RF transceiver
Bluetooth Module

 Fig. 1. Block Diagram of iHealth daily acceleration sensor

3 Difference-based data compression

algorithm for daily activity signals

 In this section, the proposed difference-based data

compression algorithm for daily activity signals will be

introduced. We will first analyze the characteristics of daily

activity signals in Subsection 3.1. In Subsection 3.2, a block

diagram of the proposed data compression algorithm will be

introduced to explain the detailed procedures. The realization

of the differenced-based data compression algorithm for daily

activity signals is explained in Subsection 3.3.

3.1 Characteristics of daily activity signals

 Daily activities can generate signals during the

movement and can be collected by accelerometers.

Commercial accelerometers commonly use number of bits to

represent the signals they generate in an interval. For example,

the sensor described in section 2 generates signals in an 8-bit

format to represent signals in an interval (±2g, ±4g or ±8g,

user-specified).

 The characteristics of daily activity signals are

associated with the types of activities. Daily activities can be

categorized into four levels: sedentary, light, moderate and

vigorous [16]. Signals of the four levels of daily activities

exhibit various characteristics, having little variance in

sedentary and light activities while varying a lot in moderate

and severe activities. However, sedentary and light activities

account for the main proportion of a day. Therefore, the

proposed difference-based data compression algorithm aims

at using less data to represent the sedentary/light daily

activities, and further reduce the data size of all-day activity

signals.

Table I. Percentage of the Successive data difference smaller than 1

unit in all-day Activity signals

Sensor

Placement
Axis

Successive Data

Difference (bit)

Percentage

(%)

Wrist

x-axis

0 55.14

1 14.33

-1 14.32

y-axis

0 61.24

1 13.26

-1 13.27

z-axis

0 58.26

1 14.82

-1 14.87

Average (Wrist)

0 58.35

1 14.14

-1 14.15

Ankle

x-axis

0 69.96

1 9.76

-1 9.78

y-axis

0 71.06

1 9.76

-1 9.59

z-axis

0 66.64

1 12.36

-1 12.32

Average (Ankle)

0 69.22

1 10.62

-1 10.56

3.2 Difference-based data compression

algorithm

 Based on the characteristics observed in all-day activity

signals, Table I reveals the percentage of successive data

difference in 0, +1, -1 is 58.35%, 14.14% and 14.15%

respectively (sensor worn on the wrist), and those on the

ankle were 69.22%, 10.62% and 10.56% respectively.

 In order to achieve the goal of data compression, we

proposed a difference-based data compression algorithm of

daily activity signals. Originally, a series of signals are

represented by a sequence of digital numbers (8-bit digital

number in our study). In the proposed algorithm, a sequence

of digital numbers is transformed into an initial value

followed a sequence of difference values. Based on the

statistical analysis in Table I, the data difference of 0, 1, and -

1 accounted for 86.64% and 90.41% in the wrist and the ankle

for all-day data respectively. The proposed data compression

algorithm uses digital number (11)2, (10)2, (01)2 to denote the

successive difference in 0, 1, and -1 respectively. When the

data difference greater or smaller than 1 bit, the difference-

based data compression algorithm will give a digital number

228 Int'l Conf. Embedded Systems and Applications | ESA'11 |

(00)2, and then we have to put the original value of the

acceleration data behind the digital number (00)2. Block

diagram of and one example of the proposed difference-based

data compression algorithm are shown in Table II and Table

III.

3.3 Embedded System Realization of the

Difference-based Data Compression

Algorithm for Daily Activity Signals

 The proposed difference-based data compression

algorithm for daily activity signals had been realized as a

firmware program in the hardware platform mentioned in the

Section 2. The proposed data compression algorithm utilized

little hardware resource in the embedded system; only one

buffer, one subtraction, one look-up table, and one encoding

procedure were utilized.

Table II. Definitions of the operation code in the proposed data

compression scheme

di Relations Oi = OP + INF

0
Current acceleration is equal to previous

acceleration
(11)2

1
Current acceleration is greater than previous

acceleration in 1 unit
(10)2

-1
Current acceleration is greater than previous
acceleration in 1 unit

(01)2

Else

Current acceleration is greater or smaller

than previous acceleration in more than 1

unit

(00)2 + ai

Table III. An example of the proposed difference-based data

compression algorithm

i ai di Oi = OP + INF

1 (00000000)2 0 (11)2

2 (00000001)2 1 (10)2

3 (00000010)2 1 (10)2

4 (00000010)2 0 (11)2

5 (11111010)2 Else (00)2 + (11111010)2

6 (11111001)2 -1 (01)2

7 (00000000)2 Else (00)2 + (00000000)2

8 (00000001)2 1 (10)2

9 (00000001)2 0 (11)2

10 (11111001)2 Else (00)2 + (11111001)2

Difference

Computing

Process

Coding

Process

ai
di

ai

oi

Difference-based Data Compression Scheme

Fig. 2. Block diagram of the difference-based data compression

algorithm

4 Experimental results

 The effectiveness of the proposed difference-based data

compression algorithm was evaluated in two different

experiments. The first experiment was to examine the data

compression rate in 11 different activities. The second

experiment was to evaluate the data compression rate of the

signals from subjects in a 24-hour period. The data

compression rate in our experiment is defined as (1).

 (1)

4.1 Data compression rate of daily activity

accelerations

 In our first experiment, the effectiveness of the proposed

data compression algorithm for daily activity signals was

examined. Total 18 subjects participated in this experiment;

they were asked to collect their daily activity signals. All

subjects were asked to conduct 11 different types of daily

activities. During the experiment, the subjects were asked to

wear two acceleration sensors mentioned in Section II. After

all subjects performed the assigned daily activities, the signals

were processed by the proposed differenced-based data

compression algorithm. The data compression rates of

different daily activities are shown in Table IV. There were

two different data compression rate corresponding to the

signals measured by the wrist activities and ankle activities.

For the 11 daily activities, the data compression rates ranged

from 25.07% to 101.63% for the wrist sensor, and 25.23% to

111.38% for the ankle sensor. The average data compression

rate of 11 daily activities was 58.16% (wrist) and 52.50%

(ankles). The results showed that the proposed data

compression algorithm achieved a satisfactory performance in

the sedentary and light level activities, such as sit and walking,

whereas yielded a poor performance in the moderate and

severe level activities, such as walking downstairs and

running. However, the proposed data compression algorithm

still improves the data compression rate of 24-hour daily

activity signals since sedentary and light activities are

accounted for most of the day.

4.2 Data Compression Rate in Daily Condition

 In addition to compute the data compression rates of the

11 daily activities, we also asked the subjects to wear the

acceleration sensors and did their daily activities as usual to

examine the effectiveness of the proposed data compression

algorithm in the daily condition. The signals were processed

by the proposed data compression algorithm in the embedded

system and the results are shown in Table V. The average

data compression rate is 35.37%/31.97% in the wrist/ankle

sensor respectively.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 229

TABLE IV. Data compression rate of different activities

Activity Types
Data Compression Rate (%)

Wrist Ankle

Sit 25.07 25.66

Washing Dishes 46.45 25.23

House Work 67.03 26.49

Cleaning Tables 50.88 43.38

Walking 55.73 93.82

Vacumming 61.41 32.59

Mopping 69.05 30.21

Upstairs 46.82 68.56

Downstairs 69.21 94.98

Running 101.63 111.38

Bicycling 46.45 25.23

Average Data Compression Rate 58.16 52.50

TABLE V. Data compression rate of 24-hour daily activity signals

Subject
Data Compression Rate (%)

Wrist Ankle

Average of Data Compression
Rate

35.37 31.97

5 Conclusions and future works

 Development of a difference-based data compression

algorithm for daily activity signals its realization in the

embedded system was proposed in this paper. Originally, a

series of signals is represented by a sequence of digital

numbers (8-bit digital number in our study). In our

difference-based data compression algorithm, a sequence of

digital numbers is transformed into an initial value followed

by a sequence of difference values. The proposed data

compression algorithm had been realized in the embedded

system and only utilized little hardware resource. The

effectiveness of the proposed data compression algorithm was

validated by two experiments. For the 11 daily activities, the

average data compression rates for the wrist sensor and ankle

sensor were 58.16% and 52.50% respectively. For the 24-

hour daily activity signals, the data compression rates for the

wrist sensor and the ankle sensor were 35.37% and 31.97%

respectively. The existing drawback in the data compression

of moderate and severe daily activity signals will be further

investigated in our future work.

6 References

[1] http://www.americanheart.org/presenter.jhtml?identifier=4563

[2] M. Enomoto, T. Endo, K. Suenaga, N. Miura, Y. Nakano, S.
Kohtoh, Y. Taguchi, S. Aritake, S. Higuchi, and M. Matsuura,
“Newly developed waist actigraphy and its sleep/wake scoring
algorithm”; Sleep and Biological Rhythms, vol. 7, 17—22, 2009.

[3] J. Tilmanne, J. Urbain, M. V. Kothare, A. V. Wouwer, and S. V.
Kothare, “Algorithms for sleep-wake identification using

actigraphy: a comparative study and new results”; Journal of
Sleep Research, vol. 18, 85—98, 2009.

