
Domain Modelling and Language Issues for Family History and Near-Tree

Graph Data Applications

C.A. Maddra and K.A. Hawick
Computer Science, University of Hull, Cottingham Road, Hull HU6 7RX, UK.

Email: {c.maddra, k.a.hawick }@hull.ac.uk
Tel: +44 01482 465181 Fax: +44 01482 466666

April 2016

ABSTRACT

Domain-Specific Modelling is a powerful software engineer-

ing approach to building complex software systems. Domain-

Specific Languages provide a powerful way of capturing and

encapsulating the applications vocabulary and central ideas for

whole families of software applications. We describe some

domain-specific modelling approaches and techniques based

around the application domain of family history or genealogy

systems where the central data model is a near tree-like struc-

ture. We discuss how: querying; modification; and aggregation

patterns of operation can be implemented in a number of ways

for this domain application. We explore the scalability of the

DSL approach and discuss wider issues in model and language

development.

KEY WORDS
software design; tree data; genealogy applications; domain-

specific languages.

1 Introduction
Domain specific modelling [23, 39] provides an important soft-

ware engineering approach to formulating software designs

based upon important features such as data models and key data

structures for specific application areas. In this article we focus

on the application area of family tree storage and analysis soft-

ware.

Domain Specic Languages (DSLs) [13, 34] are little program-

ming languages, that are often customizable [4] and are typically

designed for use around exclusively around a chosen domain.

Current popular general purpose languages such as C, C# and

Java all focus on the implementation level [6, 18] of software at

machine or virtual machine level. DSLs aim to provide what

can be seen as a suitable compromise between hard to express

concrete machine executions at implementation level and hard

to execute vague human conversation at the solution level. The

holy grail of a DSL project is to capture the essence of a family of

applications within a DSL to allow separation of concerns from

the implementation boilerplate and the solution creativity. This

then allows multiple applications to be created without having to

waste intellectual capital on the code intelligently automated by

the DSLs back end. The separation can also allow for portability

across different architectures through using different back ends.

Popular examples of DSLs include CSS, Regex, Flex/Bison,

Blitz++, Make and JMock expectations. DSLs are not a mere

set of libraries allowing you to plug other peoples algorithms

into your solution at implementation level but a language which

allows writing new algorithms and reusing others in the domains

level of abstraction. This is code automation rather than just

manual reuse. DSLs allow the user to work at the correct level of

abstraction for writability, readability and maintainability. Writ-

ing at this level of abstraction captures the intention of the pro-

grammer rather than the byproduct of their intention in the form

of an implementation [30].

The DSL approach has found uses in applications areas includ-

ing: automatic structural optimisation for agent-based models

[19]; operating systems development [7]; tile assembly in bio-

logical applications [8]; image processing [14]; wireless sensor

nets [29]; and network systems configuration [36]. DSLs also

find use more directly in development of software tools and soft-

ware itself such as software version conversions [12]; code gen-

eration [24]; and program generation [27].

Generally DSLs are implemented as a user interface over a se-

mantic model to maintain separation of the user interface and

back end logic. A semantic model is an executable implementa-

tion of a domain generally in the form of one or more libraries

implemented in a high level programming language. The DSL

acts as the user interface to this semantic model, shielding the

user from the technical implementation and allowing them to fo-

cus on the solution space. There may be many DSLs over a sin-

gle semantic model allowing programmers to only concern them-

selves with the sub-domains they want to while retaining all code

in a single base. Although there is no explicit extra functional-

ity, a convenient way of populating the semantic model allows

for more complicated systems to be created without concern of

the underlying implementation. In other words, a DSL can allow

the programmer to spend their intellectual capital on the prob-

lem domain rather than the solution space. The enhanced lever-

age on the underlying semantic model allows greater efficiency

of thought and thus more functionality for the same work. This

can be likened to the increase in productivity the manufacturing

industry has seen from their progressive increase in automation

and componentisation.

10 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

The definition of what makes a language a DSL is a blurry one,

with languages being more or less of a DSL rather than a direct

cut-off. This is especially true for internal DSLs which can be

classed as a separate language to their host or merely a feature

of it. The underlying point is not if a language is a DSL but if

it can reduce the abstraction gap between the problem and solu-

tion domain compared to its general purpose counterparts. The

successful use of DSLs relies on the mindset and practices of the

programmers as much as the languages themselves. The way a

language is used in a project can dene whether it is a DSL in that

project or not as much as the features of the language.

