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Abstract—Data usually takes different shapes and appears
as files, windows, processes’ memory, network connections, etc.
Information flow tracking technology keeps an eye on these
different representations of a data item. Integrated with a
usage control (UC) infrastructure, this allows us to enforce UC
requirements on each representation of a protected data item. To
enable UC enforcement in distributed settings, we need to be able
to track information flows across system boundaries. In this paper
we introduce a state-based information flow model for tracking
explicit flows between systems equipped with UC technology. We
demonstrate the applicability of our approach by means of an
instantiation in the field of video surveillance, where systems
are increasingly accessed via insecure mobile applications. Based
on usage control and inter-system information flow tracking, we
show how video data transmitted from a video surveillance server
to mobile clients can be protected against illegitimate duplication
and redistribution after receipt.

Index Terms—Information flow tracking, explicit flows, infor-
mation flow semantics specification, distributed usage control,
policy enforcement

I. INTRODUCTION

Distributed usage control (DUC) is a generalization of

access control that also addresses obligations regarding the

future usage of data, particularly in distributed settings [1].

UC policies are typically specified via events. Events are

intercepted or observed by so-called policy enforcement points
(PEP) as illustrated in Fig. 1. PEPs forward events to a policy
decision point (PDP), which evaluates them against policies.

The PDP replies with an authorization action, such as allow,
modify, inhibit, and delay, and triggers obligations.

PIP

Data 
corresponding to 
representation R?

Data
PDPPEP

Try [ e(R) ]

 {A,M,I,D} [ e(R) ]

Policy (Data)

Fig. 1. Generic UC Architecture with Information Flow Tracking

Because data usually comes in different representations – an

image can be a pixmap, a file, a leaf in the DOM tree of a web-

site, a Java object, etc.– UC mechanisms have been augmented

with information flow tracking technology [2]. One can then

specify policies not only for specific fixed representations of

a data item, but also on all representations of that data item.

Policies then do not need to rely on events, but can forbid

specific representations to be created, also in a distributed

setting [3]. In other words, information flow tracking answers

the question into which representations within the (distributed)

system monitored data has been propagated.

In order to perform information flow tracking across differ-

ent applications, different layers of abstraction of a system or

across different systems, a multitude of PEPs, each observing

an individual set of information flow-relevant events, has to be

integrated into the information flow tracking system. The so-

called policy information point (PIP) interprets the information

flow semantics of events and accordingly keeps track of new

representations of data being created and of information flows

between representations. By this means, when evaluating an

event concerning a container (such as a file, process, or

window), the PDP can ask the PIP whether this container is

a representation of a protected data item, for which a policy

must be enforced (cf. Fig. 1).

This work is also explicitly motivated by the increasing

number of mobile apps for accessing video surveillance cam-

eras and systems on the market and by the observation that

meanwhile video surveillance is entering highly sensitive areas

such as hospitals and nursing facilities. While these apps facil-

itate the cooperation of control rooms and security personnel

on-site, we observe that in comparison to heavily secured

control rooms the mobile devices being used fall critically

short in terms of security mechanisms for protecting the

sensitive data captured by surveillance systems. Obviously, the

appearance of leaked surveillance footage showing a patient

in an emergency situation on a video sharing portal on the

Internet is in the interest of neither the patient nor the hospital.

We thus instantiate our approach for protecting video data

provided by a video surveillance server against illegitimate

duplication and redistribution by mobile clients after receipt.

We address the following problems: We generalize an

approach to inter-layer information flow tracking introduced

by Lovat [4] to additionally cover inter-system flows so as to

enable monitoring of flows of protected data between systems

equipped with UC enforcement mechanisms. This approach

is suitable for proof-of-concept implementation since it is

lightweight. Yet it is prone to over-approximations requiring

an extension with monitoring technology of higher precision

in future work (cf. VI). Plugging new PEPs into existing
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UC infrastructures requires information flow semantics of the

intercepted events to be deployed at the PIP. We introduce

a generic set of primitives for specifying information flow

semantics in a uniform syntax to be used by developers of

monitors (PEPs). These primitives are derived from analyses of

various scenarios in which information flow tracking has been

instantiated for UC, such as [2], [5], [6]. Across system bound-

aries, information flows have to be handled asynchronously,

triggered by different events on the particular machines. For

this, we specify a protocol for processing inter-layer and inter-

system flows based on our semantics description primitives.