[4] P. Dürr, W. Karlen, J. Guignard, C. Mattiussi, and D. Floreano,
“Evolutionary selection of features for neural sleep/wake
discrimination”; Journal of Artificial Evolution and
Applications, vol. 2009, 1—9, 2009.

[5] Y. P. Chen, J. Y. Yang, S. N. Liou, G. Y. Lee, and J. S. Wang,
“Online classifier construction algorithm for human motion
detection using an accelerometer”; Applied Mathematics and
Computation, vol. 205, 849—860, 2008.

[6] J. Y. Yang, J. S. Wang and Y. P. Chen, “Using acceleration
measurements for activity recognition: An effective learning
algorithm for constructing neural classifiers”; Pattern
Recognition Letters, vol. 29, 2213—2220, 2008.

[7] M. P. Rothney, E. V. Schaefer, M. M. Neumann, L. Choi, K. Y.
Chen, “Validity of physical activity intensity predictions by
Actigraph, Actical, and RT3 Accelerometers”; Obesity Society,
vol. 16, 1946—1952, 2008.

[8] S. E. Crouter, J. R. Churilla, D. R. Bassett Jr, “Estimating
energy expenditure using accelerometers”; Eur. Journal of
Applied Physiology, vol. 98, 601—612, 2006.

[9] A. Salarian, H. Russmann, F. J. G. Vingerhoets, C. Dehollain, Y.
Blanc, P. R. Burkhard, and K. Aminian, “Gait assessment in
Parkinson’s disease: toward an ambulatory system for long-term
monitoring”; IEEE Transactions on Biomedical Engineering,
vol. 51, 1434—1443, 2004.

[10] M. S. Angelo, M. Chiara, S. Sergio, and C. Filippo,
“Assessment of walking features from foot inertial sensing”;
IEEE Transactions on Biomedical Engineering, vol. 51, 486—
494, 2005.

[11] H. K. Lee, J. You, S. P. Cho, S. J. Hwang, D. R. Lee, Y. H. Kim,
and K. J. Lee, “Computational methods to detect step events for
normal and pathological gait evaluation using accelerometer”;
Electronics Letters, vol. 46, 1185—1187, 2010.

[12] M. A. Hanson, H. C. Powell Jr., A. T. Barth, K. Ringgenberg, B.
H. Calhoun, J. H. Aylor, and J. Lach, “Body area sensor
networks: challenges and opportunities”; Computer, vol. 42,
58—65, 2009.

[13] T. Tanaka, S. Yamashita, K. Aiki, H. Kuriyama, and K. Yano,
“Life Microscope: Continuous daily-activity recording system
with tiny wireless sensor”; in Proc. Networked Sensing Systems,
162—165, 2008.

[14] Andreas Reinhardt, Delphine Christin, Matthias Hollick, Ralf
Steinmetz, “On the energy efficiency of lossless data
compression in wireless sensor networks”; in Proc. of the 4th
IEEE International orkshop on Practical Issues in Building
Sensor Network Applications, 873—880, 2009.

[15] S. Yang and M. Gerla, “Energy-efficient accelerometer data
transfer for human body movement studies”; in 2010 IEEE Int.
Conf. on Sensor Networks, Ubiquitous, and Trustworthy
Computing, 304—311, 2010.

[16] B. E. Ainsworth, W. L. Haskell, M. C. Whitt, W. L. Irwin, A. M.
Swartz, S. J. Strath, W. L. O'Brien, D. R. Bassett, K. H. Schmitz,
P. O. Emplaincourt, D. R. Jacobs, A. S. Leon, “Compendium of
physical activities: an update of activity codes and MET
intensities”; Medicine and Science in Sports and Exercise, vol.
32, S498—504, 2000.

230 Int'l Conf. Embedded Systems and Applications | ESA'11 |

http://www.americanheart.org/presenter.jhtml?identifier=4563
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2220
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4607201
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4607201

GSM-based Embedded Water Meter System
Hesham H. Hallal

1
, May Haidar

2
, Taha Barake

1
,

Sami AlKhaldi
3
, Mohammad AlOrayfij

3
, Amal AlBalawi

2
, Raneem Aljehani

2

1
Department of Electrical Engineering

2
Department of Computer Science

3
Department of Computer Engineering

Fahad Bin Sultan University, Tabuk, Saudi Arabia P.O.Box 15700, Tabuk 71454

Abstract - We present an embedded system

implementation of a wireless water meter system.

The deployment of the proposed system uses the

existing GSM network, where the water meter

system can send its readings directly to a server

application using a GSM modem. The

application itself can notify subscribers of their

bills using SMS messages as well.

Keywords: Embedded Systems, Water Meter,

Smart Home, GSM

1 Introduction

 Water resources around the world are

getting scarcer day after day. Climate, global

warming, and irresponsible usage are major

factors the make the situation even harder.

 In the absence of any real solution for

global warming, governments are putting large

efforts to compensate for the shortage of water

either through awareness campaigns to reduce

consumption or through more taxes on usage of

water. While raising awareness is usually a long

process that requires a lot of resources,

increasing usage fees is highly dependent on the

availability of human resources to make

measurements and collect appropriate fees.

 An alternative, more practical, solution

consists of reusing existing technologies that are

already deployed in other fields, where the

results are promising. The main idea is to

customize existing solutions to the context of

water billing and usage management. The

proposed approach in this paper relies on two

main technologies that have made significant

contributions to wellbeing of individuals and

societies: Application specific embedded

systems and the Global System for Mobile

Communications (GSM). The latter has been

increasingly used in different applications

ranging from phone calls to Internet browsing

and remote control of electronic, electrical, and

mechanical devices [7]. Meanwhile, applications

based on embedded systems are also being

introduced almost in every domain, especially

for purposes of cost reduction and portability.

Examples of such applications include watches,

microwave ovens, cars, digital cameras, and

security systems. In additions, networks of

embedded wireless sensors are being used in

many [2] domains like weather forecasting and

smart home development.

 In this paper, we propose a system to

automate the billing of the consumption of water

and the control of the water meters using a blend

of both technologies: GSM networks and

embedded systems. The proposed system

consists of three main components:

1. Embedded water meter (E-WATER) system

for measurement and control of water

consumption.

2. Server application to manage the

measurements and prepare invoices and bills.

In addition to that, the application performs

some predefined control operations that can

be transmitted to the embedded water meter.

3. Communication medium that is based on the

existing GSM networks. The water billing

and control operations will be performed

simply using the Short Messaging System

service that is available over GSM. For this,

no modification or even customization is

needed in the networks themselves.

 Automating the billing process remains an

appealing objective especially with tendency of

governments in many countries to go electronic

Int'l Conf. Embedded Systems and Applications | ESA'11 | 231

(paperless). Some proposals already exist to

automate the billing of some basic services like

water, gas, phone, and electricity. In [1], a

proposal is presented to combine in one meter

the measurements of all the services needed for a

house. The proposed system relies on a

microcontroller for the readings but requires the

user to pay on site with his credit card. This

means the meter system needs to host the

hardware and software necessary to complete a

credit card transaction. In addition, the proposed

system does not allow any remote control of the

meter of any sort.

 Recently, some implementations of remote

water meter systems have reached a commercial

level like in the case of [5], where a mixed

RF/GPRS network is used to convey the

readings of the meter to the billing center. The

use of GPRS for communications makes possible

to access meter information online from any

place with Internet access. The use of both RF

and GPRS in the same network for the reading

system adds to the complexity of the system,

especially in terms of adapting the protocols on

both sides. Another commercial example of

water meter systems is the IkTech [6], which

involves using a point to point communication

system between the meter and a mobile reader

from which collected readings can be

downloaded to a central system with a

billing/management application. The proposed

system still requires human intervention to do

the reading though not from each and every

meter in a large network. In additions to the

limitations mentioned in both cases, the idea of

controlling the meter remotely is absent, which

makes the system proposed in this paper a proper

solution. In particular, the possibility of

controlling the meters remotely adds to the range

of services that could be offered along with the

system. For example, it is possible control the

water supply to regions hit by disasters or

contamination. In addition, services like

suspending the account or reducing/increasing

supply become possible.

 The remainder of this paper is organized as

follows. Section 2 describes the architecture of

the proposed system. Section 3 describes the

embedded system implementation of the water

meter. Section 4 presents the software

application of the system. Finally, Section 5

concludes the paper.

2 Architecture of the GSM-based

Water Billing System
 Figure 1 shows the architecture of the

automated water billing system. The system

consists of three main components:

Figure 1. Architecture of the automated water billing system.

Client Side:
Measurements

Server Side:
Billing and Control

Backend:
Database of client records

232 Int'l Conf. Embedded Systems and Applications | ESA'11 |

1. Embedded water meter system [2] has the

responsibility of providing the reading and

filtering of data while receiving control

commands and executing them. We denote

this system E-WATER for Embedded

WAter meTER.

