
Digital Forensic Analysis of Web-Browser Based Attacks

Sally M. Mohamed1, Nashwa Abdelbaki1, and Ahmed F. Shosha1
1School of Communication and Information Technology, Cairo, Egypt

Abstract— In recent years, attacks that target browsers’
vulnerabilities have increased significantly. An innocent user
may lure to access untrusted website and malicious content
passively downloaded and executed by his/her web browser;
this attack vector known as, Drive-by-Download attack.
Systems and security researchers addressed this attack from
different perspectives. Several techniques and tools were
introduced to detect and prevent Drive-by-Download at-
tack; however, few research addresses the browser forensics
perspectives to (1) identify traces (2) reconstruct the exe-
cuted events of a downloaded malicious content, to assist
the digital forensic investigation process. In this paper,
digital forensic method is introduced to investigate a web
browser subject to Drive-by-Download attack. A Proof-of-
Concept implementation based on Firefox browser-extension
was developed to inspect and analyze malicious URLs that
host malicious executable. The developed system was tested
using 55 malicious web pages and successfully identified the
digital evidence of the attack. 77% of the identified evidence
were artifacts that we believe it could assist forensic inves-
tigator to determine if web-browser or a system subject to
examination is compromised or not, and the indications of
compromises.

Keywords: Web Browser forensics, JavaScript based attack,

Drive-By-Download, Malware, Postmortem Analysis

1. Introduction

Nowadays, users and corporates are more and more

connected to the web. A user can access his sensitive

business/non-business applications using a web-browser. The

web browsers, however, are complex software that developed

using various technologies and have to process different

file formats and contents that may be vulnerable or contain

malicious code. On the other hand, cybercriminals under-

stand that the user is the weakest link in the security chain,

and a higher possibility to a successful attack. That’s why

attackers are trying to exploit vulnerabilities in web-browsers

or luring users to visit malicious websites. In a typical

Drive-by-Download attack, an innocent user is redirected to

malicious web page, commonly denoted as (landing site1)

1Landing site: page contains the shellcode (small binary payload) that
will exploit vulnerability in the user’s browser/plug-in.

[1]. This page contains code (often written in JavaScript2),

that exploits a browser’s vulnerability; browser’s installed

plug-ins or insecurely designed APIs. If succeeded, the

exploits will download a malware from a malicious site3 into

the victim’s machine. Usually a Drive-by-Download attack is

developed for a specific vulnerability in a specific browser’s

version, so a common initial activity in this attack vector

is reconnaissance and fingerprinting the web-browser meta-

data. An embedded script will attempt to collect information

about the browser type, version, language, installed plug-ins

and the installed operating system. Based on the collected

information a malicious shell code will download the ap-

propriate exploit or it may behave in a completely benign

manner if, i.e. an analysis environment detected [2].

In order to understand the anatomy of the attack, the

infected machine’s web browser has to be forensically

examined. The Browser Forensics is an emerging topic of

the digital forensic science that refers to the process of

extracting and analyzing the web-browsers artifacts and the

user’s browsing activities for forensic investigation purposes

[3]. It is a technology-dependent domain that focuses on

the most popular and commonly used web-browsers, i.e.

Chrome browser developed by Google, Mozilla’s Firefox

browser and Internet Explorer by Microsoft, Safari browser

developed by Apple Inc; some less commonly used browsers

may also be considered, such as Text-Based web-browser i.e.

Lynx Viewer. These browsers store a significant amount of

data about the user’s activities over the Internet if it’s used

in its normal mode and less data may also be collected if

user opt to browse in the private browsing mode [6][7]. The

data provided by the web-browsers are not exactly the same

[8]. In order to collect these data, one has to consider the

following:

• How a web-browser stores data and in which format?

• What are the minimum basic information that can be

found in each browser?

• What are the additional and relative information pro-

vided by each browser?

