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Abstract— Network science makes heavy use of simulation
models and calculations based upon graph-oriented data
structures that are intrinsically highly irregular in nature. The
key to efficient use of data-parallel and multi-core parallelism
on graphical processing units (GPUs) and CPUs is often to
optimise the data layout and to exploit distributed memory
locality with processing elements. We describe work using
hybrid multi-core and many-core devices and architectures
for implementing and optimising applications based upon
irregular graph and network algorithms.
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1. Introduction
The recent introduction of the Graph 500 benchmarks [1]

highlights the increasing importance of data intensive, graph-
based algorithms in high performance computing. While tradi-
tional supercomputers have to yield more and more of the top
spots in the TOP 500 [2] to hybrid systems featuring graph-
ics processing units (GPUs) as compute accelerators, which
provide the bulk of the processing power in those systems,
irregular graph structures pose a challenge for general purpose
computation on GPUs (GPGPU) [3], [4].

We implement the clustering coefficient as defined by
Newman et. al. [5], a graph metric that is commonly used
when analysing social networks, on a number of multi-core
CPU and GPU architectures. We use this metric to compare
the performance and scaling behaviour of a graph-based,
bandwidth limited algorithm on these heterogeneous devices.
Code fragments and pseudo-code are used to show how the
implementations were optimised.

The clustering coefficient is a graph metric that is based on
the concept of clustering in social networks, sometimes also
called network transitivity, introduced by Watts and Strogatz
[6]. It is often used when analysing networks with small-
world characteristics [7], [6], [8]. Newman et. al. define the
clustering coefficient C as follows:

C =
3× (number of triangles on the graph)
number of connected triples of vertices

Here, triangles are elementary circuits of length three, that
is, three distinct vertices connected by three arcs creating a
cycle. A connected triple is a path of length two that connects
three distinct vertices.

In Section 2 we describe in detail how the clustering
coefficient is computed for an arbitrary graph. We give algo-
rithm fragments showing how we implement this on: single-
and multi-core CPUs using POSIX threads and threading
building blocks (TBB) multi-threading libraries (Section 2.1),
NVIDIA’s compute unified device architecture (CUDA) for
both single-GPU (Section 2.2) and multi-GPU (Section 2.3)
systems, as well as on the Cell Broadband Engine (CellBE)
(Section 2.4). For details on these parallel hardware architec-
tures, see the unpublished technical note [9].

We use two commonly found graph structures, small-world
and scale-free, to compare the performance of the clustering
coefficient algorithm on these platforms in Section 3. We
discuss the outcomes and draw some conclusions in Section 4.

2. The Clustering Coefficient
Each one of the different hardware architectures described

in this paper—x86 multi-core CPU, GPU and CellBE—uses
a very different approach to parallelism and thus requires an
algorithm that is specifically tailored for its architecture to
achieve peak performance. This section describes the imple-
mentations of the clustering coefficient algorithm along with
architecture specific performance optimisations.

2.1 CPU - Sequential, PThreads & TBB
For reference purposes and to better explain the algorithm

we use, we give a serial CPU code implementation of the
clustering coefficient calculation in Algorithm 1.

The outermost loop of the sequential implementation ex-
ecutes once for every vertex vi ∈ V . The iterations do not
interfere with each other and can thus be executed in parallel.
It is merely necessary to sum up the numbers of triangles and
paths found in each of the parallel iterations to get the total
counts for the graph before the clustering coefficient can be
calculated. Algorithms 2 and 3 describe an implementation
that uses POSIX Threads (PThreads) to achieve parallelism.

The TBB implementation, like the PThreads version,
applies the parallelism to the outermost loop. TBB’s
parallel reduce can be used to do this parallel reduction
without having to explicitly specify the chunk size and number
of threads or having to worry about keeping all threads busy.

Algorithm 1 Pseudo-code for the sequential CPU implemen-
tation of the clustering coefficient.
function CLUSTERING(G)

Input parameters: The graph G := (V,A) is an array of adjacency-lists,
one for every vertex v ∈ V . The arc set Ai ⊆ A of a vertex vi is stored in
position V [i]. |V | is the number of vertices in G and |Ai| is the number
of neighbours of vi (i.e. its degree).
R ← determine reverse adjacency-list lengths
declare t //triangle counter
declare p //paths counter
for all vi ∈ V do

for all vj ∈ Ai do
if vj = vi then

p← p−R[vi] //correct for self-arcs
continue with next neighbour vj+1

p← p+ |Aj |
if vi > vj then

for all vk ∈ Aj do
if vk = vi then

p← p− 2 //correct for cycles of length 2 for vi and vj
continue with next neighbour vk+1

if vk 6= vj AND vi > vk then
for all vl ∈ Ak do

if vl = vi then
t← t+ 1

return (3t)/p //the clustering coefficient
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Algorithm 2 Pseudo-code for the multi-core CPU implemen-
tation of the clustering coefficient using PThreads. See Alg. 1
for a description of input parameter G and the triangle and
paths counting algorithm.
declare vcurr //the current vertex
declare mutex m //mutual exclusion for vcurr
function CLUSTERING(G)
R← determine reverse adjacency-list lengths
vcurr ← 0 //initialise current vertex vcurr
n← number of CPU cores
do in parallel using n threads: call PROCESS(G,R)
wait for all threads to finish processing
declare t← sum of triangles found by threads
declare p← sum of paths found by threads
return (3t)/p //the clustering coefficient

Algorithm 3 Algorithm 2 cont. PROCESS runs in parallel.
function PROCESS(G,R)

declare t //local triangle counter
declare p //local paths counter
declare vs //start vertex
declare ve //end vertex
repeat

acquire lock on mutex m
vs ← vcurr
ve ← vs+ work block size //ve must not exceed |V |
vcurr ← ve
release lock on mutex m
for all vi ∈ Vi ≡ {vs, . . . , ve} ⊆ V do

count triangles and paths as described in the sequential CPU alg.
until vs ≥ |V |
return {t, p}

Algorithm 4 shows how the full iteration range is defined
and passed to parallel reduce. TBB recursively splits
the iteration range into sub-ranges until a certain threshold is
reached. Then TBB uses available worker threads to execute
PROCESS TASK (Algorithm 5) in parallel. When the two
halves of a range have been processed, then TBB invokes
function JOIN (Algorithm 6) to combine the results. Eventu-
ally, all sub-ranges have been processed and the results have
been joined into the root of the task tree. TBB returns and the
results can be extracted from this root object.

2.2 GPU - CUDA
The CUDA implementation is much more complex due

to the different hardware architecture and lower level perfor-
mance tuning necessary to achieve high performance on the
GPU.

Arbitrary graphs, like small-world networks, where the
structure is not known beforehand, can be represented in
different ways in memory. For CUDA applications, the data

Algorithm 4 Pseudo-code for the multi-core CPU implemen-
tation of the clustering coefficient using TBB. See Algorithm 1
for a description of the input parameter G and the triangle and
paths counting algorithm.
function CLUSTERING(G)
R← determine reverse adjacency-list lengths
declare blocked range br(0, |V |)
call parallel reduce(br, PROCESS TASK)
retrieve results and calculate clustering coefficient

Algorithm 5 TBB executes PROCESS TASK in parallel.
declare t //task local triangle counter
declare p //task local paths counter
function PROCESS TASK(br,G,R)

declare vs ← br.begin() //start vertex
declare ve ← br.end() //end vertex
for all vi ∈ Vi ≡ {vs, . . . , ve} ⊆ V do

count triangles and paths as described in the sequential CPU impl.

Algorithm 6 TBB calls JOIN to combine the results of the
two halves of a range.
function JOIN(x, y)

Input parameters: x and y are task objects.
x.t← x.t+ y.t
x.p← x.p+ y.p

Fig. 1: The data structure used to represent the graph in
graphics card device memory. It shows the vertex set V
(bottom) and the arc set A (top). Every vertex vi ∈ V
stores the start index of its adjacency-list Ai at index i
of the vertex array. The adjacency-list length |Ai| can be
calculated by looking at the adjacency-list start index of vi+1

(V [i+1]− V [i]). The vertex array contains |V |+1 elements
so that this works for the last vertex too.

representation and resulting data accesses often have a major
impact on the performance and have to be chosen carefully.
Figure 1 illustrates the data structure used to represent a graph
in device memory.

Another issue when processing arbitrary graphs with CUDA
is that the adjacency-lists differ in length, and often it is
necessary to iterate over such a list of neighbours. But since
in CUDA’s single-instruction, multiple-thread (SIMT) archi-
tecture all 32 threads of warp are issued the same instruction,
iterating over the neighbours-lists of 32 vertices can cause
warp divergence if these lists are not all of the same length.
In the case of warp divergence, all threads of the warp have
to execute all execution paths, which in this case means they
all have to do x iterations, where x is the longest of the 32
adjacency-lists. And as described in the CPU implementation
of the clustering coefficient algorithm, this particular case
requires nested loops, which make the problem even worse.

However, the outermost loop can be avoided when the
implementation iterates over the arc set A instead of the
vertex set V . This improves the performance of the CUDA

Algorithm 7 Pseudo-code for the CUDA implementation
of the clustering coefficient. It operates on the arc set A,
executing one thread for every arc ai ∈ A for a total of
|A| threads. Self-arcs are filtered out by the host as they
never contribute to a valid triangle or path. The host program
prepares and manages the device kernel execution.
function CLUSTERING(V,A, S)

Input parameters: The vertex set V and the arc set A describe the structure
of a graph G := (V,A). Every vertex vi ∈ V stores the index into the arc
set at which its adjacency-list Ai begins in V [i]. The vertex degree |Ai| is
calculated from the adjacency-list start index of vertex vi+1 (V [i+ 1]−
V [i]). In order for this to work for the last vertex vN ∈ V , the vertex
array contains one additional element V [N+1]. |A| is the number of arcs
in G. S[i] stores the source vertex of arc ai.
declare Vd[|V |+ 1], Ad[|A|], Sd[|A|] in device memory
copy Vd ← V
copy Ad ← A
copy Sd ← S
declare td, pd ← 0 in device memory //triangle and path counters
do in parallel on the device using |A| threads:

call KERNEL(Vd, Ad, Sd, td, pd)
declare t, p
copy t← td
copy p← pd
return (3t)/p //the clustering coefficient
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Algorithm 8 Algorithm 7 continued. The device kernel is the
piece of code that executes on the GPU.
function KERNEL(V,A, S, t, p)

declare i← thread ID queried from CUDA runtime
declare vi ← S[i] //arc source
declare vj ← A[i] //arc end
p← p+ |Aj |
if vi > vj then

for all vk ∈ Aj do
if vk = vi then

p← p− 2 //correct for cycles of length 2 for both vi and vj
continue with next neighbour vk+1

if vi > vk then
for all vl ∈ Ak do

if vl = vi then
t← t+ 1

kernel considerably and also changes the total number of
threads from |V | to |A|. |A| is usually much larger than
|V |, giving CUDA more threads to work with, which it can
use to hide memory latencies and which also means that the
implementation should scale better to future graphics cards
with more processing units. The implementation is described
in Algorithm 7.

As the performance results section shows, this implementa-
tion performs well for graphs with only slightly varying vertex
degrees, like Watts-Strogatz small-world networks [6]. If the
vertex degrees of the input graph vary considerably, as it is
typical for scale-free graphs with power-law degree distribu-
tions [10], [11], [12], a small variation of this implementation
performs considerably better. In this second approach, the
input array S not only references the source vertex of an
arc, but also uses a second integer to store the end vertex.
Furthermore, the host sorts this array by the degree of the
arc end vertices before passing it to the CUDA kernel. Even
though this means that the end vertex of each arc is stored
twice, once in S and once in A, it makes it possible to
process the arcs based on the vertex degrees of their end
vertices, which determine the number of iterations done by
the outer one of the two loops in the CUDA kernel. This
means that threads of the same warp can process arcs with
similar end vertex degrees, thus reducing warp divergence
considerably. The sorting is done by the host using TBB’s
parallel sort.

Further CUDA specific optimisations applied to both ver-
sions of the clustering kernel are shown in Algorithm 9.
They include counting the triangles and paths found by each
individual thread in its registers, before writing them to
shared memory, where the total counts for a thread block are
accumulated, which are eventually written to global memory
with a single atomic transaction per counter and thread block.
Furthermore, texture fetches are used when iterating over the
adjacency-lists of vertices, taking advantage of data locality.
And because the caching done when fetching the neighbours
vk of vertex vj may be overwritten by the inner loop, a
constant number of arc end vertices are pre-fetched and
written to shared memory. This pre-fetching is only done
for older devices like the GTX295, as the latest generation
of Fermi-based NVIDIA GPUs, which includes the GTX480,
provides automatic caching in L2 (shared by all multiproces-
sors) and L1 (on each multiprocessor) caches. The overhead
of manually caching the data in shared memory decreases the
performance on these devices.

2.3 Multi-GPU - CUDA & POSIX Threads
When multiple GPUs are available in the same host system,

then it may be desirable to utilise all of them to further reduce
the execution time of the algorithm. And because the iterations

Algorithm 9 CUDA performance optimisations.

/ / sh ar ed memory c o u n t e r s
s h a r e d unsigned i n t n T r i a n g l e s S h a r e d ;
s h a r e d unsigned i n t n P a t h s 2 S h a r e d ;

i f ( t h r e a d I d x . x == 0) {
n T r i a n g l e s S h a r e d = 0 ;
n P a t h s 2 S h a r e d = 0 ;

}
s y n c t h r e a d s ( ) ;

/ / each t h r e a d u s e s r e g i s t e r s t o c o u n t
unsigned i n t n T r i a n g l e s = 0 ;
i n t n P a t h s 2 = 0 ;
. . .
/ / NOTE: t h i s e x p l i c i t c a c h i n g can be
/ / c o u n t e r−p r o d u c t i v e on Fermi d e v i c e s !
c o n s t i n t p r e f e t c h C o u n t = 7 ;

s h a r e d i n t n b r 2 P r e f e t c h [ p r e f e t c h C o u n t ∗
BLOCK SIZE ] ;

i f ( s r c V e r t e x > nbr1 ) {
f o r ( i n t n b r 2 I d x = 0 ; n b r 2 I d x < nArcsNbr1 ;

++ n b r 2 I d x ) {
/ / pre−f e t c h nbr2 t o sha re d mem . t o t a k e
/ / advan tage o f t h e l o c a l i t y i n t e x t u r e f e t c h e s
i n t nbr2 ;
i n t p r e f e t c h I d x = n b r 2 I d x %( p r e f e t c h C o u n t + 1 ) ;
i f ( p r e f e t c h I d x == 0) { / / g l o b a l mem . read

nbr2 = t e x 1 D f e t c h ( a rcsTexRef ,
nb r1ArcsBeg in + n b r 2 I d x ) ;

f o r ( i n t i =0 ; i < p r e f e t c h C o u n t ; ++ i ) {
n b r 2 P r e f e t c h [ i ∗blockDim . x+ t h r e a d I d x . x ]=

t e x 1 D f e t c h ( a rcsTexRef ,
nb r1ArcsBeg in + n b r 2 I d x + i + 1 ) ;

}
} e l s e { / / read from sh ar ed memory

nbr2 = n b r 2 P r e f e t c h [ ( p r e f e t c h I d x −1) ∗
blockDim . x+ t h r e a d I d x . x ] ;

}
. . .
f o r ( i n t n b r 3 I d x =0; n b r 3 I d x < nArcsNbr2 ;

++ n b r 3 I d x ) {
n T r i a n g l e s += t e x 1 D f e t c h ( a rcsTexRef ,

nb r2ArcsBeg in + n b r 3 I d x )
== s r c V e r t e x ? 1 : 0 ;

}
}

/ / w r i t e l o c a l c o u n t e r s t o sh ar ed memory
atomicAdd(& n T r i a n g l e s S h a r e d , n T r i a n g l e s ) ;
atomicAdd(& nPa ths2Sha red , ( unsigned i n t ) n P a t h s 2 ) ;

}
/ / w r i t e t o g l o b a l mem ( once per t h r e a d b l o c k )

s y n c t h r e a d s ( ) ;
i f ( t h r e a d I d x . x == 0) {

atomicAdd ( n T o t a l T r i a n g l e s ,
( unsigned long long i n t ) n T r i a n g l e s S h a r e d ) ;

atomicAdd ( n T o t a l P a t h s 2 ,
( unsigned long long i n t ) n P a t h s 2 S h a r e d ) ;

}

of the outermost loop are independent from each other with
no need for synchronisation, the work can be distributed over
the available GPUs in the same way as multiple CPU cores
are utilised by threads (See Section 2.1). One PThread is
created for every GPU and controls the execution of all CUDA
related functions on this particular GPU. The data structure
of the graph is replicated on all graphics devices and instead
of executing |A| CUDA threads to count all triangles and
paths with just one kernel call, a work block of N arcs
{ai, . . . , ai+N−1} ⊆ A is processed during each kernel call.
A new work block is determined in the same way as it is done
when using PThreads to execute on multiple CPU cores. The
work block size depends on the available graphics hardware
and the size of the thread blocks in the CUDA execution grid:
N = (number of threads per block)×(blocks per streaming
multiprocessor)×(number of streaming multiprocessors). The
goal is to make it large enough to allow CUDA to fully utilise
the hardware and small enough to keep all available GPUs
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Fig. 2: The data structure used to represent the graph in system
memory of the Cell BE. It shows the vertex set V (bottom)
and the arc set A (top). Every vertex vi ∈ V stores the start
index of its adjacency-list Ai at index i × 2 of the vertex
array. The adjacency-list length |Ai| is stored at the next index.
The vertex array contains |V |× 2 elements. Every adjacency-
list in the arcs array is padded to the next multiple of 16-
bytes (4-bytes per value) in order to conform with the memory
alignment requirements. The padding elements have the value
−1, which is an invalid vertex ID.

busy for roughly the same amount of time.

2.4 Cell Processor - PS3
Like the CUDA implementation, the implementation for the

Cell Broadband Engine (BE) requires a lot of architecture
specific tuning to achieve good performance. The memory
layout used is similar to the one used by the CUDA kernels,
using one array for the vertices and one array for the arcs.
However, the requirement that the direct memory accesses
(DMA) used to transfer data from main memory to the local
store of a Synergistic Processor Element (SPE) are aligned
on 16-byte boundaries makes some changes necessary. See
Figure 2 for an illustration and description of the memory
layout.

The main task of the Cell’s PowerPC Processor Element
(PPE) is to manage the Synergistic Processor Elements (SPEs)
as illustrated in Algorithm 10. It is used to load the graph and
store it in system memory using the memory layout described
before. Then it initialises the SPEs, which do most of the
actual computation (See Algorithms 11 and 12). However, the
PPE would not be fully utilised if providing the SPEs with
further work was all it did. Therefore, it performs some of the
same computational tasks in its spare time, further improving
the overall performance. The implementation of the triangle
and paths counting algorithm on the PPE is basically the
same as the single-threaded CPU implementation described
in Algorithm 1, except that it uses the PPE’s vector unit in
the same way as the SPE implementation does in its innermost
loop. These vector operations are described in Algorithm 13.

Traversing an arbitrary graph as it is done by the trian-
gle and path counting algorithms requires many reads from
unpredictable memory addresses. And since the local store
of the SPEs with its 256KB capacity is relatively small,
much too small to hold the entire graph structure of anything
but very small graphs, it is necessary to load the required
parts of the graph from system memory into local memory
when needed. For example, when processing a certain vertex,
then its adjacency-list has to be copied into the local store.
This is done by issuing a DMA request from the Synergistic
Processor Unit (SPU) to its Memory Flow Controller (MFC)
(every SPE has one SPU and one MFC). However, the
performance of the implementation would not be good if
the SPU stalled until the requested data becomes available.
Instead, the implementation for the SPE is split into phases
(See Figure 3 and Algorithm 12). A phase ends after a DMA
request has been issued and the following phase, which uses
the requested data, is not executed until the data is available.
This implementation of multi-buffering uses 16 independent

Algorithm 10 Pseudo-code for the Cell BE implementation of
the clustering coefficient. This algorithm describes the tasks of
the PowerPC Processor Element. It operates on the vertex set
V , issuing blocks of vertices to the the Synergistic Processor
Elements for processing, as well as processing small work
chunks itself when it has nothing else to do. Self-arcs are
filtered out beforehand, as they never contribute to a valid
triangle or path.
function CLUSTERING(V,A)

Input parameters: The vertex set V and the arc set A describe the structure
of a graph G := (V,A). Every vertex vi ∈ V stores the index into
the arc set at which its adjacency-list Ai begins in V [i × 2] and its
degree in V [i × 2 + 1]. |V | is the number of vertices in G. SPE =
{spe0, spe1, . . . , spe5} is the set of SPEs.
for all spei ∈ SPE do

initialise spei and start processing a block of vertices
while more vertices to process do

for all spei ∈ SPE do
if inbound mailbox of spei is empty then

write the start and end vertices of the next work block to the
mailbox

process a small work block on the PPE
for all spei ∈ SPE do

send interrupt signal and wait until spei finishes processing
aggregate results and calculate clustering coefficient

Fig. 3: The phases of the SPE implementation and how they
are connected to each other. The progression from phase x
to phase x + 1 is always due to phase x issuing a DMA
request to copy data from system memory into local memory,
which is needed for phase x + 1 to execute. Phases with an
odd number end after they issue a request to fetch the start
index and length information about a particular adjacency-
list, whereas phases with an even number end after they
issue a request to fetch the actual adjacency-list data for a
particular vertex. The figure illustrates under which conditions
a phase is repeated or the execution path goes back up towards
phase1. See Algorithm 12 for the pseudo-code of the phases
implementation.

buffers to process the work block issued to the SPE. Whenever
a buffer is waiting for data, the implementation switches to
another buffer that is ready to continue with the next phase.

The Cell PPE and SPE units all have their own vector units
and 128-bit wide vector registers. This allows them to load
four 32-bit words into a single register and, for example,
add them to four other words stored in a different register
in a single operation. A program for the Cell BE should
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Algorithm 11 The pseudo-code for the SPE implementation
of the clustering coefficient on the Cell BE. See Algorithm 10
for the PPE implementation and Algorithm 12 for the different
execution phases.
function CLUSTERING(vs, ve)

Input parameters: Each SPE receives an initial work block [vs, . . . , ve) ⊆
V of source vertices to process.
copy init. data from system mem. to the local store
initialise buffers B = {b0, b1, . . . , b15}
repeat

vcurr ← vs //initialise current vertex vcurr
for all bi ∈ B do

bi.phase← phase1 //set the next phase of bi
mark buffer as “ready”

//process the current work block
set all buffers as active
while at least one buffer is active do

b← any “ready” buffer
call b.phase //execute the next phase of b

//check if there is more work to do
vs ← read next value from inbound mailbox
if no interrupt signal recieved (vs 6= −1) then

ve ← read next value from inbound mailbox
until interrupt signal received
copy the results back to system memory

be vectorised where possible to fully utilise the available
processing power. Algorithm 13 describes how the innermost
loop of the PPE and SPE implementations use of the vector
units.

It turns out that the performance gain from using both the
PPE and the SPEs to process the data is smaller than expected
compared to using either only the PPE or only the SPEs to do
the actual data crunching. It appears that the memory system
is the bottleneck when using all of the available processing
units on the Cell processor on a data-intensive problem like
the one at hand.

3. Performance Results
This section compares the performance of the different clus-

tering coefficient implementations. Table 1 lists the platforms
used for the performance experiments. System (a) was used
for the single-core and multi-core CPU measurements, both
systems (a) and (b) for the GPU results and system (c) for
the CellBE implementation.

Two different graphs models are used as input to the
algorithms. The Watts-Strogatz network model [6] generates
small-world graphs, where every vertex is initially connected
to its k nearest neighbours. These edges are then randomly
rewired with a probability p. The graphs generated for the
performance measurements (k = 50 and p = 0.1, see
Figure 4) have a high clustering coefficient of ≈ 0.53. The
vertex degrees do not deviate much from k.

The Barabási-Albert scale-free network model [11] gener-
ates graphs with a power-law degree distribution for which
the probability of a node having k links follows P (k) ∼ k−γ .
Typically, the exponent γ lies between 2 and 3 [10], [12]. The
vertex degrees in the resulting graph vary considerably. The
graphs generated for the performance measurements (k ≈ 50,
see Figure 5) have a clustering coefficient of ∼ 0.01.

The timing results show that the type of graph used as input
to the algorithms has a big effect on the execution times. The
scale-free graphs take much longer to process than the small-
world graphs, because even though only few vertices have a
degree that is much higher than the average, most vertices
are connected to one of these hub nodes and the algorithms
therefore often have to iterate over the large adjacency-lists
of these few vertices.

Table 2 gives an overview of the performance measure-
ments and compares the results with each other. It shows

Algorithm 12 Algorithm 11 continued. The phases of the SPE
implementation execute on a buffer b. Each phase models a
step in the process of counting the triangles t and paths p. A
phase ends after a DMA request to load data into local storage
has been issued or when the end of a loop is reached.
function phase1(b)

b.vi ← vcurr //set the source vertex for this buffer
vcurr ← vcurr + 1
if b.vi ≥ ve then

set buffer as inactive //end of work block reached
else

copy async b.vi.dat← load adjacency-list info
b.phase← phase2

function phase2(b)
copy async b.Ai ← use b.vi.dat to load Ai ⊂ A
b.phase← phase3

function phase3(b)
if end of adjacency-list b.Ai reached then

b.phase← phase1 //loop condition not fulfilled
else

b.vj ← next value in b.Ai
copy async b.vj .dat← load adjacency-list info
b.phase← phase4

function phase4(b)
b.p← b.p+ |Aj |
if b.vj > b.vi then

b.phase← phase3 //do not count triangle thrice
else

copy async b.Aj ← use b.vj .dat to load Aj ⊂ A
b.phase← phase5

function phase5(b)
if end of adjacency-list b.Aj reached then

b.phase← phase3 //loop condition not fulfilled
else

b.vk ← next value in b.Aj
if b.vk = b.vi then

b.p← b.p− 2 //correct for cycles of length 2
b.phase← phase5

else if vk > vi then
b.phase← phase5 //don’t count triangle thrice

else
copy async b.vk.dat← load adj.-list info
b.phase← phase6

function phase6(b)
copy async b.Ak ← use b.vk.dat to load Ak ⊂ A
b.phase← phase7

function phase7(b)
for all b.vl ∈ b.Ak do

if b.vl = b.vi then
b.t← b.t+ 1 //triangle found

b.phase← phase5

that the multi-threading implementations using PThreads
(12 threads) and TBB (automatic task management) are both
≈ 7× faster than the sequential implementation for the largest
measured instances of the small-world and scale-free graphs.
Even though the processor only has 6 physical cores, Intel’s
hyper-threading technology effectively doubles this to 12
logical cores, which enables it to better utilise the physical
cores. This makes it possible to scale beyond the actual
number of cores. The TBB implementation performs almost
exactly the same as the PThreads implementation. Its ease
of development and automatic scaling to different system
configurations thus makes it a powerful alternative to the more
low-level multi-threading with PThreads.

As mentioned in Section 2.2, we have two CUDA kernels
that differ in one aspect. The CUDA threads in kernel 1 access
the array of arcs A in the given order, whereas kernel 2 uses
a second array of arcs which is sorted by the degrees of
the arc end vertices to determine which arc is processed by
each thread. This second kernel uses |A|× (size of integer)
more space and introduces some processing overhead, which
shows in the lower performance when processing the small-
world graphs. However, the reduced warp divergence gained
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Table 1: The platforms used for the performance measurements. Note that only 6 of the total 8 SPEs on the CellBE are available
to the developer (one is disabled and one reserved by the operating system).

ID CPU GPU RAM Operating System
(a) Intel Core i7 970 @3.2 GHz (6 cores) 4× NVIDIA GTX480 (4 GPUs) 12 GB Ubuntu 10.10 64-bit
(b) Intel Core 2 Quad @2.66 GHz (4 cores) NVIDIA GTX295 (2 GPUs) 4 GB Ubuntu 10.10 64-bit
(c) PS 3 CellBE @3.2 GHz (1 PPE & 6 SPEs) NVIDIA RSX 256 MB Yellow Dog Linux 6.1

Algorithm 13 Vector operations are used to speed-up the
execution of the innermost loop (phase7) of the Cell BE PPE
and SPE implementations. The comparison of vertex ID vi
with vl, vl+1, vl+2, vl+3 is done concurrently using the 128-
bit vector unit. As the vector unit executes instructions in
SIMD fashion, it is necessary to eliminate the branch. Several
intrinsic instructions can be used to get the same effect as
the if-condition: spu cmpeq compares two vectors for equality
and returns a bit-mask which represents true and false results;
spu sel selects one of two values (0 if the vertex IDs are not
equal and 1 if a triangle has been found) based on this bit-
mask; and spu add adds the selected values to a vector that
is used to count the number of triangles.

v e c u i n t 4 c a s e 0 = s p u s p l a t s ( ( u i n t 3 2 ) 0 ) ;
v e c u i n t 4 c a s e 1 = s p u s p l a t s ( ( u i n t 3 2 ) 1 ) ;
f o r ( i n t n b r 3 I d x =0; <l oop c o n d i t i o n >;

n b r 3 I d x +=4) {
buf . n T r i a n g l e s V e c =

s p u a d d ( buf . n T r i a n g l e s V e c ,
s p u s e l ( case0 ,

case1 ,
spu cmpeq (

∗ ( ( v e c i n t 4 ∗)& buf . a r c s B u f 3 [ n b r 3 I d x ] ) ,
buf . v e r t e x I d

)
)

) ;
}

through this overhead pays off when processing scale-free
graphs. Here the scenario is reversed and kernel 2 clearly
outperforms kernel 1 by a considerable margin. This shows
once again [4], [13] that the performance of graph algorithms
running on the GPU in many cases depends on the graph
structure and that there is not one best implementation for all
cases. If the graph structure is not known beforehand, then
it may be worthwhile to attempt to automatically determine
the type of graph in order to be able to choose the optimal
CUDA implementation.

The multi-GPU implementations using both GPUs of the
GeForce GTX295 or up to four GeForce GTX480s perform
best when the graph size is large enough to keep all processing
units of the devices busy. Even the largest measured graph
instances are not large enough to allow the GTX480s to scale
particularly well. The slopes given in the table highlight this
especially for the small-world graphs. The single-GPU imple-
mentation even outperforms the multi-GPU implementation
for the smallest measured graph instances due to the overhead
introduced by using multiple GPUs. The first three data points
were filtered out when the fitted slopes were calculated so that
these small graphs do not distort the scaling of the multi-GPU
measurements.

The Cell implementation positions itself between the single-
and multi-threaded CPU implementations when processing
the scale-free graphs or the smaller instances of the small-
world graphs. The timing results of the small-world graphs
suddenly increase at the V = 400, 000 mark and even more
considerably at the V = 800, 000 mark. This is caused

Fig. 4: The timing results in milliseconds for Watts-Strogatz
small-world graphs with rewiring probability p = 0.1 and
degree k = 50. The number of vertices |V | ranges from
100, 000 − 1, 000, 000. All data points are the mean values
of 20 measurements. Error bars show the standard deviations.

Fig. 5: The timing results in milliseconds for Barabási scale-
free graphs with a degree k ≈ 50. The number of vertices |V |
ranges from 20, 000− 200, 000. All data points are the mean
values of 20 measurements. Error bars show the standard
deviations.
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Table 2: Performance comparison. The speed-up values are
for the largest measured graph instance. An exception are
the small-world network measurements on the Cell processor
as mentioned in the main text. Speed-up S1 is relative to
the single-core CPU implementation, whereas speed-up S2
compares the multi-core/GPU implementations to the respec-
tive single-core/GPU implementations. The slopes of the least
square linear fits show how well the algorithms scale with
increasing graph size. Values are rounded to 3 significant
digits.

Compute Device S1 S2 Slope
Small-world
Core i7 970 (1 core) 1.00 1.00 1.02
Core i7 970: PThreads (6 cores) 7.06 7.06 1.01
Core i7 970: TBB (6 cores) 7.02 7.02 1.00
CellBE (1 PPE & 6 SPEs) 1.31 N/A 1.00
GTX295: kernel 1 (1 GPU) 5.02 1.00 1.02
GTX295: kernel 1 (2 GPUs) 8.24 1.64 0.98
GTX480: kernel 1 (1 GPU) 11.8 1.00 1.07
GTX480: kernel 1 (2 GPUs) 17.6 1.50 0.88
GTX480: kernel 1 (4 GPUs) 25.3 2.15 0.65
Scale-free
Core i7 970 (1 core) 1.00 1.00 1.42
Core i7 970: PThreads (6 cores) 7.14 7.14 1.37
Core i7 970: TBB (6 cores) 7.23 7.23 1.32
CellBE (1 PPE & 6 SPEs) 2.80 N/A 1.21
GTX295: kernel 2 (1 GPU) 5.96 1.00 1.36
GTX295: kernel 2 (2 GPUs) 10.7 1.79 1.33
GTX480: kernel 2 (1 GPU) 12.2 1.00 1.38
GTX480: kernel 2 (2 GPUs) 19.7 1.61 1.30
GTX480: kernel 2 (4 GPUs) 33.1 2.71 1.17

by the minimalistic 256 MB of main memory available in
the PlayStation 3, which forces the system to start paging
memory to the hard drive. We therefore filter the results
above V = 400, 000 out when calculating the slope for these
graphs to report the true scaling of the CellBE and compare
the performance of the CellBE using graph instances of size
V = 400, 000.

4. Discussion & Conclusions
Power consumption and physical size constraints have led

to a “slowing down of Moore’s Law” [14], [15] for processing
devices at least in terms of conventional approaches using
uniform and monolithic core designs. The consequence is that
parallel computing techniques—such as incorporating multi-
ple processing cores and other acceleration technologies—
have become increasingly important [16].

Following Moore’s Law, the number of transistors on a
GPU roughly doubled from the GT200 to the GT400 series
graphics cards, which have become available within just under
2 years from each other. But more importantly, the effective
performance achieved in our experiments has roughly doubled
too. The many-core architecture of today’s GPUs has been
shown [17] to significantly outperform traditional multi-core
CPU architectures for algorithms that can be adapted to the
specific requirements of the CUDA programming model.

Considering its age at the time of writing, the results of
the Cell Broadband Engine are still quite impressive and
show the potential of this hybrid CPU architecture compared
to an architecture with fewer full-fledged cores. However, it
requires considerably more effort to achieve good results when
developing for the Cell than it does for an x86-based multi-
core CPU.

In summary, we have implemented the clustering coefficient
on a number of popular parallel architectures and discussed
the design decisions necessary to achieve good performance
and scaling on these platforms. We have used code fragments

to highlight the differences in the implementations and ex-
plained architecture specific optimisation strategies. We have
compared the runtime performance and scalability using both
small-world and scale-free graphs.

We found that developing for multi-core CPUs using
PThreads or TBB is much easier than developing for GPUs
or the CellBE. This is partly due to the fact that compilers
for x86-based processors have been around for much longer
and are expected to perform most of the necessary low-level
optimisations automatically, and partly due to the processors
themselves having very sophisticated caching, pre-fetching
and branch-prediction logic. The developer has to tackle a
lot of these challenges explicitly when programming for the
GPU or CellBE.

These efforts can yield very worthwhile performance en-
hancements. The GPUs dominated the benchmarks even
though this algorithm is not particularly SIMD friendly, show-
ing that even some graph-based, bandwidth limited algorithms
can be implemented efficiently on their many-core architec-
ture.

Recent GPU developments, like the automatic caching on
NVIDIA’s Fermi devices, have somewhat relaxed the demands
placed on the developer and this trend is likely to continue
with ever improving hardware and software. A feature recently
introduced in CUDA toolkit 3.2 [18] even enables the alloca-
tion of dynamic memory in kernel code, which we intend to
exploit in future work to generate graphs directly in graphics
device memory.
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Abstract - In general, the orientation interpolation of 
industrial robots has been done based on Euler angle system 
which can result in singular point (so-called Gimbal Lock).  
However, quaternion interpolation has the advantage of 
natural (specifically smooth) orientation interpolation without 
Gimbal Lock. This paper presents the application of 
quaternion interpolation, specifically Spherical Linear 
IntERPolation (in short, SLERP), to the orientation control of 
the 6-Axis articulated robot (RS2) using LabVIEW® and 
RecurDyn®.  For the comparison of SLERP with linear Euler 
interpolation in view of smooth movement (profile) of joint 
angles (toqrues), the two methods are dynamically simulated 
on RS2 by using both LabVIEW® and RecurDyn®. Finally our 
original work, specifically the implementation of SLERP and 
linear Euler interpolation on the actual robot, i.e. RS2, is done 
using LabVIEW® motion control tool kit.  The SLERP 
orientation control is shown to be effective in terms of smooth 
joint motion and torque when compared to a conventional 
(linear) Euler interpolation. 

Keywords: Quaternion, Spherical Linear interpolation  
(SLERP), Euler Angle, Linear Euler Interpolation, 6-Axis 
Articulated Robot (RS2), LabVIEW®, RecurDyn®. 

 

1 Introduction 
  Nowadays, the performance of robot has been improved 
according to the development of robot control techniques. In 
some applications of robot, its performance is superior to 
human being’s one.  Even robots can be applied to the fields 
to which workers cannot be committed. For example, some 
welding robots can perform excellent welding better than 
human workers. These robots need accurate orientation 
interpolation with sooth movement.  Besides welding, various 
tasks such as spray painting, sealing and handling require 
smooth orientation control.  

 In general, the orientation interpolation of industrial 
robots has been done based on Euler angle system [1].  
However, the orientation interpolation using Euler angles can 
result in singular point (so-called Gimbal Lock [2]), which 
can cause the malfunction of robots with systematic errors [3]. 
In addition, it can lead to undesirable results because it 
ignores interrelation between joint axes even in simple linear 
interpolation.   

 However, quaternion interpolation has the advantage of 
natural (specifically smooth) orientation interpolation without 
singular point such as Gimbal Lock. Since Quaternion 
interpolation has been mostly used in 3-dimensional computer 
graphics, it has been applied to robot simulation instead of 
real robot control (or implementation) as shown in refs. [4-6]. 

 In this paper, we will investigate on orientation control 
using quaternion interpolation for 6-Axis articulated robot 
(we will call it as RS2 hereinafter) which has been developed 
at our lab for research purpose. The robot control based on 
LabVIEW® is briefly explained for the RS2 model.    In 
addition, we will show our programming methods regarding 
both forward kinematics and inverse kinematics for RS2, 
which are needed for quaternion interpolation.    In Section 3, 
Quaternion interpolation, specifically Spherical Linear 
IntERPolation (in short, SLERP) [7], is explained with linear 
Euler interpolation (which has been widely used for 
orientation control of industrial robots). For the comparison 
of SLERP with linear Euler interpolation in view of smooth 
movement of joint angles, the two methods are dynamically 
simulated on RS2 by using both LabVIEW® and RecurDyn®. 
In Section 4, our original work, specifically the 
implementation of SLERP on the actual robot, i.e. RS2, is 
done using LabVIEW® motion control tool kit.   Especially 
the linear Euler interpolation is also implemented on RS2, 
which is also compared with the SLERP in terms of torque.  
Finally Fig. 5 summarizes shows the structure of this paper. 
Concluding remarks will be made in Section 5. 

 

Fig. 1   Structure of this paper 
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2 Robot System (RS2) based on LabVIEWⓇ 

2.1 Introduction of RS2 
 Usually 6-axes manipulators which are widely used for 
welding, spray painting and so on, have payloads from 10 kg 
to 300kg.  The payload over 500 kg belongs to Heavy Duty 
Handling Articulated Manipulator (abbreviated as HDHAM).  
In order to enhance both the control accuracy and the 
reliability of HDHAM, the synthetic technology including 
design, prototyping and control should be accompanied.   For 
this purpose, in this paper, one fourth (1/4) model of 
HDHAM with 6 DOF (Degrees Of Freedom) (named as RS2) 
has been used as a preliminary step to manufacture the 
original model of HDHAM.  The original HDHAM (2.4 m in 
height and 3.6 m in length) will be destined for handling 
payload of 600 kg.   The RS2 shown in Fig. 2 is used for 
investigating the orientation control technology of original 
HDHAM in a laboratory. [8] 

 For the control of RS2 system, LabVIEW® is adopted as 
a graphical programming language that uses icons instead of 
lines of text to create applications.  LabVIEW® programs are 
called Virtual Instruments (VIs), because their appearance 
and operation imitate physical instruments, such as 
oscilloscopes and multimeters. LabVIEW® contains a 
comprehensive set of tools for acquiring, analyzing, 
displaying, and storing data, as well as tools to help us 
troubleshoot code we write.  Especially the LabVIEW® 
hardware used in this paper is NI PXI-7350 Motion 
Controller, which sends commands to the servo drivers of 
Mitsubishi® J2-Super series [9] for the motion control of RS2. 

 

 
Fig. 2   RS2 System 

 

2.2 Forward and Inverse kinematics of RS2 
based on LabVIEWⓇ 

 In forward kinematics, the length of each link and the 
angle of each joint are given and we have to calculate the 
position of any point in the robot. Specifically, forward 
kinematics is computation of the position(X, Y, Z) and 
orientation(α, β, γ) of robot's end-effector. It is widely used in 
robotics.  The orientation (α, β, γ) of robot means Euler 
angles [10]. In inverse kinematics, the length of each link and 

position of the point are given and we have to calculate the 
angle of each joint. 

 In our previous paper [11], we had solved forward and 
inverse kinematics solution for RS2.  In this paper, we just 
show the LabVIEWⓇ graphical program, which has 
developed in our lab, based on forward and inverse 
kinematics solutions for RS2. Forward kinematics program 
calculates the position and orientation of end-effector 
corresponding to input angle of each joint through the 
homogeneous transformation matrix T60  as shown in Fig 3. 
The advantage of developed program is that the homogeneous 
transformation matrix has been easily calculated only by 
modifying input angles. This forward kinematics routine of 
LabVIEWⓇ is often called in the interpolation programs for 
RS2 which will be explained in the later section. 

 

 
Fig. 3 Forward Kinematics Program 

 
Fig. 4 Inverse Kinematics Program 
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       In the meanwhile, inverse kinematics program 
calculates joint angles corresponding to input values of 6 
DOF(X, Y, Z, α, β, γ). Fig. 4 shows a part of source routine of 
inverse kinematics for RS2, written in LabVIEWⓇ graphical 
program. The inverse kinematics program is linked to 
interpolation programs as Sub VI type (in a format of 
subprogram LabVIEWⓇ) for both dynamic simulation of 
interpolation and real implementation of interpolation on RS2.  
In the interpolation program, the inverse kinematics program 
calculates the angle of each joint every sampling time (a few 
milliseconds). Especially the results of inverse kinematics 
program play an important role in generating command values 
of joint angles for NI PXI motion controller of LabVIEWⓇ. 
 

3 Dynamic Simulation using Linear Euler 
Interpolation and SLERP 

3.1 Linear Euler interpolation 
 The space of orientations can be parameterized by Euler 
angles.  When Euler angles are used, a general orientation is 
written as a series of rotations about three mutually 
orthogonal axes in space. In general, Euler angles are widely 
used for orientation of robot. Using the equivalence between 
Euler angles and rotation composition, it is possible to change 
to and from matrix convention. 

 In this paper, we used Z-Y-X Euler angle [12], where 
the rotation matrix R has been obtained from the 
homogeneous transformation matrix of forward kinematics 
program stated in section 2.2.  In addition, the rotation matrix 
can be equivalently interchanged with Euler angles (α, β, γ) as 
follows: 

 

𝑹 = �
𝑛𝑥 𝑠𝑥 𝑎𝑥
𝑛𝑦 𝑠𝑦 𝑎𝑦
𝑛𝑧 𝑠𝑧 𝑎𝑧

�                          (1)  

 

   
 
where 
                                      𝛼 = arccos(𝑎𝑧), 

 𝛽 = −arctan2�𝑎𝑥 , 𝑎𝑦�                 (3) 
                                     𝛾 = arctan2(𝑛𝑧, 𝑠𝑧) 
 

wherein nx, ny, …. and az are asuumed to be given. 
   
   The simple linear interpolation between two Euler angles 
is most obvious method.   To develop interpolation program 
using Euler angles, linear Euler interpolation has been used in 
the LabVIEWⓇ graphical program of Fig. 5 as follows [7] :   
 

𝒓0 = (𝛼0,𝛽0, 𝛾0), 𝒓1 = (𝛼1,𝛽1, 𝛾1) 
𝐿𝑖𝑛𝐸𝑢𝑙𝑒𝑟(𝒓0, 𝒓1, 𝑡) = 𝒓0(1 − 𝑡 ) +  𝒓1𝑡              (4) 

(0 < 𝑡 < 1) 

 
Fig. 5   LabVIEWⓇ source program of linear Euler 

Interpolation 

 
   Equation 4 shows that linear Euler interpolation program 

performs interpolation based on Euler angles of both start 
point  𝒓0 and end point 𝒓1.This program calculates the angle of 
each joint every sampling time by using the inverse 
kinematics program developed in section 2.2. 

 

3.2 SLERP 
 A quaternion has been introduced for the notation of 
orientation since it has simple notation of rotation as well as 
being convenient for the interpolation for orientation [7].  The 
quaternion can express itself into a rotational axis and 
rotational angle about the axis. The quaternion can be defined 
by Eq. (5) : 

 

𝒒 = 𝑤 + (𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌)          (5) 
 

Here 𝑥,𝑦, 𝑧,𝑤 are real numbers while 𝑥𝒊,𝑦𝒋, 𝑧𝒌 denote 
complex numbers. Due to the characteristics of complex 
numbers, it follows that  
 

𝒊2 = 𝒋2 = 𝒌2 = −1 
𝒊𝒋 = 𝒌, 𝒋𝒌 = 𝒊,𝒌𝒊 = 𝒋, 𝒊𝒋𝒌 = −1 

 

Here it can be said that 𝑥,𝑦 and 𝑧  denote the axis of 
rotation while w indicates the angle of rotation.  Besides, any 
rotation matrix can be converted into a quaternion as follows 
[13] : 
 

�
𝑛𝑥 𝑠𝑥 𝑎𝑥
𝑛𝑦 𝑠𝑦 𝑎𝑦
𝑛𝑧 𝑠𝑧 𝑎𝑧

� = �
1− 2𝑦2 − 2𝑧2 2𝑥𝑦 − 2𝑤𝑧 2𝑥𝑧 + 2𝑤𝑦

2𝑥𝑦 + 2𝑤𝑧 1 − 2𝑥2 − 2𝑧2 2𝑦𝑧 − 2𝑤𝑥
2𝑥𝑧 − 2𝑤𝑦 2𝑦𝑧 + 2𝑤𝑥 1 − 2𝑥2 − 2𝑦2

� 

 
= 𝒒(𝑤, (𝑥, 𝑦, 𝑧))            (6) 

 
Here 

𝑤 =
�𝑛𝑥 + 𝑠𝑦 + 𝑎𝑧 + 1

2
                         (7) 
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x =
sz − ay

4w
, y =

ax − nz
4w

, z =
ny − sx

4w
             (8) 

 

In this paper, to develop orientation interpolation 
program, we have used Spherical Linear intERPtion, i.e.,  
SLERP proposed by Shoemaker [14], one of quaternion-based 
interpolation methods. SLERP has a geometric formula 
independent of quaternions, and independent of the dimension 
of the space in which the arc is embedded. 
 

Let 𝒒𝟏  and 𝒒𝟐  be the first and last points (specifically 
quternions) of the arc, and let t be the parameter, 0 ≤ t ≤ 1. 
Compute 𝜃 as the angle subtended by the arc, so that cos 𝜃 = 
𝒒𝟏 · 𝒒𝟐, the 4-dimensional dot product of the unit quaternions 
from the start point to the end point.   Then SLERP can be 
expressed by equations (9) and (10): 
 

𝒒𝟏 = 𝑤 + (𝑥1𝒊 + 𝑦1𝒋 +  𝑧1𝒌) 
𝒒𝟐 = 𝑤 + (𝑥2𝒊 + 𝑦2𝒋 +  𝑧2𝒌) 

 

𝑠𝑙𝑒𝑟𝑝(𝑡;𝒒𝟏,𝒒𝟐) =  
𝒒𝟏 𝑠𝑖𝑛((1 − 𝑡)𝜃) + 𝒒𝟐 𝑠𝑖𝑛(𝑡𝜃)

𝑠𝑖𝑛 𝜃
    (9) 

 
𝜃 = 𝑐𝑜𝑠−1(𝒒𝟏 ∙ 𝒒𝟐)                          (10)  

 

Figure 6 shows the LabVIEWⓇ graphical source 
program of SLERP, which is more complicated than that of 
linear Euler interpolation program. The inputs of linear Euler 
interpolation program are Euler angles, while the input to 
SLERP are quaternions. For the comparative analysis of linear 
Euler interpolation with SLERP, the SLERP program needs 
the same conditions as linear Euler interpolation as follows.  
First, the SLERP program converts input quaternions into their 
corresponding input Euler angles by using equations (2), (3) 
and (6).  Then this program performs SLERP interpolation 
based on equation (10) which results in quaternion outputs.  
Then the quaternion outputs are converted into Euler angles in 
the similar manner to the input Euler angles.  Finally the 
SLERP program shown in Fig. 6 calls the inverse kinematics 
routine (shown in Fig. 4) to obtain joint angles from the Euler 
angles, under the assumption that the positions of end-effector 
trajectory are given between start and end points.  

 

 
Fig. 6 Spherical Linear Interpolation Program Source 

3.3 Dynamic simulation of linear Euler 
interpolation and SLERP for RS2 

In order to compare linear Euler interpolation with 
SLERP for RS2 by using RecurDyn® (multi-body dynamic 
simulation software), first of all, the two interpolation 
LabVIEWⓇ programs developed in subsections 3.1 and 3.2 
calculate joint angles according to every sampling time under 
the same conditions of start and end points.   The simulation 
results are shown in Fig. 7 where the blue and red colors 
denote linear Euler interpolation and SLERP, respectively. 
 

 
Fig. 7  Simulated angle of each Joint based on linear Euler 

interpolation and SLERP 
 

      Then the joint angles are applied to the RS2 model of 
RecurDyn® so that linear Euler interpolation can be compared 
with SLERP from the viewpoint of smoothness of both joint 
torques and end-effector velocity.   The dynamic simulation of 
RecurDyn® aims at testing the virtual performance of the two 
interpolation methods before their real implementation on 
RS2. The 3-dimenional (3-D) model of RS2 has been 
constructed in RecurDyn® by importing the 3-D RS2 model of 
Solid Works, as shown in the upper right of Fig. 8. Table 1 
shows the maximum torque of each joint for linear Euler 
interpolation and SLERP. It can be noticed that the 
magnitudes of the maximum torques for joint 1, 5 and 6 of 
SLERP are much smaller than those of linear Euler 
interpolation. Moreover SLERP can result in smooth joint 
torque profiles in comparison with linear Euler interpolation, 
as shown in Fig. 9. In addition, Fig. 10 shows that the end-
effector velocity profile of SLERP is more smooth than that of 
linear Euler interpolation.  Consequently it can be stated that 
SLERP has the advantage of natural (specifically smooth joint 
profile with less torque) orientation interpolation without 
singular point, compared with linear Euler interpolation. 
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Fig. 8   Dynamic  Simulation using RecurDyn 

 
 

Table 1   Maximum Torque of  Each Joint 
(Unit: N·mm) 

Joint Euler SLERP 
1 2,209 520 

2 147,578 146,293 

3 -42,895 -50,393 

4 -4,723 -4,577 

5 2,025 871 

6 -4,591 -978 
 
 

 

    
Fig. 9 Calculated torque profiles of each joint using RecurDyn 

 
Fig. 10 The velocity of RS2 end effector 

 

4 Implementation of SLERP on RS2 using 
LabVIEWⓇ Motion Control 

       In order to implement the orientation control of both 
linear Euler interpolation and SLERP on RS2, we have 
developed their orientation interpolation programs based on 
LabVIEWⓇ graphical program as shown in Fig. 11.  This 
figure shows that the implementation of two orientation 
control flows on RS2 is organized in three parts.  The first part 
is the orientation interpolation routines of both linear Euler 
interpolation and SLERP based on LabVIEWⓇ graphical 
programs developed in previous section. 
 

 
Fig. 11   Flow chart of implementation of two orientation controls on RS2 
 

In the meanwhile, the second part is the position control 
routine through NI PXI-7350 Motion Controller with 
Mitsubishi J2 series servo drives and HC-MFC servo motors.   
Specifically RS2 can be controlled according to pulses sent by 
NI PXI-7350 Motion Controller.  Finally, the third part is for 
collecting torque voltage of each servo motor (specifically 
servo drive) using  NI PXI-6133 DAQ equipment.   As shown 
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in Table 2, the maximum joint torques of SLERP are smaller 
than those of linear Euler interpolation, as expected. 
 

Table 2   Maximum Joint Torque Voltage  
(Unit: mV) 

Joint Euler SLERP 
1 170 150 
2 590 500 
3 640 630 
4 800 750 
5 160 150 
6 350 340 

 

5 Conclusion 
In general, the orientation interpolation of industrial 

robots has been done based on Euler angle system which can 
result in singular point (so-called Gimbal Lock).  However, it 
is well known that quaternion interpolation has the advantage 
of smooth orientation interpolation without Gimbal Lock.  
This paper presented the real application of quaternion 
interpolation, specifically Spherical Linear IntERPolation (in 
short, SLERP), to the orientation control of the 6-Axis 
articulated robot (RS2) using LabVIEW® and RecurDyn®.  
For the comparison of SLERP with linear Euler interpolation 
in view of smooth profiles of joint angles and torques, the two 
methods have been dynamically simulated on RS2 by using 
both LabVIEW® and RecurDyn®. Finally our original work, 
specifically the implementation of SLERP and linear Euler 
interpolation on the actual robot, i.e. RS2, has been  done 
using LabVIEW® motion control tool kit. The SLERP 
orientation control was shown to be effective in terms of 
smooth joint motion and torque when compared to a 
conventional (linear) Euler interpolation. 
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Abstract— The various RDM learning algorithms are devel-
oped by choosing different Λ(θ) for LIP models, including
Projection, Recursive Dual Minimum, Recursive Dual Mean
Minimum, λ-weighted Dual M<inimum, Instantaneous RDM
and Batch RDM algorithms. An exmaple is shown the
applications in adaptive identification and control fields.

Keywords: Dual Minimum, High-order, Parameter Estimation,
System Identification

1. Introduction

Least square algorithms are widely used in finding or
estimating the numerical values of the parameters to fit
a function to a set of data optimally and to characterize
the statistical properties of estimates [2]. Traditionally least
square algorithms are used to establish the mathematical
framework of digital signal processing applications, such
as communications, control, radar, and seismology [4], [9].
Recursive least squares or online procedures are more useful
when parameters are identified from recurring in time, which
can be used in a wide variety of real world problems
when the model structure is well understood and input
data becomes available at regular intervals of time, such as
speech [7], vehicle mass estimation [5], structural damage
assessment [3], etc.

In [11], we have developed a High-order Mixed L2-Linfty
Estimation for LIP models under noiseless and noisy data.
In this paper, we propose various RDM (Recursive Dual
Minimum) learning algorithms by choosing different kinds
of time-variant symmetric positive semi-definite forgetting
factor matrix function Λ(θ). This paper is organized as
follows. In Section 2, we first provide the general form of
recursive DM (RDM) learning algorithm. Then, in Section
3, we further derive the various specialised RDM learning
algorithms that include several very useful and interesting
results, such as the projection learning algorithm, the recur-
sive dual minimum learning algorithm, the recursive dual
mean minimum learning algorithm, the λ-weighted recursive
dual minimum learning algorithm, the instantaneous k-order
RDM learning algorithm and the batch k-order RDM learn-
ing algorithm. In Section 4, we supply simulations of RDM
learning algorithm in realistic industry applications. Finally,
in Section 5, we conclude this paper and point out the future
research directions.

2. General Form of RDM Learning Al-
gorithm

2.1 Preliminaries

First we define an important integral function ρ(t) as
follows.

Definition ρ(t) is defined to be a function from the
set of non-negative integers, it satisfies the following two
conditions:

(i)

0 = ρ(0) ≤ ρ(1) ≤ ρ(2) ≤ · · · ≤ ρ(t) ≤ · · · (1)

(ii) The number of elements of the set t
�
= ρ−1(ρ(t)) is

uniformly bounded for all t. That is, there exists a
positive integer Nρ which

card(ρ−1(ρ(t))) ≤ Nρ for all t (2)

where the function card() represents the cardinality
of the set.

(iii) The pseudometric ρ(t1, t2) is defined as

ρ(t1, t2)
�
= |ρ(t1)− ρ(t2)| (3)

When ρ(t) as defined in the above definition, then when
t → ∞, ρ(t) → ∞. This can be very easily proved.

2.2 RDM Learning Algorithm

Using the function ρ(t) defined in section 2.1, and the
assumption that the number of data samples up to time t is
ρ(t). we have

Λt = Λρ(t) =

⎡
⎢⎢⎢⎣

λt1

λt2

. . .
λtρ(t)

⎤
⎥⎥⎥⎦ (4)
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where λti ≥ 0 for i = 1, 2, · · · , ρ(t).
Yρ(t) = [y1, y2, · · · , yρ(t)]T (5)

Φρ(t) = [ϕ1, ϕ2, · · · , ϕρ(t)]
T (6)

Eρ(t) = [e1, e2, · · · , eρ(t)]T (7)

Pt = ΦT
ρ(t)ΛtΦρ(t) =

ρ(t)∑
i=1

λtiϕiϕ
T
i (8)

Qt = ΦT
ρ(t)ΛtYρ(t) =

ρ(t)∑
i=1

λtiyiϕi (9)

Rt = Y T
ρ(t)ΛtYρ(t) =

ρ(t)∑
i=1

λtiy
2
i (10)

Jt =
1

2
θTt−1Ptθt−1 − θTt−1Qt +

1

2
Rt (11)

Furthermore, we have the General Form of RDM learning
algorithm as follow.

θt = θt−1 +
αJt(Qt − Ptθt−1)

β + (Qt − Ptθt−1)T (Qt − Ptθt−1)
(12)

where β > 0, 0 < α < 4, t = 1, 2, ..., ρ(t).

2.3 Properties
For RDM learning algorithm, Λt in (4) satisfies the

condition that
ρ(t)∑
i=1

λti ≤ Mλ (13)

holds for all t where Mλ is a positive constant number.
Theorem 1 For any given initial value θ0, the vector

sequence θt generated in (12) has the following properties:
(i)

‖θt − θ�‖ ≤ ‖θ0 − θ�‖ (14)

(ii)

lim
t→∞

αJt√
β + (Qt − Ptθt−1)T (Qt − Ptθt−1)

= 0

(15)
(iii)

limt→∞ ‖θt − θt−s‖ = 0 for any finite s. (16)

Proof. If we introduce a Lyapunov function V t as

Vt = θ̃Tt θ̃t = (θt − θ�)T (θt − θ�)

Then Theorem 1 can be carried out with the similar way in
[10]. �

Theorem 2 For any set of noiseless data samples, RDM
learning algorithm (12) globally converges decreasingly in
the sense that

lim
t→∞ Jt = 0 (17)

Proof. A similar proof in [10] can carry out this theorem.
�

From (4) - (12), we can see that when Λt is computed
recursively. We can also obtain some specialised RDM
learning algorithms by various choices of λ t.

3. Various Specialized RDM Learning
Algorithms

In this section we will give several important RDM
learning algorithms by choosing different kinds of time-
variant symmetric non-negative definite matrix function Λ t.

3.1 Projection Learning Algorithm
If we choose ρ(t) = t and

Λt =

[
0t−1 0
0 1

]
(18)

where 0t−1 is the (t− 1)th-order square zero matrix. In this
case, RDM learning algorithm in (12) can reduce to the 1st-
order learning algorithm as.

θt = θt−1 +
α′etϕt

β + e2tϕ
T
t ϕt

(yt − ϕT
t θt−1) (19)

where t = 1, 2, · · · , β > 0, 0 < α′ = 1
2 < 2, and et =

yt − ϕT
t θt−1.

Delete e2t from both numerator and denominator from
(19) and β is a any positive number, so we can obtain the
Projection Learning Algorithm [1], [6] in adaptive control.

θt = θt−1 +
α′ϕt

β + ϕT
t ϕt

(yt − ϕT
t θt−1) (20)

where t = 1, 2, · · · , β > 0, 0 < α′ = 1
2 < 2.

Thus Projection learning algorithm is a special case of
RDM algorithm when we choose a set of specific parame-
ters. This Projection learning algorithm minimizes the cost
function Jt =

1
2e

2
t .

3.2 Recursive Dual Minimum Learning Algo-
rithm

The conventional recursive least squares (RLS) algorithm
is a powerful learning algorithm in adaptive control. But the
algorithm is applied with the condition that Φ is of full rank,
the convergence is very slow, and the computation is quite
intensive. In this subsection, we propose the recursive Dual
Minimum learning algorithm, which is free of full rank and
has much less computation.

Choose ρ(t) = t and Λt = It where It is the tth-order
identity matrix, then the Eqs. of θt and Jt as.

θt = θt−1 +
αJtT (Qt − Ptθt−1)

β + (Qt − Ptθt−1)TT (Qt − Ptθt−1)
(21)

Jt =
1

2
θTt−1Ptθt−1 − θTt−1Qt +

1

2
Rt (22)

where β > 0, 0 < α < 4, t = 1, 2, ...,, and T is chosen to
be a symmetric positive definite matrix.
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Pt, Qt and Rt defined in (8) - (10) have the recursive
computation formulas as

Pt = Pt−1 + ϕtϕ
T
t with P0 = 0

Qt = Qt−1 + ytϕt with Q0 = 0
Rt = Rt−1 + y2t with R0 = 0

(23)

This new Recursive Dual Minimum learning algorithm
does not need to assume that Φ is of full rank and minimizes
the cost function Jt =

1
2

∑t
i=1 e

2
i , which is the same as the

cost function of the conventional recursive least squares [11].
Note that the matrix Λt = It does not satisfy the condition in
(13), so we must choose a small symmetric positive definite
matrix T to avoid the burst phenomenon. This technique
for the Recursive Dual Minimum is effective in practice of
identification and control.

3.3 Recursive Dual Mean Minimum Learning
Algorithm

In the preceding subsection, we have discussed the Recur-
sive Dual Minimum learning algorithm, which is a powerful
learning algorithm in identification. However, since the trace
of Λt = It is not uniformly bounded, Pt, Qt and Rt may
become very large when t increases. In this subsection, we
will propose a Recursive Minimum Mean Squares learning
algorithm.

Choosing ρ(t) = t and Λt =
1
t It, the Recursive Minimum

Mean Squares learning algorithm is:

θt = θt−1 +
αJt(Qt − Ptθt−1)

β + (Qt − Ptθt−1)T (Qt − Ptθt−1)
(24)

Jt =
1

2
θTt−1Ptθt−1 − θTt−1Qt +

1

2
Rt (25)

where β > 0, 0 < α < 4, t = 1, 2, ....
Pt, Qt and Rt defined in (8) - (10) have the recursive

computation formulas as

Pt =
t−1
t Pt−1 +

1
tϕtϕ

T
t with P0 = 0

Qt =
t−1
t Qt−1 +

1
t ytϕt with Q0 = 0

Rt =
t−1
t Rt−1 +

1
t y

2
t with R0 = 0

(26)

The Recursive Dual Mean Minimum learning algorithm
in (25, 26) minimizes the cost function of mean of squares
of errors Jt =

1
2t

∑t
i=1 e

2
i → 0.

3.4 Recursive λ-weighted Dual Minimum
Learning Algorithm

In adaptive control [1], [8], the conventional recursive
least squares algorithm with forgetting index λ (named as
λ-RLS algorithm) is another powerful learning algorithm.
However, the algorithm is applied with the condition that Φ
is of full rank and the computation is quite intensive. In this
subsection, we propose a new Recursive λ-weighted Dual
Minimum learning algorithm which is free of the full rank
of Φ and has less computation.

Choose ρ(t) = t and Λt to be

Λt =

⎡
⎢⎢⎢⎣

λt−1

λt−2

. . .
1

⎤
⎥⎥⎥⎦ (27)

where 0 < λ < 1. Then the Recursive λ-weighted Minimum
Squares learning algorithm includes (11, 12) and Pt, Qt

and Rt defined in (8) - (10) have the recursive computation
formulas as

Pt = λPt−1 + ϕtϕ
T
t with P0 = 0

Qt = λQt−1 + ytϕt with Q0 = 0
Rt = λRt−1 + y2t with R0 = 0

(28)

It is easy to prove that the matrix Λt defined in Eq. (27)
satisfies the condition in (13) because

tr(Λt) =
t∑

i=1

λt−i =
1− λt

1− λ
≤ 1

1− λ
(29)

is uniformly bounded for all t. Thus, the Recursive λ-
weighted Dual Minimum learning algorithm globally mini-
mizes the cost function Jt =

1
2

∑t
i=1 λ

t−ie2i .

3.5 Instantaneous k-order RDM Learning Al-
gorithm

In this subsection, we derive a power instantaneous k-
order dynamic RDM learning algorithm from Eq. (12)
for LIP models when choosing specific Λt. This learning
algorithm updates at every step when the system has one
more new data sample.

Choosing ρ(t) = t and

Λt =

[
0t−k 0
0 Λ(t, k)

]
(30)

where 0t−k is the (t-k)th-order zero matrix. And Λ(t, k) is
an k-order symmetric non-negative matrix satisfying

tr(Λ(t, k)) ≤ Mλ (31)

for all t for a positive constant number Mλ.
One important matrix for Λt is when Λ(t, k) =
diag{λt−k+1, λt−k+2, · · · , λt}, then the Λt is

Λt =

⎡
⎢⎢⎢⎣

0t−k 0 · · · 0
0 λt−k+1 · · · 0
...

...
. . .

...
0 0 · · · λt

⎤
⎥⎥⎥⎦ (32)

Our input and output matrices are with k rows from time
t− k + 1 to t.

Φt = Φ(t, k) = [ϕt−k+1, ϕt−k+2, · · · , ϕt]
T (33)

Yt = Y (t, k) = [yt−k+1, yt−k+2, · · · , yt]T (34)

When t < k, λt−k+1 to λ0, ϕt−k+1 to ϕ0, and yt−k+1 to
y0 are arbitrarily set as the initial values.
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Pt, Qt and Rt defined in (8) - (10) have the recursive
computation formulas as

Pt = P (t, k) = ΦT
t Λ(t, k)Φt = ΦT (t, k)Λ(t, k)Φ(t, k)(35)

Qt = Q(t, k) = ΦT
t Λ(t, k)Yt = ΦT (t, k)Λ(t, k)Y (t, k)(36)

Rt = R(t, k) = Y T
t Λ(t, k)Yt = Y T (t, k)Λ(t, k)Y (t, k)(37)

Jt = J(t, k) =
1

2
Rt − θTt−1Qt +

1

2
θTt−1Ptθt−1

=
1

2
R(t, k)− θTt−1Q(t, k) +

1

2
θTt−1P (t, k)θt−1 (38)

Then, the instantaneous k-order Recursive Dual Mini-
mum learning algorithm

θt = θt−1 +
αJt(Qt − Ptθt−1)

β + (Qt − Ptθt−1)T (Qt − Ptθt−1)
(39)

where β > 0, 0 < α < 4, t = 1, 2, ..., and it minimizes the
cost function Jt = J(t, k) = 1

2

∑t
i=t−k+1 λie

2
i to its global

minimum.

3.6 Batch k-order RDM Learning Algorithm

The instantaneous k-order RDM learning algorithm in-
troduced in the preceding subsection updates the parameter
vector at every step based on the current input and output
data and the last k−1 data. However, the batch k-order RDM
learning algorithm developed in this subsection updates
parameters at every k-step based on the last k data samples.

Choose ρ(t) = kt and

Λt =

[
0kt−k 0
0 Λ(kt, k)

]
(40)

where 0kt−k is the (kt-k)th-order zero matrix. And Λ(kt, k)
is an k-order symmetric non-negative matrix satisfying

tr(Λ(kt, k)) ≤ Mλ (41)

Mλ is a positive constant and Λt =
diag{λkt−k+1λkt−k+2, · · · , λkt}, then the Λt is

Λt =

⎡
⎢⎢⎢⎣

0kt−k 0 · · · 0
0 λkt−k+1 · · · 0
...

...
. . .

...
0 0 · · · λkt

⎤
⎥⎥⎥⎦ (42)

We further introduce the following notations:

Φt = Φ(kt, k) = [ϕkt−k+1, ϕkt−k+2, · · · , ϕkt]
T (43)

Yt = Y (kt, k) = [ykt−k+1, ykt−k+2, · · · , ykt]T (44)

Pt = P (kt, k) = ΦT
t Λ(kt, k)Φt

= ΦT (kt, k)Λ(kt, k)Φ(kt, k) (45)

Qt = Q(kt, k) = ΦT
t Λ(kt, k)Yt

= ΦT (kt, k)Λ(kt, k)Y (kt, k) (46)

Rt = R(kt, k) = Y T
t Λ(kt, k)Yt

= Y T (kt, k)Λ(kt, k)Y (kt, k) (47)

Jt = J(kt, k) =
1

2
Rt − θTt−1Qt +

1

2
θTt−1Ptθt−1

=
1

2
R(kt, k)− θTt−1Q(kt, k) +

1

2
θTt−1P (kt, k)θt−1(48)

Then, Batch k-order Recursive Dual Minimum learning
algorithm

θt = θt−1 +
αJt(Qt − Ptθt−1)

β + (Qt − Ptθt−1)T (Qt − Ptθt−1)
(49)

where β > 0, 0 < α < 4, t = 1, 2, ..., and it minimizes
the cost function Jt = J(kt, k) = 1

2

∑kt
i=kt−k+1 λie

2
i to its

global minimum.

4. Case Study
In this section, we will present an example of industrial

applications of various specialized RDM learning algorithms
to show that the various RDM learning algorithms deduced
are effective.

Example Suppose that we are analysts in the man-
agement services division of an accounting firm. One of
the firm’s clients is American Manufacturing Company,
a major manufacturer of a wide variety of commercial
and industrial products. American Manufacturing owns a
large nine-building complex in Central City and heats this
complex by using a modern coal-fueled heating system. In
the past, American Manufacturing has encountered problems
in determining the proper amount of coal to order each
week to heat the complex adequately. Because of this, the
firm has requested that the firm develop an accurate way
to predict the amount of fuel (in tons of coal) that will
be used to heat the nine-building complex in future weeks.
The experience indicates that (1) weekly fuel consumption
substantially depends on the average hourly temperature (in
degrees Fahrenheit) during the week and (2) weekly fuel
consumption also depends on factors other than average
hourly temperature that contribute to an overall “chill fac-
tor”. Some of these factors are:

1) Wind velocity (in miles per hour) during the week
2) “Cloud cover” during the week
3) Variations in temperature, wind velocity, and cloud

cover during the week (perhaps caused by the move-
ment of weather fronts).
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In this example we use regression analysis to predict the
dependent variable weekly fuel consumption y, on the basis
of the independent variable average hourly temperature x.
Then we will use additional independent variables, which
measure the effects of factors such as wind velocity and
cloud cover, to help us predict weekly fuel consumption.
Suppose that we have gathered data concerning y and x for
the n = 8 weeks prior to the current week. This data is
given in Table 1. Here the letter i denotes the time order of
a previously observed week, where xi denotes the average
hourly temperature and yi denotes the fuel consumption that
has been observed in week i. It should be noted that it
would, of course, be better to have more than eight weeks
of data. However, sometimes data availability is initially
limited. Furthermore, we have purposely limited the amount
of data to simplify subsequent discussions in this example.

Week, i hourly temperature, xi fuel consumption, yi
1 x1 = 28.0 y1 = 12.4
2 x2 = 28.0 y2 = 11.7
3 x3 = 32.5 y3 = 12.4
4 x4 = 39.0 y4 = 10.8
5 x5 = 45.9 y5 = 9.4
6 x6 = 57.8 y6 = 9.5
7 x7 = 58.1 y7 = 8.0
8 x8 = 62.5 y8 = 7.5

Table 1

FUEL CONSUMPTION DATA OF EXAMPLE 1

.

To develop a regression model describing the fuel con-
sumption data, we first consider the fifth week in Table
1 (for the purposes of our discussion we could consider
any particular week). In the fifth week the average hourly
temperature was x5 = 45.9, and the fuel consumption was
y5 = 9.4. If we were to observe another week having the
same average hourly temperature of 45.9, we might well
observe a fuel consumption that is different from 9.4. This
is because factors other than average hourly temperature -
factors such as average hourly wind velocity and average
hourly thermostat setting - affect weekly fuel consumption.
Therefore although two weeks might have the same av-
erage hourly temperature of x5 = 45.9, there could be
a lower average hourly wind velocity and thus a smaller
fuel consumption in one such week than in the other week.
It follows that there is an infinite population of potential
weekly fuel consumptions that could be observed when the
average hourly temperature is x5 = 45.9.

To generalize the proceeding discussion, consider all eight
fuel consumptions in Table 1. For i = 1, 2, ..., 8 we may
express yi in the form

yi = θ0 + θ1xi + ei (50)

Here, ei is the error term describes the effect on yi of all
factors that have occurred in the ith week other than the
average hourly temperatures xi.

When we plot the eight fuel consumptions against the
eight average hourly temperatures. Note that the fuel con-
sumptions tend to decrease in a straight-line fashion as
the temperatures increase. The θ0 is the y-intercept of the
straight line, and θ1 is the slope of the straight line. To
interpret the meaning of the y-intercept, θ0, assume that
xi = 0. Then

θ0 + θ1xi = θ0 + θ1 × 0 = θ0

So the θ0 is the mean weekly fuel consumption for all
potential weeks having an average hourly temperature of
0oF . To interpret the meaning of the slope, θ1, consider
two different weeks. Suppose that for the first week average
hourly temperature is c. The mean weekly fuel consumption
for all such potential weeks is

θ0 + θ1 × c

For the second week, suppose that the average hourly
temperature is c + 1. The mean weekly fuel consumption
for all such potential weeks is

θ0 + θ1 × (c+ 1)

The difference between these mean weekly fuel consump-
tions is

[θ0 + θ1 × (c+ 1)]− [θ0 + θ1 × c] = θ1

Thus the slope θ1 is the change in the mean weekly fuel
consumption that is associated with a 1-degree increase in
average hourly temperature.

Then we refer to the equation (50) as the simple linear
(or straight-line) regression model relating yi to xi in this
example, and θ0, θ1 is the parameters of the model. Note
that yi is assumed to be randomly selected from the infinite
population of potential values of the dependent variable
that could be observed when the value of the independent
variable x is xi.

Let’s use RDM learning algorithm, due to the finite data,
we use them repeatedly in our recursive algorithm. When
we choose k = 4 and set the initial parameter values
[θ0 θ1] = [1 1] and the error bound 0.3, then we can get
that θ0 = 15.6631 and θ1 = −0.1243. Fig. 1 - Fig. 3 show
the results of the simulations using RDM learning algorithm.
Then using the values of θ0 and θ1, we can predict the
amount of fuel for the nine-building complex of American
Manufacturing Company in future weeks.

5. Conclusion
In this paper, we have developed the various RDM learn-

ing algorithms by choosing different Λ(θ), and obtained
several useful recursive learning algorithms for LIP models,
such as Projection, Recursive Dual Minimum, Recursive
Dual Mean Minimum, λ-weighted Dual Minimum, Instan-
taneous RDM and Batch RDM, etc. We have shown the
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PARAMETERS CONVERGENCE OF EXAMPLE 1 USING RECURSIVE DUAL

MINIMUM LEARNING ALGORITHM WHEN k = 4.
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ERROR CONVERGENCE OF EXAMPLE 1 USING RECURSIVE DUAL

MINIMUM LEARNING ALGORITHM. ERROR WILL DROP BELOW 0.3

AFTER 101 STEPS.

effectiveness of them by a simulation example in adaptive
identification and control fields.

Compared with other training methods, RDM learning
method has several distinct features. It can avoid the windup
and burst phenomena which are the crucial drawbacks for the
correspondent conventional learning algorithms. And the k-
order RDM has a faster training speed than the conventional
ones when the k is chosen appropriately, the various new
RDM algorithms can be successfully applied in adaptive
controller design.
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1. Introduction
We consider the second-order linear hyperbolic equation:

utt(x, t) + 2αut(x, t) + β2u(x, t) =
uxx(x, t) + f(x, t), x ∈ (a, b), t > 0

(1)

with initial conditionsu(x, 0) = Φ(x), ut(x, 0) = Ψ(x)
and boundary conditionsu(a, t) = g1(t), u(b, 0) = g2(t),
whereα andβ are constants.

The equation above represents a damped wave equation
and a telegraph equation, the existence and approximations
of the solutions investigated in literature. In recent years,
many research has been done in developing and imple-
menting modern high resolutions methods for the numerical
solution of the second-order linear hyperbolic equation(1).In
recent years, many research has been done in developing
and implementing modern high resolutions methods for the
numerical solution of the second-order linear hyperbolic
equation(1), see[8−15]. Recently, Gao and Chi[8] proposed
two semi-discretion methods to solve the one-space dimen-
sional linear hyperbolic equation(1). Also, Huan-Wen Liu
and Li-Bin Liu solved[8] linear hyperbolic equation. In this
paper, we propose a B-spline difference scheme to solve the
linear hyperbolic equation(1).

The present paper will focus on a new method of solution
of the linear hyperbolic equation by using third degree B-
spline functions. The theory of spline functions is a very
active field of approximation theory and boundary value
problems (BVPs), when numerical aspects are considered.
In a series of paper by Caglar et al. [2-7] BVPs of order
two, third, fourth and fifth were solved using third, fourth
and sixth-degree splines.

We propose B- spline difference scheme to solve
the linear hyperbolic equation(1). The numerical results
obtained by using the method described in this study give
acceptable results. We have concluded that numerical results
converge to the exact solution when k goes to zero and for

smaller h the maximum absolute error decreased. In this
paper , we have derived a new method based on B- splines
for solution (1). In Section 2 , we give a brief derivation
of B-spline function. In Section 3, the method are used
to analysis to solution of problem (1). In Section 4, some
numerical result, that are illustrated using MATLAB 6.5,
are given to clarify the method. Finally, in Section 5 ends
this paper with a brief conclusion.

2. The third-degree B-splines
In this section, third-degree B-splines are used to

construct numerical solutions to the hyperbolic equations
discussed in sections 3 and 4. A detailed description
of B-spline functions generated by subdivision can be
found in [1]. Consider equally-spaced knots of a partition
π : a = x0 < x1 < ... < xn = b on [a,b]. Let S3[π] be the
space of continuously-differentiable, piecewise, third-degree
polynomials onπ. That is, S3[π] is the space of third-degree
splines onπ. Consider the B-splines basis in S3[π]. The
third-degree B-splines are defined as

B0(x) = 1

6h3















x3 0 ≤ x < h
−3x3 + 12hx2 − 12h2x+ 4h3 h ≤ x < 2h
3x3 − 24hx2 + 60h2x− 44h3 2h ≤ x < 3h
−x3 + 12hx2 − 48h2x+ 64h3 3h ≤ x < 4h

Bi−1(x) = B0(x− (i− 1)h), i = 2, 3, ...,

To solve hyperbolic equation,Bi , B
′

i and B
′′

i evaluated at
the nodal points are needed. Their coefficients are summa-
rized in Table 1.

Table 1

VALUES OFBi , B′

i
and B′′

i

xi xi+1 xi+2 xi+3 xi+4

Bi 0 1/6 4/6 1/6 0
B′

i
0 3/6h 0/6h −3/6h 0

B′′

i
0 6/6h2

−12/6h2 6/6h2 0

3. B-spline solutions for hyperbolic
equation
In this section the B-spline method for solving hyperbolic
equation is outlined, which is based on the collocation
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approach[8]. We seek a functionS(x) that approximates
the solution of hyperbolic equation(1), may be represented as

S(x) =
n−1
∑

j=−3

CjBj(x),

(3)

where Ci are unknown real coefficients andBj(x) are
third-degree B-spline functions. Letx0, x1, ..., xn be n + 1
grid points in the interval[a, b], so that

xi = a+ ih, i = 0, 1, ..., n;x0=a, xn = b, h = (b − a)/n.

We consider the equation (1),

difference schemes for this problem considered as following:

ui+1−2ui+ui−1

∆t2
+ 2αui−ui−1

∆t
+ β2u = ∂2u

∂x2 + f(x, t), (4)

where∆t = k

−u
′′

i+1 + ( 1

k2 + β2)ui+1 =
( 2

k2 − 2α
k

)ui + (2α
k

− 1

k2 )ui−1 + f(x, t), (5)

and the initial conditions are given in (8)-(9)

u(x, 0) = φ(x) = u0, u(k, x) = u1,
(6)

ut(x, 0) = ψ(x) = (u1 − u0)/k,
(7)

u1 = u0 + kψ(x).
(8)

Subsituting (6-8) in (5) then is obtained as follows

t = 2k
−u

′′

2 +( 1

k2 +β2)u2 = ( 2

k2 −
2α
k

)u1 +(2α
k
− 1

k2 )u0 +f(x, t),
(9)

t = 3k
−u

′′

3 +( 1

k2 +β2)u3 = ( 2

k2 −
2α
k

)u2 +(2α
k
− 1

k2 )u1 +f(x, t),
(10)

. .

. .

. .

t = nk −u
′′

n + ( 1

k2 + β2)un =
( 2

k2 − 2α
k

)un−1 + (2α
k

− 1

k2 )un−2 + f(x, t), (11)

The approximate solution of the equation (9)-(11) are
sought in the form of the B-spline functionsS(x), it
follows that

t = 2k
−S

′′

2 +( 1

k2 +β2)S2 = ( 2

k2 −
2α
k

)u1 +(2α
k
− 1

k2 )u0 +f(x, t),
(12)

t = 3k
−S

′′

3 +( 1

k2 +β2)S3 = ( 2

k2 −
2α
k

)u2 +(2α
k
− 1

k2 )u1 +f(x, t),
(13)

. .

. .

. .

t = nk −S
′′

n + ( 1

k2 + β2)Sn =
( 2

k2 − 2α
k

)un−1 + (2α
k

− 1

k2 )un−2 + f(x, t), (14)

and boundary conditions

n−1
∑

j=−3

CjBj(x) = g1(t) for x = 0, (15)

n−1
∑

j=−3

CjBj(x) = g2(t) for x = 1, (16)

The spline solution of eq.(12) with the boundary
conditions are obtained by solving to the following matrix
equation. The value of spline functions at the knots{xi}

n
i=0

are determined using Table 1. Then the B-spline method in
matrix form can be written as follows

AC = F

where

C = [ C−3 , C−2 , C−1 , . . . ,Cn−3 , Cn−2 ,Cn−1 ]T ,

F =





















































g1(2k)

( 2

k2 − 2α
k

)u1(x0) + (2α
k

− 1

k2 )u0(x0) + f(2k, x0)

( 2

k2 − 2α
k

)u1(x1) + (2α
k

− 1

k2 )u0(x1) + f(2k, x1)

.

.

.
( 2

k2 − 2α
k

)u1(xn−1) + (2α
k

− 1

k2 )u0(xn−1) + f(2k, xn−1)

( 2

k2 − 2α
k

)u1(xn) + (2α
k

− 1

k2 )u0(xn) + f(2k, xn)

g2(2k)

Also the matrix A can be writen as
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A =





















































1

6

4

6

1

6
0 0 ... 0

ϕ1 ϕ2 ϕ3 0 0 ... 0

0 ϕ1 ϕ2 ϕ3 0 ... 0

. . . . .

. . . . .

. . . . .
0 0 ... ϕ1 ϕ2 ϕ3 0

0 0 0 ... ϕ1 ϕ2 ϕ3

0 0 0 ... 1

6

4

6

1

6





















































,

where

ϕ1 = − 1

h2 + ( 1

k2 + β2)1

6
,

ϕ2 = 12

6h2 + ( 1

k2 + β2)4

6
,

ϕ3 = − 6

6h2 + ( 1

k2 + β2)1

6
.

It is easy to see that, the same approximation can be applied
the other equations (13)-(14).

4. Numerical results
In this section, the method discussed in section 2 and 3 is
tested on the following problem from the literature[9], and
the maximum absolute errors in the analytical solutions are
calculated. Also we compare our results with Liu et all[4]
and Mahonty[14] in Table 3-4. Our methods has its own
advantages, once the solution has been simple algorithm
and computational. All computations were carried out using
MATLAB 6.5.

Example: We consider the following equation[9]

utt(x, t) + 2ut(x, t) + β2u(x, t) = uxx(x, t) + (4 − 4α +
β2 + h2)e−2tsinhx,

α > β ≥ 0 , x ∈ (a, b), t > 0

with initial conditions

u(x, 0) = sinhx, ut(x, 0) = −2sinhx

and boundary conditions

u(0, t) = 0, u(1, 0) = e−2tsinh

Table 2

ABSOLUTE ERRORS OFB-SPLINE SOLUTION

h k = 0.01 k = 0.001 k = 0.0001

1

16
9.6419e-04 9.8278e-05 9.8466e-06

1

32
4.8150e-04 4.9062e-05 4.9155e-06

1

64
2.4035e-04 2.4490e-05 2.4536e-06

1

121
1.2710e-04 1.2951e-05 1.2976e-06

1

521
2.9515e-05 3.0074e-06 3.0131e-07

Table 3

ABSOLUTE ERRORS OFB-SPLINE SOLUTION AND COMPARE WITH THE

FINITE DIFFERENCE SCHEME

h t = 1 t = 2 t = 1 t=2
finite difference B-spline

1

16
0.6386e-02 0.5937e-02 0.95892e-03 0.75376e-03

1

32
0.2229e-02 0.1800e-02 0.48085e-03 0.37565e-03

1

64
0.6002e-03 0.4826e-03 0.24004e-03 0.18798e-03

The exact solution of the above problem is
u(x, t) = e−2tsinhx. The observed maximum absolute
errors for different values of step size h and k are given
in Table 2 . for= 50, β = 5. Also numerical results are
shown in Fig. 1. The maximum absolute errors at t=1,2 for
h=1/16,1/32,1/64 are tabulated in tables 3-4.

5. Conclusions

In this paper, a family of B-spline methods has been
considered for the numerical solution of the hyperbolic
equation. The third-degree B-spline was tested on hyperbolic
equation and the maximum absolute errors have tabulated.
The results showed that the present method is an applicable
technique and approximates the exact solution very well.

Fig. 1

RESULTS FORn = 121,k = 0.0001.
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1. Introduction
We consider the generalized Fisher’s equation:

ut(x, t) = uxx(x, t) + αu(x, t)(1 − uβ(x, t))

a < x < b, t > 0 (1)

with initial condition

u(x, 0) = Φ(x),

and boundary conditions

u(a, t) = g1(t), u(b, t) = g2(t)

whereα andβ are constants.

The classic and simplest case of the nonlinear reaction-
diffusion equation is whenβ=1. It was suggested by Fisher
as a deterministic version of a stochastic model for the
spatial spread of a favored gene in a population[8].

ut(x, t) = uxx(x, t) + αu(x, t)(1 − u(x, t))

a < x < b, t > 0 (2)

This equation is referred to as the Fisher equation, the
discovery, investigation and analysis of traveling waves in
chemical reactions was first presented by Luther[9]. In the
last century, the Fisher’s equation has became the basis for a
variety of models for spatial spread, for example, in logistic
population growth models[10 − 11], flame propagation
[12 − 13], neurophysiology[14], autocatalytic chemical
reactions[15 − 17], branching Brownian motion processes
[18], gene-culture waves of advance[19], the spread of
early farming in Europe[20 − 21], and nuclear reactor

theory [22]. It is incorporated as an important constituent
of nonscalar models describing excitable media, e.g., the
Belousov-Zhabotinsky reaction[23]. In chemical media, the
function u(x, t) is the concentration of the reactant and
the positive constantα represents the rate of the chemical
reaction. In media of other natures,u might be temperature
or electric potential.

The mathematical properties of equation(1) have been
studied extensively and there have been numerous discus-
sions in the literature. The most remarkable summaries have
been provided by Brazhnik and Tyson[24]. One of the
first numerical solutions was presented in literature with a
pseudo-spectral approach. Implicit and explicit finite differ-
ences algorithms have been reported by different authors
such as Parekh and Puri and Twizell et al. A Galerkin
finite element method was used by Tang and Weber whereas
Carey and Shen[25] employed a least-squares finite element
method. A collocation approach based on WhittakerŠs sinc
interpolation function[26] was also considered in[27]. Our
solution based on B-spline method. In this paper, we propose
a spline difference scheme to solve eq.(2).

The theory of spline functions is a very active field of
approximation theory and boundary value problems (BVPs),
when numerical aspects are considered. In a series of paper
by Caglar et al. [2-7] BVPs of order two, third, fourth and
fifth were solved using third, fourth and sixth-degree splines.

The paper is organized as follows: B-spline function is
described in Section 2 briefly. In sections 3 the methods
of solution of equation (2) is presented. In section 4 some
numerical result, that are illustrated using MATLAB 7.0,
are given to clarify the method. Concluding remarks are
given in Section 5.

2. The third-degree B-splines
In this section, third-degree B-splines are used to construct

numerical solutions to the Fisher equations discussed in
sections 3 and 4. A detailed description of B-spline functions
generated by subdivision can be found in [1].

Consider equally-spaced knots of a partition
π : a = x0 < x1 < ... < xn = b on [a,b]. Let S3[π] be the
space of continuously-differentiable, piecewise, third-degree
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polynomials onπ. That is, S3[π] is the space of third-degree
splines onπ. Consider the B-splines basis in S3[π]. The
third-degree B-splines are defined as

B0(x) = 1

6h3















x3 0 ≤ x < h
−3x3 + 12hx2 − 12h2x + 4h3 h ≤ x < 2h
3x3 − 24hx2 + 60h2x − 44h3 2h ≤ x < 3h
−x3 + 12hx2 − 48h2x + 64h3 3h ≤ x < 4h

(5)

Bi−1(x) = B0(x − (i − 1)h), i = 2, 3, ...

To solve hyperbolic equation,Bi , B′

i and B′′

i evaluated at
the nodal points are needed. Their coefficients are summa-
rized in Table 1.

Table 1

VALUES OFBi , B′

i
and B′′

i

xi xi+1 xi+2 xi+3 xi+4

Bi 0 1/6 4/6 1/6 0
B′

i
0 -3/6h 0/6h 3/6h 0

B′′

i
0 6/6h2 -12/6h2 6/6h2 0

3. B-spline solutions for the nonlinear
diffusion Fisher’s equation

In this section a spline method for solving the Fisher
equation is outlined, which is based on the collocation
approach [5]. Let

S(x) =
n−1
∑

j=−3

CjBj(x) (6)

be an approximate solution of Eq.(1), whereCi are
unknown real coefficients andBj(x) are third-degree
B-spline functions. Letx0, x1, ..., xn be n + 1 grid points
in the interval [a,b], so that

xi = a + ih, i = 0, 1, ..., n ; x0=a, xn = b, h = (b − a)/n.

We consider the convection-diffusion equation (1),

difference schemes for this problem considered as following:

ui+1−ui

∆t
− ∂2u

∂x2 = u(1 − u) + f(x, t) (7)

where∆t = k

−ku
′′

i+1 + ui+1 − kui+1(1 − ui+1) = ui + kf(x, t) (8)

and the initial condition is given in (2)

u(x, 0) = f(x) = u0, (9)

Subsituting (9) in (8) then is obtained as follows

t = 0 + k
−ku

′′

1 + u1 − ku1(1 − u1) = u0 + kf(x, k) (10)

t = 0 + 2k
−ku

′′

2 + u2 − ku2(1 − u2) = u1 + kf(x, k) (11)

. .

. .

. .

t = 0 + nk
−ku

′′

n + un − kun(1 − un) = un−1 + kf(x, k) (12)

The approximate solution of the equation (10)-(12) are
sought in the form of the B-spline functionsS(x), it follows
that

t = 0 + k
−kS

′′

1 + S1 − kS1(1 − S1) = u0 + kf(x, k) (13)

t = 0 + 2k
−kS

′′

2 + S2 − kS2(1 − S2) = u1 + kf(x, k) (14)

. .

. .

. .

t = 0 + nk
−kS

′′

n + Sn − kSn(1 − Sn) = un−1 + kf(x, k) (15)

and boundary conditions (3)-(4) can be written as follows

n−1
∑

j=−3

CjBj(0) = 0 for x = 0, (16)

n−1
∑

j=−3

CjBj(1) = 0 for x = 1 , (17)

The spline solution of eq.(13) with the boundary
conditions is obtained by solving to the following matrix
equation[see 2,4]. The value of spline functions at the knots
{xi}

n

i=0
are determined using table1. Then we can write in

matrix-vector form as follows

This leads to the non-linear system of order n + 2 given by
n−1
∑

j=−3

CjBj(0) = 0 for x = 0, (18)

n−1
∑

j=−3

CjBj(1) = 0 for x = 1 , (19)

−k
n−1
∑

j=−3

CjB
′′

j (x) +
n−1
∑

j=−3

CjBj(x) − k
n−1
∑

j=−3

CjBj(x)(1 −

n−1
∑

j=−3

CjBj(x)) = u0 + kf(x, k) for x = 0, h, 2h, ..., 1

(20)
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RESULTS FORn = 121,k = 0.05

The approximate solution (8) is obtained by solving
non-linear system using Levenberg-Marquardt optimization
method [29] and MATLAB 6.5.

It is easy to see that, the same approximation is applied the
other equations (14)-(15).

4. Numerical results
In this section, the method discussed in section 2 and 3 is
tested on the following problems from the literature[7], and
absolute error in the analytical solutions are calculated. All
computations were carried out using MATLAB 6.5.

Problem 1.

We consider a 1-D Fisher’s diffusion partial differential
equation

∂u
∂t

− ∂2u
∂x2 = u(1 − u) + f(x, t) , 0 ≤ x ≤ 1 , t > 0 ,

(23)

with the initial conditions,

u(x, 0) = 0 , 0 ≤ x ≤ 1 ,
(24)

and the boundary conditions atx = 0 andx = 1 of the form

u(0, t) = u(1, t) = 0, t ≥ 0 . (25)

The exact solution of this problem isu(t, x) = 0.5tsin2πx
. The observed maximum absolute errors for various values
of n and for a fixed value of k=0.05 are given in Table 1.
The numerical results are illustrated in Figure 1.

Table 1. Comparison of the Numerical solution with the
exact solution at different n and k=0.05

n k = 0.05
21 1.5944141x10−3

41 4.0001700x10−4

61 1.7790142x10−4

121 4.4492962x10−5

191 1.7748496416−5

5. Conclusions
A family of B-spline methods has been considered for
the the numerical solution of the Fisher equations . The
third-degree B-spline has been tested on the Fisher problem,
and have tabulated the maximum absolute errors for
different values of n . As is evident from the numerical
results, the present method approximate the exact solution
very well. Also the numerical results are illustrated in
figures. The implementation of the present method is more
computational than other numerical techniques.
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Abstract   
Temperature distributions recorded by thermocouples in 

a solid body (slab) subject to surface heating are used in 

a mathematical model of 2-D heat conduction. The 

corresponding Dirichlet problem for a holomorphic 

function (complex potential), involving temperature and 

heat stream function, is solved in a strip. The Zhukovskii 

function is reconstructed through singular integrals, 

involving an auxiliary complex variable. The complex 

potential is mapped by the Schwartz-Christoffel formula 

onto an auxiliary half-plane. The final heat conduction 

flow net (orthogonal isotherms and heat lines) is 

compared with the known Carslaw-Jaeger solution and 

shows a puzzling topology of energy fluxes for simple 

temperature-boundary conditions.  

 Key words: Laplace’s equation, topology of heat lines, 

complex potential, conformal mappings. 

 

1. Introduction  
Analytical solutions to  potential field problems, where 

the intricate topology of  2-D  flow nets (stream lines and 

constant potential lines) was controlled by heterogeneity 

of the flow domain,  but the boundary conditions were 

uniform (constant potentials on the inlet and outlet of a 

standard flow tube) were presented in [1], [2].  In this 

paper we study the effect of non-uniform boundary 

conditions, although assume that the medium, through 

which flow takes place, is homogeneous.  Analytical 

solutions for steady 2-D heat conduction in solid bodies 

are needed in different engineering designs involving heat 

transfer [3].  A powerful technique to solve these 

problems is based on the theory of boundary-value 

problems for holomorphic functions (e.g., [4], [5]).  In 

this paper we average the diurnal temperature swings, 

recorded by thermocouples on the surface of a concrete 

slab, and show that the corresponding explicit analytical 

solution gives a computer-algebra-visualized topology of 

heat lines, which is counterintuitive and puzzling.  

 

2. Mathematical Model 
We consider a vertical cross-section of the slab 

of a thickness b and thermal conductivity k, and a thermal 

barrier E1OE2 (practically, strip-type shading against 

solar radiation). Fig.1a depicts a vertical cross-section 

and Cartesian coordinates. Far from the barrier (the rays 

AE1 and E2B), the slab temperature is the same as the 

ambient air temperature, T0 =constant.  Along  AOB, we 

have experimental data of temperature obtained by 

thermocouples and we take the daily averages of these 

values. The x-distribution of this average temperature is a 

single-minimum function f(x). We assume that this 

function is symmetric f(-x)=f(x) and 0)( Txf    

at x  (this is confirmed by  experiments). We 

introduce F(x) as:  

 

f(x)=T0 –F(x),   at y=0 (1) 

 

where F(x) is a single-maximum (TM =T0 -Tm) function 

shown in Fig.1b. We assume that along the internal 

surface (DC in Fig.1a) temperature is constant, Tc: 

 

T=Tc,   at y=-b (2) 
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Fig.1. Vertical cross-section of a slab with a thermal 

barrier (a), temperature boundary condition on the 

exterior surface – the kernel of the Cauchy integral (b), 

complex potential domain for small TM (c), auxiliary 

plain where the Dirichlet problem is solved (d). 

 

 

 

 

Fig.2. Heat line topology with four hinge points (a), the 

corresponding   knob-shape bounded complex potential 

domain (b).  
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In case of no thermal barrier in Fig.1a, heat 

conduction in the slab of Fig.1a is   1-D.  With the 

barrier, the so-called “thermal resistor” models  (see, e.g., 

[6])  have been used. The resistor approximation assumes 

the AOB boundary condition to be a step-function 

(reflecting the barrier width) and the heat streamlines  are 

postulated to be straight and  perpendicular to the both 

slab boundaries,  i.e. heat flow is again 1-D.  Our 

objective is to assess analytically the spatial 

nonuniformity of temperature and heat lines  caused by 

the boundary condition (1).   

According to the Fourier law,   heat conduction 

in  the strip AOBCMD (we denote it Gz) of  Fig.1a is 

governed by  

),( yxTkJ   (3) 

where ),( yxJ  is the heat flux vector, which has a 

vertical component v and horizontal component u.  

 We introduce a complex physical coordinate 

z=x+iy and a complex potential w= +i  where i is an 

imaginary unit, =-k(T-Tc) is the potential and is a 

stream function, which is related to   through the 

Cauchy-Riemann conditions: 

v
xy

u
yx



















 
,  (4) 

Heat lines const allow a better visualization 

of heat transfer and an assessment of thermophysical 

efficiency [7].  

Both and are harmonic: 

0),(,0),(  yxyx   (5) 

and w(z) is a holomorphic function.  

 An integral solution of the boundary-value 

problem (1),(2) and (5) is given in [3] (Chapter V, 

Section 3, eqn.2.19).  Here we derive an alternative 

solution. Carslaw and Jaeger derived their solution by the 

Fourier transform method. The Laplace equation  was 

analytically solved in [8] in a stream tube Gz by 

separation of variables and  Fourier‟s  series expansions. 

The Fourier methods are limited to the domains Gz that 

are homeomorphic to a simple streamtube (two constant 

temperature - two adiabatic segments as boundaries 

coinciding with the level lines of a Cartesian, cylindrical, 

spherical, etc. coordinate system, where the Laplace 

equation separates). Our method does not have this 

limitation and is applicable to any Gz-polygon with 

arbitrary mixed (Dirichlet-Newman) boundary.  

Without any loss of generality we assume that 

along OM  =0 that follows from the symmetry of f(x). 

The isotherms (equipotential lines =const) are dashed in 

Fig.1a and heat streamlines (=const) are shown in bold 

with arrows indicating the direction of heat transfer. The 

domain Gz  is fixed but the domain corresponding to  Gz 

in the w-plane, Gw, depends on f(x) and is surprisingly 

complex even for simple functions f(x).  

If Tm is close to T0 and the slope of f(x) is small,  

then Gw is a strip with a slightly bulged side AOB 

(Fig.1c). The streamlines in Gz (Fig.1a)  are somewhat 

curved, most of all in the slab zones where the imposed 

f(x) has a relatively  high slope magnitude |df/dx| (see 

Fig.1a).  

 

Fig.3.   Heat line topology with two hinge points (a), the 

corresponding double-sheet Riemann surface as the 

complex potential domain (b). 

 

For a smaller Tm  (fixed T0  but higher TM) 

and/or stronger variation of the slope of f(x),    the heat 

flow topology is shown in Fig.2a. On AOB (we recall, 

f(x) is a single-minimum function) at four points H1,  H2,  

H3,  and H4,   the direction of the v-component of the 

thermal gradient changes from inside the slab to the 

exterior.  Indeed,  along AS2H1 and BS3H4 heat is 

conducted from the exterior surface into the slab. Along 

H1H2 and H4H3 heat is discharged back and along H2H3 

heat moves from the exterior surface to the interior. There 

are two separatrices (dividing streamlines shown in bold), 

S2H2E2  and S3H3E3, which demarcate five different 

topological zones in Gz. The corresponding domain Gw is 

shown in Fig.2b where the image of  AOB is a knob-

shaped curve.   

 

For even smaller Tm  and/or stronger slopes of 

f(x)  we may arrive at  topology depicted in Fig.3a.   Here 

we have two points H1 and  H2 where flow changes its 

orientation from the interior to the exterior of the slab. 

The only separatrix (bold-styled in Fig.3a) has a saddle 

point S3. Above  S1S3S2 heat is circulated from the air 

32 Int'l Conf. Scientific Computing |  CSC'11  |



 

into concrete and back, without entering the interior. The 

domain Gw  shown in Fig.3b is a double-sheet Riemann 

surface. The second sheet S1H1OH2S2 is stitched to the 

first (main) sheet through the cut  S1S3S2 , which images 

the separatrix in Gz. In Fig.3b we purposely distorted the 

branch AS1 (of course,  this branch in Gw  is symmetrical 

to S2B with respect to the  axes) in order to illustrate the 

stitching of  the second sheet. Points S1 and S2 are  located 

on the opposite sides of the cut in Gw. If Tm<Tc<T0,  then  

still another heat conduction regime  is realized,  with 

heat flux from the interior (this regime may occur in cold 

countries and has not been experimentally observed in 

Oman).  

 We implement a mathematical technique, which 

can readily tackle any heat flow regime in Figs.1a-3a. 

The method is  based on a conformal mapping of one 

domain  (Gz  in our case) onto an auxiliary domain 

(circle, half-plane) and, next,  solving there a Dirichlet, 

mixed, Newton (Robin)  or refraction problem (with the 

first to fourth boundary conditions, correspondingly) and 

further reconstruction of  the second holomorphic 

function in the auxiliary domain ([1], [2]).  

  So, first, we map conformally Gz onto the upper 

half-plane Im  >0 of an auxiliary plane i shown 

in Fig.1d by the Schwartz-Christoffel formula: 





 




1

1
log

b
z   (6)  

In this plane points A and D, as well as C and B coincide.  

 Next, we introduce the Zhukovskii function (see 

[5])  as  Zh=w-i(T0–Tc)kz/b+k(T0–Tc)=R+i I. The real 

part of this function is R=Re[Zh]= k(T0–Tc)y/b+k(T0–

Tc) and the imaginary part  I=Im[Zh]= k(T0–Tc)x/b. 

Obviously, Zh(z) is also holomorphic.   In the half-plane 

Im  >0 the following boundary conditions hold for 

Zh(): 

 

R=0 at |R=kF[x()] at |  

 

where eqn.(6) gives x() as : 

 

 

 

 (8) 

 

 

Obviously (see Fig.1b), 0)( F  at .1  The 

function )(F can be easily interpolated from 

experimental (thermocouple) daily-averaged point-wise 

collected values. We used F[x]= TM exp[-ax
2
], where a is 

a fitting parameter, as an approximation for 

experimentally-measured temperature values. Any other 

function, e.g.,  F[x]= TM /[1+(bcx)
2
] (where bc is another 

fitting parameter), can be used in eqn.(7) as a boundary 

condition. Eqn.(8), obtained from the conformal 

mapping,  is fixed and does not depend on  interpolation 

of experimental data and the choice of F[x].  

 Along with the boundary conditions (7) for the 

real part of the Zhukovskii function R(), we note that at 

point M (where  ) the imaginary part of this 

complex function, I()=0. Then an integral solution to the 

stated Dirichlet boundary-value problem is (see [5]): 







1̀

1

)(
)(








dkFi
Zh   (9) 

Passing to the Sokhotsky-Plemelj limit 1,    

from eqn.(9) we obtain  the stream function along AOB:

      

   










1

1

0 )(1
)(

)(








dkF
x

b

TTk c
    (10) 

We note that the integral in eqn.(10) is singular at 1  

(that corresponds to the line AOB in Fig.1a) and should 

be calculated in the sense of v.p. (principal value). 

Wolfram‟s Mathematica [9] has a routine 

CauchyPrincipalValue for this purpose, which we used in 

numerical integration. At 1  (line DMC in Fig.1a) 

the integral in eqn.(10) is regular and we used the   

routine NIntegrate from [9]. 

 It is convenient to expand the kernel in eqn.(10) 

in a series of Chebyshev‟s polynomials of the second 

kind as:  

 

where ]arccossin[)(  nUn  . For any smooth (e.g., 

belonging to the Holder class is sufficient) function F()  

this series is uniformly converging on the interval (-1,1). 

Then for the roof surface AB eqn. (10) is reduced  to  
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and for the ray MD  we have  
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where ]arccoscos[)(  nTn   are the Chebyshev 

polynomials of the first kind. For the ray MC )1(   

we have )()(   ,  i.e. eqn.(12) can be used.  

 The vertical component of the thermal gradient ` 
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Far from the insulation zone (large values of |x|) the 

horizontal component u of the gradient vanishes and  

b

TTk
vv c )( 0   . We introduce a dimensionless 

vertical component  vvvd / . On AOB,  

differentiation of eqns. (8) and (11) yields 

 

Then the hinge points (if they exist) in Figs.2a-3a are 

found from eqn.(14) as the roots of the equation 

1,0)(  dv . We solved this equation using the 

FindRoot routine [9]. 

 How much in terms of total energy saving we 

gain from thermal insulation? In order to answer this 

question we select two symmetrical points L1 and L2  on 

the interior surface, distance 2L apart. Without the barrier 

in Fig.1a,   the total heat entering the interior (per unit 

length  in the direction perpendicular to the plane  in 

Fig.1a) through a strip of a width 2L  is Q0 =2L k(T0-

Tc)/b. From the definition of the stream function the total 

heat flowing through the same area but in  2-D  

conduction with insulation is Q=-2L1, where L1  is 

directly expressed from eqns.(8) and (12) as: 

M
с

L kT
b

LTTk
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(15) 

We introduce a dimensionless energy saving through 

L1L2 as S(L)= ,/ 0QQ where Q 10 2 LaQ  and,  

with 1L  taken from eqn.(15),  we have: 
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 Fig.4. Energy saving factor S as a function of L
d
  

for r=0.25 and a
 d

=0.025, 0.1 and 0.4 (curves 1-3,  

correspondingly).   

 

As we have pointed out,  the selected F(x) is TM exp[- a 

x
2
].  Fig.4 shows S as a function of a dimensionless width 

L
d
=L/b for r=0.25 and a

d
=0.025, 0.1 and 0.4 (curves 1-3,  

correspondingly, where a
 d

=a b
2
), calculated by eqn.(16).  

In Fig.5  
dv is shown as a function of dimensionless 

abscissa x
d
 =x/b along AOD for r=0.5 and a

 d
=1, 2 and 4 

(curves 1-3,  correspondingly), calculated by eqn.(14). As 

we can see from Fig.5, for the selected F(x) we have the 

flow topology of Fig.1a (no hinge points) for the first two 

curves and the two-hinge-points regime for the third 

curve. All three curves have two blips (maxima) which 

indicate that in the near-blip zone of the exterior  plane 

the intensity of conduction into the slab is even higher 

than in the case of no thermal insulation, i.e. near the 

edges E1 and E2 in Fig.1a the barrier “sucks” energy.   
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Fig.5. Vertical component of thermal gradient   
dv  as a 

function of  x
d
  along AOD for r=0.5 and a

 d
=1, 2 and 4 

(curves 1-3,  correspondingly). 

 

 Without any series expansions we can bluntly 

use eqns. (6) and (9)  in the following form: 

 

  

(17) 

 

 

 

where dimensionless variables are introduced as 

bzzTTkww d

c

d /),(/( 0  . 

By the help of the routines Re and Im [9] we 

separated the real and imaginary parts in eqn.(17). Then 

we used the ContourPlot routine [9] to plot the flow nets. 

Fig.6 shows the flow net for F=exp[-a
d
(x

 d
)

2
]  with  r=0.9,  

and a
d
=15 (two hinge points regime of Fig.3a). In Fig.6, 

in order to avoid cluttering, only three equipotential 

contours are presented: 
d
=-0.1 (curve 1, single branch, 

see the Riemann surface in Fig.3b), 
d
 =-0.3 (two 

branches, labeled  2) and 
d
 =-0.4 (two branches,  labeled  

3). For the sake of comparisons we also plotted the 

equipotentials according to the mentioned solution [3], 

denoted here as (CJ-2.19),  which in our notations and 

dimensionless variables  reads: 

  (CJ-2.19) 

Our eqn.(17) and eqn. (CJ-2.19) give identical contours.  
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Fig.6. Flow net (isotherms and heat lines) for F=exp[-a
 d

 

(x
 d
)

2
], r=0.9, a

d
=15 

 

It is clear that S3 in Fig.3a is indeed a saddle 

point, i.e. if we approach this point from the left and 

right, then  temperature decreases towards this point,  but 

if we move from S3 upward and downward, then 

temperature decreases
1
. S3 (in Fig.6 corresponds to the 

contour-plotting lacuna) is a genuine critical point 

because the thermal gradient there is zero while H1 and 

H2  are not really critical points (only v there vanishes but 

the horizontal component u of J  does not). Mathematica 

contour-plotting computations confirmed what we 

conceptualized as flow topologies in Figs.1a, 2a, 3a.  

 

3. Conclusions 
Our mathematical model and the final solution, 

eqn.(17),   gives temperature and heat flux field in the 

slab as an output of the ContourPlot routine of a standard 

computer algebra package (Mathematica). The solution is 

simple, versatile and provides analytical expressions for 

isotherms, heat lines, and thermal gradient (magnitudes 

and directions).  Our solution gives the same results as  

the known solution from [3] (obtained by a different 

method and not analyzed by them). The flow topology in 

Figs.1-3 is indeed counterintuitive and,  to the best of our 

knowledge, has never been reported before. Our 

mathematical approach to solve the corresponding 

boundary-value problem of heat conduction can be easily 

extended to more complex geometries of  conducting 

elements than in the presented case (strip), e.g. a 

rectangle or other polygons can be studied (this would 

require a more general Schwartz-Christoffel mapping 

than eqn.(6)).  

 

                                                 
1
 We recall that the maximum principle (valid for any 

elliptic equation and the Laplace equation used in this 

paper, in particular) prohibits global maxima and minima 

of temperature inside Gz. 

3.1 Acknowledgments 

This work was supported by the German University of 

Technology and the Russian Foundation for Basic 

Research grants No 08-01-00163, No 09-01-97008-

r\_povolgh'e\_a, and  Russian Federal Agency of 

Education (contract No P 944). 

 

4. References  
[1] Yu.V.Obnosov, R.G.Kasimova, A.Al-Maktoumi, 

A.R.Kacimov. Can  heterogeneity of the near-wellbore 

rock cause extrema of the Darcian fluid inflow rate from 

the formation (the Polubarinova-Kochina problem 

revisited)? Computers & Geosciences,  36,   1252–1260. 

2010.  doi:10.1016/j.cageo.2010.01.014. 

[2] Yu.V.Obnosov, R.G. Kasimova, A.R.Kacimov. A 

well in a „target‟ stratum of a two-layered formation: the 

Muskat–Riesenkampf solution revisited. Transport in 

Porous Media, 2011, DOI 10.1007/s11242-010-9693-6 

[3] H.S.Carslaw, J.C.Jaeger, Conduction of Heat in 

Solids. 2
nd

 edition. Clarenden Press, Oxford, 1959. 

[4] F.D.Gakhov,  Boundary Value Problems, Pergamon 

Press, New York, 1966. 

[5] P.Ya.Polubarinova-Kochina,  Theory of Ground-

water Movement.  Princeton Univ. Press, Pinston, 1962. 

[6] D.J. Sailor, D.Hutchinson, L.Bokovoy,  Thermal 

property measurements for ecoroof soils common in the 

western U.S.  Energy and Buildings,  40, 1246–1251, 

2008.  

[7] A.Bejan,   Convection Heat Transfer. 3
rd 

edition. 

Wiley, N.Y, 2004. 

[8] J. A. Kolodziej, T.Strek. Analytical approximations of 

the shape factors for conductive heat flow in circular and 

regular polygonal cross-sections. International Journal of 

Heat and Mass Transfer, 44(5), 999-1012, 2001. 

[9] S.Wolfram.  Mathematica. A System for Doing 

Mathematics by Computer. Addison-Wesley, Redwood 

City, 1991.  

Int'l Conf. Scientific Computing |  CSC'11  | 35



Indirect Vector Control of Stand-Alone Self-Excited 
Induction Generator  

 
S. N. Mahato1, S. P. Singh2, and M. P. Sharma3 

1Department of Electrical Engineering, National Institute of Technology, Durgapur, India  
2Department of Electrical Engineering, Indian Institute of Technology, Roorkee, India  

3Alternate Hydro Energy Centre, Indian Institute of Technology, Roorkee, India  
 

Abstract - This paper presents the voltage build-up process 
and the terminal voltage control of a stand-alone self-excited 
induction generator (SEIG) using indirect vector control 
(IVC) technique under variable speeds and different types of 
load. Here, the three-phase SEIG is excited by a pulse-width 
modulated voltage source inverter (PWM-VSI) connected to a 
single-capacitor on the DC side with a start-up battery. The 
limitation of having stand-alone SEIG is poor voltage 
regulation, which occurs with change in speed and load 
condition. Hence, there should be a control system that keeps 
the terminal voltage of the SEIG and the DC bus voltage 
constant when the speed of the rotor and also, the load on the 
SEIG are varied. The indirect vector control scheme has been 
presented to maintain the terminal voltage of the generator 
and the DC bus voltage constant for variable rotor speed and 
load. The space-phasor model of the induction machine has 
been used in simulation. To predict the performance of the 
proposed system, a MATLAB/SIMULINK based study has 
been carried out for both AC and DC loads. The proposed 
control scheme has shown very good voltage regulation and 
phase balance even with unbalanced three-phase load.  

Keywords: AC and DC load, Indirect vector control, PWM 
inverter, Self-excited induction generator.  

1 Introduction 
  The electrification of remote, rural areas are important for 
the sustainable development of a country. To provide power 
through grid extension becomes very difficult and expensive 
in such hard to access and remote areas. In such areas, plenty 
of renewable energy sources such as small hydro, wind, bio-
mass etc. are available. A practical solution therefore is to 
develop isolated, small-scale power generation schemes that 
utilize the renewable energy resources locally available to 
supply the consumers. Due to the research of clean power (or 
renewable energy resources), and small-scale autonomous 
power generation systems, the SEIG has become very popular 
for generating power from renewable energy sources, such as 
wind and small hydro. The SEIG has distinct advantages like 
simplicity, low cost, ruggedness, little maintenance, absence 
of DC, brushless etc. as compared to the conventional 
synchronous generator. However, its major disadvantage is 
the inability to control the voltage and frequency under 
change in load and speed in stand-alone system.  

    A number of schemes have been suggested for regulating 
the terminal voltage. The scheme based on switched 
capacitors [1] finds limited application because it regulates 
the terminal voltage in discrete steps. A saturable reactor 
scheme of voltage regulator [2] involves a potentially large 
size and weight, due to the necessity of a large saturating 
inductor. In the short/long shunt configuration [3], the series 
capacitor used causes the problem of resonance while 
supplying power to an inductive load.      

    Unlike conventional excitation system that normally 
consists of variable impedance scheme [4], the PWM 
compensator permits the vector control implementation and 
presents precise and continuous reactive power control with 
fast response times, over a wide variation in speed. A wide 
variety of VAR generators with some control strategies using 
power electronic technology have been developed for stand-
alone SEIG [5-7]. Lyra et al. [5] have analyzed a high 
performance variable speed energy generation system based 
on an isolated induction generator using a PWM VAR 
compensator to control the flux in the induction generator and 
the reactive power balance by implementing flux vector 
control methods. Seyoum et al. [6] have presented the stator 
flux oriented vector control for wind turbine driven isolated 
induction generator. However, an additional decoupling 
compensation should be applied for vector control in the 
stator flux orientation. In [7], a field-oriented controller has 
been used to excite the stand-alone induction machine 
efficiently, minimizing copper and iron losses, and to regulate 
the generated voltage for variable speed and load. An 
advanced solution for voltage control of the induction 
generator using rotor field-oriented control for small-scale AC 
and DC power applications has been given by Ahmed et al. 
[8]. Cardenas and Pena [9] have discussed a sensorless 
control structure based on a direct rotor flux oriented vector 
control system for variable speed wind energy applications. 
The modeling, control system design and simulation results 
for a stand-alone induction generator system with static 
reactive power compensator of current controlled PWM VSI 
using rotor flux oriented control has been presented by Liao 
and Levi [10]. Ahmed et al. [11] have used a hybrid excitation 
unit consisting of a capacitor bank and an active power filter 
to regulate the output voltage of stand-alone SEIG and 
proposed the advanced deadbeat current control strategy that 
works with variable speed to reduce the system cost. Pucci 
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and Cirrincione [12] have presented a maximum power point 
tracking for high performance wind generators. The field-
oriented control of the machine has been further integrated 
with an intelligent sensorless technique.  

    Since, only few papers on application of vector control 
techniques for control of SEIG are available in the literature, 
further investigation on vector control of isolated induction 
generators needs to be carried out. Accordingly, indirect 
vector control strategy with rotor flux orientation with high 
dynamic performance has been used in this paper for voltage 
control of an isolated SEIG for both DC and AC power 
applications. The single DC side capacitor provides all the 
reactive current or the VAR required by the generator and the 
load. The space-phasor model of the induction generator has 
been used. The proposed scheme has been simulated in 
MATLAB/SIMULINK environment. The simulated studies 
for different transient conditions such as self-excitation, 
sudden application and removal of both AC and DC loads 
have been carried out to demonstrate the effectiveness of the 
scheme.  

2 System Description and Control  
Scheme 

 Fig. 1 shows the general configuration of the system, where 
the DC and AC loads can be supplied by the generator. The 
basic system consists of a PWM VAR compensator connected 
to an induction generator. A battery on the DC side of the 
inverter is provided for initial excitation. When the flux 
reaches the desired level, the battery is disconnected and the 
generator  supplies  itself  the  necessary  energy  to control 
the voltage across the compensator DC capacitor. The 
reactive power required by the SEIG and load is provided by 
the VSI. 

 

 

 

 

 

 

 

 

 

 

                                                           

    During start-up, the power produced by SEIG is used to 
charge the capacitor connected across the DC link to a set 
reference value. In this study, the DC voltage is maintained at 
600 V. The DC bus voltage is measured to feedback the DC 
voltage controller. This controller provides the q-axis 
component of compensator reference AC currents that 
represents the flow of active power necessary to keep the DC 
voltage constant. The field weakening is done above base 
speed operation and the flux command is generated. The flux 
error is fed to the PI controller and the output of this PI 
controller gives the d-axis component of compensator 
reference AC current. The principal vector control parameters 
Ids

e* and Iqs
e* , which are DC values in synchronously rotating 

frame, are converted to stationary frame with the help of unit 
vectors (cosθe and sinθe). By using the transformation matrix, 
the resulting stationary frame two axes current commands are 
converted into three-phase current commands. These three-
phase current commands are compared with the three-phase 
stator currents. The errors are amplified and compared with 
the triangular carrier signal to generate the switching pulses 
for the inverter. 

Any variation in the output power of the SEIG is directly 
indicated by the variation in the terminal voltage of the 
generator. A reduction of the DC link voltage indicates that 
the  active  power  drawn  by  the  load  is  more  than  the 
generated power of the SEIG and the difference in power is 
supplied  by  the  VSI  and  hence, the DC link voltage falls. 
An  increase in the DC link voltage indicates that the active 
power  drawn  by the  load is less than  the generated power 
of the  SEIG.  In  both  these  two  cases,  the controller varies 
the ON-OFF period of the IGBTs of the inverter and the 
terminal voltage of the generator is maintained constant. 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 1.  Block diagram of the proposed system. 
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3 Mathematical Modeling  
3.1 Modeling of the SEIG  
 The induction machine has been represented by the 
space-phasor model. Instead of using two axes such as the d 
and q for a balanced polyphase machine, the flux linkage 
phasors can be thought of as being produced by equivalent 
single-phase stator and rotor windings.  

The four dq equations of equation (A1) in Appendix-A can be 
reduced to two space-phasor equations as: 

dsqss jvvv −= = rmsss piLipLR ++ )(        (1) 

Similarly, the rotor equations can be written as: 

drqrr jvvv −= = rrrrrsmrm iLjpLRiLjpL )()( ωω −++−   (2) 

From equations (A2) and (A3) in Appendix-A, the voltage 
equations can be written as: 

dt
d

iRV s
sss

λ
+=               (3) 

rr
r

rrr Bj
dt
diRV λωλ ][−+=            (4) 

where, sV = [vds   vqs]T,      rV = [0 0],     si = [ids    iqs]T,   

ri = [idr    iqr]T,  sλ = [λds    λqs]T, rλ = [λdr    λqr]T,   

sR = diag[Rs Rs],  rR = diag[Rr Rr] and [B] = ⎥
⎦

⎤
⎢
⎣

⎡ −
01
10

. 

The electromagnetic torque developed is given by,     

 )(
22

3
qrdsdrqsme iiiiLPT −=          (5) 

The torque balance equation of SEIG is defined as:  

 Tshaft = Te + J ⎟
⎠
⎞

⎜
⎝
⎛

P
2

pωr             (6) 

The shaft torque, Tshaft of the prime-mover and speed is 
represented by a linear curve given as:  
Tshaft = k1 – k2ωr  
where, Tshaft is the shaft torque which shows the drooping 
characteristic of prime-mover and k1 and k2 are constants. J is 
the moment of inertia of the induction machine including the 
machine (prime-mover) coupled on its shaft 

3.2  Modeling of the control scheme 

3.2.1  Rotor flux vector estimation  
 The derivations of the control equations of indirect 
vector control can be done from the d-q equivalent circuit of 
the induction machine in synchronously rotating reference.  
The rotor circuit equations are written as: 

 0=−−+ e
qrre

e
drr

e
dr )λω(ωiR

dt
dλ

         (7) 

 0=−++ e
drre

e
qrr

e
qr )λω(ωiR

dt
dλ

        (8) 

where,   e
dsm

e
drr

e
dr iLiLλ +=            (9) 

   e
qsm

e
qrr

e
qr iLiLλ +=            (10) 

From (9) and (10), e
dri and e

qri  can be written as: 

  r
e
dsm

e
dr

e
dr )/LiL(λi −=            (11) 

  r
e
qsm

e
qr

e
qr )/LiL(λi −=            (12) 

Eliminating  e
dri and e

qri  from (7) and (8) using the equations 

(11) and (12), 

0=−−+ e
qrsl

e
dsr

r

me
dr

r

r
e
dr λωiR

L
Lλ

L
R

dt
dλ

       (13) 

0=+−+ e
drsl

e
qsr

r

me
qr

r

r
e
qr λωiR

L
Lλ

L
R

dt
dλ

       (14) 

where ωsl = ωe − ωr . 

For decoupling control, e
qrλ  = 0,   i.e., 0=

dt
dλe

qr  

so that  total rotor flux λr is directed along the de axis and 
e
drr λλ = . 

From (13) and (14), we get 
e
dsmr

r

r

r iLλ
dt
dλ

R
L

=+             (15) 

and    e
qs

rr

rm
sl i

Lλ
RLω =                (16) 

The derivative of rotor flux can be written as: 

)λi(L
L
Rpλ r

e
dsm

r

r
r −=           (17) 

The rotor flux is calculated from the above equation. 
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Fig. 2.  Circuit diagram of three-phase inductive load  
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The slip frequency *
slω can be written as: 

*
qs*

rr

rm*
sl i

λL
RLω =                (18) 

and    *
slre ωωω +=                (19) 

The field angle (i.e., the angle of the synchronously rotating 
frame) is calculated as: 

∫= dtωθ ee                 (20) 

3.2.2 Calculation of d and q axes components of 
compensator reference current  

 The field weakening is done above base speed operation 
and accordingly the flux command (λrref) is generated. The 
flux error at the nth sampling instant is expressed as : 
 )()()( nrnrrefnrer λλλ −= . 

The flux error λrer is fed to the PI controller and the output of 
the PI controller at the nth sampling instant is expressed as: 

)(})1()({
*

)1(
*

)( nreridKnrernrerpdKe
ndsIe

ndsI λλλ +−−+−=     (21) 

 
where Kpd and Kid are the proportional and integral gain 
constants, respectively, of the PI controller. 
    The DC bus voltage error (VDCer) at the nth sampling 
instantis:  )()()( nDCnDCrefnDCer VVV −= . The error is fed to the 

PI controller and the output of the PI controller for 
maintaining DC bus voltage at the nth sampling instant is  
given by 

)(})1()({
*

)1(
*

)( nDCerViqKnDCerVnDCerVpqKe
nqsIe

nqsI +−−+−=    (22) 

where Kpq and Kiq are the proportional and integral gain 
constants, respectively, of the DC bus PI controller. 

3.2.3 Calculation of compensator reference currents in 
stationary reference frame  

 The q-axis and d-axis reference currents ( *e
qsI and *e

dsI ), 

which are DC values in synchronously rotating frame, are 
converted to stationary frame with the help of unit vectors as 
given below: 
 e

e
dse

e
qsqs III θθ sincos *** +=           (23) 

e
e
dse

e
qsds III θθ cossin *** +−=           (24) 

These q and d axes stationary reference currents ( *
qsI and 

*
dsI ) are converted to three phase reference currents 

( *
saI , *

sbI  and *
scI ). 

3.2.4 PWM current controller  

 The reference currents ( *
saI , *

sbI  and *
scI ) are compared 

with the sensed currents (Isa, Isb and Isc). The current errors 
are amplified and compared with the triangular carrier wave 

to generate the gate pulses. If the amplified error signal 
corresponding to phase ‘a’ (Isaer) is greater than the triangular 
carrier wave signal then the switch S1 (upper device) of the 
phase ‘a’ leg of the VSI bridge is ON and the switch S4 
(lower device) is OFF, and the value of the switching 
function SA = 1.  If the amplified error signal corresponding 
to phase ‘a’ (Isaer) is less than the triangular carrier wave 
signal then the switch S1 (upper device) is OFF and the 
switch S4 (lower device) is ON, and SA = 0. Similar logic 
applies to other phases. 

