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Abstract
The organization of modern DRAM containing multiple banks per
device or module allows for non-uniform access latencies. By
including the physical organization of the memory system in
virtual page allocation algorithms, program execution time can be
reduced through aggregate changes in memory access latency.
Four virtual page allocation mechanisms are incorporated into the
Linux 2.6 kernel and evaluated for impact upon benchmark
execution times. These modified kernels are able to better utilize
the available parallelism and multiple latency states of DRAM in
the main memory system. Each of these mechanisms uses a
different approach, or a combination of approaches, to distribute
virtual pages across the available DRAM banks. An analysis
utilizing several benchmark suites demonstrates that these
modifications to page placement algorithms provide a moderate
increase in performance in most benchmarks. These modified
virtual page allocation mechanisms require limited changes to the
code base, with no modifications to the hardware.
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1. Introduction

We propose to change the page allocation and placement algorithm
in the virtual memory component of the operating system to make
use of the parallelism and locality available in SDRAM. This will
incorporate emerging technologies in compilers, operating systems
(OS) and memory hierarchy design. 

While processors have increased in performance at a rate of 75
percent per year, DRAM has increased at a mere 7 percent per
year. [14]. DRAM has therefore become one of the major limiting
factors in computer performance, as evidenced by the steadily
increasing cache sizes in modern processors to address the speed
discrepancy. Although greater DRAM bandwidth can be achieved
by increasing the bus width, or increasing the bus frequency, the
latency inherent to the DRAM structure remains. The problem is
exacerbated with the demand for greater capacities of DRAM
because increased capacity results in both greater overall latency
and an increased disparity in the non-uniform latencies.

Since the introduction of Synchronous DRAM, the main memory
system has inherently possessed concurrency and parallelism that
leads to a non-uniform access latency. The allocation and

placement mechanism proposed here will incorporate policies
which will be cognizant of the capabilities of SDRAM and make
intelligent and adaptive placements based upon memory system
capabilities, and run-time program behavior. 

The goal of the work proposed is to reduce the latency of
compulsory SDRAM accesses through adaptive data placement.
Placement of objects within memory affects the latency to retrieve
these objects for a number of reasons: 

    • Data requested from a synchronous DRAM device may
reside in one of multiple states. The data access latency
will be largely dependant upon the state and interaction
between accesses. 

    • Each unique bank in the SDRAM may be maintained in
an independent state. If an SDRAM access is issued in
contention with other SDRAM accesses, the ability to
parallelize the access stream is dependant upon accesses
being distributed among unique banks. 

    • Virtual memory systems can be utilized to distribute data
objects with arbitrary virtual locality, to either common
DRAM banks, or unique SDRAM banks, as is appropriate
for the application. 

The study presented herein modifies the Linux 2.6.23.14 kernel
virtual page placement, and presents the performance measured
running applications on a notebook computer. In the following
section we present relevant background material and in Section 3,
discuss related work. Section 4 describes modifications made to
the Linux kernel to facilitate exploration of four different virtual
page placement algorithms, and Section 5 analyzes the
performance impact of these algorithms. Section 6 states
conclusions and Section 7 considers future work.

2. Background

Understanding of virtual memory function and SDRAM operation
are key to understanding the motivations behind the virtual page
placement mechanisms proposed and discussed.

2.1 Virtual Memory

Virtual memory provides each program with a process specific
memory space. Memory is managed in pages, the size of which is
OS dependant, under the constraints of the hardware memory
management unit. The operating system (OS) manages the
translation between virtual memory and physical memory
addresses and the virtual memory system is transparent to user
processes.

Virtual pages are identified using virtual page numbers. Physical
memory is divided into page frames, with page frame numbers as
identifiers. Every virtual page maps to a single page frame, either
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in physical memory or swapped out to backing storage. Figure 1
shows an example of how this mapping may work. This mapping
is managed using page tables, made up of page table entries
(PTEs). A PTE must indicate if a virtual page is in memory, on
disk or unallocated. PTEs should allow the OS to maintain
information required for memory management. [8].

Page table organization is logically a single table with mappings to
page frames. An exhaustive table with an entry for each possible
virtual page would be prohibitively large. For efficient use of
memory, hierarchical page tables are a commonly used alternative.
Hierarchical page tables consist of multiple levels of tables. Each
level's entries point to a table in the next lower level, except for the
lowest level, which contains the mapping to physical memory.

2.2 SDRAM

SDRAM devices {SDR, DDR2, DDR3, XDR, etc...} contain
multiple independent banks; each bank contains an array of
memory cells organized into banks, rows and columns. The
latency required for a DRAM access is dependant upon a number
of factors, including but not limited to: (a) the state of the bank
containing the data, (b) contention with accesses directed at unique
banks of the DRAM, and (c) the sequence of accesses directed to a
given bank.

The state of the SDRAM bank (a) determines whether a given
access latency will include one, two or three of the phases required
to complete an SDRAM access. These three phases are bank
precharge, row activation, and column access; all SDRAM
accesses require each three of these phases - but through state
management and locality - bank precharge and activate can be
done once for multiple column accesses. Bank precharge prepares
the bank for row activation. Through row activation, the data
contained in one row of the memory array is transferred into the
bank’s sense amplifiers. While a row is active in the sense
amplifiers, one or more column accesses can be performed to
retrieve or modify the data contained in the sense-amplifiers or I/O
buffers. [9] The impact of these phases upon latency is dependant
upon application access pattern and device state.

Each unique bank (b) within a DRAM system can be maintained in
an independent state, and can thus be processing an independent
request in parallel. The implication is that if two data structures are
being frequently accessed in parallel, it is advantageous to have
these data structures located in unique banks. This is in contrast
with (c) accesses to a single bank, which must be serialized. The
sequence of accesses to a single bank determines the overall
number of precharges and activations through which an SDRAM
bank must proceed. This sequence can directly impact the overall
access latency.

2.3  Combining VM & SDRAM

In the past, virtual memory and DRAM controller policies and
scheduling have been examined in isolation. Virtual memory has
been implemented in a manner which is algorithmically efficient in
terms of both time and memory usage. DRAM has been designed
in a manner which is efficient in circuit topology, bit density,
bandwidth and to a lesser degree, access latency. However, the
objective of system design is to reduce overall application
execution time. Through the use of VM algorithms which are
cognizant of the latencies and parallelism available in the DRAM
structure application execution time can be reduced, albeit by
sacrificing algorithmic efficiency.

3. Related Work

Work examining topics related to reducing average memory access
latency or DRAM cognizant virtual memory placement is
described in this section. Many approaches have been proposed or
implemented to address the DRAM access latency problem, or
“Memory Wall” [14].

3.1 Memory Management

Virtual memory is known to impact system performance, and past
work has been done to use VM to reduce access latency, but little
of this work makes use of knowledge of the DRAM structure, and
non-uniform latency constraints.

3.1.1 Data Placement Within a Page

Placement and alignment of data within the pages being
dynamically allocated can reduce access time [5][10]. These
techniques depend upon the application being programmed for   a
hardware implementation. These techniques require that the
programmer be aware of memory details, and results in an
application optimized for a subset of memory architectures. Unlike
this approach, the page placement as described herein operates at
the operating system level to place virtual pages across all
applications resulting in reduced access latency enabled through
the non-uniform access latency of DRAM.

3.1.2 Page Prefetch

Glass and Cao [6] examined how to fetch virtual pages from the
disk swap area, prior to their request by the application. This will
reduce memory access latency, primarily when the virtual memory
requirements exceed the physical memory available.

3.2 Reducing Access Latency

The following sections discuss methods which attempt to reduce
the latency of any access resulting from a load in the CPU. Not all
accesses proceed to main memory, many are handled by on-chip
memory which have significantly lower latencies.
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Figure 1. Virtual Address Mapping to Physical Memory
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3.2.1 Processor Cache

A processor cache consists of a high speed memory. Most
processors use a hierarchical cache design, with the smallest and
fastest memory being at the lowest level. A cache exploits spatial
and temporal locality. Most programs use a limited set of memory
locations during the majority of execution time [7].

3.2.2 Prefetching

Prefetching is the concept of retrieving data from memory before
the data is required. Prefetching can be controlled by either
software or hardware [18]. Software controlled prefetching is
generally implemented by the compiler. Loading data into the
cache before the data is required increases the effective cache hit
rate. Prefetching also increases the number of accesses to main
memory, as not all prefetched data is used.

3.3 Reducing DRAM Access Latency

The methods discussed in the following sections detail techniques
that exploit a characteristic of DRAM operation to reduce the
latency of DRAM accesses observed by the processor.

3.3.1 Open Page Controller Policy

SDRAM controllers have the option to use one of two static access
control policies, either Open Page (OP) or Close Page
Autoprecharge (CPA). OP leaves the accessed row open after each
access, whereas CPA closes it by performing a bank precharge
immediately after the access has been satisfied. The static
controller policy that yields minimal benchmark execution time
largely depends upon the SDRAM access pattern of an application.

By delaying a precharge operation (OP), the latency of a row hit
access, is significantly reduced. The open page policy enables the
sense amplifiers to act like a cache at the DRAM level [15]. For
programs that have high spatial locality, row hits occur frequently
and thus the open-page controller policy can reduce overall
execution time. If, however, a program has very little spatial
locality, using an open page policy will actually increase the
latency of DRAM accesses, and the execution time will be longer.
Some research [20] has demonstrated that allowing the SDRAM
controller to dynamically transition between an open page policy
and a closed page auto-precharge policy, based upon program
access patterns, can reduce program execution time.

3.3.2 Address Remapping

Address remapping changes the mapping of process addresses to
physical addresses, in order to distribute accesses across SDRAM
banks within the physical address space. Address remapping in a
basic form is present in modern SDRAM controllers such as the
915 chipset. These controllers use lower order address bits to select
the bank and rank, distributing SDRAM row sized chunks of
memory across SDRAM banks in a round-robin fashion. This
simple approach to exploiting non-uniform access latency was the
initial motivation for further exploitation of this property. 

Bit-reversal address mapping is a more advanced remapping
method that swaps the bits that select the row, bank, rank and
channel as shown in Figure 2 [17]. Accesses become distributed
across the DRAM banks more evenly because spatial locality
causes the lower order bits change more frequently and bank
conflicts are reduced. Similarly since the higher bits change less
frequently, the number of row hits should increase. 

The IMPULSE project [3] distributes memory in a manner that
increases parallelism and cache utilization, but also attempts to

provide a software interface to addresses higher level concerns, not
only by distributing data structures across all banks, but by giving
software the ability to manage this placement. This technique can
provide significant performance gains, but requires the software to
be specially coded and recompiled for the machine on which it is
to be executed.

Address remapping is known to provide performance benefits
when physical memory is being accessed directly. When a virtual
memory system is used, because of the additional remapping from
a virtual address to a physical address, the performance becomes
non-deterministic. Since the operating system already manages the
allocations of virtual pages into physical memory, a more suitable
approach is to have the OS distribute virtual pages across the
DRAM banks.

3.3.3 Balancing Bank Accesses

Rather than trying to distribute the usage of DRAM banks in terms
of pages allocated, the more intuitively advantageous strategy is to
balance the number of accesses to the banks [16]. If each bank is
being access at the same rate, statistically each bank has the same
probability of being accessed and therefore the amount of bank
conflict is expected to be minimal, therefore maximizing bank
parallelism utilization. Implementing this method would require
hardware monitoring of the number of accesses to each bank
because any software monitoring would require accesses to main
memory. This work attempts to approximate balancing bank
accesses without the additional hardware requirements.

3.4 Virtual Page Placement

The problem of virtual page placement is the determination of the
physical page frame to which a newly allocated virtual page will
be placed [4]. Our algorithms significantly change this placement
problem by trying to place virtual pages in a manner which reduces
latency through the physical capabilities of the SDRAM. Previous
virtual page placement algorithms tend to focus on the algorithmic
and data structure efficiency of the allocation and replacement
tasks [11], rather than attempting to improve run-time
performance.

3.4.1 Virtual Page Replacement

The task of virtual page replacement is the determination of which
virtual page to eject when a new page is being allocated. This task
is orthogonal to our algorithms, because the selection of a page to
be ejected can utilize the same criterion as previous work [2]. If the
physical memory is fully occupied, where replacement is critical,
there will be reduced flexibility for placement, decreasing the
performance impact of adaptive data placement. 

4. Virtual Page Placement - Linux Implementation

The Linux 2.6 kernel uses a binary buddy allocator to allocate
virtual pages for user processes. In general, a buddy system uses an
array of free lists. There is a free list for each allowable block size
or order of virtual memory pages. In the Linux kernel on the x86
architecture, there are block sizes from 4kB to 4MB in increments

Figure 2. Bit-reversal Address Mapping [17]
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based on powers of two. [4] The Linux kernel references blocks of
memory as page structures and each block size has a
corresponding order.

One of the major advantages of the buddy system is that splitting
and coalescing operations are very fast. However, since the
allowable block sizes are limited, internal fragmentation can be
relatively high. The buddy system uses powers of two block sizes
which makes finding the buddy of a block algorithmically simple
[19].

The intent of this work is to create an allocation mechanism that
utilizes the available bank parallelism to reduce the execution time
required for memory accesses [1]. The Linux kernel's current page
allocation mechanism is algorithmically efficient in terms of
computation and data structures. Exploitation of the available bank
parallelism and non-uniform latency present in modern SDRAM,
allows average memory access times to be reduced, which in turn
can reduce execution time. The changes required may impact the
algorithmic efficiency of the allocation, but the expectation is that
page accesses occur more frequently than page allocations and the
reduction in memory access times will exceed the additional time
required for allocation.

4.1 Kernel Changes

Only one file (page_alloc.c) in the linux kernel required changes
for the implementations of the algorithms described. A useful tool
in understanding the page allocation code is the Linux Cross
Reference (LXR) [12]. LXR creates cross references for files
names, structures, variables, functions and macro definitions.

Physical memory is allocated upon request from a process by
rounding up the requested block size to the next architecturally
allowable block size. The kernel function (static struct page
*__rmqueue) performs the task of retrieving a block of the
appropriate size (potentially multiple pages) from the appropriate
free page list. This may be directly from the list containing the
block size requested, or by splitting a larger block. When a block is
freed, if the block’s buddy is also free, the two blocks are
coalesced together into one larger block.

Another function (static inline void __free_one_page) exists for
freeing a single page. If the buddy of the page being freed is also
free and of the same order, the two pages are combined and moved
up to the next order. This continues for the buddy of the resulting
combined page until the next buddy is not free. The page that is
freed is added to a list of free pages, specific to the resulting order.

The code modifications discussed are dependant upon the specifics
of this development environment. If the linux kernel modifications
are going to be extended to the general case, they must be modified
to work with all memory configurations, memory controllers,
DIMM types and address mappings, as described in Section 7,
Future Work.

4.2 Balance Bank Allocations

The first virtual page allocation algorithm attempts to balance
allocations between all of the DRAM banks, with the motivation
of reducing the number of bank conflicts and thus increasing bank
parallelism. 

The bank balancing algorithm maintains as equal as possible the
number of pages in each free list, for orders less than the DRAM
row size, which in this environment is 16kB. Higher order blocks
or free lists will already encompass multiple banks and are not
considered for bank balancing. 

When a page is allocated, the bank with the most free pages is
identified and a page from that bank is allocated. If no free pages
are found in the bank with the most free pages, the default kernel
behavior of using the first page in the free list is used. For page
allocation requests that are of order greater than the DRAM row
size or are in the DMA zone, the default kernel behavior is used.

4.3 Balance Bank Allocations Per Order

The second virtual page allocation algorithm is similar to the bank
balancing algorithm, but balances bank allocations for each order
of pages separately. While no global information about bank
allocations is maintained, if the banks are perfectly balanced at
each order, the combination of orders should also be balanced. The
advantages of this method include some algorithmic
simplifications in the implementation, and a reasonable assurance
that an appropriate page can be found. The most significant
disadvantage is that a larger array is required to maintain a free
page count at each order.

When a page is allocated, the bank with the most free pages in the
requested order is used. The advantage of this method is that if any
free pages are available at the requested order, a bank match will
be guaranteed. If there are no free pages in this order, the order is
greater than the DRAM row size, or the request is in the DMA
zone, then the default kernel behavior is used.

4.4 Free List Queue

The free list queue allocation algorithm was implemented in the
function that frees one page to make the lists of free pages behave
like a queue instead of a stack. The motivation for this change is
that the page used will be the least recently freed page, whereas by
default the most recently freed page would be used. This virtual
page allocation algorithm is algorithmically simple and requires no
information about the DRAM organization.

4.5 Balance Bank Allocations with Free List Queue

The last allocation algorithm is actually a combination of two of
the previously discussed modifications. A queue is used for the
free list and the banks are globally balanced based on the number
of free pages in each bank. The performance of this benchmark is
anticipated to be similar to balancing bank allocations, with some
variation depending on the queue performance.

5. Performance Evaluation

The evaluation environment was a notebook computer with an
Intel 915PM northbridge chipset, with two 512MB DIMMs of
DRAM. Each DIMM has 8 banks divided into two ranks, and due
to dual channel operation, there are 8 banks in total. The Intel
915PM chipset datasheet specifies that bits 14 and 15 are the bank
select bits and the 29th bit is the rank select bit. The Linux kernel
used was version 2.6.23.14 [12].

A variety of benchmarks were used to evaluate the change in
performance. Many of the SPEC2000 benchmarks were executed
to evaluate the change in performance for integer (CINT) and
floating point (CFP) applications. STREAM was used to evaluate
the impact of these algorithms upon applications which are heavily
dependent upon memory bandwidth. MDBNCH is used to
examine performance for applications which produce a large
number of irregular memory accesses.
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5.1 MDBNCH

The MDBNCH was run twenty times on the stock kernel and each
of the four modified kernels. Figure 3 shows a box plot of these
results. Bank balancing shows the most consistent performance,
with a small range of execution times. The distribution among
banks through bank balancing provides the opportunity for
reduced bank conflicts from the irregular memory accesses
performed by MDBNCH, and can explain the small deviation in
execution times. The results were averaged and normalized in
Figure 4, more clearly showing the change in performance. All of
the kernels with modified virtual allocation perform better than the
stock kernel, although modestly; bank balancing results in
approximately a 0.2% decrease in execution time.

5.2 STREAM

The STREAM benchmark suite [13] is composed of 4 benchmarks
{Copy, Scale, Add and Triad} each of which are presented
independently. This benchmark suite is intended for testing
memory bandwidth. For the purposes of testing the kernel
modifications, the STREAM benchmark was configured to use an
array of 40,000,000 elements, with a total memory requirement of
915.5 MB. The large memory requirement gives a significant
execution time, but is small enough to fit in main memory such
that swapping to/from the disk does not become a performance
limiting factor. The benchmark was also configured to iterate
twenty times and returns the overall minimum, maximum and
average execution times.

Figure 5, shows the average execution times for the Copy
operation with the modified kernels to be slightly shorter than the
unmodified kernel. For all modifications except bank balancing
with a free list queue, the maximum execution time is noticeably
smaller.

The Scale operation results, shown in Figure 6, demonstrate nearly
identical average execution times. Notably, bank balancing per
order and bank balancing with a free list queue both provide
significantly shorter maximum execution times.

Figure 7 shows that bank balancing per order has the worst
performance for the Add operation. Using a free list queue
consistently performs better than the other page allocation
algorithms, with the smallest difference between maximum and
minimum execution times.

The Triad operation results are illustrated in Figure 8. Global bank
balancing with and without a free list queue and all execution
times are lower than the unmodified kernel. As with the Add

Figure 3. MDBNCH Results

Figure 4. MDBNCH Average Results

Figure 5. Stream Copy Results

Figure 6. Stream Scale Results

Figure 7. Stream Add Results

Figure 8. Stream Triad Results
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operation, bank balancing per order has the poorest average
performance for the Triad operation.

The performance of all the STREAM operations are summarized
in Figure 9, with execution times normalized against the
unmodified kernel. Global bank balancing with and without a free
list queue consistently performs better than the unmodified kernel.
The greatest improvement is in the Triad operation using bank
balancing with a free list queue with approximately a 0.4%
decrease in average execution time.

5.3 SPEC2000

Figure 10 shows the normalized execution time for five of the
SPEC2000 integer benchmarks. Bank balancing results in the
greatest reduction in execution time at approximately a 0.6%
reduction, for the gzip, parser, and bzip2 benchmarks. Bank
balancing shows a slight improvement for the vpr benchmark,
whereas the other modifications have the same or worse
performance. Using a queue for the free pages reduced the
execution time of the twolf benchmark by approximately 0.5%,
better than any other modification.

The individual results of the SPEC2000 floating point benchmarks
are shown in Figure 11, Figure 12 and Figure 13, with the
observation that each figure has a unique scale on the vertical axis.
The most interesting results are in Figure 11, which contains the

benchmarks that demonstrated the greatest improvement in
performance. When a queue of free pages was used for the art
benchmark, the execution time was reduced by almost 8.5%. Bank
balancing using a queue gave similar results of near 8%
improvement. All the modified kernels result in close to 5%
improvement in the sixtrack benchmark and 2% for the swim
benchmark. The remaining SPEC FP benchmarks only show
marginal improvement, if any, generally less than 1%. The
geometric mean of all the benchmarks, shown in Figure 14,
indicates that using a free list queue has the most performance
improvement, closely followed by bank balancing with a free list
queue.

5.4 Overall Results

The results of all the benchmarks are summarized in Figure 15.
Results were produced by recording execution time on a running
workstation with a modified Linux Kernel. They represent many
hundreds of executions of more than thirty unique benchmarks.
Bank balancing, with and without a queue of free pages, provides
improved average performance in all benchmarks. Using per order
bank balancing or a queue of free pages provided the highest
variability, with typical benchmarks having a small increase in
performance while other benchmarks may experience a slight
decrease in performance. On average all the modifications provide
a comparable reduction in execution time, approximately 0.5%.

Figure 9. Stream Average Results

Figure 10. CINT Results

Figure 11.  CFP Individual Results Part 1 of 3

Figure 12.  CFP Individual Results Part 2 of 3

Figure 13.  CFP Individual Results Part 3 of 3

Figure 14. CFP Geometric Mean Results
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6. Conclusion

Experimental results show that the page allocation mechanisms
used provide some improvement in performance with only limited
changes to the kernel and no changes to the hardware. In the case
of SPEC2000 floating point benchmarks, multiple virtual page
allocation mechanisms provided a modest reduction in execution
time. These results provide evidence that utilizing available bank
parallelism within virtual page allocation is a practical method of
improving performance.

These results validate that using DRAM organizational
information to drive virtual page placement has the potential to
reduce program execution times. In the most significant cases,
these reduction in execution time approach 8%. In general the
performance improvements were modest, less than 1%, but this
improvement comes at the negligible cost of changing only the
virtual page allocation algorithm in the Linux 2.6 kernel. These
results motivate the development of more advanced algorithms
which can determine application behavior, and tailor the allocation
mechanism to reduce access time or increase parallelism.

7. Future Work

For DRAM cognizant virtual page placement to gain acceptance, it
must be transparent to the end user; this would require the
operating system to be able to identify the DRAM construction and
behavior of an arbitrary system on boot. The software
modifications used in this work have been designed for a very
specific hardware configuration, that is an Intel 915PM chipset
with two 512MB DIMMs, each DIMM having 8 banks of 64MB
each with a DRAM line size of 16KB. For practical use, the
specific information required to be identified includes the total
number of banks in main memory and which physical address bits
select the rank and bank. The most difficult issue is determining
the rank and bank select bits because these are determined by the
memory controller rather than the user installed DIMMs.

Placement of virtual pages could be improved through the use of
hints, profile data, or predictions of access frequency from the
compiler. This possible path for research is being examined in
collaborative activities.

Lastly, if virtual page placement can be used to distribute pages to
unique DRAM banks to improve performance, then virtual page
placement can also be used to dynamically migrate all virtual
pages to a single DRAM bank in a lightly loaded environment.
This could enable removing power from DRAM components and
reducing system power consumption.
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Abstract—In the literature, some schemes were proposed to 
combine Multi-Threshold CMOS (MTCMOS) with asynchronous 
circuits to reduce standby power consumption. However, all of 
these can only be applied to asynchronous circuits in which the 
values of all signals can be determined in the standby state. As a 
result, their applications are limited. To solve this problem, this 
paper develops standby power reduction techniques which not 
only combine MTCMOS with asynchronous circuits, but also can 
be applied to asynchronous circuits with indeterminate standby 
states. Compared to asynchronous circuits implemented with all 
regular threshold transistors, the proposed implementation has 
significantly less standby power, reasonable speed penalty, and 
negligible area overhead. 

Keywords-asynchronous circuits; Multi-Threshold CMOS 
(MTCMOS); NULL Convention Logic (NCL)  

I.  INTRODUCTION 

With the current trend of semiconductor devices scaling 
into the deep submicron region, design challenges that were 
previously minor issues have now become increasingly 
important. Where in the past, dynamic, switching power has 
been the predominant factor in CMOS digital circuit power 
dissipation, recently, with the dramatic decrease of supply and 
threshold voltages, a significant growth in leakage power 
demands new design methodologies for digital integrated 
circuits (ICs). The main component of leakage power is sub-
threshold leakage, caused by current flowing through a 
transistor even if it is supposedly turned off. Sub-threshold 
leakage increases exponentially with decreasing transistor 
feature size.  

Among the many techniques proposed to control or 
minimize leakage power in deep submicron technology, Multi-
Threshold CMOS (MTCMOS) [1], which reduces leakage 
power by disconnecting the power supply from the circuit 
during standby mode while maintaining high performance in 
active mode, is very promising. MTCMOS incorporates 
transistors with two or more different threshold voltages (Vt) in 
a circuit. Low-Vt transistors offer fast speed but have high 
leakage, whereas high-Vt transistors have reduced speed but far 
less leakage current. MTCMOS combines these two types of 
transistors by utilizing low-Vt transistors for circuit switching 
to preserve performance and high-Vt transistors to gate the 

circuit power supply to significantly decrease sub-threshold 
leakage.  

Quasi-delay-insensitive (QDI) asynchronous circuits [2] 
designed using CMOS exhibit an inherent standby behavior 
since they only switch when useful work is being performed; 
however, there is still significant leakage power during standby 
mode. In the literature, some schemes were proposed to 
combine multi-threshold CMOS (MTCMOS) with 
asynchronous circuits to reduce standby power consumption, as 
discussed below. 

MTNCL [3-6] combines the MTCMOS technique with full-
word pipelined NULL Convention Logic (NCL) asynchronous 
circuits [7] to sleep the NCL circuit during standby mode. It 
has significantly less standby power, higher speed, and requires 
less area than the original NCL circuits implemented with 
either all low-Vt or high-Vt transistors.  

Bit-Wise MTNCL (BWMTNCL) [8] combines the 
MTCMOS technique with NCL circuits. Compared to original 
NCL circuits implemented with all low-Vt and high-Vt 
transistors, respectively, it provides the leakage power 
advantages of the all high-Vt NCL implementation with a 
reasonable speed penalty compared to the all low-Vt design, 
and has negligible area overhead.  

Fine-grain leakage power reduction method in [9] combines 
the MTCMOS technique with asynchronous circuits 
synthesized with Boolean gates. It utilizes high-Vt transistors 
for the off-state transistors whose gate input signals are inactive 
in the standby phase. Compared to original asynchronous 
circuits implemented with regular-Vt transistors, it has 
significantly less standby power, reasonable speed penalty, and 
negligible area overhead. 

Static power reduction techniques in [10] combine the 
MTCMOS technique with Pre-Charge Half Buffer (PCHB) [2] 
asynchronous circuits. Compared to original PCHB 
asynchronous circuits implemented with regular-Vt transistors, 
it has less standby power, reasonable speed penalty, and 
reasonable area overhead. 

However, all of the above can only be applied to 
asynchronous circuits in which the values of all siganls can be 
determined in the standby state. As a result, their applications 

10 Int'l Conf. Computer Design |  CDES'11  |



are limited. To solve the problem, this paper develops standby 
power reduction techniques which not only combine 
MTCMOS with asynchronous circuits, but also can be applied 
to asynchronous circuits with indeterminate standby states. 
Compared to asynchronous circuits implemented with all 
regular-Vt transistors, the proposed implementation has 
significantly less standby power, reasonable speed penalty, and 
negligible area overhead. Although the proposed techniques are 
illustrated by extending BWMTNCL, they can also be applied 
to other asynchronous circuit paradigms. 

Section II provides an overview of NCL, BWMTNCL, and 
an NCL unsigned 32+16×16 Multiply and Accumulate (MAC) 
unit, as an example with indeterminate standby states.  
Section III details the proposed techniques to handle 
indeterminate standby states; Section IV compares the various 
implementations; and Section V provides conclusions. 

II. PREVIOUS WORK 

A. Introduction to NCL 

NCL circuits utilize multi-rail logic, such as dual-rail, to 
achieve delay-insensitivity. A dual-rail signal, D, consists of 
two wires, D0 and D1, which may assume any value from the 
set {DATA0, DATA1, NULL}. The DATA0 state (D0 = 1,  
D1 = 0) corresponds to a Boolean logic 0, the DATA1 state  
(D0 = 0, D1 = 1) corresponds to a Boolean logic 1, and the 
NULL state (D0 = 0, D1 = 0) corresponds to the empty set 
meaning that the value of D is not yet available. The two rails 
are mutually exclusive, such that both rails can never be 
asserted simultaneously; this state is defined as an illegal state.  

NCL circuits are comprised of 27 fundamental gates [11]. 
These 27 gates constitute the set of all functions consisting of 
four or fewer variables. The primary type of threshold gate, 
shown in Fig. 1, is the THmn gate, where 1  m  n. THmn 
gates have n inputs. At least m of the n inputs must be asserted 
before the output will become asserted. NCL threshold gates 
are designed with hysteresis state-holding capability such that 
all asserted inputs must be de-asserted before the output will be 
de-asserted, as shown in Fig. 2. Therefore, a THnn gate is 
equivalent to an n-input C-element [12] and a TH1n gate is 
equivalent to an n-input OR gate. NCL threshold gates may 
also include a reset input to initialize the output. These 
resettable gates are used in the design of DI registers [13].  

 
 NCL systems contain at least two delay-insensitive (DI) 
registers, one at both the input and at the output, and can be 
finely pipelined by inserting additional registers, as shown in 

Fig. 3. Two adjacent register stages interact through their 
request and acknowledge signals, Ki and Ko, respectively, to 
prevent the current DATA wavefront from overwriting the 
previous DATA wavefront, by ensuring that the two DATA 
wavefronts are always separated by a NULL wavefront. The 
acknowledge signals are combined in the Completion Logic to 
produce the request signal(s) to the previous register stage, 
utilizing either the full-word or bit-wise completion strategy 
[13]. 

 
Figure 2. NCL threshold gate design. 

To ensure delay-insensitivity, NCL circuits must adhere to 
the following criteria: Input-Completeness and Observability 
[14]. Input-Completeness requires that all outputs of a 
combinational circuit may not transition from NULL to DATA 
until all inputs have transitioned from NULL to DATA, and 
that all outputs of a combinational circuit may not transition 
from DATA to NULL until all inputs have transitioned from 
DATA to NULL. Observability requires that no orphans may 
propagate through a gate. An orphan is defined as a wire that 
transitions during the current DATA wavefront, but is not used 
in the determination of the output.  

B. Introduction to Bit-wise MTNCL 

In NCL systems without feedback loops, the inputs of each 
gate while in the standby state are determinate, since all circuit 
inputs will be NULL, which causes all Combinational Logic 
gates and the data inputs and outputs of all registers to be de-
asserted, which in turn causes all Completion Logic gates to be 
asserted (i.e., request-for-data or rfd), as shown in Fig. 3. 

The leakage path is defined as the path formed by “on” 
transistors and “off” low-Vt transistors in the standby state. To 
substantially reduce leakage power while degrading speed as 
little as possible, the following rules should be utilized to 
determine which transistors should be high-Vt and which 
transistors should be low-Vt [8]: 

1. Determine threshold gate input and output values in standby 
state. 

2. All transistors “on” in standby state should be low-Vt. 
3. Replace the minimal number of “off” transistors with high-Vt 

transistors to eliminate leakage path, and replace the rest 
with low-Vt transistors. 

Figure 1. THmn threshold gate. 
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Figure 3. NCL system framework without feedback loops in standby state. 

Fig. 4 shows the standby states of a 1-bit dual-rail NCL 
register, which consists of two TH22 resettable to ‘0’ gates 
with A = ‘0’, B = ‘1’, reset = ’0’, and one inverted TH12 gate 
with both ‘0’ inputs in standby state. After applying those 3 
rules, the schematic of the TH22 gate is given in Fig. 5, in 
which high-Vt transistors are circled and low-Vt transistors are 
not. T0, T1, and T2 are high-Vt because they do not switch 
except for initialization. 
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Figure 4. 1-Bit NCL register in standby state. 

A A B

reset
Z

A B

B

B

A

Z

Z

T0

T1

T2

 
Figure 5. BWMTNCL applied to TH22  resettable to ‘0’ gate with a 

single standby state: reset = ‘0’, A = ‘0’, B = ‘1’, Z = ‘0’ 

Compared to original NCL circuits implemented with all 
low-Vt and high-Vt transistors, respectively, BWMTNCL 

provides the leakage power advantages of the all high-Vt NCL 
implementation with a reasonable speed penalty compared to 
the all low-Vt design, and has negligible area overhead.  

C. Asynchronous Circuits with Indeterminate Standby States 

As an example of an asynchronous circuit with 
indeterminate standby states, an NCL unsigned 32+16×16 
MAC is developed. As shown in Fig. 6, it consists of 3 parts: 
full-word pipelined 7-stage partial product generation and 
Wallace tree summation circuit (PP1, PP2), a 4-stage feedback 
loop which feeds back the accumulator as 2 partial products in 
carry-save form (A1, A2), and full-word pipelined 15-stage  
30-bit Ripple-Carry-Adder. The architecture is elaborated in 
[15], except that it is full-word pipelined and extra control 
functions are removed for simplicity. 

Partial Products Generation and Summation

X Y

Feedback Loop

Ripple-Carry Adder

A

PP1 PP2

A1 A2

 
Figure 6. NCL MAC architecture 

Fig. 7 shows the standby states of the feedback loop, which 
has 2-level carry save adders to sum up new partial products, 
PP1 and PP2, and old accumulator, A1 and A2, to generate 
new accumulator in carry-save form. Partial DATA in Fig. 7 
means that some bits of the register are DATA while the other 
bits are NULL.  

In standby state, the old accumulator values are stored in 
register, REG0, in Fig. 7. Each bit of REG0 can either be 
DATA0 or DATA1, which cannot be determined at design 
time. Similarly, register, REG1, Combinational Logic, COMB1 
and COMB2, and Completion Logic, COMP0, also have 
indeterminate standby states. Therefore, BWMTNCL cannot be 
applied to this feedback loop. 
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Figure 7. Standby states of the feedback loop without indeterminate states reduction 

 

III. TECHNIQUES TO HANDLE INDETERMINATE STANDBY 

STATES 

In asynchrnous circuits with indeterminate standby states, 
usually not all of the inputs and outputs of a threshold gate are 
indeterminate in the standby state. For example, TH22 
resettable to ‘0’ gates used in REG0 in Fig. 7 have determinate 
standby states for A, B, and reset inputs (i.e., A = ‘0’, B = ‘1’, 
reset = ‘0’), but an indeterminate standby state for output, Z  
(i.e., Z = ‘1’ or Z = ‘0’). In other words, it has 2 possible 
standby states. Instead of using an all high-Vt implementation, 
those 2 standby states can be analyzed to use the minimal 
number of high-Vt transistors to eliminate the leakage path in 
either of the two possible standby states, in order to 
substantially reduce leakage power while degrading speed as 
little as possible. The rules used in BWMTNCL can be 
enhanced as follows: 

1. Determine the number of standby states and threshold gate 
input and output values in each standby state. 

2. Replace the minimal number of transistors with high-Vt 

transistors to eliminate leakage path in any standby state, and 
replace the rest with low-Vt transistors. 

After applying these 2 rules, the schematic of the TH22 gate 
with 2 possible standby states is given in Fig. 8. 

By comparing Fig. 5 with Fig. 8, it can be observed that  
Fig. 8 has 3 more high-Vt transistors than Fig. 5. These 3  
additional high-Vt transistors are required by the extra standby 
state and make the TH22 gate in Fig. 8 slower than in Fig. 5. 
Therefore, it is beneficial to reduce the number of gates with 
indeterminate standby states so that fewer high-Vt transistors 
are required, to degrade speed as little as possible. 
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Figure 8. Enhanced BWMTNCL applied to TH22  resettable to ‘0’ gate 

with 2 standby states: reset = ‘0’, A = ‘0’, B = ‘1’, Z = ‘0’ or  Z = ‘1’ 

To reduce the number of gates with indeterminate standby 
states, an inverter U0 and an asymmetric [16] TH22 gate, U1, 
are added in Fig. 9 to control the Ki input of register, REG0. 
The input B with ‘+’ of U1 only takes effect in asserting the 
asymmetric TH22 gate. In other words, U1 will be asserted if 
both inputs are ‘1’, and de-asserted if A is ‘0’ regardless of the 
value of B. The preceding partial product generation and 
Wallace tree summation circuit has output register, REG3, 
whose Ko output is asserted if PP1 and PP2 are NULL, and de-
asserted if they are DATA. 
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Figure 9. Standby states of the feedback loop with indeterminate states reduction 

As a result, the condition for the Ki input of REG0 to be de-
asserted remains that Completion Logic, COMP0, is de-
asserted, but the condition to assert it is changed from COMP0 
is asserted to COMP0 is asserted and PP1 and PP2 are DATA. 
The function of the feedback loop in the active state is not 
changed, because the added condition that PP1 and PP2 are 
DATA is always met in the active state. However, in the 
standby state, PP1 and PP2 are NULL so that the Ki input of 
REG0 cannot be asserted, and the old accumulator values are 
stored in REG2 instead of REG0. In Fig. 9, only REG2 and 
REG0 have indeterminate standby states, compared to REG0, 
REG1, COMB1, COMB2, and COMP0 in Fig. 7. As the 
number of gates with indeterminate standby states is 
significantly reduced, fewer high-Vt transistors are required, 
which degrades speed as little as possible.  

The area overhead is negligible as only two gates are added.  
The added condition is equivalent to adding Combinational 
Logic with 1 gate delay between REG3 and REG4. As the 
speed of the whole circuit is limited by the slowest stage [13], 
which is the feedback loop which has much longer delay than 
the stage between REG3 and REG4, the speed of the whole 
circuit will not be degraded by adding those two gates. 

Fig. 9 requires 4 types of gates with indeterminate standby 
states. First, REG2 requires TH22 gates resettable to ‘0’ with 
standby states reset = ‘0’, A = ’0’, B = ’1’, Z=’0’ or Z = ‘1’, 
which is already shown in Fig. 8. Second, REG2 requires TH22 
gates resettable to ‘1’ with standby states reset = ‘0’, A =’0’,  
B =’1’, Z=’0’ or Z = ‘1’, which is shown in Fig. 10. Third, 
REG2 requires inverted TH12 gates with standby states A = ‘1’, 
B= ‘0’ or A = ‘0’, B = ‘1’, which is shown in Fig. 11. Finally, 
REG0 requires TH22 gates resettable to ‘0’ with standby states 

reset = ‘0’, A = ’0’ or A = ’1’, B = ‘1’, Z = ‘0’, which is shown 
in Fig. 12. 
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Figure 10. Enhanced BWMTNCL applied to TH22  resettable to ‘1’ gate 
with 2 standby states: reset = ‘0’, A = ‘0’, B = ‘1’, Z = ‘0’ or  Z = ‘1. 
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Figure 11. Enhanced BWMTNCL applied to inverted TH12 gate with  

2 standby states: A = ‘0’, B = ‘1’ or  A = ‘1’ or  B = ‘0’. 
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Figure 12. Enhanced BWMTNCL applied to TH22  resettable to ‘0’ gate 
with 2 standby states: reset = ‘0’, A = ‘0’ or A = ‘1’, B = ‘1’, Z = ‘0’. 

In summary, two techniques to handle indeterminate standby 
states are proposed. First, add extra gates to reduce 
indeterminate standby states as much as possible. Second, 
analyze the standby states of threshold gates and replace the 
minimal number of transistors with high-Vt transistors to 
eliminate the leakage path in any possible standby state, and 
replace the rest with low-Vt transistors. 

IV. SIMULATION RESULTS 

To compare the proposed BWMTNCL with indeterminate 
state reduction design to those without, the 32+16×16 unsigned 
MAC with feedback loop in Fig. 9 was implemented with 
enhanced BWMTNCL, and the MAC with feedback loop in 

Fig. 7 was implemented with regular-Vt transistors, using the 
1.2V IBM 8RF-LM 130nm CMOS process. All designs were 
simulated at the transistor level using Cadence’s UltraSim 
simulator running a VerilogA controller in mixed-signal mode. 
Note that all transistors are minimum sized except for the 
buffers used for high fanout signals.  

The first two rows of Table I show the results, in which TDD 
is the average DATA plus NULL processing time, which is 
comparable to the clock period in a synchronous system. TDD 
and Energy/Operation are calculated while the circuit is 
operating at its maximum speed, while Leakage Power is 
calculated using Cadence Spectre DC analysis after the pipeline 
is flushed with all NULL inputs. The results show that the 
proposed design has 36x standby power reduction over the 
regular design, with 20% speed penalty and 0.02% area 
overhead.  

The 2 MACs were also implemented with all high-Vt and all 
low-Vt minimum sized transistors, respectively, as the all  
high-Vt implementation will give the lower bound on standby 
power and the all low-Vt implementation will give the lower 
bound on TDD. The results are shown from row 3 to row 6 of 
Table I, which prove that adding extra gates to reduce 
indeterminate states does not increase TDD. It also shows that 
the proposed design provides the leakage power advantage of 
the all high-Vt implementations with a reasonable speed penalty 
compared to the all low-Vt implementations. 

Table I also shows that the proposed design is more energy 
efficient than the regular design, and the all low-Vt 
implementation is the most energy efficient. The relationship 
between energy/operation, threshold voltage, and transistor 
sizing will be investigated in the future. 

V. CONCLUSIONS 

None of the asynchronous circuit standby power reduction 
techniques in the literature are able to handle indeterminate 
standby states. This paper describes enhancements to the 
asynchronous circuit standby power reduction techniques 
developed in [8], to make it handle indeterminate standby 
states. Simulation proves that compared to the regular design, 
it has significant standby power reduction, reasonable speed 
penalty, and negligible area overhead.  

TABLE I.  SIMULATION RESULTS 

   Transistor# TDD(ns) 
Energy/ 
Operation(pJ) 

Standby 
Power(nW) 

Enhanced BWMTNCL with indeterminate states reduction 118176  6.2  36  159.312 

Regular-Vt without  indeterminate states reduction 118158  4.9  37.5  5761.8 

All high-Vt with indeterminate states reduction 118176  9.3  35.3  129.096 

All high-Vt without indeterminate states reduction 118158  9.3  35.3  130.56 

All low-Vt with indeterminate states reduction 118176  4  34.5  13123.8 

All low-Vt without indeterminate states reduction 118158  4  34.5  13255.8 
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Abstract - Temperature is a dominant factor in the 
performance, reliability, and leakage power consumption of 
modern microprocessors. With the advance of technology, 
thermal problems in microprocessor design get more crucial 
due to power density of microprocessors. As a result, more 
researchers have investigated thermal-aware techniques 
considering many factors such as ambient temperature 1

Keywords: Microprocessor, On-chip Temperature, Thermal 
Management, Performance Evaluation, Dust 

and 
characteristics of an application, which affect on-chip 
temperature of microprocessors. In fact, there is much 
possibility that dust in a heat sink deteriorates thermal 
problems of microprocessors. However, the impact of dust on 
on-chip temperature has never been studied. In this paper, 
we show that a heat sink covered with dust increases on-chip 
temperature, ultimately leading to performance degradation. 
Our evaluation results show that the performance of the same 
DTM (Dynamic Thermal Management) scheme is decreased, 
when we use a heat sink covered with dust (compared to that 
when we use a clean heat sink). Therefore, we recommend 
that computer users should clean their heat sinks for better 
performance. 

 

1 Introduction 
  As process technology scales down, power density of 
microprocessors continuously increases leading to higher on-
chip temperature. Excessively high on-chip temperature of 
microprocessors in turn threatens timing stability and lifetime 
reliability, resulting in physical damages in the worst case. In 
addition to reliability, temperature is tightly related to 
performance, leakage power, and cooling cost; i) performance 
can be gracefully sacrificed to alleviate thermal problems, ii) 
leakage power can be reduced by the decreased temperature, 
since leakage power is more than linearly proportional to 

1 In this paper, ambient temperature denotes air temperature 
between processor and heat sink. Note that it is not room 
temperature. 

temperature, and iii) cooling cost is increased to reduce 
temperature. In modern microprocessor design, temperature 
has become one of the most crucial considerations. In the past, 
thermal problems were resolved in the device or circuit level, 
which is not enough in the current technology. Thus, 
architectural thermal management techniques such as DTM 
(Dynamic Thermal Management) [6] were proposed. 
Naturally, there has been a significant increase of thermal-
related publications in architectural conferences and journals. 
On the other hand, there are some factors to affect on-chip 
temperature of microprocessors in addition to on-chip power 
dissipation. Ambient temperature affects on-chip temperature 
of microprocessor, since it varies across applications 
depending on convective heat flux from heat sources such as 
HDD, DRAM, and so on. Additionally, dust in a heat sink 
also increases on-chip temperature by preventing a heat sink 
from dissipating heat flux. However, as far as we know, there 
has not been any study on the impact of dust on on-chip 
temperature. Since on-chip temperature of microprocessors is 

The Impact of Dust on On-chip Temperature 
And Performance of Microprocessors 

Ambient Temperature

On-chip Temperature

Dynamic Thermal 
Management (DTM)

Duration

Processor
Performance

Fig. 1. The effect of ambient temperature on performance 
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highly affected by dust in the heat sink, considering the 
impact of dust on on-chip temperature is crucial. Note that it 
is easy to find dust on the heat sink of running processors. In 
this paper, we analyze the impact of dust on on-chip 
temperature and performance.  
The rest of this paper is organized as follows. Section II 
explains previous work on architectural thermal management 
methods including architectural methodology to analyze the 
impact of ambient temperature. Section III describes 
experimental environments. Section IV analyzes the impact of 
dust on the heat sink on ambient temperature and performance. 
Section V concludes this paper. 
 
2 Previous Work 
 For thermal management of processors, various 
techniques have been proposed. One of them is the DTM 
technique which dynamically controls power dissipation of 
processors referring to on-die temperature from CMOS 
thermal sensors, while trying to minimize performance 
degradation. In [1], thermal control techniques, such as DVFS 
(Dynamic Voltage Frequency Scaling) and decode throttling, 
were proposed for DTM. In DVFS, the clock frequency is 
dynamically scaled along with the supply voltage to reduce 
processor power, resulting in on-chip temperature reduction. 
On the other hand, in decode throttling, processor core is 
throttled by restricting the flow of instructions for reducing 
power consumption and on-chip temperature. However, in 
their efforts, they did not consider the impact of ambient 
temperature on on-chip temperature. Recognizing the 
importance of ambient temperature on on-chip temperature 
variation, researchers have tried to propose systematic thermal 
management schemes to reflect ambient temperature that does 
change depending on applications. Choi et al. incorporated 
ambient temperature analysis capabilities with their simulation 
methodology based on the CFD (Computational Fluid 
Dynamics) simulation [12]. In [3], Jang et al. found that 
different ambient temperatures should be used to evaluate a 
thermal management technique for different applications. 
They also evaluated the impact of application-dependent 
ambient temperature on the thermal evaluation results, such as 
performance and leakage power. 
One can easily guess the effect of the dust in a heat sink on 
performance. Since dust in a heat sink deteriorates heat 
dissipation from a processor to outside, ambient temperature 
is increased; note ambient temperature represents air 
temperature between processor and heat spreader, not room 
temperature. The increased ambient temperature in turn leads 
to higher on-chip temperature, causing more frequent DTM 
invocations and eventually performance degradation, as 
shown in Fig. 1. Eventually, the dust degrades performance. 
Since computer users do not generally clean their computers, 
it is very probable that their heat sinks are covered with heavy 
dust. However, the effect of dust in a heat sink has never been 
quantitatively evaluated. In this paper, we analyze the impact 
of dust on on-chip temperature. 
 

3 Experimental Environments 
 In this paper, we investigate the impact of dust on on-
chip temperature by measuring ambient temperature that is 
not room temperature but air temperature between processor 
and heat spreader. If there is heavy dust in the heat sink, heat 
is not efficiently dissipated due to lowered heat dissipation 
capability of the heat sink. Naturally, ambient temperature 
between processor and heat spreader is increased. For 
measuring ambient temperature of the processor, we place off-
chip thermal sensors (SEN-AP002P from Koolance 
Corporation [7]) as shown in Fig. 2 for two different heat 
sinks (a heat sink covered with dust and a clean heat sink). 
We use the computer system equipped with the 45nm Intel 
Core2Duo processor typically consuming 35 watts [9], 2GB 
Hynix DDR3 synchronous DRAM with the maximum TDP 
(Thermal Design Power) of 4.3 watts [11], a Hitachi 320GB 
SATA HDD with the activate-state TDP of 2.2 watts [8], an 
Intel GM45 north bridge chipset, a printed circuit board 
(PCB), a finned heat sink, an exhaust fan, and un-powered 
devices. The Intel GM45 north bridge I/O chipset of 12.0 
watts [9] includes a graphic processing unit. For benchmark 
applications, we select ten applications from SPEC CPU2000 
benchmark suite [10]. 
Additionally, to investigate the impact of dust on processor 
performance, we evaluate the DTM duration ratio 2

[9]

 of the 
DTM schemes. We use the DVFS and stop-go (also known as 
global clock gating) schemes for DTM with the emergency 
temperature of 358K (85ºC) . For the DVFS scheme, the 
Core2Duo processor supports three voltage/frequency pairs of 
800, 1600, and 2533MHz that correspond to 0.95, 1.1, and 
1.25V supply voltage, respectively. However, to consider the 
imprecision caused by on-chip thermal sensors; random noise 
and potential [6], we conservatively set the DTM invocation 
temperature to 355K (83ºC). In case of the stop-go scheme, 
when the temperature of the processor reaches 357K (84ºC) 

2  DTM duration ratio = (accumulated time when DTM is 
invoked) / (total execution time) 

63:48
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Fig. 2. Off-chip thermal sensor placement  
to measure ambient temperature 

18 Int'l Conf. Computer Design |  CDES'11  |



[4], the processor is stalled for 10ms (doing nothing) by a 
thermal interrupt. When the temperature of the processor goes 
down below the threshold temperature, the processor resumes 
executions at the highest voltage/frequency pair. 

 

4 Experimental Results 
 Fig. 3 shows ambient temperature for ten applications 
from SPEC CPU2000 benchmark suite, where ambient 
temperatures for two different heat sinks (a heat sink covered 
with dust and a clean heat sink) are depicted. The dust 
prevents a heat sink from dissipating heat flux from 
processors. Thus, heat flux from the processor is not be 
transferred to the cooling fan resulting in an increase of 
ambient temperature. With the heat sink covered with dust, 
ambient temperature of the processor is increased by up to 6 
degrees, in case of vpr and crafty, since these applications 
consume large power over TDP with long execution time. In 
case of vortex, the ambient temperature is increased by 2 
degrees showing the smallest ambient temperature increase 
due to the short execution time. When the execution time is 
short, the effect of dust is not so noticeable since heat is not 
propagated to the heat sink. The applications of ambient 
temperatures, which have very long execution time and large 
power consumption as much as the TDP, are increased over 3 

degrees in parser, mgrid, facerec, and sixtrack. On average, 
ambient temperature of the processor is increased by 4 
degrees due to the dust. The increased ambient temperature 
also leads to an on-chip temperature increase and the 
increased on-chip temperature of the processor in turn 
degrades performance. When the ambient temperature 
difference is 4.5, 1.1, and 2.6 degrees, on-chip temperature 
difference is 3.5, 0.7, and 2.0 degrees, on average, 
respectively for SPEC CPU2000 benchmark suite.  
We estimate the performance differences of the processor with 
a dusty heat sink compared to that with a clean heat sink. 
Table 1 represents the DTM duration ratio and execution time 
for two DTM schemes (DVFS and stop-go) with different on-
chip temperature, which are obtained from [3]; they ran all the 
applications from SPEC CPU2000 benchmark suite. When the 
difference of on-chip temperature ranges from 3 to 4 degree, 
the DTM duration ratio of the processor varies from 0% to 
6.91% in both of DTM schemes, which is directly affected by 
on-chip temperature. The execution time of the DVFS scheme 
and stop-go scheme varies from 0.35% to 5.4% and from 
0.67% to 9.77%, respectively. As ambient temperature 
difference is increased leading to on-chip temperature 
difference, the DTM duration ratio of the processor is 
increased, which it also increases execution time. In other 
words, the DTM technique frequently lowers the DVFS level 
to reduce the temperature of the processor below emergency 

 
Fig. 3. Ambient temperature comparison. 

 
Table 1. The impact of on-chip temperature variation on performance of the processor 

 
On-chip 

Temperature 
Difference 

DTM Duration Ratio Variation Execution Time Variation 
DVFS 

Scheme 
Stop-go 
Scheme 

DVFS 
Scheme 

Stop-go 
Scheme 

0 ~ 1 degrees 0% ~ 0.08% 0% ~ 0.08% 0% ~ 9.88% 0.03% ~ 2.71% 

1 ~ 2 degrees 0.11%~ 32.32% 0% ~ 2.66% 0.08%~ 3.96% 0.15% ~ 5.31% 

2 ~ 3 degrees 0.24% ~ 0.28% 0.64% ~ 1.69% 0.24% ~ 0.5% 1.09% ~ 2.62% 

3 ~ 4 degrees 0% ~ 6.91% 0% ~ 4.85% 0.35% ~ 5.4% 0.67% ~ 9.77% 

Over 4 degrees 0.03% ~ 77.5% 0.02% ~ 25.74% 0.22% ~ 54.66% 0.02% ~ 73.88% 
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temperature, resulting in longer execution time. From 
evaluation results, we can know that the dust affects on-chip 
temperature variation and performance results which are not 
so small to be ignored. 
 