We thus facilitate UC enforcement on the granularity of

representations in distributed settings.

This work is structured as follows. After explaining the

formal information flow model of Harvan and Pretschner [2] in

Sec. II, we introduce our information flow semantics primitives

in Sec. III. In Sec. IV we extend the model so as to allow

uniform processing extension of inter-layer and inter-system

information flows. We present an instantiation of our approach

for protecting video data streamed to a client on behalf of the

originating video surveillance server in Sec. V. Eventually we

discuss related work in Sec. VI and conclude in Sec. VII.

II. INFORMATION FLOW MODEL

Our approach to information flow modeling is based on

works of Harvan and Pretschner [2], [5]. An information flow

model is a transition system that captures the flow of data

throughout a system. Transitions of the state are triggered

by events that are observed by monitors, such as PEPs of

a UC infrastructure. A system’s information flow tracking

component, the PIP, interprets events given information flow

semantics provided by monitors when being deployed.

The state of the information flow model comprises three

aspects. It reflects which data units are in which container,

where a container may be a file, a window in the graphical

user interface, an object in a Java virtual machine, a network

connection, etc. The state also captures alias relations between

containers, which express that a container is implicitly updated

whenever some other container is updated. This happens, for

instance, when processes share memory. Finally, the state

comprises different names that identify a container, e.g., a file

may not only be accessible by its file name, but also by a file

handle.

A. Formal Model.

As introduced by Pretschner and Harvan in [2], [5] the

formal information flow model is a tuple (D,C, F,Σ, E,R).
D is the set of data for which UC policies exist. C is

the set of containers in the system. F is the set of names.

Σ = (C → 2D)× (C → 2C)× (F → C) is the set of possible

states, which consists of the storage function s : C → 2D,

the alias function l : C → 2C , and the naming function
f : F → C. Chains of aliases are addressed using the reflexive

transitive closure l∗ of the alias function. The initial state of

the system is denoted as σI ∈ Σ, where the state of the storage

function s is given by the initial representation of a data item

a UC policy refers to. Events E are observed actions that

trigger changes of the storage function s, the alias function l,
or the naming function f . These changes are described in a

(deterministic) transition relation R ⊆ Σ×E×Σ. We describe

updates to the functions s, l, and f using a notation introduced

in [2].

We describe updates to the functions s, l, and f using a

notation introduced in [2]: Let m : S → T be any mapping

and x ∈ X ⊆ S a variable. Then m[x ← expr]x∈X = m′

with m′ : S → T is defined as

m′(y) =

{
expr if y ∈ X

m(y) otherwise.

III. GENERIC PRIMITIVES FOR INFORMATION FLOW

SEMANTICS

For any PEP, R is specified in an information flow seman-
tics, which the PEP deploys on the PIP when being added

to a UC infrastructure. For each event intercepted by a PEP,

an information flow semantics specifies the state changes

of the functions s, l, and f using generic primitives that

we introduce in the following. When processing an event

according to an information flow semantics (e.g., Listing 2),

the PIP picks the action description for the event, converts

event parameters in order to match the signatures of the

contained semantics primitives (i.e., it implicitly applies f or

s on a given parameter: F
f−→ C

s−→ D), and finally modifies

its state according to the given primitives.

A. Primitives for Updating the Storage Function

The storage function keeps track of representations, i.e.,

mappings between data units and containers. We employ it

for modeling the actual information flows.

flow(container c, data {di}1≤i≤n∈N) :

s[c ← s(c) ∪ {di}]
(1)

The flow primitive (cf. Eq. 1) indicates an information flow

of a set of data units {di}1≤i≤n∈N into the container c. This

primitive is used to model that a process creates a new file, a

child process, or that a file is copied. Data will then also flow

into containers of processes that have a read handle on this

file.

flow_to_rtc(container c, data {di}1≤i≤n∈N) :