3.2.5 Modeling of the VSI   
The derivative of the DC bus voltage is defined as: 
When there is no load on the DC side of the inverter,  

dcC/)SCSBSA( dcdbdadc iiipv ++=        (25) 
and when DC load is present, the equation (27) is modified 

as: dcC/)]()SCSBSA[(
d

dc
dcdbdadc R

v
iiipv −++=        

 (26) 
where SA, SB and SC are the switching functions for the 
ON/OFF positions of the VSI bridge switches S1-S6 and Rd is 
the DC load resistance.  
    The DC bus voltage reflects at the output of the inverter in 
the form of the three-phase PWM AC voltages va, vb and vc. 
These voltages may be expressed as:  

3
)2( SCSBSAVv dca

−−+
=         

3
)2( SCSBSAVv dcb

−+−
=

3
)2( SCSBSAVv dcc

+−−
=  

The line voltages may be expressed as: 
 dcbaab vvvv =−= (SA − SB)        (27) 

 dccbbc vvvv =−= (SB − SC)        (28) 

 dcacca vvvv =−= (SC − SA)        (29) 

3.3 Modeling of the load 

3.3.1 DC load  
 The current through the DC load resistance connected 
across the DC capacitor of the inverter is given by: 

  
dc

dc
dc R

vi =                 (30) 

3.3.2 Three phase resistive load  
The phase currents ipa, ipb and ipc in the three-phase load 
circuit are modeled as: 

  
La

ab
pa R

vi =                 (31) 
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Lb

bc
pb R

vi =                 (32) 

  
Lc

ca
pc R

vi =                 (33) 

3.3.3 Three phase inductive load  
The derivatives of the phase currents of the delta connected 
inductive load shown in Fig. 2 are given as: 

   LapaLaabpa )/LiR(vpi −=          (34) 

 LbpbLbbcpb )/LiR(vpi −=           (35) 

 LcpcLccapc )/LiR(vpi −=           (36) 

From these phase currents of the load, the line currents of this 
delta-connected load are given by: 
 pcpaLa iii −=                 (37) 

 pcpaLb iii −=                 (38) 

 pcpaLc iii −=                 (39) 

 

4 Simulation results and discussion  
The developed models have been simulated in 

MATLAB/SIMULINK environment. The simulated results 
have been presented for no-load excitation, sudden 
application and removal of both AC and DC loads on a 2.2 
kW, 3-phase, star connected induction machine. The 
parameters of the induction machine obtained by conducting 
DC resistance test, synchronous speed test and blocked rotor 
test are given in Appendix B. 

4.1 Self-excitation of the SEIG  
The voltage build-up of the generator and the DC voltage 

across the capacitor at no-load condition are shown in Fig. 3. 
The reference DC voltage is set at 600 V. It is found that the 
generator voltage remains small until the air-gap flux linkage 
is at low level, and thereafter, there is a rapid growth of 
voltage, which settles down to a steady-state value due to 
magnetizing flux saturation. The DC voltage is settled to the 
reference value. Fig. 4 gives the DC voltage build-up at no-
load with different values of capacitors. It is found that when 
the capacitance value is large, it takes longer time to reach to 
steady-state value. 

4.2 Sudden application and removal of load  

4.2.1 Load application and removal on DC side  
To investigate the response of the system with sudden 

application and removal of load on the DC side, the generator 
is initially excited at no-load and suddenly a DC load of (Rdc = 
5.6 p.u.) is applied at t = 1.2 sec. and this load is removed at t 
= 1.8 sec.  as shown in Fig. 5. At the time of application of 
load,  the  voltages t end  to decrease but quickly return to  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reference values. When the load is removed, the phase voltage 
of the generator and the DC voltage increase due to mismatch 
in active power produced by the SEIG, which is more than the 
power consumed by the load. The duty cycle of the inverter is 
adjusted by the control action and the voltages are maintained 
at their reference values. 

4.2.2 Load application and removal on AC side  
To investigate the response of the system due to application 

and removal of balanced resistive load across the terminals of 
the SEIG, a resistive load (RL = 6.6 p.u./phase) is applied at t 
= 1.4 sec. and  removed  at  t = 2 sec. as shown  in Fig. 6. 
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Fig. 3.  Voltage build-up at no-load. 

Fig. 4.  DC voltage build-up at no-load for different 
values of capacitances. 
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Fig. 5.  Waveforms during application and removal  
of load on DC side. 
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Similarly, the responses of the system due to load perturbation 
with balanced inductive load (RL = 2.6 p.u./phase, XL = 1.97 
p.u./phase) of 0.8 pf are shown in Fig. 7. In both these cases, 
the voltage reduces during application and increases during 
removal of load due to mismatch of power generated and 
power consumed. The voltage comes to the reference value 
quickly due to control action. The phase current of the SEIG 
increases at the time of application of load. 

Figs. 8 and 9 show the three-phase load currents, stator 
phase currents and stator phase voltages during sudden 
application of unbalanced three-phase resistive load (RLa = 5.6 
p.u., RLb = 6.76 p.u. and RLc = 7.5 p.u.) and inductive load 
(RLa = 1.9 p.u., XLa = 1.4 p.u.; RLb = 2.8 p.u., XLb = 2.1 p.u. 
and RLc = 3.8 p.u., XLc = 2.8 p.u.) respectively. It is observed 
that stator phase voltages and currents are balanced even if the 
load current is unbalanced due to the PWM inverter action. 
Hence, the indirect vector control technique acts also as a 
good phase balancer. 

5 Conclusions 
This paper provides a high performance variable speed 

induction generator system using indirect vector control 
technique with rotor flux orientation for small-scale AC and 
DC power applications. A PWM VAR compensator is used to 
control the flux in the generator and the reactive power 
balance. The excitation power is supplied from the capacitor 
connected on the DC side of the PWM inverter. The induction 
machine has been represented by space-phasor   model.   The  
developed  models  have  been implemented using 
MATLAB/SIMULINK. The controller has been tested for 
different transient conditions such as voltage build-up, sudden 
application and removal of both the resistive and the inductive 
loads and also for unbalanced three-phase loads. It has a fast 
dynamic response, robust, reliable and very good phase 
balance even with unbalanced three-phase load. 

6 Appendices  
6.1 Appendix A  

The dq stationary reference frame model of the induction 
machine is given by: 

 

 

 

 

where  Ls = Lls + Lm and Lr = Llr + Lm.  
Again, in dq reference frame, the stator and rotor flux 
linkages can be written as:   
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Fig. 6.  Stator phase ‘a’ voltage, DC voltage, stator 
phase ‘a’ current and load current during  application 
and   removal of resistive load on SEIG terminals.

Fig. 7. Stator phase ‘a’ voltage, DC voltage, stator phase 
‘a’ current and load current during  application and   
removal of inductive load on SEIG terminals.
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6.2 Appendix B  
The parameters of the induction machine are given as: 

2.2 kW, 3-phase, 4-pole, 50 Hz, 415 V., 4.5 A., star 
connected, 1440 rpm, Rs = 3.84 Ω, Rr = 2.88 Ω, Xls = 4.46 Ω, 
Xlr = 4.46 Ω, Lm = 0.2168 H, Base impedance = 53.24 Ω.   
 
Coefficients of the Prime-mover Characteristics: 
 k1 = 249.39,    k2 = 0.7875 
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Fig. 9.  Three-phase load currents, stator phase currents 
and stator phase voltages during sudden application of 
unbalanced inductive load on SEIG terminals. 

Fig. 8.  Three-phase load currents, stator phase currents 
and stator phase voltages during sudden application of 
unbalanced resistive load on SEIG terminals. 
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Abstract – This paper treats computation as a game process.  

We place an algorithm within a single computational domain.  

The domain structure is a graphical structure with the moves 

of the game representing vertices.  The algorithmic process 

evolves through these moves.  The noise of the physical 

computing device manifests a mesoscopic system.  The 

algorithmic process is imbedded as part of this system.  The 

edges of the graph have a time-based directionality.  We treat 

the noise as time evolution of a quantum-like system along the 

edges.  We identify both a quantum-like process and a 

thermal-like process for this evolution.  We use a simple Ising 

model to provide the underlying structure.  This allows the 

noise to be seen as an organized pattern evolution.  

Furthermore, there is a scale structure that one can relate to 

the renormalization group theory.  This is relevant to modern 

computation, as it encroaches on the mesoscopic domain. 

Keywords: mesoscopic system, quantum Ising game  

 

1 Introduction 

 Mesoscopic phenomena encompass the scientific 

domain between the strictly quantum realm and the complex 

classical world.  Normally, computation is taken to reside 

purely in this latter realm, defined by elegant algorithms, and 

the purity of the switching apparatus of the digital computer.  

It seems absurd to consider computation as a mesoscopic 

phenomenon.  And yet, we know that our computing devices 

are beginning to impinge on the strange quantum world more 

and more, and as each technological advance proceeds in 

processing, in nanotechnology, etc. we become less firmly 

entrenched in the secure classical world. 

 In the past, mesoscopic phenomena has for the most part 

not been regarded as anything other than noise, or “quantum 

mud” (see Ref. 12, for example).  On the other hand, it is now 

recognized that ascribing much of this phenomena as noise 

was a result of a failure to address the nonlinear and 

nonequilibrium phenomena associated with the mesoscopic.  

For a review of mesoscopic phenomena, in general, see Ref. 

1.  For another useful review, see Ref. 2.  This latter book 

focuses on applications of quantum mechanics to biology, but 

it also supplies a clear overview of many general areas on 

which quantum mechanics overlaps with phenomena close to 

the macroscopic scale (and hence intrudes in what we here 

refer to as the mesoscopic).  As can be seen from Ref. 3, 

quantum field theory of phase transitions is definitely 

considering phenomena close to the mesoscopic. 

 Our work, while addressing the speculative domain of 

the mesoscopic world, is not intended as a speculative piece 

of work, but as a mathematical work, considering an approach 

to computation that utilizes physical ideas.  Our main interest, 

looking ahead beyond what we have done here, is to provide 

a framework for extending the renormalization group theory 

[4].  This theory is perhaps the most advanced theory in 

thermodynamics.  However, it is (despite the capability of 

incorporating time as a parameter) an equilibrium theory.  

The mesoscopic is very-well suited to discussing 

nonequilibrium, but scale-dependent phenomena.  Therefore, 

we might expect that some progress might be made in 

extending the renormalization group theory slightly by 

consideration of mesoscopic phenomena. 

 We have previously worked at the type of mathematical 

framework to which we are referring above, in papers on non-

equilibrium thermodynamics [5] and on Ising games [6].  The 

Ising model is discussed in many references, including Ref. 4.  

(In this reference, as well, certain aspects of renormalization 

of the Ising model are discussed.)  The Ising model, as a 

simple but nontrivial model, and one that displays enormous 

versatility (by perhaps broadening our definition of Ising 

model to allow nonlocal interactions, vector fields, etc.) is 

well-suited to an attempt to express order in what has 

previously just been thought of as noise, i.e. mesoscopic 

phenomena.  Game theory is also positive in this regard, as it 

reflects a sense of measurement, of control, of willful action 

that we can associate with our macroscopic experience, and 

yet can be developed in simple ways too that are nontrivial.    

Utilizing game theory outside the context of the social 

sciences (where equilibrium applications predominate) is 

discussed in Ref. 6.  It should be born in mind that significant 

progress in the physical sciences is also likely to effect the 

equilibrium theories of the social sciences.  Thus, the 

phenomena of social science can be thought of as mesoscopic 

to some extent.  The quantum Ising game is a natural (albeit 

oversimplified) approach to discussing mesoscopic 

phenomena. 

 The paper is structured as follows:  In Sec. 2, we present 

a nonmathematical perspective on our approach to 

mesoscopic computational systems.  This is somewhat 

philosophical, and is intended to establish the intellectual 

framework in which to discuss computation as a natural 

phenomenon, and noise as expressive of (statistical) patterns 

akin to quantum mechanics.  In the next section, we discuss 

the general mathematical background for using Ising games 

to study such phenomena.  The idea that noise can be treated 

as having a phase structure, and therefore that a model like 

the Ising model might prove of interest, in a domain 

dominated by noise is merely an attempt to associate a 

mathematical structure, related to scaling and renormalization 
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group theory, with phenomena that are nonlinear and 

nonequilibrium.  In Sec. 4, we present, in outline, a very 

simple example of the type of mathematical structure that we 

are referring to.  No attempt is made in this section to display 

a complete theory.  However, a concrete example helps to 

make our viewpoint more understandable.  In Sec. 5, the 

conclusion, we make some general comments about our 

work, and give suggestions for future directions. 

  

2 What is a mesoscopic computa- 

tional system ? 
 

 We would like to answer the question of the title of this 

section fully.  Unfortunately, the mere idea of computation in 

a mesoscopic regime is difficult to grasp.  The “mesoscopic”, 

as a concept, is one which, until recently, was simply 

interpreted as indicated part of the noise of the world.  One 

notices, for example, in the scientific study of computation in 

supercomputers, such as done by the Borwein et al. [7], [8], 

that heavy selection procedures (to eliminate noise from 

consideration) by humans for directing computation cloud 

possible mesoscopic phenomena.  When one focuses on 

energy, with large energy expenditure to maintain order, the 

quantum aspects of the computation may be hidden, simply 

because h/ΔE is so small that linear quantum effects are not 

observable [9].  (Here,   is Planck’s constant, and    is an 

energy fluctuation in the quantum system.  The ratio    ⁄  is 

associated with the time over which this energy fluctuation 

would yield an observable effect.)  Coupling a supercomputer 

with a mesoscopic computational system, such as the brain 

seems to be, may be a better way to observe mesoscopic 

effects [2].  If computers can be guided or subject to selection 

principles that force the appearance of classical behavior, 

what evidence do we have that computers are anything but 

classical systems?  We claim that the selection process can be 

modeled as a game process.  The imposition of game 

processing leads to the appearance of a classical system.  We 

cannot prove this, but removal of the heavy game element to 

computing would result in the appearance of mesoscopic 

phenomena.  In the mathematical sections following this 

section, we hope to address this to some extent.  The easiest 

way to consider this is a “semi-classical” approach in which 

games at different scales overlap to some extent.  The idea of 

scaling then arises, and it is possible to discuss 

renormalization.  This goes beyond the scope of this paper, 

but is considered to some extent later. 

 The viewpoint of considering computation as a natural 

phenomenon is unusual:  We humans are very attached to 

game behavior (and this can mask non-classical or non-

equilibrium system characteristics).  Forcing a system to 

behave linearly [2] by the imposition of games, for example, 

does not mean that one is dealing with a classical system.  

The needed experimental investigations and observations may 

be difficult to make, because they are at the edge of our 

computational capabilities.  However, one feels some 

confidence that such data as results from these observations 

might produce some subtle signs that our computational 

systems display mesoscopic behavior.  The idea that we can 

take computation as a mesoscopic phenomenon is merely 

speculative.  However, we can certainly build a mathematical 

model expressive of this idea. 

 

3 Mathematical discussion 

 We can use a quantum Ising game to represent a 

mesoscopic system.  These types of models are very simple, 

and cannot be considered, in detail, to accurately represent 

actual mesoscopic systems except in certain limited, idealized 

respects.  The perception of noise as complex phase 

phenomena is a mathematical viewpoint we are taking, in the 

absence of much actual scientific knowledge about 

mesoscopic systems (other than interpreting much of the 

phenomena of such systems as noise).  Therefore, our 

viewpoint is merely mathematical.  However, a simple model 

can often present us with clues to progress further. 

 The basic object of a quantum Ising game [6] can be 

chosen somewhat arbitrarily.  However, we select it as a 

connection, somewhat like a quantum amplitude between two 

states, that can have an interpretation in terms of correlation.  

This allows us to develop a perspective in which graphs and 

phase interpretations can be naturally used, and in which one 

can easily interpolate between classical and quantum 

domains, representing the intermediate domain, the 

“mesoscopic” domain, as a substantial part of the overall 

picture.  Although a quantum Ising game is not a quantum 

system (it is intrinsically nonlinear), we still refer to the 

system configurations as states.  So, in quantum Ising games, 

the states, for computational systems, will be taken as 

matrices. 

 A computational system is viewed as prepared in a state 

Ax,t where x specifies a node (which we think of as the 

insertion point of the computational system), that is a part of a 

graphical structure.  This initial state poses the questions that 

we wish to be answered by the game.  The entries of the 

matrix are polynomials, not necessarily numbers, and a 

polynomial, as a sequence of coefficients, can be regarded not 

only as an arithmetic object that can be computationally 

operated on, but also as a piece of information that has a 

certain meaning. 

 The graphical structure represents a “domain” of the 

computational system, which is to say, a unified processing 

structure.  The state is inserted in the computational network 

at time t.  The nodes are sites at which “moves” are made in 

the game.  Thus, Ax,t is a first move, into this domain, for a 

computing process.  We represent the computing domain as 

the graph G, and for the purposes of our definition of a basic 

domain of the game, we think of G as a connected pseudo-

multigraph.  This accords with viewing the computational 

process as an integrated process, and is consistent with 

conventional views of computation. 

 We call G a pseudo-multigraph because, while it has 

edges that connect to the insertion node x, this node is not part 

of G.  Thus, we are considering a situation in which vertices 

of edges (i.e. edges that are part of the graph) are not 

themselves considered to be part of the graph, or, using our 
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terminology, pseudo-graph.  Also, we use the term multigraph 

to denote the possibility of multiple edges between vertices.  

One associates with a computational process the possibility of 

feedback, and this is why we allow multiple edges.  Also, a 

computational system is going to have a certain 

“directionality” with respect to temporal flow.  However, this 

does not need to be built into the computational system, i.e. 

we do not need to consider the graph to be directed. 

 For a quantum Ising game that represents a mesoscopic 

system, we can have several insertion points.  This amounts 

to an obvious generalization we do not discuss.  We may also 

include several domains, with domain walls.  However, in 

this paper, we restrict our attention to one domain, only, and 

do not discuss these more complex issues.  In a way, we are 

just using the idea of a bridge between classical and quantum 

phases, since there is little evidence that mesoscopic 

phenomena is anything more than “noise”.  Thus, since we 

are developing mathematics by physical analogy, there is 

little point in delving into complications, at least at this time. 

 There are nodes, outside the pseudo-multigraph, other 

than the insertion node, to which edges of the graph lead, that 

are “measurement” points, in traditional quantum mechanics, 

but which we think of as moves in a game.  For simplicity, we 

merely think of a single such move, By,T.  We represent the 

entire computational process as By,TGAx,t.  We think of y as 

the node corresponding to the move By,T, and T as the time at 

which the measurement is made.  We refer to By,T as the dual 

state, and its entries represent the result of measurement.  As 

the state A and the dual state B represent, respectively, the 

inserted values of the computation and the output values, they 

need not represent the same type of quantities.  The 

computation always terminates, despite the possibility of 

“infinite loops” in the domain processor:  Such feedback, 

however, may strongly influence the entries of the dual state.  

(The computational process resolves itself into a finite 

pattern, including loops, that traces paths through the domain, 

and persists only from time   to time  , while looping 

behavior may persist beyond this time interval.)  As well, the 

moves in the processor (as we refer to G) are each labeled 

with the times at which the moves are made:  This “time-

orders” the processing, and delineates the various paths of the 

computation. 

 The heart of a quantum Ising game is the structure along 

a single edge, joined by vertices.  It is this structure that 

yields the mesoscopic nature of the game.  For a real 

computational device, one must think in terms of changes of 

scale to understand how an actual computational system can 

be regarded as mesoscopic.  When scale is changed, the 

structure of the game must be renormalized to that scale.  

While this does not alter the nature of the moves, the 

mathematical structure of the moves can change.  This scale 

exists because there are structural elements of the 

computational process along the edges.  These structural 

components would ordinarily have been relegated to noise 

that is not going to affect the outcome of the computation 

(usually), but which we are now interpreting as phase patterns 

in an Ising model. 

 Quantum mechanically, this, were it merely a quantum 

system, would correspond to a system of pseudo-particles, i.e. 

coherent aspects of an underlying quantum system.  However, 

we treat a mesoscopic system as inherently an Ising game, 

and, as opposed to quantum mechanics, the phase structure of 

Ising games, quantum or not, will always be nonlinear.  The 

underlying paradigm of Hilbert space for quantum mechanics, 

or the subtler paradigm of Banach space (think:  Wavelets) 

for information theory are only first approximations in a game 

structure.  In a very short paper such as this, one can hardly 

expect to address the issues involved in nonlinear phenomena, 

renormalization group theory, and even beyond this into 

systems theory.  We will end our mathematical discussion 

instead with an extremely simple example to illustrate 

something of what is involved. 

 

4 A simple example 

 For the purposes of illustration, we picture the state A as 

being formed from two numerical matrices, with arbitrarily 

chosen entries: 

   [
   
  

]  [
  
   

] (1) 

This describes a “state” at a vertex, i.e. we picture that a 

“move” was made that resulted in this state, at time    .  

One can think of this as some “intentional” move made by a 

human (or an “artificial” computing device) or as resulting 

from some “impersonal” move of nature (we do not think of 

games as necessarily related to “willful” intent).  We have 

split the state into two “spin” states, where we picture that the 

underlying quantum spin system consists of just two spins 

(with spin operators acting on this state, spin 1 operator acting 

on the first matrix and spin 2 operator acting on the second).  

An Ising model with two spins (which we regard as “nearest-

neighbors” for the example) isn’t much of an Ising model, 

but, as we stated, we need to keep the example simple for this 

short paper.  In addition, a better treatment would work with 

“renormalized” systems. 

 We will take one time step “to produce” the next 

“move”.  You can visualize this as the time evolution along a 

single edge.  We are not going to get into complications about 

time ordering involving multiple edges or more complex time 

evolution along the edge, nor are we going to consider the 

resulting “move” as involved with quantum measurement, 

although it could be thought of as a quantum state for a 

determination of an amplitude from some “experimental” 

arrangement associated with the computation. 

 We can think of the time evolution between vertices, i.e. 

from one move to the next, as an incremental process, marked 

off by time increments and referring to progressive 

transformations along the edge joining the two vertices.  The 

“arrow of time” supplies a natural direction for the edge.  One 

vertex is associated with time     while we can suppose 

that the other vertex is associated with time    .  For 

simplicity, let us suppose that we need consider only two 

segments along this edge, each of “duration”,       :  one 
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(interval 1) from time     to     ⁄ , and another (interval 

2), from     ⁄  to    .  We will treat the process in each 

time interval as being represented as a simple perturbation 

from the identity operator.  We can take such operators as 

simple exponentials of matrices.  Thus, the matrices can 

simply be built from the Ising Hamiltonian.   

 These Hamiltonian operators are called such, by virtue 

of using exponentiation of matrices, with an analogy to the 

manner in which the Ising model is constructed, and not 

because of any symmetry considerations.  For example, they 

need not be Hermitian operators.  One is dealing with the 

basic way in which the computational system operates 

between moves.  These moves would be associated with our 

usual expectations on computational resolution of an 

algorithm, while the intermediate processing that occurs 

along an edge relates to nonlinear or nonequilibrium aspects 

of computation that under normal, macroscopic circumstances 

we would merely regard as noise. 

 What would these computational operators, relating to 

what we previously viewed as noise, perhaps, look like?  We 

suggest a very simple Ising-like model be used for this, 

because of the versatility of such models as well as their 

simplicity.  For the Hamiltonian operator,   , in the first time 

interval from     to     ⁄ , we will use a simple 

symmetrized operator for our example, 

 

              (2) 

where    and    are 2 x 2 matrices, the matrix    applying to 

the first “component” matrix of   in (1), and    to the second.  

We can picture these matrices as having simple numerical 

components, as the matrices for   have.  In general, we would 

want to think of the Hamiltonians as having polynomial 

components.  The approach we can take to devising these 

operators can be based either on actual experimental data or 

numerical simulations of the mesoscopic domain, or can be 

thought about in terms of overlapping graphical structures. 

 It is worthwhile to make a few comments about this 

latter possibility.  We have already mentioned, in a previous 

section, that we can view the computational structures as 

having domains, with an integrated level of algorithms 

associated in each domain, and there being a certain barrier 

between domains, i.e. domain walls analogous with 

ferromagnetism.  On the other hand, we can also think of the 

integrated algorithmic structures as overlapping, the moves of 

one structure corresponding to certain vertices, and the moves 

of another structure to others.  In a certain restricted area, the 

graph of one structure might be “fine-grained” relative to 

another structure.  Then, between two consecutive moves of 

the coarse-grained algorithm, there may be several 

intermediate steps of the fine-grained algorithm.  These 

intermediate steps could be viewed as the processes along an 

edge of the graph associated with the coarse-grained 

algorithm. 

 To persist with our picture of a quantum Ising game, we 

use a “Planck’s constant”,  , which is merely taken to be 

some scale factor.  The time evolution, over the first time 

interval,      ⁄ , from     to     ⁄ , is given (just for 

the purpose of our example) by the “rotation”, 

 

            ⁄   (3) 

We will not consider the effect of such an operator in 

“deflecting” the game process.  The level of analysis goes 

beyond this paper.  This is a “quantum-like” step.  We can 

also consider “thermal-like” steps.  For example, we can 

require the following time step, from     ⁄  to    , to be 

a thermal-like time-step, involving some real-number, γ, 

which we can think of as a reciprocal temperature (multiplied 

by “Boltzmann’s constant”), with a reciprocal time dimension 

(i.e. γ is a rate).  Suppose that the Hamiltonian operator that 

we have constructed for this second time step is    (which 

need not be the same as   , either in form, or in detailed 

assignments of components).  This thermal time step is 

associated with the “compression”, 

 

              (4) 

Since we have made allowance for only two processes (3) and 

(4) along the edge, if we call the move at time 1,  , we can 

describe this segment of the Ising game (such an impersonal 

game!) by 

 

                         ⁄    (5) 

Here,   is some state, just as  .  This takes us through a 

simple computation along an edge and completes our 

example.  Note that because the Hamiltonians are just 

organized as part of a computation, the types of entries, e.g. 

real vs. complex, are unconstrained.  Therefore, as well, the 

separation between quantum-like and thermal-like operators 

is merely artificial.  We used specific numbers as components 

for the matrices, but one can leave the entire computation 

formal, using polynomials as components (or perhaps more 

general types of objects).  

 

5 Conclusion 

 Besides the very limited nature of the example we gave 

in Sec. 4 (constrained due to the shortness of this paper), there 

is also the question of the computations that can be 

encompassed within the context of a quantum Ising game.  It 

is necessary, first, to point out that such a game addresses 

essentially both nonlinear and nonequilibrium aspects of 

modeling.  The game does not fall into the context of 

quantum field theory or quantum mechanics, although it does 

provide a context for discussion of renormalization, beyond 

the current theory of renormalization group. 

 In our example, we supplied just a very simple, Ising-

like structure for the operators.  Even this is not simple to 

investigate, as one is dealing with whole graphical structures 

related to a Hamiltonian, not to mention the graphical 

structure of the “moves”.  This supplies the possibility of 

realizing quite an intricate set of scales to consider in the 

context of renormalization, but one also wonders how to 
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develop this into a recognizable pattern of computations.  

When a mesoscopic level is contemplated, even in the very 

simple way we approach it here, the physical significance is 

not apparent.  One suggestion would be to study this from the 

viewpoint of scalars, rather than 2 x 2 matrices as we have 

done here.  The Hamiltonian structure can be related to 

patterns beyond the simple Ising-like patterns, using operators 

that have polynomial form, for example. 

 The two-level graphical structure involved with a 

quantum Ising game is important to emphasize.  The game 

structure is associated with vertices, and the time evolution 

along edges, much like quantum field theory, we have 

associated with Ising-like Hamiltonians.  The overlapping 

possibility for different scales, along the edges, is, we feel, 

essential to considering extending the renormalization group 

theory slightly, using the game structure.  The unconventional 

physical context of the theory we have discussed may suggest 

that we are proposing some speculative physical theory.  This 

is not the case.  The discussion is oriented toward a 

mathematical framework only, and one that introduces (via 

the edge processes) a mesoscopic framework for thinking 

about computation. 

 Although this does not lead to the possibility of treating 

computation as a natural phenomenon, it certainly suggests 

this viewpoint.  We can then ask ourselves what sort of 

physical systems might eventually provide an environment 

for scientific prediction, based on treating computation in this 

manner.  Because human social organizations seem so 

obviously to allow treatment in a game framework, such 

structures might eventually fall in the category of mesoscopic 

computational systems.  We can then think of the possibility 

of developing an associated scientific theory that might have 

predictive capabilities in the social sciences, not simply the 

physical sciences.  At this time, available experimental work 

on mesoscopic systems (in the physical sciences) is not 

sufficiently advanced to encompass some extension of the 

renormalization group theory, using this approach, other than 

in a very speculative way. 

 In future work, we would like to discuss some of the 

major points that we have only been able to touch on above.  

Furthermore, although the current theory of quantum Ising 

games is purely mathematical, with progress in experimental 

work on mesoscopic phenomena, a physical theory of 

computation, i.e. as a natural phenomenon, may result from 

the Ising game framework.  Often, such a simple framework 

can eventually lead to some significant insights.  As 

mentioned in the introduction, computing devices are 

impinging more and more on the quantum realm, and such a 

theory may be quite relevant in the near future. 
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A Modified EMD Algorithm and its Applications
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Abstract— The classical EMD algorithm has been used ex-
tensively in the literature to decompose signals that contain
nonlinear waves. However when a signal contain two or
more frequencies that are close to one another the decompo-
sition might fail. In this paper we propose a new formulation
of this algorithm which is based on the zero crossings of the
signal and show that it performs well even when the classical
algorithm fail. We address also the filtering properties and
convergence rate of the new algorithm versus the classical
EMD algorithm. These properties are compared then to
those of the principal component algorithm (PCA). Finally
we apply this algorithm to the detection of gravity waves in
the atmosphere.

Keywords: Filtering, EMD algorithm

1. Introduction
In scientific literature there exist many classical sets of

functions which can decompose a signal in terms of "simple"
functions. For example Taylor or Fourier expansions are
used routinely in scientific and engineering applications.(and
many other exist). However in all these expansions the
underlying functions are not intrinsic to the signal itself and
a precise approximation to the original signal might require
a large number of terms. This problem become even more
acute when the signal is non-stationary and the process it
represents is nonlinear.

To overcome this problem many researchers used in the
past the "principal component algorithm" (PCA) to come
up with an "adaptive" set of functions which approximate
a given signal. A new approach to this problem emerged
in the late 1990’s when a NASA team has developed the
"Empirical Mode Decomposition" algorithm(EMD) which
attempt to decompose a signal in terms of it "intrinsic mode
functions"(IMF) through a "sifting algorithm". A patent for
this algorithm has been issued [1].

The EMD algorithm is based on the following quote [2]:
"According to Drazin the first step of data analysis is to

examine the data by eye. From this examination, one can
immediately identify the different scales directly in two
ways: by the time lapse between successive alterations of
local maxima and minima and by the time lapse between
the successive zero crossings....We have decided to to adopt
the time lapse between successive extrema as the definition
of the time scale for the intrinsic oscillatory mode"

A step by step description of the EMD sifting algorithm
is as follows:

1) Let be given a functionf(t) which is sampled at
discrete times{tk, k = 1, . . . n}.

2) let h0(k) = f(tk).
3) Identify the max and min ofh0(k).
4) Create the cubic spline curveMx that connects the

maxima points. Do the same for the minimaMn. This
creates an envelope forh0(k).

5) At each timetk evaluate the meanmk of Mx andMn

(mk is referred to as the sifting function).
6) Evaluateh1(k) = h0(k) − mk.
7) If norm of ||h0 − h1|| < ǫ for some predeterminedǫ

set the first intrinsic functionIMF1 = h1 (and stop).
8) if the criteria of (7) are not satisfied seth0(k) = h1(k)

and return to (3) ("Sifting process").
The algorithm has been applied successfully in various

physical applications. However as has been observed by
Flandrin [3] and others the EMD algorithm fails in many
cases where the data contains two or more frequencies which
are close to each other.

To overcome this difficulty we propose hereby a modifi-
cation of the EMD algorithm by replacing steps4 and5 in
the description above by the following:

4. find the midpoints between two consecutive maxima
and minima and letNk be the values ofh0 at these points.
5. Create the spline curvemk that connects the pointsNk.

The essence of this modification is the replacement of
the mean which is evaluated by the EMD algorithm as the
average of the max-min envelopes by the spline curve of
the mid-points between the maxima and minima. This is
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in line with the observation by Drazin (which was referred
to above) that the scales inherent to the data can be educed
either from the max-min or its zero crossing. In the algorithm
we propose hereby we mimic the "zero-crossings" by the
mid-points between the max-min.

It is our objective in this paper to justify this modifi-
cation of the EMD algorithm through some examples and
theoretical work. The plan of the paper is as follows: In
Sec.2 we provides examples of signals composed two or
three close frequencies (with and without noise) where the
classical EMD algorithm fails but the modified one yields
satisfactory results. In Sec.3 we carry out analytical analysis
of the two algorithms which are applied to the same signal.
In Sec.4 we discuss the convergence rate, resolution and
related issues concerning the classical and new "midpoint
algorithm" . Sec.5 address the application of this algorithm
to atmospheric data and in Sec.6 we compare the EMD and
PCA algorithms

2. Examples and Comparisons
Extensive experimentations were made to test and verify

the efficiency of the modified algorithm. We present here the
results of one of these tests in which the signal contains three
close frequencies. (In our tests we considered also the effects
of noise and phase shifts among the different frequencies)

f(t) =
1

3
[cos(ω1t) + cos(ω2t) + cos(ω3t)] (1)

where

ω1 = 12ω0, ω2 = 10ω0, ω3 = 8ω0, ω0 =
π

256
.

To apply the EMD algorithm to this signal, we used a
discrete representation of it over the interval[−2048, 2048]
by letting tk+1 − tk = 1, k = 1, . . . , 4097.

The results of the signal decompositions into IMFs and
a comparison these IMFs with the frequencies present in
the original signal are presented in figures1 − 5. In all
these figures the red lines represent the frequencies in the
original signal (or its power spectrum) and the blue lines
the corresponding intrinsic mode functions or their power
spectrum which were obtained by the midpoint algorithm.

Fig. 1 is a plot of the data for the signal described by
(1). Fig. 2 represents the first IMF in the decomposition
(versus the leading frequency in the data) while Figs.3− 5
depict the spectral density distribution for the first three IMFs
versus those related to the original frequencies in the data.
It should be observed that although the amplitude of the
spectral densities in these plots are different (especially for

IMF 3) the maxima of the spectral density in each plot is
very close to the original one.

The EMD algorithm is a high pass filter. For then −
th iteration of the filter its efficiency is measured by the
parameterα which is defined by

Yn = αnYn−1 + α(Xn − Xn−1)

where Xk and Yk are the input and output of thek − th

iteration. Fig6 present the value of the parameterα as a
function of the iteration number for first IMF derived from
the data of the signal in (1).

3. Some Analytical Insights
To obtain analytical insights about the performance of the

EMD-midpoint algorithm we considered the following signal

f(t) =
1

2
[cos(ω4t) + cos(ω5t)], ω4 =

3π

64
, ω5 =

π

32
. (1)

Since the ratio of the frequencies in this signal is a rational
number the signal is actually periodic with periodp = 128
(See Fig.7) and the behavior of the classical versus the mid-
point algorithm can be delineated analytically (i.e without
discretizations).

On the interval[0, p] the extrema of the signal are given
by df

dt
= 0 and therefore it is easy to construct the spline

approximationSmax(t), Smin(t) to the maximum and min-
imum points and compute their average. Similarly we can
find the midpoints between the maxima and minima and
evaluate the corresponding spline approximationSmid(t) to
the signal at these points. after one iteration of the sifting
process the "sifted signal" is given respectively by

hmn(t) = f(t) −
Smax(t) + Smin(t)

2
, (2)

and
hmid(t) = f(t) − Smid(t). (3)

The efficiency of the two algorithm can be deduced by
projecting these new signals on the Fourier components of
the original signal. To this end we compute

amn =

∫ p

0

hmn(t) cos(ω4t)dt, bmn =

∫ p

0

hmn(t) sin(ω4t)dt.

(4)

cmn =

∫ p

0

hmn(t) cos(ω5t)dt, dmn =

∫ p

0

hmn(t) sin(ω5t)dt.

(5)
and

amid =

∫ p

0

hmid(t) cos(ω4t)dt, bmid =

∫ p

0

hmid(t) sin(ω5t)dt.

(6)
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cmid =

∫ p

0

hmid(t) cos(ω4t)dt, dmid =

∫ p

0

hmid(t) sin(ω5t)dt.

(7)
The amplitude of the Fourier components of the two fre-
quencies in the classical EMD algorithm is

Amn =
√

a2
mn + b2

mn, Bmn =
√

c2
mn + d2

mn. (8)

Similarly for the mid-point algorithm we

Amid =
√

a2
mid + b2

mid, Bmid =
√

c2
mid + d2

mid. (9)

The objective of the sifting process is to eliminate one of
the Fourier components in favor of the other. As a result
the first IMF will contains, upon convergence, only one of
the Fourier components in the original signal. Therefore the
efficiency of the two algorithm can be inferred by comparing
Amn versusBmn and Amid versusBmid. Computing the
integrals that appear in eqs.(4)-(7) we obtain

Amn = 31.63346911, Bmn = 29.70292046, (10)

Amid = 34.19647843, Bmid = 20.81145369. (11)

These results show that after one iteration the classical EMD
did not separate the two frequencies effectively. On the other
hand the mid-point algorithm performed well.

4. Convergence Rates
To compare the convergence rates of the classical versus

the midpoint algorithm we considered three cases all of
which were composed of two frequencies. In the first case
the two frequencies were well separated. In the second case
the two frequencies were close while in the third case they
were almost "overlapping". In all cases the signal was given
by

f(t) =
1

2
(cosω1t + cosω2t)

This signal was discretized on the interval[−2048, 2048]
with ∆t = 1.

For the first case the two frequencies were

ω1 = 12ω, ω2 = 8ω, ω =
π

256
.

As can be expected both the classical and midpoint algorithm
were able to discern the individual frequencies through the
sifting algorithm. However it took the classical algorithm
59 iterations to converge to the first IMF. On the other hand
the midpoint algorithm converged in only7 iterations (using
the same convergence criteria). We wish to point out also
that the midpoint algorithm has a lower computational cost
than the classical algorithm. It requires in each iteration the

computation of only one spline interpolating polynomial.
On the other hand the classical algorithm requires two such
polynomials, one for the maximum points and one for the
minimum points.

For the second test the frequencies were

ω1 =
π

24
+

π

288
, ω2 =

π

24
−

π

288

that is the difference between the two frequencies isπ
144

.
In this case the midpoint algorithm was able to separate

the two frequencies. Fig8 and Fig 9 compare the power
spectrum of the original frequencies versus those ofIMF1

and IMF2 which were obtained through this algorithm.
Convergence toIMF1 was obtained in 18 iterations and
IMF2 was obtained by7 additional iterations.

The classical EMD algorithm did converge toIMF1 in
45 iterations but the power spectrum of thisIMF deviated
significantly from the first frequency in the signal(See Fig
10). IMF2 failed (completely) to detected correctly the
second frequency.

In third case the frequencies were

ω1 =
π

24
+

π

1000
, ω1 =

π

24
−

π

1000
.

In this case the classical algorithm was unable to separate
the two frequencies i.eIMF1 contained both frequencies
(See Fig11). The midpoint algorithm did somewhat better
but the resolution was not complete (See Fig12). Moreover
the sifting process in both cases led to the creation of "ghost
frequencies" which were not present in the original signal.

At this juncture one might wonder if a "hybrid algorithm"
whereby the sifting function is the average (or some similar
combination) of those obtained by the classical and midpoint
algorithms might outperform the separate algorithms (in
spite of the obvious additional computational cost). However
our experimentations with such algorithm did not yield the
desired results (i.e. the convergence rate and resolution did
not improve).

5. Applications to Atmospheric Data
There have been recent interest in the observation and

properties of gravity waves which are generated when wind
is blowing over terrain. In part this interest stems from the
fact that these waves carry energy and accurate measure of
this data is needed to improve the performance of numerical
weather prediction models.

As part of this scientific campaign the USAF flew several
balloons that collected information about the pressure and
temperature as a function of height. The temperature data
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collected by one of these balloons is presented in Fig.13
[6]. To analyze this signal we detrended first it by subtracting
its mean from the data. When the mid-point EMD algorithm
was applied to this detrended-signal the first IMF extracted
the experimental noise from while the second and third IMFs
educed clearly the gravity waves (the second IMF is depicted
in Fig. 14). On the other hand the classical EMD algorithm
failed to educe these waves from the detrended-signal.

Subtracting the gravity waves that were detected by the
mid-point algorithm from the detrended-signal we obtain the
"turbulent residuals" whose spectrum is shown in Fig15.
The slope of this signal in the "inertial frequency range" is
−2.7 which corresponds well with the fact that the flow in
stratosphere is "quasi two-dimensional" [7-9].

6. EMD or PCA- A Comparison
Before the emergence of the EMD algorithm an adaptive

data analysis was provided by the "Principal Component Al-
gorithm"(PCA) which is referred to also as the "Karahunan-
Loeve (K-L) decomposition algorithm". (For a review see
[10]) Here we shall give only a brief overview of this
algorithm within in the geophysical context.

Let a signal be represented by a a time seriesX (of length
N ) of some variable.We first determine a time delay∆ for
which the points in the series are decorrelated. Using∆ we
createn copies of the original series

X(k), X(d + ∆), . . . , X(k + (n − 1)∆).

(To create these one uses either periodicity or choose to
consider shorter time-series). Then one computes the auto-
covariance matrixR = (Rij)

Rij =

N
∑

k=1

X(k + i∆)X(k + j∆). (1)

Let λ0 > λ1, . . . , > λn−1 be the eigenvalues ofR with their
corresponding eigenvectors

φi = (φi
0, . . . , φ

i
n−1), i = 0, . . . , n − 1.

The original time seriesX can be reconstructed then as

X(j) =

n−1
∑

k=0

ak(j)φk
0 (2)

where

ak(j) =
1

n

n−1
∑

i=0

X(j + i∆)φk
i . (3)

The essence of the PCA is based on the recognition that if a
large spectral gap exists after the firstm1 eigenvalues ofR
then one can reconstruct the mean flow (or the large compo-
nent ( of the data by using only the firstm1 eigenfunctions
in (2). A recent refinement of this procedure due to Ghil et al
([10]) is that the data corresponding to eigenvalues between
m1 + 1 and up to the pointm2 where they start to form
a “continuum” represent waves. The location ofm2 can be
ascertained further by applying the tests devised by Axford
[11] and Dewan [7].

Thus the original data can be decomposed into mean flow,
waves and residuals (i.e. data corresponding to eigenvalues
m2 +1, . . . , n− 1 which we wish to interpret at least partly
as turbulent residuals).

The crucial step in this algorithm is the determination of
the pointsm1 andm2 whose position has to ascertained by
additional tests whose results might be equivocal.

We applied this algorithm to the geophysical data de-
scribed in Sec.5.1 with ∆ = 96 and computed the resulting
spectrum of the correlation matrixR. This spectrum is
depicted in Fig.16 . Based on this spectrum we choose
m1 = 3 and m2 = 11 we obtain the corresponding wave
component of the signal that is shown in Fig.17.

We conclude that while the PCA algorithm provides an
alternative to the EMD algorithm the determination of the
cutoff points is murky in many cases. However it will be
advantageous if one apply the two algorithms in tandem in
order to obtain a clear cut confirmation of the results.
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Abstract - Based on the theories of thermal elasticity 
mechanics and nonlocal elasticity, an elastic Bernoulli–Euler 
beam model is developed for thermal-mechanical vibration 
and buckling instability of a single-walled carbon nanotube 
(SWCNT) conveying fluid and resting on an elastic medium. 
The finite element method is adopted to obtain the numerical 
solutions to the model. The effects of temperature change, 
nonlocal parameter and elastic medium constant on the 
vibration frequency and buckling instability of SWCNT 
conveying fluid are investigated. It can be concluded that at 
low or room temperature, the fundamental natural frequency 
and critical flow velocity for the SWCNT increase as the 
temperature change increases. The fundamental natural 
frequency for the SWCNT decreases as the nonlocal 
parameter increases, both the fundamental natural frequency 
and critical flow velocity increase with the increase of the 
elastic medium constant. 

Keywords: Nonlocal elasticity; Carbon nanotube conveying 
fluid; Temperature change; Vibration frequency; Instability. 

 

1 Introduction 
  Carbon nanotubes (CNTs) discovered by Iijima [1] 

have attracted worldwide attention. Recently, the analysis of 
CNTs has been of great interest to many researchers because 
of their exceptional mechanical, electronic, electrochemical, 
physical and thermal properties [2-6]. The classic elastic 
continuum models have been widely used to study the 
vibration behavior of CNTs. Many studies related to  the field 
are depicted in the references (Yoon et al. [3,7], Reddy et al. 
[8], Wang et al. [9] and Zhang et al. [10]). It is quite essential 
to perform the vibration and buckling analysis of carbon 
nanotubes by considering the thermal effects since the 
influence of temperature change on the instability of 
SWCNTs conveying fluid is significant. Among others, the 
following researchers have already contributed to the 
development of this field: Zhang et al. [11], Wang et al. [12], 
Ni et al. [13], Li and Kardomateas [14]. The nonlocal 
elasticity theory was first initiated by Eringen [15]. The 
importance of nonlocal elasticity theory stimulated the 
researchers to investigate the properties of the micro/nano 

structures more accurately and conveniently. Application of 
nonlocal continuum theory to nanotechnology was initially 
reported by Peddieson et al. [16]. Many studies related to 
nonlocal elasticity theory are depicted in the references 
(Zhang et al. [17], Sudak [18] [26], Lu et al. [19], Zhang et al. 
[20], Wang et al. [21] and Murmu and Pradhan [22]). 
In this paper, an elastic Bernoulli–Euler beam model is 
developed for the thermal-mechanical vibration and buckling 
instability of SWCNT conveying fluid based on the nonlocal 
elasticity theory. The effects of temperature change, nonlocal 
small scale and Winkler modulus parameter on the properties 
of vibration frequency and buckling instability are 
investigated.  

2 Thermal-nonlocal beam model 

for SWCNTs conveying fluid  
 In the present study, CNT is assumed to be fixed at both 
ends as shown in Fig. 1, and embedded into an elastic 
medium such as polymer. The length of the nanotube is 
denoted as L . Here we shall neglect the gravity effect as 
usual. Thus, let the mean flow velocity and the mass per unit 
length of the fluid be U  and M , respectively. The 
governing equation for thermal vibration and structural 
instability of a CNT conveying fluid based on nonlocal 
elasticity theory can be derived as  
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                                                                                           (1) 

where x  is an axial coordinate, t  is time, ( , )w x t  is 

deflection of the CNT, E  and I  are Young's modulus and 
the moment of inertia of the cross-section of the CNT, m  is 

the mass of the CNT per unit length, K  is the Winkler  
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Fig. 1. A fluid-conveying single-walled carbon nanotube 
embedded in an elastic medium with two fixed ends. 
 
 
constant of the surrounding elastic medium described as a 

Winkler-like elastic foundation [23]. The term 0( )e a  denotes 

the small scale coefficient accounting for the small size 

effects. tN  is the constant axial force due to the thermal 

effects. It should be noted that Eq. (4) reduces to classical 

Euler-Bernoulli equation when 0tN   and 0( ) 0e a  . 

On the basis of the theory of thermal elasticity 

mechanics, the axial force tN  can be written as [24] 

1 2t x

EA
N T


 


                                                    (2) 

where 
x  denotes the coefficient of thermal expansion in the 

direction of the x -axis,   is Poisson's ratio, and T  is the 
temperature change.  

In the present study, the CNT is considered as fixed at 
both ends, therefore, the boundary conditions at the ends of 
the CNT are 

(0, ) ( , )
(0, ) ( , ) 0

w t w L t
w t w L t

x x

 
   

 
         (3) 

3 Solutions by finite element method 
 

 In the present study, the finite element method is adopted 
to determine the solutions to Eqs. (1-3). Using the finite 
element formulation, the assembled form of equation can be 
achieved as follows   

         0M W C W K W                            (4) 

where  W  is a vector of the system global displacements of 

the structure and [ ]M , [ ]C  and [ ]K  are global mass, non-

proportional damping and stiffness matrices of carbon 

nanotube conveying fluid, respectively. For a self-excited 
vibration, the solution of Eq. (4) can be written in the 
following form: 

   exp( )W W t                                                   (5) 

Substituting Eq. (5) into Eq. (4), a generalized eigenvalue 
problem can be achieved as follows: 

       2( ) 0M C K W                                 (6) 

where   and  W  are the eigenvalue and eigenvector of the 

system and can be complex numbers in general. It should be 
noted that the real part of the eigenvalue is related to the 
system damping and the imaginary parts is related to the 
system natural frequencies. To determine a non-trivial 
solution to Eq. (6), the determinant of the coefficient matrix 
must vanish, that is, 

     2det( ) 0M C K                                        (7) 

Based on the above equation, the eigenvalues of the fluid-
conveying CNTs can be computed for various parameter 
values. 

  

4   Numerical results and discussions 

 In this paper, the equation of thermal-mechanical 
vibration and buckling instability of SWCNT conveying fluid 
has been derived based on the nonlocal elasticity theory. Here 
we discuss the vibration frequency and buckling instability of 
single-walled nanotubes. The outer radii and thicknesses of 

the nanotube are assumed to be out 3.5 nmR   and 

0.34 nmh  , respectively. The mass density of CNT is 
32.3 / cmg  with Young's modulus E  of 1 TPa , the mass 

density of water is 1 g/cm3, aspect ratio out/(2 ) 100L R  , 

nonlocal parameter 0 / 0.05e a L  and Winkler constant 

0 MPaK  . As stated by Jiang et al. [25], the coefficients 
of thermal expansion for CNTs are negative at lower 
temperature and become positive at higher temperature. In the 
present study, only the low temperature is considered. The 
Poisson's ratio is considered as 0.3  [24]. The coefficient 
of thermal expansion is considered 

as 6 11.6 10x K       [26] for the case of low or room 

temperature. The natural frequency Im( )   is computed 

numerically from Eq. (7). Several results are presented on the 
variation of fundamental natural frequency of SWCNT with 
flow velocity for various parameter values. Fig. 2 depicts the 
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variation of fundamental frequency of SWCNT with flow 
velocity for different temperature changes in low or room 
temperature. As the flow velocity increases, the nanotube 
becomes more flexible and the natural frequencies get 
reduced. When the flow velocity exceeds a certain value, the 
fundamental natural frequency becomes zero and the 
nanotube becomes unstable, this corresponds to the inducing 
of instability of the SWCNT. The flow velocity producing the 
zero natural frequency is classified as the critical flow 
velocity of the system. It should be noted that the results 
presented in Fig. 2 show a similar tendency with those 
presented in Refs. [5] and [7]. As for the presence of 
temperature change in low or room temperature, the increase 
of the temperature change tends to increase the natural 
frequencies of the SWCNT as it can be detected from Fig. 2. 
Furthermore, it is noted that the critical flow velocity for the 
nanotube including the thermal effect is much larger than that 
without considering the change of temperature and increases 
with the increase of temperature change. Fig. 3 depicts the 
variation of fundamental frequency of SWCNT with flow 

velocity for different values of 0 /e a L  in low or room 

temperature. As it is found from Fig. 3 that the natural 
frequency is significantly influenced by the nonlocal 

parameter 0 /e a L , while the critical flow velocity is much 

less influenced by the nonlocal parameter 0 /e a L . The 

nonlocal parameter 0 / 0e a L   denotes the result obtained 

by classical Euler beam model. As the nonlocal parameter 
increases, the fundamental natural frequency decreases. Fig. 4 
presents the variation of fundamental frequency of SWCNT 
with flow velocity for different values of Winkler constant 
K  in low or room temperature. It is found that both the 
natural frequency and critical flow velocity are significantly 
influenced by Winkler constant. As the elastic medium 
constant K increases, the fundamental frequency also 
increases, which is reasonable since increasing the elastic 
medium constant makes the SWCNT stronger. The critical 
flow velocity also increases with the increase of the elastic 
medium constant K. Based on the results in Figs. 2-4, the 
effects of temperature change, nonlocal parameter and elastic 
medium constant are very significant on the fundamental 
natural frequency and critical flow velocity of fluid-
conveying SWCNT embedded in an elastic medium. 

 

5 Conclusions 

 Based on the theories of thermal elasticity mechanics 
and nonlocal elasticity, an elastic Bernoulli–Euler beam 
model is developed for thermal-mechanical vibration and 
buckling instability of a single-walled carbon nanotube 
(SWCNT) conveying fluid and resting on an elastic medium. 
The finite element method is adopted to obtain the numerical 
solutions to the model. The effects of temperature change,  
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Fig. 2. Variation of fundamental frequency of SWCNT with 
flow velocity for different temperature changes in low 

or room temperature ( 0 / 0.05, 0e a L K MPa  ). 
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nonlocal parameter and elastic medium constant on the 
vibration frequency and buckling instability of SWCNT 
conveying fluid are investigated. Several results are presented 
on the variation of fundamental natural frequency of SWCNT 
with flow velocity for various parameter values. It can be 
detected that at low or room temperature, the fundamental 
natural frequency and critical flow velocity for the SWCNT 
increase as the temperature change increases. Besides, the 
natural frequency is significantly influenced by the nonlocal 
parameter, while the critical flow velocity is much less 
influenced by the nonlocal parameter. The fundamental 
natural frequency for the SWCNT decreases as the nonlocal 
parameter increases. Finally, both the fundamental natural 
frequency and critical flow velocity increase with the increase 
of the elastic medium constant. Therefore, it can be conclude 
that the effects of temperature change, nonlocal parameter and 
elastic medium constant are very significant on the 
fundamental natural frequency and critical flow velocity of 
fluid-conveying SWCNT embedded in an elastic medium.  
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Adaptive Data Structure Management for Grid
Based Simulations in Engineering Applications

Jérôme Frisch, Ralf-Peter Mundani, and Ernst Rank

Abstract—This paper describes a hierarchical adaptive data structure
management used for typical engineering simulations such as temperature
diffusion problems or computational fluid dynamic problems. Sketches for
using an adaptive non-overlapping block structured grid in a distributed
manner are deployed and sample simulations are computed to underline
the used concepts. Furthermore, a small outlook is given to future work
planned in this area, how to improve the implemented version of the code,
as well as how a parallel concept might look like.

Index Terms—data management, adaptive grid, non-overlapping block
structured grid, ghost cells, transient temperature diffusion equation, com-
putational fluid dynamics

I. MOTIVATION

In modern engineering simulations of any kind, accurate ge-
ometric representation is playing a key role for describing a
certain problem. Figure 1 shows a huge, detailed power plant
model containing more than 12,5 million triangles. It can be
seen that both very small but also large triangles are present.
If a detailed computational fluid dynamics simulation around
this power plant should be computed, there is the necessity of
simulating a large volume of surrounding air in order to reduce
the effects of boundary conditions from the enclosing domain
to the plant itself. The easiest way to perform this task is to
uniformly refine the complete computational domain until the
smallest triangle is included or until a given geometric accuracy
is reached. A reasonable resolution would contain more than
2 · 109 uniform hexahedral cells for which the solution of the
CFD problem would take even on huge super computers a quite
long time. The consequence of this uniform refinement is a very
fine grid on places where it is not mandatory from a geometric
point of view. A solution is an adaptive refinement only in ar-
eas where more information is necessary or helpful to increase
simulation results, whereas a coarse grid can be used in areas
of low information density. Unfortunately, this adaptive han-
dling of data asks for a more complex data structure to manage
geometry and boundary conditions.

In this paper, an adaptive data structure management frame-
work based on non-overlapping block structured grids is pre-
sented, in which two engineering applications are tested. The
construction of the block structured grid is based on a recur-
sive hierarchical build-up. The concept is explained and demon-
strated for a transient temperature distribution and for a compu-
tational fluid dynamics scenario.

This paper describes work in progress in order to construct a
data structure and a software framework which is able to deal
with grid refinement and is prepared in such a way that a future
parallel distribution to multiple systems for running a massive
parallel application is possible.

Adaptive grids are quite well studied in literature (c. f. Samet

Chair for Computation in Engineering, Technische Universität München, Ar-
cisstrasse 21, 80290 München, Germany. Corresponding author contact: Phone:
+49 89 289–25128, e-mail: frisch@tum.de

Figure 1. View of a power plant model [1] consisting of 12,748,510 triangular
surfaces organised in 1,185 groups.

[2], Barequet et al. [3]) and applied to specific problems (c. f.
Coelho et al. [4]), but in contrast to Coelho et al., the sub-grids
are surrounded with so called ghost cells as described later in
section II.A, even if they would not be necessary for a compu-
tation running on a machine using a shared memory approach.
The term ‘distributed’ refers to the fact that the data structure
is not allocated as one block in memory, but as a hierarchy of
grids that are all maintained separately and that are ‘coupled’
via update functions (described in section II.B) between two hi-
erarchical levels. In future, different grids reside on different
machines using a distributed computing approach, as state-of-
the-art solutions for engineering simulations, such as fluid dy-
namic problems, are almost always using a parallel approach in
order to cope with the high data amount.

As geometric representation the authors chose a block struc-
tured approach as a trade-off between geometric accuracy and
complexity in data handling. On the one hand, a fully detailed
geometric description using unstructured grids can represent the
geometry with a very high level of detail, using not too much
cells. Unfortunately the data management handling is very com-
plex and the performance is not so high. On the other hand,
structured orthogonal grids have a very easy data handling and
thus, very high performance regarding computation time but
cannot represent the geometry quite accurate. Furthermore, the
generation of input data for a structured block oriented mesh
from an arbitrary surface mesh using an octree based space par-
tition scheme is much easier to automatise than the generation
of an arbitrary unstructured mesh.

Int'l Conf. Scientific Computing |  CSC'11  | 61



II. ADAPTIVE DATA STRUCTURE MANAGEMENT

The concept of the adaptive data structure management is
based on non-overlapping block structured orthogonal grids.
Each block is constructed out of orthogonal, equidistant pseudo-
cells which can be regarded as real data cells describing fluids,
solids, etc. or they may contain a link to a sub-grid. The pos-
sibility of local refinement gives the code the ability to adapt
quite good to a complex geometry while still using orthogonal
grids on which finite difference or finite volume schemes can be
adapted fast.

(a) hierarchical 2D block
oriented data structure

Depth 0 Depth 1 Depth 2

(b) recursive construction sequence of the
2D data structure from the left hand side

Figure 2. 2D block oriented data structure

The implemented code is designed for managing 3D grids.
For the sake of simplicity some of the following examples are
given for 2D grids only even if they can be applied to 3D grids.
A scheme of the block structured grid can be seen in Figure 2.
In this case, the main grid (identifiable by the depth zero), as
well as the sub-grids, have a size of 4x4. These numbers result
from a mere choice for an adequate visualisation. To reduce the
overhead of grid management, a higher choice of cell amounts
in the main grid level is reasonable. The arrows represent links
through a pointer data structure from the respective pseudo-cell
to the sub-grid and back.

In this case, a block structured approach is preferable to a
standard octree, as a high depth would be necessary to acquire
the desired detailed geometry. Furthermore a neighbouring
search algorithm is called very often as a result of using finite
difference stencils which is quite costly for octrees. Hence, we
chose a non-overlapping block structured grid where the sub-
grids are regular and neighbouring relations of finite difference
stencils reduce to index shifting in data array access.

In order to keep the data structure as flexible as possible ac-
cording to adaptive refinements, no links with pointers from sin-
gle cells to neighbouring cells were established, but a ghost cell
scheme was used.

A. Ghost Cell Scheme

The ghost cell scheme introduces one layer of cells all around
the sub-grids as indicated in Figure 3 by gray-shaded cells
around a 4x4 sub-cell grid. From depth zero to depth one there
are two links to different sub-grids. The arrows from cells to
ghost cells on the same depth level are not pointer links, but a
mere indication which cell contents is copied during the update
step described in the next sub-section.

Depth 0

Depth 1

Figure 3. Example of the ghost cell scheme: ghost cells are marked in gray.

B. Update Step

The necessity of performing an update step and the ghost cell
scheme resembles to a parallel computation approach. Using
such a scheme for the design of the code – even in a serial case
– is speeding up the later process of advancing to a parallel ver-
sion.

The update step is performed after each computational step,
meaning that after a specific computational algorithm has been
performed on a sub-grid without following links to sub-cells e.
g., the update function is called. Some inherent synchronisation
is implied by the order of execution of update functions. Hence,
to respect the order, it is necessary to treat the complete block
structured grid in a bottom-up manner, starting on the deepest
sub-grid and ending on the main grid at level zero.

To order the sub-grids in a bottom-up fashion, two data struc-
tures, namely a queue (FIFO) and a stack (LIFO) are used. At
first, both stack and queue are empty and the main grid is added
to the structures. While the queue is used for iterating through
the different sub-grids into the depth, the stack is accumulating
links to the complete data structure in such an order that the
last elements pushed to the stack will be removed first, which
delivers the bottom-up approach.

After the ordering of the pointers to the different sub-grids,
different update procedures have to be chosen according to the
computational desires. In case of a finite difference scheme, the
total mean values for one sub-grid are computed and passed on
to the corresponding parent cell for further processing. By start-
ing from the deepest sub-grid, one can assure that only updated
values are taken into account for performing computations on
the current sub-grid.

Afterwards, cell values are copied to the corresponding
neighbour ghost cells if they exist, as depicted by the arrows
in depth one in Figure 3. Depending on a further subdivision of
the neighbour cells, different copying techniques with or with-
out averaging are applied. Having the surrounded cells as well
as mean valued cells for the next step, a new calculation using
only local values can be performed.

Thus, the main time stepping algorithm can be divided into
two parts: one purely local part where only computation is tak-
ing place and one global part where communication is involved.
Having built up the simulation in such a way, a parallelisation
can be done without big changes.
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III. ENGINEERING SIMULATIONS

In the following section, the above mentioned basics will be
applied to typical engineering simulations, namely temperature
diffusion equation (III.A) for solving transient temperature dis-
tribution problems and Navier-Stokes equations (III.B) for solv-
ing computational fluid dynamics problems.

A. Temperature Diffusion Equation

One example of grid based engineering simulations is the
time-dependent temperature diffusion equation

∂

∂t
T = α ·∆T (1)

where T represents the temperature, depending on the time t
and the spatial location, α the thermal diffusivity in [m2/s] and
∆ denoting the Laplace operator. If only a stationary solution is
required, equation (1) reduces to the Laplace equation ∆T = 0.

As numerical discretisation of equation (1), a forward Euler
scheme in time and a central difference scheme in space is used,
corresponding to a FTCS scheme.

(a) grid at t = 1500 (b) temperature at t = 1500

(c) grid at t = 3000 (d) temperature at t = 3000

Figure 4. Computation of the time-dependent temperature diffusion equation
(1) with adaptive grid refinement and time-dependent boundary conditions.

Example

An example of an adaptive computation can be seen in Figure
4, where the time-dependent temperature equation (1) is solved
on a rectangular domain of 16x16x1. In this case, the compu-
tational domain is embedded in z-direction between two plates
with Dirichlet boundary conditions T = 0. This setting was ex-
plicitly chosen over a setup with periodic boundary conditions
in z-direction, as more energy is dissipated from the system and
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Figure 5. Comparison of temperature simulation results from a uniform com-
putation (full lines) with results from an adaptive computation (dashed lines) at
the time step t = 3000 of Figure 4(c) and Figure 4(d).

the adaptive coarsening can be better observed. For the sake
of simplicity, only x and y coordinates are mentioned further
on, even if a 3D computation was performed. As material, steel
with a thermal diffusivity α= 1.172 · 10−5 m2/s was chosen.

The boundary cells of the domain have uniform temperature
boundary conditions set to T = 0. Only a given obstacle of
the size of one cell on the top level has a Dirichlet temperature
boundary condition of T = 200. The boundary condition of the
‘hot’ cell is updated every time step t according to the relation
ihot = 8 + 5 · bcos (2πt/1000)c, jhot = 8 + 5 · bsin (2πt/1000)c
and for all indices khot, which means that the ‘hot’ cell rotates
counter-clockwise in the domain and has a period of tperiod =
1000 s. If according to the index (ihot, jhot, khot) a new cell is
selected, all other cells are set to ‘free flow’ meaning that the
fixed Dirichlet boundary is removed, and the temperature of the
cell can change again according to the values computed by the
central difference stencil.

If a higher accuracy than 16x16x1 cells is desired, there are
generally two possibilities. The easiest way is to increase the
domain size uniformly to 128x128x1 e. g. As consequence, the
domain consists now of 16,384 cells but no big changes to the
code have to be made as only a different grid size has to be used.
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A second, more complex way is an adaptive refinement as dis-
cussed in section II. Here only cells of interest get a higher res-
olution. In this example, cells from the top-level are refined by
sub-grids of 2x2x1. This value is chosen for better visualisation
results. From the point of view of computational overhead re-
garding grid management, it would be better to choose a higher
value of cells per sub-grid.

According to the computation of the maximal and minimal
temperature gradient between neighbouring cells, adaptive re-
finement or coarsening is applied to give a high accuracy regard-
ing computational results using minimal cell amounts which re-
duces computational time. The example shown in Figure 4 uses
three sub-levels of grids 2x2x1 with an average total amount of
cells of 3,400. This is around 4.8 times less cell usage than in
the uniform case at the same level of accuracy. Unfortunately
the grid management is also more complicated and some aver-
aging of values are applied in regions of coarsening.

Figure 5 shows a qualitative comparison between uniform
and adaptive computation methods in terms of accuracy. The
maximal temperature error from the adaptive to the uniform
computation method in Figure 5(a) is around 12.5% and in Fig-
ure 5(b) about 8.0%. However, the adaptive version is approxi-
mately 1.5 times faster than the uniform computation.

These values can be even sped up by using a numerical more
reasonable block size. As stated before, this example used a
main grid size of 16x16x1 and the sub-grid size was chosen
to 2x2x1 with three subdivision steps. When a sub-grid size
of 4x4x1 is used with two subdivisions, compared to a uni-
form computation using 256x256x1 cells, the computation of
the adaptive grid is 4.3 times faster than the uniform grid using
7.1 times less cells with a maximal error in temperature under
10%. Choosing a higher sub-grid size will be even more rea-
sonable and give better results.

B. Navier-Stokes Equations

As a second example for grid based engineering simulations,
an incompressible, isothermal Newtonian fluid flow without
any acting external forces is simulated using the Navier-Stokes
equations:

~∇ · ~u = 0 , (2)
∂

∂t
~u+

(
~u · ~∇

)
~u = −1

ρ
~∇p+ ν∆~u . (3)

where ~u and p are the unknown velocities and pressure, t rep-
resents the time, ρ the density and ν the viscosity of the fluid.
Further detailed information might be found in Hirsch [5] or
Ferziger and Peric [6].

B.1 Numerical Discretisation Schemes

In the example at hand, a finite volume scheme is used for
spatial discretisations and a finite difference scheme for tem-
poral discretisations. For the sake of simplicity, the first tests
are performed using an explicit Euler scheme for the tempo-
ral discretisations in order to test the above described adaptive
block-oriented data structure. In a later stage it is planned to
adopt a semi-implicit temporal discretisation. Furthermore, a
fractional step or projection method is applied for solving the

(a) Re 100 (b) Re 400

(c) Re 1000 (d) Re 3200

Figure 6. Streamline patterns in the lid-driven cavity with a grid resolution of
101x101 for different Reynolds numbers.

time-dependent incompressible flow equations. This method is
based on a iterative procedure between velocity and pressure
during one time step.

Omitting the pressure term, the momentum equations are
solved for intermediate velocities ~u∗:

~u∗− ~un

∆t
= −

(
~un · ~∇

)
~un + ν∆~un . (4)

The superscript ∗ denotes intermediate values and the super-
script n values at time step n, which are fully known. In the
second step, the pressure term at the next time step n+1 is used
to correct the resultant intermediate velocity field leading to the
velocity field at the new time step n+ 1:

~un+1− ~u∗

∆t
= −1

ρ
~∇pn+1 . (5)

The divergence free velocity field at step n+ 1 can be guaran-
teed by computing the divergence of (5) and applying the conti-
nuity equation (2):

ρ

∆t

(
~∇ · ~un+1− ~∇ · ~u∗

)
= −∆pn+1 (6)

∆pn+1 =
ρ

∆t
~∇ · ~u∗ . (7)

Equation (7) represents a Poisson equation for the pressure,
which has to be solved to compute the velocity field for the next
time step, using (5).

B.2 Staggered versus Collocated Grid Arrangements

While applying a spatial discretisation scheme, it is possi-
ble to choose between different settings. In a staggered grid
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approach, not all variables are represented at the same point
in space. Usually partially staggered arrangements are used,
where pressure and other scalar terms are situated at the cell
centre, whereas the velocities are positioned at the respective
cell surfaces. This arrangement has the major advantage that the
velocities are strongly coupled to the pressure values and no os-
cillations occur applying the projection method. Disadvantages
are the more complicated handling in case of non-orthogonal
grids or when applying multigrid solvers.

In collocated grids, all variables are defined in the cell centre
which simplify the usage of non-orthogonal grids or advanced
multigrid solvers. On the other hand, it can be shown that the
solution of equation (7) leads to a so called odd-even decou-
pling which introduces non physical pressure oscillations if no
special care is taken. More details can be found in Hirsch [5] or
Ferziger and Peric [6].

The code described here uses a collocated grid arrangement
due to the fact that in later phases of this project the authors
plan to use sophisticated numerical solvers such as multigrid
methods.
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Figure 7. Comparison of simulation results (lines) with results of Ghia et al.
(points) for the lid-driven cavity

B.3 Validation Using the Lid-Driven Cavity Example

For the validation of the above described code, the lid-driven
cavity example is used. This example consists of a square do-
main of unit length where the upper boundary wall moves with
constant velocity u= 1. Thus, only shear driven forces from the
no-slip boundaries are transferred to the initially resting fluid.
Reference solutions for comparison where taken from Ghia et
al. [7].

Figure 6 shows a streamline plot for different Reynolds num-
bers of Re= 100, Re= 400, Re= 1000, and Re= 3200 com-
puted using the above mentioned code and a grid spacing of
101x101. All the validations and computations were done in a
first step only in two dimensions, even if the data structure is
designed for three dimensions.

For getting a better view of the numerical errors introduced
by the discretisation technique e. g., detailed comparisons were
made in Figure 7(a) and 7(b). It can be seen, that for Reynolds
numberRe= 100 the computed values match the reference val-
ues used by Ghia et al. quite well. But the higher the Reynolds
number is, the higher the divergence between the computed val-
ues and the reference values gets, even if the characteristic be-
haviour can still be observed.

Computations with a higher geometric resolution and a smal-
ler time step size for different Reynolds numbers show that a
finer time step has a much higher impact as soon as the spatial
discretisation is reasonably small. This is a numerical artefact
of using the explicit Euler time scheme for temporal discreti-
sation and shows that for simple tests of the data structure, the
explicit scheme is adequate, but for later real case studies, a
higher temporal discretisation technique has to be used.

Figure 8 shows the magnitude of the velocity vector ~u for an
uniform and an adaptive computation of the lid-driven cavity
example at Re= 100. The base grid is chosen to 21x21 and the
sub-grid size to 5x5 for display reasons and the time step is set
to 10−4 s.

The accuracy of the computation is indicated in Figure 9. It
can be seen, that the coarse grid of 21x21 is not reaching the
reference values of Ghia et al., as the grid is too coarse to de-
liver accurate results. An adaptive mesh refinement as depicted
in Figure 8(b) results in much better accuracy, even if the ref-
erence values are not quite reached. This is due to the interpo-
lation effect of the grid changes from coarse to fine. In order
to keep the computation algorithms as simple as possible, some
trade-off was accepted and a numerical error was introduced. At
the moment, the authors are working on reducing the numerical
error while still keeping a simple scheme regarding numerical
computation and data exchange from the different grid levels.

First parallel computations were done using a shared memory
OpenMP concept. In this first implementation, only compu-
tational intensive nested loops of the Navier-Stokes equations
were parallelised. Hence the update step mentioned in II.A is
still running as serial procedure and is dominating the possible
speedup as well as the parallel efficiency.

Computational results of the parallel speedup and efficiency
are depicted in Figure 10. In order to get a better comparison,
three different architectures and different grid sizes were used.
The used architectures include an Intel Core 2 Quad Q9650
(3.00 GHz), an Intel Core i7 870 (2.93 GHz), and an Intel Xeon
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(a) uniform grid

(b) adaptive grid

Figure 8. Magnitude of the velocity vector ~u of an example computation of
the lid-driven cavity on a uniform grid using 105x105 cells with a time step
of ∆t = 10−4 s and an adaptive computation using a base grid of 21x21 and
sub-grids of size 5x5.

E3-1245 (3.30 GHz). Furthermore the same optimisation flags
were used for the Intel compiler on all architectures.

Figure 10 shows that this kind of parallelisation is not optimal
as the efficiency is dropping quite fast as soon as more processes
are used. Hence, another method has to be deployed when more
cores or processes are involved, for which the data structure was
designed to distribute the sub-grids to different processes using
a message passing concept. This parallelisation will be subject
to further investigations.

IV. OUTLOOK TO PLANNED WORK FOR THE FUTURE

As this paper describes work in progress, the numerical er-
ror using an adaptive grid discretisation scheme has still higher
errors than expected. The next steps will accordingly be, to im-
prove the numerical scheme for the distribution of the values
from one grid part to the other, especially in between coarse
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Figure 9. Plots comparing velocities with the reference solution of Ghia et al.
with an adaptive computation on a 21x21 coarse grid only (marked uniform grid
in plots) and an adaptive computation depicted in Figure 8(b) (marked adaptive
grid in plots)

and fine cells.
As mentioned before, a higher order temporal discretisation

scheme has to be implemented in order to increase the time step
size and still get reasonable results.

A next step is to exploit the special design of the code in order
to implement a parallel concept. As mentioned in section II, the
local computations on the grid can be executed in parallel while
the communication step needs global access and, thus, synchro-
nisation between the sub-grids is necessary. A good distribution
of sub-grids to different processes depending on the communi-
cation layout has to be chosen to ensure minimal communica-
tion effort. One master process should not be handling all the
communications but delegate them to separate handlers who or-
ganise communication between the working nodes to ensure an
excellent load balancing and efficient communication patterns
as depicted by Mundani et al. [8].

V. CONCLUSION

In this paper, we have presented an adaptive data structure
management for the simulation of engineering problems such as
the temperature diffusion equation or the Navier-Stokes equa-
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Figure 10. parallel speedup and efficiency computed on shared memory ma-
chines using different architectures and different grid sizes

tions. Example applications were computed as far as the pre-
sented code is implemented at the moment. As soon as the tasks
described in section IV have been finished, next steps will com-
prise the improvement of the numerical algorithms. The adap-
tive implementation of the finite difference grid as well as the
finite volume grid have shown promising results and the authors
look forward to further increase efficiency and handle real world
problems rather than test case scenarios.

The ultimate goal is to compute an adaptive fluid-flow simu-
lation around the power plant model introduced in the motiva-
tion part in order to compare the results in terms of accuracy and
performance between a parallel adaptive computation versus a
pure uniform one.
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Abstract 

 

Darunavir is a second-generation HIV-1 

protease inhibitor.  Here I provide a 

computational docking analysis of  Darunavir 

with the active site of the HIV-1 mutant L76V 

protease. The relatively low binding energy and 

high inhibition constant of Darunavir with the 

mutant protease suggests that Darunavir would 

not be as effective against this mutant as it would 

against other HIV-1 proteases.   These results 

are consistent with clinical observations and 

demonstrate the utility of computational docking 

assessments of HIV-1 protease inhibitors. 

 

 
Keywords: HIV-1,  protease inhibitor,  

Darunavir, L76V 

 

 

1.0  Introduction 

 
     Darunavir ([(1R,5S,6R)-2,8-

dioxabicyclo[3.3.0]oct-6-yl] N-[(2S,3R)-4- 

[(4-aminophenyl)sulfonyl- (2-

methylpropyl)amino]-3-hydroxy-1-phenyl- 

butan-2-yl] carbamate; [8]) is a second-

generation protease inhibitor (PI), designed 

specifically to overcome problems with the 

older therapeutics in this class, such as 

indinavir ([7]), which had severe side 

effects,  required a high therapeutic dose, 

was costly to manufacture, and showed a 

disturbing susceptibility to drug resistant 

mutations.  

     Darunavir was designed to form robust 

interactions with proteases from many 

strains of HIV,  including those from 

treatment-experienced patients with multiple 

resistance mutations to PIs ([3], [9]).   In the 

clinic, HIV-1 mutants containing the L76V 

protease have exhibited resistance to 

Darunavir ([6]). 

 

2.0  Method 
 

     The general objective of this study  was 

to computationally assess the binding energy 

of the active site of the crystallized HIV-1 

protease L76V with  Darunavir.    Unless 

otherwise noted, all processing described in 

this section was performed on a Dell 

Inspiron 545 with an  Intel Core2 Quad CPU 

Q8200 (clocked @ 2.33 GHz) and 8.00 GB 

RAM, running under the Windows Vista 

Home Premium (SP2) operating 

environment.   

     Protein Data Bank (PDB) 3OY4 is a 

structural description of the crystallized 

HIV-1 L76V protease complexed with 

Darunavir ([1]).   

     3OY4 consists of two chains, designated 

Chain A and Chain B. 3OY4 was 

downloaded from PDB ([1]) on 22 February 

2011.  A PDB description of Darunavir was 

extracted from PDB 3OY4 using Microsoft 

Word.  The automated docking suite 

AutoDock Tools v 4.2 (ADT, [2]) was used 

to perform the docking of Darunavir to the 

receptor.  More specifically, in ADT, 

approximately following the rubric 

documented in [4] 
     -- The water in 3OY4 was deleted  

     -- The active site of the protease was 

extracted (PDB 3OY4 identifies the active 

site as 17 amides.  Chain A contains nine of 

these amides: ASP 25,  GLY27,  ALA28,   

ASP30, VAL32,  GLY48,  GLY49,  

VAL82, ILE84.  Chain B contains  the 
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remaining eight amides: ASP25,  GLY27,  

ALA28, ASP29,  ASP30,  GLY48,  GLY49, 

ILE50.) 

     -- the hydrogens, charges, and torsions in 

the ligand and active site were adjusted in  

accordance with the ADT default 

recommendations, and finally,  the ligand, 

assumed to be flexible wherever that 

assumption is physically possible, was auto-

docked to the active site, assumed to be 

rigid, using the Lamarckian genetic 

algorithm  implemented in ADT. 

     The atomic positions of the ligand 

determined by AutoDock were compared 

with the corresponding positions in  PDB 

3OY4. 

     The ADT parameters for the docking are 

shown in Figure 1.  Most values are, or are a 

consequence of,  ADT defaults. 

 
_________________________________________________________________________________________ 

 

 

autodock_parameter_version 4.2       # used by autodock to validate parameter set 

outlev 1                             # diagnostic output level 

intelec                              # calculate internal electrostatics 

seed pid time                        # seeds for random generator 

ligand_types A C NA OA N S           # atoms types in ligand 

fld Darunavir_receptor.maps.fld      # grid_data_file 

map Darunavir_receptor.A.map         # atom-specific affinity map 

map Darunavir_receptor.C.map         # atom-specific affinity map 

map Darunavir_receptor.NA.map        # atom-specific affinity map 

map Darunavir_receptor.OA.map        # atom-specific affinity map 

map Darunavir_receptor.N.map         # atom-specific affinity map 

map Darunavir_receptor.S.map         # atom-specific affinity map 

elecmap Darunavir_receptor.e.map     # electrostatics map 

desolvmap Darunavir_receptor.d.map   # desolvation map 

move Darunavir.pdbqt                 # small molecule 

about 19.7094 29.7163 13.8994        # small molecule center 

tran0 random                         # initial coordinates/A or random 

axisangle0 random                    # initial orientation 

dihe0 random                         # initial dihedrals (relative) or random 

tstep 2.0                            # translation step/A 

qstep 50.0                           # quaternion step/deg 

dstep 50.0                           # torsion step/deg 

torsdof 12                            # torsional degrees of freedom 

rmstol 2.0                           # cluster_tolerance/A 

extnrg 1000.0                        # external grid energy 

e0max 0.0 10000                      # max initial energy; max number of retries 

ga_pop_size 150                      # number of individuals in population 

ga_num_evals 2500000                 # maximum number of energy evaluations 

ga_num_generations 27000             # maximum number of generations 

ga_elitism 1                         # number of top individuals to survive to 

                                       next generation 

ga_mutation_rate 0.02                # rate of gene mutation 

ga_crossover_rate 0.8                # rate of crossover 

ga_window_size 10                    #  

ga_cauchy_alpha 0.0                  # Alpha parameter of Cauchy distribution 

ga_cauchy_beta 1.0                   # Beta parameter Cauchy distribution 

set_ga                               # set the above parameters for GA or LGA 

sw_max_its 300                       # iterations of Solis & Wets local search 

sw_max_succ 4                        # consecutive successes before changing rho 

sw_max_fail 4                        # consecutive failures before changing rho 

sw_rho 1.0                           # size of local search space to sample 

sw_lb_rho 0.01                       # lower bound on rho 

ls_search_freq 0.06                  # probability of performing local search on 

                                       individual 

set_psw1                             # set the above pseudo-Solis & Wets parameters 

unbound_model bound                  # state of unbound ligand 

ga_run 10                            # do this many hybrid GA-LS runs 

analysis                             # perform a ranked cluster analysis 

 

Figure 1.  ADT parameters for the docking in this study 
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3.0  Results 

 
     The interactive problem setup, which 

assumes familiarity with the general L76V 

protease "landscape", took about 10 minutes 

in ADT;  the docking proper, about 31 

minutes on the platform described in Section 

2.0  The platform's performance monitor 

suggested that the calculation was more or 

less uniformly distributed across the four 

processors at ~25% of peak per processor 

(with occasional bursts to 40% of peak), and 

required  a constant 2.4 GB of memory. 
     Figure 2 shows the Darunavir/receptor 

energy and position summary produced by 

ADT.  The estimated free energy of binding 

is ~ -4.5 kcal/mol; the estimated inhibition 

constant, ~453 microMolar at 298 K. 

  

______________________________________________________________________________ 

 
 LOWEST ENERGY DOCKED CONFORMATION from EACH CLUSTER 

 ___________________________________________________ 

 

 

 

Keeping original residue number (specified in the input PDBQ file) for outputting. 

 

MODEL        1 

USER    Run = 1 

USER    Cluster Rank = 1 

USER    Number of conformations in this cluster = 1 

USER   

USER    RMSD from reference structure       = 4.508 A 

USER   

USER    Estimated Free Energy of Binding    =   -4.56 kcal/mol  [=(1)+(2)+(3)-(4)] 

USER    Estimated Inhibition Constant, Ki   =  453.28 uM (micromolar)  [Temperature = 

298.15 K] 

USER     

USER    (1) Final Intermolecular Energy     =   -8.14 kcal/mol 

USER        vdW + Hbond + desolv Energy     =   -7.85 kcal/mol 

USER        Electrostatic Energy            =   -0.29 kcal/mol 

USER    (2) Final Total Internal Energy     =   -2.49 kcal/mol 

USER    (3) Torsional Free Energy           =   +3.58 kcal/mol 

USER    (4) Unbound System's Energy  [=(2)] =   -2.49 kcal/mol 

USER     

USER     

USER   

USER    DPF = Darunavir.dpf 

USER    NEWDPF move Darunavir.pdbqt 

USER    NEWDPF about 19.709400 29.716299 13.899400 

USER    NEWDPF tran0 19.797619 32.365647 14.420779 

USER    NEWDPF axisangle0 -0.294939 -0.728755 0.618002 -160.087643 

USER    NEWDPF quaternion0 -0.290497 -0.717780 0.608695 -0.172895 

USER    NEWDPF dihe0 137.80 57.18 -171.62 146.12 -43.47 -63.08 -98.83 141.49 -179.91 -

8.52 177.40 -31.58  

USER   

USER                              x       y       z    vdW   Elec        q     RMS  

ATOM      1  C19 017 B 200      19.440  31.938  15.057 -0.17 +0.06    +0.145  4.508 

ATOM      2  C17 017 B 200      18.349  31.103  14.365 -0.22 +0.10    +0.192  4.508 

ATOM      3  O18 017 B 200      18.132  29.884  15.088 -0.22 -0.04    -0.220  4.508 

ATOM      4  C16 017 B 200      18.664  30.820  12.896 -0.26 +0.08    +0.123  4.508 

ATOM      5  N11 017 B 200      19.044  29.399  12.781 -0.18 -0.09    -0.174  4.508 

ATOM      6  S8  017 B 200      17.926  28.489  12.024 -0.30 +0.16    +0.247  4.508 

ATOM      7  O9  017 B 200      18.404  28.211  10.658 -0.23 -0.14    -0.206  4.508 

ATOM      8  O10 017 B 200      16.705  29.314  11.992 -0.31 -0.17    -0.206  4.508 

ATOM      9  C5  017 B 200      17.667  27.089  12.768 -0.20 +0.06    +0.099  4.508 

ATOM     10  C4  017 B 200      17.856  25.888  12.092 -0.18 +0.01    +0.014  4.508 

ATOM     11  C3  017 B 200      17.624  24.677  12.741 -0.19 +0.01    +0.022  4.508 

ATOM     12  C2  017 B 200      17.206  24.666  14.067 -0.19 +0.08    +0.103  4.508 

ATOM     13  N1  017 B 200      16.981  23.483  14.689 -0.16 -0.13    -0.148  4.508 

ATOM     14  C7  017 B 200      17.015  25.862  14.754 -0.32 +0.01    +0.022  4.508 

ATOM     15  C6  017 B 200      17.246  27.069  14.098 -0.29 +0.01    +0.014  4.508 

ATOM     16  C12 017 B 200      20.423  29.176  12.280 -0.20 +0.05    +0.088  4.508 
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ATOM     17  C13 017 B 200      21.069  28.011  13.031 -0.23 +0.01    +0.017  4.508 

ATOM     18  C14 017 B 200      22.578  27.929  12.804 -0.20 +0.00    +0.002  4.508 

ATOM     19  C15 017 B 200      20.756  28.100  14.528 -0.31 +0.00    +0.002  4.508 

ATOM     20  N20 017 B 200      18.702  32.887  15.876 -0.12 -0.11    -0.211  4.508 

ATOM     21  C21 017 B 200      17.951  32.546  16.921 -0.11 +0.23    +0.384  4.508 

ATOM     22  O22 017 B 200      17.791  31.427  17.386 -0.16 -0.11    -0.236  4.508 

ATOM     23  O23 017 B 200      17.350  33.657  17.592 -0.16 -0.23    -0.283  4.508 

ATOM     24  C24 017 B 200      16.328  34.362  16.908 -0.19 +0.15    +0.161  4.508 

ATOM     25  C25 017 B 200      15.103  33.522  17.213 -0.25 +0.20    +0.175  4.508 

ATOM     26  O26 017 B 200      14.749  33.954  18.529 -0.74 -0.54    -0.328  4.508 

ATOM     27  C27 017 B 200      15.089  35.327  18.703 -0.17 +0.32    +0.238  4.508 

ATOM     28  O28 017 B 200      15.743  35.561  19.951 -0.43 -0.51    -0.331  4.508 

ATOM     29  C31 017 B 200      16.054  35.692  17.585 -0.15 +0.09    +0.089  4.508 

ATOM     30  C29 017 B 200      17.110  35.944  19.739 -0.13 +0.13    +0.145  4.508 

ATOM     31  C30 017 B 200      17.200  36.405  18.294 -0.10 +0.03    +0.040  4.508 

ATOM     32  C32 017 B 200      20.345  31.137  15.992 -0.24 +0.00    +0.053  4.508 

ATOM     33  C38 017 B 200      21.778  31.599  15.849 -0.14 +0.00    -0.020  4.508 

ATOM     34  C33 017 B 200      22.395  31.523  14.609 -0.10 -0.00    -0.004  4.508 

ATOM     35  C34 017 B 200      23.715  31.932  14.448 -0.07 +0.00    +0.000  4.508 

ATOM     36  C35 017 B 200      24.431  32.401  15.543 -0.05 +0.00    +0.000  4.508 

ATOM     37  C36 017 B 200      23.819  32.478  16.788 -0.08 +0.00    +0.000  4.508 

ATOM     38  C37 017 B 200      22.495  32.069  16.947 -0.13 +0.00    -0.004  4.508 

 

 

Figure 2.  ADT's Darunavir energy and position predictions. 

______________________________________________________________________________ 

 

Figure 3 is a rendering of the active-

site/inhibitor configuration computed in this 

study. 

 

An analysis of the ligand's computed atomic 

positions showed all interatomic distances to 

the receptor were within 10% of the 

positions of those atoms as reported in PDB 

3OY4 (this shows that the computed 

docking credibly approximated the original 

crystal structure).  

 

 

 
 

Figure 3.  Rendering of Darunavir computationally docked with the active site of PDB 

3OY4 (the HIV-1 L76V mutant protease).  The inhibitor is shown in stick form.  Only the 

interior, inhibitor-containing region of the molecular surface of the active site can be 
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compared to in situ data: the surface distal to the interior is a computational artifact,  

generated by the assumption that active site is detached from the rest of the receptor. 

 

 

_____________________________________________________________ 

 

 

4.0  Discussion 

 
     The method described in Section 2.0 and 

the results of Section 3.0 motivate several 

observations: 

     1.  The relatively small binding energy (~ 

-4.6 kcal/mol) and high inhibition constant 

(~453 microMolar) of Darunavir with the 

HIV-1 L76V mutant protease suggests that 

Darunavir would not be as effective against 

this mutant as it would against other HIV-1 

proteases ([5]).  This prediction is consistent 

with clinical observations ([6]), thus 

demonstrating the utility of computational 

docking analysis in predicting the efficacy 

of HIV-1 protease inhibitors. 

     2.  The docking study reported here 

assumes that the receptor is rigid, and as a 

result, the calculation does not reflect any 

energy contributions of receptor "flexing" to  

the interaction of the ligand with native 

unliganded receptor.   

 

     3.  The analysis described in Sections 2.0 

and 3.0 assumes the protease is in a 

crystallized form (isolated at ~278 K).  In 

situ, at physiologically normal temperatures 

(~310 K), the receptor is not in crystallized 

form. The ligand/receptor conformations in 

situ, therefore,  may not be identical to their 

conformations in the crystallized form.   

     4.  3OY4 identifies highly similar sets of 

amides on each of  Chains A and B as part 

of the active site.  It is unclear whether the 

chains in situ collectively form the active 

site, or whether each chain has an standalone 

active site. 

     5.  Minimum-energy search algorithms 

other than the Lamarckian genetic algorithm 

used in this work could be applied to this 

docking problem.  Future work will use 

Monte Carlo/simulated annealing 

algorithms.  In addition, a variety of torsion 

and charge models could be applied to this 

problem, and future work will do so. 
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Abstract 

 
It is widely held that the dinosaurs were driven 

to near extinction because of the Chicxulub 

asteroid collision with the Earth about 65 

million years ago (MA).  Without doubt, 

dinosaur diversity in the fossil record after the 

collision was at most a percent of what it was 

prior to the collision.  But whether  the collision 

was the principal cause of the extinction is more 

difficult to assess.  Here I compute and compare 

models of the time series of the number of genera 

of the Dinosauria and the Mollusca in the period 

230 MA - 50 MA.  The models are agnostic 

about whether specific  events occurred, and in 

this sense do not require Chicxulub to explain 

the Dinosaurian diversity collapse. 

 
Keywords:  K-T boundary, time-series, dinosaur 

extinction, Chicxulub, Cretaceous-Paleogene 

boundary 

 

 

1.0  Introduction 
 
     Approximately 65.5 million years ago, an 

asteroid hypothesized to have a speed of ~20 

km/s and a diameter of ~10 km struck the 

ocean near present-day Chicxulub, Yucatan, 

Mexico ([1]-[3],[5]-[6]). The impact hurled 

molten rock and rock vapor into the 

atmosphere, creating, at least briefly, a 

crater nearly 100 km in diameter and 18 km 

deep ([7]), spawning fires across the planet. 

Debris from the impact and fires may have 

reduced sunlight for years.   It is widely held 

that the largest land animals, including the 

dinosaurs of the time, were driven to near 

extinction by the event ([4],[6]).  

     Without doubt, dinosaur genera diversity 

(in this paper, defined as the number of 

genera in a time bin) in the fossil record 

after the collision is at most a percent of 

what it was before the collision.  Whether 

the collision was the principal cause of the 

near extinction of the superorder Dinosauria 

([19]; hereafter, "Dinosauria"), however, is 

problematic, because there is no definitive 

evidence that the Chicxulub event caused 

that demise.  Less cataclysmic regimes, such 

as a small decrease in average annual 

surface temperature, or a persistent 

reduction in sunlight reaching the Earth's 

surface (perhaps caused by volcanic ejecta), 

could have made the planet untenable for the 

dinosaurs, who may have been highly 

sensitive to temperature-induced changes in 

food distribution ([22]).  Unfortunately, 

even these hypotheses are not uniquely 

determined by the evidence. 

     A predictive time series model ([14]) of 

the Dinosauria genus-abundance data, 

because it is inherently  agnostic about the 

occurrence of specific causes, would show 

that Chicxulub is not necessary  to explain 

the observed decline in Dinosauria diversity.  

In such a series, an observation xt is 

presumed to be a value of some random 

variable Xt; the time series {x1, x2, …xt, …}, 

a single realization of a stochastic process 

(i.e., a  sequence of random variables) {X1, 

X2, …Xt, …}. A  fundamental assumption of 

time series modeling is that the value of the 

series at time t, Xt, depends only on its 

previous values (deterministic part) and on a 

random disturbance (stochastic part). 

Furthermore, if the dependence of Xt on the 

previous p values is assumed to be linear, 

we can write ([21], p. 12) 

 

   Xt = φ1 Xt-1 + φ2 Xt-2 +… + φp Xt-p + Dt 

    Eq. 1.1 
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where {φ1, φ2, …, φp} are real constants.  Dt  

is the stochastic disturbance at time t, and it 

is usually modeled as a linear combination 

of zero-mean, uncorrelated random variables 

or a zero-mean white noise model {Dt} 

 

   Dt = Zt + θ1 Zt-1 + θ2 Zt-2 +… + θq Zt-q. 

    Eq. 1.2 

 

({Zt} is a white noise model with mean 0 

and variance σ
2
 if and only if E Zt = 0, E 

(Zt)
2
 = σ

2
 for all t, and E Zs Zt = 0 if s ≠ t, 

where E denotes the expectation.) Zt is often 

referred to as the random error or noise at 

time t.  The constants { φ1, φ2, … , φp } and 

{ θ1, θ2, … , θq } are called autoregressive 

(AR) coefficients and moving average (MA) 

coefficients, respectively.  

     Equations 1.1 and 1.2 jointly define a 

zero-mean autoregressive moving average 

(ARMA) model of orders p and q, or 

ARMA(p, q).  If each of θ1, θ2, … , θq are 0, 

Eqs. 1.1 and 1.2 define an autoregressive 

model of order p, or AR(p). 

 

     The time-series analysis method used in 

this study assumes that a series of interest 

arises from a second-order or weak-

stationary process.  Roughly put,  a process 

{Xt} is stationary if its statistical properties 

do not change over time.  (See [14], Chapter 

2 or [21], p. 14,  for a detailed account of 

weak stationarity).   

 

 

2.0  Method 
 
     Two data sets were downloaded from 

The Paleobiology Database ([8]) on 3 

January 2011  to a Dell Inspiron 545 with an  

Intel Core2 Quad CPU Q8200 (clocked @ 

2.33 GHz) and 8.00 GB RAM, running 

under the Windows Vista Home Premium 

(SP2) operating environment and  the 

Mozilla Firefox v3.6.13 browser, connected 

by a 1.5 Mbit/s DSL link to the Internet.  

The query values used to generate these data 

sets are shown in Figure 1. 

 

 

______________________________________________________________________________ 

 

 

 Dinosauria data set, 230 MA - 50 MA ([10]): 

  Output data = occurrence list 

  Output delimiter = comma-delimited text 

  Taxon or taxa to include = Dinosauria 

  Oldest and youngest intervals = 230 - 50 

  Continents = Africa, Antarctica, Asia, Australia, Europe, 

                        Indian Ocean, Oceania, North America, South America 

 

 Mollusca data set, 230 MA-50 MA ([11]): 

  Output data = occurrence list 

  Output delimiter = comma-delimited text 

  Taxon or taxa to include = Mollusca 

  Oldest and youngest intervals = 230 - 50 

  Continents = Africa, Antarctica, Asia, Australia, Europe, 

                        Indian Ocean, Oceania, North America, South America 

 
Figure 1.  Query values used to generate the data sets used in this study. 

 

_______________________________________________________________________ 
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     The time interval for the data sets, 230 

MA - 50 MA, spans the Dinosauria from 

their nominal first appearance in the fossil 

record ([19]) until well after the Chicxulub 

impact.  The Mollusca ([20]) were chosen 

for comparison with the Dinosauria because 

there is a large body of Mollusca fossil data 

available, and the Mollusca are plausible as 

a "control" for Dinosauria analysis.  By 

default, the query shown in Figure 1 returns 

data at the genus level. 

     The genus time-range files from each 

returned data set were saved.  These 

(comma-separated format)  files contain, 

among other things, the beginning (column 

bottom of range), and end (column top of 

range), times at which [8] reports a genus 

existed, one row per genus.  These range 

files were imported by Microsoft Excel 2007 

and the rows in the resulting spreadsheet 

were sorted in decreasing value of top of 

range. This sorting facilitated rapid visual 

identification of those genera that arose and 

perished in the sampled interval. 

     Excel functions were used to export 

columns bottom of range and top of range to 

a Windows text file. These text files were 

converted to UNIX textfile format using the 

Cygwin dos2unix utility.   The count_taxa 

software ([12]) running under Cygwin 

environment (itself under Vista) was then 

used to count the resulting genera ranges 

into 1 MA bins, on the hardware described 

above.  A genus was assumed to exist in 

given bin if the midpoint of that bin lay in 

the closed interval [bottom of range, top of 

range].  The output of count_taxa  is a 

genera-abundance time-series that has a 

uniform distribution of time-differences (in 

this case, 1 MA) between adjacent ime-

values.   

     The files output by count_taxa were 

imported to Mathematica using the Time 

Series add-on package ([9]).  Both data sets 

were inspected to determine that they did 

not contradict with the hypothesis that the 

Chicxulub asteroid could have been the 

cause of the demise of these taxonomic 

groups. 

 

     Stationary linear time-series models of 

each of the data sets for the interval 230-50 

MA were computed in Mathematica as 

follows (the general theory of the analysis 

can be found in [14], Chapters 2-3;  the 

entire Mathematica script used in this study 

can be obtained as noted in [18]).  Graphs of 

the time-series derived from count_taxa 

were inspected for trending.   Each of the 

genus time-range data sets was  then  zero-

meaned (i.e., the mean of the series was 

subtracted from each of the data values in 

the series).  The Hannan-Rissanen method 

([14], Section 5.1.4) was applied to the zero-

meaned series to obtain six preliminary 

models of each of the series.  The Akaike 

Information Criterion values for each of the 

models were then computed.  (The AIC is a 

penalty function that, when minimized, 

balances the risks of over-, and under-, 

fitting ([13]; [14], p. 173).)  The two models 

of each series with the lowest AIC values 

were selected for subsequent analysis.  A 

conditional maximum likelihood estimate 

([14], Section 5.2) of the parameters of each 

of the selected models was then obtained.  

The AIC values for the resulting refined 

models were then determined, and the model 

with the lowest AIC value was selected for 

further analysis.  The residuals with respect 

to the selected model were then computed, 

and  the correlation function of the residuals 

was computed and plotted to assess their 

convergence.  Finally, the portmanteau 

statistic on the set of residuals for each 

series, and chi-square statistic for the 95th 

percentile, were determined;   if the chi-

square statistic was greater than the 

portmanteau statistic, the model was 

accepted ([14], pp. 26, 166-167, 352;  [15]).   

     If no model were discovered by this 

method,  it would be strong evidence that no 

stationary linear model of the time series 

exists, and, by  implication, be a strong 

suggestion that a nonlinear or nonstationary 

event (e.g., a cataclysmic ) event is required 

to explain the Dinosaurian time series. 
The portion of the Mathematica script used 

to produce the time-series analysis for the 

Dinosauria genera-count in this study ([18]) 
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is shown in Figure 2; the script for the Mollusca series is highly similar. 

 
 

 

_______________________________________________________________________ 

 

 

Needs["TimeSeries`TimeSeries`"]; 

dinodata =  

  ReadList[ToFileName[{"C:", "cygwin", "species_abundance"},  

    "Dino_230_50_counts.txt"], {Number, Number}]; 

n = Length[dinodata]; 

μdino = Mean[dinodata[[All, 2]]]; 

meanzerodino = (# - μdino) & /@ dinodata[[All, 2]]; 

dinomodels = HannanRissanenEstimate[meanzerodino, 5, 5, 5, 6]; 

If[Head[#] === ARMAModel, Head[#][Length[#[[1]]], Length[#[[2]]]],  

   Head[#][Length[#[[1]]]]] & /@ dinomodels; 

AIC[#, 181] &  /@ dinomodels; 

{arm2} = ConditionalMLEstimate[meanzerodino, #] & /@  

   Take[dinomodels, {2}]; 

AIC[#, 181] & /@ %; 

{arm24} =    ConditionalMLEstimate[meanzerodino, #] & /@ 

   Take[dinomodels, {6}]; 

AIC[#, 181] & /@ %; 

dinores = Residual[meanzerodino, arm2]; 

dinocorr = CorrelationFunction[dinores, 12]; 

plotcorr[corr_, opts___] :=  

   ListPlot[corr, DataRange -> {0, Length[corr] - 1}, opts]; 

plotcorr[# &  /@ dinocorr, Joined -> True,  

   AxesLabel -> {"k", "ρdino(k)"]; 

PortmanteauStatistic[dinores, 12]; 

Quantile[ChiSquareDistribution[11], 0.95]; 

 

 
Figure 2.  The portion of the Mathematica script ([18], responses not shown) used to 

compute the model for the Dinosauria genera-count time-series used in this study. The 

analysis script for the Mollusca series is highly similar. 

 

_____________________________________________________________________________ 

 

 

3.0  Results 
 
     The Paleobiology Database query 

described in Section 2.0 yielded 5377 

occurrences distributed across 986 genus 

time-ranges for the Dinosauria data set, and 

111412 occurrences distributed across 3658 

genus time-ranges for the Mollusca data set. 

The total time to complete the queries and 

transmit files to the platform described in 

Section 2.0 was about one minute.   Figure 3 

shows the number of Dinosauria and 

Mollusca genera reported in [8], 230-50 

MA, 1 MA binning.  The shapes of the time 

series in Figure 3 are remarkably similar: 

roughly speaking, at any given time, on 

average the number of Mollusca genera is 

~6 times the number of Dinosauria genera. 

The mean of the number of Dinosauria 

genera is 88.5; the mean of the number 

Mollusca genera, 535.1.  The ratio of the 

mean Mollusca, to the mean Dinosauria, 

genera-count is 6.0. 
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     The data underlying Figure 3 show a 

sharp decrease in Dinosauria genera-count 

near the nominal date of the Chicxulub 

impact (~65.5 MA) , appearing to lend 

weight to the hypothesis that the collision 

was a major contributor to the demise of the 

Dinosauria.  But it is less clear that much of 

a causal connection can be inferred from this 

correlation.  By way of comparison, at ~112 

MA, 127 of the ~175,  or ~70%,  of the 

Dinosauria genera reported in [8] vanished, 

unassociated with any known asteroid 

collision with Earth. (New genera were 

being created at about the same rate as those 

that vanished, so the net genera count, as 

shown by Figure 3, decreased  only ~10%.)  

This implies there is at least one apparently 

non-asteroidal genera-extinction rate in the 

Dinosauria fossil record whose magnitude is 

comparable to that which occurred at ~65.5 

MA.  The Dinosauria genus-diversity 

collapse at 65.5 MA, therefore, could be 

explained if the relative extinction rate of 

~112 MA were in progress and few new 

Dinosauria genera were being created past 

65.5 MA.  Environmental changes less 

cataclysmic than Chicxulub, such as a small 

decrease in average annual surface 

temperature, or a decrease in sunlight 

reaching the Earth's surface (e.g., due to 

volcanic ejecta), could have catastrophically 

compromised the viability of the dinosaurs 

within a few years.  Although the 

plausibility of these alternative hypothesis 

shows  that the Chicxulub-extinction 

hypothesis is not uniquely determined by the 

evidence, the alternative hypotheses are 

themselves variously problematic. 

 

 

______________________________________________________________________________ 

 

 

 
 

Figure 3.  Number of Dinosauria (squares) and Mollusca (circles) genera in [8], 230-50 MA, 

1 MA binning.  Note the collapse of diversity in both groups beginning at ~65 MA.  Note 

also the shape similarity of these time series.  In the figure, time increases from the origin of 

the Dinosauria (~230 MA) from right to left.  The figure was generated by the Mathematica 

([9]) ListLinePlot command.   

 

______________________________________________________________________________ 

 

In any case, a time-series model is agnostic 

about whether specific events occurred, and 

such a model can be fitted to the Dinosauria 

data, showing that  the Dinosauria time 

series does not require Chicxulub per se (nor 

does it prohibit such an event). 

     In Mathematica, the expression  
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     ARMAModel[{φ1, φ2, … , φp}, 
      {θ1, θ2, … , θq}, σ

2
]  

 

specifies an ARMA(p, q) model with AR 

coefficients {φ1, φ2, … , φp}, and MA 

coefficients {θ1, θ2, … , θq}, and noise 

variance σ
2
.    The Mathematica expression  

 
   ARModel[{φ1, φ2, … , φp}, σ

2
]  

 

specifies an AR(p) model with AR 

coefficients {φ1, φ2, … , φp}, and noise 

variance σ
2
.     

 

One model for each series passed the 

portmanteau test described above: 

 

   Dinosauria model (ARM[2]): 
  ARModel[{0.786802, 

       0.154315}, 8883.25] 

 

  Mollusca model (ARMA[1,1]): 
      ARMAModel[{0.963448}, 

      {-0.118255},3634.09] 

 

The existence of the first model 

demonstrates that Chicxulub is not 

necessary to explain the Dinosaurian 

demise.  Note that the data did not require 

de-trending (e.g., by differencing; see [21] 

for details) in order to produce a model 

satisfying the test of significance described 

above.    

     The time to execute count_taxa on the 

platform described in Section 2.0 was less 

than 0.1 second per data set.  The time to 

execute the Mathematica time-series 

analysis used in this study  ([18])  was 

approximately three seconds on the same 

platform. 

 

 

4.0  Discussion 
 
Sections 2.0 and 3.0 motivate at least three 

observations: 

     1.  In this paper, a genus was assumed to 

exist throughout the interval [bottom of 

range, top of range] reported for that genus 

in the taxonomic range files described in 

Section 2.0.  More sophisticated existence 

tests that exploit various abundance 

weightings (such as geometric mean 

abundance reported in the taxonomic range 

files) are of course possible.  Whether using 

these weightings would significantly affect 

the results reported in Section 3.0 will be the 

subject of future work. 

     2.  The visual similarity of the times 

series in Figure 3 suggests that the relative 

creation and extinction rates of Dinosauria, 

and Mollusca, genera may have a common 

general dynamic, but the time series analysis 

models shown in Section 3.0 suggest 

otherwise. 

     3.  One might conjecture that the 

variance in the Dinosauria time-series model 

is dominated by the diversity collapse at ~65 

MA.  However,  careful inspection of Figure 

3 shows that this is not the case.  In 

particular, the variance by definition  is 

essentially averaged over the number of 

points in the data set.  Although the large 

standard deviation of the point at 65 MA 

contributes to this average, the  average is 

dominated by standard deviations of  180 

points whose standard deviations (the square 

root of the variance)  are small compared to 

the standard deviation of the point at 65 

MA.  In addition, at ~84  MA, the number of 

Dinosauria genera increases by ~100,  which 

is larger than the standard deviation in the 

time-series model.   
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Abstract— Sensitivity analysis is a powerful technique
which allows the exploration of a biochemical system dy-
namics. It is widely used in quantifying properties of the
system, such as robustness with respect to perturbations
in parameters. This is a critical problem in studying bio-
chemical systems, and in particular cellular dynamics, as
often some parameters for the kinetics of interaction are
poorly known. In this paper, we investigate a parametric
sensitivity analysis for mathematical models of well-stirred
biochemical systems which exhibit an oscillatory behavior.
This analysis will enable the identification of the key reaction
rate parameters and it may give important biological insight
into the mechanism that generates the oscillatory dynamics.
Numerical results on two realistic models show the excellent
performance of the proposed method.

Keywords: Stochastic modeling, sensitivity analysis, stochastic
simulation, Gillespie algorithm, oscillatory biochemical systems.

1. Introduction
Stochastic modeling and computer simulations have been

successfully used for explaining many important cellular
processes [3], [6], [16], [18]. There are currently several lev-
els of refinement used for modeling biochemically reacting
systems. Often chemical kinetic models represent cellular
processes as systems of chemical reactions. Traditionally,
these processes were modeled as continuous deterministic
systems, by ordinary differential equations. However, the
small number of some molecular species within a cell inval-
idate the hypothesis of continuity and the stochastic fluctua-
tions which are captured by the experiments are neglected by
such models [24], [25]. Therefore stochastic discrete models
are needed to accurately describe the dynamics of many
biological processes at the cellular level, where some species
have small molecular populations [3], [7], [20].

Many cellular processes have a periodic dynamics. Os-
cillatory behavior is important in the study of circadian
rhythms, of the cell cycle or of periodic neuronal sig-
nals [13]. Goodwin introduced an enzymatic control model
exhibiting an oscillatory behavior [15]. Circadian rhythms
were studied, among others, by Bagheri et al. [1], Leloup
& Goldbeter [17], Forger & Peskin [4], [5], Ruoff et

2Corresponding author: silvana@ryerson.ca
3Research partially supported by a grant from Natural Sciences and

Engineering Research Council of Canada (NSERC).

al. [21] (see also the review by Goldbeter [13]). Many key
genetic networks exhibit an oscillatory behavior. Elucidating
the mechanism which generates the oscillatory behavior is
critical for understanding the cellular dynamics. Such a
mechanism may be very complex. Often, cellular processes
involve a large number of molecular species coupled in
many regulatory interactions. Thus mathematical models and
computer simulations are essential for understanding the
nature of these interactions. Moreover, it has been observed
that the network topology alone may not be sufficient
for explaining the qualitative behavior of the system. In
several applications, for the same network of interactions the
oscillatory behavior may be present or absent, depending on
the ranges of values considered for the kinetic parameters.
Thus, knowing the appropriate network of interactions as
well as the range of such kinetic parameters are critical for
an accurate description of the system dynamics.

In this paper we introduce a new method to investigate
the sensitivity with respect to system parameters in (bio)-
chemically reacting systems. Sensitivity analysis plays a
central role in the study of biochemical systems, being an
important aid in their model construction, investigation and
validation. It quantifies the dependence of the solution of the
mathematical model on the model parameters, such as initial
molecular numbers or kinetic constants [23]. Knowledge
of robustness or sensitivity of a biochemical system with
respect to system parameters is very important, as theses
parameters may be poorly known, or they can be subject
to change with environmental or intracellular conditions.
In this case, sensitivity analysis indicates which parameters
are important and thus need to be estimated with higher
accuracy. Classical sensitivity analysis [23] focuses on study-
ing the steady-state of biochemical reaction systems. While
this remains an important problem, so is the parametric
sensitivity of their dynamic behavior, and in particular of
their oscillatory behavior. Stochastic biochemical systems
are computationally very challenging to simulate and an-
alyze, therefore designing efficient methods which will help
validate the model and study its robustness with respect to
perturbations would be an important advance.

2. Stochastic modeling and simulation of
chemical kinetics

Studying the stochastic behavior of the well-stirred bio-
chemical systems is a difficult task. An accurate model of
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biochemical reaction networks is based on the Chemical
Master Equation [12]. Most biochemical systems of practical
interest typically involve many components interconnected
in a complex manner.

We consider a biochemical system containing N reacting
species X1, · · · , XN which interact through M elemental
reaction channels R1, · · · , RM . The system is assumed well-
stirred and at thermal equilibrium, in a constant volume.
The vector of states is denoted by x(t) = (xi(t)i=1,··· ,N ),
where xi(t) is the number of Xi molecules at time t. It is a
stochastic process. To determine the dynamics of the system,
one needs to compute the state vector x(t), given that at the
initial time, t = t0, the system was in the state x(t0) = x0.

A reaction Rj is characterized by its propensity function
aj(x). The propensity function in a given state x, is defined
by aj(x)dt is the the probability that one Rj reaction will
take place in the infinitesimal interval [t, t + dt) given that
x(t) = x. The basic elemental reactions have the following
propensities:

X1
c1−→ products, propensity a1(x) = c1x1,

X1 + X2
c2−→ products, propensity a2(x) = c2x1x2,

X1 + X1
c3−→ products, propensity a3(x) =

c3

2
x1(x1 − 1).

Denote by νj ≡ (ν1j , . . . , νNj)′ the state change vector
corresponding to the reaction Rj . More precisely, νij is the
change in the number of Xi molecules after one reaction Rj

occurs. Thus, each reaction Rj causes a change x → x+νj .
The matrix S = (νij)1≤i≤N,1≤j≤M is the stoichiometric
matrix.

Chemical Master Equation: We define the probability that
the state vector at time t > t0 is x(t) = x given that at
time t0 was x(t0) = x0 by P (x, t| x0, t0) = Prob{x(t) =
x, given x(t0) = x0}. The Chemical Master Equation is
the most refined model of stochastic chemical kinetics of
well-stirred isothermal systems. It is given by

d

dt
P (x, t| x0, t0) =

∑M
j=1 P (x− νj , t| x0, t0)aj(x− νj)

− ∑M
j=1 P (x, t| x0, t0)aj(x).

It is a (very) large system of ordinary differential equations,
one for each possible state of the system subject to the M
reaction channels.

Gillespie’s Direct Method: Gillespie proposed two methods
of Monte Carlo type to compute the solution of the Chemical
Master Equation: the Direct Method and the Next Reaction
Method [10], [11]. Sample paths x(t) are generated by
computing each reaction, one at a time. Such trajectories are
calculated by specifying the reactions and the times of these
reactions with their exact probability distribution, as given by
the Chemical Master Equation. A good approximation of the
statistics for the solution of the Chemical Master Equation

is obtained when sufficiently many such sample trajectories
are simulated. We present below Gillespie’s Direct Method:
1). Calculate the propensity functions, ak(x), for 1 ≤ k ≤

M , for the current state of the system, x(t) = x, and
the sum of all propensities,

a0(x) =
M∑

k=1

ak(x) .

2). Generate two independent unit-interval uniform random
numbers r1 and r2.

3). Calculate the time to the next reaction by

τ = (1/a0(x)) ln(1/r1) .

4). Compute the index of the next reaction, the integer j
such that

j−1∑

k=1

ak(x) < r2a0(x) ≤
j∑

k=1

ak(x).

5). Update the state of the system after one reaction Rj

occurred, x(t + τ) = x(t) + νj and set t = t + τ .

3. Sensitivity analysis
Sensitivity analysis has been well-developed mainly in the

framework of ordinary differential equations. In this paper,
we explore a procedure for sensitivity analysis applied to
stochastic biochemical system models with respect to the
kinetic parameters (the reaction rate constants).

Denote the solution at time t of the mathematical model
by [xi(t,p)]i=1,··· ,N . The solution depends on the vector
of external parameters p = (p1, · · · , pm). The first order
sensitivity matrix has as elements the local sensitivities
∂xi(t,p)/∂pj . These sensitivities give a measure of how
the system dynamics is affected by changes in the values of
a parameter. A large sensitivity indicates that the system’s
behavior can change a lot with changes in that parameter.
By contrast, a small sensitivity shows that small changes
in the parameter value do not have a significant impact on
the dynamics of the system. We describe below a forward
sensitivity analysis for biochemical systems.

The reaction rate equations, which are ordinary differential
equations, may be written in the form

dx
dt

= Sv(x(t,p),p) (1)

where v(xi(t,p),p) is the M -valued vector of the reaction
rates and S is the stoichiometric matrix. A direct derivation
of the variation in time of sensitivities is obtained by differ-
entiating (1) with respect to each pj for any j = 1, 2, . . . , m:

d

dt

∂x
∂p

= S
[
∂v
∂x

(x(t,p),p)
∂x
∂p

+
∂v
∂p

(x(t,p),p)
]

. (2)

The sensitivities can then be obtained from solving simul-
taneously the system for the species (1) coupled with the
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auxiliary equations for the sensitivities (2). This is a forward
sensitivity analysis of the full system.

Often, biochemical systems involve a large number of
molecular species interacting through many reaction chan-
nels. For these large systems, the above analysis may be
computationally expensive. A more efficient method for
parametric sensitivity is presented below, based on a reduced
form of the reaction rate system which eliminates the redun-
dant state variables.

Denote by N0 the row rank of the stoichiometric matrix S.
A permutation of the rows of the stoichiometric matrix may
be performed such that the first N0 rows become linearly
independent. Thus, one obtains S = LSr ,where L is an

N × N0 matrix such that L =
[

IN0

L0

]
and IN0 is the

N0×N0 identity matrix. The reduced stoichiometric matrix
Sr is obtained from S by deleting the last (N−N0) linearly
dependent rows. With the same reordering of the entries in
the state vector x we obtain x = [xI , xD]′, where xI is the
N0-vector containing the linearly independent species and
xD is the (N − N0)-vector storing the linearly dependent
species. One obtains from (1) that

dxI

dt
= Srv(x(t,p),p) ,

dxD

dt
= L0

dxI

dt
.

Therefore xD(t) = L0xI(t) + T for all t ≥ 0, thus

T = xD(0)− L0xI(0) .

We remark that ∂T/∂p = 0 since the initial conditions do
not depend on the kinetic constants, stored in the vector p.

We only need to study the reduced reaction rate system
containing the linearly independent equations

dxI

dt
= Srv((xI(t,p),L0xI(t,p) + T),p) . (3)

Differentiating (3) with respect to the kinetic parameters p
and noticing that ∂T/∂p = 0, we derive

d

dt

∂xI

∂p
= Sr

[
∂v(t)
∂x

∂x(t)
∂p

+
∂v(t)
∂p

]

= Sr

[
∂v(t)
∂x

L
∂xI(t)

∂p
+

∂v(t)
∂p

] (4)

The initial conditions for the local sensitivities are
∂x
∂p

(0) = 0 .

We shall calculate the local sensitivities by solving the ordi-
nary differential equations (3) together with the system for
sensitivities (4) to find x(.) and ∂x(.)/∂p. We obtained thus
a forward sensitivity analysis for the reduced system. More
details on the sensitivity analysis applied to the deterministic
models of chemical kinetics can be found in [8].

While parametric sensitivity of ordinary differential equa-
tion models is a well-established research area, the paramet-
ric sensitivity of stochastic models has been much less inves-
tigated. We propose below an efficient method for sensitivity

analysis for a class of stochastic models of biochemical
kinetics.

Algorithm:
1). Construct the reaction rate equations for the system of

reactions.

2). Perform a sensitivity analysis, as described above, on
the reaction rate equations for the species of interest with
respect to the reaction rate parameters.

3). Use the sensitivity analysis performed on the reaction
rate equations as an approximation of the sensitivity analysis
of the stochastic system described by the Chemical Master
Equation.

This heuristic algorithm is based on the observation that
the investigation of the deterministic reaction rate models
for many biochemically reacting systems provides important
insight in studying their more general stochastic models,
given by the Chemical Master Equation. Our proposed
method applies to this class of biochemical systems. As
mentioned before, the intrinsic noise arises in well-stirred
(bio)chemically reacting systems due to low population
numbers of some molecular species. The intrinsic noise may
be enhanced if some reactant species are present in very
small molecular populations. By contrast, if all species have
large population numbers (at least in the thousands) for the
time interval under consideration, then the intrinsic noise
is small. In such cases, we expect the periodic dynamics
predicted by the stochastic model to be well approximated
by the oscillatory dynamics obtained for the deterministic
model. This happens, for example, for systems which are
robust with respect to molecular noise [14]. Indeed, for the
circadian rhythm model considered in [14] it was noticed
that the intrinsic noise affected only the maxima of the
oscillations, not their period, for a range of realistic values
of molecular population numbers.

Remark 1: A quantitative analysis of the stochastic system
is computationally very expensive in most realistic appli-
cations, compared to its deterministic approximation. In
practice, this procedure for sensitivity analysis based on the
deterministic part only, can be much more efficient than a
full analysis of the stochastic system.

Remark 2: Typically, the biochemical systems arising in
applications are quite large, with many reacting species and
many reaction channels. Then, identifying and analyzing the
mechanism which controls the oscillations, is a challenging
task. Often, it can not be done based on intuition and thus
a quantitative approach is required to deal with the large
amount of data.

Sensitivity analysis is an important technique for studying
this problem. First, the sensitivity of the key species involved
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in the oscillatory behavior with respect to the problem
parameters will be computed. If these key reactant species
are robust (less sensitive) with respect to certain reaction
rate parameters, then the reactions corresponding to those
parameters will not have a strong impact on the oscillations
and may be eliminated. Based on this, a subsystem can be
identified, which is responsible with controlling the oscilla-
tions. Such a simplified system will be easier to analyze and
simulate. For example, it may be simpler to find the regions
in the parameter space for which the system maintains its
oscillatory dynamics.

4. Numerical results
Lotka-Volterra model: The predator-prey model, due to
Lotka and Volterra, involves two interacting species [25].
The biological population Y1 represents the prey, while the
population Y2 is the predator. However, these populations
can be interpreted as species of a reacting biochemical
system. The reaction system and its kinetic formulation are
described in Table 1. The reactions correspond to the prey
reproduction, the predator-prey interaction and the preda-
tor death, respectively. The initial conditions are Y1(0) =
Y2(0) = 100. We study the behavior of this system for
the time interval [0, 50]. The numerical results show a good
agreement of the period as predicted by the local sensitivities
and the period of oscillations for both the deterministic
solution and the solution of the Chemical Master Equation.

Brusselator model: The model of chemically reacting
systems in Table 2 has the property that, for any initial
molecular populations of the reacting species Y1 and Y2,
the system will start oscillating after a short time. This
system is called the Brusselator, and it is an example of
a limit cycle chemical oscillator. The species A1 = 1 and
A2 = 1 are kept at a constant value. The initial conditions are
Y1(0) = 1000 and Y2(0) = 2000. The system is integrated
on the interval [0, 10]. This system is stiff. A trajectory
obtained with Gillespie’s algorithm requires the simulation
of order O(106) reactions, therefore it is computationally
quite expensive. Similarly to the previous example, the
parametric sensitivities match the period of the solution for
the reaction rate model as well as of the one for the stochastic
model. In addition, by applying the method described in this
paper, we approximated these parametric sensitivities quite
efficiently.

5. Conclusion and future work
We presented in this paper a new sensitivity analysis

technique for stochastic models of biochemical kinetics. This
method extends a parametric sensitivity technique designed
for (deterministic) reaction rate equation models to the more
general stochastic discrete models of oscillating biochemical
systems. The numerical results on two mathematical models

arising in applications show that our method performed well
on the finite time-interval of interest. Sensitivity analysis
may give important biological insight by identifying the key
components of the system which lead to a certain behavior,
such as sustained oscillations. We plan to work on designing
efficient and accurate methods for finding the sensitivity with
respect to the period of oscillatory systems.
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Fig. 1: Sensitivity analysis with respect to the parameter k1 for the Lotka-Volterra model: the deterministic simulation (left)
and the stochastic simulation (right). The sensitivities are scaled by 10−1.
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Fig. 2: Sensitivity analysis with respect to the parameter k2 for the Lotka-Volterra model: the deterministic simulation (left)
and the stochastic simulation (right). The sensitivities are scaled by 2× 10−3.

0 2 4 6 8 10
−6000

−4000

−2000

0

2000

4000

6000

8000

Time tN
um

be
r 

of
 m

ol
ec

ul
es

  &
 s

en
si

tiv
iti

es
 fo

r 
k1

 

 

y
1

y
2

s
1

s
2

0 2 4 6 8 10
−6000

−4000

−2000

0

2000

4000

6000

8000

Time tN
um

be
r 

of
 m

ol
ec

ul
es

  &
 s

en
si

tiv
iti

es
 fo

r 
k1

 

 

y
1

y
2

s
1

s
2

Fig. 3: Sensitivity analysis with respect to the parameter k1 for the Busselator model: the deterministic simulation (left) and
the stochastic simulation (right).
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Table 1: The Lotka-Volterra model.

Reaction channel Reaction propensity Reaction rate

R1 Y1
k1−→ 2Y1 a1 = k1Y1 k1 = 1

R2 Y1 + Y2
k2−→ 2Y2 a2 = k2Y1Y2 k2 = 0.005

R3 Y2
c3−→ ∅ a3 = k3Y2 k3 = 0.6
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Fig. 4: Sensitivity analysis with respect to the parameter k2 for the Busselator model: the deterministic simulation (left) and
the stochastic simulation (right). The sensitivities are scaled by 10−3.

Table 2: The Brusselator model.

Reaction channel Reaction propensity Reaction rate

R1 A1
k1−→ Y1 k1A1 k1 = 5000

R2 A2 + Y1
k2−→ Y2 + B1 k2A2Y1 k2 = 50

R3 2Y1 + Y2
k3−→ 3Y1 k3Y1(Y1 − 1)Y2/2 k3 = 5 · 10−5

R4 Y1
k4−→ B2 k4Y1 k4 = 5

[25] D.J. Wilkinson, Stochastic modelling for systems biology, Chapman
& Hall/CRC, 2006.
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A Simple Relaxation based Circuit Simulator for VLSI Circuits
with Emerging Devices
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Abstract— This paper presents a circuit simulator based
on look-up table approach for simulation of VLSI digital
circuits with emerging devices which currently cannot be
simulated with existing commercial simulators. We have used
a point relaxation based circuit simulator which is suitable
for digital circuits. To validate our circuit simulator, we have
simulated standard circuits with MOS devices of SPICE level
49 for 0.18 micron technology and results are in very good
agreement with a commercial simulator. Further, we have
successfully simulated standard circuits with an emerging
device, FinFET inverter, chain of FinFET inverters, 31-
stage ring oscillator of FinFET inverters and read-write
operations for FinFET 6-T SRAM cell. Our results match
with that of the device simulator. Finally, we have been able
to simulate digital circuits with approximately1.6 million
FinFETs (512× 512 SRAM memory array) using less than
1.7GB working memory (Pentium-4, 3.0GHz).

Keywords: Look-up Table, Spline interpolation, FinFET, Relax-
ation, Digital Circuit, Circuit Simulator

1. Introduction
During the last two decades, the number of transistors

that can be placed on a chip has been approximately dou-
bling every year. In the case of digital circuit, especially
memory, this relationship holds strongly. With increased size
of VLSI circuits, the simulation of large circuits becomes
an important issue in circuit design. Conventional circuit
simulators are impractical for such large circuits. Also
with development in technology, new devices are emerging
frequently. In order to evaluate the performance of circuits
with these emerging devices, an accurate device model is
required. The analytical model development of emerging
devices is a difficult task as the model becomes increasingly
complex with decrease in size of the device. An alternative
to the analytical model based methods is a look-up table
(LUT) method, which solves the above mentioned problems.
The LUT method involves generation of the device charac-
teristics tables either from direct measurements or through
device simulators and uses interpolation techniques to obtain
values at the intermediate points. The data tables and the
interpolation method determines the accuracy of the LUT
approach. With the availability of good process and device
simulators, it is possible to generate the device character-
istics curves even before fabricating the actual device. The

LUT approach does not require analytical models. Further,
unlike analytical models, improvement in data can be easily
accommodated. The accuracy of the LUT based simulator
depends on the number of points taken on the characteristics.
Higher accuracy can be achieved with larger number of data
points. But this requires larger memory for storage. Circuit
simulators based on the direct method for solving a linear
system of equations are not suitable with LUT approach
as they require substantially more memory for storing the
system coefficient matrix. Those based on iterative methods
are most suitable for the LUT based simulators due to their
reduced memory requirements. The point relaxation based
simulators have already shown usefulness in handling large
digital circuits [1]. Simulators based on this method require
memory essentially to store the data structure. There is no
need to build an explicit coefficient matrix for the equations.
Thus a circuit simulator which uses a combination of LUT
and point relaxation method is useful in handling large
digital circuits.

The use of LUT was first proposed in [2] to simulate
digital circuits. In the last three decades, many improve-
ment schemes for interpolation optimization [3], reducing
memory storage requirement [4], effective construction of
derivative information [5] etc. have been proposed. In [6],
a new LUT method is presented for simulation of FinFET
circuits but that circuit has not more than a few hundreds
of transistors. The main aim of our work is to show use of
relaxation method to solve large digital circuits with millions
of emerging devices.