5 Conclusion 

In conventional thermal researches, on-chip temperature 
and performance have been evaluated without consideration 
of application/system dependent ambient temperature. 
Recently, there was a study to consider different ambient 
temperatures when evaluating different applications. 
However, there has not been any quantitative study to 
evaluate the impact of the dust in a heat sink on on-chip 
temperature, though the dust definitely deteriorates heat 
dissipation efficiency. In this paper, we found that the dust 
that has been ignored by computer users may deteriorate 
performance by up to 73.9%. Hence, we recommend that 
future computer users should remove the dust that is in their 
heat sinks for better performance. 
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Abstract— Cache management is one of the key factors that
affect the performance of present day Chip Multi-Processors.
The main aspects that govern the cache management are the
access latency and the cache space utilization. This paper
proposes 3-chance clustered caching cache management
scheme in NoC based multi-core systems, where it targets
to address both the issues. The L2 banks are formed into
a cluster and are non inclusive. The cache management
policy concentrates on increasing the life time of a cache
block by giving up to 3 chances by rotation of data among
the L2 banks and clustering keeps the data close to the
processors thereby decreasing the access latency. The caches
act as non-inclusive for increasing the cache space, which
increases the access latency but is reduced by 2 level
directory protocol implemented for cache coherence and
cache clustering. The evicted L1 cache bocks are stored in
the Cluster home L2 bank and the evicted L2 cache blocks
follow the 3-Chance rotation algorithm. Experimental results
based on full-system simulation show that for 16 core 2D-
MESH the scheme increases the performance by 9 ∼ 15%.

Keywords: Cache coherence; Clustering; Cached block lifetime;
Performance; Victim rotation

1. Introduction
The number of processors residing in the CMPs is increas-

ing day by day. Instead of complex processors more number
of simple processors are placed on the chip. IBM introduced
Power 6 [1] processor with dual high performance cores and
Niagara 2 [2] by Sun Microsystems with 8 SPARC cores
each supporting 8 hardware threads all on a single chip.
This increase in number of processors arises new challenges
for computer architects mainly the cache management and
the interconnection network for communication. Network-
on-Chip is an effective solution for interconnection. This
paper addresses the cache management in NoC based multi-
core systems.

Many cache management schemes have been proposed
and the basic ideas are the Private and Shared Schemes. In
a CMP the chip consists of tiles where in each tile there
resides a processor with L1 cache and an L2 bank along
with the Directory for cache coherence and off-chip memory

accesses. In private scheme the L2 cache is private and can
be accesses by its own processor, whereas in shared scheme
the L2 banks are distributed. In both the cases the L2 banks
are inclusive. The factors which affect the performance of the
CMPs are the memory access latency and the available cache
space. The private scheme even though reduces the access
latency, it suffers in the cache space utilization. The number
of copies of a shared data can be more thereby reducing
the effective cache space. The shared scheme provides high
cache space utilization by distributed L2 banks as only one
copy of shared data is present, but suffers in access latency
as the L2 bank which contains the data can be far away.
The shared scheme is also known as Non-Uniform Cache
Architecture (NUCA) [3], [4].

The cache management scheme proposed in this paper
tries to balance these two factors and mainly concentrates on
increasing the life time of a data block on the chip and tries
to reduce the access latency by clustering and keeping the
data inside the cluster. For cluster of size (N+1) we can have
a N-chance scheme. In this paper we experiment on clusters
of size 4 and hence we have a 3-chance scheme. The 3-
Chance Clustered Caching scheme can be divided as follows

• Forming of Clusters
• Storing of L1 evicted cache blocks in Cluster Home L2
• Rotation of L2 evicted cache blocks
• 2-Level Directory Protocol for Cache Coherence

The rest of the paper is organized as follows. The fol-
lowing section explains the previous proposed designs and
identified draw backs. Section 3 introduces the 3-Chance
Clustered Caching scheme and Section 4 experimental re-
sults and Section 5 future work and the last section deals
with the conclusion.

2. Related Work
Many cache management policies have been proposed

in the recent years trying to balance the factors (latency
and cache capacity). In [5] they divide 16 tiles into four
groups where each group contains four tiles with four L2
banks. The four L2 banks are in shared scheme and the
distributed directories control the cache coherence through
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query messages. By this the access latency is reduced as
the L2 is nearby in the cluster. When the data block is
already present in some L1 cache within the cluster then
a new L1 miss request for that block can be redirected to
the L1 cache in the cluster having the data closer to the
requestor than wasting the L2 cache space. Non inclusive
L2 caches are better than inclusive in a cluster as the access
latency would be the same and effective L2 capacity is more
in non inclusive. Detailed explanation will be given in next
section.

In [6], [7] and [8] the evicted L1 cache blocks called
victims are removed and are stored in the L2 bank of the
same tile and these blocks are called replicas. The hybrid
scheme which combines the private and shared scheme lacks
in localization i.e. the replica created can only be accessed
by its own processor but not by nearby cores and these cores
have to again get it from the global L2 bank(which may be
far away). This can be avoided by clustering and localizing,
the evicted L1 blocks are sent to the L2 banks in the cluster
which can be accessed by all the processors in the cluster.

In [9] the L2 banks are private to start with but become
shared due to spilling of data. The evicted L2 cache blocks
are spilled onto neighbor L2 bank thereby increasing the life
time of the cache block but this could not be scaled as the
number of processors increase and the cache coherence en-
gine is an overhead. This can be removed through clustering
where in each cluster the spilling of data is done for evicted
L2 cache blocks to increase their life time. For the cache
clustering to work the directory has to be 2-level one for
intra cluster and other inter cluster queries.

In [10] [11] the processors are divided into clusters
where each cluster has a L2 cache bank and directory which
maintains the information about that cluster and another sits
near the shared main memory which maintains information
about all the clusters. A variant of this scheme is used in our
scheme where a directory sits on each tile. It is elaborately
discussed in the next section. Such a scheme reduces the
access latency as the clusters information is within the cluster
at cluster home directory.

In [12] where each processor has its own cache dimension
and depending on it the number of L2 banks it can access
vary dynamically. A mapping function is used at each L1
for sending query messages to L2 cache depending on the
cache dimension of that core the L1 belongs and if none of
the L2 has it the directory is contacted as other processors
might have already brought the data. The number of shared
data copies on the chip will increase thereby decreasing the
overall cache capacity, and if a neighbor L1 has the data,
requestor has to wait for the directory to respond which adds
up a lot to the access latency. The next section explains the
3-Chance Clustered Caching scheme and how it overcomes
the drawbacks of the previous designs as discussed earlier.

3. 3-Chance Clustered Caching
3.1 Non Inclusive Formation of Clusters

Before going into the Cluster formation the architecture
of the CMP is explained. Fig: 1 shows the architecture of the
[13] 2D-MESH 16-tile CMP model. Tiled CMP architectures
can scale well as the number of processors increase. The
architecture employs a 2D mesh switched network, and each
tile is connected to the 2D mesh network via the router
attached to each tile. Fig: 1(b) shows the inside of a tile
which contains a processor, a dedicated L1 cache, a L2
bank and a Directory which serves its purpose for coherence
between the caches and for off chip memory accesses. The
cache controllers of L1, L2 and Directory communicate via
the NoC fabric through messages for data transfer as well
as for coherence requests. The MESH network employs XY
routing algorithm [14].

Fig. 1: (a) Clusters formed in a 16-core Tiled CMP (b)
Architecture inside a tile

The 16 tiles are divided into four clusters and each cluster
containing four cores. In a cluster the L2 act as non inclusive
caches, where either one L2 has a data or any L1 has
the data. The advantage of this policy is increase in the
effective cache capacity of a cluster than [5] but comes
with a disadvantage of access latency for example some
L1 in the cluster has already cached the block and if an
L1 requests for the same block none of the L2 banks will
have the cache block because of the non inclusiveness. If the
information regarding the L1 data is kept within the cluster
at the directory then the directory will forward the request
to the nearest L1 having the cache block thereby effectively
reducing the overhead latency due to the non inclusiveness.
As L1 hit time is much less than the L2 it further reduces
the access latency caused by forwarding. The aim of the 3-
Chance Clustered Caching is to increase the life time of a
cache block as explained below.
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3.2 L1 evicted Cache Blocks
If an L1 evicts a cache block and if it is the only copy

left in the cluster instead of completely removing it from
the cluster it is stored in the Cluster Home L2. This way the
life time of a unique cache block is increased. The addresses
are mapped across the L2 banks and the Cluster Home L2
is the L2 bank that maps to that address. Here the stored
cache block in the Cluster Home L2 can be reused again by
any core in the cluster i.e. the evicted L1 block is localized
in the cluster and is not private to any core which is in the
case of [6].

This way the number of shared copies in the cluster will
always remain to the minimum thereby increasing the cache
capacity yet attending to the access latency by the 2-Level
Directory.

3.3 L2 evicted Cache Blocks
Every cache block in the L2 bank in the cluster is unique

data block and is not present in any other cache in the cluster.
So when a L2 eviction occurs the life time of the block can
still be increased by forwarding the evicted cache block to
neighbor L2 bank in the cluster in some order. We move the
block in clockwise manner. This block can also be evicted
from neighbouring L2 in future and thus rotated again until
the cache block is given 3 chances, beyond that the cache
block is evicted from the cluster. The 3-Chance rotation
algorithm is variant of [15] where the value of N in N-
chance algorithm is set to 1. After the last chance the data
block is been sent to the Cluster Home Directory where it
is written to the main memory if needed.

3.4 2-Level Directory Protocol
Every directory acts as a Cluster Home Directory (CHD)

and Global Home Directory (GHD). The address space is
mapped across the four directories in a cluster acting them
as Cluster Home Directory to maintain coherence and for
forwarding of data requests inside a cluster. Also the address
space is mapped across the 16 directories on the chip which
makes each directory Global Directory which maintains
coherence across the clusters. Every entry in Directory can
be a Cluster, Global or both thereby every entry in the
directory has to accommodate for both the information. Fig 2
shows an entry in a directory.

Fig. 2: An entry in the directory containing both cluster and
global information of a data block.

The four L1 bits tells the information of L1s having the
data in the cluster and L2 bit tells that the data is in some

L2 bank in the cluster and the remaining three cluster bits
is for Global information telling which other clusters have
data.

When a L1 read miss occurs 5 query requests are sent,
4 to all the L2 banks in the cluster and one to the cluster
home directory. If any L2 bank has data it sends the data
and invalidates itself for non inclusiveness and if no L2 bank
has the data it either means that any L1 has the data or there
is no data in the cluster Fig 3.

Fig. 3: Query request messages 1 are sent to the 4 L2 banks
and CHD by requestor L1 for a particular address B which
maps to that CHD. Response message 2 to the requestor L1
from a L2 bank having the data.

The Cluster Home Directory comes to know whether any
L2 bank has the data or not. It forwards the request to the
closest L1 cache near the requestor having the data if the
cache block is present in any L1s of the cluster Fig 4.

Fig. 4: If L2s dont have the data and some L1 in the cluster
has, data request message 1 sent to the CHD is forwarded
to the nearest sharer 2, and data response message 3 is sent
by the L1 having the data.

If there is no data in the cluster the CHD forwards the
request to the GHD if some other cluster has already brought
the data. In that case the GHD searches the cluster bits and
forwards the request to the closest CHD that contains the
data and thereby the data is sent to the requestor. If there
is no data present in any of the cluster the GHD makes an
off-chip memory access and sends the data to the requestor
updating the cluster bits Fig 5.
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Fig. 5: If there is no data in the cluster the data request
message 1 is forwarded to the GHD 2, and if some cluster
has the data block the GHD forwards the request message
3 to the CHD of the cluster having the data which forwards
4 to the member of the cluster havind data and finally data
response message 5 is sent to the requestor.

If an eviction comes in the Directory entry preference is
given to the Global entries than the local cluster ones. Due to
3-Chance rotation extra query request messages are required
for other L2 bank as the data block can be present in any one
of the L2 bank. This increases the network traffic which is
an overhead but it increases the performance by increasing
the life time of a cache block. The experimental setup and
the results of the 3-Chance Clustered Caching are shown in
the next section.

4. Experimental Evaluation

4.1 Setup

In this paper we ran shared memory benchmarks on multi-
core simulator GEMS [16]. GEMS uses an existing full-
system functional simulation infrastructure Simics [17] as
the basis to build a set of timing simulator modules for mod-
eling the timing of memory systems and microprocessors.
Table lists the configurations of the processor, cache and
memory used.

Component Parameters
Processor UtraSPARCIII+

L1 I/D cache 64KB, 4-way, 3 cycles
L2 cache bank 2MB, 4-way, 12 cycles
Memory bank 1GB, 4KB/page, 158 cycles

distributed directory 52KB, 6 cycles

We used [18] Princetons Garnet network simulator to
simulate on-chip networks which calculate the latencies
of accessing L1, L2banks and directories. GEMS generate
practical traffics and simulate these on Garnet. Garnets fixed
pipeline model is used which models the pipeline routers and
its parameters are listed in the table below.

Network Configuration Parameters
Flit Size 16 bytes

Buffer Size 4
Pipeline Stage 5-stage

VCs per virtual network 4
Number of virtual networks 5

For evaluation of the energy consumption Orion [19] is
used, it is integrated with Garnet to evaluate network energy
consumption by the routers, switches etc using 100nm tech-
nology. Shared memory benchmarks from SPLASH2 suite
[20] are used in our experiment and their parameters are
listed below.

Benchmarks(transactions) Environment
Ocean 514 x 514 grid
Barnes 64K particles
Water 512 molecules
Fmm 16384 particles

4.2 Evaluation
As can be seen from the graph below that shows the per-

formance improvement of the 3-Chance Clustered Caching
over Shared L2 bank scheme, the improvement is 9 ∼ 15%.
The reasons as explained earlier are that the increase in
life time of the data block by non inclusive L2 banks and
3-chance rotation and reducing the access latency through
clustering thereby keeping the cache block nearer to the
requestor.

Fig. 6: Performance comparisons between Shared L2
Scheme and 3-Chance Clustred Caching for 16-node 2D-
MESH CMP

The below graph shows the energy consumption and the 3-
Chance Clustered Caching consumes 19 ∼ 34% more energy
than the Shared L2 bank scheme and this can be explained
due to the overhead of extra query messages sent to the L2
banks and forwarding of requests by the CHD.
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Fig. 7: Energy Consumption comparisons between Shared
L2 Scheme and 3-Chance Clustred Caching for 16-node 2D-
MESH CMP

5. Conclusions

For the upcoming CMPs cache management plays a key
role in its performance. Its main goals are to reduce the
access latency and to increase the effective cache capacity.
Increase in the life time of a cached data block reduces
costly off-chip memory access and non inclusiveness of L2
banks increases the cache capacity. We propose 3-Chance
Clustered caching scheme which aims at the above two
and ultimately reducing the access latency and increasing
the cache capacity. The main principle of this scheme is to
keep the data block within the cluster as long as possible.
For this the evicted L1 cache blocks are stored in the
cluster home L2 thereby localizing the data and making
it accessible to other cores and rotating the L2 evicted
data blocks using 3-chance algorithm. For this to happen a
directory at cluster level and at global level is required and
a 2 level directory is implemented which takes care of the
query requests and the coherence issues of the caches. The
experiment results show that the proposed scheme shows
increase in the performance by 9 ∼ 15% compared with
Shared L2 bank scheme.

Due to increase in the query messages because of the
rotation of data there is an overhead in the energy
consumption and the new scheme increases the energy
consumption by 19 ∼ 34% Since the overheads of
communications inside cache cluster play hinders the
performance of the CMP our future work focuses on
decreasing the query messages and also supporting n-
chance rotation (intra cluster and inter cluster rotation)
of L2 evicted data blocks further thereby clusters unused
cache space can be utilized more efficiently.
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Abstract— This paper investigates the problem of synchro-
nization between the Chen-Lee and Lorenz chaotic systems.
Based on the Lyapunov stability theory and active control
method, an effective controller is designed for asymptotic
stability of the null solution of an error dynamics between
master and slave chaotic systems. In order to verify the
effectiveness of proposed control scheme, the computer sim-
ulation via Matlab software is applied to the Chen-Lee
and Lorenz chaotic systems. Then, the realization model
of the Chen-Lee and Lorenz chaotic systems is revised for
electronic circuit simulation. Finally, the circuit simulation
via NI (National Instruments) Multisim is performed to
confirm the efficiency of our results.

Keywords: Chen-Lee chaotic system, Lorenz chaotic system,
Chaos synchronization, Lyapunov method, Circuit analysis.

1. Introduction
Synchronization of one system with another is very impor-

tant process in the control of complex physical, chemical and
biological systems as well as engineering. Therefore, many
researchers have focused on this topic and developed several
efficient synchronization techniques for various dynamic
systems including chaotic systems, which are very sensitive
to variations in the parameters and initial conditions. Since
Pecora and Carroll [1] introduced the concept of synchro-
nization in chaotic systems, the study of chaos synchro-
nization has received increasing interest from scientists and
engineers. It makes very big issue in nonlinear society. Up to
date, not only various applications of chaos synchronization
[2-7] but also diverse methods for control of the chaos
synchronization have been introduced [8-10]. Originally,
the chaos synchronization refers to the state in which the
master (or drive) and the slave (or response) systems have
precisely identical trajectories for time to infinity. We usually
regard such a synchronization as complete synchronization
or identical synchronization.
During the last several years, for more practical and real
applications, the investigation of synchronization between
different chaotic systems has been researched. For example,
Yassen [11] studied the synchronization problem of different
unified chaotic systems such as Lorenz-Chen, Lorenz-Lü

and Lü-Chen. Park [12] proposed a method to synchronize
between Genesio-Tesi and Rössler chaotic systems. In more
development point of view, Huang [13] studied the chaos
synchronization between hyperchaotic Lorenz system and
hyperchaotic Lü system which has more complicated chaotic
behavior and more than four Lyapunov exponent. By the
way, when the mathematical model of chaotic system is
implemented to electronic circuit, some adjustment due to
difference of time scale between the mathematical model and
electronic circuit model is sure to conduct. However, this is
not easy job. Hence, that’s why the numerical simulations
are only provided to verify their synchronization algorithms
without circuit simulation in most of literatures.
In addition, most of chaos circuit analysis dealt with only
Chua’s circuit and single chaos system which are a sim-
ple electronic circuit that exhibits chaotic behavior [14-
17]. Sometimes, even though the circuit analysis for chaos
synchronization is conducted, these researches only deal
with two identical chaotic systems not different chaotic
systems. For example, Cuomo et al. [18] and Lian et al.
[19] presented a solution to the synchronization problem
for identical Lorenz systems. They used transformed Lorenz
equation because of some errors between theoretical system
and practical system. In [20], Du et al. investigated the
synchronization of Qi hyperchaotic master and slave systems
with parameters mismatch using high order differentiator.
Also, Xiao et al. [21] studied the synchronization problem
between two identical Van der Pol oscillators using adaptive
control method.
As is well-known, some difference between theoretical sys-
tem parameters and practical system parameters exists. So, it
is difficult and significant to materialize theoretical system to
real one. In addition, the electrical circuit simulation of dif-
ferent chaotic systems have more complicated problems such
as readjustment of time range or difference of limitation in
power supply and electronic device and so on. Therefore, in
this paper, the synchronization scheme between the revised
practical Chen-Lee chaotic master system and the revised
practical Lorenz chaotic slave system will be showed by
applying our control law via NI Multisim. To the best of
authors’ knowledge, this is the first circuit analysis between
different chaotic systems.
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This paper is organized as follows. In Section 2, system
description is given. In Section 3, the theoretical synchro-
nization scheme between Chen-Lee and Lorenz chaotic
systems is illustrated. In Section 4, a numerical simulation
via Matlab is given to demonstrate the effectiveness of the
proposed control method. In Section 5, the electronic circuit
implementations are presented to show real applications of
the method. Finally, some conclusions are given in Section
6.

2. System description
Consider the following master (drive) and slave (response)

chaotic systems

ẋ(t) = f(t, x), (1)
ẏ(t) = g(t, y) + u(t, x, y), (2)

where x(t) = (x1, x2, . . . , xn)
T ∈ Rn and y(t) =

(y1, y2, . . . , yn)
T ∈ Rn are master and slave state vectors,

respectively, f : R × Rn → Rn and g : R × Rn → Rn

are continuous nonlinear vector functions and u(t, x, y) =
(u1, u2, . . . , un)

T ∈ Rn is the control input for synchroniza-
tion between master (1) and slave system (2).
As previously stated, we deal with the Chen-Lee master sys-
tem and Lorenz slave system for synchronization problem.

Now let us consider following Chen-Lee master chaotic
system

ẋ1(t) = ax1(t)− x2(t)x3(t)

ẋ2(t) = −bx2(t) + x1(t)x3(t)

ẋ3(t) = −cx3(t) +
1

3
x1(t)x2(t), (3)

where a = 5, b = 10, c = 3.8.
In order to see chaotic motion of the system (3), let us take
an initial condition x(0) = (−5,−7,−10)T . Then, Fig. 1
shows chaotic behavior of Chen-Lee system.
Next, the Lorenz chaotic systems as slave system is given
as follows

ẏ1(t) = a1(y2(t)− y1(t)) + u1(t)

ẏ2(t) = b1y1(t)− y1(t)y3(t)− y2(t) + u2(t)

ẏ3(t) = y1(t)y2(t)− c1y3(t) + u3(t), (4)

where a1 = 10, b1 = 28, c1 = 8/3.
The chaotic behavior of system (4) with an initial condition
y(0) = (0,−1,−1)T is presented in Fig. 2.

3. Synchronization between the Chen-
Lee and Lorenz systems

In this section, we design control law for achieving
synchronization between the Chen-Lee and Lorenz systems.

Definition 1. It is said that synchronization occurs
between master system (1) and slave system (2) such that

limt→∞ ∥yi(t)− xi(t)∥ = 0, (i = 1, 2, 3).

Now, for our synchronization scheme, let us define
error signals between the Chen-Lee chaotic system and
Lorenz chaotic system in the sense of Definition 1 as

e1(t) = y1(t)− x1(t)

e2(t) = y2(t)− x2(t)

e3(t) = y3(t)− x3(t). (5)

The time derivative of error signal (5) is

ė1(t) = ẏ1(t)− ẋ1(t)

ė2(t) = ẏ2(t)− ẋ2(t)

ė3(t) = ẏ3(t)− ẋ3(t). (6)

By substituting (3) and (4) into (6), we have the following
error dynamics

ė1 = a1y2 − a1y1 + x2x3 − ax1 + u1

= −a1e1 − (a1 + a)x1 + a1y2 + x2x3 + u1

ė2 = b1y1 − y1y3 − y2 − x1x3 + bx2 + u2

= −be2 + (b− 1)y2 + b1y1 − y1y3 − x1x3 + u2

ė3 = y1y2 − c1y3 −
1

3
x1x2 + cx3 + u3

= −c1e3 + (c− c1)y3 + y1y2 −
1

3
x1x2 + u3. (7)

Here, our goal is to achieve synchronization between
the Chen-Lee and Lorenz systems. For this end, the
following theorem shows that chaotic systems (3) and (4)
can be synchronized effectively by the following designed
controller.

Theorem 1. Chaotic Chen-Lee system (3) and Lorenz
system (4) can be synchronized asymptotically for any
different initial conditions with the following controller:

u1 = −x2(t)x3(t)− a1y2(t) + (a1 + a)x1(t)

u2 = y1(t)y3(t) + x1(t)x3(t)− b1y1(t)− (b− 1)y2(t)

u3 = −y1(t)y2(t) +
1

3
x1(t)x2(t)− (c− c1)y3(t). (8)

Proof. Let us take the following Lyapunov function candi-
date

V =
1

2
(e21 + e22 + e23). (9)

By differentiating Eq. (9), we get

V̇ = e1ė1 + e2ė2 + e3ė3. (10)
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By applying our controller (8) and error dynamics (7) to Eq.
(10), we obtain

V̇ = e1
(
−a1e1 − (a1 + a)x1 + a1y2 + x2x3 + u1

)
e2
(
−be2 + (b− 1)y2 + b1y1 − y1y3 − x1x3 + u2

)
e3
(
−c1e3 + (c− c1)y3 + y1y2 −

1

3
x1x2 + u3

)
= −a1e1 − be2 − c1e3

= −

 e1
e2
e3

T  10 0 0
0 10 0
0 0 8

3

 e1
e2
e3


≡ −eTPe < 0, (11)

which guarantees the stability of error systems in the sense
of Lyapunov theory. This implies that the error signals satisfy
limt→∞ ∥ei(t)∥ = 0 (i = 1, 2, 3). This completes the proof.
�

4. Numerical simulation
In order to demonstrate the validity of proposed ideas, nu-

merical simulation via Matlab software is presented. Fourth-
order Runge-Kutta method with sampling time 0.001[sec] is
used to solve the system of differential equations (3) and
(4).
The system parameters are used by a = 5, b = 10, c =
3.8, a1 = 10, b1 = 28, c1 = 8/3 in numerical simulation.
The initial conditions for master and slave system are given
by x(0) = (−5,−7,−10)T and y(0) = (0,−1,−1)T ,
respectively. Fig. 3 shows that error signals go to zero
asymptotically. It means synchronization occurs between
state of xi(t) and state of yi(t), (i = 1, 2, 3).
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5. Circuit design and analysis
In this section, we present circuit design and analysis

for proposed synchronization scheme. As previously stated,
chaotic systems have some errors between theoretical system
parameters and practical system parameters. So we will
conduct some process for elimination of these errors.

5.1 Chen-Lee circuit
For the circuit design of mathematical dynamic model (3),

we use transformed Chen-Lee chaotic system because of
some problems. Based on electronic circuit of Eq.(3), the
range of state variables is over the limit of power supply. So,
the reasonable transformation is to multiply 10 by nonlinear
term.
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Fig. 4: Comparing with original Chen-Lee and modified
Chen-Lee systems

Consider the following transformed Chen-Lee equations

ẋ1(t) = ax1(t)− 10x2(t)x3(t)

ẋ2(t) = −bx2(t) + 10x1(t)x3(t)

ẋ3(t) = −cx3(t) +
10

3
x1(t)x2(t), (12)

where a = 5, b = 10, c = 3.8.
This system can be more easily operated with analog circuit
because all the state variables gave similar dynamic range
and circuit voltages remain well within the range of typical
power supply limits. In order to present effect of previous
process, Fig. 4 is given which shows phase to phase portrait
of original Chen-Lee system (3) and modified Chen-Lee
system (12) of x1 − x2, x1 − x3, x2 − x3 respectively. In
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Fig. 4, we can note that the state value of modified Chen-
Lee system (12) is similar the state value of original Chen-
Lee system (3) divided by 10 but inherent chaotic behavior
is not changed. It means we can use the transformed Chen-
Lee system (12) for our synchronization scheme because this
process keep the range of state variables less than the limit
of electronic device and transformed equations behave same
chaotic motions. The analog circuit of transformed Chen-Lee
Eq.(12) is shown in Fig. 5.
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The electrical equations of the circuit are given by

ẋ1 =
1

R4C1

(R3

R1
x1 −

R3R10

R2R9
x2x3

)
ẋ2 =

1

R8C2

(
−R7R10

R5R9
x2 +

R7

R6
x1x3

)
ẋ3 =

1

R14C3

(
−R13R16

R11R15
x3 +

R13

R12
x1x2

)
, (13)

where we can note that Eq.(13) is equivalent to Eq.(12)
after some calculation and applying the required electrical
parameters such as: R2, R5, R6 = 10kΩ; R1 = 20kΩ;
R4, R8, R14 = 1MΩ; R3, R7, R9, R10, R11, R13, R15 =
100kΩ; R12 = 30kΩ; R16 = 380kΩ; Ci = 1µF, (i =
1, 2, 3). The operational amplifiers are considered to be ideal,
the time step is 0.001 [s] and the initial condition of master
circuit is x(0) = (0.02, 0.02, 0.02) [V]. Fig. 6 displays phase
to phase portrait of master system of x1 − x2, x1 − x3,
x2−x3, respectively, in left side and time to state x1, x2, x3,
respectively, in right side.

Fig. 6: Chaotic phase of Chen-Lee system

5.2 Lorenz circuit

As the same reason, we transformed Lorenz chaotic
system(4) into following equations

ẏ1(t) = a1(y2(t)− y1(t))

ẏ2(t) = b1y1(t)− 20y1(t)y3(t)− y2(t)

ẏ3(t) = 20y1(t)y2(t)− c1y3(t), (14)

where a1 = 10, b1 = 28, c1 = 8/3.
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Fig. 7: Comparing with original Lorenz and modified Lorenz
systems

As comparing with Eq.(4), the transformed equation is
changed nonlinear terms which are multiplied by 20. Fig. 7
displays phase to phase portrait of original Lorenz system
(4) and modified Lorenz system (14) of x1 − x2, x1 − x3,
x2 − x3 respectively. Like the preceding, we can note that
the state value of modified Lorenz system (14) is similar the
state value of original Lorenz system (4) divided by 20. But
we can also know inherent chaotic behavior is not changed.
The analog circuit of transformed Lorenz equation (14) is
shown in Fig. 8.
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The electrical equations of the circuit are given by

ẏ1 =
1

R5C1

(R4

R1
y2 −

R3

R2 +R3

(
1 +

R4

R1

)
y1

)
ẏ2 =

1

R13C2

(R12

R11
y1 −

R12R9

R10R8
y2 −

R12R9

R10R7
y1y3

)
ẏ3 =

1

R18C3

(R17

R16
y1y2 −

R17R14

R15R6
y3

)
, (15)

where we can note that Eq.(15) is equivalent to Eq.(14)
after rescaling time by a factor of 100. And the required
electrical parameters are as following: R1, R2, R11 = 10kΩ;
R3, R4, R8, R9, R15, R17 = 100kΩ; R5, R13, R18 = 1MΩ;
R6 = 300kΩ; R7, R16 = 5kΩ; R10, R12 = 280kΩ; R14 =
800kΩ; Ci = 1µF, (i = 1, 2, 3). The operational amplifiers
are considered to be ideal, the time step is 0.001 [s] and the
initial condition of master circuit is x(0) = (0.01, 0.01, 0.01)
[V]. Fig. 9 displays phase to phase of master system of
y1 − y2, y1 − y3, y2 − y3, respectively, in left side and time
to state y1, y2, y3, respectively, in right side.
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Fig. 8: The circuit of Lorenz system

Fig. 9: Chaotic phase of Lorenz system

5.3 Synchronization circuit
As transforming Eqs. (3) and (4) to Eqs.(12) and (14),

respectively, the control inputs of Theorem 1. should be also
changed as follows:

u1 = −10x2x3 − a1y2 + (a1 + a)x1

u2 = 20y1y3 + 10x1x3 − b1y1 − (b− 1)y2

u3 = −20y1y2 +
10

3
x1x2 − (c− c1)y3. (16)

Fig. 10: Simulation results without control

To show the effect of control input, first of all, we run
the circuit without control inputs. Fig. 10 displays phase to
phase and time to phase portraits of master and slave systems
for this case. One can see that the errors do not approach to
zero as expected since the control inputs are not applied.

Finally, the circuit of the whole synchronizing system
is given in Fig. 11. The circuit consists of three parts:
master systems, slave systems, and controllers. Then, Fig.
12 displays that synchronization between Chen-Lee chaotic
system and Lorenz chaotic system is achieved by control
inputs as expected.

6. Conclusion
In this paper, we have investigated the synchronization

problem for the Chen-Lee and Lorenz chaotic systems. Our
proposed control scheme is verified by numerical simula-
tion of the system. It should be noted that we included
circuit analysis for the synchronization between the different
chaotic systems for the first time.
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Abstract— Reversible logic is an emerging research area
and is a promising technology for the next generation of
computers. The focus of this paper is improving the design
of a multiplier that can be part of any future reversible
computer. In this paper, we propose an improvement to
the manner in which partial products are generated that
improves the efficiency of implementation using repetition
codes. The final implementation reduces the total number of
gates, constant inputs, garbage outputs, and quantum cost
over other proposed models.

Index Terms— Reversible logic, multiplier, quantum
cost.

1. Introduction
Modern logic circuits offer a great deal of computing

power in a small footprint. As technology evolves and many
more transistors can fit in a given area, the concern for power
dissipation as heat arises. Landauer has shown in [1] that for
every erased bit at leastkT log

2
J of energy are lost, where

k is Boltzmann’s constant,T is the circuit temperature in
degrees Kelvin. Also, according to Moore’s law, the number
of transistor elements doubles roughly every two years and if
this trend continues to hold, in the near future more and more
energy will be lost due to bit erasures and cooling than doing
computations. Bennett has shown in [2] that this problem
could be avoided if reversible logic is used. In reversible
logic computations, there are no bit erasures and energy is
conserved, thus no heat is dissipated. In order to be able to
have reversible logic computations a new set of gates are
required. Reversible gates are gates that have a one-to-one
and onto relationship between inputs and outputs, that is they
are bijective.

A relatively large number of reversible gates and circuits
using these gates have been proposed. Some other consider-
ations include reducing the number of constant input lines
(CI), number of quantum gates, and quantum cost (QC).
Quantum cost is defined as the number of quantum gate
primitives (1 × 1 or 2 × 2 gates) required to construct a
given circuit. For example, the quantum cost of the CNOT
gate is 1, Toffoli gate is 5, etc.

Multiplier circuits are of particular interest because they
are used in a wide variety of computing applications. Several
reversible multiplier designs have been proposed aimed at
decreasing the costs explained above and this paper aims at
decreasing those costs even further.

The rest of the paper is organized as follows: Section 2
gives a brief introduction to the reversible gates used in this
paper and previous reversible multiplier designs. Section 3
describes the proposed design in detail. Section 4 shows the
results of circuit simulation and compares them with other
implementations, and Section 5 concludes the paper.

2. Background
Several reversible logic gates have been proposed, ranging

from a simple inverter (NOT gate) to4 × 4 full adders.
Some of the gates were specifically designed for certain tasks
(adders, etc) and other were designed as general-purpose
gates (Peres, Toffoli, etc).

A few reversible multiplier designs were proposed in [3],
[6]–[9], but their total costs do not appear to be minimal.
In [9] the authors have introduced a new gate (TSG gate)
and constructed a reversible multiplier using it. In [6]–
[8], multipliers were proposed using new gates (i.e. MKG,
HNG, and PFAG respectively) with different total costs.
The proposed gates have different quantum costs in their
implementations, so some of the multipliers were more
efficient than others. All the gates above are4×4 gates that
can act as full adders and are a few of the many possible
variations to achieve the given functionality on a4 × 4

gate. Lastly, in [3], another design was proposed that used
a Double-Peres Gate (DPG), which was also based on the
4 × 4 full adder gates. This design achieved lower costs
than previous designs, but it still was not minimal. All four
multipliers above had a fanout for both the multiplier and
multiplicand, which increased total costs significantly.

The proposed design aims at decreasing the costs of the
multiplier by tackling the Partial Products (PP) generation
stage and using fanout on only one of the multiplicands. The
gates chosen for the proposed design were Controlled-NOT
(CNOT) and Peres gates. Below is a short description of
these gates.

a) Controlled-NOT Gate (CNOT): CNOT gate is a2 ×
2 gate that passes-through the first input and produces the
XOR of the two inputs on the second output [4]. The CNOT
gate has a Quantum cost of one.

b) Peres Gate:The Peres gate is a3×3 gate with quantum
cost of four. The organization and logic equations defining
the Peres gate are given in Fig. 2 [5].
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Fig. 1

CNOT GATE

Fig. 2

PERES GATE

3. Proposed Design
The proposed multiplier is designed with Partial Products

(PP) circuit to generate partial product and a Parallel Adder
(PA) circuit that adds the partial products to form the
product. The operation of the multiplier is shown in Fig. 3.

y3 y2 y1 y0

x3 x2 x1 x0

P30 P20 P10 P00

P31 P21 P11 P01

P32 P22 P12 P02

P33 P23 P13 P03

R7 R6 R5 R4 R3 R2 R1 R0

Fig. 3

MULTIPLIER OPERATION

The first operation is generating the PP’s from the given
four-bit inputs. To generate all PP’s, a repetition code is
applied to each bit in the multiplier using CNOT gates as
shown in Fig. 4. With this approach it is not necessary
to apply the repetition code to the multiplicand bits. The
bits from the multiplier do not have to pass through a
repetition code as the design allows them to be passed
through unchanged.

Once four copies of each bit of the multiplicand are
obtained, PP’s are obtained by passing two input bits (one
from the multiplier, the other form the multiplicand) through
an AND gate. The Peres gate with a constant zero as its third
input and two input bits provides the AND function. Only
four copies of the multiplicand bits are needed because the
proposed design makes use of the propagation of the first
input of the Peres gate as an output. This construct results
in fewer gates, decreased number of constants used, and a
lower quantum cost compared to other designs. The circuit
diagram for generating the first four PP’s is given in Fig. 5.
The rest of the PP’s can be generated in a similar fashion
by adding new constant input lines.

Fig. 4

REPETITION CODES FOR THEMULTIPLIER QUBITS

The next part is the generation of the Parallel Adder
(PA), which, given a collection of binary inputs, outputs the
number of ones in the inputs. A PA can be constructed in
many ways, but the proposed design uses a cascade of Full-
Adders and Half-Adders (for example [12]). For this four-bit
by four-bit multiplier, the minimum number of full-adders
and half-adders are eight and four, respectively. A single
Peres gate can act as a half-adder given a constant zero as
its last input. The full-adder can be implemented with two
Peres gates linked together and re-arraged and a constant
input, as shown in Fig. 6.

The full adder above has a quantum cost of six, which is
the minimum found in the literature. The full adder can also
be implemented with any other gate(s) that can be used as
a full adder given a constant input. The PA diagram along
with all connections for the final multiplier is given in Fig. 7.
In addition, Fig. 8 shows how the Peres and Double Peres
Gates can be substituted into the PA circuit.

4. Results and Comparison
In previous designs in [6]–[9], several gates were used to

produce the fan-out. In [3], three BVF gates were used to
produce four copies of two input bits. This was fewest num-
ber of gates and quantum cost noted in literature, however
it was not minimal as the multiplier and multiplicand were
copied four times. This is not necessary in the proposed
design because it uses the pass-through capability of the
Peres gate to mirror the first input to the output. Using the
mirroring function of the Peres gate, the number of CNOT
gates used is decreased by 12 (or 50%). This also helps
decrease the number of constant inputs to 12 for the fan-
out and the number of garbage outputs to 20. The number
of Peres gates used to generate the PP’s stays constant at
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Fig. 5

GENERATION OF THE FIRST FOURPARTIAL PRODUCTS(PP’ S) USING

PERES GATES

Fig. 6

FULL ADDER USING TWOPERES GATES

16 gates. Overall, the number of gates used decreases to
28 (compared to 40 with other designs) and quantum cost
decreases to 76. A comparison with [10] also shows that the
quantum cost of the proposed PP circuit is lower. This is
because Peres gates used in this circuit have a lower cost
compared to the Toffoli gates used in [10], and even though
using Peres gates involves using repetition code for half of
the inputs, the final quantum cost is still lower. Table 1
shows a wider comparison between several proposed PP
implementations. Here, the gates cost gives the number of
quantum gates needed to implement a given design and is
technology-independent. At best, a given technology will be
able to achieve the shown gates count, otherwise the numbers
will vary depending on the technology used.

Parallel adders implementation did not improve the num-

PP Generation Gates CI GO QC
Proposed 28 28 20 76
DPG [3] 28 40 32 88
MKG [6], HNG [7],
PFAG [8]

40 40 32 88

TSG [9] 40 40 32 104

Table 1

PARTIAL PRODUCT COSTS

ber of gates or the quantum cost compared to [3], [6] because
it uses the minimum number of gates for implementation and
has lowest quantum cost. However, due to the improvement
in the PP generation, the total quantum cost is still lower
than any other circuit studied. A comparison between the
total costs for the reversible multiplier is given in Table 2.

PP Generation Gates CI GO QC
Proposed 40 40 40 140
DPG [3] 40 52 52 152
MKG [6] 52 52 52 152
HNG [7] 52 56 56 208
PFAG [8] 52 52 52 168
TSG [9] 53 58 58 221

Table 2

MULTIPLIER TOTAL COSTS

5. Conclusions/Future Work
In this paper a new approach to implementing the repe-

tition codes for generating partial products in a reversible
multiplier is proposed. Using CNOT and Peres gates, the
number of gates, constant inputs, garbage outputs, and
quantum cost are reduced compared with existing circuits.
This design can be used to construct larger multiplier circuits
(N×N bit) and in more complex reversible systems. Future
work includes further attempts at minimizing total multiplier
costs as a whole, not just for each component.
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Abstract – This research paper is about advancement in 

Optical Computing an emerging field of computer design and 

hardware with very fast speed and performances. The optical 

Computing (also known as Photonic computing) is a 

technique based on photons of visible light or infrared region 

rather than Electrons flowing in electric current which are 

used to perform digital Computations using electronic logic 

gates. In this technique we are using logic gates which will 

show the logic transition using photons of visible light which 

forms the basis of our research. We studied here that we can 

achieve a logic gate transition through photons of light 

employed using chemical compounds which behalves 

accordingly to incident photons of light on it. This photonic 

logic will be used to make optical transistors. This will in turn 

used to make processors working on the principal of light 

rather than on the principal of electric current. 

Keywords:-Optical Computing, Photonic Logic, Photo 

luminescence, optical transistor.  
 

1 Introduction 

 

An optical computing (also known as photonic computing) is 

a technique based on photons of visible light or infrared 

beams. This uses photons of light rather than electrons in 

electric current to perform digital computations. Electric 

current creates heat in computer systems and as processing 

increases the energy requirement also increases so does the 

heat the extra heat is extra damaging to the hardware. Light 

however creates insignificant amount of heat regardless of 

how much it is used. Thus due to need of more powerful 

processing systems alternate way has to be found and its 

scope lies in optical computing. So by applying science of 

photonics someday in future a computer able to perform 

operations significantly faster than the convention electronic 

computer can be achieved. Another advantage could be 

coherent light beams, unlike metal conductor, pass through 

each other without interfering (at least not after the 

intersection). Electrons repel each other while photons do not. 

This is why the signal from copper wire gets poorer the 

further you are from the telephone exchange while Fiber optic 

cables do not have this problem. Several laser beams can be 

shone so their paths intersect, but there is no interference 

among the beams, even when they are confined essentially to 

two dimensions. Electric currents must be guided around each 

other, and this makes three-dimensional wiring necessary. 

Thus, an optical computer, besides being much faster than an 

electronic one, might also be smaller. Most research projects 

focus on replacing current computer components with optical 

equivalents, resulting in an optical digital computer system 

processing binary data. This approach appears to offer the best 

short-term prospects for commercial optical computing, since 

optical components could be integrated into traditional 

computers to produce an optical/electronic hybrid. 

  

However, optoelectronic devices lose c.30% of their energy 

converting electrons into photons and back, this also slows 

down transmission of messages. All-optical computers 

eliminate the need for switching. [1] 

2 . Optical computing 

 

2.1 Detail review 

Optical computing is a computing technology in the research 

and theory stage. The idea would be to make a computer that 

relies entirely on light (photons) instead of electricity 

(electrons) to do computing. The appeal of optical 

computers is limited, because with short distances, they 

require more power than electronic computers to do the same 

computation. Still, optical computing may allow the 

construction of computers physically impossible using 

electronics. Optical computing is still in the early stages of 

development -- only a few very limited prototypes have 

currently been constructed in the lab. 

An optical computer primarily uses lasers to send signals. 

Unfortunately, lasers can't interact directly with one another in 

any meaningful way, so performing computations requires an 

intermediary in the form of matter somehow. Attempts to 

make "optical transistors" have tended to revolve around 

materials that re-emit light selectively in response to the 

intensity of the incoming light. Putting together these 

components into a huge web can allow the construction of an 

optical computer. 

2.2 Technology 
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So far, optics has been enthusiastically adopted for 

data transmission over long distances, as in fiber optics. Over 

short distances, however -- and this is one of the main 

downsides of optical computing -- the energy loss experienced 

by the light requires more power to send a signal than using 

electrons to send the same signal over the same distance. Over 

long distances, light wins out, but part of the point of 

computers is that they're supposed to be small, and the 

distances over which light is better (10 Ft. /3 m or more) are 

pretty big by the standards of computing. Still, it is 

conceivable that optic channels could be used in large 

supercomputers to send data more efficiently than electronics. 

In theory, optical computing could produce computers tens of 

thousands of times faster than today's computers, because 

light can travel that much faster than electric current. In 

practice, however, the need to use large beams of light to 

avoid signal loss has precluded that possibility. More recently, 

however, researchers at Harvard University found a way to 

flip a register using only a single photon, a milestone which 

could open the path to efficient optical computing. The 

researchers took advantage of Plasmon’s, tiny surface 

disturbances in a medium which can be created by 

bombarding it with photon 

 

2.2 Components 

 

The fundamental building block of modern electronic 

computers is the transistor. To replace electronic components 

with optical ones, an equivalent "optical transistor" is 

required. This is achieved using materials with a non-linear 

refractive index. In particular, materials exist 
[3] 

where the 

intensity of incoming light affects the intensity of the light 

transmitted through the material in a similar manner to the 

voltage response of an electronic transistor. This "optical 

transistor" effect is used to create logic gates, which in turn 

are assembled into the higher level components of the 

computer's CPU. These will be non-linear crystals used to 

manipulate light beams into controlling others. There has been 

a large expansion in the optical interconnects for photonic 

based computing. Currently these interconnects are being 

tested and expanded by Intel. 
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intensity of incoming light affects the intensity of the light 

transmitted through the material in a similar manner to the 

voltage response of an electronic transistor. This "optical 

transistor" effect is used to create logic gates, which in turn 

are assembled into the higher level components of the 

computer's CPU. These will be non-linear crystals used to 

manipulate light beams into controlling others. There has been 
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based computing. Currently these interconnects are being 

tested and expanded by Intel. 

 

2.3 Challenges misconceptions and prospect 

 

A claimed advantage of optics is that it can reduce power 

consumption, but an optical communication system will 

typically use more power over short distances than an 

electronic one. This is because the shot noise of an optical 

communication channel is greater than the thermal noise of an 

electrical channel which, from information theory, means that 

more signal power is required to achieve the same data 

capacity. However, over longer distances and at greater data 

rates, the loss in electrical lines is sufficiently large that 

optical communications will comparatively use a lower 

amount of power. As communication data rates rise, this 

distance becomes longer and so the prospect of using optics in 

computing systems becomes more practical. A significant 

challenge to optical computing is that computation is 

a nonlinear process in which multiple signals must interact to 

compute the answer. Light, which is an electromagnetic wave, 

can only interact with another electromagnetic wave in the 

presence of electrons in a material, and the strength of this 

interaction is much weaker for electromagnetic wave light 

than for the electronic signals in a conventional computer. 

This result in the processing elements for an optical computer 

requiring more power and larger dimensions than those for a 

conventional electronic computer using transistor until 

recently, electronics was fine for computer processing, but at 

speeds higher than 40 GHz, only optics can cope.
[4]

 

 

3 .Photonic Logic 

 
 

Fig 1Realization of a Photonic Controlled-NOT Gate for use in Quantum 

Computing 
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3.1 Photonic logic introduction 

 

Photonic logic is the use of photons (light) in logic 

gates (NOT, AND, OR, NAND, NOR, XOR, XNOR). 

Switching is obtained using nonlinear optical effects when 

two or more signals are combined. Resonators are especially 

useful in photonic logic, since they allow a build-up of energy 

from constructive, thus enhancing optical nonlinear effects. 

Other approaches currently being investigated include 

photonic logic at a molecular level, using photo 

luminescent chemicals. 

 

3.2 Photo luminescent 

 

Photoluminescence (abbreviated as PL) is a process in which 

a substance absorbs photons (electromagnetic radiation) and 

then re-radiates photons. Quantum mechanically, this can be 

described as an excitation to a higher energy state and then a 

return to a lower energy state accompanied by the emission of 

a photon. This is one of many forms of luminescence (light 

emission) and is distinguished by photo excitation (excitation 

by photons); the period between absorption and emission is 

typically extremely short, in the order of 10 nanoseconds. 

Under special circumstances, however, this period can be 

extended into minutes or hours. Ultimately, available energy 

states and allowed transitions between states (and therefore 

wavelengths of light preferentially absorbed and emitted) are 

determined by the rules of quantum mechanics. A basic 

understanding of the principals involved can be gained by 

studying the electron configurations and molecular orbital’s of 

simple atoms and molecules. More complicated molecules 

and advanced subtleties are treated in the field 

of computational chemistry. 

4. Photonic Logic Gate  

In supra molecular chemistry and nana materials research 

have stimulated interest in the design and development of 

molecular electronic and photonic devices for information 

processing, sensing and computation.
[7]

 Numerous examples 

of molecular nano devices operating as 

wires,
[8]

 switches
[9]

 and sensors
[10] 

have been reported in the 

literature. The development of molecular scale logic gates 

responding to multiple inputs has been a particularly active 

area of research.
 [11] 

Specifically, photo luminescent logic 

gates exhibiting AND,
 [12]

 OR,
 [13]

 XOR,
 [14]

 NOR
 [15]

 and INH
 

[16]
 functionality have all been demonstrated. Exploitation of 

molecular photonic properties is appealing in this regard due 

to the high absorption cross-sections and luminescence 

efficiencies of many molecular systems, as well as the high 

signal-to-noise ratios that may be achieved. However, the 

majority of these supramolecular systems operate exclusively 

in the solution phase, thus limiting the range of inputs that 

may be used to ions and other chemical species, or simple 

environmental stimuli such as temperature.
 [17]

 The lack of an 

externally addressable interface makes it uncertain whether 

these approaches can provide a viable and scalable technology 

suitable for integration into future hybrid nano electronic 

devices and circuits. To successfully address this challenge, it 

will be necessary to take advantage of the structural and 

electronic properties of molecules for the rational design and 

fabrication of photonic logic gates that can be addressed by an 

underlying metal or semiconductor substrate. To this end, we 

report on the demonstration of an externally addressable 

molecular photonic logic gate comprising a metal polypyridyl 

complex self-assembled at the surface of a nano crystalline 

semiconductor electrode that responds to electrical and 

chemical inputs provided by the substrate and the ambient 

solution, respectively. Scheme 1 outlines the design and 

operating principles of the system selected for study, cis-

bis(cyano) ruthenium(II)-bis-2,2 -bipyridine-4,4 -

dicarboxylate (Ru(dcbpy)2(CN)2, I), adsorbed at the surface of 

a nano porous nano crystalline TiO2 thin film. Chelation 

of I onto the TiO2 substrate via its pendant carboxylate 

groups allows for both electrical and chemical switching 

functions to be integrated into a single molecular device. The 

electrical switching function is accomplished by modulating 

the potential applied to the semiconductor substrate, employed 

as the working electrode in a three-electrode single 

compartment electrochemical cell. It is well known that dye 

sensitization of TiO2 films usually results in quenching of dye 

luminescence as a consequence of efficient excited state 

mediated electron transfer to the TiO2 conduction 

band. However, luminescent emission from the dye may also 

beswitched on at applied potentials more negative than the 

TiO2 flat band potential (Vfb) due to the sharp reduction in 

charge injection yields that occurs following increased 

occupancy of the electronic density of states with the 

electrode. Therefore, at applied potentials more negative than 

the TiO2 Vfb (0,0), visible excitation of the Ru
II
 complex 

results in a strong metal-to-ligand charge transfer (MLCT) 

based luminescence in the red; see Scheme 1(a). In contrast, 

application of a more positive bias, (1,0), leads to almost 

complete luminescence quenching due to charge injection 

from the 
1
MLCT and thermalised 

3
MLCT excited states of the 

Ru
II
 complex into the TiO2 conduction band; see Scheme 1(b). 

The second switching function is accomplished by 

introduction of Cu
2+

 ions into the adjacent electrolyte 

solution; see Scheme 1(c). Luminescence quenching by 

Cu
2+

ions has been previously reported in solution phase 

studies of the Ru (bpy) 2(CN) 2 complex. Here, formation of 

[Ru (bpy) 2(CN)(CNCu)]
2+

 and [Ru(bpy)2(CNCu)2]
4+

 species 

results in static quenching of complex luminescence. Dynamic 

quenching, i.e., luminescence quenching by unbound metal 

cations diffusing from solution, is also a significant additional 

pathway. These switching functions were combined to 

demonstrate a two-input molecular photonic logic gate, using 

the MLCT based luminescence of the complex as the output 
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signal, and the potential applied to the semiconductor 

substrate, in the presence or absence of Cu
2+

 ions, as the 

inputsignals.Complex I was synthesized according to 

previously reported procedures; see Supporting Information.

 I was adsorbed from solution onto the surface of a 

nanostructured TiO2 (anatase) thin film on fluorine-doped tin 

oxide coated glass. The I-functionalized substrate was 

incorporated as the working electrode in a single compartment 

spectro electrochemical cell, with a Pt. rod counter electrode 

and an Ag/AgCl reference electrode. Shows the emission 

spectra of an I-functionalized Nano crystalline TiO2 film 

recorded under each of the four possible input conditions. In 

the (0, 0) state, excitation at 467 nm results in strong complex 

phosphorescence with a maximum at 668 nm. In the (1,0) 

state, this emission is switched off by the applied positive bias 

due to luminescence quenching by charge injection. In the 

(0,1) state, i.e., at negative applied potentials, but in the 

presence of added Cu
2+

 ions, the emission is also switched off. 

Finally, in the (1,1) state, both switching functions can 

contribute to quenching of the MLCT based luminescence, 

thus completing the NOR logic gate truth table; see Fig. 1(b). 

Comparison of the output luminescence intensity of the (0,0) 

state with that of each of the three other states gives an 

average device on/off ratio of ca. 30   1 (at 668 nm), a value 

that compares very favorably with those obtained for solution 

based molecular logic gates. 

 

Fig 2 Emission spectra of an I-functionalized nanocrystalline 

TiO2 film recorded as a function of applied potential and the 

presence of Cu2+ ions. Electrolyte solution: 0.1 M LiClO4 in 

CH3CN  

 

 

Corresponding NOR gate truth table, where Vapp= 0 indicates 

Vapp Vfb, Vapp= 1 indicates Vapp < Vfb, and [Cu2+]= 1 

indicates the presence of added Cu2+.) Neither corresponding 

NOR gate truth table, where Vapp= 0 indicates Vapp Vfb, 

Vapp= 1 indicates Vapp < Vfb, and [Cu2+] = 1 indicates the 

presence of added Cu2+. 

Input 1 

(Vapp) 

Input 2 

([Cu
2+

]) 

Output 

(MLCT 

Emission) 

0 0 1 

1 0 0 

0 1 0 

1 1 0 

 

 

Fig 3 Scheme 1 Design and operating principles of the integrated molecular 

photonic logic gate. (a) Under negative applied potentials and in the absence 

of Cu2+ ions (0, 0), visible excitation of the RuII complex results in a strong 

MLCT based luminescence output. The luminescence output may be 
switched off by either (b) the application of positive applied potentials in the 

absence of Cu2+ ions (1,0), (c) the introduction of Cu2+ ions into the adjacent 

electrolyte solution under negative applied potentials (0,1) or (not shown) the 
introduction Cu2+ ions into the adjacent electrolyte solution under positive 

applied potentials (1,1) 

5. Conclusion 

So in conclusion we can say that by using photonic computing 

logic based on photons of visible light or infrared beams the 

computers with better performance could be achieved. We 

demonstrated an all-optical NOR logic gate based on 

symmetric GaAs-AlGaAs microring resonators whose 

resonances are closely matched. Two input pump data streams 

are tuned close to one resonance of the symmetric microrings 
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to switch a probe beam tuned to another resonance by two-

photon absorption. The switching energy of the gate is 20 

pJ/pulse, and the switching window is 40 ps, limited by the 

carrier lifetime. The use of two rings provides for better 

cascading in photonic logic circuits because of the higher 

number of available ports.
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Abstract - Reliable communication has become very crucial 
in the transmission applications. Hence, to design hardware to 
handle reliability is most important part of communication. In 
this work, we propose a new secured ALU (Arithmetic and 
Logic Unit) against fault attacks that is used in ARM 
processor which can correct any 5-bit error in any position of 
32-bits input registers of ALU. In this work, we also designed 
a BCH (Bose, Chaudhuri, and Hocquenghem) codec (encoder, 
decoder) using the prototyping FPGA. Further, we designed 
(63, 36) BCH encoding and decoding system to tolerate the 5-
bit faults. Since the usages of the ARM (Advanced RISC 
Machine) processors are more applicable for control system, 
we give the fault tolerance characteristic through the error 
control coding to this processor. As a result, the core for 
implementation of an ALU employing BCH code on Spartan-3 
FPGA has been provided. Our Fault tolerant ALU has high 
reliability. Moreover, it consumes low hardware overhead 
with acceptable fault coverage. 