There are a number of DSL tools and frameworks available

[10, 11, 33]. Generally, a DSL generally conforms to this check-

list of desirable features: 1) Clearly Identifiable Domain; 2) Lim-

ited Expressiveness; 3) Fluent Language Structure. It is helpful

to look at DSLs though a concrete domain so patterns can be

mapped directly to a set of related example implementations,

which also allow us to show the compound nature of improve-

ments in language. It is hard to display the advantages of domain

specificity in a vacuum. Small changes in the level of abstraction

can simply be mapped onto a library call or macro apparently

removing the benefit of DSLs over GPLs, the advantage of these

small changes in abstraction adds to a large change in the over-

all abstraction because it changes the level that the programmer

needs to think. Working with macro’s and library calls locks the

programmer into the implementation level of a solution, and can

quickly become clumsy in a comment littered solution. Domain

specific solutions lock a user into thinking at the intention level

rather than the implementation.

Our chosen domain of genealogy is suited to domain specific lan-

guages because it is well established with domain jargon which

can be used in DSLs and is a firm domain which has guaranteed

future work making a DSL worth the initial effort. Genealogical

analysis is a new area which is becoming more important as we

get more data and DSLs have a strong role to play in this as sci-

entists realise it’s not just about how much data you have but also

the ease in creating novel ways to analyze this data. DSLs can

be used as a method of input for genealogical analysis which can

improve the quantity and quality of work possible given similar

circumstances [26, 31]. Genealogy is a useful domain because

it’s a concrete application of directed graphs which link multiple

genetic families together into a collection of blood lines forming

tree-like graphs. Graphs are an exciting area for computer sci-

ence because of their applicability as network oriented databases.

Genealogy file types can also be used to create single records of

people which are not interlinked but stored merely for the record-

ing of a persons information. For this report this is ignored as it

is not important for genealogy research unless used to merge into

trees and is a subset of the use of DSLs for full tree creation and

modification.

We want to investigate the issues for using domain specific lan-

guages in graph like environments, with the concrete example of

genealogy. Currently the genealogy area is filled with graphical

applications to edit, view and share data because it is suitable for

the layman market. We want to consider the useful techniques

for and create a case study of the use of textual internal DSLs

in this area to see what can be performed without the use of a

graphical user interface.

Our article is structured as follows: In Section 2 we review back-

ground ideas on the genealogical application domain. We focus

on technical aspects we have explored in our present project in

Section 3 and in Section 4 we provide some case study details on

our approach. In Section 5 we give a discussion of the implica-

tions of using Python and other tools for this sort of system and

offer some conclusions and areas for further r work in Section 6.

2 Genealogy Domain Review
Genealogy is one of the oldest hobbies in the world. Whether

people are drawn to it because of intrigue from a blank slate or

tradition in the family technology is making finding, storing and

sharing your ancestors far easier [3, 35]. Historically Genealogy

has been done through paper based systems such as census data

and birth records which are reasonably difficult to gain access

to. With the advent of cloud oriented genealogy services such

as ancestry.com and familysearch.org anybody can access these

records to build their own family trees. These cloud oriented

systems also remove the problem of scale as huge amounts of

records can be searched through at a speed far faster than a hu-

man could search through even a few pages of paper records.

Digital searching allows for complex searches including wild

cards, conditionals and inferred missing data which are time con-

suming and difficult to perform by a human because of man-

ual calculation and problems with remembering combinations of

conditions.

Currently the genealogy market is dominated by on-line services

because of the convenience of the cloud for storage and social

networking. Big providers such as ancestry.org are active in im-

proving the amount of data available to genealogists and the level

of analytics which can be performed on this data [2].

One of the biggest offline suites is the gramps project, which is

an open source python genealogy IDE which focuses not only

on GEDCOM but also it’s own Gramps XML format. The main

concept behind Gramps’ features is to allow the user to focus

on their genealogical research in as much or as little detail as

they want with peace of mind that it’s all safely stored, search-

able and sharable whenever they want. This is done using a GUI

with limited options for extension, fitting its goal audience of

hobbyist family tree researchers. Gramps is officially released

for Linux with community supported windows and mac releases,

this means different operating systems will give a different expe-

rience.

A long running genealogy suite is LifeLines which has been

maintained as an open source project after the creator Tom Wet-

more stopped working on it in 1994. Lifelines is based com-

pletely around GEDCOM but not any particular standard. It al-

lows you to extend the default GEDCOM standard to suit your

needs although this will cause comparability issues and data loss

when sharing your genealogy data. Importantly for us lifelines

pioneered the idea of using a report generation language to pro-

duce all the reports of the program rather than relying on pre-

set report types. This DSL based approach allowed lifelines to

perform any reasonable report generating task which could be

imagined leaving it the choice of GenWeb and GenServ for their

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 11

ISBN: 1-60132-446-4, CSREA Press ©

backend This report generation language is covered further in

similar genealogy DSLs.