All the major browsers would contain information about

the browsing history, web applications’ cache, web cookies,

2JavaScript: is a portable language(once written, it can be executed on
any browser with JavaScript support). JavaScript attracts both developers
and attackers by its dynamic and flexible features, that’s why it’s so popular
and most Drive-by-Download attacks are implemented using it.

3Malicious site: page contains the malware downloaded by the shellcode.
Often the browser will be targeted by a chain of redirection operations
before getting to the malicious site.

Int'l Conf. Security and Management | SAM'16 | 237

ISBN: 1-60132-445-6, CSREA Press ©

user bookmarks, form completion data, stored passwords and

many more. For example, Mozilla’s Firefox and Google’s

chrome use a SQLite database to store these data, while

Microsoft’s IE uses files (like index.dat, cache and cookies

files) to store it. Additionally, a considerable amount of data

can also be found in the installed browser’s extensions4.

Although these browsers store a lot of data about the

user’s activities over the Internet, still a digital forensic

investigation process is required to reconstruct the browser

activities (i.e. executed code from a URL, downloaded

resources, etc) resulted after accessing a malicious URL.

To reconstruct the attack executed events and analyze its

actions, we developed a system using Mozilla Debugger

API to monitor, log and debug the details of an executed

malicious JavaScript code subject to investigation. Output

data after analyzing a list of digital forensics evidence are

produced based on the following categorization:

• Volatile Evidences: non long lasting digital evidences

that are residual in a system CPU, processor caches,

and/or system memory.

• Non-volatile Evidences: digital evidences that are

residual on the file system.

In summary, the contributions of this paper are defined as

follows:

1) Digital forensic analysis methodology is proposed to

allow forensic examination of Web-browsers artifacts,

mostly enabled by executing malicious JavaScript code

embedded in a malicious Web page.

2) A Proof-of-Concept Implementation of a system based

on Firefox browser extension that outputs a digital

forensic trace file for the executed JavaScript code.

That includes, a detailed information about the volatile

and non-volatile forensic evidences resulted from the

malicious JavaScript code execution.

The remainder of this paper is structured as follows: Sec-

tion Two presents the related work. Section Three introduces

the proposed forensic analysis methodology. Section Four

presents the preliminary analysis and results. Finally, Section

Five concludes the paper and defines the possible future

work.

2. Related Work
A Drive-by-Download attack could be defined as mali-

cious content downloaded to a user’s system without his/her

consent using the web-browser. This content may be in

different file format, i.e. it can be a malicious Flash file

or embedded action script code [9], malicious pdf with

embedded JavaScript code [10] or obfuscated JavaScript

code in a web page [11] that exploits a vulnerability in

the user’s system. These downloads can be triggered by

different actions, i.e. opening, scrolling or hovering a mouse

4A browser extension is a program that extends the browser functionality
and adds extra features to it.

cursor over a malicious web page or iframe. Academic

and professional researches are commonly focusing on the

detection and prevention techniques of this attack vector. The

currently proposed techniques are mainly based on either

analyzing the properties of a malicious web page URL [1]

or analyzing the JavaScript code (or any other present code)

contained in the web page using a (1) static, (2) dynamic,

or (3) a combination of the both, aka, hybrid analysis, as

follows:

• Static analysis: it uses a set of predefined features

to determine that a malicious pattern or code exists

in particular web page without code execution; several

machine learning techniques and approaches may also

be integrated in the static analysis to (1) define the

set of features required for the analysis, (2) cluster,

classify, and/or determine malicious web pages out of

benign web pages [4] [12]. In this analysis approach,

a low processing overhead may be required; however,

the static analysis generally can be impeded if an

obfuscation and/or encryption methods are employed

[13].

• Dynamic/semi dynamic analysis: It uses a controlled

environment, commonly called Sandboxing, to execute

a subset or all of the possible execution paths for the

embedded code to detect the presence of a malicious

behavior. In this approach, a malicious code can be

monitored accurately through the execution process.