Keywords: Fault tolerant, ALU, BCH codes, Residue codes, 
TMR, Encoding, Decoding, FPGA. 

 

1 Introduction 
  Nowadays, by increasing the usage of digital systems 
and improvement of modern technology, working on reliable 
communication transmission play an important role. So that a 
single error may shutdown the whole system and give rise to 
incredible or erroneous data. System reliability is one of 
major issues in embedded processors designs for space 
application such as satellite, military, communications etc. 
Various attacks exist in space on integrated circuits that 
comes from sun activity [1]. Such as solar rays which are 
composed of charged particles. The radiation from sun effects 
in integrated circuits make digital damage and upsets such as 
SEU (Single Event Upset), SET (Single Event Transient) and 
etc as presented in [2]. Such attacks can upset either 
combinational logic or sequential logic. In other words a bit 
flip can occur in memory or register bits and if one bit of 
main storage system is changed the mission of system would 
be completely different. In such scenario the error control or 
fault tolerant methods are employed to keep integrated 
circuits against these attacks in space. To achieve such 
purpose we consider Error detection and correction codes 
(EDAC) method. It is usually used to mitigate SEU in 
integrated circuits which are required that the encoder and the 
decoder blocks to be able to detect and correct errors 
respectively. This technique gives strong faults coverage and 

less overhead hardware. For this reason we consider the BCH 
(Bose, chaudhuri, and Hocquenghem) codes and in this 
project a binary BCH codes is considered. As a result of using 
BCH codes, we have achieved to design encoder and decoder 
circuits to detect and correct 5-bit faults. Further we have 
designed a 32-bit ALU. Our 32-bit ALU model consists of the 
following function units: Arithmetic operation consists of 
Full-Adder and Subtractor. Bitwise logic operation such as: 
XOR, AND, OR, and NOT. Bit-shifting operations such as: 
shifting to the left or right Encoder and decoder block and 32-
bit ALU is based upon the use of Verilog description 
language. Furthermore, we have presented design of a secure 
ALU (Arithmetic and Logic Unit) against faults. This ALU is 
able to correct any 5-bit error in any position of its 32 bits 
input registers. Consequently, the core for implementation of 
an ALU employing BCH code on Spartan-3 FPGA has been 
provided. The proposed system has been simulated on 
Modelsim 6.2b and its performance has been verified by ISE 
8.2i. 

1.1 Motivation 

 Our goal is to overcome the difficulties of designing a 
new 32-bit ALU that is robust against many attacks or faults 
and able to correct any 5-bit fault in any position of its 32 bits 
input register of ALU. Because the radiation effects on 
electronic circuits may cause to be inverted data bits of 
registers or memories. If one bit of main storage system is 
changed the mission of system would be completely different.  
In fact this project is an essential and vital part for OBC (On 
Board Computer) of a satellite due to the fact that there are 
high radiations in space such as solar rays and cosmic 
radiations. The high motivation in choice of BCH codes is 
that, it is able to correct multiple errors and these classes of 
codes are kind of powerful random error correcting cyclic 
codes. Moreover, by choosing two essential parameters n and 
t, the designer is able to design any BCH code. These implies 
that a crucial motivation because the structure of BCH 
encoder and decoder in presence of two parameters n and t 
can be notably different. 

1.2 Problem Definition 

Since the usages of the ARM processors are more 
applicable to control systems, we need to focus on the fault 
tolerance characteristic through the ECS (Error Control 
System) to ARM processor. Consequently, the core for 
implementing on FPGA will be provided. 
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1.3 Application 

Apart from many applications  such as military applications to 
protect against intentional enemy interfaces one considerable 
point for us in this project is On Board Computer (OBC) of a 
satellite. 
1.4 Overview 

The rest of this paper is presented as follows: In section 2, 
mathematical background of BCH code is described. In 
section 3, proposed method based on BCH code for decoding 
are described. In section 4, Hardware implementation of an 
encoding and decoding of (63, 36) BCH code applied in our 
work are presented. In section 5, our designing 32-bit fault 
tolerant ALU are described. section 6, describes conclusion 
and future work are described. 
 

2 Background to the research objectives 
 Error detection and correction (EDAC) codes 

technique is usually utilized to mitigate SEU in integrated 
circuit and it requires extra hardware. Nevertheless this 
technique gives strongly faults coverage. Hence, we are 
considering this technique to cover our goals. EDAC codes 
can be implemented in two ways and it depends on 
transmission data.  

If error control system can transfer data bidirectionally, 
where the receiver detects an error in a data frame. It 
automatically requests the transmitter to resend the data 
frame. The systems are known as an automatic repeat request 
(ARQ). If transmission occurs in only one direction to 
overcome error, the error control system works out through 
the forward error correction (FEC) [5]. 

 
Figure 1. Scheme of a forward error correction (FEC). 

 
In communication theory FEC is a method used for data 

transmission so that, the sender including m-bits of redundant 
data, thereby the receiver is able to detect and correct the 
corrupted data without asking to retransmit it. Therefore, FEC 
method will be consider in our design. The schematic of an 
FEC method is shown in figure 1. One of the significant 
classes of FEC codes is linear block codes and binary BCH 
codes are classes of linear block codes.  
BCH codes are a generalization of Hamming code for a 
multiple error correcting. Further, these codes are a large class 
of powerful random-error correcting cyclic codes [4]. 
 
2.1 Mathematical background 

 Error control codes such as BCH codes strongly depend 
on algebraic structures that are called Finite fields or Galois 
field. This field consists of element set which could be done 
addition, subtraction, multiplication and division operations 
over field elements. The number of elements in a field is 

known as the order of the field.  A field with a finite number 
of elements is known as a finite field which is called Galois 
field.  

The prime field is a field that built under modulo p-addition 
and p-multiplication where p in this field is set of integers 
{0,1,2,…, P-1} that is called prime field and it is denoted by 
GF (P). It can be possible to extend the prime field to a field 
of mP elements which is known as an extension field of 
GF(P) and is denoted by GF(Pm). For P=2 the field is denoted 
by GF(2) and it is called binary field. In this paper this field is 
considered. This field consists of binary numbers. The binary 
field GF(2) extensively used in digital computer, digital data 
transmission and storage systems [5]. Furthermore, the 
representations of elements in Galois field easily are mapped 
into the digital domain. Operating in GF(2) has been extended 
to generate the extension GF(2m). The GF(2m) is so specified 
as a field with 2m elements and each of element is binary m-
tuple. In fact GF(2m) form a m-tuple vectors with element 
belong to GF(P). In this paper GF(26) consider to do designing 
the codec system. 

In field theory an irreducible polynomial P(X) of order m is 
called primitive if the smallest positive integer n, for which 
P(x) divides Xn-1 is equal to 2m-1 [5]. 

The primitive element is used to construct GF(2m) from 
GF(2). Further, it is one of the most important factors to 
determine the BCH code. In fact a primitive element of 
GF(2m) is an element α such that every field element except 
zero that can be shown as a power of α every finite field 
contains a primitive element [5]. 

 

Table 1. Primitive polynomial over GF(2m). 
Primitive 

polynomial m 
Primitive 

polynomial m 

1+x3+x7 7 1+x+x3 3 
1+x2+x3+x4+x8 8 1+x+x4 4 

1+x4+x9 9 1+x2+x5 5 
1+x3+x10 10 1+x+x6 6 

 
For each element α in GF(2m) there exist a unique monic 

polynomial m(x) of minimal degree in GF(2m) such that in the 
following terms are true. 

1. m (α)= 0. 
2. The degree of m(x) is less than or equal to m. 
3. f (α)= 0 implies that f(x) is a multiple of m(x). 
4. m (x) is irreducible in GF(2m) [6]. 

 

2.2 Binary primitive BCH codes 

 For an (n, k) BCH code with any positive integer m≥3, 
and t<2m-1, there are an (n, k) binary BCH code as follows: 

 t ;     The most number of errors that can be corrected  
    2 1mn = − ;        Length of codeword                       (1)                
    n k mt− ≤ ;      Number of parity bits                        (2) 
    min2 1t d+ ≤ ;     Minimum Hamming distance           (3)       
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In order to encode and decode, at the beginning, the below 
stages are required to determine the BCH code. 

1. Construct GF(2m), with choice of primitive 
polynomial P(x).  

2. Get the minimal polynomial mi(x) of αi,                
i=1, 2,…,2t. 

3. Obtain the generator polynomial to encode the data. 
Further, with choice of k, we obtain n-k which gives us the 

degree of generator polynomial of BCH code. Finally, 
minimum distance is determined from equation (3) if we 
choose t=1, dmin ≥ 6. An (63, 36) code is capable of correcting 
any combination of t=1 in a block of n=63 digits. BCH codes 
are multiple error correcting and these codes also are a class 
of cyclic codes whose generator polynomial with length of 2m-
1 has α1,α2,α3,...,α2t  (1≤ i ≤2t) as it roots. The generator 
polynomial g(x) of the t-error correcting BCH code is 
determined to be the least common multiple of minimal 
polynomial mi (x).  

( ) ( ) ( )1 2 2tg(x)=LCM{m x ,m x m x }…  (4) 

We can generate a codeword for an (n, k) t-error-correcting 
BCH code. The 36 data bits are formed in to the data part in 
figure 2; Where (2)ii GF∈  and the 27 parity bits are formed 

in the left most. 
  

 Parity bits
b0,b1,…,b26

Information bits
i0,i1,…,i35

36 bits27 bits 

63 bits  
Figure 2. Systematic format of a codeword for an (63,36) BCH code. 

 

3 Proposed method based on BCH code 
The decoding of BCH code is composed of three main steps 

that are expressed as follows: 
1)  Compute the syndromes from the received codeword.  
2)  Obtain the error locator polynomial σ(x) (ELP) through 

the BMA (Berlekamp-Massy-Algorithm)  
3)  Determine the error-location numbers by finding the 

roots of error location polynomial (identifying the position of 
erroneous bit). 
3.1 The syndrome computation 

 The syndromes identify whether error has occurred. If the 
syndromes all are zero, we will have no error in codeword and 
if the syndromes not be zero we will have error in codeword. 
Assuming that r(x) be the received codeword  

2 1
0 1 2 1( ) ... n

nr x r r x r x r x −
−= + + + +       (5) 

And e(x) be the error pattern 

    
2 1

0 1 2 1( ) ( ) ... n
ne x e e x e x e x −
−= + + + +   (6) 

W(x) be the code word or transmitted polynomial 

     
2 1

0 1 2 1( ) ... n
nw x w w x w x w x −
−= + + + +    (7) 

Therefore, the received codeword can be shown : 

             ( ) ( ) ( )r x w x e x= +         (8) 
If 1≤v≤t , where t is the number of error which may be 

occurred in unknown location  j1,j2,….jv ,that is 
( ) 1 2  j j jve X X X X= + +…+         (9) 

Whereas, 1 2 2t, , , ,  α α α α… are roots of each code 
polynomial, W(αi) = 0 , for 1≤ i ≤ 2t . Therefore, we have [5]. 

( ) ( ), 1, 2,..., 2i ir e i tα α= =        (10) 
The first step of decoding procedure is called “syndrome 

computation”.  For computing the syndromes, the syndrome 

is is defined as: 
( 1) ( 2)

1 2 1 0

1 1 3 1 0

( ) ...

(...(( ) ) ... )

i n i n i i
i n n

i i i i
n n n

S r r r r r
r r r r r

α α α α

α α α α

− −
− −

− − −

= = + + + +

= + + + + +
    (11) 

Where 1 2i t≤ ≤ . The syndromes are the set of the field 
elements in GF(2m) . Therefore, each syndrome component is 
calculated by dividing r(x) by the minimal polynomial mi(x) 
of αi  

             ( ) ( ) ( ) ( )i i ir x q x m x b x= +      (12) 
mi(x) is the minimal polynomial and bi(x) is the reminder So, 
by evaluating bi(x) with iX α= , we can be found the 
syndrome components. Since, 

( ) 0i
im α =  

We have the following equation, 

                        ( ) ( )i i
i iS r bα α= =      (13) 

Hence, with equation (13) the syndrome component is 
( ) ( ) ( ), 1, 2,..., 2i i i

i iS r b e i tα α α= = = =   (14) 
Therefore, the above equation represent that syndrome just 

depends on the error pattern. This subject is the significant 
characteristic of the syndromes. Now, we have a set of 
equations with unknown parameters.   

  1 2 ( ) ( ) ... ( ) 1 2j i j i jv i
iS i tα α α= + + + ≤ ≤   (15) 

We see that computing the 2t syndrome components 
S1,S2,…,S2t can be computed by substituting the field element 

2 2, ,..., tα α α in to the received polynomial r(x) in decoding 
a t-error –correcting BCH code. 

 
3.2 Finding the error location polynomial 

through the simplified Berlekamp-Massy 
Algorithm 

 We assume that the numbers of errors v ≤ t have occurred 
and error locator polynomial σ(x) is: 

         1 1
0 1 2( ) ...x x x x ν

νσ σ σ σ σ= + + + +   (16) 

1 2( ) (1 )(1 )....(1 )x x x xνσ β β β= + + +    (17) 
The coefficient of error locator polynomial and the error 
location numbers are related by the following set of equations 
[5]. 
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0

1 1 2

2 1 2 2 3 1

1 2

1
...

...
.

... .

ν

ν ν

ν ν

σ
σ β β β
σ β β β β β β

σ β β β

−

=
= + + +
= + + +

= + +

   (18) 

Where the coefficient of error locator polynomial 
, 1i iσ ν≤ ≤ are related to the syndrome components 

, 1 1 [8].iS j ν≤ ≤ +   

Start

( ) ( ) ( ) ( )1 ,x xµ µσ σ+ = 1µ µ+ = 

Y es

No

( )
0 max(2 )

Find another row where
d andρ ρ

ρ

ρ≠ − 

0µ =

0d µ =

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 .x x d d x xµ µ µ ρ ρ
µ µσ σ σ+ −−= +

( ) ( )( )1
1 deg xµ

µ σ −
+ =

( ) ( ) ( )
1 1

1 1 1
1 2 3 1 2 2 2 2 1 2 3...d S S S S

µ µ

µ µ µ
µ µ µ µ µσ σ σ

+ +

+ + +
+ + + + + −= + + + +  

1µ µ= +tµ =

tσ

No

End

tσ

Y es

 
Figure 3. The inversion Berlekamp Massy Algorithm. 

The BMA procedure begins with the 2t syndrome. 
Components (S1, S2,…, S2t) which it is possible to determine 
the coefficients 1 2, ,..., tσ σ σ  of the error-location 
polynomial. This algorithm is simplified to t-steps for 
calculating σ (x), and when we carry out the step t-1 , 
perfectly      σμ (X) is the final error location polynomial and 
if the degree of σ (x) is greater than t , we will have more than 
t errors then , the received codeword cannot be corrected [5]. 
The inversion Berlekamp massy algorithm is shown in Fig. 3.  

4 Hardware implementation of a       
(63, 36) BCH encoder and decoder 
for t=5 

 The selected BCH code parameters for designing an 
encoder and decoder for this project is (63,36,5) which is able 
to correct 5-bit error. Consider 5-error-correcting (63,36) 
BCH code. If α be a primitive element in GF(26) such that 
1+α+α6=0, We have the list of the minimal polynomials of the 
elements in GF(26) for an (63,36) BCH code that are shown in 
Table 2. The table is indicating this fact that for some roots 
we have the same minimal polynomials. We utilized these 
minimal polynomials as hardware implementation of 
decoding such as syndrome calculation step. The generator 
polynomial is required to encode the information. The 

generator polynomial is computed for an (63, 36, 5) BCH 
code and is shown in Table 3. 

 
Table 2. List of minimal polynomial of the elements in GF(26) for an 

(63,36,5) BCH code. 

 
 Table 3. The generator polynomial for an (63,36) BCH code. 

 

4.1 Hardware implementation of a (63, 36) 
BCH encoder 

 The encoder circuit [4], calculates the parity bits using the 
LFSR (Linear Feedback Shift Register) whose composed of 2-
input XOR gates. The generator polynomial of the (63, 36) 
BCH code is required to implement the encoding and this 
polynomial is given as follows: 
 

This code is equivalent to the following binary code which is  
 

used instead of g1 to g26 values in the following circuits fig.4. 
So the feedback connections of the LFSR are formed in this 
manner. 

Figure 4. Encoding circuit for an (63, 36) BCH code. 
 

The degree of G(x) is m. So the feedback connections of the 
LFSR are formed in the following manner that is shown in 
figure 4. In this circuit, the input data is 36 bits and the output 
is a serial bit of 63 bit data generated by BCH encoder. This 
operation is done in two steps: In the first step the gate K2 is 

g1 g26

b0 + + ++b1 b2 b26b25. . . . +

m0m1.  .  .  .  m35

0
Gate

K2

K1

g0 g27

Message

CodewordParity Bits

.  .  .  .  .

2

1

= 0

Minimal polynomial   Elements 

m1(x) =1+x+x6   α, α2, α4, α8 

m2(x) =1+x+x2+x4+x6    α3,α6 

m3(x) =1+x+x2+x5+x6   α5, α10 

m4(x) =1+x3+x6   α7 

m5(x) =1+x2+x3   α9 

Generator polynomial BCH 
code 

# of 
error 

correctio
n  

g2(x)=LCM{m1(x),m2(x),m3(x),m4(x),m5(x)} 
=1+x+x4+x8+x15+x17+x18+x19+x21+x22+x27 

(63,36) t=5 

27 22 21 19 18 17 15 8 4 1( ) 1.G X X X X X X X X X X X= + + + + + + + + + +
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on and for clock cycle 1 to 36 the message digits, at the same 
time are shifted in an unchanged manner into the output 
further, switch K1 is in position 1 and the parity check bits are 
calculated in LFSR. In the second step from clock cycle 37 to 
63 (where switching K1 in position 2) the parity-check bits in 
the LFSR are shifted and K2 in this stage is off and then these 
27 parity bits concatenate with the 36 messages to form a 
systematic codeword. In Fig. 5 the output of encoding logic 
circuit is a serial bit of 63 bit data.  

. . . . . . . . . . 

. . . . . . . . . . 

….
….

D D D D

C

Q

CLR

Q Q Q

CC CCLR CLRCLR
XOR

X
O

R

IPAD

IPAD

IPAD

IPAD

IBUF

IBUF

IBUF

IBUF

AND

OR

AND

AND

OPAD

OBUF

FDC FDCFDC FDC

INV

Figure 5. A (63, 36) BCH encoding logic circuit implemented in FPGA 

4.2 (63, 36) BCH decoder implementation 

 The decoding process consists of three steps that are 
described in section III. The following fig.6 is more clear 
what is require for decoding technique. 

We have implemented the syndrome computation circuit 
for 5-error-correcting (63, 36) BCH code. In this task we are 
stored the received polynomial in a buffer register to compute 
the syndrome from the received codeword r(x). 

 

Simplified 
Berlekamp 
Algorithm

Chein’s 
search

Syndrome 
computation

Buffer register + output62i ... 0i

1S

2S

2tS

Received codeword Corrected data

.

.
.
.

1σ

2σ

tσ

 Figure 6. Outline for decoder technique using (63,36) BCH code. 
 
When the entire received codeword has entered the 

decoder, 10 syndrome components (s1, s2,…, s10) are formed. 
It takes 63 clock cycles to complete the computation. Since, 
the generator polynomial is a product of at most 5 minimal 
polynomials Therefore at most 5 feedback shift register , each 
consist of at most 6 stages, are required to form the 10 
syndrome components. The fraction of syndrome computation 
circuit for 5-error correcting (63, 36) BCH code is shown in 
Fig. 7. 

This process stored the received codeword in a buffer 
register to compute the syndrome. It takes 63 clock cycles to 
complete the computation. A Chein’s searching circuit [3], for 
the 5-error correcting (63, 36) BCH code is shown in figure 8. 
This circuit is applied to identify the position of erroneous bits 
into 63-bit received codeword and correct it. 

 

+ b0

( )r x
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+
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Figure 7. Syndrome computation of (63,36) BCH code in GF(26). 
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Figure 8. LFSR circuit for Chein’s error location searching. 
 

5 Proposed Design & Experimental 
result 

 Our 32-bit ALU model consists of the following function 
units: Arithmetic operation consists of Full Adder and 
Subtractor. Bitwise logic operation such as: XOR, AND, OR, 
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and NOT. Bit-shifting operations such as: shifting to the left 
and right. The codec circuits are applied to correct any five 
error occurred in any position of 32-bits input registers of 
ALU. Our algorithm of fault tolerant ALU is shown in Fig. 
10. In this algorithm at first the 63 bits input register A and B 
is read out one by one, by the decoding system. Registers A, B 
consist of 27-bits parity check; 36-bits data which are 4-bits 
are extra. We use these extra bits as parity check bits as shown 
in fig.10. If any error occurs in any position of 63-bits the 
decoder will correct the erroneous bit at once. In output the 
decoding system gives 36-bits where we need only 32-bits as 
2-inputs of ALU (we don’t store 4-bits of 36-bits). So, the 
output of 32-bit ALU is the C´ resister. We add the 4-bits zero 
for leftmost of C´ register to convert the 36-bits for the input 
of encoder system. After encoding the data of register C is 
keep in register A. 4-bit of 36-bit data are extra then, we have 
utilized them as parity check bits to detect and correct the 
error in presence of parity maker and XOR gate. In figure 9, 
The 32nd bit is the parity check for the first 8-bit (0-7), the 
33nd bit is checked the next 8-bit of data (8-15), the 34nd bit 
is the parity check for the 16 to 23 and finally the 34nd is the 
parity check for the last position bits of data from 24 to 31. 

 
33343562

. . . . . .
2432 31

. . . . . . . . .
015 8 71623

. . . . . . . . . . . . . . . . 

Parity
Maker

Parity
Maker

Parity
Maker

Parity
Maker

 Figure 9. Decoding of register by making extra parity check bits. 
 

The circuits have been programmed in ISE version 8.2i, 
and are simulated in Modelsim SE 6.2b, before it is 
implemented in XC3S400 from Spartan-3 FPGA family. 

The Xilinx company for XC3S400 offer 400000 system 
gates, 8064 D-flip flops and the number of CLB (Configured 
Logic Blocks) is 896 (one CLB = four slices). The important 
features of this device consists of sixteen dedicated 18 ˟ 18  
multipliers in it, low cost and high-performance logic solution 
for high volume [7]. The design performance has been 
verified by ISE 8.2i which is shown in figure 11. 
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Figure 10. The fault tolerant ALU Algorithm using (63,36) BCH code. 
 

 
Figure 11. The Design performance of Fault Tolerant ALU 

 

6 Conclusions 
 The radiation effect causes faulty data in satellite 

communication. In this paper, we proposed to remove these 
faulty data by using a (63,36) BCH code. We have 
implemented a codec with a new ALU (inside an ARM 
processor) system employing fault tolerant algorithm using 
BCH code with Verilog hardware description language. The 
design has been simulated with Modelsim 6.2b and its 
performance verified by ISE 8.2i. The results indicate any five 
bits error in any position of 32-bits input registers of ALU can 
be corrected. Moreover, we can conclude that proposed 
system have essential advantages in terms of reliability and 
area occupation. It is high reliability in presence of faults and 
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susceptibility is very low. Thus it consumes less hardware 
overhead with high fault coverage. Future work can be 
extended to implement this algorithm on the 64-bit 
microprocessor. 

 
ACKNOLEGMENT 

The financial support of the Iran Telecommunication 
Research Center is gratefully acknowledged. 
 

7 References 
[1]  S.Bourdarie and M.Xapsos, senior member, IEEE, “The near earth 

space radiation environment”, IEEE Transaction on Nuclear Science, 
August, 2008. 

[2] NASA, preferred reliability practices “space radiation effects on 
electronic components in low-earth orbit”, April, 1996. 

[3] R.T. Chien, “Cyclic decoding procedure for the Bose-Chaudhuri-
Hocquenghem codes,”IEEE Trans. Inf. Theory, IT10, pp. 357-363, 
October 1964. 

[4] W.W. Peterson, “Encoding and error-correction procedures for the 
Bose-Chaudhuri Codes”, IRE Trans. Inf. Theory, IT-6, pp. 459-470, 
September 1960. 

[5] Lin, Shu, and Daniel J. Costello, Jr., “Error Control Coding: 
Fundamentals and Applications”, Englewood Cliffs, NJ, Prentice-Hall, 
1983. 

[6] Rudolf Lidl, H. Niedereiter “Introduction to Finite field and their 
application” Cambridge university press, 1986. 

[7] www.xillinx.com, Spartan-3 FPGA family data sheet, Jun, 2008. 
 

50 Int'l Conf. Computer Design |  CDES'11  |

http://www.xillinx.com/�


Dealing with the “Itanium Effect”
Steve Richfield 

Consultant 
5498 124

th
 Avenue East 

Edgewood, WA  98372 
00-1-505-934-5200 

Steve.Richfield@gmail.com

 

 

 

 

ABSTRACT 

The “Itanium Effect” is a subtle organizational phenomenon 

leading to the wide adoption of a few widely applicable technol-

ogies, and the abandonment of many powerful but more narrowly 

applicable technologies. 

The main elements of the Itanium Effect are: 

1. Technology loops 

2. Compartmentalized conferences 

3. Little PhD student participation 

4. Procedural exclusion of futurist and top-down discussions 

5. Keeping problems secret, so that no one else can help 

The Itanium Effect has become the leading barrier to advance-

ment of high performance computing. This is why defects contin-

ue to impair yield. This is what now stands in the way of wafer 

scale integration.  

Prospective glue technologies examined in this paper include: 

1. Logarithmic arithmetic 

2. Medium-grained and multi-grained FPGAs 

3. Coherent memory mapping 

4. Variable data chaining 

5. Fast aggregation across ALUs 

6. Blurring the SIMD/MIMD distinction 

7. A simple horizontal microcoding interface for applications 

8. Failsoft configuration on power-up 

9. Failsoft partial reconfiguration during execution 

10. Symmetrical pinout to use of defective components. 

11. An architecture-independent universal compiler to compile a 

new APL-level language 

Category and Subject Descriptor 
B.0 [Hardware]: General. 

Keywords 

coherent memory mapping, failsoft reconfiguration, logarithmic 

arithmetic, medium granularity, symmetrical pinout, universal 

compiler. 

1. INTRODUCTION 
A really incredible thing happened in 2001, which went com-

pletely unnoticed throughout the chip-making industry. Intel 

released the Itanium, a nearly precise monolithic copy of the 

biggest boondoggle in computer history – the 1961 IBM Project 

STRETCH. Further, there had been much contemporary analysis 

of the mistakes leading to the STRETCH boondoggle, partially 

documented in the book Planning a Computer System. All of 

the recognized mistakes made on STRETCH, like the absence of 

a “guess bit” in conditional branch instructions, were recreated 

in the Itanium, despite recommendations by various commenta-

tors of 40 years earlier. 

Now this same process is continuing with GPU designs that are 

paralleling the products of Floating Point Systems Inc. of ~30 

years earlier. Sure, we have jumped about one decade ahead in 

this loop, but why not simply skip 3 more decades of now-

obsolete designs of the past and move forward? 

How could such crazy repetitions of history possibly happen? 

How is this same phenomenon continuing to radically depress the 

capabilities of all present-day CPU, GPU, and FPGA designs? 

How could correcting this phenomenon in your company be 

worth billions of dollars to your shareholders? Let’s examine this 

continuing phenomenon. 

 

Photo 1. IBM 7030 STRETCH Control Panel 

2. TECHNOLOGY LOOPS 
That things could proceed along a “linear” development path to 

perfectly close a gigantic loop as the Itanium did, suggests a path 

with technological cobblestones laid in gigantic circles. Present 

technology is defined by the hundreds of college courses and 

thousands of textbooks that teach the various past methods. Of-

ten, new methods appear on the scene, but remain in product-

specific manuals that disappear as soon as products become ob-

solete (like the superior methods of fault tolerance pioneered by 

Tandem Corp), or appear at a time when industry just isn’t ready 
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for them (like Ashenhurt and Metropolis’ 1959 paper on signi-

ficance arithmetic). If you look at the many technologies that 

appear in textbooks as points in a multidimensional space, 

people will predictably add points indefinitely until a closed loop 

is formed. 

The STRETCH boondoggle foreclosed on the future of extensive 

instruction lookahead for 40 years, until engineers at Intel read 

books whose content was traceable to the last computer with 

extensive instruction lookahead, and substantially recreated the 

STRETCH, complete with its dead ends. In short, they didn’t 

truly reinvent the STRETCH, but rather they copied its concepts 

and arrived at essentially the identical architecture, as you might 

reasonably expect from good engineers developing a common 

concept. STRETCH and its descendant, the Itanium, constitute 

just one of those many points in the multidimensional technolo-

gical space. The precision of this re-creation shows that we have 

very nearly reached the end of incremental improvements in 

computer architecture, so now it is time to take some radical 

steps if we are to continue to move forward. 

Note that some present-day coarse-grained FPGA proposals are 

traceable all the way back to the 1949 IBM-407 accounting ma-

chine that was able to use similar methods to achieve electronic 

speeds using slow electromechanical components.  

Once a few closed loops are formed, there is no more pressing 

need to add additional technologies. Project development will 

then predictably jump from point to nearby point, as needed to 

push out new products, without ever reaching a point where any-

thing radically new is needed to produce the next product. This 

has created a situation where corporate managers now think they 

need only hire PhDs who understand the various technologies, 

and then those PhDs can work for the rest of their lives, without 

ever having to leave the comfort zone of their own knowledge. 

This would ordinarily leave everyone in the industry vulnerable 

to a maverick corporation that willingly adopts obscure technolo-

gies, if not for the extreme expense in developing new chips. 

Now, any such maverick corporation would probably need a bil-

lion or so dollars just to “ante in” to this game. Hence, the chal-

lenge is to find some way for existing corporations to morph their 

methods to break out of this loop and conquer their competition. 

Laggards will be forced out of business. 

3. ENGINEERING ISOLATION 
I usually attend the yearly WORLDCOMP, which consists of 20 

separate conferences on all aspects of computing. This keeps me 

current on the very latest thinking in everything ranging from 

computer design to AI. WORLDCOMP includes separate confe-

rences on computer and FPGAs design, including various panel 

discussions about hot topics of the year. Dozens of PhDs present 

their work, pushing the frontiers of computing a bit further 

ahead. One thing these conferences do not include is any repre-

sentation from major hardware or software vendors, with some 

rare curious exceptions countable on the fingers of one hand. I 

routinely look up these very rare individuals to determine their 

place in their respective corporations, and their reasons for at-

tending. Invariably I discover that they are not in a position to 

design anything for their employers, and have traveled on their 

own time and money, for the same reasons that I have come – to 

stay on top of computer technology. 

Meanwhile, major players like Microsoft hold their own confe-

rences covering their own new products, and there are various 

separate conferences on Supercomputers, FPGAs, etc., sprinkled 

around at various times and places. In short, the entire industry is 

highly compartmentalized, and thereby effectively isolated from 

outside innovation. 

4. SACRIFICING OUR FUTURE 
The argument that most of the PhD theses and other outside 

work presented at conferences like WORLDCOMP is sophomor-

ic, and hence not worth studying, is one industry defense. This is 

the predictable result of keeping outside work in isolation. Entire 

development departments exist where no PhD students are being 

mentored, thereby sealing the last avenue of cross-pollination. 

With no common conferences other than WORLDCOMP, no 

cross-specialty interaction because of the lack of manufacturer 

participation in WORLDCOMP, very few PhD students, etc., 

there can be little if any significant technological advancement 

(outside of the usual technology loops) from the isolated devel-

opers in each corporation. This is the underlying problem, not the 

questionable quality of outside work that is kept completely iso-

lated from the harsh realities of fabrication. Sure, keep secret the 

proprietary methods that are presently being used to address the 

technological challenges at hand, but keeping the challenges 

themselves secret, e.g. the nature and distribution of real-world 

defects, is suicidal to the entire industry. 

5. CORRUPTION OF PROCESS 
Much of the computing community has lost the “re” in “re-

search”, corrupting it to mean the exposition of past develop-

ments, and specifically excludes speculations as to where things 

could go with careful (re)direction. Indeed, an earlier version of 

this paper was denounced on this basis by reviewers, with com-

ments like “there are no analyses of any of these suggestions, 

only proposals”, ”it does not fit easily into any subtopic area” 

and “ideas are cheap, especially recycled ideas.” 

As a result, the entire field of high performance computing has 

been sucked into a bottom-up design process, by simply dismiss-

ing top-down discussions on the basis that they are not “re-

search”. As a result, high performance computing still lacks an 

effective architecture, when all indications are that a top-down 

approach could probably have produced a good architecture a 

decade ago. 

This obviously can not be corrected at compartmentalized confe-

rences like the FPGA conference. Only multidisciplinary confe-

rences like WORLDCOMP have any real hope of encouraging 

the top-down methods needed to merge the disparate technolo-

gies to forge the future of high performance computing.  

6. WHERE WE SHOULD BE HEADING 
It seems pretty obvious that each segment of the industry has 

some of the “missing pieces” needed by the other segments. Intel 

is now developing CPUs with embedded GPU-like capability, 

which could be greatly enhanced with some reconfigurable logic. 

Similarly, a processor embedded into FPGAs could orchestrate 

power-on fault-tolerant reconfiguration and reconfigurable logic. 

Just about everyone already seems to agree that all memory must 

be coherent. In short, it appears that each segment of the industry 

is proceeding toward a single common point, a computational 
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singularity promising a hundredfold improvement in performance 

over traditional methods. However, the present looping of tech-

nology is tugging at every segment to pull them away from that 

computational singularity. The main blockage seems to come 

from ignorance of various obscure enabling technologies. 

7. ENABLING TECHNOLOGIES 
The following synergistic enabling technologies are not additive, 

or even multiplicative. Projected advanced technology processors 

will need nearly all of these enabling technologies to function at 

all, because a very high level of parallelism is needed to support 

power-on and on-the-fly reconfiguration, and dynamic reconfigu-

ration is needed to economically manufacture chips having so 

many components. Possibly the most challenging application that 

will ever be run on these processors will be contained in an at-

tached ROM that is executed when power is applied, or when a 

fault is detected during execution, to reconfigure many faults 

“into the ether” leaving a fully functioning chip. 

This “wall of obscure technology” presents a sort of chicken-or-

egg situation that has so far blocked the construction of envi-

sioned advanced technology processors, and hence denied the 

hundredfold improvement in performance that is expected from 

such architectures. Corporations limit their technological risks by 

taking risks one-at-a-time, and therefore wouldn’t think of trying 

many new things on a single new device. These enabling tech-

nologies are not individually transformative, so they have re-

mained obscure. 

Note that taken together, these enabling technologies define a 

processor that is very different from present day processors, and 

would look a bit like “alien technology” to present day technolo-

gists. I think of this as the “rubber band effect”. These methods 

were individually rejected because they presented no great ad-

vantage, providing an ever increasing incentive to embrace other 

new methods as they appear. Now, that rubber band is stretched 

quite tight, providing a gigantic incentive for adopting enabling 

technologies. 

WARNING: Most of these technologies have outward characte-

ristics that are very similar to other more common but less po-

werful methods. This has resulted in many experts mis-

dismissing them during the varying number of decades since they 

were first proposed, thinking that they were something else. In-

deed, this phenomenon has become an important driving force 

behind the continuation of the Itanium Effect.  

7.1 Logarithmic Arithmetic 
Everyone is taught in school that you can multiply and divide 

with logarithms, but not add and subtract. This is simply not true 

(see below). Pipelined logarithmic ALUs are much simpler than 

floating-point ALUs, as they only need 3 adders, a small ROM, 

and some glue. Unfortunately, they are consigned to low preci-

sion. These enable super performance for low precision applica-

tions, like image and speech recognition, neural networks, etc., 

and make medium granularity designs quite practical. 

Note that, for the most part, future supercomputers will be work-

ing on very different problems than do present day computers. 

Future computing will involve AI applications centered on visual, 

audio, and neural network (NN) applications, all of which deal in 

low precision that is within the range of logarithmic arithmetic. 

Adding with logarithms is easy: 

1. Take the ratio of the two arguments, which since they are 

represented as the logarithms of numbers; you can divide by 

simply subtracting their logarithms.  

2. Use that ratio to look up the appropriate entry in a “fudge 

factor” table that contains the logarithms of fudge factors. 

The size of this table limits the precision available with this 

method to less than IEEE-754 single precision. Interpolation 

methods extend the available precision. Carefully computed 

table entries avoid consistent round-off errors much like 

IEEE-754 does. 

3. Multiply the numerator by the fudge factor, which is accom-

plished by adding their logarithms. 

Subtraction and signed arguments are handled with obvious ex-

tensions of this simple strategy, that involve the use of two sign 

bits, one sign bit for the sign of the logarithm of the absolute 

value of the number being represented, and the other sign bit for 

the sign of the number being represented. 

Since most of the “logic” of logarithmic arithmetic is contained 

in the contents of its tables, SECDED error correction logic can 

correct most faults, and detect the faults that it cannot correct. 

Note that the practical success of power-on and on-the-fly recon-

figuration depend on having a high enough flops/transistor ratio 

to support real-time diagnosis and reconfiguration, so the speed 

and simplicity of logarithmic arithmetic makes it a clear winner 

in these devices. 

7.2 Medium Grain and Multi-Grain FPGA 

Architectures 
Until now, everyone designing FPGAs either designed with full 

ALUs (coarse granularity), or with just gates (fine granularity). 

However, logarithmic arithmetic and “fixed point” (like integer, 

but the decimal point can have any pre-assigned location) arith-

metic require much simpler blocks. Full IEEE-754 floating point 

ALUs can be chopped both horizontally (into functional units) 

and vertically (into digits). These blocks can be combined to 

achieve full pipelined result-per-clock-cycle capability as needed, 

though at the cost of additional flow-through time. 

The pieces of a logarithmic ALU are adders and tables with at-

tached lookup logic. The pieces of full IEEE-754 floating point 

ALUs are priority encoders, shift matrixes, adders, multipliers, 

etc., depending on the implementation. These pieces can be used 

for other things, e.g. binary multiplying a logarithm by an integer 

is actually raising the number represented by the logarithm to the 

integer exponent. By providing a “parts store” of both ALU piec-

es and full ALUs in typically needed proportions, Akin to the 

letter assortment in a Scrabble game, users can create “super 

duper operations” that use most of them, then instantly reconfi-

gure (see Horizontal Microcoding below) them to do other differ-

ent “super duper operations” as needed. The goal here is not 

(yet) to provide everything needed to do entire programs in a 

single data chained operation, but rather to simply reduce the 

number of times that the same data needs to be (re)handled by an 

order of magnitude or so. 

Note that in most cases this obviates some of the need for an 

optimizing compiler, because there is no benefit to optimizing a 
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configuration, unless without optimization, there aren’t enough 

components available to perform a complex series of computa-

tions and produce a result every clock cycle. 

Multi-grain would doubtless be more complex to use than either 

fine or coarse grained approaches, but its use would improve the 

flops/transistor ratio to facilitate real-time reconfiguration. 

7.3 Coherent Memory Mapping 
Often, “local” memory has been attached to a particular ALU, 

and “global” memory has been attached to a particular bus. This 

isolation of local memory is needless, and associating “global” 

memory to a particular bus sucks performance. Multiple memory 

busses and interleaved memories have been used since the 1960s 

to exceed single-bus performance, and it takes very little logic to 

be able to attach local memories to global bus systems so that all 

memory is uniquely addressable (coherent). 

Note that it is important to provide redundant busses if vary large 

chips are to be reliably made. The trick is to provide many re-

dundant busses, and then use whatever works and is available. In 

addition to “in use” bits, they would also need “functional” bits, 

along with the logic to honor and operate these bits, and use 

whatever bus is ready to carry the traffic. 

Switch fabric architecture is evolving. Note that simply organiz-

ing clusters of functional components in a 2-D fashion on the 

chip, and providing redundant busses for every row and column, 

it becomes possible for many cluster-to-cluster communications 

to be simultaneously taking place. As a result, traditionally slow 

operations like scatter and gather can run at many times tradi-

tional speeds. 

However, the biggest payoff from coherent memory is in its abili-

ty to easily save the state of a subsystem by simply copying out 

the memory in the subsystem. Without coherent memory, partial 

reconfiguration would be extremely difficult. 

7.4 Variable Data Chaining 
The idea of pasting ALUs together in chains, as is now done in 

some coarse-grained FPGA designs, was called “data chaining” 

in early supercomputers, like the CDC Cyber 205. They simply 

switched ALU connections from memory to pipeline registers, in 

order to interconnect ALUs to get a sort of simplistic coarse-

grained FPGA-like performance. Hence, perceived distinctions 

between coarse-grained FPGA designs and multi-ALU data 

chaining in supercomputers is illusory. 

By simply providing pipeline registers between 2-D arranged 

clusters, and configuring ALU ports to connect to those pipeline 

registers, otherwise isolated slave processors can chain together 

to perform extremely complex operations. 

7.5 Fast Aggregation across ALUs 
One thing missing from all contemporary designs, and now pre-

senting a major barrier to GPU advancement, is the interaction 

between parallel ALUs needed to perform aggregation functions 

like adding the elements of an array, finding the maximum value, 

etc., in log n time instead of n time. First every even ALU inte-

racts with the adjacent odd ALU, and then the winners interact 

with other winners, etc. Graphics applications are unique in their 

general lack of need for aggregation, which has been the basis for 

GPU successes in that arena, and the basis for their lackluster 

performance in other areas. 

Aggregation also facilitates the merging of thousands of indivi-

dually performed diagnostics in thousands of slave processors, 

thereby speeding up real-time reconfiguration. 

7.6 Blurring the SIMD/MIMD Distinction 

Using Small Local Program Memories 
A certain amount of temporal autonomy is needed for slave pro-

cessors to deal with slow operations, re-routing over busy and 

defective busses, memory cycles lost to other processors, waiting 

for slow global busses, etc. A small amount of FIFO or memory 

would provide the buffering needed to hold a few slave processor 

instructions broadcast by the central processor. However, it 

would take little more to implement a rudimentary instruction set 

in that memory, complete with conditional branch instructions, 

etc. With this, individual slave processers could each do their 

part to perform complex operations, without holding up the en-

tire processor when they individually slow down or stumble into 

each other. This could provide the combined advantages of SIMD 

and MIMD architectures. 

Note that code running in faulty configurations will doubtless run 

into many roadblocks. Slave processors must be able to function 

autonomously, in order to continue running when other slaves 

have died. 

7.7 A Simple Horizontal Microcoding 

Interface for Applications 
HP is believed to have been the first to make some of their hori-

zontal microprogramming memory accessible to applications 

programmers. This was implemented as an option on HP 21-MX 

minicomputers. This way, users could define new operations that 

ran at hard-wired speed. In FPGA terms, this is akin to instant 

partial reconfiguration from memory. Instead of the usual FPGA 

design that uses long shift registers to hold a particular configu-

ration, suppose that some of the configuration bits are replaced 

with several bits and a global mechanism of selecting which bit 

from each group to use. This could be a simple as having short 

circular shift registers controlling each potential connection, and 

a global mechanism of rotating all circular shift registers in un-

ison. Loading would work as usual, only when all of the bits 

have been loaded for one configuration, the short circular shift 

registers would all be rotated by one bit and loaded with new 

contents for that position, with this process continuing until all of 

the bits in every circular shift register have been loaded. Run-

time reloading, equivalent to re-defining operation codes of the 

computer being implemented, could be accomplished by rotating 

the circular shift register into position, and transferring the con-

tents of a dedicated place in memory into the main FPGA pro-

gramming input, while inhibiting changing any memory or 

registers on the device during reprogramming. This way, compi-

lers could invent perfect “operation codes” that are custom made 

to perform the work of a page of code, and use just about every-

thing on large devices to achieve incredible speed. 

This is critical for diagnostics in preparation for reconfiguration, 

because it allows access to the basic “grains” of the system. 

Without this, really complex diagnostics would be needed that 
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deduce the sources of malfunctions from combinations of ob-

served failures from various complex configurations. 

7.8 Failsoft Configuration on Power-Up 
Blowing fuses during manufacture to deal with faults makes no 

provision for in-service failures. However, (re)configuring on 

power-up cures in-service failures and assures a nearly limitless 

lifespan. This is no problem with a general purpose programma-

ble device that is fast enough to do the job in a reasonable 

amount of time. However, this functionality establishes a high 

lower limit on the performance of future processors, as proces-

sors must be able to fully diagnose and repair numerous malfunc-

tions on power-up within a second or so. Further, devices must 

incorporate appropriate technologies to support dynamic reconfi-

guration. This presents a chicken-or-egg challenge, as super-

performance is needed for practical power-up reconfiguration, 

and power-up reconfiguration is a practical necessity to imple-

ment super-performance at the high levels envisioned here. 

Once this has been achieved, there is no limit on size and com-

plexity of future computers while maintaining ~100% yield, pro-

viding that sufficient spares are included in the design, and there 

is fall-back to smaller configurations in the event of an excessive 

number of failures. For example, a chip might have a dual main-

processor where only one is needed, and, say, 4096 slave proces-

sors plus a few hundred spares, configured in a way that the sys-

tem could run with 2048, or even 1024. Further, the main 

processors might have IEEE-754 floating-point ALUs, which 

could be emulated in software should the ALUs be faulty. There 

would be countless fuses in the power distribution network to 

isolate any shorted logic, etc. In short, if much of anything 

worked, the chip would work well enough to sell, at least into 

applications that didn’t need their maximum potential perfor-

mance. This would completely remove the present tradeoffs be-

tween chip size and yield. 

Note that advanced configuration methods typically involve ge-

netic algorithms (GA) to discover workable configurations, so the 

time needed to configure is variable and potentially unbounded. 

Hence, a large engineering margin in performance will be needed 

to assure timely (re)configuration. 

7.9 Failsoft Partial Reconfiguration During 

Execution 
It is also possible to survive most new faults during operation. 

Mostly implemented in the firmware running on a future proces-

sor, applications that run as multiple tasks that post their results 

when done; could continue operation, even with the failure of 

associated computational components. Applications would use 

Assert logic to confirm correct operation, and watchdog timers 

to recognize dead tasks. When a task is seen to be malfunction-

ing, a partial reconfiguration would be triggered, using the same 

(re)configuration logic used on power-up, but restricted to the 

subset of hardware used by the malfunctioning task. 

When reconfiguration is complete, the failed task would then be 

restarted on the reconfigured hardware. A repeated identical 

failure would indicate a programming error. 

Fail-soft partial reconfiguration would require suitable applica-

tion program architecture, and would introduce a considerable 

momentary “glitch” into DSP applications. The alternative to 

such glitches is the present situation of permanent irreversible 

component failure. 

To further improve the likelihood that in-service failures will be 

recognized and corrected, idle time should be spent running di-

agnostics, diagnostic failures should be used to invalidate recent 

results, and diagnostics should be invoked before accepting high-

ly unusual results. 

7.10 Physically Symmetrical Pinout to Facili-

tate the Use of Defective Components 
By carefully assigning the pinout of new chip designs, it could 

easily become possible to plug them in any of up to four different 

ways, with as many separate-but-equal processors and associated 

I/O pins as there are ways of plugging them in. This way, there 

would be up to four prospective pins #1. After testing, a factory 

technician would then cut off the corner pin associated with each 

fully functional processor. A circuit board designer could then 

eliminate any combination of corner pin holes, depending on 

which processors and I/O pins were not essential to the design. 

Typical circuit board designs would have 3 missing corner pin 

holes on the circuit board, so that a fully functioning chip could 

be plugged in any of 4 different ways (because all of its corner 

pins would be missing), However, a chip with a malfunctioning 

processor or I/O pin(s) could only be plugged in only one way, 

with the associated pin #1 connecting to the one remaining cor-

ner pin hole. Note that hexagonal chips could be plugged in any 

of 6 ways, and only 1/6 of the chip would be lost to a bad I/O pin. 

Designers would be motivated to use fewer I/O pins, because 

malfunctioning chips would be less expensive then ones where 

all of the processors and I/O pins function correctly. Designs 

needing less than half of the I/O pins would provide additional 

corner pin holes on the circuit board design, so that chips with 

even more bad sections could be utilized. 

Another pin (perhaps pin #2) would be asserted on the circuit 

board to identify the “primary” section of the chip, so that the 

chip can tell which section is to control the others, and identify 

the chip’s rotational position on the board, so that the functions 

of I/O pins can be properly determined. 

Of course a designer could use all of the processors and all but 

two pins in every corner, but then only fully functional chips 

could by utilized. 

Symmetrical pinout is the last line of defense for when fail-soft 

methods fail. This provides the factory with a method of selling 

devices that cannot fully repair themselves, and provides service 

personnel with a method for repairing equipment incorporating 

devices that can no longer fully repair themselves. Repair per-

sonnel would simply remove a malfunctioning device, rotate it, 

and reinstall it. 

7.11 An Architecture-Independent Universal 

Compiler To Compile A New APL-Level 

Language 
There are several candidate compiler architectures that could 

compile to almost any imaginable computer. Methods range from 

rewriting the code-generator portion, to rewriting table entries 

containing snippets that perform various functions, to using a 

syntax directed meta-compiler and simply altering the output 
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instructions. All of these methods and more have been used in 

commercial production compilers, but complicating factors, like 

the desire for code optimization, muddy the waters. Note that 

there are orders of magnitude to be gained from a radically new 

compiler, yet optimization typically only buys <2:1. Hence, for 

the time being, until architectures make their radical jump and 

then settle down, optimization concerns should be set aside in 

favor of getting the technology off of its present hump. 

A major complication is the need for a new source language with 

semantics akin to APL in which to program high performance 

applications. A truly flexible and capable compiler for compiling 

from an APL-level language to variable targets is desperately 

needed for the high-performance industry to progress. This can 

only come as an industry-wide effort, or at government expense. 

If a new language is being designed, it should probably also have 

ADA-like variable declarations to facilitate both compile-time 

and run-time checking, and support a COBOL-like verbose list-

ing mode to facilitate “desk checking”. 

7.12 Putting it All Together 
It seems clear that it is possible to build self-repairing processors 

of nearly limitless size and performance, and manufacture them 

with ~100% yield, with reasonable extensions to the technology 

at hand. However, its architecture won’t be a CPU, GPU or 

FPGA. Instead, it will be a combination of all of these and a little 

more. It could run languages like C++ just as inefficiently as do 

present products, but would need a language with APL-like se-

mantics to support future capabilities. Further, there are some 

big money hurdles to overcome. Probably the biggest hurdle is 

the need for a universal compiler to support future high-

performance computing. 

Is a hundredfold improvement in performance worth the ~billion 

dollar cost to engineer such devices? That is the question that 

should logically determine whether this path is taken. 

Note the prior call for technological revolution of computation, 

made 15 years ago by Andŕe DeHon in his PhD thesis Reconfi-

gurable Architectures for General-Purpose Computing. His 

technology was eventually commercialized into a company called 

Silicon Spice, which was sold to Broadcom at the height of the 

tech boom for ~$1.2 billion. Technology of that time restricted 

practical implementation to DSP applications, whereas no such 

limitations now persist. However, with more complex methods 

supporting loftier goals, including general purpose computing, 

the cost will be considerably higher. 

8. BEFUDDLEMENT 
If you ask others why they are in their particular corner of their 

industry, or you ask yourself why you are in your particular cor-

ner of the industry, the answer usually boils down to befuddle-

ment with the unknown worlds outside of a particular domain. 

Nowhere else is this more clear than with memory designers, 

who usually want absolutely nothing to do with the internal com-

plexities of computer architecture, operating systems, etc. There 

is a similar though lesser effect with FPGA designers. At the 

opposite end of the spectrum are the operating systems and ap-

plications designers, few of whom have any experience with an 

oscilloscope or logic analyzer. Just about everyone sees the in-

dustry as way too complex to think about in any sort of gestalt 

way. However, with the industry chopped up into various fixed 

domains that are gradually becoming less and less appropriate for 

future computational needs, the gaps in other-domain capability 

are being filled in with extreme in-domain complexity. In this 

mode, we all become part of the problem, rather than part of the 

solution. 

There was a similar situation during the 1960s, when radically 

new computers were being introduced on a yearly basis. Many 

excellent technologists simply dropped out of this scramble to 

keep up with technology. I anticipate the same phenomenon dur-

ing a transition to the envisioned advanced technology proces-

sors, where few present technologists will be able to keep up 

with the coming radical changes. 

9. COMPUTATIONAL SINGULARITY 
Here are three differently stated but identical architectures, 

stated from three different points of view: 

1. An array processor whose slave processors are much more 

powerful than in the past, including reconfigurable logic, so 

that on-the-fly array processing instruction definition be-

comes practical. 

2. A multi-grain FPGA with ALUs and parts of ALUs, memory 

banks, etc., organized into reconfigurable clusters under the 

control of central processor(s). 

3. GPUs with reconfigurable logic and integrated into a CPU. 

Each of these descriptions presumes the application of the neces-

sary enabling technologies as explained earlier. 

So, where does the hundredfold improvement in performance 

come from? 

1. Future projected applications won’t need the precision of 

present devices, so precision can be traded for speed, e.g. 

more logarithmic ALUs in place of fewer floating-point 

ALUs. Also, this speed will facilitate fast power-on diagnos-

tics. 

2. With the methods presented, much larger chips can be fa-

bricated at the same overall cost, because defects will no 

longer impair the yield. Greater size brings the components 

needed to do more in parallel, along with the assortment of 

components needed to implement long computational pipe-

lines. 

10. CONCLUSION FOR DEVELOPERS 
Just because your co-workers remain isolated is no reason for you 

to do the same. Attend WORLDCOMP and other conferences 

that are out of your present scope of work. Present papers that 

discuss your vision for the distant future of your present scope of 

work. Make it known at local universities that you will mentor 

PhD students. Make friends who are familiar with potentially 

important future technologies, e.g.: 

1. Someone who worked on 1980s supercomputers 

2. Someone who has extensive computing experience that 

predates microcomputers. 