GEDCOM (Genealogical Data Communication) is a specifica-

tion designed to pass genealogical data between parties. It was

developed by the Church of Jesus Christ of Latter-day Saints to

aid genealogical research. GEDCOM is widely supported by

genealogy software and has a simple reference based lineage-

linked structure to link families together. [1].

For cross platform sharing to work the Genealogical Data Com-

munication (GEDCOM) standard must be consistently followed.

Sadly when big players such as Family Tree Maker do not follow

the GEDCOM standard by adding in new tags it means software

which uses GEDCOM has started to accept non-officially valid

GEDCOM as good input to appease users. This makes it im-

possible to create a gedcom parser which will accept all ’GED-

COM’ and clarifications on the subset accepted must be made.

GRAMPS solves this problem with a third party add on called

GEDCOM-extensions which supports pervasive changes to the

gedcom standard. We focus on GEDCOM in this project be-

cause it is the current de-facto standard for sharing genealogical

data.

The GRAMPS project setout with the goal of making a portable,

machine and human readable format which can be read and writ-

ten without data loss. The GRAMPS documentation alludes

to XMLs compatibility with source control software when un-

compressed and small file size when compressed. For perfor-

mance reasons the XML representation is not used as the internal

database for GRAMPS but as an export format. This format has

not been used by this project because of it’s limited compatibility

with software suites aside from GRAMPS. Including GRAMPS

XML as an extension to this project would be possible as the

domain specific language layer would not need changing as the

semantic models interface could remain the same.

The file format of Family tree maker, Ancestry.com’s flagship

software and claimed to be the number 1 selling genealogy soft-

ware. The format is called FTW because Family Tree Maker

was called Family Tree Maker for Windows in previous version.

This format is proprietary and requires the Family Tree Maker

software to convert to other formats. There have been complaints

about the poor conversion to other formats as well [22]. This for-

mat is not suitable for this projects research because it’s not open

and it’s associated tool is paid software aimed towards editing in

a graphical setting.

Zandhuis presents the “Semantic web” as a way of storing ge-

nealogical data in an open and extensible way rather than the cur-

rent file formats used. It presents a first attempt at a genealogical

ontology to start the discussions for a standardized ontology with

direct goals towards improving the current problems in exchang-

ing genealogical data and automating it’s processing. Integrity

checks and intelligent processing can be performed on the ge-

nealogical data to check for constancy and potential errors. The

ontology formalizes things such as events timing before, after or

during a time period making automation of searching and analy-

sis possible. This work could be complimented by a DSL which

allows the input and manipulation of the semantic web in the

same way this project deals with gedcom. Given that satisfac-

tory APIs are provided by the ontology the DSL could give rich

feedback based only on interfaces with the extensible ontology.

Displaying Genealogical data is an issue related to what the user

needs to ascertain from the data. The traditional family tree is

a generational graph starting from a single person as the root,

but this method of notation does not show people in relation to

time and poorly scales as descendants have families of their own

causing excessive growth [25].

Mass scale genealogy is made possible by crowd sourcing many

peoples research into combined files to aid everybody’s research.

The quick and successful merging of analogue genealogy data

such as paper records relies on new copies being made and hand

checking through existing records. This is tedious and error

prone but has the advantage of interactions between researchers

and knowledge known by the researcher but not stored in records

may be combined with the existing information to aid merging

or add new information. This process can be aided through dig-

itized records because much of the tedious comparing work can

be automated, leaving the researcher to merely confirm assump-

tions by the merging program. Unfortunately this can lead to

errors in false-positive merges and false-false misses of merges

which could be avoided by a human’s intuition, errors due to in-

correct records on either side are hard to avoid aside from com-

mon sense checks such as timeliness and location. The full auto-

matic merging of digital files is also an issue, especially without

strong standardization on what information is to be included in

records (even if this requirement is just a method for saying if a

field is not available) and how to format these records to make

digital searching and sorting possible in all cases. Domain spe-

cific languages and enforced underlying models allows these to

be enforced and inform the user where input does not meet the

standard which is not possible in analogue or pure file-format

input.

The semantic model idea allows the data to be stored in any for-

mat which matches the DSLs interfaces, this can be combined

with other research areas such as work in aiding the automated

process of using graph algorithms to merge family trees have

been developed [38].