However, additional processing resources may be re-

quired. Attackers are also developing their malicious

code to detect the analysis environment and to execute

a legitimate code to mislead a human analyst or sup-

presses the execution and attempts to self-delete the

code [4] [14].

• Hybrid analysis: It uses a combination of both static

and dynamic analysis for the embedded JavaScript code

to detect Drive-by-Download attacks, and to avoid the

drawbacks associated with each approach. Typically, a

static analysis technique is used as an initial filter to

define the web pages that require a dynamic analysis,

i.e. to determine the code that may defeat the dynamic

analysis. Applying a hybrid analysis may guarantee

accurate detection with minimum resources [4][15].

Other researches focus on analyzing exploit kits that are

used to launch a Drive-by-Download attack [5]. Exploit
kit is a malicious toolkit that exploits security flaws found

in software applications. Using an exploit kit requires no

proficiency or software development background, and it is

equipped with different detection-avoidance methods. This

justifies the notable wide-usage of exploit-kits not only by

skilled cybercriminal, but also, by a non-skilled malicious

users to achieve their purposes. In [20], the authors focuses

on the server side part of a Drive-by-Download attack. They

analyzed the source code for multiple exploit kits using Pexy,

which is a system for bypassing the fingerprinting of an

238 Int'l Conf. Security and Management | SAM'16 |

ISBN: 1-60132-445-6, CSREA Press ©

exploit kit and get all of its possible exploits by extracting

a list of possible URL parameters and user agents that can

be used.

In a recent study presented in [16], the authors pro-

pose a system using Chrome JavaScript Debugger to detect

browser’s extensions that inject malicious ads into a web

page. The study revealed that 24% of ad networks domain

bring malicious ads. These ads will redirect the user to a

landing page, which will finally download a malware/mali-

cious executable into the user’s machine. On the forensics

side, researches alike [6][7][17] focus on private/portable

browsing and how to collect/find the remaining evidences

from the memory and the file system. In [18], the authors

talked about the importance of making an integrated analysis

for different browsers at the same time to understand what

happened. They also propose a tool for constructing a

timeline for the user’s activities. There are a lot of com-

mercial/free browser forensics tools, that give investigators

an insight into user’s browsing history but none of them

deals with the browser memory.

3. The Proposed Digital Forensics
Methodology

In this section, we propose our digital forensic methodol-

ogy to investigate a malicious web page that is suspected

to download and further execute malicious code using a

web browser in a system subject to investigation. A typical

scenario would be: a user notices uncommon activities

occur in his system such as suspicious web advertisements

appeared while surfing the web. Admins in a corporate

network system may notice unusual network traffic inbound

or outbound from the compromised system or visiting a web

server known to host malicious contents. In these cases, a

forensic analyst would perform an examination to the system

to determine indication of a compromise, such as searching

for a URL to malicious web pages in web-browsing history,

a cookie file or a temp file in the Internet storage directory.

If identified, it is crucial for the forensic investigation to

determine what other resources had been downloaded and

executed into the browser from this malicious website.

To approach a forensic analysis for web-browsers subject

to any variant of web-based attacks, our proposed method-

ology consists of the following sequential procedures:

1) Data Gathering: it is the process of accessing the

malicious URL in a setting similar to a compromised

system, to lure the malicious URL to download the

set of resources (content, code, and exploit payload)

similar to those have been downloaded in the system

subject to investigation.

2) Data Analysis: it is the process of executing, de-

bugging the code downloaded from the malicious

URL and producing a forensic trace file for objects,

operations, functions created and/or called from the

code. The trace file is further analyzed to extract all

of the possible forensic evidences that would assist the

investigation.

3) Data Classification: itis the process of classifying the

forensic traces into subsets that could or could not

assist the investigation. For example, traces would be

classified into volatile, non-volatile forensic evidence,

and traces that would not support the investigation,

such as script files embedded by Google-ads that are

almost exist in all websites. These script files may

be downloaded along the malicious content but it is

not relevant to the attack and cannot be considered

in the forensic analysis process. The output from

the classification process not only can be used to

identify evidences in the compromise system, but also,

can be used to develop a signature for the attack to

locate attack traces in other systems in the network

(postmortem analysis).