∀t ∈ l∗(c) : s[t ← s(t) ∪ {di}]
(2)

The flow_to_rtc primitive (cf. Eq. 2) models a flow into

containers of the reflexive transitive closure l∗(c) of container

c. It is used for processes reading from a file, writing to a file,

or getting data from the system clipboard.

clear(container c) :

s[c ← ∅]
(3)

We employ the clear (cf. Eq. 3) primitive whenever a con-

tainer is deleted, such as when deleting a file, closing a

window, killing a process, etc.
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B. Primitives for Updating the Alias Function

The alias function maintains relations between containers

that lead to implicit flows. Whenever data items flow to

container cfrom, they also flow into the aliased container cto.

create_alias(container cfrom, container cto) :

l[cfrom ← l(cfrom) ∪ cto]
(4)

The primitive create_alias shown in Eq. 4 adds an unidirec-

tional alias from container cfrom to container cto to the alias

function of cfrom. We use unidirectional aliases for memory-

mapped file I/O, if a process has read-only access to the file

(cf. mmap system call on POSIX-compliant UNIX and Linux

systems).

create_bidir_alias(container cfrom, container cto) :

l[cfrom ← l(cfrom) ∪ cto],

l[cto ← l(cto) ∪ cfrom]
(5)

We add bidirectional aliases using the primitive

create_bidir_alias (cf. Eq. 5). Examples to be modeled

with bidirectional aliases include creating a new window, or

a process having read and write access to a file.

rm_alias_locally(container cfrom, container cto) :

l[cfrom ← l(cfrom) \ cto]
(6)

The primitive rm_alias_locally removes an unidirectional

alias from cfrom to cto, e.g., aliases added using the primitive

create_alias (cf. Eq. 4).

rm_alias_globally(container cto) :

∀c ∈ C : l[c ← l(c) \ cto]
(7)

In some cases we also need to remove an unidirectional alias

from all containers in C, e.g., in case c is a file, which is

deleted. For this, we employ the primitive rm_alias_globally
as shown in Eq. 7.

rm_bidir_alias_locally(container cfrom, container cto) :

l[cfrom ← l(cfrom) \ cto],
l[cto ← l(cto) \ cfrom]

(8)

Bidirectional aliases as added using the primitive

create_bidir_alias (cf. Eq. 5) are removed using the

primitive rm_bidir_alias_locally as shown in Eq. 8.

clear_aliases(container c) :

l[c ← ∅]
(9)

clear_aliases removes all aliases with the given container as

source from the state of the alias function (cf. Eq. 9), e.g., to

clean up if a container is deleted.

C. Primitives for Updating the Naming Function

The naming function maps different names to the same

container, e.g., files can be addressed via file names and

also via file handles or hard links; in the Windows operating

system, we can identify a window via a window handle and

also via a window name.

add_naming(naming n, container c) :

f [n ← c]
(10)

A new name n for a container c is added using the primitive

add_naming (cf. Eq. 10) and removed via rm_naming:

rm_naming(naming n) :

f [n ← nil]
(11)

IV. INTER-LAYER AND INTER-SYSTEM FLOWS

So far, our primitives do not capture inter-layer and inter-
system information flows. When using the term inter-layer,

we refer to flows between different layers of abstraction, e.g.,

between an application and the operating system. Inter-system
flows take place whenever data is exchanged between systems

over a network connection. We introduce an information flow

model extension for monitoring such flows, which requires that

an event indicating an incoming flow is matched to a preceding

outgoing event on another system or layer of abstraction.

A. Extended Information Flow Model

As an example, consider the transfer of video data from

a streaming server to a client. Assume further that both,

server and client, are equipped with PEPs that are capable of

intercepting outgoing respectively incoming events as well as

with local UC infrastructures. The server side PEP observes

an outgoing event indicating a flow from a local container

to another container representing the network connection to

the client. When receiving data of the video stream via this

connection, the client side PEP observes a related incoming

event. Finally, when either the client disconnects from the

video stream or the server closes the connection, a third event

is observed, which terminates the flow. Initially, these events

are independent from the perspective of both PIPs. Detecting

an inter-system flow requires that both events are interpreted

at both PIPs requiring according remote information flow

semantics, which are provided by the respective PEPs and

exchanged between PIPs.