3. A CS/EE professor who is up on just about everything that 

has ever been made. 
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Soon, you will become known as THE guy who knows just about 

everything. You will soon be able to move into management, 

whereupon… 

11. CONCLUSION FOR MANAGEMENT 
The issues presented in this paper all center around what would 

have been called “professionalism” in the era before microcom-

puters. Professionals would represent their employers at multi-

disciplinary conferences, present papers at conferences; stay up 

on all potential enabling technologies, mentor students, etc. This 

sense of professionalism has been completely lost in “modern” 

technology, and with it has gone the productivity of the designers 

at the major chip makers. Everyone is now threatened by this 

lack of a sense of professionalism. Thirty years ago I might have 

recommended simply firing such designers for cause and hiring 

more professional designers, but that time has passed and we 

must now “dig our way out” of this mess, using the people that 

we now have working in the industry.  

Rather than taking years/decades to do so in any slow way, my 

present recommendation is to draw up clear company standards 

of professionalism that ALL product designers must follow, and 

demote or fire those who don’t follow them. Sure you may have 

to make an example of one or two technically capable develop-

ers, but this is necessary to demonstrate your resolve. Soon eve-

ryone will be attending conferences other than just the “inside” 

conferences that only pertain to their present narrow work. Eve-

ryone will mentor PhD students, will be presenting papers invit-

ing public scrutiny before committing designs to silicon, will 

bring in both very new and very old enabling technologies, etc. 

12. OVERALL CONCLUSION 
This paper advances an approach to achieve a renaissance in 

computational architecture, promising a hundredfold increase in 

performance. However, the big challenge here is organizational 

rather than architectural. Existing microcomputer, GPU, and 

FPGA manufacturers have been unable/unwilling to adapt to 

produce these products, or this would have happened a decade or 

more ago. This appears to require revolutionary management 

changes, presenting an excellent opportunity for takeover bids by 

astute investors who are not attached to present methods of engi-

neering management. 
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Abstract - `This paper presents a BCH based hardware 
implementation of 32-bit Fault-tolerant ALU in which is 
compared with the current techniques such as Residue code, 
Triple Modular Redundancy (TMR) with single voting and 
TMR with triplicated voter that are widely used in space 
application to mitigate the upsets, in terms of area penalty. We 
consider BCH (Bose, Chaudhuri, and Hocquenghem) codec 
(encoder, decoder) that is implemented FPGA hardware. The 
new implementation of ALU employing BCH code on Spartan-
3 FPGA has been provided. The results show reduced area 
requirements compared to the other technique and it can 
correct any 5-bit error in any positions of 32-bits input 
registers of ALU  

Keywords: Fault Tolerant, BCH codes, ALU, Residue code, 
TMR, Encoder, Decoder, FPGA. 

 

1 Introduction 
  In recent years, working on reliable communication 
transmission plays a vital role. So that a single error may 
shutdown the whole system and give rise to erroneous data. 
System reliability is one of major issues in embedded 
processors designs for space application such as satellite, 
military, communications and etc. Various attacks exist in 
space on integrated circuits that comes from sun activity. 
Such as solar rays which are composed of charged particles. 
The radiation from sun effects in integrated circuits make 
digital damage and upsets such as SEU (Single Event Upset), 
SET (Single Event Transient) and etc as presented in [1]. 
Such attacks can upset either combinational logic or 
sequential logic. In other words a bit flip can occur in register 
bits and if one bit of main storage system is changed the 
mission of system would be completely different. In such 
scenario the error control or fault tolerant methods are 
employed to keep integrated circuits against these attacks in 
space. To achieve such purpose we consider error detection 
and correction codes (EDAC) method. It is usually used to 
mitigate SEU in integrated circuits which are required that the 
encoder and the decoder blocks to be able to detect and 
correct errors respectively. This technique gives strong faults 
coverage and less overhead hardware. For this reason we 
consider the BCH (Bose, chaudhuri, and Hocquenghem) 
codes and a binary BCH codes is considered. As a result of 
using BCH codes, we have achieved to design encoder and 
decoder circuits to detect and correct 5-bit faults. Also we 
have designed a 32-bit ALU. Our 32-bit ALU model consists 
of the following function units: Arithmetic operation consist 

of Full-Adder and subtractor. Bitwise logic operation such as: 
XOR, AND, OR, and NOT. Bit-shifting operations such as: 
shifting to the left or right. We previously have presented 
design of a secure ALU (Arithmetic and Logic Unit) against 
faults. This ALU is able to correct any 5-bit error in any 
position of its 32 bits input registers. Consequently, the core 
for implementation of an ALU employing the BCH code on 
Spartan-3 FPGA has been provided.  

1.1 Motivation 
 Our goal is to designing a new 32-bit ALU that is secure 
against many attacks or faults and able to correct any 5-bit 
fault in any position of its 32 bits input register of ALU. 
Because the radiation effects on electronic circuits may cause 
to be inverted data bits of registers or memories. If one bit of 
main storage system is changed the mission of system would 
be completely different. The high motivation in choice of 
BCH codes is that, it is able to correct multiple errors and 
these classes of codes are kind of powerful random error 
correcting cyclic codes. Moreover, by choosing two essential 
parameters n and t, the designer is able to design any BCH 
code. These implies that a crucial motivation because the 
structure of BCH encoder and decoder in presence of two 
parameters n and t can be notably different. 

1.2 Overview 
 The rest of this paper is presented as follows: In section 
2, types of fault tolerant techniques are discussed. In section 
3, an encoding and decoding implementation of (63, 36) BCH 
code applied in our work are described. In section 4, our fault 
tolerant 32-bit ALU are presented. In section 5, the results of 
fault tolerant methods are presented. Section 6, describes 
conclusion. 

2 Types of fault tolerant technique 
 There are many design-based techniques to give the fault 

tolerant scheme such as detection techniques and mitigation 
techniques. Detection techniques consist of hardware 
redundancy, time redundancy and information redundancy 
scheme and mitigation techniques consist of TMR (triple 
modular redundancy), multiple redundancy with voting as 
presented in [3], and EDAC (Error Detection and Correction 
coding) scheme. 

Hardware redundancy (HR) is based on extra component 
that can be composed of extra same circuit to perform the 
same operation at the same time. In this way the faults can be 
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identified by duplication or masked by triplication and then by 
comparing the outputs through a voter. Error detection and 
correction codes can also be a type of hardware redundancy 
due to the requirements of extra bits enabling to detect and 
correct errors. So, consume 100% hardware overhead 
however it gives powerfully high fault coverage. The 
proposed technique can identify an SEU in a sequential logic. 

The time redundancy (TR) consists of extra execution time 
with sampling at different time then comparing results to 
detect errors. These techniques are usually utilized to detect a 
SET in the combinational logic and also it requires lower 
hardware overhead than the HR and EDC. However this 
method has a major drawback due to the extra delay during 
recompilation.  

The information redundancy (IR) is based on EDC (Error 
Detection Code). Although this technique requires extra 
hardware, it gives a low hardware overhead than the HR. This 
method can be considered as a good choice to meet our 
criteria.  

The TMR (triple modular redundancy) technique uses three 
components. In fact, the entire device triplicate to fault 
masking by a single voter then the voter gives the correct 
value in the presence of an upset by the majority opinion as an 
output. Similar to previous techniques, IT needs extra logic. It 
corrects up to three faults per 3-bit word, if each fault is 
placed in a distinct bit. This technique votes the true value but 
it doesn't correct it. In addition faults will accumulate, if there 
is no additional device to correct them. Hence this approach is 
also more applicable to space applications. 

Error detection and correction (EDAC) codes technique 
is usually utilized to mitigate SEU in integrated circuit and it 
requires extra hardware. Nevertheless this technique gives 
strongly faults coverage. Hence, we are considering this 
technique to cover our goals. EDAC codes can be 
implemented in two ways and it depends on transmission data.  

If transmission occurs in only one direction to overcome 
error, the error control system works out through the forward 
error correction (FEC) [7]. 

Therefore, FEC method is useful for a satellite transmission 
and it is considerable for us. The schematic of an FEC method 
is shown in figure 1. One of the significant classes of FEC 
codes is linear block codes and binary BCH codes are classes 
of linear block codes. BCH codes are a generalization of 
Hamming code for a multiple error correcting. Further, these 
codes are a large class of powerful random-error correcting 
cyclic codes [6]. 

 
Figure 1. Scheme of a forward error correction (FEC). 

 

2.1 Introduction of Fault Tolerant methods 
In this section the similar works in the literature that has been 
applied in the ALU to keep it safe from logic and arithmetic 
operation using Residue code are presented [4]. The other 
works which are considered here are triple modular 
redundancy (TMR) scheme with single voting [3], and with 
triplicated voting.  Then we have compared these methods 
with our tasks. Finally, Fault Tolerant methods for 32-bit 
ALU in terms of overhead hardware are compared. 
 

2.1.1 Residue code 
 To design the 32-bit Fault Tolerant ALU (Arithmetic 

Logic Unit), V.S. Veeravalli et al [4], has used the residue 
code and duplication of hardware mechanism in order to 
achieve a less hardware overhead. In residue codes, data parts 
and check parts are separated to be able to detect the errors. 
The residue of X modulo A is denoted by |x|A. There exists 
the following equation. 

               |X+Y|A = │|X|A+|Y|A│A                               
|X.Y|A = │|X|A.|Y|A│A              (1) 

 
X Main

Arithmetic 
Processor

Check processor

Mod A

Comparator

Y

X mod A

Y mod A
X+Y mod A

Z=X+Y

Error indicator

 Figure 2. Arithmetic processor with residue checker. 
The structure of such scheme is depicted in Fig. 2. 

V.S.Veeravalli et al in [4] has been presented implementation 
of error detection mechanism to detect error in ALU. Also for 
Boolean operations of the ALU duplication of hardware has 
been used to detect the error. Since the residue code can only 
detect the error, they have to devise other spare ALU to make 
error correction possible. In such technique, if one error has 
occurred in ALU, then it should replace the original ALU with 
the spare ALU. In such method it is required to compute the 
remainder of both inputs of the ALU. Also they had to 
compute the remainder of the output of the ALU. 
Consequently, after computing the remainders it is required to 
compare whether they match. The main drawback of residue 
code with A as a check modulus is that it has the same 
undetectable fault magnitudes. For A=3, only errors that 
modify the result by such multiple of 3 will go undetected and 
therefore single bit faults are always detectable [5]. The 
hardware overhead composed by residue codes concerning the 
ALU is around 45.596%. The hardware overhead of 
duplication for Boolean unit is 3%. So, the extra ALU has 
been increased the hardware overhead by 100%. Therefore the 
total hardware overhead for the 32-bit ALU is 148.596%. The 
other main drawback for duplication of hardware mechanism 
is that it uses two copies of the same hardware. It has more 
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than 100% hardware overhead. In such procedure the input is 
processed in both modules and is compared with the output 
results. If there is a mismatch or an error in the circuit, it will 
be informed by the comparator; moreover such scheme can 
only detect errors and cannot correct errors. 

 

 
Figure 3. Triple Modular Redundancy scheme. 

 

2.1.2 Triple modular redundancy with single voting 
 The other work in such field is designing a 32-bit ALU 

using Triple Modular Redundancy (TMR) with single voting. 
In fact, it uses hardware redundancy technique in the 
combinational logic and allows voting the correct output value 
in the presence of faults. The majority voter scheme is 
depicted in Fig. 3. 

The concept of TMR is devised firstly by Von Neumann. 
The circle Voter in Fig. 4 is called a majority organ by Von 
Neuman. In TMR technique the logic is triplicated in the 
output, the voters identify the correct value. The entire scheme 
is shown in Fig. 4.  

In this technique all registers should be tripled to protect 
circuits against radiation effects. The voter must be added in 
the output. The error will not be reflected in the output of 
voter if, one component fails. The hardware overhead in 
TMR is the addition of the two registers of the same size. 

Moreover there exist n voters for each n-bit register. So, 
such method is also need extra two spare 32-bit ALU and it is 
give rise to 200% hardware. Hentschke et al [2], have shown 
that Triple modular redundancy scheme is more effective 
according to area and performance to preserve registers and 
small memory structure. Nevertheless Hamming code is more 
suitable to preserve large register files and memories. 
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Figure 4. Majority Voter Schematic. 

2.1.3 Triple modular redundancy with triplicated voting 
 The other mechanism to fault tolerant 32-bit ALU is called 
Triple modular redundancy with tripled voting. Since in such 
scheme the reliability of the voter circuit proportionately is 
increased, it is currently utilized in industry.the schematic of 
this mechanism are shown in fig.5. 
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Figure 5. Triplicated Modular Redundancy with Tripled Voting. 

 

3 Proposed Fault Tolerant methods 
based on (63, 36) BCH code 

In this procedure we have designed (63,36) BCH encoder 
circuit to find the codeword and we have designed (63,36) 
BCH decoder to correct any faults in codeword. The 
designing of (63, 36) BCH encoder and decoder for t=5 has 
been provided in [8] by the way we describe encoder and 
decoder implementation summarily. 

The encoder circuit [4], calculates the parity bits using the 
LFSR (Linear Feedback Shift Register). The generator 
polynomial of the (63, 36) BCH code is  
 

Encoding circuits are shown in fig.6.For more information 
refer to [8]. 

g2g1 g25 g26

b0 + + ++b1 b2 b26b25. . . . +

Message

Parity bits
Codeword

2K

m0m1.  .  .  .  mn

Gate

1K  
 Figure 6. Encoding circuit for an (63, 36) BCH code. 

 
 The decoding of BCH code is composed of three 

main steps that are expressed as follows: 
1)  Compute the syndromes from the received codeword.  
2)  Obtain the error locator polynomial σ(x) (ELP) through 

the BMA (Berlekamp-Massy-Algorithm). 
3) Determine the error-location numbers by finding the 

roots of error location polynomial (identifying the position of 
erroneous bit). All these steps shown in the following block 
diagram in figure 7. 

Simplified 
Berlekamp 
Algorithm

Chein’s 
search

Syndrome 
computation

Buffer register + output62i ... 0i

1S

2S

2tS

Received codeword Corrected data

.

.
.
.

1σ

2σ

tσ

Figure 7. Block diagram for decoder system using BCH code. 
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3.1 The syndrome computations  
 The first step of decoding procedure is “syndrome 

computation”. The syndromes identify whether error has 
occurred. If the syndromes all are zero, we will have no error 
in codeword and if the syndromes not be zero we will have 
error in codeword. For computing the syndromes, the 
syndrome Si is defined as: 

( 1) ( 2)
1 2 1 0

1 1 3 1 0

( ) ... (2)

(...(( ) ) ... )

i n i n i i
i n n

i i i i
n n n

S r r r r r
r r r r r

α α α α

α α α α

− −
− −

− − −

= = + + + +

= + + + + +
 

Where i is1 2i t≤ ≤ . Each syndrome component is 
calculated by dividing r(x) by the minimal polynomial mi(x) 
of αi  

( ) ( ) ( ) ( )i i ir x q x m x b x= + .      (3) 
bi(x) is the reminder. When the entire received codeword 

has entered the decoder, 10 syndromes components (s1, s2,…, 
s10) are formed. It takes 63 clock cycles to complete the 
computation. Since, the generator polynomial is a product of 
at most 5 minimal polynomials Therefore at most 5 feedback 
shift register , each consist of at most 6 stages, are required to 
form the 10 syndrome components. For more information 
about the computation of syndrome refer to [8]. Also We have 
implemented the syndrome computation circuit for (63, 36,5) 
BCH code which has been presented in [8]. 

 
3.2 The Berlekamp-Massy Algorithm 

 

 The second step of decoding for finding the error location 
polynomial has been done through the simplified Berlekamp-
Massy Algorithm which is shown in fig 8. We assume that the 
numbers of errors  v ≤ t have occurred and error locator 
polynomial σ(x) is: 

         1 1
0 1 2( ) ...x x x x ν

νσ σ σ σ σ= + + + +  

1 2( ) (1 )(1 )....(1 )x x x xνσ β β β= + + +   (4) 
The coefficient of error locator polynomial and the error 

location numbers are related by the following set of equations: 
[7]. 

 
0
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1
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...
.

... .

ν

ν ν

ν ν

σ
σ β β β
σ β β β β β β
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−

=
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       (5) 

 
Where the coefficient of error locator polynomial 

, 1i iσ ν≤ ≤ are related to the syndrome components 

, 1 1 [7].iS j ν≤ ≤ +   
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Figure 8. The inversion Berlekamp massy algorithm. 

 

3.3 Chein's searching circuit 
This process stored the received codeword in a buffer 

register to compute the syndrome. It takes 63 clock cycles to 
complete the computation. We have implemented a Chein’s 
searching circuit [3], for the 5-error correcting (63, 36) BCH  
has been implemented in [8]. This circuit is applied to identify 
the position of erroneous bits into the 63-bit received 
codeword and then correct it.  

 
4 Fault tolerant ALU using BCH code 

Our 32-bit ALU model consist of the following operations 
Full Adder, Subtractor XOR, AND, OR, NOT, shifting to the 
left and right. The codec circuits are applied to correct any  

5-bit error occurred in any position of 32-bits input 
registers of ALU. Our algorithm of fault tolerant ALU is 
shown in Fig. 9. In this algorithm at first the 63 bits input 
register A and B is read out one by one, by the decoding 
system. Registers A, B consist of 27-bits parity check; 36-bits 
data which are 4-bits are extra. We use these extra bits as 
parity check bits as shown in fig.10. If any error occurs in any 
position of 63-bits the decoder will correct the erroneous bit at 
once. In output the decoding system gives 36-bits where we 
need only 32-bits as 2-inputs of ALU (we don’t store 4-bits of 
36-bits). So, the output of 32-bit ALU is the C resister. We 
add the 4-bits zero for leftmost of C register to convert the 36-
bits for the input of encoder system. After encoding the data 
of register C´ is kept in register A. 
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Figure 9. The fault tolerant ALU Algorithm using (63,36) BCH code. 

 

5 Results 
As shown in fig. 9, our proposed fault-tolerant ALU has 

been implmented in XC3S400 from Spartan-3 FPGA family. 
The system has been simulated on Modelsim 6.2b and its 
performance has been verified by ISE 8.2i that is shown in 
figure 10. In the comparison of the previous methods with 
using the BCH code and TMR, the result implies that the 
performance of the proposed fault tolerant ALU algorithm, an 
encoding and decoding block have partially degraded. This is 
due to the delay of the number of XOR gates in serial form in 
codec circuits.  Moreover, as the number of error bits 
increases, the time for error correction may take longer. In the 
TMR method the delay is occured in the voter scheme, then 
the performance is not deeply affected and it is constant with 
the number of bits to be detected. In comparison with area 
penalty of methods, 32-bit fault tolerant ALU using BCH 
code is a better choice in terms of area as compared to TMR 
and Residue code. This is due to the fault tolerant method for 
32-bit ALU using TMR with single or triplicated voting need 
single voting scheme or tripled voter and two extra 32-bit 
ALU which has been increased the hardware overhead by 
202% and 208% respectively. In comparison with fault 
tolerant method using  Residue code, we need Hardware 
duplication for boolean operations, residue coedes for 
arithmetic operation and extra 32-bit ALU which has been 
increased the hardware overhead by 148.9%. However, in 
comparison with fault tolerant method using BCH code, we 
need encoding and decoding block then the hardware 
overhead is 75%. Thus our fault tolerant hardware overhead 
has lower hadware compared to the others. 

 
Figure 10. The Design performance of Fault Tolerant ALU 
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6 Conclusions 
 The paper describes a new implementation of the ALU 
for BCH code .We also compared our 32-bit fault tolerant 
ALU by using a (63, 36) BCH code with the other Fault 
tolerant methods (Residue code, TMR with single voting 
scheme and TMR with triplicated voting method). In the 
comparisons, for instance, fault tolerant method using BCH 
shows 75% hardware overhead. The implementation provides 
a high level of fault tolerance with relatively and small 
hardware penalty. Further, the proposed system has been 
simulated on Modelsim 6.2b and its performance has been 
verified by ISE 8.2i. The results indicate any five bits error in 
any position of 32-bit input registers of ALU would be 
corrected. 
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High-Performance and Area-Efficient Hardware Design for
Radix-2k Montgomery Multipliers
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Abstract— Montgomery multiplication is one of the funda-
mental operations used in cryptographic systems. The now-
classic hardware architecture for implementing Multiple-
Word Radix-2 Montgomery Multiplication (MWR2MM) was
proposed by Tenca and Koç in CHES 1999. This architecture
performs a single Montgomery multiplication in approxi-
mately 2n clock cycles, where n is the size of operands in
bits. In this paper we propose an improved design that is
capable of carrying out the same computation in n clock
cycles using equivalent amount of hardware resource at
higher frequency rate. The improved design first assumes
the most significant bit of the previous word to be zero and
adds its real value later when it becomes available. This
design is particularly desirable when dealing with high-radix
Montgomery multiplications. Experimental results show that
the proposed improved design can reduce hardware resource
utilization by up to 60% compared with other previous
architectures.

Keywords: Montgomery Multiplication, MWR2kMM Algorithm,
Hardware Optimization

1. Introduction
Since the introduction of the RSA algorithm in 1978,

high-speed and space-efficient hardware architectures for
modular multiplication have been a subject of constant
interest for more than 30 years. During this period, one
of the most useful advances came with the introduction
of Montgomery multiplication algorithm due to Peter L.
Montgomery [1]. Montgomery multiplication is the basic
operation of the modular exponentiation, which is required in
the RSA public-key cryptosystem. It is also used in Elliptic
Curve Cryptosystems, and several methods of factoring, such
as ECM, p-1, and Pollard’s “rho” method, as well as in many
other cryptographic and cryptanalytic transformations.

At CHES 1999, Tenca and Koç introduced a word-based
algorithm for Montgomery multiplication, called Multiple-
Word Radix-2 Montgomery Multiplication (MWR2MM), as
well as a scalable hardware architecture capable of executing
this algorithm [2], [3]. There is a 2-clock-cycle latency
between the computation of two consecutive iterations due
to the right shift of the intermediate result. This latency
brings the overall computation time to approximately 2n
clock cycles where n is the number of bits of the operands.
Two recent architectures, proposed by Harris et al. [4] and

Huang et al. [5], [6] respectively, are capable of reducing this
latency to 1 clock cycle. Huang’s architecture outperforms
Harris’ for radix-2 multiplication; however, it suffers from
demanding resource requirement for high-radix cases. In this
paper, we propose two optimizations applied to Huang’s
architecture. The first one is to reduce the resource require-
ment, particularly for high-radix cases. It is demonstrated
that the computation redundancy of the processing element
(PE) in Huang’s original architecture can be removed by
calculating only one version of a word with the assumption
that all of the unknown bits are zeros in current clock
cycle, and adding their actual values in the next clock
cycle. The second one is to improve the performance when
the architecture is used to process a stream of operands.
It is shown that carefully designed gating logic can get
rid of the dedicated reset clock cycle and make every PE
always process data without stall. As a result, the maximum
normalized throughput of the architecture is achieved, which
is 1

n/k operands per clock cycle for radix-2k cases. These
two improvements render a more practical architecture on
top of Huang’s by reducing the resource utilization and
increasing the throughput.

The remainder of the text is organized as follows.
Section 2 describes the Montgomery multiplication, the
MWR2MM algorithm, and the related work. The optimiza-
tion design is presented in Section 3, followed by implemen-
tation results in Section 4. Section 5 concludes this work.

2. Montgomery Multiplication
2.1 Multiple-Word Radix-2 Montgomery Mul-
tiplication Algorithm

In many cryptosystems, such as RSA, computing X · Y
(mod M), in which M > 0 is an odd integer, is a crucial
operation. The reduction of X · Y (mod M) is a more
time-consuming step than the multiplication X · Y without
reduction. In [1], Montgomery introduced a method for
calculating products (mod M) without the costly reduction
(mod M), since then known as Montgomery multiplication.
Montgomery multiplication of X and Y (mod M), denoted
by MP (X, Y, M), is defined as X · Y · 2−n (mod M) for
some fixed integer n.

Since n is generally quite large in cryptosystems, such
as 1024 or 2048, the direct implementation of Montgomery
multiplication in hardware is impractical. In [2], [3], Tenca
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Algorithm 1: Multiple-Word Radix-2 Montgomery Mul-
tiplication Algorithm [2]

Input: odd M, n = blog2 Mc+ 1, word width w, e = dn+1
w
e,

X =
∑n−1

i=0 xi · 2i, Y =
∑e−1

j=0 Y (j) · 2w·j ,
M =

∑e−1
j=0 M(j) · 2w·j , with 0 ≤ X, Y < M

Output: Z =
∑e−1

j=0 S(j) · 2w·j = MP (X, Y, M) ≡ X · Y · 2−n

(mod M), 0 ≤ Z < 2M
S = 0; /*initialize all words of S*/1.1
for i = 0 to n− 1 do1.2

qi = (xi · Y
(0)
0 )⊕ S

(0)
0 ;1.3

(C(1), S(0)) = xi · Y (0) + qi ·M(0) + S(0);1.4
for j = 1 to e step 1 do1.5

(C(j+1), S(j)) = C(j) + xi · Y (j) + qi ·M(j) + S(j);1.6

S(j−1) = (S
(j)
0 , S

(j−1)
w−1..1);1.7

S(e) = 0;1.8

return Z = S;1.9

and Koç proposed a Multiple-Word Radix-2 Montgomery
Multiplication Algorithm (MWR2MM), as shown in Alg. 1.
In Alg. 1, the operand Y (multiplicand) is scanned word-
by-word, and the operand X is scanned bit-by-bit. The
operand width is n bits, and the word width is w bits.
e = dn+1

w e words are required to store S since its
range is [0, 2M − 1]. The original M and Y are extended
by one extra bit of ‘0’ as the most significant bit. Pre-
sented as vectors, M = (0, M (e−1), . . . ,M (1), M (0)), Y =
(0, Y (e−1), . . . , Y (1), Y (0)), S = (0, S(e−1), . . . , S(1), S(0)),
and X = (xn−1, . . . , x1, x0). The data dependency graph
of the proposed scalable architecture [2], [3] is shown in
Fig. 1, in which each column represents the computation
of a whole S for one iteration. The computation of a word
is represented as a circle. Once a word S(j) is updated, its
least significant bit is concatenated with the w − 1 most
significant bits of S(j−1), which becomes the “new” S(j−1)

and is forwarded to the neighbor PE. The concatenation is
shown in Line 1.7 of Alg. 1. The forwarding is illustrated
as the arrows between two columns in Fig. 1. Due to the
2-clock-cycle latency between two consecutive columns, the
whole computation process takes approximately 2n clock
cycles when performance is optimized.

2.2 Related Work
Several follow-up designs based on the MWR2MM algo-

rithm have been proposed in order to reduce the computation
time [4]–[17]. In [7], a high-radix word-based Montgomery
algorithm (MWR2kMM) was proposed using Booth encod-
ing technique. Although the number of scanning steps was
reduced, the complexity of the control and computational
logic increased substantially at the same time. In [4], Harris
et al. implemented the MWR2MM algorithm in a quite
different way, i.e., left shifting Y and M instead of right
shifting S. Their approach was able to process an n-bit
precision Montgomery multiplication in approximately n
clock cycles, while keeping the scalability of the original
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Fig. 1: Data dependency graph of the hardware architec-
ture [2] for MWR2MM algorithm (each PE computes all
words of S in the same iteration)

implementation. In [8] and [9], the left-shifting technique
was applied on the radix-2 and radix-4 versions of the
parallelized Montgomery algorithm [10], respectively. How-
ever, several additional cycles are necessary to complete the
most significant words at the end of each iteration, which
complicates the control logic. In [11], Michalski and Buell
introduced an MWRkMM algorithm, which is derived from
The Finely Integrated Operand Scanning Method described
in [12]. MWRkMM algorithm requires the built-in multipli-
ers in the FPGA device to speed up the computation. This
feature makes the implementation expensive. The systolic
high-radix design by McIvor et al. described in [13] is also
capable of very high speed operation, but suffers from the
same disadvantage of large area requirements for fast multi-
plier units. A different approach based on processing multi-
precision operands in carry-save form has been presented
in [14]. This architecture is optimized for the minimum
latency and is particularly suitable for repeated sequence of
Montgomery multiplications, such as the sequence used in
modular exponentiations (e.g., RSA).

The work presented in this paper is the improved work
based on the architecture proposed by Huang et al. [5]. The
main contribution of Huang’s architecture is to reduce the
computation time to approximately n clock cycles while us-
ing the equivalent amount of hardware resource and running
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Fig. 2: Data dependency graph of architecture [5] of
MWR2MM algorithm (each PE focuses on the computation
of a particular word of S across all iterations)

at almost the same clock frequency. The data dependency
graph of Huang’s architecture is shown in Fig. 2, in which
each column represents the computation of a word S(j)

across all iterations and is computed by a PE. Tenca’s ar-
chitecture and Huang’s architecture map the computation of
S(j)s differently. On Tenca’s architecture, the computation of
all words belonging to the same iteration maps to the circles
in a column. Contrastingly, the same amount of computation
maps to the circles on a diagonal in Huang’s architecture. In
other words, circle A and B in Fig. 1 correspond to circle D
and E in Fig. 2, respectively.

As shown in Fig. 3, the 2-clock-cycle latency in Tenca’s
architecture is reduced to 1 clock cycle in Huang’s architec-
ture by pre-computing partial results using two possible as-
sumptions regarding the most significant bit of the previous
word, which becomes available after the two possible results
are latched into the register. The forwarding of S

(j)
0 is illus-

trated as the horizontal arrow between two neighbor columns
in Fig. 2. One major drawback of the previous architecture,
is the demanding resource requirement for the case beyond
radix-4 since 2k branches need to be covered exhaustively
for radix-2k cases. The proposed optimization techniques in
this work are meant to resolve this issue to make it viable
for high radix cases. Furthermore, the throughput of the
optimized architecture is improved compared with Huang’s
architecture by integrating gating logic.

3. Optimization
In the data dependency graph in Fig. 1, there is a 2-clock-

cycle latency between the computation of two consecutive
iterations due to the right shift of S. As shown in Fig. 4,
the computation of S(j) of iteration i requires the least

Algorithm 2: Computation in Optimized PE #0

Input: xi, Y (0), M(0), S
(1)
0 , S

(0)
w−1..1

Output: qi, C(1), S
(0)
w−1..1

qi = (xi · Y
(0)
0 )⊕ S

(0)
1 ;2.1

(CE(1), SE
(0)
w−1, S

(0)
w−2..0) = (0, S

(0)
w−1..1)+xi ·Y (0) + qi ·M(0);2.2

(C(1), S
(0)
w−1) = (CE(1), SE

(0)
w−1) + S

(1)
0 ;2.3

Algorithm 3: Computation in Optimized PE #j

Input: qi, xi, C(j), Y (j), M(j), S
(j+1)
0 , S

(j)
w−1..1

Output: C(j+1), S
(j)
w−1..1, S

(j)
0

(CE(j+1), SE
(j)
w−1, S

(j)
w−2..0) =3.1

(0, S
(j)
w−1..1) + C(j) + xi · Y (j) + qi ·M(j);

(C(j+1), S
(j)
w−1) = (CE(j+1), SE

(j)
w−1) + S

(j+1)
0 ;3.2

significant bit of S(j+1) of iteration i − 1. Since only the
most significant bit in S(j) is missing at the beginning of a
clock cycle, it is possible to carry out the computation of S(j)

(of iteration i) and the computation of S(j+1) (of iteration
i − 1) in the same clock cycle. Huang’s approach [5] is
to pre-compute all possible results of S(j) corresponding to
different values of its most significant bit. Once the value of
the most significant bit of S(j) (i.e., the least significant bit
of S(j+1)) is determined at the beginning of the following
clock cycle, the correct result of S(j) can then be selected, as
shown in Fig. 3. For a radix-2k case, the number of possible
results is 2k, which increases exponentially as the value of k
increments. The proposed optimization is meant to remove
this demanding resource requirement.

As shown in Fig. 4, each PE carries out the computation of
the same S(j) across all n iterations. Once the computation
of iteration i finishes, the w-bit S(j) performs a right shift.
Then the computation of S(j) in iteration i + 1 will start
in the following clock cycle, say clk #n. Due to the right
shift, the most significant bit of S(j) is not determined until
the beginning of clk #n + 1 when the least significant bit
of S(j+1) becomes available. In the proposed optimization,
the most significant bit of S(j) is assumed to be ‘0’ at the
beginning of each clock cycle. At the end of each clock
cycle the intermediate sum and the carry are latched into the
register. Since the most significant bit of S(j) is assumed,
the value of the most significant bit of the intermediate sum
and the carry need to be adjusted by adding the “real value”
of the most significant bit of S(j) onto them. In Fig. 4, this
adjustment is represented as the link pointing from the least
significant bit of S(j+1) to the most significant bit of S(j).
This link corresponds to the horizontal arrow in the data
dependency graph of Fig. 2.

The overall architecture of the optimized design is illus-
trated in Fig. 5, which consists of e PEs. These e PEs belong
to three different types, head PE (i.e., PE #0), middle PE
(i.e., PE #j, 0 < j < e− 1), and tail PE (i.e., PE #e− 1).
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Algorithm 4: Computation in PE #e− 1

Input: qi, xi, C(e−1), Y (e−1), M(e−1), S
(e−1)
w−1..1, C

(e)
0

Output: C(e), S
(e−1)
w−1..1, S

(e−1)
0

(C(e), S(e−1)) =4.1

(C
(e)
0 , S

(e−1)
w−1..1) + C(e−1) + xi · Y (e−1) + qi ·M(e−1);

The internal architectures of these three types of PEs are
illusrated in Fig. 5 too. The pseudocode representing their
functions are listed in Alg. 2, Alg. 3, and Alg. 4, respectively.
The proposed technique is applied to the head PE and the
middle PEs. In the tail PE, i.e., PE #e−1, C

(e)
0 becomes the

most significant bit of S(e−1) after the right shift; therefore,
it is not necessary to apply the technique. The bits in the
operand X are pushed down from the head to the tail through
the shift register. The parity signal q is generated by PE #0
and pushed down through another shift register. By using this
architecture, the Montgomery multiplication between two n-
bit operands takes n + e− 1 clock cycles.

3.1 Extension to High-Radix Multiplications
The major issue of Huang’s architecture is the huge

resource requirement when it is extended to high-radix
multiplications. Contrastingly, the proposed optimization
technique in this work can be applied to high-radix cases
conveniently. Instead of scanning one bit of X every time,

Algorithm 5: Computation in Optimized PE #j (radix-2)
with Gating Logic

Input: qi, xi, C(j), Y (j), M(j), S
(j+1)
0 , S

(j)
w−1..1, start, start′

Output: C(j+1), S
(j)
w−1..1, S

(j)
0

if start then
S

(j)
w−1..1 = 0;

(CE(j+1), SE
(j)
w−1, S

(j)
w−2..0) =

(0, S
(j)
w−1..1) + C(j) + xi · Y (j) + qi ·M(j);

if start′ then
S

(j+1)
0 = 0;

(C(j+1), S
(j)
w−1) = (CE(j+1), SE

(j)
w−1) + S

(j+1)
0 ;

several bits of X can be scanned together for high-radix
cases. For a radix-2k case, the k most significant bits of
a word S(j) are assumed to be ‘0’s after the right shift.
Correspondingly, the k least significant bits of word S(j+1)

are used to adjust the intermediate result of S(j) and its carry.
The Montgomery multiplication between two n-bit operands
takes n

k + e− 1 clock cycles for radix-2k case.

3.2 Achieving Maximum Normalized Through-
put

In Huang’s architecture, the operand X is pushed into
the shift register by k bits every clock cycle in radix-2k

operation. Once the k most significant bits of X are pushed
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Fig. 5: (a)The internal logic of PE #0; (b)The internal logic
of PE #j; (c)The internal logic of PE #e-1; (d)The overall
architecture

into the shift register, it will take another e− 1 clock cycles
for the k bits to travel down to the tail PE. Therefore, it
would take n

k + e− 1 clock cycles to compute one operand.
After the computation of one operand is finished, the whole
architecture needs to be reset to the default status so that the
computation of a new operand can start, which takes another
extra 1 clock cycle. Under this scenario, the throughput of
Huang’s architecture would be 1

(n/k)+e operands per clock
cycle when it is dealing with an operand stream (assuming
another operand Y is fixed during the operation).

The e − 1 clock cycles plus the extra global reset cycle
can be removed by integrating gating logic into the design
of each PE. Taking the internal logic of PE #j in Fig. 6
as an example, the contents of S(j) and S

(j+1)
0 are gated

at two continuous clock cycles for the updating of S(j) in
the first iteration. First, when the PE #j is processing the
least significant bit of an input operand (i.e., xi = x0 for
radix-2), S

(j)
w−1..1 (belonging to the operation of previous

operand) is invalid and must be gated to all zeros. Second,
when it is time to adjust the most significant bit of S(j) and
the corresponding carry in the following clock cycle, S
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Fig. 6: The internal gating logic of optimized PE #j

has to be gated to ‘0’ since the whole S is initialized to zero
at the beginning of the computation for each operand. These
two gating logic are implemented as two multiplexers, which
are controlled by signal start and start′ respectively. The
corresponding pseudocode of the computation in PE #j is
shown in Alg. 5.

The condition signal start can be obtained by shifting it
along with x. start is asserted to ‘1’ when x0 is pushed
into the shift register. For the general radix-2k case, start
is asserted when the k least significant bits of X are pushed
into the shift register. The condition signal start′ can be
obtained by delaying start for 1 clock cycle internally in
each PE.

By integrating these two gating logic, the computation
of two operands can start one after the other without stall.
Therefore, the throughput of the optimized architecture can
reach 1

n/k operands per clock cycle, which is the maximum
rate when dealing with a stream of operands.

4. Implementation Results
The word-based Montgomery multiplication can be car-

ried out in either non-redundant form (using carry-ripple
adder) or redundant format (using carry-save adder). The
proposed optimization techniques can be applied to both for-
mats. For the sake of simplicity, all the discussion including
all figures in this work are in the non-redundant format. Sim-
ilarly, the implementation of the optimized architecture is in
the non-redundant format too. Therefore, the results reported
in this section are not comparable to the results in [2]–[4], [9]
since their implementations are in redundant format. In [6], a
comprehensive comparison has been made between Huang’s
architecture and other architectures, including Tenca’s and
Harris’. Through the comparison, it has been demonstrated
that Huang’s architecture is superior to other architectures
in terms of latency×area. Therefore, we only compare the
proposed optimized architecture with Huang’s architecture
in this work.
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Table 1: Resource Utilization and Speed Comparisons (w = 16)
Without Gating Logic With Gating Logic

Number of bits in operands (n) 1024 2048 3072 4096 1024 2048 3072 4096
Number of PEs (d(n + 1)/we) 65 129 193 257 65 129 193 257

Radix-2
Normalized Throughput (Operands per Clock Cycle) 1/1089 1/2177 1/3265 1/4353 1/1024 1/2048 1/3072 1/4096

Frequency(MHz) 114.39 111.11 111.11 111.11 111.98 106.41 106.41 106.41
Huang’s Number of LUTs 4553 8843 13259 17675 5465 10778 16154 21530

Architecture [5] Number of Registers 4621 9229 13837 18445 4619 9227 13835 18443
Number of Slices 2311 4615 6919 9223 2733 5389 8077 10765
Number of Multiplier Blocks 0 0 0 0 0 0 0 0
Frequency(MHz) 123.67 119.85 119.85 119.85 113.7 113.7 113.7 113.7

Optimized Number of LUTs 4426 8588 12876 17164 5401 10777 16153 21529
Architecture Number of Registers 4429 8845 13261 17677 4427 8843 13259 17675

Number of Slices 2215 4423 6631 8839 2701 5389 8077 10765
Number of Multiplier Blocks 0 0 0 0 0 0 0 0

Improvement

LUT Saving(%) 2.79 2.88 2.89 2.89 1.17 0.01 0.01 0
Register Saving(%) 4.15 4.16 4.16 4.16 4.16 4.16 4.16 4.16
Slices Saving(%) 4.15 4.16 4.16 4.16 1.17 0 0 0
Frequency Speedup 1.08 1.08 1.08 1.08 1.02 1.07 1.07 1.07

Radix-4
Normalized Throughput (Operands per Clock Cycle) 1/577 1/1153 1/1729 1/2305 1/512 1/1024 1/1536 1/2048

Frequency(MHz) 81.26 81.26 81.26 81.26 81.26 81.26 81.26 81.26
Huang’s Number of LUTs 9089 18177 27265 36353 9940 19860 29780 39700

Architecture [5] Number of Registers 4925 9853 14781 19709 4922 9850 14778 19706
Number of Slices 4545 9089 13633 18177 4970 9930 14890 19850
Number of Multiplier Blocks 0 0 0 0 0 0 0 0
Frequency(MHz) 91.13 91.13 91.13 91.13 91.13 90.7 90.7 90.7

Optimized Number of LUTs 7810 15618 23426 31234 8532 18442 27658 36874
Architecture Number of Registers 4093 8189 12285 16381 4090 8186 12282 16378

Number of Slices 3905 7809 11713 15617 4266 9221 13829 18437
Number of Multiplier Blocks 0 0 0 0 0 0 0 0

Improvement

LUT Saving(%) 14.07 14.08 14.08 14.08 14.16 7.14 7.13 7.12
Register Saving(%) 16.89 16.89 16.89 16.89 16.9 16.89 16.89 16.89
Slices Saving(%) 14.08 14.08 14.08 14.08 14.16 7.14 7.13 7.12
Frequency Speedup 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12

Radix-16
Normalized Throughput (Operands per Clock Cycle) 1/321 1/641 1/961 1/1281 1/256 1/512 1/768 1/1024

Frequency(MHz) 40.33 42.29 42.29 42.29 38.99 41.27 41.27 41.27
Huang’s Number of LUTs 10253 29643 50315 70987 11024 31217 52657 74097

Architecture [5] Number of Registers 11447 22903 34359 45815 11442 22898 34354 45810
Number of Slices 5724 14822 25158 35494 5721 15609 26329 37049
Number of Multiplier Blocks 131 144 144 144 131 144 144 144
Max Frequency(MHz) 45.02 48.93 48.93 48.93 43.53 47.57 47.57 47.57

Optimized Number of LUTs 4168 17478 32070 46662 4748 18669 33837 49005
Architecture Number of Registers 4215 8439 12663 16887 4210 8434 12658 16882

Number of Slices 2108 8739 16035 23331 2374 9335 16919 24503
Number of Multiplier Blocks 131 144 144 144 131 144 144 144

Improvement

LUT Saving(%) 59.35 41.04 36.26 34.27 56.93 40.2 35.74 33.86
Register Saving(%) 63.18 63.15 63.15 63.14 63.21 63.17 63.15 63.15
Slices Saving(%) 63.17 41.04 36.26 34.27 58.50 40.19 35.74 33.86
Frequency Speedup 1.12 1.16 1.16 1.16 1.12 1.15 1.15 1.15
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We made two types of comparison in this paper. First,
we applied the optimization technique to remove the com-
putation redundancy in Huang’s architecture to investigate
its impact on two parameters, the speed and the resource
requirement, particularly for high-radix cases. Second, we
applied the gating logic on both Huang’s architecture and
the optimized architecture to explore its impact on the two
same parameters. The comparison is shown in Table 1, which
includes post-synthesis results. All designs are written in
Verilog and the synthesis tool is Mentor Graphics Precision
2008a.47 with default settings. The target FPGA device
is Xilinx VirtexII6000FF1517-4, which has 2 LUTs and 2
registers in each slice and is the same device used in [5],
[6].

By observing the results in Table 1, it can be found that
the operating frequency is slightly increased by removing the
computation redundancy in Huang’s original architecture. In
the meantime, it is evident that the optimization technique is
capable of reducing the resource requirement. The resource
saving increases as the radix goes higher, which falls into our
expectation and clearly demonstrates the advantage of the
proposed optimization. It is worth mentioning that the focus
of our implementation is not to design high frequency logic
for high-radix operation. In the implementation of radix-
16 (radix-24) case, the direct multiplication between a 4-bit
variable and a 16-bit variable is implemented. The direct
multiplication is not fully pipelined; therefore, it brings the
frequency down to the range of 40 MHz. By observing
Alg. 2, Alg. 3, Alg. 4, it can be found that the head PE
consists of three multiplications, and the middle PE and
the tail PE both include two multiplications. For the 1024-
bit operation, 65 PEs are required to perform 131 4 × 16
multiplications concurrently. These 131 4 × 16 multipliers
are implemented using built-in Multiplier Blocks available
on VirtexII6000 devices. For the other three operand lengths,
the required number of 4× 16 multipliers is bigger than the
144 available Multiplier Blocks on the device. Then the syn-
thesis tool starts using LUTs to implement the multiplication.
The lack of built-in multiplier blocks contributes to the large
LUTs requirement when dealing with long operands.

By comparing the results of the design with and without
the gating logic, it can be found that the gating logic
increases normalized throughput and does not necessarily
reduce the operating frequency. However, it may increase
the resource requirement by up to 20%.

5. Conclusions
In this work, we proposed two techniques to design an

optimized hardware architecture to perform Montgomery
multiplication. This architecture is capable of carrying out
the multiplication in approximately n

k clock cycles for radix-
2k operations, where n is the number of bits of the operands.
The first technique assumes the k most significant bits of
the previous word to be zeros and adds their real value later

when it becomes available. For the second technique, gating
logic is integrated into the PEs to remove the computation
stalls when the architecture is performing multiplication on a
stream of operands. The optimized architecture has a slightly
higher frequency, achieves the maximum throughput of 1

n/k
operands per clock cycle, and reduces resource utilization
by up to 60% compared with previous work.
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Abstract 
    The microprocessor performance is increased by 
allowing multiple threads per clock cycle to issue 
instructions in simultaneous multithreading processors. 
Shared hardware resources are the key components of SMT 
processor performance. In SMT processors, impact to the 
performance will not be same among many hardware 
resources. To design an optimal hardware configuration 
for SMT processors, sensitivity analysis on hardware 
resource variation is required. In this paper, we evaluate 
the impact of parameters such as cache, physical register 
sizes, issue queue, instruction fetch policies and branch 
prediction accuracy on the performance improvement in 
the SMT processors, which demonstrates the efficacy of 
hardware resources among the threads. This research 
helps in choosing the best hardware resource sizes and the 
techniques in allocating these resources among the threads. 
     
Keywords: simultaneous multithreading, sensitivity 
analysis, parallel processing, performance evaluation and 
optimization, workload characterization 
 
 
 

 

 

1.  Introduction 

The speed (throughput IPC) of the processor is improved 
by increasing the number of the threads running on the 
processor [1]. Simultaneous multithreading develops the 
effectiveness (IPC) by using multiple threads and also by 
issuing instructions from multiple threads per clock cycle. 
It increases both the thread level parallelism and instruction 
level parallelism. The shared resources are the key factors 
which influence the performance in SMT Processors [5-
7][10-11]. A SMT processor allows the multiple running 
threads to share the resources which potentially increase the 
processor utilization and performance (IPC).  

In SMT processors, as the number of threads increases, 
resources should be increased and properly shared.  An 
improper use of these shared resources can seriously 
damage the performance of SMT processors. In order to 
prevent it, these resources should be used in an 
accomplished way to enhance the performance. The 
multiple running threads demand high resources because as 
the number of threads increases, the resource starvation 
increases. In this paper, we present how the main resources 
make an impact to the performance, such as the variations 
on hardware configurations such as cache size, fetch 

policies, branch prediction, issue queue and physical 
registers.  

We investigate the impact of resource allocation on SMT 
processor efficiency. The goal of this paper is to determine 
the sensitivity of shared hardware resources and what the 
particular processor resources among the running threads 
are significant in SMT processor efficiency. We focused on 
fetch policies because instruction fetch policy determines 
how the resources are allocated to the threads, and also 
examined the cache configurations and branch prediction 
resources. We found that the proficient way of utilizing 
resources and the size of resources can outweigh any losses 
due to the division of resources among multiple threads. 
We also apply our insight to find the benefit of particular 
hardware resource sizes and the methodologies in sharing 
the resources among the threads to improve the processor 
efficiency. 

In this research, we limited ourselves to two to four 
threads to observe the sensitivity in hardware resources, 
although our methodology is relevant to application 
specificity and diversity. Different benchmarks are 
classified according to High, Medium, and Low IPC 
benchmarks, while running with single threads on the 
processor. We used several possible combinations of 
multithreaded workloads for evaluating the performance of 
the SMT Processor. The appropriate cache configurations 
in SMT processors can improve the performance among the 
threads. The overall performance mainly depends on the 
fetch policies in SMT processor, since the way the 
resources are allocated to the threads is based on the 
different fetch policies. The Fetch policies choose to 
allocate the resources to the threads by using the cache 
behavior. The instruction fetch policy can indirectly control 
the distribution of these shared resources, which drives the 
performance of SMT processors. Dcra (Dynamically 
Controlled Resource Allocation) is one of the fetch 
policies. This policy mainly depends on the frequent L1 
data cache misses and dynamically distributes the processor 
resources. Dcra provides the better performance compared 
to the other fetch policies. 

The primary result is with sensitivity of cache structure 
and how exactly it can improve the performance in a 
multithreaded environment. In the case of cache structure, 
we mainly focused on the impact of cache line sizes. The 
results show that performance gain (IPC) increases when 
there is an increase in number of threads, which increases 
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benefits the processor in performance from two-threaded to 
four-threaded mode. At the same time, as the number of 
threads increases, the pressure on the resources will be high 
and more hardware resources should be provided. The L2 
cache size should be taken as a large size in SMT 
processors, and it is shared among the threads. Also, cache 
misses increases the load latency on threads. With proper 
fetch policies, cache performance can be improved in order 
to prevent the clogging in the pipeline.  

The rest of the paper is organized as follows: Section 2 
describes general overview of simultaneous multithreading 
processor. Section 3 provides our experimental framework 
for the sensitivity analysis, and also we analyzes the results 
of our experiments. Finally, we present conclusion and 
future work in Section 4. 
 

2.  Simultaneous Multithreading Processor 

Simultaneous multithreading has been implemented to 
enhance the performance (IPC) by parallel execution of 
multiple threads on a single core of a processor. The main 
idea of the multithreading processor is the execution of 
multiple threads in a parallel form. The SMT Processor 
allows for multiple running threads to share the resources, 
which increases the performance (IPC) accuracy and 
reduces the processing time.   

The simultaneous multithreading processor design 
emerged from the environment of the Superscalar 
processor, which tries to increase the instruction level 
parallelism (ILP). In the Superscalar processor, a single 
thread is performed and the instructions are executed in 
parallel. In order to improve the chip parallelism in the 
processor design, computer architects tend to increase the 
number of threads in the single core. An increase in the 
number of threads improves the performance by using the 
other threads that are available when the working thread is 
stalled; this optimization increases the thread level 
parallelism.  

The SMT processor can increase the thread level 
parallelism while the Superscalar processor can enhance 
instruction level parallelism. In SMT processors, as the 
number of threads increases, resources should be increased 
and shared as well. The major parts that are shared and are 
accountable for the performances are the fetch unit and the 
execution unit. The purpose of the fetch unit is to fill the 
instructions in the instruction queue (IQs). Fetch units can 
issue multiple instructions in each cycle from multiple 
threads. The fetched instructions by the fetch unit are 
drained by the execution unit.  The most significant parts 
that improve the SMT processing are the fetch unit and the 
execution unit. These two resources are shared by the 
threads in the SMT processors. 

The SMT processor features resources that are shared by 
the running threads. Moreover, in every clock cycle, the 
running threads tend to use these shared resources at the 
same time. The main resource, the L2 cache, is shared 

among the running threads; when more threads are running, 
they may contend to accessing the same block of memory 
in the cache. This leads to the load latency in the threads 
and may cause a miss. The instructions in the SMT 
processors are fetched by the fetch unit and executed by the 
shared resources. Since threads can fetch instructions 
according to the fetch policy, the threads should be allowed 
to fetch instructions, with no instruction cache miss.  

The resources that are shared in order to fetch and 
execute the instructions are: (i) Fetch unit, a unit to recover 
the instructions from the cache; (ii) Decode unit, which 
decodes the instruction and checks for the operands; (iii) 
Register renaming, a unit used to rename the registers, 
which helps to avoid the waiting time to retrieve operands 
for the instructions that in turn helps the instructions to 
execute out of order; and (iv) Execution unit, which uses 
the instructions that contain the operands ready by that time 
to execute the process with the functional unit. 

 
3. Sensitivity Analysis 

3.1  Experimental Framework 

To analyze the overall impact of the resources in SMT 
processors, the M-sim [8] simulator is used to estimate the 
performance impact in SMT processors. This simulator 
supports the simultaneous multithreading model which is a 
modified version of Simplescalar 3.0d simulator [2]. The 
experimental evaluation of key resources in SMT 
processors such as the issue queue, reorder buffer and 
physical registers was done on different processor 
configurations. These key resources are shared by the 
running threads in the SMT processors. Table 1 shows the 
details of the processor baseline configurations.  

 
Table 1. Details of the processor baseline configurations 

Parameter Configuration 
Machine width 8-wide fetch,8-wide issue, 8-wide commit 
Window size  Issue queue – 32 entry, 48-entry load/store 

queue, 96-entry ROB per thread 
Function Units 
and Lat 

4 - integer Add, 1- integer mult, 4 - floating 
point Add, 1 - floating point mult 

Physical 
Registers 

256 Integer + 256 floating point physical 
registers 

L1 I-cache 64KB, 2-way set- associative, 128 byte line 
L1 D-cache 32KB, 4-way set associative, 256 byte line 
L2 Cache 
unified 

2 MB, 8-way set associative, 512 byte line 
10 cycles hit time 

BTB 512 number of sets, 4-wat set associative 
Memory 300 entry width of memory bus in bytes 
 
The performance of the processors is evaluated according 

to the shared resources by simulating on different processor 
configurations. These processors simulate SMT 
architectures with 2-threads and 4-threads respectively.  

We simulated the benchmarks from the SPEC 2006 both 
integer and floating point benchmarks [9]. These 
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benchmarks are precompiled alpha binaries. All the 
simulations skip the initialization part which is 20 million 
instructions for each benchmark. Our SMT architecture is 
analyzed using 2-threads and 4-threads, and we also 
simulate all the possible combinations of the simulated 
benchmarks. Initially, we developed a base case which is a 
superscalar case - in other words, the processor is simulated 
in a single threaded environment. This base case is 
employed to classify the combinations of multithreaded 
environment into High, Med and Low IPC in accomplished 
way. A base case simulation provides the point of reference 
in comparing between multithreaded environment and 
single threaded environment. The single-threaded 
simulations are simulated with default configurations 
unless stated otherwise. Table 2 shows the possible 
combinations of two-threaded and four-threaded 
benchmarks. 
 