Figure 1, depicts a visual description for the proposed

forensic methodology.

3.1 Data Gathering
The process of data collection requires simulating the

settings of a compromised system subject to investigation

to avoid downloading and executing code that has never

been executed in the original system subject of the incident.

In this scenario, an assumption has been made that the

user was running a Firefox web-browser. As such, Firefox

Browser Extension was developed to monitor, log, and debug

the downloaded resources after accessing a malicious web

page with a particular attention to the executed embedded

JavaScript code. In the Proof-of-Concept implementation,

Mozilla Debugger API5 was used to develop a browser

extension that outputs a detailed trace file. This trace file logs

and lists the code executed from accessing the page subject

to the forensic investigation. The trace file generated in a

JSON6 file format that includes objects created/accessed/-

modified on the system with details about the stack frames of

the executed code and the execution timestamps. The JSON

object contains the following items:

• Type: a string describing the executed frame (’call’,

’eval’, global’, ’debugger’)

• Class: a string describing the ECMAScript 7 class of

the referent

• Function name: the name of the function whose ap-

plication created this frame (null if this is not a ’call’

frame)

5Mozilla Debugger API: is a debugging interface provided by Mozilla
JavaScript engine "SpiderMonkey", which enables JavaScript code to ob-
serve and manipulate the execution of other JavaScript code.

6JSON: JavaScript Object Notation
7ECMAScript is a trademarked scripting language specification stan-

dardized by ECMA International in ECMA-262 and ISO/IEC 16262.

Int'l Conf. Security and Management | SAM'16 | 239

ISBN: 1-60132-445-6, CSREA Press ©

Fig. 1: A visualization for a web-browser forensics system

• Parameters: An object with the name/value pairs of the

passed parameters to the called function

• URL: The url of the page in which the function have

been called

• Script: The script being executed in this frame

We tested the browser extension using number of real

world malicious URLs (55 malicious web site were ana-

lyzed) collected from public malware databases8.

3.2 Data Analysis
The analysis for the generated trace files requires a

detailed examination for the extracted JavaScript code. We

developed an analyzer using NodeJS9 to search for specific

patterns using regular expressions. We search for patterns of

obfuscation events, encoding/decoding events, checking for

vulnerability events, URL redirection events, downloading

external resources, creating local files on the system, etc.

There are different well-known and commonly used tech-

niques for cybercriminals to use a JavaScript code to perform

malicious actions. For example, to download an external

resource, an attacker may employ one of the following

methods:

• Create a script tag and set the source attribute to the
required downloadable file:

(function() {
var as =
document.createElement(’script’);
as.type = ’text/javascript’;
as.async = true;
as.src =
"xxxd31qbv1cthcecs.
cloudfront.net/atrk.js ";

var s =
document.
getElementsByTagName(’script’)[0];

s.parentNode.insertBefore(as, s);
})();

• Create an image tag with source to a malicious URL:

8www.malwaredomainlist.com/mdl.php, http://www.
malwareurl.com/

9NodeJS is a JavaScript runtime built on Chrome’s V8 JavaScript
engine. Node.js uses an event-driven, non-blocking I/O model that makes
it lightweight and efficient.

var tempImage = new Image();
tempImage.src =
smf_prepareScriptUrl(smf_scripturl)
+ ’action=keepalive;time=’ + curTime;

These different methods were taken into consideration dur-

ing the analysis process. The output from the analyzer shows

the number of occurrence or usage for each event. After this

we transformed the extracted code into a human readable

format, this is by utilizing a web-based services named

JavaScript beautifier10. The extracted code was further ana-

lyzed to get a closer look into each evidence and manually

extract the common patterns between various URLs.