Within an information flow semantics a so-called scope
specification indicates that an event is related to an event

on another system (or layer of abstraction). The particular

events are matched to a scope by means of a scope name
parameter, which is a label for a flow mutually known by

two systems (or layers of abstraction). We thus extend the

information flow model with a set of scopes SCOPE, and

the state with the following two mappings: The intermediate
container function ι : SCOPE → C maps each scope to

an intermediate container cι ∈ C. The scope state function ς :
SCOPE → {ACTIVATED, DEACTIVATED} indicates currently

open scopes. Intermediate containers of different systems are
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distinct containers, which are mapped on each other by means

of scopes and virtually represent the connection. Each event

belongs to at most one inter-layer (XLAYER) or inter-system

(XSYSTEM) scope. In the initial state σI of the system there

is one intermediate container cι for each scope ι and ς(sc)
is DEACTIVATED for all sc ∈ SCOPE. Three attributes of a

scope define how the model state is modified when processing

an according event:

XSCOPE : Σ× E → SCOPE ×BEHAV IOR

×DELIMITER× INTER

DELIMITER = {OPEN, CLOSE, NONE}
BEHAV IOR = {IN, OUT, INTRA}
INTER = {XLAYER, XSYSTEM}

The DELIMITER of a scope describes whether an event

indicates a new XLAYER or XSYSTEM flow. The delimiter

OPEN changes the state of the scope within which the event

is processed to ACTIVATED. The BEHAV IOR describes

whether the event indicates an outgoing flow to (OUT), or an

incoming flow (IN) from another system or layer of abstrac-

tion. The BEHAV IOR of a scope affects the processing

of semantics primitives when handling XLAYER/XSYSTEM

flows as will be described in Sec. IV-C (INTRA is the default

behavior, i.e., a flow within a layer of abstraction, which

does not affect the interpretation of primitives). INTER
differentiates between XSYSTEM and XLAYER flows.

B. Selecting the Appropriate Scope Semantics for an Event

For each event type a PEP’s information flow semantics

contains action descriptions, which specify its interpreta-

tion in terms of information flow using semantics primitives

(cf. Sec. III). An action description also includes an ordered

list of all scope specifications that possibly apply for this

event type.The event notification only contains the scope (as a

name-value pair, where the value is the scope itself). When

processing an event, the PIP needs to check, in the given

order of the action description, which scope specification is

applicable. For each scope specification, the PIP evaluates the

following three conditions:

1) Does the scope name in the scope specification match the

name of a parameter provided in the parameter list of the

event notification?

2) If DELIMITER = OPEN in the scope specification:

scope deactivated?

3) If DELIMITER = NONE or DELIMITER =
CLOSE: scope activated?

If only one of the conditions is not fulfilled, the respective

scope is skipped. The ordered list is processed until the

matching scope specification XSCOPE is found.

C. Scope Processing

The transition relation R is modified when processing a

scope specification. Algorithm 1 describes how R is modified

to obtain Rmod, i.e., the transition relation for XLAYER or

XSYSTEM flows. R[left
subst.⇐=== right] denotes that the term

of R on the left is substituted with the term on the right in

Rmod. If the delimiter of the scope equals OPEN, the scope

is activated (cf. line 6); if the delimiter equals CLOSE, the

scope is deactivated after handling the event (cf. line 17). In

between (cf. line 8 ff.), depending on the scope’s behavior,

either the left argument (target) (cf. line 12 ff.) or the right

argument (source) of the storage function primitives flow
or flow_to_rtc is substituted with the scope’s intermediate

container. Rmod is then applied on the state σ (cf. line 16).