Table 2: Possible combinations of two-threaded and four-
threaded benchmarks                                         

Classification Mixed benchmarks 
2 High ILP gromacs & leslie;     gromacs & namd 
2 Medium ILP gromacs & bzip2;     leslie & lbm 
2 Low ILP bzip2 & gobmk;       gobmk & lbm 
4 High ILP gromacs, leslie, gamess, namd 
4 Medium ILP gromacs, leslie, bzip2, lbm 
4 Low ILP Bzip2, gobmk, lbm, perlbench 

 

3.2  Impact of Hardware Resources 

 We started off by looking at the effect of cache size on 
the performance when running in single threaded versus 
multithreaded mode. The key parameters for a 
multithreaded processor which has multithreading support 
are the L2 cache size and the block size.  So, our first step 
is to estimate the sensitivity of the cache structures and 
hardware impact in a simultaneous multithreading 
processor.  

In order to select the multithreading workloads, we 
simulated the benchmarks in the single threaded superscalar 
environment and classified them using the results as high, 
med and low. We used several possible combinations of 
multithreaded workloads for evaluating the performance of 
the SMT processor. Several metrics are used for analysis, 
the first of which is the total throughput IPC. 

      
3.2.1  Sensitivity analysis on Cache structures:      

Figure 1 shows that how the IPC is changed on L2 cache 
size variation, in which the L2 Cache size is shared among 
the active threads in the processor. The performance and 
the miss rate of the L2 cache size is the one of the key 
factors in the efficiency of SMT processors. The miss rate 
in L2 cache size increases the load latencies for each thread 
processing, and the threads with high load latency needs 
more resources which leads to clogging in the resources. 

This improper utilization of resources can potentially 
impact on the performance of the SMT processor. In order 
to have better utilization of the resources, we need to have 
L2 Cache which has better performance with additional 
costs. In order to choose proper cache configurations in 
early design stage, we investigate the sensitivity on cache 
configurations vs. performance on SMT processors. Cache 
structure contains block size, associativity and number of 
sets. We analyzed each detailed part to observe the 
behavior of the cache in order to have a better performance 
and less miss rate when more threads are running 
simultaneously. We also observed the performance 
according to the cache size in single threaded mode and 
multithreaded mode and factored out the impact of each 
detailed part of the cache structure. 

(a) Single threaded 

(b) Two threaded 

(c)   Four threaded 

Figure 1: Throughput IPC of 1-, 2- and 4- threaded 
workloads on different cache line configurations 

 
  In Figure 1, the cache behavior in a SMT Processor is 

demonstrated on single, two and four threaded workloads. 
The bars in the figures plot the throughput IPC as the line 
sizes are varied. From the single threaded result, for a given 
cache size of 8MB, the line size of 512 has a better 
performance comparing to other line sizes. Several of the 
benchmarks in one- and two-threaded workloads show 
almost the same performance from increasing line size. In 
the multithreaded case, the L2 Cache is shared so both the 
threads may need the same block of data in it. This may 
increase the load in one of the threads and can cause a 
slight performance loss, so it is better to have an optimum 
line size.  

74 Int'l Conf. Computer Design |  CDES'11  |



 
 

 

 In Figure 1 (c), the four-threaded workloads show a 
decrease in IPC for increasing line sizes in Med and Low 
IPC benchmarks. This performance loss is very small (only 
a fraction of the overall IPC); this effect arises because of 
the workload combination used for the four-thread 
workloads. However, in these results, we focused on the 
impact of cache line sizes in multithreading and concluded 
that 512-byte line has more benefit compared to other line 
sizes in this configuration.  

The primary result pertains to the sensitivity of the cache 
structure, and shows how exactly it can improve the 
performance in a multithreaded environment. Here, the L2 
cache is shared within the threads in order to access the 
data so the load on the cache size is higher compared to the 
single-threaded environment. In other words, the benefit of 
sharing the L2 cache in a multi-threaded environment has 
more potential in performance gains, causing a slight 
performance loss like latency on the threads. 
 
3.2.2  Issue Queue and Physical registers: 

As the number of threads increases, the pressure on the 
resources will be high, so the resources should be at a high 
to begin with as well. According to the performance and 
fairness, we choose to direct the SMT performance 
feedback to different Issue Queue size (IQ Size) and 
physical registers (PRF size). As expected, we can see the 
performance difference according to these shared resources 
(Figure 2), and the performance gain is much worthier than 
the cost from extra hardware.  

(a) High IPC benchmarks 

(b) Low IPC benchmarks 

Figure 2: Impact of PRF Size/IQ size in four threaded 
workload Benchmarks 

 

It is significant to establish a superscalar case as a base 
case; it is employed to serve as a point of reference. The 

base case is provided by simulating the non-multithreaded 
mode (single-threaded) on a processor using SPEC 
benchmarks with the same configuration as described in the 
methodology. In order to compare the results using the 
single-threaded and multithreaded modes, the base case is 
programmed to run with the default configuration unless 
stated otherwise. 

 
3.2.3  Fetch Policy: 

In several SMT processor resources, the commonly 
shared asset by the different executing threads is Issue 
Queue size or the PRF. On the other hand, the instruction 
fetch policy can indirectly control the distribution of these 
shared resources, which is driving the performance of the 
SMT processors. Therefore, it is more appropriate to talk 
about the distribution of different fetch policies [3]. 

In the Icount fetch policy, the threads with fewer 
instructions in the front-end stages have the highest 
priorities. Unfortunately, the main drawback in the 
Instruction count fetch policy is that even one thread suffers 
many long latency loads, and keeps allocating resources to 
it. This results in the clogging of the pipeline, holds many 
resources and reduces the throughput of the processor.  

Dcra (Dynamically Controlled Resource Allocation) is 
one of the techniques that try to overcome this drawback of 
the fetch policy. This fetch policy mainly depends on the 
cache behavior and dynamically distributes the processor 
resources among the threads to prevent the stalled threads 
form clogging resources. It allots a limited share of 
resources to the threads with frequent L1 data cache misses. 
Furthermore, the threads are able to share the resources 
from other threads that do not require them. 

The goal in both these cases is to improve the 
performance by distributing the resources among threads 
according to their priorities; the priorities of these threads 
are given by different heuristics such as pending data cache 
misses, number of unresolved branches, L1 data cache 
misses and instructions in the pre-issue stages. 

Figure 3: Instruction throughput IPC for different fetch 
policies with same cache size  

Another mechanism, known as the round robin policy, 
allocates one fetch cycle to all threads from 0 through N-1 
in a cyclic order.  This is implemented without any priority 
to the threads. At every clock, the thread equal to the value 
of counter is allowed to fetch a block of instructions. 
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Three different mechanisms are compared using the 
single-threaded and multi-threaded processes. Figure 3 
shows that the Icount in a single-threaded mode obtains the 
low performance comparing to the round robin fetch policy. 
This is because complete resources are allocated to the 
single-thread process with no need of sharing. On the other 
hand, switching the fetch unit is not required, therefore 
affecting the performance in the Icount fetch policy. An 
interesting point is that the three fetch policies show almost 
the same performance in the two-threaded process, where 
the resources are allocated equally to the threads. Finally, 
we compare the performance for two-threaded and four-
threaded workloads. Resource pressure on the four-
threaded workloads is high, and Dcra obtains the better 
performance here as compared to the other fetch policies. 
The Icount allocates resources to the stalled threads which 
lead to clogging in the pipeline and degrading the 
performance, and the threads with long latency loads are 
predicted by the Dcra fetch policy by frequent L1-data 
cache misses in the cache behavior.         

 

3.2.4  Branch Predictors sensitivity on SMT Processors: 

 To explore the sensitivity of branch prediction that 
occurs between the threads in SMT processors [4], we 
simulated different branch predictors with different 
applications. This study is primarily concerned with the 
impact in the multi-threaded environment compared to the 
single-threaded mode. In order to evaluate it, we targeted 
five branch prediction schemes and observed the branch 
predictors accuracy, performance and misprediction rate in 
both the single-threaded and multi-threaded environment. 

 In our research, we first simulated the branch predictors 
in the single-threaded mode which is the basis of our 
approach. The IPC for different branch predictors are 
recorded and the results are shown in the Figure 4. Figure 4 
(a) shows how each branch predictor can perform in a 
single-threaded environment. Figure 4 (b) and (c) show 
how these same branch predictors would perform in a 
multi-threaded environment, where the threads share the 
branch predictors. This segment provides a brief outline of 
each prediction scheme. The result shows that the both 
bimodal and Comb branch predictors have better IPC 
compared to other branch predictors. Same performance 
gain is seen in multi threaded and single threaded modes. 
On the other hand, schemes taken and not taken branch 
predictors are showing low performance which is expected, 
and this results provides the enough information to factor 
out that the both bimodal and comb branch predictors have 
better performance comparing to other branch predictors. 
The behavior of branch predictors are evaluated according 
to High and Low IPC benchmarks. 

Figure 4 presents each branch predictor performance, 
IPC of the prediction scheme increases as the number of 
thread increases. To demonstrate this point more clearly, let 

us look at the Improvement in performance which is 
computed according to the formula. 
     

(a) Single threaded mode 

(b) Two threaded mode 

(c) Four threaded mode 

Figure 4: Performance of the five targeted branch 
predictions for HIGH and LOW IPC 

   In Figure 5, we clearly showed the connection between 
the number of threads and strengthening of prediction rate. 
We can see that the more working threads can give more 
benefit. In addition, as the number of threads increases 
from two to four, the prediction rate increases more than 
others.  Figure 5 (a) and (b) shows the branch prediction 
rate of unique threads in single threaded environment, and 
Figure 5 (c) and (d) shows the prediction rate of same 
threads running as 2-threads. Also, when there are four-
running threads, the branch prediction rate is shown in 
Figure 5 (e). 

Multithreading can develop the performance, and by 
using this result we can clearly show that the prediction rate 
can be enhanced by increasing number of threads. In Figure 
5 (d), we can say evidently that the prediction rate of same 
threads is improved from two-running threads to four 
running-threads. 

4.  Conclusions and Future Work 
The Characterizations of hardware resources give an idea 

how the resources are utilized in a way to improve the 
performance in SMT processors. Proper analysis of these 
hardware resources helps us to use the resources in an 
accomplished way among the running threads in the 
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processor. The fetch policies are the key factors to improve 
the performance because it can control the allocation of the 
hardware resources. 

 

 
 

(a) Single threaded mode (b) Single threaded mode 

 

(c) Two threaded mode (d) Two threaded mode 

(e) Four threaded mode 

Figure 5: Performance difference in single and multi 
threaded modes 

 

Since the fetch policies allocate the resources among the 
threads by using different factors, it mainly depends on the 
cache behavior. The Cache missrates are predicted by these 
fetch policies and the resources are allocated according to 
the prediction, and another fetch policies allocates the 
resources to the threads which has less instructions in the 
initial stages. The Icount and Dcra both the techniques were 
more efficient in allocating the resources and improving the 
efficiency. Dcra had more performance gain with more 
number of threads running on the processor as compared to 
the other fetch policies Icount and Round Robin. More 
fetch policies can be used to further increase the through 
put IPC, but the analysis focused on these fetch policies 
where the threads are allocated according to the cache 
behavior. Based on these results, we can conclude that the 
Dcra fetch policies with a proper L2 cache size shared 
among the threads can be utilized in a efficient way among 
the two-running threads and four-running threads in the 
processor. This research helps in choosing the best 
hardware resource sizes and the techniques in allocating 
these resources among the threads. The future work of this 

research can include other hardware resources which 
improves performance.  
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Abstract - A new data acquisition (DAQ) system was 
developed to fulfill the requirements of the X-ray spectrometer, 
providing high-resolution spectroscopy at very high-count 
rate. This system is based on FPGA, able to perform real time 
algorithm for data reduction and digital pulse processing. The 
DAQ system consists of digital filter, edge detector, energy 
resolver and so on. The main filter is based on the 
conventional digital time-invariant trapezoidal shaper 
operating. The DAQ system is implemented by Altera FPGA 
Cyclone III. Our proposed design is solved the previous 
design problem that baseline is increased gradually. 

Keywords: Digital Pulse Processing, FPGA, Digital  
Spectroscopy, XRF, USB 

1 Introduction 

       European Union (EU) were fermented the RoHS 
directive since July 2006. According to this rule, if it contains 
more than standard concentration, the electrical and electronic 
equipment does not sell them in the European market[1],[2]. 
And so "IEC 62321 RoHS Test Method" has been adopted 
analytical method such as XRF, AAS, ICP-OES, ICP-MS, 
GC-MS, so on. AAS, ICP-OES, ICP-MS, GC-MS methods 
are as accurate and precise analysis is possible[3]~[5].  

Figure 1. DAQ system Block Diagram 

 But these methods contain disadvantages that are 
complexity of pre-processing. The sample preprocessing 
comes some errors and time consuming. Also preprocessing 
is drawback the requiring skills.  XRF is provided poor 
precision compare to AAS, ICP-OES, ICP-MS, GC-MS. But 
XRF is not limited time, place and size of sample. XRF has 
some advantages. These are that fast time to analyze the 
various elements and simple preprocessing or preprocessing 
process can be measured non-destructively. Portable XRF 
limits of the place, nor the size of the samples are less 
affected and proficiency. Portable XRF market will be 
increased gradually.  In this study, DAQ system has been 
implemented for obtaining spectral data. XRF system has 
been implemented by the Altera FPGA Cyclone III. It 
operates 25MHz. ADC is 14 bits resolution. To improve the 
compatibility, external I/O uses USB interface. 

2 Hardware Structure 
  Many DAQ systems have been developed based on the 
gamma-ray[6]~[9]. But in this paper, system is based on X-
ray. DAQ system's hardware architecture is proposed as 
shown in Fig. 1. The system through input of the 
ADC(resolution 14bits) was connected directly to the FPGA. 
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 From the ADC input data temporarily stored at the pre-
buffer. In the same time to determine whether the data is 
validated. Depending on the results validity of the data, the 
temporarily data is stored in the Data Buffer. The stored data 
is able to transfer to another device, or to calculate the time 
constant of the pulse data.  

 Hardware configuration is divided into three major 
blocks. First part is peak detecting part. It is to search the 
amplitude and position of the peak. Second part is 
DPP(Digital Pulse Processing) part. In this part, we calculate 
the maximum value of the pulse.  

 This value is flat-top. spectrum data is obtained by the 
DPP. The last part is controller part. Controller block consists 
of the register, external I/O interface, counter and memory 
controller.  

3 Hardware Structure 
 Peak detecting part, as shown in Fig 1, is composed of 
edge detector and pileup detector. Edge detector is to detect 
the pulse from ADC input data. And pileup detector is to 
decide block through input pulse data.  

 To obtain spectral data, Digital Pulse Processor 
calculates the maximum of input pulse data. In this paper, to 
distinguish input pulse data from ADC, edge detector is 
designed based on the differentiator.  

 It is continuously monitoring and detecting pulse data. 
And it judges validity of the data using generated pulse 
interval or time constant. 

3.1 Edge Detector 

       Edge Detector is to detect the pulse and to calculate the 
difference between the input data. Differential pulse occurs 
when the value is changed sharply. But also noise suddenly 
changes the derivative. We must remove the noise effect. So, 
We adapt two method. 
 

 
Figure 2. Design of Edge Detector 

 First step, when the pulse occurs, the differential value 
is more than a certain threshold.  

 Second step, if pulse is generated, we calculate 
weighted averages using the around differential value.  

 Conventional methods used in the differential, using 
data from multiple channels and found the pulse. But 
our design is used just a single channel data. 
Previously method use the gamma-ray, but proposed 
design is used X-ray. 

 Fig 2 is block diagram of the Edge Detector. Hardware 
blocks compose of ‘Diff’ and ‘Diff_avg’ blocks. Diff 
block is calculated differential value from input data. 
Diff_avg block is compared pulse conditions.  

 

3.2 Pileup Detector 

 Spectral data can be obtained from the DAQ system. 
When the pulse occurs, spectrum data is generated. However, 
sometimes overlapping pulses can be generated.   

 The pileup is that multiple pulse are generated 
overlapping in a set of data. If pulse contains overlapping, it 
is difficult to obtain the correct peaks of the multiple pulses.  

 At this reason, hardware designer does not use the 
overlapping pulse data. They only use the correct input data. 
In this paper, pileup detector module was designed by Edge 
Detector(ED) and Counter.  

 The pileup generates when the pulse is detected several 
times by the ED. Then this block performs initialization of 
each register and the input data set removal. 

 Fig 3 is pileup detector’s block diagram. Hardware 
design is very simply. But this module strongly detects the 
pileup. F/F is reset when counter is  reached control value 
 

 

Figure 3. Design of Pileup Detector 
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4 Digital Pulse Processor 
 Spectral data can be obtained by the Edge Detector and 
Pileup Detector modules. Digital Trapezoidal Shaper(DTS) 
calculates flat-top value using pre-buffer data. At that time, 
calculated float-top value is the maximum of the pulse.  

 Flat-top value means spectrum level. Spectral data is 
consisted of counted value the spectrum level. XRF system 
uses the spectral data. Our design is used DTS to calculate the 
level of the pulse. Also, Energy Resolver is applied to remove 
the baseline. 

4.1 Digital Trapezoidal Shaper(DTS) 

 Many algorithms have been developed to calculate the 
peak of pulse data[10]~[14]. In this paper, we adapted 
trapezoidal algorithm. This algorithm finds maximum of 
pulse using flat-top. Trapezoidal function was implemented 
according to the following formula: 
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• DTS module basically consists of adder, subtracter and 
two kinds of shift register.   

• Equation (1), input data delayed k and l clocks then 

calculate result of adder and subtracter operation.  

• These results fed into the high pass filter to remove the 

pole-zero cancelation, eq (2). 

• The pulse energy is calculated using M value that 
reflects pulse of time constant, eq (3).  

• Finally, the spectrum data obtained from flat-top. 
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Figure 4. Hardware Design of DTS 

• Figure 4 is hardware architecture of DTS. It consists of 

some shift register, delay and Arithmetic and Logic 
Unit(adder and subtracter).  

4.2 Energy Resolver 

 In the previous method[15], result of DPP continuously 
increases such as step function. It is that baseline is not reset 
because of continuous input.  

 In this paper, we proposed baseline reset method. This 
method calculates baseline during detected pulse data 
before(using the average of the input data).  

 Proposed method is very simple and DTS module 
configuration can be applied in real time. Figure 5 is block 
diagram of energy resolver. It is very simple. And it will be 
applied real time system. 

 

Figure 5. Block Diagram of Energy Resolver 
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Figure 6. Auctual input and DTS output 

 

5 Control & Extensional I/O 
 The controller was implemented based on the counter. 
Differential signal was used as interrupts. For example, 
pileup generates if additional differential signal is detected 
during the edge detector generating signals. In addition, ED is 
detected exceeded at least 24 samples to improve the 
accuracy of Energy Resolver. XRF system uses DTS 
operation results that collected during sample period time. 
Actually, component analysis is done using external devices 
such as PC, DSP, Embedded system. We were considering 
USB interface for convenience connection. In this paper, the 
data set consists of 1000 samples. Figure 6 is DTS resulting 
waveform using Matlab simulation. 

 

Figure 7 Simulation Results of the each Blocks 

6 Experiment Result 
 In this paper, we proposed hardware architecture of 
DAQ system. It is synthesized using Quartus II and simulated 
by ModelSim 6.5b[16]. DAQ system is implemented using 
Alter FPGA Cyclone III.  Also, we adapts external I/O 
interface USB. We will be expected that helps to ensure the 
scalability and versatility. Figure 7 is simulation results of 
each hardware blocks. 

6.1 Edge Detector & Pileup Detector 

 Edge Detector simulation result is Fig.7.(a). In the 
middle of graph, amplitude of the input signal is changing 
rapidly. Accordingly, differential signal occurs. Then ED 
signal is maintained until the end of processing or pileup 
detecting.  

 Pileup detector simulation result is Fig.7.(b). As shown 
in fig.7. pulse is overlapped. As a result, Pileup detecting 
signal created. In the proposed design, counter continues to 
operate until it reaches the set value. Then ED, Pileup, ER 
module turns initial value. 

6.2 DTS & Energy Resolver 

 DTS simulation result is Fig.7.(c). Result of  DTS is the 
flat-top. As you know from the simulation results, flat-top is 
related the time constant. 

Energy resolver simulation result is Fig.7.(d). Pulse occurs, 
then data occurred prior to calculate the energy resolver(ER). 
ER pulse is detected, current value is maintained. After 
processing of the data set, ER is initialized. 
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7 Conclusions 
 DAQ system was designed and implemented using Alter 
Cyclone III FPGA. It synthesis of Quartus II[16] and 
simulates using ModelSim. Our design is operating at 25MHz.  

 Previous design using gamma-ray had been serious 
problem. That is continuously increase baseline. To remove 
this problem, we add reset block. When processing a set of 
data, the baseline was used to reset the registers.  

 Also we calculate average of input data is detected pulse 
before. Our design is very simple and powerful. To improve 
the compatibility, external I/O uses USB interface. 
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ABSTRACT
GPUs offer a powerful acceleration platform for many
scientific applications. Numerical integration of classi-
cal Newtonian dynamical particles often requires very
high-order numerical accuracy. We assess the floating-
point precision and performance of various GPUs for
applications involving high-order time-step integra-
tion methods for particle model simulations using N-
squared interactions. We demonstrate how high-order
algorithms can be expressed in Compute Unified De-
vice Architecture (CUDA) and present some detailed
benchmark data. We show the high numerical power
of high-order integration methods such as Hairer’s 10th

order method and relate its performance to its preci-
sion requirements.

KEY WORDS
time-stepping; numerical precision; GPU; CUDA;
high-order integration.

1 Introduction

Graphical Processing Units(GPUs) have risen to great
prominence recently with their deployment in many
of the leading supercomputers in the Top500 world-
wide list. GPUs offer a very-many core solution that is
particularly effective at SIMD structured calculations
such as field models and other problems where there
is a great deal of separable parallelism available in the
problem.

In this paper we build on ideas put forward in a pre-
vious work[1], on using N -body particle dynamics as a
benchmark application problem for accelerator devices
such as GPUs. A key open issue for GPUs and related
devices is the extent to which they can support double
(or even higher) precision floating point calculations.
GPUs have proven excellent in data-parallelising inte-
ger and 32-bit float problems, and indeed many of the
current and forthcoming generation devices do indeed

support 64-bit floating point[2]. This support does vary
however and in some cases the double precision floating
point units are in fact shared across a group of compute
cores within the GPU.

Figure 1: The motion trails of three interacting par-
ticles. Numerically integrated using the Hairer 10th

order integration method.

Many problems and simulation applications do not
need double precision but some important ones quite
definitely must be executed with the highest precision
available. The case we discuss in this paper is that of
high-order numerical integration in time of the New-
tonian equations of motion of classical dynamics for
rigid bodies[3]. Many time-integration problems can
make do with standard “work-horse” algorithms such
as the well known fourth-order Runge-Kutta method[4]
and there are several good coded implementations of
these widely available[5]. Increasingly modern appli-
cations make use of fifth and sixth order algorithms
such as those of Dormand and Prince[6], and indeed
routines for these algorithms are now widely available
in libraries and even in tools such as Matlab[7]. How-
ever for precise orbital trajectories or indeed just for
cases where conservation of energy is important, even
these algorithms are insufficient. Unfortunately, from
a mathematical perspective beyond fourth and fifth or-
der the algorithms become significantly more complex
and do not scale linearly in the number of floating point
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operations with the order and precision required.

We have implemented a tenth-order integration
method described by Hairer[8] and show that it is very
necessary to conserve energy and momentum and so
forth in N -body planetary orbital trajectories as might
be used in planning spacecraft movements or in simu-
lating a solar system[9], or other astronomical[10] or
molecular particle dynamical problems[11, 12]. We
show how a sophisticated algorithm like this can be
implemented on GPU and use this as a benchmark to
compare a number of GPU models with different core
and memory combinations. This order and its precision
requirements really need a minimum of 64 bit floating
point precision to avoid truncation errors and this is
therefore a good application driver to explore double
and precision floating point requirements for accelera-
tors such as GPUs.

In Section 2 we discuss the simulation of a N-body
particle system and in Section 3 we discuss some of the
low- and high-order integration methods that can be
used to integrate their motion over time. In Section 4
we show how these simulations and integration meth-
ods can be programmed for computation on a GPU.
Section 5 gives some performance and stability results
which we then discuss in Section 6. Finally we offer
some conclusions and discuss future work in Section 7.

2 N-Body Particle Application

We consider a set of N particles, labelled i =
0, 1, 2, ..., N − 1 that interact via pair-wise interactions
that are dependent on various properties of the parti-
cles and most importantly their individual masses. For
the purposes of this present paper we consider central
forces that depend solely upon the relative distance
between particles i and j. For example the Newtonian
gravitational potential arising on the i’th particle from
the j’th, V (ri,j , can be written as:

V(ri,j) = −Gmimj

ri,j
(1)

The classical (Newtonian mechanical) force can then
be written as the gradient of the potential:

F = ∇V(r) (2)

For centralised forces like gravitational systems, we can
simply sum pair-wise forces along a vector connecting
the particle centres, and for a single such axis the gra-
dient is just a single-variable derivative and hence:

Fi =
∑
j

Gmimjri,j (3)

Given Newton’s third law: Fi = miai => ai = Fi/mi,
we can employ the separate x, y, z components of

Figure 2: Numerically integrated particle trace as it
orbits a single massive particle. Integration methods
from top to bottom are: Euler, RK2, RK4, Dormand-
Prince 5th and Hairer 10th. Only the Hairer method
remains stable with this time-step of 0.1 for N=2.
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the acceleration in the Newtonian classical rigid body
equations of motion so that we compute changes in
particle i’s velocity and position.

For the purposes of the benchmarking application we
use here, we simplify to a planar solar system so there
is effectively only x, y and no z. A useful benchmark
problem is obtained of we model a large central mass
with a distribution of very much smaller planetary
masses arranged to have close to stable orbital veloc-
ities for a randomly chosen distribution of individual
masses and initial positions.

So choosing the mi and ri randomly we arrange that
for each particle, its kinetic energy ( 1

2miv
2) is initially

set equal to its potential energy V - in the frame of
reference of the large-massed central star (indexed by
i = 0), so that for the remaining planetoid particles we
initialise:

vi =
√

(Gm0/|ri|) (4)

and we decompose vi into its vx, vy components by ar-
bitrarily choosing a direction of rotation around the
star for each particle. We thus have a near stable solar
system that is very sensitive to the order and preci-
sion supported by the time integration algorithm and
hardware.

In the limit of infinite precision we should be able to
time-integrate the trajectories in near perfect (energy
conserving) orbital ellipses around the central star, and
even the small perturbations arising from planet-planet
interactions should not give rise to large errors.

In practice of course the numerical integrations routes
are very much limited and we can illustrate the effect
of different algorithms of increasing order (and com-
putational cost) both visually with plotted trajectory
snapshots and also with time plots of the total energy
of the system. A good algorithm will conserve energy
or at worst exhibit small non-systemic fluctuations. A
poor algorithm will exhibit systemic drifts in energy
and will fail to conserve it even over short timescales.

3 Numerical Integration

Numerical integration[13] of ordinary differential equa-
tions or partial differential equations is a well studied
problem with a range of good mathematical algorithm
families to choose from. Generally speaking, for the
sort of particle trajectory problem we discuss in this
paper, higher order methods[14, 15] are better and nec-
essary for systems that have large numbers of parti-
cles that interact with inverse square or similar force
laws. High-order methods[16] will generally yield bet-
ter numerical precision if the floating point hardware
is available to perform the arithmetic appropriately.

The main tradeoff is that higher order methods gener-
ally require more intermediate force function calcula-
tions and so the computational cost scales considerably
worse than linearly with order. Until the widespread
availability of accelerator devices such as GPUs the in-
creasingly prohibitive cost of high-order would likely
tip the tradeoff balance in favour of methods such as
the standard fourth order Runge-Kutta method (RK4)
or at best a fifth-order method such as Dormand and
Prince (DP5). It is not always trivial to generate soft-
ware for even higher order methods and still maintain
correctness. We have implemented a 10-th order RK
method due to Hairer[8].

For the work reported in this paper we employ three-
dimensional x,y,z coordinate system even though most
test cases consider planar particle systems.

Figure 3: A plot of the energy of the system shown
in Figure 1. The Hairer integration method is stable
while the other methods introduce a large degree of
error.

Generally explicit RK methods[17] as we discuss here
can be expressed as Butcher Tableaux of coefficients:
ai,j ; bi; ci =

∑s
j=1 ai,j . We construct an s-stage

method in terms of approximates Yi with derivative
Fi with Fi = f(Yi) where function f defines our dif-
ferential equation: y′ = f(y(x)), y(x0) = y0 and for
an explicit fixed step h we simply take x1 = x0 + h.
Butcher and other textbooks show that for an s-stage
method we derive:

y1 = y0 + h

s∑
i=1

biFi (5)

with:

Yi = y0 + h
s∑

j=1

ai,jFj , i = 1, 2, ..., s (6)

The work of course involves solving these and obtaining
useable coefficients which are usually expressed in the
form of a Butcher tableau.
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Table 1: General form of a tableau representing an
explicit integration method.

0
c2 a21
...

...
...

. . .
cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

Table 1 shows the tableaux of coefficients for a gen-
eralised explicit RK method. Hairer’s paper gives the
coefficients in full so we do not reproduce them here,
but simply note that for a 10’th order accurate method
we need s = 17 stages and the coefficients need to be
expressed to the full precision supportable for the float-
ing point data type.

1. Initialise particle positions and velocities

2. Synchronise with the other thread

3. Compute sum of all forces on each particle and
thus compute accelerations that determine the
first differential equation

4. Integrate this to obtain velocities

5. Integrate the other differential equation to obtain
distances moved

6. Update all particles accordingly

7. Repeat

The number of force evaluations for different algo-
rithms will constitute the greatest computational cost
and for the algorithms we employ are:

Table 2: Integration methods, their order of accuracy
and number of stages required to compute them.

Name Accuracy Stages Force Function
Evaluations

Euler 1st Order 1-Stage 1(1)
RK2 2th Order 2-Stage 2(2)
RK4 4th Order 4-Stage 4(7)
DP5 5th Order 7-Stage 7(26)

Hairer10 10th Order 17-Stage 17(99)

Table 2 emphasizes the difference in the order of ac-
curacy for each integration method and the number of
stages required to compute them. By saving the force
evaluations in memory the number of force evaluations

can be made equal to the number of stages. The num-
ber in brackets shows the number of force evaluations
required if they are not stored to reduce memory use.

It is thus seen that a performance accelerator such as
a many-cored GPU is important to offset the increas-
ing operation count needed to obtain high numerical
accuracy for the particle trajectories.

4 Graphical Processing Units

Graphical Processing Units or GPUs have steadily in-
creasing in popularity for computing scientific simula-
tions [18]. The high computational throughput and rel-
atively low cost of GPUs have made them an attractive
platform for parallel processing. This is known as Gen-
eral Purpose computation on GPUs or GPGPU and
there are a number of APIs available. The most popu-
lar and powerful GPGPU API is NVidia’s CUDA [19]
which only works on the NVidia GeForce and Tesla
graphics cards, this is the API used for this research.

Two generations of NVidia GPUs are considered in this
work the Tesla and Fermi architectures. Both of these
GPUs contain many (up to 512) cores known as scalar
processors which are organised into multiprocessors.
Tesla multiprocessors contain 8 SPs which multipro-
cessors on Fermi GPUs each contain 32. Programs can
be run on these cores by splitting a problem into a large
number of threads which are managed and scheduled
by the GPU hardware. These threads are organised
into blocks, each block of threads will be processed by
one multiprocessor.

GPUs can manage this many cores by dropping the
cache hierarchy common in most CPU architectures,
eliminating the cache coherency problem that limits
the expansion of cores in CPUs. To replace this cache,
GPUs contain a number of specific memory types
which can be used explicitly by developers to cache
memory access. These memory types are:

• Global memory - the main memory of the GPU
device. Can be accessed by the CPU host as well
as any thread executing on any multiprocessor.

• Shared memory - is shared between the threads of
a multiprocessor. It can be accessed very quickly
by all the threads executing in the same block.

• Texture memory - is a cached access for global
memory. Designed for threads in the same block
accessing values from global memory in the same
spatial locality.

• Constant memory - is another cached method of
accessing global memory. Designed to allow all
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threads in a block to read the same value from
global memory at the same time.

The new generation Fermi architecture GPUs have also
introduced a L1/L2 cache back into the design. This
cache only guarantees that data written to the cache
will be written to global memory once the block has
finished executing. This way the problem of cache co-
herency is avoided.

The Tesla architecture GT200 GPUs and all of the
Fermi GPUs support double precision floating point
calculations, however there is still a performance loss
associated with it. The higher-order integration meth-
ods discussed in Section 3 are pointless without the
use of double precision floating point. We aim to com-
pare the performance of different GPUs with respect to
computing high-order integration methods using dou-
ble precision.

4.1 CUDA N-Body Implementation

The CUDA implementation of the particle dynamics
simulator uses the all-pairs tile calculation method de-
scribed in “Fast N-Body Simulation with CUDA” [20,
1]. This method uses shared memory to cache parti-
cles and reduce global memory access. Each thread
block will load a tile of particles into the shared cache,
process it and then load the next tile. To process N
particles with tiles of size T this process must be per-
formed N

T times.

This method is used to compute the acceleration of
each particle due to gravity. To implement the higher
order integration methods, the CUDA kernel has been
adapted to use an array of coefficients (taken from the
butcher tableau of the integration method) to compute
the next state. The kernel must be called s times to
compute the intermediate and final system according
to the integration method. A set of s system states
are computed which are then used in the final com-
putation. Each state is computed as the sum of the
derivatives of the previous saved states multiplied by
the coefficients of the table. This must be performed
for both the position and velocity of the particles.

The CUDA kernel that computes a single system state
is shown in Listing 1. This kernel will compute a sin-
gle state s + 1 using pos to store the positions of the
particles, vel to store the velocities, acc to store the ac-
celerations, mass to store the masses and coeff to store
the coefficients.

Listing 1: CUDA kernel to compute a single stage of
the integration method defined by coeff.

sha r ed double4 cache [BLOCK SIZE ] ;

g l o b a l void ke rne l ( double4 ∗∗pos , double4 ∗∗ vel ,
double4 ∗∗acc , double ∗∗ co e f f ,
double ∗mass , int s ) {

int i=blockIdx . x∗blockDim . x+threadIdx . x ;
//Load pa r t i c l e i from step s

double4 p i = pos [ s ] [ i ] ;
double4 a i = make double4 ( 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ) ;
//Go through a l l t i l e s
for ( int t = 0 ; t < N/blockDim . x ; t++) {

//Calcu late t i l e index
int t i=blockIdx . x+t ;
t i = ( t i < gridDim . x ) ? t i : t i−gridDim . x ;
t i = t i ∗blockDim . x ;
//Load and process t i l e
cache [ threadIdx . x ] = pos [ s ] [ b i+threadIdx . x ] ;

s ync th r ead s ( ) ;
for ( int j = 0 ; j < blockDim . x ; j++) {

double4 pn = cache [ j ] ;
i f ( ( t i+j ) != i ) {

double d = d i s t ance ( pi−pn ) ;
double av = −(G∗ mass [ t i l e i n d e x+j ] ) / ( d∗d ) ;
a i = ( av/d) ∗ ( pi−pn ) ;

}
}

sync th r ead s ( ) ;
}
acc [ s ] [ i ] = a i ;
double4 pn = pos [ 0 ] [ i ] ;
double4 vn = ve l [ 0 ] [ i ] ;
for ( int c = 0 ; c <= s ; c++) {

pn += ve l [ c ] [ i ]∗ c o e f f [ s ] [ c ]∗h ;
vn += acc [ c ] [ i ]∗ c o e f f [ s ] [ c ]∗h ;

}
pos [ ( s +1) ] [ i ] = pn ;
ve l [ ( s +1) ] [ i ] = vn ;

}

This kernel can be used to integrate the system for any
of the integration methods discussed in Section 3.

5 Performance Results

Figure 4 shows the time taken by a GTX580 to com-
pute 1000 steps of the N-body simulation using the
different integration methods. The results scale as ex-
pected with the Hairer method taking the longest.

Figure 4: The performance results of the Fermi archi-
tecture GTX580 for processing the N-body simulation
with different integration methods.

Figure 5 shows a comparison between the different
NVidia GPUs and their performance for computing
the N-Body simulation with the Hairer 10th order in-
tegration method. The figure shows the performance
for both the single and double precision floating point
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calculations for reference. The GPUs compared are
the Tesla architecture (GTX260 and GTX295) and the
Fermi architecture (GTX480, GTX580 and C2070).

(ln)

(ln)

Figure 5: A comparison of different GPUs computing
the N-Body simulation using Hairer 10th order inte-
gration method. This plot shows the performance for
the GTX260, GTX295, GTX480, GTX 580 and Tesla
C2070. Timings for both double and single precision
floating point calculations are shown.

As expected all graphics cards showed higher perfor-
mance processing single- rather than double-precision
floating point numbers. The GTX 580 showed the best
overall performance for both the single- and double-
precision simulations. This is expected as the GTX580
has the highest clock speeds and number of cores. One
point of interest is the C2070s double-precision perfor-
mance as compared to the GTX 480.

The GTX480 performs slightly better than the C2070
when processing single-precision floating point values
but the C2070 provides significantly better perfor-
mance when processing double-precision.

Table 3: Comparison of the different integration meth-
ods to compute a single unit of simulation time with
error e < 1× 10−12.

Method Time per Simulated Second
Euler N/A
RK2 0.2292 seconds
RK4 0.0070 seconds

Dormand-Prince 0.0042 seconds
Hairer 0.0010 seconds

Table 3 gives a comparison of the time taken for the
different integration methods to compute a single sim-
ulation second for a fixed error. While the higher-order
methods are more expensive to compute they are more
accurate and therefore capable of numerical stability
in problem regimes inaccessible to the lower-order al-
gorithms. It can be seen from the table that the 17-
stage Hairer integration method can compute a simu-
lated second the fastest as it can support the largest

simulation time-step.

6 Discussion

The performance curves in Figure 4(right) and Figure 5
(right) both show a kink at N = 1024 · · · 4096 depend-
ing on the GPU model. This is attributable to the
the limited processors of the GPU, above this transi-
tion multiple thread block must be executed on a single
multiprocessor. Systems below this size cannot utilise
the all of the GPU multiprocessors and thus do not
make optimal use of the GPU hardware. For the pur-
poses of benchmarking the system must be sufficiently
large to fully utilise all available multiprocessors. The
optimal point benchmarking system is at the position
of this kink, however this not constant for all GPU
models.

The benchmark described in [1] describes a general pur-
pose application with low precision integration meth-
ods and floating point numbers. Whereas, this paper
is aimed at specific scientific computing applications
where the precision of the integration methods and
double precision floating point numbers are required.
Using these methods it allows us to exploit the differ-
ences between different generations and data types of
modern NVidia GPU’s.

7 Conclusions

We have shown that high-order time integration algo-
rithms for N-Body classical particle dynamics make an
interesting and challenging benchmark application for
computational performance accelerators such as GPUs.
We have explored the computational load of methods
ranging from the simple Euler single stage method,
through common workhorse algorithms such as fourth-
order Runge-Kutta and emerging algorithms such as
the Dormand and Prince fifth order method. We have
also implemented the relatively unknown, superior but
computationally expensive 10th order Hairer algorithm
and shown the increasing number force-functions used
by such seventeen-stage methods. Nevertheless we
have confirmed that such numerically superior meth-
ods do support problem configurations with high curva-
ture of variable values, that are simply not feasible with
lower-order methods. We have also explored the notion
of simulated seconds per second and have shown that
there are problem regimes where it is actually faster
in terms of the number of simulated seconds per clock
second to use a high order method such as Hairer’s.

We have explored properties of the NVidia GPUs and
have found it quite feasible to implement these codes
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using CUDA although we note the increasing code
complexity required in making a correct implementa-
tion. The 10th order method uses the full numerical
precision available in 64-bit arithmetic and it therefore
represents a threshold in utility. An even higher order
method would perhaps necessarily be crippled if only
run with 64 bit floating point precision.

We have confirmed the float and double performance
of NVidia’s high-end GPUs and reaffirmed the ongo-
ing importance of double precision accelerator units for
use of massively multi-core data parallel devices such
as GPUs for these sort of high accuracy N-Body calcu-
lations.

There is further scope for using these algorithms on
GPU-enabled clusters rather than just on a single
GPU-accelerated CPU node as we have discussed in
this paper. There is also scope to explore other numer-
ical integration algorithms such as the family of adap-
tive step-size explicit Runge-Kutta methods or implicit
methods[17]. It is likely that this class of problem will
remain an important benchmark for floating-point ac-
celerators.
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Abstract— Advancement in semiconductor technology is
allowing to run larger applications on chip multiprocessors.
Parallelism is achieved by running different threads of ap-
plications on separate processors. This leads to coherence
issues of shared data. As wire delays are dominating in
current SoCs, added communication over the interconnect
also adds to latency and power requirements.

In this paper we propose to form small size clusters of
cores which will share the same high-level cache instead of
one global, large-size banked cache. Experimental evalua-
tion shows that clustering gives improvement in performance
and power requirements. Research on application mapping
on NoC has shown that assigning nearby cores to an ap-
plication improves performance. We performed experiments
by localising an application within a cluster and obtained
improvements in performance as well as power.

Keywords: Cache coherence, Clustering, Chip Multiprocessors,
Performance, Energy

1. Introduction
Advancement in semiconductor technology is allowing to

pack more and more transistors on a single die, thus increas-
ing the complexity of the systems. This increasing amount of
logic (transistors and logic-gates) available on the same die
is helping to improve the efficiency of the CPU. Physical
limitations like heat dissipation and data synchronisation
tend to create an upper bound on the CPU performance.
To improve CPU utilisation the alternative generally used is
instruction level parallelism, like pipelining. However issues
related to instruction prediction are not always easy to handle
for all applications. Many applications are better suited for
thread level parallelism which is the major impetus behind
Multiprocessors systems, where each core can handle one
thread at any moment of time.

Considering these issues, the trend is to design archi-
tectures where different asynchronously working processing
elements can communicate with each other to provide us
with the end result. In a multiprocessor system, the proces-
sors are shared among different processes. When a job is
to be allocated, a subset of all the available processors is
considered. This subset is chosen based on the factors of
communication cost between the processors allocated to the
same application, the network contentions due to flow of

data between processors, etc. Many papers in the area of
application mapping for SoC address these issues [1].

The complexity and the increase in communication de-
mand for large size SoCs will no longer be met by the
bus-based architectures. Network-on-chip (NoC) [2] is the
solution for establishing fast and efficient links between
the cores. Related to the interconnect architecture for next
generation SoCs, some of the challenges [3] posed are:
(i) Predictability and Wiring delay: As wire delays are
dominating gate delays and the performance of the system
depends on the propagation delay on the chip topology, it is
getting difficult to predict system performance based on the
physical parameters; and
(ii) Power dissipation in the interconnect is increasingly
becoming a considerable component of the power budget.

Now, consider the combined scenario of a multiprocessor
system connected using an NoC. As the processor cores co-
operate to run a bigger application or perform small but
related tasks, they need to share data across processors. Such
shared data, residing in a central store is ideal for consistent
access, however it leads to longer latencies. Caching is done
to improve the average memory access time. Multiple copies
of shared data in caches of different processors leads to
coherence issues. In this paper we address the problem of
the relation between cores and cache in order to reduce the
number of hops, and in turn to improve performance and
energy requirements.

A recent work which is similar to the contributions of
this paper appears in [4]. Here, the authors have divided
the cores into clusters and the cores within the cluster
share a set of cache banks. The modified directory stores
coherence information about the availability of cache lines
with other clusters. The cache replacement policy is also
changed to suit the new settings. The focus here is on
improving performance. Our work differs from [4] as we
focus on improving performance as well as concentrate on
network latency and link and router power consumption.
Towards achieving this we give a detailed analysis of the
effect of various cluster sizes on performance and power.

Most of the current designs use low-radix networks and
develop effective cache management strategies to improve
performance [4], [6], [5]. Efforts on reducing the network
contention and access latencies are discussed in [7], [8].
The overall efforts are towards improving performance by
either modifying coherence algorithms or by improving the
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interconnect to reduce wire delays: giving better network
latency and energy values. Working towards this objective,
in the present paper we form clusters of cores (possibly
running the same or related application and thus sharing
more data), and use different coherence methods within
and across the clusters to improve performance. The ex-
perimental evaluation shows that clustering helps to reduce
the network latency and power dissipation along with better
performance. The idea behind clustering is that instead of
every core accessing a particular cache bank for a given
address, the cores within the cluster will always access a
fixed cache for all requests. Thus the cores in a cluster
do not need to send requests to far-off cache banks, thus
reducing the network latency and power consumption in
the interconnection network. Also, reduced traffic going out
from the cluster reduces the overall network contention.

The remaining part of this paper is organised as follows.
We give a brief background in section 2. The experimental
setup and results are presented in section 3. Discussion on
the effects of change in cluster sizes in section 4. We present
experimental results for process localisation in section 5.
Finally we conclude in section 6.

2. Background
2.1 Cache coherence

Variety of protocols are designed that take advantage of
the NoC [2], [9] based communication. For example, instead
of storing the sharers information in a directory at a central
place, one can build a virtual tree at network routers [10].
These help in faster access of the data in cases where the
block in available with a nearby node instead of reading
it from the memory. A priority based scheme for sending
cache coherence related control packets is given in [11]
which allows these smaller packets to bypass the longer data
packets. A hierarchical cluster based protocol is discussed in
[12] which creates virtual tree cluster among the nodes.

The results presented in this paper show improved perfor-
mance by clustering the cores and using the original MESI
protocol (without modifications).

2.2 Cache layout and interactions
Recent chip multiprocessors (CMPs) use low-radix (2D-

mesh) network of interconnected tiles. Each tile can be a
single processor or a set of few processors. The tiles usually
have their private L1-cache. Each tile may have a private
L2-cache, alternatively all tiles may share a global L2-cache.
The global L2-cache is logically a monolithic block, but due
to physical constraints it is efficient to divide this L2 into
banks and place each bank in separate location. The banks of
L2 are shared by all tiles/processors. Each bank maintains
its own directory to store coherence information. This is
the distributed directory style. Another variant is to store
all the directory information in one centralised directory. In

a shared-banked L2-cache, a L1 cache miss is mapped to
exactly one bank depending on the address of the data block.
As the requesting L1 may be located far from the serving
L2 bank, this can lead to varying access times for the same
memory block. However, in this style the total size of L2
available to all tiles is very large.

Alternative methods, as pointed out earlier in the paper, try
to reduce the access latencies by modifying the interconnect
or the cache organisation. Modify the memory architecture
to make each L2-bank a new L2-cache having the total cache
size same as that of the original L2. If we allow each cluster
to share one L2-cache, we can give access to the same size
cache to each cluster.

3. Experimental evaluation
In this section we describe in detail the experiments we

performed on a 16-core mesh network. Similar evaluation
was done for a 32-core network. The results section show
graphs for both 16 and 32-core setups.

3.1 Simulation setup
We use 16 cores connected together by a 2D-Mesh, as

shown in figure 1. The boxes containing ‘R’ are the routers
and those containing ‘L1’ are the cores. Each core has
its own private L1 data and instruction cache. The figure
also shows the position of the L2-cache: banks in case
of non-clusters and independent L2s in case of clustered
arrangement.

The cores are divided into 4 clusters each of size 4 (shown
by dotted rectangles in the figure). Each cluster has a L2
cache and associated local directory. The L2 is placed in
a way so that it has average minimum distance to all the
cluster members. The local directory only keeps track of
cluster member’s L1 cache states. The centralized directory
associated with the main memory keeps information only
of the L2s i.e. on a per cluster basis. We used a similar
architecture for a 32-core setup for simulations.

3.1.1 Message-flow for non-clustered design
When there is an L1 miss the request goes to the L2 bank

to which the block is mapped. Since there is only one copy
of a block there is only one location for it. If the data is
there (L2 hit) then it is brought from there. Otherwise (L2
miss) the request is sent to the main memory and the data
is brought from the memory.

3.1.2 Message-flow for clustered design
In case of an L1 miss the request goes to the local L2 (i.e.

the cache within the cluster). If the data is there (cluster hit)
then it is brought from there. In the clustered scheme the
L2 is closer than the L2 bank in shared banked L2 scheme
where the data can be on any of the L2 banks. Therefore, in
the clustered case the access latency is expected to be less
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Fig. 1: 16-core 2D-mesh architecture.

and hence we expect improved performance. If there is an
L2 miss (cluster miss) then the request will go to the main
memory and bring the data from there.

As the number of hops have reduced by clustering we
get better performance. For example, consider the top-left
corner tile in figure 1. If this processor wants to access the
cache, we have

• Cluster case: 1 hop to reach local L2-cache.
• Non-cluster case: Hops required to reach any of the L2

banks are either: 1, 2, 4 or 5. In other words, average
4 hops to access a cache bank.

The mapping of cores to threads should be done in a way
that most members in a cluster have shared data, therefore
the sharing across clusters would be less, and most of the
requests would be satisfied by the local L2 (which has
less access latency). This is also the main idea behind all
application mapping techniques.

3.2 Experiments

The simulation was performed using Simics [13] full
system simulator and GEMS toolset [14]. GEMS was used
to simulate the memory timing model. It uses the existing
full-system functional simulation infrastructure of Simics as
the basis around which to build a set of timing simulator
modules for modeling the timing of memory systems and
processor cores.

In clustered system 4 L2 caches of 4 MB each were used
and in non clustered system 4 banks of L2 were used where
each of the banks had 4 MB capacity. Therefore total L2
size was 16 MB for both the clustered and non clustered
cases. The system parameters are given below:

Component Parameters
Processor UtraSPARCIII+
L1 I/D cache 64KB, 4-way, 3 cycles
L2 cache bank (non-cluster) 4MB, 4-way, 6 cycles
L2 caches (clustered) 4
L2 cache size (clustered) 4MB, 4-way, 6 cycles
Memory bank 1GB, 4KB/page, 158 cycles
Distributed directory

The network was modeled using Princeton’s Garnet [15]
network simulator. The fixed pipeline model was used.
Garnet also provides power estimates as it incorporates the
Orion [16] power models. Garnet with the help of Orion
evaluates the network energy consumption using 100nm
technology. A mesh network was used to connect the cores.
The network parameters are given below.

Network configuration Parameters
Flit size 16 byte
Buffer size 4
Pipeline stage 5 stage
VCs per virtual network 4
Number of virtual networks 5

Unmodified Solaris 10 operating system was loaded in
the simulated system and benchmarks from Splash2 [17]
benchmark suite were used to measure the performance. The
benchmark applications used were: Ocean, Water-Spatial,
Barnes and FMM. We compared MESI protocol [18], [19]
to do the comparison of cluster against non clustered archi-
tecture.

3.3 Results and Analysis
In this section we present the results using a comparative

analysis on various parameters:
• Performance.
• Miss latency: Average memory request latency.
• Average Network Latency: The latency in the network

routers, network links and latency at the interface.
• Total Link Power: Sum of power consumption at all the

links in the mesh.
• Total Router Power: Sum of the power consumption at

all routers.
• Link Utilisation.
Objective is to increase performance and reduce all other

parameters.
All the graphs show the normalised values for each of the

above parameters. We have also computed the percentage
improvements as will be mentioned below.

The performance for the 16-core design is plotted in
the graph of Figure 2. The performance in the clustered
architecture, has improved between 6.5% to 51% and in one
case remained almost at par with non-clustered case. The
corresponding normalised values are given in the graph.

As the benchmark programs are sharing lot of data,
travelling to far-off L2-bank will result in more latency.
This increased latency over the network is hampering the
performance in the non-clustered case. However, due to
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Fig. 2: Performance comparison: 16-cores

Fig. 3: Cache-miss latency: 16-cores

Fig. 4: Average network latency: 16-cores

Fig. 5: Total Link Power: 16-cores

Fig. 6: Total Router Power: 16-cores

Fig. 7: Link Utilisation: 16-cores
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clustering, as the data is always fetched from a fixed nearby
L2-cache, we are seeing an improved performance.

The improvement in network latency and cache-miss
latency are plotted in the graphs below. For the 16-core
setup, we are getting 20-27% improvement in cache-miss
latency and 27-32% improvement in the average network
latency.

The cache access in the clustered design are localised to
a nearby location and hence the network traffic has reduced.
This reduced traffic helps in saving power in the links and
routers. For 16-cores we have savings from 7-41% in link
power and 19-50% in router power.

Reduced traffic going out from the cluster reduces the
overall network contention as can be seen from the differ-
ence in link utilisation for the clustered versus non-clustered
case (figure 7). We got improvement of 7-42%.

We have used inclusive cache for both clustered and
non-clustered setup. In case of the clustered design, due
to inclusiveness, the effective cache space for the cluster
is one-fourth compared to the non-clustered (as we have
not made any changes to the cache size). Even after having
lesser cache size the clustered designs have performed better
mainly due to lesser network traffic.

In the non-clustered case, coherence had to be maintained
across all L1-caches alone. In the clustered scenario, coher-
ence was maintained both at the L1 as well as L2-cache
levels. This lead to increased coherence messages for the
clustered case. However, these extra coherence messages are
still small in number and size compared to the data request
messages travelling to L2-banks in the non-clustered case.
Hence we get better performance in clustered design.

We repeated the same experiment by increasing the num-
ber of cores to 32. Here the performance has improved
between 26-55% but at the same time the link power has
gone up by minimum 6% and maximum 32%. The cache
miss latency and average network latency are improved by
57% and 39% respectively. In an attempt to reduce the link
power and see its effect on performance, we did simulations
by changing the cluster sizes. Results are presented in the
next section.

4. Discussion
We performed some experiments to check the effect of

cluster size and number of cores on the performance and
power. The results and their analysis are presented below.
Note that in all the cases we have kept the total L2 cache
capacity same for the whole network.

4.1 Effect of Increase in Number of Cores on
Performance

As seen earlier, in general, clustering the cores provides
better performance in comparison with non-clustered archi-
tectures. The percentage improvement increases when the
number of cores increase.

The performance improvement in clustering occurs be-
cause the number of hops needed in case of an L1 miss
to access the L2-cache is less here. This effect is more
pronounced when the number of cores is large. For example
here we present the number of hops needed for the core in
the top-left corner in 16 and 32 core setup:

Number of cores Average number of hops to L2
Clustered Non-clustered

16 1 3
32 (cluster size 8) 2 5

The number of hops saving is more when the number
of cores are more. Correspondingly the performance gain is
better as shown in the table below.

Benchmark Percentage Improvement
16 cores 32 cores

FMM 34.31 45.69
Barnes -1.89 35.91
Water 6.53 26.02
Ocean 50.58 55.96

As in the future the number of cores will continue to
increase the clustered approach will provide better perfor-
mance gains.

4.2 Effect of decrease in cluster size on Perfor-
mance

We see that as the cluster size is changed from 8 to 4 the
performance improvement for clustering reduces (although
it is still better then non clustered approach). The values are
given below:

Benchmark Percentage Improvement
Cluster size 8 Cluster size 4

Barnes 35.91 5.8
Water 26.02 16.11

Let the total L2 capacity in the non-clustered architec-
ture be M . Assume we divide this into N clusters. The
phenomenon of relative decrease in performance due to
cluster size happens because: in the clustering approach the
effective cache capacity available to each cluster is (M/N),
as compared to M available to the non-clustered design.