The outline of the present paper is as follows. We discuss
the look-up table approach for emerging devices in section
2. In section 3, cubic spline interpolation method is de-
scribed which is used to interpolate the current variables and
the capacitances. The overview of relaxation based circuit
simulator is given in section 4. In section 5, we validate
our circuit simulator through simulation of standard circuits
(CMOS inverter, buffer chain of inverters and 31-stage
ring oscillator) and compare it with commercial simulator
HSPICE for MOS devices of SPICE level 49 for 0.18 micron
technology. Section 6 is devoted to circuits with emerging
devices. Standard circuits, FinFET inverter, chain of FinFET
inverters, 31-stage ring oscillator of FinFET inverters and
read-write operations for six-transistor FinFET SRAM cell
are simulated using our simulator and results are verified
using the device simulator. The usefulness of our simulator
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for large size digital circuit is shown through simulation
of FinFET based SRAM circuits containing millions of
transistors.

2. Look-Up Table Approach for
emerging devices

In order to simulate a circuit, the information about input-
output characteristics of devices is required. The current
through device is a function of terminal voltages and the
geometry of the device e.g., in MOS transistors, drain current
is a function of gate source voltageVGS , drain source voltage
VDS and bulk source voltageVBS and the dimensions width
and length of the device. If we consider all then parameters
and generaten-dimensional look-up tables, this leads to
large storage and evaluation time. Instead of this one can
use the knowledge of the device physics and technology
to reduce dimension of tables [7] as smaller dimensional
tables require moderate storage and less evaluation time. To
describe the transient and AC analysis accurately, in addition
to static current of the device, the relation with ac current
is also required. In VLSI circuits the ac current is mainly
because of device capacitance. If all the capacitances are
considered then the size of the table becomes large. Instead
of that one can consider the capacitances that significantly
contribute. There are different techniques available to extract
the capacitances of emerging devices. One can employ tran-
sient analysis or AC analysis based methods to extract the
capacitances using device simulator. Many device simulators
provide the capacitance data tables directly. Once the look-
up tables are available, an interpolation scheme can be used
to obtain intermediate values in the data tables.

3. Spline Interpolation
There are many different interpolation methods in nu-

merical analysis that can be used in the LUT approach.
The choice of the interpolation method depends upon the
requirements like accuracy and smoothness. The spline inter-
polation method is the popular choice. This method employs
polynomial functions with certain degree of smoothness
to interpolate the data. For MOS circuit simulations, first
derivative continuity is required [8]. Hence the cubic spline
method has been used for the interpolation of data as it uses
third degree polynomials and ensures the continuity upto the
second derivative.

Consider, a table consisting of values of independent
variablex and corresponding values of dependent variable
y. Let Si denote the cubic polynomial that will be used on
the sub interval[ti, ti+1]. In cubic spline, polynomial values
at knots and, first and second derivatives of polynomial at
interior of knots should be continuous. These conditions lead
to 2(n − 1) + 2(n − 2) = 4n − 6 equations, but we have
4(n − 1) coefficients. Additional2 equations are obtained
from boundary conditions. Based on the choice of these

conditions, we get different types of cubic splines. We have
used natural cubic spline [9] where end points conditions
are

S′′(t1) = S′′(tn) = 0 (1)

The cubic polynomial forx ∈ [ti, ti+1] is given by

Si(x) =
zi+1

6hi

(x − ti)
3 +

zi

6hi

(ti+1 − x)2 +
(

yi+1

hi

−
hi

6
zi+1

)

(x − ti) +

(

yi

hi

−
hi

6
zi

)

(ti+1 − x) (2)

where
zi = S′′(ti)

The coefficients of various polynomial segments are stored
to use for computation.

4. Circuit Simulator BREMICS
We have used circuit simulator BREMICS [1] which

is based on Point Relaxation method. In this method, the
given circuit is broken into smaller sub-circuits, in case of
BREMICS each sub-circuit is actually a single node. So a
circuit of n nodes is essentially treated asn sub-circuits, each
sub-circuit containing the concerned node and the adjacent
nodes. In point relaxation method, while solving for a node
potential, it is assumed that potential of all other nodes are
known. This process is iterated over all the nodes. Gauss-
Seidel iterations for all the nodes continues until convergence
is reached. At each node, Newton-Raphson technique is
used to linearize the nonlinear element and then it is solved
for node potential. Convergence in BREMICS is dependent
on unidirectionality of signal flow and weak coupling be-
tween sub circuits. If coupling between the sub-circuits is
significant and signal flow is bidirectional then the rate of
convergence is slow. MOS device is a unidirectional device
and MOS digital circuits usually have minimal feedback in
practice. So, this relaxation technique is useful in simulating
MOS integrated circuits [10].

5. Validation of approach
To validate correctness of our simulator, we have sim-

ulated standard circuits with MOS devices and compared
results with a commercial simulator. We have used Spice
model LEVEL 49, VERSION = 3.1 for 0.18 micron tech-
nology for MOS devices.

5.1 ID − VDS curve interpolation
Initially we have the interpolated values ofID−VDS with

spice generated values. As the second derivative is nearly
zero close to start and end point ofID−VDS characteristics,
natural cubic spline is used as interpolation technique. Figure
1 shows the interpolatedID − VDS for VGS = 1.2V .

There is always a trade-off between memory usage and
accuracy. Figure 2 shows the relationship between accuracy
and the number of data points. The error is exponentially
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decreasing with the number of data points. For3% accuracy
we need with only18 data points but to achieve1% accuracy
more than50 data points are required. For optimal accuracy
and memory usage we have used18 data points.
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5.2 ID − VGS curve interpolation
For ID − VGS curve, simple polynomial interpolation is

good only for non sub-threshold regions. In sub-threshold
regions a large number of data points are required to get
accurate results. Thus we have used combined interpolation
technique which uses exponential interpolation for sub-
threshold region, polynomial interpolation for strongly in-
verted region and combined interpolation in transition region
for ID−VGS curves interpolation. Figure 3 showsID−VGS

interpolation curves atVDS = 1.8V .

5.3 Capacitance interpolation
Figure 4 shows the drain capacitance curve forVDS =

0.2V . We have used Sentaurus device simulator to generate
data points. The interpolated values match closely with that
of TCAD generated. It can be observed that interpolation is
not very accurate around the peak occurring in capacitance
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curves. This problem can be resolved by choosing a data
point at peak and two close points on both side on the peak
point.
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5.4 Inverter DC transfer characteristics
We have simulated CMOS inverter using look-up table in

BREMICS and compared our results with HSPICE. Figure
5 shows transfer curve of inverter. Table 1 shows the
comparison of switching voltage of inverter as computed
by BREMICS and HSPICE for different device dimensions.
We have found excellent agreement with HSPICE results.
Our simulated curves match with SPICE very closely and
shows the accuracy of the interpolation routines used.

5.5 Buffer chain of inverters
Buffer chain of CMOS inverters has been simulated using

BREMICS and results are shown in Figure 6. We have
simulated buffer chains of different number of inverter
stages. The results are compared with that of HSPICE. In
all cases the accuracy is within 2.4%.
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Table1: Switching voltage for different device dimensions
Dimensions Switching voltage error

WP = 3.0 ∗ WN HSPICE BREMICS (%)
L = 0.5 µ, WN = 1.0 µ 0.8808 V 0.8808 V 0
L = 0.5 µ, WN = 5.0 µ 0.8844 V 0.8843 V 0.01
L = 1.0 µ, WN = 4.0 µ 0.8663 V 0.8663 V 0
L = 5.0 µ, WN = 10 µ 0.8521 V 0.8521 V 0
L = 5.0 µ, WN = 20 µ 0.8521 V 0.8521 V 0

5.6 Ring oscillator simulation
Wehave simulated a ring oscillator circuit with BREMICS

and HSPICE and results are shown in Figure 7. Using LUT
routine, we have simulated the circuit with different number
of stages and, for different device dimensions for 31-stage
ring oscillator. The results are shown in table 3. In all cases
difference is less than 2%.

6. Results and Discussions
As an application of the use of look-up table method,

we have simulated circuits having FinFET devices. FinFETs
are emerging devices whose accurate analytical models are
not presently available. This makes SPICE like simulators
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Table2: Buffer chain with different number of stages
Stages Delay Time error(%)

HSPICE BREMICS
8 1.138 ns 1.130 ns 0.70
12 1.741 ns 1.755 ns 0.80
16 2.341 ns 2.375 ns 1.45
20 2.940 ns 3.000 ns 2.04
24 3.540 ns 3.625 ns 2.40
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Fig. 7: 31 stage ring oscillator of MOSFET inverter

Table3: Ring oscillator with different number of stages
No. of Stages Oscillation Frequency Error(%)

HSPICE BREMICS
11 300 MHz 306 MHz 2.0
15 221 MHz 223 MHz 0.8
19 175 MHz 178 MHz 1.9
23 144 MHz 146 MHz 1.3
27 122 MHz 124 MHz 1.4
31 108 MHz 109 MHz 1.2

incapable of simulating circuits involving such devices as
they employ device analytical models. However, with in-
tegration of LUT routines into BREMICS, it is capable
of simulating such circuits. To simulate a circuit having
FinFETs, BREMICS requires to have look-up table for its
drain currentID and various capacitances such as gate
source capacitanceCgs, gate drain capacitanceCgd, drain
source capacitanceCds. Device simulator SENTARUS has
been used to generate look-up table for drain currentID and
various capacitances of FinFETs. The section discusses the
results obtained in simulation of FinFET inverter and buffer
chain of FinFET inverters, 31-stage ring oscillator of FinFET
inverters and read-write operations for FinFET 6-T SRAM
cell.

6.1 FinFET inverter
We have simulated FinFET inverter by using look-up

tables for its drain currentID in BREMICS. Figure 8
shows the DC transfer curve of FinFET inverter. We have
got excellent agreement with device simulator results with
difference less than10−4 for all data points.
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6.2 Chain of FinFET inverters
We have simulated chain of 3 FinFET inverter by using

look-up tables for its drain currentID and capacitances in
BREMICS. Delay for chain of 3 FinFETs comes out to be
4.5 ps. We have got good agreement with device simulator
results. The first stage output of the circuit is shown in Figure
9.
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Figure 10 shows that there is some mismatch between
the LUT enabled BREMICS output and device simulator
data. The possible reason could be the very high frequency
of operation and breakdown of quasi-static model. We have
used capacitance data generated at frequency 1 MHz, but
the operational frequency is order of few GHz.

6.3 FinFET ring oscillator
We have simulated 31-stage ring oscillator with Fin-

FET inverters and result is shown in Figure 11. Due to
convergence problem, device simulator could not simulate
the circuit. As a result we can not validate the accuracy
of our simulation directly. However, we have compared
single stage delay calculated from the frequency of the ring
oscillator with the delay obtained from simulation of a chain
of FinFET inverter using device simulator. The oscillation
frequency comes out to be 8.85 GHZ. It gives single stage
delay of 1.8ps which matches with the result obtained from
device simulator. This proves the ability of LUT enabled
BREMICS to simulate circuits involving emerging devices
like FinFETs correctly.
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6.4 6-T SRAM with FinFET
We have simulated the six-transistor FinFET SRAM cell.

The bit line capacitance values is taken as 10fF. In case
of read operations, both the bit lines were pre-charged to
1.0 V. When the word line goes high, one of the bit lines is
discharged, depending upon whether 0 or 1 is stored in cell.
Figure 12 shows the read operation, when 1 is stored in cell.
In case of write operations, if we want to write 0 into cell,
we charge bit line to 0 and bit line bar to 1 and vice-versa.
When the word line goes high, desired value is written into
cell. Figure 13 shows the write operation for changing the
cell value from 1 to 0.

Table 4 shows a performance Bremics for read operation
in terms of memory and simulation time. From the table it
is clear that the timing performance and memory usage of
Bremics is linear. We have simulated SRAM memory array
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Fig. 12: FinFET SRAM read operation

Table4: Memory and Timing Performance of BREMICS for
SRAM (memory read operation)

SRAM size Nodes BREMICS
Memory Usage(MB) Time(sec)

8x8 154 1.0 49
16x16 550 2.5 162
32x32 2030 7.2 582
64x64 7824 26.0 1870

128x128 30754 102 7174
256x256 120924 422 27032
512x512 480652 1589 107458

of size512×512 (1.6 million transistors) using only1.7GB
working memory even though LUT requires large memory
to store the characteristics. This is possible because of the
use of a point relaxation method for a solution of a system of
equations as there is no need to store an explicit coefficient
matrix for the equations.

7. Conclusion
The primary aim of the present work is to demonstrate

that using an elementary relaxation technique and the look-
up method a large circuit (about1 million FinFETs) with
emerging devices can be simulated in reasonable time. We
have presented results to support this claim by analyzing
an SRAM memory array of size512 × 512 (1.6 million
transistors) in30 hours using only1.7GB working memory.
This shows that the capability of integration of a point relax-
ation method with LUT to handle a large size digital circuits
with emerging devices. Also, as point relaxation method
is inherently parallelizable, one can easily extend the use
this simulator to simulate entire chip using parallelization
techniques. The look-up tables used in this work are based
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Fig. 13: FinFET SRAM write operation

on data provided by device simulators. One can use actual
experimental data also to build look-up tables without any
change in the approach.
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Abstract - Steady, Darcian, 1-D, 1-phase 
evaporation through a vertically inhomogeneous  
soil from a horizontal water table is simulated as an 
optimal control problem, i.e. the hydraulic properties 
of the porous medium (relative permeability of 
moisture and capillary water retention curve) are 
considered as control functions. The Richards 
nonlinear ordinary differential equation is integrated 
twice as a boundary value problem on a given 
interval (vadose zone thickness) and the top soil 
suction head is taken as a cost function in 
optimization. The Gardner conductivity-pressure 
relation and the Ahuja et al. (1989) correlation 
between saturated conductivity and sorptive number 
are assumed. A continuous vertical change in 
permeability is optimized.  
Key words: nonlinear optimization, boundary value 
problem for nonlinear ODE, Richards equation, 
control of heterogeneity. 
 

1  Introduction 
Evaporation from a shallow phreatic surface of 
artificial recharge (AR)  schemes in arid regions is 
an important factor in secondary salinization of soil 
and gross-losses of water. Common natural soils 
superjacent to a water table and capillary fringe are 
heterogeneous in their hydraulic properties (soil-
water retention, SWR, and unsaturated hydraulic 
conductivity, UHC), which control evaporation from 
the topsoil (see, e.g., [1]). Collection of soil samples 
from boreholes or pedons is a tedious, costly and 
plant-invasive procedure. Core samples taken from 
the field for further laboratory experiments require a 
pressure-plate apparatus (or other device) to coin a 
SWR by relating the capillary pressure head, H, and  

the moisture content, . UHC, K,  a function of  is 
very seldom obtained in laboratory because the 
involved experiments are expensive and lengthy. 
Consequently, simulation is often the only feasible 
method to predict evaporation. A crucial step in 
conceptual modeling of moisture dynamics in soils is 
the Bourdine or Mualem type conversion of SWR to 
UHC by simple integration [2,3] he real 
(experimental) or surrogate (obtained by the 
mentioned integration or from pedotransfer 
functions) pair (SWR,UHC) is needed for each layer 
of the soil horizon. 

In this paper we study a steady evaporation 
(exfiltration) from a stationary fully saturated plane 
to a relatively dry soil surface – a common situation 
in arid climates. For example, in coastal and internal 
areas [4], which are now identified as potential AR 
sites,  a shallow (1-5 meters deep) water table 
intensively evaporates to a hot and dry playa 
surface and the catchment-scale hydrological 
balance calls for the corresponding vertical flux.  
 
The mathematical models, on which we base our 
analysis, are presented in [5-6],  where the soil 
properties were fixed. We utilize a synthetic 
approach, i.e. instead of simulation (stochastic or 
deterministic) of a given soil heterogeneity we 
consider it as an entity to be designed with respect 
to its hydraulic functions (see, e.g., [7]). The 
objective of our design is  the suction head, Hs, at 
the soil surface. The standard Richards Equation 
(RE) serves as a state equation, and its coefficients 
(SWR, UHC) are control functions. In the vernacular 
of the optimal control theory (see e.g., [8]), the 
peculiarity of our problem is in the inherent 
dependence of the controls on the “trajectory” 
(solution of the RE), i.e. a strongly nonlinear 
feedback is stipulated by soil physics (constitutive 
relations, e.g., given Averyanov or Van Genuchten  

functions K~. 
 
Clearly, either natural or engineering constraints are 
imposed in optimization. In the admissible class of 
control functions the synthesis of soil heterogeneity 
may not be achievable. Then one usually either 
modifies the cost function/functional, the class of 
controls or recurs to the famous Hilbert recipe of 
giving an extended interpretation to the very 
meaning of “solution” of a variational problem. In this 
manner, [9] –when faced the non-existence of a 
“crispy” optimum - systematically used so-called 
“quasi-solutions”. Hilbert‟s “fuzzification” dates back 
to Euler‟s prophecy that any phenomenon of this 
world possesses a certain (not always obvious) 
minimum or maximum. Generally, in optimization an 
algorithmically found extremum is almost always a 
local one, while a hydrologic engineer or agronomist 
prefer global optima. So, the solvability, uniqueness 
and globality should be kept in mind and addressed, 
whenever possible. 
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2  Hydraulic Model 
 
We assume that the soil heterogeneity is purely 
vertical, i.e. we ignore the planar mosaic of 
(SWR,UHC). This allows us to consider a vertical 
cross-section in Fig.1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 Vertical cross-section of a soil profile with a 
continuous vertical heterogeneity.  
 
where the origin of Cartesian coordinates coincides 
with the water table and the vertical coordinate OZ 
is oriented upward against gravity. We assume that 
the water table does not fluctuate. We assume that 
the surface Z=L is  also at a constant suction 
(moisture content),  which is determined by 
atmospheric conditions. The one-phase ascent of 
moisture from Z=0 to Z=L through a soil layer is 
steady-state and governed by the second order, 
nonlinear ODE (RE) as the following boundary value 
problem (BVP): 
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where Ht is the total hydraulic head, V is the Darcian 
velocity, Ks(z) is saturated hydraulic conductivity, 
kr(z,h) is the relative conductivity of water. 
Dimensionless values in eqn.(1)  are introduced as 

(z, ht, h)=(Z, Ht, -H)/L, -i)/-i) where the 

irreducible moisture content i  and porosity for 
simplicity (but without any loss of generality) are 
assumed to be z-independent and hence vanish 
from the solution. We note that the capillary 
pressure head, h, positive in the flow domain of 
Fig.1, is now used.  Capillarity in eqn.(1) hoists 
moisture and  viscosity with gravity resist the drive.  
 

Obviously, without root water uptake, the second 
line in eqns.(1) is immediately integrated: 

   ,
))(,()(

1
)(
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zhzkzK

V

dz
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rs


 (2) 

where the first constant of integration V0 is a 
dimensional Darcian flux (evaporation rate) through 
the layer. The third line in eqn.(1) makes the 
boundary conditions for the first order ODEs (2) with 

respect to either h(z) or z).  

 

3  Optimization 
 
We state the following: 
 
Problem A. Given the value of V0 determine UHC 
which minimizes hs. 
 
Agronomically, hs (actually, h(z) within the 
rhizosphere  lamina 0<Lr<z<L) determines the root 
comfort with respect to the liquid-gas environment of 
the matrix, and hence solution to Problem A can 
guide in creating a soil horizon hydraulically and 
aerationally favourable to the plants, given the net 
quantity of conveyed moisture from the AR storage.   
 

We select the Gardner UHC          
[         ] 

where is the sorptive number.  As is well-known, 
on the level of a pore network of r-radius parallel 
tubes, Ks is determined by the Hagen-Poiseuille 
conductance of the  tubes (~r

2
) making the capillary 

bundle and depends on the Laplacian menisci ( 

~r) of the tubes. As is also well-known [10],  and 
Ks are interrelated on the level of the soil continuum.  
 
Separation of variables implemented [5-6] is 
impossible in eqn.(2). Consequently, we recur to the 
Runge-Kutta method.  We solved Problem A in the 
class of functions Ks=K0(1+b z),  where b>-1 is a 
given constant and K0 is conductivity at the water 
table (Fig.1) (known from, for instance,  a pumping 
test of the unconfined aquifer beneath the water 
table). This linear increase or decrease of 
conductivity induces the corresponding variation of 
capillarity that we quantify by  regression   

   
  where c and s are empiric constants [10]. 

Actually,  in [10]  Ks and the Green-Ampt front 
pressure were correlated. This pressure – according 
to the known Bouwer integral relation – is 

proportional to 1/. 
 
Now in the selected class, Problem A is reduced to 
minimizing hs as the boundary condition of what we 
get from eqn. (2) in the following BVP: 
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In order to find the minimum of hs (b), we solve 
eqn.(3) as a Cauchy problem by the NIntegrate 
routine of [11]. 
 
We selected the Lakeland soil from [10], see their 
Fig.2, for which c=1/35.36, s=0.415. Then we 
assumed K0=1cm/h and L=25 cm. The graphs of 
hs(b) – the endpoints of the “trajectory” of ODE (5) -  
are shown in our Fig.2 for V0/K0=0.3, 0.5  and 0.7 
(curves 1-3, correspondingly). As is evident from 
Fig.2, the curves possess  a single global minimum. 
These minima as pairs (hsm, bm) are found by the 
FindRoot routine of [11]. For the three cases of Fig.2 
they are: (1.09, 55.9), (1.17, 50.42) and 
(1.28,44.52), correspondingly. Computations for 
other soils from [10] (i.e. other c and s) and other L, 
K0, V0 showed that in some cases the minima exists 
and in others do not.  
 

 
 
Fig.2 Top soil capillary head as a function of the rate 
of linear increase of saturated conductivity for the 
Gardner soil with Ahuja et al. conductivity-sorptive 
number correlation.  
  
 
Along with a z-linearly increasing conductivity we 
also tried quadratic and exponential Ks(z) functions. 
For several cases we found minima similar to ones 
shown in Fig.2. So, when is Problem A solvable? 
The question, generally remains open,  although for 
each particular set of soil parameters we can easily 
answer it, because the Runge-Kutta algorithm 
routinely reconstructs the “trajectory” h(z). A 
systematic optimization (i.e. with a proof of a 
necessary and sufficient optimum conditions) of its 
endpoint locus, h(1), even for simple K(z) seems 
gloomy. 
 
 
 

3  Conclusions 
 
Optimal moisture/suction conditions and evaporation 
fluxes of the topsoil are vital for the natural and 
cultivated vegetation and for efficient cooling 
operation of a green roof in hot climates. Using 
computer algebra tools and extensive simulations 
we solved BVP for the Richards 1-D ODE and 
detected the soil heterogeneities that optimize the 
dynamics of soil water in vertical evaporation.  
Clearly, in Problem A we can swap hs and V0  as a 
criterion and constraint. We fixed the total soil 
thickness L but it can be also used as a criterion in 
optimal design, if the pedotransfer functions involve 
the soil bulk density and the mass of a dry soil layer 
is fixed (rather than volume which we fixed by 
keeping L in Problem A constant). Then - in the 
language of the optimal control theory - the 
corresponding optimization will be analogous to the 
Feldbaum-Bushaw problem of “fastest delivery of a 
material point to the origin of coordinates” (we recall 
that time, initial position and velocity in the dynamics  
of a Newtonian particle are similar to the  Z-
coordinate, water table pressure and the Darcian 
velocity  in terms of the RE).  Solution to Problem A 
is relevant to the “inverse texture phenomenon” [12] 
i.e. ecologically better performance of moisture 
transpiring plants in relatively coarse soils as 
compared to finer substrates.  
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Abstract – In this paper, the spatiotemporal dynamics of a 
modified Leslie-Gower predator-prey system with Beddington 
- DeAngelis functional response incorporating constant 
proportion of prey refuge under homogeneous Neumann 
boundary condition is investigated. The local and global 
asymptotic stability of the unique positive homogeneous 
steady state in the absence of diffusion are discussed. 
Furthermore, we perform a series of numerical simulations 
and the results of the numerical simulations reveal that the 
typical dynamics of population density variation is the 
formation of isolated groups, i.e., stripe like or spotted or 
coexistence of both.. 

Keywords: Leslie-Gower; Prey Refuge; Turing Patterns.  

 

1 Introduction 
  The dynamic relationships between species and their 
complex properties are at the heart of many ecological and 
biological processes [1]. One of such relationships is the 
dynamical relationship between a predator and their prey 
which has long been and will continue to be one of the 
dominant themes in both ecology and mathematical ecology 
due to its universal existence and importance [2]. 
 We live in a spatial world and spatial patterns are 
ubiquitous in nature. The issue of spatial and spatiotemporal 
pattern formation in biological communities is probably one 
of the most exciting problems in modern biology and ecology 
[3], [4]. 

 On the other hand, predator-prey interactions often 
exhibit spatial refugia which afford the prey some degree of 
protection from predation. Such refugia can help in 
prolonging prey-predator interactions by reducing the chance 
of extinction due to predation [5] - [7], and damp prey 
predator oscillations [8]. In the literatures studies show that 
refuges have both stabilizing [9] and destabilizing effect [10], 
[11]. 

 The effect of the use of refuges by the prey population 
on the temporal dynamics of a prey-predator system has been 
investigated by many people [7],[12]-[16]. However, to the 
best of our knowledge, little attention has been given to the 
dynamics of a spatiotemporal prey-predator system 
incorporating prey refuges.  

 The main aim of this paper is to study the effect of prey 
refuge on the stability property of the coexistence equilibrium 
point and the Turing pattern formation of a modified Leslie-
Gower prey-predator model incorporating constant proportion 
of prey refuge with Beddington - DeAngelis functional 
response. 

    The organization of the paper is as follows. Section two 
devotes to the local and global asymptotical stability of the 
unique positive equilibrium point in the absence of diffusion. 
In section 3, the emergence of Turing patterns via numerical 
simulations are shown. At last, conclusion is presented in 
section 4. 
  

2 Temporal System 
 A modified Leslie-Gower predator-prey system 

incorporating a constant proportion of prey refuge with 
Beddington-DeAngelis functional response in homogeneous 
environment is governed by the following system of non-
linear ordinary differential equations 

 

( )
( )

( )

1

2
1

1
1 ,

1

1 ,
1

c m UdU Ur U V
d K B m U V

dV Vr V
d s s m U

τ ϖ

τ

− = − −  + − + 

 
= −  + − 

 (2.1) 

subject to initial conditions ( )0 0U ≥  and ( )0 0V ≥ . 

( )U U τ=  and ( )V V τ= represents the prey and predator 

densities respectively. The reaction parameters 1 , , ,r K c  
2 1, , , ,B r s sϖ are positive constants which stand for the 

intrinsic growth rate of the prey, the environmental carrying 
capacity of prey population, a maximum consumption rate, a 
saturation constant, predator interference, maximum per 
capita growth rate of the predator, the conversion factor of 
prey into predator, normalization constant respectively.  
    Note that, system (2.1) incorporates constant proportion 
of prey refuge [ ), 0,1mU m∈ , which leaves ( )1 m U−  of the 
prey available for predation. 

Using the following scaling: 

 
1, , ,U Vu v t r

K sK
τ= = =  

and, the parameters  
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1 1
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r scs B s b
r K r sK

α β ω ϖ γ= = = = =  

system (2.1) takes the non dimensional form  

( ) ( )
( ) ( )

( ) ( )

1

2

1
1 ,

1

1 ,
1

m u vdu
u u G u v

dt m u v

dv v v G u v
dt b m u

α
β ω
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−
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     (2.2) 

 
Lemma 2.1: All solutions of (2.2) initiating in 2

+  are 
bounded. 
The system (2.2) has at most four biologically feasible 
equilibrium points: ( ) ( ) ( )0 , 0 , 1, 0 , 0 , b and ( ),E u v , which 

is the solution of ( ) ( )( ) ( )1 1 1u m u v m vβ ω α− + − + = −  and 

( )1v b m u= + − .  
It may be observed that E is positive and unique if       

( )( )1 m bα ω β− − <
                 

(2.3) 
Linearization of system (2.2) at E  yields the coefficients 

of the Jacobean matrix J as: 
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Theorem 2.1: The unique positive equilibrium point E  is 
locally asymptotically stable provided  

( )

( )
( )

1
;

1
1 ;

b
m b

bb m b
b

α γ
β

αγ
α γβ ω β
αγα β

 + −
< >
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  (2.4) 

Proof: The trace and determinant of the Jacobean matrix 
J at E are simplified as  

( )
  ( )

( ) ( )

2

1

u u p u q b
trace J

b m u

α γ

α

− + −
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+ −
 

and ( )
( ) ( ) 
( ) ( )
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1
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m u v

β ω
γ

β ω
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with 

 
( )( ) ( )( )1 2 , 1 1 ,p m q b mα α γ= − + = − + −  

( ) ( ) ( )2 21z m b bα β β ω= − − + + +  and ( ) ( )1 1n m ω= − + . 

The trace is negative provided 
( )1

0 . .
b

q i e m
α γ
αγ

− + +
< <  

and the determinant is positive if 

( )
0 . . 1 bz i e b or b and m

b

β ωβ β
α β

+
> > > > −

−
. 

Theorem 2.2: The system (3.1) does not admit any periodic 
solution when 1 ( / )m ω α> − .  

Proof: Let ( ) ( )( ),u t v t  be a positive solution of (2.2) and 

define a Dulac function 
( )

2 2

1 m u v
H

u v

β ω+ − +
= from system 

(2.2), we have 
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Therefore by Dulac criterion, we see that if 
1 ( / )m ω α> − then system has no non-trivial positive 

periodic solutions.  
Theorem 2.3: If 1 ( / )m ω α> − then the local stability of 
system (2.2) ensures its global stability around the unique 
positive interior equilibrium point ( ),E u v .  

Proof: The unique equilibrium point ( ),E u v is the only 

stable point in the uv  plane. The boundedness of the 
solutions of the system together with the non existence of 
periodic solutions establishes the global stability. 

 
3 The Spatiotemporal System : Turing 

Bifurcation 
  In the predator-prey model (2.2), the prey and predator 
species are assumed to be spatially independent and 
dispersion is not included. However, in reality, prey and 
predator populations are heterogeneously distributed over the 
habitat. Taking into account the mobility of the prey and 
predator population within a bounded habitat, the governing 
model (2.2) is modified as the following system of reaction-
diffusion equations, after an appropriate scaling of spatial 
coordinates: 
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( ) ( )
( )

( )

1
1 ,

1

1
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m u vu
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t m u v

v vv v
t b m u

α
β ω

δ γ

−∂
= ∆ + − −

∂ + − +

 ∂
= ∆ + −  ∂ + − 

 (3.1) 

     The system is subjected to the homogeneous Neumann 
boundary condition and non-negative initial condition. The 
operator ∆  represents the Laplacian operator in two spatial 
domains and δ is the ratio of the diffusion coefficient of 
predator to prey. 

To linearize the dynamic system (3.1) around the spatially 
homogeneous equilibrium point ( ),E u v  for small space 

and time dependent fluctuations, set  
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Let us assume solutions of the form 
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1

cos
, ,
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cos ,x y

t k x k y
v x y t

u x y t
eλ

ρ
ρ          

=  

where λ  is the growth rate of perturbation in time t, 
( )0,1i iρ = represent the amplitudes, xk and yk are the wave 

number of the solutions. The corresponding linearized system 
has the characteristic equation 
                           2 0.J k D Iλ− − =                            (3.2)        

Here ( ) 2 2 21, , x yD diag k k kδ= = + and k  represents the 
wave numbers. 
The characteristic polynomial corresponding to ( ),E u v is 

            
2 0,k ktrλ λ− + ∆ =                          (3.3)  

where 

( )

2
11 22

2 4
11 22 21 12 22 11

( (1 )) ,k

k

tr a a k
a a a a k a a k

δ

δ δ

= + − +

∆ = − − + +
 

The roots of equation (3.3) give the dispersion  

  ( )2
1,2

1 4 .
2 k k ktr trλ = ± − ∆  

      The reaction-diffusion systems have led to the 
characterization of two basic types of symmetry-breaking 
bifurcations responsible for the emergence of spatiotemporal 
patterns. The space-independent Hopf bifurcation 
[ ( )( ) ( )( )2 2 2Im 0, Re 0 0k k at kλ λ≠ = = ] breaks the 

temporal symmetry of a system and gives rise to oscillations 
that are uniform in space and periodic in time. The 
(stationary) Turing bifurcation 
[ ( )( ) ( )( )2 2 2 2Im 0, Re 0 0Tk k at k kλ λ= = = > ] breaks 

spatial symmetry, leading to the formation of patterns that are 
stationary in time and oscillatory in space. 
      Linear  stability analysis of system (3.1) yields the 
bifurcation diagram with 1.18, 0.15, 0.2, 0.1,bα β ω= = = =  

0.2γ = . 
 

 
Fig. 1. Bifurcation diagram of system (3.1) with 1.18, 0.15, 0.2,α β ω= = =  

0.1, 0.2b γ= = . Hopf and Turing bifurcation lines separate the parameter 
space into four domains. 

 
   In Fig.1, the Hopf bifurcation line and the Turing 

bifurcation curve, which separate the parametric space into 
four distinct domains, for the spatiotemporal system (3.1) are 
shown in the mδ −  plane. Domain I and II are the region of 
pure Hopf instability and pure Turing instability respectively. 
In domain IV, located above all two bifurcation lines, the 
steady state is the only stable solution of the system whereas 
in domain III, which is located below all two bifurcation lines, 
both Hopf and Turing instability occur. Domain II is the 
Turing space. 

                     

 
Fig. 2. The Real part of the dispersion relation corresponding to the 

characteristics equation (3.3) with 1.18, 0.15, 0.2, 0.1,bα β ω= = = =         
0.2, 15γ δ= =  a) m=0.15,   b) m=0.1, c) m=0.05 

Figure 2 shows the dispersion relation corresponding to 
three values of the bifurcation parameter m while keeping the 
others parameters fixed as  

1.18, 0.15, 0.2, 0.1, 0.2, 15.bα β ω γ δ= = = = = =  (3.4) 
     In Fig. 2, the curve (a) corresponds to the case when the 

value of the refugee parameter m  equals 0.15, which is 
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greater than the critical Turing value  0.12175crm = . The 
curves (b) and (c) show the occurrence of Turing instability 
for 0.1 0.05m and m= =  respectively. From Fig. 2, it can be 
seen that a decrease in the value of m  increases the available 
Turing modes [ ( )Re 0λ > ], and it also further enhances the 
available modes. 

        
The spatiotemporal system (3.1) is solved numerically in 

two-dimensional space using a finite difference 
approximation for the spatial derivatives and an explicit Euler 
method for the time integration [17]. In order to avoid 
numerical artifacts the values of the time and space steps have 
been chosen sufficiently small. This method finally results to 
a sparse, banded linear system of algebraic equations. The 
linear system obtained is then solved by using GMRES 
algorithm [17].  

      All our numerical simulations employ the zero-flux 
(Neumann) boundary conditions in a square habitat of size 
200x200. Iterations are performed for different step sizes in 
time and space until the solution seems to be invariant. The 
time step size of 0.1t∆ =  and space step size 0.5h = are 
chosen. The initial density distribution corresponds to random 
perturbations around the stationary state ( ),E u v in the 

spatially extended system (3.1), which seems to be more 
general from the biological point of view.      

 

Fig. 3. Snapshots of contour pictures of the time evolution of the prey at 
different instants with 0.1m = . Other parameters are fixed as (3.4). Iterations 

number: (A) 500, (B) 2000, (C) 5000, (D) 10000. 
 
  In the numerical simulations, different types of dynamics 
are observed and it is found that the distributions of predator 
and prey are always of the same type. Consequently, we can 
restrict our analysis of pattern formation to one distribution. 
In this section, we show the distribution of prey u , for 

instance. And the parameter m  is located in the Turing 
space, domain II (cf., Fig. 1.). We have taken some snapshots 
with red (blue) corresponding to the high (low) value of prey 
u . 
 Fig. 3 shows the time evolution of spatial pattern formation 
for the spatiotemporal system (3.1) at 500, 2000, 5000, 
150000 iterations when the value of the refuge constant  m  is 
0.1 and other parameters are given in (3.4). In this case, one 
can see that a small random perturbation to the homogeneous 
state ( ) ( ), 0.222771, 0.300494u v = of the system (3.1) leads 

to the formation of stripes and spots (cf., Fig. 3(B) and (C)). 
However, at the final stage patterns of blue spots on a red 
background are formed. They can be called as ‘‘cold spots’’ 
(cf., Fig. 3(D)) which are isolated zones with low prey 
density.  

From the snapshot in Fig. 4, one can see that a decrease in 
m  to 0.075 while keeping the other parameters fixed as in 
(3.4) finally leads to the coexistence of spotted patterns and 
the stripe-like patterns. However, a further decrease in m to 
0.05 finally results in the formation of stripe-like patterns only 
(cf., Fig. 5) 
 

 
Fig. 4. Snapshot of contour picture of the prey at 0.075m = (10000 

iterations). Other parameters are fixed as (3.4). 

 
Fig. 5. Snapshot of contour picture of the prey at 0.05m = (10000 iterations). 

Other parameters are fixed as (3.4). 

4 Conclusion 
     The numerical simulation results indicate that the effect 

of the prey refuge for pattern formation is remarkable. More 
specifically, as the value of the prey refuge constant is 
increased, the stripe like patterns breaks down and ultimately 
form spotted like. This may enrich the dynamics of the effect 
of refuge on the predator-prey system. 
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Abstract 

 In this paper the class of BL-GARCH (Bilinear 

General AutoregRessive Conditional Heteroskedasticity) 

models is introduced. The proposed model is a modification to 

the BL-GARCH model proposed by Storti and Vitale (2003). 

Stationary conditions and autocorrelation structure for special 

cases of these new models are derived. Maximum likelihood 

estimation of the model is also considered. Some simulation 

results are presented to evaluate our algorithm. 
 
Keywords : Time series, ARCH models, GARCH models, 

Bilinear models, weak dependence, .   
 

1. Introduction 
 

A lot of time series encountered in empirical 

applications are nonlinear and non-stationary. Their structures 

such as means and variances may vary over time. The problem 

of nonlinear time series identification and modeling has 

attracted considerable attention for the past 30 years in diverse 

fields such as financial econometrics, biometrics, 

socioeconomics, transportation, electric power systems, and 

aeronautics which exhibit nonlinear process. A good nonlinear 

model should be able to capture some of the nonlinear 

phenomena in the data. Moreover, it should also have some 

intuitive appeal. Therefore a number of wide classes of non-

linear time series models have been proposed, investigated and 

studied. One of these classes which has received a great deal of 

attention is that of bilinear models. Bilinear time series models 

and its statistical and probabilistic properties have been 

extensively studied by [7] Granger and Andersen (1978), 

[14]Subba Rao (1981), [5] Gabr (1992) and comprehensively 

surveyed by [15] Subba Rao and Gabr (1984) and [11] Pham 

(1993).  

A class of non-linear model, called a bilinear class, 

may be regarded as a plausible non-linear extension of ARMA, 

rather than of the AR model. Bilinear models incorporate 

cross-product terms involving lagged values of the time series 

and of the innovation process. The model may also incorporate 

ordinary AR and MA terms. The general form of a bilinear 

time series t{X , t 0, 1, 2,...}   denoted by BL(p, q, P, Q) is 

defined by 

 

 
p q QP

t i t i j t j ij t i t j t
i 1 j 1 i 1 j 1

X a X c e b X e e
               (1)                         

where t{e }  is a set of independent random variables. We 

define the model (1) as a bilinear time series model BL 

(p,r,m,k) and the process {Xt} as a bilinear process.  

In econometrics, a  vast  literature  is  devoted  to  the  

study  of  autoregressive conditionally heteroskedastic 

(ARCH) models for financial data. One  of  the  best-known  

model  is  the  GARCH  model  (Generalized Autoregressive  

Conditionally Heteroskedastic) introduced by [3] Engle (1982) 

and [1] Bollerslev (1986). The classical GARCH(p,q) model is 

given by the equations 

2
t t t t tε =σ Z , h =σ

   
2 2

t 0 1 t 1 q t q 1 t 1 p t ph h h  

      

q p
2

0 i t i j t j

i 1 j 1

h                  (2) 

              

where  

0 > 0 ,  i  ≥ 0 ,    j ≥ 0 ,   q ≥ 0 ,   p ≥ 0 

are model parameters and {Zj, j=1, 2, 3, …} are independent 

identically distributed (i.i.d.) random variables with zero mean 

and variance 1. The variables εt, σt, Zt in (2) are usually 

interpreted as financial (log) returns (εt), their volatilities or 

conditional standard deviations (σt), and so-called innovations 

or shocks (Zt), respectively; the innovations are supposed to 

follow a certain fixed distribution (e.g., standard normal). 

Later, a number of modifications of (4.1) were proposed, 

which account for asymmetry, leverage effect, heavy tails and 

other” stylized facts”.  

Under some additional conditions, similarly as in the case of 

ARMA models, the GARCH model can be written as 

ARCH(∞) model i.e., ht can be represented as a moving 

average of the past squared returns 
2
s , s < t, with 

exponentially decaying coefficients (see [1] Bollerslev, 1986) 

and absolutely summable exponentially decaying 

autocovariance function. For instance, the GARCH(p, q) 

process of (2) can be written as 
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2
t t t t tZ , h , 

 
 

1 1 2
t 0 th 1 (1) 1 (B) (B)  

where 
p

1 p(B) B B  and B stands for the back-shift 

operator, B
k
Xt = Xt−k . This leads to the ARCH(∞) 

representation; 

2
t t t t tZ , h

    
2

t 0 i t i
i 1

h b b                          (3)     

            

with 
1

0 0b 1 (1)  and with positive exponentially 

decaying weights bi, i ≥ 1 defined by the generating function 

i
i

i 1

(y) / 1 (y) b y . It is interesting to 

 note that the non-negativity of the regression coefficients αj, βj 

in (2) is not necessary for non-negativity of bj in the 

corresponding ARCH(∞) representation, see [10] Nelson and 

Cao (1992). 

Clearly, if E(Zt / εs , s < t) = 0, E(
2
tZ /εs , s < t) =1  then εt has 

conditional mean zero and a random conditional variance 
2
t   

, i.e. 

E(εt / εs , s < t) = 0, var( t /εs , s < t) =
2
t th  

The general framework leading to the model (2) was 

introduced by [12] Robinson (1991) in the context of testing 

for strong serial correlation and has been subsequently studied 

by [8] Kokoszka and Leipus (2000) in the change-point 

problem context. The class of ARCH(∞) models includes the 

finite order ARCH and GARCH models of [3] Engle (1982) 

and [2]Bollerslev (1986). 

 

2. The Bilinear ARCH Models 

Formally, the classes AR, ARCH, LARCH (at least, 

their finite memory counterparts ARMA, GARCH, ARCH) all 

belong to the general class of bilinear model (1). [6] Giraitis 

and Surgailis (2002) studied the heteroscedastic bilinear 

equation 

       

 

t t 0 i t i 0 i t i
i 1 i 1

X Z X X            (4)                   

           

where {Zt, t=1, 2, 3, …} are i.i.d. random variables, with zero 

mean and variance 1, and j ,  j , j ≥ 0 are real (not necessary 

nonnegative) coefficients. Equation (4) appears naturally when 

studying the class of processes with the property that the 

conditional mean 

μt = E(Xt /Xs, s < t) 

is a linear combination of  Xs, s < t, and the conditional 

variance 

2 2
t th = Var(Xt /Xs, s < t) 

is the square of a linear combinations of Xs, s < t, as it is in the 

case of (4): i.e. 

t t s 0 i t i
i 1

E X / X ,s t X

2

2 2
t t t s 0 i t i

i 1

h var X / X ,s t X  

Clearly, the case j ≡ 0, j ≥ 1 gives the linear AR(∞) equation, 

while j ≡ 0 (j ≥ 0) results in the Linear ARCH (LARCH) 

model, introduced by [12] Robinson (1991), defined by the 

equation  

t t t t tZ , h

    

t j t j

j 1

h c  

The main advantage of LARCH is that it allows modeling of 

long memory as well as some characteristic asymmetries (the 

“leverage effect”). Both these properties cannot be modeled by 

the classical ARCH(∞) with finite fourth moment. The 

coefficients ci satisfy  

d 1
jc ~ k j    for some   0 <d < ½ ,  k> 0 

which implies the condition 

2
j

j 1

c  
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Neither α nor the cj are assumed positive and, unlike in (4.3), 

σt (not 
2
t ), is a linear combination of the past values of εt, 

rather than their squares. 

 [4] Engle and Ng (1993) introduced a nonlinear 

asymmetric GARCH model which captures asymmetry by 

means of interactions between past returns and volatilities  In 

the simple (p=1,q=1) case the conditional variance equation is 

given by  

      t t tZ ,

 
2 2 2 2
t t 0 1 t j 1 t 1 1 t 1h a ( h ) b h   (5)      

with the model becoming asymmetric when the coefficient 1  

is equal to zero. [13] Starti and Vitale (2003) have generalized 

this model to the following BL-GARCH model  

t t tZ ,

    p p p
2 2 2 2
t t 0 j t j j t j j t j t j

j 1 j 1 j 1

h a b h c h             (6)              

  

 where j j ja , b ,c  j=1, 2, ..., p are constants. This model has 

the advantage of being characterized by a more flexible 

parametric structure  In this model leverage effects are 

explained by the interactions between past observations and 

volatilities  To see the positivity of the conditional variance in 

equation (6), we can write  

2
2 2

j t j j t j j t j t j j t j j t j

j j j t j t j

a b h c h a b h

c 2 a b h  

j=1, 2, …, p 

Hence for, α0 > 0, a sufficient condition for  ht
2
 > 0, in (6), is 

given by 

2
j j j4a b c      for  j=1, 2, …, p                          (7) 

                

Model (6) with the condition (7) leads us to introduce a 

simpler reduced parameter Bilinear GARCH model in the 

form; 

       t t tZ ,

    p 2
2 2
t t 0 j t j j t j

j 1

h h                          (8)         

   
From (6) and (8), we can see that the two models contain 

exactly the same number of terms, although the number of 

parameters required by each model is different. In fact the 

number of parameters in (8) is less than that in (6) by p 

parameters. Moreover, we do not need the condition of 

positivity of the parameters  j j,  of model (8). 

Theorem 

 The Bilinear GARCH process (8) is stationary in wide 

sense if and only if the roots ui of the polynomial  

   
p

i
i

i 1

(u) 1 u  

where 
2 2

i i i  , lie outside the unit circle. 

Proof 

 The Bilinear GARCH process (8) can be rewritten as 

   
p p2

2 2
t 0 j t j t j j t j 0 t jj

j 1 j 1

h h Z h h     (9)         

   
which is a random coefficient autoregressive representation for 

2
th  where  

    
2

j j t j j( Z )               (10)                

Taking in consideration the properties of {Zt },  the 

expectation of (9) is given by 

p p
2 2 2
t 0 j t j 0 j t j

j 1 j 1

E h E h E E h  

p p
2 2 2 2

0 j j t j 0 j t j
j 1 j 1

E h E h

 

Since, 

2 2 2h E / t 1t t tE E E  
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  it follows that, 

                      
p

t 0 j t j
j 1

Y Y                          (11)        

                 

where  2
t tY E . Letting B be the backward shift operator 

defined by  k
t t kB Y Y  , equation (11) can be rewritten as, 

0
t

p
j

j
j 1

Y

1 B

 

Therefore tY  in (11) converges to a finite value if and only if 

all the roots ui of the polynomial 
p

i
i

i 1

(u) 1 u  lie outside 

the unit circle which completes the proof. 

The simplest but often very useful Bilinear GARCH 

process is that of order 1 given by 

  

                   2
t t 1 t/ ~ N(0,h )                                            (12)                                            

where
 

2

t 0 1 t 1 1 t 1h h
     

 (13)                                                  

 

with 0 0 . The unconditional variance is 

2 2
t t t 1

2
t

2 2 2 2
0 1 t 1 1 t 1 1 1 t 1 t 1

2 2 2 2
0 1 t 1 1 t 1

E( ) E[E( / )]

E(h )

E( h 2 h )

E( ) E(h )

 

         

2 2 2 2
0 1 t 1 1 t 1

2 2 2
0 1 1 t 1

E( ) E( )

E( )
 

 which implies that 

              
2 0
t 2 2

1 1

E( )
1

         (14)                                 

           

The sequence of variances converges to the constant if  

2 2
1 1 1  suffices for wide sense stationarity. 

Under normality assumption  

4 4 4
t t t 1 t

2
2 2 2 2

0 1 t 1 1 t 1 1 1 t 1 t 1

E( ) E(E( / )) 3E(h )

3E h 2 h
 

2
2 2 2 2

0 1 t 1 1 t 1 1 1 t 1 t 13E h 2 h  

From which we obtain,  

 

2 2 2
4 0 1 1
t 2 2 4 4 2 2

1 1 1 1 1 1

3 (1 )
E( )

(1 )(1 3 6 )
         

 (15)                                

The necessary and sufficient condition for the existence of the 

fourth moment is  

                             
4 4 2 2
1 1 1 13 6 1

            
(16)

  
                                                       

The coefficient of Kurtosis is 

 

 

1 1

2
2 2

4
t

2 4 4 2 2
2 1 1 1 1
t

3 1
E( )

1 3 6E

                               

(2.78) 

 

   In fact it is typically found that the GARCH (1,1) model 

yields an adequate description of many financial time series 

data , see, for example , [2] Bollerslev,Chou, and Kroner 

(1992). A data set which requires a model of order greater than 

GARCH (1, 2) or GARCH (2, 1) is very rare. 

A series of size N=300 is generated from the simple BL-

GARCH model 

,   

With                             

 

The series { } is a sequence of i.i.d. N(0, 1). The initial 

values are chosen as and  . The graph of 

the series { } and { } are presented in figures (1) and (2) 

respectively  
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Figure (1) 

 

 

Figure (2) 

 

3. MLE of BL-GARCH Parameters 

We now consider the maximum likelihood estimation 

of the parameters in the BL-GARCH model (8). 

Let 0 1 p 1 p( ... ... )
 
and suppose that we 

have the observations 
m 1 0 1 nx ,...,x ,x ,...,x  for the time 

series {xt }. Under a reasonable assumption that we have 

known the σ-field σ m 1 1 0{ ,..., , } , we can obtain the joint 

conditional density function of 1 nx ,..., x  given the σ-field 

m 1 0 m 1 1 0{x ,...,x , ,..., , }  

as follows 

1 n 0 m 1 0 m 1f (x ,...,x / x ,...,x , ,..., )  

=

2 n 1 0 m 1 0 m 1f (x ,..., x / x , x ,..., x , ,..., )

1 0 m 1 0 m 1f (x / x ,...,x , ,..., )  

…….. 

 =
n

i t 1 m 1 t 1 m 1
t 1

f (x / x ,..., x , ,..., )  

 =
2n
t

2
t 1 t t

1
exp

2 h 2h
 

Thus the MLE ˆ   of the parameter vector  is the value of  

which maximizes the logarithm likelihood function  

 1 n 0 m 1 0 m 1L( ) ln f (x ,..., x / x ,..., x , ,..., )  

         = 
2n
t

t 2
t 1 t

n
ln(h ) ln(2 )

22h
 

         = 
n

t
t 1

Q ( ) C  

Using the recursive Newton-Raphson iteration algorithm, the 

MLE ˆ  can be obtained by the following iteration: 

(k 1) (k) 1 (k) (k)H ( )G( )  

where 
(k)

 is the set of estimates obtained at the k
th

 stage of 

iteration. G( )  is the gradient vector of partial derivatives, 

1 2p 1

L( ) L( )
G( ) ....  

and H( )  is the Hessian matrix of second order partial 

derivatives, 

2

i j

L( )
H( )  
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The first order partial derivatives are given by 

 

where  are calculated recursively from the equations: 

     

 

 

 

 
 

The second order derivatives are given by: 

 

where 

 

 

 

 

 

 

 

 

 

Note that the estimated the Hessian matrix  Ĥ( )  may be 

singular and some numerical problems may arise. One 

common way to deal with this problem is the Levenberg-

Marquardt procedure [9]  (Marquardt(1963)). 

 

4. Monte Carlo Simulation 

The Newton-Raphson with Marquordt algorithm, described in 

the previous section were tried successfully on many sets of 

data simulated from several stationary BL-GARCH models. 

We shall consider here the following model 
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with  and  The series { } 

is a sequence of i.i.d. N(0, 1). The initial values are chosen as 

 and . The Newton-Raphson algorithm is 

applied at the above model with sample size N=300 and 

replicate simulations 100 times. The results from the Monte-

Carlo study shows, clearly, that the mean of each parameter 

estimates is close the true value. The standard deviations of the 

estimates are small indicating that the estimators are 

consistent. 

 

Parameter 

estimates 

 

 

N=100  

   

True value 0.8 0.5 0.4 

Mean 0.809 0.481 0.376 

S.D. 0.087 0.092 0.095 
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Abstract- The present numerical method is based on a finite 

volume approach on a staggered grid together with a 

fractional step approach. Backward facing step is treated as 

an immersed boundary and both momentum forcing and mass 

source terms are applied on the step to satisfy the no-slip 

boundary condition and also to satisfy the continuity for the 

mesh containing the immersed boundary. In the immersed 

boundary method, the necessity of an accurate interpolation 

scheme satisfying the no-slip condition on the immersed 

boundary is important, because the grid lines generally do not 

coincide with the immersed boundary. The numerically 

obtained velocity profiles, and stream line plots in the channel 

with backward facing step shows excellent agreement with the 

published results in various literatures.  Results are presented 

for different Reynolds numbers with respect to channel length 

and height. 

 

Keywords: IBM, Momentum Forcing, Mass Source/ Sink. 

 
 

1 Introduction 

Numerical simulations are now recognized to be a part of the 

computer-aided engineering (CAE) spectrum of tools used 

extensively today in all industries, and its approach to 

modeling fluid flow phenomena allows equipment designers 

and technical analysts to have the power of a virtual wind 

tunnel on their desktop computer. Numerical simulation 

software has evolved far beyond what Navier, Stokes or Da 

Vinci could ever have imagined. It has become an 

indispensable part of the aerodynamic and hydrodynamic 

design process for planes, trains, automobiles, rockets, ships, 

submarines, MEMS, Lab-on-Chip (LOC) devices and so on; 

and indeed any moving craft or manufacturing process that 

mankind has devised so far. The advantage of numerical 

simulation with respect to experimentation is conceptually 

tabulated in Table 1.  

The ability to handle complex geometries has been one of the 

main issues in computational simulations because most 

engineering problems have complex geometries. So far, two 

different approaches for simulating complex flow have been 

developed: the unstructured grid method and the immersed-

boundary method (IBM). In this paper, numerical simulation 

of backward facing step flow problem is being performed 

using IBM, an alternative CFD simulation technique. It is an 

approach to model and simulate mechanical systems in which 

elastic structures (or membranes) interact with fluid flows. 

Treating the coupling of the structure deformations and the 

fluid flow poses a number of challenging problems for 

numerical simulations.  In the immersed boundary method 

approach the fluid is represented in an Eulerian coordinate 

frame and the structures in a Lagrangian coordinate frame. 

1.1 Immersed Boundary Method 

The term “immersed boundary method” (now known in 

abbreviated form as „IBM‟) was first used in reference to a 

method developed by Peskin in 1972 [1]. Originally this 

method was used to simulate cardiac mechanics and associated 

blood flow.  The distinguished feature of this method was that, 

the entire simulation was carried out on a Cartesian grid, 

which did not conform to the geometry of the heart. Hence, a 

novel procedure was simulated for imposing the effect of the 

immersed boundary (IB) on the flow. That is, imposing the 

boundary conditions is not straight forward in IBM. Since 

Peskin introduced this method, numerous modifications and 

refinements have been proposed and a number of variants of 

this approach now exist. The main advantages of the IBM 

include memory and CPU time savings. Also easy grid 

generation is possible with IBM compared to the unstructured 

grid method. Even moving boundary problems can be handled 

using IBM without regenerating grids in time, unlike the 

structured grid method. 

Table 1.  Comparison of Numerical Simulation and 

Experimentation 

 

It is to be noted that generating body conformal structured or 

unstructured grid is usually very cumbersome. Imposition of 

 

Parameter 
Numerical 

Simulation 
Experimentation 

Cost Cheap Expensive 

Time Short Long 

Scale Any Small/Middle 

Information All Measured Points 

Repeatability All Some 

Security Safe Some Dangerous 
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boundary conditions on the IB is the key factor in developing 

an IB algorithm and distinguishes one IB method from 

another.  In the former approach, which is termed as 

“continuous forcing approach”, the forcing function is 

incorporated in to the continuous equations before 

discretization, where as in the latter approach, which can be 

termed the “discrete forcing approach”, the forcing function is 

introduced after the equations are discretized. An attractive 

feature of the continuous forcing approach is that it is 

formulated independent of the underlying spatial 

discretization. On the other hand, the discrete forcing 

approach very much depends on the discretization method. 

However, this allows direct control over the numerical 

accuracy, stability, and discrete conservation properties of the 

solver.   

A review about Immersed Boundary Methods (IBM) 

encompassing all variants is cited by Mittal and Iaccarino [2]. 

The Immersed Boundary Finite Volume Method [3] used to 

simulate the present problem (i.e., to simulate the backward 

facing step flow problem) is based on a finite volume 

approach on a staggered mesh together with a fractional step 

method. The backward facing step is treated as an immersed 

boundary (IB). Both momentum forcing and mass source are 

applied on the body surface or inside the body to suit the no-

slip boundary condition on the immersed boundary and also to 

satisfy the continuity for the cell containing the immersed 

boundary. In the immersed boundary method, the choice of an 

accurate interpolation scheme satisfying the no-slip condition 

on the IB is important because the grid lines generally do not 

concur with the IB. Therefore, a stable second order 

interpolation scheme for evaluating the momentum forcing on 

the body surface is also used.  

1.2 Backward Facing Step Flows 

The study of backward-facing step flows constitutes an 

important branch of fundamental fluid mechanics. Flow 

geometry of the same is very significant for investigating 

separated flows.  This flow is of particular interest because it 

facilitates the study of the reattachment process by minimizing 

the effect of the separation process, while for other separating 

and reattaching flow geometries there may be a stronger 

interaction between the two. The principal flow features of the 

backward facing step flow are illustrated in Figure 1[4]. 

 

The phenomenon of flow separation is a problem of great 

importance for fundamental and industrial reasons. For 

instance it often corresponds to drastic losses in aerodynamic 

performances of airfoils or automotive vehicles. The 

backward-facing step is an extreme example of separated 

flows that occur in aerodynamic devices such as high-lift 

airfoils at large angles of attack. In these flows separation may 

be created by a strong adverse pressure gradient rather than a 

geometric perturbation, but the flow topology is similar.  It is 

important in heat exchangers and gas turbines also. Since the 

location of the reattachment zone and its flow structure also 

determine the local heat and mass transport properties of the 

flow.  This geometry has been received attention for half a 

century. Many researchers considered different aspects of this 

geometry from the flow pattern point of view and heat 

transfer. In some numerical simulations the backward facing 

step flow problem is a benchmark for validating the 

computational simulation algorithm. 

 

The research in such a flow was intensified with the 

experimental and numerical work of Armaly et al. [5]. They 

presented a detailed experimental investigation in backward-

facing step geometry for an expansion ratio (H/h) of 1.9423, 

an aspect ratio (W/h) of 35 and Reynolds numbers (ReD) up to 

8000. Here D=2h denotes the hydraulic diameter of the inlet 

channel with height h, H the channel height in the expanded 

region and W the channel width. When Reynolds number 

exceeds 400; it has been noticed that the flow appeared to be 

three-dimensional, a discrepancy in the primary recirculation 

length between the experimental results and the numerical 

predictions and a secondary recirculation zone was observed 

at the channel upper wall. Armaly et al. [5] conjectured that 

the discrepancy between the experimental measurements and 

the numerical prediction was due to the secondary 

recirculation zone that perturbed the two-dimensional 

character of the flow. The normalized value of the 

reattachment length showed a peak at ReD=1,200. The 

decrease in recirculation length beyond a Reynolds number of 

1,200 was attributed to the effect of Reynolds stresses.  

 

Kim and Moin [6] numerically simulated the flow over a 

backward-facing step using a method that is second-order 

accurate in both space and time. Their results are (variation of 

the reattachment length on Reynolds number) in good 

agreement with the experimental data of Armaly et al. [5] up 

to about ReD = 500. At ReD = 600 the computed results of 

started to deviate from the experimental values. The 

discrepancy was due to the three-dimensionality of the 

experimental flow around a Reynolds number of 600. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Detailed flow features of the backward facing step flow 

 

The bifurcation of two-dimensional laminar flow to three- 

dimensional flow was identified by Kaiktsis et al. [7]. This is 

the primary source of discrepancies appearing in comparisons 

of numerical predictions and experimental data. From their 

valuable work, it has also been observed that irrespective of 
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the accuracy of the numerical schemes, the experimentally 

measured recirculation lengths (Armaly et al. [5] were 

consistently underestimated above a Reynolds number of ReD 

=5600. They found that all unsteady states of the flow are 

three-dimensional and develop for Reynolds number ReD >Rec 

=700. Furthermore, they detected that the downstream flow 

region is excited through the upstream shear layer with a 

characteristic frequency f1. The supercritical states (ReD > 

700) were found to be periodic with another incommensurate 

frequency, f2. 

 

Kaiktsis et al. [8] revisited the backward-facing step flow and 

found that the unsteadiness in step flow was created by 

convective instabilities. Another important conclusion of this 

study is that the upstream-generated small  disturbances 

propagate downstream at exponentially amplified amplitude 

with a space-dependent speed in the range 700<ReD<2500. 

 

Heenan and Morrison [9] conducted experiments for a 

Reynolds number (ReS) based on the step height S of 1.9X10
5 
 

and suggested that while the flow is likely to be convectively 

unstable over a large region, the global unsteadiness, driven 

by the impingement of large eddies at reattachment is the 

cause of low frequency oscillations called flapping. 

 

Erturk et al.[10] have have presented a new, efficient and 

stable numerical method for the solution of  stream function 

and vorticity equations. With this method they have presented 

steady solutions of driven cavity flow at very high Reynolds 

numbers (up to Re=21,000) using very fine grid mesh. They 

have analysed the nature of the cavity flow at high Reynolds 

numbers. 

 

2 Problem Specification 
To explain the concept of immersed boundary method, 

consider the simulation of flow past a solid body shown in Fig. 

2a. The body occupies the volume Ωb with boundary  Γb. The 

body has a characteristic length scale L, and a boundary layer of 

thickness δ develops over the body. 

 

The conventional approach to this would employ structured or 

unstructured grids that conform to the body. Generating these 

grids proceeds in two sequential steps. First, a surface grid 

covering the boundaries Γb is generated. This is then used as a 

boundary condition to generate a grid in the volume Ωf 

occupied by the fluid. If a finite-difference method is 

employed on a structured grid, then the differential form of the 

governing equations is transformed to a curvilinear coordinate 

system aligned with the grid lines [11]. Because the grid 

conforms to the surface of the body, the transformed equations 

can then be discretized in the computational domain with 

relative ease. If a finite-volume technique is employed, then 

the integral form of the governing equations is discretized and 

the geometrical information regarding the grid is incorporated 

directly into the discretization. If an unstructured grid is 

employed, then either a finite-volume or a finite-element 

methodology can be used. Both approaches incorporate the 

local cell geometry into the discretization and do not resort to 

grid transformations. 

Now consider employing a non body conformal Cartesian grid 

for this simulation, as shown in Figure 2b. In this approach the 

immersed boundary (IB) would still be represented through 

some means such as a surface grid, but the Cartesian volume 

grid would be generated with no regard to this surface grid. 

Thus, the solid boundary would cut through this Cartesian 

volume grid. Because the grid does not conform to the solid 

boundary, incorporating the boundary conditions would 

require modifying the equations in the vicinity of the 

boundary. Precisely what these modifications are is the subject 

matter of IBM. However, assuming that such a procedure is 

available, the governing equations would then be discretized 

using a finite-difference, finite-volume, or a finite-element 

technique without resorting to coordinate transformation or 

complex discretization operators. 

 

 
 
Fig. 2  (a) Schematic showing a generic body past which flow is 

to be simulated. (b) Schematic of body immersed in a Cartesian 

grid on which the governing equations are discretized. 

 

2.1 Governing Equations 

The governing equations for unsteady incompressible viscous 

flow between parallel plates are  
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where 
ix  are the Cartesian coordinates, 

iu are the 

corresponding velocity components, p is the pressure, if  s 

are the momentum forcing components defined at the cell 

faces on the immersed boundary or inside the body, and q is 

the mass source/sink defined at the cell center on the 

immersed boundary or inside the body. All the variables are 

non-dimensionalized by the bulk (average) velocity of the inlet 

flow, Ub and length scales, by H (channel height at the 

downstream), and the only dimensionless number appearing in 

the governing equations is the Reynolds number. For the flow 

problem considered, the following definition is used for the 

Reynolds number, Re. 
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Re (3)bU H




Where   and  are the density and the dynamic viscosity, 

respectively  

 

2.2  Geometry of Flow Domain and Boundary 

Conditions  

Figure 3 depicts the two-dimensional channel with a backward 

facing step with finite distance in between the channel, which 

is small compared to its length and width. Hence the flow 

through this channel is assumed to be two dimensional. In 

addition, the flow is assumed as steady and laminar. Buoyant 

forces are negligible compared with viscous and pressure 

forces.  
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Fig.3. Sketch of the flow configuration and definition of 

length scales. 

 

Inlet: In order to simulate a fully developed laminar channel 

flow upstream of the step and to eliminate the corner effects, a 

standard parabolic velocity profile with a maximum velocity 

Umax=(3/2)Ub  is prescribed at the channel inlet for the present 

model. Cross stream velocity is equal to zero. The Neumann 

boundary condition is assumed for pressure. 

 

Outlet: Fully developed velocity profile is assumed at the 

outlet. Pressure boundary condition is not specified. 

 

Walls:  No slip condition (u=0 and v=0) for velocity and 

Neumann boundary condition for pressure. 

To ease the comparison of the results obtained by the 

numerical simulation using IBM, the geometry of the flow 

problem was chosen in accordance to the experimental setup 

of Armaly et al. [5]. The expansion ratio is defined by       

1 
H S

h h
, 

i.e., by the ratio of the channel height H downstream of the 

step to the channel height h of the inflow channel, where S 

denotes the step height. The results are generated for an 

expansion ratio of 1.9423. This expansion ratio was 

considered in the experimental study by Armaly et al [5] and 

the same value has been used for a set of numerical 

computations at the Reynolds numbers 0.0001, 1,100 to 

compare the results with Biswas et al. [14] results which is in 

turn agreeing with the Armaly et al [5]. An incompressible 

Newtonian fluid with constant fluid properties is assumed. 

3 Solution Procedure 

For the spatial discretization of Equations (1) and (2) an 

immersed-boundary method (IBM) based on finite volume 

approach on a staggered grid together with a fractional step 

method was employed. Being a CFD method, the finite 

volume method (FVM) describes mass, momentum and energy 

conservation for solution of the set of differential equations 

considered. The approximated equations for the FVM can be 

obtained by two approaches. The first consists in applying 

balances for the elementary volumes (finite volumes), and the 

second consists in the integration spatial-temporal of the 

conservation equations. In this work, the latter approach is 

followed. 

  

The momentum forcing and the mass source/sink are applied 

on the body surface or inside the body to satisfy the no-slip 

boundary condition on the immersed boundary (step) and the 

continuity for the cell containing the immersed boundary, 

respectively. A linear interpolation scheme is used to satisfy 

the no-slip velocity on the immersed boundary, which is 

numerically stable regardless of the relative position between 

the grid and the immersed boundary. 

 

The time-integration method used to solve the above equations 

is based on a factional step method where a pseudo-pressure is 

used to correct the velocity field so that the continuity 

equation is satisfied at each computational time step. In this 

study, a second-order semi-implicit time advancement scheme 

(a third order Runge-Kutta method (RK3) for the convection 

terms and a second order Crank-Nicholson method for the 

diffusion terms). 

 

The convection and diffusion terms were evaluated using a 

central differencing scheme of second-order accuracy. 

Solution of non-dimensional u and v are made possible in 

powerful and accurate TDMA (Tri-diagonal Matrix 

Algorithm) with ADI (Alternating Direction Implicit) 

approximate factorization method. The pressure solver is SOR 

(Successive Over Relaxation) method. The numerical code is 

developed using Digital Visual FORTRAN (DVF) and a 

detailed flow chart is shown in Figure 4 which leads to the 

development of code. 

 

4. Results and Discussions 

In order to ensure whether the predicted results are grid 

independent, extensive refinement studies were carried out. 

Finally, the non-dimensional stream wise velocity at the centre 

of the channel outlet for Re=1.0 is tabulated in Table 2. It is 

seen that for the computational stencil of 252x102, percentage 
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change with respect to previous stencil is least. Hence the 

same stencil is being selected for the code execution 

 

 

Fig.4 Flow chart for the Immersed Boundary Method 

 

It has been observed that at low Reynolds numbers the flow 

separates at the sharp corner and then reattaches itself to the 

lower boundary further downstream forming a single primary 

re-circulating eddy. The reattachment length increases almost 

linearly with Reynolds number, the slight non-linear trend 

being attributed to viscous drag along the upper boundary. 

Computed non-dimensionalised reattachment lengths against 

inlet Reynolds number are shown in Table 3, to compare the 

same with the results of Biswas et al. [12].   

 

The determination of the separation and reattachment 

locations thus offers a severe bench-mark test for any 

hydrodynamic model because of the highly non-linear flow 

kinematics in the vicinity of the step. It is evident from plots 

and stream lines that as the Reynolds number increases there 

is a backward flow occurring at the step, which is result of the 

negative pressure developed due to separation occurring at 

high velocity due to high Reynolds number. 

Table 2. Maximum non-dimensional stream wise velocity at 

the centre of the channel for different number of grids in 

horizontal and vertical directions at Re=1.0 

Maximum non-

dimensional 

stream wise 

velocity at the 

channel exit 

 

Number of grids 

in stream wise 

direction 

 

Number of grids 

in cross stream 

direction 

0.681687 27 7 

0.763075 52 22 

0.765939 102 42 

0.766465 152 62 

0.766649 202 82 

0.766798 252 102 

 

Figures 5-9 show the stream wise velocity contours and cross 

stream velocity contours for the Reynolds number range     10
-

4
<Re<10

2
. It is being observed that the maximum velocity is 

at upstream side of the channel. A vortex is also visible at the 

concave corner behind the step. Stream wise velocity is being 

fully developed far downstream of the channel. It is being 

noted that immediately after the concave vortex, the fluid 

adjacent to the walls decelerates due to the formation of the 

two hydrodynamic boundary layers and backward pressure. 

Consequently, as a result of continuity principle, fluid outside 

these two boundary-layers accelerates. Due to this action, a 

transverse velocity component is engendered, which is clearly 

visible from the cross stream velocity contour,  that sends the 

fluid away from the two plates outside the two boundary-

layers and towards the centerline between the two walls. 

However, this action gradually decays with further increase in 

the axial distance downstream the entrance and finally 

vanishes when the flow becomes hydro dynamically fully 

developed.
 
 

Figures 10 and 11 show streamlines of the steady state flow 

field for an expansion ratio H/h=1.9423 and a Reynolds 

numbers range 10
-4 

and 10
2
. The plots well agree with 

literature especially commensurate with the experiments of 

Armaly et al. [5] which reveals that flow over the backward-

facing step is purely two dimensional and non-oscillatory in 

the considered region. 

 

The streamline patterns for Re =10
-4 

depict that the flow 

follows the upper convex corner without revealing a flow 

separation. Furthermore, a corner vortex is found in the 

concave corner behind the step. In this range of very small 

Reynolds numbers (10
-4

), the size of this vortical structure is 

nearly constant varying between x1 /h=0.3491(for Re=10
-4

) 

and 0.3647(for Re=1), where x1 referred to as reattachment 

START 

Define Grid size, Define RK3 coefficients, Assign 

initial values to velocity, pressure and pseudo-

pressure, Set iteration no=0.0, Set BCs 

Iteration No. = Iteration No.+1  

Determine mass source term (IB), Solve pseudo-

pressure using SOR 

 

k (fractional step index) loop = 1 to 3  

Determine momentum forcing (IB) 

Solve intermediate u-velocity 

Solve intermediate v-velocity 

Update intermediate velocity  BCs 

 

Converge? 

Update the pseudo-pressure BCs, Determine the final 

u,v,p with the converged pseudo-pressure 

 

Converge? 

 

  END 

If k>3 

Yes 

Yes 

No 

No 

Yes 

No 
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length. Under these conditions, the effect of inertia forces can 

be assumed to be negligible compared with viscous forces 

often denoted as molecular transport. Hence the flow 

resembles the Stokes flow. 

Table  3.  Comparison of the results  

 

The validation of the numerical model with respect to  

backward-facing step flow problem, which is one of the most 

fundamental geometries causing flow separation and has been 

extensively investigated in both the laboratory and as a 

standard „bench-mark‟ test for numerical simulations, 

ascertain that IBM is a successful alternative  CFD technique.  

This ensures a test of the stability and accuracy of the present 

algorithms. 

5 Conclusions 

Immersed-boundary method is adopted to validate a relevant 

fluid mechanics bench mark problem, the backward facing 

step flow problem. The present algorithm is ideally suited to 

low Reynolds number flows also. Predictions from the 

numerical model have been compared against experimental 

data of different Reynolds numbers of flow past backward-

facing step geometries. In addition, computed reattachment 

and separation lengths have been compared against alternative 

numerical predictions. The immersed boundary method with 

both the momentum forcing and mass source/sink is found to 

gives realistic velocity profiles and reattachment lengths 

downstream of the step demonstrating the accuracy of the 

method. 
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Fig.5 Stream wise Velocity contours for Re=0.0001  
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Fig.6 Stream wise Velocity contours for Re=1.0 
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Fig.7 Stream wise Velocity contours for Re=100.0 
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Fig.8 Cross Stream Velocity contours for Re=0.0001 

 

 

Reynolds 

Number 

Size of the 

corner vortex 

(x
1 

/H) 

 

Size of the 

corner vortex 

(x
1 

/
 
h) 

 

Size of the 

corner vortex 

(x
1 

/
 
h) 

Present work Biswas et al.[12] 

0.0001  0.180  0.3491 0.350  

1.0  0.188  0.3647 0.365  

100 1.45  2.8128 2.8  
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Fig.9 Cross Stream Velocity contours for Re=100.0 
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Fig.10 Streamlines in the vicinity of the step for Re=0.0001 
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Fig.11 Streamlines in the vicinity of the step for Re=100.0 
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Abstract - Prediction intervals for order statistics are widely 
used for reliability problems and other related problems. The 
determination of these intervals has been extensively 
investigated. But the optimality property of these intervals has 
not been fully explored. In this paper, in order to discuss this 
problem, a risk function is introduced to compare prediction 
intervals. In particular, new-sample prediction based on a 
previous sample (i.e., when for predicting the future 
observation in a new sample there are available the data only 
from a previous sample), and within-sample prediction based 
on the early observed data from a current experiment (i.e., 
when for predicting the future observation in a sample there 
are available the early observed data only from that sample). 
We restrict attention to families of distributions invariant 
under location and/or scale changes. The technique used here 
for optimization of prediction intervals based on censored 
data emphasizes pivotal quantities relevant for obtaining 
ancillary statistics. It allows one to solve the optimization 
problems in a simple way. An illustrative example is given. 

Keywords: Order Statistic, Prediction Interval, Risk 
Function, Optimization 

 

1 Introduction 
  Prediction of an unobserved random variable is a 
fundamental problem in statistics. Patel [1] provides an 
extensive survey of literature on this topic. In the areas of 
reliability and life-testing, lifetime data are often modeled via 
the Exponential and the Weibull in order to make predictions 
about future observations. Prediction intervals are constructed 
to have a reasonably high probability of containing a specified 
number of such future observations. These limits may be 
helpful in establishing warranty policy, determining 
maintenance schedules, etc. For a very readable discussion of 
prediction limits and related intervals, see Hahn and Meeker 
[2]. Many authors have reported their efforts for constructing 
prediction limits for the Weibull and for the related extreme 
value distributions (see Patel [1]). Mann and Saunders [3] 
proposed prediction limits for the Weibull which make use of 
only two or three order statistics (see also Mann [4]). Antle 
and Rademaker [5] used simulation to produce a table of 
factors to use with ML estimates to obtain prediction limits. 
Lawless [6] proposed prediction limits based on a conditional 

confidence approach; his limits require both determination of 
the ML estimates and numerical integration. Engelhardt and 
Bain [7-8] and Fertig, Meyer and Mann [9] have proposed 
various approximate prediction limits for the Weibull. Mee 
and Kushary [10] provided a simulation based procedure for 
constructing prediction intervals for Weibull populations for 
Type II censored case. This procedure is based on maximum 
likelihood estimation and requires an iterative process to 
determine the percentile points. Bhaumik and Gibbons [11] 
and Krishnamoorthy et al. [12] proposed approximate 
methods for constructing upper prediction limits for a gamma 
distribution. Consider the following examples of practical 
problems which often require the computation of prediction 
bounds and prediction intervals for future values of random 
quantities: (i) a consumer purchasing a refrigerator would like 
to have a lower bound for the failure time of the unit to be 
purchased (with less interest in distribution of the population 
of units purchased by other consumers); (ii) financial 
managers in manufacturing companies need upper prediction 
bounds on future warranty costs; (iii) when planning life tests, 
engineers may need to predict the number of failures that will 
occur by the end of the test to predict the amount of time that 
it will be take for a specified number of units to fail. Some 
applications require a two-sided prediction interval that will, 
with a specified high degree of confidence, contain the future 
random variable of interest. In many applications, however, 
interest is focused on either an upper prediction bound or a 
lower prediction bound (e.g., the maximum warranty cost is 
more important than the minimum, and the time of the early 
failures in a product population is more important than the last 
ones). Conceptually, it is useful to distinguish between ‘new-
sample’ prediction and ‘within-sample’ prediction. For new-
sample prediction, data from a past sample are used to make 
predictions on a future unit or sample of units from the same 
process or population. For example, based on previous 
(possibly censored) life test data, one could be interested in 
predicting the time to failure of a new unit, time until r 
failures in a future sample of m units, or number of failures by 
time t• in a future sample of m units. For within-sample 
prediction, the problem is to predict future events in a sample 
or process based on early data from that sample or process. If, 
for example, n units are followed until t• and there are k 
observable failures, X1 < X2 < ⋅⋅⋅< Xk, one could be interested 
in predicting the time of the next failure, X(k+1); time until l 
additional failures, X(k+l); number of additional failures in a 
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future interval (t•,t
•). In general, to predict a future realization 

of a random quantity one needs the following: 

1) A statistical model to describe the population or process of 
interest. This model usually consists of a distribution 
depending on a vector of parameters θθθθ. In this paper, attention 
is restricted to families of distributions which are invariant 
under location and/or scale changes. In particular, the case 
may be considered where a previously available complete or 
type II censored sample is from a continuous distribution with 
cdf F((x-µ)/σ), where F(⋅) is known but both the location (µ) 
and scale (σ) parameters are unknown. For such family of 
distributions the decision problem remains invariant under a 
group of transformations (a subgroup of the full affine group) 
which takes µ  (the location parameter) and σ  (the scale) into 
cµ + b and cσ, respectively, where b lies in the range of µ,  c 
> 0. This group acts transitively on the parameter space. 

2) Information on the values of components of the parametric 
vector θθθθ. It is assumed that only the functional form of the 
distribution is specified, but some or all of its parameters are 
unspecified. In such cases ancillary statistics and pivotal 
quantities, whose distribution does not depend on the 
unknown parameters, are used. 

 The technique used here for constructing prediction intervals 
(or bounds) emphasizes pivotal quantities relevant for 
obtaining ancillary statistics. It represents a simple procedure 
that can be utilized by non-statisticians, and which provides 
easily computable explicit expressions for both prediction 
bounds and prediction intervals. The technique is a special 
case of the method of invariant embedding of sample statistics 
into a performance index (see, e.g., Nechval et al. [13-18]) 
applicable whenever the statistical problem is invariant under 
a group of transformations, which acts transitively on the 
parameter space. 

2 Within-sample prediction problem 
 For within-sample prediction, the problem is to predict 
future events in a sample or process based on early data from 
that sample or process. For example, if n units are followed 
until tk and there are k observed failures, t1, …, tk, one could 
be interested in predicting the time of the next failure tk+1; 
time until l additional failures, tk+l; number of additional 
failures in a future interval. 

2.1 Location-scale family of density functions 

 Consider a situation described by a location-scale family 
of density functions, indexed by the vector parameter θθθθ=(µ,σ), 
where µ and σ (>0) are respectively parameters of location 
and scale. For this family, invariant under the group G of 
positive linear transformations: x→ax+b with a>0, we shall 
assume that there is obtainable (from some informative 
experiment)  the  first  k order statistics  X1<X2< ⋅⋅⋅ <Xk  from a  
random sample of size n with cumulative distribution function 

,),|( 






 −≡
σ

µσµ x
FxF  

 .0   ,   ,) ( >∞<<∞−∞<<−∞ σµµ x   (1) 

If Y is an independent future observation from the same 
sample of size n, then W= kk SXY /)( −  (or W= 

kk XXY /)( − ) is an invariant statistic, the distribution of 

which does not depend on (µ,σ);  Sk is a sufficient statistic (or 
a maximum likelihood estimatorkσ) ) for σ  based on X=(X1, 

X2, …, Xk).  

2.2 Piecewise-linear loss function 

 We shall consider the interval prediction problem for the 
rth order statistic Xr, k<r≤n, in the same sample of size n for 
the situation where the first k observations X1 < X2 < ⋅⋅⋅< Xk, 
1≤k<n, have been observed. Suppose that we assert that an 
interval d=(d1,d2) contains Xr. If, as is usually the case, the 
purpose of this interval statement is to convey useful 
information we incur penalties if d1 lies above Xr or if d2 falls 
below Xr. Suppose that these penalties are c1(d1− Xr) and 
c2(Xr−d2), losses proportional to the amounts by which Xr 
escapes the interval. Since c1 and c2 may be different the 
possibility of differential losses associated with the interval 
overshooting and undershooting the true µ is allowed. In 
addition to these losses there will be a cost attaching to the 
length of interval used. For example, it will be more difficult 
and more expensive to design or plan when the interval 
d=(d1,d2) is wide. Suppose that the cost associated with the 
interval is proportional to its length, say c(d2−d1). In the 
specification of the loss function, σ is clearly a ‘nuisance 
parameter’ and no alteration to the basic decision problem is 
caused by multiplying all loss factors by 1/σ. Thus we are led 
to investigate the piecewise-linear loss function  
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The decision problem specified by the informative experiment 
density function (1) and the loss function (2) is invariant 
under the group G of transformations. Thus, the problem is to 
find the best invariant interval predictor of Xr, 

),,( min arg dd
d

θθθθR
D∈

∗ =    (3) 

where D is a set of invariant interval predictors of Xr, 
R(θθθθ,d)=Eθθθθ{ r(θθθθ,d)} is a risk function. 

2.3 Transformation of the loss function 

 It follows from (2) that the invariant loss function, r(θθθθ,d), 
can be transformed as follows: 

),,(),( ηηηηθθθθ Vd rr &&=   (4) 

where 
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V=(V1,V2),   V1= σ/)( kr XX − ,   V2= σ/kS ; 

 

    ηηηη=(η1,η2),   η1= kk SXd /)( 1 − ,   η2= kk SXd /)( 2 − . (6) 

2.4 Risk function 

 It follows from (5) that the risk associated with d and θθθθ 
can be expressed as 
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which is constant on orbits when an invariant predictor 
(decision rule) d is used, where f(v1,v2) is defined by the joint 
probability density of the first k observations X1 < X2 < ⋅⋅⋅< Xk 
and Xr, 
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2.5 Risk minimization and optimal predictors 

 The following theorem gives the central result in this 
section. 

Theorem 1 (Optimal predictor of Xr based on X). Suppose that 
(u1, u2) is a random vector having density function 
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where f is defined by f(v1,v2), and let Q be the probability 
distribution function of u1/u2.  

(i) If c/c1+c/c2<1 then the optimal invariant linear-loss interval 
predictor of Xr based on X is d*=(Xk+η1Sk, Xk+η2Sk), where 

    ./1)Q(     ,/)( 2211 ccccQ −== ηη  (10) 

(ii) If c/c1+c/c2≥1 then the optimal invariant linear-loss 
interval predictor of Xr based on X degenerates into a point 
predictor Xk+ •η Sk, where  

)./()( 212 cccQ +=•η  (11) 

Proof. From (7) 
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Now ∂E{ r&& (V,ηηηη)}/ ∂η1 = ∂E{ r&& (V,ηηηη)}/ ∂η2 = 0 if and only if 
(10) hold. Thus, E{ r&& (V,ηηηη)} provided (10) has a solution with 
η1<η2 and this is so if 1−c/c2>c/c1. It is easily confirmed that 
this ηηηη=(η1,η2) gives the minimum value of E{ r&& (V,ηηηη)}. Thus 
(i) is established.  

If c/c1+c/c2≥1 then the minimum of E{ r&& (v,η)} in the region 
η2≥η1 occurs where η1=η2= •η , •η  being determined by 

setting  
 ∂E{ r&& (V,( •• ηη , ))}/ ∂ •η =0  (17) 

and this reduces to 
,0)](1[)( 21 =−− •• ηη QcQc     (18) 

which establishes (ii).    

Corollary 1.1 (Minimum risk of the optimal invariant 
predictor of Xr based on X). The minimum risk is given by 

{ } { }),(),(),( ηηηηθθθθθθθθ θθθθ Vdd rErER &&== ∗∗  
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for case (i) with ηηηη=(η1,η2) as given by (10) and for case (ii) 
with η1=η2= •η  as given by (11). 

Proof. These results are immediate from (7) when use is made 
of ∂E{ r&& (V,ηηηη)}/ ∂η1 = ∂E{ r&& (V,ηηηη)}/ ∂η2 = 0 in case (i) and 
∂E{ r&& (V,( •• ηη , ))}/ ∂ •η =0 in case (ii).    

The underlying reason why c/c1+c/c2 acts as a separator of 
interval and point prediction is that for c/c1+c/c2≥1 every 
interval predictor is inadmissible, there existing some point 
predictor with uniformly smaller risk.  
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Theorem 2 (Optimal invariant predictor of Xr based on Xk). 
Suppose that µ=0 and 

V=(V1,V2),   V1= σ/)( kr XX − ,   V2= σ/kX ; 
 

ηηηη=(η1,η2),   η1= kk XXd /)( 1 − ,   η2= kk XXd /)( 2 − . (20) 

Let us assume that (u1, u2) is a random vector having density 
function 
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−∞ ∞

∫ ∫ uududuuufuuufu   (21) 

where f0 is defined by f0(v1,v2), and let Q0 be the probability 
distribution function of u1/u2. 

(i) If c/c1+c/c2<1 then the optimal invariant linear-loss interval 
predictor of Xr based on Xk is d*=((1+η1)Xk, (1+η2)Xk), where 

 ./1)(Q     ,/)( 220110 ccccQ −== ηη  (22) 

(ii) If c/c1+c/c2≥1 then the optimal invariant linear-loss 
interval predictor of Xr based on Xk degenerates into a point 
predictor (1+ )•η Xk, where 

  )./()( 2120 cccQ +=•η   (23) 

Proof. For the proof we refer to Theorem 1.    

Corollary 2.1 (Minimum risk of the optimal invariant 
predictor of Xr based on Xk). The minimum risk is given by 
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for case (i) with ηηηη=(η1,η2) as given by (22) and for case (ii) 
with η1=η2= •η  as given by (23). 

Proof. For the proof we refer to Corollary 1.1.    

3 Equivalent confidence coefficient 
 For case (i) when we obtain an interval predictor for Xr 
we may regard the interval as a confidence interval in the 
conventional sense and evaluate its confidence coefficient. 
The general result is contained in the following theorem. 

Theorem 3 (Equivalent confidence coefficient for d∗ based on 
X). Suppose that V=(V1,V2) is a random vector having density 
function  f(v1,v2) (v1,v2>0) where f is defined by (8) and let H 
be the distribution function of W=V1/V2, i.e., the probability 
density function of W is given by 
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 Then the confidence coefficient associated with the optimum 
prediction interval d*=(d1,d2), where d1=Xk+η1Sk,  d2=Xk+η2Sk, 
is 
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2
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Proof. The confidence coefficient for d∗ corresponding to 
(µ,σ) is given by 
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This is independent of (µ,σ).    

Theorem 4 (Equivalent confidence coefficient for d∗ based on 
Xk). Suppose that V=(V1,V2) is a random vector having density 
function  f0(v1,v2) (v1 real, v2>0), where f0 is defined by 
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and let H0 be the distribution function of W=V1/V2, i.e., the 
probability density function of W is given by 
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 Then the confidence coefficient associated with the optimum 
prediction interval d*=(d1,d2), where d1=(1+η1)Xk, d2= 
(1+η2)Xk, is 

},|:{ Pr 21 σµdXd r <<∗d  
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Proof. For the proof we refer to Theorem 3.     

The way in which (26) (or (30)) varies with c, c1 and c2, and 
the fact that c1 and c2 are the factors of proportionality 
associated with losses from overshooting and undershooting 
relative to loss involved in increasing the length of interval, 
provides an interesting interpretation of confidence interval 
prediction. 

4 New-sample prediction problem 
 For new-sample prediction, data from a past sample are 
used to make predictions on a future unit or sample of units 
from the same process or population. For example, based on 
previous (possibly censored) life test data, one could be 
interested in predicting the time to failure of a new item, time 
until l failures in a future sample of m units, or number of 
failures by time t• in a future sample of m units. 

4.1 Location-scale family of density functions 

 Consider a situation described by a location-scale family 
of density functions, indexed by the vector parameter θθθθ=(µ,σ), 
where µ and σ (>0) are respectively parameters of location 
and scale. For this family, invariant under the group of 
positive linear transformations: x→ax+b with a>0, we shall 
assume that there is obtainable from some informative 
experiment (the first k order statistics X1<X2< ⋅⋅⋅ <Xk from a 
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random sample of size n) a sufficient statistic (Mk,Sk) (or a 
maximum likelihood estimator (kµ) , kσ) )) for (µ,σ)  based on 

X=(X1, X2,…, Xk) with density function 

]/ ,/)[(),|,( 0
2 σσµσσµ kkkk smpsmp −= −  

 .0   ,   ,0   , >∞><∞−∞<<∞<<−∞ σµkk sm    (31) 

We are thus assuming that for the family of density functions 
an induced invariance holds under the group G of 
transformations: mk → amk+b,   sk → ask  or kµ) → kaµ) +b, 

kσ) → kaσ)  (a>0). The family of density functions satisfying 

the above conditions is, of course, the limited one of normal, 
negative exponential, Weibull and gamma (with known index) 
density functions. The structure of the problem is, however, 
more clearly seen within the general framework. Let Y be an 
independent future observation from a new sample. If Y is 
invariantly predictable then W=(Y−Mk)/Sk (or W= kkY σµ ))

/)( − ) 

is a maximal invariant pivotal, conditional on X. 

4.2 Piecewise-linear loss function 

 We shall consider the interval prediction problem for the 
sth order statistic Ys, 1 ≤ s ≤ m, in a future sample of size m for 
the situation where the first k observations X1 < X2 < ⋅⋅⋅< Xk, 
1≤k<n, from a past sample of size n have been observed. 
Suppose that we assert that an interval d=(d1,d2) contains Ys. 
If, as is usually the case, the purpose of this interval statement 
is to convey useful information we incur penalties if d1 lies 
above Ys or if d2 falls below Ys. Suppose that these penalties 
are c1(d1− Ys) and c2(Ys −d2), losses proportional to the 
amounts by which Ys escapes the interval. Since c1 and c2 may 
be different the possibility of differential losses associated 
with the interval overshooting and undershooting the true µ is 
allowed. In addition to these losses there will be a cost 
attaching to the length of interval used. For example, it will be 
more difficult and more expensive to design or plan when the 
interval d=(d1,d2) is wide. Suppose that the cost associated 
with the interval is proportional to its length, say c(d2−d1). In 
the specification of the loss function, σ is clearly a ‘nuisance 
parameter’ and no alteration to the basic decision problem is 
caused by multiplying all loss factors by 1/σ. Thus we are led 
to investigate the piecewise-linear loss function   
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The decision problem specified by the informative experiment 
density function (31) and the loss function (32) is invariant 
under the group G of transformations. Thus, the problem is to 
find the optimal interval predictor of Ys, 

  ),,( min arg dd
d

θθθθR
D∈

∗ =    (33) 

where D is a set of invariant interval predictors of Ys, 
R(θθθθ,d)=Eθθθθ{ r(θθθθ,d)} is a risk function. 

4.3 Transformation of the loss function 

 It follows from (32) that the invariant loss function, 
r(θθθθ,d), can be transformed as follows: 
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where 
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V=(V1,V2),   V1= σ/)( ks MY − ,   V2= σ/kS ; 

 

ηηηη=(η1,η2),   η1= kk SMd /)( 1 − ,   η2= kk SMd /)( 2 − . (36) 

4.4 Risk function 

 It follows from (35) that the risk associated with d and θθθθ 
can be expressed as 

{ } { }),(),(),( ηηηηθθθθθθθθ θθθθ Vdd rErER &&==  

∫ ∫
∞

∞−

+−=
0

21212111

21

),()(
v

dvdvvvfvvc
η

η  

∫ ∫
∞ ∞

−+
0

21212212

22

),()(
v

dvdvvvfvvc
η

η  

    ,),()(
0

2121212 ∫ ∫
∞ ∞

∞−

−+ dvdvvvfvc ηη   (37) 

 

which is constant on orbits when an invariant predictor 
(decision rule) d is used, where f(v1,v2) is defined by the joint 
probability density of the first k observations X1 < X2 < ⋅⋅⋅< Xk 
from the past random sample of size n and the sth order 
statistic Ys in the future sample of size m, 
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4.5 Risk minimization and optimal predictors 

     The following theorem gives the central result in this 
section. 

Theorem 5 (Optimal invariant predictor of Ys based on X). 
Suppose that (u1, u2) is a random vector having density 
function 
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where f is defined by f(v1,v2), and let Q be the probability 
distribution function of u1/u2.  
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(i) If c/c1+c/c2<1 then the optimal invariant linear-loss interval 
predictor of Ys based on X is d*=(Mk+η1Sk, Mk+η2Sk), where 

  ./1)(     ,/)( 2211 ccQccQ −== ηη    (40) 

(ii) If c/c1+c/c2≥1 then the optimal invariant linear-loss 
interval predictor of Ys based on X degenerates into a point 
predictor Mk+ •η Sk, where 

 )./()( 212 cccQ +=•η    (41) 

Proof. For the proof we refer to Theorem 1.    

Corollary 5.1 (Minimum risk of the optimal invariant 
predictor of Ys based on X). The minimum risk is given by 
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for case (i) with ηηηη=(η1,η2) as given by (40) and for case (ii) 
with η1=η2= •η  as given by (41). 

Proof. For the proof we refer to Corollary 1.1.    

Theorem 6 (Equivalent confidence coefficient for d∗ based on 
X). Suppose that V=(V1,V2) is a random vector having density 
function  f(v1,v2) (v1 real, v2>0) where f is defined by (38) and 
let H be the distribution function of W=V1/V2, i.e., the 
probability density function of W is given by 
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Then the confidence coefficient associated with the optimum 
prediction interval d*=(d1,d2), where d1=Mk+η1Sk,  
d2=Mk+η2Sk, is 
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Proof. For the proof we refer to Theorem 3.    

5 Example 

5.1 Within-sample prediction  

 Exponential distribution. Let X1< X2< ⋅⋅⋅ <Xn be order 
statistics of size n from the exponential distribution with the 
density  
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We shall consider the prediction problem of Xr for the 
situation where the first k observations X1< X2< ⋅⋅⋅ <Xk, 1≤ k < 
r ≤ n, have been observed. Let G be the group of 
transformations xi=axi (i=1, …, k, r, n,  a>0) We are now 
concerned with optimization of the prediction interval for Xr 
under the loss function (2). Let X=(X1, X2,…, Xk) and Xr > Xk 
for r ≤ n. Then the joint probability density function of X and 
Xr is given by 
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Using the invariant embedding technique [13-18], we then 
find in a straightforward manner that the joint density of V1, V2 
is 

 ),()(),( 221121 vfvfvvf =    (48) 
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It follows from (15) and (49) that 
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It follows from (25) and (48) that 
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If c/c1+c/c2<1 then the optimal invariant linear-loss interval 
predictor of Xr based on X is given by 

  d*=(Xk+η1Sk, Xk+η2Sk),  (53) 
where 
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The confidence coefficient associated with the optimum 
prediction interval d*=(d1,d2), where d1=Xk+η1Sk,  d2=Xk+η2Sk, 
is given by 
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6 Conclusions 
 In many statistical decision problems it is reasonable 
confine attention to rules that are invariant with respect to a 
certain group of transformations. If a given decision problem 
admits a sufficient statistic, it is well known that the class of 
invariant rules based on the sufficient statistic is essentially 
complete in the class of all invariant rules under some 
assumptions. This result may be used to show that if there 
exists a minimax invariant rule among invariant rules based on 
sufficient statistic, it is minimax among all invariant rules. 

7 References 
[1] J. K. Patel. “Prediction Intervals − A Review”; 
Communications in Statistics –Theory and Methods, Vol. 13, 
pp. 2393 −2465, 1989. 

[2] G. J. Hahn and W. Q. Meeker. “Statistical Intervals: A 
Guide for Practitioners”.  New York: Wiley, 1991. 

[3] N. R. Mann and S. C. Saunders. “On Evaluation of 
Warranty Assurance when Life Has a Weibull Distribution”; 
Biometrika, Vol. 56, pp. 615 −625, 1969. 

[4] N. R. Mann. “Warranty Periods Based on Three Ordered 
Sample Observations from a Weibull Population”; IEEE 
Transactions on Reliability, Vol. R−19, pp. 167 −171, 1970.  

[5] C. E. Antle and F. Rademaker. “An Upper Confidence 
Limit on the Maximum of m Future Observations from a Type 
I Extreme-Value Distribution”; Biometrika, Vol. 59, pp. 
475−477, 1972. 

[6] J. F. Lawless. “On the Estimation of Safe Life when the 
Underlying Life Distribution is Weibull”; Technometrics, 
Vol. 15, pp. 857 −865, 1973.  

[7] M. Engelhardt and L. J. Bain. “Prediction Limits and 
Two-Sample Problems with Complete or Censored Weibull 
Data”; Technometrics, Vol. 21, pp. 233 −237, 1979. 

[8] M. Engelhardt and L. J. Bain. “On Prediction Limits for 
Samples from a Weibull or Extreme-Value Distribution”; 
Technometrics, Vol. 24, pp. 147 −150, 1982. 

[9] K. W. Fertig, M. Mayer, and N. R. Mann. “On 
Constructing Prediction Intervals for Samples from a Weibull 
or Extreme Value Distribution”; Technometrics, Vol. 22, pp. 
567−573, 1980. 

[10] R. W. Mee and D. Kushary. “Prediction Limits for the 
Weibull Distribution Utilizing Simulation”; Computational 
Statistics & Data Analysis, Vol. 17, pp. 327 −336, 1994. 

[11] D. K. Bhaumik and R. D. Gibbons. “One-Sided 
Prediction Intervals for at Least p of m Observations from a 
Gamma Population at Each of r Locations"; Technometrics, 
Vol. 48, pp. 112 −129, 2006. 

[12] K. Krishnamoorthy, T. Mathew, and S. Mukherjee. 
“Normal Based Methods for a Gamma Distribution: 
Prediction and Tolerance Intervals and Stress-Strength 
Reliability”; Technometrics, Vol. 50, pp. 69 –78, 2007. 

[13] N. A. Nechval and E. K. Vasermanis. “Improved 
Decisions in Statistics”. Riga: SIA “Izglitibas soli”, 2004. 

[14] N. A. Nechval, G. Berzins, M. Purgailis, and K. N. 
Nechval. “Improved Estimation of State of Stochastic 
Systems via Invariant Embedding Technique”; WSEAS 
Transactions on Mathematics, Vol. 7, pp. 141–159, 2008. 

[15] N. A. Nechval, M. Purgailis, G. Berzins, K. Cikste, J. 
Krasts, and K. N. Nechval. “Invariant Embedding Technique 
and Its Applications for Improvement or Optimization of 
Statistical Decisions”; in Analytical and Stochastic Modeling 
Techniques and Applications, K. Al-Begain, D. Fiems, and 
W. Knottenbelt (Eds.). LNCS, Vol. 6148, Berlin, Heidelberg: 
Springer-Verlag, 2010, pp. 306 −320.  

[16] N. A. Nechval, M. Purgailis, K. Cikste, G. Berzins, U. 
Rozevskis, and K. N. Nechval. “Prediction Model Selection 
and Spare Parts Ordering Policy for Efficient Support of 
Maintenance and Repair of Equipment”; in Analytical and 
Stochastic Modeling Techniques and Applications, K. Al-
Begain, D. Fiems, and W. Knottenbelt (Eds.). LNCS, Vol. 
6148, Berlin, Heidelberg: Springer-Verlag, 2010, pp. 
321−338. 

[17] N. A. Nechval, M. Purgailis, K. Cikste, G. Berzins, and 
K. N. Nechval. “Optimization of Statistical Decisions via an 
Invariant Embedding Technique”; in Lecture Notes in 
Engineering and Computer Science: Proceedings of the World 
Congress on Engineering 2010, WCE 2010, 30 June - 2 July, 
2010, London, U.K., pp. 1776 −1782. 

[18] N. A. Nechval and M. Purgailis. “Improved State 
Estimation of Stochastic Systems via a New Technique of 
Invariant Embedding”; in Stochastic Control, Chris Myers 
(Ed.). Croatia, India, Publisher: Sciyo, 2010, pp. 167 −193. 

Int'l Conf. Scientific Computing |  CSC'11  | 125



Numerical Computation Method in Solving Integral Equation
by Using the Second Chebyshev Wavelets

L. Zhu, Y. X. Wang, and Q. B. Fan
School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei, China

Abstract— In this paper, a numerical method for solving the
Fredholm and Volterra integral equations is presented. The
method is based upon the second Chebyshev wavelet approx-
imation. The properties of the second Chebyshev wavelet are
first presented and then operational matrix of integration of
the second Chebyshev wavelets basis and product operation
matrix of it are derived. The second Chebyshev wavelet
approximation method is then utilized to reduce the integral
equation to the solution of algebraic equations combining
Galerkin method. Some comparative examples are included
to demonstrate superiority of operational matrix of the
second Chebyshev wavelets to those of Legendre wavelets
and CAS wavelets. It shows higher accuracy of the second
Chebyshev wavelets method.

Keywords: The second Chebyshev wavelets, Operational matrix
of integration, Product operational matrix, Integral equation

1. Introduction
In recent years, wavelets have found their way into

many different fields of science and engineering, particu-
larly, wavelets are very successfully used in signal analy-
sis for waveform representation and segmentations, time-
frequency analysis and fast algorithms for easy imple-
mentation. Wavelets permit the accurate representation of
a variety of functions and operators. Moreover, wavelets
establish a connection with fast numerical algorithms[1]. The
main advantage of wavelet method for solving the integral
equation and differential equation is after discreting the
coefficients matrix of algebraic equations is spare[2]. So, the
computational cost is low.

Several wavelets methods for approximating the solu-
tion of the integral equations and differential equations
are known. Haar wavelets method was presented in [3-5].
CAS wavelets method was developed in [6,7]. Harmonic
wavelets method of successive approximation was intro-
duced in [8]. In [9,10], E. Babolian applied operational
matrix of integration of Chebyshev wavelets basis to the
integral equations and differential equations and it was used
in solving a nonlinear fractional differential equation in [11].
K. Maleknejad[12] introduced Legendre wavelets method for
Fredholm and Volterra integral equations, while in [13] the
integral and differential equations were solved by Legendre
wavelets.

Here we will construct the second Chebyshev wavelets
on the interval [0, 1]. The wavelets basis are suitable for
numerical solutions of the integral equation.

2. Properties of the second Chebyshev
wavelets

Wavelets constitute a family of functions constructed from
dilation and translation of a single function ψ(x) called
the mother wavelet. When the dilation parameter a and
the translation parameter b vary continuously we have the
following family of continuous wavelets as[2]

ψa,b(t) = |a|− 1
2 ψ

(
t− b

a

)
, a, b ∈ R, a 6= 0.

If we restrict the parameters a and b to discrete values
as a = a−k

0 , b = nb0a
−k
0 , a0 > 1, b0 > 0, we have the

following family of discrete wavelets

ψk,n(t) = |a0| k
2 ψ(ak

0t− nb0), k, n ∈ Z,

where ψk,n form a wavelet basis for L2(R). In particular,
when a0 = 2 and b0 = 1 then ψk,n(t) form an orthonormal
basis.

The second Chebyshev wavelets ψn,m(t) =
ψ(k, n,m, t) involve four arguments, n = 1, ..., 2k−1,
k is assumed any positive integer, m is the degree of the
second Chebyshev polynomials and t is the normalized
time. They are defined on the interval [0, 1) as

ψnm(t) =
{

2
k
2 Ũm(2kt− 2n + 1), n−1

2k−1 6 t < n
2k−1 ,

0, otherwise,
(1)

where

Ũm(t) =

√
2
π

Um(t), (2)

and m = 0, 1, . . . , M − 1. In Eq. (2) the coefficients
are used for orthonormality. Here Um(t) are the second
Chebyshev polynomials of degree m which respect to the
weight function ω(t) =

√
1− t2 on the interval [−1, 1] and

satisfy the following recursive formula

U0(t) = 1, U1(t) = 2t,

Um+1(t) = 2tUm(t)− Um−1(t), m = 1, 2, · · ·
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We should note that in dealing with the second Chebyshev
wavelets the weight funtion ω̃(t) = ω(2t − 1) have to be
dilate and translate as

ωn(t) = ω(2kt− 2n + 1),

A function f(t) defined over [0, 1) may be expanded as

f(t) =
∞∑

n=0

∑
m∈z

cnmψnm(t), (3)

where

cnm = (f(t), ψnm(t))ωn
=

∫ 1

0

ωn(t)ψnm(t)f(t) dt, (4)

in which (· , ·) denotes the inner product in L2
ωn

[0, 1]. If the
infinite series in Eq. (3) is truncated, then it can be written
as

f(t) '
2k−1∑
n=1

M−1∑
m=0

cnmψnm(t) = CT Ψ(t), (5)

where C and Ψ(t) are 2k−1M × 1 matrices given by

C = [c10, c11, . . . , c1(M−1), c20, . . . , c2(M−1), . . . ,

c2k−10, . . . , c2k−1(M−1)]
T (6)

and

Ψ(t) = [ψ10, ψ11, . . . , ψ1(M−1), ψ20, . . . , ψ2(M−1),

. . . , ψ2k−10, . . . , ψ2k−1(M−1)]
T .

(7)

Similarly, a function k(x, t) ∈ L2
ωn

([0, 1] × [0, 1]) may be
approximated as

k(x, t) = Ψ(x)T KΨ(t), (8)

where K is 2k−1M × 2k−1M matrix with

Kij = (ψi(x), (k(x, t), ψj(t))). (9)

3. Operational matrix of integration and
product operation matrix

In this section we will first derive the operational ma-
trix P of integration[14−16] which plays a great role in
dealing with the problem of integro-differential equations
and Volterra integral equations. First we construct the 6 ×
6 matrix P for k = 2 and M = 3. In this case, the six basis
functions are given by

ψ10(t) = 2
√

2
π ,

ψ11(t) = 2
√

2
π (8t− 2),

ψ12(t) = 2
√

2
π (64t2 − 32t + 3),





0 6 t <
1
2
, (10)

ψ20(t) = 2
√

2
π ,

ψ21(t) = 2
√

2
π (8t− 6),

ψ22(t) = 2
√

2
π (64t2 − 96t + 35),





1
2

6 t < 1. (11)

By integrating (10) and (11) from 0 to t and representing it
to the matrix form, we obtain

∫ t

0

ψ10(t′) dt′ =





2
√

2
π

t, 0 6 t < 1
2 ,

√
2
π

, 1
2 6 t < 1.

=
1
4
ψ10(t) +

1
8
ψ11(t) +

1
2
ψ20(t)

=
[
1
4
,
1
8
, 0,

1
2
, 0, 0

]
Ψ6(t),

∫ t

0

ψ11(t′) dt′ =





4
√

2
π

(2t2 − t), 0 6 t < 1
2 ,

0, 1
2 6 t < 1,

= − 3
16

ψ10(t) +
1
16

ψ12(t)

=
[
− 3

16
, 0,

1
16

, 0, 0, 0
]

Ψ6(t).

Similarly we have
∫ t

0

ψ12(t′) dt′ =
1
12

ψ10(t)− 1
24

ψ11(t)

=
[

1
12

,− 1
24

, 0, 0, 0, 0
]

Ψ6(t),

∫ t

0

ψ20(t′) dt′ =
1
4
ψ20(t) +

1
8
ψ21(t)

=
[
0, 0, 0,

1
4
,
1
8
, 0

]
Ψ6(t),

∫ t

0

ψ21(t′) dt′ = − 3
16

ψ20(t) +
1
16

ψ22(t)

=
[
0, 0, 0,− 3

16
, 0,

1
16

]
Ψ6(t),

∫ t

0

ψ22(t′) dt′ =
1
12

ψ20(t)− 1
24

ψ21(t)

=
[
0, 0, 0,

1
12

,− 1
24

, 0
]

Ψ6(t).

Thus ∫ t

0

Ψ6(t′) dt′ = P6×6Ψ6(t), (12)

where

Ψ6(t) = [ψ10, ψ11, ψ12, ψ20, ψ21, ψ22]T

and

P6×6 =
1
4




1 1
2 0 2 0 0

− 3
4 0 1

4 0 0 0
1
3 − 1

6 0 0 0 0
0 0 0 1 1

2 0
0 0 0 − 3

4 0 1
4

0 0 0 1
3 − 1

6 0




.
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In Eq. (12) the subscript of P6×6 and Ψ6 denote the
dimension. In fact the matrix P6×6 can be written as

P6×6 =
1
4

[
L3×3 F3×3

O3×3 L3×3

]
,

where

L3×3 =




1 1
2 0

− 3
4 0 1

4
1
3 − 1

6 0


 , F3×3 =




2 0 0
0 0 0
0 0 0


 .

For general case, we have
∫ t

0

Ψ(t′) dt′ = PΨ(t), (13)

where P is a 2k−1M × 2k−1M matrix for integration and
is given as

P =
1
2k




L F F · · · F F
O L F · · · F F
...

...
...

. . .
...

...
O O O · · · L F
O O O · · · O L




,

where F and L are M ×M matrices given by

F =




2 0 · · · 0
0 0 · · · 0
...

... · · · ...
0 0 · · · 0




and

L =




1 1
2 0 · · · 0

− 3
4 0 1

4 · · · 0
1
3 − 1

6 0 · · · 0
− 1

4 0 − 1
8 · · · 0

...
...

...
. . .

...
(−1)M−2 1

M−1 0 0 · · · 1
2(M−1)

(−1)M−1 1
M 0 0 · · · 0




.

Then we will obtain the product operation matrix, which
is important for solving Volterra integral equations.

Let
Ψ(t)ΨT (t)C ' C̃Ψ(t), (14)

where C̃ is 2k−1M × 2k−1M product operation matrix. To
illustrate the calculation procedure we choose k = 2,M =
3. Thus we have

C = [c10, c11, c12, c20, c21, c22]T , (15)

Ψ(t) = [ψ10, ψ11, ψ12, ψ20, ψ21, ψ22]T , (16)

where, the six basis functions are given by Eq. (10) and Eq.
(11).

So we get

Ψ(t)ΨT (t) =


ψ10ψ10 ψ10ψ11 ψ10ψ12 ψ10ψ20 ψ10ψ21 ψ10ψ22

ψ11ψ10 ψ11ψ11 ψ11ψ12 ψ11ψ20 ψ11ψ21 ψ11ψ22

ψ12ψ10 ψ12ψ11 ψ12ψ12 ψ12ψ20 ψ12ψ21 ψ12ψ22

ψ20ψ10 ψ20ψ11 ψ20ψ12 ψ20ψ20 ψ20ψ21 ψ20ψ22

ψ21ψ10 ψ21ψ11 ψ21ψ12 ψ21ψ20 ψ21ψ21 ψ21ψ22

ψ22ψ10 ψ22ψ11 ψ22ψ12 ψ22ψ20 ψ22ψ21 ψ22ψ22




.

Expanding each product by wavelet basis we have

Ψ(t)ΨT (t) =

2

√
2
π




ψ10 ψ11 · · · 0
ψ11 ψ10 + ψ12 · · · 0
ψ12 ψ11 · · · 0
0 0 · · · ψ22

0 0 · · · ψ21

0 0 · · · ψ20 + ψ22




.

By using the vector C, the C̃ is

C̃ = 2

√
2
π

[
C̃1 O

O C̃2

]
,

where C̃i(i = 1, 2) are 3× 3 matrices given by

C̃i =




ci0 ci1 ci2

ci1 ci0 + ci2 ci1

ci2 ci1 ci0 + ci2


 .

4. Solving linear integral equation
First, consider the following integral equation

y(x) =
∫ 1

0

k(x, t)y(t) dt + f(x), x ∈ [0, 1], (17)

where f(x) ∈ L2
ω([0, 1], k(x, t) ∈ L2

ω([0, 1] × [0, 1]) are
known and y(t) is the unknown function to be determined.
If we approximate f, y and k by the way mentioned before

y(x) = Ψ(x)T C, f(x) = Ψ(x)T F,

k(x, t) = Ψ(x)T KΨ(t).
(18)

Substitute Eq. (18) into Eq. (17), we have

Ψ(x)T C = Ψ(x)T F +
∫ 1

0

Ψ(x)T KΨ(t)Ψ(t)T Cdt

= Ψ(x)T F + Ψ(x)T K

(∫ 1

0

Ψ(t)Ψ(t)T dt

)
C

= Ψ(x)T (F + KDC),

then
(I −KD)C = F, (19)

where

D =
∫ 1

0

Ψ(t)Ψ(t)T dt.
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Then, for the following Volterra integral equation

y(x)−
∫ x

0

k(x, t)y(t) dt = f(x), x ∈ [0, 1], (20)

with Eq. (5), Eq. (9), Eq. (13) and Eq. (14) we have
∫ x

0

k(x, t)y(t) dt '
∫ x

0

Ψ(x)T KΨ(t)Ψ(t)T Cdt

= Ψ(x)T K

(∫ x

0

Ψ(t)Ψ(t)T Cdt

)

= Ψ(x)T K

∫ x

0

C̃Ψ(t)dt

= Ψ(x)T KC̃PΨ(x).

Then
ΨT (x)C = f(x) + Ψ(x)T KC̃PΨ(x). (21)

By evaluating this equation in 2k−1M points {xi}2k−1M
i=1 in

interval [0, 1) we have a system of linear equations

Ψ(xi)T C = f(xi) + Ψ(xi)T KC̃PΨ(xi). (22)

In calculating the elements of matrices of Galerkin method
we often need to calculate the inner products of functions
and the second Chebyshev wavelets basis. Here we discuss
some formulae. By using p-points closed Gauss Chebyshev
quadrature rule we have

(f, ψn,m)ωn

=
∫ 1

0

ωn(t)ψn,m(t)f(t) dt

=
∫ n

2k−1

n−1
2k−1

f(t)2
k
2

√
2
π

Um(2kt− 2n + 1)ω(2kt− 2n + 1) dt

= 2−
k
2

√
2
π

∫ 1

−1

f

(
t + 2n− 1

2k

)
Um(t)ω(t) dt

' 2−
k
2

√
2
π

π

p + 1

p∑

l=1

f

(
cos(lπ/(p + 1)) + 2n− 1

2k

)

sin
[
(m + 1)lπ

p + 1

]
sin

lπ

p + 1
.

for n = 1, · · · , 2k−1, m = 0, 1, · · · ,M − 1.

5. Numerical examples
For showing efficiency of our numerical method, we

consider the following examples.
Example 1. Consider the Fredholm integral equation of

the second kind

y(x)−x

∫ 1

0

t2y(t) dt = sin x−x(cos 1+2 sin 1−2), (23)

with the exact solution y(x) = sinx. Table 1 shows
the comparison of the absolute error between exact so-
lution and approximate solution for k = 2,M =
3 among Legendre wavelets(Leg for short), CAS wavelets

and the second Chebyshev wavelets(Che for short) methods.
Where y and yn in the Table 1 denote the exact solution and
the numerical solution, respectively.

Table 1: Numerical results of Example 1
xr |y − yn|

Che Leg CAS
0.0 0.001269 0.001013 0.123699
0.2 0.000235 0.000280 0.008219
0.4 0.000199 0.000358 0.008096
0.6 0.000181 0.000284 0.008002
0.8 0.000160 0.000219 0.006031
1.0 0.000936 0.000734 0.080036

Example 2. Consider the following equation

y(x)− x

∫ 1

0

ty(t) dt = ex − x, (24)

with exact solution y(x) = ex. Table 2 shows the com-
parison of the absolute error between exact solution and
approximate solution for k = 2,M = 4 among Legen-
dre wavelets(Leg for short), CAS wavelets and the second
Chebyshev wavelets(Che for short) methods.

Table 2: Numerical results of Example 2
xr |y − yn|

Che Leg CAS
0.0 0.000064 0.000047 0.140991
0.2 0.000007 0.000011 0.012311
0.4 0.000015 0.000020 0.004524
0.6 0.000025 0.000032 0.003513
0.8 0.000015 0.000019 0.023426
1.0 0.000114 0.000081 0.303905

Example 3. Consider the following Volterra integral
equation[10,12]

y(x)−x

∫ x

0

(xt2−t)y(t) dt = −3
4
x6+

1
3
x5+x4−1

2
x3+3x−1,

(25)
with exact solution y(x) = 3x − 1. Table 3 shows the
comparison of the absolute error between exact solution and
approximate solution for k = 2,M = 3 among Legendre
wavelets(Leg for short), Chebyshev wavelets[10] and the
second Chebyshev wavelets(Che for short) methods.

Table 3: Numerical results of Example 3
xr |y − yn|

Che Leg method in [10]
0.0 0.003479 0.000000 0.0000e-1
0.2 0.000182 0.000401 0.0234e-1
0.4 0.000124 0.001107 0.1084e-1
0.6 0.001746 0.002979 0.1743e-1
0.8 0.000055 0.003141 0.3524e-1
1.0 0.019876 0.009363 0.5923e-1
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The results of Example 1 and Example 2 show that the
second Chebyshev wavelets method is the same or sightly
better than the Legendre case and is more better than the
CAS wavelets method. Because CAS wavelets is a period
wavelets, it is suitable for the periodic problems. The table
of example 3 shows that the degree of accuracy of the
second Chebyshev wavelets operational matrix method used
for solving the Volterra integral equation is better than
the Chebyshev wavelets and Legendre wavelets operational
matrix method.

6. Conclusions
The second Chebyshev wavelets operational matrix of

integration and its product operational matrix have been
obtained in general and used for solving the integral equa-
tions. The present method reduces an integral equation into
a set of algebraic equations. Some examples are included
to demonstrate the superiority of our method. Moreover, the
method in this paper can also be used for nonlinear integral
equations and integro-differential equations.
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A New Method Based on Operational Matrices of Bernstein
Polynomials for Nonlinear Integral Equations
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Abstract— An approximation method based on operational
matrices of Bernstein polynomials used for the solution of
Hammerstein integral equations. The operational matrices
of these functions are utilized to reduce a nonlinear Ham-
merstein and Volterra Hammerstein integral equation to a
system of nonlinear algebraic equations. The method is
computationally very simple and attractive, and applications
are demonstrated through illustrative examples. The results
obtained are compared by the known results.

Keywords: operational matrix; Bernstein polynomial; Hammer-
stein integral equation.

1. Introduction
In this work, we consider the nonlinear integral equations

of Hammerstein and Volterra-Hammerstein types that take
the following forms respectively

u(x) = f(x) +λ

∫ 1

0

k(x, s)ψ(s, u(s))ds, 0 ≤ x ≤ 1 (1)

u(x) = f(x) +λ

∫ x

0

k(x, s)ψ(s, u(s))ds, 0 ≤ x ≤ 1 (2)

where λ is a real known constant and f , g and k are assume
to be in L2, with ψ(x, u(x)) nonlinear in u. We assume
that Eqs.(1) and (2) have a unique solution u(x) to be
determined.
The nonlinear Hammerstein integral equations (1) arise as a
reformulation of two-point boundary value problems with a
certain nonlinear boundary condition, [1]. Many problems in
mathematical physics, contact problems in the theory of elas-
ticity, and mixed boundary value problems are transformed
into Volterra Hammerstein integral equations (2), see ([2]-
[4]).

Bernstein polynomials play a prominent role in various
areas of mathematics. These polynomials have been fre-
quently used in the solution of integral equations, differential
equations and approximation theory; see, e.g., ([5]-[8]).
Recently Yousefi and Behroozifar derived the operational
matrices of Bernestain polynomials [9], in this work we pro-
posed a method based on operational matrices of Bernstein
polynonials for numerical solution of Hammerstein integral
equation (1) and Volteral Hammerstein integral equation (2).

2. Bernstein polynomials and their prop-
erties
2.1 Definition of Bernstein polynomials

The Bernstein basis polynomial of degree n are defined
by

Bi,n(x) =
(
n

i

)
xi(1− x)n−i, (3)

By using binomial expansion of (1− x)n−i, we have(
n

i

)
xi(1− x)n−i =

n−i∑
k=0

(−1)k
(
n

i

)(
n− i
k

)
xi+k. (4)

Now, we define

Φ(x) = [B0,n(x), B1,n(x), ..., Bn,n(x)]T , (5)

where we can have

Φ(x) = ATn(x), (6)

that A is an (n+ 1)× (n+ 1) upper triangular matrix with
rows

Ai+1 =
[ i times︷ ︸︸ ︷

0, 0, ..., 0, (−1)0
(
n
i

)(
n−i
0

)
, (−1)1

(
n
i

)(
n−i
1

)
,

..., (−1)m−i
(
n
i

)(
n−i
n−i
)]
,

and Tn(x) is an (n+ 1)× 1 matrix as follows

Tn(x) =


1
x
...
xn

 .
2.2 Function approximation

Suppose that H = L2[0, 1) is a Hilbert space with the
inner product that is defined by (f, g) =

∫ 1

0
f(x)g(x)dx

and Y = Span{B0,n(x), B1,n(x), ..., Bn,n(x)} is a finite
dimensional and closed subspace, therefore Y is a complete
subspace of H . So, if f is an arbitrary element in H , it has a
unique best approximation out of Y such as y0, that is [10]

∃y0 ∈ Y s.t ∀y ∈ Y ‖f − y0‖ ≤ ‖f − y‖,

this implies that

∀y ∈ Y (f − y0, y) = 0, (7)
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since y0 ∈ Y so there exist coefficients c0, c1, ..., cn such
that

y0 = cTΦ(x),

where
cT = [c0, c1, ..., cn]. (8)

By (7)

(f − cTΦ(x), Bi,n(x)) = 0, i = 0, 1, . . . , n.

For simplicity we write

cT (Φ(x),Φ(x)) = (f,Φ(x)), (9)

where vector(f,Φ(x)) =
∫ 1

0
f(x)Φ(x)dx, and (Φ(x),Φ(x))

is an (n + 1) × (n + 1) matrix and is said dual matrix of
Φ(x). Let

D = (Φ(x),Φ(x)) = A[
∫ 1

0
Tn(x)TTn (x)dx]AT = AHAT ,

(10)
H is a Hilbert matrix. We can specify the element of D as:

D(i+1),(j+1) =
∫ 1

0
Bi,n(x)Bj,n(x)dx = (n

i)(n
j)

(2n+1)( 2n
i+j)

,

(11)
where i, j = 0, 1, ..., n. Any function f(x) ∈ L2[0, 1] can be
expand in Bernstein basis as f(x) ' cTΦ(x), where from
Eqs.(9) and (10), we obtain

c = D−1(f,Φ(x)). (12)

We can also approximate the function k(x, s) ∈ L2([0, 1]×
[0, 1]) as follows

k(x, s) ' ΦT (x)KΦ(s), (13)

where K is an (n+ 1)× (n+ 1) matrix that

Kij =
(Φi(x), (k(x, s),Φj(s)))

(Φi(x),Φi(x))(Φj(s),Φj(s))
, (14)

for i, j = 1, 2, ..., n. From (10) we can have

K = D−1
(
Φ(x), (k(x, s),Φ(s))

)
D−1. (15)

2.3 Operational matrix of integration
The integration of the vector Φ(x) defined in Eq.(5) is

given by ∫ x

0

Φ(x′)dx′ ' PΦ(x), (16)

where P is the (n + 1) × (n + 1) operational matrix for
integration and is given in [9] as∫ x

0

Φ(x′)dx′ = ApXp, (17)

where Ap is an (n+ 1)× (n+ 1) matrix,

Ap = A


1 0 . . . 0
0 1

2 . . . 0
...

...
. . .

...
0 0 . . . 1

n+1

 and Xp =


x
x2

...
xn+1

 .
(18)

Now, we approximate the elements of vector Xp in terms
of Φ(x). By (6), we have Tn(x) = A−1Φ(x) then for k =
0, 1, . . . , n,

xk = A−1
[k+1]Φ(x),

where A−1
[k+1] is k + 1-th row of A−1 for k = 0, 1, . . . , n.

We just need to approximate xn+1 ' cTn+1Φ(x). By using
(12) and (11), we have

cn+1 = D−1

∫ 1

0

xn+1Φ(x)dx =
D−1

2n+ 2



(n
0)

(2n+1
n+1 )
(n
1)

(2n+1
n+2 )

...
(n

n)
(2n+1
2n+1)


.

Let

B =


A−1

[2]

A−1
[3]

...
A−1

[n+1]

cTn+1

 , (19)

then,Xp ' BΦ(x). Therefore we have the operational matrix
of integration P = ApB.

2.4 Product operational matrix
It is always necessary to evaluate the product of Φ(x)

and Φ(x)T , that is called the product matrix of Bernstein
polynomials basis. Let

Π(x) = Φ(x)Φ(x)T , (20)

where Π(x) is an (n+ 1)× (n+ 1) matrix. By multiplying
the matrix Π(x) in vector c that is defined in Eq.(8) we
obtain

cTΠ(x) = Φ(x)T Ĉ, (21)

where Ĉ is an (n + 1) × (n + 1) matrix and called the
coefficient matrix. So we have

cTΠ(x) =
[∑n

i=0 ciBi,n(x),
∑n
i=0 cixBi,n(x), . . . ,∑n

i=0 cix
nBi,n(x)

]
AT .

(22)
Now, we approximate all functions xkBi,n(x) in terms of
Φ(x). Let

ek,i =


ek,i0

ek,i1
...
ek,in

 , (23)
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by (12), we have xkBi,n(x) ' ek,iΦ(x), i, k = 0, 1, . . . , n.
By using (12) and (11) for i, k = 0, 1, . . . , n, we have

ek,i = D−1

∫ 1

0

xkBi,n(x)Φ(x)dx =
D−1

(
n
i

)
2n+ k + 1



(n
0)

(2n+k
i+k )
(n
1)

( 2n+k
i+k+1)

...
(n

n)
( 2n+k

i+k+n)


.

(24)
Therefore∑n

i=0 cix
kBi,n(x) '

∑n
i=0 ci(

∑n
j=0 e

k,i
j Bj,n(x))

= Φ(x)T


∑n
i=0 cie

k,i
0∑n

i=0 cie
k,i
1

...∑n
i=0 cie

k,i
n


= Φ(x)T [ek,0, ek,1, . . . , ek,n]c = Φ(x)TEk+1c,

(25)

where Ek+1 is an (n + 1) × (n + 1) matrix, that has
vectors ek,i, k = 0, 1, ..., n for each column’s. Then we
define Ẽk+1 = Ek+1c for k = 0, 1, . . . , n. If we choose
an (n+ 1)× (n+ 1) matrix C̃ = [Ẽ1, Ẽ2, . . . , Ẽn+1], then
by (22) and (25) we have

cTΠ(x) ' Φ(x)T C̃AT , (26)

and therefore we have the coefficient matrix as Ĉ = C̃AT .