In case of an XSYSTEM flow, the PIP needs to enable its

Algorithm 1 Processing an XSYSTEM scope
1: procedure Rinter(σ, e)
2: (scope, behav, delim, inter) ←− XSCOPE(σ, e)
3: if scope �= ∅ then
4: ic ←− ι(scope)
5: Rmod ←− R
6: if delim = OPEN then
7: σ ←− ς[scope ← ACTIVATED]

8: if behav = OUT then
9: Rmod ←− Rmod

[
s[c ← s(c) ∪ {di}]

subst.⇐=== s[ic ← s(ic) ∪ {di}]
]

10: Rmod ←− Rmod

[∀t ∈ l(c) : s[t ← s(t) ∪ {di}]
subst.⇐=== ∀t ∈ l(ic) : s[t ← s(t) ∪ {di}]

]

11: Rmod ←− Rmod

[∀t ∈ l∗(c) : s[t ← s(t) ∪ {di}]
subst.⇐=== ∀t ∈ l∗(ic) : s[t ← s(t) ∪ {di}]

]

12: if behav = IN then
13: Rmod ←− Rmod

[
s[c ← s(c) ∪ {di}]

subst.⇐=== s[c ← s(c) ∪ s(ic)]
]

14: Rmod ←− Rmod

[∀t ∈ l(c) : s[t ← s(t) ∪ {di}]
subst.⇐=== ∀t ∈ l(c) : s[t ← s(t) ∪ s(ic)]

]

15: Rmod ←− Rmod

[∀t ∈ l∗(c) : s[t ← s(t) ∪ {di}]
subst.⇐=== ∀t ∈ l∗(c) : s[t ← s(t) ∪ s(ic)]

]

16: σ ←− Rmod(σ, e)
17: if delim = CLOSE then
18: σ ←− ς[scope ← DEACTIVATED]
19: σ ←− s[ic ← ∅]

20: else
21: σ ←− R(σ, e)

22: return σ

remote counterpart to process the given event. As described in

Sec. V-A this is achieved by forwarding a remote information

flow semantics to the remote PIP.

V. INSTANTIATION

We implemented XSYSTEM information flow tracking for a

scenario concerning video data provided by a streaming server.

It enables us to enforce the UC requirement of preventing

redistribution of the video data after receipt on client systems,

such as mobile apps for video surveillance systems as men-

tioned earlier. For this, we need to (i) deploy an according

policy at the UC infrastructure of the client, (ii) track the

flow of video data from the server to the client, and (iii)

monitor the video data at the client so as to inhibit further

representations of the data to be created. We achieve (i) and

(ii) in the following protocol steps:

1) Intercept an event signaling the outgoing data at the server

side PEP

2) Evaluate the event against an according policy at the

server side PDP

3) Deploy a policy for the data at the client side PDP

4) Process the event at the server side PIP
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5) Create a new representation of the video data at the client

side PIP

6) Process the outgoing event also at the client side PIP

7) Intercept an event signaling the incoming data at the client

side PEP

8) Evaluate the event at the client side PDP

9) Process the event at the client side PIP

10) Intercept an event signaling close of the connection at the

server side PEP

11) Process the event at the server side PIP

12) Process the close event also at the client side PIP

We explain the details of the protocol steps by means of Fig. 2,

where an additional component, a system’s policy management
point (PMP), takes care of policy shipment and deployment.

PEPPDPPIPPMPPMP

True

deployPolicy(Policy)

True

Actual data transfer

PEP PDP PIP

Initiation of Inter-System Information Flow

notifyEvent([outgoing, C1, L1])

Allow

evaluate(L1, Data)

Boolean

executeAction(dataLeavesSys, Data)

subscribeForEvent(incoming)

PolicyID

deployPolicy(Domain, Policy)

True

notifyEvent([outgoing, C1, L1])
lookupPIP(Domain, IF)

PIP
setNewRepresentation(Data, C1)

True
notifyEvent([outgoing, L?, C1])

True
True

Postprocessing of Inter-System Information Flow

notifyEvent([outgoing, C1, L1])

notifyEvent([incoming, L2, C2])

evaluate()
Boolean

Allow

From the perspective of 
the PIP, C2 is empty / not 
existent!

notifyEvent([incoming, L2, C2])
lookupPIP(Domain, IF)

PIP

notifyEvent([incoming, C2, L?])
True

True

notifyEvent([outgoing, L?, C1])