For example, in 32 cores when the cluster size is 8
(i.e. number of clusters 4) the effective cache capacity for
clustering is one-fourth of that of the non-clustered approach.
But when the cluster size is reduced to 4, this capacity
reduces to one-eighth of the non-clustered. Whereas, in both
cases the non-clustered gets full capacity cache.

Therefore the number of L1 misses goes up in case of
clustered architecture and the time needed to service these
extra misses takes away from the savings in execution time
contributed by the reduced hop count. Hence the perfor-
mance improvement reduces though it is still better than
the non-clustering architecture. Below we show the increase
in L1 misses for clustered against non-clustered for the two
different cluster sizes. One can try to reduce the number of
misses by increasing the cache size allotted to each cluster.
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Benchmark

Percentage increase
in L1-D misses

Cluster size 8 Cluster size 4
(no. of clusters 4) (no. of clusters 8)

Barnes 30.27 61.36
Water 45.76 40.89

4.3 Change in Power consumption
In clustered case most of the traffic is contained within the

cluster. For 16 cores we see that the average link utilization
is less in clustered case and this results in a percentage
improvement in clustered against non clustered.

However when we have a cluster size of 8 in 32 cores the
number of hops needed inside the cluster is more than the
number of hops necessary for 16 cores with cluster size of
4 (as depicted in table below).

Maximum hops to L2-cache
inside the cluster

16 core 2
32 core (cluster size 8) 3
32 core (cluster size 4) 2

Since the number of hops inside cluster goes up for
cluster size 8 and since most of the traffic is contained
the within cluster, the average link utilization goes up and
it becomes more than that of non clustered. Therefore the
power consumption in links also goes up. But in the case
of cluster size 4, the the number of hops inside the cluster
is less and the average link utilization is lower and the
power consumption is also lower for clustered architecture
as shown in table below.

Benchmark

Percentage Improvement

Average Total
Link Utilisation Link Power

Barnes 16 core 41.55 41.55
Barnes 32 core (cluster size 8) -5.9 -5.9
Barnes 32 core (cluster size 4) 31.54 31.54
Water 16 core 23.73 23.73
Water 32 core (cluster size 8) -5.85 -5.85
Water 32 core (cluster size 4) 1.88 1.88

4.4 Power Performance Trade off
As we go from 16 core to 32 core, the performance

improvement caused by clustering is large, as shown below:

Benchmark

Percentage Improvement
in Performance

16 core 32 core 32 core
cluster size 8 cluster size 4

Barnes -1.89 45.69 5.8
Water 6.53 35.91 16.11

However, this increase comes with a penalty: as the total
link power consumption increases over the non-clustered
approach as shown below:

Benchmark

Percentage Improvement
in Power

16 core 32 core 32 core
cluster size 8 cluster size 4

Barnes 41.55 -5.9 31.54
Water 23.73 -5.85 1.88

Therefore we can come to a power performance trade-
off and use the 32 cores setup with cluster size 4. In this
design, the performance improvement is not as high as when
the cluster size is 8 but the power consumption is lesser than
the non-clustered approach.

5. Process Localisation
We have already seen that clustering the cores improves

performance. As chip multiprocessor is expected to run
many applications at the same time, mapping of application
should reduce communication cost due to flow of data
between the processors allocated to the same application.
This dictates that threads of the same application have to
run on nearby cores. We propose that in such a multiple
workload scenario clustering will provide better results than
the traditional single banked cache.

To evaluate our hypothesis, we performed some experi-
ments. In the 16 core setup, we executed three applications:
in particular we had three instances of the Water benchmark,
each with 4 threads. In the localised version, the threads
belonging to the same applications are mapped to nearby
cores, in that we map each instance to a cluster. In non-
localized version the threads are allowed to run anywhere in
the system. The scenarios considered are:
(a) localised clustered: Each instance running within a
cluster and accessing cache within the cluster.
(b) localised non-clustered: Each instance running within a
cluster and accessing a single global cache.
(c) non-localised clustered: Threads of each instance are
allowed to run anywhere in the system; and threads (that
may belong to a mix of instances) running within a cluster
access the cache within the cluster.
(d) non-localised non-clustered: Threads of each instance
are allowed to run anywhere in the system; and they access
the single global cache.

Results obtained a given in Table 1. We computed the
percentage improvements obtained using option (a) versus
(b): given in row-1; and using option (c) versus (d), given
in row-2. Therefore we conclude that clustering the cores
delivers better performance both in single and multiple
workload scenarios and can further benefit from localising
the applications.

6. Conclusion
In low radix networks, the cores are arranged in a grid

style with all cores sharing a set of L2-cache banks. We
presented in this paper the idea of clustering the cores and
making all cores within a cluster to share one bank of
the L2-cache, as its independent L2-cache. As the cores
have to travel smaller number of hops in the clustered case
we get improved performance and also save energy in the
interconnect. The interconnect power is consumed mainly
due to the amount of network traffic and the utilisation of
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Percentage Improvement
Performance Miss latency Avg. network Link power Router power L1-D misses Avg. link

latency utilisation
localized:
cluster over non-cluster 4.32 6.55 33.79 51.48 44.72 47.01 51.48
non-localized:
cluster over non-cluster 4.24 25.39 35.72 10.55 24.62 -60.11 10.55

Table 1: Performance and Power improvement due to localising applications

routers. As the number of messages across the network is
now mostly confined to the cluster, the overall interconnect
utilisation is reduced, thus saving power. The results show
that the network access is the bottleneck in the performance
of an application over multiple cores.

We could achieve performance and power improvements
with caches of smaller capacity each, compared to four
times the cache size in the non-clustered case. We also did
a comparative analysis for the 32 core setup by varying
the cluster sizes and keeping the total L2-cache capacity
same for all combinations. The results show that bigger
cluster size increases link utilisation and hence increases
power consumption, but gives better performance compared
to small size clusters. Thus, there is a tradeoff between per-
formance and power depending on the cluster size. However,
in all cases the performance is better than the non-clustered.
For small size clusters we get better power requirements
but little less performance. Thus for a clustered design if
we can allocate more cache capacity to each cluster, by
increasing the total L2-cache on the network, we can get
better performance and power values.

The overall results show that mapping the application to
nearby cores and having them share a nearby cache can give
better performance and energy savings. As future work, we
intend to extend the experiment to more number of cores and
try different topological placements of caches and directory
to check their effect on performance and power.

Acknowledgment
The authors would like to thank Wind River for providing

academic licence for the use of Simics functional simulator
and the people in The Virtutech Simics Forum for their help
in clearing doubts.

References
[1] C.-L. Chou and R. Marculescu, “Contention-aware Application Map-

ping for Network-on-Chip Communication Architectures,” in IEEE
International Conference on Computer Design (ICCD), 2008, pp.
164–169.

[2] L. Benini and D. Micheli, “Networks on Chips: A New SoC
Paradigm,” in IEEE Computer, 2002.

[3] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and
A. Sangiovanni-Vencentelli, “Addressing the system-on-a-chip inter-
connect woes through communication-based design,” in Proceedings
of the 38th annual Design Automation Conference (DAC), 2001, pp.
667–672.

[4] W. Zuo, S. Feng, Z. Qi, J. Weixing, L. Jiaxin, D. Ning, X. Licheng,
T. Yuan, and Q. Baojun, “Group-caching for NoC based multicore
cache coherent systems,” in Proceedings of the conference on Design,
automation and test in Europe (DATE), 2009, pp. 755–760.

[5] M. H. Hammoud, S. Cho, and R. Melhem, “Dynamic Cache Clus-
tering for Chip Multiprocessors,” in Proceedings of the 23rd Intl.
Conference on Supercomputing (ICS), 2009, pp. 56–67.

[6] M. Zhang and K. Asanovic, “Victim replication: Maximizing capac-
ity while hiding wire delay in tiled CMPs,” in 32nd International
Symposium on Computer Architecture, 2005, pp. 336–345.

[7] B. M. Beckmann and D. A. Wood, “Managing wire delay in large
chip multiprocessor caches,” in International Symposium on Microar-
chitecture, 2004, pp. 319–330.

[8] C. Liqun, N. Muralimanohar, K. Ramani, R. Balasubramonian, and
J. Carter, “Interconnect-Aware Coherence Protocols for Chip Multi-
processors,” in 33rd International Symposium on Computer Architec-
ture, 2006, pp. 339–351.

[9] W. Dally and B. Towles, “Route Packets, Not Wires: On-Chip In-
terconnection Networks,” in Proc. of Design Automation Conference,
2001.

[10] N. Eisley, L.-S. Peh, and L. Shang, “In-network cache coherence,”
Computer Architecture Letters, vol. 5, pp. 34–37, 2006.

[11] E. Bolotin, Z. Guz, I. Cidon, R. Ginosar, and A. Kolodny, “The Power
of Priority: NoC based Distributed Cache Coherence,” in Proc. of 1st
International Symposium on Networks-on-Chip, May 2007, pp. 117–
126.

[12] Y. Zhang, Z. Lu, A. Jantsch, L. Li, and M. Gao, “Towards Hierarchical
Cluster based Cache coherence for Large-scale Network-on-Chip,” in
4th Intl. Conference on Design and Technology of Integrated Systems
in Nanoscale Era (DTIS), April 2009.

[13] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Håll-
berg, J. Högberg, F. Larsson, A. Moestedt, and B. Werner, “Simics:
A Full System Simulation Platform,” IEEE Computer, vol. 35, no. 2,
pp. 50–58, 2002.

[14] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Mul-
tifacet’s General Execution-driven Multiprocessor Simulator (GEMS)
Toolset,” Computer Architecture News (CAN), 2005.

[15] N. Agarwal, L.-S. Peh, and N. Jha, “Garnet: A detailed interconnection
network model inside a full-system simulation framework,” Princeton
University, Tech. Rep. CE-P08-001, 2008. [Online]. Available:
http://www.princeton.edu/ niketa/garnet

[16] A. Kahng, B. Li, L.-S. Peh, and K. Samadi, “Orion 2.0: A Fast and
Accurate NoC Power and Area Model for Early-Stage Design Space
Exploration,” in Proceedings of the conference on Design, automation
and test in Europe (DATE), 2009, pp. 423–428.

[17] S.C.Woo, M.Ohara, E.Torrie, J. Singh, and A. Gupta, “The splash-
2 programs: characterization and methodological considerations,” in
22nd Annual Symposium on Computer Architecture, 1995, pp. 24–36.

[18] D. E. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architec-
ture. Morgan Kaufmann, 1999.

[19] P. G. de Massas and F. Pétrot, “Comparison of memory write policies
for NoC based multicore cache coherent systems,” in Proceedings of
the conference on Design, automation and test in Europe (DATE),
2008, pp. 997–1002.

96 Int'l Conf. Computer Design |  CDES'11  |



SESSION

GENERAL TOPICS AND DISCUSSIONS

Chair(s)

TBA

Int'l Conf. Computer Design |  CDES'11  | 97



 

98 Int'l Conf. Computer Design |  CDES'11  |



Evaluation of Enhanced Replacement Scheme (ERS) on 

Simplescalar
 
Simulation Tool 

 

A. Manoj Kumar
1
, B. Gaurav Gupta

2
, and C. Anand Mohan

2
 

1
Department of Computer Engineering, Delhi Technological University, New Delhi, India 

2
Department of Computer Engineering, University of Delhi, New Delhi, India 

 

 

Abstract - Computing machines are getting superior by the 

day, especially, in terms of their processor efficiencies and 

speeds. This enhanced capability of the processors needs to 

be matched by an appropriate betterment of memory 

performance, which can be brought about by improving the 

hit ratio (hit ratio is the total number of cache hits divided by 

the total number of cache lookups) of cache memory. This 

paper focuses on enhancing the hit ratio by consolidation of 

two popular policies for cache replacement which are Least 

Recently Used (LRU) and Least Frequently Used (LFU). We 

have implemented this new policy in Simplescalar [4] 

simulation tool to show its effectiveness. 

 

Keywords: cache, Simplescalar, hit-ratio, replacement 

policy. 

 

1 Introduction 

            In the presence of advanced VLSI technologies, the                                                                             

processors are evolving fast. To improve the output of a 

computing machine, the memory system should also evolve 

at the same rate. The cache memory forms an important part 

of computer systems today to enable faster access to memory 

blocks which are likely to be accessed again. This paper 

deals with the improvement of cache hit ratio by combining 

two popular policies which are Least Recently Used (LRU) 

and Least Frequently Used (LFU). 

           As the name suggests, LRU is a policy which replaces 

the data which has not been used for the longest period of 

time with fresh data that does not exist in the memory. LRU 

is popular as it is simplistic and works well with some 

datasets but at times becomes erroneous, especially where 

frequency of data plays a major role. In such cases, the LFU 

policy is useful. It replaces the data which has the least 

frequency of being used. But again, LFU has its limitations 

for recently used data. The new policy, called Enhanced 

Replacement Scheme (ERS) provides the consolidation of 

features of both policies to improve the hit ratio of cache. 

Significantly, with an improved hit ratio, the efficiency of a 

machine, especially with respect to cache accesses, increases. 

           The implementation of ERS has been described in 

Section 2. Observations of the simulation are presented in 

Section 3 with an analysis of its improved performance. 

Section 4 concludes the paper. References are mentioned in 

Section 5. 

2 Enhanced Replacement Scheme 

         The Enhanced Replacement Scheme (ERS) combines 

the advantages of two popular cache replacement policies 

which are Least Recently used (LRU) and Least Frequently 

Used (LFU) to form a single effective cache replacement 

scheme. ERS overcomes the shortcomings of LRU, by 

improving the performance which, in LRU, degenerates 

under quite common reference patterns. For example, if there 

are N pages in the LRU pool, an application executing a loop 

over array of N + 1 pages will cause a page fault on each and 

every access. This certainly degrades the performance of 

cache with respect to hit ratio and the efficiency of the 

system as a whole. On the other hand, the Least Frequently 

Used (LFU) causes ‘cache pollution’ in which unnecessary 

blocks are loaded into the cache. To counter such problems 

ERS chooses the block according to both LRU and LFU.  The 

remainder of the paper discusses the implementation of ERS 

on Simplescalar [4] simulation tool and the results obtained 

in terms of hit ratio.  

 

 

2.1 Hardware environment 

           The Simplescalar [4] simulation tool provides the 

hardware environment as shown in the figure below. 
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The benchmarks were run on a pipelined architecture as 

shown in the above figure with a two-level cache [3] i.e. if 

the block is not found in the level 1 cache, level 2 cache is 

accessed. 

2.2 LRU and LFU Implementation 

           The Least Frequently Used algorithm is implemented 

using a linked list which is updated whenever a cache hit or 

cache miss occurs. The linked list contains all the blocks in 

memory. At the back of this list is the least recently used 

block, and at the front is the most recently used block. 

Suppose at a given instance of time the LRU list is as shown 

below.  

In the above figure the block 3 is the most recently used 

while block 4 is the least recent. Now, if the block 5 is 

accessed the resulting LRU list will become as shown below. 

 

 

The block 5 now becomes the most recently used and 

therefore, is inserted at the top of the list. 

The Least Frequently Used algorithm is implemented using a 

counter which stores the information about the frequency of 

the block to which it belongs. The more the value of this 

counter, the more frequently accessed is the block. 

2.3 ERS Algorithm 

         This section explains the algorithm used in ERS. 

 

Case 1: If a Hit occurs 

 

1. Increase the frequency count of the block hit by one 

and decrease the frequency count of other blocks by 

half. 

2. Rearrange the LRU list, so that the least recent block 

appears at the tail of the list and most recent at its 

head. 

 

Case 2: If a Miss occurs 

 

1. A list of blocks as selected by LRU is created by taking 

blocks from the end of the LRU linked list.  

2. A list of blocks created by LFU is created based on 

frequency counter of each block. 

3. If there is only one common block in the two lists, go 

to step 6. 

4. If there is more than one common block, then take the 

block according to LRU list. 

5. If there are no common blocks in the two lists, take 

sufficient blocks from the LRU linked list such that 

at least one block is common. 

6. Replace the block obtained with the new one. 

 

Please see the following diagrams for description of case 2 

i.e. when a cache miss occurs. 

 

When there is only one common block between the two lists, 

we choose that common block for replacement as shown in 

the figure below. 
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As we can see that the block 5 is the only block common 

between the two lists, so this block is best suited for 

replacement. 

When there are more than one common blocks between the 

two lists, we choose the block as per LRU for replacement. 

 

 

 
 

Since there are two blocks in common, we choose the block 5 

for replacement as per LRU. 

There can be a case when there is no block in common 

between the two lists. In that case, we can choose the block as 

per LRU. In our experiments we found that keeping a fixed 

size of four blocks in each list returned at least one common 

block.  

 

 

 

 

3 Observations and Analysis 

3.1 Level – 1 cache statistics 

 

No. of 
instructions 

Hit ratio (LRU) 
(in %age) 

Hit ratio (ERS) 
(in %age) 

5000000 94.192 94.405 

7000000 94.123 94.323 

8000000 94.265 94.460 

 

 The table above shows the comparison between the hit 

rates for level - 1 cache obtained with LRU and ERS for 

different number of instructions. 

3.2 Level – 2 Statistics 

 

No. of 
instructions 

Hit ratio (LRU) 
(in %age) 

Hit ratio (ERS) 
(in %age) 

5000000 89.681 90.122 

7000000 88.339 88.971 

8000000 87.858 88.532 

 

The table above shows the comparison between the hit rates 

for level - 2 cache obtained with LRU and ERS for different 

number of instructions.   

3.3 Percentage improvement 

 

No. of 
instructions 

%age change 
Level 1 cache 

%age change 
Level 2 cache 

5000000 0.213 0.441 

7000000 0.200 0.632 

8000000 0.195 0.674 

 

The table above shows the percentage improvement in            

hit ratio of level – 1 and level – 2 caches. 
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3.4 LRU vs. ERS 

 

Level – 1 Cache  

 

 
Fig. Level 1 Cache stats:  Hit ratio vs. number of instructions executed on 

Simplescalar [4] tool 

The graph above shows the comparison between the level – 1 

cache hit ratios with LRU and ERS for different number of 

instructions. As we can see there is an improvement in the 

hit ratio with ERS.   

Level – 2 Cache 

 

Fig. Level 2 Cache stats:  Hit ratio vs. number of instructions executed on 

Simplescalar [4] tool 

The graph above shows the comparison between the level – 2 

cache hit ratios with LRU and ERS for different number of 

instructions. As we can see there is an improvement in the 

hit ratio with ERS.   

3.5 Improvement over IRP 

The Improved Replacement Policy (IRP) [1] policy has an 

extra counter for recent hits, rather than associating an extra 

counter, we can maintain a linked list structure which is 

organized so that the least recent block appears at its tail and 

the most recent at its head. In this way, the searching time to 

find a list of lesser recency is reduced. In the case when no 

block is common between the two lists formed by LRU and 

LFU, we are considering only LRU to find a block common 

to both the lists. Maintaining a fixed size of 4 blocks in the 

LRU list always gave a common block between the two lists. 

This means that a block which is least recently accessed is 

also one the less frequent. Therefore, instead of using two 

control parameters as in IRP [1], we are left with only one 

which is much easier to vary. 

 

4 Conclusion 

  This paper presents the evaluation of Enhanced 

Replacement Scheme (ERS) which is the combination of two 

policies which are Least Recently Used (LRU) and Least 

Frequently Used (LFU). The experiment results show that the 

hit ratio obtained in the case of ERS is better than that in the 

case of LRU. Thus, ERS can be deployed a more effective 

cache replacement policy. 
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Abstract 

 

     The aim of this research is planning and 

performance of a computerized system so that parts 

of management information system (MIS) in the 

companies which have several sale and distribution 

agencies prove to be true. Recognition of manual 

sale and distribution system and relation between 

the elements and method of changing to a 

computerized system includes of two sub-systems:  

Distribution and sale sub-system is in distributing 

centers, and Distribution and sale MIS sub-system 

is in central office. Distribution and sale 

management information system is able to prepare 

management reports, diagrams and statistics for 

management team. For economic analysis of this 

system, research theories in case of speed, 

accuracy, cost and user satisfaction are studied. 

This study is done by means of information and test 

application of difference between averages and 

estimating the differences between averages.  

Finally, following results and suggestions were 

presented: Concerning the time, accuracy, expense 

and user satisfaction, the planned system was 

significantly superior to the manual system. Also, it 

has the ability of providing diagrams, special 

reports and so on, which were not possible in the 

manual system. So, it is proposed to the companies 

to promote the management information system.  

 

Keywords: Computerized sale and distribution 

system, Economical analysis and Management 

Information system 

  

1- Introduction  

 
    In these days, accessing to accurate and correct 

information for management decision due to rapid 

development of organizations activity is essential 

and vital. Information volume accretion in different 

organizational stages and sensitiveness of making  

decision in circumscribed time makes more and 

more manifest why management needs updated 

information. Therefore, using computerized 

systems in today’s technique and knowledge is 

crucial. Understanding of positive and negative 

aspects in information techniques will direct to 

better selection and complete productivity. 

Management information systems are just 

computerized and connected system design. 

 

 

 

 

 

 

 

 

     One of the organizational branches which 

produce massive information is sale and 

distribution branch. If this information gathers and 

registers precisely, it is possible to achieve valuable 

information about company in order to make 

strategic decisions. Sale and distribution system has 

a products storage system and a customer service 

system. Customer service system controls financial 

affairs between company and customers. In the 

companies with massive and various sales and 

distributions, processing and keeping manual 

information for making on time decision is very 

laborious and make problems for company. Rapid 

progress in computer knowledge especially in data 

bases make it possible to create related systems 

regarding sales and distributions. 

         Meantime it is possible to save time, decrease 

costs and increase speed. Therefore, the object of 

this research is management information system 

design in sale and distribution and its economical 

analysis. Case study in this research is Darugar 

Company. In this regard, methods of changing 

manual sale and distribution system to a 

computerized system were designed then the result 

of designed system in performance steps were 

evaluated regarding different factors such as speed, 

accuracy, cost and user satisfaction.  

     This paper has forth parts: first part is 

introduction, second part is related to a sale and 

distribution computerized system presentation, third 

part is belong to  System evaluation, theories, 

information gathering and system  economical 

analysis and last part is deals to conclusion and 

suggestions.  

 

2- A sale and distribution computerized 

system presentation 

 

2-1- Sale and distribution manual 

system  

 
        In each production and Business Company, 

sale and distribution is very crucial.  In today's 

world every company which wants to grow and 

develop or at least survive must ability to sell and 

distribute its own products. This task needs 

information's knowledge, suitable view from 

Computerized Sale and Distribution System and its Economical Analysis 

 
  M Hamedanian 

 

Islamic Azad University, Central Organization, Tehran, Iran 
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market, having proper system for gathering 

information and processes, and preparing on time 

and exact reports: 

A sale and distribution system has several parts: 1- 

product storage 2- visitor 3- customer 4- bank or 

treasury 

Every sale center has a product storage which has 

been nourished from Tehran center and from this 

place products have been sold and distributed. One 

complete cycle is when product enters to storage, 

sells to customer and registers in the offices. 

Product request happens orally from center by 

phone or sometimes it happens in writing, however 

it does not register at the end. Visitors contact 

sellers and write their request plus its quantity then 

return it to distribution center. According to 

visitors’ sheets, sale factors are written then daily 

sale report is prepared. In this report, code, client 

name, factor number and factor amount are written 

manually, and some columns have been prepared 

for receiving money (cash, check, money order 

...).Then exit sheet is proceeded individually 

(individual sheet) in which for every report 

proceeds separate sheet. According to this sheet, 

collectors get product from storage with sale 

reports, go to each area to give product and sale’s 

factor, and then complete sale report in which they 

receive money. If product returns for any reason, 

related returnee d’s column is marked and 

according to this column, returned sheet is created 

in order to return product to storage. After receiving 

these factors, collectors go to related bank in 

distributed center and pay funds to company's 

account and get receipt. Then collector gives bank 

receipt and sale report to distributed center. Finally, 

bank receipt with sale factors send to Tehran.   

 If product does not sell for any reason, it 

will be sent to Tehran by rejected sheets 

(There are not any damages sheets). 

 After delivering products from Tehran to 

sale center, if there are not enough 

products in each box, deficit sheet will 

proceed from warehouse. 

 According to the whole sheets, storage 

man updates warehouse and employee 

calculates balances’ accounts of clients. 

 Collected information is sent from distributed 

centers to Tehran, and archived in Tehran 

center. However, manual system is not able to  

do particular process on the information because of 

its high volume. 

 

2-2-Changing manual system to        

computerized system 

 
      After recognizing system’s initiation, relation 

diagrams’ forms, data flow diagrams and entity 

relation diagrams were drawed. Selected tools and 

environment have strong power in designing pages 

between program, user interface and data base. 

Then programming language, database and report 

generator were chosen. Designing and preparing 

pages between program and user interface are in 

which user and operator did not feel any 

strangeness with new designed system. 

 

2-3-Sale and distribution computerized 

system 

 
      Process is similar to manual system however 

the difference is when product delivers from Tehran 

to distributed center. Information enters to 

computer in deposit sheet that has been sent from 

Tehran and a storage receipt prints by computer 

which has a serial number. If product has been 

deficited, after again delivery, another storage 

receipt is printed by computer. Visited sheets which 

are completed by visitors give to operators for 

entering information to computer. This information 

can enter to computer as batch, at the end of day. 

Then control list is prepared for any error in typing. 

Afterwards we can print invoices at one time. After 

printing factors, there is a possibility of printing 

sales reports and completing columns related to 

code, client name, factor number and amount. 

There are daily sale reports which produce 

automatically by computer based on different sales 

which has its own serial number. Thereafter 

computer according to each daily sale report creates 

an individual sheet (exit sheet) that storage man 

according to this sheet can deliver product. This is 

important to pay attention that after these processes 

which still storage’s asset and client’s account have 

not been changed There are still possibility of 

correcting information (visiting sheet information) 

in case of visiting any error. After making sure that 

data is corrected, it is possible to print sale factors. 

Computer in one batch process makes storage as 

creditor by decreasing asset of it and clients as 

debtors according to factor amount. Collectors get 

product from storage according to exit sheets and 

deliver it with daily sale report and sale factors. 

Then related column is completed by collector in 

daily sale report according to type of receiving 

money (cash, check) and if product is returned, 

related column in daily sale report is completed as 

well. Collector gives receiving money to bank also 

gives receipt and daily sale report sheet to operator. 

Operators import information to computer 

according to columns which was completed by 

collectors like type and amount of receiving money. 

Actually, clients' statuses are changed as creditors.  
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 If product has not been sold for any reason, It 

would be returned to Tehran with rejected 

sheets.(Actually there are not any losses 

sheets) 

 After delivering product from Tehran to sale 

and distribution center, if there are fewer 

products in some boxes, it is possible to create 

deficit sheet by computer.  

According to these sheets, computers update 

storage and calculate clients’ accounts on line 

in details and it is possible to visit or print 

storage flow and clients' accounts with selected 

data. 

       All processes are done by office employees in 

manual system which there is a possibility of error 

in writing or calculating. On the other hand, in 

computerized system there is a possibility of error 

just at the time of data entry of visiting sheet or 

receiving fee which by controlling system it is 

reduced compare to manual system. In addition, in 

computerized system high speed processes is due to 

particular design (batch data entering and printing) 

that makes possible to do high volume of processes 

in short time. Diversity of reports is very low in 

manual system and it is limited to amount of sale 

by visitor (for Sale‘s commission), however in 

computerized system there are too many different 

reports which in short time, particular report 

prepares like: 

- Amount of sale by visitor as total 

- Amount of sale of every product by visitor 

- Amount of sale of every product in each 

city 

- Amount of sale of all products in each city 

- Comparison of selling  products monthly 

and amount of imported products to 

storage 

      Collected information is sent to sale branch in 

Tehran monthly or weekly by interment or external 

memory and is used in another system which is 

totally graphical for managerial reports. Manager 

just needs to select particular area by clicking 

mouse’s button from Iran’s map, and visits or prints 

selected report from reports on the screen related to 

distributed center. This system was designed in 

which every manager access to all information of 

sale centers just by selecting subject. 

 

3-System evaluation 

 

3-1-Theories explanation, information 

gathering, sampling way 

 
        Darugar Co. has 800 employees and the 

statistic society to study is 160 which they work 

with sale and distribution system. For computerized 

sale and distribution evaluation and its economical 

analysis compare to manual system, four below 

theories were considered and they have been 

answered by test application of differences between 

averages and estimating the differences between 

averages.  

       1-Designed system in execution step needs less 

time, how much could be this decrease compare to 

computerized system? 

       2-Designed system in execution step has more 

accuracy, how much accuracy could be this 

increase compare to computerized system? 

       3-Designed system in execution step has less 

cost, how much could be this decrease compare   to 

computerized system? 

       4-Did designed system satisfy users? 

Field sampling has been taken by completing 

questionnaire and rangy also sample volume was 30 

which it was proved less reliance interval and high 

accuracy.  

 

3-2- Main variables in theories exam 

 

Time  
       In these days, speed and time are crucial in 

doing tasks such as products' sale and distribution, 

therefore customer's request, product’s distribution 

and creating sale's factor must be answered in 

minimum time and maximum speed. 

      Doing these steps particularly whenever 

distribution is done in central cities, is very time 

consuming by manual system. Even though fast 

processes in computer is because of new system 

design such as:  Data entry and printing batch 

information, it is possible to process numerous 

volume of information in less time, on the contrary 

of manual system. 

 

Accuracy 

      In today's knowledge, goal is to solve systems' 

problems. In an organization which all processes 

and calculations are done by office employees in 

manual system, there are errors in writing and 

calculating. These errors will be increased due to 

variety of complicated steps in doing tasks at 

manual system. Mean time large volume of 

processes cause to increase these errors also nobody 

can ignore recapitulation of exhausting processes 

by human. Because of  these reasons, computerized 

system is able to control large volume of 

information and processes with top accuracy. If an 

error happens in computerized system, at the time 

of  receiving funds  and data entering in visit sheet, 

this error will be much less than manual system   

because of controlling list and other controlling 
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systems which in the computerized system is   

available.  

 

Cost 
Sale and distribution system is costly by 

manual system. In computerized system 

just one person with one computer is able 

to answer all sale and distribution tasks 

with minimum error, cost and maximum 

speed.  

 

User satisfaction  
      Information’s numerous volumes, complicated 

processes, too many errors, low speed and too 

much cost were caused managers to create 

computerized system. Computerized system not 

only creates user friendly atmosphere for operators, 

but also it creates on-line reports and fast processes 

for management information.  

In this regard, tables are created based on  

answering questionnaires related to time, accuracy,  

cost and user satisfaction average. It is possible with 

calculating 30 questionnaires regarding above  

variables between manual and computerized systems 

complete statistical specification table based on time, 

 accuracy, cost and user satisfaction variables for  

using them in related assumptions exam in future. 

 

3-3- System statistical and economical  

Analysis 
 

In table number 1 below  page , average and standard  

deviation for all variables in manual and computerized 

systems were calculated individually.  

 

Source: It organized based on averages’ tables of time,  

accuracy, cost and user satisfaction 

 
 

 

 

 

 

 

 

 

 

 

 

 

  Table 1: Statistical characteristics for time, accuracy, 

  cost and user satisfaction variables. 

 

3-3-1-Averages Difference Test: 
 

 Computeriz

ed 
Standard 

Deviation 

Compute

rized 
Average 

Manual 

Standard 
Deviation 

Manual 

Average 

 
Time 0.05 0.08 

 
0.12 

 

2,21 

 
Accuracy 0.01 99,97 

  
1,84 

 

49.56 

Cost 1.97 69.90 6.08 179.10 
User 

Satisfacti

on 

2.06 97.47 
6.75 
 

40.07 

   For this test related to each variable, we have 

below assumptions: 

 

Mx = Average Variable in Manual System 

Cx = Average Variable in Computerized System 

  

    For test we have Mx = Cx which is main assumption and 

we represent it with H0 On the contrary of above, there is 

alternative assumption like: Mx > Cx or Mx < Cx 

Which we represent them with H1 

 

H0: Mx = Cx 

H1: Mx > Cx 

 

   Average difference test indication is based  

on formula (1):                                                                                                                                                                                    

  
 ̅     ̅  

  √
 

   
   

 

   

                                              (1)         

    

XMx :  Average Variable in Manual System 

XCx :   Average Variable in Computerized System 

We have Sp from formula (2): 

 

     
(     ) 

    (     ) 
   

         
                        (2)  

 

Freedom degree for this test is:               

nMx :   Statistical society’s volume in Manual System 

nCx :   Statistical society’s volume in Computerized System 

  

Economic analysis for management information system  

(sale and distribution) were done by collected information  

in Darugar Co. with test of four assumptions. 

 

3-3-2-Estimating the difference between averages 

 
          For all variables, estimating the difference between 

 averages is done by below formulas:     

                                                                                                                                  

    ̅   ̅  

 

 Var(d) = Var (XM – XC) 

 

 Var(d) = Var (XM) + (XC)- 2COV(XM – XC) 

 

Due to the fact that variables are independent in 

manual and computerized systems, therefore we 

can write formula (3): 

 

Var(d) = Var (XM) + (XC)                                       (3) 

                                                                                 

Therefore variance of sampling differences between 

averages is shown in formula (4) and   ̅ is 

presented in formula (5):   

   ( ̅)= 
     ( )

 
                                                    (4) 
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                                                         (5) 

       If we assume that computerized and manual 

systems have equal variances, for estimating we use 

variances relating to weight average which is SP
2
, 

therefore we have equation (6): 

 

 (     √
 

 
        √

 

 
)              (6) 

 

         For example, Averages Difference Test and 

estimating the difference between averages for 

Time variable in manual and computerized systems 

were calculated according to below:     

          Averages Difference Test for Time variable: 

 

H0 : Mt = Ct 

H1 : Mt  > Ct  

    
(    )      (    )     

       
    

                    

 

  
         

       √
 

  
 

 

  

 
 

       
                                      

      Amount of t in t table with 58 freedom degree 

in meaning surface of 0.01 is equal to: 2.3924. 

However, amount of t from above test is 89.759 and 

it is more than t table therefore it is in refused area 

and main assumption (H0) is refused in meaning 

surface of 0.01. As a result, necessary time for 

Completing one distribution and sale cycle in 

manual system is much more than computerized 

system.    

       Estimating the difference between averages for 

time variable in manual system and computerized 

system is calculated according to below: 

 

d= 2.21 -0.08 

d= 2.13 

t = 2.3924 

          √
 

  
 

 

  
  , n=30 

           (    √
 

  
     

          (    √
 

  
)        

 (                       )      
 (             )      

 
       In computerized system with 99% probability, 

necessary time for completing one sale and 

distribution cycle is between 2.074 till 2.186 hour 

less than manual system. On the other hand, in 

manual system with 99% probability, necessary 

time for completing one sale and distribution cycle 

is 2.13 hour more than computerized system. This 

is very interesting to know that because of very low 

confidence distance (2.074, 2.186), accuracy of this 

estimating is very high and sample’s volume has 

been enough.  

 

4-Conclusion and suggestions 

 

4-1-Conclusion 

 
    After doing theories exams by means of 

information and test application of differences 

between averages and estimating between averages 

were cleared that, computerized system has lots of 

advantages compare to manual system. In 

computerized system accuracy, user satisfaction 

and speed indexes were increased and cost index 

was decreased. One important notice is that reliance 

distance is so low regarding each index which 

proves that accuracy of this estimation is very high 

also sample’s volume has been enough.  

     Estimating the difference between indexes with 

99% reliance which proves above increase and 

decrease related to one distribution and sale cycle is 

in below: 

     Time index was decreased 2.074 hours till 2.186 

hours in the computerized system compare to 

manual system. Accuracy index was increased 

49/607% till 51/212% in the computerized system 

compare to manual system. Cost index was 

decreased 106/41 Toman till 111/99 Toman in the 

computerized system compare to manual system. 

User satisfaction index was increased 54/33% till 

60/47% in the computerized system compare to 

manual system.      

In addition of above matter, designed system has 

ability to generate different reports and charts 

which was not available in manual system and 

mangers have access to the information which have 

not had access before. 

           Another important matter is that designed 

system in addition of working in the single user 

operating system, can execute in multi users. This 

facility makes multi users' data entry 

simultaneously. It is possible to use different users 

for data entry and use different printers 

simultaneously. In summary, based on these 

systems: Managers can be independent regarding 

information and they are able to do lots of jobs 

alone with software also they can use this system as 

a decision support system which able them to make 

decision simply and confidently.  
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4-2-Suggestions  

 
        Due to communication knowledge 

improvement with using computer such as Internet, 

it is possible to design system that latest charts, 

statistics and information be available on-line for 

internal and external customers on the web. By this 

way, it is possible to improve company's activity 

for better import and export. For this goal, it is 

possible to use programming languages like Java, 

J2ee, Asp.net and Oracle application with a 

relational database system (RDBS) such as Oracle 

and MS SQL Server, to design web pages and 

applets for better communication. This new system 

could be platform independent and run in every 

operating system like Windows, Linux, Unix and 

apple mackintosh.  

          This cost difference will be cleared especially 

when communication happens with abroad, also 

with designing other on line related systems such as 

accounting, warehouse, production planning, 

payroll, budget, human resources, filling and 

archiving systems on the web and design one 

reporting system for decision support managers we 

can achieve a total MIS in the web. In addition of 

above matters, suggest that because of intranet 

improvement, design an intranet inside organization 

which each branch can use web pages for sending 

information to other branches of same organization 

or other organizations.  We can use Web-based 

information system (WIS) in this regard for 

marketing information system.  

          Due to multimedia improvement which can 

transmit sound and image in computer, it is possible 

to make attractive computerized system. With these 

tools and a video conference can have meeting with 

long distance.  

       Mean time with having an advance archiving 

system which works on the web, it is possible to 

have scan documents and communications. These 

systems can store high volume of documents. We 

are going forward to paperless office with advance 

communication systems.  

       Unfortunately, with lack of up-to-date 

knowledge, in existing organizations, improving 

new idea is very low. For fixing this deficiency, 

organizational managers must use experts in order 

to have meetings and conferences with managers 

and employees till implementing of these new 

systems encounter with less problems. 
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NeoMovingLife Garden – If Disney’s have the revenue 
problem, who is left ? We heard it recently, if you are 
following the news. Indeed we are talking about places that 
belong to fun for kids. Then we never thought we will be 
digging deeper to find the root cause. I mean literally. When 
the cost of operations is significantally high and cost of total 
ownership is equally high we look at the sky for science to 
help us. Cut the cost for me please. I mean, please come up 
with an efficient and cost effective attractive product for 
places where recreational activities are available. 
         Mechanics and electronics are two 
branches of science that sometimes go hand in hand. 
However, computer science allows us to solve problems 
involving these two areas of science by aiding with 
intelligence. Let’s call it parellex for the sake of simplicity. 
The concept is pretty simple.  
         It is moving x square inches of soil at a 
fixed angle. When soil moves, the objects on the soil can 
move in specific direction which can be just opposite to the 
direction of the soil movement. Since it is all about parallex 
to deceive the eyes and senses of viewers and those 
experiencing it, objects on the soil gets moved from the 
coordinate x,y to x1,y1 replacing what was there at x,y 
earlier.  
         We need help of an automated process 
to monitor the heart beat, blood pressure etc. for a good 
reason. We know what happens when blood pressure in the 
brain of a person goes down to a specific level. In other 
words, he is asleep.  
   Here is how it works. You go to a fun place such as 
Redwood forest, Yosemite, hotel chains and/or Ghost 
Garden/Orchid. You get them to sleep in your Ghost 
Garden. You get them to sleep in the night and monitor their 
blood pressure remotely. You can also move their beds to 
go under/beneath  another tree. Ascertain when and whether 
or not they are asleep. Use Neo Blood Pressure Remote 
Monitoring Tool. Remind them of their weather. 
          Move their physical body together 
with the tree to another location while they are fast asleep. 
This time the adjacent tree is a Redwood Tree rather than a 
pine tree.  
      Lets call it an artificial intelligence module that 
will ascertain the sleeping condition that allows a human to 
get a sound sleep very quickly based on the heuristic 
knoledge. It will be a self improving software module that 
will use a Relational Database Management Server to store 
data that will be used for comparision. The schema of the 
RDBMS will be pretty simple to store the basic variables 
that will be changed.  

          While the artificial intelligence 
module will be able to know the body condition of a human, 
they will be asked to fill a questionnaire based on which the 
AI module will control the Ghost Garden environment. 
There are ways to get someone to sleep real quick. It has to 
be without using a drug that might have a side effect even if 
takes longer. 
     Vaccums will be used internally to ensure a 
sound proof internal for the metallic platform.  
Keywords:  
RDBMS : Relational Database Management System 

AI : Aritificial Intelligence 

Neo Blood Pressure Remote Monitoring Tool : A micro 
controller based electronic device(Hybrid Computer) 
Hybrid Computer : A special purpose digital and analog 
computer 

Neo Controller : An intelligent monitoring and controlling 
device 

1 Introduction 
Let’s talk about force  required to move heavy objects from 
d1(initial distance, say 0) to d2(final distance, say 100m) with a 
displacement of 90 m² 

D1=0m 
D2=100m 
Dimension of the movable soil beaneath the 
tree=LBH=15mX15mX15M 
Dimension of the Metallic Platform including the soil D1 to 
D2=20mX20mX20m 
Let’s consider the following. When we move the object O1 
(Tree + Soil + Metallic Platform) from D1 to D2 there has 
to be encapsulation of the internal implementation of the 
physical movement of the tree making you believe that only 
the object O1 move from D1 to D2 physically. Abstracting 
these details means physical replacement of one or more 
objects in the garden (Parent Object). In other words, 
smaller trees or plants in dimensions such as 10m X 10m X 
10mX can replace the O1 which, means D1 to D2 has to 
replaced with objects at D3,D4 and D5. Besides, there can 
be alternate routes. Let’s call them individual path’s for 
every object. Snaking through the curves or not so straigth 
path is easier to implement with hydraulic multiplication. 
There is a good news. The height of the O1 and O2 can 
change if the height of the surface from the sea level is 
different for both the objects. After all it is a garden, and the 
surface doesn’t have to be flat.      
Force Multiplication = 1 :9 
Trade Off : Depression :9 :1 

Int'l Conf. Computer Design |  CDES'11  | 109



 
             Figure 1 Hydraulic Energy 
 
There is one more point. Just so that we discuss this in our 
complexities topic. We need to use an algorithm to compute 
the best path in terms of cost efficiency, time taken and 
shortest distance travelled. Shortest distance may not be the 
best solution all the time. Since this model can be used in 
very huge projects as well, the implementation will have to 
consider these factors.  We will discuss very shortly how 
this solution is more cost effective than using initial 
combustion (energy) as a boost factor for mechnical force 
that is otherwise applied to push and move these heavy 
objects. Having said that, using mechanical energy is an 
alternate solution to this problem. 

       We will have to take a look at Force required 
to push the metallic platform. It’s velocity V1 and velocity 
V2 will allow us to compute whether there is a consistent 
time involved in reaching a displacement as well as 
distance. Since the movement of the trees will generate 
kintetic energy there paths and time taken are of significant 
importance. A wrong path can mean very small or large 
breakdown of elements around the trees that can result in 
soil erosion among other things. Grasses to protect the soil 
erosion will be a must. 
Energy Source :           2 H     O    + One time heater   
(Energy never dies) 
The concept of steam energy is not new. What is important 
however is the fact that we can retain the energy produced 
either in gaseous or in liquid state. This solution will focus 
mainly on preserving the energy produced by breaking the 
chemical bonds of the Hydrogen and Oxygen ions and 
letting them remain far from the outer most shells of their 
respective atomic structure. The good news is that the atoms 
and molecules of this compound is not as strong as a solid. 

In other words, they will require less energy to break the 
chemical bond.  
          The process of conduction and 
convection involves looking at the flow of energy from 
higher to lower pressure zone. However, the external 
temperature will have a significant impact on the chemical 
bond. If there is lower temperature near the area that 
occupies the hydrogen and oxygen ions, the nearest 
outermost shell of a hydrogen or oxygen element will grab 
them and make them the part of the same compound.  
      Lets assume that there are six objects and each 
one of them need a force of x Newton or multiple of X 
Newtons. Once enough energy is generated at O1 to give 
initial momentum to the Hydraulic Machine, the same 
energy in gasesou state will be passed on to O2.  The energy 
will then move onto O3 to O6. A thermal insulation of the 
paths will take care of the amount of energy produced since 
you can lose energy in your way. All six paths will have 
thermal insulation. However, there will be additional energy 
reserve for correction to the thermal insulation which will 
be realesed in the system with the help of a timer. It is like 
six objects moving in their individual paths for ever. 
 
Neo Blood Pressure Remote Monitoring Tool: 
One nano-technology based micro-controller device on the 
bed[s] of those in the ghost garden for every person is fixed. 
You can use a small range infra red client as part of another 
micro-controller device that propogates the information to 
the control device inside a building. The microcontroller on 
the tree can have a technology as simple 802.1b.  A 8051 
compatible ADC chip ADC804 transducer (Sensor) with a 
powerful range of pressure sensing will do.  Conceptually 
the result is the same as taking the results by providing right 
inputs i.e, the blood flow from the heart and from the vains 
and  measuring them while a mean is derived by a process 
called oscillometric detection and measurement of mean 
arterial pressure. ADC simply takes the analog signals and 
converts them to electrical signals processed and displayed 
on a digital LCD display.   
        Since the person sleeping in the garden 
can’t be predicted to have his body in a one fixed position 
on the bed, it is only safe to keep the measuring device 
behind his head somewhere. An infrared device will shoot 
the place between arm and elbow and increase the 
temperature of the body by sending sound waves which will 
be picked up by the thermister sitting next to the ADC804. 
The 8051 will pass on the input to the ADC8041 with 
distance and displacement relayed. The sensor will then 
read the pressure. Alternatively another chip (nano 
technology based) can be used to shoot to the arm of the 
person sleeping in the garden which will read the pressure 
and pass it on to the microcontroller. Bringing the chip can 
be as easy as using a suction pump. It is not as unrealistic if 
you consider the use of a stepper motor with a connector 
such as ULN2003 integrated with XTAL based timer that 
takes the input from the controller to initiate the movement 
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of the objects in the garden. It is as easy as getting the same 
results using a thin robotic hands scanning the pressure. 
 
Controller: Controller is a special purpose computer that 
receives input from the 8051 through its serial ports. It is 
like any other computer which is good in processing data. It 
can be as simple as dual processor based motherboard that 
takes two way input-output from the 8051. The design 
implementation of this solution begins with a simple model 
that has all the feature of the “NeoMovingLife Garden”. 
       Rather than depending on an LCD as an 
interface to the 8051, a computer LCD flat screen with 6 
different windows each displaying the real image of O1-O6 
and its surrounding is required. Besides, the real time 
movement is visible on the screens. This ensures that every 
object in the garden is fast asleep when it all moves. Good 
news is that there will be vaccum used to keep the process 
sound proof so that they do not hear the sound. Having said 
that the objects should not feel the inertia that can wake 
them up. Their individual beds can be lifted one inch from 
the surface so that they do not feel the movement. Besides, 
there has to be cushion for suppressing triggers to body 
tissues from the platform. There are shock absorbers on 
each four corners of the bed that will distribute the shock to 
the exterior of the bed saving any jolt to the person sleeping 
in the garden. It maintains a state machine for the AI object 
to deduce useful inferences. The AI object relies solely on 
this information to self improve. The controller fetches this 
information through the Software object. Information in the 
table below shows the registers of the 8051 controller. 
 
Register holding metadata for the State Machine (Table 1) 

Regi- 
sters 

Alarm 
Type 

Alarm Level Trigger State 

P0 Pressure 0-6 Interrupt 0-6 0‐6 

P1 Heat 0-6 Interrupt 0-6 0‐6 

P2 Distance 0-6 Interrupt 0-6 0‐6 

P3 Current Not 
Implemented 

Not 
Implemented 

0‐6 

 
AI Object: The solution is self improving. The heuristic 
knowledge acquired by the controller is stored in a 
persistent storage that derives intelligent results from it, and  
make updates to the system as appropriate.  For instance if 
the average sleep time for 2000 people in the garden is 20 
minutes once they go to bed, the module to soothen their 
body and mind will kick in. The thermister reading the body 
temperature of the person will change the temperature of the 
surrounding rather than offering a constant temperature that 
may not suite the need of an individual.  
   AI module will monitor the changes in the state of the 
body of 2000 people and will derive intelligent inference. 
That knowledge will be used by the controller to configure 
other attributes of these objects in a typical OO jargan.  The 
AI module will monitor the blood pressure and body 

temperature to know if the temperature configured by it 
helps. The AI module will configure a range of 
temperatures for general and special cases. Undoubtedly, 
the heuristic knowledge will do wonders for it. 
         AI module will interpret data filled in manually 
by the individuals entering and leaving the garden. AI 
Object will have object factories that they can understand 
and create new objects based on data deciphered from the 
database object. For instance if there is a rain outside, how 
will the body react to it. The AI object will use the 
<Change> factory object to instantiate a new object if does 
not exist already and change the attributes of the new 
object.  
   This object will be self improving only if it has more 
and more inputs and it has ability to interpret it and hence 
the external input object instantiation. In other words, if it 
does not find useful information to make a decision, a 
questionnaire factory object will be instantiated and filled 
by a qualified human. There will be two defaults in its 
intelligence that can comfort or discomfort the objects in the 
garden. Since experiments of this sort can have significant 
impact on the performance of the garden the change has to 
be subtle. On a sign of discomfort the AI object will stop. 
The controller object is responsible for communicating with 
the 8051 controller and compatible chips.  
                   Imagine, why a 
tree will be slightly heavier when it rains. Will this factor 
affects the energy requirement ? Will it change the angle of 
elevation for D1 ? How will it affect the entire system ? 
While these factor can be implemented using static 
attributes a dynamic attribute calculation is more prudent.  
                     What about the 
quality of overall communication in the system ? The AI 
object will use these factors to make intelligent decisions. A 
fogy weather is a good example. It will become more 
interesting to manage the system when there are heavy 
winds espcially changing the centure of curvature at a 
curve.  
 
Software Object: It is segregated from the AI module 
just to ensure that configuration and monitoring objects can 
be called by the  AI object. 
 
         Matrix for object configuration/Monitoring  (Table 3) 
Object State Store for 

AI 
Automatic 
action 
A1 

Input 
driven 
action 
A2 

1…n 1…n 1…n 1…n 1…n 
 
There are >=16 objects to begin with excluding contained 
objects. Since these objects are layered, it is important to get 
a real time response and hence their availability in the 
memory.  
    The data is color coded and displayed using 
graphical interface for the simple reason that it will be 
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easier to manage for the person managing it. A historical 
and current report will give a fair overview of someone 
questioning the self-improving ability of the AI object 
which is responsible for using the same data and 
deciphering it to draw meaningful results. 
 
Database Object:  Relational databases are required to 
store the data and provide data redundancy. It is objects 
loaded in the memory from the database (persistent storage) 
that declares and defines the attributes and behavior of the 
controller object. Once loaded into the memory they are 
allowing the AI object to improve constantly. The schema 
of the database will use the attributes of every single object 
in the solution. In other words, these are the storage for 
objects in the memory. It is more of an object database than 
of a typical tuple and row/column  thing. Tuple and rows 
are used to store the attributes of the objects. A query for 
normalizing the database and a network diagram to show 
the relationships of the tables and views will be used. A 
framework that will launch the stored procedure can have 
the set of rules (AI) to normalize the database. 
                      Let’s keep it 
simple. Enforce referential integrity with one primary key. 
No duplicate fields. Use views instead, even if it costs more 
memory and performance. Let’s call them rules and scan 
through all the tables of the given database to enforce the 
rule. There are 12 rules by default in the RDBMS world, the 
database object has to focus on maintaining only two that I 
mentioned. RDBMS will take care of the rest. It is not about 
implementing a trigger, it is about allowing a schema to 
implement a trigger. 
         Why SQL ? Coz, you want to be 
consistent across all RDBMSs.  
 
There are way two many scenarios in which a collission 
between two objects is possible. Besides, trees grow in size. 
A separate calculation is required that will put additional 
load on the amount of energy required. It is all computed by 
the solution. Let’s further understand that a human body 
will not be lying idle in the most convenient position for the 
solution to gather results. In other words, more and more 
permutations and combinations are required. When the 
entire garden is in the state of motion, change of 1 degree 
angle to an object can have an impact on the integrity, 
reliability, scalability and fault tolerance of the system. 
         
 Matrix for Test Case Computation  (Table 2) 
Test 
case 
(T) 

Physical 
state of 
tree1 
(S1) 

Physical state 
of tree2 (S2) 

Autom
-atic 
action 
A1 

Input 
driven 
action 
A2 

1…n 1…n 1…n 1…n 1…n 
                                      F(S1,S2)=T                                  (1) 
T=((S1+S2)!/r!(S1+S2-r)!)-((S1!/r!(S1-r)!)+(S2!/r!(S2-r)!))     ( 2) 
 

For security reason these objects allow receiving or sending 
messages through limited number of public methods.  
 
The 8051 is a passive delegate that passess on the messages 
to its listeners. Since it is an embedded system 
implementation, it does not required the listerns to register 
with the 8051.   
       The controller implements an event driven  
priority based first in first out queue. The controller, 
software, AI and database together are an independent 
framework that can be integrated with any other system that 
requires such framework.  
 
NeoFramework :As far as the difference in behavior is 
concerned, an attribute and behavior will instantiate classes 
into objects at run time and use declaration based on the ini 
file while definition based on the same ini file. To keep the 
framework loose an ini file is required. 
   The AI module will have compiler implemented to 
parse the declaration and definition requirements. An XML 
file is the way to go. The semantic and grammar will 
depend on the input from the XML file. The parser will 
look into its database to match all they key words so that 
typos can be avoided. Meaningful error generation means, 
you have error codes with error messages. The event viewer 
(application) will record the error message and detailed log 
file will record the error messages with time stamps. If this 
framework is to be used in several situations, a documented 
set of interfaces can be exported based on which one can 
extend the featureset. However, the objective is to let the 
user use it as is and hence the complexity. 
          A matix of supported behavior can be 
found in separate file based on the available interfaces and 
chips compatible with 8051. In other words, whatever 
features the chips support, the framework supports them. 
This is to ensure that you do not have to predict what the 
next solution will be needing from the framework. Since 
more on chips is beyond the scope of this solution in the 
context, the framework will allow add ons that can be used 
at run time by the next project solution. There are variety of 
chips 8051 supports. While it looks extensive work, the 
features are really limited. 
      An event listener will be implemented to look 
for any additional requirement and the implementation will 
require the framework to load individual definitions from 
separate dll files. It is as simple as adding one additional 
card in the system, receiving an event, loading the 
corresponding definition file and integrating it to the 
system. Having said that you may not bee needed to load all 
the supported behavior and hence your parser can reduce 
the amount of memory by dynamically loading the required 
bahavior. This is coz, you can have half a dozen cards and 
all you need is 8 to 10 behaviors. 
 