3. Solution of Hammerstein Integral
Equations

For solving Hammerstein integral equation (1), we let

z(s) = ψ(s, u(s)), 0 ≤ s ≤ 1, (27)

then we get

u(x) = f(x) +
∫ 1

0

k(x, s)z(s)ds. (28)

Substituting (28) in (27) results,

z(x) = ψ(x, f(x) +
∫ 1

0

k(x, s)z(s)ds). (29)

We approximate this equation as

z(x) = ZTΦ(x), (30)

which Z and Φ(x) are defined with (5) and (8). By use of
(10), (13) and (30) we have∫ 1

0
k(x, s)z(s)ds '

∫ 1

0
ΦT (x)KΦ(s)Φ(s)TZds

= ΦT (x)K
∫ 1

0
Φ(s)Φ(s)T dsZ

= ΦT (x)KDZ.
(31)

Via Eqs.(29), (30) and (31) we get

ZTΦ(x) = ψ(x, f(x) + λΦT (x)KDZ). (32)

In order to find Z we collocate Eq.(32) in n nodal points of
Newton–Cotes as,

xp =
2p− 1

2n
, p = 1, 2, . . . , n, (33)

then we have equation (32) as follows

ZTΦ(xp) = ψ(xp, f(xp)+λΦT (xp)KDZ), p = 1, 2, . . . , n.
(34)

We can calculate the unknown vector Z from the above non-
linear system of equations. The Newton’s iterative method
is suitable for solving this nonlinear system. We used
Mathematica 7 for obtaining our solutions. The required
approximated solution u(x) for our Hammerstein intgral
equation (1), can be obtained by using Eqs.(28) and (30)
as follows

u(x) = f(x) + λΦT (x)KDZ. (35)

4. Solution of nonlinear Volterra Inte-
gral equations

Consider the nonlinear Volterra integral equations given
in (2). For solving these equations like previous section, we
let z(s) = ψ(s, u(s)) for 0 ≤ s ≤ 1. Then from Eq.(2) we
get

z(x) = ψ(x, f(x) +
∫ x

0

k(x, s)z(s)ds). (36)

By use of (21), (13), (30) and (16) we can write∫ x
0
k(x, s)z(s)ds '

∫ x
0

ΦT (x)KΦ(s)Φ(s)TZds
= ΦT (x)K

∫ x
0

Π(s)Zds
= ΦT (x)KẐT

∫ x
0

Φ(s)ds
= ΦT (x)KẐTPΦ(x).

(37)

After using Eqs.(37) and (36) we get

ZTΦ(x) = ψ(x, f(x) + λΦT (x)KẐTPΦ(x)). (38)

By collocating Eq.(38) in n nodal points (33) we have,

ZTΦ(xp) = ψ(xp, f(xp) + λΦT (xp)KẐTPΦ(xp)), (39)

for p = 1, 2, . . . , n. After solving nonlinear system (39)
we get Z, and by use of z(x) = ZTΦ(x) we will have
the approximation solution of Volterra–Hammerstein integral
equations (2) as

u(x) = f(x) +
∫ x

0

k(x, s)z(s)ds, (40)

and from above we know that Eq.(40) can be evaluated by

u(x) = f(x) + λΦT (x)KẐTPΦ(x). (41)
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5. Error estimation
The Bernstein polynomials can be expressed in terms of

some orthogonal polynomials, such as Chebychev polyno-
mial χn(x) of second kind ([7], [11]). It can be shown that

Bi,n(x) =
1

2n

(
n

i

)
n∑

s=0

di,n
s

1

2s

[ s
2 ]∑

m=0

(

(
s

m

)
−

(
s

m+ 1

)
)χs−2m(x),

(42)

di,ns =
∑
k

(−1)s−k
(
i

k

)(
n− i
s− k

)
.

Expand f(x) in the approximated form of Bernstein
polynomials

f(x) ' pn(x) =
n∑
i=0

aiBi,n(x), (43)

Thus, it is eventually expressed as

pn(x) =
n∑
j=0

bjχj(x), (44)

where bj can be expressed in terms of ai, i, j = 0, ..., n.

If uj(x) =
√

2
πχj(x), then uj(x), j = 0, ..., n, form an

orthonormal polynomial basis in [−1, 1] with respect to
weight function ω(x) = (1 − x2)

1
2 , that can be mapped

to [0, 1]. Therefor, this procedure yields

pn(x) =
n∑
j=0

√
π

2
bjuj(x), (45)

Golberg and Chen ([12]) proved that when we are approx-
imating a continuously differentiable function (f ∈ Cr,
r > 0) by Chebychev polynomials, then

‖f − pn‖ω < c0n
−r, (46)

where c0 is some constant.
We assume throughout this paper, the following conditions

on k, f , and ψ for Eqs.(1) and (2), unless stated otherwise.
Define kx ≡ k(x, s) for x, s ∈ [0, 1] to be the x section of
k:

1. limx−→τ‖kx − kτ‖ = 0, τ ∈ [0, 1];
2. M ≡ sup 0≤x,s≤1|k(x, s)| <∞;
3. f ∈ C[0, 1];
4. ψ(s, x) is continuous in s ∈ [0, 1] and Lipschitz

continuous in x ∈ R, i.e., there exists a constant
C1 > 0 for which

|ψ(s, x1)−ψ(s, x2)| ≤ C1|x1−x2| for all x1, x2 ∈ R.

We denote the un(x) and u(x) show the approximate and
exact solutions of the integral equations respectively.

Theorem. The solution of Hammerstein and Volterra–
Hammerstein integral equation by using Bernstein basis
converges if 0 < α < 1.

Proof. For Hammerstein integral equation by assumptions 2
and 4, we see that there exists a constant α = |λ|MC1 > 0
such that

‖un(x)−u(x)‖ = maxx∈[0,1]|un(x)−u(x)|

≤ maxx∈[0,1]|λ|
∫ 1

0

|k(x, s)||ψ(s, un(s))−ψ(s, u(s))|ds

≤ |λ|MC1maxx∈[0,1]|un(x)−u(x)| ≤ αmaxx∈[0,1]|unm(x)−u(x)|.

We get (1−α)‖un(x)−u(x)‖ ≤ 0 and choose 0 < α < 1, by
increasing n, it implies ‖un(x)− u(x)‖ −→ 0 as n −→∞.

The similar proof for Volterra–Hammerstein integral
equations can be obtained, because

∫ x
0
|k(x, t)||dt ≤∫ 1

0
|k(x, t)|dt, for 0 < x < 1. �

6. Numerical examples

6.1 Example 1
Consider the nonlinear Fredholm integral equation

u(x) = f(x) +
∫ 1

0

2x2s ln(u(s))ds, (47)

where

f(x) = 1 + x+
(

1− 3
2

ln(3) +
√

3
6
π
)
x2,

the exact solution is 1 + x+ x2. Table 1 shows the present
method results for example 1 in comparison with method
of [13]. The superiority of Bernstein operational matrices
method compared with Taylor polynomial method is clear
here, because with the same number of basis functions we
get very better results.

Table 1: Approximate and exact solutions for Example 1.
xi Present method Method of [13] Exact

n = 6 N = 6 solution
0.0 1.000000 1.000000 1
0.2 1.239999 1.238432 1.24
0.4 1.559999 1.553726 1.56
0.6 1.959999 1.945884 1.96
0.8 2.439999 2.414905 2.44
1.0 2.999999 2.960788 3
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6.2 Example 2
Consider the Hammerstein integral equation

u(x) = f(x)+
∫ 1

0

sin(x+s) ln(u(s))ds, 0 ≤ x ≤ 1, (48)

where f(x) = ex−0.382 sin(x)−0.301 cos(x), and the exact
solution is u(x) = ex [14]. The computational results are
obtained by the present method with n = 5, we compared
our results by results of method [14]. In this comparison
the number of present method basis functions is 5 but the
number of basis functions for method of [14] are 32 and the
results have almost same accuracy, so Bernestain method is
superior than hybrid Legendre and Block–Pulse method for
solving Hammerstein integral equation.

Table 2: Approximate and exact solutions for Example 2.
x Present method Method of [14] with Exact

with n = 5 m = 4, n = 8
0.0 1.0001824226 1.0001817942 1
0.2 1.2215473608 1.2215472834 1.2214027582
0.4 1.4919260348 1.4919261952 1.4918246976
0.6 1.8221730268 1.8221731864 1.8221188004
0.8 2.2255460310 2.2255459923 2.2255409285
1.0 2.7182380285 2.7182373557 2.7182818285

6.3 Example 3
Consider the nonlinear Volterra integral equation

u(x) =
3
2
− 1

2
e−2x +

∫ x

0

(u2(s) + u(s))ds, (49)

where the exact solution is e−x.
For this example we consider the L2-norm of errors which
can be shown by

E2 =
(∫ 1

0

[
u(x)− un(x)

]2
dx
)1/2

.

The comparison among the Bernstein operational matrices
errors E2 with n = 4, 8, 16, 32 beside triangular function
[15] errors with m = 4, 8, 16, 32 are shown in Table 3.
The primacy of present method compared with triangular
function method is obvious here because by the same number
of basis function present method E2 errors are very lower.

Table 3: Errors E2 for Example 3.
n|m Present method Method of [15]
4 0.000068193353 0.003738014268
8 0.000000084293 0.000937018240
16 0.000000000000 0.000234412613
32 0.000000000000 0.002374324588

7. Conclusions
This work present a numerical approach for solving

Hammerstein and Volterra Hammerstein integral equations
by the operational matrices of Bernstein polynomials. The
dual matrix D, operational matrix of integration P, product
matrix Π and coefficient matrix Ĉ beside collocation method
were used for transform the Hammerstein and Volterra
Hammerstein integral equations to a nonlinear system of
algebraic equations that can be solved by Newton’s method.
The Bernstein polynomials operational matrices method is
very simple and attractive. The implementation of current
approach in analogy to existed methods is more convenient
and the accuracy is high. The numerical examples that have
been presented in the paper and the compared results support
our claim.
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Abstract— A new theorem shows that a bootstrap algorithm can
estimate the impulsivity or tail thickness of symmetric a-stable
(SαS) signals. SαS bell curves include the Gaussian bell curve as
a special but non-impulsive case. Signals grow more impulsive
as the bell curve’s tail thickness increases or as the tail-thickness
parameterα falls from 2 toward 0. The thin-tailed Gaussian bell
curve hasα = 2. The algorithm computes a statistic from SαS
samples and then matches the test statistic against a continuum
of precomputed values to the find the estimated tail thicknessα̂.
The theorem and a corollary show that the statistic is invertible
because it is a continuous bijection. So the boostrappedα̂ is a
consistent estimator ofα in general. Simulations show that̂α is
robust for signals withα ∈ [0.2, 2] and that the estimator error
decreases as the number of samples increases.

1. Robust Estimation of Symmetricα-Stable
Tail Thickness.

We show that a bootstrap algorithm can estimate the impul-
siveness of a sequence of symmetricα-stable (SαS) random
samples [1], [2], [3], [4], [5], [6]. The algorithm estimates the tail-
thickness parameterα by interpolating a sample statistic between
precomputed values. Figure 6 and Table 1 show that the algorithm
applies to SαS random variables withα ∈ [0.2, 2]. A theorem
shows that eachα corresponds to a unique value of a sample
statisticτ (Xα). A corollary to the theorem shows that the map is
a bijection. The algorithm estimatesα by calculatingτ (Xα) and
then inverting the bijection (Figure 5). The estimatorα̂ applies
to all finite sequences of independent and identically distributed
(i.i.d.) SαS random variables.

Symmetricα-stable random variables have thick power-law
tails and generalize the Gaussian probability density function
(pdf) [7], [8], [9], [10], [11], [12], [13], [14]. The tail-thickness
parameterα lies in (0, 2] and controls the impulsivity of sam-
ples drawn from the random variableXα. Figure 1 shows the
inverse relation betweenα and the thickness of the bell-curve
tails. Figure 2 shows howα controls impulsiveness of samples
from the distribution. The Gaussian pdf takesα = 2. The thicker-
tailed Cauchy pdf takesα = 1. The moments of anα-stable
random variable are finite only up to orderk for k < α. Only
the Gaussian random variable has finite second and higher-order
moments. The usual central limit theorem states that a stan-
dardized sum of finite-variance random variables converges in
distribution to the standard normal distributionZ ∼ N (0, 1) [15],
[16]. The generalized central limit theorem states a similar re-
sult for infinite-varianceα-stable random variables [17], [18]:
a standardized sum ofα-stable random variables converges in
distribution to anα-stable random variable with the sameα. It
also shows this holds only forα-stable random variables.

Brandon Franzke and Bart Kosko are with the Signal and Image Processing
Institute, Department of Electrical Engineering, University of Southern California,
Los Angeles, California 90089, USA (email: kosko@usc.edu)

Real noise tends to be impulsive. Natural sources of impulsive
signals include condensed and soft matter physics [19], [20], [21],
geophysics [22], meteorology [23], biology [24], economics [25],
[26], [27], fractional kinetics [28], [29], and communications
[14], [30], [31], [32], [33]. Many random models assume that
the dispersion of a random variable is equal to itsfinite variance
or its squared-error from the population mean. Impulsive sig-
nals violate this finite variance assumption in general. So these
model may wrongly dismiss important “rare” events as outliers.
Selection of a bell-curve signal model requires empirical tests to
estimate the actual tail thickness. Finding the optimal SαS bell-
curve for a given symmetric signal pattern is an open research
problem.

The α-Stable Estimation Algorithm in Section 3 estimatesα
from a sequence of observed SαS random samples. The algo-
rithm computes the estimator̂α in two stages: (1) it constructs
a bijectiveτ-map between a test statisticτ (Xα) and α and (2)
it computesτ (Xα) for observed random samples and then uses
theτ−1-map to find̂α. Theα-Stable Estimation Map Theorem in
Section 2 ensures that theτ-map is unique. A corollary shows that
theτ-map is a bijection and thus has an inverseα̂ = τ−1 (τ (Xα)).
The τ-map is also continuous. Thuŝα converges in probability
to α and so is consistent becauseα̂ is a consistent estimator of
α since τ̂ (Xα) is a consistent estimator ofτ (Xα) [15]. Section
4 presents simulations to show thatα̂ is a good estimator for
α ∈ [0.2, 2].

2. Theα-Stable Estimation Map Theorem

The α-Stable Estimation Algorithm computes an estimatorα̂

of the tail-thickness parameterα. It computes a sample statistic
τ (Xα) from a sequence of observed SαS samples and then esti-
matesα through theτ−1-map that maps fromτ (Xα) to α. The
α-Stable Estimation Map Theorem guarantees that on average the
τ-map generates distinctτ (Xα) for two independent sequences of
SαS independent and identically distributed (i.i.d.) random vari-
ablesXα1 andXα2 if α1 , α2. Theα-Stable Estimation Algorithm
uses a corollary to ensure the inverse exists. The corollary thus
allows the algorithm to estimateα through theτ−1-map.

The algorithm computes a test statistic forXα that resembles a
vector p-norm. The test statistic is finite because thepth-sample
moment of a finite sequence of such realizations is finite for any
finite p > 0. SupposeXα is a sequence ofN i.i.d. SαS random
variablesXα with pdf fα (x). Suppose the random variable has
α ∈ (0, 2] and has unit dispersion:γ = 1. Suppose further thatN
is finite. Then the sample maximum

H (xα) = max
1≤k≤N

|xα [k]| < ∞ (1)

almost surely since limx→∞ fα (x) = 0.
Define gp by the length-normalized samplep-norm for finite
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Fig. 1. Symmetricα-stable probability density functions. The figure shows
SαS probability density functions forα = 2.0 (Gaussian), 1.8, 1.5, and 1.0
(Cauchy). The thickness of the bell curve tails increases asα decreases.
Thicker tails correspond to more impulsive samples. The Gaussian bell curve
is the only SαS distribution with finite moments of orderk ≥ 2. Choosingα
for a given application is an empirical question.
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Fig. 2. Impulsive samples from SαS random variables with unit dispersion.
The figure shows SαS realizations forα = 2 (Gaussian), 1.8, 1.5, and 1
(Cauchy). The scale differs by two orders of magnitude betweenα = 2 and
α = 1. Only the Gaussian samples have finite variance and no impulsiveness.

p > 0:

gp (xα) =
1
N
‖xα‖

p
p (2)

where‖·‖p is the usualp-norm onRN:

‖x‖pp =
N∑

k=1

|xk|
p
= |x1|

p
+ |x2|

p
+ · · · + |xN |

p . (3)

Theα-Stable Estimation Map Theorem shows thatgp is injective
(1-to-1) with respect toα. The corollary that follows shows that
gp is a continuous bijection. It also shows how to construct the
inverseg−1

p . Theα-Stable Estimation Algorithm uses this result
to justify that α̂ is a consistent estimator ofα. The proof of the
theorem is lengthy and appears in the Appendix.

α-Stable Estimation Map Theorem. Suppose Xα1 and Xα2 are
two independent sequences of N i.i.d. SαS random variables with
probability density functions fα1 (x) and fα2 (x). Supposeαi ∈

(1, 2] with unit dispersion:γ = 1. Fix p > 0 and define gp (X) as

gp (X) =
1
N
‖X‖pp =

1
N

N∑

k=1

|Xk| . (4)

Define the maximum function H(X) as

H (X) = max
1≤k≤N

|Xk| . (5)

Then there exists an N0 such that

E
[
gp

(
Xα1

)
|H

(
Xα1

)
= h

]
= E

[
gp

(
Xα2

)
|H

(
Xα2

)
= h

]
(6)

for h > 2 and all sequences Xα1 and Xα2 with length N≥ N0

only if α1 = α2.

The proof of the theorem relies on the following two lemmas to
show thatE

[
gp (Xα) |H (Xα) = h

]
strictly decreases onα. The first

lemma shows that a denominator term forE
[
gp (Xα) |H (Xα) = h

]

strictly increases. The second lemma shows that a numerator term
for E

[
gp (Xα) |H (Xα) = h

]
strictly increases. The proofs for the

lemmas appear in the Appendix.

Lemma 1. Suppose Xα1 and Xα2 are two independent sequences
of N i.i.d. SαS random variables with probability density func-
tions fα1 (x) and fα2 (x) and cumulative distribution functions
Fα1 (x) and Fα2 (x). Supposeαi ∈ (1, 2] with α1 , α2 and unit dis-
persion:γ = 1. Then there exists N0 < ∞ such that P

[
max

∣∣∣Xα1

∣∣∣ = h
]
<

P
[
max

∣∣∣Xα2

∣∣∣ = h
]

for all N ≥ N0 and h> 2.

Lemma 2. The function A(α) =
∫ H

−H
|x|p fα (x) dx strictly de-

creases onα ∈ (1, 2] for p > 0 if H > 2.

Theα-Stable Estimation Algorithm uses the corollary below to
show that the expected value of theτ-map is a bijection between
α ∈ (1, 2] andτ (Xα). The algorithm exploits this fact to estimate
α with the τ−1-map. The proof of the corollary is lengthy and
appears in the Appendix.

τ-map Invertibility Corollary. Define gp (X) by (4) and the
maximum function H(X) by (5). Define Xα1 and Xα2 as in the
α-Stable Estimate Map Theorem. Suppose that the conditions
hold such that a finite N0 exists. Suppose further that h< ∞.
Thenτ (Xα) = G (α) = E

[
gp (Xα) |H (Xα) = h

]
is a bijection from

α ∈ (1, 2] onto τ (Xα) ∈ [G (1) ,G (2)].

3. Theα-Stable Estimation Algorithm
Theτ-map Invertibility Corollary guarantees that the test statis-

tic maps to a uniquêα on average. But the finite length ofXα

means that outliers may dominate the calculation ofτ (Xα). The
α-Stable Estimation Algorithm bootstraps to reduce the sensitiv-
ity of the algorithm to outliers. Theτ-map Invertibility Corollary
also establishes that theτ-map is continuous forα ∈ (1, 2]. Thus
the bootstrap estimator̂α is a consistent estimator ofα in general
[34], [35], [36] becausêτ (Xα) is a consistent estimator ofτ (Xα).

The α-Stable Estimation Algorithm consists of two stages:
(1) it uses randomly generated sequences of SαS observations
to construct a bijectiveτ-map betweenτ (Xα) and α and (2) it
computesτ (Xα) for the observed unknown samples and then uses
the τ−1-map to findα̂

Stage 1 does not depend on the particular unknown random
sequenceXα. So the algorithm preconstructs theτ-map. The algo-
rithm constructs theτ-map by computingτ (Xα) for representative
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SαS sequences with 0< α ≤ 2. Stage 2 usesτ (Xα) from stage 1
to characterize the unknown signalXα. It then mapsτ (Xα) to α̂

with the τ−1-map. Theτ-map is unique and so stage 2 can use
the map to calculateτ (Xα) for arbitraryXα.

Figure 3 shows results from the test statisticτ (Xα) computation
for α ∈ [0.4, 2]. The brackets show 90% confidence bands for
τ (Xα) from 50 independent sequences for eachα tested. The
blue line shows the median ofτ (Xα).

3.1 Stage 1: Constructτ-map
Stage 1 constructs theτ-map fromα to τ (Xα). The algorithm

uses theτ−1-map to find̂α from τ (Xα) since theτ-map Invertibil-
ity Corollary shows that theτ-map is a bijection forα ∈ (1, 2].

The τ-map takes a finite sequence of i.i.d. SαS random vari-
ables to a real number:

τ (Xα) : RN → R+ (7)

Xα 7→ g (Xα) . (8)

The algorithm computesτ (Xα) for a representative set ofα val-
ues: 0< α1 ≤ α2 ≤ · · · ≤ αM < 2. It then interpolates to find
τ (Xα) for α ∈ (0, 2] in general.
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(a) 1.0 ≤ α ≤ 2.0
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Fig. 3. The τ-map takesα to τ (Xα) and its inverse takesτ (Xα) to α̂.
This figure shows the median and 90% confidence bands for theτ-map on
α ∈ [0.4, 2]. The algorithm uses the inverse map to determineα̂ from an
sequence of unknown SαS random observations. Theα-Stable Estimation
Map Theorem shows that the error bars will shrink toward the mean as the
sequence length increases. The corollary to the theorem establishes that this
map is continuous fromα to τ (Xα) and that the inverse function exists. The
τ-map also exists for allα ∈ (0, 0.4) but we omit the figure because the
double-exponential scaling would obscure the figure.

Let τ̃ (Xα) be the log log transformedτ (Xα):

τ̃ (Xα) = log logτ (Xα) . (9)

Figure 5 shows a linear relation betweenα and τ̃ (Xα). Least
squares linear regression gives the relation

α̂ = 0.3969· τ̃ (Xα) + 1.1764. (10)

This gives the relation betweenτ (Xα) and α̂ as

α̂ = −0.3969· exp
[
eτ(Xα)

]
+ 1.1764. (11)

]
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Fig. 4. Stage 2 of theα-Stable Estimation Algorithm. (a) The blue line
showsτ (Xα) as a function of time for an i.i.d. Cauchy random sequence. The
smooth red line shows the meanτ (Xα). Both will converge to the same value
ast increases. (b) Theα-Stable Estimation Algorithm uses theτ-map in figure
3 to computêα.
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Fig. 5. Theα-Stable Estimation Algorithm can use a linear map to estimate
α. The blue line shows the log log transform of theτ-map in figure 3 The red
line represents the least-squares linear approximation to the transformedτ-map:
α̂ = 0.3969 log logτ (Xα) + 1.1764. This linear approximation fails forα < 0.4
becauseτ (Xα) increases to∞ asα decreases to 0. The figure shows evidence of
this by showing the transformedτ-map bend away from the line forα ≈ 0.4. The
algorithm can use other representations of theτ-map such as a piecewise linear
approximation or a lookup table to correct this weakness. The algorithm could
also use a hill-climbing technique to find̂α since theτ-map is strictly decreasing.

3.2 Stage 2: Estimateα from an unknown SαS
noise source

Stage 2 estimatesα from the sequence of unknown SαS ran-
dom observation. Algorithm 1 below specifies the estimation pro-
cedure. The process first computesτ (Xα) and then mapsτ (Xα)
to α̂ by

α̂ = −0.3969· log
[
logτ (Xα)

]
+ 1.1764. (12)

The algorithm may also use others representations of theτ-map
such as a piecewise linear approximation or a lookup table.
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4. Experimental Results forα̂

Simulations in this section show theα-Stable Estimation Algo-
rithm applied to four observed SαS sequences withα ∈ [0.2, 2].
Figure 6 shows the evolution of̂α as the number of observations
increases with SαS signals withα = 2, 1, 0.5, and 0.2. Table 1
summarizes the performance of the estimator in the trials. The
figures show that ifα ≥ 0.2 then α̂ is a robust estimator forα.
We did not simulate the algorithm forα < 0.2 becauseα-stable
random number generators often produce numeric overflows or
fail for very low α [37]. The experiments simulated random SαS
samples forα ≥ 0.2 with the STABLE MATLAB TOOLBOX [38].

Table 1

PERFORMANCE OF THEα-STABLE ESTIMATION ALGORITHM

α α̂ α̂ α̂

2 (Gaussian) 2.1057 1.9644 1.9618

1 (Cauchy) 0.9681 0.9756 0.9875

0.5 0.3887 0.4796 0.4888

0.2 0.1796 0.1797 0.1921

N = 1000 N = 5000 N = 10000

Table 1 shows that the algorithm underestimatesα in general.
The error appears to arise from the linear approximation to the
τ-map.τ (Xα) tends toward∞ asα decreases to 0. This means
that the log log transform will curve upward and so the linear
approximation overestimatesτ (Xα). So the algorithm appears
to underestimateα on average since it computeŝα through the
inverse map.

5. Conclusion

A bootstrap algorithm can estimate the impulsiveness in a
sequence of observed SαS random samples. Theα-Stable Esti-
mation Algorithm consists of two stages: (1) it constructs an in-
vertible map from the test statisticτ (Xα) to α and (2) it computes
τ (Xα) for the unknown SαS observations and then estimates
α̂ = τ−1−map(τ (Xα)). Theα-Stable Estimation Theorem shows
that theτ-map is 1-to-1 withα. A corollary shows that theτ-
map is a bijection and so it has an inverse. Simulations show
that the algorithm estimateŝα if α ≥ 0.2. Extensions of the
α-Stable Estimation Algorithm may well estimateα for non-
symmetricα-stable random variables or SαS random variables
with unknown dispersionγ. Adaptive and other algorithms may
be able to normalize or center theτ-map or they may be able
to compute additional test statistics to estimate the parameters.
Future research will extend the theorem and corollary to sub-
Cauchy (α < 1) SαS random variables. It will also study the
accuracy of̂α as a function of the bootstrap parameters: (1) the
resampling size and (2) the number resampling iterations.

Algorithm 1 The α-Stable Estimation Algorithm
1: procedure ESTIMATE ALPHA(Xα, R, s)
2: τ← COMPUTET (Xα,R, s)
3: α̂← MAPTTOALPHA (τ)
4: return α̂

5: procedure MAPTTOALPHA(τ (Xα))
6: m← 0.3969
7: b← 1.1764
8: α̂← b−m · log

(
logτ

)
9: return α̂

10: procedure COMPUTET(Xα, R, s)
11: N ← LENGTH(Xα)
12: for k← 1,R do
13: S← SUBSAMPLE (Xα, s)
14: V ← 0
15: for j ← 1, s do
16: V ← V + |S[ j]|
17: G [k] ← V

N

18: return CENTER(G )
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Appendix: Proof of Theoretical Results
α-Stable Estimation Map Theorem. Suppose Xα1 and Xα2 are
two independent sequences of N i.i.d. SαS random variables with
probability density functions fα1 (x) and fα2 (x). Supposeαi ∈

(1, 2] with unit dispersion:γ = 1. Fix p> 0 and define gp (X) as

gp (X) =
1
N
‖X‖pp =

1
N

N∑

k=1

|Xk| . (A.1)

Define the maximum function H(X) as

H (X) = max
1≤k≤N

|Xk| . (A.2)

Then there exists an N0 such that

E
[
gp

(
Xα1

)
|H

(
Xα1

)
= h

]
= E

[
gp

(
Xα2

)
|H

(
Xα2

)
= h

]
(A.3)

for h > 2 and all sequences Xα1 and Xα2 with length N≥ N0

only if α1 = α2.

Proof. Supposeα1 , α2. Suppose further that

E
[
gp

(
Xα1

)
|H

(
Xα1

)
= h

]
= E

[
gp

(
Xα2

)
|H

(
Xα2

)
= h

]
. (A.4)

Denote the joint pdfs ofXα1 and Xα2 as

fα1 (x1, · · · , xN) = fα1 (x1) · · · fα1 (xN) =
[
fα1 (x)

]N (A.5)

fα2 (x1, · · · , xN) = fα2 (x1) · · · fα2 (xN) =
[
fα2 (x)

]N (A.6)

Then

E
[
gp

(
Xα1

)
|H

(
Xα1

)
= h

]
=

E
[
gp

(
Xα1

)
I
(
H

(
Xα1

)
= h

)]

P
[
H

(
Xα1

)
= h

]
(A.7)
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since

E [X|A] =
E [X IA]

P [A]
(A.8)

for a random variableX whereIA denotes the indicator function
for the eventA. Thus

E
[
gp

(
Xα1

)
|H

(
Xα1

)
= h

]
(A.9)

=

∫
· · ·

∫
gp

(
Xα1

)
I
(
max

∣∣∣Xα1

∣∣∣ = h
)

fα1

(
Xα1

)
dx1 · · · dxN

P
[
max

∣∣∣Xα1

∣∣∣ = h
]

(A.10)

=

∫ H

−H
· · ·

∫ H

H

∑N
k=1

∣∣∣x1,k

∣∣∣p fα1 (x1) · · · fα1 (xN) dx1 · · · dxN

P
[
max

∣∣∣Xα1

∣∣∣ = h
]

(A.11)

=

∑N
k=1

∫ H

−H
|x|p fα1 (x) dx

P
[
max

∣∣∣Xα1

∣∣∣ = h
] (A.12)

=
N

P
[
max

∣∣∣Xα1

∣∣∣ = h
]
∫ H

−H
|x|p fα1 (x) dx (A.13)

Similarly for Xα2:

E
[
gp

(
Xα2

)
|H

(
Xα2

)
= h

]
(A.14)

=
N

P
[
max

∣∣∣Xα2

∣∣∣ = h
]
∫ H

−H
|x|p fα2 (x) dx. (A.15)

Supposeα1 < α2. Lemma 1 below shows that there exists anN0

such thatP
[
max

∣∣∣Xα1

∣∣∣ = h
]
< P

[
max

∣∣∣Xα2

∣∣∣ = h
]

for all N ≥ N0

and for allh > 2. Thus there existsN0 such that

E
[
gp

(
Xα1

)
|H

(
Xα1

)
= h

]
= E

[
gp

(
Xα2

)
|H

(
Xα2

)
= h

]
(A.16)

for random sequences with lengthN ≥ N0 only if
∫ H

−H
|x|p fα1 (x) dx <

∫ H

−H
|x|p fα2 (x) dx. (A.17)

This implies thatα1 > α2 since the contrapositive of Lemma 2
states that

∫ H

−H
|x|p fα (x) dx decreases withα. Thus there is a

contradiction sinceα1 < α2 by assumption. Soα1 , α2. QED

Lemma 1. Suppose Xα1 and Xα2 are two independent sequences
of N i.i.d. SαS random variables with probability density func-
tions fα1 (x) and fα2 (x) and cumulative distribution functions
Fα1 (x) and Fα2 (x). Supposeαi ∈ (1, 2] with α1 , α2 and unit dis-
persion:γ = 1. Then there exists N0 < ∞ such that P

[
max

∣∣∣Xα1

∣∣∣ = h
]
<

P
[
max

∣∣∣Xα2

∣∣∣ = h
]

for all N ≥ N0 and h> 2.

Proof. Expanding the pdf of the maximum of a sequence ofN
i.i.d. random variablesX = (X1, · · · ,XN) gives

P [max|X| = h] =
N∑

j=1

P
[∣∣∣X j

∣∣∣ = h
]


N∏

k=1,k, j

P
[∣∣∣X j

∣∣∣ ≤ h
]
 (A.18)

=

N∑

j=1

P
[∣∣∣X j

∣∣∣ = h
]
(2F (h) − 1)N−1 (A.19)

= N ( f (h) + f (−h)) (2F (h) − 1)N−1 (A.20)

= 2N f (h) (2F (h) − 1)N−1 (A.21)

holds sinceXk are i.i.d. and symmetric and alsoP [|Xk| ≤ x] =
2P [Xk ≤ x] − 1 = 2F (x) − 1 for x ≥ 0.

Supposeα1 < α2. Suppose further thath > 2. Then fα1 (h) >
fα2 (h). So

R =
fα1 (h)

fα2 (h)
> 1. (A.22)

Also Fα1 (x) < Fα2 (x) since fα1 (x) > fα2 (x) for all x > 2 and
sinceF (x) = 1−

∫ ∞
x

f (x) dx. Thus 2Fα1 (x) − 1 < 2Fα2 (x) − 1.
So

s =
2Fα1 (h) − 1

2Fα2 (h) − 1
< 1. (A.23)

The ratio of the pdfs for max
∣∣∣Xα1

∣∣∣ and max
∣∣∣Xα2

∣∣∣ is

P
[
max

∣∣∣Xα1

∣∣∣ = h
]

P
[
max

∣∣∣Xα2

∣∣∣ = h
] = 2N fα1 (h)

(
2Fα1 (h) − 1

)N−1

2N fα2 (h)
(
2Fα2 (h) − 1

)N−1
(A.24)

=
fα1 (h)

fα2 (h)

(
2Fα1 (h) − 1

2Fα2 (h) − 1

)N−1

(A.25)

= RsN−1 (A.26)

RsN−1 goes to zero asN increases sinces < 1 and R < ∞.
So there exists someN0 such thatRsN < 1 for all N ≥ N0 by
definition of the limit. ThusP

[
max

∣∣∣Xα1

∣∣∣ = h
]
< P

[
max

∣∣∣Xα2

∣∣∣ = h
]

for all sequences with lengthN ≥ N0. QED

Lemma 2. The function A(α) =
∫ H

−H
|x|p fα (x) dx strictly de-

creases onα ∈ (1, 2] for p > 0 if H > 2.

Proof. For p > 0 then

∂

∂α
A (α) =

∂

∂α

∫ H

−H
|x|p fα (x) dx (A.27)

= 2
∂

∂α

∫ H

0
|x|p fα (x) dx (A.28)

= 2
∂

∂α

∫ H

0
xp fα (x) dx. (A.29)

(A.27) holds because|x|p fα (x) is an even function since|x|p

is even andfα (x) is a symmetricα-stable probability density
function.

The Leibniz integral rule [39] states that the integral and deriva-
tive commute if the integrand satisfies two continuity require-
ments. Lemma 3 below shows thatA (α) satisfies these conditions
and so

∂

∂α
A (α) = 2

∫ H

0

∂

∂α

[
xp fα (x)

]
dx (A.30)

= 2
∫ H

0
xp ∂

∂α

[
fα (x)

]
dx. (A.31)

The Taylor series

fα (x) =
1
πα

∞∑

k=1

Γ

(
2k+1
α

)

(2k)!
(−1)k x2k (A.32)

holds for x , 0 andα ∈ (1, 2] [40], [41]. Substitution gives
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A (α) = 2
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0
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∂α


1
πα
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(2k)!
(−1)k x2k
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(A.33)

=
2
π

∫ H

0
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∂
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(
2k+1
α
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(−1)k x2k

(2k)!
dx (A.34)

= −
2
π

∫ H

0
xp

∞∑

k=1

1
(2k)!

Γ

(
2k+1
α

)

α2
· (A.35)

1+
(2k+ 1)ψ(0)

(
2k+1
α

)

α

 (−1)k x2k dx (A.36)
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where the digamma function

ψ(v) (z) =
d (v+1)

dx (v+1)
ln Γ (x) (A.37)

is the (v+1)th derivative of the logarithm of the gamma function.
The digamma function obeys

ψ(0) (x) > 0 (A.38)

for x greater than the positive local minima of the gamma func-
tion: x ≈ 1.47. Thus

ψ(0)

(
2k+ 1
α

)
> 0 (A.39)

since the ratio2k+1
α
≥ 1.5 > 1.47 because 2k+ 1 ≥ 3 andα ≤ 2.

So

1+
(2k+ 1)ψ(0)

(
2k+1
α

)

α
> 0 (A.40)

sinceα > 1 and 2k+ 1 ≥ 3. So

1
(2k)!
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α

)

α2
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(
2k+1
α

)

α

 > 0. (A.41)

The last equation holds sinceΓ
(

2k+1
α

)
> 0. Thus

∂

∂α
A (α) = −2

∫ H

0
xp

∞∑

k=1
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dx (A.42)

where

Ck =
1
π

1
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)

α2
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(
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α

)

α

 > 0 (A.43)

The integral and summation commute because the power series
converges absolutely on the interior of its region of convergence:
{x ∈ R : x , 0}. So

∂

∂α
A (α) = −2

∞∑

k=1

Ck

∫ H

0
xp
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−x2

)k
dx (A.44)

= −2
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0
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dx (A.45)

= −2
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∫ H
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x4k+p − x2k+p dx (A.46)

= −2
∞∑

k=1
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= −2
∞∑

k=1

Ck

(
H4k+p+1

4k+ p+ 1
−

H2k+p+1
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)
(A.48)

Soα ∈ (1, 2] and

H4k+p+1

4k+ p+ 1
>

H2k+p+1

2k+ p+ 1
(A.49)

for all integersk ≥ 1 implies that

A (α) =
∫ H

−H
|x|p fα (x) dx (A.50)

strictly decreases because then

∂

∂α
A (α) =

∂

∂α

∫ H

−H
|x|p fα (x) dx < 0. (A.51)

Suppose now thatH > 2 andk ≥ 1 is an integer. Then

H4k+p+1

4k+ p+ 1
−

H2k+p+1

2k+ p+ 1
= H2k −

4k+ p+ 1
2k+ p+ 1

> 4k − 2 ≥ 0

(A.52)

(A.52) because4k+p+1
2k+p+1 < 2 < 4 since(4k+ p+ 1) < 2(2k+ p+ 1).

QED

Lemma 3. Suppose Xα is a SαS random variable with probability
density function fα (x) and characteristic functionφα (ω). Then

∂

∂α

∫ H

0
xp fα (x) dx =

∫ H

0

∂

∂α

[
xp fα (x)

]
dx (A.53)

if 0 < H < ∞.

Proof. The Leibniz integral rule states that

∂

∂x

∫ y1

y0

f (x, y) dy =
∫ y1

y0

∂

∂x
f (x, y) dy (A.54)

for x ∈ [x0, x1] when f (x, y) and ∂
∂x f (x, y) are continuous on

[x0, x1] ×
[
y0, y1

]
.

We show that
∫ H

0
xp fα (x) dx satisfies these continuity condi-

tions onV = [1, 2] × [0,H] ⊂ R2. fα (x) is bounded since

| fα (x)| ≤
∣∣∣∣∣
∫ ∞

−∞

e−|ω|
α

e−iωx dω
∣∣∣∣∣ =
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=
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−∞

e−ω
α

dω ≤

⌊
2+

1
α

⌋
! < ∞. (A.56)

So fα (x) is continuous since it is the integral of a continuous
function. Thusxp fα (x) is continuous onV because it is the
product of two functions that are continuous onV.

The function ∂
∂α

[
xp fα (x)

]
is also bounded onV since

∣∣∣∣∣
∂

∂α

[
xp fα (x)

]∣∣∣∣∣ =
∣∣∣∣∣x

p ∂

∂α
fα (x)

∣∣∣∣∣ (A.57)

≤ Hp

∣∣∣∣∣∣∣
−2

∫ H

0
xp

N∑

k=1

Ck

(
−x2

)k
dx

∣∣∣∣∣∣∣
(A.58)

by substitution from (A.42). So
∣∣∣∣∣
∂

∂α

[
xp fα (x)

]∣∣∣∣∣ ≤ 2HpHpH2k
N∑

k=1

Ck ≤ 2H2p+2kM < ∞

(A.59)

since M < ∞ and becauseCk is a power series and so it abso-
lutely converges forα > 1. Thus ∂

∂α

[
xp fα (x)

]
is also continuous

on V. So

∂

∂α

∫ H

0
xp fα (x) dx =

∫ H

0

∂

∂α

[
xp fα (x)

]
dx (A.60)

for α ∈ (1, 2]. QED

τ-map Invertibility Corollary. Define gp (X) by (A.1) and the
maximum function H(X) by (A.2). Define Xα1 and Xα2 as in the
α-Stable Estimate Map Theorem. Suppose that the conditions
hold such that a finite N0 exists. Suppose further that h< ∞.
Thenτ (Xα) = G (α) = E

[
gp (Xα) |H (Xα) = h

]
is a bijection from

α ∈ (1, 2] onto τ (Xα) ∈ [G (1) ,G (2)].

Proof. The α-Stable Estimation Map Theorem shows thatG is
injective (1-to-1).G is also continuous forα > 1. Thus the
Intermediate Value Theorem shows thatG is surjective onto
[G (1) ,G (2)]. ThereforeG is a bijection since it is 1-to-1 and
onto. SoG has an inverse functionG −1 (τ (Xα)) = α̂. QED
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Abstract – This paper presents a fuzzy goal programming 

methodology for solving bilevel programming problems 

having quadratic fractional form of objectives of the decision 

makers. In the proposed procedure, the membership functions 

for the defined fuzzy goals of objective of the decision makers 

at both levels are developed first. Then a fuzzy goal 

programming model is developed to minimize the group 

regret of degree of satisfactions of both the decision makers 

and thereby obtaining the most satisfactory solution in the 

decision making environment. In the solution process a two 

step linearization technique is adopted to break the fractional 

part at its first step and Taylor’s series approximation 

technique is employed to linearize the quadratic membership 

goals in the next step. Then the problem is solved to reach a 

compromise decision by minimizing the deviational variables 

of the goals in the achievement function for overall benefit of 

the organization. An illustrative numerical example is solved 

to demonstrate the efficiency of the proposed procedure and 

the model solution is compared with the solutions obtained 

for the use of other existing techniques to expound the 

potential use of the proposed approach.  

 
Keywords: Fractional Programming, Quadratic 
Programming, Fuzzy programming, Fuzzy Goal 

Programming, Linear Approximation Technique. 

 

1    Introduction 
 
 Candler and Townsley [1] first introduced the concept 

of Bilevel Programming Problem (BLPP). BLPP is 

considered as a hierarchical decision making problem with a 

structure of two levels in a highly conflicting decision making 

situation. The upper-level decision maker (DM) is termed as 

leader and the lower level DM as follower. Most of the 
developments on BLPPs are based on vertex enumeration 

method [1] and transformation approaches [2, 3] which are 

effective only for very simple types of problems. In these 

methods the DMs have no cooperating attitude with each 

other. So, decision deadlock arises frequently due to 

follower’s dissatisfaction with the solution. Again if the 

parameter values involved are based on prediction of future 

conditions which inevitably contains some degree of 

uncertainty, the above approaches unable to give a 

satisfactory solution which would be acceptable to both the 

DMs. 

 To deal with such types of problems   Zimmermann [4] 
first applied fuzzy set theory in decision making problems 

with several conflicting objectives. In 1996 Lai [5] introduced 

the concept of membership functions of fuzzy sets in BLPPs. 
Lai’s solution concept was then extended by Shih et al. [6] 

and a supervised search procedure with the use of max-min 

operator of Bellman and Zadeh [7] was proposed. The basic 

concept of this procedure is that the follower optimizes 

his/her objective function, taking into consideration of 

leader’s goal. The main difficulty of fuzzy programming (FP) 

approach is that the objectives of the DMs are conflicting. So 

there is possibility of rejecting the solution again and again by 

the DMs and the solution process is continued by redefining 

the membership functions repeatedly until a satisfactory 

solution is obtained. This make the solution process very 
lengthy and tedious one. 

 To overcome such difficulty fuzzy goal programming 

(FGP) procedure introduced by Mohamed [8] is applied in 

decision making problems. Here the fuzzy goals of the 

objectives are determined by using individual optimal 

solution. Then a feasible membership goal is constructed by 

introducing under- and over- deviational variables and 

assigning highest membership value (unity) as aspiration 

level to each of them. In the recent past FGP approaches have 

been discussed by Sinha and Biswal [9], Moitra and Pal [10], 

Pal and Moitra [11], Biswas and Pal [12], Pal and Biswas 

[13], Pramanik and Roy [14], Baky [15], Biswas and Bose 
[16], and others. 

 In a decision making situation management faces 

problems where the objectives of the DMs are fractional in 

nature.  Such type of optimization problem is called fractional 

programming problem (FPP). Von Neumann [17] first used 

FPP in an equilibrium model for an expanding economy. In 

1962, Charnes and Cooper [18] showed that a Linear FPP 

with one ratio can be reduced to a simple linear programming 

problem (LPP) using nonlinear variable transformations. 

FPPs have been studied extensively by many researchers like 

Swarup [19], Dinkelbach [20], Geoffrion [21], Bitran and 
Magnanti [22], Ibaraki et al. [23], Crouzeix and Ferland [24], 

Rodenas et al. [25], Bensen [26] and others. The FPPs have 

applications in various fields of game theory [27], network 

and flows [28], traffic planning [29] and many other areas of 

engineering, finance, corporate planning, business, bank 

balance sheet management, water resources, healthcare, etc. 

A review of various applications was given by Schaible [30]. 

 In a BLPP, if the objective functions are linear 

fractional forms, then the problems are termed as linear 

fractional bilevel programming problems (LFBLPPs) and if 

they are of nonlinear fractional forms, they are termed as 

nonlinear fractional bilevel programming problems 
(NLFBLPPs). Quadratic FBLPP (QFBLPP) is one type of 

NLFBLPP. 
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 In recent past  LFBLPP was studied by Dutta et al. [31], 

Pal et al. [32], Pal and Moitra [33], Toksari [34], Ahlatcioglu 

and Tiryaki [35], Abo-sinna and Baky[36] and Mehrjerdi 

[37]. A solution approach for QFBLPP was studied by 

Alemayehu and Arora [38]. Also Mishra and Ghosh [39] used 

interactive fuzzy programming approach for solving 
QFBLPPs in the recent past. But FGP approaches to QFBLPP 

are yet to appear in literature. 

 In the present study, the FGP method is used to solve 

QFBLPPs. In the model formulation process, the membership 

functions defined for the fuzzy goals of the problem are 

transformed into flexible goals by assigning the highest 

degree (unity) of the membership functions as their aspiration 

level. A two step linearization technique is adopted to 

linearize the quadratic fractional goals and to arrive at the 

most satisfactory solution in the decision making context.  

The model formulation of the problem is presented in the next 

section. 

 

2    Formulation of QFBLPP 
 

 In a hierarchical decision system, both the DMs are 

motivated to cooperate with each other and each DM tries to 

optimize his/her own benefit, paying serious attention to the 

interest of the other. 

  Let 1F  and 2F be the objective functions of the leader 

and follower, respectively with respective controlling vector 

of decision variables 1X  and 2X . 

 In a QFBLPP the numerator and/or the denominator of 

the objective functions are represented by some quadratic 
functions. 

 The generic form of such QFBLPP can be represented 

as:  
              Find ( )21, XXX so as to 

( ) ( )
( )2112

2111
211

1 ,

,
,

XXF

XXF
XXF

X

Min
=  

and for given 21, XX solves 

 ( ) ( )
( )2122

2121
212

2 ,

,
,

XXF

XXF
XXF

X

Min
=  

 subject to   

     

( )

( )
















≥
















≥

=

≤

+

=∈

0,;|,

,

21221121

21

XXbXAXAXX

SXX

.

                                                                                  

                                                                               (1) 

Here ( ) ,
2

1
, 21 XDXXCXXF ij

T
ijij +=      .2,1, =ji   

where T
X  denotes transpose of decision vector 

X ; ( )2,1. =jiCij  are constant vectors and ( )2,1. =jiDij  are 

constant symmetric matrices.  

It is customary to assume that 

 ( ) .2,1,0, 212 => iXXFi     

Also, it is assumed that ( )φ≠S  is bounded. 

 

3   FP Model Formulation 
 
 To formulate the FP model of the problem (1), both the 

objectives are required to be transformed into fuzzy goals by 

means of introducing an imprecise aspiration level to each of 

them. Then the goals are characterized by the membership 

functions to achieve their respective aspired levels. 

 

3.1   Construction of Membership Functions 
 

 Since both the DMs are interested in minimizing their 

own objective values over the same feasible region S, the 

optimal solutions of both of them calculated in isolation can 
be taken as the aspiration levels of their associated fuzzy 

goals.  

 Let ( )bbb
FXX ll

121
;,  and ( )www

FXX ll
121

;,
 

be the 

independent best and worst solutions, respectively, of the 

leader. Similarly let 





 bbb

FXX
ff

221 ;,
 

and  







 www

FXX ff

221 ;,  be the independent best and worst 

solutions, respectively, of the follower when calculated in 
isolation. 
Here 

( )
( ) .2,1,,

,

min
21

21

=
∈

= iXXF
SXX

F i
b
i  

and 

( )
( ) .2,1,,

,

max
21

21

=
∈

= jXXF
SXX

F j
w
j  

The solutions ( )bbb
FXX ll

121
;,

 
and 






 bbb

FXX
ff

221 ;,
 

are 

obviously different due to conflicting nature of the objectives 
of leader and follower. Also these solutions are absolutely 
acceptable to the respective DMs. Similarly the solutions 

( )www
FXX ll

121
;,

 
and 






 www

FXX
ff

221 ;, are totally 

unacceptable to leader and follower, respectively, in decision 
making situation. So the respective fuzzy tolerance values of 

leader and follower appear as: 1F
    

b
F1 and               . ~< 2F b

F2~<
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 Also the respective tolerance ranges of the decision 

vectors 1X  and 2X  of the leader and follower, are 

considered as 

{ }ffll
w

i

b

i

w

i

b

i

b

i XXXXX ,,,min= iX≤
 

≤
 

.2,1,,,,max ==






 iXXXXX

w
i

w

i

b

i
w
i

b
i

ffll  

 Now the membership functions for the defined fuzzy 
tolerance values of the objectives of the leader and follower 
can algebraically be formulated as: 

( )
( ) ( )

( )










>

≤≤
−

−

<

=

w

ii

w

ii

b

ib

i

w

i

i

w

i

b

ii

F

FXXFif

FXXFFif
FF

XXFF

FXXFif

i

21

21
21

21

,0

,
,

,1

µ  

                                                            2,1=i                (2)    

                                                                                                       

4    Formulation of Membership Goals 
 

 In FGP procedure the highest aspiration levels of the 

defined membership functions is considered as unity. Hence 
by introducing the under-and over-deviational variables, the 

membership functions are converted into fuzzy goals as [33]: 

( )
1

, 21 =−+
−

− +−
iib

i
w

i

i
w

i dd
FF

XXFF
 

                                                                2,1=i                    (3) 

where 0, ≥+−
ii dd  with 0. =+−

ii dd , 2,1=i  represents the 

under-and over-deviational variables, respectively. 
Now it is to be noted that the membership goals in (3) are 
quadratic fractional in nature and the procedure for solving it 
is yet to appear in literature extensively. 

 The proposed two-step linearization technique is 
presented in the following section to find the compromise 
decision in the decision making context. 
 

5   Two-Step Linearization Technique for 

Quadratic Fractional Membership Goals 

(QFMG) 
 

 A two step linearization method is adopted here to find 
the most satisfactory solution in the decision making 
environment. In the first step of the process, the quadratic 
fractional objectives are converted into quadratic forms by 
linearizing the fractional parts. Then Taylor’s series 
approximation technique is used to linearize the quadratic 
part in the second step. The computational methodology of 
this process is described in the following sub sections. 

 

 

 

5.1   Step-1 
 
 Considering the fractional part of the membership goals 

in (3), the model can be expressed for each 2,1=i as:  

( )
( )

1
,

,

212

211 =−+







− +−

ii
i

iw
ii dd

XXF

XXF
Fm  

 i.e.    ( ) 1, 21 =−+ +−
iii DDXXf                                  (4) 

where   
b

i

w

i

i
FF

m
−

=
1

 and 

( ) ( ) ( )21221121 ,,1, XXFXXFmXXf iiii −−=
  

        ( )212 , XXFFm i
w

ii+  

and ( ) ( )212212 ,,, XXFdDXXFdD iiiiii
++−− == . 

 Here, clearly the above equation (4) contains only 
quadratic forms without any fractional part. 

 Now, in the next step linear approximation technique 
proposed by J. P. Ignizio [40] is used to linearize the reduced 
QFGP model. 

 

5.2   Step-2 
 

 In 1976 J. P. Ignizio [40] proposed a methodology to 
solve nonlinear goal programming (NLGP).Thereafter a 
plenty of works has done [41- 43]. Here the concept of NLGP 
solution approach [40] is considered for the QFGP model (4) 
and Taylor’s series linear approximation technique is used to 
linearize the quadratic forms. 

 In a decision making situation, let an approximate 

solution ( )0
2

0
1

0
, XXX  determined by initial inspection is 

disclosed to both the DMs with the view of satisfying the 
objectives. Here the initial solution is chosen so that it lies in 

the tolerance ranges specified for decision vectors 1X  and 

2X . Now it may happen that the DMs are dissatisfied with 

this solution. Then linear approximation technique is used to 
locate the satisfactory decision in the neighborhood of this 

initial solution ( )0
2

0
1

0
, XXX . 

 Linear approximation to the goals in (4), using the 
Taylor’s series, can be presented as  

( ) ( ) ( ) ( )∑
=

+− −
∂

∂
+≅=+−

2

1

0
0

01
k

kk

k

i
iiii XX

X

Xf
XfXfDD   

                                               2,1=i                                   (5) 

where  

 (i) kX k =0 -th component of the present solution  

( )0
2

0
1

0
, XXX    for .2,1=k  

(ii) kX
k

= -th component of the new solution  

  ( )21 , XXX  for .2,1=k  
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 The linear approximation of the membership goals can 
be presented in vector form as 

( ) ( )[ ] ( ) IDDXXXfXfG ii
oTo

i
o

ii =−+−∇+ +−:
     

(6)                                          

where ( )o
i Xf∇  is the gradient of ( )o

i Xf , ( )[ ]To
i Xf∇  is the 

transpose of ( )[ ]o
i Xf∇  and I represents a column vector of 

order two having all the elements are 1. 

 Now further, the term ( )o
XX −  may be replaced by a 

new vector Y given by Y
0

XX −= . Consequently, Y 

represents the change from the current solution point 0
X  to 

the next solution point X. Clearly, components of Y are 

unrestricted in sign. So a set of non-negative vectors P, Q are 

introduced by Y QP −= , where 0, ≥QP . Now by using 

these vectors in (6) the final form of approximation to the 

goals can be obtained as 

( ) ( )[ ] ( ) IDDQPXfXfG ii

To
i

o
ii =−+−∇+ +−:               (7) 

 In searching satisfactory decision with the use of linear 

approximation to if  in the neighborhood of 0
kX , it is to be 

noted that kX  must not take any value lower than the 

corresponding lower tolerance limits b
kX . So, in defining the 

neighborhood of 0
kX , the tolerance distance that kX  may 

move is found as  

         b
kkk XXt −= 0 . 

 As a matter of fact, the tolerance range for ( )0
kk XX −   

is obtained as 

       ( ) kkkk tXXt ≤−≤− 0 . 

 Consequently, the range of kk qp − of the expression in 

(7), can be defined as 

kkkk tqpt ≤−≤−  

where kk qp −  is the k-th component of  P-Q. 

Then for 0≥kp  and 0≥kq , it follows that  

kk tp ≤≤0 , kk tq ≤≤0 ,  .2,1=k                                        (8) 

 It is to be mentioned here that any value of kX  higher 

than its upper tolerance limit w
kX

 
is not acceptable to the 

DMs. So the tolerable range of  kX  is found as 0
k

w
k

XX − . 

Consequently, the resultant upper bound restrictions on 

kp and kq in (8) are obtained as 

{ }0,min0 k

w

kkk XXtp −≤≤   

{ }0,min0 kkk Xtq ≤≤  

  i.e., kk vp ≤≤0  

         kk wq ≤≤0 ,  .2,1=k                                        (9)                                                                                                              

where { }0,min k

w

kkk XXtv −=  and { }0,min kkk Xtw =   

respectively. 

 

6    Formulation of Linear GP Model 
 

 To formulate the GP model of QFGP, it is to be noted 

that achievement of the goals in (7) depends on the achieved 

values of pk and qk with their upper bound restrictions given 

in (9). So the expressions in (9) can also be considered as 

flexible goals with the view of optimizing them first by 

minimizing their over deviational variables. So the FGP 

problem can be formulated as  

( )∑ ∑ ++− ++=
i k

kki baDMinimizeZ                               

and satisfy  

( ) ( )[ ] ( ) IDDQPXfXf ii

To
i

o
i =−+−∇+ +−

 

kkkk vaap =−+ +−      

kkkk wbbq =−+ +−
                                   

(10) 

where ` 0, ≥kk qp , 0, ≥+−
ii DD  with 0. =+−

ii DD , and 

0,,, ≥+−+−
kkkk bbaa   with 0. =+−

kk aa and 0. =+−
kk bb         

                                                 for  2,1, =ki .            

+−
kk aa , and +−

kk bb , denote, respectively, the under- and over – 

deviational variables for the aspired goal levels of kp  and 

kq .  

 The minsum GP [40] can be used to solve (10) and 

thereby the satisfactory decision for both the leader and the 

follower can be obtained in the decision situation. 

 

7    Numerical Example 
 

 The following Quadratic Fractional Bilevel 

Programming Problem (QFBLPP) studied by Mishra and 

Ghosh [39] is considered and solve to illustrate the efficiency 

of the proposed methodology.  

 The QFBLPP is presented as 

   Find ( )21 , xxX so as to 

( )
152

14
,

2

2

2

1

2

2

2

1
211

1 ++

++
=

xx

xx
xxF

x

Min
  

                                            (Leader’s Problem) 

and for given 21; XX solves 

        ( )
2

2

2

2

1

2

2

2

1
212

2 34

153
,

xxx

xx
xxF

x

Min

++

++
=  

                                                    (Follower’s Problem) 

subject to 

1535 21 ≤+− xx , .0,,4534 2121 ≥≤+ xxxx                        (11)                                          
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 The leader’s individual best and worst solutions are 

obtained as ( ) ( )21.0;12.5,1.0;,
121

=bFxx  and 

( ) ( )2;0,25.11;,
121

=wFxx , respectively. Similarly the 

follower’s individual best and worst solutions are found as 

( ) ( )75.0;11.0,16.11;,
221

=bFxx and 

( ) ( )58.1;57.5,34.0;,
221

=wFxx , respectively. 

Then the tolerance values for the respective fuzzy goals 

of the leader and follower are obtained as 

 1F
   

 0.21,  2F     0.75. 

Also the tolerance ranges of the decision variables are 

considered as 

0 ≤ 1x ≤ 11.16 and 0.11 ≤ 2x ≤ 5.12. 

 Now, using the above tolerance ranges the membership 

goals are obtained by using (4) as 

1
152

14
256.0 112

2

2

1

2

2

2

1 =−+








++

++
− +−

dd
xx

xx
 

1
34

153
58.12.1 22

2

2

2

2

1

2

2

2

1 =−+










++

++
− +−

dd
xxx

xx
  

0, ≥+−
ii dd  with 0. =+−

ii dd , 2,1=i .                      (12)                                                                                           

 After linearizing the fractional goals in (12) the model 
takes the form as 

           
156.004.02 11

2

2

2

1 =−+−+− +−
DDxx

 

           12.031.302.0 22

2

2

2

1 =−+−−− +− DDxx  

where ( )152
2

2

2

111 ++= −−
xxdD , ( )152

2

2

2

111 ++= ++
xxdD  and 

( )2

2

2

2

122 34 xxxdD ++= −− , ( )2

2

2

2

122 34 xxxdD ++= ++ . 

0, ≥+−
ii DD  with 0. =+−

ii DD , 2,1=i                                (13) 

 To approximate the quadratic goals in (13), the initial 

approximate solution is considered as ( ) ( )2,2,
0

2

0

1 =xx . Then 

applying the proposed approximation methodology, the 
resultant minsum GP model can be formulated as 

 ++++−− +++++= 212121 bbaaDDZMinimize
 

so as to
 

( ) ( ) 116.08 112211 =−+−+−− +− DDqpqp  

( ) ( ) 124.1308.0 222211 =−+−−−− +− DDqpqp  

2111 =−+ +− aap   

89.1222 =−+ +− aap      

2111 =−+ +− bbq  

89.1222 =−+ +− bbq  

where 0, ≥kk qp , 0, ≥+−
ii DD  with 0. =+−

ii DD , and 

0,,, ≥+−+−
kkkk bbaa   with 0. =+−

kk aa and 0. =+−
kk bb .         

                                                 for 2,1, =ki .                        (14) 

The software LINGO (ver 6.0) is used to solve the 
problem.  

 

7.1  Results and Discussions 
 

 Solving (14), the values of p1, q1, p2 and q2 are found as 

126.0,0 11 == qp , .1.0,0 22 == qp  

The resulting solution to the original problem is obtained as 

9.1,87.1 21 == xx . 

Hence the achieved objective function values of the leader 
and follower are calculated as F1 = 0.71 and F2 = 1.1, 
respectively.  
The resulting membership values are given by 

                58.0,72.0
21

== FF µµ .                                              

 In this connection it is to be noted that the solution 

obtained by Mishra and Ghosh [39] is ,94.01 =x
 

17.22 =x  

with .37.1,35.0 21 == FF  The resultant membership values are 

=µ
1F 0.92 and =µ

2F 0.25.  

 The solution shows that the follower’s decision is fully 
dominated by the leader in their approach as like traditional 
BLPP. But in the proposed methodology, a compromised 
decision is achieved by maintaining hierarchy of decision 
powers of the DMs for overall benefit of the organization. 
The comparison reflects the superiority of the proposed 
approach over the other methodology. 
 

8    Conclusions 
 
 In this paper, a QFBLPP is discussed in a hierarchical 
decision making environment for finding most satisfactory 
solution to the DMs for overall benefit of the organization. 
The proposed procedure can be extended to solve multilevel 
programming problems having quadratic fractional 
objectives. Also this methodology can be used to solve 
quadratic fractional decision making problems in a fully 
fuzzified domain. The proposed methodology can be applied 
to different real life problems for obtaining most satisfactory 
solution in a hierarchical decision making environment. 
However, the proposed procedure may open up new vistas 
into the way of making decision having nonlinear objectives 
of the DMs. 
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Abstract - In the signal process part, the Smooth algorithm is 
the one of the most primitive and important job for attempts to 
capture important patterns in the data. This paper shows that 
we can get the result of more higher Signal to Noise Ratio and 
get more clear patterns of the data set of signals affected 
outlier noise where apply preprocessing of Smooth before 
when using Smooth algorithm. 
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1 Introduction 
  In the statistics, image processing and signal processing, 
to smooth a data set is to create an approximating function 
that attempts to capture important patterns in the noise 
included data. Because Smooth algorithm is non-linear, it 
does not show that the data set is clear functional expression, 
but the data set is the Smooth processed result. And purpose 
of smooth algorithm is to get approximate data set where 
using the random noise included observation data set.[1] 

 On the other hands, the Curve fitting involves the use of 
an explicit function form for the result and concentrates on 
achieving as close match as possible. In this way, there is 
difference between Smooth and Curve fitting. 

 We frequently could see that noise and unexpected 
outlier included in second X-ray fluorescence energy 
spectrum when developing hand held X-ray fluorescence 
analyzer.[5] 

 Smooth signal processing algorithm is applied in 
addition to other cases occurring in the outlier considering the 
impact on the results of the process distorted the results is 
impossible to predict. 

 There are two methods to restore the signal with noise 
and outlier. The first is Curve fitting, and the second is 
Smooth algorithm. But the Curve fitting has big computing 
cost than smooth algorithm. So if we use the relatively low 
computational cost than Curve fitting, and the processing of 
the first signal processing sequence algorithm – Smooth is 
relatively Outlier removable and can overcome the signal after 
the end of the process by which we get fairly accurate results. 

 

2 Preprocess Algorithms 
2.1 Moving Average Filter 
 Moving average filter is a simple algorithm that decide 
smooth values in observed data at each location where the 
specified window is as much as the mean value.[3] 

 

(1) 

 

 Where  is the smoothed value and the window size is 
. 

 

2.2 Savitzky Golay Smooth Filter 
 Savitzky Golay(SG) smooth filter take the polynomial 
regression value (actually partial polynomial regression) that 
applied the point and the surrounding values.[Fig. 1][3][4] 

 (2) 

 (3) 
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Figure 1.  Example of smoothing point and apply partial polynomial 
regression(2degree, 7 point window) 

 

 Where  is observed values,  is polynomial coefficient 
matrix and  is the position value. 

 The observed values y is the formulation (2) that 
polynomial coefficient w and the position X with noise ε. We 
can compute the optimal polynomial coefficient w that satisfy 
the smallest Root Mean Square Error with source signal using 
Eq. (3). 

 We can get the SG filtered smooth results by apply Eq. 
(3) to all the points. 

 Because of SG Smooth filter apply partial polynomial 
regression to the data points that is strong about the noises. 
Moreover SG Smooth filter can get the optimal smooth values 
by applying this we can adjust the polynomial degree and the 
window size. These are the benefits of SG Smooth filter. 

 

3 Proposal of Preprocessing Method 
3.1 Explanation 
 This paper does not suggest Smooth algorithm. First 
identify the characteristics of the values to apply Smooth 
algorithm, and then propose the preprocess before apply 
Smooth filter that is already proposed to get Smooth result 
which is close to the original signal. 

 The Smooth algorithm has several characteristics when 
the data is applied to it. The values include white color noise 
with Gaussian distribution, and included Outliers in the 
signal.[Fig. 2 (a)] The purpose of Preprocessing of smooth is 

to remove the outliers and restore the signal which is more 
close to original signal. 

 The characteristic of observed values leads to the 
occurrence of Outlier in the signal, and we can find big 
impulse noises in that part. 

 To remove the effect of Outliers, we apply median filter 
that remove impulse noise in the steady signals.[Fig. 2 (b)][2] 

 Because of median filter has characteristics of obtaining 
the best results of values when applying first order polynomial 
or exponential function of the curved shape like a regular 
value, there occur problems that if we apply this median filter 
to the second order polynomial, sine, cosine wave form or 
Gaussian form then the peak part is flat.[Fig. 2 (c)] 

 To apply median filter to these wave form signals, first 
make a Model that the best express the signal and different 
with Curve fitting, second take the differences Model and 
observed signals. As a result, we can get the possible pattern 
to apply median filter.[Fig. 2 (d)] 

 Finally, add the median filtered value and Model, - 
although tiny noises remain - then we get the result of 
removed Outliers. 

 We get the restored signal result that is more precise and 
close to original signal that have high Signal to Noise 
Ratio(SNR) when applying preprocess to the observed signal 
a better result is obtained than just applying Smooth filters to 
the observed signal. 

  

(a) (b) 

  

(c) (d) 

Figure 2.  (a) Original signal + White Gaussian Noise + Outlier. (b) Median 
filter. (c) Apply median filter to gaussian curve. (d) Differences Model and 

observed signal 
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3.2 Summarized 
 The proposed algorithm consists of the following steps. 

· Get the Model of observed signal 

· Get the differences the Model and the observed signal 

· Apply median filter to the differences 

· Add the median filtered values and the Model 

· Apply Smooth algorithm to the finally preprocessed 
result 

 
4 Compare Simulation Result 
 Matlab is used for simulation and a 64 point spectrum is 
generated using the original signal that has two peaks with 
Gaussian form. With this 64 point spectrum we have 
generated 1000 data set that includes SNR for each data and 
to that we have added white Gaussian noise and outlier.[Fig. 
3] 

 The process was first make a Model using SG filtered 
data, second apply preprocess and finally apply SG smooth 
filter(2 degree, various window size). 

TABLE I.  COMPARE THE SNR RESULT OF EACH SMOOTH PROCESS 

SNR 
(dB) 

Window 
Size 

Proposed SG Filter Moving Average 
With 

Outlier 
Without 
Outlier 

With 
Outlier 

Without 
Outlier 

With 
Outlier 

Without 
Outlier 

40 

3 37.73 43.76 21.19 41.06 26.07 36.62 

7 41.14 44.46 26.04 45.02 22.07 21.88 

11 35.69 35.69 28.17 36.10 14.74 14.51 

15 26.79 26.75 25.93 26.84 10.13 10.00 

19 20.44 20.44 20.50 20.46 7.20 7.11 

30 

3 32.51 34.24 20.81 31.03 25.68 33.46 

7 34.81 35.85 25.65 35.76 22.00 21.81 

11 33.71 33.75 27.79 34.17 14.73 14.50 

15 26.63 26.51 25.76 26.64 10.13 10.00 

19 20.44 20.39 20.46 20.42 7.20 7.11 

20 

3 23.65 24.40 18.21 21.09 23.00 25.58 

7 25.47 26.13 23.03 25.93 21.38 21.26 

11 26.76 27.17 25.17 27.55 14.64 14.42 

15 24.83 24.82 24.40 25.08 10.10 9.97 

19 20.08 19.99 20.10 20.07 7.18 7.10 

10 

3 14.23 14.57 11.01 11.39 15.56 15.93 

7 15.91 16.25 15.63 16.02 17.64 17.73 

11 17.43 17.73 17.73 18.05 13.85 13.82 

15 18.21 18.45 18.65 18.86 9.85 9.80 

19 17.17 17.33 17.50 17.63 7.07 7.02 

 

  

(a) (b) 

  

(c) (d) 

Figure 3.  All signals inclue 40~50 Outliers like Fig. 2(a). (a) 40dB signal. 
(b) 30dB Signal. (c) 20dB signal. (d) 10dB signal 

 

  

(a) (b) 

  

(c) (d) 

Figure 4.  In the 20dB SNR using Smooth window size 7 (a) Original signal 
and Noise + Outlier. (b) Preprocess Smooth result and differences with 

Original. (c) Only SG Filter result and differences with Original. (d) Only 
Moving Average Filter result and differences with Original signal 
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 Table 1 compares the SNR result of each Smooth 
process, that having two categories. The first one is when 
applying Outlier to the signal and the second one is without 
applying Outliers to the signal. 

 While comparing the SG filters and Preprocess without 
applying Outlier to the signal we can get a better result using 
Preprocess then when compared to SG filter in the small 
window size part. But it the big window size part the 
maximum SNR is good at SG filter than Preprocess. 

 In the 40, 30dB SNR result as show in Table 1, it is hard 
to say which is better. Because in the 40, 30 dB signals it has 
very low noise, so there are very low probability of this type 
of Outlier occurring in the signal. Compare the result of the 
20, 10dB that has very low SNR, where include 40~50 
Outliers, we can see 20dB results are good when Outliers 
removed. But 10dB results are most similar of SG Smooth 
filter. We can see that at the small window size the result is 
better than on applying SG Smooth filter to the noise with 
Outlier signals. 

Figure 4 is the example of applying Smooth filters and 
applying Preprocess. Generated 20dB SNR signal and added 
40~50 Outlier to the peak position. The o line is the results of 
each process of observed Outlier signal. And the dots are 
differences of results and the original signal. As we can see 
that the point of occurrence of Outlier, SG filter and Moving 
Average filter are influenced by the Outlier. 
 
5 Discussion 
 The proposed method has two main points on discussion. 

 At first the model is created. SG Smooth result is 
obtained to create the model and the resulting algorithm is 
applied once the filters has been used as a model. As Curve 
fitting is computationally costly and in order to reduce the 
computational cost and better result this model is obtained. As 
can be seen in the proposed method, it is important to make 
the model well. Because depending on how well the model is 
drafted we may get different results on applying preprocessing. 

 The second one is to determine the size of median filter 
window. Since these are still some remaining signal 
component that resulted in the difference between the 
observed signal and the model we are using Median filters too 
large the remaining signal components are lost and we get a 
distorted result. In contrast upon using small window size it 
may affect the local noise and we can get a better result. 

 Best result were determined when the values of the 
window size was 3 or 5 in the experient. 

 

6 Conclusion 
 In the second X-ray fluorescence energy spectrum, we 
can find that elements of the energy signal is a mixture of 
small parts and large parts.[6] If noise is added to a similar 
size - 0 mean, σ dispersion Gaussian distributed white noise - 
a small portion of the signal, the small signal to noise ratio is 
smaller and Outlier more receive higher.[Fig. 5 (d)] 

In this paper, we propose a relatively simple Smooth 
preprocessing method that is robust to Outlier remove. 
Smooth as a way to suggest the results of applying the 
algorithm, we can get the closer result of original signal in 
Outlier included observed signal. In addition, because of the 
spectrum peaks has different SNR, we will get better Smooth 
result that depending on the detector's efficiency curve for 
Smooth progress, including preprocessing. 

 

 

(a) (b) 

 

(c) (d) 

  

(e) (f) 

Figure 5.  (a) XRF Detector’s Efficiency Curve. (b) Plastic PE Spectrum(Cr 
1000, Br 1100, Cd 330, Hg 1100, Pb 1200 ppm). (c) Enlargement of Energy 
10keV Peak. (d) Enlargement of Energy 23.2keV Peak. (e) Apply Preprocess 
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and SG Filter at 10keV Energy. (f) Apply Preprocess and SG Filter at 
23.2keV Energy 
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Abstract - This paper presents the application of iSIGHT® 4.5 
(OLH & RBF Modules) to optimal design of a dynamical 
system with high speed spindle considering thermal behavior 
and natural frequency.  To analyze the change of thermal 
deformation according to spans of bearings, we will establish 
the FE (Finite Element) model of high-speed spindle system 
using ANSYS Workbench® 12.1.  The change of natural 
frequency according to spans of bearings will be analyzed by 
constructing the FE model of high-speed spindle system using 
ARMD®, which is a special analysis software of rotating-shaft.  
Based on the two FE models, we will find out the optimal 
position of 4 bearings through predicting natural frequency 
and thermal deformation by applying iSIGHT® 4.5 (OLH 
(Optimal Latin Hypercube) & RBF (Radial basis Function)). 
Compared with the initial design based on the experience of 
an expert, thermal deformation using the optimized values will 
be shown to be decreased while natural frequency using the 
optimized values will be shown to be increased. 

Keywords: High-Speed Spindle, Finite Element Modeling, 
Optimized Approximation Model, Optimal Latin Hypercube 
(OLH), Radial Basis Function (RBF) 

 

1 Introduction 
This present, the demand for high-quality machining of 

parts and materials is increasing because of development of 
the material industry related to the high-tech industry such as 
aerospace, automobile, and cellular phone. To meet this 
demand, the high-speed and high-precision machining centers 
are necessary so that they are under development for Germany, 
Japan, Korea, and etc.  The dynamical system with high-speed 
spindle which is a core part of machining centers needs to 
have powerful machining as well as high-precision cutting 

ability.  In addition, large static and dynamic stiffness is 
required. 

In existing spindles for machining centers, power is 
delivered from a motor to a spindle through coupling, belt, 
gear and etc. It can result in vibration and noise problems 
during operating machining centers. To cope with these 
problems and then to obtain satisfied performance, the 
construction of high-speed spindle should be in the form of 
built-in motor. The high-speed spindle with built-in motor has 
a simple construction to remove the problems caused by 
coupling, belt, gear and etc. But thermal deformation will 
occur by internal heating during operating a high-speed 
spindle. The magnitude in thermal deformation usually 
amounts to several tens㎛’s, in contrast to the static and 

dynamic deformation with a few ㎛’s.  This is the issue that 
takes precedence over other problems.   

In previous studies, Park et al. [1] have investigated on 
selecting the positions of bearings considering static and 
dynamic stiffness of high-speed spindle regardless of thermal 
deformation. Park et al. [2] has suggested  a design and 
performance estimation technique of high-speed spindle using 
DOE (Design Of Experiment) which is based on Taguchi 
method by using Minitab®. But the number of experiments is 
so small that it is questionable whether an optimal result could 
have been found out. 

Kwon et al. [3] has figured out the optimized design 
technique of tool holder spindle using iSIGHT® 4.5.    The 
technique performed with ANSYS Workbench® is only 
focusing on stiffness with the exception of thermal 
deformation. 

Therefore this paper aims at applying iSIGHT® 4.5 (OLH 
(Optimal Latin Hypercube) & RBF (Radial Basis Function)) 
to the optimal design of a dynamical system with high-speed 
spindle decreasing the thermal deformation in consideration of 
thermal behavior (using ANSYS Workbench®) and natural 
frequency (using ARMD®).  
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2 Design of Finite Element Modeling 
for Dynamical System with High 
Speed Spindle 

 Figure 1 shows the initial drawing (designed by the 
experts of KASWIN, Ltd., Korea) of the high-speed spindle 
with built-in motor.  

The rotating-shaft of the spindle as shown in Fig. 2 is a 
structure supported by both 2 bearings in front of rotating-
shaft and 2 bearing in the rear of rotating-shaft.  Bearing type 
is angular contact ball bearing and oil & air system is applied for 
lubrication. 

 
Fig. 1. Initial drawing of high-speed spindle 

 

 
Fig. 2. Drawing of rotating-shaft of the spindle 

The maximum allowed number of pages is seven for Regular 
Research Papers (RRP) and Regular Research Reports (RRR); 
four for Short Research Papers (SRP); and two for Posters 
(PST). 

2.1 Finite element model of thermal deformation 
analysis  

   To analyze the change of thermal deformation according 
to spans of bearings, we have also established the FE model of 
high-speed spindle system using ANSYS Workbench® 
12.1.[4] The spindle system has axial symmetry so that we 
have established the FE model of Fig. 3, which is a half of the 
total system. Parts which have no influence on results of 
analyses, such as assembly sections, supply lines of lubricating 
oil & air, and etc. are approximated simply as shown in Fig. 3. 
Figure 4 shows the spans of bearing to be used for natural 
frequency and thermal deformation analysis. FB and RB 
denote front bearings and rear bearings, respectively.  
.  

 
Fig. 3  FE model of spindle system using ANSYS 

workbench®12.1 

 
Fig. 4  Schematic diagram of bearing position 

 
 

2.2 Finite element model of natural frequency 
analysis  

 To analyze the change of natural frequency according 
to spans of bearings, we have established the FE (Finite 
Element) model of high-speed spindle system using 
ARMD®[5] which is a special analysis software of rotating-
shaft, as shown in Fig. 5. 

  

  
Fig. 5 FE model of spindle system using ARMD® 

 
In general, front bearings results in high heat due to 

cutting power, loading condition and some additional causes, 
compared with the case of rear bearing.  In this paper, the span 
of bearings of front and rear bearings has been assumed to be 
altered within the range of (±5mm + nominal (initial) position) 
considering structural constraints.  The properties to be used 
for thermal deformation analysis are listed in Table 1.  Table 2 
shows initial values and upper/lower bounds of 4 bearing 
positions (see Fig. 4). 
 

Table 1 Material Properties of Spindle System 

 
Density 
(kg/m3) 

Specific Heat 
(J/kg•℃) 

Thermal 
Conductivity 
 (W/m•℃) 

Housing 7817 446 52 

Rotor 6250 590 90 

Stator 8124 437 148 

Axis 1.165 1006 0.026 

Air 7769 473 43 
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Table 2 Initial Values and Lower/Upper Bounds of 4 Bearings 
(FB1/FB2/RB1/RB2)  

(unit : mm) 

 
Initial 
Value 

Lower 
Bound 

Upper 
Bound 

FB1 53 48 58 
FB2 84 74 84 
RB1 300.5 295.5 305.5 
RB2 330.5 330.5 340.5 

 

3 Application of iSIGHT® to Optimal 
Design  

3.1 Simulation using DOE(Design Of Experiment)  
with OLH   

 It is well known that it is difficult to achieve the purpose 
of an experiment without sufficient plan of experimental 
factors.  DOE i.e., Design of Experiment will lead to efficient 
experimental planning [6]. 

DOE, as a statistical analysis methodology, is mainly used 
at the measurement step of 6 Sigma.   Especially DOE can be 
used for CAE (Computer Aided Engineering) as well as actual 
experiments.  An analysis with DOE needs less time to find 
out main effect variables, compared with the analysis without 
DOE. 

According to previous studies[7][8], major factors having 
influence on natural frequency are diameter of rotating-shaft, 
stiffness, span of bearing, and elasticity of the material.  In 
addition, a bearing has an effect on thermal deformation due 
to the internal heating of itself. In this paper, we will find out 
the optimal position of 4 bearings through predicting natural 
frequency and thermal deformation by applying iSIGHT® 
4.5[9] (OLH & RBF). 

In OLH method (as offered by one of modules in iSIGHT® 
4.5), we generates the level values of design variables by using 
OLH method (as offered by one of modules in iSIGHT® 4.5).  
The OLH can sample the level values automatically under 
regular pattern instead of random one [3].   This results in one 
of the merits for OLH method. In specific, OLH offers 
ANOVA (Analysis of Variance) with high reliability and in 
turn can make the approximation model (given by RBF 
method) as suitable as the FE model.  As shown in Table 3, we 
have obtained 100 sets of inputs (design variables) according 
to the DOE using OLH. 

Figure 7 illustrates the procedure regarding how ANSYS 
Workbench ® 12.1 can be incorporated into iSIGHT® 4.5.  
First, the finite element modeling of high speed spindle is 
simulated for the base line values of 4 design variables (FB1, 
FB2 RB3, RB4) by using ANSYS Workbench ® 12.1.  The 
initial simulation for the base line values aims at resulting in 
the LOG file of ANSYS Workbench ® 12.1 which can be 
imported into iSIGHT® 4.5. In iSIGHT® 4.5, 4 design 
variables are automatically input to the LOG file by using the 
OLH module.   The OLH needs the lower bound, upper bound 

and increment for each design variable.  The output of 
simulation using LOG file is thermal deformation of high 
speed spindle, as shown in the result (column) of Table 3. 

 
Table 3   Level Values of Design Variables and Result of 

iSIGHT® 4.5 Simulation 
(incorporated in ANSYS workbench® ) 

(FB1, FB2, RB1, RB2 : mm   Result : ㎛) 

 
 

 
Fig. 6 Procedure of simulation using ANSYS 

                    workbench® and iSIGHT® 
 

In order to proceed an optimal design using iSIGHT® 4.5, 
we need to incorporate iSIGHT® 4.5 into an analysis software 
in a similar manner to the case of ANSYS workbench®, as 
illustrated in Fig. 6.  But ARMD® does not have the 
incorporation procedure of iSIGHT® 4.5 as shown in Fig. 7.   
Thus we have just performed the 100 simulations of ARMD®  

by using each set of  level values of design variables according 
to the DOE using OLH in iSIGHT® 4.5, as shown in Table 4. 
 

 
Fig. 7 Procedure of simulation using ARMD® and 

iSIGHT® 
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Table 4  Level Values of Design Variables and Result of 
iSIGHT® 4.5 Simulation 

(not incorporated in ARMD®) 
(FB1, FB2, RB1, RB2 : mm   Result : Hz) 

 
 

3.2 Optimized Approximation 

In general, it is accurate to employ FE models in all 
simulations using analysis software. But it has a demerit which 
usually needs a lot of computing time for optimal design 
problems of nonlinear analyse.   Therefore, in this paper, we 
have performed the optimal design of high speed spindle by 
using the approximation technique of RBF (Radial Basis 
Function ) module in iSIGHT® 4.5. 

It is well known that RBF neural network is one of methods 
of curve fitting in multi-dimensional space.  This means that 
training through RBF searches for one space from multi-
dimensional spaces, which can be agreed best with data sets to 
be trained.  Fig. 8 shows the structure of  RBF.   In specific, 
the data resulted from the previous subsection can be imported 
into the RBF module of iSIGHT® 4.5 so that two optimized 
approximation models (one model between 4 input variables 
(i.e., FB1, FB2 RB3, RB4) and 1 output variable; another 
model between 4 input variables (i.e., FB1, FB2 RB3, RB4) 
and 1 output variable (natural frequency) can be established. 
 
 

 
Fig. 8  Structure of RBF 

As shown in Tables 3 and 4, we have obtained 100 sets of 4 
inputs (design variables) and 2 outputs (thermal deformation 
and natural frequency) according to the DOE using OLH.  
These input and output data can be used for resulting in 
optimized approximation models based on the RBF module of 
iSIGHT® 4.5. The optimized approximation models resulted 
from the RBF module are used for finding out the optimal 
values of 4 design variables through 1,000 simulations.    Figs. 
9 and 10 shows optimized approximation models and 
optimized approximation values, respectively.   Table 5 
illustrates the values of optimal design variables which result 
in the minimum deformation and the maximum natural 
frequency for the rotating-shaft of high speed spindle. These 
optimal design variables are assigned to each FE modeling of 
ANSYS workbench® and ARMD®.  Especially, the initial 
values of design variables are included for the comparison of 
optimized values (resulted from the optimized approximation 
models of RBF). 

    
(a) Thermal deformation         (b) Natural frequency 

Fig. 9  Optimized approximation models 
 

       
(a) Thermal deformation        (b) Natural frequency 

Fig. 10  Optimized approximation values  
 

For the FE model of ANSYS workbench®12.1, the thermal 
deformation using the optimized values of 4 design variables 
has been decreased by 4.23%, compared with one using the 
initial values of those variables.  In the meanwhile, for the FE 
model of ARMD®, the natural frequency using the optimized 
values has been increased by 16.89%, compared one using the 
initial values of those variables.   These remarks are 
summarized in Table 6.  In addition, Figs. 11 and 12 show the 
analysis results of ANSYS workbench® 12.1 (thermal 
deformation) and ARMD® (natural frequency) using the 
optimized values of 4 design variables, respectively. 
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Table 5   Initial Values of Design Variables vs. Optimized 
Values of Design Variables 

(unit : mm) 

 

Initial 
Values 

of 
Design 

Variables 
 

Optimized Values 
of  Design 
Variables 
(Thermal 

Deformation) 

Optimized Values 
of  Design 
Variables 
(Natural 

Frequency) 

FB1 53 58 49.99 
FB2 84 74 82.97 
RB1 300.5 297.72 297.85 
RB2 330.5 340.13 330.5 

 
 

Table 6 Comparison of Results using Initial Values  and 
Optimized Values 

 

Result using 
Initial 
Values 

Result using 
Optimized 

Values 
Rate  

Deformation 
(㎛) 27.16 26.004 4.23% 

(decreased) 

Natural 
Frequency 

(Hz)  
520.18 625.88 16.89% 

(increased) 

 
 

 
Fig. 11 Result of ANSYS workbench® using optimized  

values of design variables 
 
 

 
Fig. 12 Result of ARMD® using optimized values of 

 design variables 
 

 
The FE models of thermal deformation and natural 

frequency are almost the same as those of the optimized 
approximation models of RBF with 0.94% and 1.21% , 
respectively, as shown in Table 7. 
 

Table 7 Comparison of FE Models with Optimized 
Approximation Models of RBF 

 RBF Model FE Model Error 

Deformation 
(㎛) 25.759 26.004 0.94% 

Natural 
Frequency 

(Hz)  
633.55 625.88 1.21% 

 

4 Final Optimal Design of High-speed 
Spindle (considering both thermal 
deformation and natural frequency) 

 In the previous section, we have obtained the optimal 
positions of bearings which have an effect on both thermal 
deformation and natural frequency using ANSYS Work 
bench®12.1 and ARMD®, based on OLH & RBF modules 
provided by iSIGHT® 4.5.   This result means that the optimal 
position of bearings can be found out in consideration of both 
thermal deformation and natural frequency.  

Under the advice of an experienced expert in the field of 
machining centers, it is assumed that the contrast between 
thermal deformation and natural frequency would be given in 
the sense of weighting factors, especially 0.8 and 0.2, 
respectively.   Based on the weighting factors, we will obtain 
optimal position of bearings by using Minitab®[10] as follows.  
The objective function is concerned with the minimum 
thermal deformation and the maximum natural frequency.    In 
order to make thermal deformation and natural frequency the 
same condition (i.e., minimization), we have subtracted the 
values of natural frequency from 1000Hz. Thus, the major 
effect value for each design variable will be found using 
Minitab® to minimize both thermal deformation and  natural 
frequency (subtracted from 1,000 Hz), This means that we 
need a multi-objective problem as follows:  

 
Object=   (1) 
 

Here sf1 and sf2 indicate scaling factors. Moreover,  and 
are weighting factors.  The scale factors are selected 

properly according to equation (1). Since the multi-objective 
function to be minimized has to be a linear combination 
function, 0.8 and 0.2 have been assigned to each  and  as 
mentioned before.  In the meanwhile, the constants of sf1 and 
sf2 are given by the maximum values of thermal deformation 
and natural frequency, respectively, in order to impose the 
ceiling value of the maximum value of objective function on 1.  

Before getting into Minitab®, we have sorted out 25 sets of 
4 inputs (design variables) and 2 outputs (thermal deformation 
and natural frequency) from 1,000 simulations which are 
result of RBF as shown in Table 8. This is why Minitab® 
limits 25 sets of simulation cases. The criterion of this sorting 
is based on the ascending order of the values of objective 
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function from the minimum one among 1,000 simulation 
results using the RBF approximation models. 

 
Table 8.  25 Sets sorted from 1,000 Simulation Cases from 

RBF 

 
 
 
Figure 13 shows the main effects plot for SN (Signal-to-
Noise) ratios obtained by using Minitab®.  Now we can figure 
out the optimal design values (considering both thermal 
deformation and natural frequency) corresponding to the 
maximum peak values in Fig. 13, which are listed in Table 9.   
In considering both thermal deformation and natural frequency, 
Table 10 shows the comparison of results using initial values 
and optimized values.  Compared with the result using initial 
values, thermal deformation using the optimized values has 
been decreased by 2.43% while natural frequency using the 
optimized values has been increased by 12.37%.    Therefore 
it can be concluded that the application of  iSIGHT® 4.5 (OLH 
& RBF) to the optimal design of a dynamical system with 
high-speed spindle can decrease the thermal deformation in 
consideration of thermal behavior (using ANSYS 
Workbench®12.1) and natural frequency (using ARMD®), 
compared with the initial design of  bearing positions based on 
the experience of an expert in machine tool design. 

 
 

 
Fig. 13  Main effects plot for SN ratios 

 

Table 9 Initial Values of Design Variables vs. Optimized 
Values of Design Variables 

(considering both thermal deformation and natural frequency) 
 

(unit : mm) 

 

Initial 
Values of Design 

Variables 

Optimized Values of  
Design Variables 

FB1 53 56.48 
FB2 84 75.62 
RB1 300.5 298.63 
RB2 330.5 335.35 

 
 

Table 10  Comparison of Results using Initial Values  and 
Optimized Values 

(considering both thermal deformation and natural frequency) 

 

Result 
using 
Initial 
Values 

Result using 
Optimized 

Values 
Rate 

Deformation 
(㎛) 27.16 26.501 2.42% 

(decreased) 

Natural 
Frequency 

(Hz)  
520.18 593.6 12.37% 

(increased) 

 
 
5 Conclusions 

 This paper aims at applying iSIGHT® 4.5 (OLH & RBF) 
to the optimal design of a dynamical system with high-speed 
spindle decreasing the thermal deformation in consideration of 
thermal behavior (using ANSYS Workbench®) and natural 
frequency (using ARMD®). Compared with the initial design 
of  bearing positions based on the experience of an expert in 
machine tool design, thermal deformation using the optimized 
values has been decreased by 2.43% while natural frequency 
using the optimized values has been increased by 12.37%. In 
conclusion, the original work of this paper , i.e.,   the 
application of  iSIGHT® 4.5 (OLH & RBF) to the optimal 
design of a dynamical system with high-speed spindle in 
consideration of both thermal behavior and natural frequency 
can improve the thermal and dynamic characteristics. 
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Response Curves and Preimage Sequences
of Two-Dimensional Cellular Automata

Henryk Fukś and Andrew Skelton
Department of Mathematics, Brock University, St. Catharines, Ontario, Canada.

Abstract— We consider the problem of finding response
curves for a class of binary two-dimensional cellular au-
tomata with L-shaped neighbourhood. We show that the
dependence of the density of ones after an arbitrary number
of iterations, on the initial density of ones, can be calculated
for a fairly large number of rules by considering preimage
sets. We provide several examples and a summary of all
known results. We consider a special case of initial density
equal to 0.5 for other rules and compute explicitly the
density of ones after n iterations of the rule. This analysis
includes surjective rules, which in the case of L-shaped
neighbourhood are all found to be permutive. We conclude
with the observation that all rules for which preimage curves
can be computed explicitly are either finite or asymptotic
emulators of identity or shift.

Keywords: preimage, surjective, permutive, density, emulation

1. Introduction
Cellular automata (CA) can be viewed as computing

devices, which take as an input some initial configuration.
The CA rule is iterated a number of times, resulting in a final
output configuration. In many practical problems, e.g., in
mathematical modelling, one wants to know how a CA rule
iterated over an initial configuration affects certain aggregate
properties of the configuration, such as, for example, the
density of ones. If we take a randomly generated initial
configuration with a given density of ones, and iterate a given
rule n times over this configuration, what is the density of
ones in the resulting configuration? We want to know the
“response curve”, the density of the output as a function of
the density of the input.

Response curves appear in computational problems, and
a classical example of such a problem in CA theory is the
so-called density classification problem (DCP). If we denote
the density of ones in the configuration at time n by Pn(1),
the DCP asks us to find a rule for which P∞(1) = 1 if
P0(1) > 1/2 and P∞(1) = 0 if P0(1) < 1/2. Since it is
known that such a rule does not exist [1], once could ask
which response curves are possible in CA rules? We propose
to approach this problem from an opposite direction: given
the CA rule, what can we say about its response curve? It
turns out that in surprisingly many cases, the response curve
can be calculated exactly, providing that preimage sets of
finite strings under the CA rule exhibit recognizable patters.

2. Definitions
In what follows, we will be concerned with what we

call two-dimensional elementary cellular automata, which
have a local function depending on the central site, its
right neighbour, and its top neighbour, and which allow two
states only, 0 and 1. We will say that these are rules with
“L-neighbourhood”, since the neighbourhood has the shape
of the letter L. Such three-input binary local rules can be
considered the simplest “truly” two-dimensional CA rules,
hence the name “elementary”.

Before we define such rules formally, we will first intro-
duce the concept of triangular blocks, defined as regions of
2D configurations in the shape of isosceles right triangles.
The set of triangular blocks of size r, denoted Tr, is the set
consisting of elements

b1,r
...
. . .

b1,1 . . . br,1,

(1)

where each bi,j ∈ G. The set of eight blocks in T2 will be
called basic blocks.

We may define the local mapping, or local rule, of a 2D
CA with L-neighbourhood as g : T2 → G. The local mapping
g has a corresponding global mapping, G : GZ2 → GZ2

such
that (G(s))i,j = g

( si,j+1
si,j si+1,j

)
, for any i, j ∈ Z, s ∈ GZ2

.
The block evolution operator g : Tr → Tr−1 will be de-

fined as a function which transforms triangular block (1) into
another block, c ∈ Tr−1, where ci,j = g

(
bi,j+1

bi,j bi+1,j

)
∈ G

for i ∈ {1, . . . , r − 1} and j ∈ {1, . . . , r − i}. We denote
gn : Tr+n → Tr to be the operator obtained by composing
g with itself n-times.

Occasionally, we will need to define a distance between
two configurations. One can show easily that for s, t ∈ GZ2

and i, j ∈ Z, the following satisfies all axioms of a metric:

d(s, t) =


1

1 + min
i,j∈Z

(
max{|i|, |j|} : si,j 6= ti,j)

) if s 6= t

0 if s = t

.

For 2D CA with L-neighbourhood, we adapt the numbering
system used in [2]. A local rule g is assigned a Wolfram
number W as follows

W (g) =
∑

a0,a1,a2∈{0,1}

g ( a0a1 a2 ) 2
4a0+2a1+a2 . (2)
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We note that, as in the case of radius-1 1D CA, there are
256 possible elementary 2D CA. Many of these rules are
related to each other by the group of 4 transformations
D1 × S2, where D1 is the dihedral group with a single
reflectional symmetry and S2 denotes all permutations of
the elements in {0, 1}. Among each class of four (not
necessarily distinct) rules, we choose one representative with
the smallest Wolfram number. We denote this rule to be
a minimal rule. A list of all 88 minimal rules and their
equivalences can be found in [3].

3. Densities of Blocks
We now consider the density response problem. Suppose

that we start with an initial configurations in which a certain
proportion of sites is in state 1. The simplest way to achieve
this is to set each site to be in state 1 with probability ρ,
and 0 with probability 1− ρ, doing it independently for all
sites. This means that the probability of randomly selected
site to be in state 1 is ρ. Suppose that we apply n iterates of
some CA rule to such configuration. What is the probability
that in the resulting configuration, the state of a randomly
selected site is 1?

In order to formulate this problem more precisely, we will
use the concept of probability measure, similarly as done in
[4], for one-dimensional CA.

Given a block b ∈ Tr, we define a cylinder set given by b,
Ci,j(b), as the set of all configurations in which block b is
fixed and placed at coordinate (i, j) aligned at the lower-left
element of b. We define a measure of such as cylinder set,
µ [Ci,j(b)], to be the probability of occurrence of block b
placed as above. If the measure is translationally invariant
we may drop the indices i, j. For ρ ∈ [0, 1], the Bernoulli
measure is a measure where all sites are independently set
to 1 with probability ρ, and to 0 with probability 1− ρ. In
such case, we have

µρ [C(b)] = ρj(1− ρ)(r
2+r)/2−j , (3)

where j is a number of cells in state 1 in b.
We now consider the action of the global mapping G on

the measure of a cylinder set given by block b, which yields

(Gµρ) [C(b)] = µρ
[
G−1 (C(b))

]
. (4)

Considering instead n iterations of G, we obtain

(Gnµρ) [C(b)] = µρ
[
G−n (C(b))

]
. (5)

If we let g−n(b) be the set of all n-step preimages of block
b, that is, the set of all blocks a such that gn(a) = b, then
we can write

µρ
[
G−n (C(b))

]
=

∑
a∈g−n(b)

µρ [a] . (6)

Using the notation Pn(b) = (Gnµρ) [C(b)], we write (5) as

Pn(b) =
∑

a∈g−n(b)

P0(a). (7)

If b = 1, and if the initial measure is Bernoulli, then in
the above formula each P0(a) depends only on ρ, where
ρ = P0(1). Pn(1) can then be interpreted as the density
of 1s in the configuration obtained by iterating the CA rule
n times starting from disordered initial configurations with
density of ones equal to ρ.

Plot of Pn(1) versus ρ will be called a response curve for
each elementary 2D CA. In the special case when ρ = 1/2,
the probability of any block of a given size is equally likely
and (7) can be expressed as

Pn(b) = 2−(r+n+1)(r+n)/2 card
[
g−n(b)

]
, (8)

where card [g−n(b)] denotes the number of elements in the
set g−n(b). If we want to indicate that we consider the
special case of ρ = 1/2, we will use the notation P (s)

n (b), at
the sequence of P (s)

n (b) for n = 0, 1, 2 . . . will be called
a response sequence. Finally, we denote P (b) to be the
asymptotic density of block b, which we obtain by taking
the limit of Pn(b) as n→∞ (if the limit exists).

4. Theoretical Response Curves
For 26 minimal rules, we were able to determine an

explicit response curve formula. In some cases, we found
that the response curve was independent of n. In other cases,
the response curve was dependent on n, and then a separate
formula for the asymptotic density could be obtained. We
present in detail three examples of each types. In each
example, we describe the structure of the preimage sets but,
due to space constraints, we omit direct proofs while noting
that each case can be proved easily by induction.

4.1 Rules with Constant Density
In each of the following examples the formula for the

response curve has no dependence on n. Therefore, the
formula for the asymptotic density is the same as the
response curve. We provide detailed analysis for Rules 0,
3 and 42 and the remaining results are presented in Table 1.

Proposition 1. The response curve for Rule 0 is Pn(1) = 0.

Proof: There are no triangular blocks of any size
that can be mapped under gn0 to single block 1. Therefore,
card

[
g−n0 (b)

]
= 0 and we apply (7) to obtain our result.

Proposition 2. The response curve for Rule 42 is

Pn(1) = ρ(1− ρ)(1 + ρ).

Proof: It can be shown by induction that the only
blocks that map to a single 1 under gn42 are either blocks
in Tn where bn,1 = 1, bn−1,2 = 0 and all other elements are
arbitrary, or blocks in Tn where bn,1 = bn−1,2 = 1, bn−1,1 =
0 and all other elements are arbitrary. Using (3) and (7), we
conclude that Pn(1) = ρ(1−ρ)+ρ2(1−ρ), which simplifies
to the desired result. An experimental curve confirming this
result is presented in Figure 1d.
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(a) Rule 2 (b) Rule 3 (c) Rule 10 (d) Rule 42 (e) Rule 138

Fig. 1: Experimental Response Curves

Table 1: Constant Density Rules

Rules Pn(1) P
(s)
n (1)

0 0 0
2 ρ(1− ρ)2 1/8

3 (1− ρ)2 5/8 (n odd)
ρ(1 + ρ− ρ2) 1/4 (n even)

4 ρ(1− ρ)2 1/8

5 (1− ρ)2 5/8 (n odd)
ρ(1 + ρ− ρ2) 1/4 (n even)

10 ρ(1− ρ) 1/4
12 ρ(1− ρ) 1/4

51 1− ρ (n odd)
1/2

ρ (n even)
34 ρ(1− ρ) 1/4
42 ρ(1− ρ)(1 + ρ) 3/8

51 1− ρ (n odd)
1/2

ρ (n even)
76 ρ(1− ρ)(1 + ρ) 3/8

170 ρ 1/2
204 ρ 1/2

Proposition 3. The response curve for Rule 3 is

Pn(1) =

{
(1− ρ)2 if n even,
ρ(1 + ρ− ρ2) if n odd.

Proof: Since Rule 3 has period-2 behaviour, we must
consider cases when n is odd and when n is even. When n is
odd, the only blocks that map to a single 1 under n-iterations
of g3 are blocks in Tn where b1,(n+1)/2 = b1,(n+3)/2 = 0
and all other elements are arbitrary.

When n is odd, the only blocks that map to 1 under gn3
are blocks in Tn where b1,(n+2)/2 = 0 and all other elements
are arbitrary, or blocks in Tn where b1,n/2 = b1,(n+4)/2 =
1, b1,(n+2)/2 = 0 and all other elements are arbitrary.

Using (3) we can determine the initial probability of
occurrence of blocks of either type and using (7) obtain a
formula which simplifies to the desired result. Note that in
the special case when ρ = 1/2, we conclude that P (s)

n (1)
equals 1/4 when n is even, and equals 5/8 when n is odd.
We averaged our experimental results over an even number
of time steps, thus Figure 1b has the form

Pn(1) =
1

2

[
(1− ρ)2 + ρ(1 + ρ− ρ2)

]
.

4.2 Rules with Decaying Density
In each of the following examples the formula for the

response curve is dependent on n, and thus we can also de-
termine an asymptotic density formula. We provide detailed
analysis for Rules 32, 128 and 138, while the remaining
results are presented in Table 2.

Proposition 4. The response curve for Rule 128 is

Pn(1) = ρ(n
2+3n+2)/2.

Proof: The only block mapping to a single 1 under
gn128 is the block consisting entirely of ones. We use (3) to
find the initial probability of this block and (7) produces our
result. Thus, the asymptotic density under Rule 128 is

P (1) = lim
n→∞

Pn(1) =

{
0 if ρ 6= 1,
1 if ρ = 1.

Proposition 5. The response curve for Rule 32 is

Pn(1) = ρn+1(1− ρ)n.

Proof: Under rule 32, the only blocks that map to a
single 1 under gn32 are of the form

?

...

?
0
1
0

. . .

. . .
? 0 1

. . .

. . .

. . .
. . .

.
n− 1

Using (3), we can determine the initial probability of
occurrence of blocks of this type and using (7), we obtain
our result. The asymptotic density is thus P (1) = 0.

Proposition 6. The response curve for Rule 138 is

Pn(1) =
ρ2n+2 + ρ

ρ+ 1
.

Proof: The only blocks that map to a single 1 under
n-iterations of g138 are comprised entirely of arbitrary
elements in the top n − 1 rows, and have their lower two
rows, where i ranges from 1 to n+ 1, of the form

? . . . ? ? 1 . . . 1 1 1
? . . . ? 0 1 . . . 1 1

,
i
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Table 2: Density Decaying Rules

Rules Pn(1) P (1)

8 ρn+1(1− ρ)n 0
32 ρn+1(1− ρ)n 0
40 2nρn+1(1− ρ)n 0
72 2nρn+1(1− ρ)n 0

128 ρ(n
2+3n+2)/2 0 if ρ 6= 1

1 if ρ = 1
130 see [5] for complete analysis
132 can be derived from Rule 130

136 ρn+1 0 if ρ 6= 1
1 if ρ = 1

138 ρ2n+2+ρ
ρ+1

ρ
1+ρ

if ρ 6= 1

1 if ρ = 1

140 ρ2n+2+ρ
ρ+1

ρ
1+ρ

if ρ 6= 1

1 if ρ = 1

160 ρn+1 0 if ρ 6= 1
1 if ρ = 1

162 ρ2n+2+ρ
ρ+1

ρ
1+ρ

if ρ 6= 1

1 if ρ = 1

Using (3) we can determine the initial probability of occur-
rence of blocks for each possible value of i. Summing over
all i and using (7), we conclude that

Pn(1) = ρ2n+1 +

n∑
i=1

ρ2i−1(1− ρ)

= ρ2n+1 +
1− ρ
ρ

(
ρ2
(
ρ2n − 1

)
ρ2 − 1

)
,

which simplifies to our desired result.
Again, we can find the asymptotic density as

P (1) = lim
n→∞

Pn(1) =

{
ρ

1+ρ if ρ 6= 1,
1 if ρ = 1.

This result is confirmed by the experimental curve in Figure
1e. Note that while the response curve is continuous, the
asymptotic density has a discontinuity at ρ = 1, correspond-
ing to an initial condition consisting entirely of ones.

5. Theoretical Response Sequences
In some cases we were unable to determine an explicit

expression for the response curve of a given rule, but we
were able to derive an explicit formula for card [g−n(1)], and
thus use (8) to obtain a response sequence. For 21 additional
rules, we were able to either prove or conjecture a response
sequence. We first consider the class of surjective rules.

5.1 Surjective Rules
Sites belonging to the L-shaped neighbourhood (

a0,1
a0,0 a1,0 )

will be identified by their indices as (0, 1), (0, 0), and (1, 0).
Similarly as in [6], a local function g will be called permutive
with respect to the (0, 1) site if for any choice of y, z ∈ G
the function x → g( xy z ) is one-to-one. Permutivity with
respect to the central site (0, 0) or the right neighbour (0, 1)
is defined similarly. We now find a response sequence for
rules permutive with respect to site (0, 0).

Proposition 7. The response sequence for Rules 15, 30, 45,
51, 54, 57, 60, 90, 105, 106, 108, 150, 154, 156, 170 and
204 is P (s)

n (1) = 1/2.

Proof: There are 16 rules permutive with respect to the
centre site, of which the following 9 are minimal: 51, 54, 57,
60, 105, 108, 150, 156 and 204. If a rule is permutive with
respect to (0, 0), then there must exist numbers x0, . . . , x3 ∈
{0, 1} such that the local function takes the form

g( a0a1 a2 ) =

 0 if ( a0a1 a2 ) ∈ { 0
x0 0 ,

0
x1 1 ,

1
x2 0 ,

1
x3 1 }

1 if ( a0a1 a2 ) ∈ { 0
x0 0 ,

0
x1 1 ,

1
x2 0 ,

1
x3 1 }

,

(9)
where xi denotes 1−xi. Assuming the above form of g, let
us consider an arbitrary block b ∈ T n. We will now show
how to construct all preimages of b under g. First of all, we
claim that blocks c ∈ T n+1 of the form

c =

α1

c1,n
. . .

...
. . .

. . .

c1,1 . . . cn,1 αn+1

. (10)

are the only preimages of b, where each αi (1 ≤ i ≤ n+1)
is an arbitrary value in {0, 1}, and values of ci,j ∈ {0, 1}
can be determined by an iterative algorithm.

To see that this is indeed true, we now present an algo-
rithm with which we can construct all possible preimages:

1) Starting from b1,n, we wish to find all neighbourhoods
{ a0a1 a2 } such that g

(
a0
a1 a2

)
= b1,n . The structure

of the local mapping gives us four possible such
neighbourhoods { a0a1 a2 } = {

α0
c1,n α1 }, where

c1,n = (1− b1,n)x2α1+α2
+ b1,n(1− x2α1+α2

),

and the values of α1 and α2 are arbitrarily selected.
We now repeat step 2 for all values of i ∈ {2, . . . , n}.

2) Since bi,n−i+1 is given and αi has been freely chosen
in the previous iteration, we wish to know all neigh-
bourhoods { a0a1 a2 }, such that g

(
a0
a1 a2

)
= bi,n−i+1 .

The structure of the local mapping gives two possible
neighbourhoods { a0a1 a2 } = {

αi
ci,n−i+1 αi+1 }, where

ci,n−i+1 = (1− bi,n−i+1)x2αi+αi+1
+

+ bi,n−i+1(1− x2αi+αi+1
),

and αi+1 is another arbitrarily selected value.
We now construct the rest of the preimage and show
that all other values are uniquely determined based
on each choice of the α values in the top diagonal.
For all values of j ∈ {1, . . . , n − i} and then for all
i ∈ {1, . . . , n− j}, we repeat step 3 as follows.

3) Since bi,n−i−j+1 is fixed, we wish to know all
neighbourhoods { a0a1 a2 }, such that g

(
a0
a1 a2

)
=

bi,n−i−j+1 . Since ci,n−i−j+2 and ci+1,n−i−j+1 were
fixed in a previous iteration, the structure of the local
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(a) Rule 2 (b) Rule 108 (c) Rule 154 (d) Rule 168 (e) Rule 172

Fig. 2: Experimental Response Curves

mapping tells us that our neighbourhood must have
the form { a0a1 a2 } = {

ci,n−i−j+2
ci,n−i−j+1 ci+1,n−i−j+1 }, where

ci,n−i−j+1 = (1−bi,n−i−j+1)xi′+bi,n−i−j+1(1−xi′),

and i′ = 2ci,n−i−j+2 + ci+1,n−i−j+1. Note that no
new arbitrary parameter appears here, thus the neigh-
bourhood is determined uniquely.

The only arbitrary values in the preimage are the (n +
1) values of αi on the main diagonal. Therefore, we know
that there are exactly 2n+1 preimages for a given b ∈ T n.
Therefore, we can see that card [g−n(1)] = 2(n

2+3n+2)/2.
Now, using (8), we conclude that P (s)

n (1) = 1/2 for all n.
Considering rules permutive with respect to the other two
sites, we conclude that also Rules 15, 30, 45, 90, 106, 154
and 170 possess a response sequence P (s)

n (1) = 1/2.
It turns out that these rules are the class of surjective 2D

CA with L-neighbourhoods. In one dimension, it is known
that rules permutive with respect to one of the variables
located at the left or the right end of the neighbourhood
are surjective, as proved in [6]. Recently, this result has
been generalized to two dimensions by Dennunzio and
Formenti [7], who demonstrated that any rule with Moore
neighbourhood (of any radius) which is permutive with
respect to one of the corner sites is surjective. We now show
how one can prove a similar result specifically for the L-
shaped neighbourhood, adapting the idea in [8] to 2D CA.

Proposition 8. If the local mapping of an elementary 2D
CA with L-neighbourhood is permutive with respect to any
site, then the corresponding global mapping is surjective.

Proof: From Proposition 7, we know that for any
permutive rule and all b ∈ T n, (n ≥ 1), card[g−1(b)] =
2n+1. Consider any infinite configuration, t ∈ GZ2

. Define
for all n ≥ 1, the set, Sn = {s ∈ GZ2

: g(s[n+1]) = t[n]},
where s[n+1] denotes a block of size n contained in an
infinite configuration s ∈ GZ2

and placed at (0, 0). Our
assumption guarantees that all Sn are non-empty for n ≥ 1.
We also know that Sn+1 ⊆ Sn. We consider the complement
of Sn, the set Sn = {s ∈ GZ2

: g(s[n+1]) 6= t[n]}, to show
that Sn is a clopen set.

We first show that Sn is open. Let s ∈ Sn ⊂ {0, 1}Z
2

be
an arbitrary configuration. For all ε > 0, we choose k ∈ Z,
where k > n, such that 1

k+1 < ε. We now pick an infinite
configuration s′ ∈ {0, 1}Z2

such that d(s, s′) = 1
k∗+1 , where

k∗ > k. Since s ∈ Sn, we know that s′ ∈ Sn, and

d(s, s′) =
1

k∗ + 1
<

1

k + 1
< ε.

Thus, Sn is open. Similar analysis shows that Sn must also
be open, and thus Sn is a clopen set. By the Nested Set
Theorem [9], there must exist s ∈ GZ2

, such that F (s) = t.
To conclude that these are the only surjective rules, we

use the reverse direction of the Balance Theorem.

Proposition 9. If a elementary 2D CA with L-
neighbourhood is surjective, then for all n ≥ 1 and
all blocks b ∈ T n, card[g−1(b)] = 2n+1.

Proof: The Balance Theorem was proved in 1D in [6]
and in 2D in [10]. A version of the proof specifically tailored
for the L-neighbourhood is to be reported elsewhere [3].

For all other elementary rules, we performed a computer-
ized search and found blocks for which no preimages exist.
By Proposition 9, these rules must be non-surjective.

5.2 Conjectured Response Sequences
To find response sequences for the remaining rules, we

performed an exhaustive search through all potential preim-
ages for each rule. For the L-neighbourhood, the number of
potential preimages is 2(n

2+3n+2)/2, which makes searches
for large n impossible. We performed our searches using
the Shared Hierarchical Academic Research Computing Net-
work (SHARCNET) and we were able to obtain cardinalities
of preimage sets to level n = 7. We then attempted to
conjecture a formula for the sequence using the first six
terms, and checked the conjecture with the seventh term.

Rules 23, 27, 29, 43, 46, 58, 77, 78, 142, 172, 178, 184
each shared the first seven terms of the preimage sequence
with the surjective rules above, so that for these rules we
conjecture that P (s)

n (1) = 1/2. For all remaining rules, a
list of the first seven preimage cardinalities is available upon
request.
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6. Experimental Response Curves
For those rules for which an explicit response curve

formula could not be derived, we were able to perform com-
puter simulations to obtain experimental response curves.
We start with a square configuration of 250000 elements
and we iterate 1000/ρ(1 − ρ) times when ρ ∈ (0, 1) and
100000 times otherwise, with periodic boundary conditions
and averaging density over the last 10 time steps and over 10
iterations from different initial conditions. Examples of such
experimental curves are presented in Figures 1 and 2. We
note in passing that one of the examples shown in Figure 2,
namely Rule 168, exhibits response curve resembling “phase
transition”, that is, discontinuity of the derivative. None of
1D elementary rules exhibits such behaviour.

7. Rule emulation
We will now briefly turn our attention to dynamics of 2D

rules. When one prints sample spatiotemporal diagrams of
2D rules with L-shaped neighbourhood (not shown here for
the lack of space), one can easily observe that all rules for
which density response curves can be calculated theoretically
exhibit somewhat “simple” dynamics. A convenient was to
describe this “simplicity” is to say that after a few iterations
these rules essentially behave like identity or shift. In order
to formalize this statement, we need to introduce the concept
of emulation, first finite and then asymptotic.

7.1 Finite Rule Emulation
We say that Rule X emulates Rule Y at level n if,

gn+1
X (b) = gY (gnX(b)) . (11)

for any block b ∈ Bn+2. We will demonstrate this with an
example. Consider Rule 76, with a local rule given by

g76 (
x
y z ) = (1−x)y(1−z)+(1−x)yz+xy(1−z) = y(1−xz).

We now compose g76 with itself as follows

g2
76(b) = g76

(
g76

(
x0
x1 x2
x3 x4 x5

))
= x3(1− x1x4) (1− x1(1− x0x2)x4(1− x2x5))
= x3(1− x1x4) = g204 (g76(b)) ,

where we have used the fact that when x ∈ {0, 1}, we
know that x2 = x. We therefore conclude that Rule 76
emulates identity at level 1. We checked all 88 × 87 pairs
of distinct elementary rules for finite rule emulation. In
Figure 3, we show all level 1 emulation relations between
all minimal elementary 2D rules with L-neighbourhood as
directed graphs in which an arrow travels from X to Y if
and only if Rule X emulates Rule Y at level 1. In Figure
3a are all rules which finitely emulate the identity Rule 204.
In Figure 3b are all rules which finitely emulate the left
shift Rule 170. Finally, in Figure 3c are another class of
interrelated emulation rules. In addition to the rules in the
graph, we also discovered that rules 6, 14, 18 and 50 emulate
rules 134, 142, 146 and 178 respectively.

7.2 Asymptotic Rule Emulation
In [11], the author defined the following metric to describe

the distance between two elementary 1D cellular automata
rules. We adapt this and define the following metric to
describe the distance between two elementary 2D cellular
automata rules with L-neighbourhood

d(f, g) = 2(−k
2−3k−2)/2

∑
b∈Bk

|f(b)− g(b)| . (12)

We say that Rule f asymptotically emulates Rule g if

lim
n→∞

d
(
fn+1, fn ◦ g

)
= 0. (13)

We now derive a useful equation with which we can calculate
the distance between two rules at a given level-n. First, we
define the following function for any block b ∈ B,

(f ⊕ g) (b) = f(b) + g(b) mod 2,

which outputs 1 if and only if f(b) 6= g(b). Thus, we can
use this function to count the number of blocks on which
local mappings f and g differ. Adapting Proposition 3 from
[11], we obtain the following proposition (proof in [11]).

Proposition 10. If f, g are 2D local L-neighbourhood map-
pings, A0 = (f ⊕ g)−1 (1), and An = f−n(A0), then

d
(
fn+1, fn ◦ g

)
=

card [An]

2(n2+5n+6)/2
. (14)

We demonstrate this procedure with an example.

Proposition 11. 2D CA Rule 160 asymptotically emulates
the identity rule.

Proof: If we consider the local mappings for both
Rules 160 and 204 we see that the set of blocks on
which the rules output differ is A0 = { 01 0 ,

0
1 1 ,

1
0 1 ,

1
1 0 }

To use Proposition 10, we must find the set An in gen-
eral and thus we must know the sequence of preimages
for these particular four basic blocks. We found the first
five terms of these sequences and conjectured patterns are
B
(
2n+2 − 3

)
, B,B

(
2n+1 − 1

)
and B, respectively, where

B = 2(n
2+n)/2. From equation (14), we determine that

d
(
gn+1
160 ,g

n
160 ◦ g204

)
= 3 · 2−n−2 − 4−n−1.

Therefore, since the limit of this expression goes to 0, we
conclude that Rule 160 emulates identity asymptotically.

Table 3 shows all known results of rules emulating shift
or identity. We can now state our observation expressed at
the beginning of this section using the concept of emulation:
all rules included in Tables 1 and 2 emulate identity or shift
either in a final number of steps or asymptotically.
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(a) Rules Emulating Identity (b) Rules Emulating Shift (c) Other Finite Emulations

Fig. 3: Finite Emulation Relations

Table 3: Asymptotic Emulation

Rule f d(fn+1, f204 ◦ fn) P (s)(1)

8 3 · 2−2n−3 0
32 5 · 2−2n−3 0
40 2−n−1 0
72 4−n−2 0
128 2(−n

2−3n−2)/2 − 2(−n
2−5n−6)/2 0

132 2(−n
2−3n−4)/2 ' 0.179

136 2−n−2 0
140 2−2n−3 1/3
160 3 · 2−n−2 − 4−n−1 0

Rule f d(fn+1, f170 ◦ fn) P (s)(1)

130 2(−n
2−3n−4)/2 ' 0.179

138 2−2n−3 1/3
162 2−2n−3 1/3

8. Further Results: Basic Blocks
We also note that if ρ = 1/2, it is often possible to

compute the number of preimages of other blocks. For
example, for 40 of the 88 minimal rules, we were able to
find preimage sequences for all eight basic blocks, that is,
blocks in T2. In each case, it is only necessary to determine
preimage sequences for 5 of the 8 blocks, then we may use
Kolmogorov consistency conditions [12] to determine the
remaining three. In some cases, these formulas are rather
striking, such as in the case of rule 130, reported in detail in
[5], or rule 172, for which we make the following conjecture.

Conjecture 1. Under 2D CA Rule 172 the preimage se-
quences of basic blocks are given by

card
[
g−n(b)

]
=


2(n

2+5n)/2
n∑
k=0

Ck

4k
if b ∈ B1,

2(n
2+5n)/2

(
2−

n∑
k=0

Ck

4k

)
if b ∈ B2,

where Ck denotes the k-th Catalan number and

B1 = { 00 0 ,
0
1 1 ,

1
0 0 ,

1
1 1 } , B2 = { 00 1 ,

0
1 0 ,

1
0 1 ,

1
1 0 } .

Work on a proof of this result is ongoing and will be
reported elsewhere.

9. Conclusions and future work
We demonstrated that response curves are calculable for

simple rules that emulate shift or identity. Response curves
clearly deserve further study and it is worthwhile to sys-
tematically study them for other CA rules. However, due to
rapidly increasing preimage size, this won’t be an easy task
for larger neighbourhoods. One would need a more efficient
way to construct the set of preimages of a given block,
as simple brute force search becomes computationally too
expensive. We also hope that rigorous results can be obtained
for rules with somewhat more complicated dynamics.
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Abstract—In this paper we consider the network decontamina-
tion problem in a mobile cellular automata (MCA). The system
consists of a two-dimensional lattice that evolves like a cellular
automata, where however some cells are in a special active state.
Such a state indicates the presence of an agent which also follows
a local transition rule to move from cell to neighbouring cell. A
dynamic contamination process causes the spread of a virus (or
a fault), and the presence of an agent on a cell guarantees local
disinfection (or decontamination). Once disinfected, a cell stays
immune to recontamination for a predetermined amount of time.
The goal is to design the local rules for the agents and their initial
placement so that the agents can decontaminate the entire system
without allowing any cell to be re-contaminated. To be efficient,
the decontamination should employ as few agents as possible. We
design several strategies depending on the type of neighborhood,
and on the ability of the agents to clone themselves.

Index Terms—Cellular Automata, Network Decontamination,
Mobile Agents, Mobile Cellular Automata.

I. INTRODUCTION

Faults and viruses often spread in networked environments
by propagating from site to neighboring site. The process
due to this spread is called network contamination. The
propagation patterns can follow different dynamics, depending
on the behavior of the affected site. At one extreme we have
a full spread behavior: when a site is affected by a virus or
any other malfunction, such a malfunction can propagate to all
its neighbors Other times, faults propagate only to sites that
are susceptible to be affected; the definition of susceptibility
depends on the application but oftentimes it is based on
local conditions, for example, a node could be vulnerable
to contamination if the majority of its neighbours is faulty,
immune otherwise (e.g., see [11], [12], [15]); or it could be
immune to contamination for a certain amount of time after
being repaired (e.g., see [5], [8]).

Given a network where there is possibly a contamination
process, it is crucial to have a mechanism in place to decon-
taminate the affected sites and to stop the spread.

Among the various possible techniques, two types of de-
contamination problems have been identified in the literature
(for a survey see [6]): internal and external decontamination.

In internal decontamination a site can decontaminate itself
(i.e., it can activate an antiviral software) when a certain
condition on the neighborhood is verified; a clean site, however
gets re-contaminated when some other condition on the neigh-
borhing states is verified. This approach has been followed,
for example, in [16], where a node becomes clean when

the majority of its neighbours is clean, and a clean node
becomes contaminated if any of its neighbours is. A similar
approach has been taken in [14], [15], where a decontaminated
node is immune to recontamination if at least the majority of
its neighbours is clean. Internal decontamination essentially
describes the dynamics of cellular automata, and it has been
studied especially in the context of fault-tolerance to describe
mechanisms of spread of faults and of auto-correction (e.g.,
see [17] for a survey). In [5] specific local rules have been
designed for the internal cleaning to take place, to force
patterns that minimize the number of simultaneous disinfecting
sites. In all these studies the main objective is typically
to determine the minimum size of a set of faulty nodes
which completely disrupts the system under given contamina-
tion/decontamination dynamics or, equivalently, the minimum
size of a set of decontaminating nodes that can decontaminate
the whole network under the same circumstances.

On the other hand, external decontamination is performed
by mobile agents moving on the network. There is an exten-
sive literature on external decontamination either in specific
topologies (e.g., see [1], [7]), under various assumption on
the capabilities of the agents, or in arbitrary topologies (e.g.,
see [3]). Typically agents have memory, distinct identifiers,
can communicate with other agents when they meet or can
exchange information writing on whiteboards (storage area
located at the nodes). In all models investigated, agents
can move from node to node (usually asynchronously and
independently) decontaminating the sites the pass through
and a clean site becomes contaminated if at least one of its
neighbors is contaminated. External decontamination has been
studied especially in the context of intruder capture to design
algorithms to neutralize a virus in a network, or in graph search
(e.g., [1], [2], [3], [7], [9]). The main goal of decontamination
in these settings is usually to design a strategy that employs
the minimum possible size of the team of cleaning agents.

In this paper we are interested in Mobile Cellular Automata
(MCA), a model that has some components of both internal
and external models for decontamination and presents some
advantages over both. The environment is a lattice that evolves
in discrete time steps where, like in cellular automata, cells
change their state according to the state of their neighbours.
Some cells are in a special active state which indicates
the presence of an agent. An agent can move from node
to neighbouring node (like in the external decontamination)
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but it does so on the basis of the state of its neighbours.
Mobile Cellular Automata is the term used in [19] to indicate
such a model, but with a single active cell. We assume that
cells are possibly contaminated and we want to devise local
transition rules for the MCA so to have all cells simultane-
ously decontaminated. We assume that decontaminated cells
have an immunity time T during which they are immune to
recontamination, regardless of the state of their neighbours.
Once this time is expired, however, they become contaminated
again as soon as at least one neighbour is contaminated. While
the general decontamination problem has been investigated
quite extensively, very few results exist assuming some type
of immunity for the decontaminated cells: majority immunity
is considered in [14], [15] for internal decontamination, time
immunity has been studied in trees [8] in a more powerful
mobile agents model, and in [5] for internal decontamination.
No results exist so far in the model considered in this paper.
In this model, we want to devise local rules to obtain complete
simultaneous decontamination and we want to do so by never
allowing a cell to be re-contaminated, and by employing the
minimum possible number of active cells at each time. As
mentioned, such a measure is the classical parameter studied
in the decontamination literature.

Due to lack of space some proofs are sketched and some
omitted.

II. MODEL

In Mobile Cellular Automata (MCA), a team of active mo-
bile entities (here called agents) move on a two-dimensional
n × n cellular space. Like in the case of Cellular Automata,
a cell of the space is in a state belonging to a finite set and a
cell changes its state according to the states of its neighbours.
Unlike Cellular Automata, however, in MCA there is a special
active state which corresponds to the presence of an agent; an
active cell can change, not only its own state, but also the ones
of its neighbours. In the following we will be considering finite
cellular automata (with backgrounds of clean cells) with both
von Neumann and Moore neighborhoods at distance one.

This model is very similar to the one of ants and turmites
(e.g., see [4], [10], [13]) where active elements also move
from node to node following local rules. The models differ in
the action taken when two active elements collide, which is
usually probabilistic in the case of ants/turmites, while it is
always deterministic in this setting. A general formalism that
encompasses all these models describing general multi-agents
systems as discrete dynamical systems can be found in [4] and
[18].

Let xt
i,j denote the state of cell (i, j) at time t. State xt

i,j =
0 correspond to a decontaminated cell, state xt

i,j = 1 to a
contaminated cell and xt

i,j = • to an active cell containing an
agent.

The system is updated synchronously at discrete time steps.
A decontaminated cell stays so for T time units (the immunity
time of the system). After that time, it will become contami-
nated if at least one of its neighbours is. Let s be the immunity

time of a cell i in decontaminated state at time t: we shall
indicate such a time in parenthesis as follows: xt

i,j = 0(s).
An active cell at time t can change its own state at time

t + 1 as well as the state of one or more of its neighbours.
More precisely, an active cell applies a local transition rule
that returns a new state for the cell and one or more move-
ment directions indicating to which neighbours the agent is
“moving”. If the direction is unique the action triggered by
the rule corresponds to a simple movement; if more directions
are indicated, we say that the agent is cloning (or duplicating
itself) to the corresponding neighbours. We will denote the
transition rule by f : the rule takes as input a set of states and
returns a pair containing its own state and a set of directions.
For example the rule applied to cell (i.j) is indicated as
follows: f(N t(i, j)) = (xt+1

i,j ,mov) where N t(i, j) indicates
the states of the neighbouring cells of (i, j) and that of its
own at time t (N t(i, j) = xt

i,j , x
t
i−1,j , x

t
i,j+1, x

t
i+1,j , x

t
i.j−1,

in the case of Von Neumann neighbourhood), and mov is a
set of directions from {⇑,⇓,⇐,⇒}. Let f1() denote the first
component xi,j of the output of the transition rule f , and
f2() the second component mov. In the rest of the paper the
transition rule for an active cell is indicated in a table where,
for a given configuration we show the next state of the cell and
the direction of the agent’s movement. A configuration always
indicate the state of the cell itself, and its neighborhood from
the left neighbour in clock-wise order (e.g., in the case of Von
Neumann neighborhood: xt

i,j , x
t
i−1,j , x

t
i,j+1, x

t
i+1,j , x

t
i.j−1).