2. Server application has the task to receive the

readings from the E-WATER system and

process the information by accessing a

database at the backend. The application on

the server has two main modules:

a. Database access module that handles the

records of different E-Water systems.

b. Control module that receives instructions

from a user, translates them into

commands, and transmits the commands

to the E-WATER system, which

executes them on site. Such commands

might include closing the supply and

changing the type of reading or its

frequency.

3. GSM network for communication between

the E-Water systems and the server

application. The communications is possible

between the server applications and the

subscribers directly by sending them SM

messages about their consumption and bills.

 The communication between the E-

WATER system at the client side and the server

application is carried out over the existing GSM

networks using the SMS standard/protocol. In

the following, we detail the description of the

components of the proposed system.

3 E-WATER System
 The E-WATER system, Figure 2, consists

of a water flow sensor (e.g., Signet 515 Rotor-X

Flow sensor [4]), microcontroller, memory, LCD

display, GSM modem, and a power supply.

 Using a microcontroller, e.g., PIC16F876A

[3] which is programmable in both assembly and

C language, is driven by the need to start

managing the billing at the client side and to

control the flow of water. The former includes

changing the reading process from time to time,

displaying preliminary information on the bill to

the client. The interface of the E-WATER

system with the external world, mainly the server

application, is implemented using the GSM

modem (interfaced to the microcontroller using a

MAX232 converter) that is capable of sending

SMS messages in which the microcontroller can

report the readings and related data. The F1003

modem is a primary for its availability and

relatively reduced cost. The control part of the

operation, meanwhile, can be initiated either by

the client or by the user of the software

application. In either case, the GSM modem will

receive a command to change the status of the E-

WATER system. Examples of such control

operations include: shutting down the supply for

emergency reasons, minimizing the flow for

payment problems, changing the frequency of

sending the readings to the station, and changing

the flow based on the request of the user. In

general, this control process is divided into two

parts. In the first, the software application

generates a command and sends it as SMS to the

GSM modem of the E-WATER system. In the

second phase, the microcontroller converts the

control command into signals that pass through

actuators and physically change the status of the

flow sensor.

Figure 2. Design of the E-WATER system.

 In order to optimize the use of the GSM

modem and control the number of SMS

messages exchanged, the microcontroller uses a

memory unit, the 24LC16B EEPROM, to save

the readings obtained from the flow sensor.

Based on the type of program executed by the

microcontroller it can select specific data from

the memory unit and send it to the server via the

GSM modem at different intervals. In addition,

the microcontroller drives an LCD display to

show the readings at a programmable pre-

defined rate. To save power, the display will be

PIC 16f876

EEPROM

Signet 515
Rotor-X Flow

Sensor

LCD Display

GSM

Solar Panel

Power Supply

Int'l Conf. Embedded Systems and Applications | ESA'11 | 233

off by default unless selected otherwise. The

power supply of the E-WATER system is a

combination of long term battery and a solar

panel based supply. The solar power supply is

the default source of power with the battery

acting as backup for when the sun light is

reduced or at night.

4 Server Application

The software application has two main functions:

1. Processing the readings of the E-WATER

system received via GSM communication.

The main objective is billing and statistics.

The main role of this module is to process

the readings of the E_WATER system and

prepare bills and reports on the types and

amounts of usage for different clients. A

database is designed to host the records for

the different clients. Figure 4 shows the

Entity Relationship (ER) diagram of the

proposed database. The proposed database

consists of four main tables: Customer,

Invoice, Reading, and Rate.

The proposed database structure will be

distributed to areas of supply. This approach

keeps the databases of manageable sizes and

allows for ease of interface. In addition, the

distributed approach ensures efficiency in

using the existing communication networks.

Currently our objective is to respond to the

need for a data storage model where

different records of clients can be easily

accessed. In the future, the proposed

database can be extended to include variety

of data that is useful to different types of

reports like the area where the client is

located, the fines a client receives for

delayed payments, as well as various other

records belonging to the same client.

Figure 3. Entity Relationship diagram of the client DataBase.

2. Controlling the E-WATER system based on

predefined commands executed a user who

can control the E-WATER system remotely

with some predefined commands that should

be used only in specific situations as

discussed earlier in Section 3. These

commands include two main sets:

a. Managing the water supply such as

turning it off upon the client’s request.

b. Changing the frequency of readings; e.g.,

from hourly to daily.

5 Conclusion

We presented a system for water billing and

consumption management based on an

embedded system implementation of the water

meter that is capable of reporting readings over

Customer

Client_ID Name

Address

E-WATER_ID

Telephone

Invoice

Client_ID

Invoce_ID

Invoice_Type

WEAKLY

Rate

Type

Commercial

Residential

Rate

Reading

Type

HourlyWeeklyMonthly

Client_ID

Date

Time

Request

count
Request

LnameInitFname

Suspension

234 Int'l Conf. Embedded Systems and Applications | ESA'11 |

the GSM network to a server application capable

of billing and of controlling the meter itself.

The proposed system can be extended as

follows: other sensors for other services

(telephone, electricity, and gas) can be included

in the E-Water system. Another future step is to

evaluate the use of the GSM network databases

and billing procedure instead of building a

separate database and server application. This

makes the water invoice/bill look like just adding

a new phone bill for the customer.

Acknowledgement: We acknowledge the

contributions of Ahmad Hattab, Firas Hoteit, and

Farah Kourdi.

References

[1]. Al-Qatari, S. A.; Al-Ali, A. R.

Microcontroller-based Automated Billing

System. In Proceedings of International

IEEE/IAS Conference on Industrial

Automation and Control: Emerging

Technologies, Taiwan, 1995.

[2]. Peter Marwedel, Embedded System Design.

Kluwer Academic Publishers, Nov. 2003,

ISBN 1-4020-7690-8

[3]. www.microchip.com

[4]. www.panner.com/assets/pdf/Signet515.pdf

[5]. http://www.baylanwatermeters.com/en/fixed

-remote-meter-reading-systems.php

[6]. http://www.lktech-

ic.com/elongkang/product_detail.asp?picid=

21

[7]. Joerg Eberspaecher, Hans-Joerg Voegel,

Christian Bettstetter. GSM Switching,

Services, and Protocols, John Wiley & Sons,

2001.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 235

http://www.microchip.com/
http://www.panner.com/assets/pdf/Signet515.pdf
http://www.baylanwatermeters.com/en/fixed-remote-meter-reading-systems.php
http://www.baylanwatermeters.com/en/fixed-remote-meter-reading-systems.php
http://www.lktech-ic.com/elongkang/product_detail.asp?picid=21
http://www.lktech-ic.com/elongkang/product_detail.asp?picid=21
http://www.lktech-ic.com/elongkang/product_detail.asp?picid=21

An Embedded Platform for Patient Monitoring and Care
System

Vivek Kumar Sehgal1*, Nitin2, Shubhrangshu Naval3, Abhinav Gulhar4,
Sayed Jeeshan Ali5 and Mudit Singhal6

1,3,4,5Department of Electronics and Communication
2,6Department of Computer Science and Engineering

Jaypee University of Information Technology
Waknaghat, Solan, HP (INDIA)

e-mail: vivekseh@ieee.org, vivekseh@acm.org

Abstract - This paper proposed a prototype that analyses
various Bio-medical parameters like temperature and
heartbeat obtained from the sensors used &with the help of a
microcontroller, all the parameters obtained are displayed
on an LCD screen. Based on the parameters obtained the
patient is continuously monitored and if in case of any
critical mishap when the parameters go out of a particular
range then it is prevented by the care system attached to the
Patient Monitoring System. The primary function of this
system is to sense the temperature and heartbeat of the
patient and sensed data is sent to the embedded processor
port. The processor is programmed to continue monitor the
data and send the actuation signals to patient care system.

Keywords: sensors, microcontroller, bio signals, medicine
injection system

1 Introduction
It has been long recognized in the health care industry

that long-term, continuous monitoring is a key element in
preventive care for people with chronic conditions such as
cardiovascular disease. A typical example of patient
monitoring is a home care device, such as an electronic blood
pressure or glucose meter. An ambulatory system that allows
long-term monitoring of mobile patients is also desirable. The
ambulatory electrocardiogram (ECG) Holter device, used
since the 1960s, provides a reliable measurement of the
wearer's heartbeat but is heavy and cumbersome to wear over
an extended period of time. In addition, its substantial power
consumption forbids continuous operation using low-capacity
batteries. In recent years, lightweight devices have emerged as
a viable technology for continuous measurement of vital
biomedical parameters [7]. Wearable, biosensors connected to
self-organizing allows physicians to continuously monitor
vital signs, and helps in preventing any critical mishap and
also helps physicians to record long-term trends and patterns
that provide invaluable information about a patient's ongoing
condition, ease of Use [1]. The availability of advanced

Fig.1. Patient Monitoring and Care Systems

sensing devices combined with sophisticated; self-organizing
care system will enable new applications and represents a
significant opportunity for remote health monitoring. This
system will serve 3 requirements
1) The first is a portability factor so that these health

monitoring devices can fit or attach easily to a wrist or
arm band, ring sensor or other wearable or implantable
device.