 

Object 1

Energy 

     X 
newton 
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Object 1: ObjectParent  (It is very open and lose model and 
does not enforce abstract behaviors to be implemented by 
the child objects) 
Object 2: LivingObject (Derives from ObjectParent) 
Object 3: Human(Derives from LivingObject) 
 Attributes: Sex, Body Temp, Blood Press, Height, Age, 
Medical Condition 
Object 4: Tree (Derives from LivingObject) 
 Attributes: Length, Breadth, Height, Mass, 
IncreaseInMass 
Object 5:Non-LivingObject(Derives from Object Parent) 
 Attributes: Length, Breadth, Height, Mass 
Object 6: ComputerChip (Contained in Computer object 
[Software,Hardware,Firmware]) ((Derives from Non-
LivingObject) 
 Attributes: type, … 
Object 7: MicroController (Derives from Computer Object) 
Object 8: Software (Derives from Computer Object) 
Object 9: Database (Derives from Software Object) 
Object 10: AI (Derives from Software Object) 
Object 11: SchemaNormalize( Derives from AI Object, 
Derives from Database Object) 
Object 12:NeoBed(Derives from NonLiving, Derives from 
bed, Contains Computer Chip – Polymorphic  
 behavior of the bed object) 
Object 13-15: Metallic Platform, Hydraulic Energy, Neo   
 2 H      O    Energy 
Object 16…: 
 
 

         
 
 

Pushes the hydraulic System 
 
 
 
 
 
 
 
 
Vapour Cloud  

K 

N 
+P 

      Hydrogen      Oxygen 

L 

K 

N  
+P 

Heat 

Breaking the Barrier – Electrons from the outermost shells will 
leave a positively charged electron. In other word a field of 
negatively charged ions will be created. 

Temperture above is 
lower than the 
temperture below and 
hence the formation of 
vapors. Until the 
temperature reaches 
the desired level 

Reservio
r for 
releasing 
the 
vapors at 
will 

Way to chamber 2 (For applying force to next object i.e. Object 2) 
The vapor comes through an opening that opens after the total 
temperature reaches a certain point.                           
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Figure 2 : Layered Architecture 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure3: Objects in the Garden 
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Complexities: 

The implementation involves knowledge of various fields of 
science. Electrical, Civil/Construction, Computer, 
Electronics, and Natural science etc etc. One of the complex 
issues that you need to deal with is the fact that when an 
object moves at x velocity it has an inertia. A sudden stop 
can act as trigger to external body tissues that can wake him 
up. Hence the movement has to very slow. Since the entire 
garden will be moving it will be as good as us moving on 
the earth surface while earth itself is moving. Even difficult 
challenge is to simulate this when a human enters the 
garden. It is a moving garden at all time. In other words, it 
is no less than earth simulation as far as centre of gravity, 
gravitational pull, pressure on the body is concerened. The 
model allows us to have fun. Lots of fun but it has greater 
challenges in implementation so that it looks easy for you as 
an end user. 

Intelligence of the controller limit has only one limit – 
intelligence of human brain. With this kind of intelligence 
we can safely state that the model is evolving and is in the 
state of constant improvement. Error for correction requires 
mathematical compuation to be very precise. The individual 
fields such as computer science will require very skilled 
engineers from the field of hardware, software,  and 
networking which include use of existing drivers for 
communicating with interfaces. Besides, you will be 
needing database, AI, OO, C++, Win32, Assembly, ‘C’, 
network protocol design, network protocol development, 
network administrators, application programmers, SNMP 
programmers on both agent and manager sides. All this 
makes it a very complex project. Indeed you will need a 
very experienced management team to handle the project. 
       The best path detection also means avoiding 
collission course. Suppressing the noise and external trigger 
on human body that is in sleeping state involves challenges. 
The energy solution involves hours and hourse of 
meticulous lab test result evaluation. There are 12 main 
layers of data flow and each of these layers are intelligent. 
Almost all of them have some or other kind of intelligence. 
Each of these layers have bidirectional data flow and the 
data integrity is of utmost importance. Besides, these layers 
use their own individual protocol which may or may not be 
understood by every layer and hence the controller layer. 
Scientific calculations involve velocity, distance, 
momentum, angular momentum, inertia, Hz calculation for 
sound waves, redirection of sound waves with reduced 
amplitude through designated solid path, volumes, mass, 
force,  and pressure etc. It is not that big of a challeng 
except that the stepper motor will require lot of power for 
lifting 100-200 pounds, which, the robotic hand can wait to 
do until a human arrives on the bed. 
 
Formulae : 

Pressure P is the function of force applied  
per square meter.                                                   (1) 

A hardware simulation is warranted before actual production 
starts. This is due to the number of hardware, software and 
protocols involved. One wrong result can mean either revision or 
replacement of the instrument such as the one responsible for 
generating and controlling the constant energy.  

                        Angle of elevation 
from the plane surface need to be calculated to compute the 
amount of energy required to move in each possible direction. 
The higher the height the more the need of the energy hence need 
for co-ordinate geomatory, trigonomatory and torgue computation 
for angles at which the pressure(Force/Sq M) will be applied. 
These mathetical computations will determine the amount of 
energy needed. Besides, the best case scenario of having a plane 
surface may not be a choice in a garden. The computation for 
curves brings additional variable. 
 

Impact: The impact is on energy sector. There is a huge 
impact on the energy sector. There is difference now in the way 
we used to have fun. Let’s talk about human body control and 
management. It is a good beginning. We now know that nano 
technology based chips, micro-controllers and sophisticated 
analog and digital devices and can work together in one system 
solution. Interfaces and kind or number of chips are not limited 
by the design and hence it allows us to make our system feature 
rich and robust. There is a hidden impact on the way we look at 
software applications. The new focus can be on intelligence. We 
have been talking about pattern recognition and data mining for 
over a decade now. It is a good move in that direction. It can 
have impact on space flight simulation programs where you will 
be allowed to get trained in avoiding objects moving in orbits 
and changing your course besides deciding the best path to take. 
Furthermore, the days are not far when you will have 13 ships 
travelling to different satellite of Saturn and/ man-made satellites 
docking in their individual orbit. Ships will be calculating the 
orbit and path collission courses. 
 

2 Conclusion: This solution is letting us move forward 
in various areas of science. It will be a as good as a virtual reality 
for one night which will be so real to experience. The line 
between virtual and real is really getting blurred here coz it is a 
parallex not virtual reality. The idea is not to deceive your senses 
but to let you experience science for fun. In other words, we can 
safely conclude that this solution will attract lot of attention and 
hence it worth its while. 
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ABSTRACT 

Novel gate level synthesis of robust asynchronous carry 

lookahead adders based on the notion of section carry is discussed 

in this paper. For a range of higher order addition operations, the 

carry lookahead adder is found to exhibit reduced latency than the 

carry ripple version by 38.6%. However, the latter occupies less 

area and dissipates less power compared to the former by 37.8% 

and 17.4% respectively on average.   

Keywords 

Asynchronous design, Carry lookahead adder architectures, Logic 

synthesis, Delay-insensitive codes, Standard cells. 

1. INTRODUCTION 
Carry lookahead (CLA) adders represent a widely used high-

speed carry propagate scheme for performing addition in 

logarithmic time [1], unlike the ripple carry adders (RCAs). The 

CLA adder is based on the principle that by examining the 

augends and addends, it is possible to predict the carry signals 

beforehand and thereby reduce the latency (longest path delay) 

that could be expected in a stage-by-stage propagation scenario. 

In this work, we consider gate level robust asynchronous 

realizations of novel CLA adder architectures and evaluate their 

benefits in comparison with the fundamental RCA structure that 

employs a cascade of full adder modules.  

The de-synchronization approach [2], which is based on the dual-

rail combinational logic style, provides an opportunity for 

straightforward translation of the synchronous CLA adder 

architecture into an asynchronous format, with the extra 

requirement of completion detectors to ensure robustness. This, 

however, would incur at least thrice the area penalty of a 

synchronous equivalent. Reference [3] presents a full-custom 

design method to implement fast robust asynchronous CLA 

adders by utilizing dual-rail data encoding. In this work, our focus 

is on the direct synthesis of robust asynchronous CLA and 

combinational adder logic, based on the multi-level extension of a 

heuristic recently proposed for synthesizing robust asynchronous 

equivalents of combinational logic descriptions [4]. We consider 

homogeneous (dual-rail) and heterogeneous (dual-rail and 1-of-4) 

delay-insensitive data encoding mechanisms. The final physical 

realization of the robust asynchronous CLA adders is done in a 

semi-custom design style, corresponding to the proposed novel 

architectures. The proposed CLA adders are synthesized using the 

standard cells of a 130nm bulk CMOS process, and satisfy Seitz’s 

weak-indication timing constraints [5], with the CLA logic being 

early propagative.  

The rest of the paper is organized as follows. An analysis of the 

problem of circuit orphans that manifests in an asynchronous style 

recursive carry synthesis is dealt with in section 2. The proposed 

robust section carry based CLA (SCBCLA) adder architectures 

are discussed in section 3. Also, the simulation results 

corresponding to 2-bit and 4-bit lookahead based 32-bit robust 

asynchronous CLA adders are presented. In the next section, a 

comparative evaluation of asynchronous CLA adders and RCAs 

with respect to 32, 48 and 64-bit addition operations is performed. 

Finally, the conclusions are made in section 5.     

2. BACKGROUND 
Let us consider a few scenarios to illustrate the problem of 

gate/wire orphans resulting in an asynchronous style recursive 

carry synthesis. With a and b being the adder inputs and cin 

representing the input carry, the basic equation governing the 

carry output, Cout, is expressed in single-rail format as,  

Cout = ab + (a ⊕  b) cin    (1) 

G = ab, P = a ⊕  b     (2) 

In (2), G and P signify the generate and propagate signals. An 

output carry is generated if both the operand bits are 1; if the 

adder inputs are mutually exclusive, the incoming carry is simply 

propagated to the output. With notations Pi and Gi denoting the 

generate and propagate functions of an adder stage i, we have,  

Ci = Gi + PiCi-1     (3) 

Equation (3) can be thought of as a second-order equation, since 

Gi and Pi can be further expressed in terms of the primary inputs 

of an adder stage. Unwinding the recursion implicit in (3) would 

yield the following ith order equation, where C-1 represents the 

carry input to the least significant adder stage.  

Ci = Gi + PiGi-1 + PiPi-1Gi-2 + …. + PiPi-1Pi-2…P0C-1 (4) 

Many asynchronous logic designs employ a delay-insensitive data 

encoding scheme and a return-to-zero handshake protocol to 

achieve robustness [6]. Among the generic family of delay-

insensitive codes [7], the dual-rail and 1-of-4 coding schemes are 

widely preferred on account of their high coding efficiency and 

ease of translation between traditional binary switching functions. 

With dual-rail data encoding, a signal line x is represented using 

two wires: true-bit – x
1
 (x1), and false-bit – x0 (x0). A transition 

on x
1
 represents a 1, while a transition on x0 signifies a 0, however 

both x
1
 and x0 are not allowed to be high simultaneously since the 

coding scheme is unordered (i.e. no code word forms a subset of 

another code word). The spacer state refers to the condition when 
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both x
1
 and x0 are 0. In return-to-zero handshaking, a spacer state 

is present between two valid data states.   

Representing (3) in dual-rail encoded format, we have,  

Ci
1 = Gi

1 + Gi
0Pi

1Ci-1
1    (5) 

Ci
0 = Gi

0Pi
0 + Gi

0Pi
1Ci-1

0    (6) 

In fact, (5) and (6) incorporate certain logic transformations to 

satisfy the monotonic cover constraint [8], which implies that the 

product terms of a sum-of-products expression should be mutually 

orthogonal [9]. 

The possibility of the occurrence of gate and wire orphans is 

clarified through the following discussions. In general, an 

unacknowledged transition is construed as an orphan. Figure 1 

depicts the carry output synthesis using generate and propagate 

signals, as specified by (5) and (6), where (a1
1, a1

0), (b1
1, b1

0) and 

(C0
1, C0

0) represent the dual-rail augend, addend and carry inputs 

of an adder stage and (C1
1, C1

0) signifies the dual-rail carry output 

generated from this stage. In the figures, the C-gate1 is represented 

by the AND gate symbol with the marking ‘C’ on its periphery. In 

figure 1, is1 and is3 represent the true and false-rail expressions of 

the carry-generate signal, while is4 and is2 correspond to the true 

and false-rail expressions of the carry-propagate signal. For the 

condition when the carry-generate function becomes valid, the 

following sequence of transitions occurs: (a1
1↑, b1

1↑) → is1↑ → 

C1
1↑. Even if the transition C0

1↑ occurs, since the intermediate 

output signals is3 and is4 do not fire, the transition at the gate 

output node is2 (is1↑ → is2↑) gives rise to a gate orphan and 

C0
1↑ results in a wire orphan.  

 

 

Figure 1. Asynchronous carry output synthesis based on 

generate and propagate functions 

 

Alternatively, the carry equations can also be represented taking 

into account the carry-kill condition, apart from generate and 

propagate conditions, which signifies the state when both the 

augend and addend inputs of an adder stage assume logic 0. The 

                                                                 

1 The Muller C-element outputs a 1 (0) if all its inputs are 1 (0), otherwise 

it retains its steady-state.  

carry-kill condition prevents the generation of a carry signal from 

an adder stage and also avoids the propagation of an input carry to 

the output.  

Ci
1 = Gi

1 + Gi
0Pi

1Ci-1
1    (7) 

Ci
0 = Ki

1 + Ki
0Pi

1Ci-1
0    (8) 

The logic realizing the above equations, based on carry-generate, 

propagate and kill conditions is depicted in figure 2. Here, im1 

and im4 represent the true and false-rail expressions of the carry-

generate signal, while im5 and im2 correspond to the true and 

false-rail expressions of the carry-kill signal. The equation 

pertaining to the carry-propagate condition is realized by the 

intermediate node im6. Let us consider a worst-case scenario to 

describe how orphans could arise in this circuit. It can be seen 

from figure 2 that (a1
1↑, b1

1↑) → im1↑ → C1
1↑. The following 

sequence of transitions also occurs: im1↑ → im2↑. But the 

transition on the intermediate gate output im2 will not be 

subsequently acknowledged by the output im3 for a transition on 

the carry input C0
1. This leads to the creation of gate and wire 

orphans in the circuit.  

 

 

Figure 2. Asynchronous synthesis of output carry logic on the 

basis of generate, propagate and kill functions 

 

The preceding discussions have demonstrated the problematic 

issue of gate orphans and/or wire orphans, possible in case of a 

recursive asynchronous carry synthesis. However, the problem 

with recursive equations can be overcome if the essential logic 

transformations to satisfy the monotonic cover constraint are 

rather performed on a first-order equation. This would therefore 

necessitate reduction of a kth order carry equation to the first-order 

that would actually involve unfolding cube expansions. As a 

consequence, the need for stage-wise propagate and generate 

signals is deemed unnecessary.  

It has been deduced through the principle of mathematical 

induction that the irredundant disjoint sum-of-products expression 

of the encoded carry output of a q-bit CLA unit, featuring 

mutually orthogonal product terms, would consist of a minimum 

of  ( 12 1 −+q ) logical conjunctions with the support set of the 
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product of maximum dimension comprising ( 12 +q ) literals. 

Owing to an exponential relationship between the CLA size and 

the resulting number of orthogonal product terms, CLA logic 

sizes in case of a robust asynchronous implementation would have 

to be restricted so as to gain the maximum benefit in terms of 

latency on the basis of the proposed CLA adder topologies. 

Nonetheless, the physical realization of CLA logic of any bit-size 

would be practically feasible on the basis of speed-independent 

logic decomposition.    

3. SCBCLA ADDER ARCHITECTURES 
Two asynchronous CLA adder architectures have been conceived, 

while acknowledging the spatial demand of a robust asynchronous 

implementation, and they are discussed in this section.  

3.1 Type 1 Architecture 
The Type 1 architecture bears some similarity with a block CLA 

adder featuring intra-group carry ripple [1]. However, it mainly 

differs in that the propagate and generate signals corresponding to 

each single-bit adder stage need not be computed – hence the term 

‘section carry’. Figure 3 portrays the dual-rail encoded Type 1 

configuration of the section carry based CLA (SCBCLA) adder.  

 

 

Figure 3. Type 1 SCBCLA adder architecture incorporating 

dual-rail encoding 

 

The q-bit CLA module generates a CLA signal corresponding to a 

section/group of q-bits of the adder operands taking into account 

the carry input from a previous group/section. The CLA signal 

corresponding to a section is used to feed the subsequent CLA 

module in the cascade and also the next adder element in the 

sequence. The acronym ‘SOL’ expands as ‘sum only logic’, which 

accepts an augend, addend and a carry input and processes them 

to produce only a sum output. Thus, the sum outputs of the adder 

can be produced simply by a rippling of the carry signal within 

each section, while the carry output of a section can be produced 

simultaneously and be quickly passed onto the next section to 

generate its corresponding lookahead carry output signal. As a 

result, there arises an opportunity for optimizing the CLA logic at 

the expense of the sum producing logic, i.e. the sum outputs of a 

section can assume the collective responsibility of indicating all 

the input data operands of that section (weak-indication). Hence, 

the CLA unit corresponding to the adder sections can be freed 

from the indication (acknowledgement) constraints, allowing them 

to be early propagative while guaranteeing that the CLA adder is 

gate-orphan-free. The phenomenon of early propagation means 

that all the primary outputs (valid/spacer) could be produced even 

with the arrival of a subset of the primary inputs (valid/spacer).  

The Type 1 CLA adder structure for a hybrid input encoded data 

path is shown in figure 4, which features a combination of dual-

rail and 1-of-4 codes. The 1-of-4 code is used for encoding the 

augend and addend inputs of each adder stage, while the input, 

output carries and sum outputs are dual-rail encoded. The 1-of-4 

encoded values of single-rail inputs given in Table 1 represent one 

of various possible encodings and a random assignment is shown 

in the Table below, which is also considered for this work.  

Table 1. Data representation based on dual-rail and 1-of-4 

delay-insensitive data encoding schemes 

Single-

rail data 

Dual-rail  

encoded data 

1-of-4  

encoded data 

a b (a1 a0) (b1 b0) e0 e1 e2 e3 

0 0 (0 1) (0 1) 0 0 0 1 

0 1 (0 1) (1 0) 0 0 1 0 

1 0 (1 0) (0 1) 0 1 0 0 

1 1 (1 0) (1 0) 1 0 0 0 

 

According to the Type 1 topology, for an n-bit adder comprising 

q-bit CLA units, 








−1

q

n CLA modules would be required as CLA 

signal generation is necessary until the penultimate adder section.  

 

 

Figure 4. Type 1 SCBCLA adder topology based on hybrid 

(dual-rail and 1-of-4) input encoding 

3.2 Type 2 Architecture 
From a physical implementation perspective, it can be anticipated 

that substantial delay would be encountered in the least significant 

CLA unit, as opposed to the successive CLA units in case of the 

Type 1 architecture. This was indeed observed during simulations, 

where the critical path in case of the least significant dual-rail 

encoded CLA unit consists of AND4, CE22, 3 OR2 gates (5 CE2, 

                                                                 

2 CE2 refers to a 2-input Muller C-element.  
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5 OR2 gates), while the critical path in the least significant hybrid 

input encoded CLA block comprises AO2222, CE2, OR2 gates 

(AND4, CE2, 2 OR3, 2 OR2 gates) for 2-bit (4-bit) lookahead 

carry signal generation. Since the latency of the least significant 

CLA module (2-bit or 4-bit) was found to be higher than what 

could be expected from a series cascade of individual adder 

sections, the least significant CLA adder section can better be 

replaced by a simple carry propagate adder section paving the way 

for a possible reduction in delay, area and power parameters. With 

this modification, the structure of the Type 2 CLA adder 

architecture would be as shown in figure 5 for dual-rail encoded 

data paths.  

 

 

Figure 5. Type 2 SCBCLA adder topology utilizing dual-rail 

data encoding 

 

The Type 2 SCBCLA adder topology basically involves a slight 

modification of the Type 1 SCBCLA adder structure primarily 

targeting latency reduction. As a result, the number of CLA units 

required would in general be specified by








−

−
1

q

pn , where n, p 

and q are assumed to be even. Here, p signifies the number of full 

adder stages present in the least significant positions of the adder 

topology. The Type 2 configuration for hybrid encoded data paths 

is portrayed by figure 6. 

 

 

Figure 6. Type 2 SCBCLA adder topology employing hybrid 

input data encoding 

3.3 Evaluation with 2-bit CLA 
Simulations have been performed with a 2-bit CLA module 

embedded in both the Type 1 and Type 2 SCBCLA adder 

architectures. The CLA logic, full adder and SOL blocks were 

realized based on a number of self-timed design approaches [5] 

[10] [11]. Table 2 shows the delay, area and power parameters 

corresponding to the Type 1 topology, while Table 3 lists the 

same for the Type 2 architecture.   

Table 2. Delay, area and power for 32-bit asynchronous 

addition based on Type 1 CLA adders with 2-bit CLA logic 

Adder realization  

style 

Delay 

(ns) 

Area 

(µm2) 

Power 

(µW) 

Seitz (dual-rail) [5] 13.7 17229 1168.9 

DIMS (dual-rail) [10] 14.9 25245 1233.8 

Toms et al. (dual-rail) [11] 10.2 14191 927.4 

Proposed (dual-rail) 5.5 9016 755.0 

Toms et al. (hybrid) [11] 7.2 12331 807.1 

Proposed (hybrid) 5.1 7593 659.4 

 

Table 3. Delay, area and power for 32-bit asynchronous 

addition based on Type 2 CLA adders with 2-bit CLA logic 

Adder realization  

style 

Delay 

(ns) 

Area 

(µm2) 

Power 

(µW) 

Seitz (dual-rail) 13.3 16593 1145.7 

DIMS (dual-rail) 14.8 24273 1208.8 

Toms et al. (dual-rail) 10.1 13479 906.1 

Proposed (dual-rail) 5.3 8887 749.7 

Toms et al. (hybrid) 7.1 12013 794.0 

Proposed (hybrid) 5.2 7529 656.8 

 

The proposed (hybrid) adder is found to exhibit the least latency, 

area and power parameters amongst the Type 1 and Type 2 CLA 

adder configurations. In comparison with other dual-rail and 

hybrid encoded adders, the proposed hybrid input encoded adder 

is preferable as it features optimized design metrics. By 

comparing Tables 2 and 3, it can be seen that the proposed 

(hybrid) adder belonging to the Type 2 architecture dissipates the 

least power and features minimal area occupancy, mainly due to 

the absence of a CLA module in the least significant stage.  

Figure 7 highlights the size of the 2-bit asynchronous CLA logic 

synthesized based on different methods. It can be seen that the 

proposed hybrid input encoded 2-bit CLA block is an order of 

magnitude smaller than the dual-rail encoded 2-bit CLA modules 

and even in comparison with the strongly indicating 2-bit CLA 

unit based on hybrid input encoding – thanks to a significant 

shrinkage of the input state space. In case of Seitz’s, DIMS or 

Toms et al. approaches, for the case of dual-rail encoding, the 

input space enumeration would be O(29) and therefore the 

resulting CLA logic would be massive. It should be noted here 

that Seitz’s method involves certain timing assumptions with 

respect to decomposing high fan-in OR gates of the completion 

detection logic and high fan-in AND gates of the data path logic, 

while the DIMS method necessitated speed-independent logic 

decomposition. Toms et al. method, however, involved extra logic 

optimization to minimize the latency of the adder realization.  
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Figure 7. Relative comparison of area occupancy of different 

2-bit asynchronous CLA modules 

3.4 Evaluation with 4-bit CLA 
This section investigates extending the lookahead size from 2-bits 

to 4-bits. The delay, area and average power values given outside 

brackets in Table 4 refer to that of the 32-bit asynchronous 

SCBCLA adder based on our proposed Type 2 architecture. The 

values mentioned within brackets in Table 4 correspond to the 32-

bit robust asynchronous adder based on the basic carry ripple 

structure. It is evident from Table 4 that synthesis of CLA adders 

according to our proposed architectures, but on the basis of Seitz, 

DIMS or Toms et al. self-timed logic design methods, are found 

to be detrimental and exaggerates the design metrics – this is due 

to the greater input space demand as highlighted in figure 7.  

Table 4. Delay, area and power for 32-bit asynchronous 

addition based on 2-bit CLA and carry ripple configurations 

Adder 

realization 

Delay 

(ns) 

Area 

(µm2) 

Power 

(µW) 

Seitz 

(dual-rail) 

13.3 

(6.5) 

16593 

(7689) 

1145.7 

(741.8) 

DIMS 

(dual-rail) 

14.8 

(12.8) 

24273 

(10665) 

1208.8 

(770.5) 

Toms et al. 

(dual-rail) 

10.1 

(10.6) 

13479 

(7561) 

906.1 

(627.6) 

 

The results pertaining to 4-bit CLA based Type 1, Type 2 and 

mixed SCBCLA adder architectures are shown in Table 5. For the 

Type 1 and Type 2 asynchronous SCBCLA adders, there is no 

CLA module present in the most significant nibble position. But 

the mixed architecture incorporates an additional 3-bit CLA 

module in the most significant nibble position to effect a marginal 

reduction in delay, with the output of the 3-bit CLA block acting 

as the input carry for the most significant full adder stage. This 

only constitutes a peephole optimization that is accompanied by 

associated area and power overheads. From Table 5, it is clear that 

the proposed SCBCLA adder employing hybrid input encoding 

and utilizing a mixed architecture, involving predominant usage 

of 4-bit CLA units significantly benefits in terms of minimizing 

the latency (29.4%) over a 2-bit CLA based asynchronous adder 

counterpart. Thus comparing Tables 3 and 5, it is seen that this 

delay (critical path delay) reduction is achieved at the expense of 

an area overhead (1.3×) and a power penalty (2.4%).  

Table 5. Delay, area and power for 32-bit asynchronous 

addition based on Type 1, Type 2 and mixed SCBCLA adder 

architectures using 4-bit CLA units 

Adder realization 

style 

Delay 

(ns) 

Area 

(µm2) 

Power 

(µW) 

Proposed (dual-rail) – Type 1 4.3 9769 770.6 

Proposed (dual-rail) – Type 2 4.0 9385 757.3 

Proposed (dual-rail) – Mixed 3.8 9601 765.5 

Proposed (hybrid) – Type 1 3.8 10609 681.6 

Proposed (hybrid) – Type 2 4.1 10041 672.8 

Proposed (hybrid) – Mixed 3.6 10829 687.3 

4. SELF-TIMED RCAs AND CLA ADDERS 

It is worth studying the potential benefits of the proposed 

lookahead scheme for addition involving higher word widths, and 

the results of this analysis for adders of size 32, 48 and 64 bits are 

presented in Tables 6 and 7. We consider only dual-rail encoding 

for this purpose, and the mixed SCBCLA adder architecture 

referred to here is founded upon the original Type 2 architecture 

that extensively employs 4-bit robust asynchronous CLA blocks.  

Table 6. Comparing delay and area of asynchronous RCAs 

and mixed architecture SCBCLA adders 

Adder 

size 

Realization 

style 

Delay 

(ns) 

Area 

(µm2) 

32 

bits 

Proposed (dual-rail) – RCA 5.8 7081 

Proposed (dual-rail) – Mixed CLA 3.8 9601 

48 

bits 

Proposed (dual-rail) – RCA 8.3 10611 

Proposed (dual-rail) – Mixed CLA 4.8 14667 

64 

bits 

Proposed (dual-rail) – RCA 10.9 14129 

Proposed (dual-rail) – Mixed CLA 6.6 19721 

 

Table 7. Comparing total power of asynchronous RCAs and 

mixed architecture SCBCLA adders for higher word widths 

Adder 

size 

Realization 

style 

Power 

(µW) 

32 

bits 

Proposed (dual-rail) – RCA 678.8 

Proposed (dual-rail) – Mixed CLA 765.5 

48 

bits 

Proposed (dual-rail) – RCA 1011.4 

Proposed (dual-rail) – Mixed CLA 1150.5 

64 

bits 

Proposed (dual-rail) – RCA 1351.1 

Proposed (dual-rail) – Mixed CLA 1697.1 

 

From the simulation results given in Tables 6 and 7, we infer that 

with respect to higher order addition, the proposed robust 

asynchronous SCBCLA adder exhibits reduced latency than the 

asynchronous carry ripple counterpart by 38.6%. However, the 

latter occupies less area and dissipates less power compared to the 

former by 37.8% and 17.4% respectively on average. Therefore 

the important observation here is that the proposed lookahead 

carry scheme facilitates a reduction in critical path delay by two 

orders over a simple carry propagate scheme, at the expense of 

increased power consumption by an order.   
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5. CONCLUSIONS 
The general conclusion is that the proposed robust asynchronous 

CLA adder architectures (SCBCLA adder structures) enable 

significant reduction in maximum data path delay compared to the 

basic carry propagate adder at the expense of increases in area and 

power dissipation. The main reason for the increased area and 

power dissipation of the former is attributable to the asynchronous 

CLA logic realized in a robust fashion, which is associated with 

an exponential spatial demand. With respect to dual-rail encoding, 

the 3-bit and 4-bit CLA units are 1.6× and 2.7× bigger compared 

to the 2-bit CLA module; in case of hybrid input encoding, the 3-

bit and 4-bit CLA units are 3.1× and 7.8× bigger in relative 

comparison with the 2-bit lookahead carry logic.  

Also, it appears that increasing the levels of lookahead may not be 

feasible owing to the problem of circuit orphans that implicitly 

manifests in a recursive style asynchronous carry synthesis. This 

reason also appears to negatively impact the direct asynchronous 

synthesis of parallel prefix adders, where the prefix operation is 

also recursive. Nevertheless, such adders could be effectively 

realized following the block-level relaxation approach [12], which 

constitutes an indirect asynchronous logic synthesis strategy that 

relies on the proprietary null convention logic method [13] [14]. 

However, a preliminary theoretical analysis reveals that the 

proposed SCBCLA adder architectures are competitive with the 

block-level relaxation based parallel-prefix adders with regard to 

latency, and possibly area and power.  
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Abstract - The thermal management of integrated circuits is 
an increasing challenge, limiting the progression of 
technology, and making microchip designs complex. The 
research and development of thermal management has 
concentrated on reducing the total power consumption of 
microprocessors at the micro-architectural level.  At this level, 
constraints such as power consumption and its sources are 
regarded highly. One of the most critical facets of power 
dissipation is hotspots, which are small localities with high 
power densities that degrade the microprocessor’s efficiency 
and lifetime. 

 Current VLSI technology comprises of microprocessors with 
multiple cores in a single chip. Multi-core processor 
technology utilizes two or more independent processors in a 
single chip in an effort to improve performance through 
parallel or distributed processing. Modern computers may 
utilize multiples of such chips.  This paper proposes migrating 
cores as a method to reduce thermal hotspots in multi-core 
microprocessors with limited thermal management options. 
Simulations of the multi core microprocessors were completed 
with the use of multi2sim, McPAT and SPEC2000 
benchmarks.  Hotspot by HP was utilized to convert the power 
measurements to temperature, as well as for layout and 
thermal mapping of the microchip.  Dynamic scheduling of 
cores increased the delay by 1.4% on average, while the peak 
temperature was observed to reduce by 6° Celsius. 

Keywords: Peak-Power, Multi-Core, Microprocessor, VLSI, 
Power Dissipation 

 

1 Introduction 
  Technology generations, following Moore’s law, have 
exponentially increased transistor density and increasing the 
power density of microprocessors. Despite the reduction of 
dynamic power dissipation per transistor, the power density 
increases as the area is reduced by half in each subsequent 
technology increasing number of transistors per unit area. As 
a result of this exponential increase in thermal density, 
thermal cooling has become a critical aspect of 
microprocessor design. Cooling with mechanical means such 

as heat sinks and fans are still the primary solutions to this 
problem. Although these mechanical solutions are effective in 
large fixed computers, in modern slim mobile devices they are 
impractical.   

 Multi-core processors’ throughput is much higher 
compared to a single core processor, due to parallel 
processing, resulting in an increase in thermal energy. On 
thermal terms, at the 65nm technology level a quad core 
processor reaches to a maximum temperature of 12° - 14° C 
higher than the single core microprocessor [1]. This 
temperature difference can generate hotspots that could 
impact the performance of the processor, resulting in long 
term degradation and short term decreased speed.  In addition 
to the overall high temperature, the core-to-core thermal 
coupling is also a factor that will affect the performance of 
integrated circuits (ICs).  Thermal coupling occurs when the 
lateral heat dissipation causes increase in temperature between 
adjacent cores.  Sophisticated and expensive microprocessors 
manufactured by Intel and others are designed with built in 
power management features such as monitoring and shutting 
off the processors if they are in the path of destruction due to 
thermal runoff. There are many inexpensive multi-core 
processors such as Freescale octal-core, which can have 
improvements to their thermal power management. For 
example the Freescale octal-core processor has switching 
ability to change the state of each core-processor, but the 
controls in place have limited capacities. This paper presents 
a technique to reduce thermal hotspots in multi-core 
microprocessors with limited sources in thermal power 
management. 

 The remainder of this paper is structured as follows. 
Section 2 presents the contemporary techniques researched in 
reduce power in microprocessors. Section 3 describes the 
hotspots, migration, and scheduling. Section 4 proposes the 
new method of scheduling of the migration of cores to reduce 
hotspots. Sections 5 through 7 are the methodology, results 
and analysis, and the conclusions to this research. 
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2 Background 
 CMOS device technology has gained significant 
improvements in terms of performance and efficiency, but 
improvements in reduction of power dissipation and 
temperature regulation lag in progression. Power dissipation 
has increased rapidly in multi-core technology, mainly due to 
increased number of transistors as well as the smaller 
technology size. 

 Many direct and indirect techniques are deployed in 
reducing the power dissipation or removing excessive heat in 
microprocessors.  The temperature of a microprocessor is 
primarily dependent on the power dissipation with respect to 
time. Techniques to reduce power consumption could lower 
the total thermal dissipation of the chip. These techniques 
were developed to protect the devices from thermal 
degradation, performance degradation or to improve the 
battery active life of mobile devices. There could be specific 
localities in the chip that would continue to experience high 
power dissipation. Such localities experiencing high 
temperatures compared to their surrounding area are called 
hotspots. Hotspots are a threatening phenomenon that causes 
serious device degradation.  Hotspots are localities that can 
reach over 300 W/cm2 and result in varying temperatures 
across a chip surface.  Such hotspots demand the utilization of 
exceptional cooling systems for devices such as modern 
servers that operate continuously: 24-hours a day [3, 4]. 
Hotspots are critical given that they could be destructive to 
the chip in the long and short terms. Therefore temperatures at 
hotspots are an imperative aspect in the design of cooling 
mechanisms. Designing mechanisms to reduce the occurrence 
of hot spots or to reduce the temperature in hotspots, will in 
turn reduce the cooling needs of the microprocessors. 

 The simple technique of using forced air to cool the 
microprocessors can be useful as long as the temperature of 
the environment is lower than the ideal ambient temperature 
of the microprocessor.  In embedded systems, a heat sink and 
artificial air flow is needed beyond 20W of power dissipation. 
When the core runs at 7W a cooling fan is rendered obsolete 
[4]. Cooling and packaging technologies have not developed 
concurrently with the progression of device technologies, 
therefore limiting the power accessible to a multi-core 
processor [2]. The design of previous thermal solutions has 
been at the package and system level.  Although many cooling 
techniques have been introduced in succession, air cooling has 
been the industry standard due to its efficiency and low 
associated costs [3, 4]. 

 Prior research [5] proposed an approach of space 
exploration by which the centralized and nonpolitical 
hardware structure is replaced by a distributed architecture 
substrate structure by which the thermal hotspots can be 
reduced. This method requires redesign of the core layout for 
each core separately depending on the configuration of the 
layout of each core. The speed in each core could be impacted 

as their routing lengths will change. An alternative to reducing 
power dissipation is using multiple heterogeneous cores in a 
processor as proposed by [7], where the cores are of different 
complexities and performance. Multi-core processors can be 
classified based on the nature of the cores employed.  The 
microprocessor is considered ‘homogeneous’ if the same 
processor is used as the cores, or ‘heterogeneous’ when 
different performance-cores are used together, the preference 
depending on the purpose of the microprocessor. The results 
were impressive, achieving 80% power reduction, but the 
impact on performance was 25% latency. The negative 
performance is attributed to the software dynamically 
selecting the most appropriate core.  Identifying the matching 
core based on the complexity of the process is an extremely 
difficult technique to be automated. 

 Power gating and clock gating has become the most 
widely used technique of reducing power dissipation during 
idle/sleep states in multi-core microprocessors [8, 9, 10]. 
Contemporary high performance microprocessors come with 
advanced features in thermal power controls such real time 
temperature monitoring and warning systems. But there are 
many multi-core processors with few basic features like 
switches that enable the operating system to control the state 
of the microprocessor based on its usage, such that it could be 
placed in active, sleep, or states in between.  The objective of 
multi-state core design is to reduce the consumption of power 
while keeping the core active so that states can be switched 
with a minimum transition delay.    

 Scheduling is a widely used technique in reducing power 
dissipation in microprocessors.  Scheduling of multi-core 
processors exploits the benefit attributed to sharing resources 
among cores.  There are many approaches to the technique of 
scheduling that includes scheduling threads, processors, and 
other resources in microprocessors. The scheduling of 
resources has expanded to the extent of scheduling virtual 
machines; whole microprocessors. Since the advent of multi-
core processors, scheduling schemes have expanded to 
include minimizing latency as well as power dissipation.   

 There are two approaches to types of scheduling threads 
as resource-based and sampling-based.  Resource-based 
techniques concentrate on distributing the load among the 
cores based on core parameters.  Sampling-based techniques 
use the nature of the execution code or other parameters to 
identify the load distribution among the cores. Both 
symmetric and asymmetric multi-core processors can benefit 
from these techniques [11]. Virtual machine scheduling and 
migration can be used as an alternative to thread migration 
since virtual machines are a wide spread method of resource 
sharing. Virtual machines can be migrated by transferring the 
domain between two host machines by transferring its in-
memory states seamless to the user [12].  

 Another method of optimizing performance at this stage 
has been through the technique of migration.  Threads, 
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processes, and virtual machines are relocated from processors 
to processors in order to achieve better performance and 
optimize the utilization of resources.  Scheduling threads and 
migrating threads are common among the multi-core 
processors as additional hardware resources are available 
within one chip.  The primary objective of this technique is to 
obtain an optimized performance by utilizing all resources 
available [11].  Research has been concentrated on scheduling 
activities i.e. threads and processes in multi-core processor 
environment [1]. Migrating threads or processes does not 
cause large transition delays and they can be managed at 
operating system or software level. Testing and implementing 
the scheduling of threads and processes are relatively easy as 
these do not require changes in the hardware or 
microprocessor design, which are very expensive by nature.  

 All these techniques proposed are targeting the reduction 
of the overall power dissipation and not specifically hotspots, 
although there is some improvement in terms of overall 
temperature of the chip and thereby hotspots as well.  There 
are considerable benefits in terms of cooling efficiency, if the 
temperature at hotspots can be reduced.  These include 
increasing the throughput of the microprocessor and reducing 
power consumption. 

 The efficiency of migration in multi-core processors is 
increased when the cores are mesh-connected.  Multi-core 
processors are designed with two primary layouts of cache, 
either as a mesh-based multi-core structure or a ring-based 
multi-core structure. Ring-based structure is followed with 
fewer cores per microprocessor and for increased number of 
cores they are arranged in a mesh-based structure.  In the 
present state of technology, where the widely marketed 
processor is a quad-core, the layout can be of either structure. 
 
 
 
3 Migration for Optimal Power 

Dissipation 
 Power dissipation in a core is at its lowest during sleep 
mode.  When switched to active mode, the core starts 
dissipating power and the temperature in the core increases in 
relation to the number of cycles it has been active.  As the 
temperature approaches the upper thermal limits of the 
microprocessor the frequency of the core is reduced.  All 
cores in a microprocessor may not need to be active at the 
same time to perform its tasks at any given time.  The present 
approach is to schedule and distribute the load between the 
cores so that none of the cores are dissipating power over the 
others in an attempt to reduced hotspots.  The end result is 
that the microprocessor as a whole will be increasing its 
temperature.  As the cores are stacked adjacent to each other 
one of the key issues that will arise is the core-to-core thermal 
coupling. The power dissipation in each core affects the 
operating temperature of its adjacent cores [1].  

 As a remedy to this situation we propose keeping a 
minimum number of cores active in the microprocessor. All 
inactive cores can be placed in the sleep state to reduce power 
dissipation. This approach will reduce the overall 
microprocessor power dissipation. Since high cycle counts of 
processing will occur in the few active cores, we propose 
migrating the cores so that hotspots will not occur in the 
active cores that would otherwise continuously active until the 
end of the process or the thread. 

 Schedule of the migration of cores should occur in a way 
that core-to-core thermal coupling does not occur. The basic 
parameters to observe are the physical distance between the 
cores and physical layout of the microprocessor. This allows 
the cores that were active in the earlier step to cool off while 
the processing is carried out in the other cores. This approach 
of switching cores is particularly effective in applications such 
as communications, networking and load balancing computers 
where the load varies throughout and the load is low at 
majority of the time. The drawback of switching cores is the 
inherent latency of migration. But since modern multi-core 
microprocessors use switch fabrics in place of buses and it 
allows for faster transitions between cores, the associated 
latency may not be of great significance.  

 The heat radiation is proportional to the temperature 
difference between the core and ambient temperature per 
Newton’s law of cooling, given in Equation 1. 

    

  )(1 aTTk
dt
dT

−−=       (1) 

 

 Under forced flow of air, the heat convection or energy 
removed is proportional to the temperature difference between 
the core and the ambient temperature [4]. 

   

  Qout = k2 (T – Ta)       (2) 

 

 Therefore the temperature reduction rate is proportional 
to the temperature difference of the ambient temperature. The 
ambient temperature of a microprocessor in an air conditioned 
environment is around 45°C or 100°F. 

 Ideally the core to be activated should be the core which 
is lowest in temperature and is further from the highest 
temperature cores in the processor. That is, a core to be active 
next is inversely proportionate to the temperature of the other 
cores and proportionate to the distance. 
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At any given instance when the next core to be activated is j; 

  j = 1    where t = 0             (3) 

  j = i    where   ∑ =

k

x n
xi

x

d
T

1
 k

i 1= min;   t > 0  (4)  

 where dxi is the unit distance between the selected core i 
and other core x,   Tx the temperature of the core x,  
t is time, n ∈ {1,2} and k the count of cores 

 Taking octa-core multi-processor as an example, assume 
the cores are arranged in two column by four row formation 
with switch fabric, the cores are identified from left bottom to 
right top. Distances are in units assuming all cores are 
homogeneous and lay equidistant to the adjacent cores.  
Distance calculations and temperature variations would be 
given by the following matrices.  In which the temperature 
matrix assumes a maximum temperature of 100°C in the 
active cores; and ambient temperature of 45°C; k1 = -0.1; k2 
=0.1. 

Distance matrix: 
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   (5) 

Temperature matrix:  

 [ ]87654321 TTTTTTTTT =      (6) 

In calculating the suitability (S) for the, core to be activated 
next, 

   S =   [1/T] × [Dn]             (7) 

The optimal core will have the highest suitability count. 

  Next core j to be activated =   S[j] max   (8) 

 To identify the correct value for n in Equation (6) we 
simulated the temperature and the schedule of migration of the 
cores for n=1 and n=2. The value of n defines the order of the 
distance. At n=1 the distance is inversely proportional and at 
n=2 the square of the distance is inversely proportional to 
unsuitability. In analyzing it was concluded that n=2 gives a 
better performance scheduler than n=1.   

 In the case of a single task, the order in which to activate 
the cores are fixed to a given core layout in the 
microprocessor as the sequence depends only on the distance 
between each cores with the other cores. Unlike most 
scheduling techniques, that need real time calculations, this 
technique does not require the calculation or measurement of 
temperature and recalculations at each step.  A simple lookup 
table can be used in switching the cores as the temperature of 
each core stabilizes after the first full rotation of the 
scheduling. 

4 Methodology 
 Multi2Sim [13] was used to assess the functional 
components of the processes in SPEC2000 benchmarks. 
Multi2Sim is a multi-core, multi-thread environment 
simulator. It simulates the benchmarks for a given 
configuration. Simulation provides a wide range of precise 
parameters and their corresponding values. Statistics include 
simulation cycles, committed instructions, etc [13]. For the 
simulations we used the SPEC2000 benchmarks as the 
processes.  Octal-core single thread multi-processors were 
simulated with the scheduling algorithm modified for the 
proposed core activation sequence. Migrations were carried 
out every 100,000 cycles. 

 McPAT [14] is an architectural modeling tool for CMP, 
providing accurate power and area for a selected 
microprocessor architecture of a given technology size.  The 
statistics acquired from Multi2Sim is fed to McPAT to 
generate area and power statistics. An Alpha like 
microprocessor was used as the core in this simulation. 
Simulations were executed for 65nm technology. McPAT 
uses Hi-K metal gates for technology sizes from 45nm and 
higher. HotSpot [15] is a tool based on HP Cacti. The tool is 
primarily used to model the temperature of a microprocessor 
based on the power dissipation and the area of its 
components. The statistics needed for the simulation can be 
acquired from McPAT simulation which provides the power 
and area data. The steps required to calculate the temperature 
are carried out with the calculations of the layout of the 
components, which are based on the area, dimensional ratios, 
and interconnects between the components. The layout and 
the power data are simulated to generate the temperature of 
each component. A grid option for simulation is available to 
map the thermal variations of the chip surface. 

 A thermal map is the ideal tool in identifying the 
hotspots occurring on the chip. We used the thermal map for 
the chip as a whole to identify the hotspots and the impact of 
migration on those hotspots. Each of the simulators relies on 
the previous tool to provide the statistics necessary to carry 
out the simulations. 
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Figure 1: Thermal map of cores at the end of one rotation of migrations. 

5 Results 
 Microprocessor temperature increases with the number 
of cycles the core was actively processing data according to 
figure I. This pattern also shows that if the processor can be 
stopped before the process is completed, and the process 
thread is migrated to a new core, the maximum temperature 
the original core will be reached can be limited to a lower 
temperature. The temperature reduction by this method 
depends on the process and the cutoff point used for the 
migration. For the benchmark aspi, if the migration occurred 
at 100,000 cycles, the peak temperature of the core will be 
10% less than the peak temperature.  

Table I: Migration delay in number of cycles for SPEC2000 
benchmarks 

Benchmark Migration delay (Cycles) 
apsi 1443 
art 260 

bzip2 6259 
cc1 435 
eon 305 

fma3d 89 
gzip 8013 
mesa 300 

perlbmk 330 
twolf 171 
vortex 558 

vpr 106 
wupwise 166 

  
 The trade-off of power saving in microprocessors is 
delay. The proposed technique inherently has a higher delay 
due to its migration of the process from one core to another. 

Table I lists the delay of migration counted in number of 
cycles. Migration was tested every 100,000 cycles. The delay 
depends on the benchmark and its usage of cache memory, as 
data migration from one cache allocation to another consumes 
considerable time delay. If the migration is executed at shorter 
intervals, the maximum temperature can be lowered but the 
delay percentage will be increased. Similarly if the migration 
is executed at a higher cycle cutoff, the delay percentage is 
reduced but the peak temperature will be higher and the 
power saving will be reduced. The delay with migration at 
100,000 cycle migration would be fivefold of delay added 
with migration at 500,000 cycles. For this set of benchmarks, 
the average migration delay is 1.41%, if migration is triggered 
at every 100,000 cycles of processing with a standard 
deviation of 2.58%.  Depending on the nature of the process 
the delay could be as high as 8% of the processing time. 

Table II: Peak temperature of the microprocessor after activity 
cycles 

Number of cycles Temperature (K) 
100,000 327 
200,000 330 
300,000 332 
400,000 333 
500,000 333 

 

 The power dissipated and the temperature of each 
component in a core processor changes with respect to its 
active time duration and the nature of the resources utilized in 
processing.  Table II shows the variation of the highest 
temperature among the components in the processor.  Cooling 
patterns of the 8-Core simulation is shown in Figure I have the 
cooling patterns for the scheduled cores with time laps.  At 
100,000 cycles per migration, the first core that was active 
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reached a temperature that would allow it be active once again 
by the end of a full cycle of scheduling. The core-to-core 
thermal coupling is minimal in this schedule as the activating 
cores are diagonal to the cores that are still warm. 

6 Conclusions 
 Multi core processors are manufactured and utilized for 
wide range of applications. In most cases only one or a few of 
the cores are active while others are in inactive mode. We 
propose migrating the cores such that each core will be active 
for a short period of time while other cores are inactive. 
Migrating the cores will reduce the peak temperature at each 
core which in turn reduces the temperature of hotspots 
occurring in the microprocessors. Core scheduling is an 
alternative to scheduling of threads and processes which are in 
common practice at present. Reducing hotspots in 
microprocessors with limited thermal power management 
options will reduce system degradation and increase 
performance, resulting in more efficient and reliable use of 
multi-core processors. 

 In this research, multi-core scheduling was successfully 
simulated to reduce peak temperature up to 6° Celsius.  The 
thermal map for an octal-core microprocessor with scheduling 
is presented with the delay of many SPEC2000 benchmarks. 
Temperature, power and Power delay Product variations for 
apsi benchmark is presented as an example. The performance 
of the benchmark depends on the nature of the process, the 
use of cache memory and intensity of the use of Arithmetic 
Logic Unit and Floating Point Unit. 

 Delay of the processor increased by an average of 1.4% 
for core migration for every 100,000 cycles as expected trade-
off.  The delay was observed to be small considering the 
overall improvement in performance. The thermal savings can 
be improved by migrating cores at shorter intervals with 
associated high delay penalties. Increase in number of cycles 
for the migration result in smaller temperature reductions. 
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Abstract - Modulation is a key feature commonly used in 

wireless communication for data transmission and to minimize 

antenna design. QPSK (Quadrature Phase Shift Keying) is 

one type of digital modulation technique used to transfer the 

baseband data wirelessly in much efficient way compare to 

other modulation techniques. Conventional QPSK modulator 

operates by separation of baseband data into i and q phases 

and then add them to produce QPSK signal. The process of 

generating sine and cosine carrier wave to produce the i and 

q phases consume high power. For better efficiency in power 

consumption and area utilization, 2 new types of QPSK 

modulator proposed. The proposed method will eliminate the 

generation of 2 phases and will produce the QPSK output 

based on stored data in RAM. Verilog HDL used to implement 

the proposed QPSK modulators and it has been successfully 

simulated on Xilinx ISE 12.4 software platform. a comparision 

has been made with existing modulator and significant 

improvement can be seen in term of area and power 

consumption. 

Keywords: QPSK, Verilog, Modulation 

 

1 Introduction 

         Continuous growing demands from end user for more 

data have encouraged the engineers to develop many new 

types of modulation scheme in satellite communication 

system. New types of modulation technique introduced to 

increase the efficiency in data transmitting and receiving rate 

within the same bandwidth. One of the common modulation 

method used in satellite communication system is QPSK 

which is one form of PSK (Phase Shift Keying) modulation 

scheme [7]. In PSK modulation, the phase changed according 

to the baseband data while the frequency and amplitude 

remain unchanged. In QPSK  quadrature means 4 different 

states that is used to represent a group of 2 bits input data. The 

four different inputs are 00, 01, 10 and 11 and each group 

takes one form of QPSK states as shown in table 1.  

 

 

 

 

Table 1: QPSK phase with different input. 

 

 

 

 

 

 

  

 

The other most related to QPSK modulation scheme is BPSK 

(Binary Phase Sift Keying) modulation. In more practical 

understanding, QPSK is formed from 2 separate BPSK which 

combined together. However, the data transmission in QPSK 

is twice when compared to BPSK and the Bit Error Rate 

(BER) over signal to noise ratio (SNR) for both modulation 

schemes are same [8]. The symbol period for QPSK is 2 times 

the bit period, Ts=2Tb while for BPSK the symbol period is 

same as bit beriod Ts=Tb [1,9]. Data transmission rate is very 

crucial for Low Earth Orbital (LEO) satellite system where the 

interaction time with earth ground station is very short. 

Implementing QPSK in full digital domain not only can save 

cost for long term but at the same time, it increases the 

wireless data immunity over surrounding noise [8]. The high 

configurability and MIPS (million instructions per second) in 

FPGA (Field Programmable Gate Array) have made the 

implementation of digital signal processing possible. 

 

2 Conventional modulator 

 The conventional QPSK modulator operates by dividing 

the baseband data into 2 main streams, even and odd data. 

The divided unipolar data then changed into bipolar by using 

NRZ encoding technique.  Continuously, the coded data will 

be mixed with carrier, which generated from DDFS (Direct 

Digital Frequency Synthesizer) or also known as DDS (Direct 

Digital Synthesizer) as shown in figure 1. The DDFS 

produced the sine and cosine as separate carrier wave signal 

and it made the mixing process much easier. The intended 

frequency use for transmission can be set while generating the 

DDFS core in Xilinx Integrated Software Environment (ISE) 

[11]. Xilinx provides the DDFS as IP CORE in ISE 11.3 and 

above version. The DDFS version 4 can produce up to 550 
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MHz carrier wave. After the process of carrier mixing, the 

odd data will known as I phase and the even data as Q phase.  

 

 

 

 

 

 

 

 
 Figure 1: Conventional QPSK modulator block diagram 

 

Table 2 shows the even and odd data represented by I and q 

phases.  These two phases will be added to produce the QPSK 

signal. The general QPSK wave can be expressed as shown in 

equation (1) where i equal to 1, 2, 3 or 4, Es represent energy 

for a symbol,Ts represent period for a symbol and fc represent 

the carrier frequency. 

 

 

                                                                                            (1) 

 

 

Table 2: NRZ coded odd and even data converted into  

I and q phase 

 

 

 

 

 

 

3 Proposed QPSK modulator 

         The conventional method used to generate the QPSK 

signal consumes high power and area in FPGA. The proposed 

QPSK modulators are fully digital domain and produced 

QPSK output same as equation (1). The 2 new proposed 

QPSK modulators used RAM as main data storage to produce 

same QPSK signal as conventional modulator.  

 

 

3.1 Proposed QPSK modulator 1 

        The first proposed QPSK modulator is designed in 2 

steps. In first step, the above conventional architecture will be 

constructed just to collect different QPSK phase data for 

combinational input data. Once intended data collected, the 

conventional architecture will not be used for future QPSK 

signal generation. This will be major dynamic power saving 

since the DDFS will not be used to generate the 2 different 

carriers.  Collected QPSK data will be stored in 4 different 

RAMs. Each RAM will store data for one QPSK phase. The 

multiplexer will be used to choose the correct RAM’s 

according to the splitted input data. Table 3 shows the 

associated RAM’s with different inputs and phases. Figure 2 

shows the block diagram for the first proposed QPSK 

modulator. 