The behavior of the system from time t to time t + 1 can
be then described by the following:

1) For all cells (i, j), regardless of their state xt
i,j .

xt+1
i,j becomes active if ((f2(N

t(i − 1, j)) =⇒) ∨
(f2(N

t(i, j + 1)) =⇓) ∨ (f2(N
t(i + 1, j)) =⇐) ∨

(f2(N
t(i, j + 1)) =⇑)).

2) If 1) does not apply and xt
i,j is active.

xt+1
i,j = f1(N

t(i, j))
3) If 1) does not apply and xt

i,j = 0(s).
If s > 0 then: xt+1

i,j = 0(s− 1).
If s = 0 and ((xt

i−1,j = 1) ∨ (xt
i+1,j = 1) ∨ (xt

i,j−1 =

1) ∨ (xt
i,+1j = 1)) then: xt+1

i,j = 1.

An important observation has to be made regarding the
behavior of the system when two or more agents move into the
same cell. The rules described above transform into active a
cell that receives at least one agents, which means that if more
than one agents move into the same cell they are fused into
one. The number of agents in the system might then decrease
in time. As already mentioned, we will consider two situations:
1) agents that can clone (or duplicate themselves), in which
case a cell in state • could propagate in several direction, and
2) agents that cannot clone, in which it must move (like a
physical agent) in a single direction.

Given a MCA of size n× n and an immunity time T , our
goal is to choose the initial location of the active cells and the
local transition rule f that achieve global decontamination in
such a way that the number of active cells at a given time is
as low as possible.
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III. TEMPORAL DECONTAMINATION WITHOUT CLONING

In this Section we consider the case when the transition
function returns a new state for the cell and a single direction
for the agent. Our solutions are designed in such a way that
two agents never move into the same cell. In doing so we
insure a constant number of agents is present in the system.

A. Basic Decontamination

We first briefly look at the case when the decontaminated
cells have no immunity (basic decontamination). Notice that
with basic decontamination, a single agent would obviously
not be sufficient because immediately after decontaminating a
cell it would inevitably be exposed to a contaminated cell as at
most one of its neighbours can become active. The question is
what is the minimum number of agents which could guarantee
decontamination without recontamination. Similarly to basic
decontamination in cellular automata [5], we can prove that
n agents are necessary and sufficient. The strategy is simple
and consists of placing the n active cells in the first column
and let the active cells propagate from one column to the next
following the rules of Table I for Von Neumann neighborhood.

Theorem 3.1: Optimal basic decontamination can be
achieved in a Mobile Cellular Automata with Von Neumann
neighbourhood using n agents.

TABLE I
RULES FOR BASIC DECONTAMINATION IN A MCA WITH VON NEUMANN

NEIGHBOURHOOD

Configuration Next State Agents Movement
{•, 0, 0, 1, •} 0 ⇒
{•, 0, •, 1, •} 0 ⇒
{•, 0, •, 1, 0} 0 ⇒
{•, 0, 0, 0, •} 0 Terminate
{•, 0, •, 0, •} 0 Terminate
{•, 0, •, 0, 0} 0 Terminate

Fig. 1. Basic decontamination in a MCA with Von Neumann
neighbourhood

B. Temporal Decontamination with Von Neumann Neighbour-
hood

We now turn to the general case of a given system immunity
time T > 1, and we describe two different initial placements of

the agents and two sets of rules that achieve decontamination.
Depending on the relationship between n and the immunity
time T of the system one could choose the best of the two
strategies, which are however not proven to be optimal.

Notice that our strategies with Von Neumann neighborhood
do require the initially active cells to be placed equidistant on
the first column. With such a constrain, the number of agents
that we have to employ for a given immunity time T clearly
depends on the relationship between n and T

Let t1 be the largest integer smaller than or equal to T
such that (t1 + 1) divides n. Depending on whether (t1 + 1)
is odd or even we could use Strategy 1 or Strategy 2.

Strategy 1: siblings at odd distance. This strategy applies when
t1 is odd (i.e., (t1 + 1) is even).
Initial placement. We place one agent at the top-left corner,
one at the bottom-left corner and the other agents in groups of
two at distance t1 from each other. In other words, we divide
n in equal groups of t1 + 1 consecutive cells and employ 2
agents in each group, one on top, and one on the bottom (let
us call such a pair sibling agents). In this way the two siblings
are separated by an even number (t1 − 1) of cells (see Figure
2).

Fig. 2. Initial Config-
uration: sibling at odd
distance

Fig. 3. Initial Config-
uration: sibling at even
distance

TABLE II
MCA WITH VON NEUMANN NEIGHBOURHOOD: ODD DISTANCE BETWEEN

SIBLINGS.

Configuration Next State Agents Movement
{•, 0, 0, 1, 1} 0 ⇓
{•, 0, 1, 1, •} 0 ⇑
{•, 0, •, 1, 1} 0 ⇓
{•, 0, 1, 1, 0} 0 ⇑
{•, 0, •, 1, 0} 0 ⇒
{•, 0, 0, 1, •} 0 ⇒
{•, 0, 0, 1, 0} 0 ⇒
{•, 0, 0, 0, 1} 0 ⇓
{•, 0, 1, 0, •} 0 ⇑
{•, 0, •, 0, 1} 0 ⇓
{•, 0, 1, 0, 0} 0 ⇑
{•, 0, •, 0, 0} 0 Terminate
{•, 0, 0, 0, •} 0 Terminate
{•, 0, 0, 0, 0} 0 Terminate

Pattern of Movement. The set of rules is given in Table
II where all missing combinations of states for the neigh-
bourhood of cell (i, j) do leave xi,j unchanged. These rules
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corresponds to the movement of each group of siblings in
opposite directions on the column, turning right as soon as they
become adjacent. Note that adjacent agents on a column can
recognize whether they have to turn right (because they have
their other neighbour on the same column decontaminated) or
whether they have to move on the column in opposite direction
(because they have their other neighbour on the same column
contaminated). Also note that this technique is possible only
because the two siblings do become adjacent but never move
on the same cell, hence the need for placing them at odd
distance (i.e., of separating them with an even number of cells).

Fig. 4. Pattern of Movement with Strategy 1.

Theorem 3.2: Let t1 be the largest odd integer smaller than
or equal to T such that t1+1 divides n. Temporal decontamina-
tion can be achieved in a Mobile Cellular Automata with Von
Neumann neighbourhood and immunity time T using 2n

(t1+1)
agents

Proof: We want to show that, following the rules of Table
II, decontamination is achieved monotonically. That is, that
once decontaminated, every cell stays decontaminated until
the end of the decontamination process, when all cells are
decontaminated. We now prove by induction on the number
of columns that, for each column i there is a time t when: (i)
all cells in column i are either decontaminated or active; (ii)
all cells in column i− 1 (for i > 0) are decontaminated; (iii)
by time t+ t1 all right neighbours of a decontaminated cell of
column i are either decontaminated or active; (iv) the distance
between any two siblings in column i + 1 (for i < n − 1) is
smaller than t1 + 1.
1. Base - column 0: According to the set of rules given in Table
II, agents move vertically in both directions on the first column
(by rules f(•, 0, 0, 1, 1) = (0,⇓), f(•, 0, •, 1, 1) = (0,⇓),
f(•, 0, 1, 1, •) = (0,⇑) and f(•, 0, 1, 1, 0) = (0,⇑)), and since
the maximal distance between initially consecutive agents is
t1 by construction, within b t1−1

2 c time units all the cells on
column 0 are either active or decontaminated. According to
the given rules, agents then moves to column 1 (by rules
f(•, 0, 0, 1, •) = (0,⇒) and f(•, 0, •, 1, 0) = (0,⇒)). Since
the movement to column 1 happened for all agents within
b t1−1

2 c time units from the beginning, the distance between
any two siblings in column 1 cannot be greater than T . By a
similar argument as for column 0, all cells in column 1 will

then become decontaminated or active within other b t1−1
2 c

time units. Thus, within at most t1 time units, all the cells in
column 0 and in column 1will be either decontaminated or
active.
2. Induction hypothesis: At some point during the decontam-
ination, assume all cells of column i (0 < i < n− 1) and all
their right neighbours in column i + 1 are either in active or
decontaminated state, their left neighbours in column i−1 are
decontaminated, and siblings in column i+ 1 are at distance
at most t1.
3. Induction Step: Consider column i + 1: By induction
hypothesis we know that there is a time t when all cells in
column i− 1, are decontaminated, the ones in columns i, and
i + 1 are either active or decontaminated and the siblings in
column i + 1 are at maximum distance T from each other.
It follows that agents move vertically in column i+ 1 within
b t1−1

2 c time units from time t, thus leaving all cells in column
i decontaminated. Agents then move to column i+2 and within
other b t1−1

2 c time units all the cells in the column i+2 become
either decontaminated or active. We can conclude that, by time
t + t1 all cells in column i + 1 together with all their right
neighbours are either decontaminated or active and the cells
in column i are decontaminated, thus concluding the proof.

Strategy 2: siblings at even distance. This strategy is applied
when t1 is even (i.e., (t1 + 1) is odd).
Initial placement. The idea is to place two siblings at even
distance t1 (i.e., separated by t1− 1 cells) and employ a third
agent in each interval between siblings to be placed in the
central cell. The third agent (called the delimiter) has the only
role of keeping a separation between the two intervals.
Pattern of Movement. The siblings move like before, but
they turn to the right to move to the next column when they
become in contact with the delimiter agent. The delimiter, on
the other hand, moves to the next column when it sees its two
neighbours on the same column occupied by one agent each.
The set of rules corresponding to this case is given in Table
III. All missing combinations of states for the neighbourhood
of cell (i, j) do leave xi,j unchanged.

Note that the delimiter agent moves only to synchronize
the two adjacent cleaners and the transition function that cor-
responds to waiting (not indicated in the Table because it does
not change its state) is the following: f(•, 0, 1, 1, 1) = (•, {}).

Following a reasoning similar to the one of the proof of
Theorem 3.2, we have:

Theorem 3.3: Let t1 be the largest even integer smaller than
or equal to T such that (t1 + 1) divides n. Temporal decon-
tamination can be achieved in a Mobile Cellular Automata
with Von Neumann neighbourhood and immunity time T using

3n
(t1+1) agents.

Each of the two proposed set of rules can be employed
under specific circumstances. In order to take advantage of
the largest possible immunity while minimizing the number
of agents, we can choose the best of the two sets depending
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TABLE III
MCA WITH VON NEUMANN NEIGHBOURHOOD: EVEN DISTANCE

BETWEEN SIBLINGS

Configuration Next State Agents Movement
{•, 0, 0, 1, 1} 0 ⇓
{•, 0, •, 1, 1} 0 ⇓
{•, 0, 1, 1, •} 0 ⇑
{•, 0, 1, 1, 0} 0 ⇑
{•, 0, 0, 1, •} 0 ⇒
{•, 0, •, 1, •} 0 ⇒
{•, 0, •, 1, 0} 0 ⇒
{•, 0, 0, 1, 0} 0 ⇒
{•, 0, •, 0, 1} 0 ⇓
{•, 0, 1, 0, •} 0 ⇑
{•, 0, 0, 0, 1} 0 ⇓
{•, 0, 1, 0, 0} 0 ⇑
{•, 0, 0, 0, •} 0 Terminate
{•, 0, •, 0, •} 0 Terminate
{•, 0, •, 0, 0} 0 Terminate
{•, 0, 0, 0, 0} 0 Terminate

Fig. 5. Pattern of Movement with Strategy 2.

on the size n and the time immunity T of the system. In fact,
let t1 be the largest odd integer smaller than or equal to T
such that (t1 + 1) divides n, and let t2 be the largest even
integer smaller than or equal to T such that (t2 + 1) divides
n. By using the best of the two sets of rules, the system can
be decontaminated by k = min{ 2n

t1+1 ,
3n

t2+1} agents.
Theorem 3.4: Temporal decontamination can be achieved

in a Mobile Cellular Automata with Von Neumann neigh-
bourhood and immunity time T using k = min{ 2n

t1+1 ,
3n

t2+1}
agents, where t1 = max{ odd t < T : (t1 + 1)|n, and
t2 = max{ even t < T : (t2 + 1)|n}.

C. Temporal Decontamination with Moore Neighbourhood

In the case of Moore neighbourhood, we can exploit the
enlarged visibility of the agents to design a strategy that
decontaminates the network starting from a less restricted
initial placement of the agents.
Initial Placement. There are two types of agents: the cleaners
and the delimiters. Two cleaners are placed in the top-most
and bottom-most cells of the first column. The other agents
are placed arbitrarily in the first column alternating a cleaner
and a delimiter in such a way that the distance between a
cleaner and a delimiter is smaller than or equal to b (T+1)

2 c.

TABLE IV
MCA WITH MOORE NEIGHBOURHOOD.

Configuration Next State Agents Movement
{•, 0, 0, 0, 0, 1, 1, 1, 0} 0 ⇓
{•, 0, 0, •, 1, 1, 1, 1, 0} 0 ⇓
{•, 0, 0, 0, 1, 1, 1, 1, 0} 0 ⇓
{•, 0, •, 1, 1, 1, 1, 1, 0} 0 ⇓
{•, 0, •, 1, 0, 0, 0, 1, 0} 0 ⇓
{•, 0, 0, 0, 0, 0, 0, 1, 0} 0 ⇓
{•, 0, 0, 0, 1, 1, 1, •, 0} 0 ⇒
{•, 0, 0, 0, •, 1, 0, 0, 0} 0 ⇒
{•, 0, •, 1, 1, 1, 1, 0, 0} 0 ⇒
{•, 0, 0, 0, 0, 1, 1, 0, 0} 0 ⇒
{•, 0, 0, 0, 0, 1, •, 0, 0} 0 ⇒
{•, 0, 0, 0, 1, 1, 1, 1, •} 0 ⇒
{•, 0, 0, 1, 1, 1, 1, 1, •} 0 ⇑
{•, 0, 0, 1, 1, 1, 1, 0, 0} 0 ⇑
{•, 0, 0, 1, 0, 0, 0, 1, •} 0 ⇑
{•, 0, 0, 1, 0, 0, 0, 0, 0} 0 ⇑
{•, 0, 0, 0, 0, 0, 0, 1, •} 0 Terminate
{•, 0, •, 1, 0, 0, 0, 0, 0} 0 Terminate
{•, 0, 0, 0, 0, 0, 0, 0, 0} 0 Terminate

Pattern of Movement. The rules are defined in Table ??. As
already mentioned, all missing combinations of states for the
neighbourhood of cell (i, j) do leave xi,j unchanged.

The dynamics of movement is quite different from the case
of Von Neumann neighbourhood and the pattern of movement
is shown in Figure 6. A cleaner move down towards its
delimiter; when the two agents are adjacent, cleaners move to
the next column (right) while the delimiter moves to the next
column if and only if it sees all its other neighbour except
the right neighbour decontaminated. Obviously the agents are
unaware of their role, but they understand it from the states
of the neighbouring cells. In this way, the delimiter enforces
synchronicity between agents while moving from column to
column thus allowing the intervals to be of different size. With
Moore neighbourhood, agents have enlarged visibility, which
is first crucial for the cleaner when entering a new column
to decide whether to go up or down (left visible neighbours
help choose the good direction), and then allows the delimiter
to decide when to move to the next column (when all neigh-
bour are decontaminated). This type of movement would not
be possible with Von Neumann neighbourhood, because the
cleaner could not see diagonal neighbours decontaminated by
another cleaner; moreover, the delimiter could not distinguish
the cases when it should move to next column or wait (such an
ambiguity derives again from the lack of diagonal visibility).

Assume, for simplicity, that T
2 + 1 divides n. In this case

we can organize the agents so that the distance between the
delimiter and the cleaner is precisely b (T+1)

2 c and obtain the
following.

Theorem 3.5: Temporal decontamination can be achieved
in a Mobile Cellular Automata with Moore neighbourhood
and immunity time T using b 4n

T+2c+ 1 agents.
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Fig. 6. Temporal decontamination in a MCA with Moore neighbor-
hood without cloning

IV. TEMPORAL DECONTAMINATION WITH CLONING

In this Section we consider the more general case when the
local transition function can return several directions. It is easy
to see that in the case of basic decontamination the result is the
same as in the case of basic decontamination without cloning:
the agents can be placed on the first column and let move to the
next to clean sequentially all the columns. We now consider
the case of temporal decontamination with T > 1 and Von
Neumann neighborhood. With Moore neighborood we cannot
improve the result of Section III-B.
Initial Placement. We divide the n cells of the first column
in groups of at most T + 1 consecutive cells and employ 2
agents (the siblings) in each group, one on top, and one on
the bottom. The two siblings can be separated by an arbitrary
distance smaller than T .

TABLE V
MCA WITH CLONING: VON NEUMANN NEIGHBOURHOOD.

Configuration Next State Agents Movement
{•, 0, 0, 1, 1} 0 ⇓
{•, 0, 1, 1, •} 0 ⇑
{•, 0, •, 1, 1} 0 ⇓
{•, 0, 1, 1, 0} 0 ⇑
{•, 0, 0, 1, 0} 0 ⇒
{•, 0, 1, 1, 1} 0 ⇓ ⇑
{•, 0, •, 1, 0} 0 ⇒
{•, 0, 1, 0, 0} 0 ⇑
{•, 0, •, 0, 1} 0 ⇓
{•, 0, 1, 0, •} 0 ⇑
{•, 0, 0, 1, •} 0 ⇒
{•, 0, 0, 0, 1} 0 ⇓
{•, 0, •, 0, 0} 0 Terminate
{•, 0, 0, 0, •} 0 Terminate
{•, 0, 0, 0, 0} 0 Terminate

Pattern of Movement. The set of rules is given in Table V
and it corresponds to the movement of each group of siblings
in opposite directions on the column, agents turn right once
they become adjacent (e.g., see cells b and c in Figure 7) or
when they meet in the same cell (e.g., see cell a in Figure 7),
and in this case they will fuse and act as a single agents. If
they fuse, when the agent is in the next column and realizes

that its up and down neighbours are contaminated, it will
duplicate and propagate in both directions.

a

b

c

Fig. 7. Temporal decontamination with cloning in a MCA with
VonNeumann neighborhood.

Theorem 4.1: Temporal decontamination can be achieved
in a Mobile Cellular Automata with Von Neumann neighbour-
hood and immunity time T using d 2n

(T+1)e agents that can
clone.

Proof: We now show that, by following the rules of Table
V, decontamination is achieved monotonically. That is, that
once decontaminated, every cell stays clean until the end of
the process, when all cells are clean. Let us call entry points
of decontamination in a column, the cells in such a column
that becomes active due to a left active neighbour (horizontal
propagation). We now prove by induction on the number of
columns that, for each column i there is a time t when: (i)
all cells in column i are either decontaminated or active; (ii)
all cells in column i− 1 (for i > 0) are decontaminated; (iii)
by time t+T all right neighbours of a decontaminated cell of
column i are either decontaminated or active; (iv) the distance
between any two consecutive entry points in column i+1 (for
i < n− 1) is smaller than T .
1. Base - column 0: According to the set of rules the active
state propagates vertically in both directions on the first
column (see rules f({•, 0, 0, 1, 1}) = (0, ⇓), f({•, 0, •, 1, 1}) =
(0, ⇓), f({•, 0, 1, 1, •}) = (0, ⇑) and f({•, 0, 1, 1, 0}) = (0, ⇑)
), and since the maximal distance between initially consecutive
active cells is T by construction, within bT−1

2 c time units all
the cells on column 0 are either active or decontaminated.
According to the local rules, decontamination then propagates
to column 1. In fact, by rule f({•, 0, 1, 1, 1}) = (0, ⇑⇓) if
there is a single active cell with up and down contaminated
neighbours, it will duplicate and start propagating in both
direction; if instead there is a pair of active cells, each of
them starts propagating in the direction of their contaminated
neighbour on the column (rules: f(•, 0, •, 1, 1) = (0,⇓) and
f(•, 0, 1, 1, •) = (0,⇑)). Since the propagation to column 1
happened for all active cells within bT−1

2 c time units from the
beginning, the distance between any two consecutive entry
points in column 1 cannot be greater than T . By a similar
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argument as for column 0, all cells in column 1 will then
become decontaminated or active within other bT−1

2 c time
units. Thus, within at most T time units, all the cells in column
0 and in column 1 will be either decontaminated or active.
2. Induction hypothesis: Assume that there is a time when all
cells of column i (0 < i < n−1) and all their right neighbours
in column i + 1 are either in active or decontaminated state,
their left neighbours in column i− 1 are clean, and the entry
points in column i+ 1 are at distance at most T .
3. Induction Step: Consider column i + 1. By induction
hypothesis we know that there is a time t when all cells in
column i− 1, are clean, the ones in columns i, and i+ 1 are
either active or decontaminated and the entry points in column
i+ 1 are at maximum distance T from each other. It follows
that the decontamination propagates vertically in column i+1
within bT−1

2 c time units from time t, thus leaving all cells in
column i clean. Decontamination propagates then to column
i + 2 and within other bT−1

2 c time units all the cells in the
column i+2 become either decontaminated or active. We can
conclude that, by time t+T all cells in column i+1 together
with all their right neighbours are either decontaminated or
active and the cells in column i are clean.

V. CONCLUSIONS

In this paper we have continued the line of investigation
started in [5] to study the network decontamination problem
in cellular systems where the spread of faults, as well as the
decontamination process, are regulated by local rules. In [5]
we have looked at cellular automata (CA), where decontam-
inating cells can spread following classical cellular automata
local rules. In this paper we have focused on mobile cellular
automata to look at the impact that active cells, in an otherwise
reactive environment, have on the decontamination problem.
We can observe that, if cloning is not allowed, with Von
Neunmann neighborhood we obtain a more general solution
than in the case of CA with the same neighborhood. The
efficiency of our solution depends on the relationship between
n and T and is always better than the one devised for CA.
Note that the solutions for CA could be “simulated” also by
MCA, but it would be efficient only for large immunity times
(T ≥ n−2). On the other hand, with Moore neighborhood the
solution obtained with CA is better than the one devised for
MCA, possibly because not having cloning capabilities for the
agents is a bigger constraint than the lack of active cells. When
the agents can clone, the Von Neumann neighborhood allows
to obtain the same results as the ones obtained for CA with
Moore neighborhood, thus showing that the extra power of the
active cells is traded off with the enlarged neighborhood. A
summary of the results is shown in Tables VI and VII.
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Abstract - Spread spectrum (SS) and CDMA schemes may be 

possible in biological neurons. If so, even single neurons have 

the ability to switch and route multiple concurrent flows 

across themselves, as an alternative to the conventional view 

of neurons as integrate-and-fire systems, or variants and 

extensions thereof. The paper presents a biologically plausible 

non-algebraic scheme for achieving Neuronal CDMA and SS 

capabilities. The availability of Neuronal CDMA allows one 

to regard neurons and neuron assemblies as versatile 

computation, communication and coordination container or 

bag devices, and also to bring to bear sophisticated modern 

notions of data structures and their manipulations via function 

arrays, combinatory, operator arrays and patterns as well as 

algorithmic skeletons, in creating neuron, brain and brain 

function models. 
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1 Introduction 

The brain, as part of the central nervous system (CNS), 

[17,37], is conventionally considered as neuron collections or 

assemblies organized into circuits and microcircuits 

[1,13,35,40], a system-of-systems viewpoint. The brain 

circuits are typically multi-scale structures, encompassing 

brain regions, functional cortical columns, layers and nuclei; 

synaptic circuits, dendritic circuits [10,36], as well sub-

cellular (cytoskeletal) circuits coupled to neuron membranes 

structures. Brain circuits and brain micro-circuits, and other 

neuron assemblies, can be considered as rich sources of 

examples of “computation” (information processing) by 

Cellular Automata (CA). This is so provided one forgoes, or 

more fruitfully, extends and generalizes the attributes, 

properties conventionally used to characterize CA and related 

computational formalisms, such as distributed process 

networks [16, 24, 48] and cellular neural networks (CNN), [8, 

9]. Specifically, one has to switch from concepts of 

uniformity, homogeneity, regularity and isotropy in 

topological connectivity, neighborhood relations, transition 

rules and functions. In addition, there is an absence of a 

central clock for global synchronization. Brain circuits and 

microcircuits are not non-synchronous or asynchronous. 

Instead, they are likely to be inter-connected islands of unison 

and wave synchrony, due to the presence of sequential or 

temporal composition and parallel or spatial composition of 

activity patterns, and thus can be described as being poly-

synchronous or multi-synchronous. 

A crucial part in the CA modeling approach is the 

determination, characterization and specification of the 

heterogeneous, multiple transition rules useful for brain 

“computation”. This leads to the fundamental question of what 

exactly do brain circuits and microcircuits compute? 

[14,19,20]. From the top down, at a very general level, brain 

circuits are there to support an organism’s survival during its 

individual lifetime, as well as supporting reproductive success 

in passing the organism’s genes on to the posterity. But what 

are the details (bottom up view) of such survival-driven 

“computations” (control, coordination, etc)? 

This paper advances and analyzes the following integrated 

set of hypotheses about plausible information processing and 

biological computation in the brain and the central nervous 

system (CNS). 

The biological neuron is A) a versatile communication 

device that is organized as a shared multi-access medium, and 

supports multiple, logically separate concurrent flows across 

it. B) To do so, the neuron uses multi-access schemes that can 

be modeled or described as being based on CDMA (code 

division multi-access) or spread spectrum techniques, [47, 50]. 

C) The users or endpoints of the concurrent flows are 

associated with synapses, specifically, dendritic post-synaptic 

bodies on one neuron as senders, and dendritic post-synaptic 

bodies on directly connecting downstream neurons (and/or 

glandular cells or motor cells). D) Similarly, the gap junctions 

(or electrical synapses) of a neuron, as well as neuro-glial 

interconnection bodies between neurons and glia cells, can 

also serve as senders and receivers (transceivers) of logical 

flows. E) The action potential (or neuron spiking, firing or 

pulse) zone serves as a kind of communications modulator; the 

axon and axonal arboration serve as communications 

transmissions and distributors; and the axonal pre-synaptic 

bodies serve as flow stream modulators/encoders and 

demodulators/decoders; (it is also plausible that pre-synaptic 

endpoints also participate in flow stream communication 

processing). F) In most cases, the post-synaptic bodies of a 

neuron act as add-drop transceivers, in that each taps and 

extracts information from the flow stream it receives from 

upstream, and then injects or insert new data, (for example, 
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from memory and synaptic plasticity structures), into the flow, 

for onward transmission downstream. G) The dendritic 

arboration and the cell body or soma serve as the shared 

medium interconnection fabric, physically integrating the 

multiple logical flows via cell membrane processes. H) The 

dendritic arboration and cell soma also perform roles of inter-

neuron and intra-neuronal control, coordination, 

synchronization, and computation (creation, selection, 

manipulations and transformations of logical data structures 

and patterns). 

 The rest of the paper is organized as follows. The logical 

architectural details are presented about a non-algebraic, 

syntax-directed, multi-access resource sharing of single 

neurons, using spreading codes called neuromones. Next, 

there is a discussion of leveraging the Neuronal CMDA / SS 

that shows the possibilities of biological neurons and neuron 

assemblies to be considered truly versatile communication, 

computation and coordination devices and systems. Then, 

there is a discussion regarding the Neuronal CDMA scheme 

as an alternative single neuron model to the dominant 

conventional one of neurons being integrate-and-fire systems, 

as well as variants and non-linear extensions, thereof. Several 

directions of research to elaborate the Neuronal CDMA 

theory are then presented.  

2 Neuronal CDMA and Spread Spectrum  

Multi-Access Processes in the Brain and CNS 

The conventional (algebraic) model and characterization of 

Direct Sequence Spread Spectrum (DSSS) or Direct Sequence 

CDMA (DS-CDMA), [30,47,50], states that in order for 

multiple (sender, receiver) or flow pairs to be able to use a 

common shared medium, without undue multi-access 

interference (MAI), each flow pair is allocated a unique 

spreading code or codeword, known to both the sender(s) and 

receiver(s) of each logical flow. The sender of a flow takes 

portions of a message data to be sent as part of the flow, 

transforms (encodes) it according the spreading code, by 

spreading the data into a higher bandwidth than the data 

originally has. The encoded data is then combined (mixed, 

superimposed, integrated) with encoded data from other flows, 

modulated onto a carrier medium, if necessary; or otherwise 

transmitted across the shared medium or communication 

channel. The receiver of a particular (logical) flow, on the 

receiving the integrated flow, uses its spreading code to de-

spread and decode the flow, and is thus able to extract the 

information sent in the flow intended or targeted to it. In order 

for such a spread spectrum scheme to work, it is generally 

understood that the spreading codes in the code set for all the 

supported flows should meet several “correlation” 

requirements [12,15,47]. Namely, a) the cross-correlation 

between any two distinct spreading codes should be as low as 

possible; b) the (in-phase) auto-correlation of any spreading 

code, with itself, should be as high as possible; c) if multi-path 

propagation effects are possible, the (out of phase) auto-

correlation of a spreading code with shifted versions of itself, 

(self-interference), should be as low as possible; (multi-path 

propagation is probably not an important first order effect 

across a single biological neuron; although it may be 

important in logical flows and multi-access across neuron 

assemblies). 

In order to keep the encoding and decoding processes and 

structures very simple in neurons, it is hypothesized that the 

Brain / CNS (BCNS) spread spectrum techniques are based 

largely on non-algebraic approaches. One such approach, 

based on multi-tagged brackets (or the Bra-Ket SS/CDMA) is 

detailed here. 

Let A = {a0, a1, …, aQ}, Q = (q – 1), q > 1, |A| = q, be the 

common alphabet set used for communication in all flows 

across a neuron (or inter-neuron assembly), as a shared 

medium. It is unlikely that a binary scheme (q = 2) is used in 

the brain / CNS (BCNS). The minimum q-value is likely to be 

11 or 13, according to the following reasoning. Use the subset 

Am = {0,1,2, 9} of A to support metadata subsequences such 

as blanks, spaces, whitespaces, escape symbols; use the subset 

Ac = {3,4,5,10,12} for coding the (minimal) spreading codes 

or neuromones, and use the subset Ad = {6,7,8,11} for coding 

actual data transfer. Let |Ac| = p. (According to (Galois) finite 

field theory, q or p have to be either a prime integer or a 

positive power of a prime.) Nevertheless, with the technique 

of dynamic code switching, as explained below, the BCNS 

could use several values of q, even concurrently in different 

flows, over an organism’s lifetime.  

Let U = {0, 1, …, N}, N = n – 1, |U| = n, be the number of 

logical flows, data streams or (sender, receiver)-pairs 

supported for a shared medium, such as a neuron. The size of 

n depends on the biological species, and can be estimated 

according to the number of synapses incident on a neuron. In 

lower animals, the neuronal incidence degree is estimated to 

be roughly 50 – 200. In the human brain, a common value is n 

= 10,000, but values as high as n = 200,000 have been quoted 

[17, 37]. 

Each flow, or (sender, receiver)-pair is associated with two 

types of spreading codes, a header code or Bra code, and a 

trailer code or Ket code. Let B = { [0, [1, …, [M}, = { <0|, <1|, 

…, <M| } be the set of Bra codes, and C = { ]0, ]1, …, ]M }  = 

{ |0>, |1>, …, |M> } be the set of Ket codes, M = (m-1), n < m 

= p
k
. Thus, 7 < k < 19. The notations <a| and |a>, inspired by 

Dirac’s bracket notation in physics, can also be seen to be 

XML-like in the use of labeled or annotated tags. The Bra and 

Ket spreading codes are termed neuromones, in analogy to 

pheromones. 

Let there be two distinct codes, symbolized by ( and ), to be 

used in forming (encoded) data molecules. Being a data 

molecule means all the symbols in a molecule, (whether 

arranged as a sequence, array, nested array, graph, hyper-

graph or polytope), are strongly bonded or inter-linked, and 

always go together, a form of transactional atomicity, and for 

short time durations can be distinctly recognized as a distinct 

bouquet, blend or cocktail  pattern. 
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If Sender i has a message data d œ Ad to send, it uses an 

operation ≈ together with its specific neuromone spreading 

codes to encode the message to be transmitted as a data 

molecule: (≈ [i ≈ d ≈ ]i ≈ ) = (<i| d |i>). At any moment, 

relying on the combination operator, ∆, the combined 

message being transmitted over the shared medium has the 

pattern or form: 

 

…∆ (≈[0≈d0≈]0≈) ∆ … ∆ (≈[i≈di≈]i≈) ∆ … 

∆(≈[j≈dj≈]i≈) ∆ … ∆(≈[N≈dN≈]N≈) ∆ …    (1) 

 

…∆ (≈<0|d0|0>) ∆ … ∆ (<i|di|i>) ∆ … ∆(<j|dj|j>) ∆ … 

∆(<N|dN|N>) ∆ …,                  (2) 

 

d0, …,di,…dj, …dN œ A. 

 

The Receiver i is able to use the ∆ operator to isolate each 

encoded data molecule, (≈ [j ≈ dj ≈ ]j ≈ ) = (<j| dj |j>), and 

then use its neuromone codes to construct the de-spreading 

operator Ÿi to pattern match its own spreading codes and then 

deconstruct a matching molecule, and extract the data message 

di sent by the Sender i: 

 

Ÿi(≈ [j ≈ dj ≈ ]j ≈ )Ÿi = Ÿi(<j| dj |j>)Ÿi        (3) 

 

(≈Ÿi[jŸi≈ dj ≈Ÿi]j≈Ÿi) = (Ÿi<j|Ÿi dj Ÿi|j>Ÿi)   

= di , if i = j          (4) 

       = (<j|dj|j>), if i ≠ j       (5) 

 

The non-algebraic scheme can also be termed the grammar-

theoretic or syntax-directed DS-CDMA or SSMA. In this 

scheme, the essential fundamental building blocks needed 

include various kinds of parsing, or de-structuring or 

isolations (P1: x∆y Ø {x, y}, P2: x≈y Ø {x, y}), as well as 

pattern matching and pattern recognition operations (in 

particular, Ÿi[jŸi, Ÿi[iŸi, Ÿi]jŸi, & Ÿi]iŸi). The ≈ 

operations will correspond to adjoining or concatenation 

(attaching, appending, pre-pending), much like using bar 

codes and RFID tags as metadata to augment and annotate 

physical entities. It is also akin to the key and plaintext 

transformations and recombination performed in stream 

ciphers. The ∆ operations are likely to be interleaving, 

interlacing, inter-mixing, scrambling superimpositions, 

governed eventually by the changes in voltage differences 

caused by differences in ion populations across the neuron cell 

membrane sections and regions. 

 A crucial part of the scheme is the identification of the 

code sets that can serve neuromone spreading codes. In the 

alternative algebraic approach, (discussed briefly below), 

there are several code schemes derived from (pseudo-noise) 

pseudorandom sequences that are required to meet several 

suitable low cross-correlation and low out-of-phase auto-

correlation properties. These sequences include m-sequences, 

de Bruijn sequences, Gold sequences, Kasami sequences, 

optical orthogonal codes, and combinations, concatenations 

and generalizations thereof, [12,15,50]. In the syntax-directed 

non-algebraic scheme discussed here, the main requirement is 

that the codes in a neuromone code set should be sufficiently 

distinguishable from each other, (unique ids, uid), so that they 

cannot be confused by pattern matching , (for example, NOT 

XOR), mechanisms. This can be achieved by choosing the 

neuromone spreading codes from an extension field GF(q
L

) of 

GF(q) = GF(p
k
). Given n, the number of flows to be 

supported, choose k such that q
k
 is just greater than n (n < 

q
k
). Now choose L such that q

L
 = q

ak
. Divide all the possible 

q
L

 codes into q
k
 bins, each with q

L-k 
codes. Now choose 1 

code from each bin to serve as a neuromone for a particular 

flow in the flow set U. One could also obtain the uid by means 

of base sequence concatenation, decimation, products or 

interleaving. 

 Alternative approaches can be related to using 

pseudorandom sequences to generate encryption keys, built-in 

test patterns and collision free hash functions. Again the exact 

choices of the code sets are biologically adaptable, because 

the BCNS can employ code switching. Code switching means 

that for any flow, the specific SS/CDMA coding scheme used 

can be changed dynamically, on the fly, in real time, after a 

suitable notification (“hand-shake”) to the other side by the 

sender (or receiver) making change. The switching will be a 

special designated code in the existing coding scheme, for 

example using subsequences from the Am alphabet. Thus, for 

code switching to work, there must be an initial code scheme 

(Garden of Eden code), a designation of when the switching is 

occurring in an existing scheme, and either a pre-arranged or a 

hastily formed capability to be able to perform encoding and 

decoding in the new code scheme. 

3 Neural Correlates and Biological Embodiment 

of Neuronal CDMA 

The primary time period for the generation of neuromones is 

during BCNS development (neurogenesis, as part of 

morphogenesis). Code generation may also occur in the case 

of neuronal stem cell differentiation, as well as dynamically 

during learning (for example, synaptic plasticity). At the 

cellular level, it is hypothesized that neuronal CDMA occurs 

at the synapses, with each individual neuron behaving like a 

(multi-access) shared medium, on par with a local area 

network (LAN). That is, the logical flow streams occur across 

a neuron, from the dendritic post-synaptic bodies (local 

senders) through the axonal pre-synaptic bodies to dendritic 

post-synaptic bodies on downstream neurons (local receivers), 

(see Figure 1). The formal apparatus used is likely based on 

(parallel implementations) of Shift Registers (SR), Feedback 

Shift Registers (FSR), and (digital) filters, [11]. Post-synaptic 

bodies will include structures that support both decoders and 

encoders, so that these bodies can behave like add-drop 
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“multiplexers”. Local patches, caches or buffers of ions, (Na
+

, 

K
+

, Ca
2+

, Cl
-
, A

-
), serve as storage registers. For each ion 

type, the local ion caches are split to occur both outside the 

neuron membrane and inside the neuron, under the membrane. 

The state of the registers or ion caches are changed by means 

of the activity of (local) trans-membrane ion channels. (Neuro-

) transmitter-gated ion channels, and ligand-gated ion channels 

[2] serve as inputs to the SR / FSR or digital filters. The shift 

or delay operators are embodied using voltage-gated ion 

channels and ion-gated ion channels. Flows of data or 

information are embodied both as propagation of changes in 

voltage differences, as well as actual ion flows. Both dendritic 

graded potentials and action potentials can be supported in the 

model. As noted below, antidromic feedback flows have also 

been observed in neurons, using modern experimental 

techniques, [44]. The communication substructures can be 

distinguished for the synapse (dendritic spine), dendritic shaft 

segment without spines of synapses, and dendritic arbor joint 

points.  Also, in this respect, the array layout properties of 

microtubules make them suitable candidates for playing roles 

as additional embodiments of storage registers. Look up tables 

(LUT) may be in use in simpler BCNS. The overall sub-

cellular structures involved in neuronal CDMA may thus 

include gating of ion conductance channels, pathways linking 

receptors to sub-cellular structures such as actin filaments and 

microtubule cytoskeleton structures, via second messengers, 

microtubule associated proteins (MAP), as well as calcium ion 

(Ca
2+

) concentration management at various regions inside 

and proximate to a neuron. The determination of the exact 

mechanisms in use will require future collaborations with 

neurophysiologists and other neuro-experimentalists. 

 

4 Leveraging Neuronal CDMA in the  

Brain & Central Nervous System 

The availability of CDMA/SS capability in a neuron 

means that a neuron is a true (versatile) communication 

device, capable of playing the multi-faceted roles of relay, 

transponder, bridge, switch, concentrator, multiplexer, router, 

gateway, and intermediator adaptor. Thus a neuron will be 

capable of bundling multiple logical flows of data streams or 

sequences across itself, considered much like a local area 

network or variants. It also allows one to model and attempt to 

discover the use of various modern communication paradigms 

in BCNS. These includes, resource-sharing, access to services, 

grid computing, client-server, mash-ups, cloud computing, 

virtualization, hastily formed networks, ad hoc computing, 

inter-operability, collaboration, cooperation, self-organization, 

peer-2-peer, friend-to-friend comm., master-worker, leader-

follower, data parallelism, algorithmic skeletons; distributed 

self-assembly, reconfigurable architectures, wireless sensor 

networks, dense RFID networks, etc. A neuron may also 

support flows classified according to communication (U-plane 

/ D-plane), control and coordination (C-plane), and meta, 

management, self-star or autonomic management (M-plane / 

K-plane). 

Neuronal CDMA provides the opportunity for modeling 

both intra-neuron and inter-neuron dendritic and synaptic 

processing, to serve various purposes 

[3,7,10,26,27,28,29,34,38,39,42,43,45,49]. There is also the 

possibility of specifying communication based architectures 

for distributed pattern generation, such for central pattern 

generators (CPG), fixed action pattern (FAP) generators, and 

modular action pattern (MAP) generators, for sensory 

patterns, sensory integration patterns, motor patterns and 

sensory-motor integration patterns. These architectures can be 

multi-scale, multi-level and hierarchical. The Neuronal 

CDMA also allows the possibility of modeling and 

investigating remote or distal associations and 

correspondences, beyond conventionally accepted topographic 

mappings, such as retinotopy, tonotopy, and somatotopy. 

In fact, with the Neuronal CDMA capability, from a 

communications viewpoint, a neuron can be regarded as 

having an architecture similar to that of a high-end network 

processor (core switch or core router), with identifiable 

functional elements of input (axo-dendritic, axo-somatic, axo-

axonal), input-output (dendro-dendritic, electrical, neuro-glial 

junctions) and output (axonal) line cards (synapses); 

interconnection fabric; and supporting parallel computational 

architectures for computation, coordination, life cycle support 

(LCS) management, “ILities” and Self-* autonomic 

management. 

 

5 Discussion and Related Work 

An alternative approach is to hypothesize that the BCNS 

uses conventional algebraic CDMA/SS techniques. In that 

case the alphabet A will involve number representations or 

symbolizations, and to be able to decode and recover data 

messages, without undue MAI (multi-access interference), the 

commutative, associative and distributive requirements on the 

∆ and ≈ will mean <A, ∆, ≈> is a finite field, also called a 

Galois field, GF(q), with q being a prime number. The ∆ 

operation will be ordinary arithmetic addition (mod q) or (mod 

q
L

), and the ≈ and Ÿ operations will be arithmetic 

multiplication (mod q) or (mod q
L

), for some L>0. In the 

binary case of q = 2, the operations reduce to XOR and AND 

Boolean logic operations, respectively. For field extensions 

GF(q
L

), the elements as well as the ≈ multiplication rules can 

be obtained by means of primitive elements satisfying 

irreducible primitive polynomials of the field. However, the 

code generation and decoding machinery will be more 

involved and complicated, being based fundamentally on x≈y 

multiplication operations. It is not clear how correlation based 

machinery can be viable in simple organisms such as C. 

elegans. The (numeric) neuromone spreading codes will be 

required to have suitable orthogonality and correlation 

properties, for example, Golomb’s PN properties, [12,15,33]. 

The correlation properties are the replacement for the pattern 

matching and pattern recognition capabilities needed in the 
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non-algebraic approach. Also it is not clear that modulation of 

carriers actually occurs in the biological situation. 

Several neuromorphic circuits (analog, VLSI, mixed analog 

digital), which have been designed to mimic the dominant 

integrate-and-fire model of neurons, use a special form of time 

division multi-access (TDMA) scheme, called Address Event 

Representation (AER) to support multi-access of shared 

channels of communications between neuromorphic chips [5, 

6, 41]. The use of conventional CDMA, LFSR, m-sequences 

and Gold sequences for neuron memory circuit loops was 

mentioned briefly in [46]. 

The Neuronal CDMA / SS approach can also be regarded as 

advocating an alternative or at least supplementary single 

neuron model to the currently dominant integrate-and-fire 

model and its variants. Ever since the neuron doctrine was 

formulated, based on the work of such researchers as Cajal, 

Sherrington and others [17, 37], the conventional view of a 

biological neuron is that the inputs to its synaptic terminals in 

(mainly) the dendrites and soma are integrated via additive 

summation, and if the sum is high enough above a threshold, it 

results in the non-linear (active) generation of pulse trains or 

spikes, also called action potential. There are several forms 

and variants of this model, including Hodgkin-Huxley’s very 

influential model, [17, 37]. It has also permeated theoretical 

models, such as artificial neural networks (ANN), both the 

formulations based on the original McCulloch-Pitts model, 

and modern Hopfield revival. Later research has reveal that 

neurons have more complex, active and non-linear information 

processing capabilities, in the dendrites, for example, dendritic 

spines, including several forms of arithmetic and (Boolean) 

logic operations, [4,10,14,18,21,22,23,25,28]. Research has 

also shown that electricity based information flow is not 

merely directional, from the dendritic arbor towards the soma 

and axonal arboration, but also that there is a soma-dendritic 

backward propagation of AP-induced electric waves or signals 

from the AP trigger zone (axon-hillock) towards the cell body, 

soma and dendritic nets, spines, synapses, a form of 

antidromic electrotonic spread [44]. Such flows can be 

leveraged for feedback signaling. Nevertheless, there is a 

fundamental issue with the integrate-and-fire model and 

various attempts to update it, [31,32]. Namely, according to 

these models, each of the individual input flows into sensory 

cells or motor neurons, but also into inter-neurons, that may 

have 10,000 or even up to 200,000 synapses! Distinct input 

sequences get “lost” and “swallowed up”, becoming part of 

the “statistic”, once it reaches a neuron.There is no way in 

these models to route or switch a particular input flow (logical 

data stream or sequence) distinctly across a neuron so that 

there is some kind of correlation between axonal pre-synaptic 

(input) and dendritic post-synaptic (output) flow processes of 

the same neuron. The Neuronal CDMA scheme advocates that 

such flow routing is possible even across single neurons. 

The biological plausibility and realism of the specific details 

advanced here are empirical issues that can only be resolved 

via future collaborations on neurological experiments. A 

future direction of research is to determine how digital filter, 

SR, FSR, NLFSR, LFSR circuits are embodied and incarnated 

(at the sub-cellular level) to support CDMA/SS processing at 

the synaptic level. Of particular interest are biological 

architectures that support parallel generation of neuromone 

spreading codes and their uses for CDMA/SS decoding and 

encoding. Another future direction of research is the 

determination of the embodiment of the CDMA/SS 

capabilities at the neuron assembly (inter-neuron architecture) 

level. 

 

6 Summary and Conclusions 

It is biologically plausible that spread spectrum (SS) and 

CDMA occur in the BCNS, even at the single neuron level, so 

that neurons (and neuron assemblies) are able to route and 

switch differentiated logical flows of information across 

themselves, acting as shared multi-access media. The 

capability would allow the BCNS to create multiple, 

concurrent and complex, distributed patterns in spatial, 

temporal and spatio-temporal dimensions and scales to 

support survival needs. A non-algebraic scheme for Neuro 

CDMA is described, with the important property that the 

attendant encoding and decoding embodiments can be 

particularly simple in a biological setting. 
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Abstract - Recently, in many applications where speed is 
important and very large amounts of data have to be 
authenticated, hardware implementation is demanded as a 
natural solution. A cellular automata (CA) is one of the best 
solutions for the hardware structure because of its parallelism 
and bit-wise operations. This paper proposes a secure and 
efficient cryptographic hash function based on a linear group 
and nonlinear non-group CA. Our algorithm satisfies the 
secure properties and forms remarkably simple structure. We 
show that our hash function produces an excellent quality of 
hash result having a low construction cost. 

Keywords: Cryptography, Hash Function, Cellular Automata, 
Hardware Implementation 

 

1 Introduction 
  Cryptographic hash functions play an important role in 
modern communication technology. The basic idea of 
cryptographic hash functions is that a hash-value serves as a 
compact representative image(sometimes called an imprint, 
digital fingerprint, or massage digest) of an input string, and 
can be used as if it was uniquely identifiable with that string. 
Many cryptographic hash functions, all based on the so called 
MD4 initially proposed in [9], have received the greatest 
attention. However, in applications where speed is important 
and very large amounts of data have to be authenticated (e.g., 
electronic financial transactions, software integrity), hardware 
implementations are the natural solution. Thus dedicated 
cryptographic hash functions based on cellular automata are 
strongly recommended [3][7].  

The Second Cryptographic Hash Workshop was held on Aug. 
24-25, 2006, at University of California, Santa Barbara, in 
conjunction with Crypto 2006. The workshop program 
consisted of a day and a half of presentations of papers that 
were submitted to the workshop and panel discussion sessions. 
The main topics of the workshop included survey of hash 
function applications, new structures and designs of hash 
functions, cryptanalysis and attack tools, and development 
strategy of new hash functions [8].  

Thomas Ristenpart of the University of California, San Diego 
Security and Cryptography Laboratory proposed replacing the 

Merkle-Damgard transform with a multi-property-preserving 
domain extension transform. The goal is to build hash 
functions to be secure for as many applications as possible. 
He gives an example of a multi-property-preserving transform, 
called Enveloped Merkle-Damgard(EMD). This is shown to 
have some provable security properties [1]. 

However, some works have been suggested based on cellular 
automata (CA); In [3], Daemen et al. have persisted in 
vulnerability of scheme from [4] together with a new CA 
based hash function. Another research on CA based hash 
function has been reported by Mihaljevic et al.[7] based on 
their previous report. They have proposed a family of fast 
dedicated one-way hash functions based on linear CA over 
GF(q) in 1999. In a CA viewpoint, the above mentioned 
schemes are not fully CA based hash functions since they did 
not provide any specific neighborhood and rules. Moreover, a 
compression function in [7] has only two times linear CA 
operations and other nonlinear functions are from HAVAL 
[12]. Though the previous papers have persisted in their 
security and advantages, they did not provide enough 
comprehension on security and experimental results. 
Moreover the previous works did not use specific rules so that 
it is hard to determine the characteristics of their schemes. 
Therefore, well-defined and designed CA based hash function 
has been so required.  

The remainder of this paper is organized as follows. Section 2 
introduces some CA knowledge upon which the subject matter 
of this paper is based. In Section 3, we propose a secure 
cryptographic hash function based on a CA which is highly 
optimized and is suitable for hardware implementation. In 
Section 4, we analyze the security of our scheme proposed in 
this paper. We show that the proposed scheme is secure, and 
produces a good quality of message digest. Then, our scheme 
is compared with previous well-known hash schemes in term 
of a hardware construction cost. Finally, Chapter 5 gives our 
conclusions. 

 

2 Cellular automata 
 A CA is a collection of simple cells connected in a 
regular fashion. A CA was originally proposed by John von 
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Neumann as formal models of self-reproducing organisms. 
Wolfram [11] pioneered the investigation of CA as 
mathematical models for self-organizing statistical systems 
and suggested the use of a simple two-state, three-
neighborhood (left, self and right) CA with cells arranged 
linearly in one dimension. The CA structure investigated by 
Wolfram can be viewed as a discrete lattice of cells where 
each cell can assume either the value 0 or 1. The next state of 
a cell is assumed to depend on itself and on its two neighbors 
(three-neighborhood dependency). The cells evolve in 
discrete time steps according to some deterministic rule that 
depends only on local neighbors. In effect, each cell consists 
of a storage element (D flip-flop) and a combinational logic 
implementing the next-state function [2]. 

In an m-state, k-neighborhood CA, each cell can exist in m 
different states and the next state of any particular cell 
depends on the present states of k of its neighbors. In this 
thesis, we use a simple 2-state 3-neighborhood CA with the 
cells in one dimension. Mathematically, the next state 
transition of the ith cell can be represented as a function of the 
present sates of the ith, (i+1)th and (i−1)th cells: si = f(si−1, si, 
si+1), where f is known as the rule of the CA denoting the 
combinational logic. 

For a 2-state 3-cell neighborhood CA, there can be a total of 
23 distinct neighborhood configurations. For such a CA with 
cells having only 2 states there can be a total of 22×2×2(=256) 
distinct mappings from all these neighborhood configurations 
to the next state. If the next-state function of a cell is 
expressed in the form of a truth table, then the decimal 
equivalent of the output is conventionally called the rule 
number for the cell [10]. 

If the rule of a CA cell involves only XOR logic, then it is 
called a linear rule. A CA with all the cells having linear rules 
is called a linear CA, whereas a CA with AND-OR logic is a 
nonlinear CA. If a state transition of a CA contains only 
cyclic states, then the CA is called a group CA; otherwise it is 
a nongroup CA. The rule applied on a uniform group CA is 
called a group rule; otherwise it is a nongroup rule [2]. 

 

3 Proposed hash function (CAH-256) 
 The total configuration of our scheme is similar to the 
EMD structure mentioned in Section 1 while the core 
algorithm of compression function is based on a CA. Given a 
message M to be compressed, CAH-256 pads M first. The 
length of (i.e., the number of bits in) the message after 
padding is a multiple of 256, and padding is always applied 
even when the length of M is already a multiple of 256. The 
last block of the padded message contains the number of bits 
in the unpadded message. Now suppose that the padded 
message is M(0)…M(n−2)M(n−1), where each M(j) is a 256-bit 
block. CAH-256 starts from the block M(0) and a 256-bit 

string initial value IV, and processes the message 
M(0)…M(n−2)M(n−1) in a block-block way. At the final stage, our 
algorithm uses different parameters with another supplement 
value, SV. More precisely, it compresses the message by 
repeatedly calculating 

H(0) = IV1, 

H(j+1) = HCAH(H(j)⊕M(j)), 0 ≤ j ≤ n-2, 

H(n) = HCAH(H(n-1) ⊕ M(n-1) ⊕ IV2), 

where j ranges from 0 to n−2 and HCAH is called the updating 
algorithm of CAH-256. Finally H(n) is the hash result. 

The main purpose of padding is for security reason, as used 
on the MD structure. The other purposes of padding are two-
fold: to make the length of a message be a multiple of 256 and 
to let the message indicate the length of the original message. 
CAH-256 uses a 64-bit field to specify the length of an 
unpadded message. Thus messages of up to (264−1) bits are 
accepted which is long enough for practical applications. 

CAH-256 pads a message by appending a single bit ‘1’ 
followed by the necessary number of 0-bits until the length of 
the message is 192 modulo 256. Then it appends to the 
message the 64-bit field. Three constant vectors, IV, SV, and 
K which are 256-bit each, are considered. IV and SV are two 
different fixed bit-strings and K is the first thirty-two bits of 
the fractional parts of the cube roots of the first sixteen prime 
numbers such as SHA-256.  

The heart of algorithm is a module that consists of processing 
of 64 rounds. All rounds have the same structure which is 
composed of XOR operations with the constant K, two CA 
rule functions and 3-bit shift operation. 

In order to design a concrete hash function, we use 
combinations of a linear group rule and nonlinear non-group 
rule. A linear group rule provides a collision resistance from 
present states to next states and a nonlinear non-group rule 
provides one-way property and nonlinearity. Rule 150 based 
on periodic boundary condition is only a linear group rule for 
a message with 256-bit length, and it has a highest 
dependency from neighborhood in the middle of the whole 
linear rules. Meanwhile, we choose rule 23 for a nonlinear 
non-group CA operation since rule 23 provides not only a 
high nonlinearity but also a special transition form.  

Theorem 1 Rule 150 (si−1 ⊕ si ⊕ si+1) based on periodic 
boundary condition forms group rules for length l where l 
mod 3   0. 

Proof. Let TR, l represent the T matrix for a CA of length l 
with rule R. Then TR, l for a three-neighborhood periodic 
boundary CA with a rule R of the form a1si−1 (t) + a2si (t) + 
a3si+1 (t)  where a1, a2, a3∈{0, 1}, can be written as: 
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 The determinant of this matrix can be recursively expressed 
as 

det TR, l = a2 det TR, (l−1) + a3a1 det TR, (l−2) 

Based on this recursive relation on the characteristic matrix 
for any CA, the length for which the CA becomes a group CA 
can be established. By T150, l, a1 = a2 = a3 = 1, the recursive 
form of the determinant can be found out from the relation as 
follows: 

det T150, l = det T150, (l−1) + det T150, (l−2) = det T150, (l−3) 

Further, from limiting conditions, 

det T150, 4 = det T150, 5 = 1; 

⇒ det T150, 6 = 0 

Extending the recursive relation for higher values of l, the 
result follows.   

Theorem 2 Rule 23 (si -1 ⊕ ((si -1 ⊕ (¬si)) ∨ (si ⊕ si+1))) 
updates the next states having the same transition probability, 
1/2. 

Proof. Let the state transition for rule 23 with three neighbors, 
si−1, si, and si+1 be f23(si−1, si, si+1), then the result from the 
possible states combinations, 111 to 000, is {00010111}. 
Suppose that a state of one of neighborhoods is complemented 
then we obtain the following results: f23(¬si−1, si, si+1) = 
{01110001}, f23(si−1, ¬si, si+1) = {01001101}, f23(si−1, si, ¬si+1) 
= {00101011}. Now we find some specific property among 
the results that Hamming distances among four strings are 
exactly 4 of 8-bit string by pairs. It guarantees that the present 
states via rule 23 would be updated with the same transition 
probability, 1/2 so that a changed input state makes the next 
states with a half difference. This property also makes it 
impossible to find previous bit values from attackers. 

Theorem 3 Rule 23 updates the next states having closely 
zero-one balanced strings. 

Proof. Let 1n0m be the three neighborhood states, and n and m 
are the number of 1s and 0s, respectively, where n + m = 3 
and 0 ≤ n, m ≤ 3, then there exist four different types such as 
1300, 1201, 1102 and 1003. If n ≥ 2 or m ≤ 1, the next state 
becomes 0, otherwise 1. 

The computation can be considered as a 4-step transformation 
of HCAH. The calculations in each step are done 
simultaneously on all bits of H. Let m0m1…m255 denote the 
bits of M(j) and h0h1…h255 denote the bits of H(j), an 
intermediate message value during a round, and k0k1…k255 
denote the bits of constant K and d denotes the number of 
round. Before starting every rounds, the computation, hi = hi 
⊕ mi (0 ≤ i ≤ 255) is preprocessed. The following steps 
illustrate a single step of the updating function, where ⊕ and 
¬ are a bit-wised XOR operation and NOT operation, 
respectively. 

 

Step 1. hi = hi ⊕ ki (0 ≤ i ≤ 255) 

Step 2. hi = hi-1 ⊕ hi ⊕ hi+1 (0 ≤ i ≤ 255) 

Step 3. h4i+j = h4i+j-1 ⊕ ((h4i+j-1 ⊕ (¬h4i+j)) ∨ ( h4i+j ⊕ h4i+j+1)) (0 
≤ i ≤ 63, j = d mod 4) 

Step 4. hi = 3bits-circular-left-shift(hi) (0 ≤ i ≤ 255) 

 

In Step 1, a 256-bit output result in each round is xored with 
the constant K. It can disperse the input message even though 
an input value is repeated characters. The result of Step 1 is 
computed by linear group rule 150 in Step 2. A linear group 
CA operation gives the diffusion of the message and blocks 
the primary collision. In Step 3, a nonlinear non-group rule 23 
is applied to a quarter of 256 bits according to the number of 
round as described in the above algorithm. The nonlinear CA 
operation is applied to the selected 64 bits for supporting the 
nonlinearity and zero-one balance. Finally in Step 4, 3-bit 
circularly left shift operation is applied to every bit of the 
result of the previous step. Our CA operation is performed 
based on periodic boundary condition. 

 

4 Security and efficiency evaluation 
 One thing we know is that the security of hash functions 
is indeed based on confusion and diffusion. However, it is 
quite hard to explain a level of confusion and diffusion so 
that we provide randomness and area-time complexity, and 
compare with the previous well-known hash functions. 
 
The computation in Step 1 blocks that the CA operation 
generates repeated patterns on the characteristics of CA 
operation. The linear group CA in Step 2 generates a 
distinctive output result according to a different input based 
on group property so that it blocks a primary collision in the 
updating function. Our function employed the rule 23 as a 
nonlinear rule which guarantees a high nonlinearity. We have 
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applied rule 23 to a quarter of a block (64 bits) in different bit 
positions at each round. Thus every bit position is 
equivalently applied to the nonlinear operation 16 times. 
Confusion is caused by the high nonlinearity and constant K 
based on the repeated structure of the cellular automata 
mechanism in Step 1 and 3. The nonlinear CA operation in 
Step 3 can generate 1’s from a zero background. On the input 
of the next iteration, these would give rise to characteristics 
with high confusion effect. Hence simple difference patterns 
in H(j) gives rise to a vast amount of possible difference 
patterns in H(j+1). Each bit of H(j) depends on nearly 4 bits of 
the previous round by two CA functions and XOR operations 
after 3-bit shift operation so that the influence increases by 4-
bit a round during the continuous 64 rounds. Thus the 
influence of the first injection of a message bit has spread out 
over all bits of H(j+1) with same transition probability by the 
time of the last injection. Hence it satisfies the diffusion 
property. The actual message bits injection in H is realized to 
be diffused and confused in subsequent rounds. 
 
In order to compare the efficiency among the schemes, we 
have chosen SHA-1 and SHA-256 which are known as the 
best quality hash functions and the current U.S. federal 
standard. In order to compare the quality of hash function, we 
made an experiment on several points of view as shown in 
Table 1. The specified test methods based on randomness test 
in [6] is suitably determined to examine and compare the 

quality of hash functions. The results show that both 
functions have produced good results. 
 
We are usually trying to find the design that will best satisfy a 
given set of design requirements when we implement 
arithmetic unit design. We consider construction simplicity, 
defined by the number of transistors needed for its 
construction and the time needed for the signal change to 
propagate through gates [5].  
 
In terms of area and time complexity in gate level, the best 
method, as noted in [2], is to evaluate the AT2 value for each 
scheme. Area is assumed to be totally contributed by the 
number of transistors in gates and registers required to 
compute a find hash result. The cost due to time consists of 
the delay time of the gates and registers for proceeding a 512-
bit input message block. As shown in Table 2, our scheme 
based on a CA has outstanding complexity compared to the 
other well-known schemes. Consequently, the proposed 

Table 1. Comparison of quality tests according to the number of input-bit and the number of random data between the 
proposed function and SHA-256 
 

# of  

input-bit 

# of  

random data 
Hash scheme 

Frequency  

test 

Runup-down  

test 

Max-run  

test 

Diffusion  

test 

64-bit 

1.0 × 104 
CAH-256 128.09 (8.07) 127.56 (8.03) 8.32  (1.82) 126.19 (8.23) 

SHA-256 127.97 (8.01) 127.45 (8.10) 8.33  (1.85) 127.95 (7.87) 

1.0 × 105 
CAH-256 127.99 (7.98) 127.51 (7.99) 8.32  (1.83) 127.31 (8.20) 

SHA-256 127.95 (8.03) 127.47 (7.96) 8.34  (1.84) 128.01 (8.00) 

1.0 × 106 
CAH-256 128.01 (7.99) 127.52 (7.98) 8.33  (1.83) 128.30 (8.18) 

SHA-256 128.00 (8.02) 127.50 (7.98) 8.33  (1.83) 128.00 (8.00) 

512-bit 

1.0 × 104 
CAH-256 128.12 (8.04) 127.51 (7.98) 8.31  (1.81) 127.98 (7.96) 

SHA-256 127.96 (8.02) 127.47 (8.03) 8.31  (1.83) 128.01 (8.02) 

1.0 × 105 
CAH-256 128.02 (7.99) 127.49 (7.97) 8.34  (1.83) 127.97 (8.01) 

SHA-256 128.00 (7.99) 127.52 (7.97) 8.33  (1.84) 128.00 (7.98) 

1.0 × 106 
CAH-256 128.00 (8.00) 127.50 (7.99) 8.33  (1.83) 128.01 (8.00) 

SHA-256 128.03 (8.00) 127.47 (8.00) 8.33  (1.84) 127.98 (7.99) 

Frequency test: Return the number of 1’s, Run-up and down test: Return the number of run-up and run-down 
Max-run test: Return the maximum length of run, Diffusion test: Return the number of changed bits in output according to changing 1-
bit input 
The numbers in ( ) describe their standard deviations. 

Table 2. Comparison of area and time complexity for 
proceeding 512-bit message 
 
 SHA-1 SHA-256 CAH-256 
Area complexity 

(tr) 80,592 127,096 31,360 

Time complexity 
(ns) 11,128   10,789   5,146 

AT2 value 9,980×109 14,794×109 830 × 109 
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CAH-256 has roughly 12 times and 18 times less AT2 value 
than SHA-1 and SHA-256 for proceeding 512-bit message, 
respectively. The description allows a straightforward chip 
implementation. Based on parallelism and logical bitwise 
operation of a CA, our scheme makes extremely high speed 
possible. 

 

5 Conclusion 
This paper has proposed a hardware oriented 

cryptographic hash function. We conclude that the proposed 
cryptographic hash function based on a CA has satisfied 
confusion and diffusion properties and a high randomness 
that it has produced an excellent quality of message digest in 
spite of having an exceedingly low construction cost. 
Therefore, we expect that the proposed function will be 
efficiently used for preserving the integrity of a potentially 
large message on hardware implementation.  
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Abstract—Since fuel load is a major factor influencing wildfire
risk, the standard approach to build related hazard maps is
mainly grounded on land-cover data. However, the risk level
is also influenced by other factors interacting nonlinearly, such
as wind, fuel moisture, ignition sources and topography. For
these reasons, an increasingly used approach for the computation
of hazard maps involves the explicit simulation of the fire
dynamics. This paper exploits a novel CA model for wildfire
simulation to evaluate fire risk within a Monte Carlo approach.
The adopted CA model has the ability to provide accurate burned
areas, taking much less computing time than a typical vector
approach for wildfire simulations. The improved accuracy and
efficiency were obtained: (i) relaxing the restriction to a few
pre-defined directions of spread, which characterizes most of
the techniques for simulating wildfires on a raster space; (ii)
using an adaptive time-step duration, which allows for avoiding
unnecessary computation. The preliminary tests presented in this
paper indicate that the model under study can be a suitable
component of a tool for wildfire risk assessment.

I. INTRODUCTION

Every year forest fires cause significant ecological and
economic damages and, in many cases, may represent a serious
risk to people. For this reason, fire-risk evaluation and in
particular fire-risk maps have become widely used in many
countries.

Wildfire risk assessment is traditionally conducted on the
basis of the fuel load on the area under study. However,
the many factors that determine the fire behavior interact
nonlinearly to determine the hazard level. For this reason
software tools for simulating the wildfire spread are increas-
ingly being used to assess the fire risk [1], [2], [3]. The
typical approach consists of carrying out a high number of
simulations, under different weather scenarios and ignition
locations [1], to generate burn probability and fire intensity
maps. Clearly, this require efficient and accurate simulation
models.

Most wildfire spread simulators are based on the Rothermel
fire model [4], [5], which provides the heading rate and
direction of spread given the local landscape and wind char-
acteristics. An additional constituent is usually represented by
an elliptical description of the spread under homogeneous con-
ditions (i.e. spatially and temporally constant fuels, wind and
topography) [6], [7]. The spread simulation in heterogeneous
condition is then given by suitable expansion algorithms,

based on some form of space-time discretization and local
homogeneity assumption, to automate the application of the
elliptical model.

There are two approaches commonly used to simulate the
fire propagation across a non-homogeneous landscape.

The first, adopted in many wildfire simulators like the well
known FARSITE [8] and PROMETHEUS [9], is a vector
approach inspired by the Huygens’ wavelet principle in which
the fire front is represented as a polygon expanding at specified
time steps [10], [11]. Although this approach has proved to be
very accurate, it is not well suited in the context of fire risk
assessment because of the computational requirements. In fact,
it requires computationally expensive de-looping heuristics
able to cope with the topological complications which, at each
time-step, may affect the fire front [8], [9].

The second type of commonly adopted fire spread algo-
rithm, which can be described in terms of Cellular Automata
(CA) [12], expands the burned area directly on a raster space
representing the landscape, through a discrete sequence of
cells’ ignitions driven by the proximity between cells [13],
[14], [15], [16], [17], [18]. Cell-based methods do not need
problematic de-looping processes and can be highly optimized.
As a result, they can perform the same simulations in a
fraction of the run time taken by their vector-based counterpart
[18]. For this reason cell-based methods represent the ideal
approach when it comes to running thousands of simulations
to build a risk map.

Nevertheless, a well-known problem associated with the
raster approaches is the distortion that may affect the produced
fire shape. For example, under homogeneous conditions and
in presence of wind, the shape of the heading portion of the
fire is often angular rather than rounded as in the expected
ellipse [19], [20]. Many authors found that such distortions,
which obviously correspond to simulation errors also in op-
erational contexts, can be reduced by increasing the number
of neighboring cells influenced by each cell [21], [20], [22].
However, increasing the size of the neighborhood obviously
corresponds to higher computational times.

Given the mentioned importance of the availability of
accurate and efficient simulators in the context of fire risk
assessment, we have designed a new wildfire CA model, which
is characterized by low distortion and small run time.
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Fig. 1. Growth of the ellipse γ locally representing the fire front. The symbol
ρ denotes the forward spread which is incremented by ∆ρ at the i-th time
step.

The improved accuracy was achieved by devising a spread-
ing algorithm in which the fire does not travel only along
the few fixed directions imposed by both the lattice and
neighborhood. Moreover, the run time efficiency of the model
is significantly high thanks to an adaptive time step strategy,
which simulates the progression of the fire by avoiding unnec-
essary computation. In this paper we present a software tool
which includes such CA model in order to allow for the fast
production of fire risk maps on heterogeneous landscapes.

This paper is organized as follows. The next section outlines
the main components of the proposed software tool. In section
III we illustrate a preliminary application to the production of
a fire risk map. The paper concludes with section IV in which
we draw some conclusions and outline future work.

II. AN IMPROVED CA MODEL FOR WILDFIRE SIMULATIONS

In the model object of this study, the two-dimensional fire
propagation is simulated through a growing ellipse having the
semi-major axis along the direction of maximum spread, the
eccentricity related to the intensity of the so-called effective
wind and one focus acting as a ‘fire source’.

At each time step the ellipse’s size is incremented according
to both the duration of the time step and maximum rate of
spread (see Figure 1). Afterwards, a neighboring cell invaded
by the growing ellipse is considered a candidate to be ignited
by the spreading fire. In case of ignition, a new ellipse is
generated according to a heuristics described later.

To ensure the meaningfulness of the simulated fire front, the
local ellipse is not allowed to go beyond the nearest cells in
a single step. This is accomplished by automatically adapting
the size of the time step according to both the size of the cells
and maximum rate of fire spread in the whole automaton.

More formally, the model is a two-dimensional CA with
square cells defined as:

CA = 〈K,N ,S,P, ω,Ψ〉 (1)

where:
– K is the set of points with integer co-ordinates in the

finite region where the phenomenon evolves. Each point
identifies a square cell;

– N is the set that identifies the pattern of cells influencing
the cell state change (i.e the neighborhood);

– S is the finite set of the states of the cell, defined as the
Cartesian product of the sets of definition of all the cell’s
substates;

– P is the finite set of global parameters, which affect
the transition function and are constant in the overall
cellular space. Some relevant parameters in set P are the
current time pt, the size of the cell’s side pe, the time
corresponding to a single CA step p∆t and a threshold
pr for the maximum spread below which the ignition
of the cell is not activated by the transition function.
Additional parameters in P define the reference values
of weather conditions and the fuel models (fuel bed
characteristics are specified according to the fuel models
used in BEHAVE [23], [24], [25], [26], [27]);

– ω : S |N | → S is the transition function accounting for
the fire ignition, spread and extinction mechanisms. It is
described in detail in section II-A;

– Ψ is the set of global functions, activated at each step
before the application of the transition function ω to
modify either the values of model parameters in P or the
cells’ substates. Among these, the function φτ adapts the
size p∆t of the time step according to both the size of the
cells pe and current maximum spread rate in the whole
automaton. The value of p∆t is then used by another
function, φt, for keeping the current time pt up to date.
Additional global functions can account for fire fighting
interventions or changing of meteorological conditions.

The cell’s substates include all the local quantities used
by the transition function for modeling the local interactions
between the cells (i.e. the fire propagation to neighboring
cells) as well as its internal dynamics (i.e. the fire ignition
and growth). In particular, among the substates that define the
state of each cell, there are:

– the altitude z ∈ Sz of the cell;
– the fuel model µ ∈ Sµ, which is an index referring to one

of the mentioned fuel models that specifies the charac-
teristics of vegetation relevant to Rothermel’s equations;

– the combustion state σ ∈ Sσ , which takes one of the
values unburnable, not ignited, ignited and burnt.

– the rear focus f ∈ Sf of the ellipse locally representing
the fire front (see Figure 1); it can be virtually considered
the local source of the fire expansion;

– the accumulated forward spread ρ ∈ Sρ, that is the current
distance between the focus f of the local ellipse and the
farthest point on the semi-major axis (see Figure 1);

– the angle θ ∈ Sθ (see Figure 1), giving the direction
of the maximum rate of spread. In the context of the
semi-empirical Rothermel’s approach, such an angle is
obtained through the composition of two vectors, namely
the so-called wind effect and slope effect [4], both ob-
tained on the basis of the local wind vector, local terrain
slope and fuel model;

– the maximum rate of spread r ∈ Sr, also provided by
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1 Update the fuel moisture according to the current weather conditions;
2 if ( the current substate σ is ignited ) {
3 if ( c no longer belongs to the fire front ) {
4 Set σ to burnt;
5 return;
6 }
7 Update the local ellipse γ using the current p∆t;
8 }
9 else
10 if ( the current substate σ is not ignited )
11 for each cell ci in the neighborhood
12 if ( the substate σi of ci is ignited )
13 if ( the cell is reached by γi ) {
14 Compute r and θ;
15 if ( r ≥ pr ) {
16 Set σ to ignited;
17 Compute ε;
18 Compute the focus f and the current local spread ρ;
19 return;
20 }
21 }

Fig. 2. Outline of the cell’s transition function ω. The index i refers to the
i-th cell of the neighborhood.

Rothermel’s equations on the basis of the relevant local
characteristics [4];

– the eccentricity ε ∈ Sε of the ellipse γ representing the
local fire front, which is obtained as a function of both
the wind and terrain slope through the empirical relation
proposed in [28], [8].

Among the remaining substates are the local wind vector
and the relative humidity value of the cell, both provided as
external input to the model.

The simulation runs until a predetermined termination
criterion is met (e.g. based on the final simulation time).
Therefore, since the time duration corresponding to a CA step
is dynamically adapted, the number of steps actually required
depends on both the cells’ size pe and fire’s behavior. In brief,
the scheduling of each CA step is organized as follows:

1) first, the global functions in Ψ are executed. In particular,
function φτ computes the current duration of the time
step p∆t while function φt updates the current time pt;

2) afterwards, the transition function ω is executed for each
cell of the automaton. This implies computing the fire-
front expansion during the time interval pτ , according
to the algorithm described below;

3) finally, if the termination criterion is not met, a new step
is executed, otherwise the simulation ends.

A. The transition function

The transition function ω of the current cell c is outlined in
Figure 2. In case of an ignited cell, ω first checks if the fire can
continue burning in the cell (line 4). In particular, the condition
that triggers the transition to the burnt state is verified when all
eight cells of the Moore’s neighborhood are in the ignited state
or in the unburnable state. Clearly, in this case the cell can
be considered as burnt because its contribution is no longer
necessary to the fire spread mechanism.

Fig. 3. The central cell intersected by a neighboring ellipse γi locally
representing the fire front.

Fig. 4. Entities involved in the computation of the initial ellipse γ on a
newly ignited cell according to the proposed heuristics.

The subsequent and final step of the transition function in
case of ignited cell (see line 8 of the pseudo-code in Figure
2), and consists of updating the size of the local ellipse γ.
This is accomplished by adding the incremental spread r p∆t

to the accumulated forward spread ρ, being the current size of
the CA step p∆t provided by the global function φτ .

When the cell c is in the not ignited state, the transition
function tests if the fire is spreading towards it from other cells
ci of the neighborhood that currently are ignited (see Figure 2,
line 10−12). Since the latter state corresponds to a neighboring
local ellipse γi held by ci, such a spread test is carried out
through the computation of the setW = γi∩χ, where χ is the
boundary of c (see Figure 3). If W = {w1, w2}, with w1 6=
w2, then it is assumed that the fire can spread to c and the
proper Rothermel’s equations [4] are used for the computation
of both the intensity r of the maximum spread rate vector and
its inclination θ (see line 14 in Figure 2).

Then, when the value of r is not below the threshold
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Fig. 5. First steps of fire spreading using the described algorithm in case of
θ = 0

pr, the transition function sets the cell combustion state σ
to ignited and computes a suitable local ellipse γ locally
describing the new fire front (see Figure 2, line 16 − 18).
One of the characteristics of γ, namely its orientation given
by the angle θ, is already known. In addition, its eccentricity
ε can be easily computed using one of the empirical formulas
that have been developed for relating the eccentricity of the
elliptical fire spread to both the wind speed and terrain slope
[28], [7], [8]. In particular, in the current implementation the
value of ε is computed according to the formula proposed in
[28] as modified in [8], which accounts for both the effect
of wind and topography through the previously mentioned
effective wind speed [4]. Thus, two further characteristics
are required in order to identify the new ellipse, that is the
current local spread ρ, which gives its size, and the focus f ,
which defines its position (see Figure 1). A suitable heuristics
for determining both ρ and f , leading to accurate results at
reasonable computational costs, is adopted as follows:

1) the point p ∈ γi located in the middle of the elliptic
arcúw1w2 ∈ γi belonging to the current cell c (i.e. |
øw1p |=|øpw2 |) is computed;

2) the line π, containing the cell’s side intersected by the
line pki, is determined;

3) to describe the local fire front, the ellipse γ tangent to
both ellipse γi in p and line π, is computed in terms of
the accumulated local spread ρ and focus f ;

More details about the algorithm described in this paper can
be found in [29].

An example of a sequence of local ellipses generated
according to the algorithm described above is shown in Figure
5. As can be seen, when a cell is reached by an ellipse from
a neighboring burning cells it is ignited. Then, a new ellipse
is generated inside the newly ignited cell.

Note that, although the algorithm illustrated above was
originally designed for simulating surface fires, a similar

Fig. 6. A comparison between the improved CA (case a) and a typical
CA for fire spread simulation (case b). In both cases the standard Moore’s
neighborhood was used.

procedure is adopted in this study for simulating crown fires
spread following the approach of [8].

Fig. 7. A comparison between the improved CA and FARSITE (i.e., a widely
used simulation tool based on the vector approach) on real landscape. The
standard Moore’s neighborhood was used for the improved CA.

The main advantage of the approach described above, when
compared with a typical CA algorithm for wildfire simulation,
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Fig. 8. The area under study for the first example according to the CORINE land-cover data.

lies in its ability to increase the directions of spread. In fact,
the latter in case of standard point-to-point fire propagation
are restricted to few fixed angles and this causes distortion of
simulated fire shapes. This can be seen in Figure 6, where the
fire shape given by the algorithm described above is compared
with the corresponding burned area simulated using a typical
CA. While the standard CA leads to a triangular head of the
fire shape, the improved algorithm is able to better reproduce
the expected ellipse. This superior accuracy, together with
the high run-time efficiency provided in general by the cell-
based methods [18], suggests the suitability of the algorithm
described above for the risk assessment application object of
the next section.

The improved CA was validated by comparison with FAR-
SITE [8] (i.e., a widely used simulation tool based on the
vector approach) in a variety of real landscapes under different
wind conditions. As can be seen in the example of comparison
depicted in Figure 7, it provides burned regions which are
equivalent, for practical purposes, to those given by FARSITE.
In addition, the regions affected by fire are obtained at a far
more convenient computational cost by cell-based methods as
shown in [18].

III. AN APPLICATION TO WILDFIRE RISK MAPPING

Since fuel load is a major component of fire risk, related
hazard maps are traditionally constructed using only classified
vegetation cover. However, the risk level is also influenced
by other factors interacting nonlinearly, such as wind, fuel
moisture, ignition sources and topography. Also, most of these
factors are random variables and this further affects the fire
risk. For these reasons, an increasingly used approach for the
computation of hazard maps involves the explicit simulation
of the fire dynamics [1], [2], [3].

In brief, the method consists of a Monte Carlo approach
in which a high number of different fire spread simulations

are carried out, sampling from suitable statistical distributions
the random variables relevant to the fire behavior. At the
end, the local risk is computed on the basis of the frequency
of burning. Clearly, the simulation model underlying such
an approach should be fast and accurate. This suggests to
adopt the improved CA illustrated above as the simulation
engine of a software tool for wildfire risk mapping. The
latter has been named SVAMPAU, which is the acronym of
‘Simulating through a VAlidated Model fire Propagation by
cellular AUtomata” and means blazed in Sicilian.

The technique for computing hazard maps adopted in this
study is based on a prefixed number n of simulation runs,
where each run represents a single simulated fire. Ignition
locations, wind direction and the durations of the fire are
selected randomly from uniform distributions. In particular,
the wind direction is selected in a range corresponding to the
typical directions of severe wind for the area. Also the fire
duration is selected considering the duration of historical fires
in the regions under study. All the other relevant characteristics
are kept constant during the simulations.

Once the latter have been carried out, the resulting n maps
of burned areas are overlaid and cells’ fire frequency are used
for the computation of the fire risk. In particular, a burn
probability pb(c) for each cell c is computed as:

pb(c) =
f(c)

n
; (2)

where f(c) is the number of times the cell c is ignited during
the n simulated fires. The burn probability for a given cell is
an estimate of the likelihood that a cell will burn given a single
random ignition within the study area and given the assumed
burn conditions.

In the preliminary application presented here two test cases
are discussed. The first example concerns the area of the urban
park Pineta Castel Fusano, a protected area near Rome, Italy.
It includes a pinewood which covers an area of 916 hectares
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Fig. 9. The risk map obtained for the area depicted in Figure 8

and it is the largest green area of Rome. The pine forest is
often affected by fires, some of which have caused relevant
environmental damages. For example, on July 4, 2000, 300-
350 hectares of pine forest and Mediterranean evergreen were
hit by fire, of which 280 hectares were completely destroyed.
Other serious fires that have decimated hectares of Pinus pinea
occurred on 9 July 2002, from June to September 2003, on
11 July 2004 and on July 1, 2005. Also, in July 2008, at least
another 80 hectares of pine forest were destroyed by several
wildfires.

The landscape was modeled through a Digital Elevation
Model composed of 313×288 square cells with side of 20m.
In the area, the terrain is relatively flat with an altitude above
sea level ranging from 2 to 20 m. The heterogeneous fuel bed,
depicted in Figure 8, was based on the use of the 1:25000
land cover map from the CORINE project (EEA 2002). The
CORINE land-cover codes were mapped on the standard fuel
models used by the CA model (i.e., the substate µ). Plausible
values of fuel moisture content were obtained from literature
data. Also, a domain-averaged open-wind vector for 10 differ-
ent directions in the range South-West - South-East, having an
intensity of 20 kmh−1, was used for producing time-constant
gridded winds through WindNinja [30], a computer program
that simulates the effect of terrain on the wind flow. The range
of fire durations were randomly sampled between 1h and 6h.

To produce the hazard map represented in Figure 9, n = 500
simulations were carried out. The task took about 2.6h using
a laptop equipped with a 1.83GHz Core Duo T2400 processor.
As can be seen in Figure 9, interestingly the higher fire risk
was obtained in the coniferous forest contiguous to the area
with woody vegetation and shrubs. This can be explained
considering that shrub vegetation is usually more flammable
than other vegetation types and that the wind was blowing
from the shrubland towards the coniferous forest.

To give an example of the influence that the topography may

have on the final risk map, a second example was considered.
In particular, the Digital Elevation Model represented in Figure
10, composed of 131×167 square cells with side of 20m, was
used as input landscape for the risk assessment tool. In this
case, the altitude above sea level ranging from 20 to 220 m.
The fuel bed of the whole landscape was modeled as uniform
and corresponding to the standard fuel model 2 (i.e., timber
grass and understory) [25]. Also, a wind vector having an
intensity of 20 kmh−1 was used. The wind directions were
sampled randomly in the interval between South - East and
North - East and for each direction a time-constant gridded
wind was produced through WindNinja [30]. The range of
fire durations were randomly sampled between 1h and 8h.

Also in this case, to produce the hazard map n = 500
simulations were carried out. As can be seen in Figure 10,
the topography greatly influenced the risk map. In particular,
it is important to point out that the terrain slope and aspect
significantly shaped the wind field. Then, the variable wind
vector, again with the terrain slope and aspect, significantly
affected the behavior of each simulated fire. It is also worth to
note that using only the fuel load to quantify the hazard would
have led to a substantially uniform fire risk throughout the
whole area. This highlights the effectiveness of the production
of risk maps based on the fire dynamics simulation.

IV. CONCLUSION AND FUTURE WORK

We have illustrated some characteristics of SVAMPAU, a
software tool which exploits a new CA simulation model
to assess fire hazard within a Monte Carlo approach. The
adopted CA model has the ability to provide accurate burned
areas, taking much less computing time than a typical vector
approach for wildfire simulations. The improved accuracy and
efficiency were obtained: (i) relaxing the restriction to a few
pre-defined directions of spread, which characterizes most
of the techniques for simulating wildfires on a raster space;
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Fig. 10. The risk map obtained for the area depicted in Figure 7

(ii) using an adaptive time-step duration, which allows for
avoiding unnecessary computation (i.e., at each step at least
one new cell is ignited).

The preliminary tests presented in this paper suggest that
the model under study can be a suitable component of a tool
for assessing the wildfire risk.

Future work will focus on parallelizing the Monte Carlo
phase according to a simple master-slave approach, in order
to allow much shorter run time and the opportunity to study
areas of greatest extension, which require a higher number of
simulations.
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Abstract - During the last decades, traffic congestion in 
urban networks is getting worse affecting many aspects of the 
residents lives to an increasing extent. Traffic lights play a 
decisive role in the aforementioned traffic networks of modern 
metropolises, and the existing conditions of the corresponding 
vehicular traffic flows. In order to develop an efficient system 
dedicated to the real-time traffic signals control for which the 
hardware implementation will be straightforward, Cellular 
Automata (CAs) were chosen as the simulation and 
implementation method. Despite its ease of implementation 
and simplicity, CAs is a powerful tool that can generate 
realistic traffic models. In this paper, a Cellular Automaton 
(CA) model was implemented on a FPGA to take full 
advantage of the inherent parallelism of CAs and provide 
real-time traffic signals control in accordance with vehicular 
traffic flow. The proposed hardware was optimized and the 
resulting single FPGA processor can be finally considered as 
basic component of an advanced electronic system able to 
provide real time information concerning the traffic 
conditions in the under study intersections and thus to 
efficiently handle-control the traffic signals in real conditions. 

Keywords: Traffic Signals; Cellular Automata; FPGA; Real-
time control. 

 

1 Introduction 
  Metropolitan centers everywhere are battling an increase 
in demand and an inability to build sufficient infrastructure to 
cope with the huge traffic congestion increment. 
Consequently, in recent decades the traffic flow problem of 
urban networks has drawn the attention of specialists in 
various fields including physics, mechanics and mathematics. 
However, improving transportation systems is about more 
than just adding road lanes, transit routes, sidewalks and bike 
lanes. It is also and mostly about operating those systems 
efficiently. Not only does congestion cause slow speeds, it 
also decreases the traffic volume that can use the roadway; 
stop-and-go roads only carry half to two-thirds of the vehicles 
as a smoothly flowing road [1]. On the other hand, it is well 
known that in urban street networks, the flow of vehicles is 
almost entirely controlled by traffic lights and traffic 
engineers are often forced to question if the capacity of the 
network is exploited by the chosen control strategy. 
Consequently by choosing signal control schemes one has a 

large impact on average fuel consumption and travel times. 
Respectively, the development of efficient traffic signals 
control models may be very beneficial when studying various 
kinds of city networks, even those with a more sophisticated 
topology. 

 Regarding the traffic models so far, for almost half a 
century, there were strong attempts to develop a theoretical 
framework of traffic science. It is stated that the movement of 
vehicles can be considered as an example of a self-driven 
many-particle system driven far from equilibrium [2]. The 
resulting traffic model can be analyzed both macroscopically 
and microscopically [3]. In the former, attention is paid 
among others to fluid dynamical models such as kinematic 
waves, incompressible Navier-Stokes-like momentum 
equations as well as to Gas-kinetic models (Boltzmann 
equations). These models are often suitable for analytical 
investigation, ensure simple treatment of inflows and enable 
simulations of several lanes by effective one-lane models 
with certain probabilities of overtaking. On the other hand, in 
microscopic models, which are more usually used, each 
individual vehicle is represented by a particle and the 
interactions among the particles depend on the way the 
vehicles influence each other. It should be also noticed that 
the microscopic models, at least in theory, can be used to 
study macroscopic properties of traffic streams [4]. 
Furthermore, in the macroscopic models, traffic flow is 
viewed as a compressible fluid formed by vehicles that do not 
appear explicitly in the theory [5]. In contrast, in the 
microscopic models, traffic is treated as a system of 
interacting particles where attention is explicitly focused on 
individual vehicles and the interactions among them. These 
models are therefore much better suited for the investigation 
of the under study urban traffic networks. 

 Microscopic models include follow-the-leader car 
models in which it is assumed that the acceleration is 
determined be vehicles in front of the driver, and Cellular 
automata (CAs) models in which each vehicle is represented 
by an occupied cell in a CA model. The main advantage of 
the aforementioned models based on CA programming 
paradigm and being developed for the last two decades, was 
an efficient and fast performance when used in computer 
simulations. This alternative arrives from the fact that in 
general, CAs are very effective in simulating systems and 
solving scientific problems, because they can capture the 
essential features of systems where global behavior arises 
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from the collective effect of simple components which 
interact locally [6]. As a result, in 1992, Nagel and 
Schreckenberg proposed a CA model, the well-known NaSch 
model of road traffic, that was able to reproduce several 
characteristics of real-life traffic flows [7]. Some more 
refined models are derived from NaSch model, such as 
Takayasu and Takayasu deterministic model [8], based on the 
CA-184 Wolfram rule [9], the Benjamin, Johnson, and Hui 
(BJH) model [10], as well as the Nishinari et al. model [11] 
all using slow-to-start rules. Urban network traffic flow 
theory is represented by the Biham-Middleton-Levine (BML) 
[12] model of city traffic, which in opposition to the previous 
models for one-dimensional highway traffic was introduced 
as a simple two-dimensional square lattice CA model. 
Furthermore, because of the effect of traffic lights, urban 
roads as well as the corresponding CA models have special 
characteristics [3]. Guoging et al. extended the BML model 
by revisiting the regulation on traffic lights [13] and rearranging 
the BML rules [14]. The study and improvement of network 
efficiency has aroused till today much concern [15] while 
modern optimization techniques have been used for the 
parameterization of CA rules [16]. For an extended and 
detailed review on CAs for road traffic models see also [17]. 

 Among several CA-based mobility models for urban 
traffic, the model of Wei et al. [18] is the most similar to our 
work. The most intriguing part of the aforementioned model 
is the fact that used the original characteristics of the CA 
microscopic model to successfully describe and handle 
macroscopic properties of traffic streams resulting in an 
almost macroscopic CA model. However, the proposed here 
model provides some new features to cope better with some 
of the previous model limitations; for example, simulating 
traffic over a period of time with random values of a 
distribution simulating incoming boundary traffic does not 
guarantee that every possible traffic scenario will be tested, or 
the original implementation uses a Poisson distribution for 
the incoming boundary directions flow pressure values 
although sounds reasonable do not provide realistic situations 
of vehicular traffic flows near the studied intersections. On 
the other hand, the presented CA model is characterized by as 
much as low complexity as possible so that the computational 
recourses are kept low while its computation speed is kept 
high without losing any of the requested essence of 
complexity regarding the real-time signals control of urban 
networks intersections. Furthermore, one of the most 
pronounced features of the introduced model is because of 
the inherent parallelism of CAs, the proposed model is 
hardware implemented with the help of Very High Speed 
Integrated Circuit (VHSIC) Hardware Description Language 
(VHDL) synthesizable code in order to speed up the 
application of CAs to the real-time traffic signals control. It 
should be mentioned that CAs are one of the computational 
structures best suited for hardware realization. The CAs 
architecture offers a number of advantages and beneficial 
features such as simplicity, regularity, ease of mask 
generation, silicon-area utilization, and locality of 

interconnections. In this paper, the design processing of the 
finally produced VHDL code, i.e. analysis, elaboration and 
simulation, has been checked out with the help of the Quartus 
II, v. 9.0® design software of the ALTERA® Corporation. 
The proposed hardware was optimized and the resulting 
single FPGA processor can be considered as basic component 
of an advanced electronic system able to provide real time 
information concerning the traffic conditions in the under 
study intersections and thus to handle-control the traffic 
signals in real conditions. As a result, the proposed FPGA 
design could serve as the basis of a support decision system 
for monitoring train movement in real-time, providing 
valuable near optimum control services. 

 In the length of this paper, details about the 
preliminaries of the CAs function and the proposed CA 
model are found in Section II. Details about the FPGA 
architecture of the presentation model and its automation 
design procedure as well as the corresponding hardware 
simulation results are discussed in section III. Finally, the 
conclusions are drawn in section VI. 

2 CA model 
2.1 Cellular Automata Preliminaries 
 Cellular Automata (CAs) are models of physical 
systems, where space and time are discrete and interactions 
are local [9]. Prior and more recent works proved that CAs 
are very effective in simulating physical systems and solving 
scientific problems and they can easily handle complex 
boundary and initial conditions, inhomogeneities and 
anisotropies [6]. Moreover, the CA approach is consistent 
with the modern notion of unified space–time. In computer 
science, space corresponds to memory and time to processing 
unit. In CA, memory (CA cell state) and processing unit (CA 
local rule) are inseparably related to a CA cell. As a result, 
CAs have also been successfully used as a VLSI architecture 
[19]. Furthermore, for readability reasons, in this section a 
more formal definition of a CA will be presented in order to 
help the reader to follow up with the presented approach. In 
general, a CA requires: 

 A regular lattice of cells covering a portion of a d-
dimensional space; 

A set ( ) ( ) ( ) ( ){ }trCtrCtrCtr , , ... ,,,,, m21=C  of 

variables attached to each site r  of the lattice giving the local 
state of each cell at the time t = 0, 1, … ; 

A rule R={R1, R2, …, Rm} which specifies the time evolution 
of the states ( )tr ,C  in the following 

way: ( ) ( ) ( ) ( ) ( )( )ttrtrtrRtrC qjj ,r ..., ,,,,,,1, 21 δδδ +++=+ CCCC  

where kr δ+  designates the cells belonging to a given 

neighborhood of cell r . 
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Figure 2.   Intersection Flow Pressure 

 
Figure 1.   Von Neumann neighborhood cell 

2.2 CA cell model and time step evolution 
 In the proposed CA traffic model each traffic 
intersection is regarded as a cell in an urban traffic signal 
network. As shown in Fig. 1, each intersection is modeled as 
a cell with a Von-Neumann neighborhood domain. Each 
approach is appointed a number from 1 to 4 in a clockwise 
order, with 1 being the west approach of the intersection. All 
intersections can then be put in a two-dimensional array with 
size NxM, where N is the number of rows with each row 
representing an intersection and M the number of columns 
where each column represents the corresponding approach 
and their value of the resulting flow pressure (FP), 
respectively. 

 Regarding the time evolution of the CA cell to its next 
state it must first gather information about the state of its 
neighbor cells; in this case the flow pressure of each 
direction. This phase is called the state perception phase. At 
this point, it should be made clear that in the considered 
network, all streets are equal in respect to the processes at 
intersection, in other words no streets or directions are 
dominant. Furthermore, it should be also noticed that the free 
flow phase of the proposed method is an artifact of the 
periodic boundary conditions and of the fact that no vehicle 
turns. In more realistic situations, if an intersection is blocked 
by e.g. an accident, the method would not allow the blockage 
to spread to other intersections by blocking flow into the 
affected intersection. Finally, pedestrians are not considered 
in the presented model and the critical time for safe crossing 
of the under study intersection, at least a period of 20 
seconds, should be accordingly implemented in the model 
manually by the user by fine tuning the corresponding 
parameter. As a result, traffic light periods for all streets 
(intersections) are assumed to be equal in the following. 

 Assuming sensors measure the flow pressure taking 
continuous values that range from 0 to 1, according to the 
following expression: 

 
KL
SNFP

×
×

=  (1) 

where N is the cars number, S the average length of the car, L 
the measurable road length and K the number of lanes of each 
approach. The flow pressure readings are then inserted into 
the intersection array so that each cell has access to the states 
of its neighbors. As a result, the state of an intersection would 
be finally given by the following equation: 
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where t stands for the time step evolution and R denotes the 
state CA rule. In general, the same rule with corresponding 
directions can be applied to every intersection. More 

specifically, the outline of the proposed rule can be 
summarized to the following. 

• If the normalized sum of the rest three neighbors and 
potential directions [taking into account for each of 
them, their impact to the final decision (through, left 
and right, respectively)] is greater that the sum of the 
specific direction flow of the under study 
intersection with the minimum flow increment, i.e. 
0.1 

• Then this direction flow will be raised by the 
aforementioned minimum flow increment, namely 
0.1 

• Else it will not change during this time step. 

 In the above rule description, let us name Wk the total 
impact normalization coefficient to the local intersection after 
k normalizations that have passed according to the function: 

 5.0
10

5.0)10( +⎟
⎠
⎞

⎜
⎝
⎛×−= kWk

 (3) 

As a result, the state perception phase results then from 
different rounds of normalization in order to proceed to next 
time step and evolve each CA cell state. At this point it 
should be also mentioned that each of the three possible 
neighbor directions contributes by the corresponding 
coefficients, respectively. For example, as shown in Fig. 2, in 
order the intersection A cell to update its state all eastern flow 
pressure from intersection B must be taken into account and 
in this case, w0, w1 and w2 would be the resulting impact 
coefficients of each direction (straight, left and right turn, 
respectively) with their sum always equal to 1. 
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Figure 3.   Flow Chart Diagram 

 
Figure 4.   Extended flow chart diagram used for simulation

3 CA hardware implementation and 
simulation results 

3.1 VHDL implementation 
 As mentioned before, in terms of circuit design and 
layout, ease of mask generation, silicon-area utilization, and 
maximization of clock speed, CAs are perhaps one of the 
most suitable computational structures for VLSI realization 
[19]. More specifically, from circuit designing point of view, 
there are four main factors that determine the 
cost/performance ratio of an integrated circuit, namely, circuit 
design and layout, ease of mask generation, silicon-area 
utilization, and maximization achievable clock speed; for a 
given technology, the latter is inversely proportional to the 
maximum length of the signal paths. CA circuit design 
reduces to the design of a single, relatively simple cell and 
layout is uniform. The whole mask for a large CA array (the 
cells with their internal connections as well as the 
interconnection between cells) can be generated by a 
repetitive procedure so no circuit area is wasted on long 
interconnection lines and because of the locality of 
processing, the length of critical paths is minimal and 
independent of the number of cells.  

 The proposed algorithm consists of two stages as shown 
in the diagram (Fig.3). The first one is the state perception 
phase which was described earlier. After this phase is 
complete, the signaling phase begins. Certain rules are 
applied for the traffic signal control. In order of descending 
priority these are: 

• Change the signal to green if red is shown to this 
direction for RED_M consecutive times. 

• Change the signal to green to the direction in which the 
previous signal was red and has the highest flow 
pressure. 

o The flow pressure must be at least Red_t. 

• If the signal is green for the Green_Max consecutive 
time in the same direction then change the signal to 
red. 

• If none of the above applies then change the signal to 
green to the approach with the highest flow pressure. 

All variables used (RED_M, Red_t, Green_Max) are preset. 
In order to increase the functionality of the presented CA 
model two more stages to the original diagram were added. 
The first one refers to the initialization of the CA model in 

which values are inserted in the intersection array so that the 
simulation does not begin with an empty array, which would 
mean no traffic at all in every intersection. The second one is 
the usage of a linear feedback shift register (LFSR) which is 
responsible for the inbound traffic simulation coming through 
the boundary directions, based on pseudo-random values in 
order to represent the flow pressure of the boundary 
directions. In general, some of improvements found in the 
proposed model can be summarized as follows. The signaling 
computations were done according to intervals, where each 
interval equals the time needed for calculating the next CA 
cells states and the appropriate signaling values without 
constraining them in time. If needed a maximum time 
constraint can be easily added. Furthermore, the original 
implementation uses a Poisson distribution for the incoming 
boundary directions flow pressure values whereas in the 
FPGA a Linear Feedback Shift Register is used with 
pseudorandom values to simulate the incoming traffic and in 
order to provide realistic situations of vehicular traffic flows 
near the studied intersections. More over, simulating traffic 
over a period of time with random values of a distribution 
emulating incoming boundary traffic does not guarantee that 
every possible traffic scenario will be tested. So, in order to 
check every possible signaling rule, signals were carefully 
selected so that every rule and possible traffic situation can be 
tested and handled appropriately. Initially, the width of the 
road and car volume was passed to the software to calculate 
the flow pressure values. However, in the presented FPGA 
implementation the used sensors automatically calculate the 
flow pressure (FP) values and reduce it accordingly. Finally, 
the flow pressure takes continuous values that range from 0 to 
1, according to eq. (1). 

3.2 VHDL implementation 
 The implementation of the algorithm was developed 
with VHDL using the Altera Quartus II software. The 
schematic design of the corresponding CA cell is depictured 
in Fig. 5. The parameters used in the development and 
simulations of the code were in accordance with the ones 
found in [17]. More specifically, the number of intersections 
was set to 6 and arranged as shown in Fig. 6. The initial flow 
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Figure 5.   Block diagram of the CA cell architecture

 
Figure 6.   Intersection Layout 

 

 

 
Figure 7.   State perception phase simulation results

Figure 8.  State perception phase simulation results

Figure 9.   Consecutive red signaling rule 

pressure values in the intersection array were chosen 
randomly on a scale from 0 to 100. The boundary approaches 
flow pressures are attributed through a 4-bit linear feedback 
shift register (LFSR), while the values of signals RED_M, 
Red_t and Green_Max are set to 8, 60 and 2 respectively. 
Furthermore, highest priority is given to the east priority with 
descending priority given to the remaining directions in a 
clockwise order. As a result, if the rule for Red_t flow 
pressure applies then the order is counterclockwise. Finally, 
the cell state evolving generations is set to 10 and the values 
selected for impact coefficients w0 is 0.8 and for w1 and w2, 
respectively. 

The state perception phase results after simulation in 
Quartus II are presented in Fig. 7. The red squares indicate 
the changed values from one step to the next one. It is noted 
that through generations 5 to 10 no changes to the flow 
pressure are made due to the relatively small number of 
intersections which causes the vectors to stabilize to their 
values earlier. More specifically, based on the described CA 
rules, the Quartus II simulation for intersections A and B is 
shown in Fig.8. (Ax_IN and Axse represent the inputs and 
outputs respectively). After all the normalizations of the state 
perception phase are complete a signal is raised in order for 
the traffic signaling phase to begin (output “signaling” in Fig. 
8). The simulation results of the signaling rules in intersection 
A are described below. The Ax_IN inputs represent the 
intersection's directions flow pressures, the Ax_IN_R and 
Ax_IN_G equal to the number of consecutive red and green 
signals respectively and the Ax_R and Ax_G the red and 
green signals on the intersection. We can observe that the 
input A3_IN_R equals 8 which is the threshold for the 

maximum number of consecutive red signals. As expected the 
green signal is shown to the western approach [Fig. 9 
(A3_G)]. 

In the next case the western approach's flow pressure is 60 
which is greater than the threshold set which triggers the 
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Figure 10.   Green_Max signaling rule simulation 

Figure 11.   Traffic signaling controller network 

Red_t signaling rule. The next rule in descending priority is 
the Green_Max rule when 2 consecutive green signals are 
given in the same direction. Then a red signal must be given 
to this direction and decide according to the maximum flow 
pressure of the other directions. We can see in Fig. 10 that the 
red signal is given to the southern approach (number 2) 
because of the Green_Max rule and the green signal is 
decided by the flow pressure values of the rest approaches. 
Thus the green signal is given to the eastern approach with a 
FP value of 40. Finally when none of the above rules is valid 
the green signal is decided by the maximum flow pressure. 

The exact model of the FPGA used for the implementation 
of the system is Altera Stratix, device EP1S60F1020C5. This 
FPGA uses 130nm technology and it allows the use of up to 
57,120 logic elements. Table I indicates the use of the 
resources provided, for the implementation described. 

TABLE I.  THE RESOURCES OF FPGA CIRCUIT 

Stratix II Compilation Report 

Total logic elements 52,535 / 57,120 (92%) 

Total pins 214 / 782 (27%) 

Total virtual pins 0 

Total memory bits 0 / 5,215,104 (0%) 

DSP block 9-bit elements 0 / 144 (0%) 

Total PLLs 0 / 12 (0%) 

Total DLLs 0 / 2 (0%) 
 

 In addition to the VHDL implementation, Matlab code 
was also developed in order to compare with the FPGA 
performance. The CPU used for the simulations is an AMD 
Phenom II 920 Quad-Core CPU clocked at 2.8GHz. Software 
based simulations are limited in sequential machines, since 
the inherent parallelism of the CA has to be emulated. 
Typically, this is achieved by calculating the time evolution 
of each cell separately and using double buffers to simulate 
the parallel nature of CA, thus leading to a considerable 
slowing down of the simulations [18]. The CA cell rules in 
this simulation are preset so the average number of 
instructions which have to be executed can be calculated. In 
average 2,550 instructions (adding, comparing, subtracting, 
multiplying etc.) were required for calculating the next cell 
state and signaling. This means that even with a super scalar 
CPU architecture the necessary clock cycles are 159 whereas 
the FPGA only requires 10 cycles for the output signals to be 
calculated. In case of Matlab simulation the mean completion 
time was 280ns while 240ns were required for the FPGA to 
complete the necessary calculations. The FPGA’s native 
parallelism in executing commands in conjunction with the 
inherent parallelism of the CAs allows us to presume that in 
larger systems which include a vast number of intersections 
the FPGA’s ability for parallel processing can give a 
significant advantage over a general purpose CPU which 
makes it suitable for this controller. 

Finally, it should be noticed that the code can be easily 
adopted for various traffic applications and all three 
components (sense, signaling and LFSR) can be changed to 
suit various urban network traffic conditions. All variables 
used can be automatically parameterized through the 
architecture section so they can be easily changed to the 
desired-requested values. Furthermore, what is of great 
importance, the number of the under study intersections that 
can be modeled and simulated can be adjusted by the flow 
pressure and signaling arrays' bounds. The only change 
needed is that the CA rules for both the state perception and 
signaling phase must be adjusted to the new intersections 
boundary approaches as depicted in Fig. 11. As a result, CA 
traffic several controllers, as the one proposed here, can be 
connected, each one controlling a number of intersections and 
feed each other with traffic information to form a larger, more 
complex and more versatile traffic signaling network. 

4 Conclusions and future work 
 In this paper, a Cellular Automaton (CA) model was 
implemented on a FPGA to take full advantage of the 
inherent parallelism of CAs and provide real-time traffic 
signals control in accordance with vehicular traffic flow. The 
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presented CA model is characterized by as much as low 
complexity as possible so that the computational recourses 
are kept low while its computation speed is kept high without 
losing any of the requested essence of complexity regarding 
the real-time signals control of urban networks intersections. 
The proposed CA model implemented in hardware, while it 
presents two different phases of evolution, namely state 
perception phase and signaling phase, respectively, succeeds 
to control efficiently complicated traffic intersections with the 
help of the traffic lights as imposed by the initial different 
traffic conditions. As future work concerns, the expansion of 
the CA model for different types of neighborhoods, i.e. 
Moore neighborhood, more delicate model of signal 
synchronization, more detailed interesting characteristics of 
the network should be also considered. Finally, it would be 
interesting to compare the predictions of the CA model 
proposed in this article with empirical urban traffic traces and 
real-world traffic flow data selected by traffic cameras. 
Consequently, the single FPGA processor can be finally 
considered as basic component of an advanced electronic 
system able to provide real time information concerning the 
traffic conditions in the under study intersections and thus to 
efficiently handle-control the traffic signals in real conditions. 
More over, this, in turn, can verify the validity of the mobility 
model used in this article or provide valuable feedback on 
how to further refine it. As a result, at this point, some real 
case experiments are going to take place in the Xanthi’s city 
vehicular traffic network of Greece and the experimental 
results will be used to validate the calibration of the CA 
model FPGA implementation parameters. 
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Abstract –The determination of areas exposed to new 
eruptive events in volcanic regions is crucial for diminishing 
consequences in terms of human causalities and damages of 
material properties. In this paper, we illustrate a methodology 
for defining flexible high-detailed lava invasion hazard maps 
which is based on an robust and efficient Cellular Automata 
model for simulating lava flows. We also present some 
applications for land use planning and civil defense to some 
inhabited areas of Mt Etna (South Italy), Europe’s most active 
volcano, showing the methodology’s appropriateness.  

Keywords: Cellular Automata, Lava flows simulation, 
Hazard Maps, Land Use Planning, Mt Etna. 

 

1. Introduction 
 The use of thematic maps of volcanic hazard is of 
fundamental relevance to support policy managers and 
administrators in taking the most correct land use planning 
and proper actions that are required during an emergency 
phase. In particular, hazard maps are a key tool for 
emergency management, describing the threat that can be 
expected at a certain location for future eruptions.  
 At Mt. Etna (South Italy), the most active volcano in 
Europe, the majority of events occurred in the last four 
centuries report damage to human properties in numerous 
towns on the volcano flanks [6]. Notwithstanding, the 
susceptibility of the Etnean area to lava invasion has 
increased in last decades due to continued urbanization [18], 
with the inevitable consequence that new eruptions may 
involve even greater risks. During past eruptive episodes, 
different countermeasures based on embankments or channels 
have been adopted to halt or deflect lava [3][4]. Nevertheless, 
such kinds of interventions are generally performed while the 
eruption is in progress, inevitably putting into danger the 
safety of involved persons. Current efforts for hazard 
evaluation and contingency planning in volcanic areas draw 
heavily on hazard maps and numerical simulations (e.g. [21] 
[17], [1]), for the purpose of individuating affected areas in 
advance. For instance, in 2001 the path of the eruption that 
threatened the town of Nicolosi on Mt Etna was correctly 
predicted by means of a lava flows simulation model [13], 
providing at that time useful information to local Civil 

Defense authorities. However, in order to be efficiently and 
correctly applied, the above approaches require an a priori 
knowledge of the degree of exposure of the volcano 
surrounding areas, to allow both the realization of preventive 
countermeasures, and for a more rational land use planning.  
 In the following, we illustrate a methodology for the 
definition of flexible high-resolution lava invasion hazard 
maps, based on an improved version of SCIARA, a reliable 
and efficient Cellular Automata lava flow model, and show 
some specific applications related to inhabited areas of Mt 
Etna, which demonstrate the validity of the application for 
civil defense purposes and land use planning.  

2. Lava flow modeling 
 The behavior of lava flows is difficult to be dealt with 
using traditional methods based on differential equation 
systems (e.g., cf. [20][14][22]). In fact, due to the 
complexities of its rheology, lava can range from fluids 
approximating Newtonian liquids to brittle solids while 
cooling, and thus it is difficult to solve the differential 
equations without making some simplifications. Nevertheless, 
many attempts of modelling real cases can be found in 
literature. However, since lava flows movement can be 
conveniently described in terms of ‘‘local interactions’’, 
Cellular Automata (CA) may represent a suitable solution. 
Regarding Cellular Automata-like models, Crisci and co-
workers were the first to adopt Cellular Automata (CA) for 
modelling Etnean lava flows through the numerical 
simulation code SCIARA, initially fully three-dimensional 
[12] and successively reduced to a two-dimensional CA [5]. 
Ishihara et al. [21] were the first to adopt a Binghamian 
rheology in a CA numerical code, with good results on the 
simulation of some lava flows in Japan. Subsequently, 
Miyamoto and Sasaki [24] proposed a non-deterministic CA 
model that, thanks to a Monte Carlo approach, did not present 
the anisotropic problem due to the discretization of the 
considered (square) cellular space. Afterwards, a similar - 
non deterministic - approach was adopted by Vicari et al. [32] 
by the CA model MAGFLOW with good results on the 
simulation of Etnean lava flows. 
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2.1 Cellular Automata 

 The Cellular Automata (CA) computational paradigm 
was introduced in 1947 by John von Neumann [25], quickly 
gaining the attention of the Scientific Community both as 
powerful parallel computational models and as a convenient 
apparatus for modeling and simulating several types of 
complex physical phenomena [9]. Besides theoretical studies 
[33], CA have been applied to a variety of fields such as 
pattern recognition [23], image processing [28] and 
cryptography [31]. However, major interest for CA regard 
their use in Complex Systems modelling in various fields like 
Physics, Biology, Earth Sciences and Engineering (e.g., see 
[9],[16],[30]). Classical Cellular Automata can be viewed as 
an n-dimensional space, R, subdivided in cells of uniforms 
shape and size. Each cell embeds an identical finite 
automaton (fa), whose state accounts for the temporary 
features of the cell; Q is the finite set of states. The fa input is 
given by the states of a set of neighbouring cells, including 
the central cell itself. The neighbourhood conditions are 
determined by a geometrical pattern, X, which is invariant in 
time and space. The fa have an identical state transition 
function  : Q♯X Q, where ♯X is the cardinality of the set of 
neighbouring cells, which is simultaneously applied to each 
cell. At step t = 0,  fa are in arbitrary states and the CA 
evolves by changing the state of all fa simultaneously at 
discrete times, according to . 
 While Cellular Automata represents a powerful tool for 
simulating complex systems at a microscopic level of 
description, Macroscopic Cellular Automata (MCA) [19] can 
represent a valid alternative when the main features of the 
phenomena of interest can be directly described at a 
macroscopic level (e.g. in the case of a lava flow model: 
average amount of lava, temperature, etc), thus disregarding 
microscopic aspects. MCA introduce some extensions to the 
classical CA formal definition. In particular, the finite set of 
states Q of the cell is decomposed in r substates, Q1, Q2,…, 
Qr, each one representing a particular feature of the 
phenomenon to be modelled (e.g. for lava flow models: cell 
temperature, lava content, outflows, etc.). The overall state of 
the cell is thus obtained as the Cartesian product of the 
considered substates: Q = Q1 × Q2 × ... × Qr. A set of 
parameters, P={p1, p2, ..., pp}, is furthermore considered, 
which allow to “tune” the model for reproducing different 
dynamical behaviours of the phenomenon of interest (e.g. for 
lava flow models, the Stephan-Boltzmann constant, lava 
density, lava solidification temperature, etc.). As the set of 
state is split in substates, also the state transition function  is 
split in elementary processes, 1, 2, ..., s, each one 
describing a particular aspect that rules the dynamic of the 
considered phenomenon. Eventually, L  R is a subset of the 
cellular space that is subject to external influences (e.g. for 
lava flow models, the crater cells), specified by a 
supplementary function . External influences are introduced 
in order to model features which are not easy to be described 
in terms of local interactions. In the MCA approach, by 
opportunely discretizing the surface on which the 

phenomenon evolves, the dynamics of the system can be 
described in terms of flows of some quantity from one cell to 
the neighbouring ones. Moreover, as the cell dimension is a 
constant value throughout the cellular space, it is possible to 
consider characteristics of the cell (i.e. substates), typically 
expressed in terms of volume (e.g. lava volume), in terms of 
thickness. Still, owing to their intrinsic parallelism, both CA 
and MCA models implementation on modern parallel 
computers is straightforward, and the simulation duration can 
be reduced almost proportionally to the number of available 
processors ([15], [34]). 

2.2 The SCIARA CA lava flow model 

 The methodology presented here heavily relies on the 
application of a computational model for simulating lava 
flows. In order to be applied for land use planning and civil 
defense purposes in volcanic regions, the model should be 
well calibrated and validated against test cases to assess its 
reliability (e.g., cf. [17], [27], [32]). Another required 
characteristic is the model’s efficiency since, depending on 
the extent of the considered area, a great number of 
simulations could be required [10]. All these requirements are 
met by the latest release [29] of the SCIARA Cellular 
Automata model for simulating lava flow, adopted in this 
work, where a Bingham-like rheology has been introduced 
for the first time as part of the Minimization Algorithm of the 
Differences [19], which is applied for computing lava 
outflows from the generic cell towards its neighbors. In 
addition, the hexagonal cellular space adopted in the previous 
releases [13] of the model for mitigating the anisotropic flow 
direction problem has been replaced by a square one, 
nevertheless by producing an even better solution for the 
anisotropic effect. The model has been calibrated by 
considering three important real cases of studies, the 1981, 
2001 and 2006 lava flows at Mt Etna (Italy), and on ideal 
surfaces in order to evaluate the magnitude of anisotropic 
effects. We briefly outline to model’s main specifications in 
the following. 

 In formal terms, the SCIARA MCA model is defined as: 

 SCIARA =< R,L,X,Q,P, ,  >  (1) 

where: 
– R is the set of square cells covering the bidimensional finite 
region where the phenomenon evolves; 
– L  R specifies the lava source cells (i.e. craters); 
– X ={(0,0), (0,1), (-1,0), (1,0), (0,-1), (-1,1), (-1,-1), (1,-1), 
(1,1)} identifies the pattern of cells (Moore neighbourhood) 
that influence the cell state change, referred to cells by 
indexes 0 (for the central cell) through 8; 
– Q = Qz × Qh × QT × Q8

f is the finite set of states, considered 
as Cartesian product of “substates”. Their meanings are: cell 
elevation a.s.l. (above sea level), cell lava thickness, cell lava 
temperature, and lava thickness outflows (from the central 
cell toward the eight adjacent cells), respectively;  
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– P = {w, t, Tsol ,Tvent, rTsol, rTvent, hcTsol, hcTvent, , , , , c} 
is the finite set of parameters (invariant in time and space) 
which affect the transition function (please refer to [29] for 
their specifications); 
–  : Q9 Q is the cell deterministic transition function, 
applied to each cell at each time step, which describes the 
dynamics of lava flows, such as cooling, solidification and 
lava outflows from the central cell towards neighbouring ones 
function (please refer to [29] for major specifications); 
–  : Qh × N  Qh specifies the emitted lava thickness, h, 
from the source cells at each step k N (N is the set of 
natural numbers). 
 As stated before, the new SCIARA model introduces a 
rheology inspired by the Bingham model and therefore the 
concepts of critical height and viscosity are explicitly 
considered (cf. [26], [20]). In particular, lava can flow out 
from a cell towards its neighbours if and only if its thickness 
overcomes a critical value (i.e. the critical height), so that the 
basal stress exceeds the yield strength. Moreover, viscosity is 
accounted in terms of flow relaxation rate, r, a parameter of 
the distribution algorithm that influences the amount of lava 
that outflows the cell, according to a power law of the kind: 

 log r = a+bT  (2) 

where T is the lava temperature and a and b coefficients 
determined by solving the system: 
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where Tsol and Tvent are the lava temperature at solidification 
and at the vents, respectively. Similarly, the critical height, 
hc, mainly depends on lava temperature according to a power 
law of the kind:  
 log hc = c+dT  (3) 

whose coefficients c and d are obtained by solving the 
system:  
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 Please refer to [29] for further details on the model, 
where an experiment in order to evaluate the magnitude of 
the anisotropic effect on an ideal surface is also reported. 
 

3. The methodology for defining hazard 
maps 

 Volcanic hazard maps are fundamental for determining 
locations that are subject to eruptions and their related risk. 
Typically, a volcanic hazard map divides the volcanic area 
into a certain number of zones that are classified differently 
on the basis of the probability of being exposed to a specific 

volcanic event in future. Mapping both the physical threat 
and the exposure and vulnerability of people and material 
properties to volcanic hazards can help local authorities to 
guide decisions about where to locate critical infrastructures 
(e.g. hospitals, power plants, railroads, etc) and human 
settlements and to devise mitigation measures that might be 
appropriate. This could be useful for avoiding the 
development of inhabited areas in high risk areas, thus 
controlling land use planning decisions.  
 A lava flow simulation model can represent an effective 
instrument for analyzing volcanic risk in a certain area by 
simulating possible single episodes with different 
characteristics (e.g. vent locations, effusion rates, cf. [11]). 
However, the methodology for defining high detailed hazard 
maps presented here is based on the application of the 
SCIARA lava flows computational model for simulating an 
elevated number of events on present topographic data. In 
particular, the methodology requires the analysis of the past 
behavior of the volcano, for the purpose of classifying the 
events that historically affected the region. In such a way, a 
meaningful database of plausible simulated lava flows can be 
obtained, by characterizing the study area both in terms of 
areal coverage, and lava flows typologies. Data is 
subsequently processed by considering a proper criterion of 
evaluation. A first solution could simply consist in 
considering lava flows overlapping, assigning a greater 
hazard to those areas affected by a higher number of 
simulations. However, a similar choice could be misleading 
since, depending on the event’s volcanological characteristics 
(e.g., location of the main crater, duration and amount of 
emitted lava, or effusion rate trend), different events can 
occur with different probabilities, which should be taken into 
account in evaluating the actual contribution of performed 
simulations with respect to the definition of the overall hazard 
of the study area. In most cases, such probabilities can be 
properly inferred from the statistical analysis of past 
eruptions, allowing for the definition of a more refined 
evaluation criterion. Accordingly, in spite of a simple hitting 
frequency, a measure of lava invasion hazard can be obtained 
in probabilistic terms. In the following, we show how such 
approach was applied to Mt Etna. 
 
3.1 Mt. Etna volcano: A case study 

 By adopting a technique well described in [10] and [2], 
which referred to the Eastern sector of Mt. Etna and which 
was applied by employing a previous version of the SCIARA 
CA model, we here show the application to the entire area of 
the volcano using the new SCIARA model briefly described 
in Section 2.2. Firstly, based on documented past behavior of 
the volcano, the probability of new vents forming was 
determined, resulting in a characterization (a probability 
density function map - pdf) of the study region into areas, that 
represent different probabilities of new vents opening [8]. 
 Then, flank eruptions of Etna since 1600 AD were 
classified according to duration and lava volume [10] and a 
representative effusion rate trend considered to characterize 
lava temporal distribution for the considered representative 
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eruptions, reflecting the effusive mean behavior of Etnean 
lava flows [7]. An overall probability of occurrence, pe, was 
thus defined, by considering the product of the individual 
probabilities of its main parameters: 

 pe = ps pc pt  (4) 

where ps denotes the probability of eruption from a given 
location (i.e., based on the pdf map), pc the probability related 
to the event’s membership class (i.e., emitted lava and 
duration), and pt the probability related to its effusion rate 
trend. Once representative lava flows were devised as above, 
a set of simulations were planned to be executed in the study 
area by means of the SCIARA lava flows simulation model. 
At this purpose, a grid composed by 4290 craters, equally 
spaced by 500m, was defined as a covering for Mt Etna, from 
where the simulations have been carried out. This choice 
allowed to both adequately and uniformly cover the study 
area, besides considering a relatively small number of craters. 
Specifically, a subset of event classes which define 6 
different effusion rates probabilities, derived from historical 
events considered in [10], were taken into account for each 
crater, thus resulting in a total of 25740 different simulations 
to be carried out. Owing to the elevated number of SCIARA 
simulations to be executed, thanks to the adoption of Parallel 
Computing each scenario was simulated for each of the vents 
of the grid. Simulations were performed on an 80-node Apple 
Xserve Xeon-based cluster and were performed in ca. 10 
days. Lava flow hazard was then punctually (i.e. for each 
cell) evaluated by considering the contributions of all the 
simulations which affected a generic cell in terms of their 
probability of occurrence.  
 

 
Figure 1: Hazard map of the study area based on the 25740 
simulations. As a compromise between map readability and 
accuracy, 5 classes are reported (grey colouring), in 
increasing order of susceptibility (probability of lava 
invasion). 

 The obtained lava flow hazard map resulting from these 
simulations is presented in Figure 1, and represents the 
probability that future eruptions will affect the entire Etnean 
area. Here, as in all following applications, as a compromise 
between map readability and reliability 5 classes are reported 
(grey colouring), in increasing order of susceptibility 
(probability of lava invasion). 
 Importantly, the methodology for the compilation of 
lava flows invasion hazard maps proposed here provides for, 
as integrant part, a process for the verification of results. A 
validation procedure was thus contemplated for the produced 
hazard map, consisting in a technique which produces 
statistical indicators on which one can quantify the reliability 
of the results. Refer to [10] for major details on the 
methodology validation process. 
 

4. Applications for Civil Defense and 
Land Use Planning 

 As shown previously, the described methodology 
permits the definition of general hazard maps, as the one 
reported in Figure 1, which can give valuable information to 
Civil Defense responsible authorities. However, further, more 
specialized applications can be devised by considering that 
the SCIARA simulation model is integrated in a GIS 
(Geographic Information System) application that permits, 
besides other features, to take also into account the effects of 
“virtual” embankments, channels, barriers, etc. In addition, 
the fact that a large number of lava flows of different eruption 
types, magnitudes and locations are stored in the database, a 
rapid extraction of various scenarios is possible.  
 

 
Figure 2: Map showing vents, belonging to the simulation 
grid, which can produce eruptions capable of affecting the 
town of Randazzo, together with the resulting susceptibility 
scenario, allowing to immediately assess the threat posed by 
an eruption exclusively on the basis of its source location. 

 A first fundamental Civil Defense oriented application 
regards the possibility to identify all source areas of lava
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Figure 3: A second example of application of hazard zonation referred to the entire town district of Zafferana Etnea. The town 
district boundaries are indicated by the black line, while the present inhabited area with white line. As shown, the majority of 
the municipal area is at risk. 

 
flows that are capable of affecting a given area of interest, 
such as a town or a major infrastructure (e.g., hospitals, 
power plants, etc.). In this case, this application is rapidly 
accomplished by querying the simulation database, selecting 
the lava flows that affect the area of interest and by 
circumscribing their sources. For this application we have 
chosen the town of Randazzo, an important historical and 
cultural site of the Etnean area. Figure 2 shows vents which 
can originate eruptions capable of affecting the urban area of 
Randazzo, together with the resulting hazard scenario, 
allowing to immediately assess the threat posed by an 
eruption exclusively on the basis of its source location.  
 While the previous application localizes craters that can 
originate events that may interest an inhabited area, the one 
reported in Figure 3 can have even more impact in land use 
planning, referred for the entire town district of Zafferana 
Etnea, another important inhabited area of the volcano.  This 
application is fundamental in understanding how local 
authorities can plan the future development of the city, 
avoiding it in elevated risk areas. Specifically, the figure 
shows how several areas of the entire municipality are at risk, 
especially to the North-West and South.  
 A further specific category of simulation regards the 
assessment of protective measures, such as earth barriers or 
channel digging, for mitigating lava invasion susceptibility in 

 
Figure 4: Map showing the location of a set of vents (white 
dots) which originate lava flows intersecting a hypothetical 2 
km long and 20 m tall earth barrier (cf. Figure 5) to protect 
the centre of Nicolosi (white line). 
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given areas. To illustrate this kind of application, a northwest-
southeast trending barrier, 2 km long and 20 m high, was 
considered along the northern margin of Nicolosi, an urban 
area with many administrative buildings and tourist facilities. 
for diverting lava flows into a valley at the eastern margin of 
the town without, however, considering the legal and ethical 
aspects of such an operation. By querying the simulation 
database, all the lava flows that affected the barrier were 
selected and thus re-simulated on the modified topography 
which embeds the presence of the barrier. Similarly to the 
case of the applications shown in Figures 2 and 3, an ad hoc 
susceptibility scenario was extracted by considering these 
new simulations (Figure 4). 

 
Figure 5: The same area considered in Figure 4, together with 
the scenario resulting from lava flows intersecting the barrier, 
which are re-simulated on a modified topography that embeds 
the presence of the barrier. As shown, the hazard decreases 
by two classes within the town limits (white line). 