Contains scope semantics
scopename=Socket
behavior=OUT
delimiter=CLOSE

True
True

evalPolicy

Contains scope semantics 
scopename=Socket
behavior=IN
delimiter=NONE
interSystem=TRUE

Contains scope semantics 
scopename=Socket
behavior=IN
delimiter=NONE

Contains scope semantics:
scopename=Socket
behavior=OUT
delimiter=OPEN

Contains scope semantics: 
scopename=Socket
behavior=OUT
delimiter=OPEN
interSystem=TRUE

Contains scope semantics 
scopename=Socket
behavior=OUT
delimiter=CLOSE
interSystem=TRUE

Fig. 2. Inter-System Information Flow

A. Inter-System Information Flow Tracking

Video streaming is triggered by a request from the client,

which is intercepted on the server side. The according outgoing
event triggers the steps 1 to 6 (cf. Listing 1). It indicates

<event action="outgoing" timestamp="2015−05−30T09:30:10">

<parameter name="network" value="192.168.0.2:80;192.168.0.1:49152"> <!−− C1 −−>

<parameter name="process" value="2a26af9d−f565−4775−87b5−8eb1fb987ad5"> <!−− L1 −−>

<parameter name="currentscope" value="192.168.0.2:80;192.168.0.1:49152">

</event>

Listing 1. Outgoing Event at Server Side

an outgoing flow from the local container L1, i.e., the actual

server process providing the video stream, to a container C1
representing the network connection to the client from the

perspective of the server.

In step 2, a policy deployed at the server side PDP grants

access to the video stream under the condition that a policy for

protecting the requested video data is deployed at the client

side (step 3): Both policies refer to the video data by means of

a unique dataID data, which represents the video data within

PIPs. Thus, when evaluating the outgoing event concerning the

local container L1 against the local policy, the server side PDP

queries the local PIP whether L1 contains data (cf. evaluate-

call to the server side PIP in Fig. 2). As the PIP returns true,

the policy matches the outgoing event and evaluates to allow
under the condition that the policy deployment at the client is

successful. This policy demands that no further representations

of the protected video data must be created, which includes

that it must not be saved and that the screen must not be

captured while the video data is accessed.

In step 4 the outgoing event is handled by the server

side PIP. The PIP holds a local semantics and a remote
semantics for this event type. The local semantics for the

outgoing event is shown in Listing 2. The scope attribute

<ifsemantics>

<params>

<param name="network" type="CONTAINER"/>

<param name="process" type="CONTAINER"/>

</params>

<actions>

<action name="outgoing">

<scope behavior="OUT" delimiter="OPEN" interSystem="TRUE">currentscope</scope>

<operation name="SF_FLOW">

<left>

<operand>network</operand> <!−− C1 −−>

</left>

<right>

<operand>process</operand> <!−− L1 −−>

</right>

</operation>

</action>

<action name="close">

<scope behavior="OUT" delimiter="CLOSE" interSystem="TRUE">currentscope</scope>

<operation name="SF_CLEAR">

<left>

<operand>network</operand> <!−− C1 −−>

</left>

<right>

</right>

</operation>

</action>

</actions>

</ifsemantics>

Listing 2. Local Semantics of Outgoing and Close Event

interSystem = TRUE in the outgoing action description is

equivalent to inter = XSYSTEM in the formal model and

activates an XSYSTEM scope. The action description indicates

a flow from the local container L1 into the network container

C1. Due to behavior = OUT of the scope, C1 is substituted

by the scope’s intermediate container at the server side PIP:

As the PIP knows that L1 contains data, it models this flow

by mapping data to the intermediate container.

The scope specification in the semantics also triggers the

server side PIP to signal the upcoming data transfer to the

client side PIP. So far, the client side PIP neither knows

that this data exists nor that the client requested it. Step 5
takes care of the first part: The server side PIP creates a new

representation of the data at the client side PIP, i.e., we add an

initial mapping between the dataID data of the video data and

the remote network container C1 to the client side information

flow model. The server side PIP then forwards the event to the

client side PIP. In case the remote semantics for this event has

not yet been deployed at the client side PIP, it is attached to

this notification (cf. Listing 3).
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<ifsemantics>