2) The second requirement is extremely low power so that
small batteries can be used for an extended period of
time.

3) The third requirement is a highly sophisticated protocol
for low latency, high scalability and high responsiveness.

The organization of paper is as follows:
Section II describes the block diagram. Section III gives the
detail of component used in proposed system. Section IV and
V overviews the software and hardware parts of this proposed
work. Finally some conclusion and future scopes are drown
from the work done in section VI.

2 Description
Various biometric signals are sensed by the sensors and

sensed signals are conditioned through signal conditioning
circuits. After getting the appropriate shape and value these
bio signals are converted in to digital signals for processing.
Embedded processor continues monitors these bio signals and
display their values on LCD times to time. Any variation in
these signals makes processor to send the actuating signals to
patient caring system as shown in Fig. 2.

236 Int'l Conf. Embedded Systems and Applications | ESA'11 |

mailto:vivekseh@ieee.org
mailto:vivekseh@acm.org

Fig.2. Block Diagram

3 Components Used
The whole system is composed of three components

sensing, processing and actuating. Apart from these
components, the signal conditioning circuit, local display
system and programmed algorithm are also integrated part of
this application specific embedded system. A few
components are discussed below

3.1 Microcontroller

89c52 from ATMEL is being used. The AT89C52 is a
low-power, high-performance CMOS 8-bit microcomputer
with 8K bytes of Flash programmable and erasable read only
memory (EPROM). The on-chip Flash allows the program
memory to be reprogrammed in-system or by a conventional
nonvolatile memory programmer. We use this because it
reduces the amount of external hardware or internal software
necessary to process the sensory data. Functions of micro
controller in this prototype are:

1) Used to display Biomedical Parameters on LCD.

2) It is also used to interface the temperature sensor, the
heartbeat sensor, the LCD and the Infusion Pump.

3.2 Liquid Crystal Display

Display used here is the LCD display. It is an intelligent
LCD. It is a 16*2 LCD, which displays 32 characters at a time
16 will be on the 1st line and 16 will be on the 2nd line. There
are two lines on the LCD and it works on extended ASCII
code i.e. when ASCII code is send it display it on the screen.
On the LCD total no of pins are 16 out of which 14 pins are
used by the LCD and 2 are used for backlight. LCD is an edge

trigger device i.e. from high to low. The data can also be
monitored on mobile devices using DTMF [4].

3.3 Temperature Sensor

In this a precision centigrade temperature sensor LM35
is used. It is a precision integrated-circuit temperature sensor,
whose output voltage is linearly proportional to the Celsius
(Centigrade) temperature [2]. The LM35 thus has an
advantage over linear temperature sensors calibrated in °
Kelvin, as the user is not required to subtract a large constant
voltage from its output to obtain convenient Centigrade
scaling. For every 0C change in temperature, it shows a
variation of 10mV in the output [3].

3.4 Heart Beat Sensor

A Heart Beat Sensor is implemented with a pair of LED
and LDR. (Fig.3). This transducer works with the principle of
light reflection, in this case the light is infrared.

Fig.3. Heart Beat Sensor

3.5 Medicine Injection System

In this part we have implemented syringe to a DC motor
with help of a screw such that, when the relay is switched on,
the DC motor starts, which in turn moves the screw n the
screw changes the rotatory motion of the motor into linear
motion which moves the piston of the syringe back & forth.

4 Software Implementation
The software design is a key element in the development

of a project. For visualization of the different parameter on
the LCD display, the microcontroller is burnt in assembly
level language. The microcontroller chosen for the
development of the system is Atmel89c52. The Atmel89c52
has 8K bytes of Flash programmable and erasable read only
memory (EPROM) and has the capability to write to its own
memory. The use of a FLASH device for development also
provides the option to use FLASH microcontrollers in the
final design making the system fully upgradable. This allows
modification of the microcontroller software to expand.

PULSRATE
SENSOR

LCD

EMBEDDED
PROCESSOR

AMPLIFIER

SIGNAL CONDITIONING

TEMPRATURE
SENSOR

MEDICINE INFUSION PUMP

Int'l Conf. Embedded Systems and Applications | ESA'11 | 237

Software Code.

;-TEMP LOGER..--- -
;LCD at PORT1
;ADC at PORT0
; ------------BELOW 20 DEGREE------COLD
; ------------UPTO 35 DEGREE------WARM
; ------------ABOVE 35 DEGREE------HOT
org 0000h
mov a,#38h ;initialise two line 5x7 matrix
35
acall command ;sub routine
mov a,#38h ;initialise two line 5x7 matrix
acall command ;sub routine
mov a,#0ch ;display on,cursor blinking
acall command ;sub routine
mov a,#01h ;clear lcd
acall command ;sub routine
mov a,#80h ;shift cursor TO 1st line
acall command ;
---Temperature----
mov a,#'P'
acall data1
mov a,#'a'
acall data1
mov a,#'t'
acall data1
mov a,#'i'
acall data1
mov a,#'e'
acall data1
mov a,#'n'
acall data1
mov a,#'t'
acall data1
mov a,#0c0h ;shift cursor TO 1st line
acall command ;
mov a,#'M'
acall data1
mov a,#'o'
acall data1
mov a,#'n'
acall data1
mov a,#'i'
acall data1
mov a,#'t'
acall data1
mov a,#'o'
acall data1
mov a,#'r'
acall data1
mov a,#'i'
acall data1
mov a,#'n'
acall data1
mov a,#'g'
acall data1
acall delay2
acall delay2
acall delay2
acall delay2
--Temp--
mov a,#01h
acall command
mov a,#80h
acall command
mov a,#'T'
acall data1
mov a,#'e'

acall data1
mov a,#'m'
acall data1
mov a,#'p'
acall data1
mov a,#'.'
acall data1
mov a,#20h
acall data1
mov a,#'i'
acall data1
mov a,#'s'
acall data1
mov a,#0c0h ;shift cursor TO 1st line
acall command ;
mov a,#'H'
acall data1
mov a,#'/'
acall data1
mov a,#'R'
acall data1
mov a,#'='
acall data1
acall delay2
acall delay2
acall delay2
acall delay2
-----ADC-----
mov p0,#0ffh
go:
setb p2.5
clr p2.5 ; INTR=p2.6 ; start conversion
setb p2.7 ; WR = p2.7
; RD = p2.5 active low
hee:jb p2.6,hee
acall delay2
clr p2.5
mov a,p0 ; a contain temp in hex
MOV 40H,A
-----HEX to BCD conversion-
lop: cjne a,#35d,next ; if a is smaller carry=1
sjmp next
next: jnc gom
setb p3.7 ; below 30 led on
40
sjmp hoi
gom:
MOV A,40H
cjne a,#45d,next2 ; if a is smaller than 35 c=1
sjmp next2
next2: jnc gom2
clr p3.7
SJMP HOI
gom2:
setb p3.7 ; above 40 led off
hoi:
MOV A,40H
mov b,#10d
div ab
mov r6,b ; 0ne
mov b,#10d
div ab
mov r7,b ; tens
mov r2,a ;hundred
mov a,#89h ;shift cursor TO 1st line
acall command ;command subroutine
mov a, r2
orl a,#30h
acall data1
mov a, r7
orl a,#30h
acall data1

mov a, r6
orl a,#30h
acall data1
mov a,#20h
acall data1
mov a,#27h
acall data1
mov a,#'C'
acall data1
setb p2.0
jb p2.0,kou
mov a,#0c4h ;shift cursor TO 1st line
acall command ;
42
mov a,#'7'
acall data1
mov a,#'5'
acall data1
acall delay2
acall delay2
acall delay2
acall delay2
acall delay2
acall delay2
acall delay2
mov a,#0c4h ;shift cursor TO 1st line
acall command ;
mov a,#'7'
acall data1
mov a,#'3'
acall data1
acall delay2
acall delay2
acall delay2
acall delay2
acall delay2
acall delay2
acall delay2
mov a,#0c4h ;shift cursor TO 1st line
acall command ;
mov a,#20h
acall data1
mov a,#20h
acall data1
;---- -
kou:
Ljmp go
;------
delay1:
mov r3,#150d
h130: mov r4,#150d
h230: djnz r4,h230
djnz r3,h130
ret
delay2:
mov r3,#255d
h1300: mov r4,#255d
h2300: djnz r4,h2300
djnz r3,h1300
ret
delay:
mov r3,#60d
h13: mov r4,#40d
h23: djnz r4,h23
djnz r3,h13
ret
command:
mov p1,a
clr p3.2
clr p3.1
setb p3.0
clr p3.0

acall delay1
ret
data1:
mov p1,a
setb p3.2
clr p3.1
setb p3.0
clr p3.0
acall delay1
ret
END

238 Int'l Conf. Embedded Systems and Applications | ESA'11 |

Fig.4. Flow Diagram

The proposed work is focused on the body temperature
measurement device and heart rate measurement monitor,
taking up the analog values using the sensor LM35 and LDR
and LED; these signals were fed into an ADC (Analog to
Digital Convertor) ADC0804. The digital value of the
temperature measurement and heart rate measurement from
the ADC is then fed to the microcontroller (AT89c52). The
LCD (Liquid Crystal Display), is interfaced with the
microcontroller which displays the value of the temperature
sensed and the heart beat. In case the values of the
temperature and the heart beat goes out of a particular range
prescribed by the doctor the relay gets triggered and hence the
Care System responds accordingly as shown in Fig.4.