 

Table 3: QPSK phase data stored in 4 Different RAMs 

according to input data. 

 

 

 

 

 

 

 

Figure 2: Block diagram for proposed QPSK modulator 1. 

 

3.2  Proposed QPSK modulator 2 

         As for the second QPSK modulator architecture 

proposed, further reduction have made from the first 

architecture. Only 1 block RAM used instead of 4 RAM as in 

first design. The general equation for QPSK as in (1), give us 

information that the whole QPSK wave can be represented by 

a single phase shifted cosine wave. A single cosine wave with 

different phase representing one symbols in QPSK 

modulation. With that info, data to generate a cosine wave 

stored in RAM and for different input data, a pointer assigned 

at specific RAM address to retrieve the exact phase that 

needed to generate QPSK wave.  Figure 3 show the second 

proposed QPSK modulator block diagram. 

QPSK signal 
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Figure 3: Block diagram for proposed QPSK modulator 2. 

 

4 Simulation 

         Both proposed designs and conventional QPSK 

modulator modeled with Verilog HDL and simulated on 

Xilinx ISE platform. The crucial for simulate the conventional 

QPSK modulator is for comparison with the other two 

proposed architecture in term of power and area utilization in 

FPGA. Each of the design Verilog HDL code synthesizes and 

tested with a test bench code to simulate it functionality. The 

synthesizable code translated into RTL(Register Transfer 

level) schematic diagrams while the Xilinx ISim simulator 

used to run the test bench code to obtain timing diagram. The 

simulator also used to produce the decimal data which later 

used in Microsoft office Excel to plot the waveforms.   

 

4.1 Conventional QPSK modulator 

        Figure 4 shows the RTL obtain from systhesize Verilog 

HDL code for conventional QSPK modulator while figure 5 

shows a portion of  timing diagram where the data (even and 

odd) change from 00 to 01. The QPSK wave is represented as 

sum (concatination of Cout and S) of I and Q phase in the 

timing diagram . Decimal data collected for  QPSK wave, I 

and Q phases from the timing simulation used to plot the 

waveform . 

 

 

 

 

 

 

Figure 4: Top level RTL for conventional QPSK modulator 

 

 

 

 

 

 

 

Figre 5: Timing analysis demonstrates a portion of even and 

odd data transition. 

 

4.2 Proposed QPSK modulator 1 

        Figure 6 shows the RTL schematic diagram and figure 8 

shows timing diagram for proposed QPSK modulator 1. Since 

the architecture no longer separate the baseband data into 2 

single bit (even and odd baseband data), a group of 2 bits used 

to represent a phase in QPSK waveform. A total number of 

100 data stored in each RAM to represent a phase in QPSK 

wave. Each data need 2 ns (one clock period) and for 100 data 

200 ns needed to form a phase. Figure 7 shows the baseband 

data transition from 01 to 10. 

 

 

 

 

 

 

 

 

 

Figure 6: RTL diagram for  proposed QPSK modulator 1 

 

 

 

 

 

 

 

Figure 7: Timing diagram for  proposed QPSK modulator 1 

 

4.3 Proposed QPSK modulator 2 

        As for the  proposed QPSK modulator 2, figure 8 shows 

the RTL schematic diagram and figure 9 shows the timing 

diagram. 100 data stored in one RAM to represent a complete 

cosine waveform and a counter assigned to access the data for 

a specific phase. The timing diagram shows the transition of 

baseband data from 11 to 00.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8: RTL schematic diagram for  proposed QPSK 

modulator 2. 

QPSK signal 
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Figure 9: Timing diagram for  proposed QPSK modulator 2. 

 

5 Discussion  

         Power consumption and area utilization is 2 main criteria 

studied in this project. Both criteria play major roles when the 

FPGA design translated into ASIC. 

 

5.1 Power 

        Xilinx provide 3 types of power analysis tools where 

different tools perform power analysis at different stages.  The 

Xpower estimator tool usually used in the predesign and 

preimplementation phases of a project [4]. While the XPower 

Analyzer (XPA) tool performs power estimation at post 

implementation stages [10]. It is the most accurate tool since it 

can read from the implemented design database the exact logic 

and routing resources used for a design. The last power 

analyzer tools provided by xilinx is PlanAhead RTL power 

estimator. This software provided an earlier stages of power 

and area utilaization of a desgin at  RTL level.  PlanAhead 

reads the HDL code from a design to estimate the resources 

needed, and reports the estimated power from a statistical 

analysis of the activity of each resource [5]. Since the 

PlanAhead provide an ealier power consumption and area 

utilaization  analysis at same time,the software used instead of 

the other two power tools analyzer.  Chart 1 shows the power 

comparison between the poposed and conventioanal QPSK 

modulator. Its cleary shows that the power consumption for 

both proposed QPSK modulator consume much more less 

power compare to the typical QPSK modulator architecture 

using the DDFS. The 1st architecture consume 32mW and the 

2nd arcthitecure consume 41mW less power than the 

conventional architecture. The power analysis mainly carried 

out on device static power or leakage power where the 

transistor in FPGA use to hold the device configuration. 

However it is also known that the FPGA consumed more 

power compare to ASIC. The power consumption is high in 

FPGA due to it flexibity in configuration and rerouting . So 

when the proposed design implemented in ASIC where only 

dedicated  number of transistor used for that  design,more 

power  consumption can be reduced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chart 1: Power consumption for different 

architecture. 

 

5.2 Area 

        Area employment by number of gates in FPGA can 

directly influence the power consumption, reliability and the 

cost of a design. A simple design can cut or reduce the number 

of gates occupied in FPGA and at the same time increase the 

performance indirectly. The proposed 2
nd

 architecture 

dramatically consumed more less gates compare to the 

conventional and the 1
st
 proposed architecture. Even though 

the 1st architecture have almost double number of LUT from 

the conventional QPSK modulator, but the power 

consumption is still less when compared. This is mainly 

because the 1
st
 architecture proposed does not employ DDFS, 

DSP48 and arithmetic logic blocks as in the conventional 

design. Chart 2 shows the number of LUT and I/O used for the 

proposed and conventional architecture. 

 

 

 

 

 

 

 

 

 

Chart 2: Area utilization in FPGA for 

different architecture. 

 

6 Conclusion 

The proposed QPSK modulators successfully simulated on 

Xilinx ISE 12.4 software platform and the results obtain 

shows that the output waveform is same as conventional 

QPSK modulator. The power analysis tools used on analyze 

the power consumption and area utilization on the proposed 

modulator also gives positive feedback.  Both proposed 

architecture consume less power when compared with 
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conventional architecture. As for future plan, both designs will 

be implemented on virtex 6 FPGA board and RF front end 

module will be used to transmit the baseband data. A 

functional demodulator also will be constructed to retrieve the 

wirelessly transmitted baseband data. 
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Abstract – Floating-point matrix multiplier is widely used in 
scientific computations. A great deal of efforts has been made to 
achieve higher performance. The matrix multiplication consists of 
many multiplications and accumulations. Yang and Duh proposed 
a modular design of floating-point matrix multiplier which 
reserving intermediate result as two vectors. It brings shorter 
delay but more cost. This work modifies Yang and Duh’s design 
with Booth encoding in multiplication to reduce the number of 
partial products. As the result, the improved floating-point 
matrix multiplier has better performance with shorter delay and 
much less hardware cost than Yang and Duh’s design. 

Keywords - Matrix multiplication; floating-point multiplication; 
Booth encoding; partial products generator. 

I. INTRODUCTION 

Floating-point computation is widely used in managing 
scientific data. Recently, there has been a great deal of 
research on efficiently improving the performance of floating-
point matrix multiplication, some of which were implemented 
in FPGA devices [1, 2]. Some previous researches performed 
floating-point matrix multiplication with modular processing 
elements and divided floating-point matrix multiplication into 
few sub-blocks, such as floating-point multiplication and 
floating-point addition. This way is also a common approach 
for improving the performance of floating-point matrix 
multiplication. 

The multiplication can be partitioned into three sequential 
steps: generating partial products, summing up the partial 
products which were produced in former step until two vectors 
remain, and finally summing up the remaining two vectors by 
using a carry look-ahead adder (CLA). 

Two methods are generally adopted to form the partial 
products in the first step. The first method uses 2-input AND 
gates to generate partial products, and the second method 
applies radix-4 Booth encoding, which has been used by Yeh 
and Jen [7]. The former is quiet simple and ordinary. The 
latter is more complex on implementation, but it is widely used 
to reduce the number of partial products. 

The second step uses partial product reduction tree to sum 
up the partial products generated in the above step. Wallace 
tree [5] and Dadda tree [3] are well-developed algorithms for 
solving this problem. Both approaches utilize full adder and 
half adder as their basic elements to reduce the partial products 

until two vectors remain. Moreover, Dadda tree needs fewer 
hardware cost without having more delay as the trade-off. 
After reduction, a CLA is used to generate the product by 
summing up the remaining two vectors in final step. 

Based on the architecture of floating-point matrix 
multiplier designed by Yang and Duh [6], this work modifies 
the original design including partial products generation and 
partial products reduction. Radix-4 Booth encoding is 
employed during generating partial products. The height of the 
partial product matrix can be reduced to nearly a half. In the 
mean time, the segments of sign-extension bits of all partial 
products are also merged into only one singular vector and a 
prominent bit. 

In the above methods, the increment of delay in partial 
products generation is fewer than the decrement in partial 
products reduction. The hardware cost shows more obvious 
difference in similar way. As the result, both the delay and cost 
are reduced. Comparing with Yang and Duh’s design, the 
proposed multiplier unit has 5.1% and 17.9% of improvement 
in delay and cost, respectively. 

II. BACKGROUND 

The double precision format of IEEE standard 754 [4] is 
composed of three parts: sign part, exponent part and mantissa 
part. The first part uses a bit to represent the sign of this 
number. One represents negative, otherwise positive. The 
exponent part is composed of 11 bits. There are 52 bits in the 
mantissa part. Since scientific representation is applied in this 
format, there always a leading one (hidden bit) precedes the 
binary point. That is only the fraction part of the binary 
floating-point number should be reserved. As the result, the 
inputs of floating-point multiplier in this work are both 53-bit 
wide. 

In 2009, Yang and Duh proposed an efficient floating-
point matrix multiplier [6]. The macro block diagram of Yang 
and Duh’s design is shown in Fig. 1. 

Specially, this modification reserves the intermediate result 
as two vectors instead of one as Bensalli’s design [2]. With 
this scheme, the CLA is saved when generating product in 
floating-point multiplication, and vast delay is also eliminated 
simultaneously. As the trade-off, Yang and Duh’s design 
sustains lots of cost. 
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Fig. 1 The macro block diagram proposed by Yang and Duh. 

Nevertheless, the floating-point multiplication and floating-
point adder are modular. With duplicate multipliers and 
adders, floating-point matrix multiplier with better 
performance can be achieved. 

III. PROPOSED ALGORITHM 

The floating-point multiplier gets two n-bit wide inputs, 
multiplicand and multiplier, which are denoted by A = 
(an−1an−2…a0)2 and B = (bn−1bn−2…b0)2, respectively. 

The weighted representation is employed such that B can 
be expressed as: 

 B = ∑
j=0

n−1

bj2
j = −b0 + ∑

i=0

n/2−1

(b2i+b2i+1−b2i+2)2
2i+1 (1) 

where bj=0 for j≥n, and k denotes the smallest integer greater 
than or equal to k. Obviously, b2i+b2i+1−b2i+2 corresponds to 
radix-4 Booth encoding. The value is bounded among 0, ±1 
and ±2. For making the following equations much clearer, let 
Ei = b2i+b2i+1−b2i+2 where Ei∈{0, ±1, ±2}, for 0≤i≤n/2−1. 
Equation (1) can be formulated as: 

 B = −b0 + ∑
i=0

n/2−1

Ei2
2i+1 (2) 

The product C = A×B can thus be expressed as: 

 C = A×B = −b0A + A× ∑
i=0

n/2−1

Ei2
2i+1 = −b0A + ∑

i=0

n/2−1

EiA22i+1 (3) 

The numbers to be accumulated in (3) can be represented by 
n/2 partial products, PPi = EiA22i+1 = (pi,2n−1pi,2n−2…pi,0)2 for 
0≤i≤n/2−1, and a reparation vector, −b0A, denoted by R = 
(rn−1…r0)2. Thus C can be restated as: 

 C = R + ∑
i=0

n/2−1

PPi (4) 

As shown in (4), the number of accumulations is n/2+1. 
Theses accumulations can be partitioned into two parts. First 
part is the reparation vector R. When b0=0, 
 R = −b0A = 0 = (00…0)2 (5) 
Otherwise, 
 R = −b0A = −A = Ā̄  + 1 = (11…1an−1¯¯¯an−2¯¯¯…a1¯¯a0¯¯)2 + 1 (6) 
Notice that K̄̄  represents 1’s complement of K. The afterward 
adding one makes it become 2’s complement of A. 

The second part is partial products PPi, for 0≤i≤n/2−1. 
The weighted value here is left for clearly indicating the 
occupied spaces in the partial products. Those empty spaces 
will not occupy any hardware cost in partial products 
generator. According to the probabilities of Ei, PPi is discussed 
in the following cases: 
When Ei = 0, 

 PPi = (00…0)2 × 22i+1 (7) 
When Ei = 1, 
 PPi = (00…0an−1an−2…a0)2 × 22i+1 (8) 
When Ei = 2, 
 PPi = (00…0an−1an−2…a0)2 × 22i+2 (9) 
When Ei = −1, 
 PPi = (11…1an−1¯¯¯an−2¯¯¯…a1¯¯a0¯¯)2 × 22i+1 + 22i+1 (10) 
When Ei = −2, 
 PPi = (11…1an−1¯¯¯an−2¯¯¯…a1¯¯a0¯¯)2 × 22i+2 + 22i+2 (11) 

The leading zeros and ones in (5), (6), (7), (8), (9), (10) 
and (11) indicate the sign-extended segments. This work 
reduces these segments into equivalent weighted bits, and it 
can be easily implemented by partial products generator. Since 
the leading zeros can be reduced to nothing, only the negative 
partial products with leading ones are discussed. The 
following equations present all the possible cases where a 
negative number occurs. 
When b0 = 1, 
 R = −A = Ā̄  + 1 = 22n – 2n + (an−1¯¯¯an−2¯¯¯…a1¯¯a0¯¯)2 + 1 (12) 
When Ei = −1, 
 PPi = 22n – 2n+2i+1 + (an−1¯¯¯an−2¯¯¯…a1¯¯a0¯¯)2 × 22i+1 + 22i+1 (13) 
When Ei = −2, 
 PPi = 22n – 2n+2i+2 + (an−1¯¯¯an−2¯¯¯…a1¯¯a0¯¯)2 × 22i+2 + 22i+2 (14) 

Furthermore, the product of n×n multiplication is bounded 
in a 2n-bit wide number. Hence, the 22n ahead of equations 
(12), (13) and (14) can be automatically disregarded. The 
remaining sign-extended part can be easily represented by a 
row of sign-extended flag denoted by SE. Let SE2

i
 and SE1

i
 

denote the second terms 2n+2i+2 and 2n+2i+1 in (13) and (14), 
respectively, for 0≤i≤n/2−1. Also let SER represent the 
second term 2n in (12). Thus, SE can be expressed with 
weighted representation as: 
 SE = (SE2

n/2−1
SE1

n/2−1
…SE2

0
SE1

0
SER)2 (15) 

In (15), (SE2
i
SE1

i
)2 is equal to (00)2, (01)2 or (10)2 when Ei is 

nonnegative, −1 or −2, respectively. Since n = 53 in this work, 
and b54 = b53 = 0, E26 = b52+b53−2b54 = b52 is always a 
nonnegative number. Both SE2

26
 and SE1

26
 can be ignored 

automatically. 
When SE ≠ 0, it denotes the number should be subtracted. 

To implement this operation, the partial products generation 
transforms SE into 2’s complement as its negative form, which 
can be expressed as: 
 −SE = (SE2

n/2−1¯¯¯¯¯SE1
n/2−1¯¯¯¯¯…SE2

0¯¯¯SE1
0¯¯¯SER¯¯¯)2 + 2n (16) 

Symbol S is used to denote 2n in (16) in the following sections. 

IV. PROPOSED ARCHITECTURE 

This section shows the architecture of improved floating-point 
multiplier involving refined partial products generator and 
revised partial product reduction in the architecture designed 
by Yang and Duh [6]. This work utilizes a 53×53 multiplier to 
model the floating-point multiplication. The new contributed 
partial products generator composes of well-developed Booth 
encoder (BE) [7], revised Booth selector (BS) [7], reparation 
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vector unit, and reduced sign-extended unit. 
Each BE block produces 3 bits: si, 2xi, and 1xi which are 

used to represent the binary value of Ei. Fig. 2 and TABLE I 
present the BE block and its truth table, respectively. The 
generated three bits are used with the multiplicand A to form 
the partial product PPi in the modified BS block. 

b2i+2

b2i+1

b2i

si

2xi

1xi

 
Fig. 2 The BE block. 

TABLE I Truth Table of BE Block 
b2i+2 b2i+1 b2i Ei si 2xi 1xi 

0 0 0 0 0 0 0 

0 0 1 1 0 0 1 

0 1 0 1 0 0 1 

0 1 1 2 0 1 0 

1 0 0 −2 1 1 0 

1 0 1 −1 1 0 1 

1 1 0 −1 1 0 1 

1 1 1 −0 1 0 0 

The BS is modified for generating not only the partial 
products PPi, but also the sign-extended flags, SE1

i
 and SE2

i
. 

Furthermore, pi+1,2i+1 (pi+1,2i+2) represent the adding one (two) 
in 2’s complement of PPi if Ei = −1 (Ei = −2). Fig. 3 and 
TABLE II show the new Booth selector block and its truth 
table for PPi, where 0≤i≤25. 

si 2xi1xi

a0

a1

.

.

.

.

.

.

.

.

.

pi,2i+1

pi,2i+2

pi,2i+3

a51

pi,2i+53

a52

.

.

.

pi,2i+54

pi+1,2i+2 = SE2
i

pi+1,2i+1 = SE1
i

 
Fig. 3 The new BS block. 

TABLE II Truth Table of BS Block. 
Ei si 2xi 1xi pi,2i+1 pi,2i+2 ∼ pi,2i+53 pi,2i+54 SE2

i  SE1
i
 pi+1,2i+2 pi+1,2i+1 

0 0 0 0 0 0 0 0 0 0 0 
1 0 0 1 a0 a1 ∼ a52 0 0 0 0 0 
2 0 1 0 0 a0 ∼ a51 a52 0 0 0 0 
−0 1 0 0 0 0 0 0 0 0 0 
−1 1 0 1 a0¯¯ a1¯¯ ∼  a52¯¯ 0 0 1 0 1 
−2 1 1 0 0 a0¯¯ ∼  a51¯¯ a52¯¯ 1 0 1 0 

Since this floating-point multiplier is used to manage two 
53-bit numbers in this study, b53 = b54 = 0. As the result, E26 = 
b52 + b53 – 2b54 = b52 is represented by one bit. Fig. 4 and 
TABLE III show the logic circuit for PP26 and its truth table, 
respectively. 

a0

b52

a1

.

.

.

.

.

.

a52

p26,53

p26,54

p26,105
 

Fig. 4 The logic circuit for partial product PP26. 

TABLE III  Truth Table for Partial Product PP26 
b52 E26 p26,53 ∼ p26,105 
0 0 0 
1 1 a0 ∼ a52 

Fig. 5 and TABLE IV demonstrate the design of reparation 
vector unit. Since forming reparation vector R only depends on 
b0 and multiplicand A. The sR is the sign bit of R, and p0,0 
represents the adding one for forming 2’s complement of A 
when sR = 1. 

a0

a1

.

.

.

.

.

.

a52

b0 = sR

r0

r1

r52

p0,0 =SER

 
Fig. 5 The logic circuit of reparation vector unit. 

TABLE IV Truth Table of Reparation Vector Unit. 
b0 sR p0,0 SER

 r0 ∼ r52 
0 0 0 0 0 
1 0 1 1 a0¯¯ ∼  a52¯¯

Fig. 6 illustrates the sign-extended unit. Significantly, when 
n = 53, the 54th column consists of pi,53, 0≤i≤26, S and SER 
(SER¯¯¯) if S = 0 (S = 1). It makes the height of the partial product 
matrix become 29, which needs one more reduction stage than 
the matrix with height 28 does in partial products reduction. 
To avoid this situation, this work calculates S, SER (SER¯¯¯ ) 
and SE1

0
 (SE1

0¯¯¯) if S = 0 (S = 1) previously by a particular logic 
circuit, and the height of partial product matrix is then reduced 
to 28. 

By implementing the above blocks, the height of the partial 
products matrix is 28. This work adopts Dadda’s algorithm [3] 
to form partial products reduction tree. It needs 7 full adder 
stages to reduce the 28 rows of the partial products matrix into 
2 vectors remain. Then these two remaining vectors are 
processed by other blocks in the original multiplication 
designed by Yang and Duh [6] to generate the intermediate 
result. 

138 Int'l Conf. Computer Design |  CDES'11  |
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S
SE2
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25 SE1
25 SE2

0 SE1
0 SER

 
Fig. 6 The logic circuit design of reduced sign-extended unit. 

V. COMPARISON 

In this section, a common approach is used to estimate the 
improved floating-point matrix multiplier. This method takes 
each 2-input monotonic gate, such as AND, NOR, etc., has one 
gate delay and cost, and it makes each 2-input XOR or XNOR 
has two gate delays and costs. TABLE V shows the delay and 
cost of each component unit for our, Yang and Duh’s and 
Benssali’s works. 

TABLE V  Delay and Cost for Each Component Unit 
 Our Work Yang and Duh’s Benssali et al.’s 

 Delay Cost Delay Cost Delay Cost 
Multiplication Unit 37 17650 39 21489 119 13208 

Addition Unit 33 14406 33 14406 126 6370 
Register 4 355 4 655 4 320 

CLA (Final Addition) 96 4829 96 4829 × × 

The comparison as shown in TABLE VI is under the three 
different designs for resolving one element of an 8×8 floating-
point matrix multiplication. Figs. 7, 8 and 9 present the first, 
second and third design, respectively. Each of them has 
different cost and delay. The first one is the simplest design of 
the above. The second one is the fastest but with the largest 
cost. The last one is the balance design between cost and delay. 
TABLE VII is the improvement of our work comparing with 
Yang and Duh’s and Benssali’s. 

 
Fig. 7 The first design of comparison. 

 
Fig. 8 The second design of comparison. 

 
Fig. 9 The third design of comparison. 

TABLE VII Improvement Compared with Other Works 
 Improvement (%) 
 Compare with Yang and Duh’s Compare with Benssali et al.’s 
 Delay Cost Delay×Cost Delay Cost Delay×Cost 

First 3.6 9.3 12.6 63.2 −95.5 28.0 
Second 0.7 11.1 11.7 42.5 −64.3 5.5 
Third 1.2 10.3 11.4 48.5 −70.0 12.4 

VI. CONCLUSION 

The cost and delay of multiplication unit in our work is 37 and 
17650, respectively. By contrast, those in Yang and Duh’s 
work are 39 and 21489. Thus the delay and cost in 
multiplication unit improve 5.1% and 17.9%, respectively. In 
the simplest design of an 8×8 floating-point matrix 
multiplication, the improvements compared with Yang and 
Duh’s design are 3.6%, 9.3% and 12.6% in delay, cost and 
delay×cost, respectively. 
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TABLE VI Comparison with Other Works Under Three Structures 
 Our Work Yang and Duh’s Benssali et al.’s 
 Delay Cost Delay×Cost Delay Cost Delay×Cost Delay Cost Delay×Cost 
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Int'l Conf. Computer Design |  CDES'11  | 139



 

Abstract— This paper presents a novel predictive modeling 

technique for yield and performance of analog integrated 

circuits. Trade-offs between performance functions can be 

explored through the use of a multi-objective evolutionary 

algorithm and Monte Carlo simulations. When compared to 

conventional simulation based approaches, the results show a 

significant improvement in overall simulation time and 

efficiency without a corresponding drop in accuracy. The 

behavioral model has been developed in Verilog-A and tested 

extensively with practical designs using the Spectre simulator. 

Two OTA topologies are used to demonstrate the proposed 

algorithm and their behavior has been verified through 

transistor level simulations. The examples have demonstrated 

that accurate performance and yield prediction can be 

achieved using the proposed method in a fraction of the time 

taken by conventional simulation based methods. 

 
Keywords—Analog circuit design, Behavioral modeling, circuit 

synthesis, design automation, multi-objective optimization, yield 

optimization.  

1 Introduction 

 

N the last few decades, developments in  technology have 

revolutionized the consumer electronics market. Advances 

in device technology have led to a significant reduction in 

transistor size, allowing millions to be integrated onto a single 

chip. This trend has seen a movement from several functional 

blocks occupying one or more boards to the integration of 

these blocks onto a single device. Although the majority of 

functional blocks in an integrated system are digital, analogue 

circuits are still required to interface to the real world and this 

drives the requirement to integrate both analogue and digital 

circuits onto the same chip. 

In such mixed signal environments, the area occupied by 

analogue circuits is often small compared to the area of their 

digital counterparts. However, the design of the analogue 

sections can be complex and can cause a bottleneck in the 

overall design flow [1]. The demand for a reduction in design 

time has led to the development of analog automation tools. 

The development of such tools has resulted in a transition 

from manual design approaches to simulation based 

methodologies utilizing numerous optimization methods. As a 

result of the increase in device model complexity and the 

difficulty in evaluating large numbers of specifications, circuit 

simulators have become an essential part of the analogue 

design flow [2]. 

It is common in engineering problems to optimize more 

than one objective function, a process known as multi-

objective optimization (MMO). In multi-objective 

optimization, it is often impossible to find a single solution 

that satisfies all objectives. Instead, a tradeoff usually exists 

between the competing objectives and this result in a set of 

optimal solutions called the Pareto-front [3]. 
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Fig. 1. Design space and objective space 

 

A multi objective optimization problem has a number of 

objective functions which are to be minimized or maximized. 

Usually, the optimization has a number of constraints which 

the solution must satisfy. The multi objective optimization 

formulation can be generally stated as follows: 

 

MmxfMaximiseMinimise m ...2,1),(/   

JjxgtoSubject j ...2,1,0)(  ; 

    ;,...2,1,0)( Kkxhk   
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Where fm(x) is the set of M performance functions or 

objective functions that constitute a multi-dimensional space 

called the objective space. In equation (1), there are several 

constraints associated with the problem formulation. J and K 

are inequality and equality constraints define by the gj(x) and 

hk(x) functions whereas xi is a set of boundary constraints that 

restrict each decision variables to take a value between a lower 

and upper bound. These boundary constraints represent the 

decision space of the design problem.  

A solution that satisfies none of the constraints is called an 

infeasible solution as opposed to a feasible solution that 

satisfies all constraints. For each point in the decision space, 

there exists a point in the objective space. Figure 1 shows 

these two spaces and a mapping between them. 

In the objective space, the entire feasible region can be 

divided into two sets of solutions: non-dominated solutions 

and dominated solutions. None of the non-dominated solutions 

can be said to be better than the other with respect to the 

objective functions, and these are referred to as the Pareto-

optimal solutions. If any solution in the objective space is 

dominated by at least one solution from the Pareto-optimal set, 

then it is referred to as a non-Pareto-optimal solution. In figure 

1, solution B is dominated by solution A. Solution A is said to 

be non-dominated (Pareto-optimal solution). The thick black 

line in this figure that represents all the Pareto-optimal 

solutions is called the Pareto-front. There are several 

evolutionary based algorithms that have been developed for 

multi objective optimization in order to generate the optimal 

Pareto-front. One of the algorithms often used for this purpose 

is the Non-dominated Sorting Genetic Algorithm - II (NSGA-

II) [4].  

One of the challenges in downscaling transistor size is to 

design and verify integrated circuits for a high yield. A major 

challenge associated with DSM technologies is the increase in 

process variations which influences the quality and yield of 

designed and manufactured circuits [5]. With a high 

correlation between circuit yield and profit, yield 

maximization has become a major issue in deep sub-micron 

design. Yield must therefore be considered alongside 

conventional performance parameters as early as possible in 

the design process. This consideration is often referred to as 

Design for Yield or Design for Manufacturability (DFY/DFM) 

[6]. 

2 Pareto Based Optimization 

 

The method proposed in this paper is based on Pareto 

optimization. The Pareto-front resulting from Multi-Objective 

Optimization is used for the performance and variation model 

that is developed. This idea is based on the method proposed 

in [7]. In the proposed Pareto-based yield optimization 

method, Monte Carlo simulation is used to estimate the yield 

of the design. In order to reduce the number of Monte Carlo 

runs, the simulation is only applied to a small feasible region 

defined by the performance specification boundaries. Because 

there are only a small number of solutions in the feasible 

region, far fewer Monte Carlo analyses are required, 

mitigating the computational overhead. Figure 2 illustrated the 

Pareto-based yield optimization methodology.  

It can be seen from this figure that there are 10 solution 

points on the Pareto-front that are within the specification 

boundaries. Therefore, the Monte Carlo simulation is only 

applied to these solutions and the solution with the highest 

yield result is used in the design. 
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Fig. 2. Pareto-based yield optimization 

 

To demonstrate the advantage of Pareto based optimization 

over conventional simulation-based approaches, a comparison 

has been made with NeoCircuit, a commercial optimization 

tool that optimizes circuit performance and yield. The tool is 

based on a global optimization approach that combines 

evolutionary and simulated annealing algorithms. The 

optimization is performed at the transistor level design. The 

approach starts with performance optimization to meet a given 

specification and is followed by yield maximization to push 

the design far from the specification boundaries. Since there is 
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no Pareto type exploration in the algorithm, a penalty scheme 

is used to reduce instances of excessive performance that may 

occur during yield maximization in order to maximize overall 

yield. This involves several iterations during the yield 

maximization. For example, during the first iteration, a 

performance f1 might be overdesigned and cause the 

optimization on performance f2 to be limited. In order to 

increase the yield of f2, the performance of f1 must be 

reduced. Several stages of iteration are required in order to 

maximize the overall design yield.  

Pareto-based optimization uses a different approach where 

all the design performances are represented as a trade-off to 

make it easier to select a more balanced solution and 

maximize the yield.  

To demonstrate the advantage of Pareto-based optimization, 

a comparison has been made using a symmetrical OTA design. 

Table I summarizes the comparison with the Monte Carlo 

histogram shown in Figure 3. It can be clearly seen that the 

Pareto-front yield optimization method performs significantly 

faster and produces better results than the NeoCircuit 

optimization. In this comparison, the Pareto-front technique 

completed the optimization in 48 minutes and produced a 98% 

overall yield whilst NeoCircuit took 1hr 29 minutes and 

produced a 96.5% overall yield. Even though the advantage 

shown in term of CPU time is not significant, but the main 

contribution of Pareto-based optimization is the ability to be 

used at system level design through hierarchical-based 

optimization. With such divide and conquer approach, huge 

saving can be capitalized through the proposed technique. 

TABLE I 

YIELD OPTIMIZATION COMPARISON 

Parameters: Pareto-based optimization: NeoCircuit 

Gain 50.58 dB 50.54 dB 

Gain Yield 99% 96.5% 

PM 75.14 deg 75.24 deg 

PM Yield 98% 99% 

Overall Yield 98% 96.5% 

CPU Time 48 minutes 1hr 29 minutes 

 

Pareto-front optimization is the basis of the work proposed 

in this paper and is used together with Monte Carlo analysis to 

create the behavioral performance and variation model for the 

design. 
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Fig. 3. Monte Carlo histogram for gain and phase margin. a) NeoCircuit. b) 

Pareto-based optimization 

3 Experiment Examples 

 

This section presents a complete design example using two 

different topologies for an operational transconductance 

amplifier (OTA) circuit. The OTA is a fundamental building 

block, often employed in analogue circuit applications such as 

filters. In this section, the performance and variation model for 

two OTA topologies are created: a symmetrical OTA, 

depicted in figure 4, and a Miller-compensated OTA, depicted 

in figure 5. All the simulations were performed using the 

industry standard Cadence Spectre simulator with foundry 

level BSim3v3 transistor models from a standard CMOS 

process technology. 
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Fig. 4. Symmetrical OTA topology 
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Fig. 5. Miller-OTA topology 

3.1 Design Setup 

The first step in the algorithm is to create a circuit netlist for 

the two topologies. The next step is to determine the 

designable parameters for the circuit topology and specify 

their objective functions. All transistor lengths and widths for 

the circuits are the designable parameters and two objective 

functions were chosen for this example: open loop gain and 

phase margin. For the purpose of performance evaluations, a 

test-bench netlist must be created for each of the objective 

functions.  

 

3.2 Multi-Objective Optimization 
 

The designable parameters are constrained within a 

reasonable range. All transistor lengths were specified to be 

between 0.12um and 4um and transistor widths were specified 

to be between 10um and 40um. These ranges were chosen so 

that the design area will not exceed the targeted transistor 

active area of 200um. Once the parameters have been 

determined, a GA string can be constructed. The string is 

shown in figure 6. Each individual generated by the 

evolutionary algorithm will consist of a set of designable 

parameters as defined by the string and these will be used to 

replace the parameters in the circuit netlist for the circuit 

simulation. A total of 100 generations each with a population 

size of 100 were used for the optimization giving a total 

number of samples of 10,000. The process of parameter 

generation by evolutionary algorithm, updating spice 

parameters and circuit simulation is continued until the total 

number of generations is reached. The end result of the 

optimization is a Pareto-front consisting of all the optimal 

solutions for the circuit. 

 

 
 
Fig. 6. Evolutionary algorithm string 

 

3.3 Performance and Variation Modeling 
 

To illustrate the results of the optimization, Figure 7 and 8 

show a plot of the objective space for both of the circuit 

topologies. The Pareto front for symmetrical OTA and Miller-

OTA can be clearly seen and contains 1022 and 987 optimum 

solutions respectively. All the solution points on these Pareto-

fronts and their design parameters are stored in data files 

which define the performance model for each topology.  

 
Fig. 7. Symmetrical OTA pareto plot 

 

The next step is to create the variation model for the Pareto-

points. Every optimal solution on the Pareto-front undergoes a 

Monte Carlo simulation using process variation and mismatch 

models. 200 samples were chosen for the MC simulation and 

from these the variation for each performance is calculated. 

This information is stored in a data file and represents the 

variation model for the circuit. 

At this point, a combined performance and variation model 

for the OTA is developed. Table II shows some selection 

samples from the performance and variation table for the 

symmetrical OTA topology. This table is defined as a look-up 

table for a table model function with the resulting Verilog-A 

[8] model given in listing 1. 

 

 

Fig. 8. Miller-OTA pareto plot 
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TABLE II 

PERFORMANCE AND VARIATION VALUES 

Design: Gain (dB):  ∆Gain (%): PM (deg): ∆PM (%): 

21 49.78 0.52 76.3 1.50 

22 49.90 0.52 76.1 1.51 

24 49.98 0.51 76.0 1.51 

25 50.17 0.51 75.8 1.52 

26 50.35 0.50 75.5 1.56 

27 50.45 0.49 75.3 1.57 

34 51.06 0.44 74.1 1.69 

35 51.14 0.51 74.0 1.71 

37 51.24 0.42 73.8 1.69 

38 51.62 0.42 73.2 1.68 

 

3.4 Interpolation Example and verification 
 

The performance and variation model can be used to find a 

circuit solution for a given performance specification. This 

avoids the need to re-run the simulation-based optimization 

and will significantly reduce the design cycle time. 

 
Listing 1. Performance and Variation Model 

analogue begin 

 gm_delta = $table_model (gain,"gm_delta.tbl",”3E"); 

 ro_delta = $table_model (ro, "pm_delta.tbl", "3E"); 

 pm_delta = $table_model (pm, "pm_delta.tbl", "3E"); 

 gm_prop = ((gm_delta/100)*gm)+gm; 

 ro_prop = ((ro_delta/100)*ro)+ro; 

 pm_prop = ((pm_delta/100)*pm)+pm; 

 p1 = $table_model (gm_prop,ro_prop,pm_prop    

 "p1_data.tbl","3E,3E,3E"); 

 p2 = $table_model (gm_prop,ro_prop,pm_prop  

 "p2_data.tbl","3E,3E,3E"); 

 p3 = $table_model (gm_prop,ro_prop,pm_prop   

 "p3_data.tbl","3E,3E,3E"); 

 p4 = $table_model (gm_prop,ro_prop,pm_prop  

 "p4_data.tbl","3E,3E,3E");        

 fptr=$fopen("params.dat");  

 $fwrite(fptr, "\n Generated Design Parameters\n "); 

 $fwrite(fptr, "%e %e %e %e", p1,p2,p3,p4); 

 $fclose(fptr); 

 $display ("params: = %e %e %e %e", p1, p2, p3, p4);

   

End 

 

The model will interpolate a new performance value from a 

given specification that can produce the highest yield based on 

the variation model. From this new performance value, a new 

set of designable parameters is then interpolated based on the 

performance model. Table III shows an example where the 

required performance is a gain greater than 50dB and a phase 

margin of greater than 74 degrees. 

TABLE III 

INTERPOLATION EXAMPLE 

Performance: 
Required 

Performance: 
Variation: 

New 

Performance: 

Gain > 50dB 0.51%  50.26dB 

Phase Margin > 74 deg 1.71%  75.27 deg 

 

The variation for gain and phase margin performance is 

obtained by interpolation from the table model function. In 

this case, the relevant look-up table points are those shown in 

Table II where it can be seen that the gain of 50dB is between 

design point 24 and 25. The variation interpolation given 

between this point is 0.51. Using this variation value, it can be 

said that the actual gain may vary from 49.75dB to 50.26dB 

and therefore, in order to achieve maximum yield, the 

specified gain of the design must be at least 50.26dB. If we 

choose a design point with a 50.26 dB gain value, and 0.51 

variation, the gain will vary between 50.01dB to 50.51dB. 

This will ensure that the required 50dB gain will be achieved 

within the process extremes. The value of 50.26dB therefore 

becomes the new targeted performance value and using this 

new value, the design parameters are interpolated from the 

performance table. The same strategy is applied for phase 

margin. Both of the new performance values for gain and 

phase margin will produce a yield of 100%. 

To verify the performance and yield interpolated by the 

behavioral model, a comparison has been made with transistor 

level simulation using the design parameters obtained from the 

table model function. This comparison is shown in table IV. 

The percentage error in passband gain and phase margin was 

calculated between the OTA transistor simulation and 

interpolated values. Figure 9 shows the open loop gain for the 

Verilog-A model and transistor model. It can be seen from 

these comparisons that the Verilog-A function matches closely 

with the transistor level simulation. 

Figure 9 shows a divergence in the comparison above 

40MHz which is attributed to parasitic poles in the transistor 

circuit. Although these higher order effects are not modeled in 

this example, they could be incorporated if required. A Monte 

Carlo simulation using 500 samples was carried out and 

verified a yield of 100%. 
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Fig. 9. Open  loop gain comparison 

TABLE IV 

PERFORMANCE COMPARISON 

Performance 

Functions 

Transistor 

Model 

Verilog-A 

Model 
% error 

Gain 50.73 50.26 0.93% 

Phase Margin 76.06 75.27 1.03% 
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3.5 Topology comparison 
 

The interpolation example shown previously demonstrates 

how the table model function can be used to search a design 

solution for a particular circuit topology. However, the model 

will not find a solution if the new targeted performance is not 

feasible with the chosen topology. In this case, a search across 

a different topology could yield the solution. As an example, 

assume the gain specification is >51dB and Phase Margin is 

>74 degrees. Looking at table II, the variation for the gain and 

phase margin is 0.44% and 1.71% respectively. This leads to 

the new targeted performances of gain greater than 51.22dB 

and phase margin greater than 75.27 deg. Table II shows that 

these new targeted performances are not feasible for the 

symmetrical topology since design points 37 and 27 meet one 

specification but not the other. This problem can be solved by 

searching the solution in other topology. As can be seen in 

figure 10, a Miller-OTA topology satisfies the requirements as 

shown by the shaded area. 

 
Fig. 10. Pareto comparison between topology  

3.6 Summary of Examples 
Table V summarizes the parameters associated with the 

model development. A total of 10,000 simulations were run in 

the initial MOO step for the performance model for both of 

the OTA topologies and Monte Carlo analysis was performed 

on 1022 Pareto Optimal points of symmetrical OTA and 987 

points of Miller-OTA for the variation model. The whole 

model development stage took 4 hours to complete for the  

symmetrical OTA and 3 hours 40 minutes for the Miller-OTA 

on a 1.2GHz Ultra Sparc 3 computer system. 

The effort involved in developing the performance and 

variation model can be compared with the transistor level 

optimization strategy such as that used in NeoCircuit or 

Pareto-front optimization. Compared to NeoCircuit 

optimization, which requires 1hr 29 minutes to optimize the 

OTA, the cost involved for the model development (in terms 

of CPU time) will be paid off after 3 repeated use.  

TABLE V 

SUMMARY OF EXAMPLES 

Parameters: Symmet-OTA: Miller-OTA: 

No. Generations 100 100 

Evaluation Samples 10,000 10,000 

Pareto Points 1022 987 

CPU Time (1.2GHz  Sparc 3) 4 hours  3h 40m 

4 conclusion 

 

This paper has presented a new approach that combines 

performance and variation objectives in a behavioral model 

for analogue circuits. Multi-objective optimization based on 

an evolutionary algorithm is used to explore tradeoffs between 

performance and yield, leading to a set of Pareto optimal 

solutions for the design. Monte Carlo variation analysis is 

performed on all the Pareto optimal solutions, and a table is 

constructed for both the performance and variation analysis. A 

behavioral model developed in Verilog-A is used together 

with this table to determine the parameters required to achieve 

the highest yield within a given specification. After the initial 

time investment to create the model, there are significant 

improvements in overall simulation time and efficiency 

compared to conventional simulation based approaches. These 

benefits are enjoyed without a corresponding drop in 

accuracy. Two benchmark OTA topologies have been 

presented to demonstrate the proposed algorithm and the 

behavior has been verified through transistor level 

simulations. 
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Abstract—The scaling of nanometer technology has had a 
major impact on the power dissipation of CMOS circuits.  
As transistor size decreases it has become apparent that 
leakage power is becoming a dominant fighting force 
against future technology.  In this paper the importance of 
static power consumption on the design of new and 
advanced CMOS technology is explored with the 
investigation of leakage power reduction techniques and 
their implementation on embedded CMOS adder circuits.  
Four different adder topologies of bit sizes 16, 32 and 64, 
were implemented using technology nodes 22nm, 32nm, 
and 45nm.  To reduce the leakage power dissipation of 
these adders three different types of leakage reduction 
techniques were implemented and simulated using Hspice 
to determine the leakage and delay.  The results were 
analyzed and the optimal leakage reduction technique(s) 
for each nanometer adder design was determined.    

Keywords: leakage reduction, CMOS adders, static power 

1. Introduction 
As CMOS technology advances and is scaled down in 

size, more transistors are integrated into smaller chip sizes.  
Technology scaling aims at improving IC performance by 
reducing power consumption, decreasing gate delay, and 
increasing transistor density.  Unfortunately, as a direct 
result of the scaling of transistors many design challenges 
have developed, including the increase of leakage current. 

Although scaling can result in higher performance levels 
for circuits, when the voltage threshold is scaled leakage 
power increases, up to 5 times each generation [1].   
Leakage power consumption has increases from 18% at 130 
nm to 54% at 65 nm of the total power consumption [2]. 
The prediction is that leakage power will eventually account 
for 50% or more of power dissipation in ICs.  Also, it is 
projected that by the year 2020, leakage power is expected 
to increase 32 times per device [3].  With these factors 
involved the performance of a nanoscaled technology 
having a significantly large percentage of leakage power 
dissipation will result in a lost in performance. Designing 
low power VLSI circuits with leakage power in mind has 
become increasing important in the progression of IC 
design. 

In order to investigate the effectiveness of leakage 
reduction in various adder topologies that utilize the 

smallest technology nodes available, for this research, 
leakage reduction techniques have been applied to four 
different adders of varying bit sizes, for technology nodes 
22nm, 32nm, and 45nm.  In Section II of this paper the four 
adder topologies that were used are described and their 
equivalent schematics are illustrated.  In Section III the 
three leakage reduction techniques applied to the adder 
circuits are briefly described.  Section IV reviews previous 
work related to this research and examples of their 
conclusions are given.  Section V describes the approach 
taken to design and simulate all circuits described in this 
paper.  Section VI gives an evaluation of the results and 
Section VII presents our conclusions. 

2. CMOS Adders 
Four common CMOS adders were designed for the 

simulations in this research, the Ripple Carry Adder (RCA), 
the Carry Select Adder (CSA), the Carry Bypass Adder 
(CBA), and the Carry Lookahead Adder (CLA).   

 
Figure 1.  28T Full Adder 

The full adder is the basis for several multi-bit adders.  
For our research the basic 28 transistor (28T) full adder was 
used for all the full adder blocks.  The schematic of the 28T 
full adder [5] is given in Fig. 1.  

The first implementation of the multi-bit adder is in the 
ripple carry adder (RCA).  An RCA is an adder consisting 
of cascading or ‘rippling’ of full adders in which the output 
carry bit of one full adder becomes the input carry bit for 
the next full adder [5][6].  The schematic of the 4-bit RCA 
utilizing the full adder cell is given in Fig. 2.  
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Figure 2.  4-bit Ripple Carry Adder 

The CSA is an adder designed to improve the delay of 
the RCA.  It uses two sets of full adder chains and 
multiplexers to determine the sum and to decrease delay of 
the circuit.  The two full adder chains compute the addition 
of the inputs simultaneously, one for a carry input of ‘one’ 
and the other for a carry input of ‘zero’ [6].  Once the carry 
in is inputted it becomes the select signal and the sums and 
carry out are chosen from different multiplexers.  An 
illustration of a typical 4-bit CSA setup is shown in Fig. 3. 

 
Figure3.  4-bit Carry Select Adder 

The third adder design utilizing the full adder block is 
the CBA and also aims at improving the delay of the RCA.  
It contains added circuitry, which includes set-up circuitry 
to calculate the propagate and generate of each input bit 
and a 2:1 multiplexer to determine the final carry-out [5].  
The 2:1 MUX has two inputs, the original carry-in that was 
bypassed, and the carry-out from the final full adder chain.  
The select is dependent on the propagates of each input bit.  
The speed is gained when the carry-out is generated and 
cascaded to the next CBA chain.  The schematic for a 4-bit 
CBA is shown in Fig. 4.  

 
Figure 4. 4-Bit Carry Bypass Adder 

One of the most common and faster types of multi-bit 
adders is the carry-lookahead adder, through the use of 
Boolean functions called generate and propagate, a block 
of circuitry consisting of AND and XOR gates is designed 
to calculate the final carry out bit. The carry propagate 
determines if the carry input bit can propagate to the next 
stage and the carry generate determines if the carry output 
bit is generated in the current stage.  Propagates and 
generates are then used to calculate all the carry outputs 

simultaneously by using the carry out functions specified in 
[5].  The sums for this adder circuit are calculated by XOR 
of the propagates and the corresponding carry outs. 

3. Leakage Reduction Techniques 
The increasing effect of leakage power on the 

advancement of technology has resulted in an extensive 
effort to discover methods to reduce or minimize leakage in 
CMOS circuits.  In this research, we investigate the impact 
of three widely known leakage reduction techniques, dual 
voltage threshold, transistor stacking, and power gating, on 
CMOS wide-bit adders. 

3.1 Dual Voltage Threshold 
Dual-Vth technology is applied by dividing the data 

paths of a digital circuit into critical and non-critical paths 
and assigning low and high Vth values, respectively, to the 
corresponding transistors. By decreasing the Vth of the 
transistors along the critical path, speed is improved and by 
increasing in the Vth of the non-critical path transistors, 
leakage power decreases in the standby and active mode [7]. 

3.2 Transistor Stacking 
Transistor stacking method exploits the stacking effect 

that results from two or more turned off transistors in series 
to reduce leakage [8].  In the transistor stacking method, 
also known as ‘forced stacking’ a transistor is added in 
series to transistors along the path with the largest current 
leakage [9].  

3.3 Power Gating 
Power gating is a method in which blocks of circuitry 

are ‘cutoff’ from the power supplies while not in use, to 
improve overall power consumption.  Power gating can 
have PMOS and/or NMOS switching transistors to cut off 
the supply voltages [10].   

4. Related Studies 
Many leakage reduction techniques have been 

previously applied to CMOS adder circuits, resulting in 
reduced power consumption. In [11], an enhanced 
MTCMOS scheme, a type of power gating technique, was 
applied to an 8-bit Brent-Kung adder.  The results were an 
improvement on leakage that was dependent on the device 
widths being optimized.  In the analysis conducted in [3], a 
28 transistor 1-bit full adder was the basis for the testing of 
a power gating, input vector control, forced stacking, and 
sleepy stack method of reducing leakage. In all cases, 
leakage was improved, with power gating of both source 
terminals having the most improvement and sleepy stack 
having the least improvement.  In the experimental research 
of the sleepy stack method in [8], a 4-bit adder is 
constructed from cascading 28-transitor full adders.  The 
sleepy stack achieves 2490x leakage reduction over the base 
case, and achieves 190x leakage power reduction over the 
forced stack, while increasing delay by 6% and increasing 
area by 113%.  In [12], the dual voltage threshold method 
was applied to the 28 transistor full adder and simulated 
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against various threshold values; concluding that a 
combination of low and high voltage values resulted in the 
least amount of power consumption. 

5. Tools and Methodology 
The four adder designs, in 16-bit, 32-bit, and 64-bit sizes 

were implemented using HSPICE.  Each of the HSPICE 
decks were modified to simulate with the PTM BSIM4 
model cards for bulk CMOS sizes: 22nm, 32nm, and 45nm 
[13].  For all transistors the width to length ratio was 2:1.  In 
all cases, leakage current was measured for ten input 
combinations and the delay of each circuit was measured 
from the input bit to the most significant output bit.  Input 
combinations varied from all low inputs to all high inputs, 
to combinations which required the carries to propagate thru 
to the carry-out.  For all sums and carry-outs an inverter 
buffer was placed after the output.   

For the leakage reduction technique of stacking 
transistors, transistors along the non-critical path were 
stacked each having a width to length ratio of 1:1.  For the 
Dual-Vth method, transistors along the critical path 
maintained the same low voltage threshold as given in the 
model card and the voltage threshold of all other transistors 
were increased by 10% of the original values.  For the 
Power gating method, a sleep transistor was placed at the 
supply voltage only.  

6. Results and Analysis 
Leakage power of the four adder designs, in 16-bit, 32-

bit, and 64-bit sizes at the 32nm feature size is shown in 
Fig. 5, 6, and 7, respectively. ‘Standard’ was the label given 
to the adder design without any applied leakage control 
methods. The RCA maintained the least amount of leakage 
in all instances, across all bit sizes, technology nodes, and 
leakage techniques, largely due to the minimum amount of 
circuitry required for that design. All leakage reduction 
techniques tested were effective in reducing the leakage.  

In the case of the RCA the most effective method of 
reducing leakage was transistor stacking.  This resulted in 
36%, 42%, and 41% decrease in leakage for all bit sizes in 
22nm, 32nm, and 45nm technology, respectively.  
Transistor stacking was also most effective for the CSA in 
the technology sizes 32nm and 45nm, resulting in a 
decrease in leakage power of 48% to 57% for each bit size.  
The 22nm CSA was most improved with the power gating 
method which resulted in a leakage power decrease of 67% 
for all bit sizes.  For the CBA all three methods were 
similarly effective resulting in leakage reductions of 22% to 
30%.  But in the 22nm and 32nm technologies power gating 
was the most effective resulting in a decrease of 64% and 
33% respectively for all bit sizes.  In the case of the CLA 
the dual-Vth and the stacked transistor method reduced 
leakage by 45% to 54% for all cases.  The power gating 
method was once again the most effective for the 
technology size 22nm resulting in leakage reductions of up 
to 67%.  
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Figure 5.  Leakage Power for 16 bit Adders at 32nm 

 

0

5

10

15

20

25

RCA CSA CBA CLA

Adder
L
ea
ka
g
e 
P
o
w
er
 (
u
W
)

Standard Mulit-Vth
Stacked_Trans Power-gated

 
Figure 6.  Leakage Power for 32 bit Adders at 32nm 
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Figure 7.  Leakage Power for 64 bit Adders at 32nm 

  

Fig. 8, 9, and 10, show the delay impact on the 16-bit, 
32-bit, and 64-bit adders, respectively, for the 32nm feature 
size.  In all cases the power-gated method resulted in the 
most delay penalty, followed by the stacked transistors and 
then the dual-Vth.  For the RCA, the most effective leakage 
reduction technique, transistor stacking, resulted in a delay 
penalty of up to 12%.  For the CSA, transistor stacking and 
power-gating, resulted in a delay increase of up to 140% 
and 250% for the 16-bit, 79% and 184% for the 32-bit, and 
41% and 138% for the 64-bit.  The leakage reduction 
method of power-gating for the CBA resulted in delay 
increases of 90% to 226%, for each case.  The CLA with 
dual-Vth had a delay increase of 20% to 59%, for all feature 
sizes and bit sizes.  The stacking method resulted in delay 
increase of 97% to 173%, for all features sizes and bit sizes.  
Power gating  for the CLA for the 22nm technology size 
resulted in the most increase delay of all simulations, nearly 
4x the original delay for bit sizes 16-bit 32-bit and 64-bit.  
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The resulting leakage power and delay for the 22nm and 
45nm technology nodes of the 32-bit adders that are not 
shown in the graphs are given in Table 1 and 2, 
respectively.   Due to length limitation only the data of the 
32-bit adders are shown. 
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Figure 8. Delay for 16 bit Adders at 32nm 
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Figure 9.  Delay for 32 bit Adders at 32nm 
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Figure 10.  Delay for 64 bit Adders at 32nm 

7. Conclusion 
Leakage reduction techniques applied to the adders 

examined in this research resulted in reduced leakage in all 
cases.  The reduction ranged from 8% for the 64-bit 45nm 
RCA to 68% for the 4-bit 22nm CLA.  The most effective 
method varied based on the adder, the technology size, and 
the bit size.  With the tradeoff of decreased leakage power 
consumption and increased delay penalty, it is expected that 
the most effective method results in the most penalty delay.  
This was the case for many of the simulations results.  
Tradeoffs could be optimized such as the 64-bit CSA in 

which the leakage was reduced with the dual-Vth by up to 
54% with a delay penalty of only 5%.  In all cases the 
power-gated method resulted in the most delay penalty and 
the dual-Vth resulted in the least delay penalty.  The delay 
penalty also varied greatly from no delay to an increase of 
nearly 4x the original delay.   

Table 1. Leakage Power (uW) of 22nm and 45nm 32-Bit Adders 

 

Table 2. Delay (ns) of 22nm and 45nm 32-Bit Adders 
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