3.3 Data Classification
To avoid providing a forensic analyst with a significant

amount of irrelevant information, data classification and

analysis procedure is a crucial activity for eliminating data

that is not relevant to the case subject to investigation. As

stated in [19], a forensic evidence has to characterize the

following:

1) Admissible in the court

2) Authentic: the evidence proves a specific action in a

specific incident

3) Complete/Exculpatory: can be used to support or re-

fute a user action

4) Reliable: the procedure used for collecting and analyz-

ing the evidence must guarantee the evidence validity

and authenticity

The above characteristics and the aforementioned properties

of the Drive-by-Download attack were considered in the

evidences classification process. If evidence is related to the

examined attack type, it will then be classified as relative

and is further classified into (1) Volatile or (2) Non-volatile

forensic evidence. Other data will be considered as none

related evidences. For example:

• Volatile evidence: i.e. in memory shell-code, encod-

ing/encryption code.

10http://jsbeautifier.org, http://codebeautify.org/
jsviewer

240 Int'l Conf. Security and Management | SAM'16 |

ISBN: 1-60132-445-6, CSREA Press ©

Table 1: Properties list example
Evidence Name Properties
URL redirection domain name, path
Vulnerability check branches depth, vulnerabilities

name
String manipulation string operations, string value and

length
Downloaded resource resource name, source url, resource

type
Created file file name, file path, file type

• Non-volatile evidence: Created file on the system,

downloaded resource, URL redirection with a trace of

the URL in the browser history, etc.

The main reason behind this classification is to ensure that

a forensic analyst would know that a volatile data related

to the investigation may present but not necessary can be

recovered nor reconstructed, and only the identified non-

volatile forensics can be further used to develop an attak

signature. The forensic analyst can then use the generated

attack signature to detect if there is an attack on other

systems.

After manually classified identified evidences, a list of

properties will be extracted based on the evidence type, to

reveal more information about it. Table 1 lists the possible

properties for each evidence based on its type.
In addition, the following code sample for example shows

a cookie file created from one of the analyzed JavaScript
files.

f.cookie = e + "=; expires=
Thu, 01 Jan 1970 00:00:01 GMT;
path=/ " + (t ? "; domain= " + (l("msi ") ?
" " : ". ") + "xxxaddthis.com " : " ")

Most of the analyzed URLs were also checking vulner-
abilities and were trying to create an ActiveX object or
shockwave flash which is an Adobe’s Flash Player built
directly into the browser as shown below.

d = "ShockwaveFlash ";
...d = b[c], -1 < d[r][q]("Shockwave Flash ")
&& n(e = d.description[y]("Shockwave Flash ")
[1]);
....
try {

c = new ActiveXObject(d + ".7 "), e =
c.GetVariable("$version ")

}catch (f) {} if (!e)
try {
c = new ActiveXObject(d + ".6 "), e =
"WIN 6,0,21,0 ",

c.AllowScriptAccess = "always ",
....

4. Experiments and Results
In this section, we present the preliminary results of our

introduced web-browser forensic analysis method. Table 2

demonestrates the categorization for the 55 analyzed URLs.

Table 2: Categorization for the analyzed URLs
Description Number of URLs
Compromised site leads to Angler
Exploit Kit

15

Directs to Exploits 14
Compromised site leads to Exploit
Kit

10

Mass 12
Script.Exploit 2
Exploit Kit 1
Trojan 1

Table 3: Distribution for the downloaded resources
Category Number of files
JavaScript 249
PHP 42
Images 124
CSS 15

To generate the required trace files we accessed each

of the 55 URLs separately using a virtual machine. The

generated trace files were then passed to our developed

analyzer. Figure2 demonstrate the output from the analyzer,

it shows the number of occurance for some searched event

like:

1) Vulnerability checking using ActiveXObject.

2) Vulnerability checking using Shockwave.

3) Downloading resources by assigning the src attribute.

4) Downloading resources using the iframe tag.

5) Created cookie files.