There are a number of established Genealogy DSLs available.

We describe some of these and their features.

Life lines [37] has a reports language which you can specify any

type of report you would like, with common reports programs

given with the distribution as examples. This gives flexibility

in comparison to the common solution of pre-made templates

which you merely provide input to at the cost of the removal of

simple GUI modifications of pre-made templates. The LifeLines

language is implemented as many function calls in C. The deci-

sion to use C reduces the potential for internal DSL tricks as C

has low language extension and tinkering support, this leaves the

lifelines language close to the implementation level rather than

bringing the user up to their solution level of abstraction.

This language has been used during undergraduate dissertation

at the University of Hull but without success because of not be-

ing able to get to grips with the language referring to the simple

examples and lack of an active online community. The documen-

tation for the language is example based with the most common

reports already having programs written up. Sadly the complex-

ity of the reports language still makes it difficult for a novice to

12 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

understand how the reports are generated from the given code,

this would be solved with an intention level approach. This ex-

ample from the Lifelines language documentation [37] prints the

ancestry of an individual. The individual is specified at runtime

using the terminal.

p roc main ()

{
g e t i n d i (i n d i)

l i s t (i l i s t)

l i s t (a l i s t)

enqueue (i l i s t , i n d i)

enqueue (a l i s t , 1)

whi le (i n d i , dequeue (i l i s t)) {
s e t (ahnen , dequeue (a l i s t))

d (ahnen) ” . ” name (i n d i) n l ()

i f (e , b i r t h (i n d i)) { ” b . ” long (e) n l () }
i f (e , d e a t h (i n d i)) { ” d . ” long (e) n l () }
i f (par , f a t h e r (i n d i)) {

enqueue (i l i s t , p a r)

enqueue (a l i s t , mul (2 , ahnen))

}
i f (par , mother (i n d i)) {

enqueue (i l i s t , p a r)

enqueue (a l i s t , add (1 , mul (2 , ahnen)))

}
}

}

Another DSL similar to our case study was written in 2013 by

Paul Johnson [21]. This DSL is implemented in perl which has

good support for extension by internal DSLs and Johnson has

taken advantage of this to provide a good object oriented domain

specific experience for the user. This DSL’s distribution includes

an unfinished ’lines2perl’ program which converts lifelines pro-

grams into the DSL. This DSL fulfils the same role as the family

tree manipulation DSL from this project and is extremely similar

once the differences between a pearl internal DSL and python

internal DSL are mitigated.

open a GEDCOM file and print out the names and birth dates of

all individuals.

my $ged = Gedcom−>new (

g r a m m a r v e r s i o n => ” 5 . 5 ” ,

g e d c o m f i l e => $ g e d c o m f i l e ,

r e a d o n l y => 1) ;

f o r my $ i ($ged−>i n d i v i d u a l s)

{
f o r my $bd ($i−>g e t v a l u e (” b i r t h d a t e ”))

{
p r i n t $ i−>name , ” was born on $bd\n ” ;

}
}

3 Building Domain Specific Languages
The central idea of the DSL community is to create a language

which works at the correct level of abstraction for a chosen fi-

nite domain, generally moving towards a more declarative en-

vironment to express solutions. Having a defined grammar for

the domain means problems with overlap between domains, for

example ’agents’ having separate meanings for artificial intelli-

gence and agent based modelling are explicitly dealt with as the

domain of the language sets the context and semantics for the

jargon within the language.

Writing languages in their interpreter allows us to perform in-

teractive programming as is talked about in early 4th genera-

tional languages literature as monologue vs. dialogue [28]. With

a concrete domain, 2-way conversations between the program-

ming language and the programmer are useful because repercus-

sions of a statement on an unknown dataset cannot be known

before execution. An example of this is when asking for a per-

sons mother, if they have more than one mother a simple ques-

tion from the language run time environment will notify the user

while allowing the syntax for regular events clean. In our case

study this problem is solved by using mother() which selects the

only available mother or if a conflict exists requests the user

which they would like to use. If the user knows which mother

they would like to use before performing the statement they can

specify their chronological index or name.

How a DSL is related to it’s host language denotes whether it’s

internal or external. Internal DSLs are hosted within an existing

GPL and implemented using there language features. Internal

DSLs are popular within the functional community because of

the extensibility of languages like LISP and Ruby. Early lan-

guages such as C don’t offer much support for internal DSLs

because of their lack of extendable features. Recent imperative/-

functional mixed languages such as SCALA and Python are a

mix between these two extremes. The internal DSL code is gen-

erally mixed in with standard GPL code seamlessly and compiled

or executed during the same process.