 Results show that the barrier would be necessary to 
effectively protect the town centre. The susceptibility here 
decreases by two classes (Figure 5) and, at the same time, the 
areas invaded by diverted flows prove characterised by only a 
slightly higher susceptibility degree. In this specific case, the 
protective measure has a substantially positive effect. If this 
was not the case, further experiments with barriers of 
different positions and dimensions will reveal to what degree 
damage from lava flow invasion can be minimized, or 
whether it would be preferable to abandon any prospects of 
this kind of protective measure. 

5. Conclusions 
 The fundamental problem of assessing the impact of 
future eruptions in a volcanic region lies mostly in the 
uncertainty concerning their duration, effusion rate, and 

location. A valid assessment tool relies on the adoption of 
volcanic hazard maps which, however, are usually based on 
the sole analysis of past events. Conversely, maps should 
represent the full range of probable hazards that can be 
expected to an agreed probability, considering thus all 
potential future scenarios. As a consequence, probabilistic 
hazard maps can provide a better base for planning mitigation 
strategies. We tackled this issue by an elaborate approach in 
the numerical simulation of a wide variety of lava flows, 
which are typical of Etna for duration and effusion rate, on a 
dense grid of vents, by attributing them a statistical 
likelihood. Regarding the adopted new SCIARA Cellular 
Automata computational model at the basis of the 
methodology, it re-introduces a square tessellation of the 
cellular space instead of the previously adopted hexagonal 
one, considered in the earlier versions to limit the effect of 
the anisotropic flow direction problem. It is worth noting that 
the main advantage of the presented methodology, besides the 
possibility of assessing the efficiency of protective measures 
for inhabited areas and/or major infrastructures, is that the 
simulation data permits to produce general susceptibility 
maps in unprecedented detail, and contains each single 
scenario out of a total of over thousands of simulated cases. 
As a consequence, the methodology described here can 
represent a substantial advance in the field of lava flow 
impact prediction and can also have immediate, far reaching 
implications both in land use and civil defense planning. 
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Abstract—In the last few decades, several techniques
to randomly generate a deterministic finite automaton
have been developed. These techniques have implications
in the enumeration of automata of sizen. One of the
ways to generate a finite automaton is to generate a
random tree and to complete it to a deterministic finite
automaton, assuming that the tree will be the automaton’s
breadth-first spanning tree. In this paper we explore some
ideas related to this method. We introduce the notions of
tail characteristic and characteristic of a tree, and use it
to define the weight of a tree. It turns out that the weight
of a tree can be used to count the number of automata
having this tree as their spanning tree. We also present
a recursive formula for this quantity in terms of the
“derivative” of a tree. Finally, we analyze the implications
of this formula in terms of the distribution of the number
of automata with a given spanning tree withn nodes.

I. I NTRODUCTION

Enumeration and generation of Accessible Deterministic
Finite Automata have been of interest since late 1950s.
There is a number of ways to generate an accessible
deterministic finite automaton (ADFA) withn states.
However, the question of generating a minimal automa-
ton with n states remains open. One way to generate
a minimal automaton is to generate a DFA at random
and use a rejection algorithm, such as Hopcroft-Ullman’s
algorithm [9], to decide if it is minimal assuming that
the asymptotic density of minimal automata is constant.
This question is very important in algorithmic analysis,
in calculating the average case complexity of algorithms,
and in analyzing certain properties of formal languages.
Harary and Palmer [7] in 1973 enumerate isomorphic
automata with output functions as certain ordered pairs
of functions. Harrison [8] considered the enumeration of
non-isomorphic DFAs and connected DFAs up to a per-
mutation of the alphabet symbols. With the same criteria,
Narushima [11] enumerated minimal DFAs. Domaratzki
et al. [6] have proposed a lower bound for the number of
accessible deterministic finite automata (ADFAs) over an

alphabet of sizek. Also Nicaud [12], and Champarnaud
and Paranthoën [5] presented a method for randomly
generating ADFAs. Bassino and Nicaud [4] showed
that the number of ADFAs isΘ(n2nS(kn, n)), where
S(kn, n) is the Stirling number of the second kind.
Almeida and Moreira [1] have also proposed efficient
algorithms to generate ADFAs at random and confirmed
the previous result.
One of the methods to generate a random automaton,
presented in [1], and [2] is to generate a randomk-
ary tree and complete it to a DFA by assigning the
missing transitions at random. This method considers
a canonical string representation for an automaton and
a tree, and using this representation every automaton
will be generated uniquely. In our paper we explore
this method in more detail and find an exact formula to
calculate the number of automata produced by a given
tree, i.e. the automata having the given tree as a breadth-
first spanning subtree.
We organize our paper as follows. In Section II we
start by recalling some basic definitions and results. In
particular, we recall that an automaton can be generated
at random using breadth-first spanning trees. Then, in
Section III, we introduce two definitions that will prove
to be very useful, tail characteristic and the characteristic
of a tree. We use these ideas to define a weight function
on the set of trees in Section IV. This weight function
will be used to count the number of automata withn

states having a given tree as their spanning tree. We then
present a recursive formula for this quantity. Even though
our method does not count the total number of automata
of sizen, we do integrate some of the methods used in
the generation algorithms in [1], [4]. Finally, we look at
the implications that our formula has on the distribution
of the number of automata with a given spanning tree.

II. PRELIMINARIES

A deterministic finite automaton (DFA) A is a 5-
tuple A = (Q, Σ, δ, q0, F ), whereQ is a finite set of
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states, Σ is a finite input alphabet, q0 ∈ Q is the initial
state, F ⊂ Q is the set offinal states, and δ is the
transition functionmappingQ×Σ to Q. We can extend
δ by definingδ(q, aw) = δ(δ(q, a), w). We will define a
transition structure to be an automaton(Q, Σ, δ, q0)
with no final states. Finally, if an initially connected
DFA has the property that it contains a directed path
from q0 to every other state, then we say that it is an
accessible deterministic finite automaton (ADFA). For
the remainder of the paper we assumeΣ = {a, b}.
The language accepted by a DFAA is defined as
L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F}. We will say that two
DFAs are equivalent if they accept the same language.
Furthermore, an automaton is said to beminimal if
it is the automaton with the smallest number of states
accepting a given language.
Any ADFA, A with n states, can be decomposed into
its breadth-first spanning tree withn nodes and the
remaining transitions. For a detailed argument of this
decomposition, the reader is referred to [3]. This de-
composition will lead to an ordering of states ofA, and
hence a numbering of states, from1 to n.
A tree T with n nodes can be presented by a binary
sequenceβT of length 2n + 1, whereβT (i) ∈ {0, 1}.
For 1 ≤ k ≤ n, define thebinary representation βT of
a tree T by definingβT (0) = 1 and

βT (2k − 1) =







1 if there is an edge leaving

statek with label a,

0 otherwise,

βT (2k) =







1 if there is an edge leaving

statek with label b,

0 otherwise.

Notice thatβT (i) represents an edge leaving state

⌈
i

2

⌉

,

labeled by alphabet lettersa or b. This representation of
trees has been explored in detail in [2]. Similar represen-
tations have been used to generate random binary trees,
as shown in the survey by Mäkinen in [10]. It can be
shown that eachβT is a string of length2n + 1, with n

1s, andn+1 0s. This representation also has the property
that each prefixw of βT satisfies |w|0 < 1 + |w|1
where|w|σ is the number of occurrences ofσ in w. In
other words, each 1 inβT represents a node, and each
0 presents a missing transition to turn the tree into an
ADFA. An example of such a representation is shown
in the following Example.

Example 1: Consider the automatonAT and its
breadth-first spanning treeT shown below. Using the

definition of the binary representation of a tree, it is easy
to see thatβT = 101110000.

1 2

3

4

a

b

b

a

b

b

aa

1 2

3

4

b

a

b

Fig. 1: An automatonAT and its spanning treeT . Here,
βT = 101110000.

It is worth mentioning that this decomposition and
representation of trees is very useful in enumerative and
combinatorial arguments used in the analysis of ADFAs.

III. T HE CHARACTERISTIC SEQUENCE OF ATREE

We start with an important definition. In the remainder of
this paper, letTn denote the set of edge labeled binary
trees withn nodes. The edges will be labeled by the
alphabetΣ = {a, b}˙

Definition 1: Given a treeT ∈ Tn (n ≥ 1), with
binary representationβT , the tail characteristic χt(T )
of T is the number,r of 0s followed by the last 1 in
β. In other wordsχt(T ) is the nonnegative integerr
satisfying the following three conditions:

1) βT (2n − r) = 1,
2) |βT (2n − (r − 1)) . . . βT (2n)|1 = 0,
3) |βT (2n − (r − 1)) . . . βT (2n)|0 = r,
Example 2: Consider the treeT ∈ T5 shown below.

It is easy to see thatT has binary representationβT =
11011010000 and tail characteristicχt(T ) = 4.

a

a b

b

Fig. 2: A treeT with 5 nodes, and tail characteristic
χt(T ) = 4.
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Using the tail characteristic, we will define the charac-
teristic of a tree. But before, we introduce the notion of a
tree derivative. Suppose thatT ∈ Tn, wheren ≥ 2. Then
the tree derivative of T is the treeT ′ ∈ Tn−1 obtained
by removing thelast node inT . Note that ifβT is the
binary representation ofT , then the binary representation
of T ′ can be obtained fromβT by removing the last two
0s and replacing the last 1 with a 0.
In general, thekth tree derivative ofT (1 ≤ k ≤ n− 1)
is the treeT (k) ∈ Tn−k obtained by removing the lastk
nodes ofT . It is easy to see that ifT hasn nodes, then
T n−1, the(n−1)th derivative ofT , is the tree with one
node. For such a tree, the tail characteristic is2.

Definition 2: Given a treeT ∈ Tn (n ≥ 1), the
characteristic χ(T ) of T is a sequence ofn nonnegative
integers(r1, r2, . . . , rn−1, rn) such thatrn is the tail
characteristic ofT, rn−1 is the tail characteristic of
T ′, . . . , r2 is the tail characteristic ofT (n−2), and
r1 = χt(T

n−1) = 2.
Example 3: Consider the treeT ∈ T5 from Example

2. Then it is not difficult to see that the characteristic of
T is χ(T ) = (2, 3, 3, 4, 4).

The characteristic of a tree is unique for a given tree,
and can be used to count the number of transition struc-
tures having a tree as a breadth-first spanning subtree.

Lemma 1: Let T ∈ Tn be a tree withn nodes, and
let χ(T ) = (r1, r2, . . . , rn) be the characteristic ofT .
Then the following conditions hold

1) 2 ≤ ri ≤ i + 1 for 1 ≤ i ≤ n

2) ri+1 ≤ ri + 1 for 1 ≤ i ≤ n

Conversely, ifχ is a sequence ofn nonnegative integers,
satisfying conditions1 and2, then there is a treeT ∈ Tn,
such thatχ(T ) = χ.
Proof It is clear thatri ≥ 2, since βT always has a
00 at the end. LetT ∈ Tn be a tree withχ(T ) =
(r1, r2, . . . , rn), and letβT be the string representation
of T . First we show that the tail characteristic ofT is at
mostn+1. Assumeχt(T ) > n+1, this is a contradiction
since the total number of 0s inβT is n+1. Since eachri

is the tail characteristic of a tree withi nodes, we have
ri ≤ i + 1 and the first part is proven.
To show that the second condition holds, suppose thatrn

is the tail characteristic ofT . To obtain the tree derivative
of T we need to remove the last two 0s ofβT and replace
the last 1 with a 0, a condition similar to the following
equations

βT = 1011 . . .1 00 . . .0000
︸ ︷︷ ︸

rn

and

βT ′ = 1011 . . .0 00 . . .00
︸ ︷︷ ︸

rn−2

.

Notice that the tail characteristic ofT ′, rn−1 is the
number of 0s following the last one , and hencern−1 ≥
rn − 2+ 1 = rn − 1 and we havern ≤ rn−1 +1. Using
the same argument forrn−1, rn−2, up to r1, we can
show ri+1 ≤ ri + 1, since there are only finitely many
ris .
Now supposeχ = (a1, a2, . . . , an) is a sequence satisfy-
ing conditions1 and2. We will construct a treeT , such
thatχ(T ) = χ = (a1, a2, . . . , an). Let ki = ai−ai+1+1
for 1 ≤ i ≤ n − 1 and definekn = an. We claim
that KT = (k1, k2, k3, . . . , kn−1, kn) is a sequence of
nonnegative integers, having the following properties:

i. 0 ≤
∑i

j=1 kj ≤ i for 1 ≤ i ≤ n

ii.
∑n

i=1 ki = n + 1

Note that
∑i

j=1 kj = a1 − ai+1 + i = 2 − ai+1 + i.
Since by condition (1) of Lemma 1,2 ≤ ai+1 ≤ i + 2,
we have0 ≤ i − ai+1 ≤ i. The second condition holds
by a simple calculation of the alternating series

∑n

i=1 ki

with a1 = 2.
n∑

i=1

ki =

n−1∑

i=1

(ai − ai+1 + 1) + an =

a1 + n − 1 = n + 1

We useKT to construct our tree, by definingβT =
10k110k210k3 . . . 10kn−110kn . βT is a string of length
2n + 1 with n 1s andn + 1 0s, since

∑n

i=1 ki = n + 1.
To show thatβT is a string representation of a tree, we
must show that any prefix,w, of βT has the property
that |w|0 < 1 + |w|1.
First supposew has the formw = 10k110k2 . . . 10ki .
In this case|w|1 = i and |w|0 =

∑i

j=1 kj ≤ i. So
we have|w|0 ≤ i < 1 + i = 1 + |w|1. Suppose now
that w = 10k110k2 . . . 10l where l < ki, in this case
∑i−1

j=1 kj + l <
∑i

j=1 kj ≤ i and the inequality|w|0 <

1 + |w|1 holds. Finally if w = 10k110k2 . . . 10ki1 then
|w|1 = i + 1 and |w|0 =

∑i

j=1 kj ≤ i and we have
|w|0 < 1 + |w|1.
To calculateχ(T ), we know by definition thatrn =
kn = an. To find rn−1, the reader should observe that
the derivative ofT will have the form

βT ′ = 10k110k210k3 . . . 10kn−100rn−2

which impliesrn−1 = rn + 1 + kn−1 − 2 = rn + 1 +
rn−1 − rn + 1 − 2 = rn−1. Using a similar argument
for eachri, one can see thatχ(T ) = χ and the proof is
complete.
This lemma shows that there is a one to one correspon-
dence between the set of string representations of binary
trees and the set of sequences of non-negative integers of
lengthn, satisfying conditions1 - 2 of Lemma 1. There

214 Int'l Conf. Scientific Computing |  CSC'11  |



is also a one to one correnspondence between these sets
and the set of sequencesKT , satisfying conditions i, ii.

IV. T HE NUMBER OF TRANSITION STRUCTURES

GENERATED BY A TREE

Using the characteristic of a tree, we can define a weight
function on the class of binary trees with the property
that heavier trees will generate more transition structures.
Using this weight we will show that the number of
deterministic transition structures, having a tree as a
breadth-first spanning tree is a constant multiple of the
tree’s weight, where the number of states inn.

Definition 3: Let T ∈ Tn be a tree with characteristic
χ(T ) = (r1, r2, . . . , rn−1, rn), for n ≥ 2. Then the
weight of T , denoted byW (T ), is defined by

W (T ) =

(
2

1

)r2

· · ·

(
n − 1

n − 2

)rn−1
(

n

n − 1

)rn

=

n∏

k=2

(
k

k − 1

)rk

Al ternatively, we can defineW (T ) recursively as

W (T ) = W (T ′)

(
n

n − 1

)rn

whereT ′ is the tree derivative ofT andrn = χt(T ). If
T ∈ T1, we letW (T ) = 1.
Our goal now is to use the weight of a treeT to compute
the number of automata havingT as their spanning
tree. Since trees are not endowed with the notion of
final states (or final nodes,) our computations will be
concerned with the number oftransition structures, and
not the number ofautomata, having a given treeT ∈ Tn

as their spanning tree. Denote the former byCT
n . Then

it is easy to see that givenCT
n , the total number of

automata havingT as their spanning tree is2nCT
n .

This is because, given a transition structure withn

nodes/states, there are2n choices for the set of final
states.

Theorem 4.1: Given a treeT ∈ Tn, let CT
n be the

number of accessible transition structures withn states
that haveT as their breadth-first spanning tree. Then

CT
n = (n − 1)!W (T ).

Using the sequence of difference values,K =
(k1, k2, . . . , kn) the equation above can be written as

CT
n =

n∏

i=1

iki

Proof We prove this statement by induction onn. For
the casen = 1, note there is only one treeT with one

node and there is only one transition structure havingT

as a spanning tree. HenceCT
1 = 1.

Now assume thatT ∈ Tn, n ≥ 2 is a tree with binary
representationβT . Let T ′ be the tree derivative ofT .
Then there areCT ′

n−1 transition structures havingT ′ as
a spanning tree. In order to findCT

n , recall from [3] or
[1] that

CT
n =

2n∏

i=1

ni with

ni =

{∑

j<i βT (j) if βT (i) = 0,

1 if βT (i) = 1

In other words,ni counts the number of nodes generated
prior to reaching the missing transitioni. It is easy to see
that the first position whereβT (i) and βT ′(i) differ is
at position2n − rn, where rn = χt(T ), specifically,
βT (2n − rn) = 1 while βT ′(2n − rn) = 0, and
βT has an additional00 at the end. For instance,βT

and βT ′ may be βT = 1011 . . .1 00 . . .0000
︸ ︷︷ ︸

rn

and

βT ′ = 1011 . . .0 00 . . .00
︸ ︷︷ ︸

rn−2

. It is important to notice that

the number of transition structures that can be generated
from βT is the same as the number that can be generated
from βT ′ , except for

1) An over-count ofn − 1 at position2n− rn;
2) For each 0 in positions2n+1−rn to 2n−2, CT ′

n−1

has a factor ofn−1 butCT
n has a factor ofn which

can be fixed by multiplication by

(
n

n − 1

)rn−2

;

3) An additional factor ofn2 in CT
n accounting for the

last two 0s ofβT .

Hence

CT
n =

(
n2

n − 1

) (
n

n − 1

)rn−2

CT ′

n−1

= (n − 1)

(
n

n − 1

)rn

CT ′

n−1.

Finally using the previous equation and the inductive
hypothesis ofCT ′

n−1 = (n − 1)(n − 1)!W (T ′) we prove
the assertion.

CT
n = (n − 1)

(
n

n − 1

)rn

(n − 2)!W (T ′)

= (n − 1)!W (T )
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Rewriting the previous equation using the difference
terms

CT
n = (n − 1)!

(
2

1

)r2

· · ·

(
n − 1

n − 2

)rn−1
(

n

n − 1

)rn

= 2k23k3 · · ·nkn =

n∏

i=1

iki

Corollary 4.2: Let T ∈ Tn, where n ≥ 2. Then

CT
n = (n − 1)

(
n

n − 1

)rn

CT ′

n−1, whereT ′ is the tree

derivative ofT andrn = χt(T ).

One of the implications that the formulas in Theorem
4.1 and Corollary 4.2 have is the significant difference
in the number of automata produced by diffrerent trees.

Lemma 2: For everyn ≥ 2, the treeP producing
the smallest number of automata has the formχ(P ) =
(2, 2, . . . , 2) and the tree producing the largest number
of automata has the formχ(Q) = (2, 3, 4, . . . , n + 1).
Additionally CP

n = n(n!) andCQ
n = nn+1.

Proof Through constructing the sequence of differ-
ence values forP andQ , notice thatKQ = (1, 1, · · · , 2)
andKP = (0, 0, · · · , 0, n + 1). Using Theorem 4.1 we
can calculateCP

n = n2(n−1)! = n(n!) andCP
n = nn+1.

Hence the number of transition structures (and hence,
the number of automata) having different trees as their
spanning tree (even with the same number of nodes) can
be asymptotically different.

Example 4: Using Theorem 4.1 and Corollary 4.2,
we can computeCT

n for different treesT .

V. CONCLUSION

We have presented a method, and a formula to calcu-
late the number of automata having a given tree as a
spanning subtree. One of the main consequences of this
theorem is that the number of transition structures (and
thus, the number of automata) generated from different
trees, even with the same number of nodes, is not of
the same order for different trees. Equipped with the
information provided by Theorem 4.1 , and Corollary
4.2, we can estimate quantities like the probability of
generating a specific type of automaton given its breadth-
first spanning tree. We can also impose a distribution
on the setTn where trees are generated with modified
probabilities such that each automaton can be generated
uniformly.
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Abstract— In [6], The Infinite Unit Axiom (see [1] - [4]) is
applied to the development of one-dimensional cellular automata.
This application allows the establishment of a new and more
accurate metric on the space of definition for one-dimensional
cellular automata. In this paper, the new metric is discussed and
shown to increase accuracy of computations.
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I. INTRODUCTION

Cellular automata are discrete dynamical systems that
are known for their strong modeling and self-organizational
properties. Defined on an infinite lattice (in the usual one-
dimensional case, an infinite sequence configuration is de-
fined on the integers), even starting with complete disorder,
evolution of cellular automata maps can generate organized
structure. Originally developed by Von Neuman in the 1940’s
to model biological self-reproduction, cellular automata have
long been used in computational, physical, and biological
applications. For a more complete description of applications
of cellular automata, see [5], [10], [13], [14], [15], and [19].
Cellular automata can be defined for any dimension greater
than or equal to one. This paper is concerned with one-
dimensional or linear cellular automata defined on the integers
(when no confusion arises, we will refer to one-dimensional
cellular automata as simply cellular automata). As with all
dynamical systems, it is interesting to understand the long
term behavior under forward time evolution and achieve an
understanding or classification of the system.

The concept of classifying cellular automata was initiated
by Stephen Wolfram, see [17]. Through numerous computer
simulations, Wolfram noticed that if an initial configuration
was chosen at random the probability is high that a cellular
automaton rule will fall within one of four classes. In [17],
one-dimensional cellular automata are partitioned into four
classes depending on their dynamical behavior. A later (more
rigorous) classification scheme, see [12], was developed by
Robert Gilman. Here a probabilistic/measure theoretic clas-
sification scheme was developed based on the probability of
choosing a sequence that will stay arbitrary close to a given

initial sequence under forward evolution (iteration). Gilman
uses a metric that considers the central window where two
sequences agree and continue to agree upon forward iterations
of a cellular automata map. However, in the development, this
metric is limited because it doesn’t take into account sequences
that agree on an infinite interval to the right (or respectively
to the left). Indeed, the metric considers the absolute value
of the first integral place where sequences disagree and uses
that as their distance apart. For example, if sequences agree
on the right hand side out to infinity their distance apart is
determined by where they disagree on the left. In this paper,
the definition of cellular automata and the metric involved are
extended to include sequences that do not necessarily agree on
a finite central window, symmetric around 0, but which can
agree on, not necessarily symmetric infinite intervals.

The classical concept of infinity has presented limitations
in computations. Indeed, metrics used on infinite sequences,
and hence cellular automata, either do not allow us to observe
minute differences or can lead to calculations beyond finite
computations. Analogous to the Hamming distance for finite
sequences, the following metric is used to compute distances
between infinite sequences.

d(x, y) =
∞∑

i=−∞

|x(i)− y(i)|
2|i|

Here the differences in the respective sequence values are com-
puted and divided by 2|i| to assure convergence. However, this
procedure can lead to a calculation beyond finite computation
and to possible inaccuracies. For instance, using the binary
alphabet S={0,1}, suppose two sequences agree completely
on the left of 0 and at 0. That is, they disagree on the right of
0 or for integral values i > −1. Applying the traditional well
known formula

k∑
i=0

1

2|i|
= 2− 1

2k

and taking limits as k approaches infinity, results in a value of
2. By using the infinite unit axiom, see [1], [2], [3], [4], and
|N| = ¬, the computational limitations caused by sequences
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that agree out to one-sided infinity or that are subject to infinite
computations are overcome. As shown for infinite k, that is
for k = ¬

¬∑
i=0

1

2|i|
= 2− 1

2¬
(1)

and 1

2¬
is infinitesimal. Hence the classical computation

presents inaccuracies and yields to the more accurate com-
putation above in 1.

Before defining cellular automata with the infinite metric a
few notational preliminaries are necessary. The set of integers
is denoted by Z; N is the set of natural numbers and let
N0 = N ∪ {0}. Given a finite alphabet S with two or more
symbols, i.e. |S| ≥ 2, consider the space of all functions from
the integers to the finite alphabet, i.e. SZ. This space may also
be considered as the space of all bi-infinite sequences, defined
on the integers, with values taken from the alphabet S. In [12]
the following metric was used on the space SZ. Let

d(x, y) = 2−n, where n = inf{|i| : x(i) 6= y(i)} (2)

It is noted that this metric satisfies the ultrametric property.
A metric d(x, y) satisfies the ultrametric property iff it is a
metric and obeys the inequality:

d(x, y) ≤ max [d(x, z), d(z, y)]

A space that satisfies the ultrametric inequality is also called a
nonarchimedean space. It is obvious that the triangle inequality
is implied by the ultrameric inequality. As can be seen, the
metric defined in (2) above considers only the symmetric win-
dow around i = 0. Two sequences may agree in more integral
values on one side but this information is not communicated
by the metric. In this paper this inaccuracy is overcome by
using the Infinite Unit Axiom, |N| = ¬, and developing new
machinery to work with infinite sequences.

Let S be a finite alphabet of size s ≥ 2 and let X = (S ∪
{∗})Z. X is the set of all maps from the integers to S ∪ {∗}.
That is, for x ∈ X , x : Z → S ∪ {∗}. It is noted that the
set S ∪ {∗} is compact and hence the product space X is
also compact. The Infinite Unit Axiom is applied and used in
the construction of the metric for computations with infinite
configurations. It is shown in [6] that the following metric is
an ultrametric and the space is nonarchimedean.

Definition 1: Let

x∧y =


x if x = y
∗ if x(0) 6= y(0) or x(0) = ∗
x(m)...x(0)...x(n) if x(i) = y(i)∀i ∈ [m,n]

and ∗ outside

Note: m ≤ 0 and can equal −¬, similarly n ≥ 0 can equal
¬. Hence computations on infinite configurations are allowed.
Thus, x∧y is the place where two configurations agree on the
largest stretch around 0 and is ∗ valued outside.

Definition 2:

F (x∧y) =


1 if x ∧ y = ∗
2−(n+1−m) if x ∧ y =

... ∗ ∗ ∗ x(m)...x(0)...x(n) ∗ ∗ ∗ ...

We form the following metric on the space of bi-infinite
configurations:

d(x, y) =

{
0 if x = y
F (x ∧ y) otherwise

The restriction of x ∈ X to a non-empty interval [i, j] of Z,
where −¬ ≤ i ≤ j ≤ ¬ is called a word. Words are written
x[i, j]. The length of a word w = x[i, j] is |w| = j − i + 1.
It is important to note that, using ¬, words (or the length
of a word) can be infinite, however cannot have an endpoint
greater than ¬ (nor less than −¬). Also, for any a ∈ S, define
xa ∈ X by xa(i) = a, for i ∈ Z.

Example 1 shows how sequences can agree on infinite words
and their distance computed.

Example 1: Given S = {0, 1}, let x = ...111〈1〉111... and
y = ...00011〈1〉111... In the examples, when not explicitly
denoted, we will use the symbol 〈 〉 to denote the zeroth place.
x and y agree completely on the right hand side, and at integral
values 0,−1, and −2.

x ∧ y = ... ∗ ∗ ∗ x(−2)x(−1)x(0)....x(n)....x(¬)

F (x ∧ y) = 2−(¬+1−(−2))

and
d(x, y) =

1

2¬+3

Hence, the distance between the two points x and y is
infinitesimal. As Example 2 shows, the above construction
easily covers the finite word case.

Example 2: Again, using the binary alphabet S = {0, 1},
let x = ...1110〈1〉0111... and y = ...1110〈1〉0101...

x ∧ y = ... ∗ ∗ ∗ x(−1)x(0)x(1)x(2) ∗ ∗ ∗ ...

That is, the sequences differ in the −2 and 3rd integral
positions. Hence,

F (x ∧ y) = 2−(2+1−(−1)) = 2−4

and
d(x, y) =

1

24

II. CELLULAR AUTOMATA

As before, S is an alphabet of size s such that s ≥ 2 and
let X = SZ, i.e. the set of all maps from the lattice Z to the
set S. That is, for x ∈ X , x : Z → S. Cellular automata are
induced by arbitrary (local) maps:

F : S(2r+1) −→ S
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These are usually called local rules or block maps in the
literature, see [9] and [12]. The value r ∈ N0 is called the
range of the map. The automaton map f induced by F is
defined by f(x) = y with

y(i) = F [x(i− r), ..., x(i+ r)]

To illustrate the importance of discrete time steps in the
forward evolution of the automaton, we will use the following
formula where t represents time.

y(i)t+1 = F [x(i− r)t, ..., x(i+ r)t]

The following is a simple, but important, example of a
cellular automaton of range r = 1. The evolutionary behavior
of this automaton is clearly exhibited.

Example 3: Let S = {0, 1} and let f be the automaton
induced by the local rule F : S3 → S by F (1, 1, 1) = 1 and
F (a, b, c) = 0 otherwise. If we apply forward iterations of the
induced automaton map f , all sequences eventually go to the
quiescent state of x0, except for the initial sequence x1 which
remains constant. In Example 3, given any finite or infinite
word x[i, j] with at least one element in the word not equal
to 1, the configuration will eventually evolve, under forward
iterations, to the quiescent state of x0. There are numerous
other examples of cellular automata maps. A more chaotic
rule can be seen via the following example.

Example 4: Let S = {0, 1} and let f be the automaton
induced by the local rule F : S3 → S by F (a, b, c) =
(a + c)mod 2. Applying forward iterations of the induced
automaton map f yields no particular pattern. Beginning with
an initial random configuration in S = {0, 1}Z can yield many
different configuration sequences.

The following theorem shows that the number of configura-
tions in the definition space of cellular automata can now be
determined. The proof is given in [6].

Theorem 1: Given the space SZ of bi-infinite sequences,
the number of elements x ∈ SZ is equal to |S|2¬+1.

III. CONCLUSION

In this paper, the framework for defining and working with
cellular automata has been extended by applying the Infinite
Unit Axiom, |N| = ¬. In the classical sense, the space
SZ is considered uncountable and beyond our computational
abilities. Usual metrics on the space SZ (the space of defini-
tion for cellular automata) are limited in accuracy. Indeed,
configurations can agree on infinite intervals and not have
this information communicated by the metric. This loss of
information has also been overcome by applying the Infinite
Unit Axiom to the development of a new metric.
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Abstract— In this paper, the dynamics of elementary cel-
lular automaton (ECA) rule 73 is investigated under the
framework of the bi-infinite symbolic sequence space. This
paper provides a rigorous mathematical analysis for the
evolution of symbol sequences in some subsystems of rule 73.
ECA rule 73, a member of Wolfram’s class III and Chua’s
complex Bernoulli-shift rules, defines many more subsystems
with rich and complicated dynamical properties such as
topologically mixing, topologically transitivity and positive
topological entropy, and henceforth the dynamical system
generated by the global map of the rule is chaotic in the
sense of both Devaney and Li-Yorke.

Keywords: cellular automata; complex Bernoulli-shift CA rule;
symbolic dynamics; topologically mixing; chaos.

1. Introduction
Cellular automata (CA) was introduced by J. von Neu-

mann and S. Ulam in the 1940s to 1950s [1]. In the late
1960s, J. Conway proposed his now-famous Game of Life,
which shows the great potential of CA in the simulation
of complex systems [2]. The topological dynamics of CA
began in 1969 with G. Hedlund who viewed one-dimensional
CA in the context of symbolic dynamics as endomorphisms
of the shift dynamical systems. His main results are the
characterization of surjective and open CA [3]. Since the
1980s, S. Wolfram focused on the analysis of dynamical
systems and studied CA in detail [4-6], and in 2002, he
introduced his monumental work A New kind of Science [7].
Wolfram classified CA into 4 classes based on extensive
computer simulations: (I) CA evolving to a homogeneous
state; (II) CA evolving periodically; (III) CA evolving
chaotically and (IV) also known as a class of complex rules
with rich behaviors, including all previous cases.

Since 2002, L. O. Chua et al. provided a nonlinear
dynamics perspective to Wolfram’s empirical observations
from the viewpoint of mathematical analysis via the concepts
like characteristic function, forward time-τ map, basin tree
diagram, Isle-of-Eden digraph and so on [8-12]. It was
known that there are 256 elementary cellular automata
(ECA) rules, only 88 rules are globally independent from
each other [9-10, 13]. These 88 global independent ECA
rules are also organized into 4 groups with distinct qualita-
tive dynamics: 40 period-k (k = 1, 2, 3, 6), 30 topologically
distinct Bernoulli shift rules, 10 complex Bernoulli shift
rules and 8 hyper Bernoulli shift rules [9-10].

This paper considers the dynamics of rule 73 under
the framework of bi-infinite symbolic sequence space. The
rule, a member of Wolfram’s class III and Chua’s com-
plex Bernoulli-shift rules, defines many more subsystems
with rich and complicated dynamical properties such as
topologically mixing, topologically transitivity and positive
topological entropy. This means its global map is chaotic in
the sense of both Devaney and Li-Yorke.

The structure of this paper is organized as follows: Section
2 presents the basic concepts of symbolic dynamical systems
and CA, and obtains many subsystems of rule 73. Section 3
explores the topological dynamics of rule 73. Finally, Section
4 concludes the paper and prospects for future studies.

2. Preliminaries and subsystems
2.1 Preliminaries of symbolic dynamical sys-
tems and CA

The bi-infinite binary symbols sequence space is a con-
figuration set on S = {0, 1}:

Σ2 = {x = (· · · , x−1,
∗
x0, x1, · · · ) | xi ∈ S = {0, 1}, i ∈ Z}

and the metric “d” on Σ2 defined as d(x, y) =

max{ρ(xi,yi)
2|i|

} for any x, y ∈ Σ2, where ρ(·, ·) is the metric
on S defined as

ρ(xi, yi) =

{
0, if xi = yi
1, if xi ̸= yi.

It is known that Σ2 is a compact, perfect and totally
disconnected metric space.

If x ∈ Σ2 and I = [i, j] is an interval of integers, put
x[i,j] = (xi, xi+1, · · · , xj) (i < j), x[i,j) = (xi, · · · , xj−1).
Let x(−∞,i] = (· · · , xi−1, xi) and x[j,+∞) = (xj , xj+1, · · · )
denote the left and right half infinite subsequence respec-
tively. For a finite sequence a = (a0, · · · , an−1), if there
exists an n ∈ Z such that xn+k = ak (k = 0, 1, · · · , n− 1),
then a is a subword of x, denoted by a ≺ x; otherwise
a ⊀ x.

The left-shift σL and right-shift σR are defined by

σL(· · · , x−1,
∗
x0, x1, · · · ) = (· · · , x0,

∗
x1, x2 · · · )

and

σR(· · · , x−1,
∗
x0, x1, · · · ) = (· · · , x−2,

∗
x−1, x0, · · · )

respectively.
By a theorem of Hedlund [3], a map f : Σ2 → Σ2

is a cellular automaton iff it is continuous and commutes
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Table 1: Truth table of Boolean function of Rule 73

(xi−1, xi, xi+1) f̂(xi−1, xi, xi+1)
(0, 0, 0) 1
(0, 0, 1) 0
(0, 1, 0) 0
(0, 1, 1) 1
(1, 0, 0) 0
(1, 0, 1) 0
(1, 1, 0) 1
(1, 1, 1) 0

with σ, i.e. σ ◦ f = f ◦ σ, where σ is left-shift or right-
shift. Moreover, for any CA f , (Σ2, f) defines a dynamical
system. A set X ⊆ Σ2 is f -invariant if f(X) ⊆ X , and
strongly f -invariant if f(X) = X . If X is a closed and f -
invariant, then (X, f) or simply X is called a subsystem of
f .

Each ECA rule can be expressed by a Boolean function.
For example, the one of rule 73 is a local map f̂ :

f̂(xi−1, xi, xi+1) =
x̄i−1 · xi · xi+1 ⊕ xi−1 · xi · x̄i+1 ⊕ x̄i−1 · x̄i · x̄i+1, i ∈ Z,

where “·", “⊕" and “−" stand for “AND", “XOR"
and “NOT" logical operations, respectively [7, 13]. The
truth table of its Boolean function is shown in Table 1.

It is clear that its binary output sequence is 10010010.
Thus, a global map f73 : Σ2 → Σ2 with

f73(· · · , x−1,
∗
x0, x1, · · · ) = (· · · , y−1,

∗
y0, y1, · · · )

can be induced by f̂ , where yi = f̂(xi−1, xi, xi+1).
The n (n ≥ 2) times iteration of f̂ is a map f̂n from

{0, 1}2n+1 to {0, 1} with

f̂n(a−n, · · · , a0, · · · , an) =
f̂(f̂n−1(a[−n,n−2]), f̂

n−1(a[−n+1,n−1]), f̂
n−1(a[−n+2,n])).

2.2 Invariant subsets and subsystems of rule 73
In this subsection, some f73-invariant subsets and subsys-

tems of rule 73 are revealed.

Proposition 1: For rule 73, there is a f73-invariant subset
Λ0 ⊂ Σ2 such that ∀ x ∈ Λ0, f73(x) = x, where Λ0 =
ΛA0 = {x ∈ Σ2|x[i−1,i+1] ∈ A0, ∀ i ∈ Z}, and
A0 = {(0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)}.

Remark 1: Obviously, Λ0 is the set of fixed points of
f73, and A0 is the determinative block system of Λ0, which
is a 3-sequence set. It is clear that there are infinitely
many fixed points of f73, and furthermore, there is a subset
Λ̃0 ⊂ Λ0 such that there is an one to one corresponding
between Λ̃0 and Σ2, i.e., Λ̃0 is equivalent to Σ2. Thus,

this proposition gives a rigorous mathematical analysis for
the evolution of the stationary symbol sequences of rule
73 described in Wolfram’s A New kind of Science [7]. For
convenience, A0 can be denoted by its decimal code set
D(A0) = {1, 3, 4, 5, 6}3. This representation will be also
applied to the determinative block systems in the following
propositions.

Proposition 2: For rule 73, there is a f73-invariant sub-
set Λ∗ ⊂ Σ2 such that f2

73(x) = x, x ∈ Λ∗, where
Λ∗ = {(1, 0, 0, 0)∗}, and (1, 0, 0, 0)∗ stands for the cycle
configuration (· · · , 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, · · · ).

Remark 2: In Proposition 2 and the following discus-
sion, if any symbol of a configuration x ∈ Σ2 is not
designated as the 0-th position, then it means any sym-
bol of x can be designated as the position. For example,
the cycle configuration (1, 0, 0, 0)∗ = (· · · , 1, 0, 0, 0, · · · )
can stand for (· · · ,

∗
1, 0, 0, 0, · · · ), (· · · , 1,

∗
0, 0, 0, · · · ),

(· · · , 1, 0,
∗
0, 0, · · · ) or (· · · , 1, 0, 0,

∗
0, · · · ).

In fact, Λ∗ is an Isle of Eden for rule 73 [11-12].

Proposition 3: For rule 73, there are two f73-invariant
subsets Λ∗

L,Λ
∗
R ⊂ Σ2 such that f3

73(x) = x, x ∈ Λ∗
L or

x ∈ Λ∗
R, where Λ∗

L = {(1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0)∗} and
Λ∗
R = {(0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1)∗}.
It is easily known that Λ∗, Λ∗

L and Λ∗
R are finite subsets

of Σ2, and Λ∗
R = {x ∈ Σ2|xi = y−i, y ∈ Λ∗

L, i ∈ Z}, where
x = (· · · , x−1,

∗
x0, x1, · · · ) and y = (· · · , y−1,

∗
y0, y1, · · · ).

Proposition 4: For rule 73, there exists a f73-invariant
subset Λ′

L ⊂ Σ2 such that f5
73(x) = σ2

L(x), x ∈ Λ′
L, where

Λ′
L = ΛA1

= {x ∈ Σ2|x[i−5,i+5] ∈ A1,∀ i ∈ Z}, and the
determinative block system A1 is a 11-sequence set, whose
decimal code set is
D(A1) = { 1, 2, 4, 8, 16, 21, 32, 42, 64, 65, 84, 85, 129, 130,
169, 170, 224, 240, 258, 261, 338, 341, 383, 448, 480, 517,
522, 607, 663, 677, 683, 687, 703, 766, 767, 896, 960, 1016,
1020, 1024, 1025, 1034, 1045, 1136, 1144, 1215, 1327, 1355,
1367, 1375, 1407, 1532, 1534, 1536, 1592, 1596, 1792, 1820,
1822, 1920, 1934, 1935, 1991, 2019, 2033, 2040}11.

Proof: In fact, for any x ∈ Λ′
L, one has x[i−5,i+5] ∈

A1. For the map f̂5
73 : {0, 1}11 → {0, 1}, it can be verified

that f̂5
73(x[i−5,i+5]) = f̂5

73(xi−5, · · · , xi, · · · , xi+5) = xi+2

for any x[i−5,i+5] ∈ A1, i.e., [f5
73(x)]i = xi+2 for x ∈

Λ′
L, where [f5

73(x)]i denotes the i-th symbol of f5
73(x). This

leads to f5
73(x) = σ2

L(x) for x ∈ Λ′
L. It is easily validated

that f73(x) ∈ Λ′
L for x ∈ Λ′

L. Thus, f73(Λ′
L) ⊂ Λ′

L and
f5
73|Λ′

L
= σ2

L|Λ′
L
.

Proposition 5: For rule 73, there exists a f73-invariant
subset Λ′

R ⊂ Σ2 such that f5
73(x) = σ2

R(x), x ∈ Λ′
R, where

Λ′
R = ΛA2

= {x ∈ Σ2|x[i−5,i+5] ∈ A2, ∀ i ∈ Z}, and the
determinative block system A2 is a 11-sequence set, whose
decimal code set is
D(A2) = { 1, 3, 7, 14, 15, 16, 28, 30, 32, 56, 60, 64, 113, 120,
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128, 227, 241, 254, 255, 256, 336, 455, 483, 509, 510, 512,
516, 520, 596, 641, 642, 672, 680, 911, 967, 1018, 1021, 1024,
1025, 1032, 1040, 1151, 1192, 1282, 1284, 1322, 1344, 1345,
1360, 1364, 1599, 1685, 1706, 1823, 1866, 1877, 1935, 1957,
1962, 2002, 2005, 2025, 2026, 2036, 2037, 2042}11.

The proof of proposition 5 is similar to proposition 4, the
details are omitted here.

Proposition 6: (1) There exists a f10
73 -invariant subset

ΛL ⊂ Σ2 such that f10
73 (x) = σ4

L(x), x ∈ ΛL, where
ΛL = ΛĀ = {x ∈ Σ2|x[i−10,i+10] ∈ Ā , ∀ i ∈ Z}, and the
determinative block system Ā is a 21-sequence set, whose
decimal code set is
D(Ā )= {59918, 119837, 239674, 479349, 958698, 1917396,
1737640, 1378128, 659104, 1318209, 539267, 1078535,
119836, 239672, 479344, 958688, 1917376, 1737600,
1378048, 658944, 1317888, 538624, 1077248, 57344,
114688, 229377, 458754, 917509, 1835018, 1572884,
1048616, 80, 160, 321, 643, 1287, 2574, 5149, 10298,
20597, 41194, 82388, 164776, 329552}21.

(2) Λ′′
L = ΛL ∪ f73(ΛL) ∪ f2

73(ΛL) ∪ · · · ∪ f9
73(ΛL)

is a f73-invariant subset, and f10
73 (x) = σ4

L(x), x ∈ Λ′′
L.

Furthermore, Λ′′
L = {x ∈ Σ2|x[i−10,i+10] ∈ A ′′}, and the

determinative block system A ′′ is a 21-sequence set, whose
decimal code set is
D(A ′′) =
{59918, 119837, 239674, 479349, 958698, 1917396, 1737640,
1378128, 659104, 1318209, 539267, 1078535, 119836, 239672,
479344, 958688, 1917376, 1737600, 1378048, 658944, 1317888,
538624, 1077248, 57344, 114688, 229377, 458754, 917509,
1835018, 1572884, 1048616, 80, 160, 321, 643, 1287, 2574,
5149, 10298, 20597, 41194, 82388, 164776, 329552, 1917397,
1737643, 1378135, 659119, 1318239, 539327, 1078655, 60159,
120319, 240639, 481279, 962559, 1925118, 1753084, 1409016,
720880, 1441760, 786369, 1572739, 1048327, 2096654, 2096157,
2095162, 2093173, 2089194, 2081236, 2065320, 2033488,
1969824, 1842497, 1587843, 539266, 1078532, 59912, 119824,
239648, 479296, 958592, 1917184, 1737216, 1377280, 657409,
1314818, 532485, 1064971, 32791, 65582, 131165, 262330,
524661, 1049322, 1492, 2984, 5968, 11936, 23873, 47747, 95495,
190990, 381981, 763962, 1527925, 479345, 958691, 1917383,
1737615, 1378079, 659007, 1318015, 538879, 1077758, 58364,
116728, 233457, 466914, 933829, 1867658, 1638164, 1179176,
261200, 522400, 1044801, 2089603, 2082055, 2066958, 2036765,
1976378, 1855605, 1614058, 1130964, 1737642, 1378133,
659114, 1318229, 539306, 1078612, 60072, 120144, 240288,
480576, 961153, 1922306, 1747461, 1397770, 698388, 1396776,
696400, 1392800, 688449, 1376899, 656647, 1313294, 529437,
1058874, 1318208, 539264, 1078528, 59904, 119809, 239619,
479239, 958479, 1916958, 1736764, 1376376, 655600, 1311200,
525249, 1050499, 3847, 7694, 15389, 30778, 61557, 123114,
246228, 492456, 984912, 59919, 119839, 239679, 479359,
958718, 1917437, 1737722, 1378292, 659433, 1318866, 540581,
1081163, 65175, 130350, 260701, 521402, 1042805, 2085610,
2074068, 2050984, 2004816, 1912480, 1727809, 1358467,
619783, 1239566, 479348, 958696, 1395624, 694096, 1388192,
1917392, 1737632, 1378113, 659074, 1318148, 539144, 1078288,
59424, 118848, 237697, 475394, 950789, 1901578, 1706004,
1314856, 532560, 1065120, 33089, 66179, 132359, 264718,
1378129, 659107, 1318215, 539278, 1078556, 59960, 119921,
239843, 479687, 959375, 1918750, 1740348, 1383544, 669936,

1339872, 582593, 1165187, 233223, 466446, 932893, 1865786,
1634421, 1171690, 1078533, 59914, 698741, 1397482, 697812,
119829, 239658, 479317, 958634, 1917269, 1737386, 1377620,
658089, 1316178, 535205, 1070411, 43671, 87342, 174685,
349370, 679233}21.

Proposition 7: (1) There exists a f10
73 -invariant subset

ΛR ⊂ Σ2 such that f10
73 (x) = σ4

R(x), x ∈ ΛR, where
ΛR = Λ ¯̄A = {x ∈ Σ2|x[i−10,i+10] ∈ ¯̄A ,∀ i ∈ Z}, and
the determinative block system ¯̄A is a 21-sequence set.
(2) Λ′′

R = ΛR ∪ f73(ΛR) ∪ f2
73(ΛR) ∪ · · · ∪ f9

73(ΛR) is
a f73-invariant subset, and f10

73 (x) = σ4
R(x), x ∈ Λ′′

R.
Furthermore, Λ′′

R = {x ∈ Σ2|x[i−10,i+10] ∈ Ā ′′}, and the
determinative block system Ā ′′ is a 21-sequence set.

Remark 3: Due to space limitations, the proofs of Propo-
sitions 6 and 7 and the expressions of the decimal code
sets of the determinative block systems ¯̄A and Ā ′′ in
Propositions 7 are omitted here.

Proposition 8: Λ∗
L ⊂ Λ′′

L, Λ
∗
R ⊂ Λ′′

R.

From Proposition 1 to 7, eight subsystems of f73:
(Λ0, f73), (Λ∗, f73), (Λ∗

L, f73), (Λ∗
R, f73), (Λ′

L, f73),
(Λ′

R, f73), (Λ′′
L, f73) and (Λ′′

R, f73) are obtained.
Additionally, there are symmetrical relations between
Λ′
R and Λ′

L, and between Λ′′
R and Λ′′

L.

Proposition 9: Λ′
R = {x ∈ Σ2|xi = y−i, y ∈ Λ′

L, i ∈
Z}, Λ′′

R = {x ∈ Σ2|xi = y−i, y ∈ Λ′′
L, i ∈ Z}, where

x = (· · · , x−1,
∗
x0, x1, · · · ) and y = (· · · , y−1,

∗
y0, y1, · · · ).

3. Topological dynamics of rule 73
3.1 Bernoulli-shift subsystem and Subshift of
finite type

Definition 1: (1) Λ ⊂ Σ2 is a f -invariant subset, (Λ, f)
is called a Bernoulli-shift subsystem if there exists an integer
pair (q, p) with p ≥ q > 1, such that fp(x) = σq(x), x ∈ Λ,
where σ is the left-shift σL or right-shift σR.

(2) If Λ = ΛA = {x ∈ SZ | x[i−p,i+p] ∈ A , ∀ i ∈ Z},
and the determinative block system A of Λ is a (2p + 1)-
sequence set, then the subsystem (Λ, f) is called a subshift
of finite type of f .

If (Λ, f) is a subshift of finite type, let Λ = ΛA , then ΛA

can be described by a finite directed graph GA = {A ,E },
where each vertex is labeled by a sequence in A , and
E is the edge set. Two vertices a = (a0, · · · , an−1) and
b = (b0, · · · , bn−1) are connected by an edge of E if
and only if ak = bk−1, k = 1, 2, · · · , n − 1. Every edge
(a0, · · · , an−1) → (b0, · · · , bn−1) of E is labeled by bn−1.
One can think of each element of ΛA as a bi-infinite path
on the graph GA . Whereas a directed graph corresponds to
a square transition matrix A = (Aij)m×m with Aij = 1 if
and only if there is an edge from vertex b(i) to vertex b(j),
where m = |A | is the number of elements in A , and i (or
j) is the code of the vertex in A , i, j = 0, 1, · · · ,m − 1.
Thus, ΛA is precisely defined by the transition matrix A.
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Remarkably, a square matrix A is irreducible if, for any
i, j, there exists an n such that An

ij > 0; aperiodic if there
exists an n, such that An

ij > 0, for all i, j, where An
ij is the

(i, j) entry of An. If ΛA is a subshift of finite type of the
shift map σ, then the map is topologically transitive if and
only if A is irreducible; the map is topologically mixing if
and only if A is aperiodic. Equivalently, A is irreducible if
and only if for every ordered pair of vertices b(i) and b(j)

in A there is a path in the graph GA starting at b(i) and
ending at b(j); A is aperiodic if and only if it is irreducible
and the numbers of the length of any two different closed
paths in the graph GA are coprime [18-20].

Based on the above definition, (Λ′
L, f73), (Λ′

R, f73),
(Λ′′

L, f73) and (Λ′′
R, f73) derived from Propositions 5, 6 and

7 are subshifts of finite type of f73.

3.2 Complicated dynamics of subsystems of
rule 73

Since Λ0, Λ∗, Λ∗
L and Λ∗

R are the set of fixed points
or the set of periodic points of f73, so their dynamical
properties on these invariant sets are simple. In this section,
the dynamics of f73 on Λ′

L, Λ′
R, Λ′′

L and Λ′′
R will be

thoroughly investigated.

Lemma 1: Let (Λ, f) be a subshift of finite type of a
CA f with fp(x) = σq(x), x ∈ Λ (p ≥ q > 1), A be the
determinative block system of Λ, and A be transition matrix
corresponding to the finite directed graph GA = {A ,E }, if
A is aperiodic, then σ and f are both topologically mixing
on Λ [18-19].

Lemma 2: Let (Λ, f) be a subshift of finite type of a CA
f with fp(x) = σq(x), x ∈ Λ (p ≥ q > 1), then
(1) the topological entropy of f on Λ is

ent(f |Λ) =
q

p
log(ρ(A)),

where ρ(A) is the spectral radius of the transition matrix A
corresponding to the finite directed graph GA = {A ,E };
(2) ent(f) ≥ ent(f |Λ), where ent(f) is the topological
entropy of f on total symbolic space Σ2. [16-20]

Lemma 3: For a subshift of finite type (Λ, f), if f is
topologically mixing on Λ, then
(1) f is chaotic in the sense of Devaney on Λ;
(2) f is chaotic in the sense of Li-Yorke. [14-15, 18-20]

Theorem 1: (1) f73 is chaotic in the sense of Devaney
on Λ′

L;
(2) f73 is chaotic in the sense of Devaney on Λ′

R;
(3) f73 is chaotic in the sense of Devaney on Λ′′

L;
(4) f73 is chaotic in the sense of Devaney on Λ′′

R.
Proof: (1) Recall f73-invariant set Λ′

L and its determi-
native block system A1 defined in Proposition 4, and it is
easy to obtain the finite directed graph GA1 = {A1,E }
which is shown in Figure 1. It is easily found that the
numbers of the length of any two different closed paths in the

graph are coprime, thus, the transition matrix A1 correspond-
ing to the graph is aperiodic, so the shift σL is mixing on Λ′

L.
Since f5

73(x) = σ2
L(x), x ∈ Λ′

L, the topologically mixing
property of σL implies the topologically mixing property of
f5
73 on Λ′

L, and this educes the topologically mixing property
of f73 on Λ′

L [24-25]. Thus, f73 is chaotic in the sense of
Devaney on Λ′

L based on Lemma 3. The proofs of (2) to (4)

Fig. 1: Finite directed graph GA1
= {A1, E}.

are similar to that of (1).
Theorem 2: The topological entropies of f73 on these

invariant sets Λ′
L, Λ′

R, Λ′′
L and Λ′′

R are respectively
(1) ent(f73|Λ′

L
) = ent(f73|Λ′

R
) = 2

5 log(ρ(A1)) =
2
5 log(ρ(A2)) ≈ 2

5 log(1.09433952) ≈ 0.4 ×
log(1.09433952) = 0.0360604,
where ρ(A1) and ρ(A2) are the spectral radiuses of the
transition matrices A1 and A2 corresponding to the finite
directed graphs GA1 = {A1,E } and GA2 = {A2,E }.
(2) ent(f73|Λ′′

L
) = ent(f73|Λ′′

R
) = 2

5 log(ρ(Ā1)) =
2
5 log(ρ(Ā2)) ≈ 2

5 log(1.081959) ≈ 0.0315094,
where ρ(Ā1) and ρ(Ā2) are the spectral radiuses of the
transition matrices Ā1 and Ā2 corresponding to the finite
directed graphs GA ′′ = {A ′′,E } and GĀ ′′ = {Ā ′′,E }.

Remark 4: (1) The transition matrix A1 corresponding
to the finite directed graphs GA1 = {A1,E } is shown
in Appendix, which is a 66 × 66 matrix. The topological
entropies of f73 on Λ′

L and Λ′
R can be computed based on

Lemma 2;
(2) the transition matrices Ā1 and Ā2 corresponding to
GA ′′ = {A ′′,E } and GĀ ′′ = {Ā ′′,E } are too large to
be listed here, both are 278× 278 matrices;
(3) the calculation of these transition matrices and the char-
acterization of the finite directed graphs in above theorems
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can be completed by computer-aided methods.

It is well known that chaos in the sense of Devaney or
positive topological entropy implies chaos in the sense of
Li-Yorke [18-19, 26], thus, one has the following corollary.

Corollary 1: f73 is chaotic in the sense of Li-Yorke.

4. Conclusion
One of the main challenges is to explore the quantitative

dynamics in cellular automata evolution [30]. Over the past
few years, the material advances in this research field have
been obtained [15-17, 21-25, 27-29]. By taking some ad-
vantages of complex Bernoulli-shift rules unclosed by Chua
et al., this work has developed an elementary and rigorous
proof to predict the rich and complex dynamics of rule 73 in
view of symbolic dynamical systems. For example, the rule
is topologically mixing and possesses positive topological
entropies on some subsystems, and henceforth is chaotic
in the sense of both Devaney and Li-Yorke. Indeed, the
dynamics of rule 73 have not been completely revealed,
therefore new analytical methods should be exploited to
investigate it as well as other CA rules in future studies.
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Appendix
The transition matrix A1 corresponding to the finite directed
graphs GA1 = {A1,E } in Figure 1 is
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A1 =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
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Infinite Number of Chaotic Generalized Sub-shifts of Cellular
Automaton Rule 180

Wei Chen, Fangyue Chen, Yunfeng Bian, and Jing Chen
School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, P. R. China

Abstract— This paper is devoted to an in-depth study of cel-
lular automaton rule 180 under the framework of symbolic
dynamics. Rule 180, a member of Wolfram’s class IV and
Chua’s hyper Bernoulli shift rules, defines infinite number
of generalized sub-shifts. An effective method of constructing
the shift invariant sets of the rule’s global map is proposed.
It is noted that this method is also applicable to studying the
dynamics of other rules. Furthermore, the rich and complex
dynamical behaviors on these sub-shifts, such as positive
topological entropies, topologically mixing, and chaos in the
sense of Li-Yorke and Devaney, are revealed.

Keywords: cellular automata; chaos; generalized sub-shift; sym-
bolic dynamics; topologically mixing.

1. Introduction
Cellular automata (CA) are among the oldest models of

natural computing, dating back over half a century [1].
The first CA studied by von Neumann in the late 1940s
were biologically motivated: the goal was to design self-
replicating artificial systems that are also computationally
universal. Following suggestions by S. Ulam, he envisioned
a discrete universe consisting of a two-dimensional mesh
of finite state machines, called cells, interconnected locally
with each other. The cells change their states synchronously
depending on the states of some nearby cells, the neighbors,
as determined by a local update rule. All cells use the same
update rule so that the system is homogeneous like many
physical and biological systems. These cellular universes are
now known as CA. CA have been widely used to model a
variety of dynamical systems in physics, biology, chemistry,
and computer science in the recent decades.

The topological dynamics of CA began in 1969 with
Hedlund who viewed one-dimensional CA in the context
of symbolic dynamics as endomorphisms of the shift dy-
namical system. His main results are the characterizations
of surjective and open CA [2]. In the 1980s, Wolfram
proposed cellular automata as models for physical systems
exhibiting complex or even chaotic behaviors. In his work,
he divided the 223

= 256 elementary cellular automata
(ECA) rules informally into four classes using dynamical
concepts like periodicity, stability, and chaos [3-5]. In 2002,
he introduced his monumental work A New kind of Science
[6]. Based on this work, Chua et.al provided a nonlinear
dynamics perspective to Wolfram’s empirical observations

from the viewpoint of mathematical analysis via the concepts
like characteristic function, forward time-τ map, basin tree
diagram, Isle-of-Eden digraph and so on [7-11].

Although there are 256 ECA rules, only 88 rules are
globally independent from each other [12]. These 88 global
independent ECA rules are also organized into 4 groups with
distinct qualitative dynamics; 40 period-k (k = 1, 2, 3, 6),
30 topologically distinct Bernoulli shift rules, 10 complex
Bernoulli shift rules and 8 hyper Bernoulli shift rules [8-
11].

Due to the fact that many properties of the temporal
evolution of CA, such as topological entropy, topologically
sensitivity and topologically mixing are undecidable [13],
one should, in principle, separately analyze time-asymptotic
dynamics for each class of rules. It will be seen in the next
sections that rule 180, a member of Wolfram’s class IV
and Chua’s hyper Bernoulli shift rules, has infinite number
of generalized sub-shifts with rich and complex dynamics.
Precisely, it has positive entropies, and is topologically
mixing on these generalized sub-shifts. This implies that rule
180 is chaotic in the sense of Li-Yorke and Devaney.

The rest of this paper is organized as follows. Section
2 presents the preliminaries of symbolic dynamical sys-
tems and CA. Section 3 explores infinite number of f180-
positively invariant subsets, which are hyper generalized
sub-shifts of f180. Section 4 demonstrates some complex
dynamics of the rule. Finally, Section 5 concludes this paper.

2. Preliminaries
A word over S = {0, 1} is a finite sequence a =

(a0, · · · , an−1). The length of a is denoted by l(a) = n.
If a is a finite or infinite word and I = [i, j] is an interval
of integers on which a is defined, then denote a[i,j] =
(ai, · · · , aj) and a[i,j) = (ai, · · · , aj−1). b is a subword
of a, denoted by b ≺ a, if b = aI for some interval I ⊆ Z;
otherwise, denoted by b ⊀ a.

A bi-infinite word is called a configuration, the collection
of all configurations is

Σ2 = SZ = {(· · · , x−1,
∗
x0, x1, · · · )| xi ∈ S, i ∈ Z}

and the product “d” induced by Hamming distance is defined
as

d(x, y) =
∞∑

i=−∞

1
2|i|

· |xi − yi|,
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Table 1: Truth table of Boolean function of rule 180

(xi−1, xi, xi+1) f̂180(xi−1, xi, xi+1)
(0, 0, 0) 0
(0, 0, 1) 0
(0, 1, 0) 1
(0, 1, 1) 0
(1, 0, 0) 1
(1, 0, 1) 1
(1, 1, 0) 0
(1, 1, 1) 1

for any x, y ∈ Σ2. It is easy to know that Σ2 is a Cantor
complete metric space. The left-shift map σ

L
and right-shift

map σ
R

are defined by [σ
L
(x)]i = xi+1, [σ

R
(x)]i = xi−1,

for any x ∈ Σ2, i ∈ Z respectively, where [σ(x)]i stands for
the i-th symbol of σ(x).

By a theorem of Hedlund [2], a map f : Σ2 → Σ2 is a
cellular automaton iff it is continuous and commutes with
σ, i.e., σ ◦ f = f ◦ σ, where σ is left-shift or right-shift.
Moreover, any CA f defines a dynamical system (Σ2, f). A
subset X ⊆ Σ2 is f -invariant if f(X) ⊆ X , and strongly
f -positively invariant if f(X) = X . If X is a closed and
f -invariant, then (X, f) or simply X is called a subsystem
of (Σ2, f).

Each ECA rule can be expressed by a logical truth table,
the one of rule 180 is shown in Table 1. It is clear that its
binary output sequence is 00101101.

Let f̂180 be the local map defined by the truth table,
and f180 : Σ2 → Σ2 with f180(· · · , x−1,

∗
x0, x1, · · · ) =

(· · · , y−1,
∗
y0, y1, · · · ) be the global map induced by f̂180,

where yi = f̂180(xi−1, xi, xi+1).
The local map f̂180 also defines a map from

Sn+1 to Sn−1 (n ≥ 2) with f̂180(a0, a1, · · · , an) =
(b0, b1, · · · , bn−2), where bi = f̂180(ai, ai+1, ai+2) (i =
0, 1, 2, · · · , n − 2). The n times iteration of f̂180 is a map
f̂n
180 from S2n+1 to S with

f̂n
180(a−n, · · · , a0, · · · , an) =

f̂180(f̂n−1
180 (a[−n,n−2]), f̂n−1

180 (a[−n+1,n−1]), f̂n−1
180 (a[−n+2,n])).

3. Generalized sub-shifts
Let x̄ ∈ Sn be a finite word, x̄ = (x̄0, x̄1, · · · , x̄n−1) with

boundary condition x̄0 = x̄n−1 = 1. Denote x : Z→ S with
i 7→ xi of the following form:

∃ m ∈ Z, xm+i =
{

x̄i, if 0 ≤ i ≤ (n− 1);
0, otherwise.

These configurations are called bi-infinite extensions of the
block x̄ in the background of 0′s [14, 15].

Define

Fn = {x ∈ Σ2|x̄ ∈ Sn, x̄0 = x̄n−1 = 1} (1)

and
F =

⋃

n∈N
Fn. (2)

Any configuration of this set is said to be 0-finite [14].
Therefore a configuration x is 0-finite iff it is of the

form x = (· · · , 0, 0, xm, · · · , xp, 0, 0, · · · ), with m and p
the minimum and the maximum site respectively for which
xm = xp = 1. To each 0-finite configuration x we assign
its length l(x) = p −m + 1. particularly, for the quiescent
configuration 0 = (· · · , 0, 0, 0, · · · ), l(0) = 0.

Definition 1: (1) [14] A dynamical system (Σ2, f) (or
simply f, non-necessarily induced from a CA rule) is said
to be a generalized shift iff there exists a map M : Σ2 → N
such that for any α ∈ Σ2, and any t ∈ N,

fM(α)(f t(α)) = σM(α)(f t(α));

(2) [14] f is said to be a generalized sub-shift on the subset
X of Σ2 iff X is f -positively invariant (f(X) ⊂ X), and
there exists a map M : X → N such that for any x ∈ X,
and any t ∈ N,

fM(x)(f t(x)) = σM(x)(f t(x));

(3) f is said to be a hyper generalized sub-shift on the subset
X of Σ2 iff X is f -positively invariant (f(X) ⊂ X), and
there exists a number M ∈ N such that for any x ∈ X

fM (x) = σM (x).

Remark 1: If f is a (hyper) generalized sub-shift on the
subset X, then simply say X is a (hyper) generalized sub-
shift of f .

Proposition 1: If X is a hyper generalized sub-shift of
CA f , then there exists a set A of words of length n =
(2M + 1) such that X = XA = {x ∈ Σ2| x[i−n,i+n] ∈
A ,∀ i ∈ Z}, where A is said to be the determinative block
system of X.

Proof: Without loss of generality, σ is chosen as the
right shift with [σ(x)]i = xi−1 for x ∈ X . Since the local
map f̂ : S3 → S, it can lead out of its M times iteration
f̂M : S2M+1 → S. Thus, fM (x) = σM (x), x ∈ X , if
and only if f̂M (x[i−M,i+M ]) = [fM (x)]i = [σM (x)]i =
xi−M , for all i ∈ Z. Let A = {(a0, · · · , a2M ) ∈
S2M+1|(a0, · · · , a2M ) = x[i−M,i+M ], x ∈ X, i ∈ Z}, A
is a finite set since |A | < 22M+1. Then it follows that
X = XA .

It was known that f180 is not a generalized shift, but is a
generalized sub-shift and hyper generalized sub-shift on the
subset F [14, 15].
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Lemma 1: [14, 15] For rule 180, there exists a map M :
{0, 1}∗ → N such that for any x̄ ∈ {0, 1}∗,

f
M(x̄)
180 (x) = σ

M(x̄)
R (x),

where {0, 1}∗ is the set of all blocks of finite length defined
over S = {0, 1} and the map M is a power of two, i.e.,
for any x̄ ∈ {0, 1}n, M(x̄) = 2E(x̄) for a suitable map
E : {0, 1}∗ → N. Where as usual x(∈ F ⊂ Σ2) denotes
any bi-infinite extension of block x̄ in a background of 0′s.

Lemma 2: [14, 15] The map which satisfies Lemma 1 is
such that for every n ∈ N,

M(1n) = 2[log(n+1)],

where 1n is the 1-constant block of length n.

The spatio-temporal evolution of the bi-infinite extensions
of blocks 114 and 130 in a background of 0′s is shown in
Figure 1.

(a)

(b)

Fig. 1: Spatio-temporal evolution of the bi-infinite extension
of block 1n in a background of 0′s, (a) n = 14; (b) n = 30.

Unfortunately, the f180-positively invariant subset F de-
fined in (2) is only a countable infinite set, the dynamics of
f180 on the generalized sub-shift F is not enough to reveal
the dynamics on the total phase space Σ2. In the following
discussion in this section, infinite number of generalized sub-
shifts of f180 will be expressed.

For given p ∈ N, let n satisfies 2p − 1 ≤ n ≤ 2p+1 − 2
(i.e., p ≤ log(n + 1) < p + 1), and construct a finite word

a(n)
p = ( 0, · · · , 0︸ ︷︷ ︸

2p+1+1

, 1n, 0, · · · , 0︸ ︷︷ ︸
2p+1

).

A
(n)
p denotes the (2p+1 +1)-sequence set appeared in a

(n)
p ,

i.e.,

A (n)
p = {(a0, a1, · · · , a2p+1)|(a0, a1, · · · , a2p+1) ≺ a(n)

p }.

It is easily known that the number of symbols of a
(n)
p is

(2p+1 + n + 1), thus, the number of sequences of A
(n)
p is

(2p+1 + n + 1), and f̂2p

180(a0, a1, · · · , a2p+1) = a0, for any
(a0, a1, · · · , a2p+1) ∈ A

(n)
p .

Now let

Λ(n)
p = {x ∈ Σ2| x[i−2p,i+2p] ∈ A (n)

p , i ∈ Z} (3)

and

Λ̃p =
2p+1−2⋃
n=2p−1

Λ(n)
p . (4)

In (3), the (2p+1+1)-sequence set A
(n)
p is the determinative

block system of Λ(n)
p .

Proposition 2: For given p ∈ N, and n satisfies 2p−1 ≤
n ≤ 2p+1 − 2, Λ̃p is a f2p

180-positively invariant set, and is a
hyper generalized sub-shift of f2p

180.

Proof: In fact, for any x ∈ Λ̃p, if x ∈ Λ(n)
p , where

n satisfies 2p − 1 ≤ n ≤ 2p+1 − 2, thus, x[i−2p,i+2p] ∈
A

(n)
p , so f̂2p

180(x[i−2p,i+2p]) = xi−2p , this implies f2p

180(x) =
σ2p

R (x) ∈ Λ(n)
p ⊂ Λ̃p.

Moreover, let

Λp = Λ̃p ∪ f180(Λ̃p) ∪ f2
180(Λ̃p) ∪ · · · ∪ f2p−1

180 (Λ̃p). (5)

Proposition 3: Λp is a f180-positively invariant set, and
is a hyper generalized sub-shift of f180.

Proof: The result is obvious, the details are omitted
here.

Based on above propositions, the following interesting
result is obtained.

Theorem 1: For rule 180, there exists infinite number of
f180-positively invariant subsets Λp (p = 1, 2, 3, · · · ) such
that f2p

180|Λp
= σ2p

R |Λp
, i.e., Λp (p = 1, 2, 3, · · · ) are the

generalized sub-shifts of f180.

Example 1: The structure of the generalized sub-shift
Λ1: when p = 1, then n = 1, 2. Thus, a

(1)
1 = (0000010000),

a
(2)
1 = (00000110000), and

Λ̃1 = Λ(1)
1 ∪ Λ(2)

1 ,

where

Λ(1)
1 = {x ∈ Σ2| x[i−2,i+2] ∈ A

(1)
1 , i ∈ Z},

Λ(2)
1 = {x ∈ Σ2| x[i−2,i+2] ∈ A

(2)
1 , i ∈ Z},

A
(1)
1 = {(a0, a1, · · · , a4)|(a0, a1, · · · , a4) ≺ a

(1)
1 }

= {00000, 00001, 00010, 00100, 01000, 10000} and
A

(2)
1 = {(a0, a1, · · · , a4)|(a0, a1, · · · , a4) ≺ a

(2)
1 }

= {00000, 00001, 00011, 00110, 01100, 11000, 10000}.
It follows that

Λ̃1 = {x ∈ Σ2| x[i−2,i+2] ∈ A1, i ∈ Z},
where
A1 = A

(1)
1 ∪A

(2)
1 = {00000, 00001, 00010, 00100, 01000,
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10000, 00011, 00110, 01100, 11000}.
Let Λ1 = Λ̃1 ∪ f(Λ̃1), where

f(Λ̃1) = {x ∈ Σ2| x[i−2,i+2] ∈ A ′
1, i ∈ Z},

and

A ′
1 = {(b0, b1, · · · , b4)| (b0, b1, · · · , b4) = f̂180(a0, a1,

· · · , a6), (ai, ai+1, · · · , ai+4) ∈ A1, i = 0, 1, 2} = A1.

Remark 2: Generally, the f180-positively invariant set
Λp in (5) may be one of subset of the set which also is
a generalized sub-shifts ∆p with f2p

180|∆p = σ2p

R |∆p . For
example, p = 1, it is easily investigated that there exists a
f180-positively invariant set ∆1 = {x ∈ Σ2| x[i−2,i+2] ∈
Ā , i ∈ Z} such that f2

180|∆1 = σ2
R|∆1 , where

Ā = {00000, 00001, 00010, 00011, 00100, 00101, 00110,
01000, 01001, 01011, 01100, 01101, 10000, 10001, 10010,
10011, 10110, 11000, 11001, 11011}. Obviously, Λ1 ⊂ ∆1.

4. Complex dynamics
If Λ ⊂ Σ2 is a hyper generalized sub-shift of a CA f ,

and Λ = ΛA , A is the determinative block system of Λ,
then ΛA can be described by a finite directed graph GA =
{A ,E }, where each vertex is labeled by a sequence in A ,
and E is the edge set. Two vertices a = (a0, · · · , an−1)
and b = (b0, · · · , bn−1) are connected by an edge of E if
and only if ak = bk−1, k = 1, 2, · · · , n − 1. Every edge
(a0, · · · , an−1) → (b0, · · · , bn−1) of E is labeled by bn−1.
One can think of each element of ΛA as a bi-infinite path
on the graph GA . Whereas a directed graph corresponds to
a square transition matrix A = (Aij)m×m with Aij = 1 if
and only if there is an edge from vertex b(i) to vertex b(j),
where m = |A | is the number of elements in A , and i (or
j) is the code of the vertex in A , i, j = 0, 1, · · · ,m − 1.
Thus, ΛA is precisely defined by the transition matrix A.

Remarkably, a square matrix A is irreducible, if for any
i, j, there exists an n such that An

ij > 0; aperiodic if there
exists an n, such that An

ij > 0, for all i, j, where An
ij is

the (i, j) entry of An. If ΛA is a sub shift of finite type of
the shift map σ, then the map is topological transitive if and
only if A is irreducible; the map is topologically mixing if
and only if A is aperiodic. Equivalently, A is irreducible if
and only if for every ordered pair of vertices b(i) and b(j)

in A there is a path in the graph GA starting at b(i) and
ending at b(j); A is aperiodic if and only if it is irreducible
and the numbers of the length of any two different closed
paths in the graph GA are coprime [19-21].

Lemma 3: Let Λ be a hyper generalized sub-shift of
a CA f with fM (x) = σM (x), x ∈ Λ, A be the
determinative block system of Λ, and A be transition matrix
corresponding to the finite directed graph GA = {A ,E },
if A is aperiodic, then σ and f are both topological mixing
on Λ [19, 20].

Lemma 4: Let Λ be a hyper generalized sub-shift of a
CA f with fM (x) = σM (x), x ∈ Λ, then
(1) the topological entropy of f on Λ is

ent(f |Λ) = log(ρ(A)),

where ρ(A) is the spectral radius of the transition matrix A
corresponding to the finite directed graph GA = {A ,E };
[19, 20]
(2) ent(f) ≥ ent(f |Λ), where ent(f) is the topological
entropy of f on total symbolic space Σ2. [16-20]

Lemma 5: For a hyper generalized sub-shift (Λ, f), if f
is topological mixing on Λ, then
(1) f is chaotic in the sense of Devaney on Λ [16, 19, 20];
(2) f is chaotic in the sense of Li-Yorke. [19, 27]

Theorem 2: (1) f180 is chaotic in the sense of Devaney
on the hyper generalized sub-shift Λ1 in Example 1;
(2) the topological entropy of f180 on Λ1 is positive.

Proof: (1) At the time, f2
180(x) = σ2

R(x), x ∈ Λ1. It is
already known that the determinative block system of Λ1 is
A1 = {00000, 00001, 00010, 00100, 01000, 10000, 00011,
00110, 01100, 11000}, and the matrix corresponding to the
finite directed graph GA1 = {A1,E } is

A1 =




1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0




.

It follows that An
1 > 0 (n ≥ 10), so A is aperiodic, σR

and σ2
R are mixing on Λ1, it implies f180 is mixing on Λ1.

Thus, f180 is chaotic in the sense of Devaney on Λ1 based
on Lemma 5.
(2) in fact, ent(f180|Λ1) = log(ρ(A1)) ≈ log(1.4196) > 0.

Remark 3: The result of the theorem can also be ob-
tained from the coprime property of the numbers of the
length of any two different closed paths in the finite directed
graph GA1 = {A1,E }.

Theorem 3: f180 is chaotic in the sense of Devaney on
each hyper generalized sub-shift Λp (p = 1, 2, 3, · · · ) in (3),
(4) and (5).

Proof: Recall the structure of Λp (p = 1, 2, 3, · · · ):
Λp = Λ̃p ∪ f180(Λ̃p) ∪ f2

180(Λ̃p) ∪ · · · ∪ f2p−1
180 (Λ̃p).

It is obvious that Λp is f180-positively invariant set. Since
Λ̃p is a hyper generalized sub-shift of f180, by Proposition 1,
there exists its determinative block system Ãp. It is clear that
the (2p+1 + 1)−word 02p+1+1 belongs to Ãp, this implies
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there exists a closed path from the word to self whose length
is 1 in the finite directed graph GÃp

= {Ãp,E }, so it
is easy to know that σR and f2p

180 is topologically mixing
on Λ̃p. Moreover, f180 is a homeomorphic map from Λ̃p

to f180(Λ̃p), so it is easily proved that 02p+1+1 belongs to
each Ãp (p = 2, 3, · · · , 2p − 1), thus, σR and f2p

180 is also
topologically mixing on f i

180(Λ̃p) (i = 2, 3, · · · , 2p − 1).
Finally, let Ap denote the determinative block system of Λp,

then there still holds that 02p+1+1 belongs to Ap, it implies
that σR and f180 is topologically mixing on Λp, so f180

is chaotic in the sense of Devaney on Λp. Of course, it is
chaotic in the sense of Li-Yorke.

5. Conclusion
As a particular class of dynamical systems, CA have

been widely used for modeling and approximating many
physical phenomena. Despite their apparent simplicity, CA
can display rich and complex evolutions [22-26, 28, 29],
and many properties of their spatio-temporal evolutions are
undecidable [13]. This paper is devoted to an in-depth study
of cellular automaton rule 180 in the framework of symbolic
dynamics. It has been rigorously proved that its global map
defines infinite number of generalized sub-shifts with rich
and complex dynamical behaviors, such as topologically
mixing, positive topological entropies and chaos in the sense
of Li-Yorke and Devaney. Indeed, the dynamics of rule 180
have not been completely revealed, therefore new effective
analytical methods should be exploited to investigate it as
well as other CA rules in future studies.
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Attractors and Subshifts of Finite Type of ECA 41

Yunfeng Bian, Fangyue Chen, Yi Wang, Jing Chen, and Wei Chen
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Abstract— In this paper, the dynamics of elementary cel-
lular automaton rule 41 is investigated in the bi-infinite
symbolic sequence space. In spite of rule 41 is not surjective,
but it possess of rich and complex dynamical behaviors. The
existence of attractors and subshifts of finite type of the rule’s
global map is strictly proved, some interesting dynamical
properties on these subshifts, such as positive topological
entropies, topological transitivity and topological mixing,
chaos in the sense of Li-Yorke and Devaney, are revealed.

Keywords: attractor; cellular automata; chaos; subshift of finite
type; symbolic dynamics.

1. Introduction
Cellular automata (CA) are a class of spatially and tem-

porally discrete, deterministic mathematical systems char-
acterized by local interactions and an inherently parallel
form of evolution. CA, formally introduced by von Neumann
and Ulam in the 1940’s to the 1950’s, are able to pro-
duce complex dynamical phenomena by means of designing
simple local rules [1]. Due to their simple mathematical
constructions and distinguishing features, CA have been
widely used to model a variety of dynamical systems. The
study of topological dynamics of CA began with Hedlund
in 1969, who viewed one-dimensional CA (1D CA) in the
context of symbolic dynamics as endomorphisms of the
shift dynamical system [2], where the main results are the
characterizations of surjective and open CA. Based on the
theoretical concept of universality, researchers have tried to
develop even simpler and more practical architectures of CA
which can be used for widely diverse applications. In the
early 1980’s, Wolfram introduced space-time representations
of 1D CA and informally classified them into four classes
by using dynamical concepts like periodicity, stability and
chaos [3, 4]. In 2002, he introduced his monumental work A
New Kind of Science [5]. To provide a rigorous foundation
for Wolfram’s empirical observations Chua et al derived
a nonlinear dynamics perspective to elementary cellular
automata (ECA) via the concepts like characteristic function,
forward time-𝜏 map, basin tree diagram and Isle-of-Eden
digraph [6-8]. It was known that there are 256 ECA rules,
only 88 rules are globally independent from each other [9].
These 88 global independent ECA rules are also organized
into 4 groups with distinct qualitative dynamics: 40 period-
𝑘 (𝑘 = 1, 2, 3, 6) rule classes, 30 topologically distinct
Bernoulli shift rule classes, 10 complex Bernoulli shift rule
classes and 8 hyper Bernoulli shift ones [6-9].

CA are dynamical systems with a very rich spectrum of
dynamical properties. Although topological properties of CA
can be explored, many of them such as topological entropy,
sensitivity, topological mixing, topological transitivity and
so on are undecidable. The relationship between positively
expansive and mixing was investigated by Blanchard and
Maass [10]. The transitive CA implies surjective and sen-
sitive to initial conditions have been obtained by Margara
and Kurka [11, 12]. The dynamics of a specific ECA on
their Bernoulli-shift invariant subset was analysed [13-15].
When a cellular automaton is not surjective, the concept of
an attractor is essential for its understanding. Some attractors
of CA are subshifts and some are not. These two kinds of
attractor have quite different properties [16].

ECA rule 41, which is not a surjective CA, possess of
rich and complex dynamical behaviors. In this paper, the
dynamics of the rule’s global map is investigated in the bi-
infinite symbolic sequence space. The existence of attractors
and subshifts of finite type of the rule’s global map is strictly
proved, some dynamical properties on these subshifts are
revealed. As an illustration, we give a simulation of the
evolution of rule 41 with a random initial configuration in
Figure 1, where the black pixel stands for 1 and white for
0.

Fig. 1: The evolution of rule 41, from a random initial
configuration.

The rest of this paper is organized as follows: Section 2
presents the preliminaries of symbolic dynamical systems
and CA, and two lemmas. Section 3 explores two attractors
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and some subshifts of finite type of rule’s global map 𝑓41.
Section 4 demonstrates some complex dynamics of 𝑓41.
Finally, Section 5 concludes this paper.

2. Preliminaries
The bi-infinite binary symbols sequence space is a con-

figuration set on 𝑆 = {0, 1}:

Σ2 = {𝑥 = (⋅ ⋅ ⋅ , 𝑥−1,
∗
𝑥0, 𝑥1, ⋅ ⋅ ⋅ ) ∣ 𝑥𝑖 ∈ 𝑆, 𝑖 ∈ 𝑍}

and the metric “𝑑” on Σ2 defined as

𝑑(𝑥, 𝑦) = max
𝑖∈𝑍

{𝜌(𝑥𝑖, 𝑦𝑖)

2∣𝑖∣
}

for any 𝑥, 𝑦 ∈ Σ2, where 𝜌(⋅, ⋅) is the metric on 𝑆 defined
as

𝜌(𝑥𝑖, 𝑦𝑖) =

{
0, 𝑖𝑓 𝑥𝑖 = 𝑦𝑖
1, 𝑖𝑓 𝑥𝑖 ∕= 𝑦𝑖.

It is known that Σ2 is a compact, perfect and totally
disconnected metric space.

A finite sequence 𝑎 = (𝑎0, 𝑎1, ⋅ ⋅ ⋅ , 𝑎𝑛−1) (𝑎𝑖 ∈ 𝑆, 𝑖 =
0, 1, 2, ⋅ ⋅ ⋅ , 𝑛 − 1) is called a word over 𝑆. If 𝑥 ∈ Σ2

and 𝐼 = [𝑖, 𝑗] is an interval of integers, put 𝑥[𝑖,𝑗] =
(𝑥𝑖, 𝑥𝑖+1, ⋅ ⋅ ⋅ , 𝑥𝑗) (𝑖 < 𝑗), 𝑥[𝑖,𝑗) = (𝑥𝑖, ⋅ ⋅ ⋅ , 𝑥𝑗−1). For a
word 𝑎 = (𝑎0, ⋅ ⋅ ⋅ , 𝑎𝑛−1), if there exists an 𝑛 ∈ 𝑍 such
that 𝑥𝑛+𝑘 = 𝑎𝑘 (𝑘 = 0, 1, ⋅ ⋅ ⋅ , 𝑛 − 1), then say 𝑎 be a
subword of 𝑥, denoted by 𝑎 ≺ 𝑥; otherwise 𝑎 ⊀ 𝑥.

The left-shift 𝜎𝐿 and right-shift 𝜎𝑅 are defined by

𝜎𝐿(⋅ ⋅ ⋅ , 𝑥−1,
∗
𝑥0, 𝑥1, ⋅ ⋅ ⋅ ) = (⋅ ⋅ ⋅ , 𝑥0,

∗
𝑥1, 𝑥2 ⋅ ⋅ ⋅ )

and

𝜎𝑅(⋅ ⋅ ⋅ , 𝑥−1,
∗
𝑥0, 𝑥1, ⋅ ⋅ ⋅ ) = (⋅ ⋅ ⋅ , 𝑥−2,

∗
𝑥−1, 𝑥0, ⋅ ⋅ ⋅ )

respectively.
By a theorem of Hedlund [3], a map 𝑓 : Σ2 → Σ2 is a

cellular automaton iff it is continuous and commutes with
𝜎, i.e. 𝜎 ∘ 𝑓 = 𝑓 ∘ 𝜎, where 𝜎 is left-shift or right-shift.

A set 𝑋 ⊆ Σ2 is 𝑓 -invariant if 𝑓(𝑋) ⊆ 𝑋 , and strongly
𝑓 -invariant if 𝑓(𝑋) = 𝑋 . If 𝑋 is a closed and 𝑓 -invariant,
then (𝑋, 𝑓) or simply 𝑋 is called a subsystem of 𝑓 .

The omega-limit of a closed invariant set 𝑋 is Ω𝑓 (𝑋) =∩
𝑛≥0 𝑓

𝑛(𝑋). A set 𝑋 ⊂ Σ2 is an attractor of 𝑓 if there
exists a clopen 𝑓 -invariant set 𝑌 such that Ω𝑓 (𝑌 ) = 𝑋 .
The maximal attractor Ω𝑓 = Ω𝑓 (Σ2) is also called the limit
set of 𝑓 . A subshift is a non-empty subset Λ ⊂ Σ2 which
is strongly 𝜎-invariant and closed. A subshift attractor of a
cellular automaton is an attractor which is a subshift. For
example, the maximal attractor is a subshift attractor [19].

Definition 1: A closed and open (clopen) 𝑓 -invariant set
𝑈 ⊂ Σ2 is spreading if 𝑓𝑘(𝑈) ⊂ 𝜎𝐿(𝑈) ∩ 𝑈 ∩ 𝜎𝑅(𝑈) for
some 𝑘 > 0.

Lemma 1: [16] Let 𝑓 : Σ2 → Σ2 be a cellular automaton
and 𝑈 a clopen 𝑓 -invariant set, then Ω𝑓 (𝑈) is a subshift
attractor iff 𝑈 is spreading.

Table 1: Truth table of Boolean function of Rule 41

(𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1) 𝑓(𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1)
(0, 0, 0) 1
(0, 0, 1) 0
(0, 1, 0) 0
(0, 1, 1) 1
(1, 0, 0) 0
(1, 0, 1) 1
(1, 1, 0) 0
(1, 1, 1) 0

For any subshift Λ, there exists a set A consisting of some
words over 𝑆 = {0, 1} such that Λ = ΛA = {𝑥 ∈ Σ2∣ 𝑎 ⊀
𝑥,∀ 𝑎 ∈ A }, the set A named excluded block system. A
subshift is of finite type if the set A is finite. The order of
the finite type subshift denoted by 𝑁 , which is the length
of the longest word in A .

Lemma 2: [17] For any subshift of finite type Λ, the
followings statements are equivalent:
(1) there exists a set A consisting of some words over 𝑆
such that Λ = ΛA = {𝑥 ∈ Σ2∣ 𝑎 ⊀ 𝑥,∀ 𝑎 ∈ A };
(2) there exists a set B consisting of some words over 𝑆
such that Λ = {𝑥 ∈ Σ2∣ 𝑥[𝑛,𝑛+𝑁−1] ∈ B,∀𝑛 ∈ 𝑍}, where
𝑁 is the order of Λ. The set B named determinative block
system of Λ.

It is well known that each ECA rule can be expressed
by a Boolean function. For example, the one of rule 41 is
a local map 𝑓 :

𝑓(𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1)
= 𝑥𝑖−1 ⋅ 𝑥𝑖 ⋅ 𝑥𝑖+1 ⊕ 𝑥𝑖−1 ⋅ 𝑥𝑖 ⋅ 𝑥𝑖+1 ⊕ 𝑥𝑖−1 ⋅ 𝑥𝑖 ⋅ 𝑥𝑖+1

where “ ⋅ ”, “⊕ ”, and “ ” stand for “𝐴𝑁𝐷”, “𝑋𝑂𝑅” and
“𝑁𝑂𝑇” logical operations respectively [7, 13]. The truth
table of its Boolean function is shown in Table 1.

It is clear that its binary output sequence is 10010100.
Thus, a global map 𝑓41 : Σ2 → Σ2 with

𝑓41(⋅ ⋅ ⋅ , 𝑥−1,
∗
𝑥0, 𝑥1, ⋅ ⋅ ⋅ ) = (⋅ ⋅ ⋅ , 𝑦−1,

∗
𝑦0, 𝑦1, ⋅ ⋅ ⋅ )

can be induced by 𝑓, where 𝑦𝑖 = 𝑓(𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1).
The 𝑛 (𝑛 ≥ 2) times iteration of 𝑓 is a map 𝑓𝑛 from

{0, 1}2𝑛+1 to {0, 1} with

𝑓𝑛(𝑎−𝑛, ⋅ ⋅ ⋅ , 𝑎0, ⋅ ⋅ ⋅ , 𝑎𝑛) =
𝑓(𝑓𝑛−1(𝑎[−𝑛,𝑛−2]), 𝑓

𝑛−1(𝑎[−𝑛+1,𝑛−1]), 𝑓
𝑛−1(𝑎[−𝑛+2,𝑛])).

3. Attractors and Subshifts of Finite
Type

In this section, two attractors and some subshifts of finite
type of the dynamical system (Σ2, 𝑓41) induced by rule 41
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are revealed.

3.1 Attractors
Proposition 1: For rule 41, there exists an invariant

subset Λ ⊂ Σ2, such that 𝑓41(𝑥) ∈ Λ,∀ 𝑥 ∈ Σ2,
where Λ = {𝑥 ∈ Σ2∣ 𝑎 ⊀ 𝑥,∀ 𝑎 ∈ A1}, and A1 =
{(1, 0, 1, 1, 1), (1, 1, 1, 03𝑘+1, 1, 1), (1, 1, 1, 03𝑘+2, 1, 1, 1),
𝑘 ∈ 𝑍+}, where 0𝑛 is 0-constant block of length 𝑛, 𝑛 =
3𝑘 + 1, 3𝑘 + 2.

Proof: Let 𝑦 = 𝑓41(𝑥), if 𝑦[𝑖,𝑖+𝑛−1] is a word of 𝑦, then
there exists a word 𝑥[𝑖−1,𝑖+𝑛] of 𝑥, which is a pre-image of
𝑦[𝑖,𝑖+𝑛−1], such that 𝑓41(𝑥[𝑖−1,𝑖+𝑛]) = 𝑦[𝑖,𝑖+𝑛−1].

Assume that 𝑦[𝑖,𝑖+4] = (1, 0, 1, 1, 1) ∈ A1, and its a pre-
image is 𝑥[𝑖−1,𝑖+5]. It is easy to know that the pre-image set
of 𝑦[𝑖,𝑖+3] = (1, 0, 1, 1) is {(0, 1, 1, 0, 1, 1), (1, 0, 1, 0, 1, 1)},
and the pre-image set of 𝑦[𝑖+1,𝑖+4] = (0, 1, 1, 1) is
{(1, 0, 0, 0, 0, 0)}. Since 𝑦 = 𝑓41(𝑥), so the pre-image of 𝑦
must satisfy 𝑥[𝑖−1,𝑖+4] = {(0, 1, 1, 0, 1, 1)} or 𝑥[𝑖−1,𝑖+4] =
(1, 0, 1, 0, 1, 1), and 𝑥[𝑖,𝑖+5] = (1, 0, 0, 0, 0, 0). This lead to
a contradiction, so the pre-image of 𝑦[𝑖,𝑖+4] = (1, 0, 1, 1, 1)
is empty. Similarly, these words (1, 1, 1, 03𝑘+1, 1, 1) and
(1, 1, 1, 03𝑘+2, 1, 1, 1) must have no pre-image (𝑛 = 3𝑘 +
1, 3𝑘 + 1, 𝑘 ∈ 𝑍+). This implies that 𝑓41(Σ2) ⊂ Λ and
𝑓41(Λ) ⊂ Λ.

Theorem 1: Ω𝑓 (Λ) is a subshift attractor of 𝑓41, where
Λ is the invariant set obtained in Proposition 1.

Proof: In fact, Σ2 is 𝜎𝐿-invariant and 𝜎𝑅-invariant,
and Σ2 is a clopen set, so Σ2 is spreading, thus, Ω𝑓 (Σ2) =∩

𝑛≥0 𝑓
𝑛
41(Σ2) is a subshift attractor of 𝑓41. Λ obtained in

Proposition 1 must satisfy 𝑓41(Σ2) ⊂ Λ and 𝑓41(Λ) ⊂ Λ.
This implies that Ω𝑓 (Σ2) = Ω𝑓 (Λ), thus Ω𝑓 (Λ) is a subshift
attractor of 𝑓41.

Proposition 2: For rule 41, there exists an invariant sub-
set Λ0 ⊂ Λ, such that Ω𝑓 (Λ0) = {0∗, 1∗}, where Λ0 =
{𝑥 ∈ Σ2∣ 𝑥[𝑖,𝑖+5] ∈ A0}, and A0={(0, 0, 1, 0, 0, 1), (0,
1, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0), (1, 1, 0, 0, 1, 0), (1, 1, 1,
0, 0, 1), (1, 1, 1, 1, 0, 0), (1, 1, 1, 1, 1, 0), (1, 1, 1, 1, 1,
1)}, 0∗ and 1∗ are the cycle configurations 0∗ = (0∞) and
1∗ = (1∞).

Proof: The result can be directly validated.
Theorem 2: {0∗, 1∗} is a local attractor of 𝑓41.

Proof: It is easily verified that 𝑓41(𝑥) ∈ {0∗, 1∗}, for
any 𝑥 ∈ Λ0.

3.2 Subshifs of finite type
In this subsection, some subshifts of finite type are given

out. Based on a computer-aided method, the following
propositions can be easily verified:

Proposition 3: For rule 41, there exists a subset Λ1 ⊂
Σ2, such that 𝑓41∣Λ1

= 𝜎𝐿∣Λ1
. where Λ1 = ΛB1

= {𝑥 ∈
Σ2∣ 𝑥[𝑖−1,𝑖+1] ∈ B1,∀ 𝑖 ∈ 𝑍} and the determinative block
system B1 is a 3-sequence set, whose binary code set is
B1 = {(0, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.

For convenience, B1 can also be denoted by its decimal
code set 𝐷(B1) = {2, 3, 5, 6}.

Proposition 4: For rule 41, there exists a subset Λ2 ⊂
Σ2, such that 𝑓4

41∣Λ2 = 𝜎3
𝐿∣Λ2 . where Λ2 = ΛB2 = {𝑥 ∈

Σ2∣ 𝑥[𝑖−4,𝑖+4] ∈ B2,∀ 𝑖 ∈ 𝑍} and the determinative block
system B2 is a 9-sequence set, whose decimal code set is
𝐷(B2)={4, 8, 14, 15, 16, 20, 29, 30, 32, 40, 41, 58, 60,
64, 65, 76, 80, 82, 100, 116, 120, 129, 131, 133, 144, 147,
153, 161, 164, 200, 201, 232, 233, 241, 258, 263, 266, 285,
286, 288, 294, 306, 322, 328, 329, 398, 399, 400, 403, 417,
420, 455, 464, 466, 483}.

Proposition 5: For rule 41, there exists a subset Λ3 ⊂
Σ2,such that 𝑓4

41∣Λ3 = 𝜎4
𝑅∣Λ3 , where Λ3 = ΛB3 = {𝑥 ∈

Σ2∣ 𝑥[𝑖−4,𝑖+4] ∈ B3,∀ 𝑖 ∈ 𝑍} and the determinative block
system B3 is a 9-sequence set, whose decimal code set is
𝐷(B3)={0, 1, 2, 4, 5, 8, 10, 16, 20, 21, 32, 33, 34, 40, 42,
50, 57, 60, 62, 63, 64, 65, 66, 68, 76, 78, 79, 80, 85, 100,
101, 114, 120, 121, 124, 126, 127, 128, 129, 130, 133, 136,
153, 156, 158, 159, 160, 161, 170, 182, 201, 202, 214, 218,
228, 229, 241, 242, 248, 249, 252, 254, 255, 256, 257, 258,
261, 266, 273, 281, 284, 286, 287, 294, 295, 298, 306, 313,
316, 318, 319, 320, 321, 322, 341, 347, 363, 365, 396, 398,
399, 403, 405, 429, 437, 454, 455, 457, 458, 483, 484, 485,
497, 498, 504, 505, 508, 510, 511}.

Fig. 2: The evolution of rule 41 from an initial configuration
of Λ1.

Fig. 3: The evolution of rule 41 from an initial configuration
of Λ2.
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Fig. 4: The evolution of rule 41 from an initial configuration
of Λ3.

Thus, Λ1,Λ2 and Λ3 are subshifts of finite type of 𝑓41.
For illustration, simulations on Λ1, Λ2 and Λ3 are shown in
Figure 2, 3 and 4.

4. Complex Dynamics
In this section, the complexity and chaotic dynamics

of 𝑓41 are explored. Since the topological dynamics of a
subshift of finite type is largely determined by the properties
of its transition matrix, it is helpful to briefly review some
definitions about irreducible and aperiodic [18]. A matrix 𝐴
is positive if all of its entries are non-negative, irreducible
if ∀ 𝑖, 𝑗, there exists 𝑛 such that 𝐴𝑛

𝑖𝑗 > 0, aperiodic if there
exists 𝑁 , such that 𝐴𝑛

𝑖𝑗 > 0, 𝑛 > 𝑁 , ∀𝑖, 𝑗. If ΛA is a two-
order subshift, then it is topologically mixing if and only
if 𝐴 is aperiodic, topological transitive if and only if 𝐴 is
irreducible. 𝐴 is the associated transition matrix of subshift
with 𝐴𝑖𝑗 = 1, if (𝑖, 𝑗) ≺ A ; otherwise 𝐴𝑖𝑗 = 0.

The topologically conjugate relationship between (ΛA , 𝜎)
and a two-order subshift of finite type can be established,
and the dynamical behavior of 𝑓41 on ΛA can be discussed
based on existing results.

Let 𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝑠3} be a new symbolic set, where
𝑠𝑖 (𝑖 = 0, 1, 2, 3) stand for (0, 1, 0), (0, 1, 1), (1, 0, 1) and
(1, 1, 0) appeared in Proposition 3, then one can construct
a new symbolic space 𝑆𝑍 on 𝑆. Let
Â = {(𝑠, 𝑠′)∣ 𝑠 = (𝑏1, 𝑏2, 𝑏3), 𝑠′ = (𝑏

′
1, 𝑏

′
2, 𝑏

′
3) ∈ B1, 𝑏𝑗 =

𝑏′𝑗−1, 2 ≤ 𝑗 ≤ 3}, where B1 is the determinative block sys-
tem of Λ1 in Proposition 3. Further, the 2-order subshift ΛÂ

of 𝜎 is defined by ΛÂ = {(. . . , 𝑟−1, 𝑟0, 𝑟1, . . . ) ∈ 𝑆𝑍 ∣ 𝑟𝑖 ∈
𝑆, (𝑟𝑖, 𝑟𝑖+1) ≺ Â ,∀ 𝑖 ∈ 𝑍)}. Thus, the transition matrix
𝐴1 of the subshift ΛÂ is

𝐴1 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
1 1 0 0
0 0 1 0

⎞⎟⎟⎠ .

Proposition 6: (ΛB1 , 𝜎) and (ΛÂ , 𝜎) are topologically
conjugate; namely, (ΛB1

, 𝑓41) and (ΛÂ , 𝜎) are topologically
conjugate.

Proof: Define a map from ΛB1 to ΛÂ as follows :

𝑔 : ΛB1 → ΛÂ

(. . . , 𝑥−1,
∗
𝑥0, 𝑥1, . . . ) → (. . . , 𝑟−1,

∗
𝑟0, 𝑟1, . . . )

where 𝑟𝑖 = (𝑥𝑖, 𝑥𝑖+1, 𝑥𝑖+2) ∈ B1, ∀ 𝑖 ∈ 𝑍. One can
easily check that 𝑔 is a homeomorphism and 𝑔 ∘ 𝜎 =
𝜎 ∘ 𝑔. Therefore, (ΛB1 , 𝜎) and (ΛÂ , 𝜎) are topologically
conjugate.

It is known that 𝜎 is topological mixing on Â if and only
if the transition matrix 𝐴1 is aperiodic. Thus, the following
theorem is obtained.

Theorem 3:
(1) 𝑓41∣Λ1 = 𝜎𝐿∣Λ1 is topological mixing;
(2) The topological entropy of 𝑓41∣Λ1 satisfies 𝑒𝑛𝑡(𝑓41∣Λ1) =
𝑙𝑜𝑔(𝜌(𝐴1)) ≈ 0.1221, where 𝜌(𝐴1) is the spectral radius of
the transition matrix 𝐴1.

A positive topological entropy is often taken as a signature
of chaos. A system with topological mixing property has
many chaotic properties in different senses such as Devaney
and Li-Yorke.

Corollary 1:
(1) 𝑓41∣Λ1 is chaotic in the sense of Li-Yorke;
(2) 𝑓41∣Λ1 is chaotic on Λ1 in the sense of Devaney.

Theorem 4:
(1) 𝑓41∣Λ2 is topological transitive on Λ2;
(2) 𝑓41∣Λ2 is chaotic in the sense of Li-Yorke on Λ2.

Proof: (1) It can be proved that the transition matrix 𝐴2

corresponding to the subshift Λ2 is irreducible, so 𝜎𝐿∣Λ2 is
topological transitive. Thus, 𝜎3

𝐿∣Λ2 is topological transitive.
It follows from proposition 4 that 𝑓4

41∣Λ2 = 𝜎3∣Λ2 , so 𝑓4
41∣Λ2

is topological transitive. To prove 𝑓41∣Λ2 is topological
transitive, one only need to check that for any two open
sets 𝑈, 𝑉 ⊂ Λ2,∃𝑁 > 0, such that 𝑓𝑁

41(𝑈)
∩

𝑉 ∕= 𝜙,
since 𝑓4

41∣Λ2 is topological transitive, thus, ∃ 𝑘 > 0, such
that (𝑓4

41)
𝑘(𝑈)

∩
𝑉 ∕= 𝜙. Hence ∃𝑁 = 4𝑘, such that

𝑓𝑁
41(𝑈)

∩
𝑉 ∕= 𝜙, this means 𝑓41∣Λ2 is topological transitive.

(2) It follows that 𝑒𝑛𝑡(𝜎3
𝐿∣Λ2) = 3 ⋅ 𝑒𝑛𝑡(𝜎𝐿∣Λ2). It is easy

to compute that 𝑒𝑛𝑡(𝑓41∣Λ2) =
𝑒𝑛𝑡(𝑓4

41∣Λ2 )

4 = 3×𝑙𝑜𝑔(𝜌(𝐴2))
4 ≈

0.10657.

Similarly, the dynamical behavior of 𝑓41 on Λ3 can be
analyzed via the property of the corresponding transition
matrix. But the transition matrix 𝐴3 is neither irreducible
nor aperiodic. In order to investigate the dynamic behavior
on the subshift of finite type Λ3. Now, take two invariant
sets Λ1

3, Λ2
3 ⊂ Λ3, their determinative block systems are

9-sequence sets B1
3 and B2

3 respectively. Let their decimal
codes are 𝐷(B1

3)={21, 42, 85, 101, 170, 202, 229, 298,
341, 405, 458, 485} and 𝐷(B2

3)={0, 1, 2, 4, 5, 8, 10, 16,
20, 32, 33, 34, 40, 50, 57, 60, 62, 63, 64, 65, 66, 68, 76,
78, 79, 80, 100, 114, 120, 121, 124, 126, 127, 128, 129,
130, 133, 136, 153, 156, 158, 159, 160, 161, 182, 201,

234 Int'l Conf. Scientific Computing |  CSC'11  |



214, 218, 228, 241, 242, 248, 249, 252, 254, 255, 256,
257, 258, 261, 266, 273, 281, 284, 286, 287, 294, 295, 306,
313, 316, 318, 319, 320, 321, 322, 347, 363, 365, 396, 398,
399, 403, 429, 437, 454, 455, 457, 483, 484, 497, 498, 504,
505, 508, 510, 511}. Moreover, the topological entropy of
𝑓41∣Λ2

3
is 𝑒𝑛𝑡(𝑓41∣Λ2

3
) = 𝑙𝑜𝑔(𝜌(𝐴2

3)) ≈ 0.294, where 𝐴2
3 is

the transition matrix corresponding to Λ2
3.

Theorem 5: 𝑓41∣Λ2
3

is chaotic in the sense of Li-Yorke.
It is obviously that the subshift of finite type Λ1,Λ2,Λ3 ⊂

Λ. The dynamical behavior of rule 41 are very complex
on its subshift attractor. However, the dynamics should be
explored on the invariant set Λ. It has been proved that the
only subshift attractor of a surjective cellular automata is the
full space [19]. Additive one-dimensional cellular automata
defined on a finite alphabet of prime cardinality are chaotic
in the sense of Devaney [22]. Rule 41 is not a surjective
CA, since it is useful to study the dynamical behavior and
to find its maximum attractor. In spite of the dynamics of
𝑓41 on the finite type subshifts has been made clear, but the
ones on Λ should be further studied.

5. Conclusion
One of the main challenges is to explore the quantitative

dynamics in cellular automata evolution [24]. this work has
developed an elementary and rigorous proof to predict the
rich and complex dynamics of rule 41 in view of symbolic
dynamical systems. For example, the rule is topological mix-
ing, topological transitive, and possesses positive topological
entropies on some subshifts of finite type, thus, it is chaos
in the sense of Li-Yorke or Devaney. At the same time, an
invariant set is found, which includes the maximum attractor
of rule 41. Indeed, the dynamics of rule 41 have not been
completely revealed. Some new methods should be exploited
to investigate the subshift in future study.
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Abstract— Nanopore formation phenomena in passive lay-
ers on anodized metal surfaces are modeled based on cellu-
lar automata approach. The preliminary simulation results
obtained in 2D and 3D systems show self ordering of the
pore structure.

Keywords: Cellular automata modelling, self organization of
nanopores in passive layers

1. Introduction
Cellular automata (CA) approach can successfully de-

scribe many real systems such as: ecosystems [1], forest
systems in fire spreading problems [2], traffic in public
transport systems [3], cell cultures [4], bacterial colonies [5],
plant morphogenesis [6]. Here we consider cellular automata
approach for a physicochemical systems - the growth of a
porous oxide layer on a passivating metal surface subject
to intense anodization. Cellular automata based computer
simulations have been successfully used to study the related
field of surface growth phenomena [7]. They provide basic
tests of the validity of scaling concepts for these phenomena.
Various universality hypothesis for the crossover transitions
could be successfully demonstrated using the simulations
[8]. In their applications to physical chemistry and related
material science problems cellular automata models are
the method of choice where the atomic level microscopic
modeling is hardly applicable. This is the case of corrosion
and passivation phenomena where the crucial events of pas-
sivity breakdown occur in time scales making microscopic
approach impractical if not impossible [9]-[14]. The cellular
automata description is used to construct a general model for
a wider range of systems to describe the features that these
systems share independent of their chemical specificity and
molecular background having a common physicochemical
origin. The corrosion and passivation phenomena on metal
surfaces meet this requirement. Many metal materials cover
with the passivation layer in contact with the atmosphere in
an ambient environment. Very recently we have published a
cellular automata model for this phenomenon illustrating a
well known fact that the higher reactivity of the surface gives
a faster passive layer formation and thus the surface is better
protected in a more aggressive environment characterized by

higher bare corrosion rates rather than in milder environment
where passive layer cannot readily form [15], [16]. The
pitting corrosion has been subject to many studies also by
CA models as it is the primary cause of material destruction
[17]. In our previous work we show how the phenomenon
of spontaneous symmetry breaking leading to a formation of
cathodic and anodic zones on the corroding surface arises
in the CA-type simulations [18], [19]. In this paper we
treat a certain positive aspect of passive layer dissolution
mechanisms. As shown by a numerous literature the anodic
dissolution of passivating metals leads to a formation and
regular spacial organization of nanopores in the passive layer
[20]. The widest known example is the anodized alumina
oxide (AAO) layer obtained on aluminum in contact with
various electrolytes and under various anodization protocols.
It finds numerous applications in nanotechnology. There
have been several attempts to describe the phenomenon
based on macroscale physicochemical laws for electrostatics
and chemical kinetics [20]. Here we give an alternative
approach by a CA-type model based simulations. The ar-
guments for doing this are the following. The pores have
a mesoscopic size and arrangement. They appear on a
variety of systems. They appear on polycrystalline materials
and the underlying structure of the granular material has
little if any effect on them. It follows that their formation
and arrangement are independent of atomic scale structure.
However, the reminiscent of the microscopic atomic level
nature of phenomena is the stochastic character of processes
as it is in the Brownian motion of mesoscopic sized particles
suspended in a solvent.

2. Cellular automata model for
nanopore formation on anodized surfaces

2.1 Lattice representation of the passivating
system

As sketched in Figure 1 we use square lattice with von
Neumann [21] four and six nearest neighbor connectivity
in 2D and 3D respectively. The lattice sites are found in
four main states or, as we say in physical chemistry, can
be occupied by four species. These four species are metal
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Fig. 1: Schematic representation of the states in the CA
model for passive layer. The grey scale codes are as follows.
Metal (M) bulk sites (on the left hand side) and solution (S)
bulk sites (on the right) are blank as no storage is reserved
for them in the program. The bar indicates the grey code for
inactive oxide, active metal, active oxide, active solvent and
active walker from left to right respectively.

SM O O

Fig. 2: Oxide creation event. Metal site M in contact with
solvent site S are transformed to two oxide sites with
probability POX . These can be active if in contact with
solution sites (dark gray) and inactive otherwise (light gray).

(M), solution (S), oxide (O) and walker (W). Because of the
transformation rules adopted these species can come in two
flavors – active or inactive. The inactive species can change
their state only because at least one of the neighboring site
has changed.

2.2 Transformation rules for the system evolu-
tion

There are six transformation rules governing the behavior
of our system presented in Figures 2-8. Some transforma-
tions modify the number of sites in a given state, that is
the number of given species. This is the case depicted in
Figure 2, where the creation mechanism of the oxide layer

SO S O

Fig. 3: Oxide random walk by swapping with the solution
site with probabilityPswap.

S

S

S

S

S S

S

S

S

O

Fig. 4: Annihilation of a single oxide site in the solution.

is presented. Other transformations like swaps, only modify
the spatial distribution of the species. As in [15], [16], the
swaps of the oxide sites are associated to the probability of
swap,Pswap. This is calculated on the basis of the number of
broken bondsNbroken that is the number of nearest neighbor
O-O pairs if the swap be performed less the number of
nearest neighbor O-O pairs in the actual configuration. This
algorithm provides a certain cohesion to the formed layer,
as the probability of an oxide detaching from the layer is
less than that for attaching. The oxide sites appear tostick
to one another. The probability is expressed as

Pswap = P
Nbroken

bond if Nbroken > 0

Pswap = 1 otherwise (1)

wherePbond is the probabilty of breaking a single bond. As
seen in Figure 1, in some cases, the oxide sites may detach
from the layer forming single site islands wandering in the
solution. We make such islands disappear with a probability
Pdie. This mechanism mimics the dissolution of the formed
oxide layer. The balance between processes of Figures 2 and
4, creation and dissolution, determines the layer thickness.
A similar set of rules apply to walker creation, diffusion
and annihilation. Walker sites can execute random walk by
swapping with the neighboring O sites. In this case, there
is no restriction to the swaps as such a move is performed
at each step. If in the random walk the walker encounters
a solution site it may annihilate as shown in Figure 7. It is
required that the site S on which the walker attempts to step

OM OW

Fig. 5: Walker creation with probabilityPCW .
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OW O W

Fig. 6: Walker random walk by swapping with oxide sites
with probabilityPOW .

S

S S

S

S

O

O

W S

S

S S

S

SS S

O

O

connected to bulk solution

Fig. 7: Walker annihilation with probabilityPWA.

is connected to the bulk solution or in other words belongs
to the main solution front. During the random walks the
site to swap with is a randomly selected nearest neighbor.
For the oxide no action is taken if the selected site is not
solution. Similarly walker swaps only with an oxide site.
When the selected neighbor solution site is from, so to say,
a sea or a bay or an ocean connected to the ocean of bulk
solution the walker disappears and its site becomes the part
of the oceanic connected set. If the solution site belongs to
an inland lake like in Figure 8 nothing happens. We use
asynchronous updating both for creation and random walk.
The sites to update are selected randomly from a given type
until the number of selections equals number of sites. It may
happen that a given site is selected more than one time while
another site is never selected.

3. Results
Preliminary simulation results obtained both in 2D and 3D

are shown in Figures 9-12. The values of the parameters are
POX = POW = PWA = 1, Pdie = 0.001, Pbond = 0.01 and
PCW = 3.33 · 10

−4. They have been selected by a trial and

S

O

O

W

O

O

O O

O

O O

SW

O O

O

OO

Fig. 8: If the neighboring site is a solution site trapped in
the oxide the walker does not annihilate and no action is
taken when it attempts to step on the solution site.

error method as our first goal is to document the existence of
the rough effect of pore formation and pore self organization.
The box width is 256 and 128x128 in 2 and 3D respectively.
The height is adjusted according to the layer evolution.
In Figure 9, we illustrate the formation and evolution of a
2D layer. The snapshots show that starting from a featureless
roughness, the premices of a self organization are visible.
This behaviour is confirmed in Figure 10, by the appearance
of a characteristic wave length in the Fourier transform of the
layer-solution interface. A similar scenario is also observed
in 3D. In this case, the Fourier transform pattern also seems
to show a relative decay of the four folded symmetric pattern
characteristic of the lattice and the appearance of a pattern
with a distinct symmetry.
The evolution of the layer in the course of the simulation,
first involves and instability created by the coupling between
the corrosion mechanism at the metal-layer interface with the
dissolution at the layer-solution interface due to the diffusion
of the W species. Then a more stable regime which appears
to be self-organized is reached dynamically as the result of
the balance between the evolution of the two fronts and the
diffusion characteristic length of the walkers. We do not
know for now the exact competition mechanism between
the different length scales in the system.
Finally, the coupling between metal-layer and layer solutionn
interfaces through the walker species appears to be essential.
In the framework of the electrochemistry, the walker species
can represent chemical species such as excess of metal or
oxygen acidic species between the two fronts. The role of
those species is to accelerate the dissolution of the layer-
solution interface. Another possible interpretation of the
walkers, is to mimic the effect of the electric potential
distribution and the electric field, which is known to be
highly inhomogeneous for anodic dissolution experiments
where high voltages are applied. This comes from the
fact that stationary walker distribution obeys the Laplace
equation of the same form as the electric potential.

4. Conclusion
The presented CA based approach reproduces qualita-

tively the nanopore formation mechanism. We show that
a simple model involving the dynamics of two fronts:
a corrosion front and a dissolution front coupled by the
diffusion of a species can lead from a disordered situation to
the gradual appearance of a seemingly self-organized system.
From the first encouraging results of this minimal model, we
need further refinements for a clearer hexagonal arrangement
of the pores in 3D.
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a

b

c

Fig. 9: Snapshots of fragments of the simulated layer in
2D at 20, 40 and 80 thousand time steps from up to down
respectively.

Fig. 10: The absolute value of the FFT transformed layer
front showing a characteristic wavelength of ca 50 nodes.

Fig. 11: View of the surface layer surface in 3D after 25 000
time steps.

Fig. 12: FFT transform of the layer surface after 25000 time
steps.
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ABSTRACT
Cellular automaton models such as Conway’s Game of
Life have long been shown to exhibit a high degree of spa-
tial complexity. Spatial patterns can be analysed and cate-
gorised in this and other models and used as a basis for cat-
aloging other related models and their behaviour classes.
An interesting variation arises when a third state is intro-
duced and we explore the consequences of this in models
like Silverman’s “Brian’s Brain” – sometimes known as the
“Game of Death” where “zombies” are introduced into the
spatial model. The third state and the microscopic rules
associated with the three constituent species gives rise to
a rich new set of phases and behaviours with can be sim-
ulated and catalogued statistically. We focus on the early
transient behaviour following a random system initialisa-
tion and the initial thinning out following by a subsequent
explosion in species diversity.

KEY WORDS
multi-agent model; cellular automata; biodiversity; cyclic
states.

1 Introduction

Conway’s Game of Life [1] (GoL) has served for some
time as a key cellular automaton (CA) [2] model for com-
paring other model systems. CAs are useful tools for inves-
tigating complexity [3, 4] and spontaneous emergent prop-
erties because they are generally simpler than other models
that yield insights into fundamental properties such as uni-
versality [5], growth [6], and other statistical mechanical
properties such as scaling [7], the onset of chaos [8], phase
transitions [9], fluid-flow miscibility and entropy [10, 11]
and game-theoretic predictions [12].

A range of CAs [13] have proved able to capture some of
the fundamental properties [14] on more sophisticated ar-
tificial life models [15] developed for the study of popu-
lation dynamics and species diversity. CA models typi-

Figure 1: A typical configuration of the 3-state Game of
Death on a 256× 128 cell mesh, after 640 time-steps.

cally show a rich set of spatial patterns which can often
be related to fundamental driving forces to catalogue and
explain complex emergent phenomena [16] such as spiral
formation [17, 18] and fluctuations in population dynam-
ics [19].

A great deal of research effort has been reported on exten-
sions and variations of the GoL [20]. Recent research work
has highlighted the significance of cyclic rules in automa-
ton and related models with symmetry and other properties
having been identified as drivers behind some of the com-
plex behaviour in rock-paper-scissors and related models.
Silverman introduced a cycle into the GoL to produce what
was colloquially known as the “Game of Death” [21] or
“Brian’s Brain” [22]. In this model (as shown in Figure 1)
a third zombie state is introduced and the automaton rules
extended accordingly.

CAs are usually studied as computer simulations [23, 24]
with important technical considerations such as finite-
sizing [25], the introduction of randomness and stochastic-
ity [26], synchronicity of spatial updates [27] and perfor-
mance analysis [28] all giving rise to discussion in the lit-
erature. Important work has covered self-reproduction [29]
and ratcheting effects [30] within CA rule spaces as well as
attempts to characterise the rules spaces themselves [31].

Much reported research has focused on the specific au-
tomaton patterns that reproduce, or self-sustain. In this

Int'l Conf. Scientific Computing |  CSC'11  | 241



present work we look at statistical properties rather than
those from specific patterns of automaton cells. We report
on experiments with the Game of Death 3-state spatial au-
tomata played with a Moore cell neighbourhood in both
two and three dimensions. Figure 1 shows a typical con-
figuration of the Game of Death played with a Moore cell
neighbourhood of eight cells on a square periodic mesh.
The configuration shows spaceships, rakes and other com-
mon patterns reported in the literature [21]. We particu-
larly focus on the early transient stage following a random
initialisation of spatial automata system. This is interesting
to investigate as a platform to investigate why does the sys-
tem seek out a particular sort of configuration, independent
of the microscopic noise in the starting state.

Our article is structured as follows: In Section 2 we de-
scribe the automaton rules for the 3-state cyclic Game
of Death automaton and describe our simulation method.
We present some typical configurations and measurement
analysis results in Section 3. In Section 4 we discuss some
of the implications for cyclic CA models as well as offer-
ing some concluding remarks and areas for further work in
Section 5.

2 Spatial Automaton Rules

Automaton games such as the Game of Life are typi-
cally played using totalistic rules applied to spatial cells
arranged on a regular mesh. Many physics-oriented au-
tomata and models use strictly nearest neighbour sets
where there are four neighbours in two dimensions and
six in three dimensions. The totalistic rules used in GoL
like models however are expressed in terms of the Moore
neighbourhoods which include diagonally-touching neigh-
bours that are at distances

√
2,
√
3 as well as unit-distance

nearest-neighbours. In two dimensions there are 8 Moore
neighbours and in three dimensions there are 26.

Conway’s GoL rules apply to dead (0) or live(1) cells:

• any live cell with fewer than two (r4 = 2) live neigh-
bours dies

• any live cell with more than three (r3 = 3) live neigh-
bours dies

• any live cell with exactly two or three live neighbours
lives on

• any dead cell with exactly three (n >= r1, n <= r2 :
r1 = r2 = 3)live neighbours becomes live

We have given the Ri values in this form to emphasise that
there is a family of GoL-like games that arise from adjust-
ing these parameters.

Figure 2: Cyclic transition diagram between states in the
Game of Death.

The Game of Death model however is different because
of the cyclic relationship between the three species. The
third “zombie” state is introduced with the following rule
set used with cells that are dead(0),live(1) or zombie(2):

• any dead cell becomes a zombie 0→ 2

• any zombie becomes live iff it has exactly two live
neighbours 2→ 1

• any live cell dies 1→ 0

Figure 2 shows the cyclic relationship between the three
states. For technical reasons it is easier to insert the zom-
bie state as “2” so that the simulation software can continue
to refer to dead cells as “0” and live ones as “1.” We coded
these simulations using a custom generated C++ program
and fast library routines for hyper-dimensional rectilinear
system manipulation. This meant we could readily experi-
ment with different neighbourhood logics as well as being
able to easily switch from two to three dimensions using
the same simulation program.

Figure 3 shows the time progression of the Game of Death
along with snapshots emphasising the location of the dead
cells and also typical configurations of the Game of Death
at similar times following random initialisation.

The Game of Death shows a marked dip in the density
of live and dead cells following a uniform random ini-
tialisation. The spaceships and rakes and other reported
patterns [21] propagate as alternating patterns of live and
dead cells in a background of zombie cells. The zombie
cell density rises dramatically after initialisation. This is in
contrast to the Game of Life where live cells are the minor-
ity against a majority background of dead or vacant cells.

3 Simulation Results

In the work reported here we simulate Life and Death on a
(periodic) square and cubic mesh, using the Moore neigh-
bourhood of 8 cells in two dimensions and 26 neighbours
in three dimensions. The periodicity limits the size of very
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Figure 3: The Game of Death (left); the dead cells in it;
and the Game of Life (right), all played on a 128 × 128
cell mesh. Red = Live, White = Dead, Grey=Zombie.

large individual structures, but is useful for the statistical
analysis we report in this paper as we can ignore special
rules required for boundary conditions – all cells experi-
ence the same neighbourhood structure. The systems are
initialised randomly with an equal and random mix of all
Q species for the relevant model. Q = 2 for the Game of
Life, Q = 3 for the Game of Death.

In addition to being able to count and track the average
fraction of live or dead cells in the model configuration, we
can also investigate a simple count of the like-like species
bonds or nearest neighbour relationships, defined as:

Nsame =
1

N.d

N∑
i=1

d∑
j=1

1 : si = sj (1)

where N is the number of automaton cells or sites in the
d-dimensional lattice and each si = 0, 1, 2 for the Q = 3-
state Game of Death.

Similarly Ndiff = 1 − Nsame is the fraction of possible
bonds in the system that are different. We also define a
correlation function:

Ncorr =
1

N.d

N∑
i=1

d∑
j=1

1 : s0,1
i (t) = s0,1

i (t− 1) (2)

It is convenient to define this so that both live(1) and
dead(0) cells correlate together since the configuration
snapshots suggest live and dead behave in a similar manner
to one another within a background “sea of zombies.”

Since our Game of Death rules involve a cycle in the
species number, it is useful to define a selection metric that
correlates when the rule applied was in a particular direc-
tion around the cycle.

Nsel =
1

N.d

N∑
i=1

d∑
j=1

1 : si = x; sj = x− 1, ∀x (3)

This is in accordance with the cycle direction shown in
Figure 2 although for a 3-cycle it can be applied in reverse
with the same result. We can also define a rule neutral
fraction Nneut = 1−Nsel.

3.1 Two Dimensional Models

We can examine these metrics for the Game of Death sys-
tem in more detail for two dimensional model systems.

Figure 4 shows the metrics for the Game of Death plot-
ted on a log-log scale. The early straight line regions thus
suggest power-law behaviours. The correlation and frac-
tion of live, vacant(dead), like-like(same) and different cell
metrics are shown along with two others for selection and
neutral interactions. These latter two measure the fraction
of activity or change that takes place in a model [32] and
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Figure 4: Fractional variation of the composition of the
3-State Game of Death over time following a random uni-
form start.

Figure 5: Single step time correlation function for Game
of Death model on log-log scale.

are seen to be closely related to the vacant (dead) cell pop-
ulation.

Figure 5 shows the correlation function defined in equa-
tion 2 on an enhanced plot scale. The straight line regime
shown on the log-log scale indicates a power-law be-
haviour with a small exponent - that we speculate may be
related to (reciprocal) system edge length L = 10242. The
straight line region shows the measured data oscillating at
alternate time steps around a trend. This pattern persists
despite averaging over 100 independently initialised runs
and is thus intimately related to the synchronous CA up-
date mechanism where all cells are updated at once, in syn-

chrony.

The configuration snapshots of the Game of Death model
suggest that activity is driven by the combined presence of
live and dead cells against a background of zombie states.
Although the snapshots shown were initialised with equal
proportions of live, dead and zombie states, it is clear the
zombie states rapidly dominate. Furthermore this symme-
try between “live” and “dead” suggests that one of these
two could be used as a variable parameter. The fraction
of dead or “vacant” cells in the initial configuration is thus
used as a parameter in the data shown in the parametric
surface plots shown below. The experiments are averaged
over 100 independent runs using the stated pV acant frac-
tion of dead cells in the initial configuration, with the zom-
bie and live states receiving 1−p

2 N initial cells each. The
metric fractions are shown over power-of-two times.

Figure 6: Average fraction of like-like cells in
2D Death model, shown at power-of-two times
0, 1, 2, 4, 8, 16, ..., 16384, as the initial number of
dead or “vacant” sites is varied

Figure 6 shows the fraction of like-like cell neighbour
bonds encountered in the model system with time, with the
vacant/dead cell initialisation parameter scan shown. If the
system is initialised entirely dead, it stays that way but if
there are no dead cells, just live and zombie states, then the
fraction of dead cells does reach a steady dynamic equi-
librium value. There is an interesting saddle-point in the
surface near a dead initialisation fraction of p ≈ 0.3. It is
not yet clear if this is really an approximation of 1

3 or a less
trivial phase transitional value. The long-term behaviour is
almost independent of the dead initialisation fraction. Pro-
viding there are some appreciable fraction of dead cells to
interact with live cells, the system eventually reaches an
unvarying fraction of like-like neighbouring cells.

Figure 7 shows a simple population fraction of the live
cells. This parametric surface also shows long term in-
sensitivity to the dead cell initialisation fraction, as long as
it is less than around ≈ 0.7, above which the system stays
uniformly dead. The same saddle-point is shown at around
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Figure 7: Average fraction of live cells in 2D Death model,
shown at power-of-two times 0, 1, 2, 4, 8, 16, ..., 16384, as
the initial number of dead or “vacant” sites is varied

0.3 and is again seen to affect only the early time regime of
the model. After a number of time steps that is comparable
with the system length traces of the initialisation fraction
are seen to be largely dissipated.

Figure 8: Average 1 time step correlation function in
2D Death model, where neighbouring cells are the same,
shown at power-of-two times 0, 1, 2, 4, 8, 16, ..., 16384, as
the initial number of dead or “vacant” sites is varied

Figure 8 shows the correlation function as defined in equa-
tion 2. The surface correlates live and dead cells together
without distinction, so it neglects zombie-zombie cell ef-
fects which would otherwise completely dominate. The
correlation rapidly washes out any fluctuations after a time
comparable to that necessary for information to have prop-
agated across the entire model. The early regime correla-
tion surface is relatively smooth but does show a turn-up
for configurations where too many of the initial cells are
dead.