6) Encoding

7) Browser fingerprinting

8) Number of URL redirection

The x-axis represents the analyzed URLs and the y-axis

represents the number of occurance for the searched events.

One notable observation that most of the forensically ana-

lyzed URLs are profiling the users’ behavior and fingerprint-

ing their browsers. URL redirection, downloading external

resources and creating cookie files are the most common

events which are forensic evidences and can be used in our

post mortem analysis.

After beautifying the extracted code we get a closer look

for example into the type of downloaded files and the way

used to download it. Table3 demonstrates the distribution for

the founded files. A visualization for the file distribution is

shown in figure 3
Our experiment showed that we can get a detailed

trace file for any executed malicious JavaScript and if this
JavaScript file tries to execute a php file or load a malicious
ad for example, by creating an iframe and setting the source
attribute to that page we can find traces for that file as shown
in the code below.

iframe.src = iframe_url;
iframe.style.display = "none ";

document.write(’<div id= "slide_up ">
<div id= "close_btn_noCookie ">X

Int'l Conf. Security and Management | SAM'16 | 241

ISBN: 1-60132-445-6, CSREA Press ©

Fig. 2: The Distribution for the searched events

Fig. 3: Files Distribution

</div><iframe id= "su_frame " src=
"xxxpcash.imlive.c../releasese/...

We also use jsunpack-n11 program, which emulates

browser functionality to detect malicious code and we com-

pare the list of JavaScript files analyzed by our Firefox

extension with the files analyzed by it. We consider this

comparison as a benchmark for our gathered data. For 36

URL, our extension has successfully detected 61% of the

JavaScript files detected by Jsunpack-n and detected 24%

of the JavaScript files for the rest of the analyzed URLs. It

also detected and analyzed 54 JavaScript files which were

not detected or mentioned by Jsunpack-n. Our explanation is

that the developed extension only extract script files whose

functions were loaded and executed in memory and those

11Jsunpack-n: is a command-line Javascript unpacker that has more or
less the same features as the web version of Jsunpack

script files have no executed functions and were not loaded in

memory while loading the page especially that most of these

files are responsible for UI interactions like draggable.min.js,

menu.min.js, mouse.min.js and so on.

5. Conclusion & Future Work
Web-based attacks are gaining an increasing momentum

and attention from cyber criminal and security researchers;

alike, i.e. Drive-by-Download attack vector analysis, detec-

tion and prevention. In this paper, we introduce a forensic

analysis method to examine web-browsers artifacts produced

by accessing malicious URLs. A Proof-of-Concept Firefox

Browser extension is developed to enable getting detailed

information about the attack, techniques used to evade the

detection tools, downloaded malicious resources and exe-

cuted malicious code. Digital evidence trace file is output

for each examined URL that contains a set of volatile and

non-volatile forensic evidences that would assist a forensic

analyst in the investigation. Our approach gives a closer look

at the real code executed from the client side. In the future

work, the introduced implementation will be extended to the

different browsers, i.e. Google Chrome and IE.

References
[1] Zhang, J., Seifert, C., Stokes, J.W. and Lee, W., 2011, March. Arrow:

Generating signatures to detect drive-by downloads. In Proceedings of
the 20th international conference on World wide web (pp. 187-196).
ACM.

[2] Egele, M., Kirda, E. and Kruegel, C., 2009. Mitigating drive-by down-
load attacks: Challenges and open problems. In iNetSec 2009âĂŞOpen
Research Problems in Network Security (pp. 52-62). Springer Berlin
Heidelberg.

[3] Ligh, M., Adair, S., Hartstein, B. and Richard, M., 2010. Malware an-
alyst’s cookbook and DVD: tools and techniques for fighting malicious
code. Wiley Publishing.

242 Int'l Conf. Security and Management | SAM'16 |

ISBN: 1-60132-445-6, CSREA Press ©

[4] Jayasinghe, G.K., Culpepper, J.S. and Bertok, P., 2014. Efficient and
effective realtime prediction of drive-by download attacks. Journal of
Network and Computer Applications, 38, pp.135-149.