External DSLs are an explicitly different language to their host

language which has it’s own parser. As external DSLs have a

separate parser to their host language they have complete control

of their syntax and semantics rather than just what’s afforded

by the extensibility of the host. This extra control lends itself

to domains where the model of execution or order of operations

cannot be elegantly expressed using standard GPL syntax such

as database querying. external DSLs can be intended for use as

stand alone files e.g. configuration files or as explicit sections

within GPL code eg regex.

An additional definition of “active libaries” [5] can be made for

DSLs which although they are treated as internal DSLs they play

a role in the compilation or execution of their code allowing

for compile and/or run time domain specific optimization to be

performed. Active libraries are popular with the extensible lan-

guages communities such as LUA and have been used in projects

such as Husselmann’s [20]. For this project we have created a set

of internal python DSLs. Internal DSLs have been chosen be-

cause they allow seamless inter-operation between not only the

DSLs themselves but also any other python code which is appro-

priate for the graph data created by the DSLs from the gedcom

files. Generally speaking internal DSLs also have a lower imple-

mentation time to their external counterparts. Creating multiple

languages each with a niche allows for a unique and appropriate

view for each different sub-domain, layering these over the same

semantic model helps code re-use.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 13

ISBN: 1-60132-446-4, CSREA Press ©

In the traversal DSL, we use fluent interfaces for traversing the

family tree. These allow a user to start at any person in the tree

and move through their relatives in a single command. This is

compatible with the use of run-time dialogue within the language

as mentioned earlier so the fluent interface can be guided where

they’re are conflicts or multiple options.

Figure 1: Fluent Interface to system.

It is considered good practice to separate the implementation of

a DSL from it’s front end [9]. Our DSLs are layered over a sin-

gle semantic model because they are all based around the same

software family and using the same boilerplate. Using the same

backbone for each DSL allows code reuse and DSL inter opera-

tion without extra implementation time from re-writing code and

creating interfaces. A semantic model is the semantics of a do-

main area in code, generally as a library or a set of libraries.

The semantic model is perfectly capable of being used by itself

without the intervention of the DSLs, the DSLs are merely a level

of abstraction above the semantic model allowing for better com-

munication in that domain. We have chosen to have several DSLs

over the same model so they can be different ’looking glasses’

into the sub domains of our choice. Different users want to see

different things from the same domain and this can be solved by

using different languages for different purposes.

The downside of this is for people who wish to use multiple sub

domains will have to learn multiple DSLs, although this is a di-

rect trade with having to learn more language features from a sin-

gle bloated language. There’s an argument that by learning the

principles large general purpose languages in general you learn

the principles of how to program in any similar language.

Figure 2: System architectural model.

Figure 2 shows how Python can be integrated into the model ar-

chitecture.As mentioned previously one of the benefits of using

an internal DSL is access to the host language’s existing ecosys-

tem. Python is a particularly strong candidate for this because of

the large amounts of scientific libraries and frameworks available

such as Seaborn, Bokeh and Pygal for visualisation. Pre-existing

tools to communicate with external languages and toolkits make

this advantage even stronger because external interoperation with

status-quo tools is dealt with out of the box. An example of this

would be a user of our case study using Pymatlab to send the

results of a query from our DSL into MATLAB for a pre-made

script to produce graphs on the members connectivity.

4 Python Internal DSL
This project’s back-end implementation expands on work by

Nikola Skoric [32] (which itself was expanding on work by

Daniel Zappala of Brigham Young University) who has created

a GEDCOM parser which implements a subset of the GEDCOM

5.5 specification. Expanding on an existing GEDCOM parser

saved time in picking the tags to implement and implementing

them. This parser allows us to the the GEDCOM information

and ingest it into an object oriented language representing it as

a graph stored within a dictionary. This back end forms our se-

mantic model of the family tree area, this semantic model can

perform all our supported tasks in our domain even without the

use of our front end DSLS.

The front-end DSLs have been created to allow sub-domains of

genealogy to have a distinct DSL each which use the dominant

data type of that sub domain as the basis for actions with sub-

domain specific jargon. Doing this allows us to work around the

essence of each sub-area for example the traversal DSL is based

around a tree and the family tree DSL is based around individuals

and families. You can use the jargon of a family tree or data

type tree in these DSLs interchangeably because the difference

between in the DSLs is merely the users framing because the

underlying representation is the same.