<params>

<param name="network" type="CONTAINER"/>

<param name="process" type="CONTAINER"/>

</params>

<actions>

<action name="outgoing">

<scope behavior="OUT" delimiter="OPEN">currentscope</scope>

<operation name="SF_FLOW">

<left>

<operand>process</operand> <!−−L?−−>

</left>

<right>

<operand>network</operand> <!−−C1−−>

</right>

</operation>

</action>

<action name="close">

<scope behavior="OUT" delimiter="CLOSE">currentscope</scope>

<operation name="SF_CLEAR">

<left>

<operand>network</operand> <!−− C1 −−>

</left>

<right>

</right>

</operation>

</action>

</actions>

</ifsemantics>

Listing 3. Remote Semantics of Outgoing and Close Event

In step 6, the client side PIP processes the outgoing

event from the server side given the remote semantics

(cf. Sec. IV-B). Due to delimiter = OPEN the client side

PIP also creates a new scope. The semantics indicates an

information flow from the network container C1 into the

container L?, which is a wildcard for an unknown container

that receives the flow at the client (the local container at the

server included in the event is ignored at the client). According

to behavior = OUT of the scope, the client PIP replaces

L? with the scope’s intermediate container (cf. Sec. IV-C).

Together with the fact that C1 contains data, we obtain a

flow of data from C1 into the intermediate container at the

client side. After this step, the server starts sending video data

to the client.

Steps 7 to 9 are triggered by an incoming event intercepted

by the client side PEP when receiving data over the network

connection with the server (cf. Listing 4). The incoming event

refers to the same scope as the outgoing event. It indicates a

flow from a network container C2 representing the network

connection from the perspective of the client side PEP into a

local container L2, i.e., the process accessing the video stream.

The client side PDP evaluates this event against the policy

that has been deployed in step 3. This requires the PDP to

query the PIP whether this flow involves a representation of

the protected video data (step 8, cf. evaluate-call to the client

side PIP in Fig. 2). As C2 is either empty, i.e., it has been

created during a prior connection to the server, or does not

yet exist, the PIP returns false, and the PDP will allow the

incoming event.
<event action="incoming" timestamp="2015−05−30T09:30:11">

<parameter name="process" value="16820cec−18c7−49a2−a443−cd94f0fec3e0"> <!−−L2−−>

<parameter name="network" value="192.168.0.1:49152;192.168.0.2:80"/> <!−− C2 −−>

<parameter name="currentscope" value="192.168.0.2:80;192.168.0.1:49152">

</event>

Listing 4. Incoming Event at Client Side

In step 9, the incoming event is processed at the client

side PIP, which holds a local semantics for this event type.

The semantics is shown in Listing 5. It contains a scope

specification with behavior = IN and delimiter = NONE.

It further signals a flow from the network container C2 into

the local container L2. The delimiter = NONE indicates

that the event belongs to an already activated inter-system

<ifsemantics>

<params>

<param name="process" type="CONTAINER"/>

<param name="network" type="CONTAINER"/>

<param name="process_id" type="CONTAINER_NAME"/>

</params>

<actions>

<action name="incoming">

<scope behavior="IN" delimiter="NONE">currentscope</scope>

<operation name="SF_FLOW">

<left>

<operand>process</operand> <!−−L2−−>

</left>

<right>

<operand>network</operand> <!−−C2−−>

</right>

</operation>

<operation name="NF_ADD_NAMING">

<left>

<operand>process_id</operand>

</left>

<right>

<operand>process</operand> <!−−L2−−>

</right>

</operation>

</action>

</actions>

</ifsemantics>

Listing 5. Local Semantics of Incoming Event

scope. Due to behavior = IN, C2 is replaced by the scope’s

intermediate container within the client side PIP. Together

with the state after steps 5 and 6, the client side PIP observes a

flow of data from the remote container C1 via the intermediate
container into L2, i.e., as of now, the PIP knows that L2
contains the video data data, which is protected by our policy.

Furthermore, a naming is added to the state of the naming

function in order to make L2 accessible via the PID of the

process receiving the video data.