4.1 Software Code

The microcontroller along with its various interfaces
requires software to work on. The logic involved in achieving
the desired operation has been carefully prepared and is noted
down in form of software code. The Software Code is in the
form of assembly language.

Fig.5. Schematic Diagram

Int'l Conf. Embedded Systems and Applications | ESA'11 | 239

5 Hardware implementation
By using various electrical circuits the bio-medical like

temperature and heart beat parameters can be found. The
output of the circuits is amplified by means of an amplifier
and fed into an A/D converter. The digitized signal is then fed
into the input port of the microcontroller. The microcontroller
displays the parameters in digital value in the display device.
And the injector connected to the prototype works
accordingly as shown in Fig. 5. Hardware implementation of
proposed work is shown in Fig.6.

Fig.6. Hardware Implementation

6 Conclusion and Future Scopes
The project has been successfully completed within the
stipulated time frame with the prototype displaying bio-
medical parameter and the Care System i.e. the Infusion Pump
working accordingly. We have achieved the desired outputs of
the body temperature and the heartbeat of the patient on the
LCD displays and according to which the Care System i.e. the
Medicine Infusion Pump performs if these parameters go out
of a particular set range. Despite lots of research in this field
of Monitoring and Care of patient, there has been very little
effort in actual implementation of the concept which provides
ample scope for the further developments of this project. Over
the past few decades, technology has touched lives, literally.
While use of technology in healthcare has been made in a
hospital environment, a larger scope lies for technology to
become simple. The complete system can be condensed in to
a SoC by using on-chip network [5][6].
Patient Monitoring and Care today is fast becoming a common
reality. From Cardiac Monitoring to Diabetes Management
and more, healthcare services that were once restrained within
doctors being around the patient 24 hours are now finding
their spot under technologically sound and improved
healthcare. That’s a win-win for both doctors/caregivers and

patients. Patient Monitoring and Care makes objective,
pertinent information available to caregivers in a timely
manner, or as and when the need arises, prevent any kind of
critical disaster to occur. This way, the patients are taken care
of and the doctors are able to perform their job effectively too.
Also, this addresses the issue of ever-less-available resources
like healthcare staff and physical presence of the doctor.
Additionally, it helps improve patient health, thanks to early
diagnosis and preventive care.

7 References
[1] Michael, M., Djamal, B.,Chirine, G., and Zakaria, M. “A

Mediation for Web Services in a Distributed Healthcare
Information System”, Proceedings of the IDEAS
Workshop on Medical Information Systems: The Digital
Hospital, pp. 15- 22, Sept. 1-4, 2004.

[2] V.K. Sehgal, Nitin, D.S. Chauhan, R. Sharma,” Smart
Wireless Temperature Data Logger Using IEEE
802.15.4/ZigBee Protocol”, IEEE Region 10 Conference
TENCON 2008, PP 1-6.

[3] V.K. Sehgal, N. Chanderwal, R. Sharma, V. Hastir, Y.S.
Dadwhal, M. Bansal, R. Puri, S.A. Pathania, and A.
Thakur, "Smart Wireless Temperature Data Logger", in
Proc. ESA, 2008, pp.140-144.

[4] V.K. Sehgal, N. Chanderwal, S. Garg, A. Jain, N. Shah,
and S. Gupta, "RJ-11 Interfaced Embedded Platform for
DTMF Based Remote Control System", in Proc. ESA,
2007, pp.239-239.

[5] V.K. Sehgal and D.S. Chauhan, "State observer
controller design for packets flow control in networks-on-
chip", presented at The Journal of Supercomputing,
2010, pp.298-329.

[6] V.K. Sehgal, N. Chanderwal, and D.S. Chauhan, "A
New Approach for Inter Networks-on-Chip
Communication in Networks-in-Package", in Proc. ESA,
2008, pp.16-23

[7] Schwaibold, M., Gmelin, M., Wagner, G., Schochlin, J.,
and Bolz, A. “Key factors for personal health monitoring
and diagnosis devices”. Workshop of Mobile Computing
in Medicine, Germany, 2002, pp. 143-150.).

240 Int'l Conf. Embedded Systems and Applications | ESA'11 |

 Abstract—A typical hardware system can be segmented into

components that each define a specific task. Components could be

divided among a design team for creation, acquired from another

source in the form of legacy work, or an IP core. A finalized

system could be composed of several heterogeneous components.

Proper integration of these components can often be complex and

time consuming for designers. Available tools to aid in rapid

hardware design often lack in this area and require confusing

pre-compilation procedures. Previous work has been done to

create a compiler, called flowpaths, for converting high-level

stack-based languages (e.g. Java) to VHDL for use on an FPGA

or ASIC. Introduced in this paper is an extension to the flowpaths

compiler to allow easier integration of system-components using

object-oriented methodologies. System-components can be

described by high-level Java classes with methods for interactions

with components. These methods are filled with the custom

system-components during generation, such that flowpaths acts as

the glue logic between separate components. In comparison to

handwritten component interconnections, a design integrated

with flowpaths shows a decrease in implementation time and

design complexity.

Index Terms—Field Programmable Gate Arrays, Program

Compilers, Embedded Systems, Glue Logic

I. INTRODUCTION

ften times, large hardware systems are composed using a

combination of several heterogeneous components.

Usually these components are legacy-based, created by

different designers, or acquired from a vendor in the form of

an IP core. Integration of several such components into a

cohesive system is often referred to as “glue logic”. Design of

a system using a collection of modules such as these can be

quite a difficult task. This can become very time consuming,

even for a skilled computer engineer. The need arises for a

tool to add flexibility to the design and implementation phases

of a multi-component system.
Tools have been created to allow a hardware designer

flexibility of design through the use of high-level languages.

Examples of such tools include Handel-C and flowpaths; the

latter being designed by us. Flowpaths is an architecture

described in HDL that can be generated using a stack-based

language, rather than a variable/register language which often

introduces large fan-out and delay when implemented in

hardware. Such stack-based languages include Java bytecode,

Common Interface Language (CIL), and Forth. Currently,

Manuscript received March 31, 2011.

Darrin M. Hanna, Bryant Jones, Lincoln Lorenz, and Mark Bowers are

with the School of Engineering and Computer Science at Oakland University

in Rochester, MI (dmhanna@oakland.edu).

flowpaths are implemented using Java bytecode, and produce

circuits described in VHDL. However, this could be extended

to other languages, and different HDLs such as Verilog.

Flowpaths are further described in [1, 2]. Table I shows a

summary of benchmark results comparing flowpaths to a

jStamp microprocessor that natively executes Java bytecode.

Time Energy
Experiment Method

ms ratio mW·ms ratio

JStamp 2.7 1 319 1
Mandelbrot

Flowpaths 0.065 0.024 15.55 0.048

JStamp 237.6 1 44669 1
FFT

Flowpaths 3.84 0.016 714 0.015

JStamp 2800.0 1 526,400 1
Linpack

Flowpaths 122.2 0.043 34,065 0.064

Table I. Flowpaths versus JStamp performance

These results show improvements in nearly all areas when

compared to another embedded system. More results can be

found in [1].
These tools allow users to design in a high-level language.

Handel-C, for example, uses a subset of C with hardware-

specific extensions, while flowpaths uses stack-based

languages. Our implementation in Java makes no modification

to the standard Java language. On the other hand, Handel-C

requires the knowledge of a modified language, allows for

design in a high-level language resulting in hardware

descriptions that are not practical to modify at the HDL level,

and often generates less efficient hardware as described in [2,

3].
Flexible integration of a system is possible in a number of

ways. Aside from doing it by hand, tools offer simpler

solutions to this problem. Some tools like Handel-C require

the pre-compilation of a module for use in a greater system.

This can often be confusing and requires many steps.

Flowpaths, as we will show, allows for easy integration of

custom hardware components into a system through the use of

object-oriented design within Java.
This paper describes the flexibility of the flowpath compiler

for use in a hardware system. Section 2 outlines how custom

VHDL modules can be integrated into an existing flowpath

design. Section 3 describes a Mandelbrot fractal explorer using

flowpaths to integrate legacy and custom VHDL modules

including drivers for VGA, a PS/2 mouse, and user I/O.

Section 4 elaborates further with an example of a full robotics

system integrated together using flowpaths with custom

hardware for GPS, Light Detection and Ranging (LIDAR), a

motor controller, a camera with an image processing pipeline,

Flexible Embedded System Design Using

Flowpaths

Darrin M. Hanna, Bryant Jones, Lincoln Lorenz, and Mark Bowers

O

Int'l Conf. Embedded Systems and Applications | ESA'11 | 241

and an Inertial Measurement Unit (IMU). The paper closes by

providing concluding remarks and future work.