3.2 Three Dimensional Models

It is interesting to examine the Game of Death model
in three dimensions to try to determine if the early time
regime phenomena carry over or are unique to the two di-
mensional case.

The Game of Life with the stated cutoffs does not lead to
interesting behaviour in 3D on Moore neighbourhood. All
cells die out after a single time step and it is necessary to
adjust the totality thresholds ri to make a sustainable three
dimensional Game of Life. However the unaltered Game
of Death does show interesting transients followed by a
complex dynamical equilibrium as shown in figure 9.

Figure 9 shows that a uniform random initial configuration
does undergo a dramatic change at the first few time steps
with the system nearly dying out, leaving just a few viable
combinations - by statistical chance. These viable com-
binations rapidly grow to fill the space and then “jostle”
with one another creating ongoing interference patterns a
nd surface waves that maintain a dynamical equilibrium in
overall population density.

We observe that the system must be big enough for these
viable combinations to arise statistically. We speculate
that it should be possible to compute the statistical like-
lihood of viable combinations arising by chance by a sys-
tematic study of different sized model systems. As prelim-
inary bounds on this size and probability, we found that a
403 system would nearly always recover viable patterns,
whereas a 163 system typically would not.

4 Discussion

The Game of Death system shows that “the right” com-
binations of live and dead cells located nearby in a back-
ground of zombie cells can grow and self-perpetuate, and
even when these independent fluctuations encounter one
another they still manage to co-exist in the long term,
creating three dimensional waves and interacting patterns.
Overall this gives rise to a system of dynamic equilibrium.
A great deal of cell activity occurs, but if large enough, the
overall populations reach steady sustainable values.

This behaviour is similar to the overall sustainable popu-
lation averages found in Lotka-Volterra and predator-prey
animat models [16]. In those models however there are
typically much slower periodic boom-bust envelops super-
posed on the flat averages.

The cyclic relation between the 3-states of the Game of
Death goes some way to explaining why zombie states
dominate. The rules as shown in Figure 2 show that while
live cells always become zombies and dead cells always
die, zombies tend to become stuck as zombies since there
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Figure 9: The Game of Death on a 40× 40× 40 mesh, zombie states left transparent, at times 0, 1, 2, 3, ..., 11.

is a special condition (having exactly 2 live neighbours)
for a cell to break out of the zombie state. This condition
is unlikely to happen just by chance with probability 2/8
or 2/26 in two or three dimensions respectively. Patterns
in the CA subsist or reproduce however precisely because
the neighbour hoods are not random - after the transient
temporal stage is over. Once the dynamical equilibrium
phase has begun the probability of “the right combination”
of live neighbour cells is high enough to maintain the over-
all population densities.

5 Conclusions

We have analysed Silverman’s Game of Death on
two-dimensional and three-dimensional spatial periodic
meshes and identified both qualitatively different be-
haviours from the Game of Life, as well as employing a
number of signature metrics that quantify these distinc-
tions. We have compared the typical configurations that
arise following a random initialisation and have found that
the Game of Death model exhibits two distinct temporal
regimes. The initial transient stage involves a massive
near-extinction of statistically random patterns that are not
viable. This stage is followed by the re-population of sus-
tainable patterns from the statistical remnants of the initial
near-extinction. This manifests itself a large dip in the den-
sity of live and dead cells which then can stabilise to steady
state values characteristic of a dynamic equilibrium.

Providing the system is large enough there are typically
enough self-sustaining or reproducing patterns present to
repopulate - although for systems that are too small for
these to occur statistically, then the whole system dies out.
This behaviour is in contrast to the Game of Life behaviour
where a minority of live cells requires just the right neigh-
bourhood combinations to survive or reproduce against a
majority background of dead cells.

We experimented with a deliberate adjustment to the num-
ber of dead cells in the model initialisation and parametric
scans show that providing there are some, then the exact
details of the initialisation are washed out in time and thus
the model does not retain much memory of its state be-
yond the time for information to propagate across the spa-
tial edge length.

We note that for the Game of Life the Moore neighbour-
hood works in two dimensions but not in three unless we
adjust the ri neighbour count cutoffs. Without such an ad-
justment all Game of Life cells die out immediately. In
contrast however the Game of Death model works unal-
tered in 3D with Moore neighbourhood and live and dead
cells persist albeit at low densities compared to the zombie
cells.

Unlike much of the research reported on Game of Life
like models, we have not focused on specific structures
but there is scope to do so for the Game of Death and in
particular to look at three dimensional features and viable
patterns. A detailed statistical analysis of the motifs and
other common patterns in the Game of death would also be
worthwhile. There is also scope for further work adjusting
the cutoffs r1, r2, ... in Game of Life in 3D and also to ad-
just the two-live neighbour zombie promotion rule in the
Game of Death.

The transient statistical behaviour in the early stages of
these models has some implications for viable biodiver-
sities of many specied complex systems. Only quite par-
ticular combinations of the many possible patterns that are
formed by chance initially can actually survive and repro-
duce. Computational experiments with a microscopically
simple sort of CA model such as the Game of Death could
feasibly map out this statistical model space and link it
to reductionist theory, whereas this approach continues to
prove difficult for real world biological systems [33–35].
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Abstract- In this study, Munster town, located in the 
east of France is modeled in a multi-agent system and 
the urban growth has been studied in the referred 
year 2002 from the initial state 1979. For studying 
the urban growth, aerial photos and geographical 
data have been exploited as the primary materials to 
make the model in two different time sections.1 
The verisimilitude of simulation and real growth has 
been tested by observation and statistical 
comparison. 
With controlling some agents, the variety of states is 
modeled for the year 2025. 
By measuring the forces that feed the growth and the 
natural and artificial obstacles that limit it, this 
simulation provides the urban planners and deciders 
with some tool for controlling the process. The 
different modes of simulation can help to define 
strategies for future. 
Keywords: Multi agent system, Cellular Automata, 
urban growth, complex system. 
 
 
  

1. Introduction 
The urban growth has been one of the major items for 
urban planners and geographers. In recent years, 
urban modeling showed the attempt to shift from 
"classic" models to "evolutionary" models (as 
evolutionism appeared to be the symbol of complex 
systems). 2  

• Cellular automata, as a tool for urban 
modelling, are gaining a big popularity, 

because they imply inputs and outputs in a 
qualitative and cartographic form, which is, 
for urban planners, more usual than 
numerical representations. In addition, this 
different form of representation allows an 
easy interface with GIS, which show an 
increasing diffusion; 

• The working mechanism of cellular 
automata is relatively simple, because it 
consists mainly in the transition rules 
between one state and another of a cell, 
which depend on the state of the cell itself 
and of its neighbouring (appropriately 
defined). This simplicity makes operatively 
easier the connection with the "learning 
system".3 

These models are criticized for that instead of 
showing the complexity which is resulted by 
activating several factors simultaneously, the 
introduction of new ingredients into the simulation 
soup may have unpredictable and unforeseen 
consequences for the flavor of the resulting model. 4 
Nonetheless the configuration of the factors, giving 
weight to them, and combining several factors with 
their personal weights, make the models good 
toolboxes that can take into consideration the results 
of increases and decreases in the number of factors 
and their weights. 
It is possible to change some of the factors that have 
impact on the speed, orientation and magnitude of 
growth, and by this, the changes in horizontal growth 
in borders of city or vertical growth in varied parts of 
city is resulted. 
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This work is realized on Munster town, located in the 
middle of regional natural park Ballons des Vosges. 
A MAS (Multi Agent System) model is applied in 
this little mountain town where the heterogeneous 
space constrains it. Munster town is surrounded by 
mountains that impede the easy construction and the 
regulations do not let the construction on the slopes. 
However there has been a destroy of 3% of urban and 
10% of Natural park environment as the result of 
construction. 
In this study, the dynamic aspects of urban growth are 
analyzed, understood and anticipated and therefore a 
simple and powerful tool for controlling the 
urbanization policies in a space constrained by nature 
(slope, forest, biotope, humid zones, infrastructure, 
...) and human activities (agriculture, tourism, ...) is 
Prepared. 
 

2. The model 
 
     2.1 Making model 
From different sources like maps and administrative 
documents, aerial photographies (IGN, Institut 
Géographique National), Orthophotographic 
database, and topography database (IGN) the data are 
issued. The geometry is extracted from town data and 
geometric data (punctual and surficial). 
Totally 15 different files of data are combined to 
construct the model. 
With Arcgis9.1 software which works on the digital 
model of terrain and create and analyze the grids, the 
data are treated to adapt to matrices (177, 97). The 
codes are written in the open source software 

“Netlogo” which is a 3D world. This tool lets to 
create a regular mesh of (25m) square and transfer the 
values from the entities of one layer. The pixels are 
all the same size and can’t simulate the multipixel 
buildings (factories, supermarkets…) 
 

2.2 Multi agent system 
A multi-agent system (MAS) is the set of agents 
situated in a certain environment and interact 
according to a certain organization. 
What is simulated is the Munster town, but the space 
goes more than the town limits. The environment is 
discretized in 25 meters (x,y) and 10 meters (z) units. 

The first inputs of the town in 1979 were manually 
reconstituted by degrading 2002, because there was 
lack of precise information. The non-constructible 
zones (cemetery, stadium, humid zones, and biotope) 
were delimited in 2002. 

The system is based on different factors which 
permits or not the construction in the town. 
 
The adjustable parameters are: 
The duration of simulation (0-50 years) 
Number of buildings to be constructed in simulation 
period (0-1000) 
Maximum permitted slope (0-30°) 
Number of construction permitted by pixels (1-6) 
Empty pixels around the constructions (1-16) 
Construction in the center of town (yes/no) 
Construction in the forest (yes/no) 
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Fig.1 Munster town 
1979 

 

Fig.2 Munster town 
Evolution 

 

Fig.3 Munster town 
2002 

1979-2002 simulation 
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Simulation period 23 neighbors 3 Simulation period 23 neighbors 1 
Building wanted 394 Construction in center no Building wanted 394 Construction in center yes 
slope 5° Construction in forest no slope 5° Construction in forest no 
densification 5 [F1=0.443 F2=0.678] densification 6 [F1=-0.025 F2=0.639] 

Fig.4 Building densification 1 periphery  Fig.5 Building densification 1 Maximal 
 

 

 

 
Simulation period 23 neighbors 8 Simulation period 23 neighbors 16 
Building wanted 394 Construction in center no Building wanted 394 Construction in center no 
slope 12° Construction in forest no slope 30° Construction in forest yes 
densification 2 [F1=0.690 F2=0.714] densification 1 [F1=0.780 F2=0.731] 

Fig.6 Building dispersion 1  Fig.7 Building dispersion 2 

 

 

 

 
Simulation period 23 neighbors 8 Simulation period 23 neighbors 8 
Building wanted 394 Construction in center no Building wanted 394 Construction in center no 
slope 30° Construction in forest no slope 30° Construction in forest yes 
densification 2 [F1=0.726 F2=0.720] densification 2 [F1=0.777 F2=0.732] 

Fig.8 Construction on the slopes  Fig.9 Construction on the slopes and in the forest 
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       2.3 The validation and the test 

For measuring the quality and the verisimilitude of 
simulation, some tool should be applied for 
comparing the results of simulation with observation. 
For this aim, two approaches were applied to compare 
the two real and simulated states. “Classic Statistical” 
and “spatial analyze” approach.  

In statistic approach, the quality of simulation is 
measured by comparing the exact data. 

Reference Year: 2002→Matrix [𝐴2002] . 

Simulation results →Matrix [𝐵𝑠𝑖𝑚] . 

The data are all in matrix form (177, 97). 

The comparison is made by considering two criteria: 

The quadratic mean error criteria∶ 

 

�
∑ ∑ (𝑨𝟐𝟎𝟎𝟐 − 𝑩𝒔𝒊𝒎)𝟐𝒋=𝟏𝟕𝟕

𝒋=𝟏
𝒊=𝟗𝟕
𝒊=𝟏

∑ ∑ (𝑨𝟐𝟎𝟎𝟐 −< 𝐴𝒔𝒊𝒎𝟐𝟎𝟎𝟐 >)𝟐𝒋=𝟏𝟕𝟕
𝒋=𝟏

𝒊=𝟗𝟕
𝒊=𝟏

� 
(1) 

 

                                                     

And absolute criteria: 

 

�
∑ ∑ |𝑨𝟐𝟎𝟎𝟐 − 𝑩𝒔𝒊𝒎|𝒋=𝟏𝟕𝟕

𝒋=𝟏
𝒊=𝟗𝟕
𝒊=𝟏

∑ ∑ |𝑨𝟐𝟎𝟎𝟐 − 〈𝑨𝟐𝟎𝟎𝟐〉|
𝒋=𝟏𝟕𝟕
𝒋=𝟏

𝒊=𝟗𝟕
𝒊=𝟏

� 
(2) 

                                                              

These two criteria vary from [−∞, 1] ; The more they 
are close to 1, the more the two distribution are 
similar. One negative value indicates that the model 
best explain spatialised constant value. 

Three evolution scenarios were used (densification, 
dispersion, urbanization of slopes), everyone with 
two intensities. The application of these schemas in 
the period 1979-2002 showed that development of 
Munster is close to “densification 2” 

Prevision: The model was used in the period 2002-
2025 with the same schema of evolution. 

The second approach can be applied a little more 
empiric, it consists the construction of indices and 
comparing the two. It is done in 3 spatial scales: the 
landscape, the building type, the pixels. 
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2002-2025 simulation  

 

 

 
Simulation period 23 neighbors 3 Simulation period 23 neighbors 1 
Building wanted 394 Construction in center no Building wanted 394 Construction in center yes 
slope 5° Construction in forest no slope 5° Construction in forest no 
densification 5 [F1=0.479 F2=0.724] densification 6 [F1=0.145 F2=0.701] 

Fig.10 Building densification 1 periphery  Fig.11 Building densification 2 periphery 

 

 

 

 
Simulation period 23 neighbors 8 Simulation period 23 neighbors 16 
Building wanted 394 Construction in center no Building wanted 394 Construction in center no 
slope 12° Construction in forest no slope 30° Construction in forest yes 
densification 2 [F1=0.705 F2=0.750] densification 1 [F1=0.793 F2=0.764] 

Fig.12 Building dispersion 1  Fig.13 Building dispersion 2 

 

 

 

 
Simulation period 23 neighbors 8 Simulation period 23 neighbors 8 
Building wanted 394 Construction in center no Building wanted 394 Construction in center no 
slope 30° Construction in forest no slope 30° Construction in forest yes 
densification 2 [F1=0.752 F2=0.759] densification 2 [F1=0.786 F2=0.764] 

Fig.14 Construction on the slopes  Fig.15 Construction on the slopes and in the forest 
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3. Conclusion 
 

This study has realized a temporal and spatial 
modelization. The support of the study is the 
evolution of urbanization in Munster at the center of 
PNRBV (Parc Naturel Regional des Ballons des 
Vosges).  

The model is developed by discretized simulation in 
space and in time. The model in 2D and 3D version 
can describe the urban sprawl and densification, 
based on application of simple anthropic and natural 
factors.  

The original data are: the topography (x,y,z, slope, 
orientation), the plant (forest, prairie), the building (5 
types), and the non constructible zones (4 types). The 
reference year is 2002. The year 1979 was manually 
reconstructed from maps and orthophotos. 

Six factors permit the hypothesis construction on 
urban evolution: Duration of simulation, number of 
houses, density of buildings, contiguity of 
neighborhood, construction in the forest and/or in the 
center of town. 

In future, some other tests will compare the 
simulation and actual state, some other factors like 
the distance from the city center and the impact of 
neighbor cells on the referred cell will be taken to 
account. As the center of city has played an important 
role in urban growth5, and on the other hand by 
changing the transportation facility and the ease of 
access to the central parts6, and because of the 
emergence of new centers in cities7, the distance from 
the center and the impact of neighbor cells will be the 
aim of future study to make the models more 
dynamic. 
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Abstract- The aim of this study is to investigate 
the discrete factors of gentrification modeled by 
cellular Automata. The gentrification is the 
arriving of middle and high social classes in the 
inner-city areas. It corresponds to the residential 
mobility of solvent households, attracted by 
residential comfort and the central retailing 
equipment. The proximity, diversity and quality 
of this equipment become criteria of the 
residential choice, as important as the criterion 
of the residential comfort. The cellular automata 
in this study, models the constituents of post 
modern comfort in residence, its environment 
and the centrality which altogether and 
simultaneously make the city inhabitants 
aspiration. During the spatiotemporal change, 
the aspiration in central parts of city is studied. 
  
Keyword: Gentrification; Cellular Automata; 
Complex System, postmodern comfort. 
 
 
        1. Introduction 
 
The social world is getting more complex, more 
people on various levels participate in decisions 
through democratization and decentralization. 
Globalization and new technologies increase 
their interrelations and people become more 
diverse and through an increase in wealth 
become more individual. As is the notion of 
decentralized decision making, the physics of 
far-from-equilibrium structures is important. 
Processes that lead to surprising events, to 
emergent structures not directly obvious from the 
elements of their process but hidden within their 
mechanism, new forms of geometry associated 
with fractal patterns, and chaotic dynamics, all 

are combining to provide theories that are 
applicable to highly complex systems such as 
cities.1 
The complex system of cities are comprised of 
some more simple systems which are working at 
the same time and also there is always 
uncertainty about the outcome of the process of 
changes that originate from the bottom-up order.2 
The imbalance in interurban of Strasbourg 
exemplifies some state in macro scale which is 
the result of some changing in micro scale. The 
mobility of residents and the changing in socio-
spatial disparity in the city leads to the socio-
spatial phenomenon “gentrification”. 
For explanation of an observed socio-spatial 
phenomenon, there has been a tendency to grow 
it rather than explain it. Artificial society 
modeling allows us to “grow” social structures  
in silico demonstrating that certain sets of micro 
specification are sufficient to generate the macro 
phenomena of interest. For matching between the 
true, observed structures and the generative 
models, statistics can be used for testing the 
results.3  
Cellular automata are applied for modeling an 
urban system that enacts several factors making 
the mobility of residents in Strasbourg. Some 
factors that make them settle or stay in their 
residences and some that make them move into 
other parts of the city.  
In this study, two main categories of comfort are 
taken to study the satisfaction of people. The 
comfort factors are important for deciding to stay 
or move. 
The two comfort categories are modern comfort, 
that are measurable standard factors that enhance 
the residence and neighborhood, and the second, 
discrete comfort, that gives aspiration to the 
residents to continue to live in their residence 
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and consequently in their neighborhood. The 
latter are some facilities like centrality or in 
another word having easy access to urban 
equipments. 4  
 
The two main categories are modeled as the 
result of statistical outputs of a study in 
Strasbourg in three time sections: 1975, 1982, 
and 1992. 
All of the factors enhance the quality of life in a 
neighborhood, however at the same time they 
elevate the cost of living in these areas. 
In the last study, the two theories of 
gentrification were combined to see the demand 
and supply side of gentrification at the same 
time. The proposition was to give more 
aspiration to the residents of a depreciating 
neighborhood to make them rest in the 
neighborhood and at the time of aging the 
buildings, keep them ready for the shock of 
sudden elevation in prices after some 
renovation.5 
Now in this study knowing that all the 
promotions in the level of life make it more 
costly, all the factors are brought in modeling to 
see their role in mobility of residents from some 
neighborhood in/to the/other neighborhood. 
  
          2.1. Gentrification 
 
Gentrification is the displacement or replacement 
of a low ranking socio-economic group by a 
higher status socio-economic group in the inner 
city, and it involves the renovation of previously 
downgraded buildings for residential use. 
 
Not all definitions of gentrification include the 
displacement of the lower-income residents. 

Some observers argue that displacement is not a 
necessary outcome of gentrification if original 
residents cannot afford to move elsewhere or are 
attached to the neighborhood, or if higher-
income households are able to occupy vacant 
properties or move into newly constructed 
developments.6  

           2.2 Post modern comfort 
 
Gentrification is mostly described as the result of 
enhancing the quality of living area in some 
concrete aspect of life such as the buildings and 
their quality. The other aspect of quality 
enhancing which generally concerns the life 
quality take into account the discrete aspects. 
That can be mentioned as postmodern approach.  
The post-modern comfort is a new concept 
which understands and articulates the social 
mutation better. It is not just a kind of 
enrichment of the tenants which end to 
reembourgeoisement of central parts, but is an 
effort to understand other options for residence 
choosing in non equal social classes. The 
evolution of socio-residential segregation reflect 
this malfunction of inter and intra-urban. 
 There is a measurable postmodern comfort in 
intra-urban scale according to eco-socio-spatial 
logic in gentrification. 
 
The definitions like residential comfort, 
equipment comfort, life level, life style, etc that 
are mostly immeasurable, are inferred from a 
qualitative explanatory method. By using factor 
analysis, the latent dynamism of the social 
system is defined. 
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Fig. 1 Construction of relation between postmodern comfort and gentrification 

 
 
          2.3 Centrality 
 
Due to the new means of communication and 
transportation, the socio-spatial mobility is 
growing. The replacement of deindustrialization 
with service sectors accelerates this process. The 
“heap of sand” logic recalls that the work 
evolution reinforces the concentration and 
spatialization. With redevelopment of central 
urban functions and the diversification of the 
activities of service sectors, two spatial forms 
spread in fewer than 20 years: 
The first is a central form –centralization- with 
the new commercial centers, hotel complexes, 
offices, big markets. The “Halles” [markets] of 
Strasbourg or that one of Paris which are located 
in the very center of city are the examples that 
form the functional and material centers and it 

strengthens the concentration role in the center of 
city. 
The second one is characterized with a peripheral 
spatial form –sprawl- installed in the proximity 
of the main axes of transport: supermarkets and 
other big specialized surfaces in different fields 
(gardening, entertainment, tinkering, 
automobiles, etc). The centrality is not limited to 
the center of cities and the activities extend to 
peri-urban zones, responding to the demands of 
habitants and the competition between the 
commerce and services.   
According to the repartitioning of facilities and 
equipments in the city, the centrality of parts of 
city is calculated as below:  
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𝑑𝑖𝑗= 
𝑓𝑗
∑𝑓𝑗

= 
𝑓𝑗
𝑠𝑗

 (1) 

 
Which  𝑑𝑖𝑗 is the Scarcity Index,  f is the number 
of specific institutions in different 
neighborhoods, and s is the sum of those 
institutions in all neighborhoods. 
 

Centrality index = 𝑐𝑖= ∑ 𝑑𝑗𝑖  (2) 
                                                                     

And the Benisson Index introduces the rate of 
centrality of a given location. 
 

Bennison Index = 
𝑐𝑖
∑ 𝑐
𝑝𝑜𝑝𝑖
∑𝑝𝑜𝑝

 
(3) 

                                                                                                  
Which 𝑐𝑖is the centrality of 𝑖,
∑𝑐 the sum of centralities, 
𝑝𝑜𝑝𝑖the population of 𝑖, and 
∑𝑝𝑜𝑝 is the sum of population in the zone ofstudy  
The technical comfort which is the standard 
facilities that make a residence more comfortable 
and they are the results of statistics issued by 
INSEE.i

 
 

RC = 
 ∑𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑤𝑖𝑡ℎ 𝑊𝐶+ ∑𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑤𝑖𝑡ℎ 𝑠ℎ𝑜𝑤𝑒𝑟+ ∑𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑤𝑖𝑡ℎ 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 ℎ𝑒𝑎𝑡𝑖𝑛𝑔

3∑𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒
               

 (4) 
 

RC (Residential Comfort) ranges between 0, 1. 
And the comfort found in a spacious residence 
which is based on the number of people living in 
each piece. 
 

Person per piece= [0, 4.6] (5) 
 
                                                                                                
In the fig. 2 the repartitioning of urban 
equipment is modeled in two time sections and 
the evolutions of the centralities are modeled. 
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Fig. 2 the development of equipment repartition 
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Fig. 3 the Cellular automata algorithm of urban development 
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3. Result and discussion 
   
The simulation in Cellular automata  
 
In the algorithm fig. 3 the impact of technical 
comfort and spacious residence comfort on 
settling and leaving the residents is modeled. The 
decision is based on closeness to the centralities. 
The modern and discrete comforts are the 
incentives for settling in a cell, and the 
depreciation of the residences and elevating the 
life costs are the constraints that make the 
resident leave. 
 Gentrification is based on a bottom-up, self 
organizing system where space and neighboring 
relationships are crucial. The cells are chosen as 
(100m×100m) almost equal to a block.  
 
The two main constituents of gentrification as a 
multi-agent system are: 

• The actors and their behaviors by social, 
spatial and economic agents 

• The blocks by cells that change state on 
the base of agent actions that influence 
the cell’s nearest neighbors. 

     
4. Conclusion 
 
By studying gentrification in complex system, 
some other agents can be added to make the 
models more real.  
Based on models that study the formation of 
cities and their development as the result of 
mobility of the population, the impact of 
gentrification on the city development will be 
studied in three urban growth models:    
Concentric distribution, with an urban extension 
in rururban, 
The multi-polar situation in locating social 
residence,  
And sectorial repartition.  
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Abstract- Cellular Automata(CA) with evolutionary and 
complex behaviors are used in several applications such 
as generating random numbers and cryptography. 
Because of the intrinsic self-organizing property, pure 
CA cannot produce a long sequence of random numbers. 
For increasing the sequence of produced numbers, non-
uniform CA, controllable/programmable CA, stimulating 
factors or combination of several automata may be used. 
In this paper combined non-uniform cellular automata as 
a random number generator with contribution of 
Langton's ant is presented. Langton’s ant has a 
complicated behavior that a combination of some 
Langton’s ants gives them a chaotic behavior 
combination of chaotic behavior with complex behavior 
of cellular automata causes great efficiency in 
generating random sequence. Experimental results show 
that, in spite of our expectation, combination of 
Langton's ant and cellular automata does not have 
chaotic behavior (does not depend on initial value) but 
illustrates the random behavior. Which, it results in 
cycles of very long period lengths with limited number of 
cells such that a period length 2ଷ is obtained by n cells.  

 
Keywords: Random Number Generator,   Langton’s   
Ant, Cellular   Automata, Diehard Test, Long Period 
Length. 
 
1    Introduction  

Random number generators (RNGs) play an 
important role in several computational fields, including 
Monte Carlo techniques [1], Brownian dynamics [2], 
stochastic optimization methods [2, 3] and key-based 
cryptography [4]. It is usual to use mathematical or even 
evolutionary methods to construct RNGs that yields high 
quality generators. The quality of generators that 
determined by statistical tests have a great important 
role; for example, in cryptography, low quality of RNGs 
causes easily breaking the encrypted context [4]. In 
solving optimization problems, as shown in [5], 
performance and speed of algorithms directly depend on 
quality of used RNGs. To measure the quality of RNGs, 
some various statistical tests such as Entropy, Chi-
Square, Diehard and NIST tests are used. In this paper, a 
new RNG algorithm based on combination of complexity 
methods is represented. Experiments show, the generated 
numbers do not depend on initial values and are 
independent of each other with uniform distribution. This 
generator is a two dimensional ݊ ×  ݉ cellular automata 

(CA) with eight different rules and some Langton’s ants. 
The Langton’s ants not only determine the CA rules but 
also give a random state to cellular automata by 
disturbing cellular automata state. The results show, this 
RNG passed all the mentioned quality tests such as 
entropy, chi-square, avalanche, Diehard and NIST test. 
Uniformity of generated numbers, high speed parallel 
processing and sensitivity to bit changes in special 
applications such as cryptography are beneficial features 
of presented RNG.  
Following the introduction, in Section 2, related works 
are discussed. In Section 3, an overview on basic 
concepts of CA and Langton’s ant are described. In 
Section 4, the proposed RNG algorithm and its behavior 
are discussed. In Section 5, the experimental data and 
test results are illustrated and at last in Section 6, the 
conclusion and future works are discussed. 
 
2     Related works  

The first work to apply CA as RNG was done by 
Wolfram in 1986. His work shows the ability of CA to 
generate random bits [6, 7]. Basic researches on CA are 
on producing RNG by one dimensional CA with 3 
neighbors [7]. Other researches are focused on increasing 
CA's complexity with combinations of controllable cells 
[4, 8] or increasing CA`s complexity with increasing 
dimensionality. RNG are produced by using one 
dimensional CA studied in [9, 10, 11, 12, 13] and two 
dimensional CA in [14, 15, 16] and three dimensional 
CA in [17]. Hortensius proposed the first non-uniform 
CA or programmable CA (PCA) by using of the 
combination of two rules, 90 and 150 in 1989[9].  

PCA is a non-uniform CA that allows different rules 
to be used at different time steps on the same cell. He 
also represented another generator using the combination 
of rules 30 and 45 in [10] that its output bits have more 
dependencies to each other rather than rules 90 and 150. 
Recently, extensive studies have been done on PCA for 
generating random numbers [11, 15, 16, 18, 19]. First 
works on two dimensional CA represented by Chaudhuri 
et al. in 1994 [14]. Their results show that produced 
generator using this CA works better rather than one 
dimensional CA with the same size. In [20, 21] all 256 
(simple) elementary cellular automata were investigated 
(including those with rules given 90 and 150). It was 
found that CA with nonlinear rules 45 (or its equivalent 
rules 75, 89 or 101) exhibit chaotic (or pseudo-random) 
behaviors similar to those obtained in LFSRs. 

262 Int'l Conf. Scientific Computing |  CSC'11  |



 

 
3    Cellular Automata and Langton’s 
Ants 
 
 3.1    Cellular Automata  

A cellular automaton (CA), introduced by Von 
Neumann in 1940s, is a dynamic system in which its 
time, space and states are all discrete. The CA evolves 
deterministically in discrete time steps and each cell takes its 
value from a finite set S, called the State Set. A CA is named 
Boolean if S = {0,1} . The ݅ −  ℎ cell is denoted by ‹i› andݐ
the state of cell ‹i› at time t is denoted by ܽ

௧ . For each cell 
‹i›, called central cell, a symmetric neighborhood of radius r is 
defined by (1): 

ݒ = {‹݅ − ,‹ݎ … . , ‹݅›, … . , ‹݅ +  (1) {‹ݎ
the value of each cell ‹i› is updated by a local transition 
function ݂-called rule- which for a symmetric neighborhood 
with radius r is defined as follows (2): 

ܽ
௧ାଵ = ݂(ܽି

௧ , … , ܽ
௧ , … , ܽା

௧ ) (2) 

or equivalently by (3): 

ܽ
௧ାଵ = ݒ)݂

௧) (3) 

Such that ݒ
௧ is as follows (4): 

ݒ
௧ =  ݂(ܽି

௧ , … , ܽ
௧ , … , ܽା

௧ ) (4) 

To represent a symmetric rule of radius r for a Boolean CA, 
a binary string of length L is used, where ܮ = 2ଶାଵ , Table 1 
Shows the rule 90 of radius one (r=1). 

Table 1. The Rule Representation Of Boolean Symmetric 
Rule 90 Of Radius One 
Neighborhood 

Number 7 6 5 4 3 2 1 0 

ݒ
௧ 111 110 101 100 011 010 001 000 

ݒ)݂
௧) 0 1 0 1 1 0 1 0 

 

If all CA cells obey the same rule, then the CA is said 
to be a uniform CA; otherwise, it is a non-uniform 
CA[22]; in addition, a CA is said to be a CA with 
periodic boundary condition if the extreme cells are 
adjacent to each other else it called null-boundary CA. If 
a CA rule involves only XOR logic, it is called a linear 
rule; rules involving XNOR logic are referred to 
complemented rules. A CA with all cells having linear 
rules is called linear CA, whereas a CA having a 
combination of linear and complemented rules is called 
an additive CA [23]. In this paper, we used a non-
uniform two dimensional CA with periodic boundary and 
{0, 1} as its states and state of each cell depends on the 
state of itself and its neighbors. 

 
3.2     Langton’s Ant 

Langton's ant is a two-dimensional Turing machine 
with a very simple set of rules but complicated emergent 
behavior. It was invented by Chris Langton in 1986 and 
runs on a square lattice of black and white cells (zero or 
one). Each ant has been put arbitrary in one of black or 
white cells. They can move to each of their four 
neighbors according to these rules: (1) At a white square, 

turn 90° right, flip the color of the square, move forward 
one unit. (2) At a black square, turn 90° left, flip the 
color of the square, move forward one unit (Fig. 1).These 
simple rules cause very complicated and chaotic 
behavior. In this paper, we consider 1 as the value of 
white cell and 0 for black. 

  
 

       After move     Before move                        

Fig. 1. Langton’s ants behavior in 3 × 3 square lattice  

4    The proposed generator based 
cellular automata and Langton’s ants 
 
4.1     The proposed generator 

In this scheme a two dimensional, non-uniform 
݊ × ݉ CA with periodic boundary condition are used to 
generate random numbers by using 8 rules: 153, 30, 90, 
165, 86, 105, 110, 150. The Boolean expression of each 
CA rule is shown in Table 2. According to [24], 
generated numbers by these rules have the best results in 
different tests such as entropy, chi-square and diehard.  

 
Each ant is placed on corresponding cell of CA. The 

position of ant shows the rule number of cell automata. 
Furthermore each ant has exactly two fixed neighbors 
and doesn't depend on the position of ants in CA. Here as 
Fig. 2 Shows, the numbers of ith ant's neighbors that are 
i-1 and i+1. 

 
Fig. 2. Selection of ant's neighborhood.  

For generating random numbers, the initial values of 
CA, the position and direction of ants are determined 
randomly. In each run, a rule is determined for each cell 
(based on the lookup Table 3); then CA is updated and 
ants move one step.  
          Table 3:  CA rules lookup table 

7 6 5 4 3 2 1 0 
86 30 101 150 153 90 105 165  

Table 2. The Detail and Boolean Expression of Each CA Rule

Boolean Representation  Possible Input Configuration  Rule 
Name 000  001 010 011 100 101 110 111 

[xi-1  nor xi+1 ]  or  [(xi  xor xi+1 )  
and xi-1 ] 1  0  1  0  0  1  1  0  101  
Not[xi-1  xor  xi   xor   xi+1 ]1  0  0  1  0  1  1  0  105  
[xi-1  nor xi  ] xor [not(xi+1 )]0  1  1  0  1  0  1  0  86  
[xi-1]  xnor [xi+1 ]1  0  1  0  0  1  0  1  165  
[xi-1]  xor  [xi+1]0  1  0  1  1  0  1  0  90  
[xi-1]  xor [xi  or  xi+1 ] 0  1  1  1  1  0  0  0  30  
[xi]  xnor  [xi+1]1  0  0  1  1  0  0  1  153 
[xi-1]  xor  [xi]   xor   [xi+1]0  1  1  0  1  0  0  1  150 
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A rule is chosen for each cell as shown in the lookup 
Table 3. For selection of rule for each cell, the value of 
cells which the ants (with the same cell's number) and 
their neighbor ants are there, generate a number between 
0..7. Then by Table 3, the rule of cell is selected 
according to rows. For example the number of cells is 
shown in Fig. 3 for a 3 × 3 CA. In the second ant the 
neighbors are always first and third ants. 

 
Fig. 3. CA arrangement for rule selection. 

If the value of cells for first, second and third were 1, 
1, 0 respectively, the chosen rule number for second cell 
will be (011)ଶ = 3. i.e. The rule of cell in position [1, 2] 
(row 1 and column 2), according to Table 3 is 153. It 
should be mentioned that the neighbors of first ant are 
second ant and (݉ × ݊)th ant. Ants only move according 
to the rules. So, this maybe yields that one cell has more 
than one ant or even has no ants. After rule selection for 
each cell, the rules have been applied on CA by row. If 
the ants were more than ݉ × ݊, the extra ants have been 
used for stimulate the CA and have no effect on rule 
selection. 
 
4.2  How does Langton’s Ant Disturb 
Cellular Automata and Generate Random 
Numbers? 

4.2.1    Langton’s Ant Role 

Role of Langton’s ant in this generator, in addition to 
determine executive rule for a cell, is to actuate the 
maximum disturbance in cellular automata to prevent 
cycle formation and to reach the maximum entropy in 
cellular automata. What important is that disturbance in 
cellular automata cells state should be the maximum at 
each of ants movement (%50 of change). This 
disturbance causes that the number of very long iteration 
for reaching the current state to be needed for few cells 
and a sequence of pseudo-random generated bits to be of 
high quality. Table 4 represents change degree of cellular 
automata cells states at every movement of ants for 
different number of ants. For this reason, the algorithm 
was performed 100 times and each time, 5000 times with 
different number of ants. To calculate changes, 
percentage of imposed changes by cellular automata 
rules is neglected. 

Table 4. Changing percentage of cellular automata 
state for ants movement 

Percent Change  Ant 
Number  Average  Max  Min 

0.4430  0.4445  0.4414 25  
0.4893  0.4897  0.4867  50  
0.5001  0.5001  0.4984  75  

0.5007  0.4985  0.4999  100  
0.5002 0.5009 0.4994 250 
0.4998 0.5004 0.4991 500   

As it is shown in Table 4, changes percentage for the 
increased number of ants to 4 times of cells is almost 0.5 
and by more increasing of ants, changes percentage 
remains the same as 0.5 with a little difference.  

4.2.2   Combining Cellular Automata and Langton’s 
Ant 

As it was stated in 4.1, the proposed generator is a 
combination of cellular automata and Langton’s ants. 
According to Table 4, for the same number of ants and 
cells, changes percentage is a little less than 0.5 that is 
because of being located of some ants in one cell and 
another change of modified cell by next ants. Table 5 
shows changes percentage for movement of ants and 
implementation cellular automata rules.  

Table 5. Change Percentage of Cellular Automata 
State For Movement of Ants and Implementation of 
Cellular Automata Rules 

Percent Change  Ant 
Number  Average  Max  Min 

0.5000  0.5016  0.4982 25  
0.4999  0.5017  0.4990  50  
0.5006  0.5009  0.4992  75  
0.5002  0.5010  0.4984  100    

 

As it is observed in Table 5, changes in this table to 
Table 4 are better with the same number of ants and for 
less number of ants reaches to 0.5.  

5      Experimental Results 
A 3 × 3 CA is used for tests. In all cases which the 

numbers of ants are chosen less than 9, the purpose is the 
number of stimulus ants (those who change the value of 
a cell), while the ants that select the rules are those 9. In 
other words, there are at least 9 ants. For k ants which 
݇ < 9 ants, 9 − ݇ extra ants are considered, that move 
according to the rules but have no effect on their cell's 
value. In the cases that the number of ants is greater than 
9, only first 9 ants will determine the rules and remained 
ants only is used as the stimulator of CA. 

 
5.1    Several Basic Statistical Tests For 
PRNG 

Let s =ݏ, ,ଵݏ ,ଶݏ  ିଵ be a binary sequence ofݏ , …
length n. This subsection presents several basic statistical 
tests that are commonly used for determining whether 
the binary sequence s possesses some specific 
characteristics that a truly random sequence would be 
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likely to exhibit. It is emphasized again that the outcome 
of each test is not definite, but rather probabilistic.  

5.1.1     Frequency Test (Monobit Test) 
The purpose of this test is to determine whether the 

number of 0’ݏ and 1’ݏ in s are approximately the same, 
as would be expected for a random sequence. Let ݊, ݊ଵ 
denote the number of 0’ݏ and 1’ݏ in s, respectively. The 
statistic used is: 

1ݔ =
(݊ −  ݊ଵ )ଶ

݊  (5) 

which approximately follows ܽ ݔଶdistribution with 1 
degree of freedom if  ݊ ≥ 10. For a significance level of 
α = 0.05, the threshold values for this test is 3.8415 [25]. 
 
5.1.2     Serial Test (Two-Bit Test) 

The purpose of this test is to determine whether the 
number of occurrences of 00, 01, 10, and 11 as 
subsequences of ݏ are approximately the same, as would 
be expected for a random sequence. Let ݊, ݊ଵ denote the 
number of 0’ݏ and 1’ݏ in s, respectively, and let 
݊00, ݊01, ݊10, ݊11 denote the number of occurrences of 
00, 01, 10, 11 in s, respectively. Note that ݊00 +
 ݊01 +  ݊10 +  ݊11 =  (݊ −  1) since the 
subsequences are allowed to overlap. The statistic used 
is: 

4
݊ − 1

(݊00ଶ + ݊01ଶ + ݊10ଶ + ݊11ଶ) −  
2
݊

(݊
ଶ + ݊ଵ

ଶ) +  1 (6) 

 which approximately follows ܽ ݔଶdistribution with 2 
degrees of freedom if ݊ ≥ 21. For a significance level of 
α = 0.05, the threshold values for this test is 5.9915 [25]. 
 
5.1.3      Poker Test 

Let ݉ be a positive integer such that ቔ


ቕ ≥ 5. (2)  

and let ݇ = ቔ


ቕ. Divide the sequence s into k non-
overlapping parts each of length ݉, and let ݊ be the 
number of occurrences of the ݅௧ type of sequence of 
length ݉, 1 ≤  ݅ ≤ 2݉. The poker test determines 
whether the sequences of length ݉ each appear 
approximately the same number of times in ݏ, as would 
be expected for a random sequence. The statistic used is: 

3ݔ =  
2

݇
ቌ ݊

ଶ
ଶ

ୀଵ

ቍ −  ݇ (7) 

Which approximately follows  ܽ ݔଶ distribution with 
2 − 1degrees of freedom. Note that the poker test is a 
generalization of the frequency test: setting m = 1in the 
poker test yields the frequency test. . For a significance 
level of α = 0.05, the threshold values for this test is 
14.0671 [25]. 
 
5.1.4     Autocorrelation Test 

The purpose of this test is to check for correlations 
between the sequence ݏ and (non-cyclic) shifted versions 
of it. Let ݀ be a fixed integer,1 ≤ ݀ ≤ උ݊

2ൗ ඏ. The 
number of bits in s not equal to their d-shifts is ܣ(݀) =
 ∑ ݏ

ିௗିଵ
ୀ  .ାௗ where ⊕ denotes the XOR operatorݏ ⊕

The statistic used is: 

ହݔ = 2 ൬ܣ(݀) − 
݊ − ݀

2
൰ /√݊ − ݀ (8) 

Which approximately follows an ܰ(0;  1) distribution 
if ݊ −  ݀ ≥  10. Since small values of ܣ(݀) are as 
unexpected as large values of ܣ(݀), a two-sided test 
should be used. . For a significance level of α = 0.05, the 
threshold values for this test is 1.96 [25]. In Table 6, 
values of discussed tests are presented for the proposed 
generator. For this, a sequence of random numbers is 
generated with 1 million bits and discussed tests are 
implemented on it. This procedure is repeated 100 times 
and its average is given, too.  
Table 6. Values of 4 basic statistical test 

MCD TESTS Pass Frequency Serial Poker Autocorrelation 
2 122.146 312.038 1075.00 1.5276 1/4 
4 40.424 109.886 356.893 0.1668 1/4 
6 8.9880 29.1744 84.1101 1.1336 1/4 
8 4.6742 13.5709 32.5310 1.3829 1/4 
9 0.0876 4.1185 8.3874 1.989 4/4 

≥ 10 0.732 3.326 6.761 0.245 4/4 
 

As it is shown in Table 6, generator with more than 8 
ants is able to pass all tests. 

5.2      ENT Test 
The ENT test is useful for evaluating pseudorandom 

number generators for encryption and statistical 
sampling applications, compression algorithms, and 
other applications where the information density of a file 
is of interest [26]. The ENT test is a collective term for 
three tests, known as the Entropy test, Chi-square test, 
and Serial correlation coefficient (SCC) test. Table 7 
shows values of this test for the proposed generator with 
1 ant, 3, 6 and 9 ants. In entropy test, its maximum value 
is 4 and Chi- Square test with freedom degree 4 and 
precision of 0.1 is used. For doing these tests, a sequence 
of length 2ଵ is used.  

Table 7. ENT Test 
Number of 

Ant’s 
Entropy Chi-Square SCC 

1 3.9944 21.8743 0.00865 

3 3.9992 9.5983 0.00022 

6 3.9996 7.4759 0.00017 

9 3.9999 6.8734 0.00002   
 

As it is represented in above table, generated 
sequence by 6, 3 and 9 ants is able to pass all tests 
successfully and with good result. 

5.3     PRNG Quality Evaluation  
To compare how our PRNG performs against several 

different PRNGs, we use Diehard[27] And NIST test 
suite [28] . For this reason, the proposed generator based 
on obtained score from DIEHRD and NIST test is 
compared with other generators. 
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5.3.1   Based on Diehard Test Suite 
 we used Johnson’s scoring scheme [29]: we 

initialized (a0, a1, a2, a3, a4, a5, a6, a7) with 32 different 
random values obtained from http://randomnumber.org, 
got 32 different 10MB files, and then assigned scores 
based on the results of the Diehard tests. The PRNGs we 
have compared to ours are of several different kinds: 
Linear Congruential Generators (rand [30], rand1k [31], 
pm [32]), Multiply with Carry Generators (mother [33]), 
Additive and Subtractive Generators (add [30], sub [32]), 
Compound Generators (shsub [30], shpm [32], shlec 
[32]), Feedback Shift Register Generators (tgfsr [34], fsr 
[35]), and Tausworthe Generators (tauss [36]). Each of 
the Diehard tests produces one or more p-values. We 
categorize them as good, suspect or rejected. We classify 
a p-value as rejected if p ≥ 0.998, and as suspect if 0.95 ≤ 
p < 0.998; all other p-values are considered to be good. 
We assign two points for every rejection, one point for 
every suspect classification, and no points for the rest. 
Finally, we add up these points to produce a global 
Diehard score for each PRNG, and compute the average 
over the 32 evaluations: 

low scores indicate good PRNG quality. The 
information relating to the different PRNGs was taken 
from [31, 37]. The results are presented in Table 8. We 
note that our PRNG is outstandingly better than the rest 
of the analyzed PRNGs: the lowest scores correspond to 
shsub (17.125) and fsr (17.90625), significantly greater 
than our PRNG (12.90625). On the other hand, the 
average scores increase up to 50.59375 (pm), 66.53125 
(rand), and even 291.78125 (rand1k).  
Table 8. PRNG Diehard Scores 

PRNG Total Score Mean 
rand 2129 66.531250 
rand1k 9337 291.78125 
pm 1619 50.593750 
mother 602 18.812500 
add 577 18.031250 
sub 655 20.468750 
shsub 548 17.125000 
shpm 799 24.968750 
shlec 751 23.468750 
fsr 573 17.906250 
tgfsr 584 18.250000 
tauss 935 29.218750 
Proposed PRNG 413 12.906250 

 

 
5.3.2    Based On NIST  Test Suite 

The NIST Statistical Test Suite is widely proverbial, 
which provides advice on developing a testing strategy 
for pseudorandom bit sequence generator. The NIST 
Statistical Test Suite supplies the user with nine pseudo-
random number generators. In this section, the proposed 
generator is compared with these 9 generators with 
respect to obtained score from NIST test. Once the 
generator has been selected, a series of binary sequences 
are to be generated and to be saved to analyze. A set of 
tests are used to the saved sequences. The P-value is then 
to be examined to determined pass of failure of 
sequences. Then, the proportion of sequences passing the 
tests should be considered relative to a normal 
distribution confidence interval. If the proportion is 

within the confidence interval, the generator will be 
acceptable. NIST test includes 16 tests. For comparing 
by the proposed generator, 100 sequences of random 
numbers of 12 mega bites are generated with the random 
initial values. Then, NIST tests are executed on it. 
Obtained values of these tests contain 188 parts and 
because the maximum value for each of these tests is 
one, hence, the maximum summation of these tests is 
188. For obtaining the average of obtained values for 
every generator, values obtained from NIST test for each 
sequence are summed together and finally are divided by 
the number of sequences.  

The best case occurs when the average to be 188. A 
test is not passed when not be located in defined 
confidence interval. To obtain the average number of 
failures in NIST test for each generator, the number of 
failures for all sequences are summed and divided by the 
number of sequences The average of obtained values for 
every generator and also the average number of failures 
of generators are given in Table 9. To reach a general 
index for comparing generators with each other, the 
average of values is divided by average number of 
failures. The bigger number value is, better quality of 
generator is. 

 
Table 9. PRNG NIST Scores 

PRNG mean 
Score 

Mean 
Fail 
rate 

Total 
score 

Linear Congruential 185.5212 5.17 35.8841 
Quadratic Congruential Ι 185.7121 7.41 25.0623 

Quadratic Congruential II 186.0181 3.51 52.9966 
Cubic Congruential 185.0396 15.76 11.7410 

XOR 95.7669 175.50 0.5456 
Modular Exponentiation 186.0254 4.59 40.5284 

Blum-Blum-Shub 186.2247 1.94 95.9921 
Micali-Schnorr 185.9812 3.12 59.6093 
G Using SHA-1 185.8135 7.47 24.8746 

Our PRNG 186.1374 1.26 147.7280
 

As it is clear in Table 9, the proposed generator can 
reach the best score among other generators that shows 
high quality of this generator. 

5.4      Sequence Period Length  
The length of a CA's state cycle is very important in 

determining the suitability of the CA as a generator of 
random numbers. In general, the longer the cycle-the 
better the CA acts as an RNG. For instance, typical 
Monte Carlo applications may require on the order of 
10ଽ pseudorandom numbers. According what mentioned 
in [4]: Ideally, an arbitrary n-cell CA RNG should have a 
maximum cycle length, i.e., it should start repeating 
itself only after 2 time steps since this will result in the 
longest possible pseudorandom sequence. Chaotic 
behavior of the movement of ants among cellular 
automata cells leads to complicated behaviors 
contributed with great disturbance in cellular automata, 
such that it is possible to reach a sequence of random 
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numbers of very long period with a few cells. Table 10 
shows generated cycle by 3 up to 9 ants and cells and 
also the maximum generated cycle by the proposed 
generator in [4]. The maximum computation power for 
measuring period length is 2ଶ bits. For obtaining the 
average period length, the sequence of random numbers 
is generated for each ant and cell and then the average 
period length is calculated. As it is observed, length of 
generated cycle for n cells and ants is almost (2୬)ଷ =
2ଷ୬.  
Table 10. The Generated Cycle by The Proposed Generator 
of Different Cells and Ants 
Ants/Cells 
Number 3 4 5 6 7 8 9 ≥ 10 

2n 8 16 32 64 128 256 512 1024 

Cycle 
Length 2ଽ.ହ 2ଵ.ଷ 2ଵ.ଵ 2ଵ.ଶ 2ଶଵ.ଷ 2ଶଶ.ଵ 2ଶ.ଵ ? 

 

 
5.5     Avalanche Effect 

Desirable property of any cryptographic algorithm is 
that a small change in either plaintext or the key should 
result in a significant change in the ciphertext. Changing 
value of one randomly chosen bit in the plaintext or in 
the key should produce change of nearly half of the 
values of the ciphertext. This is so called avalanche 
property. It was introduced by H.Feistel in 1973 [38]. 
Represented generator could be used to generate key. For 
generate a unique key in encryption and decryption sides, 
initial values of CA, ant positions and directions must be 
available in both sides. Thus for high security, the 
generated stream bits should have a high dependency to 
this parameters. Effects of small changes of parameters 
on generated bits represented in continue. 

 Investigated changes are: 1) Reversing in one of the 
cells of CA. 2) changing in one ant's direction. 3) 
Changing in position of one ant to one of its four 
neighbors. The parameters of evaluation of changes are: 
the percent of changed bits in generated bit stream. Table 
11 shows the change results in a 3 × 3 CA with 9 ants, 
on the generated sequence of one cell. Three samples are 
investigated for each change that will be discussed. 
Table 11: Changes Effects on Generated Bits Sequence 

Change Type Percent Change 
Change a cell of cellular automata 49.25 

48.7 
50.7 

Change direction of an ant 50.45 
50.95 
50.25 

Move an ant to the neighbor cell 49.10 
48.10 
51.65 

Consecutive bits in a sequence 51.1 
50.05 
50.25 

 

 
As shown, a small change yields about 50 percent 

changes in generated bits sequence. 
6     Conclusion  

In this paper a new random number generation 
method based on CA and Langton’s ants was presented. 

By combining chaotic behavior of various ants and 
complex and self organized behavior of cellular 
automata, a qualified generator is presented for 
generating sequence of random numbers. Langton’s ant 
moves on a square grid with white and black cells that 
yet the simplicity has a chaotic behavior. CA has been 
updated with respect to the rows using the combination 
of 8 rules: 165, 105, 90, 150, 153, 101, 30, 86. In each 
run of program, at first as rule has been determined for 
each cell according to the ant's position. Then automata 
have been updated by new selection rules and finally 
ant's moves one step forward. The tests results on 
generated random numbers show that the proposed 
generator has maximum entropy and passing the several 
static test, it is able to generate high quality Sequences of 
random bits with uniform distribution. This generator has 
an acceptable speed and holds the ability of parallelism 
of CA. Farther more; passing all parts of diehard and 
NIST test shows the high quality of generated random 
bits by this generator. This property is justifier for 
cryptography applications. 
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Non-linear Analysis of Psychophysiological Effects
of Auditory Stimuli using Fractal Mining
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Abstract— While spectral analysis (e.g., Fast Fourier
Transformation) of electroencephalogram (EEG) has
been one of the most well established parameters in
psychophysiology, physiological implication of fractal
analysis has not been established. Further, systematic
examination of the association between the waveforms of
auditory stimuli and EEG is an untouched area of research.
In the present study, we used fractal analysis and data
mining techniques, and created a method for finding the
association between fractal dimensions of auditory stimuli
and fractal dimensions of EEG. Applying our method, we
found strong associations between signal complexity in
auditory input and the resulting EEG data, with confidence
values exceeding 90% in several of the associations. Our
success in this initial application could potentially be
generalized to further brain activity analysis.

Keywords: Fractal Dimensions, Association Mining,
Electroencephalogram

1. Introduction
Music is believed to have differential psychophysiological

effects on humans. The notion on the effects of music dates
back to the ancient era when Pythagoras created several
diatonic scales and discussed their psychophysiological
effects. Studies have shown that music can affect and
stimulate different parts of the brain and can help with stress
reduction, depression alleviation, and information recall.
Such effects of music can be quantitatively studied using
Electroencephalogram (EEG) [1], [2], [3], [4]. EEG refers
to the electrical activity of the brain neurons captured
from scalp surface. Each EEG electrode reflects electrical
activity of about 100 neurons underneath the electrode and
it produces tracing of pulses at various frequencies.

Even though studying the brain activity using linear
analysis of electroencephalogram (EEG) is one of the
most widely accepted research techniques in psychology
and neuroscience, nonlinear analysis of EEG has not
been extensively explored. Also, to the best of our
knowledge, a systematic examination of the mathematical
relationship between auditory stimuli and EEG has not
been reported. The purpose of this work was to examine
the psychophysiological effects of various auditory input
in the form of synthetic music using fractal analysis and

data mining techniques. In particular, we discovered the
association between the auditory stimuli and the resulting
EEG using fractal dimensions. Psychologists believe that
there is a particular fractal dimensionality in nature and when
the incoming stimuli imitates this fractal dimension, the
nervous system would resonate with this fractal dimension
and show a particular pattern.

The auditory stimuli and EEG are both high-dimensional
time-series datasets that contain a very large number of
features, some of which are highly correlated. This high-
dimensionality of the data can make the data analysis task
extremely difficult and time-consuming. A “fractal” [5] is
defined to be a self-similar set of data points that consists of
pieces similar to the original set, e.g., Sierpinski’s Triangle.
The “fractal dimension” is an estimate of the degrees of
freedom of a data set [6]. The fractal dimension estimates
the intrinsic dimension of the data and is a good indicator
of the spread of the data. It is a useful tool to characterize
the non-linearity and complexity of a given dataset. The
fractal dimension of a dataset can make the data mining
task more efficient and effective. The fundamental principle
of fractal analysis is to identify the number of data points
that self-correlate across scales, each of which is considered
as a “dimension”. Fractal dimension has been utilized as an
effective tool for modeling various real world time series
data with high complexity and irregularity [7], [8].

Our objective was to develop a working method
for providing meaningful analysis of psychophysiological
experiments. We analyzed EEG data collected from subjects
who were exposed to auditory input, as well as the
auditory data itself. We used fractal dimension analysis
[9] and association mining [10] to provide the psychology
researchers with information about their tests that they
couldn’t have otherwise discovered. To the best of our
knowledge, this approach hasn’t been implemented prior to
this work.

The remainder of the paper is organized as follows. In
section 2, we present the background pertaining to this work.
In section 3, we present our analysis methods, describe our
datasets, and present the experimental results. Finally, in
section 4, we will provide concluding remarks and scope
of future research.
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2. Background
2.1 Fractal Dimension

The fractal dimension of a dataset is the degree of self-
similarity that exists within the data. A fractal dimension
is a non-negative real value that quantifies the complexity
and irregularity of a dataset. Several methods have been
developed for computing the fractal dimension of data.

Box-counting dimension [6] is by far the most commonly
used fractal dimension. If N(ϵ) is the minimum number of
n-dimensional boxes with sides of ϵ needed to cover the
fractal, then the box-counting dimension is expressed as:

db = − lim
ϵ→0

lnN(ϵ)

ln(ϵ)

Correlation dimension [11] is widely used when the data
is available as a set of isolated points and is particularly
suitable for time series data. It is easy to calculate, but its
effectiveness is reduced with the presence of noise in data.
If C(ϵ) is the fraction of pairs of points within a distance
of ϵ, then the correlation dimension is defined as:

dc = lim
ϵ→0

C(ϵ)

ln(ϵ)

Regularization dimension [9] is computed by smoothing
(or regularizing) data by convoluting it with a Gaussian
kernel. The regularization dimension quantifies how the
length of a smoothed signal converges to infinity as Gaussian
kernel width approaches 0. It is very effective in dealing
with noisy data. If δ is the Gaussian kernel width and lδ
is the length of the smoothed signal, then the regularization
dimension is formally expressed as:

dr = 1− lim
δ→0

ln lδ
ln δ

2.2 Association Mining
The goal of association mining is to derive correlations

among multiple features of a dataset [10]. An association
rule is an implication of the form X ⇒ Y[Supp,Conf ], where
X and Y are disjoint itemsets, Supp is the support of X∪Y
indicating the percentage of total records that contain both
X and Y , and Conf is the confidence of the rule that is
defined as Supp(X ∪ Y )/Supp(X). The intuitive meaning
of such a rule is that records of the dataset that contain X
tend to contain Y .

A typical example of an association rule obtained from
music experiment is 2.55 ≥ FD(Music) > 2.45 ⇒
FD(EEGT6)>1.86[0.12,0.94]. This implies 94% of the time
when the fractal dimension of music is between 2.45 and
2.55, the fractal dimension of the EEG response at the right
temporal lobe T6 will be more than 1.86, this constitutes
12% of the data records. Here the confidence of the rule is
94% and the support of the rule is 12% .

The goal in a particular application is to find all
association rules that satisfy user-specified minimum support

and minimum confidence constraints. Association rules are
generated in two steps. The itemsets having minimum
support (called large itemsets) are discovered first and then
these large itemsets are used to generate the association rules
with minimum confidence. The Apriori association mining
algorithm [10] has widely been accepted as the algorithm of
choice in many applications. The process of generating large
itemsets in Apriori consists of several passes and the large
itemsets found in one pass are used to generate large itemsets
for the next pass. In the kth pass, the candidate itemsets of
length k (Ck) are generated by joining large itemsets of
length k−1 (Lk−1) and leaving out itemsets containing any
non-large subset. Formally, Lk−1 ∗Lk−1 = {X ∪Y |X,Y ∈
Lk−1, |X ∩ Y | = k − 2}. All candidate k-itemsets having
support values greater than the minimum support threshold
constitute the large k-itemsets Lk. Formally, Lk = {X|X ∈
Ck, Supp(X) ≥ Suppmin}. After all the large itemsets
are generated, for every large itemset L, the following set
of rules are generated: {A ⇒ (L − A) | A ⊂ L,A ̸=
∅, Supp(L)/Supp(A) ≥ Confmin}.

2.3 Previous Work
Fractal dimensions have been used widely to analyze

music. Gunasekaran and Revathy [12] used fractal
dimensions of music segments to identify musical
instruments using neural network classifiers. Das and Das
[13] showed how the fractal dimensions calculated from
the same song varies when it is performed by different
singers. Bigerelle and Iost [7] used fractal dimensions to
classify different types of music and demonstrated that
fractal dimensions can distinguish different aspects of music
effectively.

Fractal analysis of EEG signals have been found to be
effective in neuroscience. Preissl et al. [14] showed how
fractal dimension can be used to characterize the complexity
of short-duration EEG signals. Jacquin et al. [15] combined
wavelet and fractal analysis of EEG signals to detect
seizures. Chouvarda et al. [16] used the fractal dimensions of
EEG signals to study the different sleep stages in individuals.
Easwaramoorthy and Uthayakumar [8] proposed a method
for discriminating healthy and the epileptic individuals using
a multi fractal analysis of EEG signals.

The influence of music on EEG has also been investigated
for studying brain activities. Yuan et al. [1] studied the effect
of music on EEG power spectrum. They showed that the
presence of music makes significant changes in certain EEG
power spectrum that are closely related to the emotional state
of the nervous system. Bhattacharya et al. [17] analyzed
the interdependency between different brain regions based
on asymmetric similarity of EEG signals in response to
music. Jausovec et al. [2] investigated the influence of music
on brain activity during learning and showed that classical
music can result in better task performance and less complex
EEG patterns. Srinivasan et al. [3] investigated the effect of
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music on mental fatigue by performing statistical analysis
(ANOVA) on EEG signals and showed that the presence
of music reduces mental fatigue during physical activities
like jogging. Lin et al. [4] used machine-learning algorithms
identify different emotional states based on EEG responses
to music. Ito et al. [18] studied the association between an
individual’s egogram score based personality and the EEG
pattern in response to music.

3. Methods and Experiments
3.1 Overview

As described in the previous section, fractal analysis
has been used for analyzing music and EEG signals. The
influence of music on brain activities has also been studied
via EEG analysis. But, to the best of our knowledge, no
computational framework has been presented to investigate
the association between the fractal dimensions of music
stimuli and the fractal dimensions of EEG responses. Fig.
1 shows the workflow of our method for finding the
associations between auditory stimuli and the resulting
multichannel EEG signals using fractal dimensions. The first
step was to pre-process the auditory stimuli and EEG data. In
our experiments, the auditory stimuli consisted of different
pieces of synthetic music, varying in scale and note. The next
step was to compute fractal dimensions from the auditory
stimuli and the resulting EEG signals. The final step was to
discover the associations between the fractal dimensions of
the auditory stimuli and the fractal dimensions of the multi-
channel EEG signals.

We believe that the fractal dimension computed from a
music segment is a good measure of its pitch variation
and thus will be helpful in a meaningful analysis
of the psychophysiological effects of music. We used
the “regularization dimension” approach [9] for fractal
dimension calculation since it is more effective in dealing
with noisy data. Because of the adaptive nature of signal
smoothing, the regularization dimension is robust and allows
for small step variation in the Gaussian kernel [19].

Multichannel
EEG Response

Auditory Data

Data Cleaning
Fractal Dimension 

Computation

Association Mining of 
Fractal Dimensions

Fig. 1: The workflow for analyzing the EEG responses to
auditory stimuli.

3.2 Data Collection
Our data collection involved ten healthy adult female

subjects who were exposed to eight 2-minute long synthetic
music pieces with varying degrees of fractal dimensions in
random order. In order to keep all the parameters constant
except for the fractal dimensions, a software package called
FractMus1 was used to generate the music pieces with
different degrees of randomness, although all were composed
in natural minor mode (one of the common modes local
population is used to hearing in Irish folk songs) with
three different pitches of electronic piano sound in 8
beats, 16 beats, and 32 beats, respectively. Throughout the
music-listening task, eight-channels of EEGs based on the
International 10-20 Method were measured using Biopac
system at frontal lobe (F3, F4, F7, & F8) and at temporal
lobe (T3, T4, T5, & T6). The channels F3, F4, F7, and F8
were selected in order to identify the emotional balance and
function and the channels T3, T4, T5, and T6 were selected
in order to identify the brain activity associated with sound
processing function, respectively.

3.3 Data Analysis
The music files were generated in Waveform Audio File

Format (WAV) and EEG data were generated in ASCII
format. The WAV format was used because of its high
quality, but the WAV files contain many features that are
not relevant to the fractal analysis task. Both the music and
EEG datasets were converted into a set of vectors using
MATLAB. Each music piece was divided into four segments
(30 seconds each). This created a total of thirty two 30-
second long audio segments. For each audio segment, eight
EEG channels were recorded; resulting in 256 EEG signals
for each subject.

Fig. 2(a) shows the waveform of a 30-second music
segment and Fig. 2(b) shows the waveform of this segment
zoomed into the one second interval between 15 and 16
seconds. Figs. 2(c) and 2(d) show the EEG signals measured
for a randomly selected subject at channels F3 (left frontal
lobe) and T6 (right temporal lobe) in response to this music
segment. The graphs clearly show the fractal aspects of these
complex time series data. It is also evident that different EEG
patterns are produced at different channels.

Our goal was to generalize any association that may exist
between the music stimuli and the resulting EEG. Each audio
and EEG signal was analyzed using the FracLab toolbox of
MATLAB. The regularization dimension was computed for
each 30-second music segment and for the corresponding
EEG signals from eight channels. Fig. 3 shows the fractal
dimensions computed from all eight music pieces with each
music piece split into 30-second segments. It can be seen
that different fractal patterns exist in the music pieces.

1http://www.gustavodiazjerez.com/fractmus_overview.html
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Fig. 2: The waveform of a 30-second music segment and
the resulting EEG signals measured for a randomly selected
subject - (a) The 30-second music segment, (b) Zoomed into
one second, (c) EEG at F3, and (d) EEG at T6.
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Fig. 3: The fractal dimensions of eight music pieces with
each music piece split into 30-second segments.

Fig. 4 shows the fractal dimensions of EEG signals
measured for two randomly selected subjects in response
to music#1. Fig. 4(a) shows the EEG fractal dimensions for
channel F3 and Fig. 4(b) shows the EEG fractal dimensions
for channel T6. It can be seen that different subjects respond
to the same music stimuli in different ways and the same
individual exhibit different patterns at different channels.
Therefore, it is not possible to discover any relationship
between music stimuli and EEG responses using linear
regression methods. That is why we chose to apply data
mining to discover any such relationship.

After the fractal analysis was completed, data mining
was performed on the fractal dimensions. The data mining
package Weka2 was used for the data mining task. First,
the fractal dimensions were used to create Weka formatted
files. Since the fractal dimensions are continuous real values,
these values were converted into discrete categories. The
unsupervised attribute discretizer was used for this purpose.
It is an entropy-based method that performs discretization
using density estimation and computes the leave-one-out

2http://www.cs.waikato.ac.nz/ ml/weka
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Fig. 4: The fractal dimensions of EEG signals (F3 and T6)
measured for two randomly selected subjects in response to
a complete music piece split into 30-second segments.

cross-validation log-likelihood of the fit. Five bins were
created for the music fractal dimensions and two bins were
created for the EEG fractal dimensions.

After the fractal dimensions were discretized, association
mining was performed using the Apriori algorithm [10] to
examine the associations between the fractal dimensions
of music segments and the fractal dimensions of resulting
multichannel EEG signals. The Weka implementation of
Apriori was modified to generate rules that only have one
antecedent and one consequent, i.e., rules of the form
X ⇒ Y , where |X| = |Y | = 1. Moreover, we restricted
the antecedent of each rule to consist of a music fractal
dimension and the consequent to consist of an EEG fractal
dimension. A minimum confidence value of 0.70 was used
for association mining.

3.4 Results
The results of the association analysis is presented in

Table 1. The first column represents the fractal dimensions
of music that associate with the fractal dimensions of multi-
channel EEG. The second column represents the fractal
dimensions of the EEG with the EEG channel specified
in third column. The last column represents the confidence
values of the mined association rules. The subjects,
who happened to be all female, demonstrated strong
association between the fractal dimension of music and
fractal dimension of EEG at various EEG channels. Among
those, the strongest association was observed between music
fractal dimensions in the range of (2.447−2.546] and the
EEG fractal dimensions at right temporal lobe (T4 and T6)
in the range of >1.854 and >1.864 respectively. This was
followed by reasonably strong associations between the same
music fractal dimension range and EEG fractal dimensions
of > 1.947 at left temporal lobe (T5) and EEG fractal
dimensions of >1.830 at right frontal lobe (F4) (confidence
levels ≥ 88%). Strong association discovered in females is
an implication that the further research into the association
between the fractal dimension of the sound stimuli and the
fractal dimension of the EEG may give us a new insight
into the selection of effective music in the context of music
therapy as an alternative medicine.
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Table 1: Results of association mining between the fractal
dimensions of auditory stimuli and EEG responses

FD of Music ⇒ FD of EEG EEG Channel Confidence
(2.447-2.546] > 1.854 T4 0.98
(2.447-2.546] > 1.864 T6 0.94

≤ 2.447 > 1.864 T6 0.93
(2.447-2.546] > 1.947 T5 0.92

≤ 2.447 > 1.854 T4 0.9
≤ 2.447 > 1.830 F4 0.89

(2.447-2.546] > 1.881 T3 0.88
(2.447-2.546] > 1.830 F4 0.88

≤ 2.447 > 1.947 T5 0.87
≤ 2.447 > 1.881 T3 0.86

(2.546-2.644] > 1.854 T4 0.85
(2.546-2.644] > 1.864 T6 0.85

≤ 2.447 > 1.927 F3 0.8
(2.546-2.644] > 1.881 T3 0.8
(2.546-2.644] > 1.947 T5 0.8
(2.447-2.546] > 1.927 F3 0.8
(2.546-2.644] > 1.830 F4 0.76

≤ 2.447 > 1.793 F8 0.7

4. Conclusions
In the present study, we analyzed the fractal dimensions

of auditory stimuli and the resulting multi-channel EEG
responses. A robust level of correlation between the
fractal dimension of the auditory stimuli and the fractal
dimension of the EEG was established in female test subjects
via association mining. These results had significance at
two different levels. First, it implied a promising future
of the application of nonlinear analysis of the time-
series waveforms in the field of human electrophysiology.
Further, it also suggested a significant mathematical
association between auditory stimuli in the environment
and physiological process in the human body. These
implications of our study suggested the importance of
further investigations in these two areas. Aside from the
needs for further investigation on the significance of the
fractal dimension of EEG itself, it is also important to
examine the generalizability of present study results to
male subjects as well as the generalizability to the use of
other forms of auditory stimuli in order to examine the
general principles of fractal dimension range of auditory
stimuli that produces strong association with a certain range
of electrophysiological process in human body. Although
the present study was meant to be one case study of the
application of data mining methods, the results suggested
noteworthy implications in the direction of future research
areas in human physiology.
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Abstract In this paper we describe applications of Monte 

Carlo methods to stochastic asset allocation models. The 

application of robust Monte Carlo methods to asset 

allocation can be extremely useful both to individuals and 

more importantly to fund managers. Considering the loss of 

equity in many people’s pensions over the last few years, this 

is an important topic for fund managers. 

  

Keywords Linear programming, asset allocation, 

stochastic, Monte Carlo 

 

1. Overview 

 

The Asset Allocation Problem considers the 

question of how a portfolio should be weighted 

with different security assets in order to satisfy an 

investor's objective.  

 

The idea is to invest and divide up the portfolio in 

a way to maximize profit while remaining within 

given constraints. Unfortunately, very often the 

assumptions made when setting up a mathematical 

program are exactly that – assumptions. When 

those assumptions turn out to be mistaken there is 

often a hefty price to be paid. One method that is 

used is Monte Carlo analysis. We simulate many 

possible scenarios and finally, solve the 

mathematical program in the context of expected 

value.  

 

We organize this paper as follows. Section 2 is a 

review of a basic mathematical program, in this 

formulation, linear. Section 3 expands the 

formulation to stochastic programming, describes 

the method of applying Monte Carlo simulation 

and shows how to apply the scenarios of the 

Monte Carlo simulation to mathematical 

programming. Section 4 mentions a number of 

other applications and section 5 is a summary. 

 

2. Mathematical Program Formulation  

 

A linear program is of the matrix form: 

 

vectorsarebandAxcwhere

xbAxtoSubject

xcMinimize T

,,

0, 
 

   

Fig 1 
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Expanded for two variables x1 and x2: 
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Fig 2 

 

Where xi would be the number of the i
th

 security to 

purchase, ci is the cost of purchasing the i
th

 

security, bj is the total dollar amount of the 

liability obligation for year j and aij is the cash 

flow that security i will give in year j. 

 

The idea of this linear program is to seek the 

minimum total cost ci and still satisfy our 

obligations bj. This objective will be minimized by 

picking securities with the highest cash flows aij. 
 

3. Stochastic Linear Programs 

 

Unfortunately, it is often the case that either the 

objective function coefficients c, the right hand 

side values b or the coefficients a are not known 

with certainty but are only known within a 

probability distribution. As an example, say an 

insurance company uses one of the values to 

represent expected cash available for investments 

net insurance claims. In that case it may very well 

turn out that net insurance claims were not as 

expected which would render the assumption of 

the program incorrect.  

 

This leaves the practitioner with a dilemma if the 

numbers turn out to be wrong. A good method of 

dealing with this is to utilize a probability 

distribution based on past performance and to 

simulate numerous values for the uncertain group 

of numbers using that probability distribution.  

 

Figure 3 is the formulation of the stochastic 

program that corresponds with the linear program 

in figure 1.  

 

scenariosCarloMontemeansS

andvectorsarebandAxcwhere

sxbxAtoSubject

sxcEMinimize

SSS

S

T

S

,,

0,

][





  

 

Fig 3 

 

As an example let us assume that both b1 and b2 of 

figure 2 are known but that the four values aij and 

the two values c are not known with certainty but, 

instead, follow a probability distribution. We then 

generate numerous scenarios. For this example we 

generate four scenarios but keep in mind that in 

real situations we may generate thousands of 

scenarios. 

 

 

Scenario 1: {c1,1 c2,1 a11,1  a12,1 a21,1 a22,1} 

Scenario 2: {c1,2 c2,2 a11,2  a12,2 a21,2 a22,2} 

Scenario 3: {c1,3 c2,3 a11,3  a12,3 a21,3 a22,3} 

Scenario 4: {c1,4 c2,4 a11,4  a12,4 a21,4 a22,4} 

 

 

Figure 4 shows what the mathematical program 

from figure 3 would look like when utilizing the 

four generated scenarios. Note that there are now 

four groups of constraints corresponding to the 

four scenarios. The objective function now 

minimizes the expected value over the probability 

distribution.  In this simple example we only 

generated 4 scenarios – the more scenarios 

generated the more realistic the problem but the 

larger the problem grows. Within these constraints 

we minimize the expected cost over these 

scenarios.  
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4. Other Stochastic Programs 

 

Stochastic programs have been used for many 

applications. Zenios [1991, 1994] modeled 

Mortgage-backed security portfolios. The Frank 

Russel Company modeled a large stochastic 

program for a large insurance Company [Cariño, 

Kent et al., 1994, 1998].  

 

Mathematical programs have been used to model 

uncertainty at least as far back as the 60's and 70's. 

Reservoir systems [Houck et al, 1978], Planing 

models [Tintner and Raghavan, 1970], models for 

multi-national firms [Salmi, 1974; Fourcans and 

Hindelang, 1974], labor input decisions of a 

typical rural household with risky agricultural 

technologies, off-farm employment opportunities 

[Becker, 1990] and wind generation [Bloom, 

2010] are other examples. More recently Moriggia 

et al [1998] discusses attempts to use parallel 

computers to help solve large stochastic programs 

for bond portfolio applications 

 

 

5. Summary 

In this article we described the use of Monte Carlo 

scenario generation as applied to mathematical 

programming. We first identify coefficients, right 

hand sides and objective function values that are 

not known with certainty. We then utilize their 

probability distributions to generate many 

scenarios of values. Once we have those scenarios 

the mathematical program is transformed into a 

stochastic program that takes all scenarios into 

account and solves by minimizing (or 

maximizing) the expected values over all 

scenarios. 
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Abstract - In this work, Einstein’s formula for the viscosity of 

suspensions is revised to include effect of particle interactions. 

The revision is based on assumption of linear behavior of 

particle interactions with distance between particles. The 

resulting formula is tested over a range of particle size and 

concentrations.  Good agreement is attained between theory 

and previously published measurements. 

Keywords: Einstein formula; reheology; viscosity; 

suspension; nanofluid  

 

1 Introduction 

  Particle suspensions can change properties of base 

fluids, leading to great potential for enhancements. 

Previously, using micro-scale particles led to pipe erosion and 

pump damage, as well as sedimentation and fouling. 

However, recent advances in materials technology has made it 

feasible to produce nanoparticles that can overcome such 

limitations. Nanoparticles can have better properties than 

conventional materials, including thermal, mechanical, and 

electrical [6]. Fluids suspended by nanoparticles have been 

termed nanofluids [3]. Comprehensive reviews on the 

research on nanofluids are found in [3, 4, 5].  

Due to diverse and important applications in industry, 

reheology of suspensions has been a subject of research for 

many years. Early in the twentieth century, Einstein [7] 

presented his famous formula, eq. (1), for calculating the 

effective viscosity of dilute suspensions. 

        
 cr 1            (1) 

His formula suggests that the increase in viscosity is 

independent of the size or material of the particles, and was 

derived with the underlying assumption of spherical particles 

and no particle interaction. As such, the equation gives good 

results for low concentrations when particle interaction effects 

are negligible. 

It is expected that increased particle interactions give rise to 

higher viscosity. The interactions are greater when particles 

are closer to each other. Increasing the concentration brings 

particles closer to each other, and hence lead to higher 

viscosity than predicted by Einstein formula. Moreover, and 

for a given concentration, smaller particles lead to closer 

particles, and hence higher viscosities. This is observed in 

viscosity measurements of suspensions over the years, e.g., 

Williams [1] and Williams et al. [2]. Particles used in 

Williams [1] were of the microscale, whereas those in 

Williams et al. [2] were of the nanoscale. Viscosity 

measurements in both experiments differ by orders of 

magnitudes. 

In this work, Einstein [7] formula for viscosity of spherical 

suspensions is revised to include the effect of particle 

interactions. The revision is based on assumption of linear 

behavior of particle interactions with the distance between 

particles. The resulting equation is tested over a range of 

particle size and concentrations. 

2 Theory 

 Particle interaction is a function of the distance between 

the particles. At sufficiently large distances, it is reasonable to 

assume a linear behavior. As such, one can determine the 

particle separation changes with volume concentration and 

particle size, and in turn introduce the effects in Einstein 

formula. 

In three-dimensional space, it can be shown that the distance 

between particles is proportional to   , where 
 
is the 

particle volume concentration. Accordingly, the relative 

viscosity could be revised as follows: 

       2/31  cr            (2) 

Introducing the interaction factor as such is in line, for 

example, with theoretical development of Happel [8]. On the 

other hand, if the particle diameter is doubled for a given 

volume concentration, the distance between the particles 

would increase proportional to 3/2d , where d  is the particle 

diameter. Accordingly, Eq. (2) would be revised further as 

follows: 

      3/22/3 )/(1 dcr          (3) 

Here,  is a dimensional constant possibly attributed to the 

base fluid. Combining the two constants, we have 

      
3/22/3 )/(1 dar           (4) 

Where a  is a dimensional constant.  
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3 Results and Discussion 
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Figure 1: Relative viscosity as a function of particle volume 

concentration. 

 The relative viscosity as a function of particle volume 

concentration is depicted in Fig. 1. Measurements of Williams 

et al [2] were conducted for 50-nm particles. The base fluid 

was water. In the case of Williams [1], the particles were in 

the order of 5 microns and the base fluid was a mixture of 

water and glycerin glycol. Eq. (4) and measurements are in 

good agreement. The empirical constant a  was determined to 

be 3.0e-4. 

4 Conclusions 

 In this work, Einstein’s formula for the viscosity of 

spherical particle suspensions was revised to include the effect 

particle interactions. The revision was based on assumption of 

linear behavior of particle interactions with the distance 

between particles.  Good agreement between the revised 

theory and measurements was attained within the range tested. 
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Abstract - Our work concerns the use of cloud computing for  
data  processing.  To  study  the  problem,  we  designed  a  
framework  for  experimenting  with  various  cloud-computing  
arrangements.  The  main  goal  is  a  framework  that  has  the  
ability  to  automatically  track  the  configuration,  providing  
event management, performance measurement and testing for  
small-scale cloud computing. We show how such a framework  
can be integrated and accessed in a practical manner using  
multiple data processing tools. 

Keywords: Cloud Computing, Data Processing

1 Introduction
  

In recent years, there has been an exponential growth in the 
amount of data that needs to be processed. This is especially 
true in the research teams where large data sets are routinely 
produced  by  experiments.  As  a  result  of  this  challenge, 
computation is rapidly moving toward cloud computing and 
the  software  industry's  focus  is  shifting  from  developing 
applications for PCs to developing data centers and the cloud 
technology  that  enables  millions  of  users  to  make  use  of 
software simultaneously.  This is creating a huge demand for 
workers  with  skills  in  this  area.  Educational  and  research 
organizations  require  a  platform  that  can  support  multiple 
models of application programming, multiple types of cloud 
deployments  (private,  public,  or  hybrid),  and  an  extensible 
framework  enabling  educators/researchers  to  develop  their 
own programming models and application. 

2 Cloud Computing

In today's research and education increasingly vital role is 
played  by  technologies  that  enable  efficient  processing  of 
large  data  sets.  Current  challenges for  computing resources 

associated  with  processing  large  data  sets  far  exceed  the 
capacity  of  personal  computers.  To  achieve  satisfactory 
performance applications often need clusters with hundreds of 
nodes.  In  recent  years,  a  new technology cloud  computing 
emerged  to manage a distributed storage  and  processing of 
large sets of data [2, 3, 7, 19-22]. The basic principle of cloud 
computing involves the idea that users do not need to run the 
required applications on their individual personal computers; 
the applications can instead be run by a server running on a 
cloud.

In  this  article,  we  provide  a  brief  introduction  to  cloud 
computing technology and Platform as a Service, we examine 
the offerings in this category, and we provide the basis to help 
readers understand basic application platform opportunities in 
the cloud, including Microsoft Azure, Sales Force, and Google 
Apps. Cloud environments can be classified as public, private, 
or  hybrid,  depending  on  the  model  of  deployment  [7].  A 
public cloud environment is made available in a pay-as-you-go 
manner to the general public. A private cloud environment is a 
data center of an organization that is not made available to the 
general  public.  A  hybrid  cloud  environment  involves  the 
seamless use of a public cloud environment combined with a 
private  cloud,  when  needed.  In  a  typical  public  cloud 
environment scenario, a third-party vendor delivers services, 
such  as  computation,  storage,  networks,  virtualization  and 
applications,  to  various  customers.  In  a  private  cloud 
environment,  internal  information  technology  resources  are 
used to serve their internal users and customers. Businesses 
are  adopting  public  cloud  services  to  reduce  capital 
expenditures and operational costs by leveraging the cloud's 
elastic  scalability  and  market-oriented  cost  features.  What 
makes cloud computing different from traditional approaches 
is the focus on service delivery and the consumer utilization 
model.

Companies that have been involved in the development of 
cloud computing include Amazon, Google,  Microsoft,  IBM, 
Oracle,  Yahoo  and  other  companies.  Amazon's  cloud 
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computing  services  are  collectively  called  Amazon  Web 
Services.  Google's  cloud  computing  platform makes  use  of 
Google's scale to provide a cloud-computing infrastructure for 
distributed computing. It provides developers with integration 
of  the  host  server  and  can  automatically update  the  online 
application  service.  For  user-written  applications,  Google 
provides operation and maintenance support  of the required 
application for all of the platform resources. Microsoft's cloud 
computing  strategy  is  "software  plus  services".  Microsoft 
launched the Windows Azure operating system [31]. The main 
objective  of  Windows  Azure  is  to  provide  a  platform  for 
developers to develop the server that is running in the cloud, 
data center, Web, and PC on the application. IBM announced 
the  "Blue  Cloud"  program  [32],  a  computing  plan  that 
involves  building  large-scale  distributed  computing  using 
IBM's  expertise,  hardware,  software,  technical  support  and 
service support of open standards and open-source software.

Cloud computing architecture is generally grouped into the 
following three service categories [7]: 

(1)  Infrastructure  as  a  Service  (IaaS),  which  offers  basic 
storage  and  computing  capabilities,  including  rapid 
provisioning of resources, i.e., software, hardware, the ability 
to scale those resources and pay-per-use convenience; 

(2) Software as a Service (SaaS), which provides the ability 
to access software over the Internet; and 

(3) Servers, which involves the ability to secure one or more 
servers.

3 Framework

In  the  practice  of  teaching  a  course  on  Distributed 
Computing  the  author  has  gained  experience  of  using  the 
technology in question by developing a set of experiments for 
academic applications. The main goal of this course was to 
develop practical skills using modern technology, parallel and 
distributed computing, mostly in solving problems related to 
data  processing  and  analysis.  One  of  the  problem  was  to 
develop practical skills in working with large data sets on a 
platform of Hadoop [23]. The next task was intended to reuse 
practical skills to work with Hadoop platform to implement a 
non-trivial  applications  for  processing  and  analyzing  large 
data sets. MapReduce [28] programs can be implemented in 
various  programming  languages.  However,  in  practice 
students prefer Java or Python languages. MapReduce [28] - 
the model for processing of large volumes of data, developed 
and  used  at  Google  for  a  wide  range  of  applications. 
MapReduce  model  is  straightforward  and  relatively easy to 
use, hiding from the user details of the algorithms on a cluster 
system.  Distributed  computing  platform  Hadoop  [23]  is 
developed  within  the  organization  Apache  Software 
Foundation  as  open  source.  The  platform  is  focused  on 
support for processing large data sets on cluster systems. 

We have tested the following providers: Amazon, PiCloud, 
Eucalyptus, and Cloudo. 

Table 1: Cloud computing providers tested

Provider Link

Amazon aws.amazon.com

PiCloud www.picloud.com

Eucalyptus www.eucalyptus.com

Claudo www.cloudo.com

The Amazon Elastic Compute Cloud (EC2) [19] is a web 
service  that  provides  resizable  computing  capacity  in  the 
cloud. It is designed to make web-scale computing easier for 
developers. Amazon EC2 gives the user full control of their 
environments. The user can manage and obtain the resources 
that they need to have. Amazon EC2 is also a well-established 
provider  with  a  number  of  features  and  services.  Some of 
those services have the following characteristics: 

• Elastic: Amazon EC2 enables the user to increase or 
decrease capacity in a matter of minutes rather than 
hours or days.

• Flexible:  The  user  can  choose  multiple  instance 
types,  with  different  configurations,  operating 
systems, software packages, etc.

• Reliable: The service runs within Amazon’s proven 
network infrastructure and data centers. 

• Completely Controlled: Users have complete control 
over their instances. User can save the instance and 
reboot it with Amazon Web Services.

PiCloud [20] allows the user to easily run any Python code 
on  an  auto-scaling,  high-performance  cluster.  The  main 
objective of PiCloud is offloading the computation from the 
user’s computer onto the cloud. It handles the algorithm or the 
highly scalable web application. The user  does not  need  to 
worry about server management as PiCloud handles the server 
management part.

The PiCloud Platform also offers an excellent management 
platform for tracking computations, analyzing performance on 
a function-by-function basis, and accessing a fully integrated 
technical suite. They have published a library that anyone can 
use. With the library, any function can be passed in with the 
parameters.  This approach frees up computing resources  on 
the local computer. Using the library is very straightforward.

Int'l Conf. Scientific Computing |  CSC'11  | 283



The  Eucalyptus  Community  Cloud  [21]  is  a  sandbox 
environment in which members can run trials and experiment 
with  Eucalyptus,  which  is  the  software  foundation  for  the 
cloud computing. Eucalyptus implements what is commonly 
referred to as Infrastructure as a Service. 

The Cloudo [22] design is elastic in nature, which means it 
will only use the number of machines that it needs. You do not 
have to specify how many of them to use. It  automatic does 
the scaling. Some of the benefits of Cloudo are listed below:

• You do not need to download any software that needs 
to be configured to connect to a private/public cloud.

• Because  Cloudo  is  a  web-based  cloud-computing 
environment, it is accessible anywhere in the world.

• Cloudo  provides  an  application  programming 
interface  (API)  that  allows  the  user  to  develop, 
maintain  and  share  applications  with other  Cloudo 
users. Cloudo can be accessed from anywhere in the 
world. 

Because Cloudo is web-based cloud IaaS,  the end user will 
need a fast Internet connection; otherwise, it will take a very 
long time to load and configure the virtual operating system. 
Currently, Cloudo is still under development, so some of the 
JavaScript applications might not work, i.e., GUI-based apps. 
Cloudo is a  true IaaS service provider.  Cloudo provides an 
operating system with software preinstalled in an image and 
scalable  hardware  resources.  Cloudo  also  provides  a 
JavaScript  application  framework  for  cloud  application 
development. 

For small research groups, particularly those in an academic 
environment,  computer-intensive  labs,  such  as  those 
containing  clusters  and  grids,  are  becoming  expensive  to 
maintain  and  support.  Many  universities  have  started 
infrastructure  and  administrative  expense  and  time  and 
improve hardware utilization.  

We discuss how cloud-oriented technologies can be used to 
implement distributed, reconfigurable small data centers and 
services  to  support  research  in  academic  institutions.  The 
physical  heart  of  the  system is  the server,  which integrates 
other servers, network-based storage and software applications 
into effective systems. 
A  typical  user  accesses  the  system  using  a  web-based 
interface. After the appropriate authentication and validation 
steps, the user is presented with a set of menu options. The 
user accesses the system through a web interface to select a 
combination of applications and services he or she needs. If a 
specific  combination  is  not  available  as  an  image,  an 
authorized  user  can  construct  his  or  her  own  image  from 
available components. The web interface provides privileged 
users  the  ability to  grant  varying levels  of  control  to  other 
users and provides a method to schedule the resources in the 
pool.  The web Interface  is  developed using an open-source 
Apache web server.

Once the user enters his or her login and password, the user is 
presented  with a  Linux-based  virtual  machine image that  is 
loaded into the browser. 

4 Experiments

Researchers,  students  and  many others  are  often  running 
experiments  and  evaluating  results  of  those  experiments. 
Although the situations differ from one domain to another, the 
standard  procedures  are  generally  the  same:  run  various 
experiments, repeat them, sometimes with slight variations of 
data,  try  a  new collection  of  parameters.  A lot  of  time  is 
usually spent on implementing and refining the experiments. 
The cost to implement the appropriate experiment, especially 
when dealing with developing new algorithms or dealing with 
large  sets  of  data  is  crucial.  Therefore,  it  is  necessary  to 
develop  and  use  a  tool  that  takes  care  of  the  whole 
configuration of the experiment and process computationally 
intensive problems.

Fig 1: Framework used

In the subsequent section, we describe how to integrate the 
experiment with cloud computing, how to set up experiments 
and demonstrate ways to evaluate results. We select Python as 
a programming language, because it offers attractive packages 
especially suited for scientific data processing such as numpy 
and scipy [29, 30].

Table 2: Modules used 
Module Implementation
Neural nets Python
Polynomial nets C/Python
Semantic nets Java
Image processing C/C++, Python
Data Fusion C/Python
SVM classifier C, Python
Particle filter C
Potts net C/Python
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4.1 Amazon EC2

Once  an  account  is  set  up,  the  user  can  invoke  a  web 
application service called the AWS Management Console and 
create cloud instances. (We select the Amazon Linux.) Once 
the instance is created, the user can log into the instance using 
ssh from another linux/unix machine. We used Mac, and scp 
to copy files back and forth from the local Mac machine and 
the EC2 cloud. 

The test program that we selected was a multistage version of 
the  Ensemble Kalman filter [26] and Polynomial filter [35]. 
We created kalman() and poly() which are run from inside of a 
thread. We wanted to be able to run a multi-threaded program 
on  an  instance  of  Linux  on  EC2  and  compare  that  to  the 
performance of a Mac. The results of the EC2 proved to be 
faster than the local machine for this test.

4.2 PiCloud

Then in the Python, you import the cloud, set the keys to the 
cloud, define the function and assign it a job id and afterward 
you can call the function from the cloud and see the result. 
When running the same calculation on the PiCloud, we did 
1000  iterations  for  kalman()  almost  instantly.  The  Picloud 
interface is neat in that you can see the jobs that are processing 
and  refresh  to  see  if  the  jobs  finish.  We  then  updated 
calculation  by  a  factors  of  10,  100,  1000  etc.  At  100,000 
iterations  it  took  about  10-15  seconds  to  complete,  and  at 
1,000,000  iterations  about  4  minutes  to  complete.  Running 
this function on the PiCloud is much faster then running it on a 
local Mac alone as one would expect it to be. These examples 
are relatively simple, but ideal ways to highlight usefulness of 
cloud  computing  particularly  when  teaching  distributed 
computing. It is worth to note that one can use Numpy, Scipy 
on  PiCloud account.

4.3 Eucaliptus, Cloudo

There  are  several  other  experiments  under  development 
such as binary neural Potts type of nets, radial basis network, 
simulated  annealing,  optimization  and  search,  patterns 
classification using  Cloudo and Eucaliptus [17].

5 Conclusions

The article briefly reviews the new technology of processing 
of large data sets using cloud computing, and describes  the 
experience  in  applying  these  technologies.  As  cloud 

computing  technology becomes  an  integral  part  of  modern 
data  processing there  is  a  need  to  develop  frameworks  for 
academic environments aimed at storing and analyzing large 
amounts of data. We have presented a scalable framework for 
cloud-oriented  data  processing.  The  framework  exploits 
cloud-oriented properties to achieve better scalability.  Many 
data analysis tasks can be broken into multiple subtasks and 
executed  in  the  cloud.  The  proposed  framework  is  domain 
independent.  We  are  planning  to  extend  the  framework  to 
other tasks, such as data mining and data retrieval.
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Abstract

A spectral method to solve the advection equation on the sphere with solid-body
rotation flow is described. Dependent variables are expanded with spherical harmon-
ics which are represented with Fourier series both in zonal and meridional directions.
Once the initial fields are transformed into 2D Fourier space, the advection equation
can be time-integrated without transforming spectral coefficients back to grid space.
The operation count is O(N3) per one time-stepping for O(N2) spectral coefficients.
The accuracy was found comparable to the spectral transform method using spherical
harmonics.
Keywords: Spherical advection equation, Fourier series, spherical harmonics, Fourier
representation of Legendre function, solid-body rotation

1 Introduction

Advection equation with a constant velocity is the simplest partial differential equa-
tion describing linear movement of passive scalar variable [e.g., 1]. In the spherical sur-
face, the constant velocity should be replaced by solid-body rotating basic flow. By the
nature of spherical coordinate system, the advection equation includes a singular term
for zonal advection term, and thus requires a special numerical treatment. Spherical
harmonics spectral-transform method is known to provide robust and accurate solutions
for this problem via transform method in which spectral coefficients are transformed
into grid space and vice versa at every timestep [1, 2]. In this study, a spectral method
which does not require transforms between wave and grid space during time-stepping is
proposed for the advection equation with rigid-body rotation.

2 Solid-body rotation advection equation and spherical
harmonics analysis with double Fourier series

Advection equation on the unit-radius sphere (scaled by Earth’s rotation rate and
radius) is written as

∂h

∂t
= − u

sinφ

∂h

∂λ
− v

∂h

∂φ
, (1)
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where t means time, λ is the longitude, φ = latitude +π/2, h is a scalar variable, and u
and v are longitudinal and latitudinal velocities, respectively. The streamfunction and
velocity components of a rigid-rotation are specified as

ψ = ψ0
1 cosφ+ ψ−1

1 sinφ cosλ+ ψ1
1 sinφ sinλ

u = ψ0
1 sinφ− ψ−1

1 cosφ cosλ− ψ1
1 cosφ sinλ

v = −ψ−1
1 sinλ+ ψ1

1 cosλ

, (2)

where ψ0
1, ψ−1

1 , and ψ1
1 are constant spectral components of streamfunction of zonal-

mean and zonal wavenumber-one. The axis of solid-body rotation is tilted to the north

by the angle α = arctan

[√
(ψ−1

1 )2 + (ψ1
1)2/

√
(ψ0

1)2
]
, and the mean flow rotates east-

ward for ψ0
1 > 0. If the scalar variable h is expanded with zonal harmonics as

h(λ, φ) =
N∑
m=0

hCm(φ) cosmλ+
N∑
m=1

hSm(φ) sinmλ

hCm = a
∫ 2π
0 h cosmλdλ

hSm = a
∫ 2π
0 h sinmλdλ

(3)

with a = (2π)−1 for m = 0 and π−1 for m > 0, (1) can be written in terms of zonal
wave components as

∂hCm
∂t

= A1 +A2 +A3 +A4 +A5

∂hSm
∂t

= B1 +B2

, (4)

where hSm(φ) and hCm(φ) are zonal sine and cosine coefficients of h, and Ai and Bi are
shown in Appendix. The meridional function in (4) is further expanded with half-ranged
sine or cosine series:

hm(φ) =



N∑
k=0

hm,k cos kφ, m = even

N∑
k=1

hm,k sin kφ, m = odd

, (5)

where superscripts ‘C’ and ‘S’ as in (4) are dropped for simplicity.

3 Spectral equation and advection of Gaussian bell

The spherical harmonics coefficients (ĥn,m) associated with (4) are obtained by mul-
tiplying Legendre functions and integrating between poles:

d

dt
ĥCn,m = AS1 +AS2 +AS3 +AS4

d

dt
ĥSn,m = BS

1 +BS
2 +BS

3

, (6)
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where ASi and BS
i are tendencies for spectral coefficients as shown in Appendix. Ten-

dencies in the equations ASi and BS
i include some Fourier-related integrals defined as:

Sn,m,k =

{∫ π
0 P

m
n cos kφ sinφdφ (m = even)∫ π

0 P
m
n sin kφ sinφdφ (m = odd)

Dn,m,k =

{∫ π
0 P

m
n sin kφdφ (m = even)∫ π

0 P
m
n cos kφdφ (m = odd)

D̄n,m,k = (Dn,m,k+1 +Dn,m,k−1)/2 (k ≥ 1)

D̄n,m,0 =

{
0 (m = even)
Dn,m,1 (m = odd)

. (7)

Detailed method to compute the Fourier-related integrals can be found in [3] where
stable recursion equations of the associated Legendre functions [4, 5] were incorporated
with a modification for normalization.

4 Result and Disccusion

The spectral equation (6) is time-integrated with initial condition of Gaussian bell
function located at (90◦E, 0◦N). Eq. (6) includes no singular term related with (sinφ)−1

because the Fourier integrals of (7) were used along with weighting factor sinφ, therefore,
pole problem is not expected to be encountered with this method. The spherical har-
monics obtained through time-integration should be transformed to Fourier-coefficients
at every timestep. When (6) is formulated in matrix equations, only forward operation
of matrices is required in this method. The solid-body basic flow was given to make
the Gaussian bell rotate along the great-circle which has an angle of α = π/2 − 0.05
from the poles. Examples of 12-day time-integration for N = 200 and the basic
flow of (π/6) rad/day are illustrated in Fig. 1, where a Gaussian bell of e−200 sin2(θ/2)

is used as initial condition. Super rotation flow is specified as ψ0
1 = (1/12) cosα,

ψ1
1 = (1/12) cos (π/2) sinα, and ψ−1

1 = (1/12) sin (π/2) sinα. Timestep size and Asselin
time filter coefficient were given 1/120 day and 0.01, respectively. Grid point values were
obtained from the spherical harmonics coefficient with either Fourier method or Gauss
Legendre. The height error by 12 day is extremely small, giving only maximum value
of 0.03. The result demonstrates that the Fourier method can be used to time-integrate
the advection equation even with full-grid system, which includes the South and North
poles, without polar singularity.

Appendix

Zonal cosine (Ai) and sine (Bi) spectral coefficients of (4) are written as

A1 =


cosφ

2 sinφ

{
−ψ1

1[(m+ 1)hCm+1(φ) − (m− 1)hCm−1(φ)]

+ψ−1
1 [(m+ 1)hSm+1(φ) + (m− 1)hSm−1(φ)]

}

+
1

2

[
−ψ1

1

(
∂hCm+1

∂φ
+
∂hCm−1

∂φ

)
+ ψ−1

1

(
∂hSm+1

∂φ
−
∂hSm−1

∂φ

)] (m ≥ 2)

(A1)
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A2 =
cosφ

2 sinφ

[
−ψ1

1(m+ 1)hCm+1(φ) + ψ−1
1 (m+ 1)hSm+1(φ)

]
(m = 0 or 1)

(A2)

A3 =
1

2

[
−ψ1

1

(
∂hCm+1

∂φ
+ 2

∂hCm−1

∂φ

)
+ ψ−1

1

∂hSm+1

∂φ

]
(m = 1)

(A3)

A4 =
1

2

[
−ψ1

1

∂hCm+1

∂φ
+ ψ−1

1

∂hSm+1

∂φ

]
(m = 0)

(A4)

A5 = −ψ0
1mh

S
m(φ) (m ≥ 1)

(A5)

B1 =


cosφ

2 sinφ

{
−ψ−1

1 [(m− 1)hCm−1 + (m+ 1)hCm+1]

+ψ1
1[(m− 1)hSm−1 − (m+ 1)hSm+1]

}
+ ψ0

1mh
C
m(φ)

+
1

2

[
ψ−1
1

(
∂hCm−1

∂φ
−
∂hCm+1

∂φ

)
− ψ1

1

(
∂hSm−1

∂φ
+
∂hSm+1

∂φ

)] (m ≥ 2)

(A6)

B2 =


cosφ

2 sinφ

[
−ψ−1

1 (m+ 1)hCm+1 − ψ1
1(m+ 1)hSm+1

]
+ ψ0

1mh
C
m(φ)

+
1

2

[
ψ−1
1

(
2
∂hCm−1

∂φ
−
∂hCm+1

∂φ

)
− ψ1

1

∂hSm+1

∂φ

]
(m = 1).

(A7)

The components of spherical harmonics coefficients (6) are given in terms of Fourier-
related integrals as (the summation is for k = 0, 1, · · · , N):

AS1 =
1

2


ψ1
1

[
(m− 1)

∑
hCm−1,kD̄n,m,k − (m+ 1)

∑
hCm+1,kD̄n,m,k

]
+ψ−1

1

[
(m− 1)

∑
hSm−1,kD̄n,m,k + (m+ 1)

∑
hSm+1,kD̄n,m,k

]
−2ψ0

1m
∑

hSm,kSn,m,k

(m ≥ 1)

(A8)

AS2 =
1

2

−ψ1
1

[∑
hCm−1,k(−1)mkSn,m,k +

∑
hCm+1,k(−1)mkSn,m,k

]
+ψ−1

1

[
−
∑

hSm−1,k(−1)mkSn,m,k +
∑

hSm+1,k(−1)mkSn,m,k

] (m ≥ 2)

(A9)
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AS3 =
1

2

−ψ1
1

[
2
∑

hCm−1,k(−1)mkSn,m,k +
∑

hCm+1,k(−1)mkSn,m,k

]
+ψ−1

1

∑
hSm+1,k(−1)mkSn,m,k

(m = 1)

(A10)
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1

2


−ψ1

1

∑
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1

∑
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−ψ1
1(m+ 1)

∑
hCm+1,kD̄n,m,k + ψ−1

1 (m+ 1)
∑

hSm+1,kD̄n,m,k
(m = 0)

(A11)
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ψ−1
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hCm−1,kD̄n,m,k − (m+ 1)

∑
hCm+1,kD̄n,m,k

]
+ψ1

1

[
(m− 1)

∑
hSm−1,kD̄n,m,k − (m+ 1)

∑
hSm+1,kD̄n,m,k

]
+2ψ0

1m
∑

hCm,kSn,m,k

(m ≥ 1)

(A12)

BS
2 =

1

2

ψ−1
1

[∑
hCm−1,k(−1)mkSn,m,k −

∑
hCm+1,k(−1)mkSn,m,k

]
−ψ1

1

[∑
hSm−1,k(−1)mkSn,m,k +

∑
hSm+1,k(−1)mkSn,m,k

] (m ≥ 2)

(A13)
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1

2

ψ−1
1

[
2
∑

hCm−1,k(−1)mkSn,m,k −
∑

hCm+1,k(−1)mkSn,m,k

]
−ψ1

1

∑
hSm+1,k(−1)mkSn,m,k

(m = 1).

(A14)
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Figure 1. (a) Height error as a difference between day 12 and day 0, transformed to
half-grids using Fourier-Legendre method. (b) Same as (a) but full-grids. (c) Result
obtained by Gauss Legendre method. (d) Initial field.
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Abstract-The present paper deals with the study of thermal 

radiation effect on unsteady flow and heat transfer 

characteristics of viscous fluid with variable viscosity over a 

porous stretching sheet placed in a porous medium in the 

presence of viscous dissipation. A uniform magnetic field is 
applied transversely to the direction of the flow. Similarity 

transformations are used to convert the governing time 

dependent nonlinear boundary layer equations into a system of 

non-linear ordinary differential equations which are solved 

numerically by finite element method (FEM) and element free 
Galerkin method (EFGM). The influence of unsteadiness 

parameter (S), temperature-dependent fluid viscosity parameter 

(A) and radiation parameter (R), on the velocity and temperature 

profiles are shown graphically. The impact of radiation 

parameter on heat transfer rate is also shown. The present 
problem finds application in polymer production, metal casting 

etc. 
 

Keywords- Porous medium, unsteady stretching sheet, MHD, 

temperature-dependent fluid viscosity, EFGM. 

 

I. INTRODUCTION 

The heat transfer in the laminar boundary layer flow on a 

stretching sheet has many practical applications in industrial 

manufacturing processes. This phenomenon is applied in wire 

and fiber coatings, food stuff processing reactor fluidizat ion 

and transpiration cooling etc. The prime aim in almost every 

extrusion is to maintain the surface quality of the extrudate. 

The dynamics of the boundary layer flow over a stretching 

surface originated from the pioneering work of Crane [1]. 

Subsequently, it was extended by many authors to explore 

various aspects of the flow and heat transfer occurring in an 

infinite domain of the fluid surrounding the stretching sheet 

[2–6].  

To achieve a better control on the rate of cooling, 

considerable models have been developed in recent years. 

Among other methods, it has been proposed that it may be 

advantageous to alter flow kinematics in such a way as to 

ensure a slower rate of solidificat ion. A less intrusive 

methodology has been to employ transverse magnetic fields to 

exploit the electrically -conducting nature of many chemical 

engineering fluids. Important studies in this regards include 

Mansour et al [7], Cheng and Huang [8] and Chamkha [9]. In  

high-temperature chemical engineering operations in the 

industrial design and combustion, and fire science, it also 

becomes necessary to simulate thermal rad iation heat transfer 

effects in combination with conduction, convection and also 

mass transfer e.g. radiative-convection heat transfer flows 

arising in  industrial furnace systems [10], astrophysical flows 

[11], fire spread in buildings [12] etc. Wu et al [13] studied 

radiative-conductive heat transfer within porous polymer 

materials.  Other applications where thermal rad iation may be 

significant include solar receiver-reactors [14], steam-cracking 

furnaces [15] etc. Chen [16] studied the MHD mixed  

convection of a power-law fluid past a stretching surface in 

the presence of thermal radiation and internal heat 

generation/absorption effect. Recently, El-Aziz [21] has 

studied the thermal radiat ion effects on heat transfer over an 

unsteady stretching sheet. In stretching sheet processes, the 

radiative heat transfer properties of the cooling medium may 

also be manipulated judiciously influence the rate of cooling. 

Many other effects such as porosity of the medium may also 

be used effectively to control the rate of cooling. A 

combination of different thermophysical effects may be 

employed in order to obtain the best results. 
 

Most of the studies in this regard confined their discussions 

by assuming uniformity of fluid v iscosity. However, it is 

known that the physical properties of fluid may change 

significantly with temperature. The increase of temperature 

leads to a local increase in the transport phenomena by 

reducing the viscosity across the momentum boundary layer 

and so rate of heat transfer at the wall is also affected. 

Therefore, to predict the flow behavior accurately, it is 

necessary to take into account the viscosity variation for 

incompressible flu ids. Gary et al. [17] and Mehta and Sood 

[18] showed that, when this effect is included the flow 

characteristics may change substantially as compared to the 

case of constant viscosity. Recently Mukhopadhyay [19] 

investigated the MHD unsteady boundary layer flow with 

variable flu id viscosity and thermal d iffusivity past a porous 

stretching sheet. 
 

In this paper we consider the unsteady case of a viscous 

flu id flow past a horizontal stretching sheet through porous 

medium in the presence of Magnetic field and viscous 

dissipation effect with heat transfer. The viscous dissipation 

effect is modeled in according to Al-Hadhrami et al. [20]. In  

this study, EFGM has been used as a tool for the numerical 

simulation. Comparisons of the results are done with those 

obtained by FEM also. 
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II. MATHEMATICAL MODEL 

Consider the flow of a viscous, incompressible, electrically  

conducting and radiation emitting fluid on a porous horizontal 

sheet, which comes through a slot at the origin and embedded 

in a porous medium. The Rosseland approximation is used to 

describe the radiative heat flux in the energy equation. The 

radiative heat flux in the x-d irection is negligib le in  

comparison with that in the y -direction. The fluid motion  

arises due to the stretching of the sheet. The continuous sheet 

coinciding with the plane 0,y  moves in its own plane with 

a velocity ( , ),wu x t  the temperature distribution 

3/ 22( , ) / 2 1w refT x t T T cx t which vary along the sheet 

and with time. An external magnetic field is applied normal to 

sheet. Magnetic field is sufficiently weak to ignore induction 

effects i.e. magnetic Reynolds number is small. Hall and 

ionslip currents do not arise in the regime. The velocity and 

temperature fields in the boundary layer are governed by the 

following two-dimensional boundary layer equations for mass, 

momentum and thermal energy, given by: 
 

Continuity equation:  
 

0
u v

x y
                                                                    (1) 

 

 

Equation of momentum: 
 

21 eu u u u B u
u v u

t x y y y k
                        (2) 

 

Equation of energy: 
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The corresponding boundary conditions for the regime are:  
 

0: ( , ) , ( ), ( , )
1

w w w

cx
At y u u x t v v t T T x t

t
               (4) 

 

: 0,At y u T T                                                        (5) 
 

where ,u v  are the fluid velocity components in the x  and y  

directions, T is the temperature in the boundary layer, 

, , ,e fk denote the effective fluid viscosity, the dynamic 

viscosity of fluid, fluid density and the thermal conductivity, 

respectively, 
pc  is the specific heat at constant pressure, rq is 

the radiative heat flux, wT  and T  are the plate temperature  

and the fluid free-stream temperature respectively, 
1/ 2

0( ) 1wv t v t is the suction velocity 0( 0)v of the fluid 

and ,c are positive constant with dimension of 
1t . Here,  

c is the initial stretching rate, whereas / 1c t  is the 

effective stretching rate.  

Thermal rad iation is simulated using the Rosseland 

diffusion approximation (Kim et al.  [22]) and in accordance 

with this, the radiat ive heat flux 
rq  is given by: 

 

* 4

*

4

3
r

T
q

k y
                                                                    (6)  

 

where *  is the Stefan–Boltzman constant and *k  is the 

Rosseland mean absorption coefficient.  

The temperature-dependent fluid viscosity is given by 

(Mukhopadhyay [19]), 
 

*

wa b T T                                                       (7) 
 

where * is the constant value of the coefficient of viscosity 

far away from the sheet and ,a b are constants and 0 .b  

 

III. TRANSFORMATIONS 

We now introduce dimensionless variables f  and  and 

similarity variab le  as 

1/ 2

2

3/ 2

1/ 2

( ), ( ) ,
1

2 1

1

ref

c T T
xf

t cx
T

t

c
y

t

     (8)  

                                                                   

where  is the stream function which automatically  satisfies 

the continuity equation. The velocity components are then 

derived from the stream function expression and obtained as 

( ), ( )
1 1

cx c
u f v f

y t x t
                (9) 

 

Govern ing equations (1) (3)  are then transformed into a set 

of differential equations and associated boundary conditions as 

given below: 
 

2 ( )
2

( )

S f f f ff a A f A f A f

a A f A f Mf

          (10)                                              
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( ) 1, ( ) , ( ) 1f f  at 0                                     (12)  
 

( ) 0, ( ) 0f    as                                           (13)  
 

where 
2

Re

Re

e x

k

 is the local porous parameter, Re w
x

u x  is the 

local Reynolds number, Re
w f

k

u k , S
c

 is the unsteadiness 

parameter, 
2

0B
M

c
is the magnetic parameter, Pr

fk
is the 
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Prandtl number, *

* 3

k

4
fk

R
T

 is the radiation parameter, 

2

w

p w

u
Ec

c T T

 is local Eckert number, 
wA b T T  is the 

temperature dependent viscosity parameter and the prime 

indicates differentiat ion with respect to . 

The physical quantity of interest in this problem is  the local 

Nusselt number 
xNu which is defined as                                                                                                                

 

0

, then (0)
( ) Re

x
x

w xy

Nux T
Nu

T T y

                            (14) 

 

IV. NUMERICAL SIMULATION 

The two-point unsteady nonlinear boundary value problem 

defined by the system of ordinary differential equations (10)-

(11), together with their corresponding boundary conditions 

(12)-(13), is solved using EFGM [23] and the results are 

provided graphically. Two point Gaussian quadrature 

formulae have been used to evaluate the integral values. 

Owing to the nonlinearity of the system of equations an 

iterative scheme is required to solve the nonlinear algebraic  

matrix system. The system is linearized by incorporating 

known function, which is solved efficiently employing the 

Gauss-elimination technique while sustaining an accuracy of 

0.0001. 

The accuracy of EFGM is also compared with the results of 

El. Azis [21] in Tab le 1 for local Nusselt number and the 

results show that as we increases the node points the Nusselt 

number value will converge to the result obtain by El. Aziz 

[21].  

In order to see the effect of node points, we have run the 

code for our model with different uniform node points 

51, 101, 201, 401, 801N and a very little change in the result 

has been observed after 401  node points; the results are 

omitted herein fo r brevity. Therefore, the whole domain is 

represented by 401  uniform node points. The results are also 

computed using FEM in Figs. 1-2. It shows that the EFGM 

method is in good agreement with the finite element solution 

value of h and . 

 

 

V. DISCUSSION OF THE RESULTS 

The velocity and temperature profiles for different physical 

parameters such as S , A , and R  are shown in Figs. 3-8. A 

selected set of results has been obtained covering the ranges 
0.0 0.4,S 0 2,A 0.1 1.5,R Pr 0.71, 1.0,

1.0, 1.0,M 1.0a and 0.3Ec . 

Figs. 3-4 show the effect of unsteadiness parameter S  

0.0, 0.2, 0.4S on velocity and temperature profiles, when 

all other parameters are kept constant. 0S , gives steady 

state flow and 0S , an unsteady flow. The results show that 

the velocity and temperature decreases with increase in the 

values of the unsteadiness parameter. 
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Fig. 1: Comparison of Velocity plot  

(S=0.1, A=1, R=1.0) 
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Fig. 2: Comparison of temperature plot  

(S=0.1, A=1, R=1.0) 

      

Fig. 3: Velocity plot with S (A=1.0, R=1.0) 
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In Figs. 5-6, we elucidate the effect of temperature-

dependent fluid viscosity parameter A  0, 1, 2A  on the 

velocity and temperature profiles. Flu id velocity decreases 

with increasing A within a particular range of . Fig. 6 

exhibits that the temperature also decreases with the 

increasing value of A  in the boundary layer. These results are 

in well agreement with the results obtained by Mukhopadhyay 

[19]. 

     
Fig. 4: Temperature plot with S (A=1.0, R=1.0) 

 
 

 

Figs. 5: Velocity plot with A (S=0.1, R=1.0) 

 

Fig. 7 displays the effect of radiation parameter R  on the 

dimensionless temperature . Increasing the radiat ion 

parameter R  implies to decreasing the temperature 

throughout the boundary layer region. This result can  be 

explained by the fact that a decrease in the values of R  for 

given k  and T  means a decrease in the Rosseland radiation 

absorptivity *k . Since divergence of the radiative heat flux 

rq
y

increases as *k  decreases which in turn increases the 

rate of radiative heat transferred to the fluid and hence the 

flu id temperature increases. In view of this exp lanation, when 

0R  the effect of thermal rad iation becomes more 

significant and the effects of radiation can be neglected 

when R . 

The local Nusselt number variat ion with radiat ion 

parameter R  and viscosity parameter A  are presented in Fig. 

8. It is seen from this figure that the local Nusselt number is 

increased for all values of A  and R . We can also observe 

that for fixed values of A , the local Nusselt number increases 

as the radiation parameter R  increases and vice-versa. 

 

Fig. 6: Temperature plot with A (S=0.1, R=1.0) 

   

 Fig. 7: Temperature plot with R (S=0.1, A=1.0) 
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VI. CONCLUSIONS 

The following conclusions can be drawn as a result of the 

computations: 

1. With increasing values of unsteadiness parameter, fluid  

velocity and temperature are found to decrease. 

2. Velocity is decreased with increasing temperature-

dependent fluid viscosity parameter. 

3. Temperature of fluid in the boundary layer region decreases 

with the increase in radiation parameter.  

4. The rate of heat transfer increases with an increase in 

temperature-dependent fluid viscosity parameter and radiation 

parameters. Thus, fast cooling of the plate can be achieved by 

incorporating these parameters. 

5. The limit ing case of our results are in excellent agreement 

with the earlier steady state results of El. Aziz [21].  

 

              
Fig. 8: Nusselt number plot with A & R                                                                     

(S=0.1, A=1.0) 

 
              Pr    El. Aziz   Present Result with different node points  

         [21]      N=51    N=101   N=201   N=401   N=801 

             0.1   0.4517     0.4485   0.4509   0.4517   0.4520   0.4521 

             1.0   1.6728     1.6092   1.6498   1.6644   1.6695   1.6714 

             10    5.7050     4.8202   5.3446   5.5724   5.6569   5.6869 

     

Table 1: Value of 1/2Re (0)x xNu  for several values of Pr with 

0.8, 0.0, 0.0, 0, 0, 0, 0.0,S A Gr M Ec R  
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Abstract— The game of Cricket, and the use of technology 

in the sport, have grown rapidly over the past decade.  

However, technology-based systems introduced to 

adjudicate decisions in run outs, stumpings, boundary 

infringements and close catches are still prone to human 

error, and thus their acceptance has not been fully 

embraced by cricketing administrators.  In particular, 

technology is not currently employed for bat-pad decisions. 

Although the Snickometer may assist in adjudicating such 

decisions, it depends heavily on human interpretation.  The 

aim of this study is to investigate the use of Wavelets in 

developing crickets’ edge-detection adjudication system. 

Live audio samples of ball-on-bat, and ball-on-pad events 

from a cricket match, will be recorded. Wavelet analysis 

and feature extraction will then be employed on these 

samples. Results will show the ability to differentiate 

between these different audio events. This is crucial to 

developing a fully automated system. 

 

Keywords: Cricket, Wavelets, Edge-detection, feature 

extraction 

I.  Introduction  

Sports play a major role in generating entertainment 
revenue. At the 2000 Sydney Olympic Games, the 
organizing committee generated an income of US $1.756 
billion [1]. In 2009, the Indian Premier League (IPL) offered 
paychecks as high as US$1.55 million to top class cricketers 
for a five week contract [2]. Consequently, to deter event-
fixing and ensure legitimate results, it is not surprising that 
the use of technology in sports has steadily increased over 
the years and now plays a major role in adjudicating the 
outcome of events.  Moreover, it has become crucial in 
protecting the livelihoods of sportsmen who make a living 
from sports. Incorrect decisions in sporting events could 
affect a player‟s confidence, the outcome of a game and even 
end a player‟s sporting career. This view was supported by 
Mr. Nariman Jamshedji “Nari” Contractor while addressing 
the Fourteenth Frank Worrell Memorial Lecture at the 
University of the West Indies. He stated that the use of 
technology increases the likelihood of a correct decision by 
the referee and this greatly assists the players in earning a 
livelihood from their sports. 

Unfortunately, Cricket is no exception and the prevalence 
of incorrect decisions, in spite of the exposure to various 
sporting technology, continues to be disconcerting to its wide 
fan base.  Reasons range from the inefficiency of the 
equipment (e.g. „blind spots‟ due to players or umpires 

blocking the view of cameras used in decision making 
processes) to human error by the on-field umpires.  In 
international cricket, a Third Umpire consults with the on-
field umpires using wireless technology.  More specifically, 
the Third Umpire uses television replays in situations, such 
as disputed catches and boundary infringements, to 
appropriately advise the on-field umpires. The Third Umpire 
is also called upon to adjudicate on run out decisions. 

There are also a number of devices being used to assist 
the umpires in making decisions and for the entertainment of 
television audiences.  One such device „Hawk-Eye‟, is a 
computer system which traces a ball‟s trajectory, with a 
claimed accuracy of 5mm, and sends the data to a virtual-
reality machine [3].  Hawk-Eye uses six or more computer-
linked television cameras situated around the cricket field of 
play. The computer acquires the video in real time, and 
tracks the path of the cricket ball on each camera. These six 
separate views are then combined to produce an accurate 3D 
representation of the path of the ball.  The system was first 
used during a Test match between Pakistan and England at 
Lord's Cricket Ground, on 21 April 2001, in the TV coverage 
by Channel 4 [3]. Since then it has been an indispensable 
tool for cricket commentators around the world. It is used 
primarily by the majority of television networks to track the 
trajectory of balls in flight, mostly for analyzing Leg Before 
Wicket (LBW) decisions. In this case, Hawk-Eye predicts 
the most likely path of the ball, and determines if it would go 
on to hit the wicket.  Although Hawkeye is very accurate in 
measuring the actual path of a ball, when it comes to 
predicting the future path of the ball, such as in LBW 
decisions, it is not as clear. If the ball is heading to the pitch 
(ground), Hawk-Eye cannot determine if it will skid a bit 
more than normal or hit a crack, bit of grass, or worn patch 
of the pitch. The predicted path of the ball is based on the 
average and expected pathway [3] and does not take into 
effect any deviation that can be caused by imperfections on 
the ground surface. 

Another item of equipment being used in cricket is the 
Snickometer (also known as „snicko‟). This was invented by 
English Computer Scientist, Allan Plaskett, in the mid-
1990s. The Snickometer is composed of a very sensitive 
microphone, located behind the stumps, and an oscilloscope 
(wirelessly connected) which displays traces of the detected 
sound waves. These traces are recorded and synchronized 
with the cameras located around the ground. For edge-
decisions, the oscilloscope trace is shown alongside the slow 
motion video of the ball passing the bat. By the transient 
shape of the sound wave, the viewer(s) first determines 
whether the noise detected by the microphone coincides with 
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the ball passing the bat, and second, if the sound appears to 
come from the bat hitting the ball or from some other source. 
This technology is currently only used as a novelty tool to 
give the television audience more information regarding if 
the ball actually hit the bat. Umpires do not enjoy the benefit 
of using 'snicko' but must rely instead on their senses of sight 
and hearing, as well as personal judgment and experience. In 
many instances, there are coinciding events that may be 
confused with the sound of ball-on-bat. These include the bat 
hitting the pad during the batman‟s swing or the bat scuffing 
the ground at the same time the ball passes the bat. The 
shape of the recorded sound wave is the key differentiator as 
a short, sharp sound is associated with bat on ball. The bat 
hitting the pads, or the ground, produces a „flatter‟ sound 
wave.  The signal is purportedly different for bat-pad and 
bat-ball however, this is not always clear to the natural eye 
[4]. The aim of this paper is to employ wavelet analysis and 
feature extraction to differentiate between bat-on-ball and 
bat-on-pad audio sounds in cricket. Results could then be 
employed in an automated decision making process.   It is 
expected that this will give teams a fairer chance on the 
outcome of a match (game) by minimising the number of 
decision errors currently observed in the game. 

II. Background 

It is well known that the continuous wavelet transform 
(CWT) may be used to analyze audio signals. The CWT 
provides another view of temporal signals as it transforms 
the regular time vs. amplitude signal to time vs. scale, where 
scale can be converted to a pseudo-frequency.  This method 
allows one to examine the temporal nature of audio events 
and the corresponding frequencies involved. In essence, the 
correlation values, produced during the transformation 
process, provide critical information on the characteristics of 
the signal. By exploiting these characteristics a distinction 
can be made between different audio events. Significant 
applications of this new „dimension‟ are widely reported in 
the literature. Lambrou et al used the wavelet transform to 
extract statistical features from audio data to successfully 
distinguish between three different musical styles of rock, 
piano and jazz [5] In another documented application, the 
wavelet-packet transform was used to extract spatiotemporal 
characteristic features for vehicular detection [6].  

Ting et al introduced a novel time-frequency based 
pattern recognition technique for a proposed effective cricket 
decision making system using snicko-signals [7]. In their 
work, experiments were conducted to simulate and record 
snickometer signals using a PC microphone with the help of 
RAVEN LITE software.  A simple time-frequency based 
pattern recognition technique was developed and tested.  

 

 

 

 

 

 

It should be noted that this software employs the short-
time Fourier transform (STFT) to generate the time-
frequency data used in the pattern recognition analysis. 

It is believed that this is the first time that wavelet 
analysis has been employed in classifying the audio signals 
recorded during the game of cricket.  This innovation will be 
very useful in live broadcast of cricket match for the benefit 
of audience and adjudicators. 

III. Methodology 

The equipment setup shown in Fig. 1 was tested at 
various local hard-ball cricket matches throughout Barbados. 
This setup is identical to that used for international matches. 
More specifically, the microphone transmitter is covered in a 
small hole directly behind the stumps.  The receiver and the 
laptop are assembled inside the players‟ pavilion and 
recordings are made using the laptop‟s sound recorder. 

 

The key specifications for equipment used in recording 
the audio data are listed in Table 1. 

The received audio signals were first digitised using a 16-
bit pulse coded modulation (PCM) scheme at a sample rate 
of 44,100 kHz and then stored as a stereo .WAV file on a 
laptop computer for offline wavelet analysis. The primary 
software tool for this analysis was MATLAB. It must be 
noted that there are many available wavelet transforms and 
scale ranges that can be used for testing. However, the 
wavelet used for analysis in this project is the Bi-orthogonal 
3.3, and the scale chosen for this particular wavelet is from 
one to four hundred and fifty.  Fifty-two samples were taken; 
twenty-six of ball hitting bat and twenty-six of ball hitting 
pad. Samples included deliveries from both fast- and slow-
bowlers and the batsmen‟s‟ equipment (e.g. pads, bat) also 
vary in make and model. 
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Figure 1: Schematic of experimental setup 
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(a) 

 

(b) 

TABLE I.   EQUIPMENT PARAMETERS 

EQUIPMENT SPECIFICATIONS 

Shure SLX14/84 Wireless 

Lavalier Microphone 

System 

 

WL184 Supercardiod 

Lavalier Condenser Mic: 

Supercardioid pickup pattern 

for high noise rejection and 

narrow pickup angle 

SLX1 Body pack 

Transmitter: 

518 - 782 MHz operating 

range 

SLX4 Wireless Receiver: 

960 Selectable frequencies 

across 24MHz bandwidth 

Mobile Precision M6400 

Notebook Computer 

Precision M6400, Intel Core 2 

Quad Extreme Edition 

QX9300 2.53GHz, 1067MHZ 

IV. Results 

Recordings of the impact of ball hitting bat and ball hitting 

pad were successfully compiled.  In many cases, attempts to 

categorise these signals by visual inspection of the data in 

the time domain, proved to be inconclusive as they are 

similar in appearance. This is highlighted in Figures 2(a) 

and 2(b). An adjudicating official could not reliably use this 

method to determine the source of the recorded noise as is 

done using the Snickometer. 

However, results showed that when using the wavelet 
transform, there is a noticeable difference between ball 
hitting bat and ball hitting pad.  Figures 3 and 4 show the 

results from the continuous wavelet transform of the two 
previous sound files.  Note that the x-axis shows how the 
transform varies across time and the y-axis shows the 
coefficient value of the wavelet and the z-axis shows the 
scale.   It is observed from these figures that for the ball 
hitting pad, the best correlation value is at a higher scale (i.e. 
lower pseudo-frequency) than for the ball hitting bat, where 
the best correlation value also observed that the correlation 
value for a ball hitting bat (12) was higher that the value for 
ball hitting pad (2.5). 
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Figure 3: 3D wavelet transform of ball hitting pad 
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Figure 4: 3D wavelet transform of ball hitting bat 

Figure 2: Sound samples taken of  (a) ball on pad,  

(b) ball on bat 
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In Figure 5, twenty-six wavelet coefficient values are plotted 
against their corresponding pseudo-frequencies for both ball-
on-bat and ball-on-pad data categories. Observe that there 
are two general areas which represent contact between 
bat/ball, and ball/pad, respectively. Moreover, there is a 
linear partition separating the two categories of signals.  This 
partition, which is represented as a line drawn between the 
two categories of signals serves as a possible decision 
boundary for classification. 