The DSLs are intended to be used within the python interpreter

so the user can receive feedback as they program. The DSLs

can also be used to create python scripts for re-use (for example

doing common operations on multiple files at different times)

or writing a new program or language as a level of abstraction

above these DSLs. An example of a simple further level of ab-

straction over these DSLs such as a check box GUI are useful

for people who do not wish to program at the expense of depth

of expression. An interesting further level of abstraction would

be a visual family tree manipulation language designed towards

touch screens because it could provide intuitive manipulation of

family trees which requires no computing knowledge at all.

As this project has been built on top of an existing GEDCOM

parser project the handling of additional known and emerging

data formats isn’t ideal to implement. This implementation de-

cision was an error at the start of the project which cannot be

changed without re-writing the projects software. Using parsing

technology such as Pyparse or funcparlib to filter GEDCOM data

into a custom made, extensible model for the area of genealogy

would have been a better solution because further work could be

done with other back-end models and different input/output data

types.

GEDCOM files store genealogy data using a lineage linked data

format, this forms one or more graphs containing all the nodes.

Order within the file itself is insignificant as the people and fam-

ilies are identified using reference tags.

The storage of the data in python is inherited from Nikola Sko-

14 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

ric’s parser which this project builds upon. GEDCOM files are

stored as individual lines which contain all the data and as con-

taining objects for people and families which serve as encapsu-

lating references.

5 Discussion
There are a number of advantages of using a DSL over that of

using a model directly. Given that software reuse through a se-

mantic model (in this case a framework) is beneficial because of

the inherent benefits of software reuse we can ask: as a seman-

tic model can be used directly, why is using a DSL beneficial.

The theory behind using a DSL is to improve the programmers

leverage on a certain domain, whereas the semantic model is

merely designed to encapsulate business logic and facilitate soft-

ware reuse. The separation of a back end model and a front end

DSL aids the maintainability and scale-ability of the solution.

This projects DSLs can provide a case study to this question.

Determining a qualitative measure such as leverage on a domain

is a difficult task and has been tackled by many authors. A quan-

titative method of grading code is lines of code, they’re issues

with this method although for these purposes it is a viable indi-

cation [15–17]. The Lines of code metric can only be considered

viable if both examples are written in good faith to be the most

appropriate code for the task. For example not splitting state-

ments into several lines to effect results or vice versa.

Traditionally genealogy data has been dealt with through word

of mouth and paper records. The growing adoption of digital

storage has opened up the question for how can we digitally store

and manipulate genealogy data with at least the same amount

of expression, compatibility and longevity as the previous paper

records. To challenge this we must ask: where does paper excel

and fail and how can a digital system improve upon the current

situation.

Paper records are extremely flexible because the owner has com-

plete control of what to write without needing any skills aside

from reading and writing. This also leads to a problem because

with flexibility comes increased chance for non-standardised, il-

legible or inconsistent records. Paper is also a long term storage

solution depending on the type of paper used, environment it’s

stored in and the organisation of the storage system. (MORE)

The main candidates for digital user interfaces are:

• Direct file format editing e.g. GEDCOM

• Text based programmatic editing e.g. through a program-

ming language

• Graphical editing e.g. manipulating a visualisation of a tree

• Form based applications e.g. GRAMPS

• Web based applications e.g. familysearch.org

These different strengths and weaknesses mean different audi-

ences can benefit from different user interfaces. For example

for quick viewing and editing of genealogy data applications are

suitable for all audiences including those without programming

knowledge, for more complex or repetitive tasks then a program-

ming language can save time, effort and reduce mistakes. The

benefit of the domain specific language over a semantic model

approach we have taken in this project is different forms of user

interface can all work on the same model. This means once you

have spent the time developing the DSL developing graphical or

form based interfaces above this DSL could be faster and cross-

compatible with code written in the DSL.

6 Conclusion
In summary the intent-level communication lets the domain ex-

pert communicate in the language of the domain and their in-

tention to be automatically moved to the implementation level

by the DSL environment. We have found this reduces the time to

implement manipulations, analysis and traversals of a GEDCOM

file in relation to directly using the GEDCOM files or writing

your own algorithms in python directly.

Using an internal DSL allows the project to nativity inter-operate

with existing python libraries. This would be useful if for ex-

ample the manipulation DSL was used with modifications per-

formed by some existing graph analysis library.

The DSLs created for this project can be used as the backbone

of future projects to reduce their workload. This goes with the

extensible software philosophy of kernel and configuration being

separate to allow malleable, reliable software. A future project

in the genealogy DSL area could be a visual DSLs for modifying

family trees. This project would be angled towards the applica-

bility of visual DSLs where the domain especially lends itself

to tactile manipulation and a case study for the use of a domain

specific language to aid in the creation of another domain spe-

cific language in the same software family.