II. OBJECT-ORIENTED SYSTEM DESIGN

Flowpaths have the flexibility to utilize custom hand-crafted

VHDL components for use in generating hardware. This gives

a computer engineer several options for design of a hardware

system. Examples of where this can be used include: replacing

a complex portion of a generated flowpath with an optimized

custom component for greater efficiency, or the integration of

several modules with a flowpath as the interconnection fabric.

This is described by Fig 1.

Legacy, custom, or IP core components, can be incorporated

easily into an algorithm for an embedded system using

flowpaths. Each component can be described using object-

oriented methodologies. Components are characterized as

objects of the system, with its interactions as functions of that

object. This can be easily described in Java by creating a class

for each component. Within this class, a method must be made

for each function of the component. Alternatively, since a

component’s interface could be described by a single method,

one class could be created with a method for each component.

Since the generated flowpath for a method will contain a

custom component, the Java method can be left empty. The

only parameters that need to be established for a method are

the inputs and outputs. These will correspond to stack inputs

and outputs of a datapath. The generated flowpath will handle

parameter passing into and out of the component. The only

change needed to adapt the corresponding hardware

component for use in the flowpath, is to make the component

conform to a standard operation interface. This interface

consists of the changing execution stack (StackIn and

StackOut buses) and propagation signals (enable-in and done-

out).
Events are usually handled in an embedded system with one

of two methods; polling or interrupts. Flowpaths does not

currently support the use of interrupts, and therefore handles

events using polling. A main execution loop can be created, as

in most embedded systems, to allow the generated flowpath

logic to interact with the components. When an event occurs

within a component it must be registered until the next time it

is polled. Once that component is polled again, the event will

be handled and reset. Examples given in this paper use this

polling method.

III. AN EMBEDDED SYSTEM FOR EXPLORING THE

MANDELBROT SET

A complete Mandelbrot explorer system was implemented

using the flowpaths compiler. The Mandelbrot set is a fractal

image produced by iterating a quadratic polynomial across

points in the complex plane [5]. The system starts at an initial

image of the Mandelbrot set, and allows the user to zoom

further into a desired portion of the set, recalculating the image

and yielding more and more detail. This zooming behavior is

shown in Fig 2.

A VGA driver is used for displaying the Mandelbrot fractal.

 A PS/2 mouse driver is used for zooming into and out of the

fractal. Various calculation parameters are set via switches

and buttons using a handwritten component. The VGA and

mouse drivers are legacy components. The Mandelbrot

calculation core consists of two parallel flowpaths which were

generated from a Java algorithm. Each of these components is

integrated easily using the object-oriented method presented in

this paper.

 A class was created containing methods that describe the

interface to the existing components. A single method was

created for each component. Methods called PollMouse,

PollSwitches, MandelbrotCalc, and PlotPixel were created.

These methods describe the inputs and outputs of the

components. The PlotPixel and PollMouse methods are shown

as examples in Listing 1.

Fig 1. Overview of flowpath component integration

Fig 2. Example Mandelbrot fractal zoom sequence

Listing 1. PlotPixel and PollMouse interface methods

242 Int'l Conf. Embedded Systems and Applications | ESA'11 |

The functional interface of these components is shown in

Fig. 3. The user interface loop continuously polls the status of

the mouse and switches using the PollMouse and PollSwitches

methods, respectively. Momentary events (button presses,

mouse clicks) are captured within these methods and handled

when the device is polled again.

 Mouse clicks trigger the frame rendering loop. This loop

recalculates the image based on user input. The calculation is

performed in the MandelbrotCalc function. This function

represents a component consisting of two instances of a

previously generated Mandelbrot flowpath, combined in a

manner such that they operate upon two Mandelbrot points in

parallel. Each instance performs an iterative calculation upon a

given point in the Mandelbrot set. The number of iterations

taken corresponds to the appropriate pixel color, which is then

written to video memory with the PlotPixel function. This

function writes directly to VRAM, by simply wiring the

appropriate stack elements to the memory’s address and data

lines, and the operation enable pulse to the memory’s write

enable.
 Implementing the frame rendering loop in VHDL would

require a complex state machine and take a significant amount

of time to implement. The Java version, on the other hand,

merely consists of two nested for loops and two function-calls,

which can be created very quickly. A comparison was

performed on several implementations of a Mandelbrot

system. The results are shown in Table II.

The Mandelbrot explorer system was developed using

several different methods. The systems were subjected to a

standard benchmark using the same calculation parameters to

produce an image of the Mandelbrot set. The flowpath-

generated glue logic had a slight impact on the draw time, but

was developed much quicker. The flowpath-generated

calculation core yielded performance half as fast, and utilized

twice as much logic as a handwritten core, but again, was

created in significantly less time.

IV. ROBOTIC SYSTEM INTEGRATION

An FPGA-based system for an autonomous ground robot is

currently being developed using flowpaths to implement

intelligent algorithms that depend on several components. In

robotic systems, there are generally multiple sensors, sensor

processing, intelligent processing algorithms, and signal

conditioning components, among others. Using a high-level

object-oriented programming language to create a robotics

control algorithm, streamlines the design of a robotic system.

 The ability to generate special-purpose hardware from a high-

level Java description makes it practical to implement such a

system on an FPGA. The easy description allows for future

changes to the system to be made quite easily.
The system is based on the simple sense-think-act loop

model, where a robot acquires the latest sensor data, makes a

decision based on its current state estimate, and sends control

signals to act upon its decision. Sensors and other modules are

connected to the FPGA through external I/O pins. Each

custom component polls its sensor and reads data at the

interface update rate. Handwritten VHDL components have

been developed for interfacing to a GPS sensor, a LIDAR

sensor, and motor controller. Other components such as a

camera interface, an image processing pipeline, and an IMU

interface are in development. Fig 5 illustrates the interfaces

and glue logic that will be used to integrate the system.

Fig 3. Overview of the Mandelbrot explorer flowpath

Calc

 Core
Glue

Logic

Logic

Elements
Consumed

Draw

Time
(ms)

Draw

Time
(ratio)

Approx
Dev.

Time

Flowpath
32-bit Flowpath 15,772

(47%) 970 1.000 30 min

Flowpath
32-bit Manual 8,379

(25%) 860 0.886 3 hours

Manual
32-bit Manual 3,420

(10%) 414 0.426 1 Day

Table II. Relative performance of Mandelbrot implementations

Int'l Conf. Embedded Systems and Applications | ESA'11 | 243

 Individual classes were created to describe the functions of

the handwritten components. Each component class contains

the methods used to interface with that component and

additional helper methods.
 The motor controller component utilizes a built-in closed

loop control algorithm to control the motors’ speeds using

encoders for feedback. Its interface requires a system speed

and heading angle to compute the velocity for each motor. To

interface to the component, a Java class named

MotorController was created that contains a method called

sendCommand which takes speed and heading angle as

parameters.
 A GPS sensor is used for detecting the robot’s position on

the earth. The GPS component receives the latitude, longitude,

altitude, and status information from the GPS sensor. The

custom hardware handles all of the details of the interface to

the sensor including the parsing of the serial message. A Java

function, readData was created as an interface to the

component that reads the latest GPS sensor data. Normally, the

readData function would return the full GPS message in one

read, however, since the Java language limits the number of

return values of a function to one, a workaround is needed. It

accomplishes this by using an index to select which portion of

the data to read. In this way, the data can be read out serially

using a call to readData for each index. This presents another

obstacle since readData is called in four places. This normally

will generate four instances of the readData wrapper including

the handwritten hardware. This is redundant and makes

connection to an external interface unfeasible. To avoid this,

one wrapper file is created and a multiplexer is inserted to

control access to the custom hardware from the four different

locations. To provide a cleaner external interface, the GPS

data is compiled into a GPSMessage object. Using the method

readMessage, the GPSMessage passed to it will be populated

with the current data. The Java class which provides the

interface to the GPS sensor is shown in Listing 2.

To properly navigate the robot, environmental surroundings

need to be monitored constantly. A LIDAR and camera are

used for this task. The LIDAR operates by receiving laser

ranging data in a series of angle-referenced intensity bins

which are used to determine surrounding objects. These are

read through the Java wrapper method getIntensities and

added to a LIDAR message created in Java, much like the

GPSMessage. The camera, on the other hand, acts as the

robot’s eyes using an algorithm to detect objects in the robot’s

view. Its corresponding hardware component calculates a list

of objects described by their three dimensional location and

size. The interface to the camera component reads this list of

Fig 5. Object-oriented robot design

Listing 2. GPS interface

244 Int'l Conf. Embedded Systems and Applications | ESA'11 |

objects and combines them into a message containing an array

of objects.
 Furthermore, the robot must be conscious of its orientation

relative to the environment. An IMU is used for calculating the

robot’s relative position and system’s current motion. This

component receives orientation, velocity, and acceleration data

from the IMU. These data are returned from the component

using an interface wrapper, as with the other sensors.
 The full system can be pulled together using a sense-think-

act loop written in Java. Flowpath algorithms can be written on

top of the glue logic used to connect the components. The

model can be implemented using a main execution loop with

the divisions (sense, think, and act) called in order. Sensing

can be done by polling the individual sensor interfaces. On

each iteration of the loop, the sensors will be queried for data.