Once the client disconnects from the video stream, the

established inter-system state is no longer needed, i.e., we

deactivate the scopes and delete the intermediate containers

at both PIPs. In our example, the termination of the network

connection is observed by the server side PEP (step 10). The

according event is processed at the server side PIP (step 11)

and forwarded to the client side PIP. In line with Algorithm 1,

this event is processed with scope delimiter CLOSE at the

server and the client according to the scope specification of

the local semantics (cf. Listing 2) respectively the remote

semantics deployed in step 5 (cf. Listing 3). As C1 was

replaced by the intermediate container at the server in step

4, the event has no effect except for closing the scope locally.

Tracking of this XSYSTEM flow terminates after the close event

is interpreted at the client side (step 12).

B. Client Side Policy Enforcement

In terms of enforcing our policy to inhibit the redistribution

of video data at the client (iii), the PIP is queried each time

a user triggers an event indicating an according information

flow, e.g., when trying to take a screenshot. The event of taking

a screen shot is intercepted by a PEP on the client (Android

platform, cf. [7] for further details) and is only allowed if no

application in the foreground has access to the video stream

protected by our policy. For this, the PIP can be queried using

the PIDs of questionable processes (cf. V-A, step 9). For the

PID of the application accessing the video stream, the PIP

will answer that this container is a representation of the data,

for which our policy applies. Accordingly, the event, i.e., the

screen shot, is inhibited.

The reliability of distributed UC enforcement and likewise

the obtained level of security is based on the following
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assumptions: The integrity and the correctness of policies

and components of the UC infrastructure is ensured. The

infrastructure is up and running and not tampered with, i.e.,

users do not have administrative privileges on their devices.

VI. RELATED WORK

The subject of this paper is specification and processing

of information flow semantics depending on events that are

intercepted by UC monitors – including inter-system and inter-

layer information flows.

Park and Sandhu [8] introduced the first UC model UCON,

which has not been combined with information flow tracking.

The distributed usage control (DUC) model proposed by

Pretschner et al. in [1] has been extended with information

flow tracking in [2], [5] in order to enable the enforcement

of policies depending on the state of an information flow

model. The aspect of distributed enforcement of UC policies

is considered in greater detail in [9], [10], also focusing on

efficient PDP-PIP communication.

Our work builds on and extends [2]–[5]. We unify informa-

tion flow semantics specifications of monitoring components

and generalize the information flow model to cope with inter-

system flows. Since we were up to a lightweight proof-of-

concept implementation we did not yet consider monitoring

technology with higher precision such as the following. Lo-

vat et al. [4], [11] proposed approaches to handle implicit

flows [12] and to address the issue of over-approximations

of such simple taint-based information flow tracking systems,

which we do not cover.

Information flows towards operating system resources and

in-between processes are addressed by taint-based informa-

tion flow tracking frameworks such as Panorama [13] and

TaintDroid [14]. SeeC [15] also covers inter-system taint

propagation. With Neon [16], Zhang et al. provide a virtual

machine monitor for tainting and tracking flows on the level of

bytes, which does not require the modification of applications

and operating systems. Demsky’s tool GARM [17] tackles data

provenance tracking and policy enforcement across applica-

tions and systems via application rewriting.

VII. CONCLUSION

We described and implemented a generic, extensible, and

application-oriented approach for dynamic information flow

modeling and processing of explicit flows, also across the

boundaries of systems equipped with usage control technology.

By this means we can enforce usage control requirements

on representations of protected data items on remote systems

after the initial access to the data has been granted. In our

proof-of-concept implementation we have shown how video

footage from a surveillance system can be protected against

duplication and redistribution even if it is accessed by a mobile

application as being employed more and more frequently for

cooperation between control rooms and security personnel on-

site (provided that the mobile device is equipped with UC

technology, otherwise it would not be granted access in the

first place).

Our generic primitives for specifying information flow se-

mantics enable engineers to develop information flow monitors

(PEPs), which can easily be plugged into existing usage

control infrastructures, and thus facilitates the deployment of

information flow tracking technology in evolving scenarios.

By means of eliminating the interdependency between event

capturing and information flow tracking at development time,

the practical application of state-based usage control enforce-

ment based on information flow tracking is improved.
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