[5] Kotov, V. and Massacci, F., 2013. Anatomy of exploit kits. In Engi-
neering Secure Software and Systems (pp. 181-196). Springer Berlin
Heidelberg.

[6] Ohana, D.J. and Shashidhar, N., 2013. Do private and portable web
browsers leave incriminating evidence?: a forensic analysis of residual
artifacts from private and portable web browsing sessions. EURASIP
Journal on Information Security, 2013(1), pp.1-13.

[7] Aggarwal, G., Bursztein, E., Jackson, C. and Boneh, D., 2010, August.
An Analysis of Private Browsing Modes in Modern Browsers. In
USENIX Security Symposium (pp. 79-94).

[8] Sonntag, M., Automating Web History Analysis. na.
[9] Van Overveldt, T., Kruegel, C. and Vigna, G., 2012. FlashDetect:

ActionScript 3 malware detection. In Research in Attacks, Intrusions,
and Defenses (pp. 274-293). Springer Berlin Heidelberg.

[10] Laskov, P. and ÅărndiÄĞ, N., 2011, December. Static detection of
malicious JavaScript-bearing PDF documents. In Proceedings of the
27th Annual Computer Security Applications Conference (pp. 373-
382). ACM.

[11] Cova, M., Kruegel, C. and Vigna, G., 2010, April. Detection and
analysis of drive-by-download attacks and malicious JavaScript code.
In Proceedings of the 19th international conference on World wide web
(pp. 281-290). ACM.

[12] Curtsinger, C., Livshits, B., Zorn, B.G. and Seifert, C., 2011, August.
ZOZZLE: Fast and Precise In-Browser JavaScript Malware Detection.
In USENIX Security Symposium (pp. 33-48).

[13] Canali, D., Cova, M., Vigna, G. and Kruegel, C., 2011, March.
Prophiler: a fast filter for the large-scale detection of malicious web
pages. In Proceedings of the 20th international conference on World
wide web (pp. 197-206). ACM.

[14] Ratanaworabhan, P., Livshits, V.B. and Zorn, B.G., 2009, August.
NOZZLE: A Defense Against Heap-spraying Code Injection Attacks.
In USENIX Security Symposium (pp. 169-186).

[15] Rieck, K., Krueger, T. and Dewald, A., 2010, December. Cujo:
efficient detection and prevention of drive-by-download attacks. In
Proceedings of the 26th Annual Computer Security Applications Con-
ference (pp. 31-39). ACM.

[16] Xing, X., Meng, W., Lee, B., Weinsberg, U., Sheth, A., Perdisci, R.
and Lee, W., 2015, May. Understanding Malvertising Through Ad-
Injecting Browser Extensions. In Proceedings of the 24th International
Conference on World Wide Web (pp. 1286-1295). International World
Wide Web Conferences Steering Committee.

[17] Choi, J.H., Lee, K.G., Park, J., Lee, C. and Lee, S., 2012. Analysis
framework to detect artifacts of portable web browser. In Information
Technology Convergence, Secure and Trust Computing, and Data
Management (pp. 207-214). Springer Netherlands.

[18] Oh, J., Lee, S. and Lee, S., 2011. Advanced evidence collection and
analysis of web browser activity. digital investigation, 8, pp.S62-S70.

[19] Kozushko, H., 2003. Digital evidence. online], http://infohost. nmt.
edu/ sfs/Students/HarleyKozushko/Papers/DigitalEvidencePaper. pdf.

[20] De Maio, G., Kapravelos, A., Shoshitaishvili, Y., Kruegel, C. and
Vigna, G., 2014. Pexy: The other side of exploit kits. In Detection of
Intrusions and Malware, and Vulnerability Assessment (pp. 132-151).
Springer International Publishing.

Int'l Conf. Security and Management | SAM'16 | 243

ISBN: 1-60132-445-6, CSREA Press ©