A possible future project could investigate the related area of

graph-oriented DSLs, this could be considered a level of abstrac-

tion up from this project which focus a certain sub domain of

graphs (family trees).The graph domain is exciting because of

current developments in the graph database community bring-

ing new, difficult problems to be solved into the space. Example

projects could be graph manipulation languages, graph database

languages and quantitative experiments based around these lan-

guages.

We believe the software engineering approach of developing

DSLs that implement ideas embodied in models has consider-

able potential, and that this potential has not yet been widely

exploited for many applications domains, particularly those with

complex underpinning features.

References
[1] Allen, J.: Gedom(future direction) announced by family history

(May 1998), https://listserv.nodak.edu/cgi-bin/
wa.exe?A2=ind9805A&L=GEDCOM-L&P=R2&I=-3&T=0

[2] Baker, P.: How ancestry.com uses big data. Fierce Big

Data (2014), http://www.fiercebigdata.com/story/
how-ancestrycom-uses-big-data/2014-08-04

[3] Burton, J.: Genealogy issues paper. In: AITSIS Workshop on Ge-

nealogies (2002)

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 15

ISBN: 1-60132-446-4, CSREA Press ©

[4] Cong, J., Sarkar, V., Reinman, G., Bui, A.: Customizable

domain-specific computing. IEEE Design & Test of Computers

March/April, 6–14 (2011)

[5] Czarnecki, K., Eisenecker, U.W., Glück, R., Vandevoorde,

D., Veldhuizen, T.L.: Generative programming and active li-

braries. In: Selected Papers from the International Seminar

on Generic Programming. pp. 25–39. Springer-Verlag, London,

UK, UK (2000), http://dl.acm.org/citation.cfm?
id=647373.724187

[6] Czarnecki, K., O’Donnell, J.T., Striegnitz, J., Taha, W.: Dsl imple-

mentation in metaocaml, template haskell, and c++. In: Domain-

Specific Program Generation. pp. 51–72 (2003)

[7] Dagand, P.E., Baumann, A., Roscoe, T.: Filet-o-fish: practical

and dependable domain-specific languages for os development.

In: Proceedings of the Fifth Workshop on Programming Lan-

guages and Operating Systems. pp. 5:1–5:5. PLOS ’09, ACM,

New York, NY, USA (2009), http://doi.acm.org/10.
1145/1745438.1745446

[8] Doty, D., Patitz, M.J.: A domain-specific language for program-

ming in the tile assembly model. In: Proc. Fifteenth Int. Meeting

on DNA Computing and Molecular Programming. pp. 8–11 (Mar

2009)

[9] Fowler, M.: Domain-Specific Languages. No. ISBN 0-321-71294-

3, Addison Wesley (2011)

[10] de Geest, G.: Building a framework to support Domain-Specific

Language Evolution using Microsoft DSL Tools. Master’s thesis,

Software Engineering Research Group, Delft University of Tech-

nology (2008)

[11] de Geest, G., Savelkoul, A., Alikoski, A.: Building a framework

to support domain-specific language evolution using microsoft dsl

tools. In: Proc. 7th OOPSLA Workshop on Domain-Specific Mod-

eling (DSM’07) (2007)

[12] de Geest, G., Vermolen, S., van Deursen, A., Visser, E.: Gener-

ating version convertors for domain-specific languages. In: Proc.

15th Working Conf. on Reverse Engineering (2008)

[13] Ghosh, D.: Dsl for the uninitiated - domain-specific languages

bridge the semantic gap in programming. Communications of the

ACM 54(7), 44–50 (2011)

[14] Guenter, B., Nehab, D.: Neon: A domain-specific programming

language for image processing. Microsoft Tech Report MSR-TR-

2010-175, Microsoft Research (2010)

[15] Hawick, K.A.: Engineering domain-specific languages for com-

putational simulations of complex systems. In: Proc. Int. Conf. on

Software Engineering and Applications (SEA2011). pp. 222–229.

No. CSTN-123, IASTED, Dallas, USA (14-16 December 2011)

[16] Hawick, K.A.: Engineering internal domain-specific language

software for lattice-based simulations. In: Proc. Int. Conf. on Soft-

ware Engineering and Applications. pp. 314–321. IASTED, Las

Vegas, USA (12-14 November 2012)

[17] Hawick, K.A.: Fluent interfaces and domain-specific languages

for graph generation and network analysis calculations. In:

Proc. Int. Conf. on Software Engineering (SE’13). pp. 752–759.