V. Conclusion 

Results showed that viewing a sound file in the time domain 

proved to be ambiguous when adjudicators need to 

determine the difference between key sounds in cricket such 

as ball hitting bat and ball hitting pad.  When the sound files 

are analyzed using the wavelet transform, noticeable 

differences between the two signal classifications are 

revealed by the correlation values of the wavelet transform 

and the corresponding pseudo-frequency at the points 

interest. These differences were plotted on a graph for easy 

viewing.  We are now closer to designing a fully automated 

system which, when given a sound file of a noise, can 

determine if it was bat-on-ball or ball-on-pad. This 

distinction provides the means for which an automation tool 

can be developed. Such a tool will be very useful in live 

broadcast of cricket match for the benefit of audience and 

adjudicators. 

The wavelet chosen for testing is just one of many available 

wavelets.  Future research will be carried out to determine 

which wavelet gives optimum results.  In this regard it 

should be noted that it is possible to design a wavelet which 

best represents a particular sound.  The scale range of the 

wavelets employed also needs to be examined, as changing 

the scale range of the wavelet may produce improved 

results. Therefore, an optimum scale range for each wavelet 

must also be established.  Also, other characteristics given 

by the wavelet transform will be investigated to determine if 

there are other noticeable differences between the signals. 

This work will also be enhanced to a real-time application 

and extended to include bat-pad adjudication decisions. 
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Abstract— We present a simple matrix multiplication algo-
rithm that multiplies two input matrices with rows (in one
matrix) and columns (in the other matrix) within a small
diameter d (distances are measured using the Hamming
distance). This algorithm runs in timeO(dn2) for matrices
of sizen × n. We then propose a more general clustering-
based matrix multiplication algorithm. For a given integer
k ≤ n, this algorithm first uses a clustering algorithm that
places rows of one input matrix and separately columns of
the other input matrix intok clusters with approximately
the smallest possible radius (cluster size)s (within a factor
of two of the minimum possible). Second, it uses our first
algorithm as a subroutine to multiply the original input
matrices. We have implemented this algorithm. The time
complexity of this implementation isO((k +s)n2) . We also
describe how to achieveO((log k + s)n2 + k2n) worst case
time complexity.

Keywords: algorithm, matrix multiplication, clustering, approxi-
mation algorithm

1. Introduction
Matrix multiplication is a fundamental operation. Efficient

matrix multiplication would yield efficient algorithms for
many other problems such as solving systems of linear
equations, and for solving even some basic graph problems
[12].

The naive matrix multiplication algorithm takesΘ(n3)
time to multiply two n × n matrices. Intuitively, the prob-
lem seems to requireΩ(n3) time. Strassen’sO(n2.81)-time
algorithm [13] for this problem was a big surprise for the
scientific world. The fastest known algorithm to date runs
in O(n2.38) time [5]. An interesting recent approach makes
evident a connection between fast matrix multiplication
and group theory, which can potentially reduce the time
complexity of the problem further [4]. Many researchers
conjecture that anO(n2)-time matrix multiplication algo-
rithm exists. We believe that there exist near optimal algo-
rithms that are not based on numerical techniques (at least
for special cases of matrices). In the literature, sometimes
similar optimal results (in terms of time complexity or
approximation ratio) achieved by numerical methods have

also been achieved by simple non-numerical algorithms (for
example, consider vertex cover by linear programming and
Gavril’s graph based simple method, which give similar
approximation performance). In the case of matrix mul-
tiplication, all existing asymptotically fastest methods use
numerical techniques.

Several studies for matrix multiplication in the literature
have proposed non-numerical approaches that exploit special
structure in the matrices (after possibly reordering rows
and columns, or representing matrices by graphs) [2], [3],
[6]. The Cuthill-McKee algorithm is proposed to reduce
the bandwidth of sparse symmetric matrix [6]. Arslan and
Chidri [2] propose an algorithm specialized for matrices in
which the elements are drawn from a fixed finite set, and
the matrices arethin, or the matrices have many common
prefixes in their rows and in their columns. A matrix is
thin if one of its dimensions is very small compared to
the other. Arslan and Chidri [2] represent each matrix by
a trie, which is a compact representation for these special
cases of matrices they study. Multiplication is done by
simultaneous and synchronized tree traversals on two tries,
depth-first traversal on one and breath-first traversal on the
other. This way previously calculated partial results can be
reused. Their algorithm is much faster than theO(n3)-time
naive algorithm when input matrices have many common
prefixes in their rows and columns, or when input matrices
are thin [2].

In the literature, the closest work to the current paper is
[3] in which Björklund and Lingas present an algorithm for
computing the product of twon×n matricesA andB. For
ann×n Boolean matrixC, let GC be the complete weighted
graph on the rows ofC where the weight of an edge between
two rows is equal to their Hamming distance, i.e. the number
of entries different in the same corresponding positions. Also
let MWT (C) be the weight of a minimum spanning tree of
GC . The Boolean matrix multiplication algorithm in [3] runs
in expected timeÕ(n(n + min{MWT (A),MWT (Bt)})),
whereBt stands for the transposed matrixB, andÕ(f(n))
meansO(f(n)poly-log n). This algorithm performs well on
Boolean matrices whose minimum-weight spanning trees
have small weight, however, it is noted that bothMWT (A)
andMWT (Bt) can beΩ(n2) since the Hamming distance
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between any two rows or columns can beΩ(n).
In the current paper, we continue studying non-numerical

approaches for matrix multiplication. We present an algo-
rithm specialized for matrices that form clusters with small
radii. For a given integerk ≤ n, the worst case time
complexity of our algorithm isO((k + s)n2) achieved by
placing the rows of one matrix and columns of the other
in k clusters for the purpose of minimizing the maximum
cluster radiuss over all these clusters. The worst case time
complexity ofO((log k + s)n2 + k2n) can be achieved by
using more efficient clustering in our algorithm.

The outline of this paper is as follows: In Section 2 we
present a multiplication algorithm for multiplying two input
matrices with all rows in one matrix, and all columns in the
other matrix within diameterd. We generalize this algorithm,
and use a clustering algorithm as a subroutine to develop
another algorithm for the case of matrix multiplication
where rows and columns of matrices form multiple clusters
(separately). We describe this algorithm in Section 3. We
include pointers for additional computational problems that
our approach yields, and discuss potential future work in
Section 4. We summarize our results and conclude in Section
5.

We would like to mention one notational convenience that
we follow throughout this paper. We often use product of
vectors. We omit the product symbol ’.’ (dot). These vector
products are always for a matrix row vector and a matrix
column vector, therefore, for simplicity we do not use the
usual vector notation (variable name with an arrow cap), and
we do not use transpose symbol for the column vector. We
believe that they are easily understood from the context.

2. Rows and columns within diameter d

Let M1 and M2 be two input matrices each of size
n×n. We assume that all rows are within Hamming distance
d in M1, and similarly all columns are within Hamming
distanced in M2. Hamming distance between two rows
(or two columns) is the number of positions at each of
which the elements in both vectors are different. For ex-
ample, the Hamming distance between(0, 1.23, 3.7, 2.125)
and (5, 1.23, 3.7,−7) is two because these vectors have
different elements in the first and last positions. To compute
the pairwise product of all row and column vectors, we
can arbitrarily pick one representative rowr from matrix
M1 and arbitrarily pick one representative columnc from
M2. The observation we use in this case is the following:
for all rows ri in M1 and all columnscj in M2, ricj =
rc−∆r

i c−∆c
jr+∆r

i ∆
c
j , where∆r

i = r−ri, and∆c
j = c−cj .

Figure 1 summarizes this equality.
We propose the following matrix multiplication algorithm

in this case: Arbitrarily pick some rowr from the rows of
M1, and arbitrarily pick some columnc from the columns
of M2. Calculaterc in time O(n). For all i,j, 1 ≤ i, j ≤ n,

2

cj
∆i

ri

∆i ∆j ∆i∆jcjri =rc − c − r + 

∆ j
r

r c

r rc c

all rows
from M1

all columns
from M

c

Fig. 1

ALL ROWS IN M1 AND ALL COLUMNS IN M2 ARE WITHIN HAMMING

DISTANCE d

calculate∆r
i = r − ri, and ∆c

j = c − cj . For all i,j,
1 ≤ i, j ≤ n, computericj = rc − ∆r

i c − ∆c
jr + ∆r

i ∆
c
j .

We store at each node only non-zero elements, and
represent∆r

i and ∆c
j in linear linked lists of size (size is

in terms of number of nodes) at mostd, where in each node
we include a vector element and its position (index) in the
original vector. Computing all∆r

i and∆c
j takesO(n2) time.

We compute∆r
i c in O(d) time. We traverse the linked list

for ∆r
i and for every element in the list we read the element

of vector c in the same position by using a single read
operation in constant time. We multiply these elements and
add the product to the running sum for∆r

i c. We compute
∆c

jr in a similar way in timeO(d). We compute∆r
i ∆

c
j

also in timeO(d). To do this, we traverse two linked lists
(each of size at mostd) in parallel linearly (as in the merge
step of mergesort), and multiply and add to the running sum
when the indices agree. Sincerc is already computed and
available, computingricj takes onlyO(d) time. Therefore,
the total time complexity of our algorithm isO(dn2).

We have implemented our algorithm and performed tests
on a computer with 2 GHz processor and 3GB RAM
(our programs can be obtained by contacting the au-
thors). Given distanced, and sizen, we generate one
row randomly and anothern − 1 rows differing from
this row in d random positions. This way we generate
matrix M1. We generate columns of matrixM2 simi-
larly based on an initial randomly generated column. We
run our algorithm on matrices generated for differentn

(n ∈ [1000, 2000, 4000, 8000, 16000, 32000]) and d (d ∈
[2, 4, 8, 16, 32]). We plot the execution time versusn for
all d values separately. We show the results in Figure 2.
These experimental results verify the theoreticalO(dn2)
time complexity, and it shows that our algorithm is very
practical for multiplying two input matrices one with rows
and the other with columns within diameterd.

We note that for this case of the matrix multiplication (i.e.
rows M1 and columns inM2 are within diameterd), some
other existing methods may also offer time efficient solutions
(e.g. matrix multiplication based onLSP decomposition
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n

For varying distance d

Fig. 2

EXECUTION TIME OF OUR FIRST ALGORITHM VERSUSn FOR VARIOUS

DISTANCESd SHOWN IN DIFFERENT COLORS

[11]). However, the algorithm we present in this section is
efficient enough for our purposes and it is the basis for a
more general algorithm that we present in the next section.

3. Multiple clusters of rows and columns
In this case, we consider placing the rows of input matrix

M1 in k1 clusters,and similarly, the columns ofM2 in k2

clusters. We assume thatk1 = k2 = k for a given integer
k (≤ n) for simplicity of explanations. We again use the
observation that productricj can be computed using the
equationrc−∆r

i c−∆c
jr + ∆r

i ∆
c
j , where∆r

i = r− ri, and
∆c

j = c − cj , and wherer and c (differently from the case
in the previous section), respectively, therepresentative(or
the head) of clusters that containri and cj . Again, at each
node in linear linked lists for∆r

i and ∆c
j , we store only

the non-zero elements along with the indices in the original
vectors. We summarize this case in Figure 3.

2

i

cj

c ∆j
c

∆j ∆i∆jcjri =rc − c − r + ∆i
r rc c

r

∆i
r

clusters
of rows
from M1

clusters
of columns
from M

r

Fig. 3

ROWS OFM1 AND COLUMNS OF M2 ARE IN MULTIPLE CLUSTERS

We propose the following algorithm in this case: Given
M1 and M2, and integerk (≤ n), we createk clusters

for rows of M1 and k clusters for columns ofM2. The
objective of this step is to minimize the maximumcluster
size (or equivalently thecluster radius). This is anNP -
hard problem [9], but we use an approximation algorithm
for this step. The algorithm that we use in this step also
identifies a representative (head) for each cluster. Then for
all i,j, 1 ≤ i, j ≤ k, whereri is the head of row cluster
i, and cj is the head of column clusterj, we compute
ricj . Computing allricj takesO(k2n) time. Consider a row
clusteru whose head is rowr, and a column clusterv whose
head is columnc. For all non-head rowsri in row cluster
u, and for all non-head columnscj in column clusterv, we
computericj = rc − ∆r

i c − ∆c
jr + ∆r

i ∆
c
j , wherer and c

are the cluster heads, andrc has already been computed. Let
s be the minimum of the maximumcluster radiusover all
clusters. The cluster radius for a given cluster is defined as
the maximum distance to a “center” from all members in
the cluster. As we did in the previous section, we store∆r

i

and∆c
j in linear linked lists. The sizes of these linked lists

are at mosts . Computing all∆r
i and∆c

j takesO(n2) time.
For everyri andcj , computing−∆r

i c−∆c
jr + ∆r

i ∆
c
j takes

O(s) time by the same reasons that we discussed for the
performance of our algorithm in the previous section. We
can see that the total time requirement of our algorithm is
O(sn2+k2n) ignoring the time complexity of the clustering
algorithm we use.

As part of our matrix multiplication algorithm, we solve
a case of the so-calledk-center problem[1]. This problem
is defined as follows: Given a setS of n points in a metric
space, and integerk ≤ n, compute ak-clusteringof S of
the smallest possible size. Ak-clustering ofS is a partition
of S into k subsets (clusters)S1, S2, . . . , Sk. The cluster
size is the maximum distance from a fixed point (called the
center of the cluster) to members of the cluster. In this case,
we use the Hamming distance and we use cluster radius
to mean cluster size. The clustering problem we solve is
to find a k-clustering with the minimum maximum cluster
radius over all clusters. Finding the actual minimum is an
NP -hard problem [9]. We use an approximation algorithm
presented by Gonzalez [9] (we address another algorithm
later). Gonzalez’ algorithm [9] guarantees ak-clustering
with which the maximum cluster radius over all clusters is at
most twice the minimum possible. This algorithm assumes
a complete input graphG. We run this algorithm separately
for rows of M1 and columns ofM2. For rows, each row
is a vertex in G and we imagine that every two rows
are connected by an edge whose weight is the Hamming
distance between them. The algorithm is very fast: it does
not examine all edges. The case of columns is the same
except that the vertices are created for columns. Gonzalez’
algorithm [9] is shown in Figure 4.

Gonzalez’ algorithm [9] requiresO(kn) distance compu-
tations, and runs in timeO(kn2) in our case since each Ham-
ming distance computation takesO(n) time. This algorithm
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Algorithm Gonzalez((G,E,W),k)

Graph G has vertices V , edges E with weights

W

precondition: G is a complete graph, and

k < |V |

Set B1 = V

Pick one vertex in B1 and label it head1

for j = 2 to k do

Let vi be a vertex in B1, B2, . . . , Bj−1 whose

distance to the head of the cluster

it belongs is maximum

Move vi to Bj and label it headj

For all vl in {B1, B2, . . . , Bj−1}, move vl to Bj

if its distance to vi is not larger than

the distance to the head of the cluster it

belongs

Fig. 4

GONZALEZ’ CLUSTERING ALGORITHM [9] WHICH APPROXIMATES

k-CLUSTERING TO MINIMIZE MAXIMUM CLUSTER RADIUS

guarantees maximum cluster radius at most2s, wheres is
the minimum of the maximum cluster radius over all possible
k clusterings. Including this algorithm’s time complexity,
our algorithm’s time complexity isO(sn2 + k2n + kn2)
or O((k + s)n2) sincek ≤ n .

We have implemented Gonzalez’ algorithm [9], and our
matrix multiplication algorithm for multiple clusters, and
performed tests on a computer with 2 GHz processor and
3GB RAM (our programs can be obtained by contacting
the authors). Given sizen, number of clustersk (≤ n),
and radiuss, we randomly generatek clusters ofn rows
in which each row differs ins random positions from
the representative row, which is also randomly generated.
These rows form input matrixM1. We similarly generaten
columns for the other input matrixM2. We run our algorithm
on matrices generated for differentn, k, ands, wheren ∈
[1000, 2000, 4000, 8000, 12000, 16000], 1 ≤ k ≤ ⌊log

2
n⌋,

and1 ≤ s ≤ ⌊√n⌋. We plot the execution time versusn, k,
and s separately when any two of the parametersn, k, and
s are fixed. All charts obtained by fixing two parameters
to all possible values in the ranges we used exhibit similar
growth behavior in the remaining (third) parameter. In Figure
5, we present only a set of representative charts. These
experimental results verify the theoreticalO((k+s)n2) time
complexity, and it shows that our algorithm is very practical
for multiplying two input matricesM1 andM2, where rows
in M1 and columns inM2 (separately) form clusters with
small radii.

We note a possible improvement of time complexity
of our algorithm for k = o(n) . Feder and Greene [7]
has improved the time complexity of Gonzalez’s algorithm
[9] to O(n log k) from O(kn) (not including the time

C)

A)

B)

k=16 and s=32

n

k

s

n=16000 and s=64

n=16000 and k=8

Fig. 5

REPRESENTATIVE CHARTS FOR EXECUTION TIME OF OUR ALGORITHM

VERSUS SIZEn, NUMBER OF CLUSTERSk, AND RADIUS s SEPARATELY

(WHEN TWO OF THE THREE PARAMETERS ARE FIXED). ALL CHARTS

OBTAINED BY FIXING TWO PARAMETERS TO ALL POSSIBLE VALUES IN

THE RANGES WE USED EXHIBIT SIMILAR GROWTH BEHAVIOR IN THE

REMAINING (THIRD) PARAMETER. PART (A): k = 16, s = 32, AND THE

SIZE n VARIES; PART(B): n = 16000, s = 64, AND k VARIES; PART (C):

n = 16000, k = 8, AND s VARIES
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for distance computations). Feder and Greene [7] achieve
this by a sophisticated algorithm that runs in two phases
each of which is similar to the Gonzalez’ algorithm [9].
The first phase yields a crude solution which is refined
in the second phase. This algorithm has the same factor
2 approximation performance guarantee. We can use this
algorithm in solving thek-clustering steps in our algorithm.
In our case, including the distance computations, each of
these steps takesO(n2 log k) time. With this modification,
our algorithm’s worst case total time complexity becomes
O((log k + s)n2 + k2n) time.

4. Discussion and Future Work
We have designed our clustering-based algorithm for

multiplying matrices of sizen×n whose rows and columns
form k (≤ n) clusters with small radiuss. In our tests, we
assume number of clusters up tolog n, and radius up to64.

We note that our clustering-based matrix multiplication
algorithm can use other clustering algorithms with different
objectives. The objective affects the total cost of generating
all entries (nodes) in the product matrix, and therefore, it
needs to be carefully chosen. We ask the following related
question:

Research Problem: Are there clustering algo-
rithms (exact or approximate, and other than algo-
rithms in [9], [7]) feasible for preprocessing input
matrices (possibly for special cases of matrices,
and possibly with different clustering objective)
with which we obtain fast algorithms using the
clustering-based approach we propose in this sec-
tion?

We note that there are many clustering algorithms with
different objectives (see for example [10] and [8]), which can
be used in our approach. We also note that an approximation
algorithm that guarantees a constant ratio of the optimum is
sufficient for our purposes.

We have introduced a general approach for multiplying
two matrices that involve a graph representation, distance
definition, and clustering. This approach gives rise to other
interesting computational problems for future research.

5. Concluding Remarks
We have proposed a clustering-based algorithm for matrix

multiplication. Our algorithm specializes for matrices which
form small number of clustersk ≤ n (for input matrices
of size n × n) with small radiuss. The complete vector
products are performed for pairs of cluster heads. Other
entries are obtained from these by performing additional
operations. The algorithm can be implemented to run in time
O((log k + s)n2 + k2n), wherek is the given number of
clusters, ands is the minimum of the maximum radius in all
clusters in an optimal clustering. This work is our attempt
for achieving fast algorithms for matrix multiplication for

which asymptotically fastest algorithms on general matrices
use numerical techniques. If near optimal (close toΘ(n2))
numerical algorithms exist, we believe that similarly efficient
algorithms can be obtained by non-numerical approaches for
at least special cases of matrices. This work confirms that
matrices whose rows and columns form a small number of
clusters with small radius can be multiplied very fast using
clustering.
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Abstract— We are interested in simple cellular automata
(CA) and their computational and dynamical properties. In
our past and ongoing work, we have been investigating (i)
asymptotic dynamics of various types of CA and (ii) different
communication models for CA. In this paper, we specifically
focus on the convergence properties of a very simple kind
of totalistic CA, namely, those defined on one-dimensional
arrays where each cell or node updates according to the
Boolean Majority function: the new state of a cell becomes
1 if and only if a simple majority of its inputs are currently
in state 1, and it becomes 0 otherwise. We have observed
in our prior work that such CA tend to have relatively
simple asymptotic dynamics: a short transient chain followed
by convergence to a “fixed point”. We now provide solid
statistical evidence for these conjectures, based on our
recent extensive computer simulations of Majority 1-D CA.
In particular, we study the convergence properties of such
CA for two communication models: one is the classical,
parallel CA model with perfectly synchronous cell updates,
and the other are CA whose cells update sequentially, one at
a time; we consider two variants of such sequential update
regimes. We simulate CA whose sizes range up to 1,000
cells, and demonstrate very fast (in particular, sublinear),
and very slowly decreasing with an increase in the total
number of cells, speeds of convergence. Finally, we draw
conclusions based on our extensive simulations and outline
some interesting questions to be considered in the future
work.

Keywords: models for parallel and distributed computing, cellular
automata, simple threshold Boolean functions, asymptotic dynam-
ics, convergence properties

1. Introduction and Motivation
Cellular automata (CA) were originally introduced as an

abstract mathematical model of biological systems capable
of self-reproduction [13]. CA have been extensively studied
in many different domains, especially in the context of mod-
eling and simulation of complex physical, biological, social
and socio-technical systems and their collective dynamics;
see, e.g., [6], [7], [21], [25], [28], [29], [30]. However, CA
have also been viewed as an abstraction of massively par-
allel computers [5], [16], [23]. While most of the previous
research in computer and computational sciences on CA and

similar models have used these models as abstractions of
parallel hardware architectures, in our prior and ongoing
work we have viewed these discrete dynamical system mod-
els as useful abstractions of open distributed environments
at the software level [16], [17]. In particular, we view CA
and related Boolean network automata as formal models of
autonomously executing local processes that are reactive,
persistent, and coupled to and interacting with one another.
Even when the individual processes are rather simple, their
mutual interaction and synergy may, in general, potentially
yield a highly complex and difficult to predict long-term
global behavior [17], [18], [24], [25].

This short paper has two main purposes. On the one
hand, we experimentally investigate and validate several
conjectures about the overall dynamics and hence possible
computations of Majority CA, that were based on mainly an-
alytical and conceptual considerations (but, in several cases
not rigorously mathematically proven by either ourselves or,
as far as we know, other researchers); see e.g. [21], [23],
[24], [25]. On the other hand, our extensive simulations and
statistical analysis of simulation results also provide some
novel insights into the overall properties of Majority CA
dynamics, with implications for various biological, social,
socio-technical and computational systems and phenomena
that can be modeled as such cellular automata.

We have established elsewhere [20], [21] that the number
of possible distinct asymptotic dynamics of Majority CA
grows exponentially with the number of cells. Consequently,
already for the number of cells of the order of hundreds,
exhaustive simulations of all possible dynamics is com-
putationally infeasible. We therefore undertake a statisti-
cal experimental study, where we randomly sample initial
configurations, then evolve a Majority Cellular Automaton
(abbreviated as MAJ CA) from such a random initial con-
figuration, then statistically analyze the obtained results with
the focus on the speed of convergence to a fixed point.

The rest of the paper is organized as follows. We provide
formal definitions of CA models and cell update rules of
interest in the next section. We briefly review the most
relevant prior art. We then summarize and discuss the
statistics of our simulation experiments on MAJ CA (with
both parallel and sequential cell update regimes) with up
to 1,000 cells, and correlate these experimental findings
with our prior theoretical results and conjectures about the
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MAJ CA convergence properties. Finally, we draw some
conclusions and outline several directions for our ongoing
and possible future work.

2. Cellular Automata Basics
We formally define classical CA in two steps: we first

introduce the notion of a cellular space, and then define a
cellular automaton over an appropriate cellular space. We
then define the sequential version of the “default” (that is,
parallel) CA.

Definition 2.1: A Cellular Space, Γ, is an ordered pair
(G,Q), where

– G is a regular undirected Cayley graph that may be finite
or infinite, with each node labeled with a distinct integer; and

– Q is a finite set of states that has at least two elements,
one of which is the special quiescent state, denoted by 0.

We denote the set of integer labels of the nodes in Γ by
L. That is, L may be equal to, or be a proper subset of, the
set of all integers.

Definition 2.2: A Cellular Automaton A is an ordered
triple (Γ, N,M), where

– Γ is a cellular space;
– N is a fundamental neighborhood; and
– M is a finite state machine whose input alphabet is

Q|N |, and the local transition function (update rule) for each
node is of the form δ : Q|N |+1 → Q for CA with memory,
and δ : Q|N | → Q for memoryless CA.

The fundamental neighborhood N specifies which near-
by nodes provide inputs to the update rule of a given node.
The local transition rule δ specifies how each node updates
its state (that is, value), based on its current state, and the
current states of its neighbors in N . By composing together
the application of the local transition rule to each of the
CA’s nodes, we obtain the global map on the set of global
configurations of a CA.

We note that we use the terms node and cell interchange-
ably throughout the paper to refer to the elementary single
computational unit of a CA.

Definition 2.3: A Sequential Cellular Automaton (SCA)
S is an ordered quadruple (Γ, N,M, s), where Γ, N and
M are as in Definition 2.2, and s is an arbitrary sequence,
finite or infinite, all of whose elements are drawn from the
set L of integers used in labeling the vertices of Γ. The
sequence s is specifying the sequential ordering according
to which an SCA’s nodes update their states, one at a time.

We now adopt a (discrete) dynamical system view of CA
in order to be able to meaningfully discuss their dynamics.
A phase space of a dynamical system is a directed graph
where the vertices are the global configurations (or global
states) of the system, and directed edges correspond to direct
transitions from one global state to another. One can define
the fundamental types of global configurations that a CA can
find itself in. These different types of configurations relate
to key properties of asymptotic dynamics of CA (or other

similar models when viewed as discrete dynamical systems).
We have been investigating configuration space properties
of parallel and sequential CA as they capture qualitatively
distinct types of possible dynamics of systems abstracted as
those various types of CA [17], [21], [22], [26].

We define the fundamental types of dynamical system
configurations for parallel CA. These definitions are also ap-
plicable to finite SCA whose sequential update orderings are
required to be permutations. In this paper, we only consider
such, permutation ordering based, SCA; for a discussion
on how to modify the definitions of fundamental types of
configurations below in order to make them applicable to
SCA with more general sequential update orderings, see
[23], [24], [25].

Our classification is based on answering the following
question: starting from a given global CA configuration, can
this CA return back to that same configuration after a finite
number of computational steps?

Definition 2.4: A fixed point (FP) is a configuration in
the phase space of a CA such that, once the CA reaches
this configuration, it stays there forever. A (temporal) cycle
configuration (CC) is a configuration that, once reached,
will be revisited infinitely often with a fixed, finite temporal
period of 2 or greater. A transient configuration (TC) is
a configuration that, once reached, is never going to be
revisited again.

In particular, a FP is a special, degenerate case of a recur-
rent state with period 1. Due to deterministic evolution, any
configuration of a classical, parallel CA or a permutation-
based sequential CA necessarily has to be exactly one of
three: a FP, a “proper” CC, or a TC.

Among various cell update rules for CA, totalistic rules
based on Boolean functions that are symmetric with respect
to all of their inputs have been researched particularly
extensively (e.g., [27], [28], [29]). Totalistic Boolean update
rules, in general, need not be monotone. The restricted
ones that however are monotone (in addition to being
symmetric), have been argued in our prior work to be
amenable to mathematical analysis, where many (but not
all) interesting properties of the possible resulting dynamics
can be explicitly analytically proved. We call such Boolean
update rules that are both monotone and symmetric simple
threshold update rules (see below for definitions). Examples
of simple threshold update rules include Boolean AND and
OR functions, as well as functions such as “update to 1 if
and only if at least 3 out of 7 current inputs are 1”, and so
on. Arguably the most interesting such rule, in terms of the
corresponding CA’s dynamics, is the Majority update rule:
a cell updates to 1 if and only if a simple majority of its
inputs (that is, relevant neighboring cells) are currently in
state 1.

We next formally define (simple) linear threshold func-
tions and the corresponding types of (S)CA. We then focus
on the Majority update rule.

Int'l Conf. Scientific Computing |  CSC'11  | 309



Definition 2.5: A Boolean-valued linear threshold func-
tion of m inputs, x1, ..., xm, is any function of the form

f(x1, ..., xm) =

{
1, if

∑
i wi · xi ≥ θ

0, otherwise
(1)

where θ is an appropriate threshold constant, and w1, ..., wm

are arbitrary (but fixed) real numbers called weights.
A threshold cellular automaton (threshold (S)CA) is a

(parallel or sequential) cellular automaton where δ is a
Boolean-valued linear threshold function.

Definition 2.6: A simple threshold (S)CA is a cellular au-
tomaton whose local update rule δ is a monotone symmetric
Boolean threshold function.

As already observed, the most interesting simple threshold
CA are those with Majority (abbreviated as MAJ) function
as the cell update rule [23], [24], [25]. We have extensively
analytically studied Majority CA in our prior work, and
proven a number of interesting phase space properties for
sequential and parallel CA with δ = MAJ [21], [22],
[25]. We have also made some conjectures about overall
phase space structures in general, and rates of convergence
in particular, in our prior work.

In the present paper, we summarize out simulation results
on MAJ CA of small to intermediate sizes (up to 1000
cells) and provide strong statistical evidence that most of
our conjectures dating back to the early and mid 2000s
were correct. We also share some interesting findings that
were not necessarily in accordance with our expectations
based on prior mathematical and conceptual analysis of MAJ
CA. Therefore, the present paper, whose results are mostly
of experimental nature, in essence complements our prior,
mostly analytical, investigation of MAJ CA in parallel and
sequential settings.

3. Related Work
Various models of cellular and network automata have

been studied in a broad variety of scientific disciplines
and research areas, from unconventional models for parallel
and distributed computing (e.g., [5], [12], [25]), to complex
dynamical systems in physics [6], [7], to theoretical biology
[10], [11]. Various sequential and asynchronous variants of
CA have also been relatively extensively studied, and in
particular, compared and contrasted in various ways with
the classical, parallel CA [3], [4], [9], [21], [24], [25].

Computational aspects of the classical Cellular Automata
have been investigated in various contexts. Prior to the
1980s, most of the theoretical work dealt with infinite
CA and the fundamental (un)decidability results about the
global CA properties. Systematic study of a broad variety
of computational aspects of CA defined on finite cellular
spaces, from topological to formal language theoretic to
computational complexity theoretic, was prompted in the
1980s by the seminal work of S. Wolfram [27], [28], [29].

Among other issues, Wolfram addressed the fundamental
characteristics of CA in terms of their computational expres-
siveness and universality. He also offered the first broadly
accepted classification of all CA into four qualitatively
distinct classes in terms of the structural complexity of the
possible computations or, equivalently, dynamics.

Classical CA are a parallel computational model that
is characterized by perfect synchrony of the parallel node
updates. This perfect synchrony implies, in effect, logical
simultaneity, and is hard to justify on either physics or
computer science grounds. By allowing the nodes to update
one at a time, one arrives at a sequential version of CA,
called Sequential Cellular Automata (SCA), and sequential
versions of the corresponding more general graph automata
[20], [24], [25]. One interesting general question in this con-
text is, what are the differences in asymptotic dynamics of
CA with a given local update rule, as a function of the under-
lying inter-cell communication model? We have analytically
addressed this question in our prior work [21], [22], [24],
[25]. The present paper complements the theoretical results
in our earlier research and offers experimental and statistical
comparison-and-contrast, based on extensive simulations, of
parallel and sequential CA convergence properties when the
cells update according to the Majority rule.

Stable configurations, also known as fixed points (FPs),
of CA and other discrete dynamical system models have
been extensively studied in the literature. Some classical
computational problems about FPs include computational
hardness (or easiness) of (i) determining the FP existence,
(ii) enumerating (exactly or approximately) their number,
(iii) determining their reachability from various starting con-
figurations, and (iv) determining the worst-case or average-
case convergence to a FP. Our focus in the present paper is
on asymptotic dynamics of Majority CA, and we contribute
to the better understanding of the problem (iv) above, in
the context of what are the average or expected convergence
speeds to a FP for this restricted type of totalistic Boolean
CA. Some references that address various aspects related to
FPs in cellular automata, more general graph automata and
discrete Hopfield networks include [1], [2], [11], [14], [15],
[18], [20], [21], [24], [25].

4. Convergence Properties of Parallel
and Sequential Majority CA

We now focus on the main goals of this paper: investi-
gating the convergence properties of Majority (MAJ) one-
dimensional (1D) CA defined on finite cellular spaces, in
both parallel and sequential settings. The two main input
parameters (beside whether the cells update sequentially
or in parallel) are the total number of cells, n, and the
Majority update rule radius, r. We assume CA with memory
throughout; hence, the next state of a cell c[i] depends on the
cell’s own current state, as well as states of its neighbors:
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r neighbors to the left and r neighbors to the right from
position i, for the total of 2r + 1 inputs. Throughout, we
assume MAJ CA with circular boundary conditions; that is,
the underlying cellular spaces in what follows are always
rings defined on an appropriate number of cells. So, the
nearest left neighbor of cell c[1] is cell c[n], the 2nd nearest
left neighbor is c[n− 1], etc.

Our first specific objective is to determine the implications
of the underlying communication model (parallel vs. se-
quential) on the speed of convergence from a random initial
configuration to a fixed point. While (in the case of parallel
MAJ CA) it is also possible that (depending on the initial
configuration) a temporal two-cycle, as opposed to a FP, is
reached [23], [24], [21], we have excluded those (very rare)
cases and sampled statistics solely for the “typical” behavior,
which is convergence to a FP. (This behavior is typical for
parallel MAJ CA, and indeed the only possible for arbitrary
sequential CA, as our prior work cited above establishes.)
Based on prior theoretical investigations, as well as what is
known from scientific large-scale parallel computing (e.g.,
Gauss-Seidel vs. Jacobi methods in numerical linear alge-
bra), we expected that MAJ SCA, everything else being
equal, would converge to a FP faster than corresponding
MAJ parallel CA with the same parameter values n and r.
This prediction has been corroborated via our simulations,
as will be discussed in more detail below.

Our second specific objective is to investigate how the
speed of convergence, for a given number of cells, changes
with the rule update radius r; we have experimented with
the rule radii ranging from r = 1 to r = 5. For the Majority
update rule, cell c[i] updates to 1 if and only if at least r+1
of its current updates are in state 1 (since r + 1 constitutes
a simple majority of 2r + 1 input values).

To understand the dependence of speed of convergence
as a function of rule radius r, one needs to first understand
what the typical FP configuration looks like. In our prior
work, we have classified MAJ CA FPs into three categories
[23], [24]. While there are “atypical” FP configurations that
are characterized by particular spatial symmetries (whose
details depend on n, r and the boundary conditions), a
typical fixed point is made of alternating “stable blocks”
of consecutive 0s and consecutive 1s, where the size of
the minimal stable block depends on r. The extreme cases
are special configurations 0n and 1n, that are made of all
zeros and of all ones, respectively; but (for nontrivial sizes
n) the most common FPs are made of some number of
smaller stable blocks, where blocks of 0s and blocks of 1s
alternate with each other. To illustrate our point here, some
examples of such “typical” FPs for MAJ CA on n = 10
nodes and with rule radius r = 1 (and assuming circular
boundary conditions) include 0001111000, 0111001110 and
1110011000.

It is easy to see that, given r ≥ 1, any block of consecutive
r + 1 or more zeros is stable, and likewise with blocks

of r + 1 or more consecutive ones. Hence, for example, a
subconfiguration made of two consecutive cells c[i]c[i+1] =
00 is stable for r = 1, but it is not stable for r ≥ 2.
Consequently, given a fixed number of cells n, (i) the number
of FPs of MAJ CA with n nodes monotonically decreases as
r increases, and (ii) for the parallel cell update regime, the
expected convergence time (number of iterations) to a FP
decreases as r increases. We have analytically established
property (i) in our prior work; we experimentally validate
property (ii), at least for the parallel and certain sequential
cell update regimes, in the present paper (see below).

We summarize our simulation framework, and then dis-
cuss our results in the context of the two main objectives
that we have described above. Three sets of simulations
were done: one for parallel cell updates and two for different
kinds of sequential updates. In one sequential case, the cells
update, in each iteration, according to a fixed ordering: first
node c[1], then c[2], etc., all the way to c[n]. Once c[n] has
updated, the global iteration of SCA configuration update
is done, and the next iteration begins with c[1] updating
first, etc. In the second sequential case, at the beginning
of each iteration, a random permutation of integers [1..n]
is generated, and then the cells are updated according to
that permutation. Since a random permutation is generated
before each iteration, in general, (i) the node update ordering
will differ from one iteration to the next, and (ii) there is no
way to “tweak” the speed of convergence based on the node
update orderings, as those are (pseudo-)random and hence
unpredictable from one global iteration to the next. We shall
see shortly that these two different kinds of sequential node
update orderings lead to considerably different convergence
behaviors.

For a given n, the initial configuration is selected at
random, where each cell’s initial value is selected randomly
and equi-probably to be 0 or 1. This implies, in particular,
that (i) the initial cell values are i.i.d random variables and
(ii) that a “typical” initial configuration (for large enough
n) is going to have roughly the same number of 0s and 1s.
Once a random initial configuration is selected, the parallel
or sequential CA is evolved fully deterministically (modulo,
in the Sequential2 case, the random choice of node update
ordering before each iteration, as explained above).

To obtain statistically significant results, for each scenario,
and each combination of values of n and r, a total of 1,000
simulation runs were performed and recorded. Each run
starts from a fresh randomly generated initial configuration
(hence, for n ≥ 20, it is extremely unlikely that the same
initial configuration will be “hit” twice). The convergence
rates, that is, the average number of global iterations until
an FP is reached in each scenario, are then determined
as averages (arithmetic means) over those 1,000 runs. We
have also computed standard deviations for each choice of
parameter values (not captured in the plots below, but we
plan to use these results in our ongoing and future work).
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We note that our Java-based Majority CA simulator is easy
to use and has a simple but nice user interface. A snapshot of
the simulator’s GUI is given in Figure 0 below. We intend
to make a version of the simulator freely available to the
scientific community in the near future.

Figure 0: A snapshot of the GUI of our Majority CA simulator.

Next, we briefly summarize predictions of what kind of
convergence behavior we expected to see. We will then
present our results, followed by discussion where our pre-
dictions turned out to be correct, and where they did not
– and what are possible explanations for the experimental
results we have obtained.
• In both parallel and sequential cases, a typical dynamic

evolution of a MAJ CA is a short transient chain
followed by reaching a FP (that is, a fairly fast conver-
gence to a FP); if our simulations are done correctly,
this is what the statistics we get should corroborate.

• For the same values of n and r, either sequential regime
should lead to a faster convergence than the parallel cell
update regime.

• For a given n, the speed of convergence should (very
slightly) slow down with an increase in r.

• For a given r, the average number of iterations until
convergence should very slowly (more specifically, sub-
linearly) increase with increase in n.

• For n ≥ 20 (meaning: one million or more possi-
ble configurations), “hitting” probabilistically unlikely
events, such as a temporal two-cycle, or reaching the
same FP multiple times, should be observed very sel-
dom or never.

One aspect where our intuition turned out to be misleading
(and where our prior analytical work on the Majority CA
with various communication models shed no light, one way
or the other), is the question of whether considerable differ-
ences in convergence behaviors between the two sequential
models under consideration are to be expected. Since, for
each run, new random initial configuration is generated, the
particular choice of fixed permutation in method Sequential1
(we simply chose the permutation (1, 2, ..., n)) is expected
to be immaterial – it is just as good (or bad) as any other

fixed ordering of sequential node updates. Therefore, the
question boils down to, how does updating according to
an arbitrary but fixed sequential ordering compare with
updating according to a new (hence, in general, different)
random update ordering from one global iteration to the
next? Our initial prediction was that there should be no
major differences in convergence behaviors; this, however,
turns out to be false (see Figures 2 and 3 below), and we
are still seeking explanation of this experimentally observed
phenomenon.

In Figures 1 - 3, the total number of nodes of a MAJ CA,
n, is captured along the x-axis, whereas the y-axis captures
the average number of iterations until convergence to an
FP, from 1,000 randomly generated initial configurations and
given the values of n and r.

Figure 1 provides the summary of the speed of conver-
gence statistics for parallel Majority CA:

Figure 1: Convergence rates of parallel MAJ CA on up to n =

1, 000 nodes.

The general behavior pattern – a fairly short transient tail
followed by an FP – has certainly been confirmed by our
simulations. Also, as predicted, (i) convergence rates are very
slowly growing, concave functions of the number of cells
n, and (ii) for the same n, larger rule radius r generally
implies faster convergence. However, this dependence of
convergence rate on r is most pronounced for r = 1
as contrasted with r ≥ 2; but, for r = 4 and r = 5,
the convergence rates already appear practically statistically
indistinguishable. Based on the underlying mathematics, we
would expect to see some separation of convergence speeds
among different values of r ≥ 4 only once the number of
cells n is considerably larger than relatively modest n =
1000, the max. number of cells captured by our simulations.

What is the convergence behavior of sequential MAJ CA?
The summary of our simulations, for SCA (i) Sequential1
updating of cells according to the fixed ordering (1, 2, ..., n)
and (ii) Sequential2 updating where a new permutation
ordering is randomly generated before each iteration, is
captured in Figures 2 and 3, respectively:
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Figure 2: Convergence rates of sequential MAJ CA whose cells
update according to the fixed permutation (1, 2, ..., n), and on
cellular spaces with up to n = 1, 000 nodes.

Figure 3: Convergence rates of sequential MAJ CA with random
update ordering on each iteration, and on cellular spaces with up
to n = 1, 000 nodes.

When the sequential ordering is generated at random prior
to each iteration, we observe exactly what we expected –
very similar shapes of the convergence curves to those in the
parallel case, except that now the convergence takes place
faster. In particular, even for n = 1000, and for the values
of r we have considered, it (on average) takes only slightly
more than 2 global iterations to reach a FP. In contrast, for
parallel MAJ CA on n = 1000 nodes, the average number
of iterations until convergence to a FP is around or below
3 for r ≥ 3, slightly below 3.5 for r = 2, and greater than
4 (but still well below 5) for r = 1. Also, the “spread” of
convergence rates as a function of r is much wider in the
parallel case than in the random sequential case.

One interesting observation about all possible sequential
orderings of node updates is the following
Lemma: When r = 1, a 1D MAJ CA whose cells
update according to any (deterministic or random or mixed)
sequential update ordering is guaranteed to converge to a FP
in at most one iteration.

Proof: If the initial configuration is an FP, then the
convergence takes place in 0 steps. Else, since the cells

update sequentially, the temporal cycles aren’t possible [24],
[25], and therefore the only remaining case is that the initial
configuration is transient. As such, it must have one or more
cells that are unstable (otherwise, this configuration would
be a FP). Since r = 1, the only unstable cells are those that
aren’t a part of a stable block of size 2 or greater – that is,
the central cells in subconfigurations 010 and 101. Consider
c[i− 1]c[i]c[i+ 1] = 010. If the leftmost cell gets to update
before the central cell and it changes its value to 1, then the
stable block c[i−1]c[i] = 11 has formed, and the central cell
will never be able to change its state again. Similar analysis
applies should the rightmost cell get to update before the
central cell, and it updates to 1. The remaining cases are (i)
when the central cell gets to update first and (ii) when neither
the leftmost nor the rightmost cell changes its value from 0
to 1 before the central cell gets its opportunity to update.
Either way, the central cell will necessarily update to 0, and
hence the stable block c[i − 1]c[i]c[i + 1] = 000 will form.
The other unstable type of subconfiguration, 101, is analyzed
analogously. Since these are the only possible minimal (with
respect to the “is a substring of” partial ordering) unstable
subconfigurations, and in all possible scenarios after at most
one update of each cell in each such subconfiguration a
stable block is created, it follows that, starting from any
TC, and for any sequence of node updating (as long as it is
a permutation [21], [25]), a fixed point will be reached in a
single global iteration.

Notice that in Figures 2-3, for r = 1 and relatively small
values of n, the average number of iterations is strictly below
1. The reason is that, for small n, there is a considerable
probability that a fixed point will be selected as an initial
configuration. Whenever the initial configuration is an FP,
the number of iterations is zero, whereas in other cases
it is exactly one, thereby resulting in an average of less
than 1. Since the statistical dominance of TCs over FPs
grows rapidly as n increases [23], [25], and the total number
of configurations grows exponentially with n, chance of
“hitting” an FP among 1,000 randomly generated initial
configurations rapidly approaches zero as n grows. This is
why the convergence rate for r = 1 in both sequential plots
very rapidly levels at 1.

Lastly, one result that we truly did not expect, and still do
not have any convincing explanation for: the shapes of the
convergence curves for Sequential1, where the cells update
according to a fixed permutation, and when r ≥ 2. We have
re-run the simulations and obtained similar results and very
similarly shaped curves in each case. We are investigating
what is the reason for this, rather counterintuitive and
unexpected to us, convergence behavior.

5. Summary and Future Work
We investigate one-dimensional cellular automata with

the Majority cell update rule. We perform a detailed ex-
perimental study of the convergence behavior of such CA
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for several different update rule radii, and for both parallel
and sequential cell update regimes. Our simulations have
generally validated a number of theoretical predictions,
including (i) that Majority CA tend to converge to a fixed
point very rapidly, where, on average, this convergence rate
is clearly a sub-linear1 function of the number of cells, (ii)
that, everything else being equal, the sequential cell updates
lead to faster convergence than the parallel cell updates, and
(iii) in parallel MAJ CA, the convergence rates tend to get
(a little) faster as the rule radius r grows.

However, we have also obtained convergence behavior
for the sequential update ordering according to a fixed
permutation that we cannot explain. Investigating and fully
explaining this strange behavior is one of our imminent
tasks. In our near-future work, we will investigate CA
convergence behavior for much greater numbers of cells n,
as well as study occurrences of statistically unlikely patterns,
such as the temporal cycles in the parallel case.

Further down the road, we plan to expand the simulator’s
capabilities so that other cell update rules can be simulated
and analyzed. We also intend to first expand the functionality
of our simulator and then undertake a similar experimental
study to capture when the cell updates take place (i) ac-
cording to more general sequential regimes than the ones
discussed in this paper and (ii) in a genuinely asynchronous
manner, as discussed in [21], [22], [23], [25]. We believe
that such systematic study will provide valuable insights into
the implications of the underlying communication model on
the resulting dynamics of various technical, physical and
biological systems that can be modeled by cellular automata.
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Abstract— In deterministic mixed integer second-order
cone programs (DMISCOPs) we minimize a linear objective
function over the intersection of an affine set and a product
of second-order (Lorentz) cones, and an additional con-
straint that requires a subset of the variables attain integers
values. We refer to them as deterministic mixed integer
second-order cone programs since data defining them are
deterministic. Stochastic programs have been studied since
1950âĂŹs as a tool to handle optimization problems that
involve uncertainty in data. In this paper, we introduce a
new modeling tool for stochastic mixed integer optimization
to handle uncertainty in data defining DMISOCPs by in-
troducing two-stage stochastic mixed integer second-order
cone programs (SMISCOPs) (with recourse). An application
of class of problems will be described.

Keywords: Stochastic programming; Mixed integer program-
ming; Recourse; Second-order cone programming

1. Introduction
In deterministic mixed integer second-order cone pro-

grams (DMISCOPs) [6], a linear objective function is mini-
mized over the intersection of an affine set and a product of
second-order (Lorentz) cones, and an additional constraint
that requires a subset of the variables attain integers values.
We refer to them as deterministic mixed integer second-order
cone programs since data defining them are deterministic.
Deterministic 0-1 second-order cone programs (0-1DSCOPs)
[6] are DMISCOPs but the variables that must take integer
values are restricted to be binary.

In some applications we cannot specify the model entirely
because it depends on information which is not available
at the time of formulation but will only be determined at
some point in the future. Stochastic programs have been
studied since 1950âĂŹs to find optimal decisions in prob-
lems with uncertainty in data. See [5], [20], [4], [10], [13]
and references contained therein. In particular, two-stage
stochastic mixed integer linear programs (SMILPs) have
been formulated to handle uncertainty in data defining mixed
integer linear programs [16]. Some algorithm have been
developed recently for solving SMILPs (see for example
[15], [14]).

In this paper, we propose a new class of optimization
problems to handle uncertainty in data defining DMISOCPs
by introducing two-stage stochastic mixed integer second-
order cone programs (SMISCOPs) (with recourse). We also
describe an application of this new class of problems in
stochastic mixed integer optimization,

1.1 Notations
We begin by introducing some notations that we use in the

sequel. The notations in this part follows that of Alizadeh
and Goldfarb [1] and Todd [18].

Let Rm×n and Rn∨n denote the vector spaces of real m×
n matrices and real symmetric n× n matrices respectively.
For U, V ∈ Rn∨n, we write U � 0 (U � 0) to mean that
U is positive semidefinite (positive definite), and U � V or
V � U to mean that U − V � 0.

We use “,” for adjoining vectors and matrices in a row,
and use “;” for adjoining them in a column. So, for example,
if x, y, and z are vectors, the following are equivalent: x

y
z

 = (xT,yT, zT)T = (x;y; z).

If A ⊆ Rk and B ⊆ Rl, then the Cartesian product of
A× B := {(x;y) : x ∈ A and y ∈ B}.

For each vector x ∈ Rk indexed from 0, we write x̄ for
the sub-vector consisting of entries 1 through k−1; therefore
x = (x0; x̄).

The second-order cone (also known as the quadratic,
Lorentz, or the ice-cream cone) of dimension n is defined as
Qn := {x = (x0; x̄) ∈ R× Rn−1 : x0 ≥ ||x̄||} where || · ||
denotes the Euclidean norm. It is well known that the cone
Q2 is convex, pointed, closed and with a nonempty interior.

We write x � 0 to mean that x ∈ Qn, and
x �〈n1,n2,··· ,nr〉 0 to mean that x ∈ Qn1

×Qn2
×· · ·×Qnr

.
For simplicity, we write x �〈n1,n2,··· ,nr〉 0 as x �r 0 when
n1, n2, · · · , nr are known from the context. We also write
x �r y or y �r x to mean that x− y �r 0.

It is immediately seen that, for every vector x ∈
Rn where n =

∑r
i=1 ni, x �r 0 if and only if x

is partitioned conformally as x = (x1;x2; · · · ;xr) and
xi � 0 for i = 1, 2, · · · , r.
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2. Definitions of SMISOCP with Re-
course

An SMISOCP with recourse in primal standard form is
defined based on deterministic data A ∈ Rm1×n1 , b ∈
Rm1 and c ∈ Rn1 and random data T ∈ Rm2×n1 ,W ∈
Rm2×n2 ,h ∈ Rm2 and d ∈ Rn2 whose realizations depend
on an underlying outcome ω in an event space Ω with a
known probability function P. Given this data, a two-stage
SMISOCP with recourse in primal standard form is

min cTx+ E [Q(x, ω)]
s.t. Ax = b

x �r1 0
xk ∈ [αk, βk]

⋂
Z, k ∈ Γ

(1)

where r1 divides n1,Γ ⊂ {1, 2, · · · , n1}, the first-stage
decision variable x ∈ Rn1 has some of its components xk
(k ∈ Γ) with integer values and bounded by αk, βk ∈ R,
and Q(x, ω) is the minimum of the problem

min d(ω)Ty
s.t. T (w)x+W (ω)y = h(ω)

y �r2 0
yl ∈ [γl, δl]

⋂
Z, l ∈ Λ

(2)

where r2 divides n2,Λ ⊂ {1, 2, · · · , n2}, the second-stage
decision variable y ∈ Rn2 has some of its components yl
(l ∈ Λ) with integer values and bounded by γl, δl ∈ R, and

E[Q(x, ω)] :=

∫
Ω

Q(x, ω)P (dω).

This class of optimization problems may be termed
as stochastic mixed integer second-order cone programs
(SMISOCPs) with recourse. If the integrality constraints in
(1) and (2) are restricted to be binary, then we get the
problem

min cTx+ E [Q(x, ω)]
s.t. Ax = b

x �r1 0
xk ∈ {0, 1}, k ∈ Γ

(3)

where r1 divides n1,Γ ⊂ {1, 2, · · · , n1}, the first-stage
decision variable x ∈ Rn1 has some of its components xk
(k ∈ Γ) with integer values and bounded by αk, βk ∈ R,
and Q(x, ω) is the minimum of the problem

min d(ω)Ty
s.t. T (w)x+W (ω)y = h(ω)

y �r2 0
yl ∈ {0, 1}, l ∈ Λ

(4)

where r2 divides n2,Λ ⊂ {1, 2, · · · , n2}, the first-stage
decision variable y ∈ Rn2 has some of its components yl
(l ∈ Λ) with integer values and bounded by γl, δl ∈ R, and

E[Q(x, ω)] :=

∫
Ω

Q(x, ω)P (dω).

This class of optimization problems may be termed as
stochastic 0-1 second-order cone programs (0-1SSOCPs)
with recourse.

3. Two general classes of problems can
be cast as SMISOCPs

In this section we describe two general classes of prob-
lems that can be cast as MISSOCPs.

3.1 Stochastic mixed integer linear programs
If r1 = n1, then xi ∈ Q1

2 = {t ∈ R : t ≥ 0} for each
i = 1, 2, · · · , n1. Thus the constraint x �n1 0 means the
same as x ≥ 0, i.e., x lies in the nonnegative orthant of Rn1 .
Similarly, if n2 = r2 in (2), then y lies in the nonnegative
orthant of Rn2 . Thus, when both n1 = r1 in (1) and n2 = r2

in (2), then the SMISOCP problem (1, 2) reduces to the
problem

min cTx+ E [Q(x, ω)]
s.t. Ax = b

xk ∈ [αk, βk]
⋂

Z, k ∈ Γ
x ≥ 0

where Γ ⊂ {1, 2, · · · , n1}, the first-stage decision variable
x ∈ Rn1 has some of its components xk (k ∈ Γ) with
integer values and bounded by αk, βk ∈ R, and Q(x, ω) is
the minimum of the problem

min d(ω)Ty
s.t. T (w)x+W (ω)y = h(ω)

yl ∈ [γl, δl]
⋂

Z, l ∈ Λ
y ≥ 0

where Λ ⊂ {1, 2, · · · , n2}, the second-stage decision vari-
able y ∈ Rn2 has some of its components yl (l ∈ Λ) with
integer values and bounded by γl, δl ∈ R, and

E[Q(x, ω)] :=

∫
Ω

Q(x, ω)P (dω).

Thus, SMILP problems can be cast as SMISOCP prob-
lems.

3.2 Stochastic mixed integer quadratic pro-
grams

Stochastic quadratic programs (SMIQPs) can also be cast
as SMISOCPs. To demonstrate this, recall that a two-stage
SMIQP (with recourse) is defined based on deterministic
data C ∈ Rn1∨ n1 , C � 0, c ∈ Rn1 , A ∈ Rm1×n1 and b ∈
Rm1 ; and random data H ∈ Rn2∨ n2 , H � 0,d ∈ Rn2 , T ∈
Rm2×n1 ,W ∈ Rm2×n2 , and h ∈ Rm2 whose realizations
depend on an underlying outcome in an event space Ω with
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a known probability function P. Given this data, an SMIQP
with recourse is

min q1(x, ω) = xTCx+ cTx+ E[Q(x, ω)]
s.t. Ax = b

xk ∈ {0, 1}, k ∈ Γ
x ≥ 0

(5)

where Γ ⊂ {1, 2, · · · , n1}, the first-stage decision variable
x ∈ Rn1 has some of its components xk (k ∈ Γ) with
integer values and bounded by αk, βk ∈ R, and Q(x, ω) is
the minimum of the problem

min q2(y, ω) = yTH(ω)y + d(ω)Ty
s.t. T (ω)x+W (ω)y = h(ω)

yl ∈ [γl, δl]
⋂
Z, l ∈ Λ

y ≥ 0

(6)

where Λ ⊂ {1, 2, · · · , n2}, the second-stage decision vari-
able y ∈ Rn2 has some of its components yl (l ∈ Λ) with
integer values and bounded by γl, δl ∈ R, and

E[Q(x, ω)] :=

∫
Ω

Q(x, ω)P (dω).

Observe that the objective function of (5) can be written as
(see [1])

q1(x1, ω) = ||ū||2 + E[Q(x, ω)]− 1

4
cTC−1c,

where
ū = C

1/2x+
1

2
C−

1/2c.

Similarly, the objective function of (6) can be written as

q2(y, ω) = ||v̄||2 − 1

4
d(ω)TH(ω)−1d (ω)

where
v̄ = H(ω)

1/2y +
1

2
H(ω)−

1/2d(ω).

Thus, problem (5, 6) can be transformed into the SMISOCP:

min u0

s.t. ū− C1/2x = 1
2 C

−1/2c
Ax = b
xk ∈ [αk, βk]

⋂
Z, k ∈ Γ

(u0; ū) � 0
x ≥ 0

(7)

where Q(x, ω) is the minimum of the problem

min v0

s.t. v̄ −H(ω)
1/2y = 1

2 H(ω)−
1/2d(ω)

T (ω)x+W (ω)y = h(ω)
yl ∈ [γl, δl]

⋂
Z, l ∈ Λ

(u0; v̄) � 0
y ≥ 0

(8)

where
E[Q(x, ω)] :=

∫
Ω

Q(x, ω)P (dω).

Note that the SMIQP problem (5, 6) and the SMISOCP
problem (7, 8) will have the same minimization, but their
optimal objective values are equal up to constants. More
precisely, the difference between the optimal objective values
of (6, 8) would be − 1

2d(ω)TH(ω)−1 d(ω). Similarly, the
optimal objective values of (5, 6) and (7, 8) will differ by

−1

2
cTC−1c− 1

2

∫
Ω

(
d(ω)T H(ω)−1d(ω)

)
P (dω).

It is interesting to note that we can use the transformation
described in this part to formulate an SMISOCP model for
capital budgeting problems with a mean-variance objective
described in [2]. In [2] the authors ignored the financing
structure and considered a simple assumption that all given
projects have a fixed available budget, and then, in order to fit
their approach for deriving cutting planes, they transformed
the problem from its model in 0-1DQP into a 0-1DSOCP
model. But we believe that it is much closer to the reality
to assume that we have a random budget for the projects.
Consequently, it is more convenient to consider the stochas-
tic version of this problem and hence to transform it from
the resulting 0-1SQP model into a 0-1SSOCP model.

4. An application: Stochastic discrete
Euclidean facility location problems

In facility location problems (FLPs) we are interested in
choosing a location to build a new facility or locations to
build multiple new facilities so that an appropriate measure
of distance from the new facilities to existing facilities is
minimized. FLPs arise locating airports, regional campuses,
wireless communications towers, etc. The following are
some ways of classifying FLPs (see also [17]):
• We can classify FLPs based on the number of new

facilities in the following sense: if we add only one new
facility then we get a problem known as a single facility
location problem (SFLP), while if we add multiple new
facilities instead of adding only one, then we get more
a general problem known as a multiple facility location
problem (MFLP).

• Another way of classification is based on the distance
measure used in the model between the facilities. If
we use the Euclidean distance then these problems are
called Euclidean facility location problems (EFLPs), if
we use the rectilinear distance then these problems are
called rectilinear facility location problems (RFLPs).

• When the new facilities can be placed any place in so-
lution space, the problem is called a continuous facility
location problem (CFLP), but usually the investor needs
the new facilities to be placed within specific locations
(called nodes) and not in any place in the solution space.
In this case the problem is called a discrete facility
location problem (DFLP).

• In some applications, the locations of existing facilities
cannot be fully specified because the locations of some
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of them depend on information not available at the
time when decision needs to be made but will only
be available at a later point in time. In this case, we are
interested in stochastic facility location problems. When
the locations of all old facilities are fully specified,
FLPs are called deterministic facility location problems.

FLPs have seen a great deal of recent research activity.
For further details, consult the book of Tompkins and et al.
[17]. In particular, deterministic Euclidean facility location
problems are often cited as an application of deterministic
second-order cone programs (see for example [19] and [11]).
In this subsection, we consider (both single and multi-
ple) stochastic discrete Euclidean facility location problems
when, in particular, some of the variables are restricted to
be integer variables.

4.1 Stochastic discrete Euclidean single facility
location problem

In deterministic Euclidean single facility location prob-
lems, we are interested in choosing a location to build a
new facility among existing facilities so that this location
minimizes the sum of a weighted distance to all existing
facilities.

Assume that we are given r existing facilities represented
by the fixed points a1,a2, · · · ,ar in Rn, and we plan to
place a new facility represented by x so that we minimize
the weighted sum of the distances between x and each of
the points a1,a2, · · · ,ar. This leads us to the problem

min
∑r

i=1 wi ||x− ai||

or, alternatively, to the problem

min
∑r

i=1 wi ti
s.t. (t1;x− a1; · · · ; tr;x− ar) �r 0

where wi is the weight associated with the ith existing
facility and the new facility for i = 1, 2, . . . , r.

Before we describe the stochastic version of this generic
application, we indicate a more concrete version of it.
Assume that we have a new city with many suburbs and
we want to build a hospital for treating the residents of this
city. Some people live in the city at the present time. As
the city expands, many houses in new suburbs need to be
built and the locations of these suburbs will be known in
the future in different sides of the city. Our goal is to find
the best location of this hospital so that it can serve the
current suburbs and the new ones. This location must be
determined at the current time and before information about
the locations of the new suburbs become available.

Generally speaking, let a1,a2, · · · ,ar1 be fixed points
in Rn representing the coordinates of r1 existing fixed
facilities and ã1(ω), ã2(ω), · · · , ãr2(ω) be random points
in Rn representing the coordinates of r2 random facilities
who realizations depends on an underlying outcome ω in an
event space Ω with a known probability function P.

Suppose that at present we do not know the realizations
of r2 random facilities, and that at some point in time in
future the realizations of these r2 random facilities become
known.

Our goal is to locate a new facility x that minimizes the
weighted sums of the distance between the new facility and
each one of the existing fixed facilities and also minimizes
the expected weighted sums of the distance between the
new facility and the realization of each one of the random
facilities. Note that this decision needs to be made before
the realizations of the r2 random facilities become available.
We consider the discrete version of the problem by assuming
that the new facility needs to be placed within specific
locations and not in any place in 2- or 3- (or higher)
dimensional space. Let the points v1,v2, · · · ,vk ∈ Rn

represent these specific locations. So, we add the constraint
x ∈ {v1,v2, · · · ,vk}. Clearly, the above constraint can be
replaced by the following linear and binary constraints:

x = v1 y1 + v2 y2 + · · ·+ vk yk,
y1 + y2 + · · ·+ yk = 1, and
(y1, y2, · · · , yk) ∈ {0, 1}k.

This leads us to the following 0-1SSOCP model:

min
∑r1

i=1 wi ti + E [Q(x;y, ω)]
s.t. (t1;x− a1; · · · ; tr1 ;x− ar1) �r1 0

x = v1 y1 + v2 y2 + · · ·+ vk yk
1T y = 1, y ∈ {0, 1}k

where Q(x;y, ω) is the minimum of the problem

min
∑r2

j=1 w̃j(ω) t̃j
s.t. (t̃1;x− ã1(ω); · · · ; t̃r2 ;x− ãr2(ω)) �r2 0

x = v1 y1 + v2 y2 + · · ·+ vk yk
1T y = 1, y ∈ {0, 1}k

and

E[Q(x;y, ω)] :=

∫
Ω

Q(x;y, ω)P (dω).

where wi is the weight associated with the ith existing
facility and the new facility for i = 1, 2, . . . , r1 and w̃j(ω)
is the weight associated with the jth random existing
facility and the new facility for j = 1, 2, . . . , r2.

Sometimes we may need the specific points have to attain
integer values. In most cities of the world that were planned,
streets are laid out on a grid plan, so that city is subdivided
into small numbered blocks that are square or rectangular.
Figure 2 shows the blocks of Chicago in 1857. In this case,
usually the investor needs the new facility to be placed on
of the corners of the city blocks. Thus, let us assume that
the variable x lies in the hyperrectangle Ξn := {x : ζ ≤
x ≤ η, ζ ∈ Rn,η ∈ Rn} and has to attain specific points
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Fig. 1: The regular pattern of square or rectangular city
blocks is very common among American cities. This map
shows the blocks of Chicago in 1857.

in the grid Ξn
⋂
Zn. Then we simply solve the following

SMISOCP model:

min
∑r1

i=1 wi ti + E [Q(x, ω)]
s.t. (t1;x− a1; · · · ; tr1 ;x− ar1) �r1 0

x ∈ Ξn
⋂
Zn

where Q(x, ω) is the minimum of the problem

min
∑r2

j=1 w̃j(ω) t̃j
s.t. (t̃1;x− ã1(ω); · · · ; t̃r2 ;x− ãr2(ω)) �r2 0

x ∈ Ξn
⋂
Zn

and
E[Q(x, ω)] :=

∫
Ω

Q(x, ω)P (dω).

4.2 Stochastic discrete Euclidean multiple fa-
cility location problem

If we consider the concrete model described in §4, and
suppose that we want to build three hospitals for this city,
or build a hospital, a university, and a fire station then
we get a multiple facility version of the model. Generally,
in order to be precise only the latest information of the
random facilities is used. This may require an increasing or
decreasing of the number of the new facilities after the latest
information about the random facilities become available.
For simplicity, let us assume that the number of new facilities
was previously known and fixed and we add m new facilities,
namely x1,x2, · · · ,xm ∈ Rn, instead of adding only one.
We also assume that the variables x1,x2, · · · ,xm need to

be placed within specific locations represented by the points
v1,v2, · · · ,vk ∈ Rn.

We have two cases depending whether or not there is
an interaction among the new facilities in the underlying
model. If there is no interaction between the new facilities,
we are just concerned in minimizing the weighted sums of
the distance between each one of the new facilities on one
hand and each one of the fixed facilities and the realization
of each one of the random facilities. In other words, we solve
the following 0-1SSOCP model:

min
∑m

j=1

∑r1
i=1 wij tij + E [Q(x1; · · · ;xm;y, ω)]

s.t. (t1j ;xj − a1; · · · ; tr1j ;xj − ar1) �r1 0
where j = 1, 2, · · · ,m
xj = v1 y1 + v2 y2 + · · ·+ vk yk
where j = 1, 2, · · · ,m
1T y = 1, y ∈ {0, 1}k,

where Q(x1; · · · ;xm;y, ω) is the minimum of the problem

min
∑m

j=1

∑r2
i=1 w̃ij(ω) t̃ij

s.t. (t̃1j ;xj − ã1(ω); · · · ; t̃r2j ;xj − ãr2(ω)) �r2 0
where j = 1, 2, · · · ,m
xj = v1 y1 + v2 y2 + · · ·+ vk yk
where j = 1, 2, · · · ,m
1T y = 1, y ∈ {0, 1}k,

and

E[Q(x1; · · · ;xm;y, ω)] :=

∫
Ω

Q(x1; · · · ;xm;y, ω)P (dω).

where wij is the weight associated with the ith existing
facility and the jth new facility for j = 1, 2, . . . ,m and
i = 1, 2, . . . , r1, and w̃ij(ω) is the weight associated with
the ith random existing facility and the jth new facility for
j = 1, 2, . . . ,m and i = 1, 2, . . . , r2.

If interaction exists among the new facilities, then, in
addition to the above requirements, we need to minimize
the sum of the Euclidean distances between each pair of the
new facilities. In this case, we are interested in a model of
the form:

min
∑m

j=1

∑r1
i=1 wijtij +

∑m
j=2

∑j−1
j′=1 ŵjj′ t̂jj′

+E [Q(x1; · · · ;xm;y, ω)]
s.t. (t1j ;xj − a1; · · · ; tr1j ;xj − ar1) �r1 0

where j = 1, 2, · · · ,m
(t̂j(j+1);xj − xj+1; · · · ; t̂jm;xj − xm) �(m−j) 0
where j = 1, 2, · · · ,m− 1
xj = v1 y1 + v2 y2 + · · ·+ vk yk
where j = 1, 2, · · · ,m
1T y = 1, y ∈ {0, 1}k,
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where Q(x1; · · · ;xm;y, ω) is the minimum of the problem

min
∑m

j=1

∑r2
i=1 w̃ij(ω) t̃ij +

∑m
j=2

∑j−1
j′=1 ŵjj′ t̂jj′

s.t. (t̃1j ;xj − ã1(ω); · · · ; t̃r2j ;xj − ãr2(ω)) �r2 0
where j = 1, 2, · · · ,m
(t̂j(j+1);xj − xj+1; · · · ; t̂jm;xj − xm) �(m−j) 0
where j = 1, 2, · · · ,m− 1
xj = v1 y1 + v2 y2 + · · ·+ vk yk
where j = 1, 2, · · · ,m
1T y = 1, y ∈ {0, 1}k,

and

E[Q(x1; · · · ;xm;y, ω)] :=

∫
Ω

Q(x1; · · · ;xm;y, ω)P (dω).

where ŵjj′ is the weight associated with the new facilities
j′ and j for j′ = 1, 2, . . . , j − 1 and j = 2, 3, . . . ,m.

If we need some specific points have to attain integer
values, then for each k ∈ ∆ ⊂ {1, 2, · · · ,m}, we assume
that the variable xk lies in the hyperrectangle Ξn

k ≡ {xk :
ζk ≤ xk ≤ ηk, ζk ∈ Rn,ηk ∈ Rn} and has to be integer-
valued, i.e. xk must be in the grid Ξn

k

⋂
Zn.

Thus, if there is no interaction between the new facilities,
we solve the following SMISOCP model:

min
∑m

j=1

∑r1
i=1 wij tij + E [Q(x1; · · · ;xr1 , ω)]

s.t. (t1j ;xj − a1; · · · ; tr1j ;xj − ar1) �r1 0
where j = 1, 2, · · · ,m
xk ∈ Ξn

k

⋂
Zn, k ∈ ∆,

where Q(x1; · · · ;xm, ω) is the minimum of the problem

min
∑m

j=1

∑r2
i=1 w̃ij(ω) t̃ij

s.t. (t̃1j ;xj − ã1(ω); · · · ; t̃r2j ;xj − ãr2(ω)) �r2 0
where j = 1, 2, · · · ,m
xk ∈ Ξn

k

⋂
Zn, k ∈ ∆,

and

E[Q(x1; · · · ;xm, ω)] :=

∫
Ω

Q(x1; · · · ;xm, ω)P (dω).

If interaction exists among the new facilities, then we are
interested in a model of the form:
min

∑m
j=1

∑r1
i=1 wijtij +

∑m
j=2

∑j−1
j′=1 ŵjj′ t̂jj′

+E [Q(x1; · · · ;xr1 , ω)]
s.t. (t1j ;xj − a1; · · · ; tr1j ;xj − ar1) �r1 0

where j = 1, 2, · · · ,m
(t̂j(j+1);xj − xj+1; · · · ; t̂jm;xj − xm) �(m−j) 0
where j = 1, 2, · · · ,m− 1
xk ∈ Ξn

k

⋂
Zn, k ∈ ∆,

where Q(x1; · · · ;xm, ω) is the minimum of the problem

min
∑m

j=1

∑r2
i=1 w̃ij(ω) t̃ij

+
∑m

j=2

∑j−1
j′=1 ŵjj′ t̂jj′

s.t. (t̃1j ;xj − ã1(ω); · · · ; t̃r2j ;xj − ãr2(ω)) �r2 0
where j = 1, 2, · · · ,m
(t̂j(j+1);xj − xj+1; · · · ; t̂jm;xj − xm) �(m−j) 0
where j = 1, 2, · · · ,m− 1
xk ∈ Ξn

k

⋂
Zn, k ∈ ∆,

and

E[Q(x1; · · · ;xm, ω)] :=

∫
Ω

Q(x1; · · · ;xm, ω)P (dω).

5. Future research directions
In this paper we introduced a new class of problems for

stochastic mixed integer programming that may be referred
as stochastic mixed integer second-order cone programs
with recourse. Stochastic mixed integer second-order cone
programs generalize both stochastic mixed integer linear pro-
grams and stochastic mixed integer quadratic programs. Our
development is indeed significant in value, because it gives
us a new methodology to cover those applications that cannot
be captured by stochastic mixed integer linear and quadratic
programs. In terms of modeling, beyond the application
described in §4, it would be interesting to investigate other
applications of this new class of optimization problems. For
example, in [8] Fampa and Maculan proposed a deterministic
mixed integer second-order cone programming formulation
of the Euclidean Steiner tree problem (in which the set
of nodes in the connection is fixed over time). Based on
this formulation, we can describe a stochastic mixed integer
second-order cone programming formulation of a related
problem called dynamic Euclidean Steiner tree problem
(where the set of nodes in the connection changes over time)
proposed by Imase and Waxman in [9] and motivated by
multipoint routing in communication networks.

It is useful to develop algorithm for SMISOCPs. A forth-
coming paper will focus on developing a decomposition-
based branch-and-bound algorithm for solving this new class
of problems by extending the work of Sherali and Zhu [15]
(see also [14]).
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Least Squares Digital Differentiators (LSDD) 
The 2-D Subclass 
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Abstract – In this paper, we present results of our 
investigation of the 2-D LSDD subclass of digital 
differentiation filters. We discuss methods of their 
generation from least-squares normal equations, and 
examine their properties in the space and frequency 
domains. In addition to ease of generation and 
implementation via convolution, the filters are shown to 
have many desirable properties. They are low pass linear 
phase, stable filters with narrow transition band 
attenuating rapidly at high frequencies.  More important is 
that the filters are separable implying considerable 
computational time saving and except for an integer 
scaling- factor, their coefficients are all integers thus 
reducing the risk of cumulative round-off errors. The 
filters may be generated for any order derivative with 
arbitrary length to suite any desired sampling frequency. 
Unlike ordinary full-band DD that typically amplify high 
frequency noise, the low-pass nature of LSDD renders 
them noise suppressant with very low noise amplification 
factor. Moreover, the filters are actually multitasking, 
performing data smoothing and differentiation 
simultaneously. Their only drawback is that they are not 
maximally linear near the DC frequency. 

Keywords: Data processing; Filtering; Digital 
differentiation; Image processing 

1. Introduction 
Digital differentiation is at the core of many new 

technologies for source imaging, analyses and 
interpretation of geoscience data. Compared to the 
measured signal, gradients of the signal have greater 
spatial resolution, better definition of lateral boundaries, 
added depth discrimination and filtering properties, and 
better structural indicators. As the power and graphics 
capabilities of modern computers continue to increase, 
new and more powerful gradient-based imaging and 
interpretation technologies continue to emerge. Such 
techniques include high resolution detection of geologic 
boundaries [1,2]; Werner deconvolution for source 
depthing [3-5]; Euler deconvolution and its extended form 
for the calculations of physical property contrasts, dip 
information, location and depth of [6,7]; analytic, 
enhanced analytic signal and local wave numbers for 
source characterization and imaging [8-10].  

The success of these new technologies made 
numerical computation of spatial gradients a basic step in 
processing geoscience data. Finite difference methods 
often used to estimate numerical derivatives suffer from a 

major draw back, namely noise amplification; hence, it is 
suited only for theoretical data uncontaminated with errors. 
This paper is a sequel to an earlier one presented in 
CSC’10 in which we discussed the spectral properties and 
filtering performance of the 1-D subclass of LSDD filters. 
In this paper we investigate the 2-D subclass of these 
filters and focus on first and second derivative operators of 
short length as required in most applications. 

Filter Generation 
LSDD 2-D filters have their roots in the principle 

of ordinary least squares (OLS) fitting of polynomial 
surfaces to a subset of equally spaced data. The key point 
is that the fitting process is performed only once and 
subsequent smoothing and differentiation of the entire data 
set is accomplished via a convolution kernels derived from 
the normal equations. As is well known, the problem of 
fitting data oz to a polynomial of degree d in (x, y) leads to 
the so-called normal equations solution given by: 

( ) 1ˆ T T− = =   o oC V V V z H z ,                (1) 

where V is the basic matrix whose columns correspond to 
the bases vectors [x, y]. The matrix H contains the LSDD 
filters row-wise up to derivative order d. 

Separability Property 
The 2-D operator kernels are separable; i.e. they 

can be written as the outer product of two vectors called 
projection vectors. This property is their primary 
advantage since it implies a substantial reduction in 
computational complexity of the filtering operations. 
However, we also use this characteristic of the kernels to 
investigate their spectral properties and filtering 
performance. It turns out that these filters are multitasking, 
smoothing in one direction while performing 
differentiation in the perpendicular direction (Figure 1).  

First Derivative Kernel 
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Second Derivative Kernel 

  

Figure 1: Frequency response of first and second 
derivative filters (Left panel) and their corresponding 
projection vectors (Right panel). 

Generation of separable kernels follows the pattern shown 
in Figure 2. For a given differentiation order k, 
polynomials of degree d and d+1 produce identical 
separable kernels and only first degree polynomials 
produce a separable smoothing filter. Therefore, only 
even-degree polynomials are needed to generate unique 
differentiation filter kernels of all orders. Moreover, since 
in practice only first and second derivatives are required, 
then polynomials of degree d = 2 are sufficient for routine 
applications. 

 
Figure 2: Generation pattern of LSDD separable 
differentiation kernels. 

Spectral Properties 
The filters are linear phase as indicated by the 

antisymmetry of the coefficients of the first derivative 
operator and the symmetry of the second derivative 
operators. Moreover, the filters are band-limited with cut-
off frequency that is dependent on filter size (hw). 
However, unlike their 1-D counterparts, the 2-D filters are 
not maximally flat near the dc frequency. Figure 3 
compares the magnitude response for several width (hw) 
2-D operators with the response of their 1-D equivalents. 
Whereas the 1-D response curves maintain tangency with 
the curves of the ideal filters (IDD), the curves for 2-D 
operators deviate appreciably from the IDD curves. Thus 
the 2-D LSDD do not approximate the ideal filters in any 
frequency range, with the deviation from ideal behavior 
increasing with increasing filter half-width (hw). This 
result seems to cast doubt on the accuracy of their output. 

  

Figure 3: Comparison of the magnitude response of 2-D 
(left panel) and 1-D LSDD (right panel) operators of 
different length (hw) with the IDD response. 

The Mean Square Error (MSE) 
Writing the frequency response of the band-

limited ideal differentiation filters as: 
1

2 2

( )

( )
id

id

H i

H

ω ω ω απ

ω ω ω απ

= ≤

= − ≤
,                   (2) 

for first and second derivatives respectively. Then the 
mean square error may be defined as: 

2

0

1( ) ( ) ( )id lsE H H d
π

α ω ω ω
π

= −∫ ,              (3) 

where ( )lsH ω  is the response of the LSDD filter. Using 
Parseval’s relation, this equation may be written in terms 
of impulse response as: 

21( ) ( ) ( )id ls
n

E h n h nα
π

∞

=−∞

= −∑                   (4) 

The variations of MSE with α is depicted in Figure 4 for 
different length operators. As the figure shows, the error 
increase with increasing cut-off frequency being smallest 
in the range 0 0.1α< < . Moreover, the error decreases 
with increasing filter length. 

 

Figure 4: Mean square error (MSE) of LSDD operators of 
different lengths (hw). 
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Noise Reduction 
The performance of filters in the presence of random 

errors (noise) is measured by means of the noise reduction 
ratio (NRR) which is given by [11]: 

22 2( )
hw

y
n hw

h n εσ σ
=−

= ∑                             (5) 

yandεσ σ are the standard deviations of the errors in input 
and output respectively. The NRR of the LSDD first and 
second derivative operators are shown in Figure 5. where it 
is seen that NRR decrease quite rapidly with increasing 
filter length. 

 
Figure 5: NRR of first and second derivative operators. 

Conclusion 
Aside from the non-linear behavior near the dc 

frequency, the 2D LSDD filters combine a number of 
attractive properties for routine applications. These include 
separability which implies a considerable reduction in 
computational complexity especially when processing 
large data set sets as is typical in geoscience applications. 
In addition, the filters are linear phase, self-damping and 
highly stable. Moreover, unlike the often used finite 
difference operators which amplify errors, the LSDD 
filters have extremely low NRR which implies a rapid 
attenuation of noise in the high -frequency band. 
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Abstract - In the last decade, the use of the Beowulf 
Cluster concept for High Performance Computing and 
Cloud Computing has exploded.  In addition, the Linux 
operating system used by many of these computing 
platforms has also greatly advanced.  Understanding the 
effects of the underlying kernel scheduler on the 
computational performance of compute nodes is one of 
the main concerns in customizing a Linux operating 
system. The overlying batch scheduling, message 
passing, and network communications are highly 
affected by subtle changes in kernel scheduler 
customizations.  In this paper, we explore the 
computational performance of two types of Beowulf 
compute nodes, one using the O(1) scheduler and one 
using the new Completely Fair Scheduler, in various 
types of operating modes to determine an optimum 
scheduler and configuration. 

Keywords: High Performance Computing, Real-Time Kernel 

Scheduling, Compute Nodes, Complete Fair Scheduler, O(1) 

Scheduler. 

1 Introduction 

  Over the last few years there has been a great deal of debate 

within the Linux community of how kernel scheduling should 

be done [1].  In each case, the goal of the kernel scheduler has 

been to follow a 'fairness' doctrine, with each process being 

given some consideration for an equal share of CPU time.   

Used in many flavors of Enterprise Linux kernels, the O(1) 

scheduler  allows the kernel to allocate CPU time by iterating 

though an „active run queue‟ giving each process a chance to 

execute [2].  Once a process has received its share of run-time, 

the process is moved to an expired queue to wait for its next 

period of run time.  Each priority level is given two run 

queues, an active queue and an expired queue.  While working 

its way down the priority levels, the scheduler traverses each 

active queue in its entirety; it then swaps the expired queue for 

the active queue.   

 Another kernel scheduler used in many recent Enterprise 

Linux kernels, the Completely Fair Scheduler (CFS) is more 

concerned with the amount of time the processor has already 

spent running processes [3].  For instance, after running a 

process for a certain time 'quantum', the process is put back 

into a binary tree. The process placement on the tree is 

determined by a 'Virtual Run Time'.  The Virtual Run Time is 

calculated by weighting each process‟ run-time used already 

by the process' static priority.  When a process Virtual Run 

Time is larger, the process priority is lowered.  If a process 

hasn‟t been run for a long time its corresponding Virtual Run 

Time will be smaller and the process will be automatically 

moved to a higher priority leaf on the tree. 

 It has become common practice to base custom Linux High 

Performance Computing operating systems on different types 

of Enterprise Linux operating systems.  Many System 

Administrators and Computer Scientists will install these 

Enterprise Linux operating systems and then modify them for 

use in High Performance computing clusters.  Organizations, 

such as Lawrence-Livermore, with their Chaos operating 

system [4], have modified 'off-the-shelf' Enterprise Linux 

operating systems by costumizing the kernel and the services 

installed in each portion of the system.  Most of these changes 

have been made in IP connection services and file storage 

drivers (ie.  Lustre and Hadoop) [5], [6].  However, it must be 

noted that much of the effort in changing the kernel has been 

in areas that are subservient to the kernel scheduler.  Since the 

kernel scheduler is responsible for determining when a 

process will run, the kernel scheduler bears the ultimate 

responsibility for how long it takes the process to execute. 

 The purpose of this paper is to put the focus back onto the 

kernel scheduler, in an effort to find better performing 

configurations.  Another goal is to determine what scheduler 

properties seem to enhance the processing performance the 

most. Since we are looking at prioritizing the processing of 

calculations on the compute nodes, and since both the O(1) 

scheduler and the Completely Fair Scheduler are included 

with most Enterprise Linux kernels, we will focus on the 

processing performance of only these schedulers.  Normally, 

these schedulers are operated in “sched_other” mode with an 

average nice (priority) level of 0. 

 

2 Test Set Up 

2.1 System Model 

    A large share of the computational research at the 

University of North Dakota is performed on a Beowulf cluster 

nicknamed Shale.  Shale‟s operating system is Red Hat 

Enterprise Linux version 5.5.  Moab [7] is installed along 

with the Torque PBS Scheduler in the head node, to allow 

versatility in scheduling of tasks.  Each Compute node 

operates in a diskless configuration, via NFS mount and PXE 

boot.   
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2.2 Test Setup 

The test computations were done on part of the Shale 

cluster.  The images used were based on Red Hat Enterprise 

Linux 5.5 (2.6.18-238 kernel with the O(1) scheduler).  The 

Completely Fair Scheduler was installed with a 2.6.35.6 

kernel. Mindful of the fact that many different runs would be 

required to gather data and realizing that a longer run-time 

would reduce the likelihood that small anomalies in 

individual, localized processes would affect the results, an 

approximate run-time of around 15 minutes was chosen.  The 

NAS Parallel Benchmarks-Scalar Pentadiagonal Solve 

Benchmark [8] was used to force the CPU cores on each 

Compute node to process matrix type non-linear differential 

equations.  The 15 minute run-time goal was achieved by 

setting the matrix to solve equations for each processor at 400 

points, or Class B. 

 

3 Parameters Used for Experiments 

 Three types of test computations were done on each 

scheduler.  In one set of computations sched_other mode, 

which is the default operating mode of the schedulers, was 

used.  Round-Robin and First-In/First-Out scheduler operating 

modes were set for the executing processes to run in a real-

time operating mode.  

In order to test compute node performance, we chose to 

alter run-time priorities.   Priority levels were predetermined, 

ranging from -19 to 19.  Priority levels of -19 hold the highest 

priority in sched_other mode.  Every priority level was 

represented at least twice.  In several cases, many more 

iterations of the computations were done at the same priority 

levels, in order to gather multiple data sets. 

Real-time test runs were done using sched_fifo and 

sched_rr.  In order to discover if there was an optimum 

priority level for the real-time runs, all test computations were 

done with real-time priority levels, ranging from 80-99.  

 

4 Experimental Results 

In this section, the results using each type of scheduler 

algorithm are presented.  Three different operating modes 

were used, the default operation of sched_other mode and two 

real-time modes with sched_rr and sched_fifo.   In each case, 

priority levels were changed for the process to determine the 

effects on the computations times. 

Figure 1 shows the calculation time in minutes for a large 

number of test runs of the Scalar Pentadiagonal benchmark on 

the compute nodes using the Completely Fair Scheduler in 

sched_other mode.  Process priority levels were varied by 

adjusting the nice parameters, from the default of 0.  For these 

experiments, a mean calculation time of 15.800 minutes was 

found with a standard deviation of .167 minutes. 

 

 

 

 
Figure 1.  Calculation time in minutes for benchmark while 

running on the Completely Fair Scheduler in sched_other 

mode with varying nice values.   
 

Figure 2 shows the calculation time in minutes for a large 

number of test runs of the Scalar Pentadiagonal benchmark for 

the compute nodes in sched_other mode using the O(1) 

scheduler.  Again, process priority levels were varied by 

adjusting the nice parameters for each test run of the 

benchmark.   For these experiments, a mean calculation time 

of 16.727 minutes was found with a standard deviation of 

2.558 minutes. 

 

 
Figure 2.  Calculation time in minutes for benchmark while 

running on the O(1) scheduler in sched_other mode with 

varying nice values. 

 
As figure 1 and figure 2 show, the computation time in 

minutes is nearly the same for every nice level.  This shows 

there is little improvement in the benchmark computation 

times by varying nice levels. 
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Figure 3 shows the calculation time in minutes for a large 

number of test runs of the Scalar Pentadiagonal benchmark for 

the compute nodes in real-time Round-Robin mode, for the 

Completely Fair Scheduler.  Process priority levels were 

varied by adjusting the real-time process parameters for each 

test run of the benchmark.   For these experiments, a mean 

calculation time of 13.679 minutes was found with a standard 

deviation of .971 minutes. 

 

Figure3.  Calculation time in minutes for benchmark while 

running on the Completely Fair Scheduler in real-time/Round-

Robin mode with different process priorities.  

 

Figure 4 shows the calculation time in minutes for a large 

number of test runs of the Scalar Pentadiagonal benchmark for 

the compute nodes in real-time Round-Robin mode, for the 

O(1) scheduler.  Process priority levels were varied by 

adjusting the real-time process parameters for each test run of 

the benchmark.   For these experiments, a mean calculation 

time of 17.019 minutes was found with a standard deviation of 

2.392 minutes. 

 

 

 
Figure 4.  Calculation time in minutes for benchmark while 

running on the O(1) scheduler in real-time/Round-Robin 

mode with different process priorities. 

 While in real-time Round-Robin mode, the mean 

computation time for the Completely Fair Scheduler dropped.  

The mean O(1) scheduler computation time actually increased 

to over 17 minutes.  In addition, while there was an increase 

in the standard deviation for computation times for the 

benchmark calculations on the Complete Fair Scheduler, there 

was a greater standard deviation in computation times for the 

O(1) scheduler with the deviation being almost 2.5 minutes.  

Again, little improvement in the computation times was found 

by varying the real-time priority levels. 

Figure 5 shows the calculation time in minutes for a large 

number of test runs of the Scalar Pentadiagonal benchmark for 

the compute nodes in real-time First In-First Out mode for the 

Completely Fair Scheduler.  Process priority levels were 

varied by adjusting the real-time process parameters for each 

test run of the benchmark.   For these experiments, a mean 

calculation time of 13.457 minutes was found with a standard 

deviation of .786 minutes. 

Further improvement in calculation performance times for 

the Completely Fair Scheduler running in First In-First Out 

configuration was found.  The average computation times for 

the test computations dropped to slightly under 13.5 minutes 

while the standard deviation of the computation times dropped 

to within 1 minute.  

 

 
Figure 5.  Calculation time in minutes for benchmark while 

running on the Completely Fair Scheduler in real-time/First 

In-First Out mode with different process priorities. 

 
Figure 6 shows the calculation time in minutes for a large 

number of test runs of the Scalar Pentadiagonal benchmark for 

the compute nodes in real-time First In-First Out mode for the 

O(1) scheduler.  Process priority levels were varied by 

adjusting the real-time process parameters for each test run of 

the benchmark.   For these experiments, a mean calculation 

time of 16.538 minutes was found with a standard deviation of 

1.826 minutes. 
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Figure 6.  Calculation time in minutes for benchmark while 

running on the O(1) scheduler in real-time/First In-First Out 

mode with different process priorities. 

The O(1) scheduler real-time First-In/First-Out computation 

times were slightly better than the O(1) scheduler  

computation times in the standard sched_other mode.  The 

mean computation time dropped .189 minutes while the 

standard deviation of the computation time dropped .732 

minutes.  As with all of the other computation modes, there 

was no change in the computation times by varying the 

priority level of the calculation processes.  

 

5 Conclusions 

In an effort to find the optimum scheduler and associated 

operating mode, several tests were run against a fixed, well 

known, parallel based, benchmark program.  The results 

supported, conclusively, the superiority of the Completely 

Fair Scheduler when used in a real-time First In-First Out 

fashion.  Operating times were decreased up to 2 minutes for 

the benchmark program with a standard deviation of varying 

runs within 1 minute.  In addition, it was found that varying 

the priority levels, whether in real-time operating mode or in 

the standard batch modes had no effect on the operating 

performance of the computations when using the Completely 

Fair Scheduler and the O(1) scheduler.    

Overall, comparing the Completely Fair Scheduler with the 

O(1) scheduler, we find that the Completely Fair Scheduler 

requires a shorter mean calculation time with a smaller 

standard deviation in calculation times.   

Interestingly, running the benchmark processes on the O(1) 

scheduler, running in regular sched_other mode gave 

decreased mean computation times over the O(1) scheduler 

running in real-time Round-Robin mode.  The O(1) scheduler, 

running in real-time First-In/First-Out mode showed a slight 

improvement in performance versus the O(1) scheduler in 

sched_other mode. 
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Abstract - Signal processing in non-Gaussian noise 

environment is addressed in this paper. For many real-life 

situations, the additive noise process present in the system is 

found to be dominantly non-Gaussian. The problem of 

detection and estimation of signals corrupted with non-

Gaussian noise is difficult to track mathematically. In this 

paper, we present a novel approach for optimal detection and 

estimation of signals in non-Gaussian noise. It is 

demonstrated that preprocessing of data by the orthogonal 

polynomial approximation together with the minimum error-

variance criterion converts an additive non-Gaussian noise 

process into an approximation-error process which is close to 

Gaussian. The Monte Carlo simulations are presented to test 

the Gaussian hypothesis based on the bicoherence of a 

sequence. The histogram test and the kurtosis test are carried 

out to verify the Gaussian hypothesis. 

Keywords: Orthogonal polynomial approximation, Signal 

detection and estimation, Non-Gaussian noise  

1 Introduction 

  In the signal detection and estimation problems, we often 

assume that the additive random noise process is Gaussian 

distributed because this distribution is simple and 

mathematically tractable, and the assumption makes analytical 

results possible. However for many real-life situations, the 

additive noise process is found to be dominantly non-

Gaussian. Some examples are the ocean acoustic noise and the 

urban radio-frequency (RF) noise [1]. The RF receivers 

designed to perform in white Gaussian noise can not perform 

satisfactorily when the electromagnetic environment 

encountered by the receiver system is non-Gaussian in nature 

[2]. For detection and estimation of radar signals in high 

clutter environments and similar processing of sonar signals in 

presence of high reverberation, we need to deal with non-

Gaussian noise [1, 2]. 

There are two existing approaches for solving the problems of 

detection and estimation of signals in non-Gaussian noise 

environment. The first approach is to use the robust statistics 

in lieu of the classical mathematical statistics, and to look for 

procedures which are consistent or in other words, insensitive 

to deviations of the noise distribution from the idealized 

model, i.e., the Gaussian distribution [3]. An optimally robust 

procedure minimizes the maximum degradation of 

performance for a preset deviation of the noise distribution. 

The robust techniques, however, can not provide consistent 

performance for a noise process with an arbitrary probability 

density function (PDF). 

The second approach to deal with a non-Gaussian noise 

environment is to use a noise model which is general enough 

to depict an arbitrary PDF, yet the model retains the desirable 

simplicity of manipulation as that of a Gaussian PDF. 

Accordingly, the Gaussian-mixture PDF, the generalized 

Gaussian PDF, the Middleton class A PDF, and some such 

PDFs are employed to model non-Gaussian noise [4]. 

Incidentally, as the noise model is required to be more 

accurate, the ease of analysis as that of a Gaussian PDF 

disappears. 

In this paper, we present a third approach to deal with a non-

Gaussian noise environment, by employing the polynomial 

transformation method. Preprocessing of data by the 

orthogonal polynomial approximation (OPA) together with 

the minimum error-variance criterion (MEC) has an excellent 

noise-rejection capability [5, 6]. The OPA based 

transformation was originally proposed to convert non-

uniformly sampled data into uniformly sampled data [5]. 

However, since the transformation provides significant signal 

enhancement by rejecting the high frequency interference, 

preprocessing of data may be useful in detection and 

estimation problems for better accuracy even for uniformly 

sampled data [6]. Perhaps the most desirable feature of 

preprocessing the signal samples by the OPA based method is 

that the statistical distribution of the approximation-error 

process in the preprocessed data becomes close to Gaussian 

when the noise process is not necessarily Gaussian distributed 

[5]. Based on this argument, the maximum likelihood 

estimator (MLE) can be designed to estimate parameters of a 

signal corrupted with non-Gaussian noise [7]. 
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In the present work, we take a closer look of the preprocessing 

of data by the OPA based method, and we test the hypothesis 

that the approximation-error process in the preprocessed data 

is Gaussian distributed even when the noise process 

corrupting the sampled data is non-Gaussian. Several types of 

tests are applied for testing the hypothesis. We plot the 

histogram of a given sequence and look for the proverbial bell 

shape as a simple test for its Gaussian distribution [8]. We 

compute the kurtosis [9] and apply the Hinich test [10, 11] for 

validation of the Gaussian hypothesis. We consider the 

following noise processes for the Monte Carlo simulation: (i) 

Gaussian, (ii) Laplacian, (iii) Uniform, and (iv) Gamma 

distributed. 

2 Orthogonal Polynomial 

Transformations 

 The real-valued discrete-time signal [ ]g n  is to be detected/ 

estimated utilizing the sampled sequence [ ] [ ] [ ]x n g n w n  , 

where [ ]w n  is the noise sequence which may not be Gaussian 

distributed. The sampled data  [ ]x n are preprocessed by the 

orthogonal polynomial transformation to obtain the 

transformed data  [ ]y n  as follows [6], 
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where 

 

 

 

1 1 1
2 2 2
0 1 1

0 0 0

[0], [1], , [ 1] ,

[0], [1], , [ 1] ,

[ ]; 0,1, , 1; 0,1, , 1;

Diag [ ], [ ], , [ ]

T

T

jij

N N N
T

J

m m m

x x x N

y y y N

p i i N j J

p m p m p m
  



  

 

 

    

 
   

 
  

x

y

P

Q P P





 



 

The orthogonal polynomials [ ]jp n  are computed by the 

recurrence relation given in [5, 12], and the order of 

approximation J is chosen such that the error-variance is 

minimum. 

The transformed sequence [ ]y n  is given by

[ ] [ ] [ ]y n g n e n  , where [ ]e n  is the approximation error. 

By utilizing the relation between the error sequence [ ]e n  and 

the noise sequence [ ]w n , 
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, 

we can compute the autocorrelation functions (ACFs) of the 

error process [6], provided the ACFs of the noise process are 

known. Furthermore, by invoking the central limit theorem 

when the random variables [ ]w n  are independent with zero 

mean and identical variance, and the coefficients nm  are 

bounded [5, 13], we can argue that the error process will be 

close to Gaussian even when the distribution of the noise 

process is non-Gaussian.  

3 Gaussian Hypothesis Testing 

The third order cumulant of the noise/ error process [ ]u n is 

given by 

 3 1 2 1 2[ , ] [ ] [ ] [ ] (3)uC k k E u n u n k u n k  
        

where E is the expectation operator, and the third order 

spectrum, commonly known as the bispectrum, is defined as 

the two-dimensional Fourier transform of the third order 

cumulant, 
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where 
2 ( )uS   is the power spectrum. 

The Hinich test is based upon the squared bicoherence at a 

bifrequency  1 2,   being zero for Gaussianity of the 

underlying sequence. The 
2

B  value is averaged over the 

principal domain [10, 11], and the resulting statistics is central 
2  distributed under the null hypothesis:  3 1 2, 0uS    . 

Hence, it is easy to devise a statistical test to determine 

whether the observed squared bicoherence is consistent with a 

central  
2  distribution by computing a probability of false 

alarm (PFA) value. If the null hypothesis of the bispectrum 

being zero is not rejected, we then compute the average 

kurtosis 
uK  given by [9] 
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where the value is averaged over each element of the 

sequence  [ ]u n . The kurtosis test is based on the null 

hypothesis: 0uK   for a Gaussian distribution of the 

underlying process.

 
4 Simulation Results 

The real part of the complex-exponential transient discrete-

time signal 
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corrupted with non-Gaussian noise setting the signal-to-noise 

ratio (SNR) at 10 dB, is sampled at 60 uniformly spaced 

points with time interval 0.15T  . 

We present the three cases of Laplacian, Uniform, and 

Gamma distributed noise environments in this work, beside 

the Gaussian noise case. In each case, after applying the 

polynomial transformation we obtain the transformed data, 

and then, subtracting the transient signal from the transformed 

data, the error process is separated. The input noise and the 

output error processes are tested for Gaussianity.  Figs. 1− 4 

show the bispectrum and the histogram plots. 

 

For the Gaussian noise case, we calculate the bicoherence of 

the output error and check whether the squared bicoherence is 

consistent with a central 
2 distribution by computing the 

PFA value. The PFA is computed to be 0.9479, which is high, 

and we cannot reject the null hypothesis. The average kurtosis 

value for the output error is computed to be −0.1526, whereas 

the kurtosis value for the input noise is computed to be 

−0.0857 (theoretical value zero). For the Laplacian case, the 

PFA for the input noise is 0.396, and the PFA for the output 

error is 0.9975. Since the PFA of the output error is high, we 

cannot reject the null hypothesis. The kurtosis values are 

2.9359 for the input noise and 0.0148 for the output error. For 

the Uniform noise case, we compute the PFA for the input 

noise to be 0.6973 and the PFA for the output error to be 

0.9649. The average kurtosis values are computed to be 

−1.2408 for the input noise and −0.1346 for the output error. 

For the Gamma distributed noise environment, the PFA for 

the input noise is 0.7379, and the PFA for the output error is 

0.9847. The kurtosis values are 0.6962 for the input noise and 

0.1025 for the output error. In all cases, we find that the 

average kurtosis value of the output error process is near zero, 

confirming that the error process is close to Gaussian. 

5 Concluding Remarks 

In this paper, we present a new technique for optimal 

detection and estimation of signals corrupted with non-

Gaussian noise. We preprocess the sampled data by the 

polynomial transformation method which converts the noise 

process into an approximation-error process which is 

Gaussian distributed. 

       

Figure 1(a): The Bispectrum of the input noise (Gaussian) and 

the output error process 

      

Figure 1(b): The Histogram of the input noise (Gaussian) and 

the output error process 

     

Figure 2(a): The Bispectrum of the input noise (Laplacian) 

and the output error process 

         

Figure 2(b): The Histogram of the input noise (Laplacian) and 

the output error process 
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Figure 3(a): The Bispectrum of the input noise (Uniform) and 

the output error 

 

      
 
Figure 3(b): The Histogram of the input noise (Uniform) and 

the output error 

 

     
 
Figure 4(a): The Bispectrum of the input noise (Gamma 

distributed) and the output error 

 

     
 
Figure 4(b): The Histogram of the input noise (Gamma 

distributed) and the output error 
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Abstract – Implementing fractional delay filters 

in FPGA needs a cost-effective approach. This 

paper tries to clarify a misconception in 

fractional delay filter design, especially the 

phase delay and group delay behavior of low 

pass and high pass filters. Starting with the ideal 

filter frequency response, followed by practical 

filter simulation, two important delay factors are 

compared side by side. Mathematical models and 

algorithms are derived to establish the relation 

between phase delay and group delay of high 

pass filters. Some application tips are given at 

the end of the paper. 

Keywords: algorithm, fractional delay, finite 

impulse filter, phase delay, group delay. 

 

1 Introduction 

The frequency response of an ideal fractional 

delay filter can be described as: 

H(ω) = Ge
-jωD  

0 ≤ |ω| ≤ π   (1) 

Where G is the gain, D is the delay and ω is the 

normalized frequency. Its phase response, phase 

delay and group delay are: 

Φ(ω) = -ωD       (2) 

pd = -Φ(ω) / ω = D     (3) 

gd = -dΦ(ω) / dω = D     (4) 

Those properties imply that an ideal fractional 

delay filter can be implemented by an all-pass 

filter. But within limited bandwidth, it can be 

implemented cost-effectively by a low-pass filter 

(LPF): 

Hl(ω) = Ge
-jωD  

0≤ |ω| ≤ ωc   (5) 

 

where ωc is the cutoff frequency. If implemented 

in high-pass filter (HPF), the frequency response 

is 

Hh(ω) = Ge
-jωD  

ωc ≤ |ω| ≤ π   (6) 

 

Some literatures evaluate the fractional delay 

filter using phase delay [1, 2], while others using 

group delay [3, 4, 5]. The confusion or 

misconception leads to misinterpretations of filter 

behavior, especially for HPF. To implement a 

finite impulse response (FIR) filter in FPGA often 

requires evaluating the tradeoffs between 

performance and cost. A cost-effective approach 

would be to have the filter perform within a 

reasonable bandwidth, instead of an all-pass filter. 

The fractional delay HPF and LPF are discussed 

in section 2, the relation between phase delay and 

group delay, especially for high-pass filter is 

analyzed and a design algorithm is presented in 

section 3. Section 4 concludes this paper with 

application suggestions and further studies. 
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2 Fractional Delay HPF vs. LPF 

Practical implementation of the fractional 

delay filter will introduce a non-ideal term, or 

error, Φe to the phase response: 

 Φ(ω) = -ωD + Φe      (7) 

 

A HPF can be derived by (frequency) 

transforming a LPF - shifting its frequency 

response by π: 
 

 hh(k) = hl(k) * cos(k π), k=0,1, …N  (8) 

 

where N is the order of the filter, hh and hl are the 

impulse response or coefficient of HPF and LPF 

respectively.  The π shift effect to the term is 

unique for HPF (or BPF, which can be viewed as 

a composite of HPF and LPF). The following 

evaluate the filter with all four characteristics: 

magnitude, phase, phase delay and group delay. 
 

2.1  Symmetric Response of HPF and LPF 

It was expected that the HPF and LPF behave 

symmetrically around the Nyquist (or normalized ω 

as π/2), as HPF is just a frequency shift of LPF. The 

same fractional delay and the same bandwidth are 

used in this paper to evaluate both filters. 

Fig.1 shows the magnitude response of the two 

filters. It is evident that the HPF and LPF are 

symmetric centering at the Nyquist frequency (0.5 in 

the figure). Or, view it in another way, rotating the 

HPF by π will overlap with that of LPF response, 

reasonably so because the HPF was designed based 

on shifting LPF by π. 

The phase response of the filters is shown in 

Fig.2. Note that the filter’s structural phase (relevant 

to the order or the length of the filter) is removed 

from the figure, or the phase calculation is based on 

the center tap of the filter). While the LPF phase 

response is linear within the low frequency range, the 

HPF is linear within the higher frequency range – the 

reason the HPF was attempted to be used.  But it is 

also worthy to notice that, although the HPF phase 

response is linear within that range, the response is 

not a simple linear one, instead it becomes a 

Generalized (or affined) Linear, that is the Φe in the 

equation (7) is not zero, or 

 Φh(ω) = -ωD + Φhe     (9) 

In which Φhe is the intercept of the general liner 

equation at the starting frequency where the linear 

phase response starts for the higher frequency range, 

instead of zero. 

Another symmetric property between HPF and 

LPF is the group delay, as shown in Fig.3. Both 

filters produce designated group delay (0.1 in the 

figure) within designed frequency bandwidth. 

Although Φh(ω) has a non-zero term Φhe, the group 

delay (dΦh(ω)/dω) is still a constant within its 

bandwidth range. 
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Fig 1. Magnitude Response of LPF (in Blue) and 

HPF (in Red) with fractional delay 0.1 (sample) 
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Fig 2. Phase Response of LPF (in Blue) and HPF 

(in Red) with fractional delay 0.1 (sample) 
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2.2 Asymmetric Phase Delay of HPF and LPF 

As Φh(ω) has a non-zero term Φhe, the phase 

delay (Φh(ω)/ω) is NOT a constant within 

bandwidth range, in contrast from that of LPF, as 

shown in Fig.4.  

The phase delay of the HPF is far from that of 

an ideal fractional delay filter, even within its 

linear phase (high) frequency range.  

Comparing Fig.4 with Fig.3, the LPF has the 

same group delay and phase delay, but HPF does 

not. The HPF has group delay as designated, but 

its phase delay is far from ideal. This has 

significant implications to some applications 

where an HPF is to be used. For example, 

applications may need to detect the relative delay 

between two filtered output signals, quite often it 

is the phase delay detected, which differs from the 

group delay often assued to be equal to. 
 

 

3 The Correlation between Phase 

Delay and Group Delay of HPF 

 It is desirable for fractional delay HPF to have 

phase delay equal to group delay. The HPF was 

designed based on frequency shifting of LPF by π. 

From Fig. 3, its phase delay can be “corrected” by 

the following to achieve constant phase delay 

within its bandwidth:  

ωπ

ω

ω

ωφ

−
=

=

*

)(

pdh

pdh hd
d

            (10) 

where  

πω

ω

ω
φ

<<

=

||0

)(h
pdh      (11) 

pdhd is the “desired” HPF phase delay and Φhd(ω) is 

the desired phase response. It is also interesting to 
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Fig 3. Group Delay of LPF (in Blue) and HPF (in 

Red) with fractional delay 0.1 (sample) 
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Fig 4. Phase Delay of LPF (in Blue) and HPF (in 

Red) with fractional delay 0.1 (sample) 
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Fig 5. Phase Delay of LPF (in Blue), HPF (in Red) 

and HPF Symmetric correlated (in Green) with 

fractional delay 0.1 (sample) 
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see the “average” phase delay within a specific 

bandwidth B: 

pdhdav = (1/B)* ∫
+

−

2/

2/

Bfc

Bfc
df

f

f
pdh )

5.0
(

−
∗  

]1
)1*2(

)1*2(
ln*

*2

1
[ −

+−

−−
∗=

Bfc

Bfc

B
pdh           (12) 

The “corrected” phase delay comparing with 

original phase delay is shown in Fig.5. It can be 

see that the “corrected” phase delay (in green in 

the figure) now is really symmetric comparing 

with that of LPF (in red in the figure). 

 The corrected phase delay shown in Fig.5 can 

be used to derive the desired phase of HPF, Φhd(ω), 

as shown in Fig.6. Although it is not symmetric to 

LPF, as the original one, but it is still linear within 

its bandwidth. 

Since the desired phase response is available, 

the desired group delay can be derived, as shown 

in Fig.7. Similar to that of phase response, 

although the group delay derived from the desired 

phase delay is not symmetric to that of LPF 

anymore, it is still a constant within its bandwidth. 

Making both phase delay and group delay 

constant within a reasonable bandwidth for HPF 

has significant implications, especially in 

embedded systems or the filter implemented as a 

reconfigurable module in FPGA, in which very 

limited hardware resources available.  Even 

though an all-pass fractional delay filter may be 

preferred for performance reasons at relatively 

high normalized frequency, it requires significant 

hardware resources in terms of multipliers, adders, 

and other DSP blocks. 

Phase delay and group delay are assumed, or 

preferred to be equal in some applications. Fig. 8 

shows one scenario, in which the phase delay of 

the filter’s output is detected by a phase-sensitive-

detector (PSD), the reconfigurable fractional delay 

finite impulse response (RFDFIR) filter then need 

to be reconfigured to cancel the relative delay 

between the two input signal channels, which 
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Fig 6. Phase response of LPF (in Blue), HPF (in 

Red) and HPF Symmetric correlated (in Green) 

with fractional delay 0.1 (sample) 
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Fig 7. Group Delay of LPF (in Blue), HPF (in Red) 

and HPF Symmetric correlated (in Green) with 

fractional delay 0.1 (sample) 

 

 
 

Fig 8. An Example of Application that assuming 

equal phase delay and group delay 
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results in outputs without time delay between 

them, or cancelled. The RFDFIR is used as a 

precise adjustable delay lines. 

 . 

4 Discussions and Further Directions 

 By comparing the four characteristics of 

fractional delay LPF and HPF, a common 

misconception of phase delay and group delay is 

discussed, followed by analysis of the difference 

and correlation between them in HPF. An 

algorithm is presented to “correct” the phase delay 

performance of a common HPF and to achieve 

both constant phase delay and group delay for the 

HPF. This approach is useful when cost-effective 

FDFIR is needed to cover a bandwidth in the 

higher frequency range. 

A formal approach to correlate desired phase 

response with that of typical HPF may be 

developed. One possible method is to use 

frequency sampling [6], since the desired 

frequency domain behavior is known after the 

correlation. Quite often, for fractional delay filters, 

the approach may or may not generate real 

coefficients for the filter, while implement a 

quadrature filter needs more DSP blocks. The 

performance needs to be evaluated further, if the 

HPF is implemented by only real coefficients for 

cost saving. 
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Abstract 
 

The world of CPUs is moving towards parallelization. As the number of transistors being placed onto semi-

conductor chips increase to be able to make more powerful processing units, a power limit is reached whereby 

too much leakage of power occurs between very tightly placed transistors on a chip. Due to this limit and two 

other limits, the way to go around these barriers is by parallelizing the CPUs. Intel has introduced multi-core 

technologies to achieve parallelization at the CPU level and believes this to be the future of processing units. To 

use this new available power however, requires a special knowledge of parallel programming. It is like learning 

to program from the beginning and requires a different way of thinking about programming. In our current 

study, we have applied parallel programming to solve heat equations using CUDA and OpenMP technologies. 

This paper will discuss the details of these implementations as well as show the visualization of the results 

obtained from heat equation simulations for various data. To achieve our results, heat conduction models such 

as Cattaneo, Two-Equation, and Fourier were solved using traditional single processor techniques and the 

results were visualized in 2 and 3 dimensions. Then the Fourier model of the heat conduction equation was used 

in our experiment of parallelization on the CUDA and OpenMP platforms. 

 

Keywords: Parallel Programming, Numerical Simulation, Visualization, Heat Transfer, Heat Conduction 

 

 1. Introduction 
       

Paul Otellini, the President and CEO of Intel said 

“We are dedicating all of our future product 

development to multicore designs” and “We believe 

this is a key inflection point for the industry.” Now 

parallel computing is becoming much more 

widespread and it gives lots more computing power 

to its users. To be able to have this power in your 

hands means that you can now use the computer to 

make much more realistic simulations that are much 

better approximations to real life. 

Serial computing has doubled in speed many 

times but it has 3 barriers to future growth: The 

Memory Wall, Instruction Parallelism Wall, and the 

Power Wall. The Memory Wall refers to the 

growing gap between CPU speed and memory 

access speed. To try to make up for this disparity, 

the cache size of the CPU has grown so as to reduce 

the “average memory reference” time. From 1986 to 

2000, CPU speed has increased at a rate of 55% 

annually while memory access speed has only 

increased 10% annually. 

The Instruction Level Parallelism wall refers to 

the limit that guessing and loading of most probably 

needed instructions by the CPU in anticipation of 

future instruction usage before the process becomes 

too complex and slows the CPU down 

unnecessarily. The Power Wall is the barrier 

furnished by the limit of transistor packing in a 

small area. As more and more transistors in CPUs 

are packed closer and closer, the power leakage is 

increased so much so that now the Watts generated 

per centimeter square of a Intel Core Duo processor 

is the same as that provided by a nuclear reactor.  

 

 
 

CPUs currently are very powerful and they are 

not overwhelmed by data that they are not able to 

process in time. On the contrary, they are going 

through data starvation whereby not enough data is 

reaching to them to be processed. This is due to 

other bottlenecks in the system. So to make much 

better use of the computer system, parallel 

computing needs to be used.  

Non-GPU parallel programming support is 

provided by the following software: 
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 MPI (original goal was distributed memory 

systems, now it is very effective as a shared 

memory system as well). 

 OpenMP 

 Threads (on operating systems) 

 Parallel libraries 

 Intel's Task Parallel Library 

 Microsoft's Task Parallel Library 

 SWARM (Gtech) 

 Charm++ (UIUC) … growing 

http://charm.cs.uiuc.edu/ 

 STAPL (Standard Template Adaptive Parallel 

Library) B. Stroustrup, Texas A&M.. 

undergoing effort 

 
 

The diagram above shows Flynn’s Taxonomy of 

computer architectures. SISD is the original Von 

Neumann architecture. CUDA architecture is SIMD. 

The Top500 supercomputers in the world all fall 

into the category of MIMD (Multiple Instruction 

Multiple Data). 

 

 2. Numerical Simulation using 

Traditional Serial 

Programming 
 

To be able to compute the values of mathematical 

functions utilizing the current computer technology, 

it is necessary to first discretize those functions by 

utilizing numerical techniques. The process of 

discretizing a function is an art and a science 

because there is no one systematic way to discretize 

all possible analytical functions. These discretized 

versions of the analytical functions are 

approximations of the analytical function. Once you 

have a discretized function, you can then proceed to 

compute all the required approximate values that the 

original analytical function models (such as 

temperature values of a metallic plate over a defined 

time period). From the computed values you can 

then proceed to visualize the computed values using 

various visualization techniques in 2 or 3 

dimensions.   

There are three equations that may be used to 

model the temperature variation in a metallic 

substrate, they are: Cattaneo (hyperbolic), Two-

Equation (hyperbolic, parabolic), and the Fourier 

Equation (parabolic). From this work, one of the 

aims is to find the differences between the Cattaneo 

and Two-Equation heat conduction models in 

producing temperature values at different time and 

space scales and find out which exact terms in the 

respective equations are causing those differences.  

The benefit of this work is that we can determine 

which of the given models more closely predicts the 

real-life values and then use this model to predict the 

correct values of temperatures at other points of the 

material and at other times during heating, without 

the cost of doing the actual heating experiments for 

the material to obtain the temperature values.  

Laser heating of metallic surfaces is involved 

with the deposition of laser energy into the substrate 

material through the absorption process. The prior 

knowledge on temperature rise in the irradiated 

region is important from the practical applications in 

industry. In this case, the proper setting of the laser 

parameters provides the desired temperature 

distribution in the heated region. However, 

experimental measurement of temperature 

distribution inside the metallic substrate is difficult 

and is involved with expensive equipment. 

Therefore, predictions through model studies 

provide temperature distribution with less cost and 

in short time duration. However, determining these 

temperature values for metals requires expensive 

laboratory equipment and execution. If there is a 

way in which we can produce an accurate model for 

the behavior of the metal in terms of temperature 

variation under different heating conditions, it would 

be a much more economical way to know the 

required values of temperature for manufacturing or 

material usage. These three equations (Cattaneo, 

Two-Equation, and Fourier) can be used to 

determine the discrete temperature of the metal at 

it's different points as a result of heating it. By using 

these equations, one can get the values of the 

temperature at various points of the metal at 

different times after heating. Each computation to 

determine a temperature value requires enormous 

amounts of computation involving partial 

differential equations containing two to three terms.  
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 2.1 Discretization Process 
 

Using the Finite Difference method for 

discretizing a continuous function, there are three 

basic methods to proceed in order to transform a 

continuous analytical function into discretized form: 

 

a) Forward Difference 

 

 

 

 

b) Backward Difference 

 

 

 

c) Central Difference 

 

 

 

 

Using these techniques, numerical simulation 

libraries written in the C# language were developed 

to compute the temperature values of a given metal 

according to its specific thermal diffusivity property 

over a specified period of time. The temperature 

values were calculated based on the three different 

temperature models, namely, the Fourier equation, 

Cattaneo model, and the Two-equation. For the 

Fourier equation, the C# library was developed to 

support the calculation of temperature values of a 1 

dimensional object, 2-dimensional object, and a 3-

dimensional object. For the Cattaneo model, 

temperature values of a 1-dimensional and 2-

dimensional object may be calculated, and for the 

Two-equation, the library supports temperature 

values computation of a 1-dimensional object. 

The Fourier equation, better known as the Fourier 

Heat Conduction equation is one of the most famous 

equations used to describe heat distribution in a 

given region over time [18]. It is the partial 

differential equation shown below:  

 

 

 

 

The partial differential equation shown above 

contains 3 terms for describing space (x,y, and z) 

and 1 for time. We can discretize the Fourier 

equation shown above using the finite difference 

numerical simulation techniques mentioned 

previously. 

 

After discretizing this equation we get: 

 

 

 

 

 where T i,j

p
 stands for the temperature at 

location (i,j) on a 2-dimensional metallic plate at 

time step p. The Cattaneo model for temperature 

distribution is: 

 

  

 

 

 

The discretized form of the Cattaneo equation is: 

 

 

 

 

 

For the two-equation model, we have a set of two 

equations which are: 

 

 

 

 

and 

 

 

 

Discretizing those two equations gives us: 

 

 

 

 

 

and 

 

 

 

 

 

 

From the work above, a scientific library has 

been produced that can solve the 3 equations 

mentioned above. The required data to solve 

temperature distribution for each of the 3 models is 

given below in the form of the signatures of the 

constructors of the objects that represent the 

different temperature distribution models: 

 
public FourierHeatConduction3DTransient ( 

float startX , float endX , int 

numberOfXRegions , float startY , float endY 

, int numberOfYRegions , float startZ , 

float endZ , int numberOfZRegions , float 

temperatureAtStartX , float 

temperatureAtEndX , float 

temperatureAtStartY , float 

temperatureAtEndY , float 

temperatureAtStartZ , float 

temperatureAtEndZ , float initialTemperature 

, int numberOfTimeRegions ) 
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public CattaneoHeatConduction2D ( float 

startX , float endX , int numberOfXRegions , 

float startY , float endY , int 

numberOfYRegions , float temperatureAtStartX 

, float temperatureAtEndX , float 

temperatureAtStartY , float 

temperatureAtEndY , float initialTemperature 

, int numberOfTimeRegions ) 

 

public TwoEquationHeatConduction1D ( float 

startX , float endX , int numberOfXRegions , 

float temperatureAtStartX , float 

temperatureAtEndX , float initialTemperature 

, float startTime , float endTime , int 

numberOfTimeRegions , Material thisMaterial 

) 

 

 2.2 Nelements Knowledge 

Visualization Library 
 

A visualization library has also been developed to 

display the computed values from the numerical 

simulation library. This visualization library is 

called Nelements Knowledge Visualization and it 

supports 2D contour maps which can be static or 

animated. Also, functionality has been developed to 

be able to easily plot function values at variable 

ranges. Below are some of the results obtained by 

using the visualization library. 

 

 

A 2d contour map generated using data 

from the Fourier 2d steady state simulation. 

This is a simulation of heating a metallic 

plate from the top at 100 degrees Celsius 

and all the other sides of the plate are 0 

degrees Celsius. A legend is also provided 

on the right of the output to give 

information about color to temperature 

value mapping. 

 

 

 

The 2d function plot above shows the 

temperature over distance values for a 1d 

gold metal rod calculated using the 

Cattaneo model. The separate lines 

represent the temperature distribution over 

the rod at different time steps.  

 

The snapshot above shows the visualization 

of a 3d metallic box and the color-coded 

temperature distribution based on the 

Fourier heat conduction model. This 3d 

visualization component has been 

developed by Dr. Adel Ahmed using the 

Java Monkey Engine. 

 

 3. Simulations done by Parallel 

Programming 
 

High performance computing uses 

supercomputers to solve computationally expensive 

tasks for standard PCs. Computationally expensive 

in this context can mean computational tasks which 

may take a standard PC a very long time to do such 

as a day, a week, or more. A standard PC usually 

has one processor whereas a high-performance 

computing system is made up of a number of nodes 
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each with one or more processors and each 

containing its own memory. The nodes can be 

connected to each other by a high-speed network 

connection.  

High performance computing makes use of 

parallel computation to be able to achieve high-

levels of performance. In parallel computing a given 

program is split up into many sub-programs and 

then they are all run together in parallel to compute 

the values required. These sub-programs can be 

called threads and in a high-performance computing 

cluster of nodes, each node can get a thread or more 

to work on. For these threads to be able to work 

together, there needs to be well-organized 

communication between them.  

 

 3.1 CUDA 
 

 In the CUDA parallel environment, the 

computation needs to be designed by means of 

organizing the threads to be run into blocks on a 

grid. The block can be 1D, 2D, or 3D. While the 

grid containing the blocks can be 1D or 2D. In the 

case of simulating the heat equation in 3-

dimensions, 3-dimensional blocks of size 5x5x9 

have been used on a grid size of 2x2 to compute the 

discrete values of a computational matrix with 

10x10x10 node elements. The code for defining the 

sizes is: 

 
// DIVIDE_INTO(x/y) for integers, used to 

determine # of blocks/warps etc. 

#define DIVIDE_INTO(x,y) (((x) + (y) - 1)/(y)) 

// I3D to index into a linear memory space from a 

3D array index 

#define I3D(ni, nj, i, j, k) ((i) + (ni)*(j) + 

(ni)*(nj)*(k)) //newcode 

// Block size in the i, j, and k directions 

#define NI_TILE 5 

#define NJ_TILE 5 

#define NK_TILE 9 

 

The kernel used to compute the temperature values 

with the Fourier equation is given below: 

 

// kernel to update temperatures - GPU version (not using 

shared mem) 

__global__ void step_kernel_gpu(int ni,  

                                int nj,int nk, 

                                float tfac, 

                                float *temp_in, 

                                float *temp_out) { 

 

int i, j, k, ti, tj, tk , i000, im100, ip100, i0m10, i0p10, 

i00m1, i00p1; 

     float d2tdx2, d2tdy2, d2tdz2; 

     // find i and j indices of this thread 

     ti = threadIdx.x; 

     tj = threadIdx.y; 

     tk = threadIdx.z; 

     i = blockIdx.x*(NI_TILE) + ti; 

     j = blockIdx.y*(NJ_TILE) + tj; 

     k = blockIdx.z*(NK_TILE) + tk; 

// find indices into linear memory for central point and 

neighbours 

        i000 = I3D(ni,nj, i, j,k); 

        im100 = I3D(ni,nj, i-1, j,k); 

        ip100 = I3D(ni,nj, i+1, j,k); 

        i0m10 = I3D(ni,nj, i, j-1,k); 

        i0p10 = I3D(ni,nj, i, j+1,k); 

        i00m1 = I3D(ni,nj, i, j,k-1); 

        i00p1 = I3D(ni,nj, i, j,k+1); 

 if (i > 0 && i < ni-1 && j > 0 && j < nj-1 && k 

> 0 && k < nk-1) { 

      // evaluate derivatives 

  d2tdx2 = temp_in[im100] - 

2*temp_in[i000] + temp_in[ip100]; 

  d2tdy2 = temp_in[i0m10] - 

2*temp_in[i000] + temp_in[i0p10]; 

  d2tdz2 = temp_in[i00m1] - 

2*temp_in[i000] + temp_in[i00p1]; 

  // update temperatures 

  temp_out[i000] = temp_in[i000] + 

tfac*(d2tdx2 + d2tdy2 + d2tdz2); 

 }          

} 

 3.2 OpenMP 
 

Two standards for doing parallel computing on a 

cluster computing platform are MPI and OpenMP. 

Message passing is a technique developed to allow 

multiple processes running concurrently to 

communicate with one another by passing and 

receiving messages from each other. Message 

passing can be accomplished in a distributed 

memory system or in a shared memory setting. 

Distributed memory systems are made up of a 

number of separate nodes linked together in a 

network. They are massively parallel machines. 

Shared memory systems are supercomputers that 

have a great computational power on a single 
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workstation that contains large numbers of cores to 

be able to execute large parallel tasks. MPI is a 

standard message passing library for distributed 

memory systems that was first prepared in May 

1994 called MPI-1. People were so excited about 

parallel computing during those days that the first 

implementations of the MPI-1 standard were 

released only about a year later in June 1995 – the 

most popular one being Argonne's MPICH. In those 

days, there were many supercomputing companies 

and they also produced their own implementations 

of the MPI-1 standard. The second MPI standard 

called MPI-2 was completed in 1998, this time the 

enthusiasm wasn't as high as before so the first 

implementation of this standard came about after 

about 4 years in November 2002. There are a 

number of MPI-2 implementations including 

MPICH2, Intel MPI, HP-MPI, Microsoft MPI, 

MPAVICH, Open MPI (open source MPI), and 

others. Among these different implementations you 

can find implementations that work in Windows and 

Linux environments.  

OpenMP is an API that supports shared-memory 

parallel programming in contrast to distributed 

memory parallel programming. The Architectural 

Board for OpenMP first published its standard based 

on FORTRAN 1.0 in October 1997.  One year later, 

in October 1998, the standard based on C/C++ was 

published. In 2000, the second version of the 

OpenMP FORTRAN specification was written. 

Version 2.0 of the OpenMP C/C++ specification 

was completed in 2002. The next version of the 

OpenMP specification, which is version 2.5 covered 

both FORTRAN and C/C++, and that was released 

in 2005. On May 2008, version 3.0 of OpenMP was 

released having some new features among which 

include the task concept and the task construct. 

Below you can see a code snippet for solving the 

2D Heat Equation using OpenMP: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solving the 2d Heat equation using MPI: 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

  

  

  

  

  

  

  

  

 4. Conclusion 
 

As a result of these simulations involving the 

three models Cattaneo, Two-Equation, and Fourier, 

we have found that the two models Cattaneo and 

Two-Equation start to differ in their temperature 

values after a time range between 10
-14

 seconds and 

10
-9

 seconds. For the space variable, the two models 

differ at 10
-9

 meters to 10
-8

 meters and 10
-11

 meters. 

These results are helpful to decide which of the 

models are suitable to be used in certain simulations 

of temperature distribution under different 

circumstances. 
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