The robot will have detailed information about its environment

and its position relative to it. Using this sense data, the robot

will be able to effectively decide how to react. This can be

calculated based on its estimated current state and its goal.

Currently, response algorithms are unimplemented in this

design, however, the creation should be relatively

straightforward using Java. Once the system has chosen its

path, the robot can use the sendCommand interface of the

motor controller and the loop repeats.

V. CONCLUSION

This paper shows how the flowpaths compiler can be used

for flexible design of a hardware system which uses legacy,

custom, and IP core components. These can be integrated

easily into the flowpaths structure through the use of custom

classes in Java. By creating a class for custom components, an

inter-connection layer can be created in flowpaths to wire the

modules together. Using this technique allows for a time

savings in development with respect to integration of

components.
Two examples were given to demonstrate how using object-

oriented design and flowpaths reduced the time and

complexity in implementing embedded systems using legacy,

IP core, and custom components. A Mandelbrot fractal

example demonstrated the integration of a few components

with minimal complexity. Also, a real-life robotics system that

is underway was described including several components for

interfacing outside peripherals such as a camera, LIDAR, a

motor controller, an IMU, and a GPS module. Through these

examples, we have shown how flowpaths can be used to

quickly and easily generate efficient inter-connection logic for

a system using object-oriented principles.

VI. FUTURE WORK
Currently in Java, returning an object uses memory. To

alleviate this issue, a special reserved class could be

implemented to handle this without the use of memory. Work

also includes the implementation of automated mapping of

external signals into a generated flowpath. This includes the

ability to utilize pin resources on a specified FPGA to include

the proper connection from within a Java algorithm; similar to

the classes implemented by a jStamp embedded processor [6].

Creation of timing libraries, optimization techniques, and

process threading are also being explored as possible additions

to the flowpath compiler for use with flexible design control.

REFERENCES

1. D. M. Hanna, B. Jones, L. Lorenz, and M. Bowers, “Generating

Hardware from Java Using Self-Propagating Flowpaths,” Submitted to

the International Conference on Embedded Systems and Applications,

2011.

2. D. M. Hanna and R. E. Haskell, “Flowpaths: Compiling Stack-Based IR

to Hardware,” Microprocessors and Microsystems, vol. 30, pp. 125 -

136, 2006.

3. S. A. Edwards, "The Challenges of Hardware Synthesis from C-like

Languages," Proc. of Design Automation and Test in Europe (DATE),

Munich, Germany, 2005.

4. D. M. Hanna, M. Duchene, L. Kennedy, and B. Carpenter, "A Compiler

to Generate Hardware from Java Byte Codes for High Performance, Low

Energy Embedded Systems," The 2007 International Conference on

Engineering of Reconfigurable Systems and Algorithms, Las Vegas,

NV, June 25 - 28, 2007.

5. Benoît Mandelbrot, Fractal aspects of the iteration of z→λz(1-z) for

complex λ,z, Annals NY Acad. Sci. 357, 249/259

6. Systronix, “JStamp: Real-time Native Java Module,” 2003.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 245

An Energy-oriented Retargetable Simulator for
Instruction-Set Architecture

Kyungyoung So1, Kwangman Ko2

1Divisional of IT Information Engineering, Chonbuk National University, KOREA
2School of Computer and Information Engineering, SangJi University, KOREA

Abstract - Retargetability is typically achieved by
providing target machine information, ADL, as input.
The ADL are used to specify processor and memory
architectures and generate software toolkit including
compiler, simulator, assembler, profiler, and debugger.
Simulators are critical components of the exploration
and software design toolkit for the system designer.
Instruction-Set Architecture(ISA) simulator an integral
part of today's processor and software. In this paper,
we design and implement the energy-oriented
simulation environments to reduce the time and cost of
simulator development through the retargetable
technique for ISA. To accomplish our research
objectives and goals, Firstly, we describes the energy
consumption estimation and monitoring information on
the ADL based on EXPRESSION. Secondly, we
generate the energy estimation and monitoring
simulation library and then construct the simulator.
Lastly, we represent the energy estimations results for
MIPS R4000 ADL description. From this subject, we
contribute to the efficient architecture developments
and prompt SDK generation through programmable
experiments in the field of mobile software development.

Keywords: Retargetability, ADL, ISA Simulator, Low
power

1. Introduction
 Rapid exploration and evaluation of candidate
architectures are necessary due to time-to-market
pressure and short product lifetime. Without
automation and a unified development environment,
the design process is prone to error and may lead to
inconsistencies between hardware and software
representations. The solution is to use a golden
specification to capture the architecture and generate
the required executable models to enable design
automation of embedded processors. The phrase
"Architecture Description Language"(ADL) has been
used in the context of designing both software and
hardware architectures[1]. Retargetability is typically
achieved by providing target machine information,
ADL, as input. The ADL are used to specify processor

and memory architectures and generate software
toolkit including compiler, simulator, assembler,
profiler, and debugger[2].Simulators are critical
components of the exploration and software design
toolkit for the system designer. They can be used to
perform diverse tasks such as verifying the
functionality and/or timing behavior of the system, and
generating quantitative measurements(e.g., energy
consumption) which can be used to aid the design
process[3,4]

Instruction-Set Architecture(ISA) simulator an integral
part of today's processor and software. While
increasing complexity of the architectures demands
high performance simulation, the increasing variety of
available architectures makes retargetability as a
critical feature of an ISA simulator. Specially,
Together with the energy minimization, the estimation
and tracing of energy consumption and the
construction of energy-oriented simulation
environment have been a continuous research topics[5].
Reducing energy consumption has become an
important issue in designing hardware and software
systems in recent years. Energy-oriented high-level and
low-level compiler optimizations have been shown to
be particularly useful in reducing the system energy in
prior works[6]. Therefore, It is very important research
area for embedded software developers to measure and
trace of energy consumption on the simulator.

In this paper, we design and implement the energy-
oriented simulation environments to reduce the time
and cost of simulator development through the
retargetable technique and to evaluate and trace the
energy consumption of it's applications. To accomplish
our research objectives and goals, Firstly, we design of
Energy-oriented ADL(EoADL) based on an
EXPRESSION[3], LISA[4] and fast simulation model
and strategies. And then, we implements of algorithm
for the energy evaluation. Finally, we demonstrated the
effectiveness and efficiency of the proposed
retargetable simulator for ISA

246 Int'l Conf. Embedded Systems and Applications | ESA'11 |

2. Related Works
A fast and retargetable simulation technique is
presented in [7]. It improves traditional static compiled
simulation by aggressive utilization of the host
machine resources. Such utilization is achieved by
defining a low level code generation interface
specialized for ISA simulation, rather than the
traditional approaches that use C as a code generation
interface. Retargetable fast simulators based on an
ADL have been proposed within the framework of
FACILE[8], MIMOLA[9], LISA[10], and
EXPRESSION[11]. Specially, Language for
Instruction Set Architecture(LISA), an uniform ADL,
supports automatic generation of software toolsuite(C
Compiler, Assembler, Linker, Simulator, Profiler) and
optimized RTL description within a short time,
accelerating the design space exploration.
EXPRESSION is an ADL for modeling, software
toolkit generation, rapid prototyping, design space
exploration, and functional verification of SoC. The
EXPRESSION follows a mixed level approach-it can
capture both the structure and behavior supporting a
natural specification of the programmable architectures
consisting of processor cores, coprocessors, and
memories. And it was originally designed to capture
processor/memory architectures and generate software
toolkit to enable compiler-in-the-loop exploration of
SoC architecture.

In the last two decades, there have been many studies
done on instruction set simulation(ISS) to improve
their performance. Many ISSs are based on interpretive
simulation techniques, where the simulator is looping
in the fetch-decode-execute cycle. For such simulator,
the decoding overhead is a major bottleneck to
performance. To remove the decoding overhead of
interpretive simulators, Mills[13] proposed the static
compiled simulation technique, where the input
application binary is translated into C code that is then
compiled with the simulator source code. Even though
there are many proposals of static compiler
simulation[14] to improve simulation performance, it
has two major drawbacks. One is that the compilation
time may take longer than the actual simulation time
for large applications. The other is that it cannot
handle self-modifying code. To overcome these
drawbacks, people proposed dynamic compiled
simulation[15], which is based on just-in-time
compilation techniques that exploit code caches.
However, the compiled simulation techniques either
translate the target instructions into the native
instruction set of the host system, or assume a virtual
machine whose ISA is different from the target ISA.

But, it cannot exactly model the target architecture,
such as pipeline interlocks, resulting in loosing
accuracy of application execution time. Most of the
simulators that claim cycle accuracy, such as
SimpleScalar[16], ARMulator[17], and SESC[18], are
based on interpretive simulation.