IASTED, Innsbruck, Austria (11-13 February 2013)

[18] Hemel, Z.: Methods and Techniques for the Design and Imple-

mentation of Domain-Specific Languages. Ph.D. thesis, Delft Uni-

versity of Technology (2012), iSBN 978-90-8570-794-3

[19] Husselmann, A.V., Hawick, K.A.: Automatic high perfor-

mance structural optimisation for agent-based models. In: Proc.

14th Int. Conf. on Software Engineering Research and Prac-

tice (SERP’14). pp. 1–7. WorldComp, Las Vegas, USA (21-

24 July 2014), http://www.hull.ac.uk/php/466990/
csi/reports/0010/csi-0010.html

[20] Husselmann, A.: Data-Parallel Structural Optimisation in Agent-

Based Modelling. Ph.D. thesis, Computer Science, Massey Uni-

versity, Albany, North Shore, New Zealand (May 2014)

[21] Johnson, P.: Gedcom 1.19 (August 2013), https://
metacpan.org/pod/Gedcom

[22] Jones, T.: Ftw gedcom (March 2009), http://www.
tamurajones.net/FTWGEDCOM.xhtml

[23] Karlsch, M.: model-driven framework for domain specific lan-

guages demonstrated on a test automation language. Master’s

thesis, Hasso-Platner-Institute of Software Systems Engineering,

Potsdam, Germany (2007)

[24] Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling

Full Code Generation. Wiley (2008)

[25] Kim, N.W., Card, S.K., Heer, J.: Tracing genealogical data with

timenets. In: Proceedings of the International Conference on Ad-

vanced Visual Interfaces. pp. 241–248. ACM (2010)

[26] Ledford, H.: Genome hacker uncovers largest-ever family tree.

Nature (October 2013), http://www.nature.com/news/
genome-hacker-uncovers-largest-ever-family-\
\tree-1.14037

[27] Lengauer, C., Batory, D., Consel, C., Odersky, M. (eds.): Domain-

Specific Program Generation. No. 3016 in LNCS, Springer (2003),

ISBN 3-540-22119-0

[28] Martin, J.: Fourth Generation Languages: Principles. Pretice Hall

(1985)

[29] Sadilek, D.A.: Prototyping and simulating domain-specific lan-

guages for wireless sensor networks. Tech. rep., Humboldt-

Universitat zu Berlin, Institute for Computer Science (2007)

[30] Simonyi, C.: The death of computer languages, the birth of inten-

tional programming. Tech. rep., Microsoft Research (1995)

[31] Singer-Villalobos, F.: Computer scientists at ut austin crack

code for redrawing bird family tree. Texas Advanced Comput-

ing Center (2014), https://www.tacc.utexas.edu/-/
computer-scientists-at-ut-austin-crack-code\
\-for-redrawing-bird-family-tree

[32] Skoric, N.: simplepyged (February 2014), https://github.
com/dijxtra/simplepyged

[33] Sprinkle, J., Karsai, G.: A domain-specific visual language for

domain model evolution. Journal of Visual Languages and Com-

puting 15, 291–307 (2004)

[34] Taha, W.: Domain-specific languages. In: Pro. Int. Conf. Com-

puter Engineering and Systems (ICCES). pp. xxiii – xxviii (25-27

November 2008)

[35] Veale, K.J.: A doctoral study of the use of internet for genealogy.

Historia Actual Online 7 pp. 7–14 (2009)

[36] Voellmy, A., Agarwal, A., Hudak, P., an Sam Burnett, N.F.,

Launchbury, J.: Don?t configure the network, program it! domain-

specific programming languages for network systems. Tech. Rep.

YALEU/DCS/RR-1432, Yale University, USA (July 2010)

[37] Wetmore, T.: The lifelines programming subsystem and re-

port generator (2005), http://lifelines.sourceforge.
net/manual.3.0.39/ll-reportmanual.html

[38] Wilson, R.: Graph-based remerging of genealogi-

cal databases. In: Workshop on Technology for Fam-

ily History and Genealogical Research. vol. 1 (2001),

http://dagwood.cs.byu.edu/fht/workshop01/fht2001prog.php

http://dagwood.cs.byu.edu/fht/workshop01/final/Wilson.pdf

[39] Zschaler, S., Kolovos, D.S., Drivalos, N., Paige, R.F., Rashid,

A.: Domain-specific metamodelling languages for software lan-

guage engineering. In: Proc. Software Language Engineering

(SLE 2009). LNCS, vol. 5969, pp. 334–353 (2009)

16 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