Low energy consumption is an important metrics that
affects choice of hardware and software components in
building small and large-scale systems. When
designing high-performance, low-power processors,
designers need to experiment with software and
architectural level trade-offs and evaluate various
power optimization techniques. Architectural level
power estimation tools are becoming increasingly
important with the growing complexity of current
designs to provide fast estimates of the energy
consumption early in the design cycle[19]. The
Simplepower[20] energy simulator was developed
based on transition-sensitive energy models and is an
execution-driven, cycle-accurate RT level tool.
Wattch[21], an architectural simulator that estimates
CPU power consumption, are based on a suite of
parameterizable power models usage counts generated
through cycle-level simulation. Wattch's power
modeling infrastructure as a useful and significant
enabler of further research on architecture and
compiler approaches for power efficiency.

3. Energy-oriented Retargetable
Simulator

3.1 Energy-oriented Simulator Model
 In this paper, we develops the energy-oriented
simulation environments to reduce the time and cost of
simulator development through the retargetable
technique and to evaluate and trace the energy
consumption of it's applications. To accomplish our
research objectives and goals, we suggest an
implementation model as shown in Figure 1.

Figure 1. Generation of Energy-oriented ISA Simulator

through the EoADL

Int'l Conf. Embedded Systems and Applications | ESA'11 | 247

 Firstly, we designed the EoADL, extended
EXPRESSION ADL, with the energy consumption
monitoring information. Secondly, we generated the
architecture structure information libraries, the
simulator core engine’s libraries, and energy
consumption monitoring libraries through the extended
EXPRESSION simulator, SIMPRESS[22]. Finally, we
generated the energy-oriented retargetable simulator,
RenergySim, through the compilation and linking with
generated simulation libraries and energy monitoring
libraries. Specially, we constructed the energy
consumption monitoring libraries from the EoADL
descriptions as following Figure 2.

Figure 2. Core Classes of Energy Consumption

Monitoring Libraries’s

3.2 EoADL Design and description
 EoADL syntax are based on the LISA, C++ like
forms, and composed of four core classes as following
Figure 3, Super_ADL class, Structure class, behavior
class, and Energy class. Specially, Energy class
captures the energy-efficient target code generation
methods, the energy-oriented code optimization
methods, and the energy management
libraries(evaluation and tracing) that are independent
of platforms.

Figure 3. EoADL Classes and Hierarchical

Relationships

 Practically, we described the EoADL, Figure 5,
according to the memory hierarchical design as Figure
4.

Figure 4. Example Design of Memory structure

(STORAGE_SECTION

(RFA

(TYPE VirtualRegFile)

(WIDTH 32) (SIZE 32) (MNEMONIC "R")

)

(RFB

(TYPE VirtualRegFile)

(WIDTH 64) (SIZE 32) (MNEMONIC "f")

)

(L1_Assoc_Dcache

(TYPE DCACHE)

(SIZE 64) (LINESIZE 2) (ASSOCIATIVITY 4)

(ACCESS_TIMES 1)(ADDRESS_RANGE(0 9995904))

)

(L2_Assoc_Dcache

(TYPE DCACHE)

(SIZE 64) (LINESIZE 2) ASSOCIATIVITY 8)

(NUM_LINES 64) (ACCESS_TIMES 5)

(ADDRESS_RANGE (0 9995904))

)

(L1_Sram

(TYPE SRAM) (ACCESS_TIMES 1)

(ADDRESS_RANGE (9995905 9999999))

)

(MainMem_Dram

(TYPE DRAM) (ACCESS_TIMES 50)

(ADDRESS_RANGE (0 9995904))

)

Figure 5. EoADL Description according to Figure 4.

248 Int'l Conf. Embedded Systems and Applications | ESA'11 |

4. Experimental and Conclusions
 We generated the RenergySim from the EoADL
description, such as MIPS R4000 based on
EXPRESSION ADL description, and the energy
consumption libraries. For the verification of the
RenergySim and the estimation of energy consumption,
we used EXPRESSION’s benchmarking
applications(LL1.c-LL19.c) as following Figure 6.
The Simulation results show that the RenergySim
reduces energy consumptions by up to 5-10%
compared to the original EXPRESSION simulator and
we had important meanings that energy estimation
simulator generated from the ADL description.

Figure 6. Comparison of Energy Consumption

(SIMPRESS vs. Energy-oriented Retargetable
Simulator)

5. References
[1] Prabhat Mishra, Nikil Dutt, Processor Description
Languages, Morgan Kaufmann, 2008.
[2] Hoffman, H. Meyr, R. Leupers, Architecture Exploration
for Embedded Processors with LISA, Kluwer Academic
Publishers(ISBN: 1-4020-7338-0), Dec. 2002.
[3] Anupam Chattopadhyay, Heinrich Meyr, and Rainer
Leupers, "LISA: A Uniform for Embedded Processor
Modeling, Implementation, and Software Toolsuite
Generation", Processor Description Languages: Chap. 5,
Morgan Kauffman, 2008.
[4] Prabhat Mishra, Aviral Shrivastava, and NiKill Dutt,
"Architecture Description Language(ADL) - driven Software
Toolkit Generation for Architectural Exploration of
Programmable SOCs", ACM Transactions on Design
Automation of Electronics Systems, Vol. 11. No. 2, 2006.
[5] M. Reshadi, Prabhat Mishra, Nikil Dutt, "Instruction Set
Compiled Simulation: A Technique for Fast and Flexible
Instruction Set Simulation", DAC'03: Proceedings of the
40th conference on Design Automations, pages 758∼763,
2003.
[6] A. Parikh, Soontae Kim, M. Kandemir, N. Vijaykrishnan,
M. J. Irwin, "Instruction Scheduling for Low Power",

Journal of VLSI Signal Processing, Vol 37, pages 129∼149,
2004.
[7] Jianwen Zhu, Daniel D. Gasski, "A Retargetable, Ultra-
fast Instruction Set Simulator", DATE'99: Proceedings of the
Design Automation and Test conference in Europe, pages
1999.
[8] Eric C. Schnarr, Mark D. Hill, James R. Larus, "Facile:
A Language and Compiler for High-Performance Processor
Simulators", PLDI'99: Proceedings of the ACM SIGPLAN
1999 conference on Programming Language Design and
Implementation, pages 1∼11, 1999.
[9] R. Leupers, J. Elste, B. Landwehr, "Generation of
Interpretive and Compiled Instruction Set Simulators", ASP-
DAC'99: Proceeding of the Asia South Pacific Design
Automation Conference 1999, pages , 1999.
[10] S. Pees, A. Hoffman, V. Zivojnovic, H. Meyr, "LISA-
Machine Description Language for Cycle-Accurate Models
of Programmable DSP Architectures", DAC'99: Proceedings
of the 36th Design Automation Conference, 1999.
[12] Peter Grun, Ashok Halambi, Vijay Ganesh, Nikil Dutt,
Alex Nicolau, "EXPRESSION: An ADL for System Level
Design Exploration", Technical Report TR98-29, University
of California Irvine, 1998.
[13] Christopher Mills, Stanely C. Ahalt, and Jim Flower,
"Compiled Instruction Set Simulation", Software Practice
and Engineering, Vol. 21(8), pages 877∼889, 1991.
[14] Stefan Kraemer, Lei Gao, Jan Weinstock, Rainer
Leupers, Gerd Ascheid, and Heinrich Meyer, "Hysim: A Fast
Simulation Framework for Embedded Software
Development", CODE+ISSS'07, pages 75∼80, 2007.
[15] M. Poncino, Jianwen Zhu, "Dynamosim: A Trace-based
Dynamically Compiled Instruction Set Simulator",
ICCAD'04: Proceedings of the 2004 IEEE/ACM
International Conference on Computer-Aided Design, pages
131-136, 2004.
[16] SimpleScalar: http://www.simplescalar.com
[17] ARM Limited. RealView ARMulator ISS User
Guide(ver1.4.3), 2007.
http://infocenter.arm.com
[18] SESC: SuperESCalar Simulator.
http://iacoma.cs.uiuc.edu/~paulsack/sescdoc/, 2002.
[19] Uli Kremer, "Compilers for Power and Energy
Management", PLDI'03: ACM SIGPLAN 2003 conference
on Programming Language Design and Implementation
Tutorial, 2003.
[20] W. Ye, N. Vijaykrishnan, M. Kandemir, M. J. Irwin,
"The Design and Use of SimplePower: A Cycle Accurate
Energy Estimation Tool", DAC'00: Proceedings of the 37th
Design Automation Conference, pages 340∼345, 2000.
[21] D. Brooks, V. Tiwari, M. Martonosi, "Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations", In Proc. of International Symposium on
Computer Architecture, pages 83∼94, 2000.
[22]Alex Nicolau, et al., “V-SAT: A Visual Specification
and Analysis Tool for System- on-Chip Exploration”,
Journal of System Architecture, Vol. 47, pp.263～275, 2001.

Int'l Conf. Embedded Systems and Applications | ESA'11 | 249

250 Int'l Conf. Embedded Systems and Applications | ESA'11 |

